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Abstract

We consider a general control problem for networks which includes the special cases of

scheduling in multiclass queueing networks and routing problems. The fluid approximation

of the network is used to derive new results about the optimal control for the stochastic

network. The main emphasis lies on the average cost criterion, however the β-discounted

as well as the finite cost problem are also investigated. One of our main results states that

the fluid problem provides a lower bound to the stochastic network problem. For scheduling

problems in multiclass queueing networks we show the existence of an average cost optimal

decision rule, if the usual traffic conditions are satisfied. Moreover, we give under the same

condition a simple stabilizing scheduling policy. Another important issue that we address

is the construction of simple asymptotically optimal decision rules. Asymptotic optimality

is here seen w.r.t. fluid scaling. We show that every minimizer of the optimality equation

is asymptotically optimal. And what is more important for practical purposes, we outline

a general way to identify fluid optimal feedback rules as asymptotically optimal ones. Last

but not least for routing problems an asymptotically optimal decision rule is given explicitly,

namely a so-called least-loaded-routing rule.
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1 Introduction

Optimal control of stochastic networks has been studied extensively over the last decade.

The usual approach to solve these problems is to use the theory of Markov decision processes.

The procedure is here as follows: we first have to check the validity of the optimality equation

which reads in the average cost case

G = min
u∈D(x)

[
c(x) +

∑
x′

q(x, u, x′)h(x′)

]
,

where c(x) are the holding cost and q(x, u, x′) are the controlled intensities of the network

process. Next we can try to find a solution (G, h) of the optimality equation. The minimizer

of the right-hand side then gives an average cost optimal decision rule. However, there are

only a few problems which can be solved explicitly (cf. Sennott (1998), Kitaev/Rykov (1995),

Stidham/Weber (1993)). Another possibility is to solve the optimality equation numerically

by policy iteration. The problem here is the large - often unbounded state space. This has

led in recent years to study approximations of these control problems. One possibility is to

look at the Brownian approximation of the network. See e.g. the survey papers by Harrison

(1996) and Williams (1998). The control problem of the approximation is sometimes easier

to solve and gives a policy which is asymptotically optimal when the work load of the

system reaches its capacity limit. Another approximation which has been studied more

intensively in recent years and will be used in this paper is the fluid approximation. The

fluid approximation is a very simple deterministic first-order approximation of the stochastic

network. It has initially been used to investigate questions of stability of networks. However,

it turned out that the optimal control of the fluid approximation and the optimal policy of

the stochastic network are very similar (cf. Bäuerle/Rieder (2000), Atkins/Chen (1995)).

Therefore, recent investigations focused on finding connections between them. This is an

important question because the optimal control in the fluid problem can be obtained rather

easily (cf. Weiss (1996), Avram et al. (1995)). At least there exist efficient algorithms for

the solution of the fluid problem, since it is of a special type, namely a so-called separated

continous linear program (cf. Luo/Bertsimas (1998), Pullan (1995)). There are already a

number of interesting results in the literature dealing with the connection of the fluid problem

and the stochastic network problem. In particular it has been shown by Meyn (1997a) that

a sequence of decision rules for the network problem which is generated by policy iteration

converges against an asymptotically optimal decision rule, provided the initial decision rule
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is stable. Asymptotic optimality is here seen w.r.t. fluid scaling. Unfortunately a naive

one-to-one translation of the fluid optimal control is in general not asymptotically optimal.

However, it has been shown by Maglaras (1998) and Bäuerle (2000a) that asymptotically

optimal policies can always be constructed. The construction in Maglaras (1998) is such

that the state of the network is reviewed at discrete time points and the actions which

have to be carried out over the next planning period are computed from a linear program.

The procedure needs safty stock requirements to ensure that the plans can be processed

properly. The proposal of Bäuerle (2000a) relies on the fact that the optimal control of

the fluid problem is piecewise constant. A simple modification of the fluid optimal control

on these pieces gives then an asymptotically optimal control. The disadvantage of both

approaches is that the proposed policies are instationary.

In the present paper we investigate a rather general control problem which contains schedul-

ing problems in multiclass queueing networks and routing problems as special cases. We

are mainly interested in the average cost criterion, however we will also deal with the β-

discounted cost criterion and with finite cost. The main results of this paper are the follow-

ing.

(i) We show that the value function of the fluid problem always provides a lower bound to

the value function of the stochastic network problem in the case of β-discounted and

finite cost.

(ii) For scheduling problems in multiclass queueing networks we show the existence of an

average cost optimal decision rule if the usual traffic conditions are satisfied.

(iii) For scheduling problems in multiclass queueing networks we give a simple stabilizing

scheduling rule under the assumption that the usual traffic conditions are satisfied.

(iv) We outline a general way to identify fluid optimal feedback rules as asymptotically

optimal ones and we show that every minimizer of the average cost optimality equation

is asymptotically optimal.

(v) For routing problems an asymptotically optimal decision rule is given explicitly, namely

a so-called least-loaded-routing rule.

The fluid problem as a lower bound is an interesting result, since such a behavior has been

conjectured due to the results in various special cases (see e.g. Ott/Shanthikumar (1996),

Bäuerle (1999), Altman et al. (1999)). Also the stabilizing scheduling rule for multiclass
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queueing networks is of importance since it is much simpler than other policies which have

been suggested so far (e.g. Maglaras (1999), Dai (1998) section 2.9 gives a survey).

The paper is organized as follows. In section 2 we present the general mathematical control

problem and define the special cases of scheduling problems in multiclass queueing networks

and routing problems. The next section contains some results about the deterministic fluid

problem itself and in section 4 we prove the statement about the fluid problem as a lower

bound for the network problem. The scheduling problem in multiclass queueing networks

is investigated in section 5. Under the usual traffic conditions it will be shown that an

average cost optimal decision rule exists and a simple stabilizing decision rule is given. The

remaining two sections deal with asymptotic optimality. In particular an asymptotically

optimal decision rule for the routing problem will be given.

2 The stochastic network problem

Typical control problems which appear for stochastic networks are scheduling and routing

problems. In this section we first present a rather general control problem. At the end of

this section we show that scheduling problems in open multiclass queueing networks and

routing problems are covered by this formulation.

The state process of the network is supposed to be a continuous-time Markov chain X(t) =

(X1(t), . . . , XK(t)) in NK
0 , where the k-th component of X(t) gives the number of jobs

of class k at time t. We assume that interarrival and service times are independent and

exponentially distributed. The model allows to control the transition rates of the process

continuously over time. From the theory of Markov decision processes we know that we

can restrict to controls which change at jump time points of the state process only. This

leads to the following Markov decision process: there are K queues, hence the state space

is S = INK
0 . The action space U ⊂ IRL has to be compact and convex. The generator

Q = (q(x, u, x′)) of {X(t), t ≥ 0} should satisfy the following conditions for all x, x′ ∈ S:

(i) D(x) := {u ∈ U | q(x, u, x′) = 0, if x′ /∈ S} 6= ∅.

(ii) there exists a linear function b : U → IRK such that for all u ∈ D(x)∑
x′∈S

(x′ − x)q(x, u, x′) = b(u).
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(iii) there exists a q ∈ IR+ with supu∈U supx,x′∈S |q(x, u, x′)| < q.

The set D(x) is the set of admissible actions in state x. The function b(·) gives the expected

drift of the network. b(·) is typically linear for these network problems. The cost rate

function c : S → IR+ is assumed to be linear, i.e. c(x) = cT x with c ∈ IRK
+ . Denote

by (Tn), T0 := 0 the sequence of jump times of the Markov chain {X(t), t ≥ 0}. A

(stationary) policy for the Markov decision process is given by a decision rule f : S → U

with f(x) ∈ D(x), where f is applied at time Tn. For a fixed decision rule f and initial state

x ∈ S, there exists a family of probability measures P f
x on a measurable space (Ω,F) and

stochastic processes {X(t), t ≥ 0} and {π(t), t ≥ 0} such that for 0 =: T0 < T1 < T2 < . . .

X(t) = X(Tn), Tn ≤ t < Tn+1

π(t) = f(X(Tn)), Tn ≤ t < Tn+1

and with q(x, u) :=
∑

x′ 6=x q(x, u, x′)

(i) P f
x (X(0) = x) = P f

x (T0 = 0) = 1 for all x ∈ S.

(ii) P f
x0

(Tn+1 − Tn > t | T0, X(T0), . . . , Tn, X(Tn) = x) = e−q(x,f(x))t for all x ∈ S, t ≥ 0.

(iii) P f
x0

(X(Tn+1) = x′ | T0, X(T0), . . . , Tn, X(Tn) = x, Tn+1) = q(x,f(x),x′)
q(x,f(x)) for x, x′ ∈ S, x 6=

x′ and zero, if x = x′.

As far as the optimization criterion is concerned, we are mainly interested in the average

cost criterion, however we will also deal with the β-discounted cost criterion and with finite

cost. For a fixed initial state x ∈ S and a given decision rule f we define for an interest rate

β > 0 and time horizon T > 0

Gf (x) = lim sup
T→∞

1
T

Ef
x

[∫ T

0
c(X(t)) dt

]

Vβ,f (x) = Ef
x

[∫ ∞

0
e−βtc(X(t)) dt

]

VT,f (x) = Ef
x

[∫ T

0
c(X(t)) dt

]
The optimization problems are then given by

G(x) = inf
f

Gf (x)

Vβ(x) = inf
f

Vβ,f (x)
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VT (x) = inf
f

VT,f (x)

respectively. Throughout we assume that D(x) is compact for all x ∈ S and the mapping

u → q(x, u, x′) is continuous for all x, x′ ∈ S. Under these assumptions, there exists an

optimal decision rule for the β-discounted problem. Moreover, this decision rule is optimal

among all non-anticipating policies.

The average cost optimality equation for the network problem is of the form

G = min
u∈D(x)

[
c(x) +

∑
x′

q(x, u, x′)h(x′)

]
.

With its help it is possible to solve the average cost problem. Let us define for x ∈ S, β > 0

and a fixed state ξ ∈ S

hβ(x) = Vβ(x)− Vβ(ξ).

hβ is called relative value function. Under the following conditions which are due to Sennott

(1989), there exists a non-negative solution (G, h) of the average cost optimality equation

and every minimizer of the right-hand-side gives an average optimal decision rule:

(i) There exists a decision rule f such that Gf (x) < ∞ for all x ∈ S.

(ii) There exist constants L ∈ IR, β̄ > 0 and a function M : S → IR+ with

L ≤ hβ(x) ≤ M(x)

for all x ∈ S and 0 < β ≤ β̄.

However, there are only very few examples, where the average cost optimality equation can

be solved or the structure of the minimizer can be determined. Also, a numerical iteration

is often intractable. In section 7 we will show how to construct good decision rules in these

cases which are asymptotically optimal with respect to fluid scaling.

Scheduling problems in multiclass queueing networks and routing problems are special cases

of our general formulation which is outlined below.

A. Scheduling problems

A description of the model is as follows: there are J service stations in the network. Each

station has one server. There are K ≥ J job classes - at least one at each station - with
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infinite waiting room. We denote by C(j) the set of job classes which are processed at

station j. The matrix C = (ckj), with

ckj =

 1, if k ∈ C(j)

0, else

is the so-called constituency matrix. The external arrival processes are independent Poisson

processes with intensities α1, . . . , αK respectively. We denote α = (α1, . . . , αK). The service

times of class k jobs are independent and identically distributed according to an exponential

distribution with parameter µk > 0. The decision is now how to assign the servers to the

job classes in order to minimize the cost. We allow that the service capacity can be splitted.

Hence the action space is given by U = {u ∈ [0, 1]K |
∑

k∈C(j) uk ≤ 1, j = 1, . . . , J}, where

for u = (u1, . . . , uK) ∈ U , uk gives the fraction of the responsible server which is assigned

to class k. The set of admissible actions in state x is given by D(x) := {u ∈ U | xk = 0 ⇒

uk = 0}. Once a job of class k has been processed, it does not necessarily leave the system.

With probability pki the job is routed to class i and has to be processed further. Throughout

this paper we suppose that the routing matrix P = (pki) is transient, i.e. Pn → 0 for n →∞.

This implies in particular that (I − P )−1 =
∑∞

n=0 Pn ≥ 0, where I is the identity matrix.

Let us denote by D := diag(µk) the diagonal matrix with the potential service rates µk on

the diagonal and define A := D(I − P ). The state process is obviously a continuous-time

Markov chain and the intensities are given for x′ 6= x by

q(x, u, x′) =


αk, x′ = x + ek

µkukpki, x′ = x− ek + ei

µkuk(1−
∑K

i=1 pki), x′ = x− ek

where e1, . . . , eK are the unit vectors in IRK . Hence the expected drift of the network for

action u ∈ U is b(u) = α− uA.

B. Routing problems

The classical routing problem is as follows: there is an external stream of jobs arriving

with intensity α at a controller who has to decide to which of K queues he/she routes the

next job. Each queue has a server and the service times of queue k are independent and

identically distributed according to an exponential distribution with parameter µk > 0. The

action space is given by U = {(u, v) ∈ [0, 1]2K |
∑K

k=1 uk = 1} where uk gives the fraction
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of jobs routed to queue k and vk gives the activation of the server at queue k. The set of

admissible actions in state x is given by D(x) = {(u, v) ∈ U | xk = 0 ⇒ vk = 0}. The state

process is a continuous-time Markov chain and the intensities are given for x′ 6= x by

q(x, u, x′) =

 αuk, x′ = x + ek

µkvk, x′ = x− ek

The expected drift, given action (u, v) ∈ U is of the form b(u) = αu−Dv.

3 The fluid problem

In this section we introduce the associated fluid problem to the stochastic network problem

of the previous section and investigate its properties. Recall that b(·) is the expected drift

of the stochastic network. A solution {(x(t), u(t)), t ≥ 0} of the conditions

(i) x(t) = x0 +
∫ t
0 b(u(s)) ds

(ii) x(t) ≥ 0

(iii) u(t) ∈ U

(1)

is called a fluid model solution. The fluid problem itself is defined as

(F )



∫∞
0 c(x(t)) dt → min

x(t) = x0 +
∫ t
0 b(u(s)) ds

x(t) ≥ 0

u(t) ∈ U

We denote by V F (x0) the value function of (F ). Analogously we write V F
β (x0) and V F

T (x0)

if the objectives are
∫∞
0 e−βtc(x(t)) dt → min and

∫ T
0 c(x(t)) dt → min respectively. First it

is important to note that a non-randomized optimal control u∗(t) with associated optimal

trajectory x∗(t) always exists. This is due to the linearity of the control problem and follows

from well-known existence theorems like e.g. given in section 2.8 of Seierstad/Sydsæter

(1987). From Lemma 5 in Bäuerle (2000b)we obtain

Lemma 1:
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The value functions V F (x), V F
β (x) and V F

T (x) are convex in x.

Classical control theory provides sufficient conditions for the optimal solution of these kind of

problems. With the Hamiltonian H : IRK×U×IRK → IR defined as H(x, u, p) = c(x)+p·b(u)

we obtain (cf. Seierstad/Sydsæter (1987) Theorem 1, Chapter 5)

Lemma 2:

The admissible control u∗(t) with the associated trajectory x∗(t) is optimal for the finite

horizon problem if there exists a continuous and piecewise continuously differentiable vector

function p(t) = (p1(t), . . . , pK(t)) as well as a piecewise continuous vector function η(t) =

(η1(t), . . . , ηK(t)) such that for all t ∈ [0, T ]

(i) u∗(t) minimizes u(t) 7→ H(x∗(t), u(t), p(t)), u(t) ∈ U .

(ii) ṗ(t) = −c + η(t) except at points of discontinuity of u∗(t).

(iii) η(t) ≥ 0, η(t)x∗(t) = 0.

(iv) p(T ) = 0.

The routing problem will be solved explicitly in section 7. Therefore, the remainder of this

section is restricted to scheduling problems, i.e. we have b(u) = λ − uAT . A non-trivial

result is the existence of an optimal feedback control. A feedback control is a function

ϕ : IRK
+ → U such that the equation

ẋ(t) = b(ϕ(x(t))), t ≥ 0 x(0) = x0

has a unique solution {x(t), t ≥ 0} which is admissible, i.e. x(t) ≥ 0.

Theorem 3:

Suppose the scheduling problem of section 2 is given and the solution of (F ) is unique. Then

there exists an optimal feedback control ϕ∗, which satisfies ϕ∗(γx) = ϕ∗(x) for all x ∈ IRK
+

and γ > 0.

Proof: The existence of an optimal feedback control follows as in Sethi/Zhang (1994) Lemma

4.1.(ii) since due to our assumptions A−1 exists. Now let x ∈ IRK
+ , x 6= 0. The assertion

f∗(γx) = f∗(x) follows from the scaling property of the fluid model (cf. Chen (1995) p.642).
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Suppose that {(u(t), x(t)), t ≥ 0} is an arbitrary pair of admissible control and associated

trajectory. Define û(t) = u( t
γ ) as control for start in γx, γ > 0. Then

x̂(t) = γx +
∫ t

0
b(û(s)) ds = γx + γ

∫ t
γ

0
b(u(s)) ds = γx(

t

γ
)

is the associated trajectory. Hence {(û(t), x̂(t)), t ≥ 0} is an admissible pair for start in γx.

Vice versa if {(û(t), x̂(t)), t ≥ 0} is an admissible pair for start in γx, {(u(t) = û(γt), x(t) =
1
γ x̂(γt)), t ≥ 0} is an admissible pair for start in x and we obtain∫ ∞

0
c(x̂(t)) dt = γ

∫ ∞

0
c(x(

t

γ
)) dt = γ2

∫ ∞

0
c(x(t)) dt.

Thus in particular V F (x) = 1
γ2 V F (γx) and ϕ∗(γx) = ϕ∗(x).

4 A lower bound

In this section we will establish a first relation between the fluid problem and the stochastic

network problem. Namely, the value function of the fluid problem provides a lower bound for

the value function of the stochastic network. This phenomenon has already been encountered

in various special cases (see e.g. Ott/Shanthikumar (1996), Bäuerle (1999), Altman et al.

(1999)).

Theorem 4:

For all initial states x ∈ S and T ∈ IR+ + {∞} it holds that

V F
T (x) ≤ VT (x), V F

β (x) ≤ Vβ(x)

Proof: Suppose that x ∈ S is the initial state. Let f be an arbitrary decision rule for the

stochastic network. The induced state process {X(t), t ≥ 0} is a Markov process with

generator Q = (q(x, f(x), x′)). Hence it holds that

X(t)− x−
∫ t

0
b(f(X(s))) ds = M(t)

where {M(t), t ≥ 0} is a Martingale and M(0) = 0. Taking expectation on both sides and

exploiting the fact that b(·) is linear we obtain for t ≥ 0

E[X(t)] = x +
∫ t

0
b(E[f(X(s))]) ds (2)
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which is a variation of the so-called Dynkin formula. Moreover, since f is a decision rule we

get for all t ≥ 0 a.s.

X(t) ≥ 0 and f(X(t)) ∈ U.

When we define x(t) := E[X(t)] and u(t) := E[f(X(t))] we get x(t) ≥ 0 and u(t) ∈ U for

all t ≥ 0 since U is convex. And from (2) we have

x(t) = x +
∫ t

0
b(u(s)) ds.

Thus the pair {(x(t), u(t)), t ≥ 0} is admissible for the fluid problem for every decision rule

f . Moreover,

VT (x) = Ef∗
x [
∫ T

0
cX(t) dt] =

∫ T

0
cx(t) dt

Vβ(x) = Efβ

x [
∫ ∞

0
e−βtcX(t) dt] =

∫ ∞

0
e−βtcx(t) dt

where f∗, fβ are the corresponding optimal decision rules. Thus, the statement follows.

Theorem 4 strengthens results in Bäuerle (2000a) where the lower bound was only stated in

an asymptotic way. Since the value function of the fluid problem can be computed rather

easily we can evaluate the performance of benchmark policies in the stochastic network by

comparison with the lower bound.

5 Existence of average cost optimal policies and simple sta-

bilizing policies

In this section we will show that under the usual traffic conditions an average cost optimal

decision rule (with finite cost) exists in the scheduling problem for multiclass queueing

networks. Moreover, we give a simple decision rule under which the network process is

then positive recurrent. The question of constructing so-called stabilizing policies has been

treated in several papers (cf. Dai (1998) for a survey). However the decision rule we suggest

is much simpler.

First it is convenient to denote by λ = (λ1, . . . , λK) the nominal total arrival rate to the

different classes. λ is the solution of the traffic equation λi = αi +
∑K

k=1 λkpki, i = 1, . . . ,K

or in matrix notation λ = α + λP. Since P is transient we obtain

λ = α(I − P )−1.
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The traffic intensity ρj at station j is then given by

ρj =
∑

k∈C(j)

λk

µk

and the usual traffic condition is ρj < 1, j = 1, . . . , J . When we denote ρ = (ρ1, . . . , ρJ) we

obtain ρ = λD−1C = α(I − P )−1D−1C = αA−1C. In particular, if ρj < 1, j = 1, . . . , J ,

there exists an ε > 0 such that (ε11 + αA−1)C ≤ 11 still holds. 11 is a vector containing

1’s only, the dimension should be clear from the context. For x, y ∈ IRK we denote by

x ∧ y := (min{x1, y1}, . . . ,min{xK , yK}) the componentwise minimum of x and y.

Theorem 5:

Suppose that the multiclass queueing network of section 2 is given and the usual traffic

conditions are satisfied, i.e. ρj < 1, j = 1, . . . , J . The fixed server assignment

fs(x) = (ε11 + αA−1) ∧ x, x ∈ S

with ε > 0 such that (ε11 + αA−1)C ≤ 11 stabilizes the network. I.e. the network process

which is induced by fs is positive recurrent.

Proof: Note that fs(x) ∈ D(x) for all x ∈ S, due to our assumption on ρj and ε. If we

use the fixed server assignment fs, our network behaves like a Jackson network with service

rates µ̂k := µk(ε11 + αA−1)k, k = 1, . . . ,K. It is well-known (cf. Asmussen (1987) Theorem

5.2) that the Jackson network is stable, if λk < µ̂k, k = 1, . . . ,K, where λk is as before.

Since we have µ̂ = (ε11 + αA−1)D = εµ + α(I − P )−1 = εµ + λ we obtain stability.

Corollary 6:

Suppose that the multiclass queueing network of section 2 is given and the usual traffic

conditions are satisfied, i.e. ρj < 1, j = 1, . . . , J .

a) Then there exists a non-negative solution (G, h) of the average cost optimality equation

G = min
u∈D(x)

{c(x) +
∑
x′

q(x, u, x′)h(x′)}. (3)

b) Every minimizer of (3) is an average cost optimal decision rule with finite average cost

G.
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Proof: From Theorem 5 and Theorem 3.2. in Meyn (1997b) it follows that under decision

rule fs we have Efs

x [
∫ τ
0 c(X(t)) dt] < ∞, where τ = inf{t ≥ 0 | X(t) = 0}. If we define the

policy

π̂β(t) =

 fs(X(t)), if t < τ

πβ(t− τ), if t ≥ τ

where πβ is the optimal control in the β-discounted case, then

Vβ(x) ≤ Vβ,π̂β
(x) ≤ Efs

x [
∫ τ

0
c(X(t)) dt] + Vβ(0).

This implies that the relative value function with ξ = 0 satisfies hβ(x) = Vβ(x) − Vβ(0) ≤

M(x) := Efs

x [
∫ τ
0 c(X(t))dt] for all β > 0. Moreover, it can be shown by induction that Vβ(x)

is increasing, i.e. if x′ ≥ x then Vβ(x′) ≥ Vβ(x) which implies in particular that hβ(x) ≥ 0 for

all β > 0. Thus, the conditions of Sennott (1989) are fulfilled which imply the statements

(cf. section 2).

6 Asymptotic optimality

In this section we will introduce the concept of asymptotic optimality. To define this notion

we have to reveal a second relation between the stochastic network and the fluid model.

Namely, the stochastic network converges under fluid scaling to the fluid model. Let us first

explain how fluid scaling works. By γ > 0 we denote the fluid scaling parameter which will

always tend to infinity. Suppose that a fixed decision rule f and an initial state x is given.

By {X̂γ(t), t ≥ 0} we denote the state process with initial state γ · x under decision rule f

and {π̂γ(t), t ≥ 0} is the corresponding action process. The scaled processes {Xγ(t), t ≥ 0}

and {πγ(t), t ≥ 0} are then defined by

Xγ(t) :=
1
γ

X̂γ(γt)

πγ(t) := π̂γ(γt).

We understand the processes {Xγ(t), t ≥ 0} as random elements with values in DN [0,∞),

which is the space of IRK-valued functions on [0,∞) that are right continuous and have
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left-hand limits and all endowed with the Skorokhod topology. By ⇒ we denote the

weak convergence of the processes as γ → ∞. It can be shown (e.g. Dai (1995), Bäuerle

(2000) Theorem 3) that every sequence {(Xγ(t), πγ(t)), t ≥ 0} has a further subsequence

{(Xγn(t), πγn(t)), t ≥ 0} such that {(Xγn(t),
∫ t
0 πγn(s)ds), t ≥ 0} ⇒ {(X(t),

∫ t
0 π(s)ds), t ≥

0} and the limit satisfies a.s.

(i) X(t) = x +
∫ t
0 b(π(s)) ds.

(ii) X(t) ∈ IRK
+ .

(iii) π(t) ∈ U .

The corresponding value functions are given by

V γ
T,f (x) := Ef

x

[∫ T

0
c(Xγ(t)) dt

]
V γ

β,f (x) = Ef
x

[∫ ∞

0
e−βtc(Xγ(t)) dt

]
.

Since the expected drift of the scaled process is again b(·) independent of γ, we obtain with

Theorem 4 that V γ
T (x) ≥ V F

T (x) and V γ
β (x) ≥ V F

β (x) for all γ ≥ 0, x ∈ IRK
+ . Adapting the

definition in Meyn (1997a) (cf. also Meyn (2000)) we say

Definition:

A decision rule f∗ is called asymptotically optimal, if

lim inf
T→∞

lim inf
γ→∞

Ef∗
x

[∫ T

0
c(Xγ(t)) dt

]
= V F (x) < ∞

In Bäuerle (2000) and Maglaras (1998) it has been shown that a (non-stationary) asymp-

totically optimal policy can always be constructed if V F (x) < ∞. We will now show that

the set of asymptotically optimal policies contain the average cost optimal policies which

are solutions of the average cost optimality equation. Meyn (2000) has shown implicitly

in Theorem 3.1 that every decision rule, obtained as limit point of the policy iteration is

asymptotically optimal provided the initial decision rule is stable.

Theorem 7:

Suppose there exists a finite, non-negative solution (G, h) of the average cost optimality

equation (3). Every average cost optimal policy which is obtained as a minimizer of (3) is

14



asymptotically optimal.

Proof: Let f be a minimizer of (3), i.e. for all x ∈ S, it holds that G = c(x)+
∑

x′ q(x, f(x), x′)h(x′).

Thus we obtain∫ T

0
Ef

x [c(X(s))] ds = GT −
∫ T

0
Ef

x

[∑
x′

q(X(s), f(X(s)), x′)h(x′)

]
ds.

According to the Dynkin formula we have∫ T

0
Ef

x

[∑
x′

q(X(s), f(X(s)), x′)h(x′)

]
ds = Ef

x [h(X(T ))]− h(x).

Thus, since h ≥ 0∫ T

0
Ef

x [c(X(s))] ds = GT − Ef
x [h(X(T ))] + h(x) ≤ GT + h(x).

Theorem 3.2 in Meyn (1997b) now implies that f is L2-stable. In particular V F (x) < ∞.

Since f cannot be improved by policy iteration we obtain with Theorem 5.2.(ii) in Meyn

(1997b) that f is asymptotically optimal.

7 Asymptotic optimality of special decision rules

In this section we are interested in constructing asymptotically optimal decision rules. The

main problem is that a naive one-to-one translation of the fluid optimal feedback control

is in general not asymptotically optimal (cf. Meyn (1997b), Maglaras (1998)). Thus, it

would be desirable to identify situations where a one-to-one translation is asymptotically

optimal. The main idea of this approach is to find further conditions under which the fluid

problem has only one feasible pair of state-action trajectory, namely the optimal one. Here

the following Lemma 2.4. of Dai/Williams (1995) is helpful. Suppose that m : IRK
+ → IR is

continuous and bounded, then it holds that∫ t

0
m(Xγ(s))d

(∫ s

0
πγ(τ) dτ

)
⇒

∫ t

0
m(X(s))d

(∫ s

0
π(τ) dτ

)
(4)

for γ → ∞, where {(X(t), π(t)), t ≥ 0} is the fluid limit. In the sequel we will treat the

scheduling and routing problems of section 2 separately. Other special cases where asymp-

totically optimal decision rules have been computed can be found e.g. in Gajrat/Hordijk
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(1999,2000), Alanyali/Hajek (1998).

A. Scheduling Problems

In many fluid problems it turns out that so-called static buffer priority (SBP)-feedback

rules are optimal for the scheduling problem (cf. Bäuerle/Rieder (2000), Gajrat/Hordijk

(2000)). Under a SBP rule, classes are ordered in each station according to their priorities.

Fluid of higher priority is then served first. In the stochastic network problem jobs with

higher priority are served first. Suppose that classes with smaller number have higher

priority within each station. When we assume that the numbers of classes in station j are

{kj−1 + 1, . . . , kj = kj−1 + |C(j)|} with k0 = 0, then the following equation is a.s. satisfied

in the stochastic network for all γ > 0 under ths SBP decision rule∫ ∞

0

(
Xγ

kj−1+1(t) + . . . + Xγ
kj−1+ν(t)

)
∧1d

(
t−

∫ t

0
πγ

kj−1+1(s) ds− . . .−
∫ t

0
πγ

kj−1+ν(s) ds

)
= 0,

for ν = 1, . . . , |C(j)|, j = 1, . . . , J. Since x ∧ 1 is bounded and continuous, this condition

holds in the limit, i.e. we have that every fluid model solution satisfies∫ ∞

0

(
Xkj−1+1(t) + . . . + Xkj−1+ν

)
∧1d

(
t−

∫ t

0
πkj−1+1(s) ds− . . .−

∫ t

0
πkj−1+ν(s) ds

)
= 0,

(5)

for ν = 1, . . . , |C(j)|, j = 1, . . . , J and we obtain

Theorem 8:

Suppose that a SBP decision rule is optimal for (F ) and the solution of (1) together with

(5) is unique. Then the SBP decision rule is asymptotically optimal.

Proof: The proof follows from the convergence results and the fact that the fluid limit is

unique in this case.

Remark:

It is important to ensure the uniqueness of the solution of (1) and (5) since this is in general

not the case. Choosing suitably defined cost rates, the example in section 2.7 of Dai (1998)

provides a situation where the optimal feedback control of (F ) is a SBP rule though it is
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not asymptotically optimal.

B. Routing Problems

Let us now consider the routing problem which has been introduced in section 2. We assume

that we have equal holding costs c1 = . . . = cK = c for the jobs. It is possible to show that

a so-called least-loaded routing rule is asymptotically optimal. Alanyali/Hajek (1998) have

shown this statement for a different class of routing problems. Let us first look at the

associated fluid problem

(FT )



T∫
0

∑K
k=1 cxk(t) dt → min

x(t) = x(0) +
t∫
0

αu(s)−Dv(s)ds

x(t) ≥ 0

(u(t), v(t)) ∈ U, t ≥ 0

where U = {(u, v) ∈ [0, 1]2K |
∑K

k=1 uk = 1}. We suppose that α <
∑K

k=1 µk to guarantee

stability. T should be big enough such that the system can be drained within time T . We

show that the least-loaded routing (LLR) feedback control is optimal for (FT ). The control

is define in the following way. For x ∈ IRN
+ denote by

I(x) = {1 ≤ k ≤ K | xk

µk
= min

1≤i≤K

xi

µi
}

the buffer numbers with least load, if x gives the current buffer contents. The LLR-feedback

controls u∗(x) and v∗(x) are then defined by

u∗k(x) =

 µk(
∑

i∈I(x) µi)−1 , if k ∈ I(x)

0 , if k /∈ I(x).

v∗k(x) =

 1 , if xk > 0

min{1,
αu∗k(x)

µk
} , if xk = 0

for k = 1, . . . ,K.

Theorem 9:

The LLR feedback control is optimal for the fluid problem.

Proof: First, the differential equation

ẋ(t) = αu∗(x(t))−Dv∗(x(t))
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has a unique solution {x∗(t), t ≥ 0} which we will show in the proof of Theorem 10. Thus,

{x∗(t), t ≥ 0} is the trajectory under the LLR feedback control and {(u∗(t), v∗(t)), t ≥ 0}

the corresponding optimal control. We use Lemma 2 to prove the statement, where (i) reads

(u∗(t), v∗(t)) minimizes (u(t), v(t)) 7→ p(t)u(t)− p(t)D v(t) for (u(t), v(t)) ∈ U.

Let x(0) = x ∈ IRK
+ be the initial state and denote by Tk = inf{t > 0 | x∗k(t) = 0} the time it

takes to empty buffer k, k = 1, . . . ,K under the LLR control. Note that under our stability

assumption Tk < T for all k. As adjoint functions we take for t ≥ 0 and k = 1, . . . ,K

pk(t) :=

 c(Tk − t), if Tk ≥ t

0, if Tk < t

and define the Lagrange multipliers for t ≥ 0 and k = 1, . . . ,K as

ηk(t) := c1[t>Tk].

Obviously (ii)-(iv) of Lemma 2 are satisfied. For (i) note that Tk ≥ Ti implies pk(t) ≥ pi(t),

for all t ≥ 0 and pk(t) > 0 if xk(t) > 0. Hence (u∗(t), v∗(t)) solves the minimization problem

in (i) and the assertion follows.

Theorem 10:

The LLR feedback control is asymptotically optimal for the stochastic network.

Proof: Define m(x) := min{x1
µ1

, . . . xK
µK
}.For the stochastic network process under the LLR

control, we obtain a.s.∫ ∞

0

(
Xγ

k (t)
µk

−m(Xγ(t))

)
∧ 1 d

(∫ t

0
πγ

k (s) ds

)
= 0 (6)

for k = 1, . . . ,K and γ > 0 since at time t either k is a buffer with least load, in which case
Xγ

k
(t)

µk
= m(Xγ(t)) or πγ

k (t) = 0 . This condition is of the form (4). Hence under fluid scaling

it is preserved in the limit. Thus, the limit {(X(t), u(t)), t ≥ 0} satisfies (1) together with

(6) and it is easy to see that the pair of state-action trajectory under the LLR control in

the fluid model also satisfies∫ ∞

0

(
xk(t)
µk

−m(x(t))
)
∧ 1 d

(∫ t

0
uk(s) ds

)
= 0

for k = 1, . . . ,K. The only thing that is now left to obtain asymptotic optimality is to

show that the solution of (1) together with (6) is unique. To do this we show that whenever
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x(0) ≥ x′(0), then x(t) ≥ x′(t) for all t ≥ 0 by contradiction. Suppose t0 := sup{t ≥

0 | x(s) ≥ x′(s), 0 ≤ s ≤ t} < ∞. Due to the continuity there exist an ε > 0 and a set

M ⊂ {1, . . . ,K} with x′k(t) > xk(t), ẋ′(t) ≥ ẋk(t) in [t0, t0 + ε) for all k ∈ M . This can only

happen if uk(t) < u′k(t) for t ∈ [t0, t0+ε). Thus, x′k(t) has least load for k ∈ M, t ∈ [t0, t0+ε).

Since xj(t) ≥ x′j(t) for j /∈ M , xk(t) has also least load for t ∈ [t0, t0 + ε) and

|{j | xj(t) = µjm(x(t))}| ≤ |{j | x′j(t) = µjm(x′(t))}|.

Therefore, uk(t) ≥ u′k(t) for t ∈ [t0, t0 + ε) which is a contradiction.

This is an interesting result, since even in the case of two queues the optimal routing rule

for the stochastic problem is not known in general. A lot of papers are dealing with this

topic, among them e.g. Hajek (1984), Hordijk/Koole (1992), Chen/Xu (1993). At least the

structure of the optimal routing rule f∗ is known: there exists a switching curve s : IN0 → IN0

such that

f(x1, x2) =

 (1, 0), if x2 > s(x1)

(0, 1), if x2 ≤ s(x1)

where s is increasing and unbounded (cf. Hajek (1984), Chen/Xu (1993)). The LLR feedback

rule u∗ in the two buffer case can also be described by a switching curve sF : IR+ → IR with

sF (x1) = µ2

µ1
x1 as follows:

u∗(x1, x2) =


(1, 0), if x2 > µ2

µ1
x1

(0, 1), if x2 < µ2

µ1
x1

( µ1

µ1+µ2
, µ2

µ1+µ2
), if x2 = µ2

µ1
x1

In the sequel we have computed the optimal switching curve of the average cost stochastic

network problem numerically and compared it to the linear switching curve of the fluid

problem. For different kind of parameter settings we obtained very good results. W.l.o.g.

we always set α = 1, since the optimal decision rule does not change when the intensities

α, µ1, µ2 are multiplied by constants. The holding cost have been chosen c1 = c2 = 1. From

Theorem 10 it follows that the switching curve s(x1) is asymptotically equal to µ2

µ1
x1, i.e.

limx1→∞
s(x1)
x1

= µ1

µ2
. The gray region in the figures is the part of the state space where it is

optimal to route to queue 2. The dotted line is the linear switching curve of the fluid model.

Figure 1 shows the results for α = 1, µ1 = 2, µ2 = 1 and figure 2 for α = 1, µ1 = 4, µ2 = 1.
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