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ABSTRACT

The aim of this paper is to derive inequalities for random vectors by using the super-
modular ordering. The properties of this ordering suggest to use it as a comparison
for the ”strength of dependence” in random vectors. In contrast to already estab-
lished orderings of this type, the supermodular ordering has the advantage that it
is not necessary to assume a common marginal distribution for the random vectors
under comparison. As a consequence we obtain new inequalities by applying it to
multivariate normal distributions, Markov chains and some stochastic models.
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1. INTRODUCTION

A useful method to derive inequalities for positively dependent random variables is
to "measure” the strength of dependence. In their paper of 1989, Shaked and Tong
[11] started to investigate some partial orderings of random vectors which yield a
comparison of dependence. Most of the existing literature deals with the comparison

of positive dependence of exchangeable random variables (for references see Shaked



and Tong [11]) or random variables with a common marginal distribution (cf. Tong
[17]). In this paper we consider the new supermodular ordering defined by Szekli et
al. [13] (cf. also Chang [5]) which is stronger than the relations <x and <p defined
in Bergmann [3]. With this ordering it is possible to compare random vectors with
the same marginal distributions which are not necessarily equal. By doing so, we
derive new inequalities for multivariate normal distributions, Markov chains and for
system characteristics in stochastic models.

The paper is organized as follows: In section 2 we give some definitions of well-
known orderings as well as the supermodular ordering. We discuss properties of
these partial orderings and the relations between them. In section 3 we present
three models of general type which are frequently encountered in applications and
which yield the supermodular ordering. The first one is a modification of a model
from Shaked and Tong [11], the second is taken from Tong [17]. In the third model
the random variables X and Y evolve from a recursive equation. It appears to be
useful in the comparison of Markov chains and for the comparison of system char-
acteristics in stochastic models (cf. also Béauerle and Rieder [2]). In section 4 we
apply our results to normal distributions, Markov chains and stochastic models from

biology, telecommunication and risk theory.

2. ORDERINGS

Throughout the paper we assume that two random vectors X = (Xi,...,X,) and
Y = (Y1,...,Y,) are given with values in IR". By PX and PY we denote the
probability measures on the Borel-o-algebra B(IR™) of IR™ induced by X and Y
respectively. Furtheron, we suppose that the marginal distributions of X and Y are
the same i.e. X; 4 Yi, © = 1,...,n. Occasionally we even assume that X and Y
have a common marginal distribution i.e. X; 4 4 X, 4 Y, 4 4 Y,,. There
are a lot of possibilities to "measure” the strength of dependence in random vectors.

We will first recall two of the well-known (see e.g. Tong [17], Shaked and Tong [11],

Bergmann [3]), noting that ”increasing” and ”decreasing” are used in a non-strict



sense throughout the paper. A function which is either increasing or decreasing will

be called monotonic.

Definition 2.1

a) For two random vectors X and Y with a common marginal distribution de-
note X <,q Y (the components of Y are more positively dependent than the

components of X) if
B, f(Xi) < BIL, f(Y3) (1)
for all measurable functions f : IR — IR for which the expectations exist.

b) For two random vectors X and Y we denote X <gp) Y if
ETLZ, fi(Xy) < BITL, fi(Y3)

for all increasing (decreasing) functions fi,...,f, : IR — IR; for which the

expectations exist.

Remarks:

a) If (1) holds for all measurable functions which are positive we write <p4, .

b) X <,qs Y implies P(X; € B,...,X, € B) < P(Y; € B,...,Y, € B) for all
B € B(IR) since for indicator functions Ipx  xp(z) = I} Ip(z;).

c) X <,q Y implies cov(f(X;), f(X;)) < cov(f(Y3), f(Y;)) for all 4,5 and measur-
able f.



d) An equivalent definition of <y and <p is

X <gY if and only if P(X >t)<P(Y >t) forall t e R",

X<pY ifandonlyif P(X <t)<P(Y <t) forall teR",

see Bergmann [3]. For another equivalent definition see Riischendorf [9].
e) It is easily seen that X <y Y and X <p Y together imply X; Ly,
f) X <k Y, X <pY together imply cov(f(X;),g(X;)) < cov(f(Y:),g(Y;)) for all

1,7 and f,g: IR — IR, which are both increasing or decreasing.

The properties (b) and (c) of <, and the properties (d) and (f) of <g, <p are a
justification for the use of these orderings to measure the strength of dependences.
We will now introduce an ordering which was first defined in Szekli et al. [13] (cf.
also Chang [5]) and which is based on the following definition for supermodular

functions.

Definition 2.2
a) A function f: IR"™ — IR is called supermodular, if for all z,y € IR" :
flavy)+ flny) = flz)+ fly)

where z V (A)y denotes the componentwise maximum (minimum) of z,y.

b) For two random vectors X and Y we denote X <, YV if
Ef(X) < Ef(Y) (2)

for all measurable, supermodular functions f : IR" — IR for which the expec-

tations exist.

Shaked and Tong [11] mentioned that especially employing symmetric functions in
(2) leads to useful orderings (a function f : IR"™ — IR which satisfies f(z) = f(Ilz)

for all permutations Iz of z is called symmetric). This is main-



ly due to the fact that symmetric functions imply an analogous relation for the order
statistics. Therefore, we will also concern the relation which is obtained by requiring
(2) for all symmetric and supermodular functions, denoted by <gymsm (notice that
supermodular functions are not necessarily symmetric in general). Nevertheless it
will turn out that the supermodular ordering is very useful to compare the strength
of dependence in sequences of random variables which bear a certain time struc-
ture (e.g. Markov chains) and are not necessarily exchangeable (a random vector
is called exchangeable, if the joint distribution is invariant under permutations).
Important properties of supermodular functions are summarized in the following
lemma. Proofs, if not given here, can be found in Marshall and Olkin [7] or Heyman

and Sobel [6].

Lemma 2.1

a) Let f: IR™ — IR be supermodular and ¢, ¢1,...,¢, : IR — IR.

(i) If f is increasing then max{f,c} is supermodular for all ¢ € IR.

(ii) If f is monotonic and ¢ increasing and convex then ¢o f is monotonic and

supermodular.

(iii) If ¢1,..., ¢, are monotonic in the same direction then the composition

f(d1(1), ..., dn(.)) is supermodular.
d) Let ¢; : R — IRy, i = 1,...,n and define f(z1,...,x,) = I} ¢i(zi). [ is

supermodular if and only if ¢1, ..., ¢, are monotonic in the same direction.

Proof of part b): Let n = 2, f(z1,z2) := ¢1(x1)P2(x2) and assume w.lo.g. z; <

Y1, T9 > Y2. f is supermodular if and only if

b1(w1)d2(z2) + d1(y1)P2(y2) < d1(w1)P2(y2) + d1(y1)d2(z2) &
& (p2(22) — d2(y2)) (1(y1) — ¢1(x1)) >0



which is true if and only if ¢; and ¢o are both increasing or decreasing. The state-

ment for arbitrary n follows easily by induction. a

We note in passing that if f € C2(IR") (i.e. f is twice continuous differentiable)
then f is supermodular if and only if %;mjf(x) >0, Vi#4, i,j=1...,n
This is sometimes a convenient characterization of supermodular functions. These
properties imply of course a lot of interesting properties for the <, and <yysm
ordering. Beforehand, we note that <y (<;.) is used for the stochastic (increasing
convex) ordering i.e. X <y Y (X <;c Y) if and only if Ef(X) < Ef(Y) for all
f : IR" — IR increasing (increasing and convex) for which the expectations exist.

(See e.g. Shaked and Shanthikumar [10] or Szekli [14]).

Lemma 2.2 If two random vectors satisfy X <g,, Y then

a) Xi LY, i=1,...,n.

b) cov(f(X;),9(X;)) < cov(f(Y;),g(Y;)) for all f,g: IR — IR, both increasing or
decreasing.

c) max(Xy,...,X,) >4 max(Yy,...,Y,), min(Xq,..., X,) <g min(Y7,...,Yy).

d) (Xiy,- o Xi,) <sm (Yip,...,Ys) forall 1 <iy <...<ip<n.

Proof: a), d) are direct consequences of the definition.
b) Follows from part a) and Lemma 2.1 b).
c) Let f : IR — IR be decreasing, z,y € IR" and assume w.lo.g. that

max(Zi,...,TnyY1,---,Yn) = zj for i € {1,...,n}. Then
f(max(x1,...,2,)) + f(max(y1,...,y)) = f(max(z1 Vy1,..., 20 Vyp))+

+f(max(y1,...,yn)) < f(max(zy Vyi,..., 20 Vyn)) + f(max(zy Ayr, ..., 20 Ayn)).

Hence f o max(.,...,.) is supermodular for all f decreasing which yields
max(Xy,...,X,) >5 max(Y1,...,Y,). The second statement follows analogously.

|



For the next lemma we need the notion of majorization (see e.g. Marshall and Olkin
[7]): let 2,y € IR". Denote z < y (y majorizes x) if and only if 37, ; z; <

1 Y, T = L...,n—1, >, T = it Yli]s where z[ > .2 T[p] denotes
the increasing rearrangement of z. For random variables, (X[, .., X},) denotes

the order statistic.

Lemma 2.3 If X, Y are exchangeable with same marginal distribution and X <gymsm

Y then

for all monotonic functions f : IR — IR for which the expectations exist.

Proof: We have to show that E(— Y%, f(Xp) < E(— k f(Y}y)) for all mono-
tonic functions f: IR - IR and k = 1,...,n — 1 (equality for £ = n holds since X

and Y have the same marginal distribution).

Define h(z) := —max1§i1<m<ik§n(zf:1 z;;) and g(z) = (f(71),..., f(zn)). Chang
[5] showed that h(z) is supermodular. From Lemma 2.1 a) we know that h(g(z)) is

supermodular, too which yields the result. O

Important applications of the supermodular ordering are the following (see e.g.

Tchen [15] and Meester and Shanthikumar [8]).

Lemma 2.4

a) (Lorentz-inequality) Let X,...,X,, be identically distributed random vari-
ables. Then (X1,...,X,) <sm (X1,...,X1).

b) Let {X,} be a sequence of independent random variables. If {Y,} is



sequentially stochastic increasing (i.e. P(Y, €. | Y1 =t1,..., Y1 = tp_1)

is stochastically increasing in (t1,...,t,—1) for all n) and X, 4 Y,, then

(X1, Xpn) <sm (Y1,...,Y).

At the end of this section we examine briefly the relations between the introduced
orderings. From Lemma 2.1 b) it follows directly that X <y, Y implies X <y YV
and X <p Y. In the case of n = 2 it even holds that (X1, Xs) <gp, (Y7,Y3) if and
only if (X1, X2) <g (¥1,Y2) and (X1, X32) <p (Y1,Y2). This can be derived from
Theorem 3 in Riischendorf [9] or Theorem 1 in Tchen [15].

As far as the orderings <y, and <p4 (resp. <,44) are concerned, there are random
vectors which satisfy X <, ¥ but not X <,; Y (X <p44+ Y) and vice versa. This

shows the following examples:

Example 2.1 Let X = (X1,Xy), Y = (Y3,Ya), with P(X = (i,j)) = &, i,j €
{1,2,3,4} and P(Y = (1,4)) = P(Y = (2,3)) = 0, P(Y = (2,4)) = P(Y =
(1,3)) = g and P(Y = (i,5)) = & otherwise (4,5 € {1,2,3,4}). Then it is easily seen
that X <, Y. But choosing f: R — IRy as f(1) = f(4) =1, f(2) = f(3) =0 we

obtain Ef(X1)f(X2) > Ef(Y1)f(Y2) which implies that X Zp4, Y, hence X £,q Y.

Example 2.2 Let X, Y be independent and identically distributed (iid) random vari-
ables. ~ We will see in section 3 that (X, X, X, X,Y)Y) <,4 (X,X,Y)Y,
Y,Y). But they are surely not <, ordered, since then by Lemma 2.2 d) (X, X) <y,
(X,Y) which contradicts the Lorentz-inequality. Hence X £, Y.

3. THE MODELS

In this section we investigate three different constructions of random vectors X and

Y which can be compared with respect to their strength of dependence.



The first model is a modification of a model by Shaked and Tong [11]. Model 3.2 was
proposed by Tong [17] where he showed that the random vectors X and Y can be
compared with respect to <,q1 (<pq). We will now show that they are supermodular
ordered, too. The third model is of recursive nature and leads to the comparison of

Markov chains and system characteristics in stochastic models.

Model 3.1 (cf. Shaked and Tong [11])
In this model we suppose that the n-dimensional random vectors X and Y are of

the following specific structure

(Xla- o aXn) = (gl(ZlaW)a' . agn(ZnaW))

(Yla"'ayn) = (gl(UhVaW)aagn(UnaI/VaW))

where 71, ..., 7, are iid random variables, Uy, ..., U, are iid random variables and
(V,W) is a random vector independent of {Z;} and {U;}. Moreover, we assume for
the measurable functions ¢; : IR> — IR and §; : IR> — IR that for every fixed w in
the support of W

9i(Ziyw) £ §i(UL, V,w) i=1,...,n.

Shaked and Tong [11] showed that we obtain X <,4 Y if g; and g; are independent

of 7. Under a different assumption it is possible to prove

Theorem 3.1 If the functions g; are increasing in the second component, we obtain

under the assumptions of model 3.1

X <sm Y.

Proof: Let f : IR" — IR be supermodular and let w be a realization of W and
Ul,..., U, a realization of (Uy,...,U,). Denote by Vi,...,V, a sequence of iid
random variables with the conditional distribution of V given W = w. From
the assumptions we know that g1 (u1, Vi,w), ..., gn(un, Vu,w) are independent and

gi(ug, Vi, w) 4 gi(u;, V,w). Denote by G; = (g1(u1,V,w),...,gi(u;, V,w)). Take z



and y from the support of G;_1 such that x < y. Since g is increasing in the second
component we obtain for allw € {w | G;_1(w) =z} and W’ € {w | G;—1(w) = y} that
V(w) < V(). Therefore, the conditional distribution P(g;(u;, V,w) € . | G;—1 = x)

is increasing in . Hence we get with Lemma 2.4

Ef(gl(ZhW)a s 7gn(Zn7W)) = EE[f(gl(ZhW)a- . 7gn(Zn7W)) | W] =
= EE[f(gl(UthaW)a 7§n(Un7Vn7W)) | WUla"'vUn] S
< EE[f(gl(UlaVaW)’ agn(UnaVaW)) | W’ UlaUn] =

= Ef(gl(Ula‘/aW)a ce agn(UnaV’ W))

which completes the proof. a

Model 3.2 (cf. Tong [17])

Let k and k' be two n-dimensional vectors with
k= (k... k0,...,0), K =(K,....kl0,...,0)

1<ril<n, kykieINforalliand Y} k=3 k =n.
Suppose that k' majorizes k. Notice that k < k' implies | < r. The n-dimensional

random vectors X and Y satisfy

X1 = g(UbVlaW) i = g(UlaI/hW)

Xkl = g(UkalaW) Yk}’l = g(Uk’la‘/laW)
X1 = gWUk+1, V2, W) Yo = gUk 41, V2, W)

Xivrke = 9Ukiske, V2o, W) Yirigr = g(Upg a5 V2, W)

where Uy, ..., U, are iid random variables, V;,...,V, are iid random variables and
W is a random variable independent of {U;} and {V;}. ¢ : IR> — IR is an arbi-

trary, measurable function. IL.e. the random variables Xy,..., X, (Y1,...,Y,) are



partitioned into r (/) groups. Each random variable depends on a common random
variable W, a group specific random variable V; and an individual random variable
U;.

Tong [17] proved under these assumptions that X <,z Y and X <,; Y if in

addition k£ and &’ contain only even natural numbers. We will now show

Theorem 3.2 If the function g is monotonic in the second component, we obtain

under the assumptions of model 3.2

X Ssymsm Y.

In order to prove Theorem 3.2 we need the following lemma:

Lemma 3.3 Let {X;} be a sequence of iid random variables and define the n-

dimensional vectors k, k' as above. Denote

X=(X1,..., X1, X0, ., Xoyo o, Xry o, X))

Y = (X1, X1, Xoy ooy Xoy ooy Xpy v X))
where the block of X;’s in X (Y') has length k; (k). If k < k" then

X Ssymsm Y.

Proof: 1t is known that if k < k' then there exists a sequence z', ..., 2" € INJ such

that k < 2! < ... < 2" < k' and each two vectors 2*, z'T!

, 4 =1,...,n—1differ only
in two components (see e.g. Marshall and Olkin [7]). Therefore it suffices to prove
the statement for n = 2. Let (k1,k2) < (K, k%), (assume w.l.o.g. k1 > ko, k] > k)

1.e. klgkll andk1+k2:k'1+k'2:m.



Let X and Y be independent and identically distributed. Denote by X (Y (®)) the
i-th component of a vector with X() = X (Y() =Y). We have to show

(XD x )y Gy )y <o (XD X Ry D)y (m)y

It can be easily verified by induction that it suffices to prove the above inequality
for K{ = k1 + 1, k), = ky — 1. Let f : IR™ — IR be symmetric and supermodular.
Then

1) X(kl) Y(k1+1), o ’y(m)) —

= 2// gk g kt) o (m)y
y< 0,5 ®4D 5] P (da) PY (dy) <
1 / b

. ,y<'f1+1>, 282 2] PX (da) PY (dy) =

= Ef(X(1>,...,X<’f1+1>,Y<’f1+2>,...,Y<m>)

where the inequality holds due to the following observation (using the assumption

that f is symmetric and supermodular): let z,y € IR. Then

e, g0 o) )y @) ) pm)y
S W, g gy
FlyD, .yt glhi—ket2) Gt ka2 ) <
< faW, . gkt k) m)y g
f(y(l)’ o ,y(kl—k2+1)’x(k1—k2+2), o ,x(kl)’y(kl-lrl), o ’y(m)) -
= f(x(l)’ gt k) ,y(m)) + f(y(l), Lyt glet2) ’x(m))
which completes the proof. O

Proof of Theorem 3.2: Define the n-dimensional random vectors V and V' as the
sequence of V;’s respectively which appear in the construction of X and Y in model

3.2 i.e. V and V' are defined in the same way as X and Y in Lemma 3.3, where



{Xi} is replaced by {V;}. Let f: IR" — IR be symmetric and supermodular. Then
Bfx) = [ [ [/ [ ot o), gl v w) P dun)..
RrRJE LJR IR
. PU(dun)} PV (d(vr, .., v0)) PV (dw)

For an arbitrary fixed w from the support of W we define the function

h: IR™ — IR as the inner integral

h(vi, ..., o) = /R.../Rf(g(ul,vl,w), ey gty v, w)) PY(duy) ... PY(duy,).

From Lemma 3.3 we know that V' <gynsm V'. Therefore, it remains to show that

h is symmetric and supermodular. Symmetry follows directly from the assumption

that f is symmetric and supermodularity can be shown with Lemma 2.1 a). a
Model 3.3
Let V1,...,V, be a sequence of iid random variables and ‘71, cee Vi, a sequence of ran-

dom variables such that V; 4 f/Z for all 7 and {f/l} is sequentially stochastic increasing.

Let Uy, ..., U, be a sequence of iid random variables which are uniformly distributed
over the interval [0,1]. For p € 0,1) let Xy = i,
Y1 = f/l and

Xipt = Xi+IppnU)(Vi — Xy)
Yisi = Yi+IpuU)(V;=Y), f i=Vj,, i=1,...,n—1

and denote X = (X1,...,X,), Y =(Y1,...,Y),).

Theorem 3.4: For model 3.3 we obtain
X < Y.

Proof: The definition of the random variables {V;} and {V;} implies that

(Vis.. s V) <om (Vi,...,V,) (see Lemma 2.4). Therefore, the proof follows directly

from the following observation: let ki,...,k, € IN be fixed. Then it is easily seen



that  (Vi,...,Va)  <em  (Vi,...,Vn) implies (VY. v v
VD VY <o (O, T O ) T where Ky € I,
Since the random variables X and Y are of this structure with random k; (indepen-

dent of {X;} and {Y;}), the proof is complete. 0

4. EXAMPLES AND APPLICATIONS

The theorems of section 3 for the general models 3.1-3.3 can be used to derive
inequalities for certain distributions and system characteristics of stochastic models.
This is particularly of interest in applied problems, where we may be able to control
the amount of dependence among some random variables. We will restrict ourselves
to applications concerning the supermodular ordering. Applications for the <,4
ordering can be found in Shaked and Tong [11] and Tong [17].

In a first paragraph we deal with inequalities for normal distributions due to
dependence. A second one is dedicated to the comparison of Markov chains and the

last paragraph contains applications for stochastic models.

4.1. Inequalities for normal distributions

Example 4.1 (Equicorrelated normal variables)
Let X be N(u,X(p))-distributed with p= (p1,...,p4n) pi € R and Z(p) = (0yj)

such that o;; = 02, oij = po?for1<i<j<mn, o?2€ R, pe|0,1].

Theorem 4.1 If X is N'(u, X(p))-distributed and Y is N (u, X(p'))-distributed as
above with p,p’ € [0,1] then

X <gnY ifandonlyif p<p'.

Proof: The ”only if’-part follows from Lemma 2.2 b). For the ”if’-part let
Uy o s Uy Vi, oo Vi, ViW o be  iid - N(0,1) random  variables and  define
Zi = N1=p U +p—p Vi, i = 1,...,n. Then Z,...,7Z, are iid. With
Gi(w,v,w) = o (VT=F ut VI —p v+ /pw) +pi and gy(z,w) = oz + /pw) + i




we obtain g;(Z;, w) u (U, Vow), i =1,...,n for all w € IR.
From Tong [18] p.120 we know that (Xi,...,X,) 4 (91(Z1, W), ..., gn(Zy,W)) and
(Y1,...,Y,) 2 (g1 (U1, V,W), ..., gn(Uy,, V,W)). Since g is increasing in the second

component we can apply Theorem 3.1 which yields the result. O

Example 4.2 (Multivariate normal distribution)
Let k be an n-dimensional integer vector as given in model 3.2 and let X (k) be
N (p, X)-distributed with p= (y,...,n)" and (k) = (0;;) where 0;; = 02 and for
i FJ
0%pa, if1<i,j<ky, ki +1<40,5 <ki+ka,...
oij = e Lk <4, §<n

o?p1, else

with 0 < p; <p2 <1, p € IR, 026B+.

Theorem 4.2 If X is N'(u, X(k))-distributed and Y is N (u, X2(k"))-distributed with
two n-dimensional integer vectors k and k' as given in model 3.2 and X(k) is defined
as above, then

k <k implies X(k) <symsm X (K').

The proof follows directly from Theorem 3.2 and a similar construction of X (k) and

X (k") as in the proof of Theorem 4.1.

Remark: In Theorem 4.2 the random variables (X1,...,X,) = X(k) are parti-

tioned into r groups of sizes ki, ..., k,. The correlations of the variables



within the same group are py and the correlations of variables from different groups

are pi.

4.2. Comparison of Markov chains

With the help of model 3.3 it is possible to compare the strength of dependence in
certain Markov chains (cf. Bauerle [1]). We will first consider discrete-time Markov

chains.

Application 4.3 (Discrete-time Markov chains)
Let 0 < p1,...,pm < 1 and define p = 37" p;. Suppose p < 1. Let {V;} be iid
random variables with P(V; = j) = ‘T;, j=1,...,m and define {X,,} as in model

3.3. Then
PXpp1 =7 Xp=1)=P( ""I[O,p}(Un)(Vn —i) =j) =pP(Vy =) =Dy
ifi+jandifi=j
P(Xpy1=i| Xp=1i)=pP(V,=i)+1-p=1->_p,
v#i
ie. {X,} forms a Markov chain with state space {1,...,m} and transition matrix
P = (pij), where pij = p; if i #jand p;y =1 - 3,; pu-
Let {V,,} be a Markov chain with V; 2V, and transition matrix Q = (¢ij), where
qij = %i if i #jand gii =1 — £ 32, py, with ¢ € [0,1]. It is not difficult to show
that {f/n} is sequentially stochastic increasing and Vi, 2 Vp, for all n € IN. If we

define {V,,} as in model 3.3 we obtain (suppose Y;, = V;_)
P(Ypi1 =34 | Yy =1i) = P(i+ Ijp ) (Un) (Vi — i) = j) = pP(V}, = 5) = cp;
ifi+£jandifi=j

PYn1=1i|Y,=i)=pP(Vi=i)+1—-p=1—-¢c> p,
V£
i.e. {¥,} forms a Markov chain with transition matrix P’ = (p;), where p}; = cp,

if 1 #j and p; =1 — ¢}, py. By applying Theorem 3.4 we obtain



Theorem 4.3 For the above defined Markov chains and n € IN it holds that

(Xla---aXn) Ssm (Yla---aYn)

Application 4.4 (Continuous-time Markov chains)

Let {X(¢),t > 0} be a continuous-time Markov chain with state space {1,...,m}
and intensity matrix Q = (gij), with ¢;; = o; € Ry ifi # jand ¢; = —qii = 3, ; -
Denote a = 3°; avj. It is well known that {X(¢),t > 0} can be constructed in the

following way (cf. Stoyan [12]):

Define {A;,} as a Markov chain with initial distribution (¢, ..., %) (i.e. P(Ag =
j) = <%) and transition matrix P = (p;;), with p;; = = if i # j and p; =
1 -3, %. Denote by {0,} a sequence of iid random variables which are expo-

nentially distributed with parameter «. If we define Z(t) = A, ifog+... + 01 <
t <og+...+ o, where og = 0 then {Z(t), t > 0} 4 {X(t), t > 0}. Furtheron, let
{Y (t),t > 0} be a continuous-time Markov chain with intensity matrix c@, ¢ € (0, 1].
The corresponding discrete-time Markov chain {A/,} in the construction above has
transition matrix P’ = (p;-j), where p;j = c% ifi# jand p), =1— CYuri
whereas {0, } stays the same. I.e. the Markov chains {A,} and {A]} are of the
same form as in application 4.3. Therefore Theorem 4.3 together with Lemma 2.2

d) implies

Theorem 4.4 For the above defined Markov chains and 0 < t; <ty < ... <t, <

0o, n € IN we obtain

4.3 Applications to stochastic models

Application 4.5 (Genetic selection) cf. Tong [16]
Suppose that there are r families of animals of sizes ki, ..., k,. The phenotype X;

of the i-th animal (belonging to family j) is effected by a common random variable



W, a family-specific random variable V; and an individual random variable U; as in
model 3.2 (It is often assumed that X; = p+V;+U;, where i € IR is a constant and
V; and U; are N'(0,07) and NV'(0, 03)-distributed). We want to keep the animal with
maximal X; for breeding. From Theorem 3.2 we know that if (k,...,k.,0,...,0) <
(kl,...,k},0,...,0) then X <gymem X'. In particular max; X; >4 max; X|. Le. if
we are only able to observe the phenotypes of n animals, we should choose these
animals from different families, since by then the expected maximal phenotype will
be the greatest. (Each other choice will take at most two animals from the same

family which leads to smaller E max X;.)

Application 4.6 (TDM-model) cf. Chang et al. [5]

Consider the following queueing model for a Time Division Multiplexing (TDM)
system with voice/data integration: during the (n + 1)-st time frame, D,, data
packets and V;, voice packets are arriving. {D,} is supposed to be a sequence of iid
random variables, independent of {V,,}. {V},} is supposed to be a superposition of N
independent two-state Markov chains {Jg)}, i =1,...,N which alter between the
silence state (state 0, i.e. no packets are transmitted by source i) and the talkspurt
state (state 1, i.e. voice source ¢ transmits one voice packet during time frame n+1).
Hence V,, = YN, JS The transition matrix of the Markov chain {qui)} is assumed
to be

(i) 1—cpi!  opf’

cpy 1 —cp



with 0 < pl) +p < 1,i=1,...,N and c € [0, 1].
The arriving data and voice packets can be processed by M channels or slots, each
of which is able to handle one packet per time frame. The queue size S,, at the end

of the n-th time frame is then given by the following recursive equation
Sp41 =max{0,S, +V, + D, — M}, ne€ INy.

The Markov chains {JT(Li)} are obviously of the same structure as in Application
4.3 (with m=2). Since they are independent, we obtain by inductive application of
Theorem 4.3 (Vo,...,Va) <em (Vy,...,V!)if 0 < ¢ < ¢ <1 (where parameter ¢
belongs to {V}'}). If we denote s1 = ®1(vy) = max{0,vy + dp — M} and for n > 1,
Sp+1 = Ppt1(vo, ..., vp) = max{0, &, (vy,...,vp—1) + vy +dy, — M} it is possible to
show inductively with the help of Lemma 2.1 that ®,; is supermodular (and in-
creasing) in (vo, . .., vp). Therefore we obtain E®, (Vp,...,V,) < E®,(Vy,..., V. _,)
if ¢ < ¢ for fixed (dy,...,d,—1) € IR". Since {D,} is independent of {V,,} we get
ES, < ES] if ¢ < c. Le. the greater the dependence between on and off-periods,

the greater is the expected number of waiting data packets at time n.

Application 4.7 (Ruin model)

Suppose that an insurance company is interested in the time Z of the next claim
arrival. By N (t) we denote the counting process of the claims (i.e. N(¢) denotes
the number of claims which have arrived before time ¢). Assume that N(¢) is a
Markov-modulated Poisson process with intensity A(¢), i.e. {\(¢),¢ > 0} is a Markov
process with finite state space and given {A(¢),t > 0}, N(¢) is an inhomogeneous
Poisson process with (deterministic) intensity {A(¢),¢ > 0}. Assume further that
{A(t),t > 0} has an intensity matrix Q = (cg;j), with ¢;; = aj € IRy if @ # j
and ¢; = —gii = X,z , c € (0,1] as in Application 4.4. Take c,¢’ € (0,1]
such that ¢ < ¢. Denote by {A,}, {AL} and {o,} the constructive elements
of the Markov chains as in Application 4.4 respectively. Hence we know that
(A1, An) >om (A],...,AL). Denote by {X;} and {X]} independent random
variables which are exponentially distributed with random parameter A;. We ob-

tain now (Xi,...,Xp) >em (X{,...,X]) with a similar argument as in Theorem



3.3 of Bauerle and Rieder [2]. Finally suppose that {s;} is a realization of {o;} and
0<s1<...<814+...+8, <t <81 +...4+ 3p4+1 with t € IRy. Hence for the claim

arrival times Z and Z’ with parameter ¢ and ¢’

P(Z > tl{oi} ={si}) =P(X1 >5s1,...,Xpn > 8p, Xpy1 >t —81 — ... —8p) =
= Elppss)(X1) - Tigss ] (X)) Diast—s1— 6] (Xng1) 2
> EI[x>51}(X{) cee I[:v>5n] (X;L)I[:v>t—51—...—sn]( 7"L+1) =P(Z' >t | {oi} = {si})

since I1ys.1(4) - Io>s,] () [o>t—s,—...—s,](-) is supermodular. Because {o;} is inde-
pendent of {X;} we obtain Z >4 Z' i.e. the greater the dependence in the intensity

process, the longer is the time it takes for the first claim arrival.

References

[1] Béauerle, N. (1997). Monotonicity results for MR/GI/1 queues. To appear in J.
Appl. Prob., 34.

[2] Bauerle, N. and Rieder, U. (1997). Comparison results for Markov-modulated
recursive models. To appear in Prob. Eng. Inf. Sci.

[3] Bergmann, R. (1991). Stochastic orders and their application to a unified ap-
proach to various concepts of dependence and association. IMS Lecture Notes-
Monograph Series, 48-73.

[4] Chang, C., Chao, X. and Pinedo, M. (1990). Integration of discrete-time cor-
related Markov processes in a TDM system. Prob. Eng. Inf. Sci. , 4, 29-56.

[5] Chang, C. (1992). A new ordering for stochastic majorization: Theory and
applications. Adv. Appl. Prob. 24, 604-634.

[6] Heyman, D. and Sobel, M. (1984). Stochastic models in operations research,
volume II: Stochastic optimization. McGraw-Hill, New York.

[7] Marshall, A. and Olkin, I. (1979). Inequalities: Theory of majorization and its
applications. Academic Press, New York.

[8] Meester, L. and Shanthikumar, J. (1993). Regularity of stochastic processes.
Prob. Eng. and Inf. Sci. , 7, 343-360.

[9] Riischendorf, L. (1980). Inequalities for the expectation of A-monotone func-
tions. 7. Wahrscheinlichkeitstheorie verw. Gebiete, 54, 341-349.

[10] Shaked, M. and Shanthikumar, J. (1994). Stochastic orders and their applica-
tions. Academic Press.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Shaked, M. and Tong, Y. L. (1985), Some partial orderings of exchangeable
random variables by positive dependence. J. Mult. Anal. , 17, 333-349.

Stoyan, D. (1983). Comparison methods for queues and other stochastic models.
Wiley, Chichester.

Szekli, R. , Disney, R. L. and Hur, S. (1994). MR/GI/1 queues with positively
correlated arrival stream. J. Appl. Prob. , 31, 497-514.

Szekli, R. (1995). Stochastic Ordering and Dependence in Applied Probability.
Lecture Notes in Statistics 97, Springer, New York.

Tchen, A. (1980). Inequalities for distributions with given marginals. Ann. Prob.
,8, 814-827.

Tong, Y. L. (1982). Some applications of inequalities for extreme order statistics
to a genetic selection problem. Biometrics 38, 333-339.

Tong, Y. L. (1989). Inequalities for a class of positively dependent random
variables with a common marginal. Ann. Stat. , 17, 429-435.

Tong, Y. L. (1990). The multivariate normal distribution. Springer-Verlag, New
York.



