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We consider a stochastic single
server �uid network with both a discounted re


ward and a cost structure It can be shown that the optimal policy is a priority index

policy The indices coincide with the optimal indices in a Semi
Markovian Klimov
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�� Introduction

The model under consideration is a stochastic single�server �uid network� It

consists of a �nite number of bu�ers and a single server who has to be allocated

to the bu�ers� The input �ow can come from both external sources as well as

internal transitions which occur according to a routing matrix� The external

arrival process of �uid is driven by a continuous�time Markov chain with �nite

state space� We consider both a discounted reward and a discounted cost model�

The motivation to study �uid models is twofold� First� in many applications

which involve hierarchical decision making� �uid models seem to be natural� since

the frequency of occurence of di�erent types of events is di�erent� Therefore�

quantities that vary much faster than others are modeled in a deterministic way

by replacing them with their averages� This is a common technique in manufac�

turing systems 	see Sethi
Zhang ���� Second� �uid models capture the asymp�

totic behavior of discrete stochastic queueing systems� In Chen
Mandelbaum ��

it is shown that a class of queueing networks converges under appropriate time
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and space scaling to �uid networks� Moreover� recent results have shown a close

connection between stability of stochastic networks and stability of their �uid

models� This implies also the hope that an optimal control for a �uid model � if

translated � can be used as a good heuristic for the discrete stochastic model 	see

also Meyn ����

Indeed� with our approach we can show that the optimal control in the dis�

counted single�server �uid network is a priority index policy� The indices are

independent of the discount factor and coincide with the optimal indices in a

Semi�Markovian Klimov problem under the average reward criterion� Under ad�

ditional assumptions this has already been discovered for the deterministic �uid

model in Chen
Yao ��� Using a linear programming approach the authors there

showed that the index policy is a myopic solution of the optimization problem

and gave conditions under which the myopic solution is also globally optimal�

In contrast� we use a sample path argument and Pontryagins maximum prin�

ciple to establish the optimality even in a stochastic �uid setting� Moreover�

we can show that the conditions needed in Chen
Yao �� are always ful�led un�

der reasonable assumptions� Note that recent studies in this spirit also include

Avram
Bertsimas
Ricard ��� Avram �� and Weiss ����

The paper is organized as follows� in section � we give a precise mathemati�

cal formulation of the optimization problem� where we introduce the cost and the

reward model� As in the well�known discrete�time stochastic single�server prob�

lem we show that there is a relation between these two models� In addition we

prove that the value functions are convex and concave respectively� In section �

we de�ne the indices recursively by a so�called largest remaining index algorithm�

From this representation we can see that the indices coincide with the indices of

an adequately de�ned Klimov problem� This enables us to derive easily some

bounds and properties of the indices like monotonicity� The next section con�

tains the de�nition of the index policy and states the optimality of it under some

mild and natural assumptions like stability� Moreover� we consider the following

special cases of the model� zero�routing which implies that the index policy is

the well�known �c�rule� a deteriorating case where the myopic policy is optimal

and a single�server re�entrant line which has also been considered in Weiss ����

The proof of the optimality of the priority index policy is given in section ��
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�� The Model

Consider the following single�server �uid network� there are N queues with

in�nite bu�ers� Each bu�er receives a continuous stochastic in�ow in the follow�

ing way� Let fZt� t � �g be a continuous time Markov chain with �nite state

space Z and generator Q � 	qzz��� As usual de�ne qz � �qzz� We will interpret

Zt as the state of the environment at time t and we will call fZt� t � �g the en�

vironment process� Denote by T�� T�� � � � the random jump times of fZt� t � �g�

Given� the environment process at time t is in state a� there is a deterministic

in�ow into bu�er j at rate �zj � �� j � �� � � � � N � Let us de�ne �
z � 	�z�� � � � � �

z
N ��

A single server has to be splitted among the bu�ers� The potential service rate

of bu�er j is assumed to be �j � �� j � �� � � � � N which means that if a fraction

uj � 	�� �� of the server is allocated to bu�er j� there is an output rate of uj�j

if the bu�er content is greater zero� If it is zero� the actual output rate is equal

to the minimum of uj�j and the input rate� For abbreviation denote the matrix

D � diag	�j� as the diagonal matrix with elements �j on the diagonal� The �uid

that is leaving bu�er j is divided and a fraction of pji � ��� ��� i � �� � � � � N is

instantaneously �owing into bu�er i� Throughout this paper we assume that

�A ��
PN

i�� pji � �� for all j � �� � � � � N�

i�e� a positive fraction of � �
PN

i�� pji is leaving the system� Denote the matrix

P � 	pji� and de�ne U � fu � ��� �N j
PN

j�� uj � �g� Hence� given a �xed

server allocation u � U and a �xed environment state a� the input rate into

bu�er j� j � �� � � � � N is �zj �
PN

i�� pij�iui and the output rate is equal to �juj �

In matrix notation this is �z � P TDu and Du respectively� The state of the

system at time t is 	Yt� Zt� � 	Y�	t�� � � � � YN 	t�� Zt� with the interpretation that

Yj	t� is the bu�er content of bu�er j at time t� � � j � N � Hence IRN
� �Z is the

state space of the system� If the state of the system is 	y� z�� we de�ne

U	y� z� � fu � U j �zj � �juj �
NX
i��

pij�iui � �� whenever yj � �g� 	��

For an arbitrary function u � M � fu � IR� � U j u measurable g denote

�	y� z� u�	t� � y �
R t
� �

z � Dus � P TDus ds� If we introduce the matrix A �

D	I � P �� where I is the identity matrix then we can simply write

�	y� z� u�	t� � y �

Z t

�
�z �ATus ds 	��
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Figure � Single
server network

Hence D	y� z� � fu � M j ut � U	�	y� z� u�	t�� z�g is de�ned as the set of

admissible controls� At each jump time of the environment process we have to

choose an admissible control� This is done by a decision rule from the set F �

ff � IRN
� � Z � M j f measurable� f	y� z� � D	y� z� for all 	y� z� � IRN

� � Zg�

For f � F let �f 	y� z�	t� � �	y� z� f	y� z��	t�� A policy � is now de�ned by a

sequence of decision rules i�e� � � 	fn�� where fn � F for all n � IN � If we de�ne

by

�t � fn	YTn � ZTn�	t� Tn� for Tn � t � Tn��� 	��

then �t is the control we have to apply at time t� Analogously we de�ne

Yt � �fn	YTn � ZTn�	t� Tn� for Tn � t � Tn��� 	��

We are now interested in two di�erent optimality criterions�

In the reward model we suppose that we obtain a reward of rj � IR for

each unit of �uid from bu�er j that is processed� Denote r � 	r�� � � � � rN �� The

aim is to maximize the expected discounted reward of the system over an in�nite

horizon� Hence� for a given admissible policy � we de�ne for 	 � �

V�	y� z� � Ey�z

�Z �

�
e��tr�t dt

�

where Y� � y� Z� � z and �t is given by 	���

In the cost model we suppose that a linear cost of rate cj � IR is incurred�

when holding �uid in bu�er j� Denote c � 	c�� � � � � cN �� We are interested in

�nding a control which minimizes the expected discounted cost of the system

over an in�nite horizon� Hence� for a given admissible policy � we de�ne for

	 � �

C�	y� z� � Ey�z

�Z �

�
e��tcYt dt

�
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where Yt is given by 	��� Y� � y� Z� � z� Hence the optimization problems are

V 	y� z� � sup
��F�

V�	y� z�

C	y� z� � inf
��F�

C�	y� z�

An important special case is obtained� when �z is equal to � for all a � Z� Then

the in�ow process is constant and the model is purely deterministic� In this case

the reward model is the following control problem

��������
�������

�R
�
e��trut dt� max

�yt � ��ATut

yt � �

ut � U

As in the discrete time stochastic model there is a certain connection between

the cost and the reward model 	see e�g� Weishaupt ���� Tcha
Pliska ����

If we de�ne rj � �j �cj �
PN

i�� pjici or in matrix notation r � Ac� we obtain

Lemma �� Let � be a policy and y � � the initial inventory of the �uid network�

Then we obtain for a � Z

	C�	y� z� � cy �E

�Z �

�
e��sc�Zs ds

�
� V�	y� z�

In particular� in the deterministic setting� if all �z are equal �� then

	C�	y� � cy �
�

	
c�� V�	y�

Proof� The proof is using a sample path argument� Let 
 be �xed� Denote by

Z	t� 
� the path of the environment process and by Y 	t� 
� the path of the bu�er

contents under policy �� where Y 	�� 
� � y� Z	�� 
� � z� By de�nition we have

C�	y� z�	
� �

Z �

�
e��t

NX
j��

cjYj	t� 
� dt

�

Z �

�
e��t

NX
j��

cj

�Z t

�

�Yj	s� 
� ds� yj

	
dt

�
�

	

Z �

�
e��s

NX
j��

cj �Yj	s� 
� ds�
�

	

nX
j��

cjyj
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where the second equality follows from changing the order of integration�

Substituting �Yj	s� 
� by the expression �
Z�s���
j � �j�j	s� 
� �

PN
i�� pij�i�i	s� 
�

we obtain

Z �

�
e��s

NX
j��

cj �Yj	s� 
� ds�

Z �

�
e��s

NX
j��

�j	s� 
��j



�cj �

NX
i��

pjici

�
ds�

Z �

�
e��s

NX
j��

cj�
Z�s���
j ds �

��V�	y� z�	
� �

Z �

�
e��s

NX
j��

cj�
Z�s���
j ds

where we have used the de�nition of rj for the last equality� Taking expec�

tation� we obtain the desired result�

A further interesting property of the value functions is the following�

Lemma �� C	�� z� is convex and V 	�� z� is concave for all z � Z�

Proof� We restrict on showing the assertion on C� the rest follows with Lemma

��

Let y� y� � � and � � ��� �� Fix 
 and suppose that � and �� are the

paths of the optimal policies for start in y and y� respectively� De�ne ��t �

��t � 	� � ����t� t � �� Hence it holds that ��t � U � t � �� Use �� as a control

for start in �y � �y� 	����y� and denote by �Y 	t� 
�� 	 �Y 	�� 
� � �y� the associate

trajectory� analogously for Y 	t� 
�� 	Y 	�� 
� � y� and Y �	t� 
�� 	Y �	�� 
� � y���

Hence

�Y 	t� 
� � �y�

Z t

�
�Z�s����D��	s� 
��P TD��	s� 
�ds � �Y 	t� 
�� 	����Y �	t� 
�

and in particular �Y 	t� 
� � � for all t � �� since � and �� are admissible� More�

over�

C	�	�y� z�	
� �

Z �

�
e��tc �Y 	t� 
� dt � �C	y� z�	
� � 	�� ��C	y�� z�	
�

and taking expectation� we obtain

C	�y � 	�� ��y�� z� � C	�y� z� � C	�	�y� z� � �C	y� z� � 	�� ��C	y�� z�

which is the assertion�
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�� De�nition and Properties of the Indices

Our aim is to prove that the optimal policy is a priority index policy� In this

section we give a de�nition of the indices and show several important properties�

Due to assumption 	A�� we have that 	I �P ��� �
P�

n�� P
n � � and hence

A�� �
�X
n��

P nD�� � � 	��

For means of short notation� let us introduce the following abbreviation� For

a subset S 	 f�� � � � � Ng we denote

aSi � 	�aij�j�S � 	�ipij�j�S� i �� S and AS � 	aij�i�j�S�

An analogous de�nition is used for vectors� Obviously the relation in 	�� holds

for arbitrary submatrices AS �

Now we will give a recursive de�nition of the indices I�� � � � � IN � the so�called

largest remaining index algorithm 	the name will be justi�ed by Theorem �

a��� By e we denote the vector consisting of ��s only � the dimension should be

clear from the context�

Algorithm � Largest remaining index algorithm��

�i� I� � max��j�N rj� i� � argmax��j�N rj� S� � fi�g�

�ii� For k � �� � � � � N � � let

Ik��j �
rj � aSkj A��Sk rSk

� � aSkj A��Sk eSk
� j �� Sk

Ik�� � max
j ��Sk

Ik��j � ik�� � argmaxj ��Sk Ik��j

Set Sk�� � Sk � fik��g�

Bu�er ik is now assigned the index I	ik� � Ik� k � �� � � � � N � The indices

have the following nice interpretations�

In the 	uid setting� I� is simply the maximal reward rate in the model�

Suppose that the indices I�� � � � � Ik have already been determined� Given that

we have to keep the bu�er contents of the bu�ers in Sk at zero we can now look
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at the reduced network which consists of the bu�ers in f�� � � � � Ng � Sk� If we

allocate a unit of the server to bu�er j �� Sk� in order to keep the bu�ers in Sk

empty we have to assign to them a server capacity uSk which can be computed

from

� � AT
Sk
uSk � aSkj �

Therefore uSk � aSkj A��Sk � Hence I
k��
j is the reward rate of bu�er j in the reduced

network�

In a Semi
Markovian setting� consider the following Semi�Markovian

single�server network 	cf� Walrand ����� Arrivals at node j are according to a

Poisson process at rate �j� Service times are independent in all queues and have

mean �
�j
in queue j� When a customer is served in queue j a reward rj is received

and the customer is sent to queue i with probability pji� i � �� � � � � N and leaves

the network otherwise� The objective is to maximize the average reward of the

system over all nonpreemptive service policies� This problem gives exactly the

same indices� Moreover� let us look at a particular customer and denote by X	t�

the location of him at time t� De�ne the stopping time k � infft � � j X	t� ��

Skg as his exit time from the set Sk� then

Ej

�Z �k

�
rX�t� dt

�
� rj � aSkj A��Sk rSk �

and we can write

Ik��j �
Ej

hR �k
� rX�t� dt

i
Ej �k

�

Therefore it is possible to give a direct calculation of the index I	j� of bu�er j

by

I	j� � sup
���

Ej

hR �
� rX�t� dt

i
Ej � 

� 	��

where the supremum is taken over all stopping times  of the Semi�Markov process

fX	t�g which are service completion times� The indices I	j� are the so�called

Klimov indices� From this observation we obtain the following properties of

the indices�

Theorem �� a� The indices computed by the largest remaining index algorithm

ful�l

I� � I� � � � � � IN �
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b� The Klimov indices ful�l

rj � I	j� � max
��i�N

ri� j � �� � � � � N�

c� If �� � � � � � �N � � and i 
� ri and i 
�
Pk

j�� pij are decreasing for all

k � �� � � � � N � then

I	�� � I	�� � � � � � I	N��

Proof� a� and b� follow from Walrand ��� and from 	���

c� Let K � IR� � � 	 � � and de�ne V 	j�K�� j � �� � � � � N as the unique

solution of the �xed point equation

V 	j�K� � maxfK� rj � 	
NX
i��

pjiV 	i�K�g

Due to our assumptions about r and P we obtain that V 	j�K� is decreasing in j

for all K � IR� If we introduce now

I�	j� � minfK � IR j V 	j�K� � Kg�

it holds for i � j that fK � IR j V 	i�K� � Kg 	 fK � IR j V 	j�K� � Kg

and therefore I�	i� � I�	j�� Since I	j� � lim���	� � 	�I�	j� the assertion is

completely proved�

�� De�nition of the Priority Index Policy

The priority index policy is now de�ned as follows� assign the complete

server to the non�empty bu�er with highest index as long as there is �uid in this

bu�er� When the bu�er is empty� assign to it only the capacity that is needed to

hold the bu�er at zero and assign the rest of the server to the bu�er with second

highest index and so on� Since there can be re�entrants from the newly processed

bu�er to bu�ers with higher priority� this procedures makes it necessary to re�

assign the server capacity to all the bu�ers at each time point when a bu�er

empties� Before we de�ne the index policy formally we assume that our network

is strongly stable� i�e�

�A�� for all environment states z � Z there exists an u � u	z� � U such that

�z � ATu	z��
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This condition simply means that it is possible to empty the system in �nite time

in each of the possible environment states�

Now �x an environment state z � Z� An important implication of 	A�� is

that for a state y which ful�ls yS � �� yj � �� S 	 f�� � � � � Ng� j �� S it is possible

to �nd an admissible allocation of the server such that

� there is no allocation to bu�ers i �� S � fjg�

� the server is capable of keeping the bu�ers i � S at zero�

� the output rate at bu�er j exceeds the input rate i�e� bu�er j can be emptied�

This is because of the following observation� De�ne T � S�fjg and uT � �TA
��
T �

Hence uT � � and euT � e�TA
��
T � � by 	A��� uT is the server capacity that is

needed to cope with the input at bu�ers i � T � Now let � � � and allocate an

additional fraction of � to bu�er j� Due to re�entrants it is necessary to allocate

some more capacity vS � �aSj A
��
S � � to the bu�ers in S 	see interpretation

of the indices in the �uid setting�� If we de�ne u�S�j � 	uT � �� � 	vS � �� �� and

choose � � � such that eu�S�j � �� we have found an admissible allocation which

ful�ls all requirements� In particular let us de�ne the following important server

allocations� u�� � 	�� �� � � � � �� and for Sk � f�� � � � � kg� u�k � u�Sk���k as well as

u�� � �A���

Assume that the bu�ers have been rearranged such that the natural order

coincides with the priority order i�e� ik � k� k � �� � � � � N and Sk � f�� � � � � kg�

Formally we will de�ne the priority index policy as the stationary policy � �

	f� f� � � �� with

f	y� z�	t� �

�
u�j 	z� if j � minfi j yi	t� � �g

u��	z� if yt � ��

where yt � �f 	y� z�	t�� To obtain the optimality we have to impose a further

assumption which is very natural

�A�� the rewards r�� � � � � rN are non�negative�

Assumption 	A�� guarantees that ideling of the server is not optimal as long as

the bu�ers are nonempty� because processing of each bu�er is pro�table� Notice

that the assumption cj � � has not the same consequence� Obviously 	A��

implies cj � � whereas the converse is not valid�

Theorem � 	Optimality of the priority index policy��
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Under the assumptions 	A��� 	A��� the priority index policy is optimal for

both the reward and the cost model of section ��

The proof of the theorem is given in section �� Hence� in the single�server

network the optimal policy in the �uid model coincides with the optimal pol�

icy in the Semi�Markovian counterpart under the average reward criterion� It

is remarkable that the priority index policy in the �uid model is independent

of the discount factor 	� This is mainly due to the fact that the impact of a

decision occurs without delay� Some interesting special cases of the model are

the following�

A� Zero�Routing

Let P � �� which means that there is no routing and processed �uid leaves

the system immediately� Obviously 	A�� is ful�led and 	A�� reduces to

�A�� for all z � Z it must hold that
PN

j��
	zj
�j

� ��

Moreover� we obtain rj � �jcj and aSj � � for arbitrary j �� S� Therefore

the largest remaining index algorithm gives Ik�� � maxj ��Sk rj and the priority

index policy is the well�known �c�rule�

B� Deteriorating Case

W�l�o�g� assume that r� � r� � � � � � rN and let pji � � for � � i � j � N �

Hence P is an upper triangular matrix� This means that after processing a �uid

it will only be routed to bu�ers with lower reward� In this case it is easy to see

that Ik � rk and the index policy is the myopic or greedy policy�

C� Single�Server Re�Entrant Fluid Line

The following re�entrant �uid line is considered in Weiss ���� Formally this

problem reads �����������
����������

�R
�
e��trut dt� max

�y�	t� � �� ��u�	t�

�yj	t� � �j��uj��	t�� �juj	t�� j � �� � � � � N

yt � �

ut � U
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Figure � Single
server Re
Entrant Line

The routing matrix is given by

P �


BBBBB�

� � �
���
� � �
� � �

� � � �

� � � � �

�
CCCCCA

Condition 	A�� is not ful�led in general in this model� but 	I � PS�
�� obviously

exists for all subsets S 	 f�� � � � � Ng which is su�cient for the derivation of all

the preceeding lemmas and theorems� Let us de�ne mj �
�
�j
� The stability

condition 	A�� reduces to �
PN

j��mj � �� Due to the special routing matrix the

representation of the Klimov�indices in 	�� gives

I	j� � max
��t�N�j��

mjrj � � � � mj�t��rj�t��
mj � � � ��mj�t��

� j � �� � � � � N

which coincides with the indices given in Weiss ��� Proposition ����

�� Proof of the optimality of the Index policy

In this section we show that the priority index policy is optimal for the

de�ned control problems� We will prove this statement in the setting of the cost

model� using a sample path argument�

In the sequel we will refer to the following deterministic control problem�

	C�

��������
�������

�R
�
e��tcyt dt� min

�yt � �t �ATut

yt � �

ut � U
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where �t � �� t � � is a given� deterministic function which is right contin�

uous with left limits and has at most a countable number of discontinuities� The

Hamiltonian of the control problem 	C� is

H	y� u� p� t� � cyt � pt�t � utApt�

To identify an admissible control for 	C� to be optimal� we can use the following

lemma 	cf� Seierstad
Syds�ter ��� where we use the weak regularity conditions��

Lemma � 	Su�cient conditions for optimality��

The control u�t with the associate trajectory y�t is optimal for 	C� if

there exists a continuous and piecewise continuously di�erentiable vector func�

tion pt � 	p�	t�� � � � � pN 	t�� as well as a piecewise continuous vector function

�t � 	��	t�� � � � � �N 	t�� such that for all t � �

	i� u� maximizes ut 
� utApt for ut � U	yt� z��

	ii� �pt � 	pt � �c� �t� where the pj	t� are di�erentiable� j � �� � � � � N �

	iii� �t � ��

	iv� �ty
�
t � ��

	v� lim inft�� e��tpt	y
�
t � yt� � � for all admissible trajectories yt�

The next lemma will be important in the proof of optimality� Notice� that

the statement of Lemma � was also used in Chen
Yao �� as a further condition

for global optimality of the index policy� The authors there have not seen that

this condition is always ful�led� Hence our lemma also �lls a gap in Chen
Yao

���

Lemma �� For k � �� � � � � N � � it holds that

A��Sk 	I
k��eSk � rSk� � ��

Proof� W�l�o�g� we assume that ik � k for k � �� � � � � N � By vj we denote the

unit vector with � in component j� The dimension should be clear from the

context� We have to show that

Ik�� �
vjA��Sk rSk

vjA��Sk eSk
for all � � j � k� k � �� � � � � N�
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We will do this by induction over k�

For k � � we have I� � r� and the inequality obviously holds� Assume the

statement is valid for I�� � � � � Ik� We de�ne wj � a
Sk��
j A��Sk�� � k � j � N and

ASk �



ASk�� aS

�a
Sk��
k akk

�

Hence we have

Ik �
rk � wkrSk��
� � wkeSk��

�

De�ne the k�dimensional vector zk � vkA��Sk � hence

zk �



wk�

�

�
where � � 	aSwk � akk�

�� �� ��

This can be easily checked by computing AT
Sk
zk� This gives us

vkA��Sk rSk

vkA��Sk eSk
�

zkrSk
zkeSk

�
rk�� �wkrSk��
�� �wkeSk��

� Ik

and by Theorem � a� Ik�� � Ik� What is left to prove is that

Ik�� �
vjA��Sk rSk

vjA��Sk eSk
for all � � j � k � ��

Let zj � vjA��Sk � hence it is easy to check that

zj �



wk�� vjA��Sk��

�

�
where � �

�aSv
jA��Sk��

akk � aSwk
�

Therefore

vjA��Sk rSk

vjA��Sk eSk
�

zjrSk
zjeSk

�
�
�
rk � wkrSk��

�
� vjA��Sk��rSk��

�
�
� � wkeSk��

�
� vjA��Sk��eSk��

�

rk � wkrSk��
� � wkeSk��

� Ik 
vjA��Sk��rSk��

vjA��Sk��eSk��
�

rk � wkrSk��
� � wkeSk��

� Ik

which is true by the induction hypothesis� Since Ik � Ik�� 	see Theorem � a��

we obtain the desired result�

Now we are able to prove the main theorem�
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Proof of Theorem ��� We will prove Theorem � for the cost problem by using

a sample path argument� Let � be the index policy as de�ned before� We have

already shown that � � F�� Suppose � � F� is an arbitrary policy� We have

to show that C�	y� z� � C
	y� z� for 	y� z� � IRN
� � Z� Now let 
 �  be �xed�

Denote by �t � �Z�t��� the path of the input process� by �	t� 
�� �	t� 
� the

paths of the controls and by Y �	t� 
� 	Y 
	t� 
�� the path of the bu�er contents

under control � 	��� Due to the de�nition of the deterministic control problem

	C�� �	t� 
� and �	t� 
� are admissible controls for 	C�� with respective costsR�
� cY �	t� 
� dt and

R�
� cY 
	t� 
� dt�

By showing that there exist functions pt and �t which ful�l together with

�	t� 
� and Y �	t� 
� the su�cient conditions of Lemma � we prove thatZ �

�
cY �	t� 
� dt �

Z �

�
cY 
	t� 
� dt 	��

for all 
 �  � Integrating w�r�t� 
 on both sides we �nally obtain the desired

inequality

C�	y� z� � C
	y� z��

In what follows we will suppress 
�

Before we start to prove 	��� let us introduce several notations� let

R � 	r� � � � � r� and C � 	c� � � � � c� be N �N �matrices�

By � � t� � t� � t� � � � � tN � � denote the successive emptiness times of

the bu�ers under the priority index policy �� Notice that such a relation of

the emptiness times can be guaranteed under the index policy� regardless of the

choosen 
 �  � 	Of course the tj depend on 
�� Some of the bu�ers may initially

be empty� in which case � � t� � � � � � ti holds� Denote

T �


BBBBB�

�e��t� � � � � �

e��t� � e��t� �e��t� � � � �
���

���
� � �

���

e��tN�� � e��tN e��tN�� � e��tN � � ��e��tN

�
CCCCCA

For j � �� � � � � N we de�ne now the adjoint functions pj in the following way

pj	t� � � when t � tN �

pj	t� �
�

	

�
bjk � ljke

�t
�

when tk�� � t � tk� k � �� � � � � N�
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where bjk � cj if k � j and the other constants will be determined as the proof

continues� Hence� condition 	ii� is obviously satis�ed with �j	t� � � if t � tj

which also implies that 	iv� is true� Moreover� the adjoint functions are piecewise

continuously di�erentiable and the Lagrange multipliers �j are constant on the

intervals �tk� tk���� To ease notation� let us de�ne

B � 	bjk� �


BBBBB�

c� b�� b�
 � � � b�N

c� c� b�
 � � � b�N
���
���
���

���

cN cN cN � � � cN

�
CCCCCA

L � 	ljk� �


BBBBB�

l�� l�� l�
 � � � l�N

l�� l�� l�
 � � � l�N
���

���
���

���

lNN lNN lNN � � � lNN

�
CCCCCA

What is left to prove� are conditions 	i� and 	iii� as well as the continuity of

p� We will now determine the constants ljk in such a way that p is continuous�

The continuity condition for � � j � k � N reads

bjN � ljNe
�tN ��

bjk � ljke
�tk � bjk�� � ljk��e

�tk �

From this set of equations� we obtain the following recursion for each j � �� � � � � N �

ljN ��bjNe
��tN

ljk � ljk�� � 	bjk � bjk���	�e
��tk � k � N � �� � � � � j�

Hence� we get inductively that

ljk �
N��X
i�k

	bji � bji���	�e
��ti�� bjNe

��tN

for � � j � k � N � Using matrix notation this is simply L � BT � Hence L � BT

guarantees that p is continuous and

pj	t� �
�

	

h
	B�jk � 	BT �jke

�t
i
� when tk�� � t � tk�
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Now we are going to show that 	i� can be satis�ed by choosing the remaining

constants bjk appropriately� For that purpose de�ne Rt � 	R�	t�� � � � � RN 	t�� �

Apt� To ful�l condition 	i� we have to show that

� � R�	t� � � � � � Rj	t� � Rj��	t�� � � � � RN 	t� when tj�� � t � tj

for j � �� � � � � N and

R�	t� � � � � � RN 	t� � � when t � tN �

Since pt � � for t � tN the last equation trivially holds� Due to the de�nition of

the adjoint functions we can write

Rj	t� �
�

	

h
	AB�jk � 	ABT �jke

�t
i
� when tk�� � t � tk�

Hence we get

Rj	t� �
�

	

�
AB�I � Te�t

�
jk
� when tk�� � t � tk�

For abbreviation denote X � 	xjk� � AB� Since for t � �tk��� tk� it holds that

the k�th column of 	I �Te�t� is non�negative� it is not di�cult to see that for 	i�

it su�ces to show that

�� x�� � x��� � � � � xN�

�� x�� � x�� � x
�� � � � � xN�

���

�� x�N � � � � � xNN �

If we de�ne �B � B � C we have X � A	 �B � C� � A �B � R� Since �bj� �

�� j � �� � � � � N it follows that xj� � rj� j � �� � � � � N � Hence the �rst assertion

follows from the de�nition of the �rst index and the fact that r� � �� Let

us now have a look at column k � �� k � f�� � � � � N � �g of matrix X� With
�bk�� � 	�b��k��� � � � ��bk�k��� and Sk � f�� � � � � kg de�ne

�bk�� � A��Sk

�
Ik��eSk � rSk

�
�

Hence we obtain that

	x��k��� � � � � xN�k��� �


BBBBB�

Ik��eSk
aSkk��A

��
Sk
rSk � Ik��aSkk��A

��
Sk
eSk � rk��

���

aSkN A��Sk rSk � Ik��aSkN A��Sk eSk � rN

�
CCCCCA



�� N� B	auerle� U� Rieder 
 Optimal control of single�server

Because of the de�nition of Ik��� it holds that

xk���k�� � Ik�� �
�
rk�� � aSkk��A

��
Sk
rSk

�
� Ik��

�
� � aSkk��A

��
Sk
eSk

�
� �

and since aSki � �� A��Sk � �� using the maximality of Ik�� we have for

i � k � �� � � � � N �

xi�k�� � Ik�� �
�
ri � aSki A��Sk rSk

�
� Ik��

�
� � aSki A��Sk eSk

�
� �

and using additionally 	A�� we get Ik�� � �� Hence we have shown that � �

x��k�� � � � � � xk���k�� � xk���k��� � � � � xN�k��� k � f�� � � � � N ��g which implies

	i� of the su�cient conditions�

Due to Lemma � it holds that �bk�� � �� k � �� � � � � N � � or equivalently

B � C� Bearing condition 	ii� in mind� this implies that the Lagrange multipliers

�t are non�negative� hence 	iii� holds� Since tN �� we obtain that pt � � for all

t � tN which implies 	v�� This completes the proof�

�� Conclusion

We have shown that the optimal policy for a stochastic single�server �uid

network is simple priority index policy� The indices coincide with the optimal

indices in a Semi�Markovian Klimov problem� In particular are these indices

independent of the environment process 	Zt� and of the discount factor 	� From

the sample path proof of Theorem � it can be seen that the index policy is

optimal in a very strong sense� it stochastically minimizes the cost function over

all time intervals ��� t�� � t � IR� � f�g� Thus� this policy can also be interpreted

as a myopic policy� From that point of view the index policy is quite natural�

Moreover� the sample path proof shows that� even one were knowing in advance

the complete sample path of the environment process� the optimal policy would

remain the same�
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