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Abstract

In software development, project constraints, such as limitations of time and budget, lead
to customer-speci�c variants by copying and adapting the original product. During such
copy-based customizations, modi�cations are performed in an ad hoc manner and scattered
all over the code. Such an approach provides �exibility and e�ciency in the short-term to
include new customer-speci�c features. But in the long-term, a Software Product Line (SPL)
approach with managed variability has proven to be valuable for achieving goals such as
cost reduction, improved time-to-market, and improved quality attributes [33, 67].

To take advantage of the speed of copy-based customizations and managed variability
of an SPL, companies and developers have to cope with the challenge of consolidating the
customized product copies into a valuable SPL. Therefore, developers have to understand the
di�erences between copies, �nd those that belong together, design desired SPL variability
and integrate the implementations of the copies.

Today, generic di�erence analysis tools are typically used in context of a consolidation.
They confront developers with a lot of �ne-grained and unrelated di�erences. There is no
support for further interpreting the di�erences and designing the variability of the future
SPL. Doing this manually is tedious as all di�erences must be reviewed one after another
and, thus, consolidations are often performed ad hoc and with a limited scope only.

This thesis presents a novel approach named SPLevo for supporting the consolidation of
customized product copies into an SPL. In short, the contributions of my thesis are:

• A Variability Analysis to support the variability design
• A fully automated Di�erence Analysis speci�c for consolidations of product copies
• A Refactoring Speci�cation Concept for consistent implementations of variability
• A Consolidation Process for structured guidance of developers
• An Evaluation of the bene�ts and industrial applicability of the approach

The SPLevo approach detects the di�erences between product copies, relates them to
each other, and identi�es those contributing to a common product feature. In addition,
a semi-automatic process guides developers in iteratively creating a variability design by
recommending re�nements. This process considers guidelines for implementing variability,
such as expressing variability only at the level of exchangeable classes. Based on an approved
variability design, the refactoring of the customer-speci�c product copies into the future
SPL is initialized. The SPLevo approach clearly identi�es the software elements to modify
and allows for manual and automated refactorings. The approach has been validated on
publicly available and documented variants of the modeling tool ArgoUML as well as copies
of an industrial software product provided by a partner in the KoPL research project.

The contributions of my thesis have been published as part of several peer-reviewed
publications [100, 101, 99, 104, 105, 102, 97, 97] and can be summarized as follows:
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Variability Analysis for Detecting Related ProgramModifications
Customizations are typically performed as modi�cations scattered all over the implementa-
tion. To relate these modi�cations to each other, a variability analysis has been developed
that exploits existing approaches for program analysis and evaluates relationships between
the modi�cations. This allows for supporting developers in iteratively developing the vari-
ability design and reducing their manual e�orts. In addition, a variation point model has been
developed to allow for deriving variation points from di�erences and iteratively aggregating
them. Furthermore, it allows for individually specifying the variability characteristics of
each variation point.

Di�erence Analysis for Customized Product Copies
A di�erence analysis for detecting copy-speci�c modi�cations in context of a consolidation
has been developed. It considers speci�c requirements of a consolidation, such as typical
practices of copy-based customization. Furthermore, it allows for a fully automatic and
reliable analysis as well as for deriving a variation point model that represents an initial
variability design. Hence, this step is completely transparent for developers.

Specification Concept and Recommendation System for Consolidation Refactorings
Clearly specifying program refactorings has been proven to be valuable for a better compre-
hension and automation of refactorings. However, existing speci�cation concepts do not
support the consolidation of several program copies while introducing variability mecha-
nisms at the same time. A novel speci�cation concept for program refactorings has been
developed that allows for selecting and implementing variability in a traceable and consistent
manner. Based on this speci�cation concept, a recommendation system has been developed
for automatically selecting appropriate variability mechanisms to implement for individual
variation points.

Definition of a Structured Consolidation Process
A semi-automatic process to guide developers in designing the variability of the future SPL
has been speci�ed. Furthermore, an SPL Pro�le has been developed that allows for capturing
SPL guidelines to further automate the process. First, a di�erence analysis is performed to
receive an initial �ne-grained variation point model. Next, variability analyses are iteratively
performed to recommend variation point aggregations to the developers. To consider
soft criteria such as organizational constraints and product strategies, developers �nally
decide about the recommendations and can specify preferred variability characteristics.
The resulting variability design is enhanced with decisions about how to implement the
variability. Finally, the variability design is processed by the consolidation refactoring
and the clear identi�cation of a�ected code locations allows for manual and automated
refactorings.

Evaluation of the Benefits and Industrial Applicability of the Approach
Di�erent program analyses have been adopted to be executed by the SPLevo Variability
Analysis and to evaluate their bene�t within case studies. Therefore, variants of the publicly
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accessible modeling tool ArgoUML have been analyzed. The code of the variant-speci�c
features is documented and provides a benchmark for the analyses. In addition, an industrial
case study with the CAS Software AG and customer-speci�c copies of their commercial
product has been performed to evaluate the approach under industrial conditions. Interviews
and an online survey have been performed to evaluate the appropriateness of the approach
for the state of the practice. The evaluation con�rmed the approach to be applicable under
realistic conditions. The SPLevo Di�erence Analysis and SPLevo Variability Analysis have
been proven to be valuable for reducing the manual e�ort of a consolidation. At the same
time, a need for adapting and optimizing existing program analyses to be used for copy
consolidations as well as di�ering bene�ts for the individual analyses have been identi�ed.

The automated analyses support software developers in comprehending customizations
and designing variability. Considering company guidelines allows for ensuring consistent
designs and implementations of variability. Furthermore, the tool-supported process allows
developers without speci�c knowledge in program analysis for performing consolidations
while bene�t from the analyses. Accordingly, a consolidation for exploiting long-term
advantages of software product lines becomes more attractive for companies in terms of
required e�orts and commercial risks.
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Zusammenfassung

In der Software-Entwicklung führen Rahmenbedingungen wie Zeit- und Kostendruck oft
dazu, dass bestehende Software-Produkte kopiert und an individuelle Kundenanforderungen
angepasst werden. Hierbei werden Änderungen typischerweise ad hoc und verstreut im
Quellcode vorgenommen. Kurzfristig bietet ein solches Vorgehen Flexibilität und Entwick-
lungsgeschwindigkeit, langfristig ist aus Wartungs- und Produktsicht jedoch meist eine
�exible Produktlinie mit geordneter Variabilität sinnvoller.

Um die Vorteile beider Strategien nutzen zu können, stehen Unternehmen und Entwickler
vor der Herausforderung, kundenspezi�sch angepasste Produktkopien nachträglich in eine
zentrale Produktlinie zu konsolidieren. Neben dem aufwändigen Verstehen der Unterschie-
de zwischen den Produktkopien erfordert auch der Entwurf der zukünftigen Variabilität
tiefgehende Kenntnisse der einzelnen Kopien.

Wenn heutzutage Konsolidierungen von Produktkopien durchgeführt werden, kommen
in der Regel generische Werkzeuge für einen Quellcodevergleich zum Einsatz. Diese kon-
frontieren Entwickler mit einer großen, nicht aufbereiteten Menge feingranularer Code-
Unterschiede. Eine darauf aufbauende Unterstützung bei dem Entwurf der zukünftigen
Variabilität fehlt gänzlich. Als Folge des entstehenden Aufwands werden Konsolidierungen
oftmals gar nicht oder nur ad hoc und in einem eingeschränkten Umfang durchgeführt.

In meiner Arbeit schlage ich einen neuen Ansatz namens SPLevo zur Unterstützung
der Konsolidierung von kundenspezi�sch angepassten Software-Produktkopien zu einer
Produktlinie vor. Die Beiträge meiner Arbeit lassen sich wie folgt zusammenfassen:

• Eine Variabilitätsanalyse zur Unterstützung des Variabilitätsentwurfs
• Eine vollautomatisierte Di�erenzanalyse für die Konsolidierung angepasster Pro-

duktkopien
• Ein Spezi�kationskonzept für Programm-Restrukturierungen zur Einführung von

Variabilität
• Ein Konsolidierungsprozess zur strukturierten Gestaltung und Einführung von

Variabilität
• Eine Evaluation des Nutzens und der industriellen Anwendbarkeit der Beiträge

Der SPLevo Ansatz erkennt die Unterschiede zwischen Produktkopien, bringt diese zu-
einander in Verbindung und identi�ziert diejenigen Unterschiede, die zu einer gemeinsamen
Produkteigenschaft beitragen. In einem semi-automatischen Prozess werden Entwickler
mittels Vorschlägen für sinnvolle Variabilitätspunkte zu einem Variabilitätsentwurf ge-
führt. Dabei werden auch mögliche Vorgaben zur Umsetzung der Variabilität, beispielsweise
nur durch den Austausch ganzer Klassen, berücksichtigt. Mit einem von den Entwicklern
akzeptierten Variabilitätsentwurf wird in einem letzten Schritt die Überführung der kunden-
spezi�schen Produktkopien in die zukünftige Produktlinie initiiert. Hierzu werden die zu
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modi�zierenden Teile der Software eindeutig identi�ziert, sodass sowohl manuelle als auch
technisch unterstützte Umstrukturierungen möglich sind. Zur Validierung des Ansatzes
dienen ö�entlich verfügbare und dokumentierte Varianten des Modellierungswerkzeuges
ArgoUML sowie Produktkopien eines Industriepartners aus dem Forschungsprojekt KoPL.

Die Beiträge meiner Arbeit wurden bereits im Rahmen verschiedener Publikationen [100,
101, 99, 104, 105, 102, 97, 97] verö�entlicht und lassen sich wie folgt zusammenfassen:

Variabilitätsanalyse zur Erkennung zusammenhängender Programmänderungen
Kundenspezi�sche Anpassungen manifestieren sich in der Regel als Änderungen an vielen
verstreuten Programmstellen. Um diese miteinander in Beziehung zu setzen, wurde eine
Variabilitätsanalyse entwickelt, die existierende Verfahren zur Programmanalyse erschließt
und Beziehungen zwischen Programmänderungen auswertet. Dies erlaubt es, Entwickler
bei der iterativen Erstellung des Variabilitätsentwurfs zu unterstützen und ihre manuellen
Aufwände zu reduzieren. Zudem wurde ein Variationspunktmodell entwickelt, das es erlaubt,
Variationspunkte aus Di�erenzen abzuleiten sowie zusammengehörende Variationspunkte
iterativ zu aggregieren und ihre gewünschten Variabilitätseigenschaften zu spezi�zieren.

Spezifische Di�erenzanalyse für angepasste Produktkopien
Es wurde eine Di�erenzanalyse zur Erkennung durchgeführter kopie-spezi�scher Anpassun-
gen entwickelt, die spezielle Anforderungen der Konsolidierung, wie typische Änderungs-
muster bei der Kopie-Erstellung oder Namenskonventionen, berücksichtigt. Die Di�erenz-
analyse erlaubt eine vollautomatisierte Erkennung der Unterschiede zwischen den Kopien
sowie die automatische Ableitung eines initialen Modells für den Entwurf der Variabilität
der zukünftigen Produktlinie. Die Di�erenzanalyse kann somit für Entwickler vollständig
transparent durchgeführt werden.

Spezifikationskonzept für Programm-Restrukturierungen zu Einführung von Variabilität
Die Spezi�kation von Programm-Restrukturierungen innerhalb eines Programms hat sich in
der Software-Entwicklung aufgrund einer besseren Nachvollziehbarkeit und die Möglichkeit
zur Automatisierung bewährt. Bestehende Spezi�kationskonzepte unterstützen jedoch nicht
die Zusammenführung mehrerer Programmkopien und die gleichzeitige Einführung von
Variabilität. Daher wurde ein Konzept zur Spezi�kation von Programm-Restrukturierungen
entwickelt, das eben dies ermöglicht und es im Rahmen einer Konsolidierung erlaubt, Va-
riabilität einheitlich und damit nachvollziehbarer und wartbarer zu implementieren. Zu-
dem wurde auf Basis des Spezi�kationskonzeptes ein Vorschlagssystem entwickelt, das
Entwicklern die manuelle Auswahl von Variabilitätsmechanismen für die einzuführenden
Variationspunkte abnimmt.

Konsolidierungsprozess zur strukturierten Gestaltung und Einführung von Variabilität
Es wurde ein semi-automatischer Prozess entwickelt, der Entwickler bei der Erstellung
eines Variabilitätsentwurfs leitet. Zudem wurde ein Produktlinien-Pro�l erarbeitet, in dem
Produktlinien-Vorgaben zur stärkeren Automatisierung des Prozesses erfasst werden können.
Zu Beginn wird eine Di�erenzanalyse durchgeführt und ein initiales Variationspunktmodell
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daraus abgeleitet. Iterativ werden nun Variabilitätsanalysen auf dem Modell durchgeführt
und den Entwicklern Vorschläge zur Aggregation von Variationspunkten unterbreitet. Um
weiche Faktoren, wie organisatorische Rahmenbedingungen und Produktstrategien, zu be-
rücksichtigen, liegt die letztendliche Entscheidung für eine Aggregation bei den Entwicklern.
Der so entstehende Entwurf wird mit Entscheidungen zur technischen Realisierung der
Variabilitätspunkte versehen und als Eingabe an die Restrukturierung der Implementierung
übergeben. Hierbei werden die betro�enen Programmstellen identi�ziert und die jeweils
zu implementierende Variabilität de�niert, sodass sowohl manuelle als auch automatisierte
Restrukturierungen möglich werden.

Evaluation des Nutzens und der Anwendbarkeit der Beiträge in der Praxis
Im Rahmen meiner Arbeit habe ich verschiedene Programmanalysen und deren Optimie-
rungsmöglichkeiten in Fallstudien untersucht. Hierbei wurden zum einen Varianten eines
frei zugänglichen Modellierungswerkzeuges untersucht, deren variantenspezi�scher Code
dokumentiert und damit als Maßstab verfügbar ist. Zum anderen wurde zur Untersuchung
der Anwendbarkeit des Ansatzes in einem industriellen Szenario eine industrielle Fallstudie
mit der CAS Software AG und kundenspezi�schen Kopien eines ihrer Produkte durchgeführt.
Darüber hinaus wurden Befragungen und eine internetbasierte Umfrage zur Angemessen-
heit des vorgeschlagenen Ansatzes in Bezug auf den heutigen Stand der Praxis durchgeführt.
Die Evaluation hat die Angemessenheit des Ansatzes für reale Bedingungen bestätigt. Zu-
dem wurden der Nutzen der Variabilitätsanalyse insgesamt zur Reduzierung des manuellen
Aufwands sowie der Mehrwert des strukturierten Prozesses für eine konsistentere Um-
setzung der Variabilität bestätigt. Gleichzeitig hat sich die Notwendigkeit der Anpassung
und Optimierung bestehender Programmanalysen für deren Anwendung im Rahmen einer
Konsolidierung herausgestellt. Damit verbunden wurde auch ein unterschiedlich großer
Nutzen der untersuchten Programmanalysen deutlich.

Zusammengefasst konnte festgestellt werden, dass die automatisierten Analysen Software-
Entwickler, im Rahmen einer Konsolidierung unterstützen können kundenspezi�sche Software-
Anpassungen besser zu verstehen und die einzuführende Variabilität zu entwerfen. Die
Berücksichtigung von Unternehmensvorgaben, wie die erlaubten Variabilitätsmechanismen,
ermöglicht es eine einheitliche Gestaltung und Umsetzung der Variabilität sicherzustellen.
Darüber hinaus unterstützt der werkzeuggeführte Prozess auch Entwickler ohne speziel-
le Vorkenntnisse im Bereich der Programmanalyse, kundenspezi�sche Produktkopien in
eine variable Produktlinie zu überführen. Eine Konsolidierung zur Nutzung langfristiger
Wartungs- und Produktvorteile wird somit für Unternehmen hinsichtlich der Aufwände und
Risiken attraktiver.
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Preliminary Remarks

Use of genders
When a speci�c gender is used in this thesis, this is done for the sake of legibility and does
not exclude any genders.

Use of “we”
For the sake of the �ow of words, the term “we” is used instead of “I” in this thesis. However,
the work presented represents my own contributions, and any work done in cooperation
has been marked explicitly.

KoPL project
This thesis was partly conducted in the KoPL [107] research project and partly funded by the
German Federal Ministry of Education and Research (BMBF), grant No. 01IS13023 C. The
KoPL research project takes up results from this thesis. Accordingly, parts of the results have
been published and cited in the according project deliverable. The consolidation process
and stakeholders de�ned in this thesis have been reused in the KoPL deliverable “D2.1
Requirements Speci�cation for the KoPL Tool Chain”. The architecture of the prototype
and the concept of technology-speci�c adaptations de�ned in this thesis have been reused
in the KoPL deliverable “D3.1 Architecture Speci�cation for the KoPL Tool Chain”. The
industrial case study and the interview workshop have been performed in cooperation with
the consortium of the KoPL project.
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Part I

Customized Product Copies

1





1 Introduction

Copying existing software products as a starting point for new projects is a frequently
used approach in software development, as recently surveyed by Dubinsky et al. [45] and
described by Riva and Del Rosso [157]. Copying a product and adapting it to customer-
speci�c needs allows for �exible and e�cient software customization in the short-term.
However, in the long-term, such copies cause barriers of growth because of redundant
maintenance e�orts, not taking advantage of synergy e�ects, or cross selling features. In
contrast, a Software Product Line (SPL) [33] approach with a single code base and explicitly
managed variability allows overcoming such barriers and bene�t from e�ort reduction,
quality improvements, and time-to-market reduction as summarized by Schmid [169].

Starting with an SPL approach requires additional upfront investment and lowers the time-
to-market, which is often not acceptable from a business perspective. However, starting
with customized copies and consolidating them into an SPL later is challenging. Con-
solidating customized copies requires to identify and combine their varying features by
introducing variability mechanisms [113, 162]. For example, identifying relevant di�erences
between those customized copies requires to review a lot of code and to understand which
modi�cations belong to each other [165, 4].

State of the art software di�erence analyses are not designed for SPL consolidation.
They neither consider characteristics speci�c for copy-based customizations (e.g., copy
creation practices such as change patterns and naming conventions) nor support interpreting
identi�ed di�erences (e.g., identifying relationships between thousands of low-level code
di�erences). Furthermore, deriving a reasonable variability design which structures the
features of an SPL requires speci�c expertise, and is not a software developer’s everyday
task.

This thesis proposes a novel approach for consolidating customized product copies. It
contributes software analyses and a development process for reducing manual e�orts of
such consolidations and achieving consistent variability with less coordination overheads.

1.1 Motivation

When it comes to consolidating customized product copies, one cannot assume a complete
and reliable documentation of all modi�cations performed in the copies. As con�rmed by
an industrial case study performed in the context of this thesis, one cannot even assume a
list of custom features that have been implemented for a certain product copy. Furthermore,
the developers, who originally introduced the copies might not be available anymore, as it
was the case in the industrial case study as well.
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Relevance in practice
If done the naive way, a product copy consolidation results in a lot of manual e�ort and high
complexity. For example, consolidations considering only parts of a copy and performed
in an unstructured manner come with the risk of too many unrelated and insu�ciently
documented variability. Svahnberg et al. [183] describe such variability as a threat to the
manageability of an SPL in practice. The high e�ort and complexity reduce the advantages
of introducing an SPL.

A survey performed as part of this case study con�rmed that companies are aware of the
disadvantages of customized product copies but do not actively target their consolidation
(Section 8.5.3).

Limitations of related research directions
Existing SPL engineering approaches either follow a top down approach (i.e., designing
the SPL �rst), or do not support the consolidation of existing copies to an SPL in an
implementation-aware manner. Existing approaches for analyzing di�erences and merging
them into a single code base do not allow for designing and introducing variability. On the
other side, approaches in the �eld of clone detection allow for identifying commonalities
within one or more code bases. However, having the commonalities at hand, the approaches
do not support developers in transforming the rest of the implementations into reasonable
variability.

Scientific challenges described in literature
Due to the limitations of existing directions of research, it is still an open scienti�c question
which type of information and guidance allows for supporting developers in consolidating
copies into SPLs. In recent years, this scienti�c question raised additional awareness as
several groups started to investigate this topic, such as Rubin et al. [165, 160, 162], Meister
[129], Eyal-Salman et al. [57], or Alves et al. [4], and the research community started
according events such as the International Workshop on Reverse Variability Engineering
(REVE [123]). Rubin and Chechik [161] recently published a survey on feature location
techniques and motivated their potential for a transition to SPLs. They concluded their
survey with the demand for adapting and evaluating the bene�t of feature location techniques
for such transitions, which matches to the contributions of this thesis.
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1.1 Motivation

1.1.1 Example Scenario

Copy-based customization of existing software solutions is not limited to a speci�c domain
or type of system. One can assume, the higher the need for customization, the lower the
experience with variability, and the stronger the project constraints are, the more often
customized product copies exist. To give an example, an online shop used in an e-commerce
scenario as shown on the left side of Figure 1.1.

Customer 2  

PD2 & ERP2 

Customer 3  

PD3 & ERP3 

Customer  

PD1 & ERP1 

Time 

Pressure 

Figure 1.1: E-Commerce example of customized product copies

Starting position
A software vendor has for example developed an integration of a shop with a product
database and an Enterprise Resource Planing (ERP) system for the customer operating the
shop. The product database provides information about the products sold in the shop and
the ERP system provides real time stock and price information. The solution is successfully
deployed and used.

Customization need and project pressure
Now, customer 2 and customer 3 request similar solutions but operate di�erent product
databases, di�erent ERP systems, and adaptations in their data processing. These adaptions
are not foreseen con�guration options and require source code changes. Furthermore, it is
summertime already and the customers need to have these integrations before the Christmas
business starts. As this time will be the peak of their business, the integrations will be useless
if they are not available in advance. To cope with this time pressure, copying the existing
software solution allows for two teams working in parallel on adapting the integration to
the customer-speci�c needs.
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Consolidation need
When the Christmas time is successfully passed and the new year has started, the manage-
ment of the software vendor decides to o�er such integrations for varying ERP systems
and databases as a product. In particular, they want to o�er the solution with the ability to
support any combination of product databases and ERP systems supported so far. Thus, the
software vendor needs to consolidate the customized copies into an SPL �exible enough to
support this strategy. However, at the same time, the e�ort required for this consolidation
must be as low as possible to �nance the strategy and to o�er the future SPL in a reasonable
time frame.

1.1.2 Copy-Based Customization

Code copies are well-known for their disadvantages in the �eld of software engineering in
general and software evolution in particular. Parnas [145] has discussed and criticized code
duplication, what he calls the “Clone and Own” approach, already in 1976. However, copying
and customizing existing products is a still widespread procedure, as recently studied by
Dubinsky et al. [45]. They have identi�ed three reasons why copying code is still used in
practice [45, page 28]:

• “E�ciency”
• “Short-term Thinking”
• “Lack of Governance”

The �rst reason has been illustrated in the example described above for coping with the short
time frame to realize the customizations. “Short-term thinking”, exists according to Dubinsky
et al. [45], when companies focus on delivering individual products and postpone activities
for enabling reuse. As a third reason, they describe that a “Lack of Governance” exists
when knowledge about and responsibility for reuse are rarely maintained by a company.
The improved “E�ciency” as reason for copying has additionally been con�rmed by the
participants of our online survey (Section 8.5.3). The “Lack of Governance” was con�rmed
by the participants of the online survey and interviews we have performed (Section 8.5.1).
Similarly, Rubin et al. [165, page 1] summarized the advantages of copy-based customization
as “. . . the easiest and the fastest reuse mechanism, providing . . . existing already tested code,
while having the freedom and independence to make necessary modi�cations. . . ”.

However, Rubin et al. [165] and Dubinsky et al. [45] do not aim for the completeness of
their lists, and even more reasons, such as unstable domains, intellectual properties, and
organizational structures, force copying code instead of introducing variability in advance.
Copy-based customization practices are not limited to copying products as a whole. It is
applicable for copies of complete products as well as for copies of extensions or components
of a product as illustrated by the following two scenarios.
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Customized Product Copies
Figure 1.2 presents a typical customization scenario with the whole product being copied
and modi�ed to match the needs of customer A or customer B. It represents the traditional
“Clown and Own” strategy discussed and criticized by Parnas [145]. This type of scenario is
typical for introducing an SPL. It requires to design variation points and alternative variants
for these points.

Customized

Product Copies

SPL 

with Extensions

Original

Product 

Product Copy 

Customer A

Product Copy

Customer B 

SPL Core

Extension

Customer A 

Extension 

Customer B

consolidation

Figure 1.2: Customized product copies (left) and derived SPL with core and extensions (right)

Grown Extension Repository
Another application scenarios for consolidating customized copies are grown extension
repositories. Figure 1.3 shows a software product that already implements an extension
mechanism and appropriate extension points. Extension points are a certain type of vari-
ability realization mechanism. Extension points allow for �exibly adding new extending
components according to a de�ned Application Programming Interface (API) as described
by Klatt and Krogmann [98].

Grown 
Extension Repository

SPL Core

Extensions

Consolidated 
Extension Repository

SPL Core

Extensions

consolidation

Figure 1.3: Grown extension repository (left) and repository with consolidated and �exible
extensions (right)

In practice, there are often grown extension repositories containing many extensions
serving the same functionality but modi�ed or adapted to customer-speci�c needs. To keep
such extension repositories manageable and simplify the selection and reuse of extensions,
the existing extensions must be reviewed and consolidated on a regular basis.
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1.1.3 Advantages of So�ware Product Lines

Reuse is one of the major goals since the early years of software engineering (Jacobson et al.
[88]). It is expected to shorten the time-to-market, reduce maintenance costs, and lead to
an improved quality as a result of more often tested components. About a decade ago, the
Software Product Line approach has been introduced as a concept of explicitly managed
variability (Clements and Northrop [33]). Meanwhile, the approach has proven as a valuable
concept to reach the goal of software reuse by achieving an “improved time-to-market
and quality, reduced portfolio size, engineering costs and more” (Rubin and Chechik [164]
referencing to Clements and Northrop [33] and Gomaa [67]).

1.1.4 Consolidation Challenges

Consolidating customized product copies is a typically challenging and expensive task.
Especially, understanding the customizations from one copy to another is not obvious by
nature. A possibly large amount of di�erences, irrelevant modi�cations (e.g., comments),
relationships between those modi�cations, individual preferences on the future SPL and
the need for a long-term manageable variability design, lead to challenges speci�c for
consolidation activities.

Di�erence granularity and amount
Independently customized product copies allow for �exible adaptations without any restric-
tions. As described by Alves et al. [4, page 4], tools for analyzing the di�erences between
those copies provide many details one has to handle. Especially when text-based or line-
based di�erence analyses approaches are used, their sensitivity to reformatting further
complicates this challenge as described by Baxter et al. [12] and Hunt and Tichy [84, page 2].

Related di�erences
When merging code bases, one has to identify related di�erences to improve the merging or
prevent con�icts due to renaming as described by Hunt and Tichy [84]. Not only merging
code bases but introducing variability at the same time further extends the challenge of
identifying related di�erences. Developers need to �nd related di�erences scattered to
many locations and must decide which of them contribute to the same variable feature, as
described by Rubin and Chechik [163], Eyal-Salman et al. [57], Alves et al. [4], and Koschke
et al. [108].

Individual goals
As described by Bosch [21], Software Product Lines can exist in di�erent shapes such as
deploying di�erent sets of components or multi-tenant systems adapting their behavior to
the current user. Depending on the individual goals of a company, one shape is preferable
over the other. However, besides the general shape of an SPL, individual points of variability
require di�erent types of variability. For example, even if multi-tenant systems allow for
deciding about variability features at run time, there will be some variable features con�gured
at system start up time anyway (e.g., the type of database server to use). Such decisions are
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in�uenced by technical as well as product management requirements and need to involve
the according stakeholders.

In addition to the shape of the intended SPL, a company can have di�erent quality goals
when deciding for a consolidation, such as reducing code complexity or redundancy as
described by Rubin and Chechik [164]. Thus, individual goals of a consolidation should be
considered to achieve a valuable SPL at the end of a consolidation.

Uniformity of variability implementation
As a general �nding in software engineering, similar challenges should be handled in a
similar manner for many reasons such as comprehensibility and e�ort reduction. Batory
et al. [11] have stated the according Principle of Uniformity and in Apel et al. [7, page 60]
adopted this principle for the context of variability and feature-oriented SPL development,
stating that introducing variability in similar artifacts should be done in a similar manner.
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1.2 Problem Statements

In accordance with the motivation described above, customized product copies cannot always
be prevented but must be consolidated to bene�t from an SPL approach in the long-term.
Today, these consolidations are done in fully manual fashion and generic comparison tools
are used that produce too much information that must be further interpreted by developers.
Furthermore, how to refactor customized copies into a single code base is decided in an ad hoc
manner with the risk of inappropriate and inconsistent implementations, not involving all
stakeholders at the right time and leading to withdrawing implementations more often than
necessary. Existing approaches for reactive SPL development focus on feature extraction
from a single product to make them optional (Apel et al. [7, page 203]).

Based on the challenges of consolidating customized product copies and the lack of
existing approaches to target them, this thesis is motivated by two problem statements:

Problem Statement I: Today, the manual e�ort for consolidating customized
copies is too high.

Problem Statement II: Unstructured consolidation processes require unneces-
sary iterations and lead to inconsistent implementations.

1.3 Hypotheses

To approach the problems stated above, this thesis draws the following hypotheses which
are targeted and evaluated in the following.

Hypothesis I: Consolidation Support It is possible to create automation for
reducing developers’ manual e�ort in consolidating customized product copies
into a Software Product Line with explicit variability.

Hypothesis I.I: Di�erence Analysis It is possible to create a fully automated
di�erence analysis that considers consolidation-speci�c requirements and im-
proves information presented to developers.

Hypothesis I.II: Variability Design It is possible to recommend reasonable
variability design decisions by analyzing relationships between code di�erences
and thereby reducing manual e�orts for inspecting the original copies.

Hypothesis I.III: Consolidation Refactoring It is possible to derive reason-
able refactoring instructions from a variability design to guide developers in
refactoring the code base.

Hypothesis II: Consolidation Process It is possible to specify a structured
and industrially applicable consolidation process providing guidance for stake-
holder involvement and reducing overheads for coordination and withdrawn
implementations.
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1.4 Contributions

This thesis proposes a novel approach to support the consolidation of customized product
copies named SPLevo (“Software Product Line evolution”).

The contributions of this thesis are integrated in the SPLevo approach as well as an
evaluation of the contributions including studies of di�erent analysis adaptions to gain
insight into their individual value.

Di�erence Analysis for consolidating customized product copies
A di�erence analysis has been developed that allows for a fully automated analysis of the
di�erences between source code of customized product copies and allows for ignoring irrel-
evant di�erences. It is able to consider copy-based customization-speci�c practices to �lter
irrelevant di�erences and by that improves the results of the analysis (e.g., copies referencing
their origin). In addition, the di�erence analysis allows for automatically deriving a variation
point model for iteratively designing variability to introduce as part of a consolidation
process.

Program analyses for designing variability
Copy-speci�c features are typically implemented at many di�erent code locations. To iden-
tify di�erences which are related to the same copy-speci�c feature, an analysis has been
developed to identify relationships between such locations by exploiting and adapting exist-
ing software analysis approaches. Furthermore, recommendations to design the variability
of the future SPL are derived from the detected relationships.

Specification concept and recommendation system for consolidation refactorings
A concept for specifying refactorings aware of consolidating code and introducing variability
at the same time has been developed. This allows for consistently implemented variability
at multiple locations of a SPL, such that similar variability is realized in the same technical
way. Furthermore, based on this speci�cation concept, a recommendation system relieves
developers of manually selecting the most appropriate variability mechanism for individual
points of variability and thus reduces manual e�ort and promotes consistent selections.

Structured consolidation process
A semi-automatic process which guides developers during a consolidation has been de-
veloped. An SPL Pro�le was developed to capture individual requirements on the future
SPL and, thus, to allow for further automating the process. The process structures the
consolidation into a fully automated di�erence analysis, a semi-automated design phase
with a coordinated involvement of further stakeholders, and the initialization of a guided
refactoring to implement the future SPL.

Evaluation and analysis study
The contributions of the SPLevo approach have been evaluated in case studies with variants
of an open source software design tool as well as in an industrial case study. Within the

11



1 Introduction

case study, multiple relationship analyses with di�erent optimization settings have been
investigated to gain insight on their individual value for consolidating customized product
copies. Furthermore, interviews and an online survey have been performed to show the
validity of assumptions and concepts of the contributions for real-world scenarios.

1.5 Structure of this Thesis

This thesis is structured in three main parts: Customized Product Copies (Part I), The SPLevo
Approach (Part II), and Outlook and Conclusion (Part III).

Part I: Customized Product Copies
The �rst part of this thesis introduces the research topic and describes the motivation and
hypotheses of this thesis in Chapter 1. The following Chapter 2 introduces the foundations
of this thesis.

Part II: The SPLevo Approach
The second part of this thesis presents the SPLevo approach and details its contributions. In
particular, Chapter 3 provides an overview of the approach in total. Following, Chapter 4
presents the proposed consolidation process for developer guidance. The process’ individual
steps are explained in the following chapters. Next, Chapter 5 presents the di�erence analysis
speci�c for consolidating customized copies. Then, Chapter 6 describes the di�erent aspects,
activities, and analyses proposed to design the variability of the future SPL. Afterwards,
Chapter 7 presents the proposed concept for specifying variability-aware refactorings as
well as the support for variability realization and related activities. Chapter 8 describes the
evaluation performed including the overall evaluation concepts and the di�erent types of
evaluations to prove the hypotheses of this thesis. At the end of the second part of this
thesis, Chapter 9 summarizes the assumptions and identi�ed limitations of the presented
approach.

Part III: Outlook and Conclusion
The third part concludes and summarizes this thesis. First, Chapter 10 presents approaches
related to the contributions of this thesis. Next, Chapter 11 presents identi�ed directions for
future work. Finally, Chapter 12 summarizes this thesis and concludes the gained insight.
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2 Foundations

This chapter presents the foundations this thesis builds upon. It makes use of contributions,
approaches, and practices from an abundance of topics in the context of software engineering
and beyond. The following sections introduce these foundations categorized in Model
Driven Software Development (MDSD), Software Product Line (SPL), Variability, Software
Maintenance, and Reengineering. In addition, Section 2.5 introduces techniques and concepts
used during the evaluation.

2.1 Model Driven So�ware Development (MDSD)

The contributions of the SPLevo approach make extensive use of techniques from the �eld
of Model Driven Software Development.

2.1.1 “Model Driven Engineering” Approaches

Brambilla et al. [24, page 9] have classi�ed di�erent types of software engineering approaches
in the �eld of MDSD according to the role of the models:

• Model Driven Development (MDD): The implementation of the software is (semi-)
automatically generated from the models.

• Model Driven Architecture (MDA): A subset of MDD with models and languages
standardized by the Object Management Group (OMG).

• Model Driven Engineering (MDE): A superset of MDD with models used in the
engineering process not limited to pure development but also for analysis purposes
(e.g., model-based evolution or reengineering legacy systems).

• Model Based Engineering (MBE): A softer version of MDE, where models are also used
for software planning and design but implementation is done manually afterwards.

According to this classi�cation, the SPLevo approach is a Model Driven Engineering process.
In case of an automated refactoring at the end of its process, some aspects of the Model
Driven Development are covered as well. However, the approach itself is in the category of
Model Driven Engineering (MDE) and, thus, the foundations cover only speci�c parts of the
�eld of MDSD.

2.1.2 Modeling Levels

The OMG has speci�ed di�erent abstraction levels of modeling concepts [140]. Figure 2.1
shows the layers and the dependencies between them as published by Völter et al. [188].
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M3: Meta-Metamodel

Instanceofdescribes

M2: Metamodel

describes
Instanceof

M1: Model

describes
Instanceof

M0: Instance

describes
Instanceof

Figure 2.1: Model abstraction levels (Völter et al. [188])

On the lowest level (M0), actual object instances reside, such as data objects instantiated
by a program at run time. On the second level (M1), models exist that describe classes of
those objects. For example, data types are speci�ed on this level. Hence, models can be
de�ned by explicit modeling or general programming languages. The dotted line represents
a boarder of abstraction that software developers do not pass in traditional non-MDSD
software engineering. Above this border, on the third level (M2), metamodels are de�ned
providing modeling languages to create speci�c models. Accordingly, a model is an instance
of a metamodel. For example, the Uni�ed Modeling Language (UML) is a popular metamodel
(M2) for creating models (M1) when designing software systems. On the uppermost layer
(M3), meta-metamodels exist. They provide an infrastructure for creating metamodels and
are sometimes referred to as a language for creating modeling languages. The Meta Object
Facility (MOF) standard provided by the OMG represents such a meta-metamodel.

However, in the past, with version one of the MOF standard, the OMG proposed exactly
four layers of model abstraction. Meanwhile, it is common sense that the number of layers is
not �xed. Additional layers can be added or existing ones can be removed or merged (i.e., a
minimum of two layers is declared as necessary in the MOF speci�cation version 2 [140,
page 17]).

2.1.3 Meta Object Facility (MOF)

As mentioned in the last section, the Meta Object Facility (MOF) is a speci�cation for
developing metamodels in a structured and standardized way. It is standardized by the
OMG and meanwhile exists in its second version. Important changes of this revision are the
explicitly not �xed number of layers and the formalization of the MOF infrastructure to be
able to describe itself in a recursive way (see Figure 2.1).
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EMOF
The Essential Meta Object Facility (EMOF) metamodel infrastructure provided as part of the
MOF speci�cation provides essential facilities to “model object-oriented systems” [140, page
25]. Beside others, this includes classes, enumerations, data types, attributes, references as
well as literals, operations and properties.

Ecore and the Eclipse Modeling Project
The Eclipse Modeling Framework [50] provided by the Eclipse [48] community o�ers
infrastructure for MDSD. This infrastructure includes the Ecore metamodel as a dialect of
the UML. It is aligned to the EMOF speci�cation while not covering it to its full extent.

The SPLevo approach uses the EMOF standard to specify the proposed metamodels and
the Ecore infrastructure to implement them within the SPLevo prototype. Diagrams of the
metamodels provided in this thesis have been generated from the Ecore-based metamodel
implementations as well.

2.1.4 Object Constraint Language (OCL)

In addition to the MOF speci�cation, the OMG has standardized the Object Constraint
Language (OCL) [141] as formal language to express further constraints on object-oriented
models with a predicate logic. It allows for expressing constraints such as pre- and post-
conditions or invariants for any kind of operations and model validations. The Object
Constraint Language (OCL) speci�cation provides an abstract and a concrete syntax. The
former de�nes the language concepts themselves, the latter de�nes a textual representation
for OCL constraints.

Abstract syntax
The abstract syntax [141, page 37] de�nes the concepts of the language itself. It contains a
type package providing data types (e.g., BooleanType), collection types (e.g., OrderedSet-
Type), as well as abstract types for checking type conformance (e.g., AnyType, VoidType). In
addition, it contains an expression package providing several types of expressions to specify
the predicates themselves. The expression package contains, for example, conditional and
literal expressions. Furthermore, the package provides expressions that allow for operation
on collections and navigating on objects.

Concrete syntax
The concrete syntax [141, page 69] provides a standardized grammar for textual notation
for OCL constraints. Thus, it prevents varying representations of OCL expressions as a
reference for tool builders.

The SPLevo approach uses OCL constraints to specify additional constraints that cannot
be unambiguously expressed with EMOF only. This thesis sticks to the concrete syntax
de�ned for OCL.
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2.2 So�ware Product Lines

The Software Product Line (SPL) approach has been introduced more than a decade ago
to provide managed reuse within families of similar products [33, 191]. Its core idea is to
a have common base for a family of products and derive speci�c products with di�ering
sets from it. The SPL approach has proven to be valuable for achieving goals such as cost
reduction, improved time-to-market, and quality attributes [33, 67].

Definitions and aspects
Many de�nitions of what constitutes product lines have been proposed according to the
context they are used in. For example, the IEEE Systems and Software Engineering Vocab-
ulary contains two di�erent de�nitions covering products and services on one side, and
systems with a common domain architecture on the other side [85, p 273]. However, reuse
and variability are always the core aspects in context of Software Product Lines. Similarly,
many di�erent aspects to consider for SPL development have been identi�ed. The follow-
ing sections introduce the concepts, characteristics, and aspects relevant for the SPLevo
approach.

2.2.1 Assignment to General Concepts

To structure the development of SPLs, several concepts have been developed to cover di�erent
aspects. The following subsections describe the concepts related to this thesis and classi�es
the SPLevo approach to them.

2.2.1.1 SPL Scoping

Developing an SPL requires to de�ne the scope of what is covered by the product line and
what is not. This is always a tradeo� between the �exibility and the complexity of an SPL as
well as the e�ort to develop it. Three types of scoping have been established (e.g., [170, 18]):

Product Portfolio Scoping
Product Portfolio Scoping is a high level view on the products that should be targeted by
the SPL. This is mainly related to the product management of a company and facilitates
approaches of marketing and strategic business development.

Domain Scoping
Domain Scoping is about deriving the feature set and domains to be included in a speci�c
SPL. Approaches to develop an SPL scoping such as the one described by Schmid [170], often
describe a two-phase process. First, they identify related sub-domains of the overall product
portfolio. Afterwards, they analyze these sub-domains about their re-usability potentials.

16



2.2 Software Product Lines

Asset Scoping
Asset Scoping is about the implementation of the SPL artifacts. While the �rst two levels
are more about the feature de�nition, this type of scoping is focused on how to design and
implement the reusable components. It includes the de�nition and assignment of features to
the reusable components. This type of scoping has a high impact on the economics of the
SPL. Nevertheless, there are only a few approaches speci�c to identify reusable components.
The most traditional approaches are more about cost-bene�t analysis of already existing
components.

Scoping in the context of the SPLEVO approach
The SPLevo approach assumes valid and satisfying product copies as an input for a consoli-
dation. Thus, the scope of the intended SPL is de�ned by the capabilities of those copies.
Related to the types of scoping proposed by Schmid, the SPLevo approach relates to Asset
Scoping at most. The “Domain Scoping” is touched only if the copies have been customized
for di�erent domains. However, even in this case, the domains are de�ned by the copies to
be consolidated.

2.2.1.2 Problem vs. Solution Space

Czarnecki and Eisenecker [38] introduced the distinction between a problem space and a
solution space in the context of generative programming. The problem space relates to
the requirements and needs of a domain and describes the features provided by SPL from
a customer perspective. The solution space relates to the implementation of an SPL and
describes the variability in the program from the perspective of the developers.

Berg et al. [15, page 114] mapped requirements and domain analysis to the problem space.
Furthermore, they mapped the architecture, component design, and source code to the
solution space. They propose to consider variability in an overarching manner, thus it can
be traced between the two spaces.

The SPLevo approach conforms to this perspective. The copies to be consolidated reside
in the solution space. During the consolidation process, they are merged and variability
is introduced in the solution space. However, the problem space is considered during the
variability design. Finally, the variability design is used to move over to the problem space
and keep the trace to the variability in the solution space.

2.2.1.3 Domain Engineering and Application Engineering

Weiss and Lai [191] proposed the distinction between Domain Engineering and Application
Engineering. They describe two phases of an SPL engineering process. During Domain
Engineering, the common SPL is developed and all development activities are covered (i.e., re-
quirements engineering, design, and implementation). During Application Engineering,
a speci�c product is derived from an SPL (i.e., an application). Application Engineering
covers all development activities as well. However, depending on the type of SPL and the
requirements of the concrete application, the activities are covered to di�erent extent. For
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example, if an SPL allows for implementing product-speci�c features, all activities will be
involved.

The distinction between Domain and Application Engineering has been adopted by others,
such as, for the SPL development reference process, proposed by Van der Linden [186],
shown in Figure 2.2. This process allows for creating new features during both engineering
phases.
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Application
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New 

requirements

Traceability

Reusable componentsReference architectureDomain terminology
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Figure 2.2: SPL reference process by Van der Linden [186]

However, it is a critical decision to implement a new feature in the SPL or for an individual
product only. Making the wrong decision may either result in an expensive and unnecessary
variability or in a non-reusable asset which requires additional e�ort to transfer it to the
overall SPL [18].

The SPLevo approach targets the challenges of transferring application level features
to SPL features. However, it is focused on independently customized product copies and
initializing a complete new SPL. Extending the approach to support degenerated SPLs is a
direction for future work (Section 11).

2.2.2 SPL Adoption Paths

Bosch [21] describes two di�erent approaches for adopting an SPL approach: revolutionary
and evolutionary SPL adoption. In the revolutionary approach, a company starts with a new
SPL that designed as a superset of potential SPL members and further members that are
predicted for the future. It allows taking future product variants into account and planning
for a broader scope of the SPL. In contrast, in the evolutionary approach, the SPL is derived
from existing products or concrete requirements reported by intended members of the SPL.
It allows for a more focused and less complex adoption of the SPL approach. Table 2.1
summarizes the two di�erent approaches in context of a set of existing products to integrate
and in context of introducing an SPL from scratch.
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Project Type Evolutionary Revolutionary

Existing set
of products

Develop vision for SPL based on
family members. Develop one SPL
component at a time (possibly for
a subset of SPL members) by evolv-
ing existing components

SPL components are developed
based on supersets of SPL member
requirements and predicted future
requirements

New SPL SPL components evolve with the
requirements posed by new SPL
members

SPL components are developed to
match requirements of all expected
SPL members

Table 2.1: Dimensions of product line initiation by Bosch [21]

The major bene�t of evolutionary SPLs is the shortened time-to-market for new products
or product variations. Especially small and medium-sized companies often rely on this
strategy as they are not able to make big upfront investments as required by a revolutionary
SPL approach (e.g., [130, 129]).

Krueger [113, page 5] has re�ned this concept into proactive, extractive, and reactive
approaches. Apel et al. [7, page 203] summarize these approaches as:

• “The extractive approach starts with a collection of existing products and incrementally
refactors them to form a product line.”

• “The proactive approach develops a product line from scratch by carefully using
analysis and design methods.”

• “The reactive approach begins with a small, easy to handle product line (possibly
consisting only of a single product) and is extended incrementally with new features
and implementation artifacts, thus extending the product line’s scope.”

Especially larger companies spend an up-front investment to plan and build SPLs in a
proactive and revolutionary approach (e.g., Bosch et al. [22] and Clements and Northrop
[33]). Smaller and medium-sized enterprises are often not able to make such an investment
before delivering the �rst new product or a customization. This leads to a more reactive
and evolutionary SPL approach (e.g., Meister [129]). Dubinsky et al. [45] surveyed further
reasons for product level customizations, such as lack of governance and e�ciency. Moreover,
evolving legacy systems into SPLs can improve the re-usability and maintainability of such
systems (e.g., Koziolek et al. [109]) and require extractive or reactive SPL development by
nature. Finally, a recent survey by Berger et al. [16, page 3] con�rmed that extractive and
reactive adoption strategies are most frequently used in practice.

The SPLevo approach relates to evolutionary SPL approaches and supports scenarios of
intended or unintended extractive SPL developments.
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2.2.3 Features and So�ware Variability

The concept of features and the de�nition of their variability is well-known in the area of
requirements- and SPL-engineering.

Stakeholder Needs / Laws / Standards

Requirements

Design

Components

TestsInternal
Variability

Internal
Variability

External
Variability

Le
ve

ls
 o

f A
bs

tra
ct

io
n

R
ef

in
em

en
t

Figure 2.3: Variability Pyramid by Pohl et al. [149]

Variability exists on di�erent abstraction levels as speci�ed by the “Variability Pyramid”
proposed by Pohl et al. [149, page 72], shown in Figure 2.3. They describe a relationship
between those levels and a clear increase in the amount of variability as well as di�erent
types of artifacts that contain the variability when moving down to lower abstraction levels.

However, people rarely distinguish between the variability on the di�erent abstraction
levels. For example, people often tend to mix-up the variability of requirements, software
entities, or even con�gurations in a single model without any di�erentiation when using
feature trees as proposed by Kang et al. [90].

In contrast, Bosch [20] and Svahnberg et al. [183] clearly di�erentiate between features and
software variability. Features resist on a capability-level and relate to requirements manage-
ment. Software variability is described as variation points and resists on the level of software
design and architecture. The following subsections explain this di�erentiation in more detail.

2.2.3.1 Features

According to Bosch [20, page 194], “features are logical units of behavior speci�ed by a set of
functional and quality requirements”. This implies features on the same level as requirements,
and there is a many-to-many relationship between features and requirements. For example,
an online banking feature relates to the requirements of a secure log-in and an account view.
In contrast, the requirement of a secure data connection can be related to an online banking
feature as well as to an online car rental feature. Because of the many-to-many relationship
between features, variation points, and implementation, Svahnberg et al. [183, page 7] state
that a “feature typically manifests itself as a set of variation points and may be implemented
as a set of collaborating components”. Features can combine multiple software requirements
and can represent cross-cutting concerns of a software system (e.g., security infrastructure).
Thus, they are implemented by one or more variation points realizing the variability in the
implementation itself.
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2.2.3.2 So�ware Variability

Svahnberg et al. [183, page 2] de�ne software variability as “the ability of a software system or
artifact to be e�ciently extended, changed, customized, or con�gured for use in a particular
context”. The SPLevo approach uses the same de�nition because it relates variability to the
software design-level that describes the implementation of a software system. The variability
in a software system is realized at variation points.

Svahnberg et al. [183] developed a classi�cation of realization techniques based on char-
acteristics, such as when, how, and by whom a speci�c variant is chosen for a variation
point.

2.2.4 SPL Maturity Levels

Bosch [21] used the classi�cation of variability realization techniques de�ned by Svahnberg
et al. [183] to de�ne di�erent SPL maturity levels. These levels do not relate to the SPL itself,
but to the company who is developing the SPL. Depending on the organizational structure
and the available developer knowledge, di�erent maturity levels should be adopted.

12 3. Related Research Areas
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operating system and the typical commercial components on top of it, such as a 
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Domain versus application engineering. Typical for this approach is that, although 
it provides a first step towards sharing software artefacts, it requires very little or no 
domain-engineering effort. Except for creating and maintaining the glue code, which 
is typically rather small compared to the size of the applications, all effort is directed 
to application (or product) engineering. 
Variability management. The common infrastructure contains no domain-specific 
functionality, and therefore, no variability management is necessary. The 
infrastructure components may contain variations, but these need to be managed as in 
traditional software development. 
Example. An example of a company exploiting this approach is Vertis Information 
Technology. This company develops administrative applications typically supporting 
some technical production systems. Vertis typically builds its applications on top of a 
Windows NT platform running the Oracle database system and associated tool set. It 
has bought a number of domain-specific components for the Dutch taxation system. 
These components have been integrated with the Oracle tool set and the operating 

Figure 3.1: Maturity Levels of Software Product Lines [Bos02]

Project Type Evolutionary Revolutionary

Existing set of
products

Develop vision for product line ar-
chitecture based on the architec-
tures of family members. Develop
one product line component at a
time (possibly for a subset of prod-
uct line members) by evolving exist-
ing components

Product line architecture and com-
ponents are developed based on
super-set of product line member re-
quirements and predicted future re-
quirements.

New product line Product line architecture and com-
ponents evolve with the require-
ments posed by new product line
members

Product line architecture and com-
ponents developed to match require-
ments of all expected product line
members

Table 3.1: Two Dimensions of Product Line Initiation [Bos02]

be developed directly and will be later transfered into the SPL architecture. Table 3.1
summarizes the two different types of Software Product Line initiations identified by Bosch
et al. [Bos02].

The important aspect of evolutionary software product line is the shorter time-to-market
for new products or product variations. Especially small and medium-sized companies
often rely on this aspect while they are not able to make a big upfront investigation for a
revolutionary Software Product Line approach [MRR04],[Mei06].

A concept very related to evolutionary and revolutionary Software Product Lines is the
differentiation between reactive and proactive SPL development. Proactive describes a
top-down planned introduction of new features into the product line as described in the
revolutionary approach. Reactive means that new features are added to one or more
instantiated products and later on the SPL is updated with this new variability as done
in the evolutionary approach.

Figure 2.4: Software Product Line maturity levels by Bosch [21]

Figure 2.4 presents the identi�ed levels and their dependencies. While independent
products consist of copies of the same product, the con�gurable product base represents the
most mature level, where people can select speci�c variants during application start or even
at run time.
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2.2.5 SPL Quality Characteristics

Svahnberg et al. [183] and Rubin and Chechik [164] described quality characteristics one
should consider when designing the variability of an SPL: The amount of variation points
and the tradeo� between code quantity and code complexity. While the former relates to
the structure of variability, the latter relates to its implementation.

2.2.5.1 Variation Point Amount

The amount of variation points in an SPL is tightly related to the possible range of products
that can be derived. While it is desirable to cover a broad range of products with an SPL,
variation points always imply additional complexity for the software design.

Svahnberg et al. [183, page 7] identi�ed advantages of reducing the number of variation
points as much as possible to improve the manageability and the complexity of the software
itself. As a result, they propose to continuously revise variation points in an SPL. A few
approaches for SPL evolution have been developed, such as by Alves et al. [3], who have
developed an approach for variability-aware SPL refactoring. Additionally, Loesch and
Ploedereder [122] present an approach to identify obsolete variation points.

This awareness is relevant for the variation point design as part of the SPLevo approach
discussed in Section 6.1.4.1.

2.2.5.2 Code Quantity vs. Complexity

Rubin and Chechik [164] describe code quantity and code complexity as two contrary quality
goals when realizing variability. Code quantity means to reduce the total amount of code
and prevent redundant code fragments. This quality goal corresponds to the idea that less
duplicate code means less code to maintain. In contrast, code complexity means to reduce
the number of variability mechanisms and reduce the execution paths, indirections, and
identi�ers. This quality goal corresponds to the idea that less complex code is more intuitive
and easier to maintain.

Rubin and Chechik [164] propose to quantify those quality goals in terms of the size of
the resulting code and the number of variation points. Especially the latter corresponds to
the quality characteristic of Svahnberg et al. [183] described before.

2.2.6 SPL Management Tools

SPLs aim for an improved time-to-market and reduced maintenance costs. To permanently
ensure these goals, SPL management tools have been developed to simplify product instanti-
ations and track existing con�gurations and used variants.

Such tools use an internal representation of the variability (e.g., a Variability Model as
described in Section 2.3.2) and a mapping to its implementation. Furthermore, they use
an internal con�guration model to describe the features selected for a concrete product
instance.
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Typical examples of such management tools are pure::variants [66] and Gears [112] as
commercial solutions. FeatureMapper [79] and FeatureIDE [91] are representatives from the
academic community.

2.3 So�ware Variability

Variability in software systems can be designed and realized in many di�erent manners.
The following subsections introduce characteristics, models, and implementation strategies
proposed for variability in the �eld of SPL research and considered by the SPLevo approach.

2.3.1 Variability Characteristics

Variability characteristics describe aspects and capabilities of variability. They in�uence
how variability can be con�gured, realized, and maintained within an SPL.

2.3.1.1 Variability Types

The variability type describes how many alternatives can or must be chosen for a speci�c
variability to achieve a valid product con�guration. Di�erent sets of combinations of optional,
alternative, and mandatory have been proposed in the literature. Svahnberg et al. [183]
de�ned a set with three types OPTIONAL, XOR, and OR, as summarized in Table 2.2. Patzke
and Muthig [146] extended this set with two additional types, combining the existing ones
OPTIONAL & XOR and OPTIONAL & OR to express variability with more than one variant,
but none has to be selected. The SPLevo approach uses a subset of the variability types of
Patzke and Muthig [146] as described in Section 3.2.2.4.

Variability Type

Svahnberg et al. Patzke and Muthig Cardinality

OPTIONAL OPTIONAL 0..1 out of 1
XOR XOR 1 out of n
OR OR 1..m out of n

OPTIONAL & XOR: 0..1 out of n
OPTIONAL & OR: 0..1 out of n

Table 2.2: Variability types de�ned by Patzke and Muthig [146] and Svahnberg et al. [183]

2.3.1.2 Binding Time

The binding time of a variation point speci�es the least possible point in time when a variant
or combination of variants must be selected. Di�erent classi�cations of binding times have
been proposed according to di�erent phases of the software life cycle.

Pohl et al. [149, page 250] distinguished �ve binding times aligned with development
activities as shown in Table 2.3. Svahnberg et al. [183, page 10] proposed a slightly di�erent
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Binding Time

Pohl et al. Svahnberg et al. Apel et al. Example

Before Compilation Architecture
Derivation

Code generation, Aspect-
oriented programming

Compile Time Compilation Compile Time Pre-compiler
Link Time Linking Make �les
Load Time Load Time Con�guration �les
Run Time Run Time Run Time Registry

Table 2.3: Binding times by Pohl et al. [149], Svahnberg et al. [183], and Apel et al. [7]
set of binding times with an explicit architecture derivation. Furthermore, they describe
linking as technology-dependent binding time that might happen right after compilation,
at system start or even at run time. Finally, Apel et al. [7, page 48] distinguish only three
binding times as presented in Table 2.3 as well: Compile Time, Load Time, Run Time. They
remark that others distinguish between more binding times, but argue that those types
are su�cient to decide how to realize variability. Apel et al. [7] summarize their proposed
binding times as:

• Compile Time: “Variability is decided before or at compile time.”
• Load Time: “Variability is decided after compilation when the program is started.”
• Run Time: “Variability is decided and changed during program execution.”

2.3.1.3 Extensibility

The extensibility characteristic of variability de�nes who is able to populate new variants.
Svahnberg et al. [183, page 9] describe this characteristic as who is allowed to extend the set
of available variants. They explicitly distinguish between Domain Engineer (i.e., responsible
for the SPL), Application Engineer (i.e., responsible for a speci�c product variant), and the
End User (i.e., using a product instance). They claim that “one cannot expect end users to
edit and compile source code”, but “there is an increasing trend to provide variability to end
users”, for example based on plug-in mechanisms.

In particular, variability is designed to be extensible when it allows adding additional
variants during application engineering (i.e., providing an extension point as described by
Klatt and Krogmann [98]). In contrast, it is not extensible when only variants can be used
that are already included in the SPL.

Extensibility comes with additional maintenance e�ort for ensuring compatibility with
existing extensions. Furthermore, the extension mechanism has to be chosen carefully to
not accidentally in�uence the products’ quality attributes.

The extensibility characteristic is closely related to the classi�cation of Positive and Neg-
ative variability. Gacek and Anastasopoules [64, page 2] refer to Sharp [174] as the one who
has postulated this di�erentiation. They describe that “Positive Variability” allows for adding
functionality to an SPL to achieve a concrete product. In contrast, “Negative Variability”
allows for removing –or disabling– unwanted functionality from a set of functionality that
is included in an SPL.
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2.3.2 Variability Models

Diversity of variability models
SPLs propose to provide an explicitly managed variability. To describe, design, and manage
this variability, a broad range of di�erent models has been proposed for many di�erent
purposes. Sinnema and Deelstra [176] studied and classi�ed six representative variability
modeling techniques according to their modeling capabilities and tool support. They also
noticed the broad range of variability model types and purposes. Berger et al. [16] surveyed
the use of variability modeling in practice. They report a variety of open source, commercial,
and home-grown domain-speci�c solutions ranging from spread sheets to code annotations
and explicit variability models.

Hence, there is no established standard for modeling variability and available models
strongly depend on the purpose they are used for. The OMG is working on a future standard
called Common Variability Language (CVL) [76] but has not �nished it yet.

Integrated and separate models
In general, variability models can be distinguished into two groups: integrated models
and independent models. The former are extensions of existing models, such as the UML
extensions proposed by Gomaa [67] or Atkinson et al. [9]. As summarized by Pohl et al.
[149, page 75], the latter are independently de�ned models that can exist on their own and
probably reference elements of other models, such as feature models proposed by Kang et al.
[90].

Feature Models
Feature models as proposed by Kang et al. [90] in context of the Feature Oriented Domain
Analysis (FODA) approach propose a hierarchical structure of parent and child features and
a graphical notation as shown in Figure 2.5. Child features represent additional features
that are included in a parent feature or represent variable options to choose from. Parent-
child-relationships can be used to express di�erent variability types (Section 2.3.1.1). In
the graphical notation of Kang et al. [90], the variability type is expressed by arcs and
circles added to the ends of parent-child-relationship connectors. Feature models provide a
lightweight and �exible approach for describing variability. Thus, they are widely used in
practice, as shown by the survey of Berger et al. [16, page 4].

Many SPL management tools use a variant of the feature model proposed by Kang et
al. [90]. Especially the unlimited hierarchical structure allows for �exibly expressing a
product management point of view. Similarly, feature models are facilitated for software
development approaches as well. For example, Czarnecki and Eisenecker [38] propose the
use of feature models to specify variability in context of generative programming. They use
it for specifying which parts of a program can be generated and the options to choose from.

There is no standardized format of feature models and many proprietary variants exist.
Independent from a speci�c tooling, the Eclipse Modeling Framework [50] provides the EMF
Feature Model [51] as an Ecore-based speci�cation and implementation. In addition, the
EMF Feature Model provides a graphical editor aligned with the graphical notation proposed
by Czarnecki and Eisenecker [38].

25



2 Foundations

7feature the car will have, as it is not possible to have both.

Car

Transmission Horsepower Air conditioning

Optional
feature

Mandatory
features

Alternative
features

Manual Automatic
Air conditioning requires Horsepower > 100

Composition rule:

Manual more fuel efficient

Rationale:

Figure 2.5: FODA feature model example by Kang et al. [90, page 36]
(No legend provided with the original �gure.)

Orthogonal Variability Model
Pohl et al. [149, page 75] de�ned an Orthogonal Variability Model as shown in Figure 2.6.
They specify a variation point according to Jacobson et al. [88] as a point of variability
within a software. Such a variation point can be represented by an arbitrary number of
development artifacts. In contrast to Jacobson et al. [88] and according to the name of their
model, Pohl et al. [149, page 83] do not limit the type of artifacts to realization artifacts and
propose variation points to reference requirements, design, realization, and test artifacts.
Furthermore, variation points reference their variants as either mandatory or optional
according to the variability types de�ned by Svahnberg et al. [183] (Section 2.3.1.1).

OMG Common Variability Language (CVL)
The OMG is working on a standard for variability modeling, which currently exists in a
revised submission [76].

The main purpose of this standard is to specify a variability model to annotate existing
base models and to derive adapted instances (i.e., Resolved Models) of such base models
using model transformations (i.e., Resolution Models). This concept is aligned with the
Model Driven Architecture (MDA) concept proposed by the OMG. However, the model
infrastructure is intended to cover conceptual variability modeling as well as realization
aspects in terms of variation points.

Until now, it is not clear when the Common Variability Language (CVL) will be �nished,
and it has not been evolved during the last two years.

2.3.3 Variability Implementation

In any software technology, di�erent approaches for realizing variability have been estab-
lished. Which one is the best depends on the requirements of the intended SPL in general
and the variation points to implement in speci�c. For example, if the available amount of
storage is limited in the environment to operate the software in, it might be preferred to
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Figure 2.6: Orthogonal Variability Model by Pohl et al. [149]

generate or compose a concrete product at development time. This would allow for installing
only required code and to prevent any run time con�guration processing. In contrast, a
multi-tenant system requires to have all potential features in place and to select a variant at
run time depending on the user currently interacting with the system.

Variability Realization Technique vs. Variability Mechanism
In the literature, the terms “Variability Realization Technique” [183, 72] and “Variability
Mechanism” [22, 171, 68] are used to describe concepts of how to implement variability.
These terms are not clearly distinguished in the literature. For example, Clements and
Northrop [33, page 69] refer to the “techniques” de�ned by Jacobson et al. [88, page 102] and
repeated by Svahnberg and Bosch [182, page 150] as “Mechanisms for achieving variability”.
However, the former is used more frequently for concrete variability implementations, while
the latter often describes more general concepts of software engineering such as “inheritance”
or “generation” (e.g., Jacobson et al. [88, page 102]).

Within the SPLevo approach, the terms are explicitly distinguished according to De�-
nitions 1 and 2. Throughout this thesis, the term Variability Realization Technique is
used for general software engineering techniques or concepts and the term Variability

Mechanism for concrete forms of variability implementation.
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De�nition 1: Variability Realization Technique

A Variability Realization Technique is a general software engineering technique or concept

capable of implementing variability. Examples for Variability Realization Techniques are

“inheritance”, “code generation”, or “dependency injection”.

De�nition 2: Variability Mechanism

A Variability Mechanism is a concrete way to realize variability. It is technology-speci�c and,

for example, uses programming-language capabilities to evaluate a con�guration and decide

for a variant to execute. Examples for Variability Mechanisms are If-Else conditional statements

in Java [70, page 372] or dependency injections with Google Guice [187].

In the �eld of object-oriented languages, di�erent techniques and mechanisms exist to
implement variability as described below.

2.3.3.1 Variability Techniques

Many di�erent classi�cations for structuring the �eld of variability techniques in context
of software reuse and SPL have been proposed. The most widely used classi�cation was
proposed by Jacobson et al. [88, page 102] in the context of software reuse and is presented in
Table 2.4. Others such as Svahnberg and Bosch [182, page 150] and Clements and Northrop
[33, page 69] reused this classi�cation in context of software product lines.

Technique Time of Specialization Description

Inheritance At class de�nition time Inheritance is used when the variation point
is a method that needs to be implemented
for every application, or when an applica-
tion needs to extend a type with additional
functionality.

Extension At requirements time One use of a system can be de�ned by
adding to the de�nition of another use.

Uses At requirements time One use of a system can be de�ned by in-
cluding the functionality of another use.

Con�guration Previous to run time A separate resource, such as a �le, is used
to specialize the component.

Parameters At component
implementa-
tion time

A functional de�nition is written in terms of
unbound elements that are supplied when
actual use is made of the de�nition.

Template
Instantia-
tion

At component
implementa-
tion time

A type speci�cation is written in terms of
unbound elements that are supplied when
actual use is made of the de�nition.

Generation Before or during run time A tool produces de�nitions from user input.

Table 2.4: Classi�cation of variability techniques proposed by Jacobson et al. [88, page 102]
and summarized by Clements and Northrop [33, page 88]
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This classi�cation of variability techniques has been designed to cover and structure
variability implementation with a top-down approach. It aims for supporting decisions
about the general software engineering technique to be used for implementing variability.
However, it does not provide guidance for developers and architects to choose a concrete
variability mechanism to implement a speci�c variation point, such as how to realize a
concrete con�guration mechanism. As identi�ed by the descriptions included in Table 2.4,
the categories of this classi�cations are abstract and each of them identi�es a variety of
mechanisms.

2.3.3.2 Variability Mechanisms

Variability mechanisms provide guidelines how to implement variability. For example, a
variability mechanism can be about implementing a conditional execution in a Java method
with an IF-statement that evaluates a property of a Java properties �le. Thus, variability
mechanisms are speci�cations of variability techniques.

A variability mechanism de�nes how a variant is chosen as well as how the according
con�guration is evaluated. Thus, variability mechanisms cover generic as well as custom
mechanisms. For example, the Java example above can be used in any Java-based application.
In contrast, a company might have de�ned a custom license mechanism to be evaluated at
run time. This requires a custom variability mechanism as well.

Thus, there is a theoretically unlimited amount of variability mechanisms and there is no
general classi�cation of mechanisms available. However, context-speci�c descriptions of
concrete variability mechanisms exist, such as provided by Schnieders and Puhlmann [171].

2.3.3.3 Limitations of Variability Techniques and Mechanisms

In addition to provided variability characteristics, individual variability techniques and
mechanisms come with technical limitations. Developers and architects must consider those
limitations when deciding how to implement variability.

For example, Kästner et al. [92, 93] report limitations of Aspect Oriented Programming
(AOP) they have identi�ed within a case study. They describe di�culties with statements in
the middle of methods and accessing local variables. They mention that some limitations
result from AspectJ as a concrete technology used for AOP, but some limitations relate
to AOP in general. In addition, Gacek and Anastasopoules [64, page 5] report about the
shortcoming of AOP to not support run time variability.

2.3.3.4 Granularity

Variability techniques and mechanisms can exist on di�erent levels of granularity in terms
of software elements. Apel et al. [7, page 59] distinguish three levels of granularity: coarse,
medium and �ne-grained (Table 2.5). While the �rst two are not ordered and can be
referenced explicitly, variability on a �ne-grained level is more di�cult to handle but allows
for signi�cant code reduction. Apel et al. [7] also refer to Kästner et al. [93] and Liebig et al.
[118], who stated “that feature implementations take place at all levels of granularity”.
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Granularity Description

Coarse Grained Classes and above such as new �les
Medium Grained Members (e.g., �elds and methods)
Fine-Grained Statements and below

Table 2.5: Variability granularity types de�ned by Apel et al. [7]

2.3.3.5 Delta-Oriented Programming

In addition to the feature-oriented programming approach for implementing variability,
Schaefer et al. [167] propose an approach named delta-oriented programming.

Feature-oriented programming focuses on the features to be realized and exists as additive
and subtractive strategies which relate to positive and negative variability described in
Section 2.3.1.3.

In contrast, delta-oriented programming focuses on the di�erences between the core of the
SPL and the concrete products. A delta-oriented approach uses transformations to modify
the SPL core to achieve the intended product instance. Thus, the application engineering
phase (Section 2.2.1.3) is realized in a transformation-driven manner.

2.4 So�ware Maintenance and Evolution

Software maintenance and evolution are major topics in the �eld of software engineering
since several decades (Bennett and Rajlich [14]). Thus, a lot of research has been done in
these topics and many di�erent approaches have been proposed to cope with the according
challenges. The following subsections introduce approaches and techniques used and
considered in this thesis.

2.4.1 So�ware Configuration Management (SCM)

Software Con�guration Management (SCM) is a process for managing the complete life
cycle of a software system with a focus on coordinating software acquirer and suppliers. It
is de�ned by the ISO/IEC TR 15846:1998 standard [86]. Beside others, this process covers
the management of requirements, error reports, and according development activities.

To cope with these activities, two types of systems have been introduced and are mean-
while widely accepted in the �eld of software engineering: Version Control Systems and
Issue Tracking and Management. The former focuses on artifacts, such as code, models, and
documents, the latter is used for managing activities related within the software development
process (e.g., implementing requirements or �xing errors).

2.4.1.1 Version Control System (VCS)

A Version Control System (VCS) tracks changes of artifacts compared to an initial baseline.
According to the IEEE Vocabulary [85], version control and change control in general are
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used for “identifying, documenting, approving or rejecting, and controlling changes to the
project baselines”.

In software development, version control systems, such as the Revision Control System
(RCS) presented by Tichy [184], are used to keep track of changes in software artifacts.
Meanwhile, a range of systems such as CVS, Subversion, and git has been developed, with
varying features and concepts. However, all of these systems provide a version history for
the artifacts under version control as well as messages provided by a user when he stores
new versions of artifacts (i.e., commit messages).

2.4.1.2 Issue Tracking and Management

As described by Bertram et al. [17], issue trackers are used by software development teams
and stakeholders participating in the software life cycle. They de�ne an issue tracker as a
database for tracking bugs, features, and inquiries. Furthermore, they note the role of an
issue tracker as a “focal point for communication and coordination”.

Thus, in the context of SCM, an issue tracker is not limited to development teams but
used by all stakeholders including support teams and project managers to coordinate their
activities and issues.

State of the art issue tracking and management systems, such as provided by Jira or Team
Foundation Server, allow for integration with the Version Control System (VCS) solutions to
build traces between code changes and issues they belong to.

2.4.2 Coding Guidelines

The quality of a software system, especially in terms of comprehensibility, is critical for its
maintainability, as described by Grubb and Takang [71, page 51]. Seng et al. [173] further
describe the importance of the code quality as a key factor for the long-term success of
software products.

An important factor for code comprehensibility is a common coding style. Meanwhile, it
is common sense to use documentation and formatting guidelines, and even guidelines for
e�cient usage of coding guidelines are proposed, as done by Martin [128].

Furthermore, some technology speci�cations propose naming conventions to be used for
a better comprehensible code, such as the Java Beans [73] or .Net [132] speci�cations.

2.4.3 Maintenance Types

Bennett and Rajlich [14] refer to Lientz and Swanson [119] as the ones who proposed to
classify maintenance activities into adaptive, perfective, corrective, and preventive changes.
They describe adaptive activities as adaptations to “changes in the software environment”.
Perfective activities are described as to realize “new user requirements”. Corrective activities
are about “�xing errors”. And preventive activities are performed to “prevent problems in the
future”. Lientz and Swanson [119] report from an industrial study that 50% of maintenance
e�ort is spent for perfective activities.
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Correction Enhancement

Proactive Preventive Perfective
Reactive Corrective Adaptive

Table 2.6: Software maintenance categories in Guide to the Software Engineering Body of
Knowledge [23, page 6-3]

The ISO/IEC 14764 standard [37] categorizes these activities according to correction and
enhancement. In the Guide to the Software Engineering Body of Knowledge [23, page 6-3],
they are further categorized into proactive and reactive activities, as shown in Table 2.6.
Consolidations as targeted in this thesis are perfective maintenance activities according to
these de�nitions.

2.4.4 So�ware Metrics

Software metrics are widely used in the area of software maintenance in general and perfec-
tive and corrective maintenance tasks. They are typically used to capture characteristics of a
system or to identify potential problems and quality issues, as described by Seng et al. [173].

In context of this thesis size metrics are used to classify the software systems used in
the case studies. Therefore, we refer to the number of lines of code in a software system.
This metric is in�uenced in terms of calculation and meaning by a couple of factors. Most
important, the number of lines is a pure quantitative measure and does not respect the
complexity of a line of code. Furthermore, depending on how it is calculated, individual
programming styles can have a big impact on the metric (e.g., entering a line break before
the next curly bracket in Java). However, di�erent types of the Source Lines of Code (SLOC)
software metric have been proposed to improve this situation:

Source Lines of Code (SLOC)
The number of Source Lines of Code is the general software metric and exists in di�erent
variants such as Physical Lines of Code (PLOC) and Logical Lines of Code (LLOC).

Physical Lines of Code (PLOC)
The number of Physical Lines of Code is calculated by the lines of code containing at least
one character which is not white space or a comment. The PLOC count is typically used as
software metric for the size of an implementation.

Logical Lines of Code (LLOC)
The number of Logical Lines of Code is normalized in a way that relevant software elements
are located on individual lines (e.g., no combined statements on one line). The LLOC count
requires more e�ort to be calculated but allows for better comparison between di�erent
software systems due to its normalization step.
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2.4.5 Reengineering

Reengineering is an essential activity in software engineering to prevent software systems to
turn into legacy systems and losing value over time, as described by Demeyer [41]. Reengi-
neering itself is de�ned by Chikofsky and Cross [32] as a combination of reverse engineering
and forward engineering, as illustrated in Figure 2.7. According to their de�nition, reverse
engineering allows for identifying components of a system and creating representations in
another form or at a higher level of abstraction, such as design or requirements. As indicated
in Figure 2.7, reverse engineering is not limited to the implementation level, but can be
applied on the design level to reverse engineer requirements as well. Forward engineering is
used when requirements, design, or both have been restructured and should be implemented
in the design, respectively in the implementation.
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recovery
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engineering

Requirements
(constraints,
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Restructuring

Design

Restructuring

Implementation

Redocumentation,
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Forward

engineering
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(renovation)
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(renovation)

Figure 2.7: Reengineering overview by Chikofsky and Cross [32]

Reengineering is an important aspect in context of the SPL reference process proposed by
Van der Linden [186] and the consolidation of customized product copies. First, product-
speci�c features developed during application engineering must be reverse engineered.
Then, a forward engineering has to be performed to adapt the existing SPL respectively
build a new one.

2.4.6 So�ware Model Extraction

An important part for the reverse engineering is the extraction of software models. A
software model provides the representation on a higher level of abstraction, as mentioned
by Chikofsky and Cross [32, page 15]. Extracting a model representation of a software
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implementation in general is a very common task and done by every compiler. However,
these models are typically optimized for program compilation. In the context of this thesis,
software models are used for the purpose of program comprehension and analysis. Thus, the
following subsections introduce software model extraction with a focus on models related
to this purpose.

2.4.6.1 Parsing and Resolving

To analyze a software to its full extent, an extraction requires two phases: parsing and
resolving. These phases are the same if software models are extracted by a compiler or for
program comprehension and analysis.

Parsing
Parsing extracts software elements from a textual representation. First, a lexer is used to
identify sequences of characters that form a lexical unit representing a token de�ned in a
grammar. Afterwards, a parser is applied to build the actual elements of a software model.
At this point in process, containment relationships between these elements can be detected
if they are de�ned in the grammar. Thus, the parsing phase provides a model of the software
elements represented in the source code.

Resolving
The resolving is done when the parsing is �nished. Resolving is the process of identifying
references between software elements other than containment relationships de�ned in the
grammar (i.e., cross references). Resolving such references typically requires to evaluate the
scope of an element and thus technology-speci�c logic. For example, in the Java program-
ming language, resolving the reference to a variable requires to take the current context
of the variable identi�er, such as a method body or conditional statement, into account.
Accordingly, resolving requires more processing e�ort than the parsing before.

Partial Program Analysis
To cope with the processing e�ort, Dagenais and Hendren [39] proposed Partial Program
Analysis as a technique to analyze parts of a program without resolving all dependencies.
Especially, they propose not only a lazy resolving strategy, but to cope with not clearly
resolvable bindings. Whether this technique can be applied depends on the individual
analysis.

2.4.6.2 So�ware Models

Software models as used in this thesis conform to traditionally Abstract Syntax Tree (AST)
models. For a consistent use of models throughout the SPLevo approach, software models
conforming to the EMOF/Ecore speci�cations 2.1.3 are used. Existing solutions for such
Ecore-based models are designed in three di�erent ways, as summarized in Table 2.7.

34



2.4 Software Maintenance and Evolution

Approach Description Example

Top Down The model is designed �rst. The textual syntax is
either derived or the extraction needs to translate
between them.

OMG KDM [139, 138]

Bottom Up Parser oriented. The textual syntax exists �rst
and the model is designed according to the gram-
mar of the language.

JaMoPP [78]

IDE Oriented The model is derived from the internal model
used within an IDE and neither aligned to a gram-
mar or the purpose of the model.

MoDisco [26]

Table 2.7: Ecore software model design approaches

OMG KDM standardization initiative
The OMG Architecture-Driven Modernization Task Force has developed the KDM standard
for software reverse engineering [139]. The KDM standard includes a metamodel for Abstract
Syntax Tree Models [138]. As shown in Figure 2.8, the OMG de�ned a metamodel system to
represent language independent ASTs (i.e., Generic Abstract Syntax Tree Model - GAST),
language speci�c ASTs (i.e., Speci�c Abstract Syntax Tree Model - SAST), and proprietary
ASTs (i.e., Proprietary Abstract Syntax Tree Model - PAST). Table 2.8 of the speci�cation [138,
page 10] summarizes the purpose of these di�erent metamodels.

Source Code Repository

PAST 1 PAST

Source Code 1 Source Code n

ASTM

Meta-Meta

Model
ASTM

Core

ASTM

Meta-Model
GASTM

Core

SASTM

Pkg 1

SASTM

Pkg n

ASTM

Model
GAST

Core

SAST

Pkg 1

SAST

Pkg n

Figure 2.8: OMG AST metamodel structure [138]

Available implementations
The OMG provided the speci�cation for the metamodels only. However, they refer to the
Eclipse MoDisco project [26] as the de facto reference implementation of the OMG KDM
speci�cation [139].

The MoDisco project provides an Ecore-based implementation of the overarching KDM
metamodel. However, this model is not integrated with the AST model provided by the
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Name Title Description

GASTM Generic AST Model A generic set of language modeling elements common
across numerous languages establishes a common core
for language modeling, called the Generic Abstract Syn-
tax Trees. In this speci�cation, the GASTM model
elements are expressed as UML class diagrams.

SASTM Language Speci�c
AST Models

Metamodels for particular languages such as Ada, C,
Fortran, Java, etc. are modeled in Meta Object Facil-
ity (MOF) or MOF compatible forms and expressed as
the GASTM along with modeling element extensions
su�cient to capture the language.

PASTM Proprietary
AST Models

Metamodels that express ASTs for languages such as
Ada, C, COBOL, etc. modeled in formats that are not
consistent with MOF, the GSATM, or SASTM. For such
proprietary AST, this speci�cation de�nes the minimum
conformance speci�cations needed to support model
interchange.

Table 2.8: AST Models of the OMG AST speci�cation [138, page 10]

MoDisco model extractor. As shown in Table 2.7, the model extracted by MoDisco is aligned
to the IDE internal model (i.e., Eclipse JDT AST) and does not conform to the OMG AST
metamodel. Thus, there is no implementation according to the OMG AST speci�cation
available yet.

2.4.7 Di�erence Analysis

To analyze the di�erences between software implementations, two general approaches
exist: text-based and model-based di�erence analysis. Figure 2.9 illustrates their di�erent
approaches.
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Figure 2.9: Model- vs. text-based di�erence analysis
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Text-based analysis
Text-based di�erence analysis �rst performs a comparison of the software artifacts’ textual
representations. The results are di�ering textual areas in matched �les (e.g., .java compi-
lation units.) or completely added or deleted �les of the compared code copies. Next, the
di�ering textual areas are interpreted to identify the modi�ed software elements. The latter
is a challenging task because the di�ering textual areas may not correspond to syntactic
software elements in the source code. For example, a di�ering area can start in the body of a
method and reach up to the body of another method while crossing other elements such as
�eld declarations or static initializations. According to Baxter et al. [12] and Malpohl et al.
[126], the text-based approach is too sensitive, e.g., because of too many false positives due
to changes in formatting or missing di�erentiation between code and comments.

Model-based analysis
Model-based di�erence analysis �rst extracts syntactic model representations of the software
copies. In a second step, it compares the models instead of the textual representations. Due
to this, the comparison can use additional semantic and syntactic information gained during
the extraction. For example, only software elements of the same type are compared with each
other. Furthermore, di�erences identi�ed by this approach are aligned with the software
elements by nature. Baxter et al. [12] propose this approach because of the additional
semantics in sense of types, methods and others gained by interpreting the code based on
the programming language’s grammar.

2.4.7.1 General Model Comparison

In MDSD, model comparison is the general term for analyzing di�erences between model
instances. Xing and Stroulia [195] proposed a two-phase model comparison process with the
phases “Matching” and “Di�ng”. Based on this approach, Kehrer et al. [95] propose a Post-
Processing phase to enhance the semantics of the identi�ed di�erences. Both approaches
propose to describe the results of a model-based comparison as a model as well. Thus, the
resulting di�erence model can reference elements of the input models. Furthermore, they
are focused on comparing two models at the same time.

Matching phase
In the matching phase, the models to compare are traversed to identify their corresponding
elements. The result of this phase is a match model that references elements matched
between the input models as well as elements without a correspondence in the other model.

Di�ing phase
In the di�ng phase, the match model is traversed to identify elements without a match as
well as matched elements with di�ering attributes or references. For each of these di�erences,
a di�erence is recognized and an element describing this di�erence is created and stored in
the result model. Depending on the concrete comparison used, the di�erence element can
be stored within the match model or separately.
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Post-Processing
Kehrer et al. [95] propose a post-processing for an activity they refer to as a “semantic
lift”. The goal of a semantic lift is to analyze the generic �ne-grained di�erences and derive
more valuable types of di�erences representing the real semantics of changes speci�c to
the metamodels of the compared models. In Yazdi et al. [196], they have applied their
post-processing approach to the �eld of software model comparison with a simpli�ed model
of the Java programming language.

EMF Compare
As part of the Eclipse Modeling Framework, the EMF Compare [25] project provides infra-
structure for comparing Ecore-based models. This infrastructure is aligned with the approach
proposed by Xing and Stroulia [195]. In addition, version 2 of EMF Compare provides post-
processing phases not only after the di�ng phase but also after the matching phase before
the di�ng is started. However, there is nothing performed within these post-processing
phases by default. They provide extension points to add custom processing, such as a
semantic-lift proposed by Kehrer et al. [95].

2.4.7.2 Optimization Strategies

Analyzing the di�erences between software implementations typically produces many
�ndings. Even with a model-based approach that is insensitive to formatting changes, each
refactoring and code change is reported. To cope with this amount of di�erences, several
strategies have been developed to ignore irrelevant changes.

Semantic di�erences
Jackson and Ladd [87] studied the external behavior of methods to focus on semantic
di�erences only. They considered the input and output of methods to identify if their
semantics has changed. With a similar intention, Apiwattanapong et al. [8] studied the
Control Flow Graphs (CFGs) of methods to identify changes in their behavior. The intention
of both approaches is to �lter semantically irrelevant di�erences.

Change types
Fluri and Gall [61] propose a set of change types to study the impact of individual changes on
other software elements. Based on the type of changes, they classify changes and couplings
of changes as functional-modifying and function-preserving. Similar to approaches for
detecting semantic di�erences, their intention is to focus on functional-modifying di�erences.
Furthermore, their approach is not limited to methods but considers other types of software
elements as well. Fluri and Gall [61] use a model comparison strategy similar to those
proposed by Chawathe et al. [30] and Neamtiu et al. [136] based on hierarchical software
models such as ASTs.
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Renaming detection
Malpohl et al. [126] proposed an approach for detecting identi�er renaming between di�erent
versions of a software system. They propose a language-aware approach and facilitate type
and identi�er references to detect renaming even if they cover several �les. When detecting
renaming, they allow for �ltering all corresponding code changes to focus the user on other,
relevant changes.

AST tree matching and name stability
Neamtiu et al. [136] propose an AST based matching approach for di�erence analysis. They
report about their observation of “relatively stable function names” over time for C programs.
Their case study on reasonable systems such as the Linux Kernel and Apache con�rmed this
observation, except for early versions of Apache (i.e. only 3% of the changes respectively
30% - Neamtiu et al. [136, page 3]). Based on this observation, their tree matching could be
optimized by matching methods with similar names.

2.4.7.3 Merging

As Perry et al. [147] observed in a case study, developers need to modify resources in parallel
to scale software development. Furthermore, they report the need for merging parallel
changes later on to allow for optimistic resource handling. To cope with this need, modern
Software Con�guration Management (SCM) systems and Version Control System (VCS)
tightly integrate di�erence analysis and merging capabilities. Mens [131] has performed a
survey on existing merging approaches and identi�ed four di�erent types of approaches:
textual, operational, structural, and semantic. Additionally, combinations of those types
exist such as the language-aware merging proposed by Hunt and Tichy [84].

Textual merging
Today, in practice, merging is typically done on a textual level and integrated with tools
such as GNUDi� [124] or WinMerge [42].

Operational merging
Lippe and Oosterom [121] proposed tracking the editing operations of developers and derive
merge operations for this information instead of interpreting di�erences.

Structural merging
Bu�enbarger [27] and Westfechtel [192] both use structural information gained from pro-
gramming language syntax to improve merges proposed to developers. Westfechtel [192]
further enhance the use of structural information with a lightweight tracking of developers’
editing operations.
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Semantic merging
Finally, semantic approaches such as the one proposed by Horwitz et al. [80] gain further
information from program slices and others to propose reasonable merges and reduce merge
con�icts.

Language-aware merging
Language-aware merging is an approach proposed by Hunt and Tichy [84] to produce
more reasonable merging compared to textual merges and more e�cient merging compared
to existing structural and semantic approaches. They use techniques such as Partial Pro-
gram Analysis to improve software processing and renaming detections to reduce sets of
di�erences to handle explicitly.

2.4.8 Clone Detection

Baxter et al. [12] de�ne “clones” as a program fragment that is identical to another, and
“near miss clones” as one that is nearly identical to another. With a reference to Baxter
et al. [12], Roy et al. [159] give a de�nition of “code clones are code fragments which are
similar by a given de�nition of similarity”. From a software maintenance point of view, code
clones represent redundant code that makes code comprehension more di�cult because
developers need to understand why a code exists twice if they recognize this similarity at all.
In addition, the pure amount of code leads to increased maintenance e�orts. Roy et al. [159]
surveyed existing approaches for clone detection and classi�ed them according to di�erent
types of clones they are able to detect.

Clone types
Roy et al. [159] described di�erent types of clones that reach from exact textual copies
to code sections that perform the same computation but have di�erent implementations.
Accordingly, they speci�ed four types of clones (type 0 added for completeness):

• (Type 0: Exact clones)
• Type 1: Code Layout & Comments
• Type 2: Literals Changed
• Type 3: Added, Changed, or Removed Statements
• Type 4: Same Computation but other Implementation

In a recent study performed by Bellon et al. [13], the AST-based clone detection of Baxter
et al. [12] was identi�ed as one of the best performing algorithms. However, selecting a
clone detection algorithm is a trade-o� between performance, detected clone type, and the
purpose for detecting clones.

2.4.9 Program Comprehension

Program comprehension has been identi�ed as one of the most critical tasks in software
maintenance. Pigoski and April [148, page 6-4] compared several studies on maintenance
e�orts and summarized that developers spend 40%–60% of their maintenance e�ort on
program comprehension.
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Internal and external information
Program comprehension requires to consider internal and external information about a
software. The former relates to the implementation of the software itself. The latter refers
to documentation, design artifacts, and process documentation. A broad variety of di�erent
approaches has been proposed in these areas.

The following subsections introduce approaches for program comprehension relevant in
context of this thesis.

2.4.9.1 Program dependencies

Program dependencies are studied for many di�erent purposes in the context of program
comprehension, such as change impact analyses (e.g., Lehnert [117] and Klatt et al. [105]) or
feature location (e.g., Dit et al. [43]). Wilde [193, page 4] has classi�ed program dependencies
according to the type of elements dependencies can exist between:

• Data Item Dependencies
• Data Type Dependencies
• Subprogram Dependencies

• Source File Dependencies
• Source Location Relationships

In addition, he has described strategies to identify dependencies between those items:

• Textual Search
• Cross-Referencing

• Tracing Indirect Dependencies
• Data Flow Methods

Wilde [193] has de�ned this classi�cation independent from the purpose the dependencies
are used for. The following subsections describe applications of program dependencies
relevant to the context of this thesis.

2.4.9.2 Program Slicing

Weiser [189] introduce the concept of program slices and described their usefulness for
people who need to understand a program. Weiser [190] provides the results of a study
showing that programmers use program slices intuitively for debugging and understanding
programs. A program slice represents a sequence of software elements involved in a program
execution. For example, a variable declaration, its subsequent usages (i.e., a forward slice),
as well as the previous calculation of its initial value (i.e., a backward slice).

Approaches for program slicing
Tip [185] surveyed that many approaches for program slices have been proposed and
di�erentiates them into static and dynamic slices. While the former builds slices based on
the program structure only, the latter takes aspects of a program execution such as concrete
inputs into account. Two important techniques used for building program slices are Program
Dependency Graphs and Program Execution Traces detailed in the following.
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Program Dependency Graphs (PDG)
Program Dependency Graph (PDG) were introduced by Ottenstein and Ottenstein [144] and
provide a graph representation of dependencies in a software program (e.g., a statement
reading a variable). Many approaches analyzing PDGs exist for di�erent purposes, such
as change impact analysis as surveyed by Lehnert [117] and feature location as surveyed
by Dit et al. [43] and Rubin and Chechik [161]. Accordingly, PDGs exist in many di�erent
�avors, such as the extension for higher program structures proposed by Horwitz et al. [81].
Software models with resolved-cross references as described in Section 2.4.6 contain PDGs
as sub-graphs. However, to analyze PDGs, these sub-graphs must be identi�ed explicitly.

Program Execution Traces (PET)
Agrawal and Horgan [2] propose the use of execution histories (i.e. Program Execution
Traces) to build more reliable program slices. Program execution traces represent program
execution �ows monitored during the execution of one or more speci�c features. They can
be gathered from instrumenting the program code before its execution. Alternatively, a
pro�ler can be used that returns information about the dynamic behavior of the software,
such as method invocations or object instantiations. Program execution traces and according
program slices are used for several purposes, such as identifying features within programs
as done by Chen and Rajlich [31] and Cornelissen et al. [35].

2.4.9.3 Feature Location Techniques

Locating the software elements implementing a feature within a software implementation is
necessary for various tasks in the context of software maintenance. Extending an existing
functionality and �xing errors are only two examples. Dit et al. [43] and Rubin and Chechik
[161] recently published surveys about existing approaches in general respectively with a
focus on SPL engineering.

General
Dit et al. [43] refer to Rajlich and Gosavi [154] and argue for feature location as being
one of the most frequent tasks in software maintenance. Beside other attributes, they
classi�ed existing techniques according to the types of “Static analysis” based on source
code analysis, “Dynamic analysis” based on information from program execution, “Textual
approaches” based on natural language processing, and “Historical analysis” based on
information from software repositories. They report a trend for textual and dynamic feature
location techniques as well as combining several types of techniques.

SPL engineering
Rubin focused on feature location techniques in context of transitions to SPLs such as done
by Alves et al. [4] to encapsulate features using AOP. They identi�ed the shortcomings of
existing approaches in this context. They distinguished static and dynamic as well as plain
and guided approaches according to the considered input respectively the required user
interaction.
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2.4.9.4 Concern Graphs using Program Dependencies

Concern graphs are closely related to feature location techniques but concerns can include
several features.

Robillard and Murphy [158] proposed a static code analysis approach to identify code
locations implementing a common concern. Starting with a seed (i.e., a class, method or
�eld), they collect incoming and outgoing references to other elements. They assume users
to provide reasonable seeds to use their approach and recommend techniques such as lexical
searches for types and members to identify such seeds.

Considered elements and references
With classes (C), �elds (F), and methods (M) as elements under study, they investigate the
references between speci�c pairs of these elements, identi�ed as (M,M), (M,F), (M,C), (C,C),
(C,M), and (C,F) and summarized in Table 2.9.

Reference Description

(calls,m1,m2) The body of method m1 contains a call that can bind (statically or
dynamically) to m2.

(reads,m,f) The body of method m contains an instruction that reads (uses) a
value from �eld f.

(writes,m,f) The body of method m contains an instruction that writes (de�nes) a
value to �eld f.

(checks,m,c) The body of method m checks the class of an object, or casts an object
to c.

(creates,m,c) The body of method m creates an object of class c.
(declares,c,m|f) Class c declares method m or declares �eld f.
(superclass,c1,c2) Class c1 is the superclass of c2.

Table 2.9: Program dependencies investigated by Robillard and Murphy [158, page 3]

Robillard and Murphy propose an iterative creation of concern graphs based on these
references. Each iteration starts with a set of seeds and collects all elements identi�ed by the
references under study. The new elements identi�ed by an iteration can be used as seeds for
the next one. In this way, users can iteratively build up a concern graph until they reach a
satisfying coverage or no further references are found.

2.4.10 Natural Language Program Analysis (NLPA)

Pollock et al. [150] introduce the term Natural Language Program Analysis (NLPA) as
the application of natural language analysis to further extend the analysis of program
structure and semantics. Natural language analysis is a subtopic in the �eld of computer
linguistics (e.g., Carstensen et al. [29]). Kuhn et al. [114] describe that developers often
introduce linguistic semantics by the terms they use in comments as well as in the names
of their variables, methods, and classes. Such linguistic semantics can support program
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comprehension in addition to programming language structures and semantics (e.g., Pollock
et al. [150, page 2]). For example, Kuhn et al. [114] use semantic code clustering techniques
to �nd clusters of related code in software products.

Language processing
Spek et al. [177, Page 2] describe the need for processing terms extracted from software
programs to improve their analysis. They propose to apply splitting and �ltering steps that
have been proven to be valuable in the context of natural language processing in general:

• Splitting: Separate strings into individual terms
(e.g., ”getProductCopies” to {“get”, “Product”, “Copies”}).

• Filtering: Removing useless words
(e.g., {“get”, “Product”, “Copies”} to {“Product”, “Copies”}).

Stemming is another processing typically used in context of natural language processing:

• Stemming: Transform a term to the stem of a word
(e.g., {“Product”, “Copies”} to {“Product”, “Copy”}).

Infrastructure
Computer Linguistics in general is used for many di�erent purposes such as speech recog-
nition and information retrieval (e.g. Carstensen et al. [29]). Among others, the success of
search engines for information retrieval through the internet and within companies has
produced several mature infrastructures that can be reused in the Natural Language Program
Analysis (NLPA) as well. Thus, many commercial and open source software solutions have
been developed. The Lucene project [75] is one of the major representatives for open source
solutions and provides implementations for language processing (e.g., Splitting, Filtering, and
Stemming) and e�cient storage and query (e.g., inverted indexes as described by Carstensen
et al. [29, page 588]).

Stemming
Stemming is a language processing step to transform terms to the stem of a word. This is
used to normalize di�erent variants of a word such as standardizing plural and singular
or di�erent forms of verbs (e.g., “Copies” to “Copy” and “creates” to “create”). Stemming
approaches are distinguished between lexical and algorithmic approaches. A component
processing terms by applying a stemming algorithm to them is typically referred to as
“Stemmer”.

Lexical Lexical stemming approaches use a dictionary or a database with prede�ned nor-
malizations. This allows for handling special cases such as verbs that cannot be normalized
according to a given rules, such as “mice” and “mouse”. An example of such a stemmer
is the PlingStemmer [180] proposed by Suchanek et al. [181]. This stemmer is based on
the WordNet lexical database for English introduced by Fellbaum [58] and continuously
maintained at the Princeton University [153].

44



2.4 Software Maintenance and Evolution

Algorithmic Algorithmic stemming approaches reduce letters or syllables until a known
term in a speci�c language is found. Depending on the algorithm used, slightly di�erent
results are returned by the individual stemmers. Typical examples of such stemming algo-
rithms are the Porter [152] algorithm and its revised version Snowball Porter [151] algorithm,
both proposed by Porter. Other often used examples are the KStem algorithm proposed by
Krovetz [111] and the su�xing algorithm proposed by Harman [74]. All of these stemming
algorithms are implemented as Stemmer components by the Lucene project (e.g., Porter
Stemmer, Snowball Porter Stemmer, KStem-Stemmer, and S-Stemmer).

Typical terms used in Java
The vocabulary used by programmers is one of the topics investigated in the context of
NLPA. Natural language analysis in general has identi�ed that standardized vocabularies
support comprehension and reliable communication. For example, the aviation industry has
standardized a vocabulary for their domain [55].

Caprile and Tonella [28, page 8] published the twenty most frequently used verbs extracted
from a set of ten procedural programs developed with the C programming language: “get
print set expand make copy list delete init search add write read put do parse free send �nd
handle”.

Similarly, Høst and Østvold [83] analyzed Java programs with regard to the used terms
and their intention. They have published a list of verbs used by programmers and explained
what people can expect from a method with such a verb in its name. For example, they
describe the verb “init” by:

“init: Methods named init very often manipulate state. Furthermore, they often
return void, create objects and have no parameters, and rarely call methods of
the same name.”

2.4.11 Refactoring

Refactoring describes the task of changing the source code of a program to improve its
internal quality. Chikofsky and Cross [32] describe refactoring as one task to perform in
context of reengineering (Section 2.4.5). However, they also state that refactoring is often
done within a smaller context to continuously improve the quality of a software system.

Code refactoring defined by Fowler
Fowler et al. [63] has established the clear de�nition of refactoring as improving the internal
structure of a software system without changing its external behavior. He has published a
catalog of recommendable refactorings and used a template to specify refactorings in the
same style. The templates contain a name to identify a refactoring and a summary when a
refactoring is reasonable and what bene�ts to expect by applying it. A motivation describes
why to apply a refactoring as well as conditions when it is not a must. Additionally, the
template provides for a de�nition of mechanics how to precisely perform a refactoring.
At the end, an example section is used to provide an idea of the code before and after a
refactoring is applied.
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SPL Refactoring
Alves et al. [3, page 2] described refactorings of feature models that improve the con�gurabil-
ity and further qualities of an existing SPL. They de�ned the term “Product Line Refactoring”
as not modifying the observable behavior, as done by Fowler et al. [63] for refactorings in
general. In contrast to Fowler et al. [63], they put this behavior protection in the context of
the original con�gured products and not to the overall con�guration space of the SPL.

Role-basedmodel refactorings
In the context of MDSD, several refactoring approaches have been proposed based on
transformations and pattern matching. Reimann et al. [156] proposed a role-based refactoring
speci�cation concept. They explicitly separate the roles involved in a refactoring, the
transformations to apply to these roles, and a mapping between the roles and concrete
metamodels. The separation allows for specifying refactorings independent from a concrete
metamodel. Accordingly, refactorings can be reused by creating a mapping model between
the role model and a concrete metamodel only.

2.5 Evaluation

To evaluate the contributions of this thesis, an evaluation concept proposed by Basili and
Weiss [10] is used. Furthermore, the performed validations are related to the concept of
validation levels proposed by Böhme and Reussner [19]. Both of them are introduced in the
following subsections.

2.5.1 Goal Question Metric (GQM)

Basili and Weiss [10] have proposed the Goal Question Metric (GQM) approach as a structured
concept for evaluations. They propose to �rst de�ne a goal of what should be evaluated.
Next, questions are de�ned in a way that answering them provides a statement if the goal is
reached or not. Finally, metrics have to be de�ned to quantify the answers for the questions
and, thus, make them reproducible.

Basili and Weiss [10] developed this approach in context of evaluating software engineer-
ing methods. However, the concept itself is not limited to this �eld and can be used for
evaluation in other �elds as well.

2.5.2 Validation Levels

Böhme and Reussner [19, page 15] de�ned four levels of validation of prediction models.
These levels can be applied to the area of software analysis in general and consolidation
approaches in speci�c as well.
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Level 0: Implementation Validity
This level is about the possibility to implement the approach under study. As Böhme and
Reussner [19] describe, level 0 is obviously validated in context of the other levels, as a
prototype is required to perform any other level of validation. This also applies for the area
of software analysis in general and consolidation support in speci�c.

Level 1: Result Validation
This level is about a qualitative comparing of the results of the approach with the reality.
Additionally, this can include a comparison with other, similar approaches to show an
improvement compared to the state-of-the-art.

Level 2: Applicability Validation
This level is about validating that an approach can be applied in reality. It includes the
availability of necessary input and conditions in appropriate scenarios to apply the approach.
Especially if input is obtained by humans, experiments or case studies are necessary to
validate the applicability.

Level 3: Benefit Validation
This level is about validating the improvement compared to existing approaches or practices.
Depending on an approach’s motivation, this can require extensive studies and it might
be hard to convince companies to participate. Especially validating approaches involving
human participants and considering process aspects requires parallel studies, and coping
with threats to their validity is challenging.
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3 Approach Overview

This chapter introduces the approach proposed by this thesis and relates the contributions
of this thesis to each other.

To cope with the challenges of consolidating customized product copies into a Software
Product Line (SPL), a novel approach named SPLevo has been developed providing i) a
structured consolidation process and ii) novel software analyses, both leading to less manual
e�ort for copy comprehension and variability design and to more consistent variability
implementations in the future SPL.

The following sections provide an overview of the overall SPLevo approach, followed by
subsequent chapters discussing the individual contributions in detail.

3.1 Main Consolidation Phases

Software 

Product Line

Customized 

Copy 1

Customized 

Copy 2

Original 

Product

Difference 

Analysis

Variability

Design

Consolidation 

Refactoring

Consolidation

Figure 3.1: Main consolidation phases

Figure 3.1 illustrates the three main phases of the SPLevo approach to consolidate cus-
tomized product copies into an SPL: Di�erence Analysis, Variability Design, and Consoli-
dation Refactoring. This section provides an overview of the main phases of the SPLevo
approach. The details of the process and the other contributions are described in the fol-
lowing chapters. In the �rst phase, the di�erences between the product copies must be
identi�ed. In the second phase, a variability design (i.e., the structure and characteristics
of the future variability) must be created to specify how to re�ect related di�erences as
variability in the future SPL. Finally, in the third phase, the copies’ implementations must
be transformed into a single code base containing the implementation of the SPL core and
included features, according to the previously created variability design. All these phases
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are integrated based on a Variation Point Model as a common data model (Section 3.2). In
addition to the main phases, pre- and post-processing phases exist to setup the consolidation
process and to handover the resulting SPL to the continuous maintenance (not presented in
Figure 3.1 for the sake of brevity).

Focus on Di�erence Analysis and Variability Design
According to Pigoski and April [148, page 6–4], developers spend 40%–60% of their mainte-
nance e�ort on program comprehension (Section 2.4.9). Thus, one can argue that Di�erence
Analysis and Variability Design are reasonable phases to investigate support for. Furthermore,
many approaches exist in the �eld of refactoring (Section 2.4.11) providing infrastructure that
can be reused in the Consolidation Refactoring phase. Thus, the main focus of the SPLevo
approach is on the Di�erence Analysis and Variability Design phases. The Consolidation
Refactoring is supported in the direction of ensuring consistent variability implementations,
which is not covered by existing approaches, today.

Leading and Integration Copies
Before starting the consolidation, SPL Consolidation Developers select one of the copies to
consolidate as the Leading Copy. During the consolidation, this copy will be transformed into
the �nal SPL instead of building a new separate code base. This procedure allows bene�ting
from development infrastructures, such as Version Control Systems (Section 7). Furthermore,
consolidation activities can use the Leading Copy as a �xture for their processing. For
example, the Di�erence Analysis can use it as reference for normalizing renaming. All other
product copies to be integrated into the Leading Copy are called Integration Copies.

De�nition 3: Leading Copy

A Leading Copy is one of the copies to consolidate what was selected as the main code base

for the resulting SPL. It is used as reference code base throughout the consolidation process.

Furthermore, the accepted variants of all other copies will be merged into the Leading Copy’s code

base during the refactoring. The Leading Copy is selected as part of the process con�guration

activity.

De�nition 4: Integration Copy

An Integration Copy is any of the copies to consolidate what was not selected as Leading Copy.

The following subsections brie�y introduce the main phases of the consolidation, their
challenges, and the contributions of the SPLevo approach to cope with. Section 4 discusses
the activities in detail.

3.1.1 Di�erence Analysis Phase

Phase summary
Understanding the customizations from one copy to another starts with identifying the
di�erences of their implementations in place. The Di�erence Analysis consumes the copies’
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implementations and produces an initial model of the future SPL’s variability design rep-
resenting the individual di�erences. This phase is crucial for the overall process as the
downstream phases’ qualities and processing strongly depend on this output.

Challenges
In general, a Di�erence Analysis phase is challenging due to a possibly large amount of
di�erences, irrelevant modi�cations (e.g., comments), preferred variability mechanisms, and
copying practices (e.g., naming conventions or Derived Copies referencing their origin).

Related contributions
The contribution of the SPLevo approach to support developers in the Di�erence Analysis
phase is a fully automated di�erence detection as described in Section 5. In addition, the
SPLevo process speci�cation identi�es stakeholders and information sources to incorporate
to gain export knowledge to be considered (e.g., applied company guidelines for copy-based
customization).

3.1.2 Variability Design Phase

Phase summary
Designing variability in a consolidation process means to identify copy-speci�c code con-
tributing to the same copy-speci�c feature and to decide about its representation as variability
in the future SPL (e.g., run time or compile time con�guration). The variability design must
ensure a consistent con�guration of variable code locations related to each other as well as
the necessary �exibility for instantiating reasonable products from the future SPL. Thus, the
di�erences returned by the Di�erence Analysis must be related to each other and it must be
decided how to re�ect them in the future SPL.

Challenges
Designing the variability of an SPL is a�ected by many factors. Technical constraints be-
tween the di�erences (i.e., code dependencies) and logical relationships (e.g., a copy-speci�c
functionality which makes no sense without another one) must be identi�ed and soft factors,
such as organizational reasons or product management decisions [33], must be respected to
achieve a satisfying variability design. Reviewing the di�erences and deriving reasonable
design decisions is tedious because of the amount of di�erences, their potential relationships,
and the degrees of freedom in deciding about their combination and characteristics. In
particular, the soft factors eliminate the chance for a fully automated consolidation and
require involving di�erent stakeholders.

Related contributions
The contributions of the SPLevo approach to cope with this challenges are i) a novel software
analysis providing variability design recommendations, ii) a de�nition of explicit design
activities to reduce wasted e�orts, and iii) an SPL requirements speci�cation (i.e., SPL Pro�le)
to guide consistent design decisions. The software analysis allows for identifying technical
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dependencies as well as similar and simultaneous modi�cations as indicators for relationships
in the copy-speci�c code to automatically derive re�nement recommendations for the
variability design. The consolidation process speci�ed in the SPLevo approach distinguishes
several explicit design activities and identi�es sources of information to consider as well as
stakeholders to involve for achieving consistent and prevent redundant and reverted design
decisions. Third, an SPL Pro�le is speci�ed to de�ne guidelines for choosing variability
characteristics as part of the variability design in a more consistent way.

3.1.3 Consolidation Refactoring Phase

Phase summary
In the �nal Consolidation Refactoring phase, the copies’ implementations are transformed
into a single code base, and variability mechanisms (e.g., conditional execution based on
con�guration �les or user information) are introduced at the same time to switch between
the available variants. Based on the copies’ implementations and the variability design
created before, the implementation of the SPL core and the included features have to be
created. This requires deciding which mechanisms to implement for the variability speci�ed
in the variability design and to refactor the implementations themselves.

Challenges
Deciding for appropriate variability mechanisms is challenging as many di�erent techniques
and mechanisms are available (Section 2.3.3) to choose from. Furthermore, ensuring a
consistent implementation even for the same type of variability mechanisms is tedious as
developers have to agree on an implementation style and manually ensure its consistent re-
alization. Mature refactoring solutions exist, but not for introducing variability mechanisms
as part of consolidating code from several code bases. Accordingly, there is no automation
to be used here.

Related contributions
The contributions of the SPLevo approach to support the Consolidation Refactoring phase
are i) a speci�cation concept for consolidation refactorings, ii) an automated variability
mechanism recommendation, and iii) support for selecting intended variability mechanisms
when de�ning SPL guidelines. The speci�cation concept allows for describing refactorings for
introducing variability mechanisms including their supported characteristics (e.g., binding
time) in a structured manner, enabling automation. Furthermore, it includes a speci�cation
of how to implement the mechanism for di�erent types of software elements. The SPLevo
approach includes a recommendation system automatically assigning the most appropriate
variability mechanism to a variation point. The recommendation evaluates the characteristics
and implementing elements of a Variation Point (VP), the speci�cations of the available
refactorings, and the list of intended variability mechanisms de�ned in the SPL guidelines.
When specifying these guidelines, the selection of reasonable mechanisms is supported by
automatically recommending available mechanisms based on the characteristics chosen
before.
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3.2 Variation Point Model

To enable the consolidation process, a Variation Point Model (VPM) has been developed
that allows for iteratively designing variability in the SPL solution space, referencing in-
volved software elements (e.g., classes, methods, and statements) in several code bases, and
integrating all process phases as well as their activities.

3.2.1 Model Concept
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Figure 3.2: SPLevo VPM model concept

Similar to Svahnberg et al. [183], the SPLevo VPM distinguishes features on the product
management level and VPs on the software design level as described in Klatt et al. [97] and
illustrated in Figure 3.2.

Variation Points, Groups, and Variants
Similar to Jacobson et al. [88] and Pohl et al. [149], the SPLevo VPM de�nes a VP as a
location of variability. In contrast to them, an SPLevo VP focuses on a single location, and a
Variation Point Group (VPG) contains related VPs contributing to the same feature. Finally,
a Variant (V) is an available implementation for a VP. For example, if methods in two classes
have been added for the same feature, Jacobson et al. [88] use a single VP referencing both
classes with variant elements referencing the methods. In the SPLevo VPM, two VPs are
used, each referencing one of the classes, and their variant elements reference the according
methods. Furthermore, a VPG contains the two VPs to indicate their unity.
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Integration with feature models
To integrate with the product management level, VPGs can reference features implemented
by their VPs, and Variants can reference child features as the available alternatives. Further-
more, a VP’s location and a Variant’s implementation are speci�ed by SoftwareElements as
wrappers for referencing elements of concrete software models, such as nodes of an Abstract
Syntax Tree (AST).

Reuse of existing models
The feature model and software model reuses mature models satisfying the SPLevo ap-
proach’s requirements [51, 78, 77]. The SPLevo VPM allows for integrating such existing
feature and software models for i) enabling an export to existing SPL management tools
(e.g., pure::variants [66] or FeatureMapper [79]) without being limited to a speci�c model
and ii) reusing existing solutions for software model extraction to allow for adding support
of additional technologies.

Link from solution to problem space
For a well-structured consolidation process, the SPLevo VPM is designed to bridge the gap
between features on an SPL’s problem space and software models on an SPL’s solution space.
It enables an integrated consolidation process starting with the extracted software models
and building VPGs representing the implemented features on the lowest granularity level of
a feature model. On one side, software models can be reverse engineered from the existing
software implementations and need to provide enough detail to support comparison and
refactoring later on. On the other side, feature models must be abstract and focused on the
SPL’s problem space to describe variable features for stakeholders interested in software
capabilities, such as product managers or customers.

Variability design
Within the SPLevo approach, variability design is de�ned in two directions and accord-
ingly supported by the VPM: The Variation Point Structure Design and the Variation Point

Characteristics Design.
De�nition 5: Variation Point Structure Design

In the overall variability design, the Variation Point Structure identi�es locations of variabil-

ity (i.e., VPs), alternatives available at these locations (i.e., Variants and their implementing

SoftwareElements), and clusters of related locations of variability (i.e., VPGs). Designing the

structure means:

1. Assigning VPs to the same VPG, if they are identi�ed as contributing to the same feature

and, thus, need to be con�gured in a consistent way later on.

2. Clustering co-located and related VPs into coarse grain ones, if their variants can and

should be implemented with a single variability mechanism in the future SPL.
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De�nition 6: Variation Point Characteristics Design

In the variability design, the Variation Point Characteristics specify the capabilities of the

variability re�ecting a VP in the future SPL. More speci�c, the characteristics selected for a VP

specify the requirements on the variability mechanism implemented during the consolidation

refactoring.

3.2.2 Metamodel

The SPLevo Variation Point Model is speci�ed as an Essential Meta Object Facility (EMOF)
metamodel [140, page 25]. Figure 3.3 provides a class diagram of the types of the metamodel
and their relationships (attributes omitted for clarity).

Figure 3.3: SPLevo VPM metamodel
(attributes partly omitted for simplicity but provided in the according sections)

The VPM’s base structure is similar to the one speci�ed by Svahnberg et al. [183, page 7]
in how Variation Points, Variants, Features and SoftwareElements (i.e., Software Entities in
their terminology) are linked to each other. However, because of the need to group related
VPs, de�ne their characteristics and access the related copies’ implementations, additional
model elements such as VPGs, characteristics and source locations have been introduced in
the SPLevo VPM metamodel.
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Furthermore, the SPLevo VPM metamodel speci�es wrappers for technology-speci�c
elements (i.e., SoftwareElement). They exist to de�ne a technology-independent VPM
allowing for links to technology-speci�c software models and even allow for di�erent
software models for the same technology (e.g., di�erent models for the Java technology).
This enables a generic consolidation approach providing adaptation points for improvements
facilitating technology-speci�c information. Further details about this adaptation concept
are described in Section 3.4.2.

The following subsections describe the metamodel elements in detail.

3.2.2.1 VariationPoint

Figure 3.4 represents the VariationPoint element and its direct context. The VariationPoint

itself represents a location at which variability resides between the copies’ implementations.
The location of a VP is represented by a referenced SoftwareElement (e.g., a class or method).
Typically, the location is a SoftwareElement of the Leading Copy to integrate the variability
in. However, if a new software element was created in an Integration Copy not contained by
any other SoftwareElement (e.g., an added �le resource), there might be no corresponding
location in the Leading Copy. In such a case, the location references the new top-level
SoftwareElement in the software model of the Integration Copy it results from.

Figure 3.4: VariationPoint

The options available at a VP are represented by Variant elements which are further
described below.

In addition to its location and variants, a VP has variability characteristics (Section 3.2.2.4)
to describe its required or intended variability. The variability characteristics are adjusted
as part of the Variability Design phase (Section 4.2.6).

Finally, a VP allows specifying a Variability Mechanism that describes how the VP should
be implemented as well as the VPG referencing all VPs it relates to.

A VP can reference zero, one, or more variants (i.e., customer-speci�c changes). One or
many means there is at least one customized product copy providing code for this location
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and at least one variant will be part of the SPL. Zero means there is no variant to include in
the SPL itself but there should be variability allowing to add product-speci�c variants at
this location (i.e., an extension point). To declare a valid extension point, the “extensible”
characteristic of VPs with no variant assigned must be set to YES as de�ned by the OCL
constraint in Listing 1. However, it is not intended to create extension points during a
consolidation process and the con�guration option results from provided degrees of freedom
in the metamodel. Furthermore, extensibility comes with maintenance challenges in general,
which developers and architects must be aware of (Section 2.3.1.3).
1 context VariationPoint

2 inv PureExtensionPoint : variants->size() = 0 implies extensibility = Extensible::YES

Listing 1: Pure extension point constraint

However, the goal of the SPLevo approach is to consolidate the existing implementations.
Thus, specifying a VP without any Variant element is not further investigated in this thesis.

3.2.2.2 VariationPointGroup

A VP in the SPLevo VPM represents a single variability location only. This slightly di�ers
from de�nitions such as the one of Jacobson et al. [88]: “A variation point identi�es one or
more locations at which the variation will occur”. In the SPLevo VPM, a VPG is speci�ed
as an entity which contains all VPs contributing to the same implemented feature – for
example, several code locations modi�ed to change a temperature calculation from Celsius
to Fahrenheit. This is done to have VPs explicitly identify individual locations of variability
and distinguish them from logical dependencies between several VPs. Additionally, the VPGs
allow for a more �exible clustering within the consolidation process as they can provide
additional information and can be changed without changing the VPs themselves.

Figure 3.5: VariationPointGroup

As shown in Figure 3.5, a VPG has an id attribute as identi�er. It further references all
VPs contributing to the same feature. To identify this feature when the consolidated SPL is
handed over to product management, the VPG can optionally reference a feature element.
As a representative, the feature element of the standardized EMF Feature Model [51] is used
here.
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3.2.2.3 Variant

Figure 3.6: Variant

The alternatives available for a VariationPoint are described by Variant elements. As shown
in Figure 3.6, each Variant references one or more implementing elements. These elements
are SoftwareElements of one of the consolidated copy’s software models. At the beginning of
and during the consolidation process, the implementing elements (“implementingElements”)
of a Variant originate from any of the consolidated copies, but always the same for one
variant. When the refactoring into a single code base is done, all Variant elements refer to
implementing elements in the single code base of the SPL.

The Variant element’s “leading“ attribute identi�es if its implementing elements originate
from the Leading Copy. This attribute allows for identifying variants of a Leading Copy
without the need for loading and analyzing the SoftwareElements themselves.

The id attribute identi�es the represented option for a VP. If multiple VPs contribute to
the same variable feature, their Variant elements contributing to the same option have the
same id.

Clarification of the term Variant
The term “Variant” is used in two di�erent manners in the �eld of variability and SPL
engineering: a product con�guration and an alternative of a VP. The former uses the term
“Variant” for a con�guration of a product derived from an SPL. The latter uses the term
“Variant” to refer to an option of a VP within a VPM. The SPLevo approach uses the term
according to the latter.

3.2.2.4 Variability Characteristics

The VPM allows for specifying variability characteristics for a VP. Many di�erent types of
characteristics have been proposed in context of SPLs (Section 2.3.1). The SPLevo approach
uses a speci�c set of characteristics supporting the selection of a variability mechanism
during the consolidation refactoring. Figure 3.7 presents the set of characteristics and their
options which are explained below.
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Figure 3.7: Variability characteristics

Variability Type
For each VP, a variability type can be de�ned, describing how many variants can and must
be selected for a concrete product. Table 3.1 summarizes the available options speci�ed
in the VPM. “XOR” means the variability mechanism respectively its con�guration has to
ensure that one but not more than one variant can be used. “OR” means that at least one but
also more variants can be chosen. “OPTXOR” and “OPTOR” are extensions of the regular
“XOR” and “OR” also allowing explicit selection of no variant.

The types are aligned with the “basic” and “merged” types de�ned by Patzke and Muthig
[146] (Section 2.3.1.1), except for not using the basic type “optional”, which can be expressed
with the other types as well.

Variability Type Cardinality of a Variation Point Cardinality (m ≤ n)

XOR Exactly one of the available variants must
be selected.

1 out of n

OR One or more of the available variants must
be selected.

1..m out of n

OPTXOR None or one of the available variants must
be selected.

0..1 out of n

OPTOR None, one, or more of the available variants
must be selected.

0..m out of n

Table 3.1: VariationPoint characteristic: Variability Type

Binding Time
The binding time of a VP speci�es the latest point in time when a speci�c variant to be used
can be chosen (Section 2.3.1.2). Table 3.2 summarizes the options de�ned in the VPM, which
are aligned with the binding times de�ned by Apel et al. [7]. Each of them means a variant
can be selected at this point in time or even before.
“Compile Time” means variants must be chosen before compiling the source code of the
product. This is typically used to reduce the amount of code deployed in production and to
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prevent evaluating con�gurations at load or run time. However, it is less �exible in serving
di�erent customers compared to the other options and requires more e�ort for maintaining
the customer-speci�c installations.
“Load Time” requires having the con�guration in place before the application is started.
Compared to compile time binding, this allows for more consistent installations in production
and, thus, system support is simpli�ed. In the mean, the processing e�ort for evaluating the
con�guration is lower compared to run time binding.
“Run Time” means the product’s con�guration can be adapted in operation. Typically,
run time binding is used to adapt the product’s behavior according to the user or client
interacting with it. This allows for using the same product installation for di�erent feature
con�gurations.

Binding Time Description Bene�t

Compile Time Variability decided during imple-
mentation or compilation.

Allows for deploying required
code only.

Load Time Variability decided when program
is started.

Saves processing time for variabil-
ity examination.

Run Time Variability decided and changed
when program is executed.

O�ers highest �exibility.

Table 3.2: VariationPoint characteristic: Binding Time

Extensible
The “Extensible” characteristic of VPs describes if all variants to choose from are part of the
SPL or product-speci�c ones can be added later on. Whether a VP is extensible, or not is a
boolean decision as shown in Table 3.3. However, the alternatives are modeled explicitly
for the sake of conformity to the other characteristics. The characteristic also relates to the
de�nition of population roles described by Svahnberg et al. [183], except that it does not
distinguish whether a product developer or an end user adds a new variant.

Extensible Description

NO All available variants are included in the SPL.
YES New variants can be added for a concrete product.

Table 3.3: VariationPoint characteristic: Extensible

3.2.2.5 Feature

The Feature element allows for connecting the software design VPM with a feature model
used by product management. The Feature element used here is derived from the EMF
Feature Model [51]. Feature models are structured in a hierarchical manner, which is realized
with Group elements in the EMF Feature Model as shown in Figure 3.8. A Feature has child
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3.2 Variation Point Model

Figure 3.8: Feature

features representing its available options. In feature models, the parent-child hierarchy is
not limited in any way.

As a VPG contains all VPs contributing to the same feature, the VPG references the feature
they realize. Similarly, the Variants of these VPs represent the available options for this
feature and, thus, reference the according child feature. Which variants must link the same
feature is indicated by the Variants’ ids.

3.2.2.6 So�wareElement

Figure 3.9: SoftwareElement

The VPM SoftwareElement is a wrapper element that allows for referencing Software-
Elements of technology-speci�c software models in a uniform manner. The similar names
of the two metamodel classes are intended as they identify the same element in a copy’s
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implementation. They are used in the same manner during the consolidation and will be
generically referenced as “SoftwareElement” only throughout this thesis, as long as it is not
required to reference a software element of a speci�c metamodel. The VPM SoftwareEle-
ment provides a uniform interface for information required by the consolidation process.
As shown in Figure 3.9, the VP and Variant elements reference the SoftwareElement instead
of referencing elements of a concrete software model. This allows for adapting the overall
SPLevo approach for di�erent technologies, as further described in Section 3.4.2.

Sub-interfaces allow further typifying the SoftwareElement for concrete technologies and
provide speci�c utilities, such as opening Java Elements in a Java Editor. The technology-
speci�c sub-interfaces allow for reusing such utilities with di�erent software models and
extractors for the same technology (e.g., JaMoPP or MoDisco for Java, Section 2.4.6). The
operations speci�ed by the SoftwareElement interface must be implemented in a technology-
speci�c manner by the concrete wrappers. On the one hand, technical information (e.g., source
locations) can be retrieved in a technology-speci�c manner only. On the other hand, labels
and names should match presentations developers are used to (e.g., identi�er names di�er
between technologies such as “myObjectAttribute” in Java and “my.object.attributes” in
properties �les).

3.2.2.7 SourceLocation

A SourceLocation element identi�es a software element in its textual representation (e.g., a
method in a source code �le). As shown in Figure 3.9, it identi�es the software element’s
containing �le resource by its �le system path. In addition, attributes specify the software
element’s position within the �le resource in terms of start and end character o�sets.

3.3 So�ware Product Line Profile

All SPLs share common principles, such as explicitly managed variability. However, each
SPL has individual characteristics, such as its maturity level. Furthermore, each vendor has
di�erent intentions to introduce an SPL, such as enabling a faster product derivation or
con�guring more product variants. Thus, software vendors raise di�erent quality goals for
their SPL implementation, such as code simplicity versus code reduction (Section 2.2). Those
individual preferences in�uence the copy consolidation and must be considered.

We have developed a “Software Product Line Pro�le” (“SPL Pro�le”) as part of the SPLevo
approach that allows for capturing the individual requirements for the future SPL. The main
purposes of the SPL Pro�le are i) to improve the consolidation process’s automation and
ii) to support the involved stakeholders’ design decisions to gain more consistent results.
Thus, the SPL Pro�le’s relevance for the consolidation process is similar to the relevance of
architecture styles for general architecture development.

As shown in the class diagram presented in Figure 3.10 and according to its main purpose,
the SPL Pro�le allows for specifying two types of guidelines:

1. SPL Style Guidelines
2. SPL Implementation Guidelines
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Figure 3.10: SPL Pro�le metamodel

The former allows for specifying the intention and goal of the SPL to introduce (e.g., char-
acteristics and principle quality goals). The latter provides technical speci�cations to be
considered during the consolidation (e.g., allowed variability mechanisms).

In the end, the SPL Pro�le is used to ensure a satisfying and consistently implemented
SPL as consolidation result. Thus, its most critical content is the list of intended Variability
Mechanisms for realizing the VPs. All other information is i) used for selecting variability
mechanisms during the SPL Pro�le de�nition or ii) considered by stakeholders during their
manual decision making. According to the purpose of the SPL Pro�le, it must be speci�ed
before starting the consolidation. However, if guidelines are not su�cient to perform
a concrete consolidation, such as when the variability mechanisms are too limited, this
becomes perceptible to SPL Consolidation Developers and Software Architects. Without
such an indicator, variability might be implemented in an unintended manner.

The following subsections describe the SPL Pro�le attributes presented in the class diagram
in Figure 3.10 in detail.
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3.3.1 SPL Style Guidelines

SPL style guidelines represent general rules to consider during the consolidation. For
example, targeting a multi-tenant system requires to have run time adaptable tenant-speci�c
behavior. But, it does not forbid to have other VPs that are con�gured before the system is
loaded (i.e., load time).

3.3.1.1 SPL Type

A fundamental decision is the type of SPL targeted by the consolidation. There is no
standardized classi�cation of SPL types available. As summarized in Table 3.4, we have
de�ned three types of SPLs primarily aligned to their typical binding time according to the
goal of the SPL Pro�le to support further decisions. The types are strongly in�uenced by
the maturity levels identi�ed by Bosch [21] but are no exact matches. The maturity types of
Bosh et al. focus on the development maturity of the software vendor. In contrast, our SPL
Types are de�ned according to the characteristics of the SPL itself.

SPL Type Description Default Characteristics

VT BT EX

Multi-Tenant
System

A single installation can serve di�erent users
by adapting to the current user’s context
or characteristics. Adding tenant-speci�c
extensions is possible in general but not the
regular case.

XOR run NO

Con�gurable
Product Base

Products are individually con�gured per in-
stallation. Product-speci�c extensions are
used more often.

XOR load NO

Adaptable
Code Base

Products are assembled from the SPL code
base before compilation and installation.
Product-speci�c extensions can be done in
the most �exible manner.

XOR compile NO

Table 3.4: SPL Pro�le: SPL Types (VT = Variability Type, BT = Binding Time, EX = Extensible)

The SPLevo approach uses SPL types to i) pre-con�gure the appropriate settings in SPL
Pro�les and ii) adjust the default characteristics of VPs created during the consolidation. The
de�ned types of SPLs di�er in their default variability type, binding time, and extensibility.
Accordingly, each SPL Type is a triple of a default variability type, a default binding time,
and a default extensible setting identi�ed by a name. However, none of them is restricted to
be implemented with these default characteristics only. The SPL types de�ne a normative
guideline for the VP settings and require their default variability characteristics to be allowed
in the SPL Pro�le for designing an according future SPL. For example, targeting a multi-
tenant system but not allowing for run time variability binding and not providing any run
time capable variability mechanism contradicts the intention of a multi-tenant system. In
contrast, even an “Adaptable Code Base” SPL can have VPs with con�gurations evaluated at
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load time. However, if no VP provides a compile time binding time, this does not match the
goal of building an “Adaptable Code Base”.

3.3.1.2 Quality Goals

The overall consolidation goal of better code maintainability and faster product instantiation
can exist in di�erent �avors. As described in Section 2.2.5, one can prefer either less complex
or less redundant code. Thus, the quality goal is a decision between “Simplicity” (i.e., less
complex code) and “Conciseness” (i.e., less redundant code). The preferred goal provides a
hint for implementing variability. For example, on the one side, more coarse grain variation
points and variability implementations (e.g., variants encapsulated into separate methods
or classes) require less execution paths in the code. On the other side, they require more
redundant code compared to �ne-grained variation points and variability mechanisms
(e.g., conditional executions within the same method).

Quality Goal Description

Conciseness Prefer variability implementations leading to less redundant code while
accepting more execution paths or indirections.

Simplicity Prefer variability implementations leading to code that is as easy to
understand and �nd as possible.

Table 3.5: SPL Pro�le: Quality Goals

3.3.1.3 Allowed Variability Characteristics

By default, all Variability Characteristics considered in the SPLevo approach and supported
by the VPM (Section 3.2.2.4) can be assigned to VPs. However, sometimes speci�c character-
istics are not wanted and thus should not be available during variability design. For example,
one might not want to have extensible VPs and does not allow for compile time variability
to ensure the same code base for all installations.

By default, all options of all Variability Characteristics are selected in the “Allowed
Variability Characteristics” setting of the SPL Pro�le. Those not wanted can be deselected
except for the characteristics mandatory for the chosen SPL type, which make no sense to
be deselected.

3.3.2 SPL Implementation Guidelines

During the consolidation, concrete variability mechanisms are assigned to the VPs to in-
struct the refactoring in how to realize the according variability in the SPL. The Variability
Mechanisms part of the SPL Pro�le speci�es the Variability Mechanisms allowed to be used.
They are de�ned as an ordered list with the more preferred mechanisms at the top.

The available variability mechanisms to choose from depend on the current setup of the
SPLevo approach. To cope with the requirement to support custom variability mechanisms
(Section 2.3.3.2), the SPLevo approach allows for working with an adaptable set of variability
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mechanisms. They are speci�ed as part of a Consolidation Refactoring Speci�cation, because,
at the end, for each mechanism assigned to a VP, it must be clear how it should be realized
in the refactoring phase. To support the complete consolidation process, the developed
Consolidation Refactoring Speci�cation concept speci�es for each refactoring i) the o�ered
variability mechanism including its variability characteristics, ii) the quality goal by trend of
its implementation, iii) the SoftwareElements that can be refactored, and iv) the procedure
of the refactoring itself to implement the variability. Section 7.1 describes the Consolidation
Refactoring Speci�cation concept in detail.

3.3.3 SPL Profile Definition Support

SPL Profile 

Style Guidelines 

SPL Type ☐ Multi-Tenant System   

☐ Configurable Product Base 

☐ Adaptable Code Base 

Quality Goal ☐ Simplicity 

☐ Conciseness 

Allowed Variability Characteristics 

Variability Type ☐ OR   ☐ OPTOR 

☐ XOR   ☐ OPTXOR 

Binding Time ☐ Compile-Time ☐ Load-Time  ☐ Run-Time 

Extensible ☐ YES   ☐ NO 

 

Implementation Guidelines 

Variability 
Mechanisms 

 

Selected Mechanisms

If Else with Configuration Class

OSGi Bundle

Custom License Mechanism                                

 
Recommend Add Validate

 
 

 

Figure 3.11: SPL Pro�le example
(selected mechanisms are illustrating examples only)

Figure 3.11 shows an example of a con�guration form to specify an SPL Pro�le. The
con�guration of the SPL Pro�le, and especially the allowed variability mechanisms, is
supported by i) recommending reasonable mechanisms and ii) validating already selected
ones. As illustrated by the SPL Pro�le evaluation concept in Figure 3.12, this is done based
on the overall settings in the SPL Pro�le. Each SPL Type requires allowing speci�c variability
characteristics. In addition to those required ones, additional characteristics can be added to
the allowed set. The complete set is then used to �lter the total list of available variability
mechanisms. On the other side, already selected variability mechanisms can be validated
and reported if they realize any characteristic that is not allowed. Finally, the quality
goals and the selected SPL Type’s required characteristics in�uence the prioritization of the
variability mechanisms. Variability mechanisms providing the selected SPL Type’s required
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Allowed 

Variability 

Characteristics

SPL Type

requires

Variability 

Mechanisms

restricts

Quality 

Goal

prioritize

prioritize

Figure 3.12: SPL Pro�le evaluation concept

characteristics and tending to support the preferred quality goal are prioritized higher than
the other ones. This prioritization is used i) to order the recommended list of mechanisms
and ii) to provide feedback for improving the order of the already selected mechanisms.

3.4 So�ware Models

The SPLevo approach provides a model-based integration for software comprehension,
design, and refactoring. To enable this, the implementations of the product copies under
study must be accessible as model representations as well (i.e., software models). The SPLevo
approach is not limited to a speci�c technology (e.g., a programming language such as Java),
but allows for processing any artifacts that can be represented as a model conforming to
SPLevo’s de�nition of a Software Model and allows for technology-speci�c adaptations
for process optimizations. The following Subsection 3.4.1 de�nes the assumed minimal
structure of a software model, and Subsection 3.4.2 provides an overview of the concept of
the SPLevo approach for technology-speci�c adaptations.

3.4.1 So�ware Model Structure

The SPLevo approach supports software models for any technology if they conform to
SPLevo’s minimal de�nition of a Software Model (De�nition 7).

De�nition 7: Software Model

A SoftwareModel describes all resources contributing to a software implementation. Each

resource contains a tree of SoftwareElements with a single root element. All elements contained

in a SoftwareModel are arranged as a tree based on containment relationships which are unique,

directed and free of cycles.

Figure 3.13 shows a class diagram of a metamodel (i.e., the software model structure)
con�rming to SPLevo’s minimal software model de�nition. A SoftwareModel has a con-
tainment reference to zero or more Resource elements. Each Resource contains exactly
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Figure 3.13: SPLevo software model de�nition

one SoftwareElement referenced as root. Exactly one root SoftwareElement is required,
as this might represent an empty container inside the resource (e.g., an empty text �le
with an encoding de�ned by its container). Each SoftwareElement contains zero or more
other SoftwareElements referenced as childElements. In this thesis, algorithms and de-
scriptions which do not refer to a speci�c technology make use of the terminology of the
metamodel. The terminology overlap of the SoftwareElement with the VPM metamodel’s
SoftwareElement is intended. The former is a wrapper element for the latter and abstrac-
tion for SoftwareElements of speci�c software models (e.g., a class SoftwareElement of the
JaMoPP Java model [78]). However, if a speci�c one of those two is meant, it will be explicitly
stated, if not clear from the context.

This minimal assumed structure of a software model is an arguable assumption, as
standardized AST models exist which correspond to it (e.g., OMG’s GAST speci�cation [138])
and existing model extraction infrastructures are able to provide corresponding models
(e.g., xText [54], EMFText [78] and the EMFText Syntax Zoo [44]).

3.4.2 Technology Adaptations

The general SPLevo approach treats software implementations in a uni�ed manner in terms
of software models speci�ed in this section. However, on one side, considering speci�cs of
concrete technologies is required to make valuable decisions on how to treat di�erences
between product copies and even to identify those di�erences. On the other side, technology
speci�cs can be used to improve the consolidation process by providing additional relation-
ships between SoftwareElements compared to completely generic treatment (e.g., program
dependencies such as method calls).

The SPLevo approach in general is not limited to a speci�c technology to cope with
the diversity of software artifacts used in software systems today. Moreover, it speci�es
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several adaptation points to consider technology speci�cs and provide better analyses by
considering aspects such as concrete types and typical development habits.

However, in this thesis, adaptations for the Java technology have been implemented. Java
has been chosen as it is a representative for object-oriented languages and widely used in
modern software development. In addition, the case study systems used in the evaluation
are implemented with the Java technology, too (Section 8).

Several parts of the SPLevo approach provide technology adaptation points. The Di�er-
ence Analysis allows for technology-speci�c software model extractors, provides adaptation
points for technology-speci�c comparison logic, and allows for technology-speci�c Softwa-
reElement wrapper creation during the VPM initialization. The Variability Design support
provides adaptation points for technology-speci�c VP analyses and re�nement recommen-
dation logic. The refactoring speci�cation concept de�ned by the Consolidation Refactoring
supports technology speci�cs, as nearly all refactorings require considering the underly-
ing technologies. Further details about those adaptation capabilities are provided in the
according sections of this thesis.
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This chapter introduces the structured consolidation process proposed as part of the SPLevo
approach for considering all stakeholders, reducing overheads, and achieving a consistent
variability design and implementation. The consolidation process is aligned with the main
consolidation phases introduced in Section 3.1: Di�erence Analysis, Variability Design, and
Consolidation Refactoring. These phases are re�ned into individual activities and assigned to
roles responsible for them. The activities allow for a reproducible and guided consolidation.
The SPLevo consolidation process has been designed to be applicable in practice and even by
companies without experience in consolidating customized product copies. As con�rmed by
our online survey, companies are aware of the advantages and disadvantages of customized
product copies, but rarely experienced in consolidating them (Section 8.5.3.1).

Consolidation process overview
Figure 4.1 shows an activity diagram of the detailed activities re�ning the three main
consolidation phases. Furthermore, the diagram allocates the activities to the responsible
stakeholder roles. The header of the diagram shows the responsible roles, and the columns
identify the activities they are responsible for (i.e., activity swim lanes). The �rst two
activities SPL Pro�le De�nition (Section 4.2.1) and Process Con�guration (Section 4.2.2) are
preparations performed by di�erent stakeholders in a pre-processing phase. The third
activity Di�erence Analysis (Section 4.2.3) implements the corresponding �rst main phase
of the consolidation and identi�es di�erences between the copies and derives the initial
variability design. The Variability Design phase splits into the activities: Relationship

Analysis (Section 4.2.4), Variation Point Structure Design (Section 4.2.5), and Variation Point

Characteristic De�nition (Section 4.2.6) as well as the Design Review activity (Section 4.2.7).
These activities produce the variability design for the future Software Product Line (SPL).
The Consolidation Refactoring phase manifests itself in the Variability Realization Decision

(Section 4.2.8) and the Consolidation Refactoring (Section 4.2.9) activities for the actual
transformation of the copies’ implementations. Finally, the last activity SPL Export is an
optional transfer of the resulting SPL to tools for continuous SPL management (Section 4.2.10).
The following subsections describe roles representing stakeholders that are directly or
indirectly involved in the process. In addition, the subsections discuss the individual process
activities in context of the responsible roles.
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Software Architect SPL Consolidation Developer SPL Manager

Accepted?

Variability Realization

Decision

SPL Profile

Definition

Process

Configuration

Difference

Analysis

Relationship
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Variation Point

Structure Design

Variation Point

Characteristic Definition
Design Review

Consolidation

Refactoring

SPL Export

Recommend

Refinements

NOYES

Iterative

Improvement

Preparation

Difference

Analysis

Variability

Design

Consolidation

Refactoring

Post-

Processing

Figure 4.1: Activities of the SPLevo consolidation process

4.1 Stakeholders

The SPLevo approach de�nes six stakeholders participating in the consolidation, as summa-
rized in Table 4.1.

The stakeholders are classi�ed according to their process involvement, which identi�es
the necessity to support their activities for an improved consolidation. The classi�cation
de�nes three stakeholder groups:

• Primary Stakeholders are actively involved in the process and either provide infor-
mation, make decisions, or trigger activities.

• Supporting Stakeholders enable or support the consolidation process and somehow
help the primary stakeholders.
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• A�ected Stakeholders are in�uenced by the result of the consolidation and the
decisions made by primary stakeholders.

This classi�cation does not cover stakeholders without a relationship to the process in
terms of content. For example, stakeholders funding a consolidation or end users of the
products are not covered because we assume valid product copies, which are already decided
to get consolidated, as input, and roles responsible for the future SPL and products derived
from it, which also represent the end user needs.

Stakeholder Responsibility Involvement

Software Architect De�ne SPL guidelines Primary
SPL Consolidation Developer Perform consolidation Primary
SPL Manager Long-term SPL management Primary
SPL Consolidation Consultant Adapt consolidation support Supporting
Product Manager Product variant management A�ected
Software Developer Long-term SPL & variant development A�ected

Table 4.1: SPLevo consolidation process: Considered stakeholders

Stakeholder: So�ware Architect
Involvement: Primary
Responsibility: De�ne SPL guidelines
Software Architects are responsible for de�ning the overarching goal and style of the future
SPL. They have to specify intended technical solutions and provide guidance for design
and realization decisions. Thus, they are responsible for de�ning the SPL Pro�le that is
considered within a concrete consolidation.

Stakeholder: SPL Consolidation Developer
Involvement: Primary
Responsibility: Perform consolidation
SPL Consolidation Developers perform the actual consolidation process. They trigger process
activities, involve other stakeholders, review analysis results, and drive variability design
decisions as well as the refactoring. Thus, they are the stakeholders with the highest e�ort,
and their activities are primarily targeted by the SPLevo consolidation support. During the
process, they interact with Software Architects to set up the process and with SPL Managers
to verify design decisions.

Stakeholder: SPL Manager
Involvement: Primary
Responsibility: Long-term SPL management
SPL Managers are responsible for the target SPL from a product management perspective,
in the long-term. Thus, they have to account for the implemented variability from a feature
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point of view in the SPL problem space (Section 2.2.1.2). During the consolidation, they
review the variation point design and argue for adaptations if necessary.

Stakeholder: SPL Consolidation Consultant
Involvement: Supporting
Responsibility: Adapt consolidation support
SPL Consolidation Consultants implement extensions for the SPLevo approach. They are
familiar with the SPLevo approach’s extension and adaptation points to adapt the process
to company or project speci�c conditions. For example, they are able to extend the analysis
to process a company’s speci�c code documentation or enable support of new technologies
(Section 3.4.2). Furthermore, they are able to add support for new general or company-
speci�c variability mechanisms.

Stakeholder: Product Manager
Involvement: A�ected
Responsibility: Product variant management
Product Managers are responsible for a speci�c product instantiated from the future SPL
that was possibly represented as a product copy before. They are a�ected by the resulting
SPL, and their e�ciency is strongly in�uenced by the provided �exibility and characteristics.
They are not involved in the consolidation, but SPL Managers have to take care of Product
Managers’ requirements as part of their activities.

Stakeholder: So�ware Developer
Involvement: A�ected
Responsibility: Long-term SPL and variant development
Software Developers are responsible for the long-term SPL maintenance and evolution. This
covers the SPL core, the included features, as well as product-speci�c extensions. Their work
is in�uenced by the �exibility of the variability design as well as the implemented variability
mechanisms. Thus, SPL Managers and SPL Consolidation Developers must consider Software
Developers’ requirements concerning the target SPL.
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4.2 Process Activities

As shown in Figure 4.1, the SPLevo consolidation process is structured into ten activities.
The activities have been de�ned according to their goals, actions, responsible stakeholders, as
well as their inputs and outputs. The following subsections describe each activity, including
a table summarizing the respective main attributes.

Accepted?

Variability Realization

Decision

SPL Profile

Definition

Process

Configuration

Difference

Analysis
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Analysis

Variation Point

Structure Design

Variation Point

Characteristic Definition

Design Review

Consolidation

Refactoring
SPL Export NOYES

VPM

SPL

Profile

Confi-

guration VPM

Recommen-

dations

VPM

VPMSPL

VPM

SPL Management

Tool Input

Figure 4.2: Consolidation process activities with artifacts produced or modi�ed

Figure 4.2 provides an overview on the activities and the artifacts they either produce
or update. The �rst two activities de�ne the SPL Pro�le and the con�guration for the
overall consolidation process. The Di�erence Analysis produces the initial Variation Point
Model (VPM). Afterwards, the Relationship Analysis produces recommendations for de-
sign improvements. Next, the Variation Point Structure Design produces a VPM with an
accepted Variation Point (VP) structure, which is further enhanced by the Variation Point
Characteristic De�nition, deciding about the individual variability characteristics of the VPs.
If the design represented in the VPM is accepted in the Design Review, the Variability Real-
ization Decision further enhances the VPM by assigning variability mechanisms to the VPs
matching their variability characteristics and software elements. Finally, the Consolidation
Refactoring produces the resulting SPL and a VPM describing the VPs of this SPL.
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4.2.1 SPL Profile Definition

ACTIVITY SPL Pro�le De�nition

GOAL De�ning guidelines for variability design and realization of future SPLs
ROLE Software Architect
INPUT /
OUTPUT SPL Pro�le
ACTIONS Con�gure or select SPL Pro�le
SPLevo

Support

Automated SPL Pro�le recommendations and validation (Section 3.3)

During the SPL Pro�le De�nition activity at the beginning of the process, the Software
Architect de�nes the guidelines how to implement the SPL. Such guidelines might be reused
between several consolidations within the same company or project. This initial preparing
activity does not need any input. The output will be the con�gured SPL Pro�le to be
used in the downstream consolidation according to the SPL Pro�le data model described
in Section 3.3. The activity is supported in the SPLevo approach with an automation to
recommend and validate settings of the SPL Pro�le as described in Section 3.3.

4.2.2 Process Configuration

ACTIVITY Process Con�guration

GOAL Consolidation-speci�c process con�guration
ROLE SPL Consolidation Developer
INPUT /
OUTPUT Process Con�guration
ACTIONS De�ne copies to consolidate and capture export knowledge
SPLevo

Support

Con�guration wizard as part of the prototype (Section 8.3)

In the Process Con�guration activity, SPL Consolidation Developers provide con�gurations
for the concrete copies to consolidate. On one side, the source projects to analyze are
con�gured. On the other side, available expert knowledge about the copies, such as renaming
conventions applied during customization, are captured in the con�guration. The latter
covers information to improve the downstream consolidation, such as restricting the copies’
parts to consider or providing company-speci�c practices for copy-based customizations.
Which expert knowledge can be considered, is described in detail in the appropriate sections
(i.e., Sections 5, 6, and 7). Similar to the �rst preparing activity, the Process Con�guration
does not expect any input and provides the con�guration itself as output. To improve the
con�guration activity, the prototype implementation of the SPLevo approach provides a
wizard to guide SPL Consolidation Developers as described in Section 8.3.
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4.2.3 Di�erence Analysis

ACTIVITY Di�erence Analysis

GOAL Detecting di�erences between product copies
ROLE SPL Consolidation Developer
INPUT Copy implementations, process con�guration, and SPL Pro�le
OUTPUT Fine-grained VPM initialized from di�erences
ACTIONS Trigger automatic process
SPLevo

Support

SPLevo Di�erence Analysis (Section 5)

In the Di�erence Analysis activity, SPL Consolidation Developers identify the di�erences
between the copies to consolidate. The result of the activity is a �ne-grained VPM with each
VP identifying a separate di�erence between the copies. To enable the VPM initialization,
di�erences must identify changed software elements. As part of the Di�erence Analysis
activity, the expert knowledge captured during the Process Con�guration activity is used to
improve the di�erence analysis. For example, naming conventions are used to better match
software elements or reduce the amount of di�erences to be processed later on. Furthermore,
each VP is initialized with the variability characteristics required by the SPL Type selected in
the SPL Pro�le. The SPLevo approach provides a consolidation-speci�c di�erence analysis
to fully automate this activity as described in Section 5.

4.2.4 Relationship Analysis

ACTIVITY Relationship Analysis

GOAL Identify VP relationships and reasonable aggregations
ROLE SPL Consolidation Developer
INPUT SPL Pro�le and process con�guration
OUTPUT Re�nement recommendations
ACTIONS Choose and start the analysis
SPLevo

Support

SPLevo Variability Analysis (Section 6)

During the Relationship Analysis activity, the SPL Consolidation Developers analyze the VPs
in the current VPM to enable educated decisions on re�ning the VPs’ structure as part of the
variability design. The activity’s output is a list of sets of related VPs representing candidates
for being aggregated. While today developers analyze those relationships manually in an
ad hoc manner and with a limited scope, one of the main contributions of the SPLevo
approach is to automate them and allow to consider further relationship types across
complete implementations. SPL Consolidation Developers start such an automated analysis
to receive the aggregation candidates. Details about the analysis are documented in Section 6.
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4.2.5 Variation Point Structure Design

ACTIVITY Variation Point Structure Design

GOAL Shape variability coverage and localization
ROLE SPL Consolidation Developer
INPUT VPM and VPM re�nement recommendations
OUTPUT Re�ned VPM
ACTIONS Review recommendations and apply appropriate ones
SPLevo

Support

UI facilities in the prototype (Section 8.3)

In the Variation Point Structure Design activity, the SPL Consolidation Developers re�ne
the VPM until all VPs contributing to the same feature from a technical perspective are
connected to each other. To do this, they re�ne the current VPM by reviewing the candidates
provided by the relationship analysis or manually editing the VPM. If they are satis�ed with
the VPM structure, they can continue with the Variation Point Characteristic De�nition.
Otherwise, they can choose to perform another relationship analysis to receive further
recommendations. To support the SPL Consolidation Developers in this activity, the User
Interface (UI) provided with the SPLevo prototype allows for according tasks (Section 8.3).

4.2.6 Variation Point Characteristic Definition

ACTIVITY Variation Point Characteristic De�nition

GOAL De�ne intended variability properties
ROLE SPL Consolidation Developer
INPUT VPM with approved VP characteristics
OUTPUT VPM representing a technically satisfying design
ACTIONS Change default characteristics where appropriate
SPLevo

Support

VP initializing & UI facilities in the prototype (Section 8.3)

At this point of the process, a variation point structure has been designed, representing an
appropriate degree of variability for the future SPL by grouped and merged VPs. During
the Di�erence Analysis, each VP was initialized with the default variability characteristics
derived from the SPL Pro�le. In the Variation Point Characteristic De�nition activity, the SPL
Consolidation Developers adapt them according to their technical requirements (e.g., when to
choose a variant of a variation point). VPs located in and realized by the same type of software
elements can be realized with di�erent variability characteristics (e.g., being extensible for
product-speci�c variants). This is a matter of individual variation point design and cannot
be automated. The result of the activity is a VPM representing a variability design which
is satisfying from the technical perspective of the SPL Consolidation Developers. While
this activity is about manual decisions only, the user interface of the SPLevo approach’s
prototype provides utilities for accessing and con�guring the VPs (Section 8.3).
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4.2.7 Design Review

ACTIVITY Design Review

GOAL Considering product management perspective in the SPL design
ROLE SPL Manager
INPUT VPM representing a technically satisfying design
OUTPUT Required VPM adaptations
ACTIONS Identify VPs to be restructured or recon�gured
SPLevo

Support

UI facilities in the prototype (Section 8.3)

During the Design Review activity, SPL Managers prove the variability design represented
in the current VPM for possible improvements from a product management perspective.
For example, the �exibility to derive products from the future SPL might be adapted to
individual product strategies by requiring another binding time for variation points. The
output of the activity are required adaptations of the VPM. If the VPM is accepted as it is, the
process can continue with the Consolidation Refactoring phase. If possible improvements,
such as further aggregating variation points, were found, the required adaptations are
communicated to the SPL Consolidation Developers. In this case, the process goes back to
the Variation Point Structure Design activity, as SPL Consolidation Developers must decide
if restructurings are necessary or de�ning other characteristics is su�cient. The review
activity is performed manually and guided by utilities in the UI of the SPLevo prototype
implementation (Section 8.3).

4.2.8 Variability Realization Decision

ACTIVITY Variability Realization Decision

GOAL Decide how to implement VPs
ROLE SPL Consolidation Developer
INPUT VPM with approved VP design and SPL Pro�le
OUTPUT VPM with assigned variability mechanisms
ACTIONS Choose variability mechanism per VP
SPLevo

Support

Variability mechanism recommender engine (Section 7.2.1)

In the Variability Realization Decision activity, SPL Consolidation Developers must decide
how to re�ect each VP’s implementation in the future SPL (e.g., by conditional statements or
dynamically loaded components). This is done by assigning a variability mechanism to each
of them. Based on the SPL Pro�le and the contained prioritized set of variability mechanisms,
SPL Consolidation Developers can choose the highest ranked mechanism providing the
characteristics de�ned for a speci�c VP. Due to the implementation guidelines, no additional
interaction with other stakeholders for each of the VPs is necessary, except for the need to
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add new variability mechanisms to support not yet covered combinations of characteristics.
The output of the activity is a VPM with a variability mechanism for each VP and forming
a valid input for the downstream refactoring. The SPLevo approach provides a variability
mechanism recommender engine to support this task as described in Section 7.2.1.

4.2.9 Consolidation Refactoring

ACTIVITY Consolidation Refactoring

GOAL Change implementation to a single code base SPL
ROLE SPL Consolidation Developer
INPUT VPM with assigned variability mechanisms
OUTPUT Consolidated code and/or manual task list and according VPM
ACTIONS Apply refactorings to implement variability mechanisms and merge code

basis
SPLevo

Support

Refactoring speci�cation and extensible infrastructure for automation
(Section 7.3)

During the Consolidation Refactoring activity, each VP is refactored according to its assigned
variability mechanism. The implementations of each VP’s variants and the code for the
assigned variability mechanism are combined and implemented in the product copy chosen
as the leading one. How the refactoring is performed depends on the variability-mechanism-
speci�c refactoring’s degree of automation as described in Section 7.3. Depending on the
degree of automation, the result of the activity is either a ready to use single code base
SPL, a list of refactoring tasks, or a mix of both. In addition, an evolved VPM with updated
VPs referencing the changed code base is produced. Beside a refactoring speci�cation
concept, the SPLevo approach de�nes an extensible infrastructure to automate refactorings
as described in Section 7.3.

4.2.10 SPL Export

ACTIVITY SPL Export

GOAL Provide input for tools to manage the future SPL
ROLE SPL Consolidation Developer
INPUT VPM linked with refactored code base
OUTPUT Input for SPL management tool
ACTIONS Trigger export to send information to SPL management tool
SPLevo

Support

Export interface and implementation for standardized feature model

For a continuous management of the created SPL, SPL Consolidation Developers export the
results to an SPL management tool in the SPL Export activity. Such an export includes the
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implementation of the SPL as well as a model of the variability referencing the according
variation points. The SPLevo approach de�nes an interface for implementing automated
exports based on the VPM representing the single code base SPL as described in Section 7.4.
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5 Di�erence Analysis

This chapter describes the SPLevo di�erence analysis developed for the context of consoli-
dating customized product copies. As shown in Figure 5.1, the Di�erence Analysis is the �rst
activity performed when the SPLevo consolidation process con�guration is done. Its purpose
is to provide the necessary input for the downstream variability design. The goal of the
analysis is to allow for fully automatically detecting di�erences and deriving an initial Vari-
ation Point Model (VPM) without any user interaction. In addition, consolidation-speci�cs
should be considered to improve the analysis results.

SPL Profile

DefinitionSoftware Architect SPL Consolidation Developer SPL Manager

Process

Configuration

Difference

Analysis

Relationship

Analysis

Variation Point

Structure Design

Preparation

Difference

Analysis

Variability

Design

Figure 5.1: SPLevo process: Di�erence Analysis

The chapter is structured as follows: The consolidation-speci�c requirements are described
in Section 5.1 and the model-based approach in Section 5.2. The di�erence analysis algorithm
is detailed in Section 5.3 and the initialization of a VPM is described in Section 5.4, followed
by a concept for analyzing more than two copies in Section 5.5.

Variation Point Model as analysis result
The result of the SPLevo Di�erence Analysis is a VPM initialized from the di�erences
detected. It describes varying code locations between the copies as Variation Points (VPs).
Each VP references a code location containing one of the di�erences, and at each VP, the
code alternatives of the di�erence are referenced by variant elements. This allows for
providing the developer with a single, uniform view for understanding the di�erences
between the copies and designing the intended variability. Section 5.4 describes the details
of this initialization.
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Reliable di�erence analysis results
To enable the initialization of a VPM, it is important to identify the software elements
(e.g., classes, methods, or statements) that have been modi�ed and must be re�ected as
variability in the future Software Product Line (SPL). This requires to not miss any di�erences
to consider (e.g., due to heuristics for interpreting coupled change operations). Furthermore,
the SPLevo approach aims to support independently developed copies and, thus, there has
been no restriction for possible modi�cation. Accordingly, many di�erences between the
copies do not need to be re�ected as variability (e.g., modi�ed comments) and should be
concealed from SPL Consolidation Developers.

Di�erence algorithm for consolidation conditions
As part of the SPLevo approach, a model-based di�erence detection algorithm for consolida-
tion scenarios was developed to cope with limitations of existing approaches. For example,
it allows for considering conventions on copy-based customization, such as introducing
reuse dependencies between copies and their origin, to reduce the amount of copied code
(i.e., Derived Copies). Furthermore, it supports aligning the granularity of di�erences with
the variability mechanisms planned to be implemented as speci�ed in the SPL Pro�le, ignor-
ing di�erences outside a de�ned consolidation scope, associating di�erences to software
elements, and analyzing complete source directories without any preconditions, such as
code repositories providing change history information for the copies. In total, we have
identi�ed eight requirements on a di�erence analysis speci�c for consolidation processes
such as the SPLevo approach. They are documented in Section 5.1.

5.1 Specific Requirements of Copy Consolidation Scenarios

The following eight requirements have been derived from the overarching consolidation
processes and industrial consolidation scenarios in the KoPL research project [107]. We do
not claim for completeness, but elaborate on the value of each requirement to support SPL
Consolidation Developers.

R1: Support Independent and Derived Copies
Copy-based customization in object-oriented systems occurs in two manners: Independent
and Derived Copies. Independent Copies are created by a pure “copy” action as illustrated
for MyClass and MyClassCustom in Figure 5.2. Both classes have no dependency on each
other and the copy can be modi�ed fully independently at the cost of losing the original
relation between them. Derived Copies are created by a copy action and by introducing
an inheritance relationship between the copy and the original class. In Figure 5.2, this is
shown for BaseClass and BaseClassCustom. Here, method1() was copied to the sub class
and modi�ed to override the super class’s behavior. In such a case, the di�erence analysis
must not report method2() as deleted in class BaseClassCustom, as it is still accessible. In a
similar way, �elds and imports must not be reported as deleted if they are still accessible,
respectively not being required by the deriving class. Derived Copies are often used when
some but not all methods of a class must be customized, but the class neither provides
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su�cient extension capabilities (e.g., hook methods to override) nor the code design allows
for a reuse-by-delegation approach. Derived Copies are not limited to classes. They can
occur for any type of container with some kind of “use” relationship to other containers of a
compatible type. For example, a component is copied and a “requires”-dependency is created
from the copied to the existing one. The copied component is able to access everything
published by the original one. Hence, the copied component must not duplicate published
parts that need no modi�cation.

+method1()

+method2()

MyClass

+doSth()

MyClass

+doSth()

MyClassCustom

+method1()

+newMethod()

MyClassCustom

copy & 

inherit

copy

Independent Copy

Derived Copy

Figure 5.2: Copy-based customization procedures in object-oriented technologies

De�nition 8: Independent Copy

An Independent Copy is a copied software element without any relationship to its origin and,

thus, any kind of modi�cation might have been performed on it.

De�nition 9: Derived Copy

A Derived Copy is a copied software element for which the following rules apply:

1. It is of a type supporting inheritance relationships to other elements of the same type.

2. An inheritance relationship was introduced to the copy, referencing the original element.

3. The original software element is still present in or accessible by the copy and, thus, a

renaming or namespace change was applied to the copy.

R2: Consider Copy Renaming Conventions
Many developers use a common renaming during copy-based customization, either intu-
itively or according to their coding guidelines. Typical renaming is done by pre�xing or
su�xing of named code elements (e.g., classes) with a customer or customization identi-
fying term (e.g., the term “Custom” in Figure 5.2). In languages supporting namespaces,
those namespaces may also be enhanced with customization fragments. For example, a
Java package org.company.product may be renamed to org.company.customer.product. If
a convention for such a structured renaming is available, this can be considered by the
di�erence analysis to improve the matching between original and copied artifacts. How-
ever, this is not about an algorithmic detection of renaming because the overall goal of a
fully automated di�erence analysis must not be missed due to invalid or unclear renaming
detections.
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R3: Support Intended Variability Mechanisms
A broad range of mechanisms exists to implement variability on di�erent levels of software
element granularity (e.g., statements, classes, components) in SPLs [168, 7, 146]. According
to the individual requirements for the targeted SPL, a reasonable set of mechanisms should
be de�ned to prevent divergent implementations of the same type of variability. This set also
speci�es the “minimum granularity level” variability should be implemented at, which also
determines the minimum granularity level di�erences must be identi�ed for. For example,
allowing preprocessor annotations, variability can be implemented even within expressions,
but using conditional program execution, the minimum granularity to implement variability
are statements. The di�erence analysis needs to take the minimum granularity level of the
intended variability mechanisms into account. Otherwise, many �ne-grained di�erences are
reported where fewer coarse grain ones are su�cient.

R4: Allow for Configuration of Analysis Scope
A consolidation of customized copies typically does not a�ect all components of a software
system. For example, only some of the customizations are intended to become part of the SPL.
All other parts and also third party code can be excluded from the di�erence analysis. Hence,
the required processing and the information presented to SPL Consolidation Developers
can be reduced. If a scope is de�ned (e.g., Java packages to exclude), this should be used to
optimize the di�erence analysis. If it is not, the analysis must still return a valid result.

R5: Analyze Independent Source Directories
Customized copies are often developed by di�erent developers and cannot be assumed to
be maintained in a common code base, repository, or with a coupled change history. Thus,
the di�erence analysis must be able to handle complete and independent source directories
without any existing mapping between the contained compilation units.

R6: Favor False Positives over False Negatives
Due to the possibly large amount of di�erences, developers should not be confronted with
more information than necessary. However, it is important to not miss any di�erences
in order to provide them with reliable input for the downstream consolidation process.
Otherwise, this could lead to wrong variability design decisions, which is inferior to con-
fronting developers with irrelevant di�erences they have to ignore. Thus, in the context of a
consolidation, false positive di�erences must be favored over false negative ones.

R7: Provide Binary Decision
Similar to providing all relevant di�erences, software elements should be clearly classi�ed
as changed or not. All software elements not identi�ed as similar must be reviewed by
developers anyway. That means, even if a software element would be classi�ed as “maybe
changed”, developers have to investigate this element. Thus, the di�erentiation between
“changed” and “potentially changed” does not help but leads to additional confusion and
therefore is omitted.
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Figure 5.3: Di�erence analysis concept

R8: Support Heterogeneous So�ware Artifacts
Modi�cations between customized code copies can be performed on all types of artifacts in
addition to their source code. For example, component descriptors or con�guration �les can
be adapted. To allow for a comprehensive di�erence analysis, extensibility for additional
artifacts is necessary.

5.2 Model-Based Di�erence Analysis Approach

The SPLevo di�erence analysis follows a model-based approach as an overarching strategy
to analyze the di�erences between the product copies under study. As shown in Figure 5.3,
�rst, model representations of the code copies are extracted. Next, matching elements are
identi�ed to derive a match model. Following, the Di�ng derives a Di� Model from the
identi�ed di�erences in the matches. Afterwards, a Post-Processing optimizes the Di� Model
before a VPM is initialized. To enable the last step, references to the original software model
elements are continuously tracked throughout the di�erence analysis. When the VPM is
initialized, all other models can be cleaned up.
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Reasoning for the model-based approach
Such an approach respects software structures (e.g., methods, blocks, classes) by design,
and the analysis bene�ts from syntactical information gained during extraction (e.g., by
comparing only elements of the same type), as described in Section 2.4.7. Extracting models
�rst requires an initial overhead compared to textual comparisons. However, textual com-
parison requires additional e�ort for interpretation of the �ndings afterwards and the initial
extraction e�ort is acceptable as the models are required in the downstream consolidation
process anyway. In addition, reference resolving requires the most e�ort but can be cached
to considerably improve the overall consolidation process. During the consolidation process,
the customized copies are not changed. Thus, the cache must not be invalidated.

Infrastructure for model extraction
Today, extracting software models is well supported by many di�erent approaches, as
described in Section 2.4.6. For the SPLevo di�erence analysis, software models must align
with the software model structure speci�ed by De�nition 7 in Section 3.4.1. Furthermore,
the SPLevo approach uses Ecore respectively EMOF based models. The Ecore modeling
infrastructure is not a limitation of the di�erence analysis but supports the integration in the
overall SPLevo consolidation process. The Ecore infrastructure is well supported by existing
model extraction facilities (Section 2.4.6). The model-based approach in general, and the
hierarchical structure of software models (Section 3.4) in speci�c, allow for specifying an
abstract di�erence algorithm and enabling technology-speci�c adaptations to improve the
analysis.

5.3 Di�erence Algorithm

The SPLevo model comparison itself is structured in two main phases – Matching and
Di�ng – and a post-processing phase as a third. They build a di�erence model which itself
is used for initializing the VPM afterwards (see di�erence analysis steps in Figure 5.3). The
separation of matching and di�ng is a typical approach in model-based di�erence analysis
as proposed by Xing and Stroulia [195]. The post-processing is done to improve and clean-up
results as proposed by Kehrer et al. [95].

Metamodel
All models involved in this process are based on the Ecore infrastructure according to the
EMOF speci�cation as used for the software models as well. This allows for continuously
linking the elements of the original software models and creating the SoftwareElement
references when initializing a VPM. Figure 5.4 shows a class diagram of the SPLevo di�erence
metamodel that relates varying software elements of two or more copies (i.e., the metamodel
of the Di� Model in Figure 5.3). The metamodel supports the matching model and the
di�erence model, as the latter is not a completely new model but adds information to the
former.

Match elements are organized in a tree structure according to their containment references
to child Match elements (i.e., submatches). Furthermore, they provide references to the
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Figure 5.4: SPLevo di�erence metamodel

matched SoftwareElements identi�ed as leading (i.e., from the Leading Copy’s software
model) and integration (i.e., origin from the Integration Copy’s software model). Either
leading, integration, or both references must be set as speci�ed by the OCL constraint in
Listing 2.
1 context Match

2 inv SufficientReferences: leading <> null or integration <> null;

Listing 2: Match element reference constraint

A DifferenceModel references the root elements of the Match element trees (i.e., ref-
erence rootMatches). Those root elements represent the top most elements of matched
Resources in the software models under study. Difference elements identify the changed
SoftwareElement and are contained by Match elements to identify their location (i.e., the
Match element’s references). A Difference’s type attribute identi�es how a Difference was
created during the copy-based customization (i.e., in which copy a SoftwareElement exists).
The possible DifferenceTypes are:

• ADD identifying a SoftwareElement was added during customization and thus exists
in the Integration Copy only.

• DELETE identifying a SoftwareElement was deleted during customization and thus
exists in the Leading Copy only.

• CHANGE identifying a SoftwareElement was modi�ed during customization and exists
in both copies.

According to the SPLevo SoftwareModel concept described in Section 3.4, the Software-
Elements referenced by the Di�erences can result from technology-speci�c software models.
Furthermore, sub-classes of the Di�erence metamodel class can be used for typed references
to technology-speci�c changed elements (e.g., a Java StatementDi�erence referencing a
changed statement).

The metamodel is similar to the one proposed by EMF Compare [25], as Difference

elements are contained by hierarchically organized Match elements. However, the SPLevo
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Difference elements provide a reference to the changed software element, and Match

elements do not reference arbitrary objects but SoftwareElements of the Leading or In-
tegration Copy. This allows for type safety on the one side and adaptability for handling
multi-programming language di�erences on the other side (e.g., support systems with a mix
of Java and component frameworks). This allows for type safety on the one side and adapt-
ability for handling multi-programming language di�erences on the other side (e.g., support
systems with a mix of Java and component frameworks).

Matching
During the matching phase, the software models of the copies are scanned for model
elements representing the same software elements (e.g., a class existing in both copies).
Match elements can be of two types according to their number of references: i) Regular
Match (De�nition 10) and ii) Single Side Match (De�nition 11). The terminology is used to
simplify the di�erence algorithm description and aligned with terminology proposed by [25].
The type itself is a derived attribute resulting from the number of referenced software
elements.

De�nition 10: Regular Match

A Regular Match represents SoftwareElements which exist in the software models of the Leading

and the Integration Copies under study. The leading as well as the integration reference of the

according Match element are set.

1 context Match

2 inv RegularMatch: leading <> null and integration <> null;

Listing 3: Match constraint: Regular Match

De�nition 11: Single Side Match

A Single Side Match represents an element which exist in either the Leading or the Integration

Copies’ software models but not in both. Either the leading or the integration reference of the

according Match element are set, but not both at the same time.

1 context Match

2 inv SingleSideMatch: leading <> null xor integration <> null;

Listing 4: Match constraint: Single Side Match

If software elements could be matched with each other in the matching phase, a Regular

Match is created. The Regular Match element references the matched software elements
in the software models they originate from. If an element from either the Leading or the
Integration Copy could not be matched with an element of the other copy, a Single Side

Match is created, referencing this individual element only.

Di�ing and Post-Processing
In the di�ng phase, software elements added, deleted, and changed are derived from the
matches, and according di�erence elements are created in the di� model. Finally, during
the post-processing, the size of the di� model is reduced by removing dispensable match
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Figure 5.5: Di�erence analysis algorithm components

elements and by removing false positive di�erences. The latter must be done, as it requires
all di�erences to be at hand to perform a pattern detection on this di�erences.

Algorithm structure
Figure 5.5 provides an overview of the algorithm’s main components assigned to the phases
of the di�erence analysis they are executed in.

The SoftwareModelMatching, BestMatchResource, ScopeFilter, ElementTypeFilter, as well as
SubMatchTraversing and SimilarityCheck are part of the matching phase (Section 5.3.1). The
Di�erence Derivation creates the actual Di�erence elements in the di�ng phase (Section 5.3.2).
The Derived Copy Cleanup and the Model Condensation are performed as part of the post-
processing phase (Section 5.3.3).

The SPLevo Di�erence Analysis uses the Leading Copy (De�nition 3) selected in the
con�guration of the consolidation process for structuring its traversing, as a reference for
similarity checks on software elements, and for normalizations.

The following subsections describe the components and concepts of the SPLevo model-
based di�erence analysis in detail. Subsequently, Section 5.3.4 maps the di�erence analysis
design decisions to the consolidation-speci�c requirements identi�ed in Section 5.1.

5.3.1 Matching

The matching identi�es elements of the software models representing the same software
element in the copies’ implementation – for example, a class declaration existing in all copies
without any modi�cations. The result of the matching algorithm is a tree of match elements
re�ecting the sum of the input copies’ software model trees.
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During the matching phase, a depth-�rst traversing of the copies’ software models is per-
formed, following the structure of the Leading Copy’s containment relationships. According
to SPLevo’s de�nition of a SoftwareModel (De�nition 7), the containment relationships are
de�nite, terminated by SoftwareElements without further childElements, and free of cycles.
Thus, the traversing according to these references will always terminate, as the number
of elements in software models is �nite. The match traversing algorithm is separated in
two parts: First, the copies’ SoftwareModels, respectively their contained Resources, are
matched with each other (Algorithm 1). Following, for each matched leading and integration
resource, their contained SoftwareElements are recursively matched with each other (Algo-
rithm 2). The algorithm components for the matching are either involved in the traversing
(i.e., SoftwareModelMatching, BestMatchResource, ScopeFilter, and ElementTypeFilter) or
the SoftwareElement comparison (i.e., SimilarityCheck) and thus described in the following
subsections.

5.3.1.1 Traversing

As shown in Algorithm 1, the matching takes the copies’ SoftwareModels as input and
returns a set of the root match elements to be stored in the Di�erenceModel. Matches are
structured in a hierarchy according to the hierarchies of the input models. Each match can
reference matching elements of the two input models (i.e., a Regular Match), or only one if
no match exists (i.e., a Single Side Match).

Filter
At the beginning of the algorithm, ScopeFilter and ElementTypeFilter are applied on the
SoftwareModels to �lter elements that can be ignored by the rest of the di�erence analysis.

The ScopeFilter scans the model trees for Resources and SoftwareElements in scopes
(e.g., namespaces) explicitly excluded in the process con�guration. What a scope is, de-
pends on the technology a software model relates to. For example, in Java, a scope can
be de�ned by packages. In PHP or C++, namespaces can de�ne a scope. According to the
technology-speci�c nature of a scope, a ScopeFilter is technology-speci�c as well, and thus
the speci�cation of scopes to include as part of the process con�guration also depends on
the ScopeFilter used.

The ElementTypeFilter scans the model trees for Resources and SoftwareElements of types
not relevant for the copies’ behavior. For example, comments or layout information might
be modi�ed but not relevant for the copies behavior. The concrete set of element types that
can be ignored is technology-speci�c, as, for example, layout information can be relevant
in some languages such as PHP. Thus, the ElementTypeFilter provides another point of
technology-speci�c adaptation.

Resource matching
When the �ltering is done, the Resources of the resulting SoftwareModels are matched with
each other. First, the resources of the Integration Copy’s SoftwareModel are stored as a list
of matching candidates.
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Algorithm 1: Software Model Matching
input : SoftwareModel: sml // of Leading Copy l

SoftwareModel: smi // of Integration Copy i
output : Set<Match>: rootMatches ← ∅

ScopeFilter (sml ) // Filter resources and elements out of scope

ScopeFilter (smi )
ElementTypeFilter(sml) // Filter behavior irrelevant elements

ElementTypeFilter(smi)

Set<Resource>: matchinдCandidates ← smi .resources
foreach Resource: rl ∈ sml .resources do

Resource: ri ← BestMatchResource(rl ,sml .resources,matchinдCandidates )
if ri != null then

SoftwareElement: sel ← rl .root
SoftwareElement: sei ← ri .root
Match: m ← Match(sel ,sei ) // Regular Match

m.submatches ← SubMatchTraversing(sel ,sei ) // Recursion

rootMatches ← rootMatches ∪m
matchinдCandidates ←matchinдCandidates \ ri

else

rootMatches ← rootMatches ∪Match(sel ,null ) // Single Side Match

end

end

foreach ri ∈matchinдCandidates do // remaining candidates

rootMatches ← rootMatches ∪Match(null ,ri .root ) // Single Side Match

end

Now, for each resource of the Leading Copy, the best matching candidate is identi�ed by
the BestMatchResource algorithm component. This identi�es the best matching resource
for the leading resource to match. A resource is identi�ed by its Uniform Resource Identi�er
(URI), which is an identi�er string consisting of several segments (i.e., strings between “/”
characters). For example, a URI identifying a �le of a Leading Copy in the �le system might
look like file:/C:/project1/com/example/File.xyz. In contrast, �les of an Integration
Copy might be placed in di�erent folders or �le systems. Thus, the URIs of these �les might
start with file:/C:/project-copy/... or even file:/D:/copy/... To identify the best
matching resource, it is not possible to simply match the full URI, as the algorithm does not
know the base path of the resources. Furthermore, a copy can consist of several projects. To
cope with this, segments of the URIs of the resources are compared. This is done from back
to forth, as the front segments di�er anyway because of di�erent source directories used.

Now, the BestMatchResource algorithm identi�es the resource of the matching candidates
with the highest number of matching segments at the end of their URIs. As a cross check, the
identi�ed best matching resource from the Integration Copy is compared with all other not
yet matched Leading Copy resources. Again, this is done by comparing their URI segments
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from back to front. If there is a pair of leading and integration resources with a higher
number of similar segments at the end of their URIs, this is an even better match than the
one identi�ed before. Thus, the integration resource with the next lower number of matched
segments will be used and the cross check will be done again. The BestMatchResource
algorithm considers renaming patterns speci�ed in the process con�guration. If a renaming
pattern in�uences the resources’ URIs (e.g., renamed Java packages re�ected in classes’ �le
system paths), it will be used here to normalize the URIs before matching their segments.

If a best matching resource was detected, a new Match element is created for their root
elements (i.e., Match(sel,sei). Next, those root elements are used to recursively detect their
matching child elements (i.e., by calling SubMatchTraversing recursively) and the resulting
set of submatches is assigned to the newly created match element (i.e., Match: m). Afterwards,
m is added to the list of detected rootMatches and the matched integration resource is
removed from the candidates list. If no matching resource was found for a leading resource,
a Single Side Match is created that references the leading resource’s root SoftwareElement
only. Finally, if there are resources remaining in the list of matchingCandidates, further
Single Side Match elements are created and stored in the rootMatches set.

Algorithm 2: Sub Match Traversing
input : SoftwareElement: sel // of Leading Copy l

SoftwareElement: sei // of Integration Copy i
output : Set<Match>: submatches← ∅
Set<SoftwareElement>: matchCandidates ← sei .childElements
foreach SoftwareElement: cel in sel .childElements do

foreach SoftwareElement: cei inmatchCandidates do
if SimilarityCheck(cel ,cei) == true then

Match: m ← Match(cel ,cei ) // Regular Match

m.submatches ←SubMatchTraversing(cel ,cei) // Recursion

submatches ← submatches ∪m
matchCandidates ←matchCandidates \ cei
continue with next leading cel ;

end

end

submatches ← submatches ∪Match(cel ,null ) // Create Single Side Match

end

foreach cei inmatchCandidates do //remaining candidates

submatches ← submatches ∪Match(null ,cei ) // Create Single Side Match

end

return submatches;
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So�ware element matching
The Sub Match Traversing (Algorithm 2) speci�es how submatches are recursively detected
for a pair of already matched software elements. A depth-�rst traversing according to the
Leading Copy’s software model containment hierarchy is performed.

During each recursion, �rst, the child elements of the Integration Copy’s software element
are used as matching candidates. Next, each child node of the Leading Copy’s software
element is checked for similarity with the matching candidates. If a candidate is identi�ed
to be similar, a Regular Match element is created and stored in the result list of detected
submatches. The matched candidate is removed from the list of candidates, and the next
child element of the Leading Copy is processed. If no similar candidate could be found for a
Leading Copy’s child element, a Single Side Match is created referencing this element only.
When all child elements of the Leading Copy are checked, Single Side Match elements are
created for each of the remaining Integration Copy’s child elements. The child elements are
checked in the order they are stored in the software model, as it represents their occurrence
in the real implementation.

To decide about elements’ similarity, an algorithm component named SimilarityCheck

decides if two elements represent the same software element, as further described in Sec-
tion 5.3.1.2. The strictly hierarchical traversing allows assuming matching locations for
elements passed to the SimilarityCheck. Here, location relates to the elements’ containing
parent software elements.

The described algorithm for hierarchical match traversing is generic and can be applied
to all software models with unique containment relationships. As mentioned above, the
ScopeFilter and ElementTypeFilter provide adaptation points for technology-speci�c behavior.
Furthermore, the BestMatchResource detection provides an adaptation point to consider
renaming practices. Those three are straightforward checks of namespaces (e.g., packages)
and element types or name mappings. In contrast, the SimilarityCheck used during the
recursive traversing is more complex, depending on the type of software model under study
and therefore further explained below.

5.3.1.2 Similarity Check

The purpose of the SimilarityCheck is to decide if software elements of the Leading and
Integration Copies represent the same, unmodi�ed element in their implementation. Three
main characteristics of the elements must be considered for this decision:

• The elements’ locations
• The elements’ types
• The elements’ identifying attributes

The matching algorithm’s traversing strategy ensures the locations of the elements rep-
resented by their containing parent software elements are similar before the elements are
passed to the SimiliarityCheck. Thus, the SimiliarityCheck can assume the elements’
locations as similar and start with checking the elements’ types. Here, types refer to the
technology-speci�c SoftwareElement types such as a class, statement, expression or variable.
If their types do not match exactly, the elements are immediately returned as being not
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similar. If the types are similar, next, the elements’ identifying attributes are compared.
Which attributes to consider, depends on the type of software model under study. How-
ever, during the prototype implementation and the case studies, we have identi�ed typical
attribute similarities of software elements in object-oriented programming languages. A
certain type of software element can correspond to none or multiple of those identi�ed
generic attribute similarities. If a language-speci�c SimiliarityCheck identi�es a set of
attributes to be identifying for a type of software elements, all values of these attributes must
be equal to identify two elements of this type as similar. The generic attribute similarities
are summarized in the following paragraphs:

Named Elements
Software elements with a name attribute used for their identi�cation (e.g., methods or �elds).
These attributes must be considered to check their similarity. If renaming conventions
are available from the process con�guration, they need to be considered here to decide
about similarity (e.g., ignoring su�xes). Using names as identifying attributes conforms to
the approach of Neamtiu et al. [136], who observed name stability over time for methods
(Section 2.4.7.2). At the same time, they report performance improvement in their AST
matching algorithm.

Referencing Elements
Software elements representing a reference to another software element only (e.g., import
declarations and method calls). To check the similarity of such elements, their referenced
software elements must be checked. If the reference elements are similar, the referencing
elements are similar, too. The SimilarityCheck component can be reused for this as long as
the referenced elements’ locations are ensured to be similar.

Parameterized Elements
Software elements which can be declared multiple times in parallel with di�ering parameter
sets (e.g., overload method declarations). To decide about the similarity of such elements,
the type of their parameters must be checked as well. For example, changing a parameter of
a method call to a more speci�c type can lead to calling a di�erent method with a similar
name.

Namespace-Aware Elements
Software elements that are unique within a speci�c namespace only (e.g., classes and inter-
faces). To decide about the similarity of those software elements, their namespaces must be
checked. In case of namespace-aware elements and available conventions for namespace
renaming, the conventions must be considered here to improve the matching.

Leaf Elements
Software elements with no containment references to further elements (e.g., string literals). If
such elements have value attributes representing a �xed value in the software implementation
(e.g., a speci�c string), these attributes must be checked. Leaf elements without value
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attributes are always similar, as their similarity depends on their type and location only,
which have been checked before.

Ordered Elements
Software elements which are referenced by their containing parent element in an ordered
manner because their position in the implementation matters for their behavior (e.g., State-
ments). Deciding about the similarity of such elements is challenging in the general case.
For example, inserting a new statement at the beginning of a method’s body in�uences
the positions of all subsequent statements and potentially changes the overall processing.
However, for consolidating customized code copies, the di�erence analysis and the similarity
decision in speci�c are performed from a static point of view on the copies’ implementations.
Thus, it is su�cient to check an ordered element’s direct neighbors (i.e., the predecessor and
successor elements in the containment list). If both neighbors did not change, the element
did not move in its context.

5.3.2 Di�ing

When the matching is done, the resulting match model is further processed in the di�ng
phase to derive the actual di�erences from the match elements. This is done by the Recursive
Difference Derivation (Algorithm 3) by traversing the match model’s containment tree,
identifying Single Side Matches, creating according Di�erence elements, and storing them
into the same model. As speci�ed in the Di�erenceModel metamodel, three types of di�er-
ences are possible: ADD, DELETE, and CHANGE. ADD and DELETE identify di�erences
that exist in an Integration Copy or the Leading Copy only. CHANGE identi�es di�ering
elements existing in the Leading as well as in the Integration Copy, but elements on a level of
granularity below a minimum granularity level (minGranularity, De�nition 12) exist in only
one or the other. The minimum granularity level depends on the variability mechanisms to
be used for consolidating the customized copies (Section 5.1).
De�nition 12: Minimum Granularity

The granularity of software elements is a partial order on the element types de�ned by the

metamodel of certain software models under study. It corresponds to the containment references

between element types and, thus, it is technology-speci�c. The Minimum Granularity is a set of

software element types de�ning a border within this partial order. Elements of types below this

border should not be reported as di�ering but lifted to CHANGE di�erences of a parent element

with a type on or above this border.

For example, in the Java programming language, expressions are child elements of state-

ments and more �ne-grained but not vice versa. Thus, using the statement type as minimum

granularity level, di�ering expressions will be reported as changes of the enclosing statements.

For the top level Match elements (i.e., rootMatches), CheckForDifferences is called for
each of them to recursively evaluate the elements as well as their submatches. Each match
element is evaluated if it is a Regular Match or a Single Side Match. In case of a Regular

Match, CheckForDifferences is called for each of its submatches. In case of a Single Side

Match, the match element is further evaluated to decide which type of Di�erence to create.
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Algorithm 3: Recursive Di�erence Derivation
input : Di�erenceModel: dm // the match model
output : Di�erenceModel: dm // the match model with di�erence elements
foreach Match:m ∈ dm.rootMatches do

DetectDifferences(m)

end

Function DetectDi�erences(m: match) is

if m.leadinд != null ANDm.inteдration != null then // Regular Match

foreach Match:msub ∈m.submatches do
DetectDifferences(msub)

end

else // Single Side Match

if BelowMinGranularity (m) then

Match: mp ← FindCoarseGrainEnoughParent(m)
Di�erence: d ← Di f f erence (mp .leadinд,CHANGE)
mp .di f f erences ←mp .di f f erences ∪ d

else if m.leadinд == null then
Di�erence: d ← Di f f erence (m.inteдration,ADD)
Match: mp ←m.parent
if mp == null then mp ←m
mp .di f f erences ←mp .di f f erences ∪ d

else if m.inteдration == null then
Di�erence: d ← Di f f erence (m.leadinд,DELETE)
Match: mp ←m.parent
mp .di f f erences ←mp .di f f erences ∪ d

end

end

end

BelowMinGranularity checks if the software elements referenced by the match element are
below the minimum granularity level speci�ed in the process con�guration. This is done to
not report di�erences more detailed as necessary for the intended variability mechanisms.
In case of di�ering but too �ne-grained software elements, the Di�erence element is created
with the type CHANGE and stored in the next parent match element that is coarse grain
enough according to the minimum granularity level. FindCoarseGrainEnoughParent looks
up the next su�cient parent match by traversing the parent match containment chain
upwards, until the �rst match references a coarse grain enough Leading Copy’s SoftwareEle-
ment. If the Single Side Match itself is coarse grain enough, it is checked if its leading or its
integration reference is set, and an ADD respectively DELETE Di�erence is created.
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5.3.3 Post-Processing

The SPLevo di�erence algorithm’s post-processing executes two algorithm components:
The Derived Copy Cleanup to remove false positive di�erences resulting from copy-based
customization practices, and the Model Condensation to reduce the size of the �nal di�erence
model.

5.3.3.1 Derived Copy Cleanup

When the di�ng phase is �nished, a post-processing step is performed to detect and handle
instances of the Derived Copy pattern. As described in Section 5.1, a Derived Copy introduces
an inheritance relationship between the copy and its origin, granting the copy access to the
original element’s children of an appropriate accessibility. Such relationships are always
technology-speci�c and cannot be speci�ed or detected in a language-independent manner.

For example, using Java technology, copied classes can extend the original class and inherit
all methods and �elds that are not private. Thus, they must be treated as unmodi�ed by the
di�erence analysis as long as they are not overridden. The di�erence analysis itself identi�es
inherited �elds, methods, and not re-declared imports as di�erences with type DELETE.
However, those di�erences must not be re�ected as variability in the future SPL. Accordingly,
they are false positive di�erences from a consolidation perspective, and the results of the
di�erence analysis can be improved by �ltering them from the Di�erenceModel.

Algorithm 4: Derived Copy Cleanup (for Java technology)
input : Di�erenceModel: dm
output : Di�erenceModel: dm // without Derived Copy false positives
foreach Di f f erence : d ∈ dm do // Collected by traversing the Match

Element tree
if d .type == DELETE AND

TypeOf(d .chanдedElement ) ∈ {Field,Method, Import } then
Match: m ← d .match.parent
if TypeOf(m.leadinд) ∈ {Class} then

Class: classl ←m.leadinд
Class: classi ←m.inteдration
if classi extends classl then // Java inheritance

dm.di f f erences ← dm.di f f erences \ d
end

end

end

end

Algorithm 4 speci�es the Derived Copy detection and �ltering algorithm for an object-
oriented programming language with classes, �elds, methods, and imports as de�ned by the
Java technology. Each di�erence describing a deleted method, �eld or import is checked
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Figure 5.6: Derived Copy example before cleanup

by the algorithm (i.e., function TypeOf provides the technology-speci�c type of a Softwa-
reElement). If such a di�erence is contained in a classl of the Leading Copy that is matched
by a customized classi of the Integration Copy and classi extends classl , the di�erence is
detected as a false positive DELETE and removed from the di�erence result model.

Figure 5.6 provides an illustrating example of a Derived Copy pattern the algorithm
detects. In the example, class MyClass is copied and extended by MyClassCustom. The
di�erence algorithm detects a Di�erence of type DELETE for �eld1. The Derived Copy
cleanup detects the �eld1 deletion and notices that the containing Match element references
MyClassCustom and MyClass, with the former extending the latter and being able to access
�eld1. Accordingly, the shown Di�erence element is removed from the Di�erenceModel.
Notice that a copy-based customization guideline to append the su�x “Custom” is assumed
to be con�gured for the example, allowing to match MyClass and MyClassCustom with
each other.

5.3.3.2 Model Condensation

The matching and di�ng phases produce a Di�erenceModel containing a tree of match
elements that re�ects the combined structures of the leading and integration software models
under study. Matches and sub-matches exist in the di�erence model, whether they contain
di�erence elements or not. As illustrated in Figure 5.3, an additional post-processing is
performed to remove matches and their sub-trees to reduce the overall model’s size if they
contain no di�erences.

The Model Condensation algorithm (Algorithm 5) traverses the match element tree in a
depth-�rst order. It removes match elements containing neither di�erences nor sub-matches
in a bottom-up manner.
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Algorithm 5: Model Condensation
input : Di�erenceModel: dm
output : Di�erenceModel: dm // reduced in size

foreach Match:m ∈ dm.rootMatches do
CondenseMatch(m)

end

Function CondenseMatch(Match:m) is

foreach Match: sm ∈m.submatches do
CondenseMatch(sm)

end

if m.submatches == ∅ ∧m.di f f erences == ∅ then
Match: mp ←m.parent
mp .submatches ←mp .submatches \m

end

end

5.3.4 Explicit Support for Copy Consolidation

To cope with the consolidation-speci�c requirements on analyzing di�erences, which are
presented in Section 5.1, the SPLevo di�erence analysis algorithm has been designed to
explicitly target these requirements as summarized in Table 5.1.

To target R1, the SPLevo approach contains an explicit post-processing step presented in
Section 5.3.3.1. R2 is explicitly considered by normalizing element names and namespaces
during the matching phase. To support R3, the algorithm is not limited to any speci�c
variability mechanism, but allows for a minimum granularity level aligned with the intended
variability mechanisms to return appropriate di�erences (Section 5.3.2). To support R4,
the match traversing (Section 5.3.1) ignores elements not in the con�gured scope (i.e., the
ScopeFilter algorithm component). For the support of R5, the algorithm uses all resources
contained in provided source directories, provides an automated application of renaming
conventions, and does not require pre-matched compilation units. R6 and R7 are targeted
by abstaining from any heuristics to guess matching elements which might not be a 100%
clear match. Finally, for R8, the algorithm itself is speci�ed for any type of software model
with a hierarchical containment structure as assumed for the overall SPLevo approach
(De�nition 7). However, explicit adaptation points for technology-speci�c software models
are provided allowing for technology-aware algorithm improvements.

5.4 Variation Point Model Initialization

The SPLevo di�erence analysis is embedded in the overall context of the consolidation
process and designed as a fully automated activity. It does not involve SPL Consolidation
Developers in its processing and completely hides the match and di�erence models from them.
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# Requirement Supported by Section

R1 Support Independent and Derived
Copies

Derived Copy Cleanup 5.3.3.1

R2 Consider Copy Renaming Conven-
tions

Normalization during matching
phase

5.3.1

R3 Support Intended Variability Mech-
anisms

Granularity level-aware di�erence
derivation

5.3.2

R4 Allow for Con�guration of Analysis
Scope

ScopeFilter during matching 5.3.1

R5 Analyze Independent Source Direc-
tories

No assumptions except software
model structure

5.3.1

R6 Favor False Positives over False
Negatives

Strict hierarchical comparison 5.3.1.2

R7 Provide Binary Decision Omit heuristics 5.3.1.2
R8 Support Heterogeneous Software

Artifacts
Overall generic algorithm with ex-
plicit adaptation points

Table 5.1: SPLevo Di�erence Analysis: Design decisions for consolidation requirements

Instead, it provides them with an initialized VPM representing the individual di�erences
identi�ed between the consolidated copies. At this point, the di�erences are related to each
other. Thus, in the initial VPM each di�erence is represented by a single VP contained in a
separate Variation Point Group (VPG).

VP initialization algorithm
The Variation Point initialization algorithm speci�es the initialization of a VPM (Algorithm 6).
For each di�erence, the function CreateVariationPointGroup creates a VPG and invokes
CreateVariationPoint to create a containing VP. The id of the VPG is derived from the VP
location’s label as an initial, humanly readable value that can be re�ned by SPL Consolidation
Developers later on. The Variant elements created for a VP depend on the type of the
currently processed di�erence. Function CreateVariants returns single variants for DELETE
and ADD di�erences, with implementing elements from the Leading or Integration Copy,
and the leading attribute set to true or false appropriately. For CHANGE di�erences, two
Variants are created, as the according element exists in the Leading and Integration Copies’
software models. For CHANGE di�erences, the changed elements are received from the
containing match element, as the Di�erence element is contained by the Match, identifying
the di�ering SoftwareElements in both copies (Section 5.3.2). The location of the VP depends
on the match element containing the currently processed di�erence. If the match references
a leading SoftwareElement, this is preferred as a location. Only if no leading reference
is available (i.e., for Integration Copies’ SoftwareElements added at the top level, such as
completely new resources), the integration reference is used. For the sake of brevity, in
Algorithm 6 the software model elements are returned directly, but actually are �rst wrapped
with a SoftwareElement of the Variation Point Model.
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SPL Profile Impact
The SPL Pro�le allows for choosing an intended SPL Type which comes with a set of default
variability characteristics (i.e., Variability Type, Binding Time, and Extensible). When a VP
is created by the VPM initialization process and an SPL Type was chosen in the SPL Pro�le,
the VP’s characteristics are set to the SPL Type’s default characteristics. Alternatively, if no
SPL Type was chosen, at least one option for each variability characteristic must have been
de�ned in the SPL Pro�le anyway. For each characteristic, the �rst allowed option – in their
natural order – will be used for the new VP’s characteristics. The metamodels of the SPL
Pro�le and the VPM are speci�ed in Section 3.3 respectively Section 3.2.

The initialized VPM describes VPs on the most �ne-grained level, each of them correspond-
ing to a single di�erence. In the downstream consolidation process, those VPs are correlated
to each other and transformed to more valued VPs in the variability design phase. To cope
with the potentially high number of di�erences to review and re�ne, the SPLevo approach’s
support for variability design reads the VPM and provides automation for comprehension
and design decisions, as described in Section 6.

5.5 Multi Copy Di�erence Analysis

Comparing more than two copies at the same time is a challenging task. In particular,
deciding about the similarity of more than two elements is not su�ciently done as a binary
decision. For example, with three elements e1, e2, and e3, there are �ve possible similarity
results, as shown in Table 5.2. Similarity is a transitive relationship, thus either all elements
are di�ering, all are similar, or only one pair is similar. A binary decision about all elements
would return “true” for the last case only, with all elements being similar (i.e., column 5
in Table 5.2). However, there are three cases of partly similarity not covered by a binary
decision about all elements’ similarity (i.e., column 2–3 in Table 5.2).

Element

Pairs

Possible

Similarities

1 2 3 4 5
(e1,e2) d s d d s
(e2,e3) d d s d s
(e1,e3) d d d s s

Table 5.2: SPLevo Di�erence Analysis:Similarity examples for three software elements
(en=software elements, d=di�erent, s=similar)

Iterative element matching
To cope with this challenge, the SPLevo approach proposes to stick to a pairwise element
matching of each Integration Copy with the Leading Copy and iteratively build up the
match model in several, steps as illustrated in Figure 5.7. With each step, the match model is
extended with further Regular Matches or Single Side Matches, and the �nal match model
combines not only the SoftwareModel structures of two copies but of all copies analyzed. If a
SoftwareElement cannot be matched with the Leading Copy, it will be compared to Software-
Elements of the previously compared Integration Copies. Here, only SoftwareElements will
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Figure 5.7: Multi copy di�erence analysis concept
Software model extraction left out for the sake of brevity

be compared that exist at the same location and did not match to the Leading Copy as well.
This allows identifying similarities between the Integration Copies without a match to the
Leading Copy.

Di�erence derivation
Afterwards, the di�erence derivation still needs to check for Single Side Matches. In the
context of multi-copy di�erence analysis, the de�nitions of Regular and Single Side Matches
are still valid, but a Match element must now be able to reference more than one integration
SoftwareElement (i.e., cardinality of the reference Match.inteдration must be changed from
0..1 to 0..∗). Thus, a Single Side Match now indicates a SoftwareElement exists in either
the Leading Copy only or in one or more Integration Copies. Accordingly, if a Single Side
Match refers to more than one Integration Copy, separate Di�erence elements of type ADD
must be created for each referenced integration element. Similarly, for Regular Matches
with a SoftwareElement existing in at least one but not all Integration Copies, Di�erence
elements of type DELETE will be created for each of the integration copies not containing
the element.

Model adaptations
To realize this approach, the metamodel of the Di�erenceModel requires an adaptation,
as already mentioned above. Match elements must become able to reference more than
one integration SoftwareElement, as the same element might be detected in more than one
Integration Copy.

Conclusion
The strategy presented above allows for comparing more than two product copies without
the need of a full pairwise comparison between all copies. At the same time, the strategy
allows for binary similarity decisions between pairs of elements to reduce the complexity of
the similarity decisions and to enable more precise decisions, as exempli�ed in Table 5.2.
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Algorithm 6: Variation Point Initialization
input : Di�erenceModel: dm
output : VariationPointModel: vpm
foreach Di�erence: d ∈ dm do // Collected by traversing the Match tree

VariationPointGroup: vpд ← CreateVariationPointGroup(d)

vpm.variationPointGroups ← vpm.variationPointGroups ∪vpд

end

Function CreateVariationPointGroup(Di�erence: d) is
VariationPointGroup: vpд
VariationPoint: vp ← CreateVariationPoint(d )
vpд.variationPoints ← vpд.variationPoints ∪vp
vpд.id ← vp.location.дetLabel ()
return vpд

end

Function CreateVariationPoint(Di�erence: d) is
VariationPoint: vp
vp.variants ← CreateVariants(d )
vp.location ← DetermineVariationPointLocation(d )
return vp;

end

Function CreateVariants(Di�erence: d) is
if d .type == ADD then

Variant: v ← Variant (d .chanдedElement ,leadinд = f alse )
return ∅ ∪v ;

else if d .type == DELETE then

Variant: v ← Variant (d .chanдedElement ,leadinд = true )
return ∅ ∪v ;

else if d .type == CHANGE then

Variant: vl ← Variant (d .match.leadinд,leadinд = true )
Variant: vi ← Variant (d .match.inteдration,leadinд = f alse )
return ∅ ∪vl ∪vi

end

Function DetermineVariationPointLocation(Di�erence: d) is
if d .match.leadinд! = null then // prefer the Leading Copy’s

SoftwareElement

return d .match.leadinд
else

return d .match.inteдration

end
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6 Variability Design

This chapter describes the SPLevo variability design phase and the contributions to support
the design of variability of the future Software Product Line (SPL). As shown in Figure 6.1,
the design phase follows the Di�erence Analysis and its purpose is to de�ne the variation
points to implement in the future SPL and the characteristics of variability to provide. The
goal of the Variability Design phase is to create a Variation Point Model (VPM) describing a
variability design in terms of structure (e.g., related variation points) and characteristics that
is approved by SPL Consolidation Developers and SPL Managers. Therefore, the activities
Relationship Analysis and Variation Point Structure Design are iteratively performed to
receive and review re�nement recommendations for the variation points. Next, during
Variation Point Characteristic De�nition, the characteristics are reviewed and de�ned from
a technical perspective, and �nally, in the Design Review, the variability design is proven
from the product management perspective.

Software Architect SPL Consolidation Developer SPL Manager

Accepted?

Variability Realization

Decision

Difference

Analysis

Relationship

Analysis

Variation Point

Structure Design

Variation Point

Characteristic Definition
Design Review

Recommend

Refinements

NOYES

Iterative

Improvement

Difference

Analysis

Variability

Design

Consolidation

Refactoring

Figure 6.1: SPLevo process: Variability Design

The chapter is structured as follows: First, it is explained how the variation point structure
is designed, and the contributions to support these activities is detailed in Section 6.1. Next,
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the de�nition of the characteristics is presented in Section 6.2. Finally, the relationship
analysis implemented in the SPLevo approach are detailed in Section 6.3 and Section 6.4.

Satisfying variability design
A variability design is speci�ed by a VPM in terms of i) Variation Points (VPs) identifying
where to implement variability, ii) Variants representing the available alternatives, iii)
Variation Point Groups (VPGs) connecting VPs to be con�gured in a consistent manner, and
iv) VP characteristics de�ning the requirements on the variability mechanism to implement
(i.e., De�nitions 5 and 6). A variability design can be considered “Satisfying” based on
the decision of the SPL Consolidation Developers and SPL Managers. “Satisfying” means
the design describes variability that is �exible enough to con�gure the intended product
variants and provides a manageable amount of variation points. A “satisfying” variability
design must re�ect the demands of the SPL Consolidation Developers and SPL Managers
to ensure the downstream Consolidation Refactoring will produce an SPL that meets their
requirements (e.g., with manageable variation points and enough �exibility for reasonable
product variants).

Variation Point Model refinement
As Klatt et al. introduced in [100], the initial VPM is derived from the di�erences between
the product copies, representing all �ne-grained di�erences in an unrelated manner. To
achieve a manageable amount of variability in the resulting SPL, the VPM’s initial structure
must be re�ned. Manually analyzing all VPs to aggregate them into more coarse grained
ones is tedious due to the typically high number of di�erences. The SPLevo approach
contributes a Variability Analyses to automatically identify related variation points and
provide recommendations for their aggregation. In general, such aggregations cannot
be decided in a fully automated fashion. Often, equivalent alternatives are possible and
selected due to non-technical criteria, such as organizational reasons or personal preferences
(e.g., product con�guration responsibilities). To cope with this, the SPLevo Variability
Analysis returns recommendations only and SPL Consolidation Developers can accept,
decline, or adapt them. Reasons for aggregating VPs range from technical constraints
(e.g., program dependencies) up to hints for related modi�cations (e.g., terms used in the
source code). To cover the variety of reasons for re�nements and the amount of di�erences,
the structure design can be done in an iterative manner.

Structure and characteristic decisions
The SPLevo consolidation process distinguishes between designing the structure (e.g., aggre-
gations) and de�ning the characteristics (e.g., binding time and variability type) of the VPs
and the VPMs. This enables SPL Consolidation Developers to �rst decide about the VPM
structure. When they are satis�ed, they choose variability characteristics for the re�ned VPs
according to their required capabilities of the variability implementations later on. Thus,
characteristic de�nitions do not need to be adapted several times because of still changing
VPs during the iterative structure design.
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Figure 6.2: Iterations to build coarse grain variation point structures

6.1 Variation Point Structure Design

According to De�nition 5, the purpose of the VP structure design is to decide which VPGs,
VPs, and Variants should be combined with each other or probably completely removed
from the VPM. According to the di�erence analysis, the initial VPM re�ects �ne-grained
di�erences between product copies but no relationships between them. Thus, the VPM
needs to be re�ned to build more coarse grain structures, but there is no need to get even
�ne-grained ones. As illustrated in Figure 6.2, the initial model is iteratively re�ned to
build such structures. In each iteration, di�erent types of relationships between VPs are
studied and, based on the �ndings, VPs are aggregated, as further described in Section 6.1.1.
Furthermore, VPs can be �ltered if they do not need to be re�ected as variability in the
future SPL. For example, if a VP represents a modi�cation which is about code beautifying
only, there is no need to introduce variability at this location. Details about the VP �ltering
are given in Section 6.1.2.

To cope with the challenging and tedious task of identifying related VPs, the SPLevo
approach de�nes a classi�cation of relationship types to consider, as described in Section 6.1.3.
In addition, an automated relationship analysis and re�nement recommendation is proposed,
as described in Section 6.1.4. This automation also allows for adaptation to individual
technologies and consolidation scenarios.

6.1.1 Variation Point Aggregation

A satisfying variability design is a trade-o� between providing variability to con�gure
as much feature combinations as possible and minimizing the number of VPs to manage.
While the former obviously allows for providing more individual product variants, the lat-
ter is a recommendation with regard to SPL manageability, reported by Svahnberg et al. [183].

111



6 Variability Design

Grouping

Merging

VPG

1

SE1 SE2

VP1

V1

id=A

V2

id=B

SE3 SE4

VPG

1

SE1 SE2

VP1

V1

id=A

V2

id=B

SE3 SE4

VP2

V3

id=A

V4

id=B

VPG

1

SE1 SE2

VP1

V1

id=A

V2

id=B

VPG

2

SE3 SE4

VP2

V3

id=A

V4

id=B

VPG

1

SE1 SE2

VP1

V1

id=A

V2

id=B

VPG

2

SE3 SE4

VP2

V3

id=A

V4

id=B

Figure 6.3: Variation point aggregation operators

In the SPLevo approach, the design phase starts with a �ne-grained VPM on the level of
individual and unrelated, di�ering SoftwareElements. To gain more coarse grain structures,
the VPM’s VPs must be aggregated. The SPLevo approach de�nes two aggregation operators
for VPs: “merging” and “grouping”. The operators are speci�ed for the VPM’s metamodel
de�ned in Section 3.2 and detailed in the following subsections. The decision to execute
those operators on a set of VPs, especially the decision if VPs should be merged or grouped,
is assumed to be done in advance and is not part of the operators themselves.

6.1.1.1 Merging Variation Points Operator

The VP merging operator is based on the capability of Variant elements to reference one
or more SoftwareElements they are implemented by. VPs are merged by combining their
Variant elements and their implementing SoftwareElements in only one of the VPs.

De�nition 13: Variation Point Merging

Merging two or more VPs means to aggregate them into a single VP. Variants as well as their

implementing SoftwareElements are merged in the single, surviving VP. Variants with the same

id are also merged into a single Variant element. All VPs except for the surviving one are

removed.

The VP merging operator reduces the number of VPs and is preferred in general as it im-
proves the manageability of the SPL (Svahnberg et al. [183]). However, the merging operator
comes with technical constraints as the VPs must be co-located and the SoftwareElements
implementing their Variants must be mergeable. The decision whether SoftwareElements
can be merged or not is technology-speci�c.
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Algorithm 7 speci�es the procedure of merging two or more VPs. First, one VP is selected
to survive. Then, for all other VPs their contained Variant elements are checked. If a Variant
with the same id exists in the surviving VP, all implementing elements of the current variant
are moved to the already existing one. Otherwise, if no variant with the same id exists, the
current Variant is completely moved to the surviving VP. Finally, when all Variants of a VP
are processed, the VP is removed from the group it is contained in. In addition, if no more
VPs exist in this VPG, the group itself is removed from the VPM.

Algorithm 7: VP Merging Operator
input : Set<VariationPoint>: vps ← {vp1, ..,vpn} // n > 1 variation points to be

merged
VariationPointModel: vpm

output : VariationPoint: vpsurvivinд
VariationPoint: vpsurvivinд ← vp1
Set<VariationPoint>: vpsremove ← vps \vp1
foreach VariationPoint: vp ∈ vpsremove do

foreach Variant: v ∈ vp.variants do // VP Consolidation

if (∃ Variant: vsurvivinд ∈ vpsurvivinд .variants |vsurvivinд .id == v .id ) then
vpsurvivinд .variants ← vpsurvivinд .variants ∪v

else

Variant: vsurvivinд ← (Variant: vs ∈ vpsurvivinд .variants |vs .id == v .id )
vsurvivinд .implementinдElements ←
vsurvivinд .implementinдElements ∪v .implementinдElements

end

end

VariationPointGroup: vpд ← vp.дroup // VP Removal

vpд.variationPoints ← vpд.variationPoints \vp
if vpд.variationPoints == ∅ then

vpm.variationPointGroups ← vpm.variationPointGroups \vpд
end

end

return vpsurvivinд

6.1.1.2 Grouping Variation Points Operator

The VP grouping operator is based on the VPG’s purpose to connect all VPs contributing to
the same variable feature. Even if VPs reside at di�erent locations of the implementation
they can be contained in the same VPG. VPs are grouped by moving them into only one of
their VPGs and removing now empty VPGs.

113



6 Variability Design

De�nition 14: Variation Point Grouping

Grouping two or more VPs means to aggregate them into a single VPG (i.e., the surviving VPG)

and removing the other empty VPGs. The VP grouping operator neither reduces the number

of VPs nor modi�es the VPs themselves. But it does reduce the number of VPGs and thus the

number of variable features of the future SPL. Furthermore, it is a logical aggregation which

can be applied to any VP.

Algorithm 8 speci�es the procedure of grouping two or more VPs. First, the VPG of one
of the VPs to group is selected as the surviving VPG. Next, all other VPs are moved from
their old VPG to this surviving one. Finally, if any of the old VPGs no longer contains any
VPs, it is removed from the VPM.

Algorithm 8: VP Grouping Operator
input : Set<VariationPoint>: vpn // the n < 1 variation points to be grouped

VariationPointModel: vpm
output : VariationPointGroup: vpдsurvivinд
VariationPointGroup: vpдsurvivinд ← vp1.дroup
Set<VariationPoint>: vpmove ← vpn \vp1
foreach VariationPoint: vp ∈ vpmove do

VariationPointGroup: vpдold ← vp.дroup
vpдold .variationPoints ← vpдold .variationPoints \vp
vpдsurvivinд .variationPoints ← vpдsurvivinд .variationPoints ∪vp
if vpдold .variationPoints == ∅ then

vpm.variationPointGroups ← vpm.variationPointGroups \vpд
end

end

return vpдsurvivinд

6.1.2 Variation Point Filtering

Variation Point Filtering removes detected VPs from the VPM (e.g., irrelevant di�erences
such as representing code beautifying) to increase the precision of subsequent relationship
analyses. This section describes the Variation Point Filtering concept proposed as part of
the SPLevo approach to allow for reusing existing program analyses to identify candidates
of VPs to be �ltered. The concept has neither been implemented nor evaluated in the
case studies as no corresponding variability-irrelevant modi�cations could be identi�ed
by reviewing the code. However, we argue for the value of such a �ltering because of the
reports on such modi�cations by the authors of the approaches proposed for reuse.
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Figure 6.4: Shapes of variability-irrelevant di�erences

Filtering variation points
In addition to feature-speci�c modi�cations in the product copies, there are di�erences
irrelevant for the variability of the future SPL. The SPLevo Di�erence Analysis already
�lters formatting changes. Furthermore, code beautifying, such as renaming, is typically
variability-irrelevant too. VPs identifying such variability-irrelevant di�erences can be
removed from the VPM and, thus, no longer result in variability of the future SPL. However,
such VPs are not automatically �ltered because they might represent code optimization
that must be re�ected as variability (e.g., as professional or free option). Hence, a manual
con�rmation is necessary.

Variability-irrelevant di�erences
As illustrated in Figure 6.4, there are two alternatives how variability-irrelevant di�erences
can be re�ected by VPs. If an identifying part of a SoftwareElement (e.g., its name) has
been modi�ed, the SPLevo Di�erence Analysis does not match the origin and the copy of
this element and reports two separate VPs (Section 5.3.1.2), for example if the name of an
identi�er was changed. As illustrated on the left side of Figure 6.4, an indicator for such an
unmatched variability-irrelevant di�erence must relate two SoftwareElements with each
other that originate in di�erent copies and are identi�ed by di�erent VPs. In contrast, if
a modi�cation did not change an identifying part of an element, the matched variability-
irrelevant di�erences are re�ected as variants of a single VP, for example if the expression
de�ning the initial value of a variable declaration has been simpli�ed. As illustrated on the
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right side of Figure 6.4, an according indicator must relate two SoftwareElements with each
other that originate in di�erent copies and are identi�ed by a single VP.

Proposal for reusing existing approaches
The SPLevo approach proposes to reuse existing approaches for identifying such indicators
of variability-irrelevant di�erences. Existing approaches from the �elds of clone detection,
renaming detection, and change assessment provide mature strategies that can be applied
in this context. However, these proposals have neither been implemented in the SPLevo
prototype nor evaluated as no corresponding modi�cations have been identi�ed in the case
studies.

Clone Detection
In the �eld of clone detection, many approaches have been proposed to identify similar
code, reaching from exact matches up to semantic equivalent computations (Section 10.3.3).
The SPLevo approach proposes to reuse existing approaches for clone detection to identify
similar SoftwareElements implementing Variants from di�erent copies for �nding variability-
irrelevant di�erences of both shapes mentioned above. SoftwareElements moved to di�erent
locations represent similar code and thus clones of each other. Such moved elements can have
been additionally modi�ed, which requires to reuse a more mature type of clone detection.
A reasonable candidate for being reused is the clone detection algorithm proposed by Baxter
et al. [12]. Their Abstract Syntax Tree (AST)-based approach �ts to the hierarchical structure
of software models assumed by the SPLevo approach (De�nition 7). However, a clone-
detection-based �ltering has not been implemented and evaluated because no corresponding
modi�cations were identi�ed in the case studies, as mentioned in the introduction of this
section.

Renaming Detection
Renaming means to change the identi�er of a SoftwareElement. This leads to unmatched
software elements and, thus, di�erences in the shape presented on the left side of Figure 6.4.
Malpohl et al. [126] propose an algorithm for detecting renaming operations in the �eld
of software di�erence analysis. They use programming language-speci�c structures to
compare SoftwareElements while ignoring formatting information as well as identi�er
names. Thus, their approach can be compared to the AST-based clone detection of Baxter
et al. [12] but operates on a linear representation of the parse tree for improved performance.
However, applying their renaming detection to SoftwareElements implementing Variants
from di�erent product copies potentially allows for detecting renamed and thus unmatched
variability-irrelevant di�erences. The SPLevo approach proposes to reuse the renaming
detection of Malpohl et al. [126]. However, a renaming-detection-based-�ltering has not
been implemented and evaluated because no corresponding modi�cations were identi�ed in
the case studies, as mentioned in the introduction of this section.
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Non-Essential Changes
Kawrykow and Robillard [94] proposed an approach for detecting “non-essential changes”
based on change history information. In addition to renaming, they aim for identifying
“Trivial Type Updates”, “Local Variable Extractions”, and “Trivial Keyword Modi�cations”.
They propose to add type resolving to existing di�erence analyses and use similarity rules for
detecting and �ltering such potentially irrelevant changes. They facilitate Partial Program
Analysis (PPA)-based type resolving due to the limitation of the di�erence sets their approach
originates from. SPLevo VPMs provide access to the software models of the product copies
under study, providing already resolved types. Thus, the detection rules of Kawrykow and
Robillard [94] are proposed for being reused but have not been implemented, as mentioned
in the introduction of this section.

Necessity of manual confirmation
The SPLevo approach does not automatically remove VPs. Instead, identifying indicators
as described above are recommended to be used to guide SPL Consolidation Developers to
the appropriate candidates of variability-irrelevant di�erences. Hence, SPL Consolidation
developers can actively decide to manually remove VPs from the model. This manual
investigation is required as it is crucial to not lose any VPs unintentionally, and not all
of the approaches mentioned above o�er a 100% precision in their �ndings. For example,
Kawrykow and Robillard [94, page 352] report a precision of 98.8% in their overall �ndings. In
addition, SPL Consolidation Developers might have preferences for a speci�c alternative due
to improved naming or other reasons. However, to use an alternative that does not originate
from the Leading Copy requires manual code adaptation later on. Such modi�cations are not
explicitly targeted by the SPLevo approach, as they represent regular software development
tasks.
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6.1.3 Variation Point Relationships

Variation Point Relationships link previously independent VPs with each other, based on
relations extracted from the software models of the product copies. The SPLevo approach
assumes relationships between modi�ed SoftwareElements to be indicators for VPs con-
tributing to the same copy-speci�c feature. Thus, the SPLevo approach proposes to study
such relationships to identify VP candidates for aggregation.

Relationship

Relationship

Meaning

Relationship

Type

Restrictive

Suggestive
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Analysis
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identifies

1
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Figure 6.5: Relationship meanings and types

As shown in Figure 6.5, in the SPLevo approach, relationships are associated with one or
two meanings and a type. The former describes the value of the information a relationship
can provide to developers. The latter distinguishes relationships according to the type
of modi�cation that produced the analyzed information. Additionally, relationships are
identi�ed by a relationship analysis, as further described in Section 6.1.4.

Relationship Meanings
The SPLevo approach de�nes a range of relationship meanings providing a direction of a
relationship’s value as indicator for related VPs. As illustrated in Figure 6.6, the relationship
meanings range from restrictive relationships (e.g., code modi�cations that must be consid-
ered as a bundle) to suggestive relationships (e.g., code modi�cations reasonable to consider
as a bundle).

Restrictive

Suggestive

- Ambigue
- Individual
- Requires interpretation

- Unique
- General
- Requires 

approvement

Figure 6.6: Meanings of variation point relationships
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De�nition 15: Relationship Meaning: Restrictive

A Restrictive Relationship is an indicator for the necessity to treat VPs in a common way. If two

or more VPs are restrictively related to each other, all of their variants with the same id must

be in place for compiling and/or executing the product copies. Accordingly, the representation

of the relationship is interpreted by the compiler or by the execution environment and, thus,

it is unique and allows for an automated detection and developers need only to review the

recommendations.

De�nition 16: Relationship Meaning: Suggestive

A Suggestive Relationship is a hint to consider the related VPs for treating them in a common

way. A suggestive relationship does not need to be re�ected in the implementation. It can

be represented by metadata on the product copies or by additional systems managing their

implementations. A suggestive relationship results from the intention or context when the

modi�cation has been implemented. Such a relationship does not need to be unique and neither

the compiler nor the execution environment must notice them. While they typically allow for

automated analysis, interpretation of the results is typically necessary.

As illustrated in Figure 6.6, restrictive and suggestive relationships are not distinct and
relationships can belong to both meanings in di�erent degrees. However, a relationship’s
tendency to one or the other type provides a direction of its value and applicability. Restrictive
relationships can be studied in all consolidation scenarios but typically only for a speci�c
technology (e.g., because of technology-speci�c structures). They are unique and allow for
automated analysis. In contrast, suggestive relationships are more vague. While interpreting
context, they typically come with more assumptions to be studied and need to be adjusted for
speci�c consolidation scenarios (e.g., respecting individual development infrastructures or
coding guidelines). Furthermore, suggestive relationships require a stricter manual reviewing
of their results because of their ambiguity.

Relationship Types
Beside the range of relationship meanings the SPLevo approach distinguishes relationship
types according to the modi�cation they re�ect. This allows for guiding SPL Consolidation
Developers’ expectations when reviewing the recommendations derived from a relationship.

As presented in Figure 6.7, three types of relationships are distinguished according to
analyzed aspects of modi�cations:

• Dependent Modi�cations (“What?”)
• Similar Modi�cations (“How?”)
• Simultaneous Modi�cations (“When?/Why?”)

Rubin et al. [165] propose to study dependencies between code changes (i.e., Dependent
Modi�cations) as well as information tracked in Change Management (CM) and Software
Con�guration Management (SCM) systems (i.e., Simultaneous Modi�cations). The SPLevo
relationship type classi�cation extends their proposal by i) specifying more generally appli-
cable categories and ii) de�ning an additional category of Similar Modi�cations which do
not �t into the other categories.
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Figure 6.7: Types of variation point relationships and examples
The following subsections provide further descriptions of the relationship categories as

well as representative examples. The presented relationships and the given examples do
not aim for completeness. Individual technologies, companies, and projects can allow for
investigating further relationships according to their speci�c needs or infrastructures. For
example, a company can have a speci�c guideline to enclose code modi�cations with markers
identifying the issue of the modi�cation. Similarly, markers at di�erent locations provide a
source for additional relationships to study in the category of simultaneous modi�cations.
However, we argue for the validity of the examples given for each category. Each of them
is motivated by existing research in the area of program comprehension. Furthermore,
each of them was used before in a broader context of research on SPL evolution, variability,
or feature location. Additionally, as representatives for the �rst two categories, Program
Dependency and Shared Term VP analyses have been implemented as part of the SPLevo
approach (Sections 6.3 and 6.4). They have been applied in case studies to evaluate their
bene�ts (Section 8.7). For the third category, no VP analysis was implemented as part of
the SPLevo approach because the available case studies did not provide the required data
to analyze. However, we argue for the category’s validity and the existence of appropriate
scenarios providing the required data (Section 6.1.3.3).

6.1.3.1 Relationship Type: Dependent Modifications

Dependent modi�cations are modi�cations on a copy’s implementation (e.g., modi�ed, added,
or deleted SoftwareElements) with one modi�cation depending on another. Relationships
resulting from dependent modi�cations are typical examples for restrictive relationships
according to De�nition 15. They are unique and directly or indirectly represented in the
implementation. In general software engineering, dependencies between SoftwareElements
are studied for many reasons, such as impact analysis or bug detection (Section 2.4.9).
Accordingly, they are gathered in many di�erent manners, such as static or dynamic analyses.
The SPLevo approach is not limited to a speci�c set of dependency analyses. It is intended
to reuse existing software dependency analysis concepts. However, existing analyses are
typically not designed for analyzing relationships between di�erences of customized product
copies. Thus, the individual concepts for studying dependencies must be adapted according
to SPLevo’s concept of deriving VP relationships from SoftwareElement relationships.

Examples of relationships in the category of Dependent Modi�cations are: Program
Dependencies, Data Dependencies, and Program Execution Traces.
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Program Dependency Relationships
Program dependencies are dependencies statically coded into software implementations.
They can be implemented as a reference from one SoftwareElement to another based ref-
erence speci�ed in a programming language (e.g., a method call). Alternatively, they can
involve additional resources establishing a dependency indirectly when they are loaded
(e.g., con�guration �les for wiring components). Figure 6.8 provides an example of a VP
relationship due to a direct program dependency resulting from a statement calling a method.
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V3

id=A

V4

id=B

callscalls

Relationship
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V Variant

s Statement (SoftwareElement)

m Method (SoftwareElement)

Figure 6.8: Program dependency relationship example

Data Dependency Relationships
Data dependency relationships between SoftwareElements exist when they potentially
in�uence each other because of data objects they manipulate or access. Data objects cover
program internal elements and external resources. The former includes variables and
constants as well as results from method invocations and data initializations. The latter
includes resources such as �les, databases, or remote services. Data objects of both types
can represent complex objects. The value of the identi�ed relationships strongly depends on
the precision of identifying the data within those complex objects accessed by the modi�ed
SoftwareElements. For example, the relationship resulting from access to the same database
�eld provides more value than resulting from access to same database in total. Figure 6.9
provides an example of a VP relationship resulting from SoftwareElements accessing the
same database.

Identifying data dependencies is more challenging compared to program dependencies.
Accessed objects or resources are probably de�ned in a con�guration �le that must be
processed in addition. This requires additional processing and probably adaptation of the
analysis. Furthermore, it can in�uence the precision of the accessed data object identi�cation.
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Figure 6.9: Data dependency relationship example

Program Execution Trace Relationships
A program execution trace-dependency between two SoftwareElements exists when both
are involved in the execution of a single feature. A program execution trace is recorded at
run time and describes a chain of SoftwareElements executed one after the other (e.g., the
chain of methods or statements executed).

Identifying program execution trace relationships is challenging due to the necessity
of executing a program in a realistic manner (e.g., during production). Recording a trace
requires to balance between a low program in�uence and a high precision of the trace at
the same time. Matching the recorded trace with the SoftwareElements represented in the
software models is an additional challenge to overcome.

Figure 6.10 illustrates two modi�ed statements being crossed by a program execution
trace. This leads to identifying a relationship between the VPs containing the variants the
statements are implementing.

6.1.3.2 Relationship Type: Similar Modifications

Similar Modi�cations are modi�cations of a copy’s implementation done in a similar man-
ner. This can range from exactly the same modi�cations performed at di�erent locations
(e.g., introducing the same lines of code) up to similar concepts implemented at di�erent
locations. Relationships resulting from similar modi�cations are both: restrictive and sug-
gestive relationships. On one side, they typically allow for automated identi�cation and are
represented in the code. On the other side, depending on the type of studied similarity, they
may be ambiguous and provide only vague indicators requiring a strict review.
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Figure 6.10: Program execution trace relationship example

Similar Modi�cations can be studied in many di�erent manners as done in the �eld of
program comprehension. For example, they are studied for concern or feature location,
clone detection, and Natural Language Program Analysis (NLPA) (Section 2.4.9). The SPLevo
approach is not limited in the relationships to study, but, proposes to reuse existing concepts.
However, existing approaches need to be adapted for analyzing relationships between
modi�ed SoftwareElements respectively their containing VPs.

Typical examples of similar modi�cations are: Shared Terms, Cloned Changes, and Co-
Located Changes.

Shared Terms Relationships
A software implementation includes terms pre-de�ned by a programming language’s syntax
and terms freely eligible by developers, such as identi�ers or values. As identi�ed in the �eld
of NLPA, developers tend to express concepts and knowledge within those eligible terms. For
example, when implementing a custom feature at several locations, the developer might use
the same terms from the context of the feature at those locations. Which SoftwareElements
de�ne eligible terms depends on the technology used. For example, in object-oriented
programming languages, such as Java, class and method names are typical places to use
feature-speci�c terms.

Figure 6.11 provides an example of two VPs introducing a new class “ClassFoo” and
a new method “doFoo” in variant B, with both SoftwareElements sharing the term “foo”
being an indicator for a relationship between them. Subsequently, this is an indicator for a
relationship between the VPs as well.

However, interpreting shared terms is challenging. Programmers use not only terms and
texts representing concepts of the newly implemented features. They also introduce terms
because of general programming concepts and programming habits. Section 6.4 describes
the Shared Term Analysis developed as part of the SPLevo approach and discusses strategies
to cope with this challenge.
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Figure 6.11: Shared term relationship example

Cloned Changes Relationships
Code clones in general identify similar code fragments according to a given de�nition of
similarity (Roy et al. [159, page 471], Section 2.4.8). To identify relationships between VPs,
the customized product copies can be investigated for cloned modi�cations at di�erent
locations. To do this, clone detection can be applied to the SoftwareElements implementing
the variants of a set of VPs. If clones are identi�ed, this is an indicator for a relationship
between the enclosing VPs. The underlying assumption is that similar code changes are
performed to implement the same feature.

As surveyed by Roy et al. [159], many approaches exist for clone detection with a divergent
support of their described types of clones (Section 2.4.8). Especially, the more di�ering the
implementations of clones are (i.e., in order from type 0 to type 4), the harder it is to detect
those clones and the fewer approaches exist. However, clones of higher types are also more
vague and less valuable indicators for detecting VP relationships.

In an evaluation performed by Bellon et al. [13], the AST-based clone detection of Baxter
et al. [12] was identi�ed as one of the best performing algorithms. The minimal structure of
software models assumed by the SPLevo approach (De�nition 7) provides the necessary
data structure to be analyzed by this algorithm.

Figure 6.12 illustrates an example of cloned changes. When the SoftwareElements se1 and
se2 have been copied, their implementations have been changed by introducing the same
child elements. For example, at both locations the same conditional statement containing
nested statements might have been introduced. This can be detected by sending all changed
SoftwareElements (e.g., se1 and se2) of the same variant (e.g., id=B) to a clone detection.
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Figure 6.12: Cloned changes relationship example

Co-Located Changes Relationships
Co-located changes are modi�cations on a customized product copy performed at the same
location. Examples for such relationships are modi�ed statements in the same method and
modi�ed methods in the same class.

In software models as assumed by the SPLevo approach, locations of SoftwareElements
are expressed by containment references (i.e., a SoftwareElement is located in its containing
parent SoftwareElement). If modi�cations are performed at the same location, this is an
indicator for required adaptations of the same part of a software implementation. However,
this type of relationship is ambiguous and requires strict reviews. For example, software
programs always have central parts containing elements for several features (e.g., a class
de�ning shared constants).

In a VPM, VPs identify the location of modi�cations. Accordingly, VPs with location refer-
ences to the same SoftwareElement identify modi�cations at the same location. Figure 6.13
illustrates an example of co-located changes. The two VPs VP1 and VP2 reference the same
SoftwareElement as their locations. Thus, a relationship between them is derived.

Depending on the product copies under study, additional location information not stored
in the software model might be available. For example, as published in Klatt and Küster
[103], a component architecture might be provided as an existing component model or
extracted with reverse engineering techniques. Such a component architecture can identify
modi�ed classes, interfaces, or compilation units located in the same component.
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Figure 6.13: Co-located changes relationship example

6.1.3.3 Relationship Type: Simultaneous Modifications

Simultaneous modi�cation relationships represent modi�cations performed for the same
intention. The intention is derived from the context the modi�cations have been performed
in. This context can be de�ned either by the time span when a modi�cation was done, or by
an explicit context, such as a customer requirement to introduce a feature (i.e., an issue).

In the de�ned range of meanings of relationship types, the simultaneous modi�cations
tend to the end of suggestive relationships. They typically allow for automation but require
a strict review. This results from developers, who potentially implemented several custom
features in the same time frame or a single issue includes several custom features at once.

The two directions of simultaneous modi�cations (i.e., same modi�cation time and same
modi�cation issue) are general concepts of relationship types to study. In speci�c scenar-
ios, the development processes, infrastructures, and guidelines vary a lot (e.g., di�erent
infrastructures for capturing issues and tracking implementation changes). The concrete
information available and relationships to study vary in a similar manner. To cope with
this variety, the SPLevo approach is not limited to a speci�c set of information sources for
simultaneous modi�cations. Instead, the following subsections describe details on how to
derive such relationships between VPs independent from a speci�c infrastructure.

Same Modification Time Relationships
When a feature is implemented in a product copy, the required modi�cations or at least parts
of them are typically done at once. However, related modi�cations are often committed
at once to a Version Control System (VCS), such as CVS, git or SVN (Section 2.4.1.1). The
modi�cation time stamp tracked by a VCS can be interpreted as the time of modi�cation.
In contrast to the last modi�cation time tracked by a �le system, all �les committed to a
VCS at once are automatically linked with the same commit. This further improves the
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Figure 6.14: Same modi�cation time relationship example

detection of relationships between the modi�cations, as it is not necessary to handle slightly
di�ering time stamps. Furthermore, when customized product copies are consolidated, the
last modi�cation time stamp of a �le system will be neither available nor useful, as the �les
might have been changed several times in the meantime.

However, most VCSs track changed �les or changed lines of code inside those �les in
a textual manner and do not provide any links to the according SoftwareElements. Thus,
identifying relationships between SoftwareElements based on their modi�cation time stamps
requires to identify their textual representations in the �le resources and to get their modi�-
cation history from the VCS.

Figure 6.14 illustrates two VPs with variants implemented by SoftwareElements which
are referenced by the same commit log entry of a VCS.

To further improve the identi�cation of such relationships, not only the commit time
stamps or identi�ers can be considered but also the messages of the commits. If developers
performed several modi�cations to implement a custom feature, those modi�cations might
have been committed as multiple commits with the same commit message. Investigating in
similar commit messages allows for identifying relationships between VPs resulting from
modi�cations being part of several commits.

Same Modification Issue Relationships
With an issue tracking and management system in place, modi�cations of a product copy are
planned as issues to be implemented by developers (Section 2.4.1.2). Such an issue de�nes a

127



6 Variability Design

se1 se1'

VP1

V1
id=A

V2
id=B

se2

VP2

V3
id=A

V4
id=B

Relationship

Variation Point

Variant

se SoftwareElement

Single Issue Context

se2'

VP

V

Issue 
ID=123

Issue 
ID=123

Issue Tracking and Management

Figure 6.15: Same modi�cation issue relationship example

context in terms of content for all modi�cations done to implement the issue. Accordingly,
identifying modi�cations to be performed for the same issue provides an indicator for a
relationship between them.

The capabilities of issue tracking and management systems as well as their usage within
companies and development teams vary a lot. Similarly, the ways to identify the issues for
modi�cations vary as well. On the one side, mature systems which are used in a proper way
allow for tracing commits performed to a VCS. Thus, they provide traces from the issue to
the modi�cations performed, or at least to the resources modi�ed. On the other side, some
companies use coding conventions to add code markers identifying the code modi�ed for an
issue. Often, these markers include the unique id assigned to an issue by an issue tracking
and management system. This id can be used to identify the issue a modi�cation belongs to.
The explicit tracing approach requires a continuous and proper use of the issue tracking
and management system as well as the responsible creation of the traces throughout the
development of the customized copies. In contrast, the marker approach does not require
such a mature system but relies on developers’ discipline to place code markers correctly.

To identify relationships in a VPM as mentioned above, the SoftwareElements implement-
ing VPs’ variants must be matched with the explicit external traces, or their software model
contents (i.e., parent and sibling SoftwareElements) must be checked for according code
markers.

Figure 6.15 illustrates an example with two VPs and according SoftwareElements (i.e., se′1
and se′2) referenced by the same issue (i.e., Issue ID=123). Because of the common issue, a
relationship between the VPs is identi�ed.
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Compared to Similar Modi�cation Time relationships, this strategy allows for considering
context in terms of content. However, having an issue tracking and management system in
place which is used in a proper way, is a strong assumption. This limits the scenarios Same
Modi�cation Issue relationships can be identi�ed in.

6.1.4 Variability Analysis

VPM n VPM n+1

SPLevo 

Variability Analysis

Relationship 

Analysis
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1
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Figure 6.16: SPLevo Variability Analysis concept

The SPLevo approach provides a variability analysis to support SPL Consolidation De-
velopers in aggregating VPs. As shown in Figure 6.16, the SPLevo Variability Analysis
receives the VPs of the current version n of the VPM (i.e., VPMn), executes one or more
relationship analyses, and returns recommendations for re�ning the VPM to derive version
n+1 (i.e., VPMn+1).

From So�wareElement relationships to VP relationships
As introduced in the last section, the variability analysis investigates relationships between
implementing elements to derive relationships between the containing variation points.

Figure 6.17 illustrates this concept for two variation points (i.e.,VP1 andVP2). The analysis
identi�es varying SoftwareElements in two copies under study (i.e., Copy A and Copy B).
SoftwareElements SE1 and SE2 of Copy A have been modi�ed in Copy B (i.e., SE′1 and SE′2).
Before the analysis starts, there are no relationships in the initial VPM (i.e., Step 0). First,
relationships between the SoftwareElements are studied separately in each copy. This is
done to identify related modi�cations for features present in only one or the other copy.
Accordingly, in Step 1, relationships might be identi�ed between SE1 and SE2 in Copy A
(i.e., serA1 and serA2), or between SE′1 and SE′2 in Copy B (i.e., sreB1 and serB2). Relationships
are always directed, but, depending on the type of relationship studied, they might exist
in one or both directions. Finally, in Step 2, if a relationship between SoftwareElements is
identi�ed, a relationship between the VPs containing the Variant elements implemented
by related SoftwareElements is derived (i.e., vprA1 and vprA2). The direction of the VP
relationship depends on the SoftwareElement relationship it is derived from.
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Figure 6.17: Illustration of VP relationship identi�cation steps

Framework for relationship analyses
Furthermore, the SPLevo Variability Analysis provides a framework for adding relationship
analyses in a �exible manner. This allows for adaptation as there is no �nite set of relation-
ships to study. Additionally, all types of relationships identi�ed in Section 6.1.3 can bene�t
from or even need adaptation to speci�c technologies and consolidation scenarios.

Recommendations to be reviewed by Developers The overall goal of the SPLevo approach
is to reduce the manual e�ort for SPL Consolidation Developers. Accordingly, the variability
analysis does not only identify relationships, but also derives aggregations including the
decision if a grouping or merging can be applied. However, the SPLevo Variability Analysis
returns recommendations only. This is done to cope with the need of SPL Consolidation
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Developers to �nally decide about aggregating VPs or not. Developers can review and either
accept, decline, or adapt the recommendations to their needs (Section 6.1.4.1).

Iterative and parallel analyses
The SPLevo Variability Analysis provides two alternatives for performing multiple relation-
ship analyses: iteratively in a serial manner and simultaneously in a combined manner. The
former allows for reviewing the results of the analyses separately (Section 6.1.4.3). Thus,
SPL Consolidation Developers need to understand only one type of relationship at once.
In contrast, the latter allows for running several analyses in parallel and combining their
results (Section 6.1.4.4). Thus, only VPs sharing all analyzed relationships at the same time
are recommended for aggregation.

The following subsections explain how recommendations are designed and which infor-
mation they provide. Afterwards, the merge detection mechanism is explained, before the
iterative and combined analysis options are described in detail.

6.1.4.1 Refinement Recommendation

Re�nement recommendations are VP aggregations recommended to improve the structure
of a VPM. They are automatically derived from VP relationships identi�ed by an according
analysis. Afterwards, they are presented to SPL Consolidation Developers to decide about
their applicability. If recommendations are accepted, the according operators are executed
on their referenced VPs, as explained in Section 6.1.1.

A re�nement metamodel has been developed specifying a data structure for re�nement
recommendations and for providing access to information necessary for deciding about
recommendations.

Figure 6.18 shows a class diagram of the re�nement metamodel. A RefinementModel

contains all Refinements resulting from an analysis. A Refinement references one or more
RelationshipTypes representing the type of relationship(s) it was derived from. Thus, at
least one RelationshipType must be set. In case of a combined relationship analysis, a
Refinement can reference several types of relationships at once.

A single Refinement is created for all VPs transitively connected by the identi�ed rela-
tionships. For the re�nement itself, the directions of the VP relationships are not relevant,
as the VP aggregation operations do not depend on them.

Two concrete types of Refinements exist: GroupRefinement and MergeRefinement. The
former relates to the Grouping Variation Point Operator, the latter to the Merging Variation

Point Operator.
Initially, all recommendations are created as GroupRefinements, as grouping can be applied

to any set of VPs (Section 6.1.1.2). In a second step, each GroupRefinement is checked if its
complete set of contained VPs, or at least a part of it, can be merged, as this is preferred to
grouping. A containment relationship between GroupRefinements and MergeRefinements

is designed for the case that only a part of the VPs can be merged. In such a case, new
MergeRefinements are created for each set of VPs merging can be applied to. These new
MergeRefinements are added to the set of sub-re�nements of the original GroupRefinement.
As a result, the surviving VPs of the MergeRefinements will still be grouped by the original
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Figure 6.18: Class diagram of the re�nement metamodel

GroupRefinement. As de�ned in the OCL constraint in Listing 5, a GroupRefinement must
contain at least two elements being MergeRefinements or VariationPoints in a desired
combination . Otherwise, a GroupRefinement does not represent a reasonable aggregation.
1 context GroupRefinement

2 inv GroupRefinementSignificance: variationPoints->size() + subRefinements->size() >= 2;

Listing 5: GroupRe�nement signi�cance constraint

Similarly, MergeRefinements must be contained either in a RefinementModel or in a set
of subRefinements of a GroupRefinement (see OCL constraint in Listing 6).
1 context MergeRefinement

2 inv MergeRefinementLocation: refinementModel <> null or parent <> null;

Listing 6: MergeRe�nement location constraint

Furthermore, as MergeRefinements cannot contain any sub-re�nements, it has to reference
at least two VPs for representing a reasonable aggregation, as de�ned in the OCL constraint
in Listing 7.
1 context MergeRefinement

2 inv MergeRefinementSignificance: variationPoints->size() >= 2;

Listing 7: MergeRe�nement signi�cance constraint

A Refinement references zero, one, or more RefinementReasons providing additional
information about the re�nement’s origin. A RefinementReason references the source and
target VPs of an identi�ed relationship. For example, assuming a VP vpA identifying a
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modi�ed statement that calls a modi�ed method identi�ed by a VP vpB . An according
RefinementReason references vpA as the source and vpB as the target of the relationship.
The reason attribute of the RefinementReason provides additional information about the
relationship in a human-readable manner. It is �lled when the Refinement is derived from
the recognized relationships. For the example above, the reason would contain a description
that it results from a method call between the modi�ed statement and method.

A re�nement model covers not only the types and reasons of relationships identi�ed
by an analysis (i.e., RelationshipType and RelationshipReasons). In addition, it allows for
navigating the VPs to be re�ned as well as the SoftwareElements implementing their variants.
Accordingly, all information required to decide about the re�nement recommendations is
accessible for SPL Consolidation Developers.

6.1.4.2 Merge Detection

As described in Section 6.1.1, the Grouping VP Operator can be applied to any combination
of VPs, as it is a link only and the VPs remain untouched. In contrast, the Merging VP

Operator comes with technical restrictions and requires additional e�ort to check if it can be
applied. As published in Klatt et al. [100], the SPLevo approach includes a merge detection
improving recommended GroupRefinements by either fully or partially transforming them
into MergeRefinements depending on the VPs’ technical constraints. This detection relieves
SPL Consolidation Developers from manual investigation into the VPs’ ability for being
merged. Partially means that if only a subset of a GroupRefinement’s VPs can be merged, an
according sub-re�nement will be created. The surviving VP of the partial merging operation
will become part of the VPG produced by the original GroupRefinement.
1 BigInteger var1 = new BigInteger(1); //VP1

2 BigInteger var2 = new BigInteger(2); //VP2

3 BigInteger gcd = var1.gcd(var2); //VP3

Listing 8: Mergeable variation points example

Assuming that VP1, VP2, and VP3 in Listing 8 are VPs according to newly introduced
Java statements, the program dependency analysis described in Section 6.3 will recognize
relationships between VP3 and VP1 as well as between VP3 and VP2 because of their declared
or referenced variables (i.e., var1 and var2). Accordingly, an initial GroupRefinement will be
derived containing all of the three VPs. Now, the merge detection will recognize that the
statements are direct siblings that can be merged.

As shown in the example above, the decision that two VPs can be merged is technology-
speci�c. Thus, the SPLevo approach de�nes a general Merge Detection Operator m(vp1,vp2)
that has to be adapted in a technology-speci�c manner (De�nition 17). If no technology-
speci�c Merge Detection Operator is provided, the analysis still returns valid results and
recommends GroupRefinements only.
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De�nition 17: Merge Detection Operator

A Merge Detection Operatorm maps two VPs on a Boolean value, identifying if the VPs can

be merged or not.

MerдeDetectionOperator m : V → B
V = VariationPointxVariationPoint
B = {true, f alse}

m(vp1,vp2) =

{
true if vp1 and vp2 can be merged with certainty

f alse otherwise

(6.1)

m(vp1,vp2) ∧m(vp2,vp3) =⇒ m(vp1,vp3) (6.2)

Certainty Characteristic (6.1)
The Merge Detection Operator must return true only if VPs can be merged with certainty.
Otherwise, it has to return false. A merge operation further improves a re�nement compared
to a group operation. But, as merging VPs which cannot be merged would result in invalid
VPs, a Merge Detection Operator has to return false in case of uncertainty.

Transitive Characteristic (6.2)
The VPs’ ability to being merged is de�ned as a transitive characteristic and must be
considered by technology-speci�c Merge Detection Operators. The transitive characteristic is
required to ensure that several SoftwareElements which can be merged one by one can also
be merged as a group. For example, this allows merging more than two VPs, and VPs with
Variants being implemented by two or more SoftwareElements can be merged as well. The
Merging VP Operator and the merge detection algorithm presented below are based on this
characteristic.

For the Java example in Listing 8, the merge detection evaluates as follows:
m(VP1,VP3) = true
m(VP2,VP3) = true
m(VP1,VP3) ∧m(VP2,VP3) =⇒ m(VP1,VP2)

MergeRefinement Detection Algorithm
The SPLevo approach speci�es an algorithm for applying the merge detection on initially
recommended GroupRe�nements. The algorithm provides deterministic results indepen-
dent from the order the contained VPs are processed in. The algorithm processes each
GroupRe�nement separately. Depending on the contained VPs, the algorithm either trans-
forms a GroupRe�nement to a MergeRe�nement, improves it with MergeRe�nements as
sub-re�nements, or leaves it as it is. In case of MergeRe�nements as sub-re�nements, the
according VPs will be merged before the surviving VPs will be aggregated into a single VPG
(Section 6.1.1). The algorithm facilitates technology-speci�c Merge Detection Operators by
executing the function MergeDetection. This function triggers all available Merge Detection
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Operators one after another. If at least one of them returns true for the provided VPs, the
MergeDetection function will return true in total.

As speci�ed in Algorithm 9, the algorithm sorts all VPs that can be merged with each
other into common buckets. Later on, VPs within the same bucket are combined into a
MergeRe�nement.

Algorithm 9: Detect and Build MergeRe�nements Algorithm
input : GroupRe�nement: дr // The group re�nement check for mergeable VPs
output : Re�nement: improvedRe f inement

SET<SET<VariationPoint>>: buckets ← ∅ // Buckets for mergeable VPs

foreach VariationPoint: vpi ∈ дr .variationPoints do
foreach VariationPoint: vpj ∈ дr .variationPoints \vpi do

if MergeDetection(vpi ,vpj) == true then

PutIntoBucket(buckets ,vpi ,vpj)
end

end

end

if buckets == ∅ then
return дr // No merge possible

else if |buckets | == 1 ∧ bucket1 == дr .variationPoints then
return MerдeRe f inement (дr ) // All VPs mergeable

else

foreach SET<VariationPoint>: bucketi ∈ buckets do
дr .variationPoints ← дr .variationPoints \ bucketi // New sub-refinement

MergeRe�nement: r ← MerдeRe f inement ()
r .relationshipTypes ← дr .relationshipTypes
r .variationPoints ← bucketi
r .reasons ← (rr ∈ дr .reasons |rr .source ∈ bucketi ∨ rr .tarдet ∈ bucketi )
дr .subRe f inements ← дr .subRe f inements ∪ r

end

return дr

end

For each Grouping, the algorithm executes the MergeDetection function to all pairs of
the contained VPs to check if they can be merged. If a pair can be merged, they are put into
the same bucket. As speci�ed by Algorithm 10, if both VPs are already contained in buckets,
those buckets will be merged. This is possible because of the transitive characteristic de�ned
for merge detection operators. If only one of the VPs is contained in a bucket, the other one
is added to the same bucket. If none of the VPs is contained in a bucket yet, a new bucket
will be created for them.

When all pairs have been checked, the algorithm processes the buckets to derive Merg-
eRe�nements. In case that no bucket was created, no VPs can be merged and the GroupRe-
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Algorithm 10: Order VPs into buckets algorithm (PutIntoBucket)
input : SET<SET<VariationPoint>>: buckets // set of VP buckets

VariationPoint: vpi , vpj // VPs to put into buckets
output :
SET<VariationPoint>: bucketi ← (b ∈ buckets |vpi ∈ b)
SET<VariationPoint>: bucketj ← (b ∈ buckets |vpj ∈ b)
if bucketi , ∅ ∧ bucketj , ∅ then

bucketi ← bucketi ∪ bucketj
else if bucketi , ∅ then

bucketi ← bucketi ∪vpj
else if bucketj , ∅ then

bucketj ← bucketj ∪vpi
else

buckets ← buckets ∪ {vpi ,vpj }
end

�nement remains as it is. In case of a single bucket containing all VPs, the original GroupRe-
�nement is replaced with a MergeRe�nement. In any other case, the GroupRe�nement is
kept, and for each bucket a MergeRe�nement is created to merge the contained VPs. Then,
all merged VPs are removed from the GroupRe�nement, and the MergeRe�nement is added
to the GroupRe�nement’s set of sub-re�nements.

6.1.4.3 Iterative Analyses

To identify VPs contributing to the same copy-speci�c feature, di�erent types of relationships
can be studied, as discussed in Section 6.1.3. Relationships are indicators for VPs being
candidates for aggregation. Reviewing the according recommendations is required to verify
the candidates.

The SPLevo approach proposes an iterative application of di�erent relationship analyses.
It is recommended to analyze less ambiguous relationships (i.e., restrictive relationships)
�rst, as they are easier to review due to their degree of unambiguity. Furthermore, in general,
it is recommended to analyze one relationship after the other to reduce the complexity of
SPL Consolidation Developers’ reviews.

A single iteration comprises of i) executing an analysis, ii) reviewing the resulting re�ne-
ment recommendations, and iii) applying the accepted ones.

When SPL Consolidation Developers accept at least one of the recommendations, a new
version of the VPM is created. The metamodel of the VPM does not change between di�erent
versions of a VPM. Thus, SPL Consolidation Developers can i) perform as many iterations
as they like, and ii) go back to a VPM resulting from a previous iteration.
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6.1.4.4 Combined Analyses

In addition to iteratively analyzing one type of relationship after the other, the SPLevo
approach allows for combining di�erent analyses in a single iteration.

This can be used to i) analyze several types of relationships in parallel without the need of
performing multiple iterations and ii) combine the results of several analyses. For example,
if SPL Consolidation Developers are interested in VPs with program dependencies and
sharing a similar term, the combined analysis concept enables them to perform a Program
Dependency Analysis and a Shared Term Analysis in a combined manner.

R1,R2

R2R2

R3

R3

R2R2

R2

R1

VP1

VariationPoint 1

VariationPoint 2

VariationPoint 3

VariationPoint 4

VariationPoint 5

Variation Point 

Model

Intial Graph

without Edges

VP3

VP2

VP4

VP5

1

3

2

4

5

1

3

2

4

5

1

3

2

4

5

VP1

VP3

VP2

VP4

VP5

Relationship 

Analyses

Combined 

Graph

VariationPoint 1

VariationPoint 2

VariationPoint 3

VariationPoint 4

VariationPoint 5

Aggregation 

Recommendations

g
ro

u
p

g
ro

u
p

Detection

Rules

Figure 6.19: Graph-based analyses composition

As we have published in [104], the SPLevo approach includes a graph-based analysis
concept to combine the results of several relationship analyses. As shown in Figure 6.19,
the total set of VPs in a VPM is considered as an undirected edge-labeled graph with no
edges at the beginning. The analyses to combine are executed in parallel. For each identi�ed
relationship, an edge is created and labeled with the according type of the relationship.
Furthermore, the related VPs are referenced as shown in Figure 6.20 (i.e., R1, R2, and R3 in
Figure 6.19).

Figure 6.20: Graph-based analysis edge
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The results are merged into a single graph by combining the edge labels (e.g., “R1, R2”).
Finally, a set of detection rules is applied to derive GroupRe�nements from the relationship
combinations SPL Consolidation Developers are interested in. Those GroupRe�nements
might be further improved by the merge detection, as described in Section 6.1.4.2, before
they are returned.

Using an intermediate graph allows for executing the individual analyses in parallel,
without the need of synchronizing edit operations on the VPM. As most analyses require a
reasonable amount of processing resources, such a parallelization supports a better utilization
of parallel processing resources on a top level.

A detection rule is speci�ed as a set of relationship types that must be matched by edges’
labels to derive a relationship between two or more VPs and an according re�nement
recommendation (i.e., reference “types” in Figure 6.21).

Figure 6.21: Detection rule

To apply a detection rule, each of the graph’s edges is checked against the rule, as speci�ed
in Algorithm 11. A match is detected if an edge’s set of labels contains exactly the same
relationship types as referenced by the detection rule. In this case, the two VPs represented
by the matching edge’s nodes are assigned to a common sub-graph. Three strategies for sub-
graph assignment are used: If both VPs are already assigned to sub-graphs, the sub-graphs
are merged. If only one VP is already assigned to a sub-graph, the other VP is assigned to
the same one. If none of them was assigned to a sub-graph before, a new one is created and
both VPs are assigned to it.

When all edges are processed, a GroupRe�nement is created for each sub-graph. All
VPs connected by the same sub-graph are assigned to the same GroupRe�nement. In
addition, the relationship types of the detection rule are added to the set of sources of the
GroupRe�nement.

Detection rules are always applied in a de�ned order. If edges are matched by a rule’s
condition, they are ignored by any rules applied later on to prevent con�icting recommen-
dations. The set of rules to apply as well as their order depends on the individual scenario
and the relationship analysis to perform.

As described in Section 6.1.4.3, the SPLevo approach recommends analyzing one type of
relationship after the other. Restrictive relationship types should be analyzed �rst to simplify
SPL Consolidation Developers’ review of the derived recommendations. However, analyzing
a single relationship might result in recommending aggregations of too many VPs. In such
a case, it is a reasonable approach to combine several analyses and to search for all their
relationship types at once. As a result, VPs recommended for being aggregated must share
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Algorithm 11: Detection rule application
input : SET<Edge>: edдes // all edges in merged graph

DetectionRule: d // Current detection rule to be applied
output : SET<GroupRe�nement>: G ← ∅ // Derived re�nements
SET<SET<VariationPoint>>: subдraphs ← ∅
foreach Edge: e ∈ edдes do

if e .labels ≡ d .types then // Detection Rule matched

SET<VariationPoint>: sд1 ← (sд ∈ subдraphs |e .node1 ∈ sд)
SET<VariationPoint>: sд2 ← (sд ∈ subдraphs |e .node2 ∈ sд)
if sд1 , ∅ ∧ sд2 , ∅ then

sд1 ← sд1 ∪ sд2
else if sд1 , ∅ then

sд1 ← sд1 ∪ e .node1
else if sд2 , ∅ then

sд2 ← sд2 ∪ e .node2
else

subдraphs ← subдraphs ∪ {sд1,sд2}
end

end

end

foreach SET<VariationPoint>: sд ∈ subдraphs do // Derive refinements

GroupRe�nement: дr ← GroupRe f inement (sд) // Create GroupRefinement

дr .source ← d .types
G ← G ∪ дr

end

return G

all those types of relationships probably leading to more precise results. Furthermore, if SPL
Consolidation Developers are used to apply di�erent analyses, they can execute them all at
once. To avoid searching for combined results, they can use individual detection rules for
each of the analyzed relationship types. Thus, they will bene�t from the parallel execution.

6.2 Variation Point Characteristics

A VP’s characteristics include its variability characteristics and its naming. The former
de�nes the capabilities of the according variability in the future SPL. The latter simpli�es
the discussion between SPL Consolidation Developers and SPL Managers. Both aspects are
further discussed in the following subsections.
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6.2.1 Variability Characteristics

The variability characteristics of a VP include the variability type, binding time, and extensi-
bility, as de�ned by the VPM metamodel in Section 3.2.2.4. According to De�nition 6, they
“specify the capabilities of the variability re�ecting a VP in the future SPL”. Hence, they de�ne
the requirements on the VP’s implementation and are used in the Consolidation Refactoring
phase to select concrete variability realization mechanisms (Section 7.2). Accordingly, SPL
Consolidation Developers must de�ne appropriate variability characteristics to ensure the
right type of variability will be available in the future SPL.

Initially, VPs are created with the default characteristics de�ned by the SPL Type chosen
in the SPL Pro�le (Section 3.3.1.1). However, those characteristics are default settings only
and, for example, a run time binding is not reasonable for all VPs in a multi-tenant system.
Consolidation Developers must change the variability characteristics according to their
preferences for working with the SPL in the future.

A VPM allows for navigating to the implementing SoftwareElements of a VP respectively
of its Variants. This source of information can be used by SPL Consolidation Developers, for
example to choose the same variability characteristics for all VPs located in the same type
of SoftwareElements (e.g., load time binding for all classes with varying extend references).

6.2.2 Variation Point Group Naming

A VPG contains VPs that have been identi�ed to contribute to the same variable feature. As
part of the consolidation process, SPL Consolidation Developers and SPL Managers have to
review the variability design described by a VPM.

To simplify their communication and review, VPGs provide an id attribute for iden-
tifying the group and the related variable feature, as speci�ed by the VPM metamodel
(Section 3.2.2.2).

The SPLevo approach aims for supporting consolidations of customized copies, even
without any documentation of the custom features or performed modi�cations. In addition
to the need of reverse engineering the features themselves (i.e., VPGs), their names (i.e., VPG
IDs) must be reverse engineered as well. It cannot be assumed to �nd obvious names in the
feature-speci�c implementations.

The initial VPGs are created based on di�erences detected between the copies (Section 5.4).
During the VPM initialization, each VPG contains only one VP. The id of the VPG is set
to the label of the SoftwareElement representing the VP’s location. This provides SPL
Consolidation Developers with a �rst idea about the VPG.

The �nal decision of naming a feature is up to SPL Consolidation Developers and SPL
Managers. However, their decision can be supported by extracting hints from i) the imple-
menting SoftwareElements and ii) the relationships between the VPs contained in a VPG.
Especially when the VPM structure is improved and the number of VPs contained in a VPG
increases, further SoftwareElements and relationships to study are available.
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6.2.2.1 Terms from So�wareElements

Often, Software Developers implement semantics into their code when realizing a feature.
For example, variables can be named according to the feature currently implemented. NLPA
investigates in such semantics by extracting and analyzing terms used in identi�ers, com-
ments, or values (Section 2.4.10). Similar to the Shared Term Analysis (Section 6.4), �rst,
the terms must be extracted from the implementing SoftwareElements. Next, they must
be normalized, for example by splitting (e.g., separate terms with a dash in between) or
stemming (e.g., using singular terms only). Then, non-essential terms (e.g., programming
language syntax and short terms with less than three characters) are excluded.

The NLPA used for the SPLevo Shared Term Analysis extracts the terms of each VP
separately and tries to identify commonalities between them. In contrast, here, the common
semantics of all SoftwareElements implementing all VPs of a VPG is investigated. Accord-
ingly, also terms within comments are considered and term frequencies might provide
additional sources of information.

To cope with the typically high amount of terms arising in such analyses, weights can be
used to improve the ranking of the terms in addition to their frequency. For example, terms
extracted from class names can get a higher weight compared to the name of a variable
inside a method.

However, extracting terms and considering the SoftwareElements they are used in requires
a technology-speci�c processing and an additional point for adaptation.

6.2.2.2 Terms from Relationships

If two or more VPs are contained in the same VPG, they share one or more relationships.
Depending on the type of relationship, they can provide further hints for the ID of a VPG
respectively the name of the according variable feature. For example, a shared term analysis
might already have identi�ed terms used by the VPs. Another example is a simultaneous
modi�cation relationship because of VPs implemented in the context of a single issue tracked
in an SCM system. This issue would provide useful information about the feature realized
by the VPs.

However, the names derived from either SoftwareElements or relationships represent
only hints and cannot be expected to provide satisfying names from Product Managers’
perspectives later on. Accordingly, manual investigation by SPL Consolidation Developers
and SPL Managers is required.

6.3 SPLEVO Program Dependency Analysis

The SPLevo Program Dependency Analysis extracts relationships between sets of software
elements implementing the variants of VPs. These relationships are then used for deriving
relationships between the containing variation points and for recommending aggregations.
This analysis is implemented as a representative for the Relationship Type of Dependent
Modi�cations (Section 6.1.3.1) and used to study their bene�ts. The analysis and results
from the evaluation were also published in Klatt et al. [100].
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Analyzing program dependencies
Designing features of an SPL is a�ected by many soft factors, such as organizational rea-
sons or product management decisions [33]. Thus, creating a reasonable design cannot
be fully automated. However, when consolidating copies and their already implemented
copy-speci�c features, there are given technical relationships between modi�cations (i.e., de-
pendent modi�cations) one must consider to avoid implementing everything from scratch.
Program dependencies are representatives for such restrictive relationships, and software
developers are used to read them in general. However, as described in Section 6.1.3, the
SPLevo approach proposes to reuse existing dependency analysis concepts. But, at the same
time, it mentions the need for adaption to use those analyses in the context of consolidating
customized copies.

To cope with this challenge, the SPLevo approach proposes a program dependency analysis
specialized for dependencies between VPs. In particular, this includes i) considering code of
more than one code base, ii) focusing on dependencies between modi�ed SoftwareElements,
and iii) supporting groups of SoftwareElements in case of previously merged VPs and
SoftwareElements representing a larger sub-tree of a software model. Program dependencies
exist in nearly every technology, but concrete dependencies to consider are technology-
speci�c. All case studies conducted to evaluate the SPLevo approach are implemented
with Java technology. Hence, the program dependency analysis developed in the SPLevo
approach was implemented to support the Java programing language speci�cs as well.

The following subsections present the concept of the SPLevo program dependency analy-
sis. This covers the general analysis concept, the set of considered dependencies, and the
algorithm to identify the dependencies between VPs, as well as the derivation of re�nement
recommendations as presented in Section 6.1.4.1.

6.3.1 Analysis Concept

The SPLevo program dependency analysis is designed to cope with i) handling multiple
code bases, ii) focusing on di�erences, and iii) supporting VPs with variants implemented
by more than one SoftwareElement (e.g., a set of statements).

Figure 6.22 presents a diagram of the analysis concept. It receives a VPM respectively
its VPs as input, which provides access to the complete software models of the copies’
code bases (i.e. SoftwareElements 1..3 and a..d in the diagram). Those models are trees
of SoftwareElements according to the elements’ containment references (De�nition 7). In
addition to this minimal structure of supported software models, they can contain cross-
references identifying dependencies between SoftwareElements that are not contained by
each other. The dependencies studied by the SPLevo analysis are represented as such cross-
references. Furthermore, the VPs’ variants reference their implementing SoftwareElements
in the model trees, which are possibly root elements of complete sub-trees.

• In step 0, the analysis receives the VPMs to analyze, including references to the copies’
software models.

• In step 1, the analysis marks sub-graphs consisting of the VPs, their variants, and the
referenced implementing SoftwareElements.
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Figure 6.22: Program dependency analysis graph-based algorithm concept

• In step 2, the sub-graphs are extended to the SoftwareElements contained by the
implementing elements.

• In step 3, the sub-graphs are further extended by the cross-references representing
studied dependencies.

• Step 4 in Figure 6.22 illustrates the resulting sub-graphs.
• Finally, in step 5, all VPs included in the same sub-graph are considered as related to

each other, and according relationships are derived.

6.3.2 Studied Program Dependencies

The SPLevo program dependency analysis investigates in program dependencies typically
represented in Program Dependency Graphs (PDGs) as proposed by Ottenstein and Ot-
tenstein [144] and by cross-references in software models as described by Wilde [193]. In
general, program dependencies are studied for many reasons and with di�erent characteris-
tics, such as for optimization (e.g., Ferrante et al. [59]), change impact analysis (e.g., Lehnert
[117]), or feature location (e.g., Dit et al. [43] and Rubin and Chechik [161]).

Extension of the dependencies proposed by Robillard and Murphy [158]
The SPLevo program dependency analysis is based on a set of dependencies proposed
by Robillard and Murphy [158] in the �eld of feature location. The analysis proposed by
Robillard and Murphy [158] was also previously used by Alves et al. [3] in the context of
refactoring SPL models. Furthermore, this base set of program dependencies has been chosen
as it is already tailored for object-oriented programming languages. It was also used for the
Java programming language as required for the case studies during the SPLevo evaluation.
Furthermore, the experience reported by Alves et al. [3] was rated as an indicator for a
reasonable set to start with. However, it was necessary to extend this set. For example, it does
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not cover dependencies below the granularity of methods. But, for example, dependencies
between statements are required in the context of the SPLevo approach. Further details
about the extension of the dependency set are described below.

Studied Java elements
Robillard and Murphy [158] recommend studying dependencies between Classes (C),
Fields (F), and Methods. The SPLevo program dependency analysis re�nes the method han-
dling proposed by Robillard and Murphy [158]. It distinguishes between Method Signatures

(M) and Statements (S) implementing a method’s body. Considering statements allows
for gaining more precise dependency results. Furthermore, the SPLevo program analysis
investigates in Parameters (P), Variables (V), Interfaces (I), and Enumerations (E).
In the following, the term “type” is used if classes, interfaces, or enumerations are referred
equally.

Studied dependencies between Java elements
In addition to the types of elements to study, Robillard and Murphy [158] recommend a set of
dependencies to consider: superType represents inheritance relationships. calls represents
functional invocations, while reads means accessing the value of another element. writes
means to replace the value of another element, and creates instantiates a new instance of a
type.

Furthermore, Robillard and Murphy [158] de�ne a declares dependency. This type of
dependency is super�uous in the context of analyzing relationships between VPs as done
in the SPLevo approach. In the context of a Java software model conforming to SPLevo’s
structure de�nition (De�nition 7), this is similar to a containment relationship between the
declaring and the declared elements. If a containing element di�ers between two product
copies, its content is handled as di�ering as well and the according variant element of the
VP references the containing SoftwareElement only. For example, if a new Java class has
been introduced in a product copy, it will be referenced as implementing element by a
variant. The �elds declared by the new Java class are not referenced by separate variant
elements. Instead, they are indirectly identi�ed through a containment reference of the
SoftwareElement representing the new Java class. Thus, analyzing declared relationships
would not provide additional relationships between any of the VPs.

The SPLevo program dependency analysis also proposes additional dependencies to
consider. The typed dependency is identi�ed if a SoftwareElement is declared with a speci�c
type. Furthermore, the SPLevo program dependency de�nes an import dependency between
a SoftwareElement and an import declaration for a type required by the SoftwareElement.
Finally, a modifies dependency is proposed. As described by Flanagan [60, page 86], Java
uses a “pass by value” strategy and handles objects by reference. That means references are
passed as values instead of the objects themselves. A modifies dependency indicates that a
referenced object is manipulated but the reference itself remains unchanged. For example,
assuming a variable references an object and a method is called on this object, this is treated
as a modifies dependency between the method call statement and the variable. Such a
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modi�es dependency is marked for line 2 in Listing 9. In contrast, a writes dependency
completely changes the object referenced by a variable (e.g., line 3 in Listing 9).
1 MyClass a = new MyClass(); // declaration of a

2 a.doSth(); // statement modifies a

3 a = new MyClass(); // statement writes a

Listing 9: Examples of modi�es and writes dependencies

Overview of analyzed dependencies
Table 6.1 summarizes the dependencies considered by the SPLevo program dependency
analysis. Each cell represents the dependency of the element in the column’s header, linked
by the dependency type in the row’s leftmost column with the element in the row’s second
column. For example, the top right cell represents the dependency “Interface I is superType
of Class C”. Not all combinations are reasonable to consider, such as “Class superTypes
Interface”. Dependencies proposed by Robillard and Murphy [158] are marked with an R.
Those added by the SPLevo approach are marked with an SPL. All dependencies marked in
the table are considered by the SPLevo program dependency analysis (i.e., all cells marked
with either an R or an SPL).

Two sets of Java-speci�c SoftwareElement types and one set of dependencies (i.e., refer-
ences between SoftwareElements) are derived from the dependencies investigated by the
SPLevo program dependency analysis.

1. The set of types of source SoftwareElements referencing other SoftwareElements by a
program dependency is referred as:
Ts : {Class , Field , Method , Statement , Parameter , Inter f ace}.

2. The set of types of target SoftwareElements referenced by source elements with a
program dependency under study is referred as:
Tt : {Class , Inter f ace , Enumeration, Field , Method ,Variable , Statement , Parameter }.

3. The dependencies from a source type ts ∈ Ts to a target type tt ∈ Tt as indicated by an
R or S in Table 6.1. The dependencies are represented by triples:
D: SET<{ts ,tt ,td }> with dependency type td ∈ {superTypes , calls , reads , writes ,
checks , creates , typed , import ,modi f ies}.

6.3.3 Analysis Algorithm

As part of the SPLevo program dependency analysis, an algorithm has been developed to
realize its analysis concept. It uses an internal index to derive VP relationships with a single
traversing of sub-trees of the software models.

Figure 6.23 illustrates an index-oriented view of how the algorithm realizes the graph-
based concept described above. The illustration is also in line with the example code given
in Listing 10.
1 BigInteger var1 = new BigInteger(1); //VP1

2 BigInteger var2 = new BigInteger(2); //VP2

3 BigInteger gcd = var1.gcd(var2); //VP3

Listing 10: Code Example with Variation Points
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C F M S P I

superType C R SPL
I SPL
E SPL

calls M SPL R
reads F SPL R

V SPL
writes F SPL R

V SPL
checks C R

I SPL
E SPL

creates C SPL R
typed C SPL SPL SPL SPL

I SPL SPL SPL SPL
E SPL SPL SPL SPL

import C SPL SPL SPL SPL
I SPL SPL SPL SPL
E SPL SPL SPL SPL

modi�es F SPL
V SPL

Table 6.1: SPLevo Program Dependency Analysis: Studied program dependencies for the
Java programming language
(R = Robillard and Murphy [158], SPL = additionally analyzed by SPLevo
C = Class, I = Interface, E = Enumeration, M = Method Signature, F = Field,
V = Variable, P = Parameter, S = Statement)

Mark graph edges
First, the algorithm marks graph edges for SoftwareElements that either implement a variant
by themselves or are referenced by such an element with a cross-reference or a direct
or indirect containment reference. During the indexing, only SoftwareElements of the
studied element types (i.e.,Ts respectivelyTt ) are considered. Similarly, only cross-references
representing one of the studied dependencies are taken into account (i.e., D). The index
links each SoftwareElement with its own VP and VPs of the SoftwareElements it depends
on. The type of the identi�ed dependency is stored as well (i.e., d).

The example provided in Listing 10 contains three copy-speci�c statements marked as
VariationPointsVP1,VP2, andVP3. For the sake of brevity, the index illustrated in Figure 6.23
contains entries relevant for this example only. After VP1’s statement in line 1 is processed,
the index contains three entries: i) the statement itself, ii) the type BigInteger, and iii) the
variable var1, all linked to VP1 (e.g., {var1, {VP1}, ∅}). When line 2 is processed, the index
contains additional entries, again for the statements, the type BigInteger, and the second
variable var2, all referencing VP2 (e.g., {var2, {VP2}, ∅}). Finally, when line 3 is processed,
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Figure 6.23: SPLevo Program Dependency Analysis: Algorithm illustrating example

the index now contains entries for the dependencies from variable дcd to var1 and var2:
{var1{VP1},∅},{var2, {VP2}, ∅},{дcd , {VP3, VP1}, d1},{дcd , {VP3, VP2}, d2}.

Identify sub-graphs
Next, the algorithm scans the index to identify sub-graphs. The index used by the algorithm
does not repeat all references present in the original software models but detects pairs of
VPs (i.e., sub-graph edges) connected by SoftwareElements covered in the index. For the
example given above, VP3 and VP1 are detected because they are both referenced by the
SoftwareElement дcd . Similarly, VP1 and VP2 are detected as both are referenced by the
SoftwareElement дcd as well. The algorithm derives sub-graph edges from those references
(i.e., {VP3, VP1} and {VP3, VP2}).

Derive VP-Relationships
Finally, the algorithm derives VP-relationships from the sub-graphs identi�ed in the previous
step. Those relationships will be used to recommend aggregations to SPL Consolidation
Developers. For the example illustrated in Figure 6.23, an aggregation of VP1, VP2, and VP3
will be recommended.
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6.4 SPLEVO Shared Term Analysis

The SPLevo Shared Term Analysis extracts terms from the software elements implementing
the variants of VPs and identi�es relationships between elements of di�erent VPs if they
share similar terms. These relationships are then used to derive relationships between the
containing variation points and to recommend aggregations. This analysis is implemented
as a representative for the Relationship Type of Similar Modi�cations (Section 6.1.3.2) and
used to study ids bene�ts. As terms provide varying meanings, the identi�ed relationships
have suggestive meaning (Section 6.1.3).

Analyzing terms in source code
As identi�ed by Kuhn et al. [114] in the �eld of NLPA, developers express conceptual
knowledge (e.g., about a speci�c feature) not only with the syntax of a programing language
but also with linguistic information stored in identi�ers (e.g., method or class names). As
described in Section 6.1.3.2, terms present in modi�ed SoftwareElements provide hints about
VPs contributing to the same feature (i.e., shared term analysis).

Listing 11 provides an example of a term used at di�erent modi�ed code locations, as-
suming developers created a new class named CreditCardPayment, a new �eld named
creditCardField in the class Dialog, and a new variable named newCreditCardNumber in the
method save. The identi�ers of all these SoftwareElements contain the term “credit card”
in one or the other variation. Identifying this shared term provides a hint that all these
SoftwareElements have been modi�ed for the same “credit card” feature.

1 public class CreditCardPayment {

2 ...

3 }

1 public class Dialog {

2 public Input creditCardField =...;

3 }

1 public void save() {

2 String newCreditCardNumber = dialog.creditCardField.getValue();

3 ...

4 }

Listing 11: Code example for shared term

In the �elds of general computer linguistics and information retrieval, many approaches
exist to investigate terms used in documents or texts (Section 2.4.10). Research approaches
in the �eld of NLPA apply such approaches to program analysis in general. The SPLevo
approach proposes to reuse these existing concepts, such as stemming to normalize slightly
varying terms (e.g., con�ating plural and singular variants of a term). However, the existing
concepts must be adapted for �nding relationships between modi�cations and non-semantic
contexts of code in general.

To cope with this need for adaptation, the SPLevo Shared Term Analysis is able to i) extract
terms from SoftwareElements implementing speci�c variants, ii) support strategies to cope
with useless terms, and iii) derive VP relationships from terms shared by SoftwareElements.
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6.4 SPLevo Shared Term Analysis

The following subsections describe the general concept of the SPLevo Shared Term
Analysis, which terms are studied, and details of its processing.

6.4.1 Analysis Concept

The SPLevo Shared Term Analysis is designed to cope with the requirements of i) handling
multiple code bases, ii) allowing for technology-speci�c term extraction, and iii) supporting
di�erent term processing strategies.

The �rst is required by the context of the consolidation. It is necessary to handle the code
bases of the customized copies at once, which is not supported by general NLPA analyses.
The term extraction is required if the analysis can be adapted for di�erent technologies.
This is necessary as only speci�c attributes of SoftwareElements can be used by developers
for context related terms. Finally, di�erent term processing strategies are required to cope
with varying term quality and relevance, as described in the next section.
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Figure 6.24: Shared term analysis graph-based algorithm concept

Figure 6.24 presents a diagram of the analysis concept. It receives a VPM as input, which
provides access to the complete software models of the copies’ code bases (i.e. Software-
Elements 1..3 anda..d in the diagram). Those models are trees of SoftwareElements according
to the elements’ containment references (De�nition 7). The SoftwareElements in the models
have attributes containing the terms chosen by developers. Furthermore, the VPs’ variants
reference their implementing SoftwareElements in the model trees, which are possibly root
elements of complete sub-trees.

149



6 Variability Design

• In step 0, the analysis receives the VPMs to analyze and including references to the
software models of the product copies.

• In step 1, the analysis marks sub-graphs of the VPs, their variants, and the referenced
implementing SoftwareElements.

• In step 2, the sub-graphs are extended with the SoftwareElements contained by the
implementing elements.

• In step 3, terms are extracted from the SoftwareElements (i.e., t1..5).
• In step 4, the extracted terms are normalized to handle variations of the same term,

such as plural and singular (i.e., tn1..n2).
• Finally, in step 5, similar terms are connected with each other (i.e., tn1).

In addition, VPs participating in the same sub-graph are considered as related to each other.

6.4.2 Studied Terms

As published in Klatt et al. [99], the SPLevo Shared Term Analysis analyzes terms stored in
identi�ers of the SoftwareElements. Identi�ers provide a reasonable source of conceptual
knowledge implemented by developers in a lexical manner [150, 114].

The analysis provides an adaption point to decide which attribute of a SoftwareElement
represents an identi�er according to the type of the SoftwareElement. This decision has to
be done in a technology-speci�c manner because the type of a SoftwareElement and the
attributes to consider depend on the concrete type of software model under study. However,
deciding about the type of a SoftwareElement and its attributes is typically a straight forward
decision. Programming languages and according software models specify which elements
and attributes are to be considered as an identi�er. For example, the JaMoPP [78] Java
metamodel used in the SPLevo prototype de�nes an explicit NamedElement as a super type
of all identi�ers and de�ning a name attribute.

The raw strings extracted from attributes of SoftwareElements are typically not su�-
cient to subsequently perform further analyses (e.g., Spek et al. [177]). To cope with this
insu�ciency, the SPLevo Shared Term Analysis uses term processing to normalize the ex-
tracted strings and receive more valuable terms. The proposed processing includes splitting
– also known as tokenization – (e.g., “MyIdenti�er” to “My” and “Identi�er”), stemming
(e.g., “records” to “record”), and �ltering (e.g., removing terms with less than three char-
acters). These generic steps are in line with typical processing recommended by others
(e.g., Spek et al. [177, page 2]). However, many di�erent approaches and algorithms exist for
each of these steps (Section 2.4.10).

As discovered in the case studies, the quality of VP relationships discovered by the shared
term analysis strongly depends on the quality of the identi�ers. This correlates with the
�ndings of Kuhn et al. [114, page 240] by analyzing terms in context of semantic clustering
of source code. For example, if developers adhere to guidelines such as the camel case
separation of words recommended by the JavaBeans coding conventions [73], this provides
structure to be automatically processed by the splitting operation.
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6.4 SPLevo Shared Term Analysis

The SPLevo Shared Term Analysis denotes terms not relevant in the context of copy-
speci�c features as Term Spam (De�nition 18).

De�nition 18: Term Spam

Term Spam is a set of terms that does not represent contextual knowledge introduced by

implementing a copy-speci�c feature. From the perspective of the SPLevo Shared Term Analysis,

Term Spam leads to false indicators for VP relationships. Thus, Term Spam is undesired and

needs to be either removed or faded out from the analysis.

In contrast to Term Spam, there might be terms which are known to be relevant in
the context customized features. The SPLevo Shared Term Analysis allows for specifying
relevant terms and using them to improve the analysis results. Such terms are referred to as
“featured terms” (De�nition 19).

De�nition 19: Featured Term

A Featured Term is known to be relevant for identifying copy-speci�c features. Thus, the

processing recognizes also slightly varying representations of a featured term and never splits it.

Compound terms are often reasonable to be speci�ed as featured terms. For example, developers

tend to use di�erent separators according to personal styles or types of identi�ers the compound

terms are used in (e.g., variables and constants).

The SPLevo approach does not assume to receive any featured terms as input, and the
analysis can also be used without any of them. However, several parts of the analysis
algorithm bene�t from considering available featured terms, as described in Section 6.4.3.
Furthermore, featured terms might not be available in advance to the consolidation process.
The iterative analysis approach allows SPL Consolidation Developers to de�ne featured
terms before executing an analysis. They can run an analysis and review the results. If they
recognize a new term to be featured, they can decline the current recommendations, add the
new featured term, and execute the analysis again.

The SPLevo Shared Term Analysis de�nes an adaptation point for processing extracted
terms. This adaptation point allows for coping with varying identi�er qualities and pro-
grammer habits to further improve the quality of the terms to analyze. Further details about
the build-in processing strategies are documented in the following sections.

6.4.3 Analysis Algorithm

The SPLevo approach makes use of common infrastructures for term processing and textual
searches (Section 2.4.10). For example, an inverted index is used to link terms with VPs.
A VP is linked if the term results from a SoftwareElement implementing one of the VP’s
variants. This index is �lled during the analysis and �nally considered to retrieve all VPs
indexed for the same term (i.e., step 5 in Figure 6.24).

As mentioned in the last section, the analysis processes terms in three manners before
they are stored by the index: Splitting, Stemming, and Filtering. The following subsections
provide details about the speci�c implementations of the processing within the SPLevo
Shared Term Analysis.
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6.4.3.1 Splitting

The SPLevo Shared Term Analysis makes use of splitting rules proposed in the general �eld
of computer linguistics and NLPA. It splits terms when the case of their characters changes
(i.e., camel case notation) or white space and other non-alphabetic characters are found.

Furthermore, the splitting of the analysis takes featured terms (De�nition 19) into account.
If featured terms are de�ned, they are protected from splitting. They will not be split, even
if they are used in a camel case style or when single non-alphabetic characters are used as
part of them. In the latter case, those non-alphabetic characters will also be removed to
clean up the featured term’s occurrence.

For example, in the ArgoUML case study, the term “usecase” occurs in feature-speci�c
code in the variations “UseCase”, “Use_case”, “useCase”, “usecase”, and “Usecase”. Thus,
providing “usecase” as featured term allows for treating all of these variations as the same
shared term.

The splitting improvement based on featured terms allows for �nding additional relation-
ships between varying featured terms as shown in the example above.

6.4.3.2 Stemming

The SPLevo Shared Term Analysis performs a stemming to normalize terms. For example,
plural forms of terms are often used in identi�ers referring to a list of elements (e.g., ”dialogs”).
Those identi�ers are stemmed to their singular form (e.g., ”dialog”) as typically used in
identi�ers referring to a single object.

The SPLevo Shared Term Analysis uses the algorithm-based Snowball variant of the
Porter stemmer by default (Porter [151]). It has been chosen from a list of �ve publicly
available approaches: Snowball Porter [151], Porter [152], KStem [111], S-Stemmer [74], and
Pling [181]. For the �rst four, implementations provided by the Lucene project [75] have
been used. For the last one, an implementation provided by Suchanek et al. [181] as part of
the Yago project [180] has been used.

All stemmers show comparable results when applied in the case studies. Thus, all of
them are supported by the SPLevo algorithm. However, the Snowball Porter algorithm
has been chosen as default because it provides satisfying and comprehensible stemming
results. Compared to the initial Porter algorithm, it returns more comprehensible results
for short terms (e.g., ”use” instead of “us” or “xpos” instead of “xpo”). Compared to the
KStem stemmer, it has shown better results for plural/singular terms. For example, the
KStem stemmer does not stem “points” and “point” to the same term whereas the Snowball
Porter stemmer does. The Pling stemmer uses a lexical approach based on general spoken
language (Section 2.4.10). As identi�ed by Høst and Østvold [82], developers use a more
speci�c vocabulary than in general spoken languages. Thus, even if the case studies did not
show notable di�erences, it is not clear what the impact of the di�ering languages on the
stemming results is. Finally, the S-Stemmmer performs a basic plural to singular conversion
only. For example, it is not capable to stem conjugation of verbs. “Order” and “isOrdered”
are both about ordering (e.g., a book or anything else). Without being able to stem “ordered”
to “order”, these example terms cannot be matched. Similar to the lexical approach, the
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S-Stemmer lead to minor di�erences in the case studies only, but the general impact of its
limitations is not clear. Stemming extracted terms allows for �nding additional relationships
between otherwise varying terms, such as for “points” and “point”.

6.4.3.3 Filtering

Developers use not only terms representing contextual knowledge. They also use terms
representing processing concepts (e.g., ”load” or “create”) or coding guidelines (e.g., get or
set), as studied by Høst and Østvold [83], Sajaniemi and Prieto [166], and Caprile and Tonella
[28].

The SPLevo Shared Term Analysis uses a short term �lter to remove terms with less
than three characters. There is no �xed recommendation about the minimum length to
use. However, in the case studies, we experienced that terms with a length of one or two
characters often represent useless variable identi�ers. Beside others, the terms “as”, “bo”,
and “de” have been identi�ed in the industrial case study and con�rmed as meaningless
variable identi�ers by the developer participating in the case study. In contrast, terms with
three characters have been identi�ed that are possible, such as “txt”, “pos”, and “svg”.

Beside the minimum term length �ltering, four strategies for targeting Term Spam have
been identi�ed: term frequency, seed terms, stop word lists, and shared term clusters. Term
frequency strategies increase or decrease the value of terms according to the number of
their occurrences within a speci�c scope. Seed terms de�ne a positive list of terms to search
for. Either the value of seed terms is increased compared to the value of other terms, or they
are the only terms considered by the analysis. Stop word lists de�ne negative lists of terms
which are �ltered out before terms are stored in the inverted index. Shared term clusters
restrict the groups of related VPs by requiring all VPs within a group to share the same set
of terms.

Filtering stop words or short terms allows for reducing the number of false relationships
and thus recommending fewer aggregations to be declined by SPL Consolidation Developers.

Term frequency
Frequency based strategies are often used to evaluate the semantics of a text or set of terms.
For example, to provide an idea about the concern of a source �le, the most frequently used
terms in the contained identi�ers could be considered. A high frequency can be rated in
both directions: Being an indicator for a term representative for a speci�c code location,
or being an indicator for a term used in many locations and thus not representative for a
speci�c location.

In the context of the SPLevo Shared Term Analysis, none of these directions provides
a reliable indicator for related SoftwareElements. On the one side, variant elements of
VPs are often implemented by a few SoftwareElements only. Thus, they are providing a
limited number of terms to analyze (e.g., a changed statement) with correspondingly similar
frequencies. On the other side, even for larger copy-speci�c code (e.g., added compilation
units), the frequency does not provide a good indicator for the relevance of a term. A relevant
term might be used just once within a set of many terms (e.g., the name of a large and
completely copy-speci�c class). But in other cases, a relevant term might be used quite often
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(e.g., the name of a �eld newly introduced in an existing class). Also, the frequency a term
is used in di�erent VPs is not convincing. If only one feature has been added to a copy, it
is reasonable to have a single term used to implement variants of all VPs. In contrast, an
arbitrary term recommended by programming guidelines might be used in all VPs as well,
but without any relevance for a copy-speci�c feature.

However, the goal of the shared term analysis is to identify non-arbitrary terms used by
several locations as an indicator for a relationship between those locations. This does not
require discovering the real semantics of the code locations. Thus, other �ltering approaches
should be preferred over evaluating the frequency of extracted terms.

Seed Terms
Seed terms are terms known to represent a copy-speci�c feature or at least assumed to be
used for a feature’s implementation. Based on a set of seed terms, all other terms can be
�ltered. This would remove any Term Spam at all. The drawback of this approach is the
need to have good seed terms provided by SPL Consolidation Developers.

Often, SPL Consolidation Developers, SPL Managers, and Product Managers have an idea
of the features implemented in speci�c copies. Terms or names of these features can be
used to improve the shared term analysis. For example, as part of the ArgoUML case study
(Section 8.4.1), names for the coarse grain features such as UseCase, Sequence, or Activity
are known upfront and reasonable to be considered.

One source of seed terms can be featured terms as de�ned in the context of the SPLevo
Shared Term Analysis (De�nition 19). However, the approach uses these terms to improve
the analysis’ results. It does not rely on them, as the list of seed terms might be incomplete
and developers might have used a slightly di�ering vocabulary. Furthermore, in one of the
case studies, developers were not even able to provide a list of seed terms (i.e., featured
terms).

Seed terms are a possible strategy for �ltering Term Spam as part of the SPLevo Shared
Term Analysis. Nevertheless, the strategy’s limitations, such as the possibly incomplete list
of terms, also limit the relationships that can be identi�ed. Especially, �ltering all terms
other than the seed terms prevents identifying shared terms not expected in advance.

Stop Word Lists
Stop word lists are used in natural language processing to �lter irrelevant terms before
executing an analysis (Section 2.4.10). To improve the results of the SPLevo Shared Term
Analysis, stop words are �ltered from the set of extracted terms to reduce Term Spam.

During the term processing, stop words are �ltered after stemming has been �nished. The
stop words are stemmed as well. In this way, stop words must be speci�ed in one variant
only and not for all of their variants present in the SoftwareElements. Additionally, the
provided variant of a stop word is not required to match the stem of the word. Especially,
depending on the facilitated stemmer, the stem of the word can be arti�cial and di�cult to
be de�ned by SPL Consolidation Developers. For example, the Snowball Porter stemmer
produces stems such as “additi” for ”addition” and “locat” for “location”.
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As published in Klatt et al. [99], there is no publicly available and generally applicable
stop word list to be used for program analysis. For general spoken languages, many stop
word lists exist and are publicly available (e.g., for the MySQL database [142]). However,
as identi�ed by Høst and Østvold [82], developers use a more speci�c vocabulary than in
general spoken language. Accordingly, more speci�c stop words are required for �ltering
Term Spam in the context of the shared term analysis. They even depend on the domain,
application type, developing company, and products to consolidate copies of.

The SPLevo approach proposes a guideline for developing stop word lists for speci�c
contexts. This guideline distinguishes di�erent scopes of stop word lists (i.e., programming
language, technology, and domain) and recommends sources to check for according terms.
However, only terms clearly expected to be Term Spam must be added to a stop word list. To
facilitate the creation of stop word lists, it is recommended to develop separate lists aligned
with the di�erent scopes. This allows for reusing more generally applicable lists, such as
for a speci�c programming language. Furthermore, the context simpli�es decisions about
adding a term to a stop word list or not.

The programming language scope relates to the programming language used to de-
velop the product copies. For each programming language, common sense naming con-
ventions exist. For example, in Java, methods to access an attribute of an object should
start with the term “get”. A stop word list for a programming language should re�ect such
terms. Common sense terms can be retrieved from coding guidelines (e.g., for Java [73]
or .Net [132]). In addition, there are existing studies on programming habits and terms
recommended to express program concepts. For example, Høst and Østvold [83], Sajaniemi
and Prieto [166], and Caprile and Tonella [28] analyzed programs to identify frequently
used terms expressing more technical and less feature related knowledge. Such terms are
programming-language-speci�c and might be considered for being reused. Finally, design
patterns as proposed by Gamma et al. [65] are often implemented by using terms identifying
the role of a SoftwareElement within a pattern (e.g., Observer, View, Controller).

The technology scope relates to technologies and infrastructures, such as the type
of products under study or frameworks they are built with. In each program, there are
terms used because of the underlying technology and not because of a feature actually
implemented. For example, developing OSGi components includes classes to control the life
cycle of a component [143, page 109]. The identi�er of such a class typically includes the
term “Activator”, which might not relate to a copy-speci�c feature. In addition, Ratiu [155]
has classi�ed types of applications (e.g., graphical user interfaces or web applications) and
typical terminologies used during their development (e.g., ”button” or “dialog”).

The domain scope relates to a business or product domain. In most domains, common
sense terms exist. For example, in applications for library management, the term ISBN might
be used quite frequently as a global identi�er with low contribution to speci�c features.
Speci�c industries, such as the aviation industry, have developed glossaries providing starting
points for discovering terms to add to a stop word list. Finally, many companies have custom
naming conventions for developing their products. For example, they can include terms to
be used for identi�ers of speci�c infrastructures or for instances of components from custom
development libraries. Such conventions provide an additional source for stop words in the
scope of a domain.
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To conclude, �ltering stop word lists are a reasonable approach to reduce Term Spam.
However, stop word lists for program analyses, such as the SPLevo Shared Term Analysis,
strongly depend on the context they are applied in. For example, the term “Activator” is
often used in context of OSGi bundles, as mentioned before. However, it is no Term Spam
if an OSGi wrapper for an existing product has been developed as a copy-speci�c feature.
Thus, there is a necessity to build or adapt stop word lists for the speci�c contexts. The
guidelines presented above can be used for this. Nevertheless, the di�erent scopes come
with di�erent sources, varying potential for being reused, as well as varying clarity for
identifying Term Spam.

Shared Term Clusters
VPs can share more than one term at the same time. Assuming three VPs VP1, VP2, and
VP3. VP1 can share a term t2 with VP2 and another term t3 with VP3. If there is no further
connection betweenVP2 andVP3, it is not clear if the group of all three of them is reasonable.
Furthermore, deciding about such a group is di�cult, as either relationships might be
reasonable, only one of them, or even none.

To cope with this situation, the SPLevo approach proposes to limit identi�ed relationships
to clusters of VPs all sharing the same terms with each other. For the example given above,
if t2 and t3 would represent the same set of terms, they will be returned. Otherwise no
relationship is recommended.

In addition, it is recommended to combine the shared term cluster strategy with the other
strategies presented above. In particular, if seed terms are available, they should be used
during the �rst analysis run.
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This chapter describes the SPLevo Consolidation Refactoring phase and the contributions
to reduce the manual e�ort for initializing the refactoring and ensuring a consistent imple-
mentation of variability mechanisms. As shown in Figure 7.1, the refactoring phase follows
the variability design phase to process an approved variability design. It is subdivided in
two activities: deciding how to implement variability at the variation points (i.e., Variabil-
ity Realization Decision) and the actual refactoring (i.e., Consolidation Refactoring). In a
post-processing phase, an optional export to transfer the results to an SPL management tool
can take place. The goal of the SPLevo Consolidation Refactoring phase is to transform the
product copies to the future Software Product Line (SPL) as illustrated in Figure 7.2.
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Variation Point
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Figure 7.1: SPLevo process: Consolidation Refactoring

The chapter is structured as follows: First, the speci�cation concept for consolidation
refactorings that allows for consistent implementation and support of realization decisions
is presented in Section 7.1. Following, the support for variability realization decisions is
explained in Section 7.2. Next, aspects of the consolidation refactoring activity are described
in Section 7.3, before the SPL Export is explained in Section 7.4.
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Figure 7.2: Overview of the SPLevo consolidation refactoring

Refactoring overview
The realization decision and actual refactoring are based on the Variation Point Model
(VPM), the SPL Pro�le, and the software models representing the implementations of the
product copies. The VPM provides the variability design approved by SPL Consolidation
Developers and SPL Managers. Hence, it de�nes the variability to realize in the future SPL.
The SPL Pro�le provides the guidelines how to implement variability in the SPL. It de�nes
the variability mechanisms to choose from as selected by the Software Architects.
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Figure 7.3: Individual variation point refactoring

Implementation of variability mechanisms
Considering an individual Variation Point (VP), the consolidation refactoring brings together
the implementing SoftwareElements of its variants and a variability mechanism including a
con�guration to decide between the alternatives. Figure 7.3 illustrates the refactoring for
VP VP1. The product copy that was selected as Leading Copy serves as code base for the
future SPL. The variants of the other product copies are integrated into this code base. A
new SoftwareElement SEvm represents the implementation of a variability mechanism and
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is inserted in the Leading Copy. The SoftwareElements of the product copies SE1 and SE′1
become child elements of the new SEvm because they are now controlled by the variability
mechanism. Additionally, a con�guration elementConf1 is added to decide which alternative
should be activated by the variability mechanism represented by SEvm.

Consolidation and traditional refactoring
In respect to all product copies, the consolidation refactoring changes their implementations
in order to improve their maintainability and con�gurability. It improves the internal
structure of the overall set of product copies without changing the observable behavior from
the perspective of a single product con�guration (i.e., a product copy). Taking all copies, the
resulting SPL, and the con�guration into account, the “consolidation refactoring” conforms
to the de�nition of a refactoring given by Fowler et al. [63, page 9].

Nevertheless, the consolidation refactoring comes with additional challenges compared
to refactoring in the traditional manner. It has to combine code from several code bases
while introducing a variability mechanism and con�guration at the same time. In traditional
refactoring, developers have to check the motivation of a concrete refactoring to decide
if they should refactor at all. In the context of consolidation refactoring, a refactoring is
unavoidable to receive an SPL. However, SPL Consolidation Developers still have to decide
about the variability mechanism to introduce for a speci�c VP.

Reduction of manual refactoring e�ort
The overall goal of the SPLevo approach to reduce the manual e�ort of SPL Consolidation
Developers and supporting a more consistent SPL realization also applies to the consolidation
refactoring phase. According to this goal, the SPLevo approach includes a speci�cation con-
cept to de�ne and process consolidation refactorings (Section 7.1). Based on the refactoring
speci�cation concept, the SPLevo approach provides automation for deciding about the
variability mechanisms to use for individual VPs (Section 7.2). Furthermore, the refactoring
speci�cation concept is designed to support changing the implementation itself, which is
denoted as ”consolidation refactoring” (Section 7.3).

Not predetermined refactorings
The SPLevo approach does not include a prede�ned set of �xed refactoring speci�cations.
The broad range of variability mechanisms, the varying shapes of similar mechanisms, and
the varying company-speci�c requirements and preferences of implementing variability
rarely allow for reusing the same set of refactorings in di�erent consolidation scenarios. In-
stead, the refactoring speci�cation concept allows for de�ning individual sets of refactorings
to ensure consistency within a de�ned scope (e.g., a company).

Finally, the SPLevo approach de�nes a concept to export the resulting SPL to SPL man-
agement tools for a continuous management.
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7 Consolidation Refactoring

7.1 Consolidation Refactoring Specification Concept

The SPLevo approach designates Software Architects to specify a set of intended variability
mechanisms with an SPL Pro�le (Section 3.3). Thus, SPL Consolidation Developers can
choose from a consistent set of mechanisms.

To further ensure a consistent implementation of variability mechanisms, the SPLevo
approach provides a speci�cation concept for specifying of consolidation refactorings. This
concept allows for de�ning the variability mechanism introduced by a refactoring, the
included con�guration mechanism, and a description of how the consolidation refactoring
must be performed. The variability mechanism is speci�ed with its realized variability
characteristics as well as additional descriptive information. This allows for supporting
Software Architects in selecting mechanisms as part of the SPL Pro�le (Section 3.3.3).
Furthermore, it allows for supporting SPL Consolidation Developers in deciding which
variability mechanism to use for an individual VPs. Finally, a detailed description of how to
refactor di�erent types of SoftwareElements allows for limiting the variety of shapes of the
same variability mechanism.

The SPLevo refactoring speci�cation concept is derived from the refactoring speci�cations
de�ned by Fowler et al. [63]. It provides descriptive information to support developers in
deciding for a refactoring or not (e.g., motivations and short descriptions). Furthermore, it
calls for mechanics that describe how to perform a refactoring without determining any
automation.

The SPLevo approach de�nes a data model for refactoring speci�cations allowing for
standardized speci�cations and enabling automated utilization. Figure 7.4 presents a class
diagram of the data model for refactoring speci�cations.

A refactoring speci�cation consists of the VariabilityMechanism it realizes. In addition, it
contains two main parts: VariabilityInfos and RefactoringInstructions. The former provides
information about the variability mechanism and the refactoring in general. The latter
speci�es how to refactor speci�c types of SoftwareElements.

7.1.1 Variability Infos

The VariabilityInfos contain descriptions such as a short summary, a description of the
con�guration mechanism that will be introduced, and the motivation when to use the speci�c
refactoring. The latter describes the advantages and disadvantages of the implementation
of the variability mechanism. The descriptions are informal and intended to give Software
Architects and SPL Consolidation Developers an idea of the result.

In addition, the VariabilityInfos contain a set of characteristics supported by the variability
mechanism introduced by the refactoring. The Binding Time, Variability Type, and Extensible
de�nitions conform to those de�ned for VPs in a VPM and allowed characteristics in the SPL
Pro�le. The quality goal by trend conforms to the quality goals of the SPL Pro�le. Accordingly,
it is a subjective assessment of the person who speci�ed the refactoring. Thus, it gives a
direction only to decide about alternative refactorings providing the same characteristics.

Furthermore, the VariabilityInfos de�ne the types of SoftwareElements supported by the
speci�ed refactoring. For each SoftwareModel supported in general, the supported types of
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7.1 Consolidation Refactoring Speci�cation Concept

Figure 7.4: Refactoring speci�cation data model

SoftwareElements are de�ned. A supported software model is de�ned by a unique ID (e.g., its
namespace URI). A type of SoftwareElements is de�ned by a reference to the according
Ecore class. All types of SoftwareElements not explicitly de�ned as supported, cannot be
handled by the refactoring. However, the speci�cation concept and data model allow for
providing reasons for types of SoftwareElements that are not supported (i.e., limitations).

Finally, the VariabilityInfos part provides a general example to give an idea about the
refactoring respectively its variability mechanism. An example consists of a description and
three CodeSnippets illustrating code of the Leading Copy, an Integration Copy, and their
representations in the resulting SPL. The CodeSnippets must not represent a complete and
executable piece of code. Instead, they are intended to provide an intuitive illustration of
the refactoring.
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7 Consolidation Refactoring

7.1.2 Refactoring Instructions

The second main part of the SPLevo refactoring speci�cation concept targets concrete
refactoring instructions. For each supported type of SoftwareElement, a refactoring in-
struction must be speci�ed according to the invariant “InstructionCompleteness” of the
OCL constraint in Listing 12. There might be more than one refactoring instruction for the
same supported SoftwareElementType. This is necessary because two instances of the same
type of software element might require di�erent refactoring mechanics due to their context
or shape. For example, a Java statement in a method body requires di�erent mechanics
compared to a statement in a static �eld initialization.
1 context RefactoringSpecification

2 inv InstructionCompleteness :

3 infos.supportedModels.supportedTypes->forAll( st |

4 instructions.instructions->preCondition->implementingElementType->exists(rt | rt=st)

5 )

Listing 12: Refactoring instruction completeness constraint

A RefactoringInstruction provides mechanics describing how to perform a refactoring
of the according type of SoftwareElement. Similar to Fowler et al. [63], mechanics must
be detailed enough to verify a consistent implementation. In the best case, they should
allow for automation. Details about di�erent degrees and possibilities for automation are
discussed in Section 7.3. However, Fowler et al. [63] speci�ed refactorings for object-oriented
languages in general. In contrast to their context, consolidation refactorings that con�rm to
the speci�cation concept of the SPLevo approach are de�ned for concrete software models
(i.e., supportedModels). This allows for describing mechanics based on the concrete types
and references de�ned in the metamodel of a software model.

As shown in Figure 7.4, each RefactoringInstruction contains a PreCondition element that
identi�es the types of software elements for the VariationPoint location (i.e., locationType)
and the elements implementing the Variants (i.e., implementingElementType). Furthermore,
the PreCondition element contains two attributes to describe exclusions for the location
and implementing elements. For example, a refactoring instruction for variable declaration
statement elements cannot be applied if the type of a declared variable has been modi�ed.
Such exclusions specify the cases when the refactoring cannot be applied.

The mechanics are not limited in their type and scope. Larger refactorings introducing
new elements or new resources are possible, too. This allows for introducing even more
complex variability mechanisms, such as exchangeable components. Furthermore, it allows
for coping with limitations of individual variability mechanisms.

For example, using Aspect Oriented Programming (AOP) with AspectJ does not allow
for varying statements in the middle of methods [93] (Section 2.3.3.3). Instead of excluding
such types of elements, refactoring mechanics can be speci�ed to extract a new method
encapsulating the varying statements and to use AOP to varying the body of the method.

Finally, a RefactoringInstruction includes an example illustrating how SoftwareElements
of the treated type are handled (i.e., instructionExample). RefactoringInstruction-speci�c
examples are de�ned similar to general examples. They should provide CodeSnippets
representing code of Leading and Integration Copies, as well as of the resulting SPL.
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7.2 Variability Realization Decision

1 
 

<Name> 

Summary  

<Abstract> 

Configuration Mechanism 

<Description of the configuration mechanism> 

Motivation 

<(Dis-)Advantages of using this refactoring> 

Supported Characteristics Supported Elements 

Binding Time <Selection> <Concrete Software Model> 

Variability Type <Selection> <Supported types of SoftwareElements> 

Extensible <Selection> 

Quality Goal by trend <Selection> 

Limitations 

<Types of SoftwareElements not supported by the mechanism incl. a reason> 

Alternatives 

<Alternative refactorings providing the same characteristics> 

Example 

<Description of the example general example given below> 

Leading Integration 

<Code of the leading copy> <Code of the integration copy> 

Refactored SPL 

<Resulting SPL code including configuration> 

 

Figure 7.5: Word processor template for refactoring speci�cations: Variability info part

Figure 7.5 and Figure 7.6 present word processor templates to specify the VariabilityInfos
part respectively individual instructions of a refactoring. An example application of this
template for a concrete variability mechanism as well as concrete refactoring instructions
are provided in Appendix A.1.

7.2 Variability Realization Decision

The �rst step of the Consolidation Refactoring phase of the SPLevo process is to decide how
to realize the variability of each VP. This is done by assigning a VariabilityMechanim to a
VP according to the metamodel references shown in Figure 7.7.

All VariabilityMechanisms assigned to VPs must have been speci�ed in the SPL Pro�le.
On the one side, this enables SPL Consolidation Developers to choose from a given set of
mechanisms instead of �nding mechanisms from scratch. On the other side, if no applica-
ble mechanism has been de�ned in the SPL Pro�le, a communication with the Software
Architects to improve the SPL guidelines is stimulated. Hence, unnoticed introductions of
new VariabilityMechanisms are avoided. Listing 13 de�nes a constraint with an according
invariant.
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1 
 

Instruction: <SoftwareElementType> 

Summary  

<Abstract> 

Preconditions 

Location 

Element <SoftwareElementType> 

Exclusion <Exclusion> 

Implementing Elements 

Element <SoftwareElementType> 

Exclusion <Exclusion> 

Example 

<description of the general example given below> 

Leading Integration 

<code of the leading copy> <code of the integration copy> 

Refactored SPL 

<resulting SPL code including configuration> 

Additional Parameters 

<Type>: <Name>: <Description> 

Mechanics 

<Summary of the mechanics concept> 

<pseudo code based on metamodel specifying the refactoring process> 

 

Figure 7.6: Word processor template for refactoring speci�cations: Refactoring instructions
part

1 context VariationPoint

2 inv SPLProfileVariabilityMechanisms :

3 variabilityMechanism <> null

4 implies splProfile.variabilityMechanisms->exists(vm | vm=variabilityMechanism)

Listing 13: SPL Pro�le VariabilityMechanisms only constraint

Beside the need to respect the prede�ned set of VariabilityMechansisms, SPL Consolidation
Developers have to take the required characteristics of a VP into account. The SPLevo
approach proposes automation for recommending Variability Mechanisms for individual
VPs, as described in the following section. Afterwards, Section 7.2.2 describes strategies to
handle VPs that could not be assigned with a VariabilityMechanism automatically.

Figure 7.7: Variability mechanism assignment
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7.2 Variability Realization Decision

7.2.1 Variability Mechanism Recommendation

The SPLevo approach provides an automated recommendation of VariabilityMechanisms for
VPs. This allows for releasing the SPL Consolidation Developers from manually checking
VariabilityMechanisms whether they can be applied for the individual VPs.

Selecting VariabilityMechanisms requires to check several criteria for the individual VPs.
On one side, all characteristics required by a VP have to be provided by a VariabilityMecha-
nism. On the other side, the refactoring providing the VariabilityMechanism has to support
all SoftwareElements implementing the Variants of the VP.

The SPLevo approach de�nes a set of rules to evaluate those criteria. These rules are
speci�ed as invariants of the OCL constraint in Listing 14 and allow for automation. The
automation is done by checking the VariabilityMechanisms de�ned in the SPL Pro�le for
each VP a mechanism should be assigned to. The VariabilityMechanisms are checked in the
order of their de�nition in the SPL Pro�le. For each pair of VP and VariabilityMechanism,
the rules are evaluated until a VariabilityMechanism can be assigned. If all invariants are
satis�ed, the VariabilityMechanism is assigned to the VP. If at least one invariant is not
satis�ed, the evaluation stops and continues with the next VariabilityMechanism to check.
1 context VariationPoint

2
3 inv Characteristics :

4 variabilityMechanism <> null

5 implies variabilityMechanism.specification.infos.characteristics.variabilityType = self.variabilityType

6 and variabilityMechanism.specification.infos.characteristics.bindingTime = self.bindingTime

7 and variabilityMechanism.specification.infos.characteristics.extensible = self.extensible

8
9 inv SupportedElementTypes :

10 variabilityMechanism <> null

11 implies variants.implementingElements.getWrappedElements()->forAll(ie |

12 variabilityMechanism.specification.infos.supportedModels.supportedTypes->exists(t |

13 ie.oclIsTypeOf(t.specificType)

14 )

15 )

Listing 14: Rules of the VariabilityMechanism applicability check

The minimum number of checks mentioned above is not reduced by those rules. Hence,
the worst-case of the checks is that none of the VariabilityMechanisms is assignable to any of
the VPs, but only the last invariant is not ful�lled for each of the mechanisms. The according
worst-case computation complexity is O (n) = n2 with the available VariabilityMechanisms
and the VPs as input.

However, with the number of VPs to be expected in a consolidation scenario, this com-
plexity is acceptable for automation, but it is not acceptable to be done manually in terms of
e�ort and probability of human error.

7.2.2 Manual Review and Refinement

The SPLevo approach allows for manually reviewing the assigned VariabilityMechanisms.
This can be necessary because of two reasons: adjustment to individual preferences and
handling of VPs no VariabilityMechanism could be assigned to.
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7 Consolidation Refactoring

The necessity of an adjustment can result from SPL Consolidation Developers’ expert
knowledge about the use of the future product variants. For example, the Software Architects’
guidelines and preferences might be satis�ed by the auto assigned VariabilityMechanism.
But, an alternative mechanism, providing the same characteristics, probably better �ts to the
knowledge of the Software Developers responsible to maintain speci�c VPs in the future.

In case of VPs that could not be assigned with a VariabilityMechanism, the set of mecha-
nisms de�ned by Software Architects is not su�cient for the speci�c consolidation scenario.
To solve such issues, SPL Consolidation Developers can collaborate with Software Archi-
tects to extend the set of VariabilityMechanisms. Probably, an existing refactoring can be
adapted to support the a�ected VPs as well, such as for the AspectJ example given in Sec-
tion 7.1. If done, the auto recommendation can be used with the extended set of mechanisms,
or the SPL Consolidation Developers can manually assign the not yet assigned VPs. As
an alternative strategy, SPL Consolidation Developers can check the VPM for reasonable
adaptations. Here, reasonable means to adapt the VP structures and characteristics to still
represent a satisfying variability design, but allowing for using one of the previously de�ned
VariabilityMechanisms. Thus, the set of VariabilityMechanisms must not be extended.

7.3 Consolidation Refactoring

The consolidation refactoring activity within the SPLevo process is about the actual trans-
formation of the implementations of the product copies to the future SPL. With reference to
the SPLevo refactoring speci�cations, this is about executing the mechanics speci�ed by
the refactoring speci�cations. The activity is denoted as “consolidation refactoring”. This
explicitly extends the traditional term “refactoring”, as without a concrete con�guration, no
statement about changed or unchanged behavior can be given.

As described in Section 7.1, the speci�cation of the mechanics must be detailed enough to
transform the implementations with no signi�cant variety (e.g., except for varying format-
ting). Such detailed mechanics are possible because the VPM resulting from the preceding
process provides detailed references to the SoftwareElements to process. This further allows
for di�erent degrees of automation of the mechanics. The possible degrees include a full
automated refactoring, completely manual refactoring, as well as a mixture of those two
extremes. The degree of automation for a speci�c VariabilityMechanism depends on the
mechanism itself and the preferences of SPL Consolidation Developers and Software Ar-
chitects. For example, automating complex refactorings which are rarely applied might be
out of proportion to the e�ort for building the automation. Nevertheless, other complex
refactorings might be used frequently and justify a high e�ort for their automation.

7.3.1 Manual Refactoring

Manual refactoring product copies into the future SPL comes with the risk of di�ering
implementations according to individual programming styles. Furthermore, the risk of
manual faults and a higher manual e�ort are given by nature. Nevertheless, some developers
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7.3 Consolidation Refactoring

reported their preference for manual refactoring to perform a code review while performing
the refactorings (Section 8.5).

However, the SPLevo approach provides the necessary information for generating task
descriptions to support carrying out the speci�ed mechanics manually. To reduce the risk
of varying implementations, those descriptions must be as detailed as possible. In general,
three levels of task descriptions can be generated based on the information provided by a
VPM: issues descriptions, task contexts, and code annotations.

Issue tracking and management systems allow for describing tasks to perform and help
to coordinate their resolution (Section 2.4.1.2). Such issues are typically more vague and
provide an informal description of what has to be done (e.g., Anvik and Storey [6]).

In contrast, task-oriented software development approaches provide developers with task
descriptions as well as a context to perform a task. Approaches such as Eclipse Mylyn [52]
are able to provide developers with a context in terms of relevant resources and detailed
software elements. However, a description is given for a complete Mylyn task and not on
the level of individual SoftwareElements.

Finally, developers are used to document task descriptions within annotations and code
comments (e.g., Storey et al. [179]). Depending on guidelines of a speci�c technology or
company, developers use established comment markers to document tasks on the level of
software elements. For example, code comments such as “TODO: ...” are established when
developing with the Eclipse IDE [48], as observed by Storey et al. [179]. As an alternative,
there are existing approaches proposing standardized annotations and infrastructures for
their handling (e.g., TagSEA [178].

To this degree, generating �ne-grained code comments and according entries in an issue
tracking system conforms to an approach proposed by Anvik and Storey [6] for supporting
manual implementation tasks.

7.3.2 Automated Refactoring

Automated refactorings represent tool supported executions of the mechanics speci�ed as
part of the RefactoringInstruction. From the perspective of the goal to reduce the manual
e�ort, automated refactorings are preferred.

The model-based concept of the SPLevo approach allows for two strategies for automation:
model transformation and integration with traditional refactoring infrastructures.

The model transformation strategy facilitates the model-based representations of the imple-
mentations, manipulates them, and �nally persists their textual representations (e.g., source
code). Today, many di�erent types of infrastructures for model transformation exist (Sec-
tion 2.1). However, depending on the mechanics, an according infrastructure or even a
general-purpose programming-language can be used for developing such transformations.

Facilitating traditional refactoring infrastructures is done by translating the mechanics
into operations supported by a speci�c infrastructure. For example, the refactoring tools
provided by the Eclipse JDT [49] provide a set of operations to be reused. Accordingly, the
models processed within the SPLevo consolidation approach are only input for controlling
the existing refactoring tools. However, existing refactoring infrastructures cannot be
assumed to provide all necessary operations and additional ones might need to be added.
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7.4 SPL Export

To enable a continuous management of the future SPL, the SPLevo approach proposes
to export the variability design to existing mature SPL management tools (Section 2.2.6).
Such tools typically support some kind of feature model and allow for building feature
hierarchies to support product management needs. The Variation Point Groups (VPGs),
VPs, and variants represent the lowest level of such feature models and are su�cient for an
according export. The feature hierarchy for the product management perspective can be
added on top of these features afterwards.

The VPM metamodel is already integrated with the EMF Feature Model metamodel
(Section 2.3.2). Thus, the capability of exporting this model is given by design. Furthermore,
the EMF Feature Model represents a public de�nition of a feature model and is supported by
widely accepted tools, such as pure::variants [66].

Additionally, we successfully proved the compatibility with the metamodels of the Fea-
tureMapper [79] as a representative for other SPL management tools using a proprietary
feature model.
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8 Evaluation

This chapter presents the evaluation of the approach presented in this thesis. The evaluation
was performed aligned to the hypotheses advanced by this thesis. The following section
provides an overview of the evaluation, introduces the evaluation concept, and explains the
overall structure of this chapter.

8.1 Evaluation Overview

The SPLevo approach was applied in open source and industrial case studies. Furthermore,
interviews and a survey with industrial participants were performed to validate its contribu-
tions. This covers the results of the individual analyses as well as the applicability of the
analyses and the overall process in practice.

Validated categories of contributions
The SPLevo approach aims for the categories of process-, people, and product-oriented
contributions to the �eld of software engineering. First, following the proposed process and
applying the analyses reduces the manual e�orts and leads to more consistent consolidations.
Second, due to the provided guidance of developers, it requires less decisions and knowledge
by the individual roles. And third, the resulting products respectively the resulting Software
Product Line (SPL) bene�t not only from the advantages of an SPLs approach in general,
but also from the more consistently realized variability. However, this evaluation focuses
on the achievement of a consistent variability realization and not on the SPL advantages in
general. The latter strongly depends on the variability mechanisms introduced and personal
or organizational preferences.

Achieved levels of validation according to Böhme and Reussner
Di�erent levels of validation as de�ned by Böhme and Reussner [19] were achieved for the
individual contributions (Section 2.5.2). A prototype was implemented for the approach
(level 0) to validate the results of the di�erence and variability analyses (level 1). Validations
of the applicability of the approach in practice (level 2) were performed by proving the
availability of the necessary roles to provide the required input. The former was validated by
interviews and a survey about the availability of roles providing required data and decisions
in practice. The latter was validated by applying the prototype to realistic software systems.
A study about the economic bene�t (level 3) of the overall consolidation approach could
not be performed due to the unavailability of an appropriate setup. However, the individual
contributions were investigated with regard to the reduction of manual e�ort. According
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measurements were identi�ed and industrial partners were asked for assessments where
possible.

Section 8.2.3 provides an overview of the evaluation strategies used to answer each
evaluation question and classi�es them according to their respective level of validation.
Table 8.1 summarizes the evaluation questions, used strategies, and achieved validation
levels for each of them.

Summary of the overall results
The evaluation corroborates the overall hypotheses from di�erent points of view and based
on case studies as well as interviews and surveys. Furthermore, insight into di�erent analysis
strategies and shapes of their optimizations was discovered. In total, the SPLevo approach
was satisfyingly validated and the expected values of the di�erent analysis strategies were
con�rmed. In particular, the industrial applicability of the approach was shown.

Structure of the evaluation
The presentation of the evaluation is structured as follows: The evaluation concept aligned
with the research hypotheses is presented in Section 8.2. The SPLevo prototype to evaluate
the approach is described in Section 8.3. The case studies performed are introduced in Sec-
tion 8.4 and an overview of the interviews and survey is provided in Section 8.5. Sections 8.6,
8.7, 8.8, and 8.9 present the details of the validations and are structured according to the
hypotheses. Finally, Section 8.10 discusses possible threats to the validity of the evaluation
before Section 8.11 summarizes the results of the evaluation.

8.2 Evaluation Concept

An evaluation concept was developed to evaluate the SPLevo approach. It is based on the
claimed problem statements (Section 1.2) and the derived hypotheses (Section 1.3). The
concept is inspired by the Goal Question Metric (GQM) approach proposed by Basili and
Weiss [10]. The goal to achieve is to validate the hypotheses of this thesis based on the
proposed SPLevo approach.

Figure 8.1 presents the structure of the evaluation concept. Evaluation questions were
de�ned for each hypothesis and metrics were identi�ed to answer these questions in a
traceable manner. For the sake of clarity, the diagram only indicates the metrics. Details
about the metrics are presented in the according sections of the evaluation. The following
subsections introduce the evaluation questions derived for each hypothesis.

8.2.1 Hypothesis I: Consolidation Support

Hypothesis I “Consolidation Support” splits into three sub-hypotheses and so do its eval-
uation questions. The according contributions must seamlessly integrate with each other
to validate Hypothesis I based on the results of the sub-hypotheses. This integration is
ensured by individual contributions building upon each other, and each sub-hypothesis is
evaluated based on the results of its predecessors. Furthermore, the contributions seamlessly
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Figure 8.1: Evaluation structure

integrate on a technical level, as it is described for the prototype in Section 8.3. The following
subsections describe the sub-hypotheses as well as the according evaluation questions.

8.2.1.1 Hypothesis I.I: Di�erence Analysis

Hypothesis I.I proposes that a consolidation process will bene�t from a di�erence analysis
adapted for consolidation scenarios. To corroborate this hypothesis, two aspects of the
adapted di�erence analysis must be examined: its detection quality and its bene�t. First,
the quality of the di�erence detection must be proved to allow for a fully automated pro-
cessing. Second, the bene�t of considering copy-based customization conventions, such as
detecting Derived Copy patterns, must be proven. These evaluation goals are re�ned into
two evaluation questions:

Evaluation Question I.I.1: Di�erence Detection Quality

Does the di�erence analysis reliably detect di�erences between the customized
product copies to allow for a fully automated process?

Evaluation Question I.I.2: Bene�t of Considering Copy Conventions

To which degree does the consideration of copy-based customization conven-
tions reduce false-positive di�erences?

8.2.1.2 Hypothesis I.II: Variability Design

Hypothesis I.II proposes that analyzing relationships between Variation Points (VPs) allows
for supporting variability design decisions. This hypothesis can be assessed in context of
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concrete relationship analyses only, but general observations can be deduced from their
results. Accordingly, evaluation questions for this hypothesis were elaborated for the
concrete analyses studied in detail.

Evaluation Question I.II.1: Program Dependency Analysis

To which degree does the analysis of program dependencies help identifying
related variation points?

Evaluation Question I.II.2: Shared Term Analysis

To which degree does the analysis of shared terms help identifying related
variation points?

Evaluation Question I.II.3: Simultaneous Modi�cation Analysis

To which degree does the analysis of commits and commit messages help iden-
tifying related variation points?

8.2.1.3 Hypothesis I.III: Consolidation Refactoring

Hypothesis I.III proposes that a refactoring speci�c for the consolidation of customized
product copies allows for achieving consistent SPLs. The best evaluation question to corrob-
orate this hypothesis would ask for the results of two parallel consolidation projects, one of
them carried out with the SPLevo approach and the other one without. However, such a
level 3 validation could not be performed due to the unavailability of an appropriate setup.
Instead, evaluation questions were raised about the �tness of the speci�cation concept and
the related recommendation system.

Evaluation Question I.III.1: Refactoring Speci�cation Fitness

Is the refactoring speci�cation formalism su�cient for specifying unambiguous
refactorings?

Evaluation Question I.III.2: Variability Mechanism Recommendation

To which degree does the recommendation system reduce the manual e�ort for
decision-making and the risk of inconsistent decisions?

8.2.2 Hypothesis II: Consolidation Process

Hypothesis II proposes that a structured consolidation process with clear roles and explicit
activities enables consistent variability implementations and reduces coordination overheads.
To corroborate this hypothesis, two evaluation questions were raised about the �tness of
the process itself and the bene�ts to expect.

Evaluation Question II.1: Fitness for Industrial Scenarios

To which degree does the process �t into industrial scenarios?

Evaluation Question II.2: Bene�t of Structured Guidance

Do consolidation projects bene�t from the guidance provided by the explicit
process?
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Evaluation Question Case Study I S A

ArgoUML xRM
I.I.1: Di�erence Detection Quality 3
I.I.2: Bene�t of Considering Copy Conventions 3
I.II.1: Program Dependency Analysis 3 3
I.II.2: Shared Term Analysis 3 3
I.II.3: Simultaneous Modi�cation Analysis 2
I.III.1: Refactoring Speci�cation Fitness 2 2 2
I.III.2: Variability Mechanism Recommendation 2
II.1: Fitness for Industrial Scenarios 2 2
II.2: Bene�t of Structured Guidance 2 2

Table 8.1: Evaluation questions, strategies, validation levels
(I = Interviews, S = Survey, A = Argumentation; 0-3 = level of validation;
ArgoUML = open source case study, xRM = industrial case study)

8.2.3 Evaluation Strategies

The evaluation questions stated above are answered with di�erent strategies. Table 8.1
provides an overview about which question was targeted with which type of strategy. Here,
“Case Study” means that the SPLevo prototype was applied to the according case studies
and the evaluation question is answered based on metrics captured within the case study.
Interviews (I) and Survey (S) means that the evaluation question is answered based on the
answers given by the participants. Argumentation (A) means that a line of argumentation is
used to answer the evaluation question.

Achieved levels of validation according to Böhme and Reussner
In the cells of Table 8.1, the achieved validation levels according to Böhme and Reussner
[19] are identi�ed. The SPLevo Di�erence Analysis and SPLevo Variability Analysis were
validated up to level 3 (bene�t) by applying them in industrial and open source case stud-
ies, and measuring the bene�t in terms of reduced elements to be review by developers.
A comparing manual analysis performed by developers was not possible because of the
unavailability of an unbiased control group.

The contributions for achieving a consistent refactoring and the proposed overarching
consolidation process were validated up to level 2 (industrial applicability) by a survey and
interviews with industrial participants.

The simultaneous modi�cation analysis could not be validated in a case study because of
the unavailability of input data. Thus, we could only argue about it is meaningful and refer
to reports of others about the availability of the required input data in other scenarios.
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8.2.4 Execution Times

Performance ratios in terms of execution times are provided for the analyses. They provide a
dimension of the individual execution times and were measured during the evaluation. They
typically result from single executions and have not been studied in extensive performance
experiments without impacts from other processes. Nevertheless, developers typically run
several applications in parallel in their development environment. Thus, the presented
execution times provide valid estimations for applying the analyses in practice.

8.3 SPLevo Prototype

To evaluate the SPLevo approach, a prototype of the approach was implemented. It is
designed to perform the case studies and allows for observing details of the results and the
processing. The individual activities were implemented and connected to each other to prove
their integration according to the proposed process. Furthermore, the prototype provides a
user interface integrated in the widely used Eclipse [48] development environment. The
integrated user interface was included to involve industrial stakeholders in the industrial
case study.

The prototype re�ects the technology-independent approach as well as the adaptability for
technology-speci�c improvements. The product copies investigated in the case studies are
realized with Java technology. Thus, an adaptation for the Java technology was developed
as well. The prototype and the technology adaptation are publicly available at GitHub [96].

The following subsections introduce the architecture of the prototype, summarize inte-
grated external components, and describe the user interface to provide input and present
results.

8.3.1 Prototype Architecture

The SPLevo prototype was designed with a component architecture providing the technology-
independent infrastructure and process as well as extension points for technology-speci�c
components. The Java-speci�c adaptation was developed according to these extension points
and based on the JaMoPP [78] infrastructure for handling Java source code.

Main Components
Figure 8.2 shows a component diagram of the main components of the prototype. The SPLevo
UI component realizes the integration in the Eclipse Integrated Development Environment
(IDE) and the user interface for providing input, accessing results, and controlling the
process. The components Extraction, Di�ng, andVPM Initialization are technical components
realizing the actions performed as part of the di�erence analysis (Section 5). The VPM

Analysis component provides infrastructure for realizing relationship analyses and tracing
details of the results of an analysis (Section 6.1.4). The VPM Re�nement component is
responsible for deriving the re�nement recommendations from the results of relationship
analyses (Section 6.1.4.2). The Consolidation Refactoring component includes infrastructure
for specifying, recommending, and applying consolidation refactorings (Section 7).
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Figure 8.2: SPLevo prototype component architecture

Types of component interfaces
The SPL Export component de�nes the interface and an extension point for SPL manage-
ment tool-speci�c exports. The VPM component is a central component encapsulating
the Variation Point Model (VPM) metamodel and editing infrastructure. In addition to
standard interfaces to assemble components, several components are de�ned with inter-
faces for technology-speci�c (i.e., blue-colored sockets in Figure 8.2) and scenario-speci�c
(i.e., green-colored sockets in Figure 8.2) adaptations. Here, “technology-speci�c” relates to
any adaptation to support a concrete technology. “Scenario-speci�c” relates to any other
adaptation in terms of content. Thus, “scenario-speci�c” adaptations can be created for a
single consolidation project or reused in several ones.

Included technology and scenario adaptations
For example, the JaMoPP Java Cartridge component provides Java-speci�c adaptations of
interfaces for technology-speci�c adaptations. In addition, the Shared Term Analyzer and
the JaMoPP Program Dependency Analyzer represent scenario-speci�c adaptations. The
JaMoPP Program Dependency Analyzer is also related to a speci�c technology. However,
its main purpose is to provide an extension in terms of content not in terms of technology.
Additionally, the Shared Term Analyzer can be adapted by a technology-speci�c extension
again. Similarly, the FeatureMapper Connector and the EMF FM Connector components realize
scenario-speci�c adaptations to export the future SPL into the according models.

Eclipse / OSGi platform
The SPLevo prototype was developed with Java technology and is based on the Eclipse
platform. The prototype integrates not only with the Eclipse IDE but also with the Eclipse
platform as an extensible component framework according to the OSGi speci�cation [143].
The OSGi platform is used to realize the components described as part of the architecture
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above. Furthermore, the adaptability of the SPLevo prototype is realized with the Eclipse
plug-in infrastructure.

8.3.2 Integrated Components

The prototype reuses infrastructure provided by several external components. The most
important ones are described below.

Eclipse MDSD Infrastructure
The prototype reuses the infrastructure for metamodel de�nition and model processing
provided by the Eclipse Modeling Framework (EMF) (Section 2.1). Several infrastructures of
EMF, such as code generation at development time, model resource handling at run time,
and EMF Compare for model comparison, are reused.

In particular for EMF Compare, the prototype reuses infrastructure for di�erence model
realization but does not use any of the EMF Compare comparison algorithms. The latter
are too generic and imply too many heuristics to be used for a fully automated di�erence
detection as targeted by the SPLevo approach.

Model Extraction
The SPLevo prototype reuses the EMFText [77] infrastructure to gain EMF-based model
representations of textual artifacts. Models extracted by this infrastructure conform to the
structure of software models de�ned and supported by the SPLevo approach in general
(De�nition 7). The Java Model Parser and Printer (JaMoPP [78]) is used to extract EMF-
based software models from Java source code. It is built on top of EMFText and provides
Java-speci�c reference resolving and utilities for model processing.

The SPLevo prototype adds a cache for reference resolving on top of the JaMoPP extraction
infrastructure. This allows for coping with the challenge of time-consuming reference
resolving when it comes to software model extraction and downstream model accesses
(Section 2.4.6). If an element reference was resolved considering the Java-speci�c resolving
strategies (e.g., respecting the scope of a variable reference), it is captured by the cache. The
next time this reference must be resolved, it is directly provided by the cache without the
need of evaluating the resolving strategies again.

Language Analysis
The Shared Term Analysis realized as part of the prototype reuses infrastructure of the
Lucene [75] project (Section 2.4.10). Lucene provides infrastructure such as the inverted index
and either extends or reuses algorithms for splitting, stemming, and �ltering (Section 6.4.3).

User Interface
The user interface is primarily built upon infrastructure provided by the Eclipse IDE. In
addition, components such as the ZEST framework [53] for graph visualization are reused
from the Eclipse Modeling Framework.
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8.3.3 User Interface for Input and Results

The prototype integrates in the Eclipse user interface to allow for controlling the process,
providing input, and reviewing results. The product copies to consolidate can be provided
as Eclipse projects within the Eclipse workspace. Figure 8.3 shows a screenshot of the main
perspective of the prototype.

Figure 8.3: SPLevo prototype screenshot

Basic UI components
The SPLevo dashboard is shown in the lower right corner of the screenshot. It includes tabs
for the di�erent con�gurations and buttons to start process activities. In the left margin, a
resource tree presents the VPs per resource (i.e., a resource-oriented view on VPs). In the
lower left corner, the feature outline presents the Variation Point Groups (VPGs). Each of
the VPGs can be expanded to show its containing VPs that contribute to the same feature
(i.e., a feature-oriented view on VPs). On the right of the feature outline, the properties view
allows for con�guring the variability characteristics of a selected VP.

Refinement browser
Finally, in the main area, the re�nement browser shows re�nement recommendations
resulting from an analysis. The �rst column presents the actual re�nement recommendations.
The second column shows the VPs and sub-re�nements of the recommended re�nement
selected in the �rst column. Finally, the third column provides additional information about
the relationships of the currently selected re�nement as well as a graph visualization of the
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related VPs. The latter simpli�es the identi�cation of VPs with many relationships. Such
VPs are typically a reasonable starting point to decide about accepting a recommended
re�nement.

Data access (Input and Output)
The prototype distinguishes between two types of data access: for stakeholders and for
evaluation purposes. Any data accessed by stakeholders is available or editable through
the prototype User Interface (UI). Data to perform the evaluation of the approach, such as
intermediate results or traces of the analyzers, is available through data sensors and log �les.

Con�gurations for the overall process are provided through the dashboard or an initial-
ization wizard for starting a new consolidation. Con�gurations during the process are done
through according wizards and forms (e.g., con�guring an analysis to execute).

8.4 Case Study Systems

The SPLevo approach was evaluated in two case studies on systems with di�erent charac-
teristics. First, the open source Uni�ed Modeling Language (UML) modeling tool ArgoUML
is used, which once gained industrial acceptance. It is of reasonable size and available with
feature-speci�c annotated code. These annotations provide a benchmark for the evaluation
of the feature-speci�c code. Second, customized copies of components of a commercial
software system provided by an industrial partner were studied. The copies were created
over several years under real-life conditions and with copy-based customization guidelines
in place. The copies neither provide pre-documented feature-speci�c code nor have been
consolidated before. However, a developer of the company was available throughout the
case study to assess the quality of the �ndings from a stakeholder’s perspective.

8.4.1 ArgoUML Modeling Tool

ArgoUML is an open source UML modeling tool that was widely used until 2011 (e.g., more
than 250,000 downloads in 2005 [34]). Meanwhile, a commercial fork and many free alterna-
tive tools caused the ArgoUML development to nearly stop. However, one can argue that
the modeling tool was accepted by the industry and evolved for a reasonable time.

Figure 8.4: ArgoUML case study: Feature tree [36]
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Feature Token Feature Token

Activity ACT Logging LOG
Cognitive COG State STA
Collaboration COL Sequence SEQ
Deployment DEP Use Case USE

Table 8.2: ArgoUML case study: Features and acronyms

Feature-specific code documented by Couto et al.
Couto et al. [36] reviewed the ArgoUML implementation and identi�ed feature-speci�c
source code that could be encapsulated and made optional. Figure 8.4 shows a feature tree
representing the eight variable features they have identi�ed. Table 8.2 maps these features
to acronyms used throughout this evaluation for the sake of brevity. As an ArgoUML sub-
project, Couto et al. [36] marked the feature-speci�c code with preprocessor annotations.
These annotations allow for deriving variants of ArgoUML with individual sets of these
optional features.

ArgoUML implementation facts
According to Couto et al. [36], the original ArgoUML code had 120,348 Source Lines of
Code (SLOC). An analysis with CodePro Analytix [69] reported 151,700 SLOC for a variant
generated with all optional features enabled and 113,823 SLOC for a variant with all features
disabled. We cannot state a reason for the di�erent numbers because Couto et al. [36]
have not documented which version of ArgoUML they have used. Furthermore, it is not
clear how they counted the lines of code (e.g., Logical Lines of Code (LLOC), Physical
Lines of Code (PLOC), or including comments). The metrics we used represent the PLOC
according to the documentation of CodePro Analytix: “This is a count of the number of
lines in the target elements that contain characters other than white space and comments”.
Furthermore, revision 155 of the ArgoUML-SPL SVN repository was used throughout the
SPLevo evaluation.

Characteristics of feature-specific code
Couto et al. [36] have documented characteristics of the feature-speci�c code, such as its
scattering or the granularity type of modi�ed software elements. These characteristics
include numbers of feature-speci�c code locations for each type of granularity as well.
Furthermore, the di�erent features come with di�erent characteristics that can be studied.
1 //#if defined(USECASEDIAGRAM)

2 //@#$LPS-USECASEDIAGRAM:GranularityType:Statement

3 SubsystemUtility.initSubsystem(new InitUseCaseDiagram());

4 //#endif

Listing 15: ArgoUML feature-speci�c code annotation example
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Feature-specific code annotations
In the code itself, these locations are marked with preprocessor annotations. Additionally,
Couto et al. [36] added code comments to the annotations providing further information
about the type of modi�cation. Listing 15 shows an example of such a feature-speci�c code
location. The code comments //#if de�ned(USECASEDIAGRAM) and //#endif are preprocessor
annotations. The format is de�ned by the Java Preprocessor JavaPP [110] used by Couto et al.
[36]. The code comment //@#$LPS-USECASEDIAGRAM:GranularityType:Statement identi�es
that the code belongs to the “UseCase Diagram” feature and has a granularity level of a
statement. Couto et al. [36] placed the feature-speci�c comments inside the preprocessor
annotations. Thus, they remain in the code only if the particular feature is activated. This
allows for identifying the origin of a feature-speci�c code during the evaluation.

However, a manual code review identi�ed di�erences between the annotations in the
code and the numbers provided by Couto et al. [36]. Furthermore, the review discovered
annotations which were not mentioned in the paper at all (e.g., feature-speci�c import
declarations). Accordingly, we use the annotations found in the code to evaluate the SPLevo
approach instead of the numbers documented in the paper.

ArgoUML variants for evaluation
We have used the preprocessor annotations to generate several variants of ArgoUML, each
with di�erent features enabled. We applied the SPLevo approach to these variants and vali-
dated the �ndings with the feature-speci�c code locations marked by Couto et al. [36]. This
evaluation strategy assumes that each feature-speci�c code is similar to the modi�cations a
developer would have performed to implement this feature in a basic variant of ArgoUML
without any of the features enabled.

We applied the SPLevo approach to pairs of these variants with two strategies. On one side,
we analyzed variants with a single feature activated compared to a basic variant with neither
of the optional features. By this, we studied the approach focused on the characteristics of
the modi�cations performed for a speci�c feature (e.g., its scattering in the implementation).
On the other side, we applied the SPLevo approach on a variant with all features activated
compared to a basic variant with no features enabled. By this, we studied the approach in a
use case with several features implemented in the same product copy.

8.4.2 Industrial So�ware System

In a second case study, the SPLevo approach was evaluated with a commercial relationship
management software system (referred throughout this thesis as “industrial case study”). The
system is approximately ten years old, has a client-server-architecture, and uses Java [70] as
fundamental technology and OSGi [143] bundles as component infrastructure. The vendor
provides this system to di�erent markets, domains, and customers. To cope with this, the
vendor has partly copied and customized the system for several customers. Here, partly
means that individual components (i.e., OSGi bundles) were copied and customized.
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Components under study
For the case study, the vendor provided customized components that were copied and
adapted for a speci�c customer since 2009. Thus, the copies were approximately �ve
years old and evolved when the case study was performed. From the overall set of copied
components, developers of the vendor identi�ed two of the components (Sales and Address)
as representative in terms of size and types of modi�cation. The two components were
analyzed in the case study compared to their original counterparts. The current versions of
the original components were used including any modi�cations performed on them.

Table 8.3 presents the main characteristics of the components.

Component SLOC Classes Interfaces
Orig. Copy Orig. Copy Orig. Copy

Sales 3,126 2,919 88 88 1 0
Address 13,113 18,258 306 455 5 4

Table 8.3: Industrial case study: Component facts

Copy-based customization practices to study
The company has de�ned coding guidelines for copy-based customization containing three
rules:

1. When copying a class, append a customization identi�er to its name.
2. When copying a class or package, add a customization identi�er to the package path

between product and module segments.
3. When copying a class, introduce an extends relationship to the original class, if the

copy should replace the original at run time.
The two former rules de�ne renaming conventions. The third rule de�nes the copying
practice we call Derived Copies, keeping a reference back to the original implementation.
Both components investigated in the case study have dependencies to their original copies.
Thus, they are candidates for containing instances of the Derived Copy pattern used in
copy-based customization (Section 5.1).

Assessment of the findings
The vendor did not document the code modi�cations performed on the copies and did not
provide a change history of the modi�cations. Furthermore, the vendor has not performed
any consolidation of the copies before. Thus, there is no benchmark to assess the �ndings
of the SPLevo prototype. Additionally, the developers who have customized the copies
are either no longer employed by the vendor or were at least not available for the case
study. However, a member of the development team of the core product participated in the
case study to review and assess the �ndings. He is familiar with the original code and the
architecture and infrastructure of the product in general.

A list of the custom features was not available for the case study. Nevertheless, from our
perspective, the lack of information about the performed customizations is not a special
case but results from typical constraints in customization projects.

181



8 Evaluation

8.4.3 Execution Environment

The case studies were performed on a regular laptop (Dell Latitude E6420), with a Samsung
SSD hard drive, 8GB physical RAM, and an Intel i7-2760QM Quad-Core CPU. The laptop
runs a Windows 7 64bit operating system. We have installed the SPLevo prototype in an
Eclipse Kepler service release 2 modeling package. Furthermore, we used a Java 1.7 virtual
machine and con�gured the Eclipse installation to use a maximum of 2GB RAM and a heap
space maximum of 1GB.

8.5 Interviews and Survey

We performed two types of interviews as well as an online survey to prove the �tness of the
SPLevo approach for industrial application. For the �rst type of interviews, we used a face-to-
face workshop with employees of the vendor of the industrial case study. It was focused on
capturing the current situation within the company as well as the employees’ expectations
in relation to a consolidation process. For the second type of interviews, we designed an
online interview to ask four developers to provide feedback about the comprehensibility
of the SPLevo refactoring speci�cation concept. Those developers were not involved in
any of the case studies. As a third, we performed an anonymous online survey with 18
participants. The online survey captured feedback about the current situation in the working
environment of the participants and about roles de�ned in the SPLevo process.

8.5.1 InterviewWorkshop

The interview workshop took place in the o�ce of the vendor of the industrial case study
product and was performed within one day.

8.5.1.1 Participants

Four employees of the vendor were interviewed. They were informed about the general topic
of copy consolidation in advance, but they were not provided with any further information
about the approach. Two of the employees described their position within the company as
developers (i.e., Participant 1 and Participant 2). One described his position as a mixture
of an architect and a project manager (i.e., Participant 3). And one participant described
his position as a mixture of a developer and an architect (i.e., Participant 4). In addition
to the interviewed employees, two employees of the research department of the vendor,
two employees of the FZI, and two employees of the DevBoost GmbH as an independent
software consultancy participated in the workshop to capture the answers and evaluate the
results later on.

8.5.1.2 Process

The workshop was moderated by an employee of the DevBoost GmbH. This was done to
reduce the risk of accidentally in�uencing the interviewed employees with either knowledge
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of another employee of the vendor or knowledge or expectations from the perspective of
the SPLevo approach.

The workshop was started by �rst providing a short motivation for the topic of consoli-
dating product copies. Next, an example of the limitations of the Eclipse Java Development
Tools [49] as a representative for state-of-the-art tooling was given. Finally, the goal of the
SPLevo approach was introduced to provide the context of the workshop. The introduction
took approximately 30 minutes and all interviewed employees participated. Afterwards,
individual interviews with the employees were performed. Each of the individual interviews
took approximately 30 to 40 minutes.

8.5.1.3 Questions

The interviewed employees were asked six motivating questions. An open formulation of
the questions was used to promote extensive answers. This format allowed for answers
not related to the SPLevo approach. However, this was intended to capture results from
other perspectives compared to the more guided format of the online survey. The following
questions were asked:

1. How do you implement variability today?
2. How do you decide for a way to implement variability?
3. Imagine you have to consolidate a copied and customized component into a variable

software product line. What would you do?
4. How would you like to see the di�erences and what are you interested in?
5. When working with code structures, which level of granularity do you expect to be

useful?
6. What else would you like to have or is important for you in the context of a consolida-

tion?

Summaries of the given answers are contained in Appendix B.2. The evaluation of these
answers is discussed in context of the appropriate evaluation questions in the corresponding
sections.

8.5.2 Interview Refactoring Specification

We have interviewed four developers to evaluate the comprehensibility of the refactoring
speci�cation concept. In the interviews, they answered a questionnaire about their experi-
ence, read an example speci�cation, and answered questions about this example to prove
their comprehension.

8.5.2.1 Participants

The focus of the interview was to assess the comprehensibility of the refactoring speci�cation
concept and not of a concrete speci�cation. We selected four participants already familiar
with the concrete software model used in the example speci�cation (i.e., JaMoPP) as well as
the general topics of refactoring and Model Driven Software Development (MDSD). Thus, we
reduced the in�uences on the feedback about the speci�cation concept because of missing
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knowledge on the topic in general. All participants reported several years of experience
in software development. Furthermore, all of them declared to have either experienced or
professional skills in the topics of refactoring, MDSD, and JaMoPP.

8.5.2.2 Process

The interviews were performed remotely with all participants located in di�erent o�ces.
We sent them one page with instructions on how to perform the interview and a four
page questionnaire, both provided in Appendix B.4. The questionnaire was about the
experience and an excerpt of the concrete consolidation refactoring speci�cation provided
in Appendix A.1. After completion, participants sent their answers via email. Three of four
participants answered on the same day. One participant answered one day later.

8.5.2.3 Questions

The questionnaire was split into two parts. In the �rst part, the participants declared their
experience with software development in general and their skills on refactoring, MDSD,
and JaMoPP. For the last three of the answers, the participants could choose between
options none, basic, experienced, and professional. The questions about the excerpt of the
refactoring speci�cation covered two types of question. The �rst type of question proved that
the participants understood critical aspects of the speci�cation, such as when the refactoring
can be applied. The second type of questions asked for their assessment of the usefulness of
speci�c information provided, such as examples given with the refactoring. Finally, they
had the opportunity to list information they might have missed.

The presented excerpt of the concrete refactoring speci�cation included the variability
information part of the refactoring. In addition, the refactoring instructions for the Import
and Method software element types were provided. The refactoring instructions for these
types of software elements do not include the actual variability mechanism. However, the
reduced complexity of the mechanics allowed to focus the interview on the comprehensibility
of the speci�cation concept and not of the mechanics.

The original questionnaire and the captured data is provided in Appendix B.4. The results
are interpreted in the sections of the according evaluation questions.

8.5.3 Online Survey on Industrial Applicability

In addition to the interviews, an online survey was performed. The primary goal of the
survey was to validate the industrial applicability of the proposed consolidation process. The
secondary goal was to gain an impression of the participants’ experience with product copies
and SPLs in general as well as their experience with consolidation processes in speci�c.

8.5.3.1 Participants

The survey was sent out to 30 business contacts with a relationship to software product
development. Furthermore, it was posted in the LinkedIn and Xing networks. The recipients
were asked to participate in the survey and to forward the link to further reasonable contacts.
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In total, 68 people opened the �rst page and 26 people opened at least page 2. 18 of the 26
completed the survey. The other 8 stopped between page 2 and 9. Their breaking o�s were
distributed in a way that no reason could be identi�ed. Thus, only the 18 complete data sets
were included in the evaluation.

Participant characteristics
Table 8.4 summarizes the positions declared by the participants. They were allowed to select
more than one position. 15 participants declared at least one management position. 13
participants declared at least one development position. 2 participants declared a research
position in combination with one of the other positions. Most of the participants work
in medium to large size companies: 14 of 18 participants work in companies with 100 to
1,000 employees (Appendix, Table B.4). All of the participants declared to have experience
with industrial software development (Appendix, Table B.3: min=1year, max=20years, av-
erage=8.6years). 15 of 18 also declared to have experience with open source or research
software development (min=1year, max=20years, average=5.6years). One can conclude to
having 18 industrial participants with balanced backgrounds in the �elds of management
and development.

Position # at least one selected

Management (Project) 10
Management (Product) 6
Management (Company) 10 15
Development (Product) 9
Development (Solution) / Consulting 10 13
Research & Teaching (Employee) 2
Research & Teaching (Student) 0 2

Table 8.4: Survey participants: Distribution of positions
(18 in total, multiple selections allowed)

Experience with product copies
In the questionnaire the participants were asked for their agreement or disagreement to
statements about product copies. The answers are summarized in Table B.5 (Appendix). Most
of the participants agreed to the �exibility provided by customer-speci�c product copies and
their ability to cope with project pressure. Only two of them slightly agreed to create copies
as a well-directed development strategy. But at the same time, most participants agreed to
accept copies when needed. Most of the participants agreed to the challenges of product
copies and some declared to more or less actively �ght against them.
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Experience with SPL and Consolidation
In addition to the questions about product copies, the participants were asked about their
agreement to statements about SPLs and consolidation processes. The answers are summa-
rized in Table B.5, too. Most of the participants have at least heard about SPLs, some had
already made personal experience, but only a few are currently working with them. Only a
minority declared to have experience with or observed any consolidation activities.

To conclude, the participants can be described as to be aware of the advantages and
disadvantages of customized product copies, understand the concept of SPLs, but have only
minor to no experience with consolidation activities.

8.5.3.2 Process

The online survey was performed in an anonymous manner. First, a pretest was performed
to improve the questionnaire’s quality. Four employees of the FZI and one industrial soft-
ware developer participated in this pretest. Afterwards, the questionnaire was sent to the
participants and published.

8.5.3.3 Questions

The questionnaire consists of two parts. The �rst part includes questions about the par-
ticipants themselves to capture their position, experience, and working environment. The
second part includes questions about the individual roles de�ned in the SPLevo approach
(Section 4.1). At the beginning of the second part, an overview of the roles in total is given.
Afterwards, each role is sketched including its activities, responsibilities, and required skills.
For each role, participants had to answer a set of questions about the applicability of the
role in their working environment (e.g., the own company or a company they advise as a
consultant).

The facts about the participants respectively their environment were asked as quantitative
inputs or selections. The questions about experiences and roles were designed according to
the scale proposed by Likert [120]. A Likert scale with six options was used to require the
participants to decide at least for a tendency of their agreement. For the individual roles, an
additional text �eld was provided to declare current positions of potential employees who
could own this role.

The original questionnaire and the captured data is provided in Appendix B.3. The results
are interpreted in the sections of the according evaluation questions.

8.6 Evaluation I.I: Di�erence Detection

The SPLevo di�erence analysis was implemented in the prototype to apply and evaluate it
in both case studies. The results showed a satisfying di�erence detection, and its precision of
100% allows for a fully automated di�erence analysis. Furthermore, considering the coding
conventions for copy-based customizations in the industrial case study showed a reasonable
bene�t by �ltering irrelevant di�erences and, thus, reducing manual e�ort. The metrics
used and the results are detailed in the following subsections.
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8.6.1 Evaluation Question I.I.1: Di�erence Detection Quality

To decide about the overall quality of the di�erence analysis we have studied its recall and
precision. We de�ned these metrics as:

1. Recall: Can we �nd all di�erences?
2. Precision: How many false positives do we produce?

According to the consolidation-speci�c requirements on a di�erence analysis, a recall of
100% is a necessity for a fully automated analysis. In addition, a precision below 100% does
not invalidate the analysis, but the higher it is, the lower is the manual e�ort for processing
the resulting irrelevant di�erences.

8.6.1.1 Metric capturing

We captured the precision and recall in the ArgoUML case study. The system is of a reasonable
size and the annotations provided by Couto et al. [36] provide a benchmark to assess the
�ndings of the analysis. Couto et al. [36] identi�ed di�erent characteristics for the code of
each feature (e.g., its scattering across the software or the number of di�erences involved).
Thus, we have generated single-feature variants of ArgoUML with only one feature activated
and applied the di�erence analysis to each of them compared to a basic variant with none of
these features. Afterwards, we assessed our �ndings with the feature-speci�c code locations
annotated by Couto et al. [36].

8.6.1.2 Types of granularity

Couto et al. [36] documented the granularity of the software elements representing the
feature-speci�c code. Table 8.5 presents the 17 types of granularity they have de�ned and
maps them to the seven types of granularity used in the SPLevo approach (i.e., SPLevo
Change Types).

Neither Interface nor Variable markers occur in the ArgoUML implementation at all.
They are included in Table 8.5 for completeness only. Furthermore, Couto et al. [36] used
StaticInitialization markers for changed �eld initializations (StaticInitf ), respectively variable
initializations (StaticInits ). We have mapped them to �eld respectively statement di�erences
according to their granularity in terms of software elements. MethodBody, MethodCall, and
Expression markers identify changed Statements and provide additional information, such
as “all statements of a method are changed”. In a similar way, the change types Package
and Class both identify feature-speci�c compilation units, but Package identi�es that all
compilation units of a Java package are a�ected.

8.6.1.3 Marker normalization

In addition to mapping the granularity types used by Couto et al. [36], we normalized the
marker counts for comparability. Normalization was necessary because of three reasons:
i) grouped, needless, and wrong code markers, ii) unmatched elements, and iii) hidden
changes.
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Couto Markers SPLevo Change Types

Package CompilationUnit
Class
Import Import
ClassSignature Class
Enumeration Enumeration
Field Field
StaticInitf
Method Method
InterfaceMethod
MethodSignature
Statement Statement
MethodBody
MethodCall
Expression
StaticInits

Table 8.5: ArgoUML case study: Granularity type mapping
between Couto Markers and SPLevo Change Types

Grouped, needless, and wrong codemarkers
Couto et al. [36] use single markers to document blocks of nearby changes (e.g., nearby
imports). To assess the real number of di�ering software elements, we counted each of
these nearby software elements separately. In addition, we identi�ed markers that are not
needed, respectively hidden by other markers. For example, assume an import is marked as
speci�c to feature a and contained by a compilation unit that is marked as speci�c to feature
a as well. In such a case, we count the outer marker only because all contained software
elements are changed obviously. Furthermore, we identi�ed several wrong markers, with
an annotation documenting another feature than the code is about (e.g., Listing 16). In such
cases, we counted the real number of a�ected elements.
1 //#if defined(SEQUENCEDIAGRAM)

2 //@#$LPS-ACTIVITYDIAGRAM:GranularityType:Import

3 import org.argouml.uml.diagram.sequence.ui.UMLSequenceDiagram;

4 //#endif

Listing 16: ArgoUML case study: Wrong code marker example

Unmatched elements
Unmatched elements are an additional reason requiring normalization. They occur because of
changes of identifying characteristics of elements (e.g., the parameter of a method signature).
Couto et al. [36] marked them as single change in a few cases. However, as the identity of
the enclosing element is changed, separate adds and deletes must be counted instead of a
single change. This is required as a fully automated di�erence analysis must report such
changes and should not automatically try to match them with the risk of false matches.

188



8.6 Evaluation I.I: Di�erence Detection

Hidden changes
Hidden changes occur if several di�ering software elements are located in sub-trees of
each other. For example, if the conditions of several else-if-branches are changed, the �rst
di�ering condition potentially in�uences the logic of the complete sub-tree. In such a case,
this complete sub-tree must be considered as changed. Thus, such hidden changes must be
counted as a single comprehensive di�erence.

8.6.1.4 Analysis Results

Change Type ACT COG COL DEP

C CN A∆ C CN A∆ C CN A∆ C CN A∆

CompilationUnit 33 33 0 199 199 0 18 18 0 20 20 0

Import 15 20 0 34 91 0 13 16 0 10 18 0

Class 0 0 0 2 2 0 0 0 0 0 0 0

Enumeration 1 1 0 0 0 0 1 1 0 1 1 0

Field 2 2 0 7 7 0 1 1 0 1 1 0

Method 8 8 0 14 19 0 2 2 0 0 0 0

Statement 67 109 0 65 112 0 41 62 2 11 15 0∑
126 173 0 321 430 0 76 100 2 43 55 0

Change Type LOG STA SEQ USE

C CN A∆ C CN A∆ C CN A∆ C CN A∆

CompilationUnit 0 0 0 51 51 0 52 52 0 37 37 0

Import 186 189 0 24 45 0 10 10 0 11 18 0

Class 0 0 0 0 0 0 0 0 0 0 0 0

Enumeration 0 0 0 1 1 0 1 1 0 1 1 0

Field 190 191 0 2 2 0 1 1 0 2 2 0

Method 3 3 0 6 6 0 1 1 0 1 1 0

Statement 700 727 4 65 112 2 36 50 0 20 31 0∑
1079 1110 4 149 217 2 101 115 0 72 90 0

Table 8.6: SPLevo Di�erence Analysis: Results ArgoUML case study
(C = Raw Markers, CN = Normalized Markers, A∆ = Analysis Deviation)

Data Columns
The SPLevo di�erence analysis was applied to the eight single-feature variants of ArgoUML,
each of them compared to a basic variant with no optional feature activated. The results are
presented in Table 8.6 with three columns per variant: Column C presents the raw counts of
the markers in the code. Column CN contains the number of markers normalized according
to the rules described above. The results of the analysis were compared to the numbers in
column CN and the deviation is documented in column A∆.
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Findings
The results show that the SPLevo detection analysis successfully detected all 2,282 relevant
di�erences. Furthermore, it identi�ed eight di�erences in addition to the normalized markers.
A review of these �ndings identi�ed that all of them are false positive di�erences. They are
all detected because of unchanged statements enclosed by real di�erences. This behavior
results from the SPLevo di�erence analysis identifying statements not only by their content,
but also by their position related to other statements. This is done by design to prevent
wrong matches of similar statements, as described in Section 5.3.1.2.

Detected Di�erences ∑ (CN+A∆ ) 2,290
False Positives ∑A∆ 8
Relevant Di�erences ∑CN 2,282
Precision 99.65%
Recall 100%

Table 8.7: SPLevo Di�erence Analysis: Summarized quality

Metrics
In total, our analysis achieved a precision of 99.65% and recall of 100% summarized over all
variants as shown in Table 8.7. This represents a satisfying detection quality according to
the goal of a fully automated detection analysis with an acceptable amount of false positives.
Furthermore, the false positives identi�ed are typical examples that will be identi�ed by the
SPLevo VP �ltering described in Section 6.1.2.

8.6.1.5 Execution Times

The execution time of the di�erence analysis was measured for the fully automated di�erence
analysis activity including the actions: software model extraction, di�erence analysis, and
VPM initialization.
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Without (sec) 3,022 3,543 2,805 3,062 3,350 3,471 3,023 3,738 3,252 4,534
With (sec) 133 149 178 134 130 145 141 157 146 177
∆ (%) 96 96 94 96 96 96 95 96 96 96

Table 8.8: SPLevo Di�erence Analysis: Execution times ArgoUML case study

Reference cache influence
When extracting software models, the most time-consuming part is the resolving of refer-
ences (Section 2.4.6). To cope with this, the SPLevo prototype contains a reference resolving
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cache (Section 8.3.2). Accordingly, there is a signi�cant di�erence in the observed execution
times, depending on whether the reference cache is populated or not.

Table 8.8 summarizes the measured execution times for the ArgoUML variants. As shown,
the caching achieves an improvement of approximately 96% on average without a signi�cant
deviation for the di�erent variants.

8.6.2 Evaluation Question I.I.2: Benefit of Considering Copy Conventions

Evaluating the bene�t of considering conventions for copy-based customization requires to
evaluate the detection quality as well as the bene�t itself. Accordingly, we have de�ned the
following three metrics:

1. Recall: Can we �nd all Derived Copies?
2. Precision: How many false positive Derived Copies do we detect?
3. Bene�t: To which degree does the detection reduce the manual e�ort?

The �rst two metrics assess the quality of the SPLevo di�erence analysis in detecting Derived
Copies and the third evaluates the bene�t itself. To quantify the reduction of manual e�ort,
we measured the number of software elements that would have been detected as di�ering
by default but could be �ltered because of the Derived Copy detection.

In contrast to the di�erence analysis itself, the Derived Copy detection is used for �ltering
previously detected but irrelevant di�erences. To still allow for a fully automated di�erence
analysis, such a �ltering must �lter di�erences only in case of absolute certainty. Accordingly,
a precision of 100% is necessary for a valid detection. A recall below 100% is acceptable as it
does not invalidate the �lter and lowers the bene�t only.

8.6.2.1 Metric capturing

The metrics were captured in the industrial case study, as the ArgoUML case study does not
provide any instances of the Derived Copy practice. We have performed a manual code review
to identify instances of the Derived Copy pattern according to the provided conventions
for copy-based customization. Our manual �ndings were reviewed and con�rmed by the
developer participating in the case study. The resulting list of �ve Derived Copies in the
Sales component and twelve Derived Copies in the Address component forms the benchmark
to assess the �ndings of the di�erence analysis. We applied the SPLevo di�erence analysis
on each of the copied components compared to its counterpart in the product core.

8.6.2.2 Analysis Result: Detection Quality

Table 8.9 presents the results of the di�erence analysis in comparison to the manually
identi�ed Derived Copies. All instances were identi�ed and the resulting precision and
recall of 100% indicate a satisfying detection result.
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Component Manually Analysis
Identi�ed Detected Precision Recall

Sales 5 5 100% 100%
Address 12 12 100% 100%

Table 8.9: SPLevo Di�erence Analysis: Derived Copy detection industrial case study

8.6.2.3 Analysis Result: Detection Benefit

The bene�t of the Derived Copy detection is measured by the number of �ltered di�erences
that must not be reviewed by developers anymore. However, a bene�t exists only if the
�ltering is reliable. To prove the validity of the �ltering, the developer of the vendor
participating in the case study reviewed and con�rmed the appropriateness of �ltering these
elements.

To quantify the reduction, we compared the number of �ltered software elements to the
total number of elements of the same type in the original class. We did this comparison
for all types of software elements that are reasonable to be �ltered (i.e., imports, �elds, and
methods). This evaluation strategy was chosen because developers have to review all of
these elements with existing di�erence analysis approaches as they do not consider the
inheritance relationships. We count all software elements in an untyped manner for a lower
bound of e�ort reduction. For example, �eld initializations and method implementations
typically vary in their complexity and potentially lead to additional e�ort for comprehension.
In practice, this can lead to even higher reductions than presented here.

Element Sales Address Combined
Total Filtered R Total Filtered R Total Filtered R

Import 210 122 58% 378 252 67% 588 374 64%
Fields 8 2 25% 16 1 6% 24 3 13%
Methods 69 44 64% 124 72 58% 193 116 60%∑ 287 168 59% 518 325 63% 805 493 61%

Table 8.10: SPLevo Di�erence Analysis: Derived Copy detection e�ort reduction
(R = Reduction of di�ering elements to review)

Data columns
Table 8.10 summarizes the evaluation results of the bene�t of detecting Derived Copies.
For each type of software element, the column “Total” provides the number of elements
in the original classes of the Derived Copy instances. The column “Filtered” provides the
number of di�ering elements that could be �ltered. The Column “Reduction” (R) provides
the resulting percentage of the �ltered elements compared to the total number of elements.
This reduction also represents the reduction in developers’ manual e�ort for reviewing
di�erences.
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Derived Copy Detection
O� On

Caching Sales Address Sales Address ∅
Without (sec) 36 440 37 443 239
With (sec) 14 29 15 30 22
Improvement (%) 61% 93% 59% 93% 91%

Table 8.11: SPLevo Di�erence Analysis: Execution times industrial case study

Results
As a result, considering the Derived Copy instances allowed for �ltering 61% of the di�ering
elements in total for both components under study, This is a satisfying result and validates
the application of such an improved di�erence analysis. Considering all di�erences for all
types of software elements, the number of di�erences was reduced from 2,790 to 2,297. Thus,
the reduction in relation to all types of di�erences is about 18%.

Applicability
To give a note about the applicability: The detection algorithm requires the availability of
rules for customization that can be evaluated. If not available as conventions for copy-based
customization, a review for according indicators can be done with a justi�able amount
of e�ort. The manual code review has shown that identifying inheritance relationships
between the copied and the original component can be done within minutes. However, even
without any of such rules, the di�erence analysis can be applied, provides valid results, and
allows for a fully automated analysis.

8.6.2.4 Execution Times

To provide an estimation of the execution time required for analyzing the customized
components, each of them was analyzed four times: with and without caching, respectively
with and without activating the Derived Copy detection. The di�erence analysis was
measured in terms of the fully automated di�erence analysis activity including the actions:
software model extraction, di�erence analysis, and VPM initialization. Table 8.11 provides
the times required by the analyses according to the di�erent settings. As shown, a signi�cant
improvement of 91% could be achieved if the cache for resolving references is used and �lled.
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8.7 Evaluation I.II: Variability Design

The evaluation questions for Hypothesis I.II are focused on gaining insight into the values
of the analyses for identifying relationships between VPs.

8.7.1 Evaluation Question I.II.1: Program Dependency Analysis

As published in Klatt et al. [100], we have implemented the SPLevo Program Dependency
Analysis (Section 6.3) in the SPLevo prototype and applied it in the ArgoUML as well as in
the industrial case studies. We have studied four metrics to assess the value of analyzing
dependent modi�cation:

• Recall: To which degree can we aggregate code modi�cations contributing to the
same feature?

• Precision: Do all recommended aggregations belong to the same feature?
• Bene�t: To which degree can we reduce developers’ manual e�ort in terms of VPGs

to review about possible connections?
• Industrial Applicability: Can the approach be applied in industrial scenarios and

provide reasonable results for copies evolved for several years?

The �rst three metrics were captured in the ArgoUML case study, and feature-speci�c
annotations by Couto et al. [36] were used as a benchmark to assess the �ndings. The fourth
metric was studied in the industrial case study. However, the industrial case study does not
provide a benchmark in terms of documented modi�cations or existing consolidation results.
Thus, the �ndings of the analysis were manually reviewed by the developer of the vendor
participating in the case study.

8.7.1.1 Metric capturing

In the ArgoUML case study, two strategies were used to assess the precision and recall of
the program dependency detection for identifying related VPs.

Recall
First, to assess the recall of the analysis, single-feature variants, with only one distinct
ArgoUML feature activated, were generated as already done for evaluating the di�erence
detection. We applied the SPLevo Program Dependency analysis on each of them compared
to a basic variant with no features enabled. Accordingly, all initial VPs (i.e., di�erences)
are known to belong to a single feature. We de�ne the recall as the number of VPs the
analysis was able to aggregate with each other. We performed the analysis both for the
set of dependencies proposed by Robillard and Murphy [158] and for our extended set of
dependencies (Section 6.3.2).

Precision
Second, to assess the precision of the analysis, we have applied it on a complete variant of
ArgoUML with all features activated compared to a basic variant with none feature enabled.
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Thus, if the analysis detects a relationship between VPs that belong to di�erent features, this
was recognized as an invalid relationship. Couto et al. [36] identi�ed feature-speci�c code
that is shared by multiple features by intention (i.e., tangling features). Hence, if the analysis
returns a relationship for such tangling features, this is registered as a valid relationship.
Accordingly, we used the code markers provided by Couto et al. [36] as a benchmark for
this evaluation, too. We measured the precision as the ratio between valid relationships and
the total number of relationships returned.

Benefit
The bene�t of the SPLevo Program Dependency Analysis is measured as the reduction of
VP clusters (i.e., VPGs) developers must prove for relationships to each other. For example,
in case of two VPGs with VPs contributing to the same feature, developers must identify
their relationships and aggregate them. If the analysis is capable to aggregate those two
VPGs, the resulting bene�t is 100% according to the achieved reduction. Those 100% are the
result of having two VPGs before and only one VPG afterwards. Thus, developers must no
longer review any VPGs to �nd relationships between them.

Industrial applicability
The industrial applicability is measured by i) proving that the approach can be applied in the
industrial case study and ii) the developer of the vendor assessing the detected relationships.
There are no �nally decided features respectively VPGs representing a benchmark to measure
the recall in the industrial case study. Thus, only the precision of the analysis could be
measured in this case study.

8.7.1.2 Analysis Results

Recall
As shown in Table 8.12, the analysis achieved a recall of 80% on average when analyzing the
extended set of types of dependencies proposed as part of the SPLevo approach. In contrast,
analyzing only dependencies included in the set, as proposed by Robillard and Murphy [158],
resulted in a lower recall of 33% on average.

Precision
When analyzing the ArgoUML variant with all features enabled, 216 aggregations are identi-
�ed in total. A review of those �ndings discovered three invalid aggregations containing
VPGs which contain VPs that neither belong to a distinct feature nor to tangling features
identi�ed by Couto et al. [36]. Accordingly, only 213 of the 216 aggregations are valid and the
resulting precision is 99%. A review of the three invalid aggregations revealed that all invalid
relationships result from modi�cations of di�erent conditions of if-else chains. Such modi�-
cations are possible with preprocessor statements but are cascaded in software-model-based
di�erence analyses as performed in the SPLevo approach.
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Initial VPG 174 431 101 56 1,110 218 91 116
Robillard set of dependencies
VP Aggregated 66 294 30 32 16 85 53 61
Recall (%) 38 68 30 57 1 39 58 53 43
Resulting VPGs 113 141 77 26 1,100 146 44 60
Reduction (%) 35 67 24 54 1 33 52 48 39
SPLevo extended set of dependencies
VP Aggregated 112 386 69 49 1,091 154 75 88
Recall (%) 64 90 68 88 98 71 82 76 80
Resulting VPGs 71 49 45 9 204 76 23 40
Reduction (%) 59 89 55 84 82 65 75 66 72

Table 8.12: SPLevo Program Dependency Analysis: Aggregation results ArgoUML case
study

Benefit
To assess the bene�t, we analyzed the reduction of VPGs developers have to review manually.
Table 8.12 provides the total number of initial VPGs. The row “Resulting VPGs” presents the
number of VPGs when the analysis was performed and all returned recommendations were
accepted. The row “Reduction” represents the di�erence between the initial and the resulting
VPGs in percentage. The average reduction over all experiments and the resulting bene�t is
approximately 72% for the extended set of types of program dependencies proposed by the
SPLevo approach. In comparison, analyzing only the dependencies proposed by Robillard
and Murphy [158] achieved a lower reduction of only 39%.
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Figure 8.5: SPLevo Program Dependency Analysis: VPG reduction ArgoUML case study

Figure 8.5 provides a chart visualizing the initial number of VPGs and the numbers
resulting from analyzing the two sets of program dependencies. Especially for the Logging
variant (LOG), the number of VPGs was signi�cantly reduced by the extended set of program
dependencies.
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Industrial applicability
The SPLevo Program Dependency Analysis could be applied to both copied components of
the industrial case study without any limitations. The identi�ed relationships were reviewed
by a developer of the software vendor, who justi�ed all of them as reasonable relationships.
Thus, the program dependency analysis achieved a precision of 100%, as all aggregated
VPs were related to each other. The recall could not be calculated, as the copies have not
been consolidated by the company yet and the valid design decisions are not available for
comparison. However, as shown in Table 8.13 and visualized in Figure 8.6, the resulting
bene�t, measured in terms of reduced VPGs to be reviewed by developers, is about 75%
on average for the components under study (23% when analyzing the set of dependencies
proposed by Robillard and Murphy [158]). In total, the high precision and execution times
con�rmed the industrial applicability of the analysis.
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Initial VPG 569 1,758
Robillard set of dependencies
Resulting VPGs 449 1,310
Reduction (%) 21 25 23
SPLevo extended set of dependencies
Resulting VPGs 160 399
Reduction (%) 72 77 75

Table 8.13: SPLevo Program Dependency Analysis: Aggregation results industrial case study
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Figure 8.6: SPLevo Program Dependency Analysis: VPG reduction industrial case study

8.7.1.3 Execution Times

Analyzing the single-feature variants of ArgoUML took 20 seconds on average when an-
alyzing the extended set of dependencies proposed in the SPLevo approach. Performing
the analyses with the set proposed by Robillard and Murphy [158] it took 13 seconds on
average. For the complete variant of ArgoUML, the SPLevo set of dependencies required
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82 and the set proposed by Robillard and Murphy [158] 51 seconds. In the industrial case
study, the program dependency analysis took �ve respectively 40 seconds for the Sales and
Address component considering the SPLevo set, and 3 respectively 16 seconds using the
set proposed by Robillard and Murphy [158]. In total, analyzing the extended set proposed
by the SPLevo approach requires slightly more time, which is acceptable because of the
improved �ndings.
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Rob (sec) 14 15 10 8 23 13 14 9 13 51 3 16
SPLevo (sec) 21 22 18 11 40 21 17 15 20 82 5 40

Table 8.14: SPLevo Program Dependency Analysis: Execution times all case studies
(R = Set of Robillard and Murphy [158], S = Set of SPLevo approach)

8.7.2 Evaluation Question I.II.2: Shared Term Analysis

We have implemented the SPLevo Shared Term Analysis (Section 6.4) in the SPLevo proto-
type and applied it in the ArgoUML as well as in the industrial case studies. We have studied
the same four metrics as done for the SPLevo Program Dependency Analysis to assess the
value of analyzing dependent modi�cations:

• Recall: To which degree can we aggregate code modi�cations contributing to the
same feature?

• Precision: Do all recommended aggregations belong to the same feature?
• Bene�t: To which degree can we reduce developers’ manual e�ort in terms of VPGs

to review about possible connections?
• Industrial Applicability: Can the approach be applied in industrial scenarios and

provide reasonable results for copies evolved for several years?

Similar to the program dependency analyzer, we evaluated the �rst three metrics in the
ArgoUML case study with the annotations of Couto et al. [36] as a benchmark to assess the
�ndings. And, we used the industrial case study to prove the industrial applicability of the
SPLevo Shared Term Analysis.

8.7.2.1 Metric capturing

We have captured the metrics in the same way as done for the SPLevo Program Dependency
Analysis (Section 8.7.1.1). However, the results of the shared term analysis are in�uenced
by terms irrelevant for detecting feature-speci�c code (i.e., Term Spam according to De�ni-
tion 18). Thus, we captured the metrics using the Snowball Porter stemmer (Section 6.4.3.2),
excluding comments and terms shorter than three characters while applying the term
splitting but no Term Spam �lter.
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8.7.2.2 Analysis Results

Recall
As shown in Table 8.15, analyzing the VPs for shared terms achieved a recall of 42% on
average.
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Initial VPG 174 431 101 56 1,110 218 91 116
VP Aggregated 76 255 33 23 198 91 44 68
Recall (%) 44 59 33 41 18 42 47 59 43
Resulting VPGs 99 177 69 34 913 128 48 49
Reduction (%) 43 59 32 39 18 41 47 58 42

Table 8.15: SPLevo Shared Term Analysis: Aggregation results ArgoUML case study

Precision
Analyzing the complete variant of ArgoUML with all optional features in place returned a
single aggregation of 755 VPs. These VPs represent modi�cations of all features and thus
must not be aggregated. A review of the relationships has shown that they result from many
shared terms irrelevant for the copy-speci�c features, such as ”argouml”, “item”, and “design”
(i.e., Term Spam according to De�nition 18). Accordingly, there is only one false aggregation
leading to a precision of 0%.

Benefit and Industrial Applicability
The shared term analysis used with the base settings does not provide any bene�t because of
the unsatisfying precision. The reliability of the recommendations is too low to reduce the
SPL Consolidation Developers’ manual e�ort for reviewing the VPGs. Without any bene�t,
the analysis is not applicable in industrial scenarios as well.

The reason for the insu�cient precision is the high amount of Term Spam in the identi�ers.
Section 6.4.3.3 describes several strategies to cope with the challenge of Term Spam. To
prove the proposed strategies, we performed further analyses on the ArgoUML complete
variant as described in the following subsections.

8.7.2.3 Term Frequency

We have reviewed the terms indexed during the analysis to evaluate their frequency as
indicator for Term Spam. Table 8.16 provides four examples of indexed terms with di�erent
frequencies and validity to indicate relevant relationships. These �ndings show that the
frequency of a term needs not to relate to its relevance to indicate validate relationships.
Thus, the frequency is not a reliable indicator for �ltering Term Spam.
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Stemmed Term VP Frequency Valid Aggregation

caller 2 yes
feme 2 no
critic 143 yes
diagram 146 no

Table 8.16: Example terms indicating uselessness of frequency (ArgoUML case study)

8.7.2.4 Seed Terms

Seed terms represent an exclusive list of terms to analyze as shared terms. We used the
names of the eight features identi�ed by Couto et al. [36] as seed terms to evaluate their
value. We used the feature names in lowercase and concatenated compound terms: “activity”,
“cognitive”, “collaboration”, “deployment”, “logging”, “state”, “usecase”, “sequence”.

Results
Applying the seed term strategy when analyzing the ArgoUML complete variant, a single
aggregation of 313 VPs is returned. This is less than half of the VPs aggregated by the
un�ltered analysis. However, the precision is 0% as well and, thus, there is no bene�t for
developers. Analyzing the complete variant ArgoUML took about 46 seconds.

Source for low precision
A review of the VPs has identi�ed several code locations that include more than one of the
featured terms. For example, Listing 17 shows �elds declared by the class UMLStateDiagram.
The class was introduced for the state feature but the term “sequence” is used as well without
any relationship to the sequence feature.
1 private Action actionStubState;

2 private Action actionState;

3 ...

4 private Action actionActionSequence;

Listing 17: UMLStateDiagram class as example for mixed seed terms

Availability of seed terms
Beside the results presented above, seed terms cannot be assumed to be available in each
scenario. For example, in the industrial case study, the vendor was not able to provide
us with either a list of customer-speci�c features implemented in recent years or a list of
relevant seed terms in general.

Sensitivity of terms
During the analysis of the seed terms provided for the ArgoUML case study, we observed a
sensitivity to the quality of the terms. In particular, providing compound terms as seed terms
allowed for relating several variants of their concatenations. For example, we identi�ed �ve
di�erent types of writing for the term “use case” in the ArgoUML case study: “UseCase”,
“Use_case”, “useCase”, “usecase”, and “Usecase”. At least the �rst three variants were split by
default.
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8.7.2.5 Stop Word Lists

To evaluate the bene�t of �ltering stop words, we performed analyses with two publicly
available lists. The �rst stop word list includes the terms of the programmer vocabulary
proposed by Høst and Østvold [82]. This list was used as a representative for programming
language-speci�c stop word lists. The second stop word list corresponds to the stop word
list implemented in the MySQL database server for full text searches [142]. It was used as
a representative for natural language stop words. Furthermore, we proved the industrial
applicability of developing custom stop word lists in the industrial case study.

Results with programmer vocabulary (Høst filter)
Filtering terms proposed by the programming vocabulary resulted in a single aggregation,
too. The aggregation contains 721 VPs, which is 34 less VPs than without any �ltering.
However, the precision is also 0% and, thus, �ltering this stop word list does not improve
the precision of the analysis. For completeness, the according stop word list is provided in
Appendix B.1.1. Analyzing the complete variant of ArgoUML took about 235 seconds.

Results with MySQL stop word list
Before performing the analysis itself, we prepared the MySQL stop word list in two steps.
In the �rst step, we split the terms in the stop word list containing apostrophe characters
(e.g., ”aren t” instead of ”aren’t”). The Java programming language bars for using apostrophes
in identi�ers, thus they are useless in the analysis. In the second step, we removed all stop
words with less than three characters, because these short terms will be �ltered by the
analysis already. The resulting stop word list is provided in Appendix B.1.2.

However, �ltering terms with the prepared MySQL stop word list resulted in a single
aggregation, too. The single aggregation contains 725 VPs, which is 30 less VPs than without
any �ltering and four VPs more than when �ltering the programmer vocabulary. Accordingly,
the precision is again 0% and, thus, �ltering this stop word list does not improve the precision
of the analysis, either. Analyzing the complete variant of ArgoUML took about 76 seconds.

Developing custom stop word lists
Section 6.4.3.3 describes sources and concepts to develop custom stop word lists. We have
investigated in developing such a stop word list in the industrial case study, as published
in Klatt et al. [99]. We �rst asked two developers of the vendor to provide a stop word list
without any preparations. As developing stop word lists is not a typical task in software
development, they were not able to provide such a list because of the uncertainty how to do
this. Next, we extracted all terms from the case study components. We presented the terms
to the developers and asked for selecting terms that possibly relate to customer-speci�c
features. Our intention was to �lter all terms as stop words which have not been identi�ed.
However, again, it was not possible to clearly decide about the relevance of the terms. Further
investigation in such a custom stop word list was not possible due to timing restrictions
(i.e., a one-person day of e�ort). As a conclusion, developing a custom stop word list for a
speci�c scenario is a challenging task and the bene�t of the resulting list is unclear. Note:
The list of terms is not included in this thesis due to legal restrictions.
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8.7.2.6 Shared Term Clusters

To evaluate the improvement achieved by the shared term cluster strategy described in
Section 6.4.3.3, we have performed several analyses to study it separately as well as combined
with other strategies.

Con�guration Recommendations Precision Execution Time
Valid Invalid (seconds)

Clusters detection only 14 2 88% 73
Seed terms 7 0 100% 42
Høst stop words 13 2 87% 72
MySQL stop words 14 2 88% 79

Table 8.17: Shared term cluster strategy: Precision in ArgoUML case study

Precision
Table 8.17 summarizes the precision measured with the ArgoUML complete variant. The
columns “Valid” and “Invalid” contain the numbers of valid respectively invalid aggregations
identi�ed by the analysis. The column “Precision” represents the resulting precision for each
con�guration. Finally, the column “Execution Time” provides the time it tool to execute the
analyses.

As shown, the shared term cluster strategy leads to signi�cantly higher precisions as
the other strategies. Filtering stop words did not result in a signi�cant di�erence in the
results compared to applying the shared term cluster strategy only. In contrast, using seed
terms resulted in a precision of 100% and, thus, provided fully reliable results. However,
seed terms cannot be assumed to be available, as con�rmed in the industrial case study.
Furthermore, reviewing the recommended aggregations identi�ed that the seed term variant
missed an extensive aggregation of VPs related to the logging feature. This miss happened
because the term “log” is used in the code, but the seed term is “logging”. Also none of
the stemming algorithms transformed “logging” to “log” and, thus, the seed term strategy
prevented detecting this valid aggregation.

Recall
We further evaluated the recall of the shared term cluster strategy. Table 8.18 summarizes
the �ndings for the strategy alone and in combination with the other strategies as studied
before. The best result on average is achieved by combining the shared term cluster and the
seed term strategies with a recall of 22%. The results of the other alternatives did not vary a
lot between each other.

Considering both recall and precision, the best alternative is to combine a seed term and
shared term cluster strategy. However, if seed terms are not available, executing only the
shared term clustering provides a good alternative. The di�erences of the execution times
can be neglected.
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Feature

A
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S
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Q ∅

Initial VPG 174 431 101 56 1,110 218 91 116
Shared term clusters only

VP Aggregated 28 180 2 0 196 5 0 2
Recall (%) 16 42 2 0 18 2 0 2 10
Resulting VPGs 154 252 100 56 917 215 91 115
Reduction (%) 11 42 1 0 17 1 0 1 9
Exec.-Time (sec) 13 17 5 10 34 13 11 6 14
Shared term clusters & seed terms

VP Aggregated 34 179 13 20 0 44 37 8
Recall (%) 20 42 13 36 0 20 41 7 22
Resulting VPGs 142 253 89 37 1,110 175 55 110
Reduction (%) 18 41 12 34 0 20 40 5 21
Exec.-Time (sec) 10 19 6 4 19 6 7 9 10
Shared term clusters & Høst stop word �lter

VP Aggregated 30 19 2 2 196 12 0 0
Recall (%) 17 4 2 4 18 6 0 0 6
Resulting VPGs 151 416 100 55 917 209 91 116
Reduction (%) 13 3 1 2 17 4 0 0 5
Exec.-Time (sec) 7 15 6 4 36 12 6 8 12
Shared term clusters & MySQL stop word �lter

VP Aggregated 27 19 2 0 194 7 0 2
Recall (%) 16 4 2 0 17 3 0 2 6
Resulting VPGs 155 417 100 56 918 214 91 115
Reduction (%) 11 3 1 0 17 2 0 1 4
Exec.-Time (sec) 17 5 6 36 8 8 6 12

Table 8.18: Shared term cluster strategy: Recall in ArgoUML case study

Industrial applicability
We applied the SPLevo Shared Term Analysis with the shared term cluster strategy in the
industrial use case twice: with and without the Høst programmer vocabulary as stop word
list. With both settings, the analysis returned the same result, with slightly lower execution
times when using the stop word list (i.e., 3 and 16 seconds instead of 8 and 19 seconds).
As presented in Table 8.19, the precision in the industrial case study was 0% respectively
50%, which is not a satisfying result. The shared terms identi�ed were “description”, “log”,
and “attributes”. The �rst two implicated invalid recommendations. The third one resulted
from independently created return values in di�erent conditional executions of the same
method. Thus, it would not be found by the Program Dependency Analysis. However, it
must be classi�ed as detected by chance by the Shared Term Analysis as well. Furthermore,
the absolute number of detected relationships does not provide a noti�able bene�t in terms
of reducing the manual e�ort of developers.
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Con�guration Recommendations Precision Execution Time (seconds)
Valid Invalid (Cluster only / Høst)

Sales 0 1 0% 8/3
Address 1 1 50% 19/16

Table 8.19: Shared term cluster strategy: Precision in industrial case study

8.7.2.7 Execution Time

As shown in Table 8.20, the execution times for analyzing the ArgoUML variants with the
default shared term analysis vary between 5 and 36 seconds. The average execution time for
all variants was about 14 seconds. Analyzing the complete variant with all optional features
activated took about 208 seconds. In the industrial case study, the shared term analysis
required 8 seconds for the sales and 36 seconds for the address component.

If the SPLevo Shared Term Analysis is performed with additional strategies, such as shared
term cluster strategies, the execution time is even shorter, as presented in the according
subsections. As shown in Table 8.17, the execution times for the complete ArgoUML variant
varied approximately between 40 and 80 seconds.

Feature AC
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Execution time (sec) 13 21 5 6 36 8 10 14 14

Table 8.20: Shared term analysis: Execution time in ArgoUML case study

8.7.3 Evaluation Question I.II.3: Simultaneous Modification Analysis

To decide about the bene�t of analyzing modi�cations committed at the same time or with a
link to the same issue, it would be necessary to analyze precision, recall, and e�ort reduction
as done for the other types of analysis.

None of the case studies provided the required data for such analyses. However, as
Software Con�guration Management (SCM) systems are used by many companies today,
and the idea of a commit is to save modi�cations performed in a similar context, we argue
that such an analysis can provide a bene�t to identify related di�erences. Furthermore,
others such as Rubin et al. [165] and Nunes et al. [137] propose a similar direction.

Nevertheless, also if such data is available, the quality of the analysis strongly depends on
the discipline of the developers when committing their modi�cations. For example, threats
to the validity of the analysis exist because of large commits containing modi�cations for
several features, forgotten commit messages, or issues that describe several features at once.

To conclude about the bene�t of analyzing simultaneous modi�cations: This type of
analysis did not provide any bene�t in the case studies due to the lack of according data.
But, this result cannot be generalized except for cases which do not provide an SCM as well.
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8.8 Evaluation I.III: Consolidation Refactoring

8.8.1 Evaluation Question I.III.1: Refactoring Specification Fitness

To evaluate the �tness of the concept for consolidation refactoring speci�cations, a case study
with a concrete consolidation refactoring was performed. The refactoring used in the case
study relates to Java technology and implements a variability mechanism using conditional
statements. The con�guration is provided by a static Java class which is introduced by
the refactoring as well. A student studying computer science at the Karlsruhe Institute of
Technology (KIT) speci�ed this refactoring as part of his master thesis [40]. This allowed
to prove the applicability of the concept from the perspective of the person specifying
the refactoring. Furthermore, a student writing a master thesis is assumed to have typical
software engineering skills similar to those available in practice. The resulting speci�cation
is provided in Appendix A.1.

To decide about the �tness of the speci�cation concept, the following metrics were studied:

• Unambiguity: Can the refactoring be speci�ed without ambiguity for a human
reader?

• Completeness: Can all necessary code transformations be speci�ed?
• Automation: To which degree can a refactoring speci�ed with this concept be auto-

mated?

Due to the unlimited variety of variability mechanisms, it is not possible to evaluate the
speci�cation concept for all of them. Nevertheless, the case study performed provides results
for the metrics and indicators for the �tness in general.

8.8.1.1 Metric capturing

Unambiguity
To decide about the unambiguity of the speci�cation, an interview was performed with
four participants (Section 8.5.2). They were provided with an excerpt of the concrete
refactoring speci�cation mentioned above and a questionnaire about their comprehension.
The questionnaire itself and the complete answers are provided in Appendix B.4.

Completeness
The completeness was measured in terms of coverage of types of SoftwareElements to be
refactored in the ArgoUML case study. A 100% completeness is achieved if refactoring
instructions can be speci�ed for all types of SoftwareElements required to refactor a set of
copies into an SPL. This metric depends on the concrete copies under study respectively the
intended SPL. Thus, the ArgoUML case study was selected for this evaluation due to the
documented feature-speci�c code. Furthermore, the industrial case study does not represent
a clear benchmark for this evaluation, as the vendor has not decided about a �nal VP design,
yet.
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Automation
To prove the automation, the master student who wrote the speci�cation implemented
an according automation. This automation is integrated in the SPLevo prototype and
was evaluated in the ArgoUML case study. The degree of automation is assessed by the
compilation errors in the resulting SPL and the manual e�ort required afterwards to achieve
a valid code base.

8.8.1.2 Results

The results of the questionnaire successfully assessed the comprehensibility of the speci�ca-
tion concepts. The answers con�rmed the validity of the structure but also point out the
importance of the quality of the speci�cation itself.

Comprehension
All participants successfully answered the questions to prove the comprehension of the
refactoring itself. They con�rmed the necessity of the examples in general and for the
individual instructions. In context of the refactoring instruction for method elements, the
participants had to prove their comprehension of a declared function as part of the mechanics.
They all returned correct answers but with di�erent details. For example, one reported the
function to be obvious while another expected a check of the return type of the method –
which is ensured by the overall limitations.

Examples and limitations Some participants mentioned that they used the examples for
their overall comprehension (e.g., “Gives a concrete implementation template”). Thus,
examples must be chosen carefully to be representative and comprehensible. Similarly, the
participants con�rmed the necessity and usefulness of the limitation sections. However,
the quality and details of the concrete limitations presented in the example were partly
confusing (e.g., “Helpful but more detail needed”, “. . . bit confusing, because it’s somehow
obvious that. . . ”, “I’m not sure whether the list is complete”).

Pseudo code Three of four participants noted possible di�culties with pseudo code nota-
tions (e.g., “hard to verify/test without translating it to concrete language”). One con�rmed
the advantage of language independence. In total, two participants declared a neutral feed-
back about the use of pseudo code, one declared to prefer a programming language, and one
mentioned that he could not decide about it without having to implement it. To conclude:
Using pseudo code is not invalid. However, using a programming language the target group
of a speci�cation is used to might support the comprehensibility of the mechanics. For
example, when specifying a refactoring for a company developing applications with the C#
programming language, it is reasonable to specify the refactorings in C# as well.

Context information The answers show that providing a limited context in advance in-
�uenced the participants’ comprehension. This was done to limit the resources required
to participate in the interview. However, this did not invalidate the results and only led to
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some general uncertainties (e.g., ”Explanation of what OPTXOR is”, terminology such as
“implementing element”, “. . . not sure how to identify the two CUs. . . ”, “Can this not be fully
automated?”).

Further remarks One participant explicitly declared the decomposition as helpful for
comprehending the refactoring. Another one also noted the classi�cation scheme (i.e., char-
acteristics) and the alternative sections as positive aspects.

Completeness
The refactoring speci�cation developed by the student was reviewed and assessed as valid.
The Variants of all VPs in the ArgoUML case study are implemented by SoftwareElements
with the JaMoPP metamodel types: Statement, CompilationUnit, Import, Field, Condition,
Method, Constructor, and Block. All of these types of software elements are covered by the
refactoring speci�cation (Appendix A.1). Some of the refactoring instructions de�ned in the
speci�cation include restrictions of their applicability. However, none of these restrictions
a�ected the ArgoUML case study as proven by the evaluation on the possible degree of
automation.

Automation
In addition to specifying the refactoring, the master student had to develop an automation
according to the refactoring speci�cation. This automation was included in the SPLevo
prototype and thus has been applied in the ArgoUML case study. Executing the refactoring
resulted in no compilation errors.

A manual evaluation of the automation identi�ed that external dependencies included
in resources such as Java Archive (JAR) �les are not covered. This did not in�uence the
ArgoUML case study, as all copies include the same dependencies (i.e., the same JAR �les).
However, such JAR �les are not covered by the JaMoPP model and thus also not covered by
the model extractions and analyses in the SPLevo prototype. To cope with this limitation,
developers have to manually provide the according resources to the �nal SPL when the
refactoring is performed.

Conclusion
As an overall result, the �tness of the refactoring speci�cation concepts is successfully
evaluated. Writing a speci�cation according to the concept and in a comprehensible manner
was proven as well as the possible coverage and automation. However, the speci�cation
concept supports the creation and handling of refactorings, but it is still possible to write
wrong or incomprehensible refactoring speci�cations.
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8.8.2 Evaluation Question I.III.2: Variability Mechanism Recommendation

To evaluate the recommendation system with regard to its capability to reduce manual e�ort
and the risk of inconsistent decisions, we use an argumentative approach. The result of the
recommendation strongly relies on the assumption that the variability characteristics of the
VPs re�ect the stakeholders’ requirements. Furthermore, the result of the recommendation
system depends on the set of variability mechanisms provided by Software Architects as
part of an SPL Pro�le.

Assuming that VP characteristics and available variability mechanics are de�ned properly,
the reduction of the manual e�ort and the risk of inconsistent implementations can be
represented by the following metrics:

• Variability Decision E�ort: How many decisions have to be made by developers
with and without the auto recommendation?

• Variance of Mechanism Implementations: How often have mechanisms been
selected which are not the optimal choice for a VP?

The former represents a comparison of the worst-case and the best-case scenarios. The
worst-case scenario exists in case of all necessary decisions having to be done manually
(i.e., no auto recommendation in place). The best-case scenario exists in case of the auto
recommendation being able to decide all VPs. The latter represents the possible variance of
variability implementation styles between VPs.

Variability decision e�ort
The proposed recommendation system is based on a set of rules matching the variability
characteristics of a VP and the variability mechanisms selected in the SPL Pro�le in the
order they are de�ned in. These rules relate to the number of decisions to be performed by
developers.

Depending on the number of VPs nVP and the number of SoftwareElements implementing
variants nSE of these VPs, at least 3 ∗ nVP + nSE checks are required to decide for variability
mechanisms for all VPs. This is a best-case scenario estimation which sets if the �rst
variability mechanism checked for each VP can be applied.

For example, the feature-speci�c code locations documented by Couto et al. [36] in the
ArgoUML case study (Section 8.4.1) conform to 1,967 VPs and 2,282 SoftwareElements
implementing their variants. In the best-case, this requires 3 ∗ 1,967 + 2,282 = 8,183
decisions about criteria being ful�lled or not.

When the auto recommendation is applied, there will be no manual e�ort except for
executing the auto recommendation. The actual time required by a human for a single
decision strongly depends on the experience of the developers as well as the usability of
the tooling. However, even under the best conditions, the automation will outperform the
manual process. Assuming an e�ort of 1 second to look at a VP and store a decision, more
than 2 hours will be saved in case of the ArgoUML case study (i.e., 8,183 ∗ 1 seconds ≈
136minutes ≈ 21/4 hours).
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Variance of mechanism implementations
The possible variance of implemented variability mechanisms depends on the number of
possible mechanisms, the variety of SoftwareElements implementing the VPs, and the
individual programming styles of the implementing developers.

However, to estimate the number of potential variants of implementations we consider
information provided in the industrial case study. During the interviews, participant three
initially estimated at least 10 di�erent “styles of implementing variability” (i.e., variability
mechanisms). He repealed this number and estimated a much higher but unknown number
at the end of the interview. Thus, 10 is a reliable minimum number of alternative variability
mechanisms. Without knowing the details of these mechanisms, we assume that developers
can potentially choose each of them for a VP. However, only one variability mechanism
can be the best choice according to the preferences of the software architects. Thus, 9 of 10
alternatives represent non-optimal decisions.

Furthermore, we assume the minimum number of VPs nVP by applying all technical
possible merges to each of the studied components. Accordingly, there are 9 ∗ nVP potential
non-optimal decisions. Table 8.21 summarizes the estimations for the two components
under study. As shown, there are 1,710 respectively 4,095 non-optimal possible decisions
which can a�ect the consistency of the SPL implementation. Thus, applying the variability
mechanisms recommendation allows for reducing the risk of non-optimal decisions from
1,710 respectively 4,095 to 0.

Component Variation Points Potentially Wrong Decisions
Initial Merged 9 ∗ nVP

Sales 563 190 1,710
Address 1,734 455 4,095

Table 8.21: Potentially non-optimal variability mechanism decisions

8.9 Evaluation II: Consolidation Process

8.9.1 Evaluation Question II.1: Fitness for Industrial Scenarios

We assessed the �tness of the process for industrial scenarios by three criteria:

1. Integration: The activities are seamlessly integrated with each other.
2. Input: The required input is available.
3. Responsibilities: The responsibilities for the activities can be ful�lled.

The former is proven by the practicability of the SPLevo prototype. All activities are
represented in the prototype. Furthermore, they can exchange the data as described in
Section 4.2 without additional adaptations. To prove the second and third criteria, we follow
a line of argumentation visualized in Figure 8.7. This line of argumentation allows for
assessing the �tness by the appropriateness of the de�ned roles.
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Figure 8.7: Process �tness for industrial scenarios: Line of argumentation

Line of argumentation
The SPLevo consolidation process is de�ned as a chain of activities. This chain is �t for an
industrial application if the activities can be executed and their process internal and process
external input is available. An activity can be executed if it is either fully automated and
a valid role exists to start it, or it requires manual processing and an according role exists
to take care for this. If such de�ned roles are appropriate for an industrial application, the
activities are suitable for an industrial application as well. The process external input is
available if the responsibilities are clear for the individual activities. As shown in Figure 8.7,
roles are de�ned by activities they have to execute and the responsibilities for input they
have to provide. Accordingly, if the roles �t for an industrial application, the responsibilities
are suitable and the activities can be executed. Combined with the availability of the internal
input, the overall process can be declared as �t for an industrial application if the roles are
appropriate.

The roles’ appropriateness was assessed by considering the feedback received in the
interview workshop as well as in the online survey. The former was designed in an open
manner not focused on asking about the roles. The latter was an anonymous survey strictly
focused on receiving feedback about the roles. The following subsections discuss the roles
in context of the feedback received in the interviews and survey. The original results are
provided in Appendix B.2 and Appendix B.3.
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8.9.1.1 So�ware Architect

Interviewworkshop
The participants reported about many di�erent technologies and variability mechanisms
currently used in their development. Thus, there is a necessity for a role to keep track of
those technologies and mechanisms and decide about new ones to integrate (i.e., architec-
tural decisions). Especially the reported divergence in variability implementations further
motivated the introduction of the Software Architect role for the consolidation process.

Survey
All survey participants agreed in the availability of a person to �ll the role of the Software
Architect. Twelve of 18 participants reported concrete positions currently owned by the
persons able to �ll the role of the Software Architect. Furthermore, they agreed that these
persons have the necessary competence and decision-making powers. About half of the
participants agreed to feel themselves being able to �ll this role.

8.9.1.2 SPL Consolidation Developer

Interviewworkshop
The project manager as well as the developers reported about the preference for devel-
opers being able to decide about variability mechanisms on their own. To cope with this
requirement and the according skill to understand variability mechanisms, the role of an
SPL Consolidation Developer was introduced. Furthermore, a participant reported the
requirement for documenting introduced variability. This con�rms to the skill of an SPL
Consolidation Developer to work with a variation point model.

Survey
13 of 18 participants agreed to know a concrete person to �ll the role of an SPL Consolidation
Developer. Ten of them named current positions of persons who can potentially �ll the role.
One participant mentioned the ability of all team members to �ll this role. Compared to the
Software Architect role, less of the participants agreed to feel themselves able to �ll the role.
Furthermore, less of them agreed for potential candidates to have the required competences
and decision-making powers to ful�ll the role, yet. Accordingly, the certainty about the role
is lower but can still be assessed as valid.

8.9.1.3 SPL Manager

Interviewworkshop
The interview participants reported about developers checking their introduced variability
with the development management and the product management. The SPL Manager role is
intended to represent those two perspectives and to provide the required feedback for the
SPL Consolidation Developer.
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Survey
Ten of 18 participants declared to agree to the availability of a concrete person for the SPL
Manager role. Eight of these participants also declared current positions of these concrete
persons. However, none of the participants totally disagreed to the availability of a concrete
person able to �ll the SPL Manager role. Furthermore, some of the participants mentioned
uncertainty about their decisions in the �nal feedback. Hence, the disagreement potentially
results from the uncertainty about the role itself.

8.9.1.4 Product Manager

Interviewworkshop
The interview participants reported about the product management being aware of the
needs of individual projects. Accordingly, the role of a Product Manager was introduced as
the stakeholder originally representing the project requirements.

Survey
17 of 18 participants agreed to being able to name concrete persons to �ll the role of a Product
Manager. Nine participants declared current positions owned by these persons. Only a
minority of the participants saw themselves in such a position and a minor uncertainty
existed about the availability of the necessary competency and decision-making powers.

8.9.1.5 So�ware Developer

Interviewworkshop
All interview participants, except for participant 3, described their interest in the code and
the resulting code quality. The interest in a long-term code quality is represented by the
role of a Software Developer to make it explicit in contrast to requirements in context of an
e�cient consolidation process.

Survey
All survey participants agreed to the availability of a concrete person to �ll this role and
having the required competency and decision-making powers. Ten participants declared
current positions of these persons, con�rming this result as well. Concerning the ability to
�ll this role themselves, the participants split in two groups: About one half agreed, the rest
did not. This �ts to the participants’ balance of development and management origins.

8.9.1.6 SPL Consolidation Consultant

Interviewworkshop
The SPL Consolidation Consultant role was not mentioned in the answers provided in the
interview workshop. However, the participants described various ways for addressing a
consolidation, such as starting with individual code locations or searching for structures.
On the one side, this is about personal preferences and allows for di�erent perspectives
for identifying alternative solutions. On the other side, heterogeneous solutions must be
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prevented to improve SPL maintenance and management. The SPL Consolidation Consultant
role was introduced to guide a consolidation process when necessary, especially when a
novel approach such as the SPLevo approach is facilitated.

Survey
The answers given by the survey participants represent no clear trend of agreement or
disagreement on the availability of a person to �ll this role. However, this is acceptable
as the role was introduced because of the observable need but not because of a declared
necessity. In addition, the need for this role also depends on the process applied. For example,
if consolidations are not handled explicitly, there is no obvious need for such a role.

8.9.1.7 Conclusion of Role Evaluation

Correlation with existing roles
A correlation between existing roles or positions in traditional software engineering and
the agreement to individual SPLevo roles can be observed. Roles with names con�rming to
existing roles or positions received a higher agreement (e.g., Software Architect, Product
Manager, and Software Developer). Novel roles received less agreement but not total
disagreement (e.g., SPL Consolidation Developer and SPL Manager).

Result of applicability
The roles de�ned as part of the SPLevo process were created by considering information
captured during interviews with industrial participants. Furthermore, they were satisfyingly
validated in an online survey. The survey itself asked about concrete persons to �ll the roles.
This type of question is considered to be more restrictive than asking about the validity
of the roles, only. It requires not only to understand and support a role but to associate a
known person with it. Accordingly, the agreement with the roles themselves is stated to be
at least the same or even stronger as re�ected by the answers.

Finally, the roles are assessed to be appropriate and, thus, the consolidation process is
assessed to be �t for industrial applications.

8.9.2 Evaluation Question II.2: Benefit of Structured Guidance

To evaluate the bene�t of the structured guidance of the explicit process, we have reviewed
the current situation reported in the interviews and argue for the automation and structure
provided by the SPLevo process. The argumentation is chosen as comparing case studies
performing a consolidation with and without the guidance was not possible in the industrial
case study.

Reported heterogeneity and overheads
The interview participants all reported about the varying implementation of variability
in their products. While they reported about common sense techniques to implement
variability, they further reported to have no clear de�nition of when to use a concrete one.
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Furthermore, several iterations to prove and adapt a new variability with development and
product management are reported.

Deduced benefit
The proposed consolidation process targets those two reported issues. Specifying an explicit
list of variability mechanisms in advance obviously provides a bene�t compared to indi-
vidual implementations for achieving more consistent solutions. Similarly, performing a
consolidation in a structured manner and applying the contributions of the SPLevo approach
(e.g., models and analyses) obviously leads to reduced e�orts because of the automation and
the reduction of feedback cycles for coordinating the variability realization. Furthermore,
the clear responsibilities and stakeholders to consider reduce the risk of missing information
and support an awareness for consolidations in general. Finally, the required overhead
to apply the explicit process can reduce the bene�t. However, this overhead depends on
the culture of the individual company. Similar to agile processes in general, the SPLevo
approach recommends to apply the process in a lean manner to reduce the overhead as
much as possible. Thus, we argue for the bene�t of the structured guidance provided by the
SPLevo process.

8.10 Threats to Validity

The following subsections describe possible threats to the validity of the evaluation. However,
they were tolerated in order to being able to perform an evaluation to this extent and to
provide at least fundamental answers to all identi�ed evaluation questions.

Degrees of freedom in SPL decisions
Realizing SPLs allows for many degrees of freedom to cope with individual preferences
(Section 2.2). The SPLevo approach allows for supporting a broad variety of these degrees.
While it is not feasible to validate all of them, concrete preferences were assumed during the
evaluation (e.g., the speci�ed consolidation refactoring). This comes with a potential risk
of di�ering results when choosing other preferences for the future SPL. However, most of
the evaluation questions and metrics were designed for independence of such preferences
(e.g., the results returned by the variability or di�erence analyses).

Types of modifications
The case studies performed do not cover all types of modi�cations. For example, in the
ArgoUML case study, no modi�cations for introducing new member classes exist. Thus,
there is a potential risk of types of code modi�cations being not covered by the case studies
performed but in�uencing the evaluation results. To cope with this risk, the ArgoUML
case study was chosen because it covers a variety of di�erent modi�cations. Finally, the
additional industrial case study was performed to reduce the risk even further.
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Influence in interviews and surveys
The interviews and the survey performed had to cope with several challenges representing
potential threats to their validity. First, a higher number of participants would have been
desirable, but the required knowledge and experience limited the amount of possible partici-
pants. For example, the interviews about the refactoring speci�cation required participants
in use with JaMoPP, MDSD, and refactorings. This strongly reduced the number of available
participants but allowed for not confusing the participants with new technologies and topics
not in the focus of the interviews.

Furthermore, the interviews and the survey were performed only about parts of the overall
SPLevo approach in order to not exceed the time the participants had to invest. Thus, only
partial information about the concepts could be presented (e.g., only parts of the refactoring
speci�cation). For example, the roles presented in the survey were only summarized and
not discussed to their full extent. This represents a potential threat to the validity of the
answers. However, the tendencies and qualitative feedback received allow for a reasonable
reliability in the results.

Finally, the interviews performed about the refactoring speci�cation concept were in�u-
enced by the quality of the concrete refactoring speci�cation provided by the said student.
Thus, the interview was designed in a way that reduced the in�uence of the concrete
speci�cation as much as possible.

Validity of argumentation
Some evaluation questions could be answered with an argumentative approach only. Case
studies and empirical experiments would have been preferred but were not possible due to
the unavailability of according setups. However, the argumentative approach allowed for
providing at least directing answers for the according evaluation questions.

8.11 Evaluation Summary

The presented evaluation con�rmed the validity of the SPLevo approach and the evaluation
results corroborate the overall hypotheses (i.e., Hypothesis I and II).

Hypothesis I.I (Di�erence Analysis)
Hypothesis I.I was corroborated by a 100% recall of the specialized di�erence analysis, which
allows for a fully automated di�erence analysis phase. Furthermore, considering copy-
based customization practices allowed for reducing the manual e�ort in terms of irrelevant
di�erences by about 18%.

Hypothesis I.II (Variability Design)
Hypothesis I.II was corroborated as the Program Dependency Analysis allowed for reducing
the manual e�ort by about 72% on average in the ArgoUML case study and by about 75%
on average in the industrial case study. The Shared Term Analysis achieved a bene�t of
only 10% to 22% in the ArgoUML and even none in the industrial case study. Analyzing
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relationships based on simultaneous modi�cations was not possible at all because of the
unavailability of according data.

To conclude, analyzing relations between the di�erences allows for reducing developers’
manual e�ort in general, but the actual bene�t depends on the type of relationship under
study and the concrete scenario it is used in. Furthermore, analyzing dependent modi�cations
turned out as the most promising strategy.

Hypothesis I.III (Consolidation Refactoring)
Hypothesis I.III was corroborated by the �tness of the proposed concept for specifying the
novel type of refactorings for introducing variability mechanisms during copy consolidation.
Interviews proved the capability of the concept to specify unambiguous refactorings, and a
case study with a concrete refactoring proved its capability for automation. Furthermore,
the characteristics considered in the speci�cation concept allow for reducing the e�ort for
selecting variability mechanisms (e.g., approximately 2 1/4 hours in the industrial case study)
and reducing the risk of non-optimal decisions (e.g., removing the risk of 1,710 respectively
4,095 non-optimal decisions in the industrial case study).

Hypothesis II (Consolidation Process)

Hypothesis II was corroborated by the capability to implement the process and the
appropriateness of the roles to execute the activities of the process respectively provide the
necessary input. The appropriateness of the roles was proven in interviews and an online
survey with four respectively 18 industrial participants. Especially for the three primary
roles, nearly all survey participants agreed to being able to name existing persons able to
�ll these roles. The bene�t of the guidance follows from the support of challenges in the
current ad hoc consolidation approaches explicitly declared in the interviews.
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This chapter presents the assumptions this thesis proceeds on and discusses the limitations
of the approach. The following sections, �rst, describe the assumptions of this thesis.
Afterwards, they discuss the limitations structured according to the possible automation,
the approach itself, the prototype, and limitations that are not directly in the scope of this
thesis.

9.1 Assumptions as Preconditions

Valid product copies as input
The SPLevo approach assumes product copies that can be compiled and executed. Depending
on the infrastructure used by extracting software models, it might be possible to process
partial copies or copies producing compiler errors. However, unresolved references can lead
to wrong results, such as unmatched type references during the di�erence analysis.

Consolidation decision
It is assumed that the decision whether to consolidate the copies or not has been performed
in advance. The approach does not support this decision, especially in terms of strategic
management decisions or cost estimation. However, it aims for reducing the manual e�ort
and thus supports a decision to consolidate.

Validity of developer decisions
It is assumed that developers make valid decisions when deciding about presented recom-
mendations or editing the Variation Point Model (VPM) manually. For example, developers
are able to delete Variation Points (VPs) manually to ignore a speci�c code variation. This
can have a strong impact on the downstream analysis and design recommendations because
of VP relationships that will not be detected anymore. The approach does not include any
validation of such developer decisions.

Renaming rules and Derived Copies
The approach assumes SPL Consolidation Developers to provide rules for any renaming
strategies that have been applied during copy-based customization. No automated renaming
detection is performed as part of the di�erence analysis to not risk missing di�erences and
thus invalidating the reliable automation. However, on the one side, tools for detecting
naming patterns can be used to support developers in providing such rules. On the other
side, if such rules are not provided, the result of the di�erence analysis is still valid even
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when existing Derived Copies cannot be detected. Furthermore, the proposed strategies to
�lter irrelevant di�erences allow to cope with such misses.

9.2 Limitations of Automation

A fully automated consolidation is not possible in general. At least, it will not result in
a satisfying Software Product Line (SPL). From a technical perspective, one can apply
the SPLevo approach in a fully automated manner and accept all recommendations by
default. However, individual preferences and the actual need in speci�c scenarios would be
ignored completely. Furthermore, as shown in the evaluation, automatically detecting and
aggregating related modi�cations (i.e., VPs) cannot be done with 100% recall and precision.
Thus, the resulting SPL will be non-optimal in the best and invalid in the worst case. As an
alternative, the initial VPMs can be used for refactoring, but the resulting SPL will provide
too many individual VPs to be handled in practice.

9.3 Limitations of Approach

Individual scenarios
There is no “one size �ts all” process or analysis con�guration to be applied in all scenarios.
We identi�ed reasonable con�gurations during the evaluation, such as the Shared Term
Analysis used with detecting shared term clusters. However, even those do not provide
bene�t for all scenarios, as shown for the Shared Term Analysis in the industrial case study.

Extensive code beautifying
Extensive code beautifying, such as renaming and restructuring, can lead to many di�erences
and thus many VPs to handle. As a result, the analysis possibly recommends aggregations
including such VPs and reducing the total value for developers. However, the need to review
such modi�cations exists independently from the SPLevo approach. To cope with this,
strategies to �lter VPs representing code beautifying have been presented, but a manual
investigation is still necessary.

Multi-feature modifications
SoftwareElements that have been modi�ed several times for di�erent features can lead
to relationships between otherwise unrelated modi�cations. For example, data items for
di�erent features have been added to the initialization of the same list element. From the
perspective of the analysis, a valid relationship has been detected. However, a manual
investigation is required to handle such cases and thus lowers the bene�t of the analysis.
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9.4 Limitations of Prototype

Pairwise consolidation
In general, companies creating copy-based customizations typically create more than one
copy before deciding for a consolidation. Due to the EMF Compare infrastructure used in
the SPLevo prototype, it is currently limited to pairwise comparisons. However, concepts,
algorithms, and metamodels of the SPLevo approach are able to handle more than two
copies at the same time.

9.5 Out-of-Scope Limitations

Tests
The SPLevo approach has been developed to consolidate productive code. Test code has
been excluded from the scope of the approach as it comes with di�erent characteristics and
requirements. For example, it is theoretically possible to consolidate test code by introducing
a variability mechanism in the test code itself. However, this would not be su�cient for
a test in context of an SPL. Here, a test should not be variable itself but prove the system
under test with di�erent con�gurations.

Consolidation andmodernization
In practice, consolidation is often performed tightly connected with modernization projects
– for example, consolidating product copies and introducing a new version of a framework at
the same time. Changing an infrastructure while performing a consolidation can invalidate
the assumption of valid product copies because the code might not be free of compilation
errors anymore. Furthermore, the e�ect of continuously changing the implementation during
the consolidation process is not clear yet and must be studied in an according scenario.
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10 Related Work

This chapter presents and discusses approaches related to the challenges of consolidating
customized product copies as targeted by this thesis and its contributions. The foundations
presented in Section 2 are not repeated again.

SPLCopies

Handling 

Copies

SPL

Improvement
Program 

Analysis

Variation Point Models

Consolidation

Figure 10.1: Groups of related work aligned to the SPLevo approach

Figure 10.1 illustrates the main groups of related work aligned to the main phases of
the SPLevo approach. The following sections present the related work according to these
groups: Approaches for handling copies in general are presented in Section 10.1. Section 10.2
presents approaches for improving existing Software Product Lines (SPLs) and approaches for
analyzing programs are discussed in Section 10.3. The modeling of software variation points
is a comprehensive topic related to the SPLevo approach and is discussed in Section 10.4.

10.1 Handling Copies

Related research on handling customized product copies can be distinguished into three types
of approaches: concepts and model consolidation, implementation-aware consolidation, and
approaches for extracting feature models from existing product copies or variants.

10.1.1 Consolidation Framework and Process

Concepts for consolidations and model consolidations are on a more abstract level, discussing
how to treat design artifacts or describe process for consolidation. They do not provide
concrete guidance for consolidating the implementation of the copies.
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Consolidation framework
Rubin and Chechik [162, 160] propose a framework to merge customized product variants
in general. They describe an algorithm to consolidate the software design models of the
product copies based on a formalized “merge-in” operator. Their general algorithm can be
adapted to other abstraction levels but a concrete merge-in operator needs to be de�ned.
Their approach does not allow for new feature combinations as it would be possible with
the SPLevo approach with an according variation point design. Furthermore, we identi�ed
several challenges, such as the amount of di�erence and handling technical constraints,
which are not re�ected by their approach.

Consolidation process
Schütz [172] describes a process to consolidate copy-based customized products into an SPL.
He describes a general consolidation process comparable to the approach presented in this
thesis. He recommends to use an adapted di�erence analysis and to investigate variability
based on reverse engineering tools. However, he remains on the process level and does not
name any concrete solutions or implementations for his recommendations as done in this
thesis. Schütz [172] claims to use additional non-implementation artifacts such as marketing
descriptions or user guides. Considering such documents is a complementary direction to
this thesis. While it is not integrated in the SPLevo approach, the SPL Manager and Product
Manager roles are assumed to consider according information manually. Furthermore,
approaches such as proposed by Alves et al. [5] could be considered to facilitate such
information in context of the variability design.

10.1.2 Implementation-Aware Consolidation

Implementation-aware consolidation approaches consider the implementation of the cus-
tomized copies and provide guidance for the according challenges.

Reflexion method
Koschke et al. [108] propose an approach for consolidating customized product copies by
assigning their features to module structures. They propose to use the re�exion method
introduced by Murphy et al. [135]. In a second step, they propose to identify copy-speci�c
features based on the di�erent mappings between features and modules. Their approach
is limited to scenarios with appropriate module descriptions available. However, it is
complimentary to the SPLevo approach and could be used as an additional relationship
analysis if reliable module descriptions are available.

Detecting variation points using dynamic analysis
Cornelissen et al. [35] propose to compare the Program Execution Traces (PETs) of the
same feature in di�erent variants of a program for detecting variation points in their imple-
mentation. These analysis techniques themselves origin from Chen and Rajlich [31], and
Wilde and Scully [194]. Their approach is complementary to the SPLevo and can be used to
analyze dependent modi�cation relationships as discussed in Section 6.1.3.1.
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Visualization of potential reuse
Duszynski [47] propose an approach to analyze existing product copies about their dif-
ferences and commonalities and provide developers with a visualization of the results to
support their reuse decisions. The approach of Duszynski [47] contributes to the �eld of
copy consolidation, as this thesis does. In contrast, Duszynski [47] focus on visualizing
information instead of guiding to variability design decisions. However, the two approaches
are complementary and evaluating their integration to gain improved usability in terms of
visualization and guidance is a reasonable direction of future work.

10.1.3 Feature and Variant Model Extraction

Several approaches have been proposed to extract feature models from customized copies
or related products. Some describe this as a �rst step towards a consolidation (e.g., Ziadi
et al. [197], Al-Msie’Deen et al. [134], and Al-Msie’Deen [133]), others use such models for a
continuous management of customized product forks (e.g., Rubin et al. [165]).

Feature model extraction from coarse grain di�erences
Ziadi et al. [197] propose a consolidation approach based on reverse engineering a model
representation of the product copies, identifying feature candidates based on these models,
and manually pruning the candidates as well as adding missing ones. The resulting model is
used as a base to build a feature model. The goal of their approach is to support the reverse
engineering of feature models from the di�erences and commonalities of existing product
copies. They do not support the consolidation itself. Furthermore, while considering the
existing implementations of the product copies to reverse engineer valid model representa-
tions, their abstraction is coarse grain (i.e., classes and packages) and does not re�ect �ne
and medium granular di�erences.

Feature detection from building blocks
Al-Msie’Deen et al. [134] and Al-Msie’Deen [133] propose an approach to derive features
from object-oriented code based on Information Retrieval (IR) techniques as proposed by
Marcus et al. [127] for concept location in general. Their goal is to provide a feature model
for supporting a manual consolidation later on. They propose to use Latent Semantic
Indexing (LSI) and Formal Concept Analysis (FCA) to identify related software elements
based on included terms and derive according features. The approach of Al-Msie’Deen et al.
[134] is complementary to the SPLevo approach and might be integrated as an additional
relationship analysis.

However, in their case studies they used sets of product variants each containing all
available features except for one. In relation to copy consolidation, this represents a scenario
with the same customized features implemented in exactly the same manner in di�erent
copies. This setup is bene�cial to clustering approaches as several copies provide the same
data sets. Accordingly, the bene�t of their approach in context of consolidating independently
developed copies as targeted by this thesis needs to be evaluated.
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Managing forked product variants
Rubin et al. [165] target the challenge of handling forked (copied) and customized product
copies. Their approach contributes to the �eld of handling customized copies in general but
it is not about consolidating them into an SPL.

Change dependency model
Rubin et al. [165] introduce a model called “Product Line Changeset Dependency Model
(PL-CDM)” to describe and later query the dependencies between SPL features and their
implementation in the product variants. This model relates to the Variation Point Model
(VPM) of the SPLevo approach in terms of identifying varying software elements in the
product copies. However, its purpose is to track those di�erences and not to iteratively build
a variability design for consolidation as it is possible with the VPM of the SPLevo approach.

Facilitating information from Version Control Systems (VCSs)
Rubin et al. [165] assume to have a mature VCS in place to receive data to build their model.
Rubin et al. [165, page 4] propose to apply program dependency analysis on the change sets
captured by this system. They argue for the existence and application of such systems in
practice as done for the SPLevo approach in context of analyzing simultaneous modi�cations
(Section 6.1.3.3). However, as shown in our industrial case study, this assumption does not
hold in all cases. Furthermore, commits cannot be assumed as fully reliable indicators in
practice. On the one side, one cannot assume that modi�cations committed at once are
about a single feature only (e.g., during o�ine development). On the other side, Rubin et al.
[165] assume all modi�cations committed to a single branch as related to each other. In
the general case, this can be too coarse grain, as a branch might have been created for a
speci�c customer and not for a speci�c feature only. In contrast to their analysis, the SPLevo
approach is also applicable if no su�cient VCS is in place.

10.2 SPL Improvement

One topic in the area of SPL evolution is the improvement of existing SPLs. Research in this
area covers the reverse engineering of feature models, the encapsulation of features within
a single code base, and the refactoring of features for improving their variability.

10.2.1 Feature Model Reverse Engineering

Feature models have been proven to support the management of variability especially in
highly con�gurable software systems. However, She et al. [175] and Acher et al. [1] report
that feature models are rarely available and creating them manually is error-prone and
tedious. Accordingly, approaches to reverse engineer feature models from existing SPLs
have been proposed to cope with this challenge. The approaches proposed by She et al. [175]
and Acher et al. [1] are representatives in this �eld.
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Building feature model hierarchies
She et al. [175] propose an approach for building a feature model structure in terms of
hierarchy and dependencies. Their approach requires a list of features and formalized
dependencies between them. First, the approach supports the user in manually building a
feature hierarchy. To decide for a parent of a feature, the approach recommends reasonable
parent features based on the provided dependencies between features and terms shared in
their descriptions. When the feature hierarchy is created, the approach automatically detects
constraints between the hierarchical features based on the dependencies. The approach of
She et al. [175] is complementary to the SPLevo approach and can be used to support the
user in building a hierarchy on top of a �at feature model exported from the created VPM.

Architectural feature models
Acher et al. [1] extend the approach of She et al. [175] in the context of architectural models.
They aggregate a feature model provided by an architect as well as features and constraints
between them derived from the actual components of the system under study. For the latter,
they consider each component of a system as a feature, and the feature constraints are
derived from the component dependencies. Applying the approach of She et al. [175] to this
input, they achieve an architectural feature model including the actual constraints in the
system.

Similar to the approach of She et al. [175], the approach of Acher et al. [1] can be used
to further extend the SPLevo approach. The SPLevo approach has been designed to be
adaptable for new technologies, which includes component models (Section 3.4.2). Thus, it
would be reasonable to evaluate the bene�t of the approach of Acher et al. [1] for analyzing
further relationships between variation points. This is comparable to an integration with
the re�exion method proposed by Koschke et al. [108].

10.2.2 SPL Refactoring

SPL refactoring approaches are proposed to protect and improve the value of an SPL and
its variability over time. A continuous improvement to cope with challenges as evolving
variability is described in the problem statement by Juergens and Pizka [89].

Extracting and refactoring product lines with AOP
Alves et al. [4] propose a two-step SPL consolidation approach with a focus on refactoring
the resulting feature model. First, they propose to manually refactor the existing products to
a common core with encapsulated features using Aspect Oriented Programming (AOP) and
to manually build an according feature model (i.e., called “SPL bootstrapping”). Afterwards,
they refactor the initial feature model to improve its con�gurability according to the SPL
refactoring de�ned in Alves et al. [3].

SPL Bootstrapping
To support the extraction of a shared product core and variable features, Alves et al. [3]
recommend deriving feature models from documentation and using the concern location
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techniques to identify them in the code. In particular, they use the program dependency-
based concern location approach proposed by Robillard and Murphy [158]. The names of the
features manually derived from the documentations serve as input for the concern location.
In contrast, the SPLevo approach focuses on the extraction of the common core and variable
features and, thus, could be used for an extended support for the �rst step proposed by Alves
et al. [3]. Additionally, the SPLevo approach does not rely on the availability of valid seeds
as required by Alves et al. [4, page 77] but uses them if available. As identi�ed in our case
studies, this assumption is too limiting.

AOP limitation
Alves et al. [4] propose an approach focused on AOP by mapping concerns to aspects.
As reported by Gacek and Anastasopoules [64, page 5], AOP does not support run time
variability. Furthermore, Kästner et al. [92, 93] report about the limitations of AOP for
supporting statements at arbitrary positions in a method body or accessing local variables.
The SPLevo approach is not limited to a speci�c variability mechanism but allows for
specifying intended mechanisms to cope with the need for di�erent variability characteristics.

Solution consistency
In the approach presented by Alves et al. [3], the resulting variability design completely
depends on the individual capabilities of the consolidating developers, and the realization
decision is made upfront due to their approach (i.e., AOP). To cope with the potential risk of
inconsistent solutions, the SPLevo approach explicitly distinguishes between and provides
support for variability structure, characteristics, and realization decisions.

Degenerated SPLs
Nunes et al. [137] propose an approach for handling degenerated SPLs (e.g., incompatible
or redundant product-speci�c features). Their goal is to support the evolution of an SPL
with a focus on product speci�c adaptations which become incompatible with the core SPL.
Nunes et al. [137] propose to analyze the history of the core SPL and the derived products
to consider their evolution in the change dimensions of product adaptions and SPL releases.
Nunes et al. [137] assume to have an initial feature model available and a VCS providing the
required history information. Furthermore, they do not support the initial creation of an
SPL by consolidating independently customized product copies.

Trace links and feature impact
Eyal-Salman et al. [57] present an approach to identify trace links between features and code
artifacts implementing these features. They use a Latent Semantic Indexing (LSI) approach
from the �eld of information retrieval to distinguish between common and di�ering code
parts of the compared variants. Furthermore, they assume to have documented features
available to use them as search queries, and their approach is limited to package and
class changes. Eyal-Salman et al. [56] extend this approach by predicting features that are
in�uenced by a speci�c code change. The purpose of their reverse engineering approach is
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not about consolidating customized copies or designing variability as done in this thesis,
but to use trace links for the continuous management of the feature implementations.

10.2.3 Refactoring Specification

The restructuring of existing code to improve its quality properties, such as comprehensibility,
is an essential task in software engineering.

Traditional refactoring
Fowler et al. [63] provides a fundamental catalog of refactorings (Section 2.4.11). This catalog
includes a template for specifying refactorings in a comprehensible manner (Fowler et al.
[63, p. 85]). The refactoring speci�cation of the SPLevo approach is aligned to the template
proposed by Fowler et al. [63] because it is widely accepted and well understood (i.e., name,
summary, motivation, mechanics, examples). In addition, it adds variability aspects and
distinguishes between general information about the variability mechanism introduced
and the refactoring of individual software elements. The latter is necessary to process
Variation Points (VPs) implemented by di�erent elements at di�erent locations. In contrast,
refactorings speci�ed by Fowler et al. [63] target only a speci�c set of software elements.

Role-based refactoring specification
Reimann et al. [156] propose a formal speci�cation of refactorings of models to allow for
specifying refactorings in an abstract manner and reuse them for concrete metamodels. In
context of this thesis, such a reuse might be useful if the same consolidation refactorings
should be speci�ed for similar types of software models. However, the bene�t of reusing
consolidation refactorings through such an abstraction is not evaluated yet. Furthermore,
the approach of Reimann et al. [156] has been initially tested by Daniel [40] for implementing
the automation of the conditional refactoring as part of the evaluation of this thesis. This
initial test was stopped because of the challenging abstraction and limitations of the current
implementation of the approach (e.g., several roles with the same metamodel type were not
possible).

10.3 Program Analysis

10.3.1 Feature Location Techniques

Feature Location Techniques in context of SPLs
Rubin and Chechik [161] survey existing feature location techniques and their usage for
a transition to an SPL. They identify shortcomings of existing techniques, such as their
limitation to single code bases. In addition, they describe the potential bene�t of adapting
and applying these techniques to the �eld of SPLs. Rubin and Chechik [161] demand to
further evaluate those techniques and their bene�ts for transitions to an SPL approach.
The SPLevo approach presented in this thesis conforms to this direction and provides a
concrete strategy for applying such techniques for a consolidation (i.e., a transition to an
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SPL). Furthermore, the evaluation performed within this thesis provides insight about the
bene�ts of applying some of these techniques.

Feature Location Techniques in general
Dit et al. [43] perform an extensive survey on feature location techniques (89 articles from
25 venues) and report open challenges, such as selecting an appropriate technique or the
need for further evaluation on speci�c techniques. Dit et al. [43, page 40] explicitly state
the need for further evaluation on the bene�t of textual based techniques from the �eld of
Natural Language Program Analysis (NLPA). The results presented in this thesis contribute
to this open challenge and provide insight about the limited bene�t of NLPA for locating
product-speci�c features.

10.3.2 Relationship Classification

Program dependency classification
Wilde [193] proposes a classi�cation of program dependencies. He distinguishes di�erent
types of elements that can depend to each other (e.g., Data Types, Data Items, and Source
Files) as well as di�erent strategies to discover them (e.g., textual search, cross referencing,
tracing indirect dependencies, and data �ow methods).

The types and sources for identi�cations proposed by Wilde [193] are related to the
relationship types the SPLevo approach proposes for investigation (e.g., simultaneous modi-
�cations are not included). However, on the one side, the SPLevo approach de�nes program
dependencies in a more restrictive way than done by Wilde. They are de�ned to be im-
plemented with the syntax of a programming language (e.g., represented in a Program
Dependency Graph (PDG) or by PET). On the other side, the SPLevo relationship types
cover more types of relationships (i.e., dependencies in the terminology of Wilde [193]). For
example, they include not only textual similarities but also relationships resulting from time
and issue aspects. The di�ering classi�cations are not in contrast to each other but serve
di�erent purposes as Wilde classi�ed dependencies in general and the SPLevo approach
does it in context of analyzing VPs.

10.3.3 Clone Detection

Clone detection is one of the major topics related to handling copied code. However, consol-
idating copies is about identifying the di�erences between copies and to transform them
into variability. Clone detection is about �nding similar code to remove their redundancy
(i.e., introducing reuse). Hence, the algorithms to handle di�erences di�er and requirements
speci�c to the consolidation context as described in Section 5.1 are not supported at all.

However, clone detection can be used to identify relationships between code fragments as
described in Section 6.1.3.2 and for �ltering variation points that can be ignored as described
in Section 6.1.2. Thus, clone detection is an analysis to be used complementary to the SPLevo
approach.
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10.3.4 Di�erence Analysis

Di�erence analysis in general and program di�erences in speci�c have been targets of
research for several years. Also in practice, many solutions have been developed and used.
However, the speci�c needs for consolidating customized code copies are not targeted yet.
Hence none of the approaches below targets those needs, but they are related in the context
of program di�erence analysis in general.

State of the practice
In practice, identifying di�erences between code copies is often done with general purpose
tools such as GNU Di� introduced by MacKenzie et al. [124]. They are able to analyze any
kind of textual artifacts but fail to align their results with programming language structures.
Modern development environments such as Eclipse [48] provide comparison tools for speci�c
programming languages respecting the languages’ syntax. However, they do not support
requirements such as taking renaming into account.

Semantic di�erences
Apiwattanapong et al. [8] de�ne an algorithm respecting programming language structures
and Control Flow Graph (CFG)s to �lter di�erences in methods without a change in the
methods’ observable behavior. With the same goal, Jackson and Ladd [87] study the input
and output of methods. In contrast to their approaches, the SPLevo approach needs to
identify all code modi�cations possibly relevant to introduce variability. For example, code
modi�cations within a method calling a new external dependency might not change the
semantic of a method, but the external dependency might need be re�ected by variable
feature. Furthermore, changes to a systems’ status within the method are not re�ected in
the input and output of a method. However, interpreting the semantic of a di�erence is
complementary to the SPLevo approach to identify candidates of variation points to �lter
(Section 6.1.2).

Change types and impacts
Fluri and Gall [61] and Fluri et al. [62] have identi�ed di�erent types of code changes and
their impact on software evolution. They use heuristics for detecting move operations to
improve their analysis results. They report about the bene�t of these improvements in the
context of their change impact assessment. However, falsely identi�ed move operations
potentially lead to missed di�erences and, thus, contradict a fully automated di�erence
analysis as required in the SPLevo approach.

Di�erencing XML so�ware representations
Maletic and Collard [125] proposed a generic concept to support di�erence analysis by
querying XML representations of the source code. XML in general and the srcML format
used by them in speci�c provide data structures supporting queries compared to plain textual
code representations. However, they propose to apply standard textual di�erence analysis
which requires to interpret the di�ering structures later on. In contrast, our di�erence
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analysis approach allows for an improved di�erence analysis based on the software elements
themselves.

10.3.5 Merging

Merging approaches as motivated by Perry et al. [147] and surveyed by Mens [131] are used
to integrate parallel modi�cations of the same resource with each other (Section 2.4.7.3).
From a high level perspective, consolidating customized product copies is a similar task.
However, in contrast to traditional merging, consolidation requires to introduce variability
mechanisms when integrating the code di�erences. This is not a straight forward approach
and requires to design variability in advance to achieve a useful SPL.

Nevertheless, the �eld of merging provides techniques that are reasonable to be evaluated
to improve the SPLevo approach. One example is the renaming detection proposed by
Malpohl et al. [126] for �ltering variation points as described in Section 6.1.2.

10.4 Variation Point Models

Managing variability is one of the major aspects in SPL engineering. Thus several models
have been proposed to express variability as introduced in Section 2.3.2. In the SPLevo
approach, software variability and feature modeling from a product and requirements
perspective are distinguished as done by Svahnberg et al. [183] (Section 3.2.1). An integration
respectively an extensible export to arbitrary feature models is part of the concept.

Existing variation point models
As introduced in Section 2.3.2, many mature models exist in the �eld of software variability.
For example, Pohl et al. [149] propose the Orthogonal Variability Model, and the Object
Management Group (OMG) is currently working on the Common Variability Language
(CVL) [76]. Both conform with the de�nition of a variation point of Jacobson et al. [88].
Other types of variability modeling techniques such as the UML extension of Gomaa [67] or
the “Product Line Changeset Dependency Model” proposed by Rubin et al. [165] have been
proposed as well. However, the SPLevo approach introduces a novel Variation Point Model
(VPM) designed to cope with the challenges of a consolidation not covered by the existing
models.

VPM: Variation Point Groups
The SPLevo VPM di�ers from the de�nition of a variation point proposed by Jacobson
et al. [88] and also used in the Orthogonal Variability Model and the CVL. While they use a
variation point to identify one or more locations of variability, a variation point in the VPM
represents a single location of variability only. In addition, a VariationPointGroup element
is proposed to explicitly combine several locations of variability (i.e., variation points). This
concept allows for de�ning the aggregation operators for iteratively improving the variation
point design (Section 6.1.1).
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VPM: Variation Point Characteristics
VPs in the SPLevo VPM allow for individually assigning variability characteristics and
realization mechanisms. For example, a feature might be realized by several VPs. One of
them requires to load a component through dependency injection, which would allow for
product level extensibility, too. At the same time, another VP of the same feature is about
a database connection stored in a con�guration �le, which requires a completely di�erent
variability mechanism.

The CVL proposed by Haugen [76] provides an element named VSpec intended to express
characteristics of a variation point. However, the possible characteristics allows specifying a
resolution time (i.e., binding time) but without a semantic in the CVL according to Haugen
[76]: “resolutionTime : “String [1..1] The latest life-cycle stage at which this VSpec is
expected to be resolved, e.g. Design, Link, Build, PostBuild, etc. It has no semantics within
CVL.”. Furthermore, the extensibility of a VP is expressed by sub types of the VariationPoint
metamodel class and the extensibility is expressed by the cardinality of child VSpec elements.
In contrast, the SPLevo VPM allows for de�ning straight characteristics supporting their
automatic evaluation and improved comprehensibility.

VPM: Lightweight for analysis
Variation point models are created for di�erent purposes such as con�guration or SPL domain
analysis. The SPLevo approach has been created to provide only those infrastructure required
in the context of a consolidation and being easy to understand by developers and lightweight
to be processed.
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This chapter presents directions for future research that have been discovered in this the-
sis in general and during the evaluation in speci�c. The following subsections describe
these directions distinguished in four topics. First, Section 11.1 demands for revising and
evaluating the SPLevo approach for continuous Software Product Line (SPL) maintenance.
Next, Section 11.3 discusses the adaptation of the SPLevo approach for speci�c domains.
Afterwards, Section 11.4 demands for studying the usability of relationship analysis tooling.
Finally, Section 11.2 argues for extending the refactoring support with reusable abstractions
of custom variability.

11.1 Continuous SPL Maintenance

When companies successfully adopted an SPL approach, continuous maintenance and
evolution are critical for its long-term success (e.g., Clements and Northrop [33], Böckle et al.
[18], and Pohl et al. [149]). In recent years, product-speci�c adaptations that are not re�ected
in the SPL have been identi�ed as a challenge in the �eld of SPL maintenance (i.e., degenerated
SPLs according to Nunes et al. [137]). Beside others, they lead to incompatibilities and
additional management overheads.

It is a reasonable direction of future work to study the bene�ts the SPLevo approach can
provide to this challenge. An integration as a round trip SPL engineering would allow for a
more e�cient reactive SPL approach.

11.2 Custom Variability Mechanisms

In addition to generally applicable variability mechanisms, companies introduce custom
infrastructure for con�guration management in their products – for example, realizing
run time variability con�gured according to license information stored in a database. The
proposed speci�cation concept already allows for specifying an according consolidation
refactoring. However, Reimann et al. [156] proposed a generalization of traditional refac-
torings valuable to reuse according mechanisms for di�erent languages. Based on their
�ndings, it should be studied if a generalization of consolidation refactorings is valuable
to simplify the speci�cation of custom variability mechanisms – for example, studying the
possibility and value of specifying refactorings for license-aware run time variability in
general and mapping this to custom license mechanisms.
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11.3 Domain-Specific Adaptations

Software engineering for domains such as embedded systems, mobile applications, or auto-
motive uses speci�c development techniques and artifacts. This includes Domain Speci�c
Languages (DSLs) and domain-speci�c variability mechanisms. Investigating in the adapta-
tion of the SPLevo approach for such conditions possibly allows for exploiting additional
information to further improve the analysis and automate the process.

For example, in the �eld of mobile applications, development infrastructure comes with
speci�c artifacts, such as con�guration �les, and coding practices, such as libraries, com-
ponents, or coding styles. This information can provide additional information to �nd
new relationships and identify existing ones more precisely. Furthermore, marketplaces for
mobile applications, such as the Apple iTunes or Google Play provide license and payment
infrastructure that can be integrated in variability mechanisms. Consolidation refactorings
introducing according variability mechanisms could be developed in a reusable manner,
which is similar to the refactoring reuse in context of custom variability mechanisms de-
scribed in the last section.

As a direction of future research, individual domains should be analyzed and case studies
to prove the bene�t of individual adaptations should be performed.

11.4 Usability for Developers

A critical factor for end-to-end e�ciency of software engineering approaches is the us-
ability and integration in development environments. As observed in our case studies, the
accessibility of information and simplicity to provide input can have a big impact on the
user acceptance. For example, visualizing the relationships between di�erences as graph
to identify central variation points improved the interpretation of the �ndings. Similar
requirements were reported during the interview workshop.

The observed performance and scalability of the SPLevo analyses were su�cient for an
application throughout the case studies and satisfying for industrial application. However,
performance gains, especially enabling real time relationship analyses, would allow for new
usability concepts, such as informing developers about related code locations when editing
source code. Such concepts could actively force consistent variability implementations.

Many approaches for improved source code processing have been proposed in the �eld of
software analyses. For example, Hunt [84] analyzed di�erences based on the parse tree of
programs only. Investigating in such approaches is reasonable to achieve real time analyses
and new usability concepts.

Thus, investigations in new usability concepts and integration with Integrated Develop-
ment Environments (IDEs) are reasonable directions of future research to further evolve the
SPLevo approach and improve consolidation processes in general.
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11.5 Variability and Design Decisions

Introduce variability, in particular implementing a variation point with a concrete variability
mechanism is a software design decision. The rational for this design decision is the intention
to support the original copy-speci�c feature in a SPL and to bene�t from the SPL advantages.

Research in the �eld of software evolution has identi�ed bene�ts from tracing and reusing
design decisions to improve design decisions in the future (e.g., Durdik and Reussner [46],
Könemann and Zimmermann [106], and Küster and Trifu [116]). Combining this direction
of research with the SPLevo approach might allow for i) tracing the rationale for introduced
variation points to guide their future evolution and ii) to further support Software Architects
and SPL Consolidation Developers when deciding for variability mechanisms during a
consolidation. The former direction has already been sketched in Küster and Klatt [115].
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This chapter summarizes this thesis, concludes about the hypotheses, and discusses addi-
tional insight gained by the evaluation. It starts with a short summary of the topic and
its motivation, followed by scienti�c questions targeted and the hypotheses advanced by
this thesis. Afterwards, the chapter summarizes the contributions as well as their evalua-
tion. Finally, additional insight and directions for future work identi�ed by this thesis are
presented.

Topic andmotivation
The presented thesis contributes to the �eld of Software Product Line (SPL) development
based on customized product copies and their challenges for a long-term maintenance
and business success. Such customized product copies are a barrier for growth due to
redundant maintenance costs and unused potentials of synergy e�ects and cross selling.
To overcome this barrier and bene�t from the advantages of a SPL with explicit reuse and
variability management, a consolidation of the customized product copies is necessary. Such
consolidations are known to be challenging themselves. Corresponding problem statements
of too high manual expenses, wasted e�orts, and inconsistent implementations have been
formulated to guide the presented research.

Scientific questions and hypotheses
The scienti�c questions of which information can support developers to cope with those
challenges and how to gather them from the available sources form the basis of this thesis.
To target these questions, this thesis has advanced the hypothesis that software analyses can
be used to identify related di�erences and derive recommendations to design the variability
of the future SPL. Additionally, it advances the hypothesis that a structured process is
not only valuable to prevent coordination overheads but supports a consistent variability
implementation. Rubin and Chechik [161] describe in their survey on feature location
techniques explicitly the necessity to adopt and evaluate those techniques for supporting
the transition to an SPL.

Contributions of the SPLEVO approach
To corroborate these hypotheses, this thesis proposes the novel SPLevo approach. It
contributes a fully automated model-based di�erence analysis that considers copy-based
customization-speci�c practices to improve the results. Additionally, a novel model for
iteratively designing variability is introduced and automatically initialized by the di�erence
analysis. Based on this model, the SPLevo approach provides analyses to recommend design
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decisions for improving the initial variability design. Furthermore, it proposes a novel refac-
toring speci�cation concept and a recommendation system to enable a guided refactoring
for achieving an SPL with consistently implemented variability. Finally, a consolidation
process is speci�ed in terms of activities and stakeholders to reduce overheads and enable
e�cient decisions.

Evaluation
An evaluation based on case studies, interviews, and an online survey has been performed.
In the case studies, variants of the industrial-ready open-source modeling tool ArgoUML and
copies of a commercial product were investigated. The ArgoUML case study provided pre-
documented feature-speci�c code as a benchmark for the analyses of the SPLevo approach.
In contrast, the copies of the commercial product have evolved over several years under
industrial conditions. The interviews and survey have been performed with industrial
participants and evaluated di�erent aspects of the approach in context of state of the practice
environments

The case studies con�rmed the bene�t of the analyses in terms of a fully automated
di�erence analysis that is further improved by �ltering irrelevant di�erences by considering
copy-based customization-speci�c practices, such as copies still accessing the code their
originate from. Furthermore, analyzing relationships between di�erences has been proven
to be valuable for identifying di�erences that contribute to the same custom feature and
for recommending according design decisions. Nevertheless, the evaluation has identi�ed
di�erent degrees of bene�t depending on the type of relationship that is analyzed. Here,
analyzing program dependencies has turned out as the most promising alternative. Finally,
the refactoring speci�cation concept allowed to specify and fully automate a refactoring for
introducing variability based on conditional statements.

The interviews and surveys con�rmed the applicability and necessity of the proposed
process under industrial conditions as existing today. The refactoring speci�cation has
been proven to be unambiguous and valuable, but the in�uence of quality of the concrete
speci�cation cannot be neglected. Furthermore, the interviews con�rmed the challenges of
customized product copies and the state of the practice described by others and motivating
this thesis.

In total, the evaluation successfully corroborated the hypotheses of this thesis, gained new
insight into the consolidation challenge, and motivated several directions of future research.

Additional insight
The new insight on consolidating customized product copies can be summarized as described
in this paragraph.

Analyzing relationships between di�erences is a valuable approach to support a consol-
idation. Many promising analysis approaches have been proposed in the �eld of feature
location as surveyed by Rubin and Chechik [163, 161]. For example, a variety of analysis
of program dependencies, change histories, and textual information are described in their
survey. The evaluation performed in this thesis has shown limitations of representatives
of these approaches in terms of limited precision, recall, and availability of data to analyze.
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Furthermore, adaptions were necessary to use them in context of a copy consolidation.
Additionally, optimizations such as �lter strategies for textual analyses and an extended set
of dependencies for program dependency analyses are necessary to improve the �ndings.

To conclude, The results show that restrictive types of relationships, such as program
dependencies, provide more reliable results and are easier to be reviewed as suggestive
relationships. Especially textual analysis to identify related code modi�cations are vague and
di�cult because of irrelevant terms. Similar results have been shown by evaluating di�erent
approaches for change impact analyses (Klatt et al. [105]). This might be an indicator for
the value of analyzing program dependencies in general as reported by others before, such
as Wilde [193] and Ottenstein and Ottenstein [144].

Directions for future research
Several directions for future research have been identi�ed in context of the proposed ap-
proach and the consolidation in general. Similar to the consolidation, the continuous
maintenance of SPL is an ongoing topic of research activities. Especially to cope with
degeneration in terms of product-level adaptations that are incompatible with the SPL is
challenging and adapting the SPLevo approach to this �eld is a reasonable direction. Further-
more, considering domain-speci�c conditions should be evaluated for further automation
and improved analysis results. Similarly, the generalization of consolidation refactorings
similar to the generalization of traditional refactorings as proposed by Reimann et al. [156]
is promising to simplify the realization of custom variability mechanisms. Finally, the �eld
of usability engineering promise bene�ts for software development in general and has been
identi�ed as a reasonable direction to improve consolidation processes in speci�c.
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A Appendix: Refactoring

A.1 Refactoring Specification Example

This section provides an example of a refactoring speci�cation. It was developed, automated,
and evaluated in the master thesis of Daniel [40]. The refactoring speci�ed below introduces
a variability mechanism facilitating conditional statements. It was developed as part of the
SPLevo approach to evaluate the applicability of the refactoring speci�cation. Furthermore,
it was used to prove the automation of such a refactoring in the case studies.
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IF WITH STATIC CONFIGURATION CLASS (OPTXOR) 

Summary  

A refactoring to implement OPTXOR variability based on conditional statements with configuration in a 
static Java class. 

Configuration Mechanism 

The configuration is realized using String constants in Java class to be configured before compilation.

Motivation 

The resulting code implements variants at one place; hence it improves identifying the executed code.

Supported Characteristics Supported Elements 

Binding Time Compile JaMoPP Java Model 

Variability Type OPTXOR  CompilationUnit 
 Import 
 Class 
 Interface

 Enumeration 
 Field 
 Method 
 Constructor

 Block 
 Statement 
 Condition 

 

Extensible No 

Quality Goal by trend Conciseness

Limitations 

Following software elements are not supported because they cannot co-exist:
 Differing class- and interface- signatures (extends, implements) 
 Methods with equal names but varying return types 
 Fields with equal names but different types 
 Local variables with equal names but different types and referencing elements outside the 

containing variation points. 

Alternatives 

 

Example 

Two implementations of a statement in a method being combined by introducing variant-specific 
conditions which evaluate constants provided by a configuration class. 

Leading Integration 

public void doSth(){ 
  print("Leading"); 
} 

public void doSth(){ 
  print("Integration"); 
}

Refactored SPL 

public void doSth(){ // Line breaks reduced for the sake of brevity 
  if(Config.CONF1.equals("Leading")) { print("Leading"); }  
  if(Config.CONF1.equals("Integration")) { print("Integration"); } 
} 
class Config { 
  public static final String CONF1 = "Integration"; // Either “Leading” or ” Integration” 
} 
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Instruction: CompilationUnit 

Summary  

An SPL must integrate the compilation units of all variants. Therefore, this refactoring instruction copies 

the compilation units of the integration copies to the leading copy, if they do not exist, yet. 

Preconditions 

Location 

Element CompilationUnit 

Exclusion  

Implementing Elements 

Element CompilationUnit 

Exclusion  

Example 

Merges the missing ClassB.java (contained in org.example.somepackage) into the leading Variant. 

Leading Integration 

org.example.somepackage: 
• ClassA.java 
• ClassC.java 

org.example.somepackage: 
• ClassA.java 
• ClassB.java 
• ClassC.java 

Refactored SPL 

org.example.somepackage: 
• ClassA.java 
• ClassB.java 
• ClassC.java 

Additional Parameters 

String: leadingSrcPath: The path to the source folder of the leading copy to add new compilation units. 

Mechanics 

Iterate over all integration variants and their compilation units. Build the URI representing the path for 

each compilation unit, create a new model resource at this URI, and place the compilation unit in it. 

foreach Variant:variant ∈ vp.variants do  
 if variant.leading then 
  continue; 
 endif 
  
 foreach CompilationUnit:cu ∈ variant.implementingElements do 
  foreach String:segment ∈ cu.nameSpaces do 
   leadingSrcPath ← leadingSrcPath.concatenate(leadingSrcPath, segment);  
   leadingSrcPath ← leadingSrcPath.concatenate(leadingSrcPath, getFileSeparator()); 
  endforeach 
   
  compilationUnitName ← getFileName(cu); 
  leadingSrcPath ← leadingSrcPath.concatenate(leadingSrcPath, compilationUnitName); 
  Resource:resource ← rs.createResource(URI( leadingSrcPath));   
  resource.contents.add(cu); 
 endforeach  
endforeach 
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Instruction: Import 

Summary  

To allow for a complete single code base, all dependencies must be reflected. This refactoring instruction 

carries over all imports. 

Preconditions 

Location 

Element CompilationUnit 

Exclusion  

Implementing Elements 

Element Import 

Exclusion  

Example 

Merges the import ExtendedClass from the integration copy into the leading copy. 

Leading Integration 

import com.example.SimpleClass; import com.example.ExtendedClass; 

Refactored SPL 

import com.example.SimpleClass; 
import com.example.ExtendedClass; 

Additional Parameters 

 

Mechanics 

Iterate over the variants and their imports. Add the import to the location of the variation point, if it does 

not contain an equal import, yet. 

CompilationUnit: vpLocation ← vp.location; 
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then  
  continue; 
 endif 
 foreach Import:import ∈ variant.implementingElements do 
  if !vpLocation.contains(import) then  
   vpLocation.add(import); 
  endif 
 endforeach 
endforeach 
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Instruction: Class in a Member Container 

Summary  

The SPL must contain all classes from the leading and integration copies. This refactoring instruction 

integrates the member classes of integration copies in a specific member container into the leading copy. 

Preconditions 

Location 

Element MemberContainer 

Exclusion  

Implementing Elements 

Element Class 

Exclusion  

Example 

Merges class A2 into the member container of the leading variant (a class in this case). 

Leading Integration 

public class A { 
  private class A1 {…}; 
} 

public class A { 
  private class A2 {…}; 
} 

Refactored SPL 

public class A { 
  private class A1 {…}; 
  private class A2 {…}; 
} 

Additional Parameters 

 

Mechanics 

Iterate over all integration variants and their classes. Add a class to the variation point location if the 

location does not contain a class, interface, or enumeration with the same name, yet. 

MemberContainer: vpLocation ← vp.location;  
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then  
  continue; 
 endif 
 foreach Class:class ∈ variant.implementingElements do 
  if !containsClassInterfaceOrEnumWithName(vpLocation, class.name) then  
   vpLocation.add(class); 
  endif 
 endforeach 
endforeach 
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Instruction: Class in a Compilation Unit 

Summary  

The SPL must contain all classes from the leading and integration copies. This refactoring instruction 

integrates the classes contained in a compilation unit from the integration copies into the leading copy. 

Preconditions 

Location 

Element CompilationUnit 

Exclusion  

Implementing Elements 

Element Class 

Exclusion  

Example 

Merges class B into the compilation unit of the leading variant. 

Leading Integration 

SomeClass.java: 

private class A {…}; 
SomeClass.java: 

private class A {…}; 
private class B {…}; 

Refactored SPL 

SomeClass.java: 

private class A {…}; 
private class B {…}; 

Additional Parameters 

 

Mechanics 

Iterate over all integration variants and their classes. Add a class to the location of the variation point if it 

does not contain a class, interface, or enumeration with the same name, yet. 

CompilationUnit: vpLocation ← vp.location;  
foreach Variant:variant ∈ vp.variants do 
 if !variant.leading then  
  continue; 
 endif 
 foreach Class:class ∈ variant.implementingElements do 
  if !containsClassInterfaceOrEnumWithName(vpLocation, class.name) then  
   vpLocation.add(class); 
  endif 
 endforeach 
endforeach 
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Instruction: Interface in a Member Container 

Summary  

The SPL must contain all interfaces from the leading and integration copies. This refactoring instruction 

integrates the interfaces of a member container from the integration copies into the leading copy. 

Preconditions 

Location 

Element MemberContainer 

Exclusion  

Implementing Elements 

Element Interface 

Exclusion  

Example 

Copies interface A2 into the member container of the leading variant (a class in this case). 

Leading Integration 

public class A { 
  private interface A1 {…}; 
 … 
} 

public class A { 
  private interface A2 {…}; 
 … 
} 

Refactored SPL 

public class A { 
  private interface A1 {…}; 
  private interface A2 {…}; 
 … 
} 

Additional Parameters 

 

Mechanics 

Iterate over all integration variants and their interfaces. Add the interface to the location of the variation 

point if it does not contain a class, interface, or enumeration with the same name, yet. 

MemberContainer: vpLocation ← vp.location;  
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then  
  continue; 
 endif 
 foreach Interface:interface ∈ variant.implementingElements do 
  if !containsClassInterfaceOrEnumWithName(vpLocation, interface.name) then  
   vpLocation.add(interface); 
  endif 
 endforeach 
endforeach 
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Instruction: Interface in a Compilation Unit 

Summary  

The SPL must contain all interfaces from the leading and integration copies. This refactoring instruction 

integrates the interfaces contained in a compilation unit from the integration copies into the leading copy. 

Preconditions 

Location 

Element CompilationUnit 

Exclusion  

Implementing Elements 

Element Interface 

Exclusion  

Example 

Merges interface B into the compilation unit of the leading variant. 

Leading Integration 

SomeClass.java: 

private interface A {…}; 
private interface B {…}; 

SomeClass.java: 

private interface A {…}; 
private interface B {…}; 

Refactored SPL 

SomeClass.java: 

private interface A {…}; 
private interface B {…}; 

Additional Parameters 

 

Mechanics 

Iterate over all integration variants and their interfaces. Add an interface to the location of the variation 

point if it does not contain a class, interface, or enumeration with the same name, yet. 

CompilationUnit: vpLocation ← vp.location;  
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then  
  continue; 
 endif 
 foreach Interface:interface ∈ variant.implementingElements do 
  if !containsClassInterfaceOrEnumWithName(vpLocation, interface.name) then  
   vpLocation.add(interface); 
  endif 
 endforeach 
endforeach 
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Instruction: Enumeration in a Member Container 

Summary  

The SPL must integrate the enumerations of all variants, including their constants. This refactoring 
instruction integrates enumerations contained in a member container from the integration copies into the 
leading copies. It also merges the constants of enumerations with equal names. 

Preconditions 

Location 

Element MemberContainer

Exclusion  

Implementing Elements 

Element Enumeration 

Exclusion  

Example 

Missing enumeration AnotherEnum is integrated into the member container of the leading copy. Also 
shows the integration of enumeration constant B of the integration copy of SomeEnum. 

Leading Integration 

public class A { 
  public enum SomeEnum {  A; } 
} 

public class A { 
  public enum SomeEnum {  B; } 
  public enum AnotherEnum { X; } 
}

Refactored SPL 

public class A { 
  public enum SomeEnum {  A, B; } 
  public enum AnotherEnum { X; } 
} 

Additional Parameters 
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Mechanics 

This algorithm has two key steps: In the first step (first foreach), it collects all available enumeration 

names from the Variants. It stores their enumeration objects (leading or, if not available, first integration), 

the constants of that enumeration in all Variants and whether or not it already has a leading 

implementation. 

In the next step (second foreach), it uses the maps to get the enumeration object, adds the missing 

constants to that object and adds the enumeration to the VP’s location if it has no leading 

implementation. 

MemberContainer: vpLocation ← vp.location; 
 
Map<String, Enumeration>: enumerationsToName;  
Map<String, Set<String>>: constantsToEnumName;  
Map<String, Boolean>: leadingToEnumName; 
 
foreach Variant: variant ∈ vp.variants do 
 foreach Enumeration:enumeration ∈ variant.implementingElements do 
  if enumerationsToName.containsKey(enumeration.name) || variant.leading) then  
   enumerationsToName.gets(enumeration.name) ← enumeration; 
  endif 
  leadingToEnumName.gets(enumeration.name) ← variant.leading; 
  foreach EnumConstant: enumConst ∈ enumeration.constants do  
   constantsToEnumName.gets(enumeration.name).add(enumConst.name); 
  endforeach 
 endforeach 
endforeach 
 
foreach String: enumName ∈ enumerationsToName.keys do 
 enumeration ← enumerationsToName.gets(enumName); 
 foreach String: constName ∈ constantsToEnumName.gets(enumName) do 
  if !hasConstantWithSameName(enumeration, constName) then  
   enumConst.name ← constName;  
   enumeration.constants.add(enumConst); 
  endif  
 endforeach 
  
 if !leadingToEnumName.gets(enumName) then  
  vpLocation.add(enumeration); 
 endif 
endforeach 
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Instruction: Enumeration in a Compilation Unit 

Summary  

An SPL must integrate the enumerations from any Variant, including their constants. This refactoring 

instruction integrates enumerations contained in a compilation unit from the integration copies into the 

leading copies. It also merges the constants of enumerations with equal names. 

Preconditions 

Location 

Element CompilationUnit 

Exclusion  

Implementing Elements 

Element Enumeration 

Exclusion  

Example 

Missing enumeration AnotherEnum gets integrated into the leading compilation unit. Also shows the 

integration of enumeration constant B from the integration implementation of SomeEnum into the leading 

implementation. 

Leading Integration 

SomeClass.java: 
public enum SomeEnum { A; } 

SomeClass.java: 
public enum SomeEnum { B; } 
public enum AnotherEnum { X; } 

Refactored SPL 

SomeClass.java: 
public enum SomeEnum { A, B; } 
public enum AnotherEnum { X; } 

Additional Parameters 
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Mechanics 

This algorithm has two key steps: In the first step (first foreach), it collects all available enumeration 

names from the Variants. It stores their enumeration objects (leading or, if not available, first integration), 

the constants of that enumeration in all Variants and whether or not it already has a leading 

implementation. 

In the next step (second foreach), it uses the maps to get the enumeration object, adds the missing 

constants to that object and adds the enumeration to the VP’s location if it has no leading 

implementation. 

CompilationUnit: vpLocation ← vp.location; 
 
Map<String, Enumeration>: enumerationsToName;  
Map<String, Set<String>>: constantsToEnumName;  
Map<String, Boolean>: leadingToEnumName; 
 
foreach Variant: variant ∈ vp.variants do 
 foreach Enumeration:enumeration ∈ variant.implementingElements do 
  if enumerationsToName.containsKey(enumeration.name) || variant.leading) then  
   enumerationsToName.gets(enumeration.name) ← enumeration; 
  endif 
  leadingToEnumName.gets(enumeration.name) ← variant.leading; 
  foreach EnumConstant: enumConst ∈ enumeration.constants do  
   constantsToEnumName.gets(enumeration.name).add(enumConst.name); 
  endforeach 
 endforeach 
endforeach 
 
foreach String: enumName ∈ enumerationsToName.keys do 
 enumeration ← enumerationsToName.gets(enumName); 
 foreach String: constName ∈ constantsToEnumName.gets(enumName) do 
  if !hasConstantWithSameName(enumeration, constName) then  
   enumConst.name ← constName;  
   enumeration.constants.add(enumConst); 
  endif  
 endforeach 
  
 if !leadingToEnumName.gets(enumName) then  
  vpLocation.add(enumeration); 
 endif 
endforeach 
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Instruction: Field 

Summary  

The SPL must contain the fields of all variants. The refactoring instruction integrates fields of all variants 

into the leading variant. In case of different initial values among the implementations, initialization blocks 

with conditional assignments get introduced. 

Preconditions 

Location 

Element MemberContainer 

Exclusion  

Implementing Elements 

Element Field 

Exclusion  Fields with equal names but different types. 

Example 

Integrates the missing field b into the leading variant and introduces an initializer block to integrate the 

initializations from both Variants. 

Leading Integration 

public class SomeClass { 
 private int a = 0;  
} 

public class SomeClass { 
 private int a = 1; 
 private int b = 1;  
} 

Refactored SPL 

public class SomeClass { 
 private int a; 
 private int b = 1; 
 { 
  if(Config.CONF1.equals("Leading")){ 
   a = 0; 
  } 
  if(Config.CONF1.equals("Integration")){ 
   a = 1; 
  } 
 } 
} 

Additional Parameters 
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Mechanics 

The algorithm first adds the import of the configuration class to the containing compilation unit. It then
(first foreach) builds maps to store the field objects, their positions within the parent container and their 
initial values to the fieldʼs name. It also stores the fieldʼs initial value and the ID of the Variant that it is 
implemented in. 
It then deletes the fields of the leading Variant from the VPʼs location and generates two blocks (to 
initialize static and non-static fields). In the following foreach, it adds the fields to the VPʼs location, 
removes final modifiers (if applicable) and fills the initializer blocks with Variant-specific conditional 
assignments if they have more than one initial value. Finally, it adds the initializer blocks to the VPʼs 
location if they are not empty. 

Class: vpLocation ← vp.location; 
addConfigurationClassImportIfMissing(vpLocation.containingCompilationUnit); 
 
Map<String,Field>: fieldToFieldName; 
Map<String,Integer>: positionToFieldName; 
Map<String, Set<Expression>>: initialValuesToFieldName; 
Map<Expression, String>: variantIDToInitialValue; 
 
foreach Variant:variant ∈ vp.variants do 
  foreach Field:field ∈ variant.implementingElements do 
    fieldToFieldName.gets(field.name) ← field; 
    positionToFieldName.gets(field.name) ← field.container.indexOf(field); 
     
    if !initialValuesToFieldName.gets(field.name).contains(field.initialValue) then 
      initialValuesToFieldName.gets(field.name).add(field.initialValue); 
    endif 
     
    variantIDToInitialValue.gets(field.initialValue) ← variant.id; 
  endforeach 
endforeach 
 
deleteVariableFieldsFromLeading(vp); 
 
Block: nonStaticBlock; 
Block: staticBlock; 
staticBlock.modifiers.add(new Final()); 
 
foreach String: fieldName ∈ fieldToFieldName.keys do 
  Field: field ← fieldToFieldName.gets(fieldName ); 
  int: fieldPos ← positionToFieldName.gets(fieldName ); 
  List< Expression >: initialValues ← initialValuesToFieldName.gets(fieldName); 
   
  vpLocation.add(fieldPos, field); 
  removeFinalModifier(field); 
   
  if initialValues.size > 1 then 
    field.initialValue ← null; 
    if isStatic(field) then 
      createFieldConditionalInitialization(initialValues, staticBlock);  
    endif 
    else 
      createFieldConditionalInitialization(initialValues, nonStaticBlock); 
    endelse 
  endif 
endforeach 
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if staticBlock.size > 0 then 
 vpLocation.add(staticBlock); 
endif 
if nonStaticBlock.size > 0 then 
 vpLocation.add(nonStaticBlock); 
endif 

// --------------------------------------------------------------------------- 
// Function: createFieldConditionalInitialization 
// Creates a new conition to initialize a field. 
Input:  List< Expression >: initialValues; // the initial values of for the field 
   Block: block; // the block to add the condition to 
Output: 
foreach Expression: initialValue ∈ initialValues do 
   String: variantId ← variantIDToInitialValue.gets(initialValue); 
   String: groupId ← vp.group.id; 
    
   String: conditionString ← “SPLConfig.” + groupId + “.equals(” + variantId + ”)”; 
   Condition: condition; 
   condition.condition ← expressionFromString(conditionString); 
 
   ExpressionStatement: assignmentStatement ← 
               initialValueToStandaloneAssignment(initialValue); 
   condition.ifBlock.add(assignmentStatement); 
   block.add(condition); 
endforeach 

 
  

Instruction: Method 

Summary  

The SPL classes must contain the methods from all Variants. This refactoring instruction integrates the 
methods from the integration Variants into the leading Variant. 

Preconditions 

Location 

Element MemberContainer

Exclusion  

Implementing Elements 

Element Method 

Exclusion  Methods with equal names but different return types. 

Example 

Integrates the method with the double parameter of the integration into the leading variant since it does 
not contain a method with one double parameter. 

Leading Integration 

public class SomeClass { 
  public void someMethod(){...}; 
  public void someMethod(int i){...}; 
} 

public class SomeClass { 
  public void someMethod(){...}; 
  public void someMethod(double d){...}; 
}

Refactored SPL 

public class SomeClass { 
  public void someMethod(){...}; 
  public void someMethod(int i){...}; 
  public void someMethod(double d){...}; 
} 

Additional Parameters 
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Mechanics 

Iterate over all integration variants and their methods. Add the method to the location of the variation 

point, if the location does not contain a method with the same name and an equal set of parameters, yet. 

MemberContainer: vpLocation ← vp.location;  
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then 
  continue; 
 endif 
 foreach Method:method ∈ variant.implementingElements do 
  if !hasMethodWithEqualNameAndParameters(vpLocation, method) then  
   vpLocation.add(method); 
  endif 
 endforeach 
endforeach 

// --------------------------------------------------------------------------- 
// Function: hasMethodWithEqualNameAndParameters 
// Checks whether a given container has a method with equal name and parameters. 
Input:  MemberContainer: memberContainer; Method: method 
Output: Boolean: true if such a method was found; Otherwise false. 
 
foreach Method: currentMethod ∈ memberContainer.methods do  
 List<Parameter>: paramSet1 ← currentMethod.parameters;  
 List<Parameter>: paramSet2 ← method.parameters; 
  
 if !currentMethod.name.equals(method.name) then 
  continue; 
 endif 
 if paramSet1.size != paramSet2.size then 
  continue; 
 endif 
  
 for i ← 0 to paramSet1.size −1 do 
  if !paramSet1.get(i).type.equals(paramSet2.get(i).type) then 
   break; 
  endif 
  if i == (paramSet1.size −1) then 
   return true; 
  endif 
 endfor 
endforeach 
return false; 
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Instruction: Constructor 

Summary  

The SPL classes must contain the constructors of all Variants. This refactoring instruction merges the 

constructors of the integration variants into the leading copy. 

Preconditions 

Location 

Element Class 

Exclusion  

Implementing Elements 

Element Constructor 

Exclusion  

Example 

Integrates the constructor with the double parameter from the integration into the leading variant because 

it does not contain a constructor with one double parameter. 

Leading Integration 

public class SomeClass { 
 public SomeClass(){...}; 
 public SomeClass(int i){...}; 
} 

public class SomeClass { 
 public SomeClass(){...}; 
 public SomeClass(double d){...}; 
} 

Refactored SPL 

public class SomeClass { 
 public SomeClass(){...}; 
 public SomeClass(int i){...}; 
 public SomeClass(double d){...}; 
} 

Additional Parameters 
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Mechanics 

Iterate over all integration variants. Add the constructors to the location of the variation point, if the 

location does not contain a constructor with an equal set of parameters, yet. 

MemberContainer: vpLocation ← vp.location; 
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then 
  continue; 
 endif 
 foreach Constructor:constructor ∈ variant.implementingElements do 
  if !hasConstructorWithEqualParameters(vpLocation, constructor) then 
   vpLocation.add(constructor); 
  endif 
 endforeach 
endforeach 

// Function: hasConstructorWithEqualParameters 
// Checks whether a given container has a method with equal name and parameters. 
Input:  MemberContainer: memberContainer; Constructor: constructor 
Output:Boolean: true if such a constructor was found; Otherwise false. 
 
foreach Constructor: currentConstructor ∈ memberContainer.constructors do  
 List<Parameter>: paramSet1 ← currentConstructor.parameters;  
 List<Parameter>: paramSet2 ← constructor.parameters; 
  
 if paramSet1.size != paramSet2.size then 
  continue; 
 endif 
  
 for i ← 0 to paramSet1.size −1 do 
  if !paramSet1.get(i).type.equals(paramSet2.get(i).type) then 
   break; 
  endif 
  if i == (paramSet1.size −1) then 
   return true; 
  endif 
 endfor 
endforeach 
return false; 
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Instruction: Block 

Summary  

The SPL Classes must contain all initializer blocks of all variants. This refactoring instruction merges the 

blocks of the integration variants into the leading Variant. 

Preconditions 

Location 

Element MemberContainer 

Exclusion  

Implementing Elements 

Element Block 

Exclusion  

Example 

Integrates a block from the integration into the leading variant because it does not contain the block. 

Leading Integration 

public class SomeClass {} public class SomeClass { 
 { 
  System.out.println(); 
 } 
} 

Refactored SPL 

public class SomeClass { 
 { 
  System.out.println(); 
 } 
} 

Additional Parameters 

 

Mechanics 

Iterate over all integration variants and their blocks and add them to the location of the variation point. 

vpLocation ← vp.location; 
foreach Variant:variant ∈ vp.variants do 
 if variant.leading then 
  continue; 
 endif 
 foreach Block:block ∈ variant.implementingElements do 
  vpLocation.add(block); 
 endforeach 
endforeach 
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Instruction: Statement in a Statement List Container 

Summary  

This refactoring instruction introduces conditional statements that match the SPL configuration to 
execute Variant-specific statements. Local variable statements declaring a variable that is referenced 
outside the variation point are placed in front of the conditional statement. The variable is initialized with 
the default value of their data type and the variant-specific initialization is done inside the conditional 
statement. 

Preconditions 

Location 

Element StatementListContainer

Exclusion  

Implementing Elements 

Element Statement 

Exclusion  Local variable declarations with equal variable names but different variable 
types and elements outside the containing variation point that have 
references to the variable. 

Example 

The integration method has a different initial value for x and a different argument in the print method. 
Splits x into declaration and assignment and executes the Variant-specific code in the conditional 
statements. 

Leading Integration 

public void method(){ 
   int x = 1; 
  print("Leading:" + x); 
  return x; 
} 

public void method(){ 
   int x = 2; 
   print("Integration:" + x); 
  return x; 
}

Refactored SPL 

public void method(){ 
  int x; 
   if(Config.CONF1.equals(“Leading”)){  
     x = 1; 
     print("Leading:" + x); 
  }  
  if(Config.CONF1.equals(“Integration”)){ 
     x = 2; 
     print("Integration:" + x); 
   } 
  return x; 
} 

Additional Parameters 
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Mechanics 

The algorithm first adds the import of the configuration class to the containing compilation unit. It then 
calculates the position at which the variable elements have to be inserted in the VPʼs location. It then 
wraps the statements of each Variant into a condition that evaluates the SPL configuration. If the 
statement is a local variable statement whose variable is referenced out-side the current VP, it gets split 
into declaration and assignment, whereas the declaration gets stored and the assignment is done within 
the If-block. It also removes the final modifier of the variable (if applicable). It then adds the created 
condition into the VPʼs location at the previously calculated position. 
It then deletes the leading Variantʼs elements from the VPʼs location and adds the declaration in front of 
the first of the generated conditions. Finally, the algorithm checks whether the VPʼs location is a method 
and whether it has a non-void return type and all Variants have a trailing return statement. In this case, 
the algorithm adds a default return statement at the end of the method. 

StatementListContainer: vpLocation ← vp.location;
addConfigurationClassImportIfMissing(vpLocation.containingCompilationUnit); 
 
addConfigurationClassImportIfMissing(vpLocation.containingCompilationUnit); 
 
Map<String, LocalVariableStatement>: localVariableStatementsToName; 
 
int: variabilityPositionStart ← getVariabilityPosition(vp);  
int: variabilityPositionEnd ← variabilityPositionStart; 
 
foreach Variant:variant ∈ vp.variants do  
  String: groupId ← vp.group.Id;  
  String: variantId ← variant.Id; 
   
  String: conditionString ← “SPLConfig.” + groupId + “.equals(” + variantId + ”)”; 
  Condition: condition; 
  condition.condition ← expressionFromString(conditionString); 
 
  foreach Statement:statement ∈ variant.implementingElements do  
    int: offset ← variant.implementingElements.size – 
                              variant.implementingElements.indexOf(statement);  
    if statement instanceof LocalVariableStatement  
              && isReferencedByPostdecessor(statement, offset) then 
      LocalVariable: variable ← statement.variable;  
      removeFinalModifier(variable); 
      statement ← extractAssignment(variable); 
      variable.initialValue ← defaultValueForType(variable.typeReference.target); 
       
      if !localVariableStatementsToName.containsKey(variable.name) || variant.leading then  
        localVariableStatementsToName.gets(variable.name) ← statement; 
      endif 
    endif 
 
    if statement != null then  
      condition.ifBlock.add(statement); 
    endif 
  endforeach 
  vpLocation.statements.add(variabilityPositionEnd++, currentCondition);  
endforeach 
 
deleteLeadingVariantElementsFromVPLocation(vp); 
vpLocation.addAll(variabilityPositionStart, localVariableStatementsToName.values); 
 
if vpLocation instanceof ClassMethod then 
  boolean: isVoid ← returnTypeIsVoid(vpLocation); 
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 boolean: allVariantsHaveATrailingReturn ← allVariantsHaveATrailingReturn(vp); 
  
 if !isVoid && allVariantsHaveATrailingReturn then 
  Return: returnStatement; 
  Literal: defaultValue ← defaultValueForType(vpLocation.typeReference.target);  
  returnStatement.returnValue ← defaultValue; 
  vpLocation.add(returnStatement); 
 endif 
endif 

// --------------------------------------------------------------------------- 
// Function: getVariabilityPosition 
// Calculates the position of the variable statements. 
Input : VariationPoint: vp  
Output: int: The position. 
 
StatementListContainer: vpLocation ← vp.location; 
 
foreach Variant: variant ∈ vp.variants do  
 if variant.leading then 
  Statement: firstElement ← variant.implementingElements.gets(0); 
  return firstElement.eContainer.indexOf(firstElement); 
 endif 
endforeach 
 
Statement: firstElement ← vp.variants.gets(0).implementingElements.gets(0); 
int: posIntegration ← firstElement.eContainer.indexOf(firstElement); 
 
List< Statement >: predecessors ← firstElement.eContainer.subList(0, posIntegration); 
predecessors ← intersect(vpLocation, predecessors); 
 
if predecessors.size == 0 then  
 return 0; 
endif 
 
pos ← searchFirstGroupOccurence(vpLocation, predecessors);  
return pos +1; 
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// --------------------------------------------------------------------------- 
// Function: searchFirstGroupOccurence 
// Searches the first occurrence of a given list of statements in a container. 
Input:  StatementListContainer: targetContainer, List<Statement>: predecessors 
Output: int: If group was found, the index of the last element of the group; otherwise -1. 
 
predecessorPos ← 0; 
for i ← 0 to predecessors.size −1 do  
 baseElement ← targetContainer.gets(i);  
 predecessor ← predecessors.gets(predecessorPos); 
  
 if baseElement.equals(predecessor) then  
  predecessorPos++; 
 endif 
 elseif isVariabilityCondition(baseElement) then 
  int: predecessorsSubList ← predecessors.subList(predecessorPos, predecessors.size); 
  predecessorPos += countVariableStatements(baseElement.ifBlock, predecessorsSubList);  
 endelseif 
  
 if predecessorPos == predecessors.size then 
  if predecessor instanceof LocalVariableStatement then 
   int: posNextVarCond ← posNextVariabilityCondition(targetContainer, i);  
   if posNextVarCond ! = −1 then 
    return posNextVarCond; 
   endif 
  endif 
  return i; 
 endif 
endfor 
return −1; 

// --------------------------------------------------------------------------- 
// Function: posNextVariabilityCondition 
// Finds the position of the next condition that was introduced by this variability  
// mechanism and returns its position. Searches elements starting at a given index. 
Input:  StatementListContainer: targetContainer; int: startIndex 
Output: The position. -1 if nothing found. 
 
for i ← startIndex to targetContainer.size −1 do 
 Statement: currentStatement ← targetContainer.statements.gets(i);  
 if isVariabilityCondition(currentStatement) then 
  return i; 
 endif 
endfor 
return −1; 
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// --------------------------------------------------------------------------- 
// Function: isReferencedByPostdecessor 
// Checks whether a LocalVariableStatement's LocalVariable is referenced  
// by a following element in its parent container. 
Input : LocalVariableStatement: localVariableStatement; int: offset 
Output: boolean: True if a reference was found; false otherwise.  
 
LocalVariabe: variable ← localVariableStatement.variable; 
List<Statement>: containerStatements ← localVariableStatement.eContainer.statements;  
 
int: fromIndex ← containerStatements.indexOf() + offset; 
int: toIndex ← containerStatements.size; 
 
if fromIndex >= toIndex then  
 return false; 
endif 
 
List<Statement>: postDecessors ← containerStatements.subList(fromIndex, toIndex); 
foreach Statement: postDecessor: postDecessors do 
 if hasReferenceTo(postDecessor, variable) then 
  return true; 
 endif 
endforeach 
 
return false; 
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Instruction: Statement in a Condition 

Summary  

This refactoring instruction integrates variable else-statements in a condition. It introduces conditional 
statements to execute the Variant code. In case that the variation point has more than one variant, the 
refactoring wraps those conditional statements into a condition that checks whether at least one of the 
Variants has been selected. 

Preconditions 

Location 

Element Condition 

Exclusion  

Implementing Elements 

Element Statement 

Exclusion  

Example 

The integration variant has one additional else-if in between. The refactoring introduces a top-level 
condition to check whether at least one of the Variants has been selected and then executes the Variant-
specific code using conditional statements. 

Leading Integration 

public void method(int i) { 
  if (i == 0) { 
     print("0"); 
   } else if (i == 2) { 
     print("2"); 
   } 
} 

public void method(int i) { 
  if (i == 0) { 
     print("0"); 
   } else if (i == 1) { 
    print("1"); 
   } else if (i == 2) { 
     print("2"); 
   } 
}

Refactored SPL 

public void method(int i) { 
  if (i == 0) { 
     print("0"); 
   } else if (Config.CONF1.equals("Leading") || Config.CONF1.equals("Integration")) { 
    if (Config.CONF1.equals("Leading")) { 
      if (i == 2) { 
        print("2"); 
      } 
    } 
    if (Config.CONF1.equals("Integration")) { 
      if (i == 1) { 
        print("1"); 
       } else if (i == 2) { 
         print("2"); 
       } 
    } 
   } else if (i == 2) { 
     print("2"); 
   } 
} 
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Additional Parameters 

 

Mechanics 

If the VP has more than one Variant (first if), the refactoring first builds a top-level condition that checks 
whether at least one of the Variants has been selected. It then adds conditional statements to the 
condition that integrate the variable statements. In case that the VP has only one Variant (else), the 
algorithm does not build a top-level condition. It only builds the conditional statements to execute the 
Variant code. Finally, it adds the condition (either the top-level condition or the Variant-specific one) to 
the else-branch of the VP’s location. 

Condition: vpLocation ← vp.location; 
addConfigurationClassImportIfMissing(vpLocation.containingCompilationUnit); 
 
Statement: elseStatement ← vpLocation.elseStatement; 
Condition: variabilityCondition; 
 
String: groupId ← vp.group.Id; 
 
if vp.variants.size > 1 then 
  ConditionalOrExpression: orExpression; 
  foreach Variant:variant ∈ vp.variants do 
    String: conditionString ← “SPLConfig.” + groupId + “.equals(” + variant.Id + ”)”; 
    IdentifierReference: identifierRef ← identifierReferenceFromString(conditionString); 
    orExpression.children.add(identifierRef ); 
  endforeach 
   
  variabilityCondition.condition ← orExpression; 
   
  foreach Variant:variant ∈ vp.variants do 
    String: variantId ← variant.id; 
    String: conditionString ← “SPLConfig.” + groupId + “.equals(” + variantId + ”)”; 
    Condition: currentCondition; 
    currentCondition.condition ← expressionFromString(conditionString); 
    currentCondition.ifBlock.add(variant.implementingElements.gets(0)); 
    variabilityCondition.ifBlock.add(currentCondition); 
  endforeach 
endif 
else 
  String: variantId ← vp.variants.gets(0).id; 
  String: conditionString ← “SPLConfig.” + groupId + “.equals(” + variantId + ”)”; 
  variabilityCondition.condition ← expressionFromString(conditionString); 
 
  Statement: implementingElement ← vp.variants.gets(0).implementingElements.gets(0); 
   
  if implementingElementinstanceofBlock then 
    variabilityCondition.ifBlock ← implementingElement; 
  endif 
  else 
    variabilityCondition.ifBlock.add(implementingElement); 
  endelse 
endelse 
 
vpLocation.elseStatement ← variabilityCondition; 
variabilityCondition.elseStatement ← elseStatement; 
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B.1 Shared Term Analyzer

B.1.1 Stop Word List: Høst Programmer Vocabulary

The vocabulary for developing Java applications proposed by Høst and Østvold [82] and
used as default stop word list in the case studies:

accept action add check clear close create do dump end equals �nd generate get handle
has hash init initialize insert is load make new next parse print process read remove
reset run set size start to update validate visit write

271



B Appendix: Evaluation

B.1.2 Stop Word List: MySQL Prepared

The stop word list of the MySQL database server [142] prepared by splitting apostrophes
and removing words with less than three characters.

able about above according accordingly across actually after afterwards again against
ain all allow allows almost alone along already also although always among amongst
and another any anybody anyhow anyone anything anyway anyways anywhere apart
appear appreciate appropriate are aren around aside ask asking associated available
away awfully became because become becomes becoming been before beforehand
behind being believe below beside besides best better between beyond both brief but
mon came can cannot cant cause causes certain certainly changes clearly com come
comes concerning consequently consider considering contain containing contains cor-
responding could couldn course currently de�nitely described despite did didn di�erent
does doesn doing don done down downwards during each edu eight either else else-
where enough entirely especially etc even ever every everybody everyone everything
everywhere exactly example except far few �fth �rst �ve followed following follows for
former formerly forth four from further furthermore get gets getting given gives goes
going gone got gotten greetings had hadn happens hardly has hasn have haven having
hello help hence her here hereafter hereby herein hereupon hers herself him himself his
hither hopefully how howbeit however ignored immediate inasmuch inc indeed indicate
indicated indicates inner insofar instead into inward isn its itself just keep keeps kept
know knows known last lately later latter latterly least less lest let like liked likely little
look looking looks ltd mainly many may maybe mean meanwhile merely might more
moreover most mostly much must myself name namely near nearly necessary need
needs neither never nevertheless new next nine nobody non none noone nor normally
not nothing novel now nowhere obviously o� often okay old once one ones only onto
other others otherwise ought our ours ourselves out outside over overall own particular
particularly per perhaps placed please plus possible presumably probably provides
que quite rather really reasonably regarding regardless regards relatively respectively
right said same saw say saying says second secondly see seeing seem seemed seeming
seems seen self selves sensible sent serious seriously seven several shall she should
shouldn since six some somebody somehow someone something sometime sometimes
somewhat somewhere soon sorry speci�ed specify specifying still sub such sup sure
take taken tell tends than thank thanks thanx that thats the their theirs them themselves
then thence there there thereafter thereby therefore therein theres thereupon these
they think third this thorough thoroughly those though three through throughout thru
thus together too took toward towards tried tries truly try trying twice two under
unfortunately unless unlikely until unto upon use used useful uses using usually value
various very via viz want wants was wasn way welcome well went were weren what
what whatever when whence whenever where whereafter whereas whereby wherein
whereupon wherever whether which while whither who whoever whole whom whose
why will willing wish with within without won wonder would wouldn yes yet you your
yours yourself yourselves zero

272



B.2 Interview Workshop

B.2 InterviewWorkshop

This section summarizes the answers for each question asked during the interview workshop
(Section 8.5.1). The summaries have been created from the notes taken during the interviews
and proven by the participating employees of the vendor and the independent consultancy.
Table B.1 summarizes the positions reported by the individual participants.

Participant Position

Participant 1 Developer
Participant 2 Developer
Participant 3 Architect / Project Manager
Participant 4 Developer / Architect

Table B.1: Interview workshop: Participants

Question 1: How do you implement variability today?
All participants answered this question in a similar way. In general: either for run time with

a custom license mechanism, for compile time by generating code (e.g., for data models),
or for load time using con�guration �les. In speci�c, many di�erent mechanisms and
styles to implement one or the other exist. Participants reported about OSGi Manifest �les,
properties �les, Maven and Spring descriptors, dependency injection, user context and
license interpretations and many more. Participant 3 �rst estimated about ten di�erent ways
of implementation, at the end of the interview he repealed this number and estimated an
unknown but much higher number.

Question 2: How do you decide for a way to implement variability?
All participants answered in a similar way: This is decided by the developer himself. In

rare cases, there is an explicit required variability mechanism to use. Most of the time, this
is interpreted by the individual developer and later on rechecked with the development
management, and in a second step with the product management being aware of the
requirements of the individual projects. Participant 3 described from his project management
perspective that he would prefer to enable the developers to make the right decisions and to
reduce the feedback cycle with the development or product management required by the
current process.

Question 3: Imagine you have to consolidate a copied and customized component into a
variable so�ware product line. What would you do?

All participants responded that they would search for similarities to exclude them for
their further processing and focus on the di�erences. For the second step, the participants
reported di�erent strategies they would follow.

Participants 1 and 2 were interested in starting with the code locations one by one, then
either directly modifying them with getting warned in case of a problem or being presented
with related code locations when focusing on a particular one.
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Participant 3 stated that he would be interested in what has changed and why. He described
the optimal case of seeing customizations from the user perspective and getting presented
with the code contributing to each customization. Remark: He was talking about user
interfaces. However, he noted by himself that this demand would be too product-speci�c
and rarely possible, as customizations to be considered are typically very arti�cial.

Participant 4 described his interest in patterns of similar modi�cations and to �nd out
which of these implementations would be the best. He motivated his demand by having
observed that customizations are often done to similar parts of the software. As some
customizations are done better than others, he would try to align the variability he introduces
with the best variability pattern identi�ed.

Independent of the strategy they preferred, all participants mentioned some kind of
iterative approach, thus releasing them from having to process all modi�cations at once.

Question 4: Howwould you like to see the di�erences and what are you interested in?
All participants mentioned the code modi�cations and higher level structures as well as the

relationships, but with di�erent weightings and expectations.
Participant 1 mentioned a good experience with graph-based representations but only

for orientation and navigation. Furthermore, graphs must not get too big for being useful.
However, for anything else than orientation and navigation he reported to prefer other
representations, such as lists, trees, or code.

Participant 2, who would have liked to start right ahead with modifying code, wanted to
get actively informed when he performed an invalid modi�cation or missed a related code
modi�cation. Thus, he also mentioned the need of a rollback mechanism when realizing a
wrong decision.

Question 5: Whenworking with code structures, which level of granularity do you expect to
be useful?

All participants reported the usefulness of package, class and member granularity for
navigation as well as orientation. They all mentioned the statement level as being relevant
for the detailed assessment of the modi�cations, to decide for a speci�c way of consolidation.

Participant 4 mentioned a drill-down capability to get from coarse grained to more detailed
information.

Question 6: What else would you like to have or is important for you in the context of a con-
solidation?
Participant 3 reported about current problems to �nd the implementation of existing vari-

ability when an employee leaves the company, as there is typically no documentation, code
comment or tracing of where to �nd code that relates to a speci�c variability. Participant 2
described a related requirement to being able to describe why he made a speci�c variability
design decision, for example a decision of grouping two variation points without an obvious
dependency.
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Participant 4 mentioned an adaptive approach which is able to understand how a developer
consolidates a speci�c customization pattern and recommends other variation points /
customizations to consolidate in the same manner.

Participant 2 has liked to have a tool recommending consolidation actions, such as the
variability mechanism to implement.

Participant 1 described the requirement to be able to completely ignore speci�c di�erences
/ variation points in the downstream process. He argued for not having to consider the
complete system at once, respectively that some modi�cations are not of interest at all.
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B.3 Survey Industrial Applicability

The following sections provide the questionnaire and the original replies. The survey has
been performed in German as the target group were German participants. Thus, the survey
is shown here in the raw format. Similarly, the answers are presented in German as well.
The results are interpreted and given in English in the according subsections of Section 8.

B.3.1 Questionnaire

In the following, the questionnaire pages are displayed. The participants were provided
with the same pages except for minor spacing changes to make them �t on the pages here.

276



B.3 Survey Industrial Applicability

277



B Appendix: Evaluation

278



B.3 Survey Industrial Applicability

279



B Appendix: Evaluation

280



B.3 Survey Industrial Applicability

281



B Appendix: Evaluation

282



B.3 Survey Industrial Applicability

283



B Appendix: Evaluation

284



B.3 Survey Industrial Applicability

285



B Appendix: Evaluation

286



B.3 Survey Industrial Applicability

287



B Appendix: Evaluation

288



B.3 Survey Industrial Applicability

B.3.2 Answers

The following subsections and tables provide the results given by the participants (i.e., ”Teil-
nehmer”) of the online survey.

Teilnehmer Nr.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ∑
Management
Projekt 1 1 1 1 1 1 1 1 1 1 10
Produkt 1 1 1 1 1 1 6
Unternehmen 1 1 1 1 1 1 1 1 1 1 10
Entwicklung
Produkt 1 1 1 1 1 1 1 1 1 9
Lösung/Beratung 1 1 1 1 1 1 1 1 1 1 10
Forschung
Wissenschaftler 1 1 2
Student 0

Table B.2: Survey participants: Current position
(multiple choices allowed)
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Erfahrung Software-Entwicklung (in Jahren)

Teilnehmer Nr. Industriell Open Source / Forschung
1 17 6
2 15 20
3 20 3
4 4 12
5 3 1
6 8 0
7 3 1
8 1 6
9 12 3

10 5 10
11 17 0
12 5 5
13 0 10
14 1 1
15 16 6
16 5 15
17 7 7
18 15 0
∅ 8.6 5.9

Table B.3: Survey participants: Development experience
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Unternehmensgröße (in Mitarbeitern)

Teilnehmer Nr. 1 2-5 6-15 15-40 40-100 100-400 400-1000
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1∑ 0 1 1 2 0 11 3

Table B.4: Survey participants: Company size
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- Zustimmung +

0 1 2 3 4 5
Erfahrung Produktkopien

Kundenspezi�sche Kopien bieten Flexibilität bei der Entwick-
lung neuer Funktionalitäten.

2 3 1 4 5 3

Kundenspezi�sche Kopien bedeuten erhöhte Arbeitsaufwände. 0 2 1 1 11 3
Kundenspezi�sche Kopien sind ein Problem, das wir aktiv ver-
hindern.

1 0 2 6 6 3

Kundenspezi�sche Kopien bieten eine Möglichkeit Projektdruck
entgegenzuwirken.

0 2 3 6 6 1

Einsatz Produktkopien

Kundenspezi�sche Kopien werden bei uns aktiv vermieden. 0 1 3 4 6 4
Kundenspezi�sche Kopien werden bei uns aktiv entfernt. 1 7 5 4 1 0
Kundenspezi�sche Kopien werden bei uns in Kauf genommen,
wenn es die Projektbedingungen erfordern.

0 3 0 3 10 2

Kundenspezi�sche Kopien werden bei uns in Projekten gezielt
eingesetzt.

6 4 6 1 1 0

Erfahrung Produktlinien

Software Produktlinien sind ein bekanntes Konzept für mich. 0 1 1 4 6 6
Ich habe bereits Erfahrung mit Software Produktlinien Entwick-
lung gesammelt.

1 0 7 3 2 5

Ich setze Software Produktlinien aktuell bei der Software-
Entwicklung ein.

6 2 3 4 1 2

Erfahrung Konsolidierung

Ich habe selbst bereits eine Konsolidierung durchgeführt oder
war an ihr beteiligt.

8 1 1 2 2 4

Mir wurde über einen längeren Zeitraum (> 2 Monate) von einer
Konsolidierung berichtet.

9 3 1 3 0 2

Ich hatte bisher noch keinen Kontakt mit einer solchen Konsoli-
dierung.

10 2 0 2 1 3

Ich hatte einen Einblick in eine Konsolidierung, war aber selbst
nicht aktiv.

9 2 3 0 3 1

Table B.5: Survey participants: Experience with the topic
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

Software Architect 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

1 1 1 2 2 11

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 6 0 1 4 2 5
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

0 0 4 3 6 5

Die Person, die ich in der Rolle sehe besitzt die notwendigen
Kompetenzen.

0 0 1 4 4 9

Positionen potentieller Personen

• Chief Architekt, Software Produkt Manager
• PA –> Produktarchitekt ist bei uns schon als Rolle besetzt
• Teamleiter
• Senior Consultant, Project Manager
• CTO, Software Architect
• SE Architekt
• CEO, CTO, Software Architect
• Solution Architect
• Software Architect Platform SDK, Lead Developer Platform SDK
• Software Architekt
• Software Architekt

Table B.6: Survey Result: Software Architect
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

SPL Consolidation Developer 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

2 2 1 6 2 5

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 7 2 1 3 1 4
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

1 4 3 4 2 4

Die Person, die ich in der Rolle sehe besitzt die notwendigen Kom-
petenzen.

1 1 2 1 9 4

Positionen potentieller Personen

• Senior Entwickler, Software Architekt
• (Senior-)Entwickler
• Senior Consultant, Consultant
• CTO, Software Architect, Software Developer
• Softwareentwickler
• Software Developer, Software Architect
• Developer
• Software Architect Platform SDK, Lead/Senior Developer Platform SDK
• Software Engineer
• das ist bei uns Teamaufgabe, die spezielle Rolle gibt es nicht, wenn mann von

dem Mergingtask absieht der mehr oder weniger von einem Personenkreis
ausgeführt wird

Table B.7: Survey Result: SPL Consolidation Developer
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

SPL Manager 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

0 6 2 6 0 4

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 8 4 2 2 0 2
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

2 4 4 4 1 3

Die Person, die ich in der Rolle sehe besitzt die notwendigen Kom-
petenzen.

1 4 3 7 1 2

Positionen potentieller Personen

• Solution Manager
• Product-Designer
• CTO, Software Architect, Software Developer
• Aktuell nicht notwendig
• Software, Architect
• Consultant
• Teamleiter Platform SDK, Product Manager
• Product Manager
• würde bei uns geteilt durch PO- ProductOwner und PPL - Produktprojektleiter

Table B.8: Survey Result: SPL Manager
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

Produktmanager 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

0 1 0 3 8 6

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 7 3 2 2 2 2
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

0 3 3 5 4 3

Die Person, die ich in der Rolle sehe besitzt die notwendigen Kom-
petenzen.

0 2 2 7 3 4

Positionen potentieller Personen

• Produkt Owner
• PM- Produktmanager
• Produktmanager
• CTO|Software Architect, Software Developer
• Produktmanager
• Product Manager, CTO, CEO
• Consultant
• Product Manager
• Product Manager

Table B.9: Survey Result: Product Manager
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

Software Entwickler 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

0 0 0 1 5 12

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 6 3 1 0 1 7
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

0 1 2 3 3 9

Die Person, die ich in der Rolle sehe besitzt die notwendigen
Kompetenzen.

0 0 0 1 7 10

Positionen potentieller Personen

• Software Entwickler, Senior Software Entwickler, QS Specialist
• Developer / Entwicklungsteam
• Entwickler
• Consultant
• Software Developer
• Softwareentwickler
• Software Developer, Software Architect
• Developer
• Junior/Senior Software Developer
• Software Engineer

Table B.10: Survey Result: Software Developer
(Likert Scale: 0=No agreement; 5=Full agreement)
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- Zustimmung +

SPL Konsolidierungsberater 0 1 2 3 4 5
Es gibt eine oder mehrere Personen in meinem aktuellen Arbeit-
sumfeld, die ich in dieser Rolle sehen würde.

4 4 3 3 2 2

Ich kann mir vorstellen selbst diese Rolle zu übernehmen. 8 4 2 1 1 2
Die Person, die ich in der Rolle sehe besitzt die notwendigen
Entscheidungsbefugnisse.

3 6 4 1 2 2

Die Person, die ich in der Rolle sehe besitzt die notwendigen Kom-
petenzen.

3 5 3 2 2 3

Positionen potentieller Personen

• wir haben BA- Businessanalysten und Anforderungsmanager, die könnten
sowas machen

• Technology Consultant
• SE Architekt
• Software Architect, CTO
• Developer
• Software Architect Platform SDK
• Software Architekt

Table B.11: Survey Result: SPL Consolidation Consultant
(Likert Scale: 0=No agreement; 5=Full agreement)
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Feedback Rollen: Rückmeldung zu den Rollen

Entwickler und Tester verschmelzen im Scrum/agilen Umfeld. Würde ich berücksichti-
gen|Mit fehlen die Rollen Releasemanager und Build&Deployment Manager
Wir arbeiten mit Scrum in Anlehnung an Scaled Agile Viele Rollen sind daraus abgeleitet,
und ähnlich
Ja, in unserem Recht kleinen Unternehmen passt die Stellenbezeichnung nicht so gut zu
den Rollenbezeichnungen. Auch geht die Quali�kation der Mitarbeiter teilweise über die
in der Stellenbezeichnung verbundene Expertise hinaus. Damit ist die vorgenommene
Zuordnung mit Vorsicht zu evaluieren.
Grad der notwendigen technischen Tiefe ist bei SPL Manager und Produktmanager sehr
o�en. Insb. ob die Rolle abschätzen können muss, ob etwas technisch umsetzbar ist, bleibt
unklar. Antworten passen nicht immer zur Rollenbeschreibung: Konsolidierungsberater
ist für keine Entscheidung verantwortlich -> in Antworten ’hat Entscheidungsbefugnisse’
Feedback Umfrage: Allgemeine Rückmeldung

Immer wieder spannend den Produkt/RoadMap Prozess mit Projekt und Kundeanforderun-
gen unter einen Hut zu bringen. Bin auf die Ergebnisse gespannt
Da bei uns keine SPL eingesetzt werden, konnte ich zu den SPL-spezi�scheren Rollen
keine vernüntige EInschätzung abgeben.
Je nach Beantwortung der ersten Rollen-Frage ’Es gibt eine oder mehrere Personen
in meinem aktuellen Arbeitsumfeld, die ich in dieser Rolle sehen würde.’ machen die
folgenden Fragen ggf. nicht mehr viel Sinn (z.B. ’ich stimme nicht zu’ -> Antworten auf
<tab>’Person besitzt...’ machen keinen Sinn).

Table B.12: Survey feedback
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B.4 Interview Refactoring Specification

The following subsections provide the questionnaire and the summarized answers of the
interviews about the comprehensibility of the consolidation refactoring speci�cation concept
(Section 8.5.2). The results are discussed as part of the evaluation in Section 8.8.1. Note: The
consolidation refactoring was named “variability refactoring” before. The questionnaire
documentation has not been updated to the new name to document the version originally
sent out to the participants.

B.4.1 Questionnaire

The following pages present the questionnaire that has been sent out to the interview
participants. It was originally sent as a word processor document, and the participants
were asked to respond in the word document and send it back. In addition, they received
parts of the refactoring speci�cation included in Appendix A.1. In particular, they received
the �rst page containing the general information about the refactoring and the refactoring
instructions for Method and Import elements of the JaMoPP metamodel.

Interview: Variability Refactoring Specification Comprehensibility 
 

Introduction 

The target of this interview is to evaluate the comprehensibility of a specification concept for 

a novel type of refactorings.  

This type of refactoring is about combining two variants of the same code and introducing a 

variability mechanism to use the one or the other in the same code base in the future. This 

includes a configuration mechanism for specifying which alternative to use as well.  

Note: This novel type of refactoring slightly differs from traditional refactorings allowing for 

improving the internal structure of a code without changing its external behavior. 

Nevertheless, considering the combined variants and the introduced configuration, you are 

able to configure the original behavior of the code variants. Thus, each of these 

configurations and the according original code variants provide the same behavior and this 

novel refactoring conforms to the traditional refactorings.  

During the interview, please keep in mind that this interview is focused on the 

comprehensibility of the specification structure and the provided types of information in 

general. It is not about assessing the introduced variability and configuration mechanisms 

itself. Both might be useful in one scenario but inappropriate in another. 

 

Interview Process 

The process of this interview is structured in two steps: 

1. Answer questionnaire part 1 about your experience 

2. Read the refactoring specification 

3. Answer questionnaire part 2 about the refactoring specification 

The specification you will be provided with covers only a part of the complete refactoring. But 

the parts you will read are representative for the refactoring specification at all.  

The refactoring specification contains two parts:  

 General Information about the refactoring itself respectively the variability and 

configuration mechanisms it introduces. 

Intention: Deciding to use this refactoring for a concrete variable code location or not 

 Instructions how to refactor specific types of software elements. 

Intention: Guide you in performing the refactoring manually or implementing 

automation for it. 

Now, please answer the first part of the questionnaire, then read the provided specification, 

and continue with the questionnaire afterwards. 

Additionally, please do not modify the questionnaire itself and fill out the fields marked with a 

yellow background. For multiple-choice questions, please select only one answer. 

  

300



B.4 Interview Refactoring Speci�cation

 

Questionnaire Part 1: Knowledge and Experience 
 

How many years of experience do you have in developing Software? 

 

Industrial:  

Open Source / Research:  
 

Considering software refactorings, how would you rate your personal skills? 

 

☐None  

☐Basic 

☐Experienced 

☐Professional 

 

Considering model driven software development, how would you rate your personal 
skills? 

 

☐None  

☐Basic 

☐Experienced 

☐Professional 

 

Considering model driven software development, how would you rate your personal 
knowledge about this model? 

 

☐None  

☐Basic 

☐Experienced 

☐Professional 
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Questionnaire Part 2: Refactoring Specification 
 

General Information 

 
According to the information you read, when would you apply this refactoring? 

 
Answer: 

 
 

 

Describe in two sentences, how the alternative variants can be configured later 
on. 

 
Answer: 
 

 
 

Did you find an example as part of the general information helpful to 
understand the specified refactoring?  

☐necessary ☐ unnecessary ☐ disturbing 

 
 
Reason: 

 
 

 

How do you rate the informal description of the limitations? 

☐sufficient ☐ disturbing ☐ expected something else 

 
 

Reason: 
 
 

 

Did you miss anything in the general information part stopping you to decide 
about applying the refactoring or not? 

☐no ☐ yes, I missed: 
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Refactoring Instructions in general 

 Did you find an example as part of the instructions helpful to understand the 
specified refactoring?  

☐necessary ☐ unnecessary ☐ disturbing 

 
 

Reason: 
 
 

 

How do you rate using pseudo code and the intention to not limit the way the 
mechanics are automated or even performing it manually? 

☐positive as it does not limit me  

☐neutral 

☐I prefer a concrete programming language even if not the one I will use  

☐other: 

 
 

 
 

Did you miss anything in the instructions in general which might stop you in 
applying them? 

☐no ☐ yes, I missed: 
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Refactoring Instruction: Method 

 According to the information you read:  
When can you apply this instruction and when not? 

 
Answer: 

 
 

 

The mechanics defines a function. Please give its name and describe in two 
sentences what its purpose is and where it is called. 

Name and description: 
 
 

 

Is there anything you missed in this specific refactoring instruction? 

☐no ☐ yes, I missed: 

 
 

 
 

 
 

 

 

Refactoring Instruction: Import 

 According to the information you read:  
When can you apply this instruction and when not? 

 
Answer: 

 
 
 

Is there anything you missed in this specific refactoring instruction? 

☐no ☐ yes, I missed: 
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B.4.2 Answers

the following tables contain the answers as they were given by the participants. No spelling
or grammar correction has been applied to them.

Participants

1 2 3 4 ∅
Development Experience (years)
Industrial 5 2 3 7 4.25
Research / Open Source 15 16 12 5 12
Skills (1=Basic, 4=Professional)
Refactoring 4 3 4 4 4
MDSD 4 4 4 4 4
JaMoPP 4 4 4 4 4

Table B.13: Refactoring interview: Participants’ experience

305



B Appendix: Evaluation

According to the information you read, when would you apply this refactoring?

1 If I had two di�erent method implementations in copied code and wanted to
choose between them before compilation time, I could use this refactoring.

2 When tow (or more) features are alternative (mutually exclusive).
3 When we have a set of implementations of the same component. The used

implementation should be selected on compile time. For this selection this
refactoring introduces a „controller“ acting as a dispatcher.

4 When di�erences between two variants are located in a single place in the code
and when variability can be realized using an IF statement.

Describe in two sentences, how alternative variants can be con�gured later on.

1 I would need to change the String constant CONF1 in class Con�g to switch
between variants. Second sentence to address the questions requirement to
write two sentences.

2 There is a single class with static members of type String. A concrete selection
of a particular feature is described by setting one of a set of possible values for
the respective String constant describing the con�guration for this feature.

3 Con�guration only takes place just before compilation. It can be adjusted by
modifying particular �elds in a con�guration class.

4 Alternative variants can be selected by replacing the values of static string
constants in the con�guration class. This must be performed at compile time.

Table B.14: Refactoring interview answers: General infos
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B.4 Interview Refactoring Speci�cation

Did you �nd an example as part of the general information helpful to under-

stand the speci�ed refactoring?

1 necessary Code reads better than just text (given developers as target audience).
Gives a concrete implementation template

2 necessary Absolutely helpful. Before that, there is much room for own ideas on
what the refactoring might do in detail.

3 necessary Every catalogue contains examples. They are very supportive in un-
derstanding the catalogues intention in general and the particular
catalogue entry speci�cally.

4 necessary A good example is never disturbing and nearly never unnecessary.
How do you rate the informal description of the limitations?

1 necessary I �nd the limitations are quite necessary. But choose them wisely. Some
are a bit confusing, because it’s somehow obvious that if-statements
can not be used for variation on class signatures.

2 / Intentionally did not mark any option: What I would have wanted
was “Helpful but more detail needed”. The information that is there
is good but it probably only helps when you already have intimate
knowledge of variability mechanisms and their limitations.

3 expected
sth. else

Did not understand the last limitation. “local variables” a local to what?
When being local in a method it doesn’t matter if another method
contains another local variable with the same name.

4 necessary The list of given limitations contains representative examples for cases
where the refactoring is not acceptable. I’m not sure whether the list
is complete, neither can I say that it even should be complete. In any
case it is su�cient.

Did you miss anything in the general information part stopping you to decide

about applying the refactoring or not?

1 no No. I also like the classi�cation scheme and the alternatives section.
For supported elements I would not refer to JaMoPP but to Java in
general

2 yes Explanation of what OPTXOR is.
3 no /
4 no /

Table B.15: Refactoring interview answers: General infos continued
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Did you �nd an example as part of the instructions helpful to understand the

speci�ed refactoring?

1 necessary Again, same audience and reason as above
2 necessary
3 necessary I like the decomposition oft he overall refactoring. That’s why each

separate instruction (like adding the imports and merging the methods)
is understandable easily and examples are not necessary at all cost.
But in general I wouldn’t let examples out.

4 necessary Some instructions can get quite complex. An example never hurts.
How do you rate using pseudo code and the intention to not limit the way the

mechanics are automated or even performing it manually?

1 neutral Good: not limited to concrete language
Bad: hard to verify/test without translating it to concrete language

2 prefer
program-
ming
language

(Three questions in one. Sort of confusing to give an answer here.)

3 neutral
4 other The pseudo code that speci�es how to implement the refactoring

was of little interest to me as I was not confronted with the task to
actually implement the refactoring. I’m not sure whether it will even
be required for this task. Translating the pseudo code to a concrete
language might be equally hard as implementing the refactoring based
from a textual description.

Did you miss anything in the instructions in general which might stop you in

applying them?

1 no
2 no I am assuming that you would be presented with an identi�ed di�er-

ence of two copies and then be prompted how to deal with them. In
that case, the instructions are �ne. Otherwise, it would be helpful on
which elements to apply the instructions.

3 yes Wouldn’t stop me but I miss details about the composition of the par-
ticular instructions. What ifo ne instruction (like adding the imports)
fails? Will the others be executed? Will the whole refactoring fail?
What about global pre- and post-conditions in contrast to those of the
speci�c separate instructions?

4 yes It was not clear how the instructions refer to the refactoring. The
refactoring should contain a list of “instruction types” that are required
to perform the refactoring.

Table B.16: Refactoring interview answers: Instructions general
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B.4 Interview Refactoring Speci�cation

According to the information you read: When can you apply this instruction

and when not?

1 I did not �nd any exclusions in instruction. So I assume I can apply it for all
imports oft he involved classes

2 When there is (at least) one import in the integration copy that is needed by a
feature. (I’m only guessing here. Could not �nd anything speci�c to when the
refactoring can be applied)

3 This question is misleading: one might answer that it cannot be applied when the
integrated variant contains imports already contained in the leading variant. But
I expect this check to be performed by the refactoring itself. In general, imports
can always be added to a class, can’t they? According to the pre-conditions, this
instruction can only be executed if the variation points are CompilationUnits.

4 According to the given information it can be applied always. However, I think
this is only true if there are no name con�icts.

Is there anything you missed in this speci�c refactoring instruction?

1 yes I’m not sure how to identify the two CUs that are to be integrated by
this step. Did I miss something here?

2 yes Explanation on why this procedure (seemingly) needs a manual oper-
ation. Can this not be fully automated?

3 no
4 yes See above: Detection and handling of name con�icts.

Table B.17: Refactoring interview answers: Instructions for import elements
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According to the information you read: When can you apply this instruction

and when not?

1 Again how do I associate the leading and the integration class? I can apply the
refactoring on all methods that are not equal with names and di�er in return
types. From descriptions it’s not clear what happens to method with equal
names and parameters. This is somewhat clari�ed in the mechanics. Also the
example description could be clearer in this regard.

2 Apply: When there are multiple methods with the same name and return type
but di�erent numer/types of parameters. Cannot apply: When methods have
di�erent return types. (please see below)

3 According to the pre-conditions, this instruction can only be executed if the
variation points are MemberContainers. Again, I would expect the refactoring
tool to reject this instruction in case signatures match, as it can be seen in the
mechanics.

4 When variants contain di�erent methods
The mechanics de�nes a function. Please give its name and describe in two sen-

tences what its purpose is and where it is called.

1 Name: hasMethodWithEqualNameAndParameters. Checks whether the target
container has a method with same name and parameters. Second sentence to
address the questions requirement to write two sentences

2 hasMethodWithEqualNameAndParameters() Checks whether a given container
has a method with equal name and parameters. (Is this a sanity check?)

3 Name: hasMethodWithEqualNameAndParameters Checks whether a leading
MemberContainer contains a method having the same signature as the passed
method of a integrated variant. Return types are not checked.

4 Name: hasMethodWithEqualNameAndParameters Purpose: Check whether
there is a method with the same signature.

Is there anything you missed in this speci�c refactoring instruction?

1 no The structure for the instruction is very well and complete from my
perspective. Only the example spec seems not complete/consistent.
The name “implementing element” in Pre-Condition is somehow hard
to grasp

2 yes Under exclusion: Explanation that methods with same signature with
regard to Koenig lookup are not supported (same number and sequence
of types for parameters but, in this case, di�erent implementation).

3 no
4 yes The relation to the refactoring is missing. Is this related to the IF WITH

STATIC CLASS refactoring?

Table B.18: Refactoring interview answers: Instructions for method elements
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Glossary

A

AOP Aspect Oriented Programming.

API Application Programming Interface.

AST Abstract Syntax Tree.

C

CFG Control Flow Graph.

CM Change Management.

CVL Common Variability Language.

D

DSL Domain Speci�c Language.

E

EMOF Essential Meta Object Facility.

ERP Enterprise Resource Planing.

F

FCA Formal Concept Analysis.

FODA Feature Oriented Domain Analysis.

G

GQM Goal Question Metric.

I

IDE Integrated Development Environment.

IR Information Retrieval.
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Glossary

J

JAR Java Archive.

K

KIT Karlsruhe Institute of Technology.

L

LLOC Logical Lines of Code.

LSI Latent Semantic Indexing.

M

MBE Model Based Engineering.

MDA Model Driven Architecture.

MDD Model Driven Development.

MDE Model Driven Engineering.

MDSD Model Driven Software Development.

MOF Meta Object Facility.

N

NLPA Natural Language Program Analysis.

O

OCL Object Constraint Language.

OMG Object Management Group.

P

PDG Program Dependency Graph.

PET Program Execution Trace.

PLOC Physical Lines of Code.

PPA Partial Program Analysis.

S
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Glossary

SCM Software Con�guration Management.

SLOC Source Lines of Code.

SPL Software Product Line.

U

UI User Interface.

UML Uni�ed Modeling Language.

URI Uniform Resource Identi�er.

V

V Variant.

VCS Version Control System.

VP Variation Point.

VPG Variation Point Group.

VPM Variation Point Model.
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