
Routing of Airplanes to Two Runways:

Monotonicity of Optimal Controls

N. Bäuerle∗, O. Engelhardt-Funke, M. Kolonko †

October 27, 2003

Abstract : We consider the problem of routing incoming airplanes to two runways of an airport.
Due to air turbulence, the necessary separation time between two successive landing operations
depends on the types of the airplanes. When viewed as a queueing problem, this means that we
have dependent service times. The aim is to minimise waiting times of aircrafts.

We consider here a model where arrivals form a stochastic process and where the decision maker
does not know anything about future arrivals. We formulate this as a problem of stochastic
dynamic programming and investigate monotonicity of optimal routing strategies with respect
e.g. to the workload of the runways.

We show that an optimal strategy is monotone (i.e. of switching type) only in a restricted case
where decisions depend on the state of the runways only and not on the type of the arriving
aircraft. Surprisingly, in the more realistic case where this type is also known to the decision
maker, monotonicity need not hold.

∗Inst. für Mathematische Stochastik, Universität Hannover, Germany
†Institut für Mathematik, Technical University Clausthal, Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany,

email: kolonko@math.tu-clausthal.de

1

1 Introduction

In modern air traffic the efficient use of the available runway capacity is of growing importance
at least at major airports. Airplanes are often queued when waiting for a free runway to land on.
While queueing and during the landing operations, the airplanes have to keep a large enough
distance between each other to avoid air turbulence from aircrafts flying ahead. These separation
times depend on the weight (more generally: types) of the airplanes involved. Typically, the
necessary separation between a light aircraft trailing a heavy one will be larger than between the
same types if the light one is flying in front. Hence, one can expect to increase the throughput
of the runways by an efficient routing of arriving airplanes to runways.

The general problem is quite involved as a lot of side constraints and airport specific rules have
to be considered. We restrict ourselves to a particular scenario, which may be viewed as a step
towards more realistic models that we cannot analyse completely at present.

First, we assume that the arrival times of the aircrafts form a stochastic renewal process. This
is in accordance with e.g. [4] and [8]. There it is assumed that the scheduled arrival times
are highly disturbed (e.g. by varying flight conditions, delays on connecting flights or technical
problems) such that in practise the arrival times may well be approximated by a Poisson process.

We further assume that the routing decision has to be made at the arrival instance of the airplane
at the airport (or at a certain threshold). The decision maker may use information on the state
of the runways and the type of the presently arriving aircraft but does not know anything about
future arrivals. Once an aircraft has been assigned to a runway it must stay in the queue of that
runway. The queues are served on a first come first served basis. The aim is to find a rule that
assigns an incoming aircraft to a runway given the state of the system and the type of arriving
aircraft such that the long term expected waiting times are minimised.

We formulate a stochastic dynamic programming model for this problem with the total expected
discounted waiting time of the aircrafts as target function. We investigate monotonicity prop-
erties of optimal routing strategies (policies) in this model. Monotonicity here means e.g. that
when the observed workload u on runway I increases while everything else is kept fixed then
an assignment of an arriving plane to runway I will only be made for u up to a certain level l.
For u > l the aircraft will then be assign to runway II. Such policies are also called ’switching
policies’ as they are completely determined by switching levels l. This will be made more precise
by defining a partial order on the state space of the dynamic programming model and by proving
monotonicity of optimal routing policies with respect to this ordering.

Here are our main findings: optimal policies are monotone only if we restrict ourselves to
decisions that depend solely on the state of the runway and not on the type of the presently
arriving aircraft. This result also yields conditions under which a simple Join-the-Least-Load
strategy (JLL) is optimal. We give a rough bound on the error that is made when using JLL in
the general case where it is not optimal. Surprisingly, monotonicity with respect to workloads
need not hold in the more realistic model where decisions may depend on the state of the runways
as well as on the type of the arriving airplane. We show by a counter example based on realistic
data that in this case it may be optimal to route to runway II for a small workload u on runway
I and to route to runway I for a larger workload u′. This somewhat unexpected result may be
explained from the fact that in the first restricted case we use a cost function (see definition
(3.5)) where the dependency of waiting times from the next arriving aircraft is ’averaged out’
whereas in the second case we use as cost function the actual waiting time (see (6.2)) leading to
a more sensitive criterion.

The proof of the main monotonicity result is based on the approach in [1]. Nevertheless, our
model does not fit into the framework of [1]. We had to change the conditions at a minute

2

but decisive point and to prove that the main assertions of [1] still hold under the modified
assumptions.

Optimal routing of airplanes has been treated e.g. in [3] where also a survey over different
approaches is given. Deterministic models as in [3] often assume that a set of airplanes to
be scheduled and routed is given. This allows to take into account more than one arrival
and optimal schedules for a single set of aircrafts are obtained by mixed linear optimisation.
The stochastic queueing models in [4] and [8] do not take into account the dependency of the
separation times from the two types involved. In [2] M/SM/1 queueing models are used to deal
with this dependency. In a somewhat complementary way to the present paper, strategies that
use only the type of the arriving aircrafts are considered. There, it is also shown that neglecting
the dependencies may lead to a strongly biased estimation of waiting times under heavy traffic.
The general literature on the routing of parallel queues (see e.g. [13]) seems to be restricted to
the case of independent service times only. Queues with dependent service times are treated e.g.
in [10], but without any reference to routing.

The paper is organised as follows. In Section 2, we collect a few results from stochastic dynamic
programming, in particular about the optimality equations and value iteration. In Section 3
we use the dynamic programming framework to formalise the restricted model, where decisions
depend on the state of the runways alone. Here, we also define the load of a runway and the
ordering of the state space and give the main monotonicity results. We start with this restricted
model as it takes most of the paper to prove these results. The rather technical proof is given in
Section 7. A number of Corollaries about Join-the-Least-Load policies are collected in Section 5.
The model of Section 3 is then enlarged in Section 6 to include the type of arriving airplane and
a counter-example shows that the monotonicity property does no longer hold. In the Conclusion
we address the potential benefit of our results for the practical solution of the problem and
topics of our future research.

2 A Dynamic Programming Model

We shall first collect a few definitions and results from Markovian dynamic programming (see
e.g. [5], [11] or [12] for a general discussion of dynamic programming). Here, we present only
a simple type of dynamic programming model which is sufficient to cover the aircraft routing
problem formulated in the next Section.

The model describes a system that is observed at discrete points of time (stages) n = 1, 2,
At each stage the system is observed to be in a state s ∈ S. Then an action a ∈ A is taken and
the system moves to a new state s′ = g(s, a, z) ∈ S to be observed at the next stage. Here,
z ∈ Z is an external event (disturbance) and g : S ×A×Z → S is the state transition function.
The state-action pair (s, a) causes costs c(s, a), where c : S ×A → IR+ is the cost function. Let
(Zn)n≥1 be an i.i.d. sequence of external random variables with values in Z and with a known
distribution.

We shall leave aside questions of measurability and assume in particular that the action space
A is finite.

If we observe the system for a finite number N of stages (finite horizon case), actions are chosen
according to a policy δ = (fN , . . . , f1), where fn : S → A is the decision rule for the N−n+1−th
stage. The reverse numbering of the decision rules simplifies the description of the induction
below. Given a starting state X1 = s from S and a policy δ, the sequence of states X2, . . . , XN

is then defined recursively by

Xn+1 := g(Xn, fN−n+1(Xn), Zn), 1 ≤ n ≤ N − 1. (2.1)

3

With An := fN−n+1(Xn), we obtain for a measurable set B ⊂ S the simple Markovian depen-
dency

P[Xn+1 ∈ B | X1, . . . , Xn = s, A1, . . . , An = a] = P(g(s, a, Z1) ∈ B). (2.2)

The total expected discounted costs for policy δ = (fN , . . . , f1) and starting state s ∈ S are
given by

VN,δ(s) : = E
[N∑

k=1

βk−1c(Xk, Ak) | X1 = s
]

(2.3)

where β ∈ (0, 1] is a given discount factor. As our cost function is non-negative and the action
space is finite, it is well known (see e.g.[12]) that an optimal policy exists, i.e. a policy δ∗, with

VN (s) := VN,δ∗(s) = min
δ

VN,δ(s) for all s ∈ S. (2.4)

In fact the min may be taken over a much larger class of policies than defined above. For
(measurable) functions w : S → IR+ we define the one-stage cost operator L by

Law(s) := c(s, a) + β E [w(X2) | X1 = s, A1 = a]
= c(s, a) + β E w(g(s, a, Z1)).

(2.5)

Problem (2.4) can be solved recursively with the help of the so-called optimality equation for
dynamic programs which in the finite horizon case reads

Vn(s) = min
a∈A

LaVn−1(s) for all s ∈ S, 1 ≤ n ≤ N. (2.6)

We assume throughout that V0 ≡ 0. A policy δ∗ = (f∗
N , . . . , f∗

1) is optimal iff f∗
n(s) selects a

minimising action in (2.6) for s ∈ S, 1 ≤ n ≤ N (see e.g. [12], Cor. 6.2).

In the infinite horizon case we only consider stationary policies δ = (fn)n≥1 with fn ≡ f, n ≥ 1
and we write δ = f for short. With Ak = f(Xk), k ≥ 1 we define the total expected discounted
costs by

Vδ(s) : = E
[∞∑

k=1

βk−1c(Xk, Ak) | X1 = s
]
. (2.7)

Again, δ∗ is called optimal if

V (s) := Vδ∗(s) = min
δ

Vδ(s), s ∈ S. (2.8)

It is shown in [12] that there exists an optimal stationary policy which can be obtained from
the infinite horizon optimality equation

V (s) = min
a∈A

LaV (s), s ∈ S. (2.9)

f∗ forms an optimal stationary policy iff f∗(·) is a minimiser of (2.9). Moreover, value iteration
holds, i.e.

lim
N→∞

VN (s) = V (s), s ∈ S. (2.10)

Below, we use (2.6) to derive properties for the finite horizon case with arbitrary horizon N
using inductive arguments. These properties then carry over to the infinite horizon case using
(2.10).

4

3 Optimal Aircraft Routing as Dynamic Programming Problem

We shall now specify the elements of the dynamic programming model such that the problem
of optimal aircraft routing can be dealt with.

We start with the external events Zn. Let Sn, n ≥ 1, denote the arrival times of airplanes at the
airport. We assume that the interarrival times Tn := Sn − Sn−1 ≥ 0 for n ≥ 1, with S0 := 0
are i.i.d. , i.e. the arrivals form a renewal process with some distribution F. Let J be the finite
set of possible types of airplanes and denote by Jn the type of the n−th arriving plane. We
assume that the Jn, n ≥ 1, are i.i.d. and independent of the arrival process with

pi := P(Jn = i), i ∈ J.

Then
Zn := (Jn, Tn+1), n ≥ 1 (3.1)

taking on values in Z := J × IR+, describes the type of the n-th arriving aircraft and the
following interarrival time. (Zn)n≥1 is an i.i.d. sequence, it is the external source of randomness
in our model.

We assume that if an aircraft of type j is to land immediately behind an aircraft of type i on the
same runway, then there must be a safety distance given as separation time b(i, j) ≥ 0, i, j ∈ J.
This means that the beginning of the two landing operations (touch-downs) must be b(i, j) time
units apart.

In our model, routing decisions have to be made at the arrival instances Sn of airplanes which
define our decision epochs. Let A := {I, II} where action a = I (a = II) means to route the
present airplane to runway I (II). Once an airplane has been routed to a queue it has to wait
there for its service. The queues work on a first-come-first-served basis.

To define the ’state’ of our system we first consider a single runway, say runway I. Of course,
things are completely analogous on runway II.

Let ζI
n denote the type of airplane that is at the tail of the queue of runway I immediately before

the n−th arrival takes place. If the queue I is empty at that time then ζI
n is the type of the last

airplane that landed on I. With ζI
1 := i0 (an arbitrary type), the formal definition of ζI

n is

ζI
n+1 :=

{
Jn if Zn = (Jn, Tn+1) and An = I
ζI
n if An = II

, n ≥ 1. (3.2)

For n ≥ 2, ζI
n is the type of plane that the n−th plane will see as its predecessor if it is routed

to runway I. Note that the index n counts arrivals to the airport, not to the particular runway.

Let U I
n denote the workload on runway I immediately before the arrival of the n−th airplane.

U I
n is the time that the last plane at the tail of the queue has to wait until the beginning of its

landing operation. If the queue is empty at that time then U I
n < 0 denotes the time that has

passed since the last plane began its landing on runway I .

Let b∗ := maxi,j∈J b(i, j). With U I
1 := −b∗ the formal definition of the workload is given by

U I
n+1 :=

{
[U I

n + b(ζI
n, Jn)]+ − Tn+1 if Zn = (Jn, Tn+1) and An = I

U I
n − Tn+1 if Zn = (Jn, Tn+1) and An = II

, n ≥ 1. (3.3)

Note that
[U I

n + b(ζI
n, Jn)]+

is the waiting time of the n−th plane if it is routed to I. Here, b(ζI
n, Jn) can be regarded as the

service time of this plane. The definition of ζI
1 and U I

1 guarantees that the first aircrafts on each

5

runway have waiting time 0. In Fig. 3.1 the load on runway a is shown at the arrival instance
of the n−th aircraft of type j4 when two aircrafts of types j2, j3 are already waiting. The black
triangles indicate the time at which the landing operation of the aircraft begins. Type j1 has
already landed, but j2 still has to wait.

on the ground

waiting in the air

j1

j2 j3 j4

b(j1, j2)

Sn
Ua

n

b(j2, j3) b(j3, j4)

Figure 3.1: The load on runway a when aircrafts of types j1, . . . , j4 are present

The state of runway I at the arrival instance of the n−th plane is the pair (ζI
n, U I

n) taking on
values in J × IR. Note that it is possible to bound the workload from below, as we need not keep
track of negative loads that are larger than b∗ = maxi,j∈J b(i, j).

The state of the second runway is defined in a completely analogous way and the state of the
system at the n−th arrival instance is then defined as

Xn := (ζI
n, U I

n, ζII
n , U II

n)

taking on values in the state space S := J × IR × J × IR.

Note that in this model the presently arriving type Jn is not part of the state but part of
the external event Zn = (Jn, Tn+1) that drives the system. This follows from our particular
restriction that the type Jn is not known to the decision maker. Below, in the case where Jn is
known we shall use (Jn+1, Tn+1) as the external event driving the system (see Section 6).

¿From (3.2) and (3.3) we now see how the state transition function g : S ×A×Z → S must be
defined. For s = (i, u, j, v) ∈ S, a ∈ A and z = (l, t) ∈ Z let

g((i, u, j, v), a, (l, t)) :=

⎧⎨
⎩

(
l, [u + b(i, l)]+ − t, j, v − t

)
if a = I(

i, u − t, l, [v + b(j, l)]+ − t
)

if a = II.
(3.4)

As one-stage cost function c : S × A → IR+ we define for s = (i, u, j, v) ∈ S

c(s, a) :=
{ ∑

j′∈J pj′ · [u + b(i, j′)]+ if a = I∑
j′∈J pj′ · [v + b(j, j′)]+ if a = II.

(3.5)

If we denote by
Wn := [UAn

n + b(ζAn
n , Jn)]+

the waiting time of the n−th airplane, then we have

c(s, a) = E [Wn | Xn = s, An = a].

Note that c((i, u, j, v), a) depends only on the state of runway a, e.g. on (i, u) for a = I. The
total discounted expected costs now read

VN,δ(s) = E
[N∑

k=1

βk−1c(Xk, Ak) | X1 = s
]

= E
[N∑

k=1

βk−1[UAn
n +b(ζAn

n , Jn)]+ | X1 = s
]

(3.6)

6

and similar for the infinite horizon. Starting in an empty system means to have X1 = s0 :=
(i0,−b∗, i0,−b∗). As we have only two actions, the optimality equations (2.6) and (2.9) have a
particularly simple structure:

Vn(s) = min{LIVn−1(s), LIIVn−1(s)} and V (s) = min{LIV (s), LIIV (s)}. (3.7)

Also, (2.5) becomes

LIw(s) = c(s, I) + βE w(g(s, I, Z1))

=
∑
l∈J

pl

(
[u + b(i, l)]+ + β

∫ ∞

0
w((l, [u + b(i, l)]+ − t, j, v − t))F (dt)

)

where F is the distribution of the interarrival times.

4 Monotonicity Properties of Optimal Policies

In this Section we show that optimal routing policies are monotone with respect to a particular
(partial) ordering of the state space. As usual, ’increasing’ and ’decreasing’ are used in the
non-strict sense.

Let us first define a partial ordering on the set of types J. For i, j ∈ J define

i ≺J j : ⇐⇒ b(i, k) ≤ b(j, k) for all k ∈ J. (4.1)

In the aircraft setting, i ≺J j could indicate that j is a heavier plane that requires more
separation than i. We do not make any assumptions on the ordering of the separation times,
hence, in the extreme case, it may happen, that i ≺J j only holds for i = j.

Now let s = (i, u, j, v), s̄ = (̄i, ū, j̄, v̄) ∈ S, then we define

s ≺ s̄ : ⇐⇒ i ≺J ī, u ≤ ū, j �J j̄, v ≥ v̄ (4.2)

If s ≺ s̄ holds, then in state s̄ the load on runway I is at least as high as in state s and at its
tail there is an aircraft that requires at least as much separation time as in s. For runway II the
opposite relation holds. Hence, the balance of the two queues is more favourable for I in state
s than it is in s̄.

A function f : S → M, where (M,≤) is a (partially) ordered set, is called s-increasing if s ≺ s̄
implies f(s) ≤ f(s̄). For fn : S → A, we define the order ′ ≤′ on A by I ≤ II. Note that
f : S → IR is s-increasing if and only if

u, i �→ f(i, u, j, v) are increasing for fixed j, v and
v, j �→ f(i, u, j, v) are decreasing for fixed i, u.

(4.3)

Here, monotonicity in i and j is defined w.r.t. the ordering (4.1) whereas monotonicity in u and
v w.r.t. the usual ordering on IR.

The following Theorem is the main result of this Section. It shows that optimal policies are
monotone w.r.t. to the ordering (4.2) of the state space. Some implications are described below.

4.1 Theorem

a) (finite horizon case)
For any horizon N there is an optimal policy δ = (fN , . . . , f1) such that s �→ fn(s) is
s-increasing for n = 1, . . . , N.

7

b) (infinite horizon case)
There is an optimal stationary policy δ = f such that s �→ f(s) is s-increasing.

In fact any optimal policy is monotone in this sense if we agree to choose the smaller action I
in cases where both actions are minimising the optimality equations. Theorem 4.1 states that
if it is optimal to route the next airplane to runway II in a state s = (i, u, j, v), then we should
do the same in all states s̄ with s ≺ s̄.

Note that fn is s-increasing if and only if there exists a ’level’ function ln : J2 × IR → IR with
i �→ ln(i, j, v) decreasing and j, v �→ ln(i, j, v) increasing such that for s = (i, u, j, v) ∈ S

fn(s) =
{

I if u < ln(i, j, v)
II if u > ln(i, j, v)

(4.4)

(for the ’only-if’-part put ln(i, j, v) := inf{u | fn(i, u, j, v) = II}). In this sense, an s−increasing
policy is a ’switching policy’.

The proof of Theorem 4.1 is quite lengthy and only its main steps are given below, the remainder
is split into several technical Lemmata given in Section 7 below.

Proof : (of Theorem 4.1)

a) For the finite horizon case, define

Δn(s) := LI Vn(s) − LII Vn(s), n ≥ 1.

From the optimality equation (2.6) it follows that (fN , fN−1, . . . , f1) with

fn(s) :=
{

I, if Δn−1(s) ≤ 0
II, if Δn−1(s) > 0

, 1 ≤ n ≤ N,

forms an optimal policy for the N -stage problem. In Lemma 7.3 below it is shown that s �→ Δn(s)
is s-increasing, hence it follows that s �→ fn(s) is s-increasing as well.

b) For the infinite horizon, we conclude from the value iteration (2.10) that if s �→ Δn(s) is
s-increasing for all n ≥ 1 then

Δ(s) := LI V (s) − LII V (s) = lim
n→∞Δn(s)

is an s-increasing function, too. Here, limn→∞ LIVn = LIV is shown in [12], 4.4.1. Now b)
follows as in a).

5 When is Join-the-Least-Load (JLL) optimal?

A natural simple policy would be to route the next arriving airplane to the runway with the
least load, i.e. for s = (i, u, j, v) to decide according to δ̄ = (f̄N , . . . , f̄1) where

f̄n(s) := f̄(s) :=
{

I if u ≤ v
II if u > v

. (5.1)

However, due to the structure of the service times b(i, j) one cannot expect this policy to be
optimal in general. We now examine some special cases where JLL is optimal. First, we state a
simple consequence of the symmetry of the two runways.

5.1 Lemma

8

Let s := (i, u, j, v) ∈ S and s̄ := (j, v, i, u), then we have

Vn(s) = Vn(s̄) for all n ≥ 1 and V (s) = V (s̄).

For finite and infinite horizon it holds that action I is optimal in state s iff action II is
optimal in state s̄

Proof : From (3.5) and (3.4) we see that c(s, I) = c(s̄, II). Starting with V0 ≡ 0 we obtain
inductively

LIVn−1(s) = c(s, I) + βE Vn−1(g(s, I, Z1))
= c(s̄, II) + βE Vn−1(g(s̄, II, Z1)) = LIIVn−1(s̄)

hence

Vn(s) = max{LIVn−1(s), LIIVn−1(s)} = max{LIIVn−1(s̄), LIVn−1(s̄)} = Vn(s̄)

and
LIVn−1(s) ≤ LIIVn−1(s) ⇐⇒ LIIVn−1(s̄) ≤ LIVn−1(s̄).

The corresponding results for the infinite horizon follow from (2.10) and (2.9).

The following Theorem is a direct consequence of Theorem 4.1 and the symmetry of the runways.
It shows in particular that it is optimal to use JLL in states where both runways have identical
types waiting at their tails. Note that we use the ordering defined by (4.1) on the set J of types.

5.2 Theorem

a) Let s = (i, u, j, v) ∈ S. If u ≤ v and i ≺J j then it is optimal to use action I, and if
u ≥ v and i �J j then it is optimal to use action II.

b) For any state s = (i, u, i, v) ∈ S it is optimal to choose a = I if and only if u ≤ v.

c) For any state s = (i, u, j, u) ∈ S it is optimal to choose a = I if i ≺J j and a = II if
j ≺J i.

These statements hold for the finite as well as for the infinite horizon problem.

Proof : a) Let s̄ := (j, v, i, u), then using Lemma 5.1 we have

Δn(s) = LIVn(s) − LIIVn(s) = LIIVn(s̄) − LIVn(s̄) = −Δn(s̄). (5.2)

The assumptions u ≤ v, i ≺J j imply s ≺ s̄ and from Lemma 7.3 we obtain Δn(s) ≤ Δn(s̄) =
−Δn(s). Hence Δn(s) ≤ 0, i.e. action I is optimal. An analogous argument holds for the infinite
horizon case. The assertion concerning action II follows from symmetry.

b) and c) follow from a).

A degenerate special case is obtained if the separation times do not depend on the leading
aircraft, i.e. b(i, j) ≡ d(j) for all i, j ∈ J . In this situation it is unnecessary to keep track of the
type of the last airplanes on the runways and the state space of the problem could be reduced to
the load (u, v) on the two runways. Theorem 4.1 then implies that the JLL policy δ̄ is optimal.

5.3 Corollary

9

If b(i, j) ≡ d(j) for all i, j ∈ J , then it is always optimal to route the next airplane to the
runway with least load (for finite as well as infinite horizon).

Proof : We have for all i, j ∈ J

i ≺J j ⇐⇒ ∀ k ∈ J b(i, k) = d(k) ≤ b(j, k) = d(k)

hence all types in J are equal with respect to the ordering given by (4.1). But then the assertion
follows from Theorem 5.2 b).

Finally, we give a crude error bound on how much the waiting times under policy JLL can
deviate from the optimum in the general model. With b∗ = maxi,j∈J b(i, j) as before and
b∗ := mini,j∈J b(i, j) let

B̄ := b∗ − b∗

be the span of separation times.

5.4 Theorem

Let δ̄ be the JLL policy as defined in (5.1). For all s ∈ S it holds that

0 ≤ VNδ̄(s) − VN (s) ≤ B̄
N−1∑
k=1

βkk (5.3)

and for the infinite horizon and β < 1

0 ≤ Vδ̄(s) − V (s) ≤ B̄
β

(1 − β)2
. (5.4)

For the proof we have to consider auxiliary systems with the only difference being modified
separation times b̂(i, j). Note that in these systems we not only have a different cost function
ĉ(s, a) (related to the separation times as given by (3.5)), but also a different transition function
ĝ and a different state process

X̂n = (ζ̂I
n, Û I

n, ζ̂II
n , Û II

n).

The value functions for the modified system are denoted by V̂n(s) etc.

5.5 Lemma

a) Let b̂(i, j) ≤ b(i, j) for all i, j ∈ J, then for any s ∈ S we have

V̂N (s) ≤ VN (s), N ≥ 1 and V̂ (s) ≤ V (s).

b) Let b̂(i, j) := b∗, then we have for the JLL policy δ̄ with β < 1

0 ≤ V̂Nδ̄(s) − VNδ̄(s) ≤ B̄

N−1∑
k=1

βkk, N ≥ 1 and

0 ≤ V̂δ̄(s) − Vδ̄(s) ≤ B̄
β

(1 − β)2
.

10

Proof : a) The proof is done by induction on N . For N = 0 the statement is trivially true.
Now suppose it holds for n ∈ IN, i.e. V̂n(s) ≤ Vn(s) is valid for all s ∈ S. We know that

Vn+1(s) = min{LIVn(s), LIIVn(s)}
and similar for V̂ . From our assumptions and the induction hypothesis we obtain (note that
s �→ Vn(s) is obviously increaing in u and v which can formally also been shown by induction)

LI V̂n(s) = ĉ(s, I) + βE[V̂n(ĝ(s, I, Z1))]
≤ c(s, I) + βE[V̂n(g(s, I, Z1))]
≤ c(s, I) + βE[Vn(g(s, I, Z1))] = LIVn(s)

and similarly LII V̂n(s) ≤ LIIVn(s) which implies the result.

b) Let Ak and Âk be the k−th action under the JLL policy in the original model and in the
hat-model. Note that we may have Ak �= Âk and that

UAk
k = min{U I

k , U II
k } and Û Âk

k = min{Û I
k , Û II

k }.
We first prove

min{U I
k , U II

k } ≤ min{Û I
k , Û II

k } and max{U I
k , U II

k } ≤ max{Û I
k , Û II

k }. (5.5)

Again for k = 1 nothing has to be shown. Now assume that (5.5) holds for some k, we have

min{U I
k+1, U

II
k+1} (5.6)

= min
{

[min{U I
k , U II

k } + b(ζAk
k , Jk)]+ − Tk+1, max{U I

k , U II
k } − Tk+1

}

≤ min
{

[min{Û I
k , Û II

k } + b∗]+ − Tk+1, max{Û I
k , Û II

k } − Tk+1

}

= min{Û I
k+1, Û

II
k+1}.

We see that (5.6) also holds if the outer min is replaced by max, hence, (5.5) is proven. From
this we obtain for all k

c(Xk, Ak) =
∑
j∈J

pj [min{U I
k , U II

k } + b(ζAk
k , Jk)]+

≤
∑
j∈J

pj [min{Û I
k , Û II

k } + b∗]+ = ĉ(X̂k, Âk)
(5.7)

which in turn implies
VN,δ̄(s) ≤ V̂N,δ̄(s). (5.8)

To complete the proof of b) we have to show that

V̂N,δ̄(s) ≤ VN,δ̄(s) + B̄
N−1∑
k=1

βkk. (5.9)

Similar to (5.6) we first show that

min{Û I
k , Û II

k } ≤ min{U I
k , U II

k } + (k − 1)B̄ and

max{Û I
k , Û II

k } ≤ max{U I
k , U II

k } + (k − 1)B̄
(5.10)

which as in (5.7) implies
ĉ(X̂k, Âk) ≤ c(Xk, Ak) + (k − 1)B̄ (5.11)

11

and hence (5.9) follows. To prove (5.10) we first observe that for k = 1 nothing has to be shown.
Now assume (5.10) holds for some k, then

min{Û I
k+1, Û

II
k+1}

= min
{

[min{Û I
k , Û II

k } + b∗]+ − Tk+1, max{Û I
k , Û II

k } − Tk+1

}

≤ min
{

[min{U I
k , U II

k } + (k − 1)B̄ + b∗]+ − Tk+1, max{U I
k , U II

k } + (k − 1)B̄ − Tk+1

}

= min
{

[min{U I
k , U II

k } + b(ζAk
k , Jk) + (k − 1)B̄ + b∗ − b(ζAk

k , Jk)]+ − Tk+1,

max{U I
k , U II

k } + (k − 1)B̄ − Tk+1

}

≤ min
{

[min{U I
k , U II

k } + b(ζAk
k , Jk) + kB̄]+ − Tk+1, max{U I

k , U II
k } + kB̄ − Tk+1

}

≤ min
{

[min{U I
k , U II

k } + b(ζAk
k , Jk)]+ − Tk+1, max{U I

k , U II
k } − Tk+1

}
+ kB̄

= min{U I
k+1, U

II
k+1} + kB̄.

Again the same inequalities hold when the outer min is replaced by max. Hence, (5.10) holds
and the proof of the Lemma is complete for finite horizons. The infinite horizon case again
follows from (2.10).

For the proof of Theorem 5.4 we consider first an auxiliary system with b̂(i, j) := b∗ =
mini,j∈J b(i, j) whose value function will be denoted by ∗VN (s). Similarly, the system with
b̂(i, j) ≡ b∗ has value function ∗VN (s). From Corollary 5.3 we know that JLL is optimal in
these systems, hence, from Lemma 5.5 a)and b) we see

∗VNδ̄(s) = ∗VN (s) ≤ VN (s) ≤ VNδ̄(s) ≤ ∗VNδ̄(s). (5.12)

Now we apply Lemma 5.5 b) to the two value functions ∗VNδ̄ and ∗VNδ̄ with fixed separation
times. We obtain

∗VNδ̄(s) − ∗VNδ̄(s) ≤ B̄
N−1∑
k=1

kβk (5.13)

which together with (5.12) implies the assertion of Theorem 5.4 for the finite horizon, the infinite
horizon case again follows fom (2.10).

6 The Case of Complete Information : A Counter Example

In this Section, we assume that the controller knows the type of the airplane that has to be
routed in addition to the state of the runways. In this case, the control problem is much more
complicated. A simple switching policy as in Section 4 need not be optimal any longer as we
shall show by a counter example.

6.1 The Model

To model the new situation, the type of the newly arrived airplane is now included into the state
space, i.e. we put

X̃n := (Jn, ζI
n, U I

n, ζII
n , U II

n) and S̃ := J × (J × IR) × (J × IR)

12

where a state s̃ ∈ S̃ is denoted by s̃ = (k, i, u, j, v). k gives the type of the newly arrived airplane
and i, u, j, v are as before. As in Section 3 we have an external event z = (l, t), but now l is the
type of the airplane to arrive after the next interarrival time t, i.e. Zn = (Jn+1, Tn+1). Using the
notation of Section 3 we may write the transition function g̃ : S̃×A×Z → S̃ for s̃ = (k, i, u, j, v)
and z = (l, t) as

g̃(s̃, a, z) :=

⎧⎨
⎩

(
l, k, [u + b(i, k)]+ − t, j, v − t

)
if a = I(

l, i, u − t, k, [v + b(j, k)]+ − t
)

if a = II.
(6.1)

As cost function c̃(s, a) we now take the (deterministic) waiting time of the newly arrived airplane
when routed to runway a, i.e.

c̃(s̃, I) := [u + b(i, k)]+

c̃(s̃, II) := [v + b(j, k)]+.
(6.2)

As in the model of Section 3, the optimality equation of the finite horizon dynamic program is
given by

Ṽn+1(s̃) = min
a∈A

L̃aṼn(s̃) = min{L̃I Ṽn(s̃), L̃II Ṽn(s̃)}

where for s̃ = (k, i, u, j, v) and w : S̃ → IR+

L̃Iw(s̃) := c̃(s̃, I) + β
∑
l∈J

pl

∫ ∞

0
w

(
l, k, [u + b(i, k)]+ − t, j, v − t

)
F (dt) (6.3)

and
L̃IIw(s̃) := c̃(s̃, II) + β

∑
l∈J

pl

∫ ∞

0
w

(
l, i, u − t, k, [v + b(j, k)]+ − t

)
F (dt). (6.4)

6.2 A Counter Example

The following example shows that a monotonicity result similar to that of Theorem 4.1 cannot
hold in the present scenario. More precisely, if routing the airplane to runway I in state s̃ =
(k, i, u, j, v) is optimal then it need not be optimal to route the airplane to runway I in a state
s̄ = (k, i, ū, j, v), where ū < u. Hence, with respect to any (partial) ordering ′ ≺′ of S̃ which has
s̃ ≺ s̄ for the above states, monotonicity as in Theorem 4.1 needs not hold. As a consequence,
Theorem 5.2, Corollary 5.3 and Theorem 5.4 are no longer valid, though Lemmata 5.1 and 5.5
hold.

The counter example has a very small ū < 0, i.e. the last touch-down on runway I was a long
time ago. Then, if the current airplane needs only a small safety distance to the preceding one,
it might be better to save runway I for a future airplane which needs a larger separation time.

Example:

We assume that there are three types of aircrafts, J = {1, 2, 3} and that the matrix of separation
times is as given in [4]:

(
b(i, j)

)
i,j=1,...,3

=

⎛
⎝ 96 120 144

72 72 96
72 72 72

⎞
⎠ .

13

Let F (t) := 1 − e−t, i.e. we assume that the arrivals form a Poisson stream with rate λ = 1.

For a planning horizon of 2, i.e. N = 2, we obtain from (6.3) and (6.4) for the difference of the
expected cost between routing to I and routing to II in state s̃ = (k, i, u, j, v)

Δ̃2(s̃) = L̃I Ṽ1(s̃) − L̃II Ṽ1(s̃) = [u + b(i, k)]+ − [v + b(j, k)]+

+ β
∑
l∈J

pl

∫ ∞

0
λe−λt

(
min

{
[[u + b(i, k)]+ − t + b(k, l)]+, [v − t + b(j, l)]+

}

− min
{

[u − t + b(i, l)]+, [[v + b(j, k)]+ − t + b(k, l)]+
})

dt.

(6.5)

Now assume that we are in state s̃ = (k, i, u, j, v) := (1, 1,−96, 2,−72). Then we have c̃(s̃, I) =
c̃(s̃, II) = 0 and from (6.5), singling out type 3,

Δ2(s̃) = βp3

(∫ 24

0
(−24)e−tdt −

∫ 48

24
(48 − t)e−tdt

)
+ β(1 − p3)C1

≤ βp3(−24)(1 − e−24) + β(1 − p3)C1

for a constant C1 not depending on p3. For p3 large enough, we therefore have Δ̃2(s̃) < 0, i.e it
is optimal to route to runway I.

Now let s̄ := (1, 1,−144, 2,−72) then ū = −144 < −96 = u but

Δ̃2(s̄) = βp3

∫ 24

0
(24 − t)e−tdt + β(1 − p3)C2

= βp3(23 + e−24) + β(1 − p3)C2

again for a constant C2 not depending on p3. This time we have Δ̃2(s̄) > 0 for p3 large enough,
i.e. in state s̄ it is optimal to route to II. Hence, for any ordering ≺ on S̃ where u < ū implies
(k, i, u, j, v) ≺ (k, i, ū, j, v), Δ̃n(s̃) need not be s-increasing.

7 The Monotonicity of s �→ Δn(s)

In this Section we complete the proof of Theorem 4.1. We are using the model of Section 3, i.e.
s = (i, u, j, k) and Zn = (Jn, Tn+1).

Let us first introduce some notation, that allows to describe the behaviour of the system under
fixed sequences of actions and external events. For k ≥ 0 let

gk : S × Ak ×Zk → S

be defined by

g0(s) := s

g1(s, a, z) := g(s, a, z) as defined in (3.4)

gk+1(s, (a1, . . . , ak+1), (z1, . . . , zk+1)) = g
(
gk(s, (a1, . . . , ak), (z1, . . . , zk)), ak+1, zk+1

)
.

(7.1)

Let a = (a1, . . . , ak) ∈ Ak and z = (z1, . . . , zk) ∈ Zk. We denote the components of the state
gk(s,a, z) in the following way

gk(s,a, z) =:
(
τk
I , hk

I , τ
k
II , hk

II

)
(s,a, z) (7.2)

14

gk(s,a, z) is the state after k stages, starting in state s ∈ S, applying actions a ∈ An and given
that the external events z ∈ Zn were observed. Then, e.g. hk

I = hk
I (s,a, z) denotes the load on

runway I and τk
II = τk

II(s,a, z) is the type of the airplane at the tail of queue II at that time.

We make extensive use of ideas from [1]. In [1], a more general state transition mechanism is
considered. There, the transition function g depends on the action a only via an additional
random event y whose distribution qa is controlled by a. Our approach is the special case where
qI , qII are distinct one-point measures (cp. Lemma 2.3(i) in [1]). In [1] it is shown inductively
that s �→ Δn(s) is increasing with respect to some partial order on S under a number of
conditions. Translated into our context the following conditions are used

C.1 s �→ c(s, I) − c(s, II) is s-increasing

C.2 s �→ g(s, a, z) is s-increasing

C.3 g2(s, I, II, z, z′) ≥ g2(s, II, I, z, z′) for all z, z′ ∈ Z

C.4 s �→
[
c(s, I) + βc(g(s, I, z), II) − c(s, II) − βc(g(s, II, z), I)

]
is s-increasing for all z ∈ Z

C.5 s �→
[
c(gk(g2(s, I, II, z, z′),a, z), a) − c(gk(g2(s, II, I, z, z′),a, z), a)

]
is s-increasing for all

a ∈ Ak, z ∈ Zk, a ∈ A, z, z′ ∈ Z, k ≥ 0.

Note that conditions C.3 and C.5 examine the permutation of actions I, II in the first two stages
with the rest of the actions and all external events fixed.

It turns out that these assumptions do not hold in our context. Instead, we need slightly modified
conditions C.3 - C.5 which differ from the above only in that we permute the two first actions
as well as the two first external events. We therefore use C.1, C.2 and

C.3* g2(s, I, II, z, z′) ≥ g2(s, II, I, z′, z) for all z, z′ ∈ Z

C.4* s �→
[
c(s, I)+βc(g(s, I, z), II)−c(s, II)−βc(g(s, II, z′), I)

]
is s-increasing for all z, z′ ∈ Z

C.5* s �→
[
c(gk(g2(s, I, II, z, z′),a, z), a) − c(gk(g2(s, II, I, z′, z),a, z), a)

]
is s-increasing for

all a ∈ Ak, z ∈ Zk, a ∈ A, z, z′ ∈ Z, k ≥ 0.

We shall refer to the set { C.1, C.2, C.3*,C.4*,C.5*} of modified conditions as (C*) .We now
have to show (a) that the conditions (C*) hold in our model and (b) that the conclusions of [1],
namely that s �→ Δn(s) is s-increasing, hold under (C*).

7.1 Verifying the Conditions (C*)

We start with a Lemma.

7.1 Lemma

With the preceding notation we have for s = (i, u, j, v) ∈ S and for any a ∈ Ak, z ∈
Zk, k ≥ 0

a) i �→ τk
I (s,a, z) is increasing (with respect to the ordering defined in (4.1)), τk

I does
not depend on u, j, v.

b) i, u �→ hk
I (s,a, z) are increasing, hk

I does not depend on j, v.

15

c) j �→ τk
II(s,a, z) is increasing (with respect to the ordering defined in (4.1)), τk

II does
not depend on i, u, v.

d) j, v �→ hk
II(s,a, z) are increasing, hk

II does not depend on i, u.

Note that u �→ hk
I (s,a, z) and v �→ hk

II(s,a, z) are also convex.

Proof : a) With s = (i, u, j, v) we have τ0
I (s,a, z) = i and for k ≥ 1

τk
I (s,a, z) =

{
i if a1 = · · · = ak = II

lm if m = max{ν|1 ≤ ν ≤ k, aν = I} and zm = (lm, tm)
.

Hence i �→ τk
I is increasing and independent of u, j, v for fixed a, z.

To prove b) we proceed by induction on k ≥ 0. Let k = 0. We put

H(u, b, t, a) :=
{

[u + b]+ − t if a = I
u − t if a = II

Then u, b �→ H(u, b, t, a) are increasing and convex functions and with zk+1 = (lk+1, tk+1) we
see from (7.1) and (3.4)

hk+1
I (s,a, ak+1, z, zk+1) = H(hk

I (s,a, z), b(τk
I (s,a, z), lk+1), tk+1, ak+1)

=
{

[hk
I (s,a, z) + b(τk

I (s,a, z), lk+1)]+ − tk+1 if ak+1 = I
hk

I (s,a, z) − tk+1 if ak+1 = II.

(7.3)

Assume that a) holds for k. Then u, i �→ hk
i and u, i �→ b(τk

I (s,a, z), lk+1) are increasing mappings
that do not depend on j, v. From (7.3) it is then obvious that b) holds for k + 1.

c) and d) follow in the same way.

Now we can show that the above conditions (C) hold in our model.

7.2 Lemma

a) s �→ c(s, I) − c(s, II) is s-increasing

b) s �→ g(s, a, z) is s-increasing

c) g2(s, a, a′, z, z′) ≥ g2(s, a′, a, z′, z) for all a, a′ ∈ A, z, z′ ∈ Z
d) s �→

[
c(s, I) + βc(g(s, I, z), II) − c(s, II) − βc(g(s, II, z′), I)

]
is s-increasing for all

z, z′ ∈ Z
e) s �→

[
c(gk(g2(s, I, II, z, z′),a, z), a) − c(gk(g2(s, II, I, z′, z),a, z), a)

]
is s-increasing

for all a ∈ Ak, z ∈ Zk, a ∈ A, z, z′ ∈ Z, k ≥ 0.

Proof : a) We have u, i �→ [u + b(i, j′)]+ are increasing for all j′ ∈ J, hence from (4.3)

s �→c(s, I) − c(s, II)

=
∑
j′∈J

pj′ ·
(
[u + b(i, j′)]+ − [v + b(i, j′)]+

)

16

is s-increasing.

b) follows from Lemma 7.1.

c) To prove c), we look at the components of g2(s, I, II, z, z′) and g2(s, II, I, z′, z). With z =
(l, t), z′ = (l′, t′) we have τ2

I = l and τ2
II = l′ in both cases and as [x]+ − t ≤ [x − t]+, we obtain

h2
I(s, I, II, z, z′) = [u + b(i, l)]+ − t − t′

≤ [u − t′ + b(i, l)]+ − t

= h2
I(s, II, I, z′, z).

In the same way one shows h2
II(s, I, II, z, z′) ≥ h2

II(s, II, I, z′z). Hence c), i.e. C.3* follows.
Note that h2

I(s, II, I, z, z′) = [u − t + b(i, l′)]+ − t′ which we cannot relate to h2
I(s, I, II, z, z′)

without serious restrictions on the separation times b(i, ·). Hence the original condition C.3 as
used in [1] need not hold in our model.

d) From the definition of the one-stage cost function in (3.5) we have for s = (i, u, j, v), z =
(l, t), z′ = (l′, t′)

c(s, I) − c(s, II) + β
(
c(g(s, I, z), II) − c(g(s, II, z′), I)

)

=
∑
j′∈J

pj′
[
[u + b(i, j′)]+ − [v + b(j, j′)]+ + β[v − t + b(j, j′)]+ − β[u − t′ + b(i, j′)]+

]

=
∑
j′∈J

pj′
[(

[u + b(i, j′)]+ − β[u − t′ + b(i, j′)]+
)

−
(
[v + b(j, j′)]+ − β[v − t + b(j, j′)]+

)]
.

(7.4)

It is not difficult to see that an expression of the form x �→ r(x) − β r(x− t) with r increasing
and convex and 0 < β ≤ 1 is increasing in x. As u, i �→ u + b(i, j′) and v, j �→ v + b(j, j′) are
increasing we see from (4.3) that d) holds.

e) Fix s = (i, u, j, v) ∈ S and z = (l, t), z′ = (l′, t′) ∈ Z. Define

σ1 := g2(s, I, II, z, z′) = (l, [u + b(i, l)]+ − t − t′, l′, [v − t + b(j, l′)]+ − t′)

σ2 := g2(s, II, I, z′, z) = (l, [u − t′ + b(i, l)]+ − t, l′, [v + b(j, l′)]+ − t′ − t).

Let us assume that a = I. From Lemma 7.1 b) we see that

hk
I (σ1,a, z) = hk

I ((l, [u + b(i, l)]+ − t − t′, l′, [v − t + b(j, l′)]+ − t′), a, z)

is increasing in the first two coordinates of σ1 and does not depend on the last two, hence it is
increasing in i, u and does not depend on j, v. Similarly, hk

I (σ2,a, z) is increasing in i, u and is
independent of j, v. Using Lemma 7.1 a) we therefore have

c(gk(g2(s, I, II, z, z′),a, z), I) − c(gk(g2(s, II, I, z′, z),a, z), I) (7.5)

=
∑
j′∈J

pj′
(
[hk

I (σ1,a, z) + b(τk
I (σ1,a, z), j′)]+ − hk

I (σ2,a, z) + b(τk
I (σ2,a, z), j′)]+

)

=
∑
j′∈J

pj′
(
[hk

I (l, [u + b(i, l)]+ − t − t′, ·, ·) + b(τk
I (l, ·, ·, ·), j′)]+

−[hk
I (l, [u − t′ + b(i, l)]+ − t, l′, ·, ·) + b(τk

I (l, ·, ·, ·), j′)]+
)

It is not difficult to show that if r : IR → IR is an increasing function and d ∈ IR, t > 0, then

x �→ r([x]+ + d − t) − r([x − t]+ + d)

17

is increasing. With x = u + b(i, l) we obtain, that (7.5) is increasing in i, u and independent
from j, v, hence it is s-increasing. Similarly, for a = II we see that

c(gk(g2(s, I, II, z, z′),a, z), II) − c(gk(g2(s, II, I, z′, z),a, z), II) (7.6)

=
∑
j′∈J

pj′
(
[hk

II(σ1,a, z) + b(τk
II(σ1,a, z), j′)]+ − hk

II(σ2,a, z) + b(τk
II(σ2,a, z), j′)]+

)

=
∑
j′∈J

pj′
(
[hk

II(·, ·, l′, [v − t + b(j, l′)]+ − t′) + b(τk
II(·, ·, l′, ·), j′)]+

−[hk
II(·, ·, l′, [v + b(j, l′)]+ − t − t) + b(τk

II(·, ·, l′, ·), j′)]+
)

is independent of i, u and decreasing in j, v, hence s-increasing.

7.2 Monotonicity of s �→ Δn(s) under Conditions (C)

We now show that Δn(s) is s-increasing under our modified conditions. For the sake of com-
pleteness, we give a streamlined version of the proofs of [1] here .

7.3 Lemma

Let (C) hold. For any s ∈ S, n ≥ 0

s �→ Δn(s) is s-increasing.

Proof : We proceed by induction on n ≥ 0. For n = 0 we have with V0 ≡ 0 and s = (i, u, j, v)

Δ0(s) = LIV0(s) − LIIV0(s) = c(s, I) − c(s, II) (7.7)

which is s-increasing by condition C.1. Now assume that s �→ Δk(s) is s-increasing for all
k ≤ n − 1. We shall show that the same holds for Δn(s). Note that for any a, b ∈ IR we have

min{a, b} = b − [b − a]+ = a + [b − a]− (7.8)

where we denote
[a]− := min{0, a}. (7.9)

We now obtain for any s ∈ S, n ≥ 1

Δn(s) = LIVn(s) − LII Vn(s) (7.10)
= c(s, I) + β E [Vn(X2) | X1 = s, A1 = I] − c(s, II) − β E [Vn(X2) | X1 = s, A1 = II]
= c(s, I) + β E [min

a=I,II
LaVn−1(X2) | X1 = s, A1 = I]

−c(s, II) − β E [min
a=I,II

LaVn−1(X2) | X1 = s, A1 = II]

= c(s, I) + β E
[
LIIVn−1(X2) + [LIVn−1(X2) − LIIVn−1(X2)]− | X1 = s, A1 = I

]

−c(s, II) − β E
[
LIVn−1(X2) − [LIVn−1(X2) − LIIVn−1(X2)]+ | X1 = s, A1 = II

]

= c(s, I) + β E [LIIVn−1(X2) | X1 = s, A1 = I] + β E
[
[Δn−1(X2)]− | X1 = s, A1 = I

]

18

−c(s, II) − β E [LIVn−1(X2) | X1 = s, A1 = II] + β E
[
[Δn−1(X2)]+ | X1 = s, A1 = II

]
= c(s, I) + β E LIIVn−1(g(s, I, Z1)) + β E [Δn−1(g(s, I, Z1))]−

−c(s, II) − β E LIVn−1(g(s, II, Z1)) + β E [Δn−1(g(s, II, Z1))]+.

From the induction hypotheses and condition C.2 we now infer that s �→ Δn−1(g(s, a, z)) is
s-increasing. As [·]+ and [·]− are monotone functions we obtain that

s �→ E [Δn−1(g(s, I, Z1))]− + E [Δn−1(g(s, II, Z1))]+

is s-increasing. For the proof of the Lemma it is therefore sufficient to show that the remainder
of (7.10) is s-increasing, i.e.

s �→c(s, I) + β E LIIVn−1(g(s, I, Z1)) − c(s, II) − β E LIVn−1(g(s, II, Z1))

= E
[
c(s, I) + βc(g(s, I, Z1), II) + β2Vn−1(g2(s, I, II, Z1, Z2))

− c(s, II) − βc(g(s, II, Z2), I) − β2Vn−1(g2(s, II, I, Z2, Z1))
]

= E ξ(s, Z1, Z2)

(7.11)

where ξ is defined in (7.12) below.

Note that in the second equation of (7.11) we have exchanged Z1, Z2, which is possible as they are
i.i.d.. This is a minor change from the derivation in [1] and allows to use conditions C.3* - C.5*.
As Z1, Z2 are also independent of the rest, the monotonicity of (7.11) follows if s �→ ξ(s, z1, z2)
is s-increasing for all z1, z2 ∈ Z which is shown in the next Lemma.

7.4 Lemma

If s �→ Δk(s) is s-increasing for all k ≤ n then the following expression is s-increasing for
all z, z′ ∈ Z:

ξ(s, z, z′) := c(s, I) + βc(g(s, I, z), II) + β2Vn(g2(s, I, II, z, z′))

− c(s, II) − βc(g(s, II, z′), I) − β2Vn(g2(s, II, I, z′, z)).
(7.12)

For the proof of this Lemma we need the following definition let R0(s) := 0 and for a =
(a1, . . . , ak) ∈ Ak and z = (z1, . . . , zk) ∈ Zk let

Rk(s,a, z) =
k−1∑
m=0

βmc(gm(s,a, z), am+1).

Then Rk(s,a, z) is the discounted cost over k stages when starting in state s and following a
fixed routing policy a, with fixed external events z. Note that gm depends only on part of the
sequences a and z.

Proof : (of Lemma 7.4)

1. We follow the lines of the proof of Lemma 2.2 in [1]. For 0 ≤ k ≤ n and z, z′ ∈ Z let

Φk(s,a, z) := c(s, I) + βc(g(s, I, z), II) + β2Rk(g2(s, I, II, z, z′),a, z)

+ βk+2Vn−k(gk(g2(s, I, II, z, z′),a, z))

− c(s, II) − βc(g(s, II, z′), I) − β2Rk(g2(s, II, I, z′, z),a, z)

− βk+2Vn−k(gk(g2(s, II, I, z′, z),a, z))

(7.13)

19

where a = (a1, . . . , ak) ∈ Ak, z = (z1, . . . , zk) ∈ Zk are arbitrary fixed sequences. The first half
of Φk(·) describes the cost from n+2 stages starting in state s, when in the first k +2 stages the
fixed policy (I, II, a1, . . . , ak) is used, the external events (z, z′, z1, . . . , zk) occur and an optimal
policy is used for the remaining n − k stages. The second half of Φk(·) interchanges the actions
I, II and the first two external events z, z′.

2. The main step of the proof is to show that Φk is s-increasing for all k = 0, . . . , n by downward
induction on k = n, . . . , 0. The Lemma then follows as Φ0(s) = ξ(s).

2.1. For k = n, Φn reduces to the expression (7.21) in Lemma 7.5 below. It is proven there that
this expression is s-increasing for any n ≥ 1.

2.2 Now assume that Φk+1(·) is increasing in s for any sequences a ∈ Ak+1 and z ∈ Zk+1. We
want to show that the analogous result holds for Φk(·). Let s ≺ s′ and put

σ1 := gk(g2(s′, I, II, z, z′),a, z) σ2 := gk(g2(s′, II, I, z′, z),a, z)

σ3 := gk(g2(s, I, II, z, z′),a, z) σ4 := gk(g2(s, II, I, z′, z),a, z).

¿From C.2 and C.3* we obtain that σ1 ≺ σ2 and σ3 ≺ σ4. Again from C.2 follows σ3 ≺ σ1 and
σ4 ≺ σ2, hence we have

σ3 ≺ σ1, σ4 and σ1, σ4 ≺ σ2. (7.14)

Then

Φk(s′, a1, . . . , ak,z1, . . . , zk) − Φk(s, a1, . . . , ak, z1, . . . , zk)

= c(s′, I) + βc(g(s′, I, z), II) + β2Rk(g2(s′, I, II, z, z′),a, z)

− c(s′, II) − βc(g(s′, II, z′), I) − β2Rk(g2(s′, II, I, z′, z),a, z)

− c(s, I) − βc(g(s, I, z), II) − β2Rk(g2(s, I, II, z, z′),a, z)

+ c(s, II) + βc(g(s, II, z′), I) + β2Rk(g2(s, II, I, z′, z),a, z)

+ βk+2
(
Vn−k(σ1) − Vn−k(σ2) − Vn−k(σ3) + Vn−k(σ4)

)
(7.15)

2.2.1 We shall now show that

Γ := Vn−k(σ1) − Vn−k(σ2) − Vn−k(σ3) + Vn−k(σ4)

≥ max
a′∈A

[
La′Vn−k−1(σ1) − La′Vn−k−1(σ2) − La′Vn−k−1(σ3) + La′Vn−k−1(σ4)

]
.

(7.16)

To simplify the notational we put w(s) := Vn−k−1(s) Assume that a ∈ A is optimal in σ1 and
b ∈ A is optimal in σ4. Then

Γ ≥ Law(σ1) − LIIw(σ2) − LIw(σ3) + Lbw(σ4)
= LIw(σ1) − LIw(σ2) − LIw(σ3) + LIw(σ4)
− (LIw(σ1) − Law(σ1)) + LIw(σ2) − LIIw(σ2) − (LIw(σ4) − Lbw(σ4))

= LIw(σ1) − LIw(σ2) − LIw(σ3) + LIw(σ4)
− 1[a=II]Δn−k−1(σ1) + Δn−k−1(σ2) − 1[b=II]Δn−k−1(σ4)

≥ LIw(σ1) − LIw(σ2) − LIw(σ3) + LIw(σ4).

(7.17)

Here, the last inequality follows as it is assumed in this Lemma that s �→ Δl(s) is increasing for
all l ≤ n, hence we see from (7.14) that

Δn−k−1(σ2) − Δn−k−1(σ1) ≥ 0 and Δn−k−1(σ2) − Δn−k−1(σ4) ≥ 0.

20

In the same way we obtain

Γ ≥ LIIw(σ1) − LIIw(σ2) − LIIw(σ3) + LIIw(σ4)
+ 1[a=I]Δn−k−1(σ1) − Δn−k−1(σ3) + 1[b=I]Δn−k−1(σ4)

≥ LIIw(σ1) − LIIw(σ2) − LIIw(σ3) + LIIw(σ4).

2.2.2 Inserting the definition of La into (7.16) we obtain

Γ ≥ max
a′∈A

c(σ1, a
′) − c(σ2, a

′) − c(σ3, a
′) + c(σ4, a

′)

+ β E
(
Vn−k−1(g(σ1, a

′, Zk+1)) − Vn−k−1(g(σ2, a
′, Zk+1))

− Vn−k−1(g(σ3, a
′, Zk+1)) + Vn−k−1(g(σ4, a

′, Zk+1))
)
.

(7.18)

As Φk depends only on the first k components of a = (a1, . . . , ak+1) we may choose a′ = ak+1

to obtain

Rk+1(g2(s, I, II, z, z′),a, z)) = Rk(g2(s, I, II, z, z′),a, z)) + βkc(gk(g2(s, I, II, z, z′),a, z), ak+1)

= Rk(g2(s, I, II, z, z′),a, z)) + βkc(σ3, ak+1)
(7.19)

and similarly for σ1, σ2 and σ4.

2.2.3 Returning to (7.15) we obtain from (7.18) and (7.19)

Φk(s′,a,z) − Φk(s,a, z)

≥ c(s′, I) + βc(g(s′, I, z), II) + β2Rk+1(g2(s′, I, II, z, z′),a, z)

− c(s′, II) − βc(g(s′, II, z′), I) − β2Rk+1(g2(s′, II, I, z′, z),a, z)

− c(s, I) − βc(g(s, I, z), II) − β2Rk+1(g2(s, I, II, z, z′),a, z)

+ c(s, II) + βc(g(s, II, z′), I) + β2Rk+1(g2(s, II, I, z′, z),a, z)

+ βk+3 E
(
Vn−k−1(g(σ1, ak+1, Zk+1)) − Vn−k−1(g(σ2, ak+1, Zk+1))

− Vn−k−1(g(σ3, ak+1, Zk+1)) + Vn−k−1(g(σ4, ak+1, Zk+1))
)

= E
(
Φk+1(s′, a1, . . . , ak+1, z1, . . . , zk, Zk+1)

− Φk+1(s, a1, . . . , ak+1, z1, . . . , zk, Zk+1)
)

≥ 0

(7.20)

where the last step follows from the induction hypotheses.

7.5 Lemma

Let C.4* and C.5* hold. Then for all k ≥ 0,a ∈ Ak, z ∈ Zk the following expression is
s-increasing:

ζ(s) = c(s, I) + βc(g(s, I, z), II) + β2Rk(g2(s, I, II, z, z′),a, z)

− c(s, II) − βc(g(s, II, z′), I) − β2Rk(g2(s, II, I, z′, z),a, z).
(7.21)

21

Proof : We have from the definition of Rk

ζ(s) =
(
c(s, I) − c(s, II)

)
+ β

(
c(g(s, I, z), II) − c(g(s, II, z′), I)

)

+ β2
k−1∑
m=0

βm
(
c(gm(g2(s, I, II, z, z′),a, z), am+1) − c(gm(g2(s, II, I, z′, z),a, z), am+1)

)
.

(7.22)

The first part of this expression is s-increasing by condition C.4*, the second is a sum of terms
which are s-increasing by C.5*.

8 Conclusion

In this paper we have investigated optimal assignment rules in a particular model of aircraft
arrivals. We have shown that optimal policies are of switching type only if we restrict the
information on which decisions are based to the state of the two runways, i.e. to the workload
and the types of aircrafts waiting at the end of the queues.

Determining the optimal assignment policy explicitely is a most difficult task. Classical ap-
proaches as policy iteration or value iteration (see [11]) are of limited use here due to the
complex search space of possible decision rules. Recent approaches to incorporate numerical
approximation techniques are presented e.g. in [6].

Our results narrow the space of possible decision rules. If we restrict the search to monotone
rules, i.e. to switching levels, we are sure to cover policies that are optimal among those that
depend only on the state of the runways.

The authors of the present paper have some experience with the optimisation of assignment
policies using heuristic search methods as genetic algorithms where the expected waiting times
are estimated by discrete event simulation. The results of the present paper justify to a certain
extent the restriction to monotone policies in this search. Monotone policies or rather the
switching levels are easily stored and manipulated on a computer.

Our future research will focus on two topics. First, we shall investigate models that take into
account more than just one arrival. Even in the random environment assumed here, airport
controllers usually know about the next few arrivals and may base their decision on that in-
formation. Secondly, we shall work on approximation techniques as e.g. in [6] making use of
structural properties as proven in the present paper.

Acknowledgement: The authors would like to thank the referee of a former version of this
paper for useful suggestions concerning the monotonicity with respect to the types.

References

[1] Altman, E. and S. Stidham, Jr. (1995) Optimality of monotonic policies for two-action
Markovian decision processes, with applications to control of queues with delayed informa-
tion. Queueing Systems 21, p. 267 - 291.

[2] Bäuerle, N., O. Engelhardt-Funke and M. Kolonko (2002) Routing of Airplanes
to Two Runways: Stability and Bounds for the Waiting Times. Submitted for publication.

22

[3] Beasley, J.E., M. Krishnamoorty, Y.M. Sharaiha and D. Abramson (2000)
Scheduling Aircraft Landings - The Static Case. Transportation Science 34, p 180-197.

[4] Bolender, M.A. and G.L. Slater (2000) Evaluation of Scheduling Methods for Multiple
Runways. Journal of Aircrafts 37, 410 - 416.

[5] Bertsekas, D.(1987) Dynamic Programming: Deterministic and Stochastic Models. Pren-
tice Hall, Englewood Cliffs, N.J.

[6] Bertsekas, D. and John N. Tsitsiklis.(1996) Neuro-Dynamic Programming Prentice
Hall, Englewood Cliffs, N.J.

[7] Hordijk, A. , G. M. Koole and J. A. Loeve (1994) Analysis of a customer assignement
model with no state information. Prob. in the Engineering and Information Sciences 8, p.
419 - 429.

[8] Horonjeff, R. and F.X. MCKelvey (1994) Planning and Design of Airports. McGraw-
Hill, 4. ed., Boston.

[9] Koole, G. (1996) On the pathwise optimal Bernoulli routing policy for homogeneous
parallel servers. Mathematics of Operations Research 21, p. 469-478.

[10] Neuts, M.F. (1977) Some explicit formulas for the steady-state behaviour of the queue
with semi-markovian service times . Adv. Appl. Prob. 9, 141-157.

[11] Puterman, M.L. (1994) Markov Decision Processes. Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics, New York.

[12] Schäl, M. (1975) Conditions for the Optimality in Dynamic Programming and for the
Limit of n-Stage Optimal Policies to Be Optimal. Z. Wahrscheinlichkeitstheorie verw. Ge-
biete, 32, 179-196

[13] Stidham, S. Jr. and R. Weber (1993) A Survey of Markov Decision Models for Control
of Networks of Queues. Queueing Systems, 13, 291 - 314. New York.

23

