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Saubere Wiederverwertungszyklen für einen nachhaltigen urbanen Metabolismus:  

Integration von Algensystemen zur Energiegewinnung in die urbane Wasserkette 

 

Englischer Titel: Towards a sustainable urban Metabolism: Algae-to-Energy Systems as 

Clean Cycles in the urban Water Chain 

Dissertation vorgelegt von Dipl.-Geoökologin Eve Menger-Krug 

 

Auf dem Weg hin zu einer nachhaltigen Zukunft müssen die Städte viele Herausforderungen 

meistern. Der urbane Metabolismus muss reorganisiert werden, von der heutigen linearen 

Form zu einer kreislauforientierten Form mit höherer metabolischer Effizienz und „sauberen 

Wiederverwertungszyklen”. Infrastrukturen managen einen Großteil der Material- und Ener-

gieflüsse in urbanen Gebieten. Daraus ergibt sich die Frage, wie Infrastruktursysteme reorga-

nisiert werden müssen um zu sauberen Wiederverwertungszyklen beizutragen. Der Fokus der 

vorliegenden Arbeit liegt auf der urbanen Wasserkette: von der Wasserversorgung bis zur 

Abwasser- und Klärschlammentsorgung; und dem potentiellen Beitrag zu sauberen Wieder-

verwertungszyklen durch Integration von Algensystemen zur Energiegewinnung. 

Die Integration von Algensystemen zur Energiegewinnung in die urbane Wasserkette ist ein 

vielversprechendes Konzept. Kohlenstoff (C), Stickstoff (N) und Phosphor(P) sind wichtige 

Bestandteile des Abwassers und die Hauptnährstoffe für das Algenwachstum. Abwasser und 

Abwasserteilströme können als Nährmedium verwendet werden und die produzierte Biomasse 

kann zur Bioenergie Gewinnung eingesetzt werden, beispielsweise als Co-Substrat bei der 

Klärschlammvergärung. Algensysteme sind geschlossene Systeme. Dies ist ein wichtiger As-

pekt, da Abwasser neben den Ressourcen CNP auch viele anthropogene Mikroschadstoffe 

(AMS) enthält. Dies beinhaltet Haushaltschemikalien, Pharmazeutika und Schwermetalle. Bei 

umweltoffenen Anwendungen gelangen diese AMS in die Umwelt.  

Neben der Energiegewinnung können Algensysteme auch die Fracht von AMS im Ablauf 

reduzieren. Algen erreichen beachtliche Eliminationsraten für viele AMS unter Laborbedin-

gungen, zudem ist bekannt, dass sie in der Umwelt AMS aufnehmen. Die wichtigsten Prozes-

se sind Sorption und Bioakkumulation, die AMS von der Wasserphase in die Biomasse trans-

ferieren. Dadurch ist die Biomasse ungeeignet für einige Anwendungen, wie Tierfutter oder 
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Düngemittel. Allerdings ist sie geeignet für die energetische Wiederverwertung, die in dieser 

Arbeit untersucht wird, wie beispielsweise Co-Vergärung und Co-Verbrennung mit Klär-

schlamm.  

Das Ziel dieser Studie ist die Analyse der Integration von Algensystemen in die urbane Was-

serkette und der Auswirkungen auf die Energie- und Emissionsbilanz im Vergleich zu dem 

Status quo. Zusätzlich wird die Relevanz der urbanen Wasserkette - mit Algensystemen und 

ohne Algensysteme - im Kontext des urbanen Metabolismus untersucht. 

Dementsprechend ist die Studie in drei Teile aufgeteilt. Sie beginnt mit der Analyse des Status 

quo der urbanen Wasserkette in Deutschland. Vor diesem Hintergrund wird die Integration 

von Algensystemen auf Kläranlagen untersucht, als Konzept zur Erhöhung der metabolischen 

Effizienz. Im dritten Teil wird der Fokus der Studie erweitert um die Relevanz der urbanen 

Wasserkette im Kontext des urbanen Metabolismus zu untersuchen. Dabei werden drei wich-

tige Aspekte berücksichtigt: die urbane Energiebilanz, sowie die urbanen Flüsse von Nähr-

stoffen und anthropogenen Mikroschadstoffen (AMS). 

Methodisch findet eine Systemanalyse Anwendung. Sie kombiniert eine konventionelle Ener-

giebilanz mit einer Substanzflussanalyse (SFA) sowie der Quantifizierung des energetischen 

Wertes der Ressourcen CNP. Das zugrundeliegende Modell besteht aus drei Ebenen. Es wer-

den Fälle definiert, die verschiedene Prozessabläufe für die Wasserversorgung, für die Ab-

wasser- und Schlammentsorgung, sowie für die Algensysteme abbilden. Die Fälle bilden die 

Grundlage für das Modell (1. Ebene). Für jeden der Fälle werden die Energieverbräuche in 

Form von Strom, Wärme und Treibstoffen für die verschiedenen Stationen der urbanen Was-

serkette zusammengestellt. Zusammen mit der Energieerzeugung durch Biogas (auch Klärgas 

genannt) aus der anaeroben Schlammstabilisierung und durch die Klärschlammverbrennung, 

ergibt dies die externen Energieflüsse (konventionelle Energiebilanz, 2. Ebene).  

Zur Erweiterung der konventionellen Energiebilanz, erfasst das Model außerdem den energe-

tischen Wert der Ressourcen in den Stoffströmen. Das theoretische Energiepotenzial (TEP) 

von CNP wird quantifiziert. Es entspricht der maximalen Energiemenge, die aus den Ressour-

cen gewonnen werden kann und bezieht sich auf die chemische Energie von C und die 

“graue” Energie von N und P. Die graue Energie entspricht der Energie für die Herstellung 

einer äquivalenten Menge Düngemittel. Durch Anwendung der TEP-Faktoren (Energie pro 

Masse) auf die SFA kann das Modell die “internen” Energieflüsse entlang der urbanen Was-

serkette abbilden. Die erweiterte Energiebilanz gibt somit ein holistisches Bild der Energie-
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flüsse und erlaubt die Ableitung der metabolischen Effizienz: des Grads der Wiederverwer-

tung bezogen auf das volle Energie-Potenzial der Ressourcen in den Stoffströmen CNP. 

Das Konzept der sauberen Widerverwertungszyklen verlangt, dass die energetische Wieder-

verwertung von CNP nicht nur unter quantitativen, sondern auch unter qualitativen Gesichts-

punkten analysiert wird. Deshalb wird die erweiterte Energiebilanz ergänzt durch eine Emis-

sionsbilanz. Die Emissionsbilanz beinhaltet eine holistische Perspektive auf alle Umweltkom-

partimente. So erfasst die Analyse die Doppelrolle von CNP. CNP sind energetische Ressour-

cen, aber auch Schadstoffe wenn sie in die Umwelt emittiert werden. Weiterhin wird eine 

Modellsubstanz in die Analyse mit einbezogen (Perfluoroctansulfonat PFOS) um die Proble-

matik der anthropogenen Mikroschadstoffe (AMS) zu diskutieren. 

Obwohl das heutige System der urbanen Wasserkette zuverlässig arbeitet und die Hauptfunk-

tionen bezüglich Trinkwasserversorgung, Siedlungshygiene und Schutz der Gewässer vor 

Eutrophierung erfüllt, ist die metabolische Effizienz niedrig. Für CNP zusammengenommen, 

liegt die metabolische Effizienz bei nur 13%. Bei der Wiederverwertung von N und P aus 

Klärschlamm in umweltoffenen Anwendungen in der Landwirtschaft gelangen außerdem 

AMS in die Umwelt. Sogar mit optimierten Prozessen für Biogasverwertung und Schlamm-

verbrennung, bleibt die metabolische Effizienz für C unter 40%. Es ist bemerkenswert, dass 

die nicht wiederverwerteten Energiepotenziale im Betrag grösser sind als der gesamte externe 

Energiebedarf der urbanen Wasserkette. Während die vollständige energetische Wiederver-

wertung gegebenenfalls weder technisch noch ökonomisch machbar ist, unterstreichen die 

Ergebnisse die Relevanz von Konzepten zur Erhöhung der metabolischen Effizienz.  

Die Integration von Algensystemen zur Energiegewinnung ist ein solches Konzept. In der 

vorliegenden Arbeit wird ein Prozessablauf für die Integration von Algensystemen auf Klär-

anlagen erarbeitet. Die gesamte Biomasseerzeugungs-und verwertungskette bis hin zur 

Stromerzeugung findet auf der Kläranlage statt und benötigt keine Ressourcen von außerhalb 

der Kläranlage. Während Algensysteme zur Energiegewinnung in der Literatur große Auf-

merksamkeit zukommt, ist diese Arbeit die Erste, die den integrierten Prozess im Detail ana-

lysiert. Basierend auf einer SFA der Hauptnährstoffe CNP werden die Implikationen für 

Energie- und Emissionsbilanz erarbeitet. In einer Szenarioanalyse werden wichtige Einfluss-

faktoren identifiziert, darunter die Ernteeffizienz und die anaerobe Abbaubarkeit der Biomas-

se. Die Ergebnisse zeigen, dass aus der Stoffstromperspektive betrachtet, Algensysteme die 

Kläranlage in einen Energieproduzenten verwandeln können. Dazu wird eine Fläche von 6 m² 

pro angeschlossenem Einwohner benötigt, aber keinerlei externe Ressourcen wie Wasser, 
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Düngemittel oder CO2. Neben dem hohen Flächenbedarf, der allerdings pro Energiemenge 

geringer ist als für andere Energiepflanzen, haben Algensysteme einen weiteren Nachteil. 

Obwohl die Grenzwerte eingehalten werden, erhöhen Algensysteme die Fracht von CNP im 

Ablauf. Die höhere Fracht ist vor allem auf die nicht geerntete Biomasse zurückzuführen, die 

im Ablauf verbleibt. Durch Nachbehandlung des Ablaufs kann dieser Effekt minimiert wer-

den, mit moderatem Einfluss auf die Energiebilanz.  

Im Kontext des urbanen Metabolismus sind zur Bewertung der Algensysteme drei wichtige 

Aspekte hervorzuheben. Erstens, im Kontext der urbanen Energiebilanz kann die konsequente 

energetische Wiederverwertung der C Ressourcen aus Abwasser in Algensystemen erheblich 

zur Stromerzeugung aus erneuerbaren Quellen beitragen. Die Bioenergie aus Algensystemen 

kann ein wichtiger Pfeiler der zukünftigen nachhaltigen Energiesysteme sein, da Bioenergie 

im Gegensatz zu den meisten erneuerbaren Energien grundlastfähig und regelbar ist. 

Zweitens ist die Wiederverwertung von N und P aus Abwasser sehr relevant im Kontext des 

urbanen Metabolismus. Die Stoffströme im Abwasser repräsentieren einen Großteil der urba-

nen Nährstoffflüsse von N und P. Aber die urbane Wasserkette ist auch ein wichtiger Emissi-

onspfad für die anthropogenen Mikroschadstoffen (AMS), welches der dritte wichtige Aspekt 

für die Analyse ist. In Algensystemen können die Nährstoffe aus Abwasser ohne Emissionen 

von AMS während der Biomasseerzeugung wiederverwertet werden, anders als in umweltof-

fenen Anwendungen in der Landwirtschaft. Dies charakterisiert die Algensysteme zur Ener-

giegewinnung auf Kläranlagen als „saubere Wiederverwertungszyklen“. Desweiteren haben 

die Algensysteme das Potenzial zu „reinigenden Wiederverwertungszyklen“. Durch Sorption 

und Bioakkumulation können Algensysteme auf Kläranlagen die Fracht verschiedenster AMS 

im Ablauf reduzieren. Mit dem vorgeschlagenen Prozessablauf zur Integration von Algensys-

temen werden die meisten AMS dann bei der Co-Verbrennung von Klärschlamm und Algen-

biomasse mineralisiert. So wird die Emission von AMS von der urbanen Wasserkette redu-

ziert, was im Kontext der urbanen Flüsse von AMS von hoher Relevanz ist. In diesem Sinne 

hat auch die Fläche, die den Algensystemen gewidmet ist eine doppelte Funktion: zur Bio-

energiegewinnung und zur Elimination von AMS aus Abwasser während relativ langer hyd-

raulischer Verweilzeiten. 

Die untersuchten Aspekte: die Errichtung eines nachhaltigen urbanen Energiesystems, das 

kreislauforientierte Management der urbanen Nährstoff-Flüsse und die Minimierung der ur-

banen Emissionen von AMS sind heute von großer Wichtigkeit und werden in der Zukunft 

noch wichtiger werden. Während Algensysteme auf Kläranlagen für keine dieser Herausfor-
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derungen eine allumfassende Lösung bieten, können die Synergien, welche durch die Algen-

systeme ermöglicht werden, zur Lösung aller drei Herausforderungen beitragen. 

Die Ergebnisse der Analyse unterstreichen das Potenzial von Algensystemen zur Energiege-

winnung auf Kläranlagen und zeigen die Machbarkeit von der Stoffstromperspektive aus be-

trachtet. Somit ist eine weitergehende Forschung anhand von Pilot-und Demonstrationsanla-

gen vielversprechend. Für Pilot-und Demonstrationsanlagen sind die Ergebnisse dieser Arbeit 

hilfreich, da das integrierte System mit seinen Wechselwirkungen im Modell dargestellt ist. 

Durch Anpassung des Modells an konkrete Anlagen, können Informationen über die zu er-

wartende Energieausbeute, über Änderungen der Auslastungen anderer Behandlungsstufen 

und Rückflüsse innerhalb des Systems, sowie über die zu erwartenden Ablaufwerte bereitge-

stellt werden. Komplementär können Daten von Pilot-und Demonstrationsanlagen genutzt 

werden, um das Modell zu verfeinern. In diesem Sinne kann das vorgestellte Modell als 

Werkzeug zur Systemoptimierung genutzt werden. 

In dieser Arbeit werden Algensysteme zur Energiegewinnung auf Kläranlagen bezüglich 

Stoffströmen und Energieflüssen analysiert. Weiterhin gibt es noch viel Forschungsbedarf zu 

Fragen der Ökonomie, der nötigen politischen Rahmenbedingungen und der Akzeptanz. Die 

ökonomische Bewertung von Algensystemen ist abhängig von der zukünftigen Entwicklung 

der Energiepreise, welche wiederrum von den politischen Rahmenbedingungen gesteuert 

werden. Heute wird beispielsweise die Energie aus Abwasserressourcen in Form von Klärgas 

geringer vergütet als Bioenergie von Energiepflanzen.  

In dieser Arbeit wird eine Methode zur Analyse der Stoff-und Energieflüsse von Wasser-und 

Abwasserinfrastrukturen erarbeitet: die erweiterte Energiebilanz. Sie erweist sich als nützli-

ches Werkzeug zur Analyse von kreislauforientierten Konzepten, da sie zusätzlich zu den 

externen Energieflüssen auch die internen Energieflüsse und die metabolische Effizienz des 

Systems abbildet. Wie durch den Ansatz der sauberen Wiederverwertungszyklen vorgegeben, 

wird neben der Energiebilanz auch die Emissionsbilanz erfasst, inklusive der Emissionen von 

AMS anhand einer Stellvertretersubstanz. Diese Methode kann auch für die Analyse anderer 

kreislauforientierter Konzepte nützlich sein. 
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Towards a Sustainable Urban Metabolism:   
Algae-to-Energy Systems as Clean Cycles in the urban Water Chain 

 

On the way to a sustainable future, there is mounting pressure to reorganize the urban metabo-

lism from its present linear form towards higher metabolic efficiency and clean cycles. This 

applies also to the urban water chain, which is an important part of the urban metabolism. The 

focus of this study is the integration of algae-to-energy systems in the urban water chain. This 

is a promising concept to recycle nutrients from wastewater. The elements carbon (C), nitro-

gen (N) and phosphorus (P) are major constituents of wastewater, and key nutrients for algae 

growth. Algae systems produce biomass that can be harvested for bioenergy generation. Al-

gae cultivation represents a closed system for recycling. This is an advantage, because 

wastewater also carries considerable amounts of anthropogenic micropollutants (AMPs) from 

urban areas, such as household chemicals, pharmaceuticals or heavy metals, mirroring the 

common use of chemicals in modern society. 

The scope of this study includes the status quo of the urban water chain in Germany, includ-

ing the water supply as well as the wastewater and sludge management (part 1). In the second 

part, a detailed analysis of the integration of algae systems on the level of wastewater treat-

ment plants (WWTPs) is presented. Then, the scope of the study is extended to put the results 

in context of the urban metabolism (part 3). The relevance of the urban water chain - with and 

without algae - for the urban energy balance and the urban flows of nutrients and AMPs is 

assessed.  

Methodologically, a systems analysis is employed combining a conventional energy balance 

with a substance flow analysis (SFA) and the assessment of the energetic value of the re-

sources. Different technical setups (cases) for water supply, wastewater and sludge manage-

ment – with and without algae systems; are investigated. The gross consumption for handling 

and treatment of flow streams is compiled: electricity, thermal energy and fuel consumption 

for each step of the urban water chain. Together with the own generation of energy from bio-

gas use or sludge incineration, these energy flows represent the external energy flows of the 

system.  

To extend the usual approach to energy balances, the analysis also assesses the internal energy 

flows. The theoretical energy potential (TEP) is assigned to the resources CNP. It reflects the 

energetic value of the resources in the flow streams, related to the chemical energy of C and 

the “grey” energy of the nutrients N and P, which gain indirect energy credits when substitut-

ing energy intensive fertilizers. By applying the respective TEP factors (energy per unit mass) 

to the SFA, the internal energy flows associated to CNP are traced along the urban water 

chain. This extended energy balance gives a holistic picture of the energy flows along the 

urban water chain and allows assessing the metabolic efficiency: the degree of reuse in rela-

tion to the full energetic value of the resources.  
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The clean cycle approach requires assessing not only the quantity, but also the quality of CNP 

recycling. Therefore, the extended energy balance is accompanied by the emission balance. 

The emission balance for CNP includes a systemic perspective on all compartments. The 

framework for analysis captures the double role of CNP: they are potential energetic resources 

or act as pollutants when misplaced to the environment. In addition, a model substance 

(PFOS) is included in this study to discuss the problem of anthropogenic micropollutants 

(AMPs). 

While the current system works reliably and fulfills its main functions for public health and 

protection of water resources, the results show the low metabolic efficiency of the urban water 

chain today. For the resources CNP, the average metabolic efficiency is 13%. Even with op-

timized biogas and incineration processes, the metabolic efficiency for C stays below 40%. It 

is noteworthy that the non-recovered energy potentials are higher than the primary energy 

demand of the urban water chain. While a full energetic reuse may not be technically or eco-

nomically feasible, the results underline the importance of concepts for increased metabolic 

efficiency of the urban water chain.  

The integration of algae systems at wastewater treatment plants (WWTPs) is such a concept. 

In this study, a technical setup is proposed to integrate algae systems in the existing treatment 

steps of WWTPs. The whole algae process chain, from cultivation to production of bio-

electricity, takes place at the WWTP, relying only on the resources available on site. While 

algae systems receive much attention, this is the first detailed study of the integrated system. 

Based on the SFA of the major nutrients CNP, the implications for energy and emission bal-

ance of the WWTP are elaborated. A scenario analysis highlights the harvesting efficiency 

and the anaerobic digestibility of algae biomass as key factors for the performance of algae 

systems. The results show that the bio-electricity from algae systems can turn the WWTP into 

an energy producer, requiring a cultivation area of 6 m² per person served by the WWTP but 

no external input of fertilizer, water or CO2. On the downside, while meeting limit values, the 

algae systems increase the load of CNP in effluent in absence of post treatment. Algae sys-

tems also have a large area demand, albeit lower than other energy crops  

The analysis of algae systems in context of the urban metabolism highlights three important 

aspects. Firstly, in context of the urban energy balance, the consequent energetic reuse of re-

sources from wastewater in algae systems can considerably contribute to electricity produc-

tion from renewable sources on an urban scale. Bio-electricity is an important pillar for sus-

tainable energy systems. Secondly, in context of the urban nutrient flows, the recycling of the 

resources of N and P in wastewater is highly relevant for a sustainable urban metabolism. 

These flows represent a large share of the urban nutrient flows. But the urban water chain is 

also a major pathway of AMPs, which is the third important aspect to consider. Algae systems 

can recycle nutrients from the urban water chain, without emission of AMPs during biomass 

cultivation, in contrast to “open” applications in agriculture. Thus, they can be characterized 

as a clean cycles. Furthermore, algae systems even have the potential for “cleaning cycles”. 
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By sorption and bioaccumulation, they can reduce the load of many AMPs in effluent. Most 

AMPs are degraded during sludge and algae co incineration in the investigated technical set-

up, reducing the AMP emission from the urban water chain. This is highly relevant for a sus-

tainable urban metabolism. Thus, the area designated to algae systems has a double function: 

to produce bioenergy and to allow for a long hydraulic retention time for AMP elimination 

from wastewater. 

All three topics discussed above: sustainable energy systems, the cycle oriented management 

of nutrients, and the chemical pollution problem, are important today and their importance 

will likely further increase in the future. While algae systems cannot provide the single solu-

tion for any of these challenges, the synergies they offer can contribute to solving all of them. 
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Towards a Sustainable Urban Metabolism:   

Algae-to-Energy Systems as Clean Cycles in the Urban Water Chain 

 

Summary 

Aim of study 

On the way to a sustainable future, there is a mounting pressure to reorganize the urban me-

tabolism from its present linear form towards a higher metabolic efficiency and clean cycles. 

The focus of this study is the urban water chain, including water supply and wastewater and 

sludge management. It is an important part of the urban metabolism. Firstly, it has an 

indisposable essential function for hygiene and public health in dense human settlements. 

Secondly, the urban water chain is a hot spot for anthropogenic emissions. This refers to the 

nutrients carbon (C), nitrogen (N) and phosphorus (P), which act as pollutants if misplaced in 

the ecosphere (misplaced resources). It also refers to anthropogenic micropollutants (AMPs), 

such as household chemicals, flame retardants, impregnation agents, cleansers, pharmaceuti-

cals or heavy metals, for which the urban water chain is an important pathway. The load of 

AMPs mirrors the wide application of chemicals in modern society. Thirdly, the infrastruc-

tures are large energy consumers. While the handling of flow streams consumes considerable 

amounts of energy, they are harboring resources for energetic reuse. The resources CNP have 

an energetic value. Energetic reuse of C resources provides bio-electricity, for example via 

anaerobic processes (biogas) or incineration of sludge. N and P resources gain indirect energy 

credits when substituting energy intensive fertilizers in agricultural applications (grey energy). 

But the presence of AMPs in the flow streams is a challenge for reuse.  

The integration of algae-to-energy systems in the urban water chain is a promising concept to 

introduce clean cycles. CNP are major constituents of wastewater, and the key nutrients for 

algae growth. The biomass produced in algae systems can be harvested for bioenergy genera-

tion. The cultivation represents a closed system for recycling. This is advantageous, consider-

ing the presence of AMPs. In “open” agricultural applications, these AMPs are emitted to the 

environment.  

Furthermore, algae systems can also reduce the load of AMPs in effluent. Algae are known to 

accumulate AMPs in the environment. Under laboratory conditions, they reach considerable 

elimination rates for many AMPs and. The main processes are sorption and bioaccumulation, 
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which transfer AMPs from effluent to algae biomass. The biomass is unsuitable for applica-

tion as animal feed or fertilizer, but suitable for energetic use, for example co digestion and co 

incineration with sludge. The aim of this study is to analyze the integration of algae systems 

in the urban water chain in terms of energy balance and emission balance, compared to status 

quo, and to assess the relevance of the UWC – with and without algae systems - in context of 

the urban metabolism. 

Structure 

This study has three parts. It starts with a detailed description of the status quo of the urban 

water chain in Germany, including the metabolic efficiency i.e. the degree of reuse of re-

sources CNP. Before this background, a concept for increased metabolic efficiency is evaluat-

ed in the second part: the integration of algae systems at wastewater treatment plants 

(WWTPs). In the third part: Connecting the urban water chain to urban metabolism, the scope 

of the analysis is extended to assess the relevance of the urban water chain - with and without 

algae systems - in context of the urban metabolism. Three important aspects are considered: 

the role of the urban water chain in context of the urban energy flows, the urban nutrient 

flows and the urban flows of anthropogenic micropollutants (AMPs). 

Methods 

Methodologically, a systems analysis is employed combining a conventional energy balance 

with a substance flow analysis (SFA) and the assessment of the energetic value of the re-

sources. The underlying model includes three layers. The technical setup builds the founda-

tion of the model (layer 1). Different technical setups (cases) are defined to describe the status 

quo of the urban water chain, including the water supply, the wastewater and the sludge man-

agement; and the integration of algae systems. For the cases, the gross consumption for han-

dling and treatment of flow streams is compiled: electricity, thermal energy and fuel con-

sumption for each step of the urban water chain. Together with the own generation of energy 

from biogas use or sludge incineration, these energy flows represent the external energy flows 

of the system (layer 2).  

To extend the usual approach to energy balances, the analysis also assesses the energetic val-

ue of the resources in the flow streams, termed internal energy flows. The theoretical energy 

potential (TEP) is assigned to the resources CNP. It relates to the chemical energy of C and 

the “grey” energy of the nutrients N and P. By applying the respective TEP factors [kWh/kg] 

to the SFA, the internal energy flows associated to CNP are traced along the urban water 

chain. The metabolic efficiency for N and P relates to the amount applied to agricultural land 
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corrected for plant availability. C is energetically reused via biogas use or sludge incineration 

for electricity and heat co generation, as quantified in layer 2 of the model. Putting this energy 

generation in relation to the TEP of C gives the metabolic efficiency. This extended energy 

balance gives a holistic picture of the energy flows along the urban water chain and allows 

assessing the metabolic efficiency: the degree of reuse in relation to the full energetic value of 

the resources. The metabolic efficiency is a useful measure to describe the degree of circulari-

ty within the system. 

The clean cycle approach requires assessing not only the quantity, but also the quality of CNP 

recycling. Therefore, the extended energy balance is accompanied by the emission balance of 

the urban water chain. The emission balance includes the emissions of CNP from the flow 

streams (on site emissions) to all environmental compartments based on SFA results. While 

the effluent quality is the traditional focus of the water sector, a systemic view allows as-

sessing additional indicators. This includes the C efficiency of bio-electricity generation and 

the comparison of on site CO2 emissions and off site CO2 emissions related to the energy con-

sumption of external energy. In addition, a model substance (PFOS) is included in this study 

to discuss the problem of anthropogenic micropollutants (AMPs). 

The strength of the developed framework lies in three main aspects. Firstly, this study is 

unique in focusing on the material flows on elemental level, tracing the flows of the major 

elements of the biosphere CNP, which are also the main constituents of wastewater, along the 

full urban water chain. The emission balance includes a systemic perspective on all compart-

ments. Secondly, the TEP factors applied to the SFA allow inclusion of the energetic value of 

resources and the metabolic efficiency. This extends the usual approach to the analysis of en-

ergy flows. The extended energy balance developed in this study, captures both: the energy 

required for handling of flow streams (external energy flows) as well as the energetic value of 

the resources CNP (internal energy flows). The framework captures the double role of CNP: 

they are resources with an energetic value but act as pollutants when misplaced to the envi-

ronment. Thirdly, the problem of AMPs is taken into account, albeit only exemplified by one 

model substance. 

Results: Status quo of the urban water chain in Germany 

In the first part, the status quo of the urban water chain in Germany is assessed as baseline for 

comparison. While the focus lies on the post use side of the urban water chain, the scope of 

the study includes the full pathway of water through settlements: from sourcing of water to 

treatment and provision of tap water for water use in households, to transport and treatment of 
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wastewater and sludge. Different cases are investigated. For water supply, sourcing and 

treatment from groundwater (30% of population served) and from surface water (70%) are 

included. For wastewater and sludge disposal, three technical setups are defined: the advanced 

case (anaerobic digestion of sludge followed by incineration, 52% of population served), the 

medium case (with land use of sludge, 23%) and the basic case (simultaneous aerobic sludge 

stabilization followed by land use, 25%). The weighted average from these cases represents 

the German average. An additional case reflects the best available technology with optimized 

biogas and incineration processes. 

For each step of the urban water chain the external energy flows: electricity from grid, ther-

mal energy from natural gas, fuels for transport are accounted. With the wide system bounda-

ries, this gives a detailed picture of the gross energy consumption associated to the pathway of 

water through settlements.  

While the current system works reliably and fulfills its main functions for public health and 

protection of water resources, the results show the low metabolic efficiency of the urban water 

chain today. For C, it averages 15%. Even for facilities employing biogas combustion and 

sludge incineration, the metabolic efficiency for C is below 25% and with optimized biogas 

and incineration processes below 40%. Large parts of the C resources are lost for energetic 

reuse during aerobic treatment. The non reused energetic potential is large compared to brut 

consumption. In theory, bio-electricity from C resources can fully supply the electricity de-

mand of the urban water chain. While a full energetic reuse may not be technically or eco-

nomically feasible, the results underline the importance of concepts for increased metabolic 

efficiency of the urban water chain, in addition to efforts in energy efficiency.  

For N and P, the metabolic efficiency of the urban water chain is also low: 20% for P and 4% 

for N. The concept for reuse of N and P currently employed is the application of sludge gen-

erated during wastewater treatment on agricultural land. While the sludge contains considera-

ble amounts of nutrients, especially P, agricultural reuse is decreasing in Germany due to con-

cerns about AMPs. Thus, besides the quantity of recycling flows of N and P, the quality of 

recycling related to AMP emission is an issue with the current system. 

Due to the extent and complexity of the system under analysis, there are important limitations. 

In this study, three cases were used to represent wastewater and sludge treatment in Germany. 

In reality, every WWTP is different and there are many particularities in process design and 

associated energy consumption and generation.  
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Data for the individual stages of the urban water chain were compiled from statistics and vari-

ous sources in literature. The most recent data available was compiled, to reflect the present 

situation as accurately as possible, but often data refers to different years. The analysis also 

has to rely on assumptions and values from other theoretical studies for some stages of the 

urban water chain, especially for sludge handling, as data availability from official sources is 

low. A detailed account is found in the methods section. 

An SFA was used to assess flows of CNP within the system and their fate. The SFA method 

is inherently subject to uncertainties. Influent loads and partitioning factors are average empir-

ical values, which are subject to large variations in reality. Partitioning factors can only reflect 

tendencies of elemental behavior within a complex system. In combination with the TEP fac-

tors for CNP, the SFA also shows the internal energy flows and the metabolic efficiency. The 

theoretical energy potentials of CNP derived in this study reflect the energetic value of re-

sources. They mark the upper limit of energy harvesting from CNP, constrained only by re-

source characteristics. They provide no information about the technical feasibility of in-

creased energy harvesting from flow stream resources (technical potential), and the related 

costs (economic potential), which are reserved for future studies. Despite the limitations, the 

applied methodology provided a holistic picture of the status quo of the urban water chain in 

Germany.  

Results: Algae systems for increased metabolic efficiency  

Based on the status quo as baseline for comparison, a concept for increased reuse of CNP is 

assessed in the second part of this study: the integration of algae systems at wastewater treat-

ment plants (WWTPs). A technical setup to integrate algae systems in the existing treatment 

steps of WWTPs is proposed. It relies solely on the resources available on site, with no exter-

nal input of fertilizer, water or CO2 required. The whole algae process chain, from cultivation 

to production of bio-electricity, takes place on site of the WWTP. While algae systems re-

ceive much attention in literature, this is the first detailed study of the integrated system, in-

cluding an SFA of the major nutrients CNP (see also Menger-Krug et al. 2012). Based on this 

SFA, the implications for energy and emission balance of the WWTP are elaborated. A sce-

nario analysis highlights the key factors for the performance of algae systems at WWTPs. 

The results show that the metabolic efficiency is considerably improved by algae systems. It 

is feasible from a flow stream perspective to produce enough bio-electricity from algae sys-

tems, to run the WWTP energy-neutral during the vegetation season or even turn them into 

net energy producers. This requires ~6 m² area per person served by the WWTP. It can be 



Summary ix 

 

achieved with nutrients from wastewater, without any external resource input. C resp. CO2 

availability is the limiting factor for yield with the proposed process design i.e. in absence of 

external CO2 sources.  

While intensive nutrient recycling in algae systems considerably improves the energy balance, 

it also impacts on effluent quality. While limit values for C (usually measured as chemical 

oxygen demand COD), N and P are met, the load in effluent increases, mainly via the contri-

bution of non-harvested biomass. The harvesting efficiency is identified as a technical key 

parameter at the crossroads of energy balance and effluent quality. Post treatment is high-

lighted as an opportunity to reliably meet effluent limit values. Additionally, post treatment 

also improves the effluent quality in terms of AMPs. 

Due to the prospective nature of the system under analysis, there is no empirical data for 

many key parameters, such as nutrient uptake efficiencies, areal productivity, harvesting effi-

ciency and anaerobic digestibility. Instead, the analysis had to rely on data from pilot applica-

tions and laboratory studies, which remain to be confirmed or rejected in practice. Ranges of 

values from literature were used in a scenario analysis highlighting the key factors for the 

performance of algae systems at WWTPs. The influence of algae systems on the energy de-

mand of other processes at the WWTP was assessed based on SFA results and the validity of 

the applied proxies remains to be proven in practice.  

While this study has shown the feasibility of the concept from a flow stream perspective, 

many other aspects require analysis on the way to implementation. This includes acceptance 

and social aspects, as well as political and economical aspects. For the latter, the future devel-

opments of energy costs - for fossil and renewable energy which again depend on the political 

framework - are important aspects to consider. 

Results: Connecting the urban water chain to urban metabolism  

To put the potential improvement by integration of algae systems in context of the urban me-

tabolism, the scope of the study is extended in the third part. The extended perspective in-

cludes the flows that represent the connection points between urban water chain and the full 

urban metabolism: the daily household consumption of water, energy, food and detergents. 

The associated flows of CNP are quantified for a semi hypothetical model city.  

The study traces the pathways of CNP: the input, the transformations during human metabo-

lism, the transfer to wastewater and organic waste infrastructures and the fate during the 

treatment processes – with and without algae. While information on the bulk flows is availa-

ble from official sources and statistics, this is the first study to quantify household consump-
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tion in Germany on the level of CNP flows, albeit only for a semi hypothetical model city 

with high uncertainties. While far from a complete analysis of urban metabolism, the extend-

ed perspective is useful to understand the relevance of the urban water chain –with and with-

out algae systems - in context of urban metabolism. 

The analysis showed that clean cycles in algae systems can contribute to a sustainable urban 

metabolism in three important aspects. Firstly, in context of the urban energy balance, the 

consequent energetic reuse of resources from wastewater in algae systems can considerably 

contribute to electricity production from renewable sources on an urban scale. Bio-electricity 

is an important pillar for sustainable energy systems as it covers base loads. The net consump-

tion of the urban water chain on a per person base is rather low compared to total electricity 

consumption in households. On the other hand, the energy consumption of the urban water 

infrastructures show a high spatial concentration compared to household energy consumption. 

The spatial concentration of energy flows and the potential contribution to bio-electricity pro-

duction make the urban water chain with algae systems an important player for the transition 

towards a sustainable urban energy system. 

Secondly, in context of the urban nutrient flows, the recycling of the resources of N and P in 

wastewater is highly relevant for a sustainable urban metabolism. These flows represent a 

large share of the urban nutrient flows and are also important with a wider perspective on 

food supply. But as the urban water chain is also a major pathway of AMPs, clean cycles are 

required. Urban flows of AMPs are the third important aspect to consider. The reduction of 

AMP emissions from the urban water chain is highly relevant for a sustainable urban metabo-

lism. To discuss the problem of AMPs, a model substance is chosen for this study: PFOS.  

Including this notorious AMP into the analysis of CNP recycling, serves as a starting point for 

discussion. But for a full picture many different AMPs with different use patterns, biochemi-

cal characteristics and toxicological end points – as well as the effect of mixtures - need to be 

included. But the results of this study highlight two important aspects. Firstly, algae systems 

can provide bio-electricity without emission of AMPs during biomass cultivation. Thus, they 

can be characterized as a clean cycles, in contrast to „open” application of sludge in agricul-

ture. Secondly, processes during algae growth can increase the elimination of AMPs from 

effluent. The potential of algae systems to reduce the load of AMPs to the environment even 

makes them cleaning cycles: they reduce the emissions of AMPs during recycling. In that 

sense, the area designated to algae systems has a double function: to produce biomass for 

electricity generation – with a higher output per unit area than other energy crops - and to al-
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low for a long hydraulic retention time for AMP elimination from wastewater. If the increased 

elimination of AMPs works reliably under operating conditions, this provides a strong addi-

tional incentive for WWTPs to integrate of algae systems. Besides the fate of AMPs in algae 

systems, there are other important research needs including the possible formation of algae 

toxins during biomass growth. 

Conclusion 

In short, algae-to-energy systems can provide a double benefit: more bioenergy from other-

wise wasted resources and lower emissions of AMPs to the environment. This characterizes 

algae systems as clean cycles or even cleaning cycles. On the downside, algae systems have a 

large area demand and increase the load of CNP in effluent, while meeting limit values.  

The integration of algae systems has positive effects on the urban energy balance, the urban 

flows of nutrients and the urban flows of AMPs. With the combination of these effects, algae 

systems integrated in the urban water chain can contribute to a sustainable urban metabolism. 

All three topics: sustainable energy systems and bio-electricity, the cycle oriented manage-

ment of flow streams including nutrients, and the chemical pollution problem, are important 

today and their importance will likely further increase in the future.  

For algae-to-energy systems integrated in the urban water chain, the results of this analysis 

warrant further research on the scale of pilot applications. The developed model of substance 

and energy flows of the integrated system provided information on energy flows, on nutrient 

recycling within the system, on loads to the individual treatment steps and on loads to the en-

vironment. This information is useful to design pilot projects. Data gathered from pilot pro-

jects can in turn refine the model. In that sense, the model presented in this study can be used 

as a tool for system design and optimization.  

For this study, a framework for analysis of water infrastructures was developed: the extended 

energy balance. It proofed a useful tool to analyze reuse oriented concepts for urban water 

infrastructures, as it assesses the internal energy flows and the metabolic efficiency in addi-

tion to the external energy flows. As required by the clean cycle approach, it includes an 

emission balance covering all environmental compartments. Independent of the case study on 

algae-to-energy systems in this study, this framework for analysis of water infrastructures can 

be useful for evaluation of other reuse oriented concepts. 
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1 Introduction  

1.1 Motivation  

Human activity is concentrated in urban areas representing 3% of land surface, but home to 

more than half of the world’s population, to 75% of natural resources consumption and to 60-

80% of GHG emissions (UNEP 2012). There is a compelling need to understand the flows of 

materials and energy in urban areas (Kaye et al. 2005, Grimm et al. 2008, Weisz et al. 2010), 

as they represent the physical base for sustainability and resilience of the astysphere (Norra 

2009). The term urban metabolism is used to describe the sum of these flows (Wolman 1965). 

The notion of a metabolism highlights the transformation processes: in the same way as a re-

actor, a city transforms resource inputs into emissions and wastes. Today, the flow streams are 

managed mainly in a linear way (Figure 1, top), characterized by large resource inputs: ener-

gy, water, food, products and materials; and large output of wastes in gaseous, liquid and solid 

form. For disposal of wastes an individual settlement depends mainly on its immediate sur-

roundings (Decker et al. 2000). Many cities have a halo of pollution around them, with gradi-

ents from urban to rural measurable for many substances in different media (Diamond and 

Hodge 2007). But the impact of a city extends far beyond its immediate surroundings, with a 

global reach for supply of resources, with imported fuels, food and products and for emissions 

especially greenhouse gases. In that sense, one may speak of the global hinterlands of cities 

(Decker et al. 2000). 

Many environmental problems witness that the capacity of the global hinterlands is reaching 

its limits. Human activities increasingly influence the global climate (IPCC 2007) and ecosys-

tems (UNEP 2005). The dominant impact of human activities on the Earth System has led to 

the postulation of a new epoch, the Anthropocene (Crutzen 2002). The planetary boundaries, 

which define the safe operating space for humanity, are transgressed or close to exceedance 

(Rockström et al. 2009). Transgression may trigger non-linear, abrupt environmental change. 

The nine planetary boundaries include the cycling of the major elements of the biosphere, 

Nitrogen (N), Carbon (C)1 and Phosphorus (P) and the chemical pollution.  

The chemical pollution problem is defined as planetary boundary. But it cannot be quantified 

due to large uncertainties and the multitude of substances involved (Rockström et al. 2009). 

                                            

1 Climate change as planetary boundary with CO2 concentration in the atmosphere <350 ppm 



 

 

2 

In the EU, 100 000 different chemicals are used for industrial applications, but also for every-

day and household activities (Schluep et al. 2006). Substances for household applications 

include flame retardants, impregnation agents, biocides and pharmaceuticals. Some of them 

have dangerous properties such as persistent, bioaccumulative and toxic, or endocrine disrupt-

ing substances. In this study, these substances are referred to as anthropogenic 

micropollutants (AMP) (see chapter 1.3.3).  

 

 

Figure 1-1: The urban metabolism as linear and circular system 

Legend: Conceptualization of urban metabolism highlighting the transformation processes turning resources into 

wastes. (Top) Present form of (mainly) linear urban metabolism (UM) with large volumes of resources con-

sumed and wasted emitted. (Bottom) Ideal form of circular urban metabolism with clean cycles for water, organ-

ic matter, materials and energy which decrease the amount of resources consumed and wastes emitted. Anthro-

pogenic micro pollutants AMP which cannot be degraded are disposed of in safe final sinks. Adapted and ex-

tended from Rogers et al., 1997, Kral, Kellner and Brunner 2012, Girardet 2010.  
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Opposed to the prevailing linear system, the ideal management of flow streams mirrors natu-

ral ecosystems, using material and energy in cascades thereby decreasing resource require-

ments and emissions (Girardet 2004 and 2010, Kral, Kellner and Brunner 2012). Reuse of 

material and energy flows before they exit the astysphere increases the metabolic efficiency 

i.e. the degree of circularity of material and energy flows (Browne et al. 2009).  

While a high metabolic efficiency is desirable, a purely quantitative approach to recycling is 

not sufficient. The quality of recycling regarding the fate of AMPs needs to be considered. 

Due to the concentrated resource consumption and the accumulation in urban stock, urban 

areas are hot spots for AMPs. With AMP present in urban areas, clean cycles are required for 

a circular metabolism (Kral, Kellner and Brunner 2012).  

As most of the material and energy flows of urban areas are managed by infrastructures, this 

raises the question, how these systems can be reengineered towards clean cycles. The focus of 

this study is the urban water infrastructures in Germany and their potential contribution to a 

more circular urban metabolism (UM).  

The urban water infrastructures mediate the pathway of water through settlements: from 

sourcing of water to treatment and provision of tap water for water use in households, to 

transport and treatment of wastewater and sludge. This urban water chain (UWC) is an im-

portant part of the urban metabolism, mainly for three reasons.  

Firstly, it has an indisposable essential function for hygiene and public health. Dense human 

settlements require some form of management for provision of drinking water and disposal of 

feces.  

Secondly, the urban water chain is a hot spot for anthropogenic emissions. The flow streams 

on the post use side contain large amounts of the nutrients carbon (C), nitrogen (N) and phos-

phorus (P). CNP mainly originate from human consumption of food but also from detergents 

and other products. They act as pollutants if misplaced in the ecosphere (misplaced re-

sources). The flow streams also contain AMPs originating from household use of products or 

from run off from urban surfaces collected in mixed sewer systems. This makes the urban 

water chain an important pathway for many AMPs from urban areas2. Due to their persis-

tence, AMPs are not (fully) degraded with the current treatment technologies. They remain in 

                                            

2 Urban wastewater has been described as a major source for many AMPs; compare Schluep et al. 2006, Dia-
mond and Hodge 2007, Zimmerman et al. 2008, Fatta-Kassinos et al. 2011, Ferrari et al. 2004a+b, Muñoz 

et al. 2009a+b, Bolong et al. 2009, Menger-Krug et al. 2011, Mathan et al.2011 
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effluent or are transferred to sludge or to air, depending on their biochemical characteristics. 

Thus, the emissions from the urban water chain mirror the wide application of chemicals in 

modern society.  

Thirdly, urban water infrastructures are large energy consumers, yet harboring large resources 

for energetic reuse. While the handling of flow streams consumes considerable amounts of 

energy, CNP in the flow streams have an energetic value (internal resources). Energetic reuse 

of internal resources can reduce the consumption of external resources. Via anaerobic pro-

cesses (biogas) or direct incineration, C resources can provide electricity and thermal energy. 

N and P resources can gain indirect energy credits when substituting energy intensive fertiliz-

ers in agricultural applications (indirect energetic reuse). The presence of AMP in the flow 

streams is a challenge for energetic reuse.  

Before this background, the integration of algae-to-energy systems in the urban water chain is 

a promising concept. Algae systems essentially represent a closed system for recycling of nu-

trients from wastewater. The elements carbon (C), nitrogen (N) and phosphorus (P) are the 

main ingredients of wastewater, and the key nutrients for algae growth. Algae can be cultivat-

ed in flat ponds or closed photo bioreactors (Wijffels and Barbosa 2010). With CO2 addition 

algae systems can reach high areal productivity. Wastewater can be used as growth medium 

and the biomass can be harvested for bioenergy generation (Lundquist et al., 2010, Park and 

Craggs, 2011). Furthermore, algae remove nutrients from wastewater during growth, thus 

gaining energy credits for (partial) wastewater treatment (Sturm and Lamer 2010, Campbell et 

al., 2011; Lundquist et al., 2010, Colosi and Clarens 2009, Clarens et al. 2012).  

The closed system is a large advantage compared to open agricultural applications, as no 

AMPs are transferred from wastewater to the environment during cultivation. Furthermore, 

algae systems can also improve the effluent quality by removing AMPs from wastewater and 

accumulating them in biomass.  

Thus, algae-to-energy systems can provide synergies that can contribute to a sustainable me-

tabolism: produce bioenergy from otherwise wasted resources and lower the emissions of 

AMPs to the environment. This study tries to quantify these effects and to assess their rele-

vance in context of the urban metabolism. 
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1.2 Aim and structure of study  

The aim of this study is to analyze the integration of algae systems in the urban water chain in 

terms of energy balance and emission balance, compared to status quo, and to assess the rele-

vance of the urban water chain – with and without algae systems - in context of the urban me-

tabolism (Figure 1-2). 

This study has three parts. It starts with a detailed description of the status quo of the urban 

water chain in Germany. The focus of the analysis is the metabolic efficiency i.e. the degree 

of reuse of resources CNP. Before the background of the current situation, a concept for in-

creased metabolic efficiency is evaluated in the second part: the integration of algae systems 

at wastewater treatment plants (WWTPs). In the third part: Connecting the urban water chain 

to urban metabolism, the scope of the analysis is extended to assess the relevance of the urban 

water chain - with and without algae systems - in context of the urban metabolism. Three im-

portant aspects are considered: the role of the urban water chain in context of the urban ener-

gy flows, the urban nutrient flows and the urban flows of anthropogenic micropollutants 

(AMPs). 

Methodologically, a systems analysis is employed combining a conventional energy balance 

with a substance flow analysis (SFA) and the assessment of the energetic value of the re-

sources. The underlying model includes three layers. The technical setup builds the founda-

tion of the model (layer 1). Different technical setups (cases) are defined to describe the status 

quo of the urban water chain, including the water supply, the wastewater and the sludge man-

agement; and the integration of algae systems. For each case, the gross consumption for han-

dling and treatment of flow streams is compiled: electricity, thermal energy and fuel con-

sumption. Together with the own generation of energy from biogas use or sludge incineration, 

these energy flows represent the external energy flows of the system (layer 2).  
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Figure 1-2: Structure of study 
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To extend the usual approach to energy balances, the analysis also assesses the energetic val-

ue of the resources in the flow streams, termed internal energy flows. The theoretical energy 

potential (TEP) is assigned to the resources CNP. It relates to the chemical energy of C and 

the “grey” energy of the nutrients N and P. By applying the respective TEP factors [kWh/kg]  

to the SFA, the internal energy flows associated to CNP are traced along the urban water 

chain. The metabolic efficiency for N and P relates to the amount applied to agricultural land 

corrected for plant availability. C is energetically reused via biogas use or sludge incineration 

for electricity and heat co generation, as quantified in layer 2 of the model. Putting this energy 

generation in relation to the TEP of C gives the metabolic efficiency. This extended energy 

balance gives a holistic picture of the energy flows along the urban water chain and allows 

assessing the metabolic efficiency: the degree of reuse in relation to the full energetic value of 

the resources. The metabolic efficiency is a useful measure to describe the degree of circulari-

ty within the system. 

The clean cycle approach requires assessing not only the quantity, but also the quality of CNP 

recycling. Therefore, the extended energy balance is accompanied by the emission balance of 

the urban water chain. The emission balance includes the emissions of CNP from the flow 

streams (on site emissions) to all environmental compartments based on SFA results. While 

the effluent quality is the traditional focus of the water sector, a systemic view allows as-

sessing additional indicators. This includes the C efficiency of bio-electricity generation and 

the comparison of on site CO2 emissions and off site CO2 emissions related to the energy con-

sumption of external energy. In addition, a model substance (perfluoro octane sulfonate 

PFOS) is included in this study to discuss the problem of anthropogenic micropollutants 

(AMPs). 

The strength of the developed framework lies in three main aspects. Firstly, this study is 

unique in focusing on the material flows on elemental level, tracing the flows of the major 

elements of the biosphere CNP, which are also the main constituents of wastewater, along the 

full urban water chain. The emission balance includes a systemic perspective on all compart-

ments. Secondly, the TEP factors applied to the SFA allow inclusion of the energetic value of 

resources and the metabolic efficiency. This extends the usual approach to the analysis of en-

ergy flows. The extended energy balance developed in this study, captures both: the energy 

required for handling of flow streams (external energy flows) as well as the energetic value of 

the resources CNP (internal energy flows). The framework captures the double role of CNP: 

they are resources with an energetic value but act as pollutants when misplaced to the envi-
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ronment. Thirdly, the problem of AMPs is taken into account, albeit only exemplified by one 

model substance. 

In the first part of the study, the status quo of the urban water chain in Germany is assessed as 

baseline for comparison (chapter 3.1). While the focus lies on the post use side of the urban 

water chain, the scope of the study includes the full pathway of water through settlements: 

from sourcing of water to treatment and provision of tap water for water use in households, to 

transport and treatment of wastewater and sludge. To capture the current situation in Germa-

ny, two the technical setups for water supply: from groundwater and from surface water, and 

three technical setups for wastewater and sludge disposal are defined. The weighted average 

from these cases represents the German average. 

Based on the status quo as baseline for comparison, a concept for increased reuse of CNP is 

assessed in chapter 3.2: the integration of algae systems at wastewater treatment plants 

(WWTPs). A technical setup is proposed in this study. It relies solely on the resources availa-

ble on site, with no external input of fertilizer, water or CO2 required. This is the first study to 

assess the implications for the energy and emission balance arising from integration of algae 

systems at WWTPs. The applied method with the detailed SFA model allows assessing the 

impacts of algae systems on the internal cycling of CNP and thus on the energy balance. To 

assess also the quality of recycling, the implications for the emission balance are taken into 

account.  

Due to the prospective nature of the system under analysis, there is no empirical data for 

many key parameters, such as nutrient uptake efficiencies, areal productivity, harvesting effi-

ciency and anaerobic digestibility. Instead, data from pilot applications and laboratory studies 

are used. A scenario analysis is performed to show the influence of variations in key factors 

on the energy and emission balance of algae systems at WWTPs. 

To evaluate the potential improvement in context of the urban metabolism, the scope of the 

study is extended (chapter 3.3). The extended perspective includes the flows that represent the 

connection points between urban water chain and the full urban metabolism: the daily house-

hold consumption of water, energy, food and detergents. The associated flows of CNP are 

quantified for a semi hypothetical model city. The flows and fate of PFOS is included to dis-

cuss the problem of anthropogenic micropollutants (AMPs). While far from a complete analy-

sis of urban metabolism, the extended perspective is useful to understand the relevance of the 

urban water chain –with and without algae systems - in context of urban metabolism. 
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1.3 Background 

This background chapter describes the current state of the urban water chain in Germany and 

approaches for increased sustainability. The double role of carbon (C), nitrogen (N) and phos-

phorus (P) as potential resources and pollutants is discussed. The problem of anthropogenic 

micropollutants (AMPs) is reviewed. Then, algae systems for CNP recycling are introduced. 

The background chapter closes with an outline of the concept of urban metabolism. 

 

1.3.1 The urban water chain in Germany 

The urban water chain is an essential part of urban metabolism due to its function for hygiene 

and public health. The urban water chain includes the drinking water supply, the wastewater 

and sludge disposal. In Germany, 99% of the population or 82 million people are connected to 

the drinking water supply infrastructures. Drinking water is mostly sourced from groundwater 

with excellent quality (70%, ATT et al. 2011). Average water use in households comprises 

110 l/p*d. There is a large variation in water use in households between different regions in 

Germany (Schleich and Hillenbrand 2008). The typical German household uses about 39% 

for personal hygiene (bathing, showering etc.), 30% for flushing toilets, 13% for laundry, 7% 

for dishwashing, 7% for room cleaning, washing cars and gardening and 4% for cooking and 

drinking (UBA 2007).  

Used water is collected in the wastewater infrastructure. Today, 95% of the population is con-

nected to the wastewater infrastructures. Average amount of wastewater generated per person 

is 250 l/d or 91 m³/a (Haberkern et al. 2008). There is a large variation in wastewater genera-

tion between different regions in Germany, ranging from 140 to 310 l/p*d resp. 50-

113 m³/p*a (DWA 2011). Variations are due to user behavior and contribution of rainwater 

and extraneous water (net infiltration to sewer system).  

Besides water as transport medium, household wastewater contains considerable loads of 

CNP, originating mainly from feces and urine (ultimately from foodstuff) and from cleansing 

products for body and household. While CNP are resources with an energetic value, they act 

as pollutants when emitted to the environment. The effluent quality is the traditional focus of 

the sector and protection of water resources from eutrophication is a major goal. For the efflu-

ent, limit values apply. 

Different treatment steps are employed at wastewater treatment plants (WWTPs) to decrease 

the load of CNP in effluent and to comply with limit values.  
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The process typically employed is biological wastewater treatment (BWT), also called acti-

vated sludge treatment (AS). It requires intensive aeration and produces sludge that requires 

further treatment. The effluent is discharged, typically to rivers. The total elimination effi-

ciencies from effluent average 95% for C, 81% for N and 91% for P, according to benchmark-

ing studies at German WWTPs (DWA 2011, see also Table 2-9). 

The sludge generated during biological wastewater treatment is stabilized, either with aerobic 

or with anaerobic processes. While the aerobic treatment requires energy intensive aeration, 

the anaerobic treatment produces biogas that can be used for electricity generation. While the 

anaerobic treatment is favorable from an energy perspective, it requires large mass flows to 

amortize the investment in digester and generator in due time (economies of scale). Thus, 

while technically feasible also for small WWTPs, it is rarely employed by smaller WWTP 

with less than 20 000 p.e.3 (Haberkern et al. 2008). 

In Germany, 75% of the population is served by WWTPs employing anaerobic sludge stabili-

zation, the remaining 25% by WWTPs with aerobic sludge stabilization (ATT et al. 2011, 

Haberkern et al. 2008). The latter group typically represents small plants.  

After stabilization, sludge is dewatered to a typical solids content of 20-30%. Dewatering re-

leases sludge water (process water), which is typically rich in nutrients. The sludge water 

treatment contributes considerably to energy consumption of wastewater treatment. The pro-

cesses for wastewater treatment and the underlying flows of CNP are described in the follow-

ing chapter (chapter 1.3.2).  

A holistic perspective of the urban water chain needs to include the end use of sludge. Sludge 

generated during wastewater treatment amounts to ~2 million tons dry weight (dw) per year in 

Germany. 52.5% of sludge is incinerated, 30% used for agriculture and 15% for landscaping. 

Land filling of sludge is prohibited (ATT et al. 2011, UBA 2012). Both land use and incinera-

tion have advantages and disadvantages. During sludge incineration, electricity can be pro-

duced, but the demand for thermal energy for the drying of the substrate can scavenge the 

energy gains. Furthermore, a sludge incineration facility requires large mass flows to produce 

enough waste heat for drying of the sludge before incineration. It is favorable to co incinerate 

sludge with coal in large power plants, providing high efficiencies for electricity generation 

                                            

3 The size of WWTPs is expressed in population equivalents (p.e.) (Haberkern et al. 2008). One p.e. refers to an 
certain load of C in wastewater that equals the average C load from one person. Wastewater from commer-

cial operation and indirect dischargers are thus fitted to “person equivalents (p.e.)” via the C content. 
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and large amounts of waste heat. But capacities are limited due to transport distances and 

concerns about the quality of the (mixed) ashes and slag, which are usually used for cement 

production (Haberkern et al. 2008, UBA 2012) 

Due to the large scale of incineration facilities, the transport distances from the WWTP can be 

very far with high associated costs, energy consumption and CO2 emissions. Also for large 

facilities, the costs are considerably higher than for land application of sludge. The combus-

tion gas from sludge incineration requires treatment, again consuming energy. Despite the 

treatment, the combustion gas from sludge incineration can contain anthropogenic 

micropollutants (AMPs). While organic based AMPs are degraded during incineration, other 

AMPs like mercury (Hg) and dioxins4 can be transferred to combustion gas. Ashes contain 

many inorganic AMPs and need to be deposited5. On the other hand side, if sludge is used in 

agriculture, these AMPs are transferred to soils. For sludge containing AMPs, incineration 

reduces the emission of AMPs to the environment compared to the alternative.  

The current system, as described above, fulfills the primary functions related to hygiene and 

public health and protection of receiving waters from eutrophication very reliably in Germa-

ny. But there are fundamental critics related to the sustainability, as listed below. This chapter 

gives a short overview of the critics and the proposed solutions, an extensive review can be 

found in DWA (2008). 

High water consumption and high quality water supply for all purposes.  

Large amounts of water with drinking water quality are required to transport feces through the 

sewer system. While water availability is no fundamental concern for Germany with ample 

water resources in most parts of the country today, many regions of the world employing the 

same system suffer from water scarcity. The problem may aggravate in the future due to cli-

mate change or chemical pollution of water resources by AMPs.  

Mixing different water qualities and high dilutions.  

The different uses of water: for cleaning, for washing and for toilet flushing (transport of fe-

ces and urine) generate different qualities of wastewater: with different loads of CNP, patho-

                                            

4 Most organic AMPs (including PFOS) are degraded during incineration. But dioxins are a notable exception. 
They are produced during incineration of biomass and many other combustion processes if chlorines are 

present and the temperature meets the „dioxine window (see 

http://www.umweltbundesamt.de/chemikalien/dioxine.htm) 

5 Ashes also contain large amounts of P. There are approaches to extract metals and P from ashes from sludge 
incineration, but without large-scale implementation (UBA 2012). 
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gens and AMPs, and with different temperatures. Often, urban run off is also collected in the 

same sewer systems. Mixing the flow streams and the resulting dilution of resources and pol-

lutants makes reuse of resources, as well as elimination of pollutants difficult. Therefore more 

differentiated systems with two to four separate flows of wastewater, often in combination 

with decentralized or semicentralized treatment are advocated to increase sustainability of the 

urban water chain (see below).   

Quality of effluent and sludge.  

The urban water chain is a hot spot for emission of CNP as well as AMPs to the environment. 

AMPs from the urban stock are transferred to wastewater. As the technologies currently em-

ployed are inefficient for their removal, they are emitted to the environment via effluent and 

sludge. While the sludge generated during wastewater treatment contains considerable 

amounts of nutrients, especially P, agricultural reuse is decreasing in Germany due to con-

cerns about chemical pollution of soils (UBA 2012). AMPs in effluent are also a growing 

concern for WWTPs in Germany. The large-scale implementation of advanced effluent treat-

ment (4
th
 treatment stage), as recently introduced in Switzerland, is discussed. But most tech-

nologies for advanced effluent treatment, such as activated carbon treatment or ozonation, 

have a considerable energy demand, resulting in a trade off between energy balance and efflu-

ent quality.  

Based on these critical points, different alternative systems have been developed and imple-

mented in Germany and internationally (for an overview, refer to DWA 2008). Their common 

point is the focus on resource reuse: water, thermal energy, energy from C resources, fertilizer 

or soil conditioner. This includes projects such as the DEUS project (Hillenbrand 2009), 

NOVAQUATIS (Larsen und Lienert 2007), KOMPLETT (Hansen et al. 2007), SCST (sanita-

tion concepts for separate treatment, Peter-Fröhlich et al. 2008), Hamburg Water Cycle 

(Schonlau et al. 2008) and SANIRESCH (Winkler et al. 2011).  

The concept evaluated in the present study: the integration of algae systems, can add to the 

toolbox of technologies for an increased sustainability of the urban water chain, as described 

in the references listed above. The integration of algae systems requires no separation of flow 

streams for reuse of CNP, but has large area requirements. 
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1.3.2 Carbon, nitrogen and phosphorus: resources and pollutants 

Carbon (C), nitrogen (N) and phosphorus (P) are the major elements of the biosphere and es-

sential nutrients for all organisms (Schlesinger and Bernhardt 2013). CNP are the major con-

stituents of biomass (besides water or Oxygen (O) and Hydrogen (H), respectively) and fulfill 

important functions in all biomolecules. The main “building blocks” of biomass are C atoms. 

In addition, C is also the “fuel” for the majority of organisms. Autotrophic organisms use so-

lar energy to build reduced C substrates (biomass) and heterotrophic organism gain the energy 

for metabolism by oxidizing these C substrates. N is an essential constituent of proteins, while 

P is important for the energy metabolism of cells (adenosin-triphosphate ATP), cell mem-

branes (phospholipids) and the storage and transcription of genetic material 

(desoxyribonucleic acid DNA and ribonucleic acid RNA).  

While CNP are essential nutrients for all organisms they act as pollutants, if misplaced in the 

environment (misplaced resources). C and especially N and P cause eutrophication of fresh 

and salt water. Eutrophication is the process of ecological response to the enrichment of 

growth-limiting nutrients (especially N and P) with increased primary production, decreased 

biodiversity and subsequent hypoxia of water. Gaseous C species (CO2, CH4) and a variety of 

N gases contribute to the greenhouse effect. N gases also contribute to tropospheric ozone 

pollution, or stratospheric ozone destruction (Gruber and Galloway 2008). 

As CNP are the major elements of the biosphere, their global biochemical cycles are coupled. 

All biota need CNP to build their tissues and the specific elemental stoichiometries6 of CNP 

in biomass determine the coupling of CNP cycling (Sterner and Elser 2002, Gruber and Gal-

loway 2008). For the urban water chain the coupling is important as the C:N:P ratio is an im-

portant factor for the efficiency of the biological wastewater treatment (BWT). While the cy-

cles of CNP are coupled, the biogeochemistry of the elements is profoundly different (Schle-

singer and Bernhardt 2013).  

Due to human activities, bioavailable N has nearly doubled and bioavailable P tripled in the 

environment (Howarth and Ramakrishna, 2005). The human impact on the global biochemical 

cycles of CNP is surmounting, and the planetary boundaries are transgressed for N and C, and 

close to exceedance for P (Rockström et al. 2009). The majority of N and P are used as ferti-

                                            

6 In the ocean, the C/N ratio of the autotrophic phytoplankton responsible for nearly all marine photosynthesis 
varies remarkably little (Redfield ratio), whereas the C/N ratio of terrestrial plants is substantially more var-

iable and also tends to be larger than that for marine phytoplankton (Sterner and Elser 2002, Gruber and 

Galloway 2008). 
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lizer for agricultural production. N fertilizer can be produced from the abundant atmospheric 

nitrogen gas (N2) through the Haber–Bosch process, which is only limited by the high ener-

getic costs. In contrast, P is a limited mineral resource. P exists in the earth’s crust in the form 

of phosphate rock, and naturally it is mobilized into terrestrial systems only through the slow 

processes of weathering and leaching. The production of P fertilizer relies on the availability 

of phosphate rock. The rate of phosphate rock extraction is much higher than the rate at which 

it is replenished (Smil, 2000). The annual extraction-to-reserve ratio of phosphate rock, 

known as reserve-life, has been therefore estimated at 50-100 years (Tilman et al., 2001). 

Therefore, the increase in the anthropogenic mobilization of P has raised concerns on both 

input (limited resource) and output ends (Smil, 2000; Cordell et al., 2009).  

CNP can be regarded as resources with an energetic value. C, in dependency of its oxidation 

state, is an energy carrier. Biologically, the chemical energy of C fuels the heterotrophic or-

ganisms. Technically, the chemical energy of C can be exploited either directly via combus-

tion, which requires a dry substrate, or via anaerobic processes and subsequent biogas com-

bustion. The nutrients N and P have an indirect energetic value. They gain energy credits 

when substituting energy intensive mineral fertilizers. To recap, the benefits of P recycling go 

beyond the energy perspective, as P is a limited resource with an essential function for food 

production. 

CNP are also the main constituents of wastewater. CNP enter the urban water chain on level 

of households. They originate mainly from human consumption of food, but also from deter-

gents and other products used in households. Due to their negative impact on aquatic ecosys-

tems, CNP in effluent are pollutants and limit values for effluent apply in Germany.  

Different treatment steps are employed at wastewater treatment plants (WWTPs) to decrease 

the load of CNP in effluent and to comply with limit values. The processes and the underlying 

transformations of CNP are shortly reviewed here (for an extensive review refer to DWA 

2008; DWA 2007, Bischofsberger et al. 2005).  

The C load of incoming wastewater, measured as chemical oxygen demand7 (COD) is re-

moved from effluent typically by activated sludge process (AS). A diverse community of het-

erotrophic microorganisms metabolizes biodegradable C substrates. For maximized biodegra-

dation, this process requires intensive aeration. The aeration is one of the most energy inten-

                                            

7 Factor from C to COD assumed with 3 (range 2.8-3.2, Henze et al. 2000) 
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sive treatment steps. The microorganisms use C for their energy metabolism (catabolism) and 

for biomass growth (anabolism), resulting in the production of CO2 and biomass.  

The not readily biodegradable C substrates, typically around 5% of the incoming C load, re-

main in the effluent. This fraction also includes organic AMPs. It is estimated, that 10-50% of 

the C effluent load can be attributed to AMPs (Schluep et al. 2006, see the following chapter 

1.3.3). 

During the activated sludge process, the biomass forms flocs, which are retained in the sys-

tem. Retention of biomass flocs decouples the hydraulic retention time from the sludge reten-

tion time and allows an effective removal of biodegradable C substrates from wastewater. 

Biomass is ultimately removed from the activated sludge process as sewage sludge.  

N and P are also removed from effluent by the activated sludge process, but their elimination 

is limited by the availability of C substrates which are required to fuel heterotrophic metabo-

lism. The C:N:P ratio of wastewater is an important parameter for a well functioning activated 

sludge process. While the ideal ratio is 63:5:1 (ATV 2000, Knerr 2012), the average 

wastewater is considerably C depleted. With an average load of 120 g COD, 11 g N and 2 g P 

(DWA 2008, see also chapter 2.2), the C:N:P ratio is 19:6:1. 

As N and P removal from wastewater by the activated sludge process is limited by C availa-

bility, different processes are available for enhanced nutrient elimination. For N, most of these 

processes are energy intensive. Simultaneous nitrification-denitrification is often employed. 

Nitrification is the biological oxidation of nitrogen from ammonia (NH4
+
) to nitrate (NO3

-
). It 

is followed by denitrification, the reduction of nitrate to nitrogen gas (N2) under anoxic condi-

tions. Nitrogen gas is released to the atmosphere. The nitrification-denitrification process 

holds the risk to release also other N species to air, among them N2O, a very potent green-

house gas (GHG). Also with enhanced N elimination, N cannot be completely removed from 

effluent. The N load remaining in effluent is in the range of 20% (DWA 2011).  

For P, enhanced elimination typically involves precipitation with iron and alum based precipi-

tants. This process is less energy intensive than for N and reaches elimination efficiencies 

>90%. The plant availability of the precipitated P is low.  

The sludge generated during the activated sludge process can be stabilized by anaerobic di-

gestion (AD). The sludge is composed mainly of cells of microorganisms containing nucleic 

acids, proteins, carbohydrates and lipids, their decay products and non-metabolized organic 

material, e.g. cellulose (Manara and Zabaniotou 2012). Under anaerobic conditions, a com-

munity of microorganisms (acetogens and methanogens) produces biogas, a mixture of CH4 
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and CO2 from organic substrates. Substrates cannot be completely used. The typical anaerobic 

digestibilities of sewage sludge range from 35% to 55% (DWA 2007, Haberkern et al. 2008). 

Unused organic substrates, as well as inorganic compounds, remain in stabilized sludge. After 

digestion, stabilized sludge is dewatered to a typical solids content of 20-30% (DWA 2007, 

Haberkern et al. 2008). Dewatering releases sludge water (process water), which is typically 

rich in nutrients, especially N. Due to high loads, the sludge water treatment contributes con-

siderably to energy consumption of wastewater treatment. 

As a general trend, improved effluent quality in terms of lower loads of CNP comes at cost of 

increased energy intensity. In parallel to lower loads in effluent, the transfer of CNP to other 

compartments increases. With higher level of wastewater treatment, C and N are increasingly 

transferred to air and P to sludge. While the sludge generated during wastewater treatment 

contains considerable amounts of nutrients, especially P, agricultural reuse is decreasing in 

Germany due to concerns about AMPs and chemical pollution of soils (UBA 2012). The 

problem of AMPs is discussed in the following chapter.  
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1.3.3 The problem of anthropogenic micropollutants 

While the technologies employed in the current system for wastewater management work 

reliably and eliminate large parts of carbon (C), nitrogen (N) and phosphorus (P) from efflu-

ent, they are ineffective for elimination of many anthropogenic micropollutants (AMPs). Due 

to the concentrated human activity in urban areas, there are many potential sources for AMP 

to wastewater.  

The pool of potential AMP is large. 100 000 different chemicals are used in the EU, 30 000 of 

them in amounts larger than 1 ton per year. For the majority of chemicals (90%) the data base 

for assessment of harmful properties is insufficient (Schluep et al. 2006). While the data base 

for individual substances is low, the knowledge about the concerted chronic effects of chemi-

cal cocktails e.g. mixtures of substances is virtually non-existent.  

The undefined nature of the chemical pollution problem: neither the substances nor the exact 

human and eco toxicological effects can be identified, hinders the integration in sustainability 

assessments. This undefined nature is also reflected in the classification as risk type “Pando-

ra” with high uncertainty related to probability and impact (WBGU 1999). The problem with 

persistent substances lies in the irreversibility: once persistent substances are emitted to the 

environment, remediation is virtually impossible. So whatever the effects of these persistent 

substances on ecosystem and human health, these effects are irreversible. Therefore, 

Rockström et al. (2009) defined the chemical pollution problem as one of the planetary 

boundaries. 

In this study, the term AMP is used to refer to all substances that contribute to the chemical 

pollution problem defined as one of the planetary boundaries. With this wide definition, 

AMPs include organic pollutants and also inorganic pollutants e.g. heavy metals. The exact 

pathways of AMPs through the anthroposphere are complex and largely unknown (Figure 1-

3). The emission from urban areas gathers more attention, since many industrial sources have 

been regulated. The urban water chain is an important pathway for many AMPs from urban 

areas8. The load of AMPs in wastewater mirrors the common use of chemicals in modern 

society. The exact pathways of AMP transfer to wastewater are largely unknown. In house-

holds, AMPs are present in trace amounts in many products, such as impregnated carpets and 

                                            

8 Urban wastewater has been described as a major source for many AMPs; compare Schluep et al. 2006, Dia-
mond and Hodge 2007, Zimmerman et al. 2008, Fatta-Kassinos et al. 2011, Ferrari et al. 2004a+b, Muñoz 

et al. 2009a+b, Bolong et al. 2009, Menger-Krug et al. 2011, Mathan et al.2011 
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clothes, electronics, cleaning products for house and body, biocides for house and garden, 

paints and plastics. Together with the built environment, these products and goods represent 

the urban stock of AMPs. They may be released by abrasion, by cleaning with water or by out 

gassing. AMPs may accumulate in household dust. The dust may be transferred to wastewater 

during cleaning. Run off from urban surfaces collected in mixed sewer systems9 also contrib-

ute to the AMP load of the urban water chain. This includes traffic related AMP emissions, 

such as heavy metals from tire abrasion, as well as AMPs deposited from the air (dust, wet 

and dry deposition, long range transport) or AMPs leaching from surfaces and litter, or from 

secondary sources such as urban soils and sediments.  

AMPs in wastewater are hardly degraded with the current treatment technologies. They re-

main in effluent or are transferred to sludge or to air, depending on their biochemical charac-

teristics. The wide range of AMPs persisting in effluent after conventional treatment includes 

inorganic compounds, heavy metals, persistent organic pollutants like endocrine disrupting 

compounds, pharmaceutically active compounds, disinfection by-products, and many other 

complex compounds (Fatta-Kassinos et al. 2011). It is estimated, that 10-50% of the C efflu-

ent load can be attributed to AMPs with 100 to more than 1000 different AMPs in concentra-

tions in the ng to µg range (Schluep et al. 2006). Thus, the chemical “cocktail” problem is of 

special concern for the receiving waters.  

While the AMP problem is of high importance for the urban water chain in context of urban 

metabolism, the complexity of the issue with potentially more than 1000 different substances 

involved hinders the integration into sustainability assessments. In this study, one substance is 

included which is a prime example to illustrate the chemical pollution problem: 

perfluorooctanesulfonate (PFOS). Including this notorious AMP into the analysis of CNP 

recycling serves as a starting point to discuss the AMP problem; acknowledging that for a full 

picture many more AMPs with different use patterns, biochemical characteristics and toxico-

logical end points – as well as the effect of mixtures - need to be included  

 

                                            

9 60% of sewer system in Germany is mixed i.e. receives wastewater from households and commerce as well as 
run off from urban surfaces (ATT et al. 2011). 
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Figure 1-3: Overview of pathways for anthropogenic micropollutants 

Legend: Sources of AMPs include industrial sources, urban sources and agricultural sources. The urban stock 

also contributes to the flow of AMPs. Besides the infrastructure systems (termed technical barriers), which also 

include the urban water chain, also informal pathways can be important. They include accidental or criminal 

discharge, littering or wrongly connected sewer pipes. While the focus of this study is the urban water chain, for 

a holistic strategy for AMPs, all pathways have to be included.  

 

In this study PFOS is used as a model substance to discuss the problem of AMP in context of 

the urban water chain and the urban metabolism. PFOS is a perfluorinated substance, which is 

exclusively of anthropogenic origin and not formed in nature (UBA 2007). It has been used in 

a range of industrial and consumer applications and products since the 1950s. It is a surface-

active substance repelling grease, dirt, as well as water. It is stable in industrial processes even 

under harsh conditions.  
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PFOS keeps its unique properties that make it valuable for industrial and consumer applica-

tions also after emission to the environment. There are no known degradation mechanisms 

under environmentally relevant conditions (UBA 2007, Buser and Morf 2009). During 60 

years of use, PFOS has achieved a worldwide distribution, even in remote areas like the arc-

tic, as many studies have reported. They are found in wildlife such as fish, birds and marine 

mammals, as well as in human blood samples (Buser and Morf 2009).  

PFOS is classified as vPBvT-substance (very persistent, bioaccumulative and very toxic) un-

der REACH10 and is also included in the list of persistent organic pollutants (POPs) under the 

Stockholm Convention. PFOS is banned in the European Union (EU) and most industrial uses 

are in the process of phasing out. But PFOS was also widely used in household products in-

cluding impregnated carpets, leather/apparel, textiles/upholstery, paper and packaging and 

household cleaning products. For example, carpets manufactured before the ban can contain 

large amounts of PFOS as impregnation agent. Despite the ban, PFOS is still emitted from 

long lived products in the so called urban stock.  

In an EU wide survey of rivers, the Joint Research Centre of the European Commission (JRC) 

detected PFOS in more than 95% of samples, underlining the ubiquitous distribution of this 

AMP. A related study found a load of 27 μg/day (10 mg/year) in EU rivers, amounting to 

~5 t/a for the EU11. The contribution of wastewater to the load in rivers is unknown, but stud-

ies in Switzerland and Germany found that wastewater treatment plants (WWTPs) are the 

major source (Huset et al. 2008 and Becker et al.2008).  

 

  

                                            

10 REACH: Registration, Evaluation, Authorisation and Restriction of Chemicals 

11 EU population in 2008 approximately 497.5 million, Lanzieri (2008) 
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1.3.4 Microalgae systems 

Microalgae as a source of bioenergy have evoked interest in the economic and scientific 

community, due to their potential high energy yields (Wijffels and Barbosa 2010). “Microal-

gae” is a generic term to describe aquatic photosynthetic organisms of different families and 

species. It includes prokaryotic cyanobacteria and eukaryotes green algae (Lundquist 2010). 

Microalgae can be produced in flat ponds or reactors and do not require arable land.  

There are no large-scale applications for energy production yet, but some species are com-

mercially produced for nutritional supplement such as Chlorella and Spirulina, or for high 

value constituents such as Dunaliella salina for beta-carotene and Haematococcus pluvialis 

for astaxanthin (Lundquist 2010).  

Compared to other energy crops, microalgae have a higher energy output per unit area and do 

not require arable land (Miller 2011). But they have high upstream burdens for water, nutrient 

and CO2 provision. Therefore, the sustainability of microalgae systems has been questioned in 

recent LCA-based studies (Murphy and Allen 2011, Colosi and Clarens 2010). Integrating 

microalgae systems and wastewater treatment is often recommended for improved sustaina-

bility.  

The idea of integrating microalgae systems and wastewater treatment dates back to the 1950s 

(Oswald et al. 1953, Oswald and Golueke 1960) and offers many potential synergies. In theo-

ry, all resources that are needed for algae growth are available at WWTPs (see Figure 1-4). 

Wastewater provides a growth medium rich in macro and micro nutrients (US DOE 2010, 

Sturm and Lamer 2010, Pittmann 2010, Rawat 2010, Christensen 2011), CO2 can be supplied 

from flue gas on site (Lundquist et al., 2010; Kadam et al., 2002). Algae systems at WWTPs 

receive water, nutrients and CO2, with no upstream burdens and no competing uses. Another 

synergy is the energy offset from (partial) wastewater treatment, as algae remove nutrients 

from wastewater during growth (US DOE 2010, Sturm 2010, Pittmann 2010, Rawat 2010, 

Christensen 2011). Harvested biomass can be used energetically for production of biofuels, or 

for electricity generation via biogas or direct combustion (Sturm et al. 2011, Sialve et al., 

2009, Lundquist et al., 2010, Colosi and Clarens 2010). 

. 
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Figure 1-4: Algae systems for nutrient recycling in “closed” systems 

 

Despite these advantages and potential synergies, only a few pilot projects of microalgae sys-

tems running with wastewater have been described, mainly located in the US (Sturm and 

Lamer 2010, Lundquist et al. 2010) and New Zealand (Park and Craggs 2010, 2011a-c). They 

confirm the technical feasibility of the concept.  

The pilot plant in New Zealand is an open raceway ponds with additional CO2 provision (high 

rate algae pond HRAP), running on (partially diluted) effluent from anaerobic digestion of 

sewage sludge. It achieves average areal biomass productivities of ~20 g/m²*d (Park and 

Craggs 2010, 2011a-c). The authors provide data on biomass productivities and elimination 

efficiencies for COD and N, but do not include an energy balance.  

The pilot plant in the USA with a different process design (no additional CO2 and primary 

treated waste water as growth medium) achieves  ~10 g/m²*d (Sturm and Lamer 2010). This 

study provides no data on elimination efficiencies for COD and N. Instead, the authors as-

sume a 90% elimination of N and P. This estimate is based on a laboratory study (Shi, 2007), 

which used a special process design, called twin sheet, for maximum elimination rates on lab 
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scale. It is questionable, if these values can also be obtained in large-scale open ponds, espe-

cially for N. The authors provide a basic energy balance, assuming full substitution of 

wastewater treatment and not taking into account the energy required for energetic reuse of 

biomass (for example anaerobic digestion or drying and incineration. 

Algae systems not using wastewater have been the subject of several life cycle based studies. 

Clarens et al. (2010) performs a life cycle analysis of different energy crops including algae 

and finds that algae have a lower total land use and eutrophication potential than conventional 

crops. But conventional crops have lower energy use and water use. The poor performance of 

algae is mainly due to high demands for nutrients, which are supplied in the form of mineral 

fertilizer in the study of Clarens et al. (2010). The authors conclude that algae perform more 

favorably in these impact categories if nutrients from wastewater are used, than with nutrients 

from mineral fertilizer.  

Another study compares maximum areal energy output and minimum N requirements of dif-

ferent energy crops (Miller, 2010) and finds that algae have higher areal energy output than 

other energy crops, but also higher N requirements. If energy intensive mineral fertilizer is 

used, this trade off limits the energy output of the system. The authors conclude that using 

nutrients from wastewater avoids this trade off. 

While algae systems receive much attention in literature, the combination with wastewater 

treatment is less often investigated. So far, there is no study of the integrated process of the 

WWTP and the algae systems. This study aims to fill this gap. A process design for integra-

tion of algae systems is proposed which relies solely on resources from wastewater, with no 

external input of water, fertilizer or CO2. The whole algae process chain, from cultivation to 

production of bio-electricity, takes place on site of the WWTP. 

This study is unique as it investigates the integrated system on level of substance flows of the 

major nutrients CNP. The model derived in this study includes an SFA of CNP. It allows as-

sessing the energy and emission balance with a high level of detail. The SFA shows the im-

pacts of algae systems on the internal cycling of CNP. Based on the nutrients provided to the 

algae systems combined with the uptake efficiencies and the stoichiometric requirements, the 

amount of biomass is calculated. From the amount of biomass generated, taking into account 

the harvesting efficiency and the anaerobic digestibility, the additional biogas generation is 

calculated. The SFA model also shows changes in loads to different treatment steps arising 

from rerouting of internal flows to algae systems. These changes in loads are used as proxies 

to calculate the changes in energy consumption of the WWTP.  
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The SFA is also the basis for the assessment of the emission balance. This is the first study to 

investigate effluent quality of algae systems at WWTPs, including the nutrients incorporated 

in the non-harvested biomass. Emissions to air and land are also taken into account. The emis-

sions of CO2 on site reflect the C efficiency of bio-electricity generation. 

Another aspect that is often overlooked but very important from the perspective of the urban 

water chain is the implication for the flows of anthropogenic micropollutants (AMPs). To 

recap, the large advantage of algae systems is their closed nature. In contrast to “open” agr i-

cultural systems, algae systems can reuse nutrients without emission of AMP to the environ-

ment during cultivation. Furthermore, processes such as bio-oxidation, bio-sorption or bio-

assimilation in algae systems themselves can contribute to elimination of anthropogenic pollu-

tants, supported by a long hydraulic retention time of 3-6 days in an aerated environment. 

Elimination of heavy metals and persistent organic pollutants is described for laboratory stud-

ies, but remains to be proven in pilot projects. A list of substances for which elimination by 

microalgae was demonstrated is compiled in Table 1-1. Among these substances is also 

PFOS, the AMP chosen as a model substance in this study (see chapter 1.3.3). 

The main processes are sorption and bioaccumulation, which transfer AMPs from effluent to 

algae biomass. The biomass is unsuitable for application as animal feed or fertilizer, but suit-

able for energetic use, for example co digestion and co incineration with sludge. Due to the 

small size, microalgae have a large surface area per gram biomass. Due to a variety of func-

tional groups on the cell surfaces, they have effects on many different AMPs (cross substance 

effect, Monteiro et al. 2012, Subashchandrabose et al. 2013). For certain dyes, it has been 

demonstrated that microalgae can reach elimination efficiencies comparable to activated car-

bon (Aksu et al. 2005). 
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Table 1-1: Overview of substances for which elimination by microalgae was demon-

strated  

Organic substance Species (Reference) 

Organic substances of industrial origin. 

PFOS Mixed green algae (Liu et al. 2009) 

Phenol Ochromonas danica (Semple and Cain, 1996) 

Tributyltin (TBT) Chlorella vulgaris Chlorella sp. (Tsang et al., 1999) 

Chlorella miniata (Tam et al., 2002) 

Benzo[a]pyrene (BaP) Selanastrum capricornutum (Warshawsky et al., 1988) 

S. capricornutum (Schoeny et al., 1988) 

Phenanthrene (PHE) S. capricornutum (Chan et al., 2006) 

Naphthalene Agmenellum quadruplicatum (Cerniglia et al., 1979) 

Chlorella vulgaris (Todd et al., 2002) 

1-Naphthalenesulfonic 

acid 

Scenedesmus obiquus (Kneifel et al., 1997) 

1-Methylnaphthalene 

2-Methylnaphthalene 

A. quadruplicatum, Oscillatoria sp., Anabaena sp. 

(Cerniglia et al., 1983) 

 A. quadruplicatum, Oscillatoria sp. Anabaena sp. 

(Cerniglia et al., 1983) 

2,4,6-Trinitrotoluene Anabaena sp. (Pavlostathis and Jackson, 1999) 

Dibenzofuran Ankistrodesmus sp. (Todd et al., 2002) 

Dibenzo-p-dioxin Scenedesmus sp. (Todd et al., 2002) 

Bisphenol Chlorella fusca (Hirooka et al., 2005) 

Bisphenol A Pseudokirchneriella subcapitata, Scenedesmus acutus 

Coelastrum reticulatum (Nakajima et al., 2007) 

Biphenyl Oscillatoria sp. (Cerniglia et al., 1980) 

Dimethyl phthalate Closterium lunula (Yan and Pan, 2004) 

Sinapic acid Stichococcus bacillaris (DellaGreca et al., 2003) 

Azo compounds Chlorella vulgaris (Jinqi and Houtian, 1992) 

aromatic pollutants algae–bacteria mixed culture (Borde et al. 2003) 
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Table 1-1 (continued): Overview of substances for which elimination by microalgae was 

demonstrated  

Organic substance Species (Reference) 

Organic substance of agricultural origin. 

DDT Aulosira fertilissima; (Lal et al., 1987); Chlorococcum sp.; Ana-

baena sp.; Nostoc sp.; (Megharaj et al., 2000) 

γ-Hexachlorocyclohexane 

(Lindane) 

Anabaena sp.; Anabaena sp. (pRL634); (Kuritz and Wolk, 1995 

Methyl parathion Chlorella vulgaris; Scenedesmus bijugatus; Nostoc linckia,; N. 

muscorum; Oscillatoria animalis; Phormidium foveolarum; 

(Megharaj et al., 1994) 

 Anabaena sp.; (Barton et al., 2004) 

Metflurazon Norflurazon Chlorella fusca; (Thies et al., 1996) 

Norflurazon Desmethyl 

derivative 

Chlorella fusca; (Thies et al., 1996) 

Fluometuron Ankistrodesmus cf.; Nannoselene, Selenastrum; capricornutum; 

(Zablotowicz et al., 1998) 

Atrazine Diethyl  Ankistrodesmus sp.; Selenastrum sp.; (Zablotowicz et al., 1998) 

α-Endosulfan Scenedesmus sp.; Chlorococcum sp.; ; Scenedesmus sp.; 

(Sethunathan et al., 2004) 

Diclofop-methyl (DM) Chlorella vulgaris; C. pyrenoidosa; Scenedesmus obliquus; (Cai 

et al., 2007) 

Dichlorprop-methyl 

(2,4-DCPPM) 

Chlorella pyrenoidosa,; C. vulgaris; Scenedesmus obliquus; (Li 

et al., 2008) 

Fenamiphos Pseudokirchneriella; subcapitata; Chlorococcum sp.; (Cáceres et 

al., 2008a) 

Metals  

Cu
2+ 

Doshi et al. 2007; Deng et al., 2007; Vijayaraghavan et al., 2006 

Ni
2+

 Al-Rub et al., 2007 

Zn
2+

 Monteiro et al, 2011; Monteiro et al., 2009 b; Romera et al., 

2007; Senthilkumar et al., 2006 

Cd
2+

 Aksu and Dönmez, 2006; Tüzün et al., 2005; Monteiro et al., 

2009a; Monteiro et al., 2009 b; Romera et al., 2007 
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1.3.5 The concept of the urban metabolism 

The concept of the urban metabolism (UM) was introduced by Wolman (1965). He analyzed a 

hypothetical city by the quantification of inputs: water, food and fuel; transformation process-

es and outputs – sewage, solid refuse and air pollutants. He highlighted three “metabolic chal-

lenges”: water supply management, sewage disposal and air pollution control. Since its intro-

duction, the concept has received growing attention. A recent review of studies can be found 

in Kennedy et al. (2011), showing an accelerated interest in the last decade. Practical applica-

tions of the concept are emerging, especially as a basis for sustainable urban design and mate-

rial flow management (Kennedy et al. 2011, Agudelo-Vera et al. 2012, Girardet 2012, 

Villarroel Walker 2010, Beck et al 2010).  

To recap from the introduction, a sustainable urban metabolism requires restructuring the pre-

sent linear metabolism of cities to a more circular one. Brunner (2007) categorizes cities as 

linear reactors whose metabolism remains open and vulnerable depending on the hinterlands 

for material supply and disposal. In essence, the linear pattern of production, consumption and 

disposal is different than nature’s circular metabolism. Natural ecosystems are generally ener-

gy self sufficient, or are subsidized by sustainable inputs, and often approximately conserve 

mass, through recycling by detrivores. 

On a predominantly urban planet, cities will need to adopt circular metabolic systems to as-

sure their own long term viability as well as that of the rural environments on which they de-

pend (Girardet 2010, Crutzen et al. 2007). Otherwise, cities will continue to be strong agents 

of environmental decline on a local to global level and at the same time be vulnerable to these 

changes (Grimm et al., 2008). The local to global effects of the highly altered biogeochemical 

cycles in cities include: altered air quality (smog, aerosol load on local level, GHGs on global 

level), altered urban soils and vegetation, altered hydrological dynamics and altered water 

quality (urban stream syndrome12, groundwater pollution), altered dynamics for pollutants 

(urban pollution halo). These (partly) interdependent factors make urban ecosystems distinct 

from natural ecosystems, calling for a “distinct urban biogeochemistry” (Kaye et al. 2006). 

With a linear metabolism as today, resource consumption in urban areas is large. For a typical 

city in an average industrialized country, consumptions per capita per year are 150–400 GJ for 

                                            

12 The “urban stream syndrome” is a conceptual model to describe the consistently observed ecological degrada-
tion of streams draining urban landscapes (Walsh et al., 2005). This degradation includes elevated nutri-

ents, increased organic and inorganic contaminants, increased hydrologic flashiness, and altered biotic as-

semblages. 
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energy, and 15–25 tons for materials (Krausmann et al., 2008). Large portions of the flows are 

exported out of the urban system: in form of wastewater, solid waste and demolished con-

struction materials. But others remain in the urban system as urban ‘stocks’ (Brunner, 2007). 

While throughput is large, also the material stock in urban areas is growing, as inputs typical-

ly outweigh the outputs. The “urban stock” grows by approximately 10 t/p*a13. While the 

bulk accumulation is from construction material and long lived goods, also AMPs accumulate 

in the urban stock. Emissions from urban stock are significant for present and future flows of 

AMPs. 

The linear metabolism can be associated with two main problems. On the one hand, the high 

rate of resources consumption is related to resource depletion (e.g. water, fossil energy carri-

ers, and P resources); on the other hand, massive disposal of gaseous, liquid and solid waste 

causes pollution. Pollution refers to misplaced resources (CNP), to chemical pollution14 

(AMPs), but also by chemically relative inert materials such as plastics.  

With a circular metabolism, that includes recycling and reuse of the different urban flows, the 

problems of the input and output side can be negotiated. A circular metabolism resembles the 

metabolism of natural ecosystems, has a low consumption rate, and less impact on hinter-

lands. A circular metabolism may also reduce the dependency on imports of material and en-

ergy and thus enhance the resilience of cities (Agudelo-Vera et al. 2012). To recap, as also 

AMPs are present in urban areas, not only the quantity, but also the quality of cycles needs to 

be taken into account as required by the clean cycle approach (Kral, Kellner and Brunner 

2012).  

According to Baccini and Brunner (1991), four major urban activities are the drivers of mate-

rial and energy flows: to nourish and recover; to clean; to reside and work; and to transport 

and communicate. The flows of water, food (biomass), materials (construction materials, 

goods and products), and energy can be regarded as the four fundamental components of ur-

ban metabolism (Decker et al. 2000, Kennedy 2010).  

The urban metabolism can be analyzed with different complementary perspectives: from a 

mass balance approach (Material Flow Analysis (MFA), see Baccini and Brunner 1991, 

Baccini and Bader 1996, Brunner and Rechberger 2003), on level of substances or elements 

                                            

13 According to Moll, Bringezu and Schütz, the net accumulation in the EU is 10 t of materials per person and 
year. This value does not distinguish between urban (astysphere) and the anthroposphere in general. 

14 As defined by Rockström et al. 2009 
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(Substance Flow Analysis (SFA), see Antikainen 2007) or on level of (direct and embodied) 

energy flows (Emergy analysis, see Odum 1983).  

Drawing boundaries around cities is difficult, as they are tightly connected: via roads and oth-

er infrastructures, transport of goods and wastes and human travel and commuting. This glob-

al network of cities can be regarded as a part of the anthroposphere: the astysphere (Norra 

2009). A full analysis of urban metabolism includes all commercial, industrial or agricultural 

activities that take place within the city boundaries, as well as export and import; and the 

household activities. Given the diversity of cities and their administrative boundaries; the ur-

ban metabolism can include any kind of production (Figure 1-5). The scope of the present 

study is limited to household consumption. 

 

 

Figure 1-5: Flows and activities of the urban metabolism 

Legend: Flows and activities of the urban metabolism include export and import; commercial, industrial, agricul-

tural and household activities. The focus of this study is on the latter. 

 

On the way towards a sustainable future, cities face many challenges. As a prerequisite for the 

physical sustainability, cities need to restructure their resource consumption and energy sys-

tems to negotiate the human impact on the ecosystems on which they ultimately depend. This 

includes a sustainable, C efficient and renewable energy supply, as well as recycling of re-

sources from food and other consumption related urban flows in clean cycles. At the same 

time, cities need to find ways to minimize pollution of the environment, including AMPs. It is 

important for policy and decision makers to understand how “clean cycles” can be organized. 
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To contribute to this task, the present study focuses on urban water infrastructures and their 

potential contribution to a more sustainable urban metabolism with clean cycles. The urban 

water chain, as part of urban metabolism, manages large flows of water, food (biomass) and 

also the flows of some products of daily consumption, such as cleansing products. The flows 

are related to the activities: to nourish, to clean and also to reside, as water supply and sanita-

tion are fundamental functions of a residence.  

On an elemental level, the urban water chain includes large flows of CNP, originating from 

food and cleansing products. While CNP are resources with an energetic value, they can act as 

pollutants when emitted to the environment. Together with CNP, AMPs can enter the urban 

water chain. The urban water chain is an important pathway for AMPs to the environment. 

Thus, to evaluate concepts for recycling of CNP the quantity and quality of recycling needs to 

be considered. 

This study assesses the status quo of the urban water chain and the potential for energetic re-

cycling of CNP in algae systems. Finally, the perspective is extended to put this potential im-

provement in context of urban metabolism. To extent the perspective, the household con-

sumption of energy, water, food and cleansing product for house and body (detergents) is 

quantified. These flows represent the connecting points of the urban water chain to the full 

urban metabolism. They cover large parts of the daily household consumption.  

While the analysis of household consumption is far from a complete analysis of urban metab-

olism, it covers an important part of the system. The household consumption was identified as 

an important driver of material and energy flows and socially meaningful as unit of decision-

making (Moll 2006, Fissore et al 2011, Villarroel Walker 2010).  

Amongst the urban metabolism studies, there are some that focus on the flows of CNP 

through urban areas and their degree of reuse. But most of them neglect the problem of 

AMPs, thus following a purely quantitative approach to recycling. Studies of the urban me-

tabolism with focus on the flow of nutrients have been performed for:  

 Paris in France (Barles 2007: N flows in food sector),  

 Linköping in Sweden (Neset et al. 2007: N flows in food sector, Neset et al. 2009: P 

flows in food sector, Neset 2005)  

 Phoenix in the USA (P flows with the sectors food, forestry, municipal waste, Metson 

2012) 

 Minneapolis-St. Paul in the USA (N and P flows with focus on household consump-

tion, Baker et al. 2007, Fissore et al 2011)  
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 on a watershed level: Upper Chattahoochee Watershed in the USA (C N and P flows 

with the sectors food, forestry, municipal waste, and energy,  Villarroel Walker 2010) 

 on national level in Finland (Antikainen 2007, N and P flows, with the sectors food, 

forestry, municipal waste, and energy) 
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2 Methods and Data Base 

2.1 Framework for analysis 

Methodologically, a systems analysis is employed combining a conventional energy balance 

with a substance flow analysis (SFA) and the assessment of the energetic value of the re-

sources. The underlying model includes three layers (Figure 2-1, left side). It is build in an 

excel spreadsheet. The technical setup builds the foundation of the model (layer 1). Different 

technical setups (cases) are defined to describe the status quo of the urban water chain, includ-

ing the water supply, the wastewater and the sludge management; and the integration of algae 

systems.  

 

 

 

Figure 2-1: Framework for analysis 

 

For each case, the gross consumption for handling and treatment of flow streams is compiled: 

electricity, thermal energy and fuel consumption for each step of the urban water chain. To-

gether with the own generation of energy from biogas use or sludge incineration, these energy 

flows represent the external energy flows of the system (layer 2).  

Table 2-1 provides an overview of the factors used for calculation of the external energy bal-

ance of the urban water chain. The derivation of the factors is described in detail in chapter 

2.4.2. For the algae systems, the factors are adapted based on the results of the SFA to account 

for the altered flows of CNP (see chapter 2.5.4). The SFA shows changes in loads to different 

treatment steps arising from rerouting of internal flows to algae systems. These changes in 
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loads are used as proxies to calculate the changes in energy consumption. The energy genera-

tion is also assessed based on SFA results. Based on the nutrients provided to the algae sys-

tems combined with the uptake efficiencies and the stoichiometric requirements, the amount 

of biomass is calculated. From the amount of biomass generated, taking into account the har-

vesting efficiency and the anaerobic digestibility, the additional biogas generation is calculat-

ed.  

 

Table 2-1: Overview of factors for calculation of the external energy balance  

For each step of the urban water chain, the energy consumption is assigned in kWh/p*a per person served and 

year of electricity EL, thermal energy TE or PE (fuels for transport) 

 advanced medium basic All References 

 EL TE EL TE EL TE PE  

Water supply 26  26  26   HWW, 2007; 

RWW, 2007; Ols-

son 2012; Lingsten 

et al. 2008 

Wastewater  

transport 

5.5  5.5  5.5 0  Olsson 2012; 

Lingsten et al. 

2008; Hansen et 

al. 2007 

Wastewater  

treatment (BWT) 

28  28  40 5  Haberkern et al. 

2008; Agis 2001; 

Hansen et al. 

2007; Olsson 

2012; Lingsten et 

al. 2008 

Digester operation 6 22 6 22    

Biogas 

co generation 

-9 -18 -9 -18    

Sludge dewater-

ing 

2  2  2   Haberkern et al. 

2008; Houillon et 

al. 2005; UBA 

2012; Hong et al. 

2008; Stillwell et 

al. 2010; MUNLV 

2001, destatis 

2006, Agis 2001; 

Hansen et al. 

2007; Olsson 

2012; Lingsten et 

Sludge storage   3.5  3.5   

Sludge transport       7-20 

Sludge drying 5 44      

Sludge incinera-

tion 

-12 -32      

Waste TE in  -8      
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Flue gas treatment 2.4       al. 2008 
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Zooming in on level of CNP, the substance flow analysis (SFA) shows the flows of CNP 

along the urban water chain (layer 3). CNP enter the urban water chain at household level and 

follow complex pathways during wastewater treatment, even more complex when algae sys-

tems are involved.  

In the SFA model, each flow is represented by a vector of 4 elements. Each treatment step in 

the different cases is represented by a matrix with partitioning factors (PF) to air, water and 

sludge (module). Thus, each module contains 3 x 4 = 12 partitioning factors (see Table 2-2). 

Adding up along the rows gives the sum of 1 for each of the vector elements CNPW, as the 

input to the module equals the output. The mathematical operations to calculate the flows are 

reported in chapter 2.4.4 for the urban water chain without algae and in chapter 2.5.4 for the 

urban water chain with algae.  

 

Table 2-2: Overview of matrix for the SFA 

Legend: The partitioning factors are named after the element CNPW, followed by the destination of the flow –a 

for air; -w to water; -s to sludge / biomass. 

PF for module X X-A X-W X-S Σ 

C c-a c-w c-s 1 

N n-a n-w n-s 1 

P p-a p-w p-s 1 

W w-a w-w w-s 1 

 

To extend the usual approach to energy balances, the analysis also assesses the energetic val-

ue of the resources. The theoretical energy potential (TEP) is assigned to the resources CNP. 

It relates to the chemical energy of C and the “grey” energy of the nutrients N and P. By ap-

plying the respective TEP factors [kWh/kg] to the SFA, the internal energy flows associated 

to CNP are traced along the urban water chain. Table 2-3 gives an overview of the factors for 

the theoretical energy potential (TEP) of CNP used in this study. The derivation of TEP fac-

tors is documented in chapter 2.3.  
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Table 2-3: Overview of TEP factors  

TEP of  Value used in this study Value based on References 

C  17.9 kWh/kg C 

(Chemical energy: 

 direct combustion) 

Measurements with 

bomb calorimeter 

(freeze-dried samples) 

Heidrich et al. (2011) 

Shizas and Bagley 

2004 

C  13 kWh/kg C 

(Chemical energy:  

via biogas) 

Chemical composition 

and calorific value of 

biogas 

Sverdal-Kroiss (2012) 

Olsson (2012) 

N 16.4 kWh/kg N 

(Grey energy)15 

Energy for fertilizer  

production 

Lal 2004, 

Dockhorn 2008 

P 7.9 kWh/kg P 

(Grey energy) 

Energy for mining and 

processing 

Maurer 2003 

 

Based on the TEP factors, the metabolic efficiency can be assessed. The metabolic efficiency 

is the degree of reuse in relation to the full energetic value of the resources. For N and P it 

relates to the amount applied to agricultural land corrected for plant availability. The reuse of 

N and P can be expressed in energetic terms by applying the TEP factors to SFA results.  

C is energetically reused via biogas use or sludge incineration for electricity and heat co gen-

eration, as quantified in layer 2 of the model. To assess the metabolic efficiency of C, the en-

ergy generation is put in relation to the TEP of C. Furthermore, the actual and potential elec-

tricity generation from C resources can be put into relation to the actual electricity consump-

tion, as shown in Figure 2-2. 

This extended energy balance is an important read out of the model (Figure 2-1, right side). It 

gives a holistic picture of the energy flows along the urban water chain. 

  

                                            

15 The term grey energy refers to energy saved by substituting a product i.e. fertilizer.The grey energy is “virtu-
al” i.e. not directly usable within the system, in contrast to chemical energy or electrical energy. 
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Figure 2-2: Elements of the extended energy balance 

Legend: The extended energy balance shows external and internal energy flows. A: gross consumption of elec-

tricity for handling of flow streams (grey); B: own generation of electricity from the resources in the flow 

streams (dark purple); C theoretical potential for electricity generation based on the resources in the flow streams 

(light purple); B/C: metabolic efficiency. 

 

To assess not only the quantity, but also the quality of CNP recycling, the extended energy 

balance of the urban water chain is accompanied by the emission balance. The emission bal-

ance includes the emissions of CNP from the flow streams (internal resources). Thus, the 

method captures the double role of CNP as potential energetic resources or as pollutants. The 

SFA is the basis for assessment of the emission balance. The mathematical operations for cal-

culation of the emission balance are reported in chapter 2.4.4 for the urban water chain with-

out algae and in chapter 2.5.4 for the urban water chain with algae.  

Besides the on site emissions of CNP, also the CO2 emissions related to the consumption of 

external energy are taken into account. While the focus of the study lies on the flows of CNP, 

the problem of AMPs is discussed using PFOS as a model substance. The inventory for the 

flows of PFOS is presented in chapter 2.6.9.  

The emission balance is the second important read out of the model (Figure 2-1, right side). 

Together, the extended energy and emission balance of the urban water chain allow assessing 

the quantity and quality of reuse.  
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2.2 Input load 

In all cases, the same input is assumed. The average daily load to wastewater generated per 

person and day is 120 g COD, 11 g N and 2 g P (ATV 2000, DWA 2008, and DWA 2013). 

Assuming an average factor from C to COD of 3 (range 2.8-3.2, Henze et al. 2000); the daily 

load COD load equals 38.8 g C. The amount of wastewater is assumed with 250 l per day and 

person served. In this analysis, only wastewater from households is considered. Wastewater 

from commercial operations is excluded.  

 

2.3 Theoretical energy potential of CNP 

Carbon (C) 

Carbon (C), in dependency of its oxidation state, is an energy carrier. Wastewater contains a 

multitude of organic molecules, such as hydrocarbons, proteins and lipids. When organic 

molecules are oxidized to CO2, e.g. during combustion, energy is released. The quantification 

of the theoretical energy potential TEP of organic carbon C is based on a study with bomb 

calorimeter. Heidrich et al. (2011) measured 7.6 kJ/l in a domestic wastewater with 0.115 g/l 

of organic C, using freeze-dried samples. For the model, the resulting TEP factor of 66 kJ/g C 

is used (17.9 kWh/kg).  

Bomb calorimeters measure the calorific value of a dried substrate, therefore the TEP contains 

no corrections for water content. In practice, drying of substrate can easily consume more 

energy than contained in the substrate (see chapter 2.4.2). The TEP represents therefore the 

upper limit for energy harvesting from C in wastewater. Freeze drying of samples gave higher 

calorific values than oven drying, as losses during sample preparation were minimized 

(Heidrich et al. 2011).  

In a mixed wastewater, including wastewater from commerce and business, higher values of 

22.5 kJ/g COD in oven dried samples and 28.7 kJ/g COD in freeze dried samples were meas-

ured (Heidrich et al. 2011). Assuming an average factor from C to COD of 3 (range 2.8-3.2, 

Henze et al. 2000), calorific value lies between 66 and 86 kJ/g C. In an earlier study, (Shizas 

and Bagley 2004) measured lower values of 14.7 kJ/g COD or 45 kJ/g C with oven dried 

samples. 

Besides energy harvesting from C via combustion processes, also a “detour” via biogas pro-

cesses can be used. The TEP of C via biogas processes is quantified based on an assumed 
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biogas composition of 65% methane (see Table 2-4), which is typical for biogas at WWTPs 

(Haberkern et al. 2008). With the molecular weights of the components, 1 mol of biogas 

weights 24 g and has a C content of 46%. Using a volume of 22.414 l/mol (ideal gases) for 

simplicity, this gives a density of 1.08 g/l and approximately 0.5 g C/l biogas. With a lower 

heating value of 6.5 kWh/m³, this gives 13 kWh/kg C or 48 kJ/g C. This is in the same range 

as the estimate presented by other studies (3.5-4 kWh/g COD, or 10.5-12 kWh/g C, Sverdal-

Kroiss (2012) and Olsson (2012)).  

This figure represents the upper limit for energy harvesting from C in wastewater via biogas, 

based on a 100% anaerobic digestibility of substrates. In practice, much of the substrate is 

resistant to biodegradation under anaerobic conditions and anaerobic digestibilities range 

from 35% for secondary sludge to 55-70% for primary sludge (DWA 2007). While TEP of 

biogas will always be below TEP of combustion, biogas has multiple advantages in practice. 

While combustion requires drying of substrate, anaerobic digestion (AD) uses wet substrates. 

For the WWTP, anaerobic digestion is a method for sludge stabilization, with biogas as co-

product.  

Table 2-4: Derivation of TEP for C via biogas  

Legend: Derivation of TEP for C via biogas based on assumed biogas composition and molecular weights of 

biogas components. 

 
CH4 CO2 H2O N2 

molecular weight [g] 16 44 18 30 

biogas composition [%]  65 28 6 1 
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Nutrients NP 

Other than C resources, N and P in wastewater can not be used directly for generation of elec-

tricity and heat. But reuse on agricultural lands gains indirect energy credits by substitution of 

energy-intensive fertilizer production. Fertilizer production via Haber-Bosch requires 

60 MJ/kg of N (Lal 2004, Dockhorn 2008) For P, energy intensity for mining and processing 

is estimated at 29 MJ/kg P (Maurer 2003). For N, there are no limitations in resource availa-

bility as N2 is abundant in the atmosphere. But P resources are limited and energy demand for 

processing is expected to rise, as good quality resources decline. For the model, a TEP factor 

of nutrients of 60 kJ/g N (16.4 kWh/kg) and 29 kJ/g P (7.9 kWh/kg) is assumed. This repre-

sents the grey energy of nutrient provision.  
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2.4 Inventory for the current situation of the urban water chain 

2.4.1 System description 

The mass flows of the urban water chain are described in chapter 1.3.1. Based on the reported 

information (see Table 2-5), the cases required to describe the current situation are derived.  

Table 2-5: Status quo: Technical setup for water supply, wastewater treatment and 

sludge treatment  

Technical setup Value Important references 

water supply    

groundwater 70% ATT et al. 2011 

surface water 30% 

wastewater treatment   

anaerobic stabilization of sludge 75% ATT et al. 2011, UBA 2012; Ha-

berkern et al. 2008 aerobic sludge treatment 25% 

sludge treatment   

incineration 52% ATT et al. 2011, UBA 2012; Ha-

berkern et al. 2008 land use in agriculture or landscaping 48% 

 

For the water supply side two cases are distinguished in this study with groundwater (70%) 

and surface water use (30%, ATT et al. 2011). For wastewater and sludge treatment, three 

cases are distinguished, which differ in their degree of energy harvesting from biogas and 

sludge. This includes facilities with anaerobic stabilization of sludge (75% of population 

served) and facilities with aerobic sludge treatment (25%) (ATT et al. 2011, UBA 2012, 

Haberkern et al. 2008). For fate of stabilized sludge, incineration (52% of population served) 

and land use in agriculture or landscaping (45%) is considered (ATT et al. 2011, UBA 2012). 

For simplicity, it is assumed that only facilities with anaerobic digestion conduct sludge in-

cineration and the 3% other uses of sludge are added to land use. This gives three cases as 

shown in Table 2-6 (see also Figure 3-1 in the results section). The inventories for the external 

energy balance and for the SFA for these three cases are reported in the following chapters. 
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Table 2-6: Status quo: Three cases for wastewater and sludge management 

Technical setup  Biogas use Sludge  

incineration 

Population 

served 

Advanced case (1)    52% 

Medium case (2)    23% 

Basic case (3)    25% 

 

The advanced case (case 1) represents a medium to large WWTP employing anaerobic sludge 

stabilization with subsequent drying and incineration (52% of population served). The medi-

um case (case 2) represents a medium to large WWTP employing anaerobic sludge stabiliza-

tion with subsequent land use (23%). The basic case (case 3) represents a small WWTP with 

aerobic wastewater treatment and simultaneous sludge stabilization with subsequent land use 

(25%). All cases employ biological wastewater treatment (BWT, also referred to as activated 

sludge treatment AS). The weighted average of these three cases gives the average for Ger-

many. 

The advanced case (case 1) employs energy harvesting from biogas and incineration process-

es. As it reflects the current situation, there are considerable energy losses: due to flaring or 

thermal only use of biogas, due to a low electrical efficiency and due to inefficient mono in-

cineration in older facilities. If these processes were optimized according to the best available 

technology, the energetic reuse can be considerably increased (best available technology case 

or case 1+). For the SFA, there are no differences compared to the advanced case (case 1). 
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2.4.2 External energy balance 

Drinking water supply 

For drinking water supply, an average of 110 l/p*d for domestic use and 6% distribution loss-

es (ATT et al. 2011) are assumed, adding up to 41 m³/p*a. For electricity demand for water 

sourcing, treatment and distribution, 0.6 kWh/m³ is assumed. This estimate is based on infor-

mation from two large German suppliers, reporting 0.57 kWh/m³ (HWW, 2007) and 

0.62 kWh/m³ (RWW, 2007) for groundwater and 0.83 kWh/m³ for surface water (RWW, 

2007); taking into account that in Germany, 70% of public water supply is sourced from 

groundwater and 30% from surface water (ATT et al. 2011). This estimate for Germany is 

slightly higher than average reported for the Netherlands (0.47 kWh/m³, Olsson 2012) and for 

Sweden (0.46 kWh/m³, Lingsten et al. 2008).  

The demand for thermal energy in the water sector is neglected in this study, as there is no 

statistical information available. As the treatment processes themselves do not require input of 

thermal energy, it leaves the heating of facilities and office rooms.  

 

Wastewater transport 

Transport of wastewater requires electricity for pumping. It is assumed that 91 m³/p*a 

wastewater are generated in average, including rainwater and sewer infiltration. The electrici-

ty demand is assumed with 0.06 kWh/m³, as reported as average for Sweden (Olsson 2012, 

Lingsten et al. 2008). This gives an electricity demand for wastewater transport of 

5.5 kWhel/p*a. This figure is in the same range as another estimate from Germany 

(5.8 kWhel/p*a, Hansen et al. 2007). 

 

Wastewater treatment  

Data for electricity use for wastewater treatment processes from benchmarking studies is 

compiled in Haberkern et al. (2008). Average electricity demand is 35 kWhel/p*a, with con-

siderable differences between size classes: 75 kWhel/p*a for size class 1, 55 kWhel/p*a for 

size class 2, 44 kWhel/p*a for size class 3, 34 kWhel/p*a for size class 4 and 32 kWhel/p*a for 

size class 5.  

For the basic case (case 3) of the model, representing 25% of population served by smaller 

WWTPs with simultaneous aerobic sludge stabilization, the demand is assumed with 
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40 kWhel/p*a. For the advanced case (case 1) and the medium case (case 2), representing 75% 

of population served by larger WWTPs employing anaerobic sludge stabilization, 

33 kWhel/p*a can be assumed The average over all three cases equals the German average of 

35 kWhel/p*a, as reported by Haberkern et al. (2008).  

For facilities with simultaneous aerobic sludge stabilization (basic case 3), approximately 

80% of the electricity are used for aeration, the rest for other purposes e.g. pumping of 

wastewater (Agis 2001). For facilities with anaerobic sludge stabilization (advanced case 1 

and medium case 2), approximately 60% of the electricity is used for aeration during biologi-

cal wastewater treatment and 20% for digester operation (Agis 2001).  

The demand for thermal energy at WWTPs depends on the form of sludge treatment. With 

anaerobic sludge stabilization, digester operation requires input of thermal energy, which can 

be met in large parts by co generation of electricity and heat from biogas on site. Aerobic 

sludge stabilization requires less thermal energy than anaerobic sludge stabilization. But 

without biogas, there is no electricity or heat generated on site. According to an energy analy-

sis of 21 WWTPs in Austria (Agis 2001), WWTPs with anaerobic sludge stabilization require 

a total of 22 kWhthermal/p*a, with most of the demand covered by generation of thermal energy 

from biogas. WWTPs with aerobic sludge stabilization requires 2-5 kWhthermal/p*a. In absence 

of AD, this has to be fully covered by external supply e.g. natural gas.  

For the model, 22 kWhthermal/p*a is assumed for case 1 and 2 with anaerobic sludge stabiliza-

tion, and 5 kWhthermal/p*a for case 3 with simultaneous aerobic sludge stabilization. For sim-

plicity, it is assumed that thermal energy is provided by natural gas only. 

 

Electricity generation from biogas 

For Germany, average biogas generation per person at WWTPs is reported with 7.2 m³/p*a, 

with ranges of 6.2-11.5 m³/p*a resp. 16-32 l/p*d (Haberkern et al. 2008). Biogas from 

WWTPs averages 65% methane content and has a lower heating value of 6.5 kWh/m³. This 

gives a lower heating value of biogas of 47 kWh/p*a. But only approximately 65% of biogas 

is used for electricity generation, with an average efficiency of 30%. The remaining 35% of 

biogas are flared or used for thermal applications only (Haberkern et al. 2008). 

For case 1 and 2 of the model, 7.2 m³/p*a of biogas generation is assumed, with 65% methane 

content and a lower heating value of 6.5 kWh/m³. It is assumed that 65% of produced biogas 

is used for co generation. There are no energy credits for the remaining 35%. For co genera-
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tion, 30% electrical efficiency and 60% thermal efficiency is assumed, thus yielding 

9 kWhel/p*a and 18 kWhtherm/p*a. For simplicity, it is assumed that the electricity generated is 

fully used on site, and the 14% of the electricity sold to grid is neglected (Haberkern et al. 

2008). 

For the best available technology case, it is assumed that the produced biogas fully contributes 

to electricity generation, i.e. no biogas is flared or used for thermal applications only. The 

electrical efficiency is assumed with 35%. Thus, electricity generation from biogas can be 

increased to 16 kWhel/p*a in the best available technology case or case 1+.  

 

Sludge treatment  

After anaerobic or aerobic stabilization, sludge has a solids content of 2-5%, expressed as dry 

weight (dw). For volume reduction, sludge is usually dewatered. Technologies for dewatering 

of sludge include centrifuges or presses. The water content of sludge is divided into the fol-

lowing categories: free water, which can largely be removed by mechanical means, capillary 

water and water bound to particle’s surface, which can be removed by thermal drying and 

chemically bonded water molecules. Sludge is very hydrophilic due to a high organic content, 

composed mainly of cells of microorganisms containing nucleic acids, proteins, carbohydrates 

and lipids, their decay products and non metabolized organic material, e.g. cellulose (Manara 

and Zabaniotou 2012). 

Depending on the individual characteristics of sludge, mechanical dewatering can raise the 

solids content to approximately 15-25% dw for aerobically stabilized sludge and 20-30% dw 

for aerobically stabilized sludge. Before dewatering, sludge is usually treated with flocculants, 

such as organic polyelectrolytes or salts of trivalent Al or Fe, to aggregate solids and help 

dewatering (DWA 2007). According to Haberkern et al. (2008), mechanical dewatering of 

sludge requires approximately 2 kWhel/p*a and no thermal energy.  

For sludge treatment, two pathways are considered: incineration (52% of population served, 

case 1) and land use (48%, case 2+3). For all cases, dewatering of sludge is assumed neglect-

ing the direct use of liquid sludge e.g. on agricultural lands in vegetation season. For land use 

the scenario presented by Houillon et al. (2005) is adopted with spreading of pasty sludge 

with 20% dw after an average storage of 7 months. Electricity demand for storage under deo-

dorizing conditions is 209 kWh/t dw (Houillon et al. 2005). Assuming 17 kg dw/p*a, electric-

ity demand for storage is 3.5 kWhel/p*a.  
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There is no information available for transport distances of sludge to reuse sites in Germany. 

To give an envelope for energy demand of sludge transport, an average transport distance of 

20 km (MUNLV 2001) as lower and 600 km (Haberkern et al. 2008) as higher value is as-

sumed. With 20% dw, the mass for transport is 85 kg/p*a. According to statistics, the energy 

demand (fuels) for transport is 0.532 kWh/tkm and the corresponding CO2 emission is 

0.135 kg CO2-equ./tkm (destatis 2006). 

For incineration of stabilized sludge (case 1), the main processes employed in Germany are 

mono incineration (43% of sludge incinerated) and co incineration in coal fired power plants 

(43%) (UBA 2012). For co incineration in coal fired power plants, drying is usually integrated 

with drying of coal in coal mills. Thermal energy for drying comes from waste heat. Sludge 

addition to coal is limited to 1-5%, due to ash contents, residues and capacity of coal mills 

(UBA 2012). For mono incineration, the processes most commonly employed are multiple 

hearth furnaces and fluidized bed furnaces (Stillwell et al. 2010).To generate enough heat for 

a stable process without large amounts of auxiliary fuels, mono incineration facilities usually 

receive sludge from several WWTPs. Remaining 14% of sludge are co incinerated in cement 

kilns, waste treatment facilities and others (UBA 2012).  

The calorific value of dried sewage sludge is comparable to brown coal: sludge at 75% dw 

has a calorific value of 7.6 kJ/g; rising to 9.6 kJ/g at 90% dw; while brown coal has a calorific 

value of 8.65 kJ/g (Haberkern et al. 2008). After mechanical dewatering, sludge has a solid 

content of approximately 20-30% dw. Drying of sludge to higher solids concentrations re-

quires considerable amounts of energy to remove capillary water and water bound to parti-

cle’s surface. This is also reflected by the high energy demand of thermal drying, compared to 

mechanical means to remove water. For example, to dry 1 t dw of sludge from 30 to 90% dw, 

approximately 2 t of water need to be removed. On a theoretical base, to heat 1 l of water by 

90°C and then transfer it to vapor, energy consumption is:  

4.19 kJ/kg*K * 90 K + 2261 kJ/kg = 2638 kJ/kg (or 0.7 kWh/kg; Haberkern et al. 2008).  

The minimum energy requirement for drying of 1 t dw of sludge from 30 to 90% dw is 

1400 kWh of thermal energy. Due to process related energy losses, thermal energy consump-

tion is higher in reality and additional electricity resp. mechanical energy is needed for pro-

cessing e.g. transferring and mixing of sludge. Ideally, thermal energy for drying should be 

provided by renewable sources (solar) or by waste heat from combustion processes. Incinera-
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tion process also requires electricity, mainly to treat flue gas to limits required by German 

law16 and for transferring sludge. 

The energy demand for drying and the energy generation from incineration, reported in vari-

ous literature sources varies considerably. Haberkern et al. (2008) report per person heat and 

electricity demand for drying of sludge from 30% to 90% dw with 5 kWhel/p*a and 

45 kWhtherm/p*a. Assuming a sludge generation of 17 kg (dw)/p*a, energy demand is 

0.3 kWhel/kg dw and 2.7 kWhtherm/kg dw. Demand for thermal energy is almost twice the the-

oretical minimum. The authors do not report energy demand for incineration, but they report 

the calorific value of sludge with 90% dw with 2.7 kWh/kg.  

Hong et al. (2008) report energy demand for drying with 0.2 kWhel/kg dw and 

1.6 kWhtherm/kg dw. Demand for thermal energy is close to the theoretical minimum. Incinera-

tion (fluidized bed) requires 0.3 kWhel/kg dw and generates 0.9 kWhel/kg dw. Assuming 

17 kg (dw)/p*a sludge generation, energy surplus is 6.8 kWhel/p*a. The authors do not report 

heat generation during incineration, but with 35% electrical efficiency and 60% thermal effi-

ciency, there are 1.8 kWhtherm/kg dw available and a neutral balance of thermal energy is pos-

sible. 

For drying and incineration taken together, Houillon et al. (2005) reports 0.4 kWhel/kg dw for 

energy demand and 0.65 kWhtherm/kg dw for additional external supply of natural gas. Energy 

recovery is 6 MJ/kg dw. Assuming 30% electrical efficiency and 60% thermal efficiency, 

0.6 kWhel/kg dw and 1 kWhtherm/kg dw are recovered. Total demand of thermal energy includ-

ing co generation and external supply, is 1.65 kWhtherm/kg dw. Demand for thermal energy is 

close to the theoretical minimum. Assuming 17 kg (dw)/p*a sludge generation, energy surplus 

from incineration is 2.9 kWhel/p*a and additionally required external thermal energy is 

7.2 kWhtherm/p*a. 

Stillwell et al. (2010) report a net electricity generation of 0.9-1.3 kWhel/kg dw with a neutral 

balance of thermal energy for drying and incineration taken together. Assuming 17 kg 

(dw)/p*a sludge generation, energy surplus from incineration is 15-23 kWhel/p*a. 

In a study from Germany from 2006, energy surplus over drying and incineration is estimated 

with 0.7 kWhtherm/kg dw resp. 12 kWhtherm/p*a and no surplus electricity (MUNLV 2001). 

                                            

16 17. BImSchV, see http://www.gesetze-im-internet.de/bundesrecht/bimschv_17/gesamt.pdf 
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Lacking statistical information on the energy demand for drying and energy generation from 

incineration in Germany, the following assumptions are made for the model:  

For simplicity, it is assumed that 50% of total sludge incinerated is processed via mono incin-

eration and 50% via co incineration in coal fired power plants, neglecting the 14% of sludge 

with other uses.  

For drying of sludge, an energy demand with 5 kWhel/p*a and 45 kWhtherm/p*a is assumed. In 

case of co incineration, thermal energy is fully supplied by waste heat from coal fired power 

plants. For energy generation from sludge, the calorific value of sludge is assumed with 

2.7 kWh/kg at 90% dw. With 35% electrical efficiency, 16 kWhel/p*a and 22 kWhtherm/p*a are 

generated.  

For mono incineration, older facilities with a thermal only use of sludge, as reported by 

MUNLV (2001) and newer facilities with electricity generation have to be considered. Lack-

ing detailed information on the distribution, it is estimated that 25% of sludge is treated in 

older mono incineration facilities and 25% in newer facilities. The older facilities use incin-

eration for thermal energy only, generating 44 kWhtherm/p*a, but no electricity. The newer 

plants generate 16 kWhel/p*a and 22 kWhtherm/p*a. To supply enough thermal energy for dry-

ing, they require an external supply of 23 kWhtherm/p*a. For mono incineration, flue gas re-

quires treatment to meet the limits required by German law. The energy demand is estimated 

with 5 kWhel/p*a. This is the same percentage (30% of the electricity generated) as reported 

by (Hong et al. 2008).  

The weighted average for incineration (50% co incineration in coal fired power plants, 25% 

mono incineration in older and 25% in newer facilities) is consumption of 5 kWhel/p*a and 

44 kWhtherm/p*a for drying and generation of 12 kWhel/p*a and 32 kWhtherm/p*a during incin-

eration. Input of waste heat from coal fired power plants is 8 kWhtherm/p*a, and consumption 

of electricity for flue gas cleaning is 2.5 kWhel/p*a.  

For the best available technology case it is assumed that old facilities for mono incineration 

were replaced by newer facilities and the electricity generation from sludge incineration in-

creases to 16 kWhel/p*a.  

There is no information available for transport distances of sludge to incineration facilities in 

Germany. Distances to coal fired power plants can be assumed to be further than for land use 

of sludge or mono incineration. To give an envelope for energy demand of sludge transport, 

the energy consumption for an average transport distance of 20 km (MUNLV 2001) as lower 

and 600 km (Haberkern, 2008) as higher value is reported. 
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2.4.3 Substance flow analysis  

2.4.3.1 Overview of partitioning factors for wastewater treatment plants  

The calculated overall partitioning factors from inlet (input to WWTP) to sludge, effluent and 

air (output from WWTP) for advanced and medium case WWTP with anaerobic sludge treat-

ment are shown in Table 2-7. The sludge generated at WWTP is subsequently incinerated 

(advanced case) or applied to land (medium case). For the basic case: WWTP with aerobic 

sludge treatment, the calculated overall partitioning factors are shown in Table 2-8. The sludge 

generated at WWTP is subsequently applied to land.  

The derivation of the partitioning factors is described in the following subchapters. The math-

ematical operations underlying the SFA are described in chapter 2.4.4. 

Table 2-7: Status quo: WWTP partitioning factors for advanced and medium case  

Rounded overall partitioning factors for advanced and medium case WWTP (case 1 and 2) including back load 

cycles. 1 = total load received by WWTP. 

 sludge effluent air (BWT) air (biogas) 

C 0.29 0.05 0.37 0.29 

N 0.19 0.19 0.54 0.07 

P 0.90 0.10 0 0 

 

Table 2-8: Status quo: WWTP partitioning factors for basic case  

Rounded overall partitioning factors for basic case WWTP (case 3). 1 = total load received by WWTP. 

 sludge effluent air 

C 0.43 0.07 0.5 

N 0.25 0.25 0.5 

P 0.85 0.15 0 
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2.4.3.2 System description  

The typical WWTP with anaerobic sludge stabilization (advanced and medium case) employs 

mechanical treatment (sedimentation), followed by biological treatment (activated sludge with 

simultaneous nutrient elimination) to reduce loads of dissolved organics (measured as chemi-

cal oxygen demand COD) and nutrients. Sewage sludge from mechanical (primary sludge PS) 

and biological (secondary sludge SS) treatment is anaerobically digested to generate biogas. 

Harvested biogas is used for co generation of electricity and heat on site in a combined heat 

and power plant. Stabilized sludge is dewatered to a solid content of 20-30%. Nutrient rich 

sludge water (backload) is recycled to biological treatment stage or is treated separately. Sta-

bilized sludge from anaerobic digestion is transported off site for incineration (case 1) or for 

land use (case 2).  

For the basic case (case 3), representing a WWTP with simultaneous aerobic sludge treat-

ment, the technical setup underlying the SFA is less complex, with no backloads or biogas 

generation to consider. Sludge is stabilized simultaneously during aerobic treatment, then de-

watered, stored and transported off site for land use. 

The total elimination efficiencies for COD, N and P from effluent average 95% for chemical 

oxygen demand (COD), 81% for N and 91% for P, according to benchmarking studies at 

German WWTPs (DWA 2011). Elimination efficiencies are lower for small WWTPs (size 

class 1 and 2 with less than 10 000 p.e.), but the average in Germany is dominated by the 

large WWTPs.  

Table 2-9: Status quo: Elimination efficiencies in % (DWA 2011) 

Elimination efficiencies 

[%] 

COD N P 

size class 1 91.5 71.3 70 

size class 2 92.9 76.7 70 

size class 3 94.5 82.7 80 

size class 4 95 81.2 91 

size class 5 94.2 80.1 94 

German average 94.5 80.5 90.4 
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2.4.3.3 Primary treatment or sedimentation 

The first step in the model WWTP is primary treatment or sedimentation which removes 

settleable solids. Resulting primary sludge is transferred to anaerobic digestion (AD). Typical 

hydraulic retention times (HRT) are 1-2 h. Primary treated wastewater is fed to activated 

sludge treatment (AS). For the model WWTP the following partitioning factors are assumed, 

based on (DWA, 2010):  

 67% of C remaining in wastewater, 33% eliminated with primary sludge 

 90% of N remaining in wastewater, 10% eliminated with primary sludge  

 89% of P remaining in wastewater, 11% eliminated with primary sludge  

 

2.4.3.4 Biological wastewater treatment  

The second step in our model WWTP is biological wastewater treatment or activated sludge 

treatment (AS) with nutrient elimination. The most common process in Germany, activated 

sludge treatment with nitrification- denitrification and chemical precipitation of P, is briefly 

explained below (DWA 2008; DWA 2007). 

Activated sludge treatment (AS) relies on a community of mainly heterotrophic aerobic or 

facultative microorganisms to metabolize dissolved organic carbon (DOC), while releasing 

CO2. To facilitate metabolism, wastewater is aerated. Resulting biomass, called secondary 

sludge (SS), is recirculated or fed to AD. Recirculation of activated sludge selects for micro-

organisms that grow well in wastewater and easily form bioflocs that settle in a clarifier. After 

treated wastewater is clarified, it is discharged to the aquatic environment, mainly to rivers. 

During AS, heterotrophic microorganisms use chemical energy stored in organic substances 

by oxidation with O2, thereby releasing CO2 (catabolism). Also, they incorporate C from or-

ganic substances in their biomass (anabolism). For C (measured as COD), typical elimination 

efficiencies (effluent vs. influent) are 90-95% (DWA 2011). Approximately 50% of C fed to 

AS is transferred to air as CO2 (Ekama 2009), the remaining C is incorporated in biomass 

(SS). 

The removal of N from wastewater often proceeds via simultaneous nitrification-

denitrification. Nitrification is the biological oxidation of nitrogen from ammonia (NH4
+
) to 

nitrate (NO3
-
). It is followed by denitrification, the reduction of nitrate to nitrogen gas (N2). 

Nitrogen gas is released to the atmosphere. Denitrification requires anoxic conditions. For N 
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(as Norg, NH4
+
 and NO3

-
), typical elimination efficiencies (effluent vs. influent) are 80% and 

approximately 20% of incoming N remains in effluent (DWA 2011). Remaining N is trans-

ferred to air as N2, and to a lesser extent incorporated in biomass (SS) (Ekama 2009). 

For P (as Porg, PO4
3-

), typical elimination efficiencies (effluent vs. influent) are 90% (DWA 

2011). P is removed from wastewater during microbial growth and incorporated in biomass 

(SS). Additionally, precipitation with iron or alum based flocculants is often employed. Pre-

cipitation mainly occurs on flocs of biomass and precipitated P is transferred to SS. For P, 

there is no environmentally important gas phase.  

For the model WWTP, the following simplified partitioning factors over the whole described 

process are assumed: 

 50% of C are transferred to air, 7% remain in effluent and 43% are transferred to 

sludge (i.e. incorporated in biomass) 

 49% of N are transferred to air, 18% remain in effluent and 33% are transferred to 

sludge (i.e. incorporated in biomass) 

 10% of P remain in effluent and 90% are transferred to sludge (i.e. incorporated in bi-

omass), no P is transferred to air, as there is no environmentally important gas phase 

 

2.4.3.5 Anaerobic sludge stabilization 

Case 1 and 2 employ anaerobic digestion to stabilize sludge (PS and SS). The process is brief-

ly explained below (DWA 2008; DWA 2007, Bischofsberger et al. 2005).Under anaerobic 

conditions, methanogens produce biogas, a mixture of CH4 and CO2 from organic substrates. 

Substrates cannot be used completely, typical anaerobic digestibilities of sewage sludge range 

from 35% (SS) to 55% (PS). Unused organic substrates, as well as inorganic compounds, re-

main in stabilized sludge. After digestion, stabilized sludge is dewatered to a typical solids 

content of 20-30%. Dewatering releases sludge water (process water), which is typically rich 

in nutrients, especially N. During anaerobic digestion and dewatering, most N is transferred to 

sludge water (Norg, NH4
+
), remaining N is transferred to gas phase (NH3) or remains in stabi-

lized sludge. In contrast, most P remains in stabilized sludge, only a small part is transferred 

to sludge water. To recap, there is no environmentally important gas phase for P.  

Partitioning factors for anaerobic digestion and especially loads to sludge water are very vari-

able, as they depend on technical characteristics and process parameters, such as pH and 
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Temperature. Therefore, they are subject to high uncertainties. For the model WWTP, the 

following simplified partitioning factors over the whole described process are assumed: 

 C is transferred to biogas as CH4 and CO2 according to anaerobic digestibilities of 

55% for PS and 35% for SS  

 10% of C in PS and SS remains undigested in water phase (sludge water), rest of C 

remains undigested in stabilized sludge 

 25% of incoming N is transferred to biogas as NH3, 45% to water phase, remaining 

30% to stabilized sludge (PS and SS) 

 90% of incoming P remains in stabilized sludge, 10% are transferred to water phase 

(PS and SS) 

 

2.4.3.6 Sludge water treatment 

Stabilized sludge is dewatered to a solid content of 20-30% dw and nutrient rich sludge water 

(backload) is recycled to biological treatment stage or is treated separately. Backload from 

nutrient rich sludge water represents a considerable additional load (especially of N) and gen-

erates additional secondary sludge. Additional secondary sludge is recycled back to anaerobic 

treatment. For the model, it is assumed for simplicity that all sludge water is treated in the 

main stream. Back load cycles are calculated until recovery rates of >99% (output vs. input) 

are reached (3 cycles). Including backload, 65% of incoming C is transferred to anaerobic 

digestion and 29% of incoming C is transferred to biogas.  

 

2.4.3.7 Sludge incineration 

After dewatering, sludge is usually transported to sites for end use: incineration (case 1) or 

land use (case 2 and 3). For incineration (case 1), it is assumed that C and N in sludge is fully 

transferred to air and P fully remains in the ashes (solid waste product). 
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2.4.3.8 Land use of sludge and plant availability 

For case 2 and 3 of the model, sludge is transferred to land. 66% of the sludge is used in agri-

cultural applications, the remaining in landscaping and other applications. The average plant 

availability of nutrients in sludge is assumed with 61% for N and 70% for P, according to 

(Bengtsson et al. 1997, Houillon and Jolliet 2005). To calculate energy credits for substitution 

of fertilizer, load of N and P in sludge applied to agricultural land is multiplied with the de-

rived TEP factor and corrected for plant availability. For the purpose of this study C in sludge 

is considered as energetic loss. From perspective of ecosystems, organic C fuels the metabo-

lism of soil communities, but it is lost for direct energetic reuse in form of electricity genera-

tion. C in sludge applied to agricultural land will eventually be biodegraded and released to 

air as CO2. Due to the nature of the organic substrate with many cell wall components and 

residual compounds, stabilized sludge is not easily biodegradable. Rosso and Stenstrom, 

(2008) estimate that 2 to 3 years are necessary to biodegrade stabilized sludge applied to agri-

cultural land.  

 

2.4.3.9 Basic case 

For case 3 of the model, the WWTP with simultaneous aerobic sludge treatment slightly low-

er elimination efficiencies than for the larger facilities (case 1 and 2) can assumed: 93% for C, 

75% for N and 85% for P (DWA 2011).  

For a similar facility with a high sludge age of 30 days, (Ekama 2009) reports that 60% of C 

are transferred to air, 7% remain in effluent and 33% are transferred to sludge (i.e. incorpo-

rated in biomass). For N, the authors report that 60% of N is transferred to air, 13% remain in 

effluent and 27% are transferred to sludge (i.e. incorporated in biomass).  

For the purpose of this study, these partitioning factors are adapted to typical elimination effi-

ciencies in Germany and a shorter sludge age by shifting load from air to sludge for C resp. to 

sludge and effluent for N. For P, it can be assumed that 15% remain in effluent, and rest is 

transferred to sludge.  

The following overall partitioning factors from inlet of WWTP (input) to sludge, effluent and 

air (output) are assumed for case 3 of the model: 

 50% of C are transferred to air, 7% remain in effluent and 43% are transferred to 

sludge (i.e. incorporated in biomass) 
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 50% of N are transferred to air, 25% remain in effluent and 25% are transferred to 

sludge (i.e. incorporated in biomass) 

 15% of P remain in effluent and 85% are transferred to sludge (i.e. incorporated in bi-

omass) 
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2.4.4 Mathematical operations  

This chapter describes the mathematical operations underlying the model. Figure 2-3 gives an 

overview of the flows for a WWTP with anaerobic sludge stabilization (advanced and medi-

um case). The model includes nine flows (termed F1-F9) and employs three modules: 

 sedimentation [Sed] 

 biological treatment: activated sludge with simultaneous nutrient elimination [AS] 

 anaerobic digestion [AD]  

From anaerobic digestion [AD], the nutrient rich sludge water is recycled to biological treat-

ment stage [AS], sludge from biological treatment stage (secondary sludge SS) is recycled to 

anaerobic digestion [AD] (backload cycle). 

 

 

Figure 2-3: Status quo: Overview of SFA model 

 

As the WWTP is a steady state equilibrium, this backload cycle between AD and AS (flows 

F4 and F5) has to be calculated by the model. The calculation is stopped when more than 99% 

of the input is transferred to the output (3 cycles for the WWTP without algae). 

While primary sludge PS (F3) and secondary sludge SS (F4) are digested together, the anaer-

obic digestibilities differ, Therefore there are two modules. [AD1] for primary sludge PS with 

a higher anaerobic digestibility and [AD2] for secondary sludge SS. The calculation steps for 

the flows F1-F9 are reported in Table 2-10. 
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Table 2-10: Status quo: Calculation of flows for the SFA 

Calculation Remarks 

F1 = F6 + F7 + F8 + F9 Inflow = Outflow 

F2 = F1 x Sed-W 
Primary treated wastewater PTW 

F3 = F1 x Sed-S 
Primary sludge PS 

F4 = F4i + F4b + F4(b+n) Backload cycle to consider  

F4i = F2 x AS-S Secondary sludge: Initial flow 

F5 = F5i + F5b + F5(b+n) Backload cycle to consider 

F5i = [F3 x AD1-W] + [F4i x AD2-W]  Sludge water: Initial flow (AD1 for primary 

sludge, AD2 for secondary sludge –F4) 

F4b = F5i x AS-S  Backload cycle 1: Secondary sludge 

F5b = F4b x AD2-W  Backload cycle 1: Sludge water 

F4(b+n) = F5i x [AS-S]^n Backload cycle n: Secondary sludge 

F5(b+n) = F4b x [AD2-W]^n Backload cycle n: Sludge water 

F6 = [F2 x AS-W] + [F5 x AS-W]   Output: Effluent 

F7 = [F2 x AS-A] + [F5 x AS-A]   Output: Air 1(AS) 

F8 = [F3 x AD1-A] + [F4 x AD2-A]   Output: Air 2 (Biogas) 

F9 = [F3 x AD1-S] + [F4 x AD2-S]  Output: Sludge 
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The calculations presented above show the internal cycling of CNP and the output to air, wa-

ter and sludge. The SFA is the basis for the emission balance. The emission balance is calcu-

lated from the overall partitioning factors to air, water and sludge. It is expressed as mass flow 

by multiplying the overall partitioning factors with the input load of CNP per person and year 

(I).  

 

Table 2-11: Status quo: Calculation of the emission balance from SFA 

 

 [WWTP without algae] 

Air Em (A) = (F7 + F8) * I 

Water Em (W) = F6 * I 

Sludge Em (S) = F9* I 
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2.5 Inventory for algae systems 

2.5.1 System description 

The proposed process design for integration of algae systems is shown Figure 3-8. Based on a 

WWTP with 20 000 p.e. and anaerobic sludge stabilization (top), several internal flows are 

rerouted to support algae cultivation.  

Algae cultivation takes place in open raceway ponds supplied with CO2, as described by pre-

vious studies (high rate algae ponds (Park and Craggs 2010, 2011a-c). CO2 is delivered to 

cultivation systems from sources on site the WWTP: combustion gas from biogas based co 

generation and gaseous emission from biological wastewater treatment (BWT).  

For CO2 supply, three scenarios are distinguished. First scenario (“algae light”) uses 60% of 

available CO2 for algae cultivation, representing daytime use of CO2 with only small storage 

capacities. The other two scenarios: “algae medium” (80% of available CO2) and “algae full” 

(100% of available CO2) exploit also CO2 generated during the night time, when algae do not 

require CO2. These scenarios require storage capacities for CO2 in addition to capture and 

supply infrastructures.  

In all scenarios, sludge water is completely diverted to algae systems for nutrient supply. Ad-

ditional nutrients are supplied by primary treated wastewater (PTW). PTW is added according 

to the nutrients required to fully exploit the CO2 available in the different scenarios, not ac-

cording to required volume. It is assumed that any additional water demand of algae systems, 

which depends on precipitation, evaporation and hydraulic retention time, is met by recycling 

water after harvest.  

The system boundaries for analysis include the processes for wastewater and sludge treat-

ment, including biogas use on site (water and sludge pathway). For the WWTP with integrat-

ed algae systems, system boundaries additionally include the process steps cultivation, harvest 

and co-digestion of harvested biomass (algae pathway).  

The WWTP and the WWTP with algae systems receive identical input: raw wastewater with a 

typical composition and a daily load of 36 g C, 11 g N, 2 g P and 250 l of water per person 

served (as reported in chapter 2.2). As in the assessment of the current situation of the urban 

water chain only wastewater from households is considered, no commercial or industrial 

wastewater. 
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2.5.2 Substance flow analysis 

2.5.2.1 Algae cultivation and harvest 

Algae cultivation takes place in open raceway ponds mixed with paddlewheels. The design is 

based on prior studies and technical feasibility is proven in pilot scale applications with 

wastewater as growth medium (Park and Craggs, 2011a, Lundquist et al., 2010). Depth of 

cultivation ponds is 0.2-0.4 m. It was observed, that depths shallower than 0.3 m limit pond 

size, due to pond hydraulics and CO2 out gassing and show large diel temperature fluctua-

tions. Greater depths have the disadvantage of lower biomass concentrations and larger vol-

umes of water that need to be handled, e.g. pumped to harvesting facilities, but improve tem-

perature regime and CO2 storage (Lundquist et al., 2010). 

Hydraulic retention time (HRT) is 3-6 days. CO2 is provided from flue gas from on site use of 

biogas (Lundquist et al., 2010; Kadam et al., 2002) and from biological treatment of 

wastewater. CO2 resp. flue gas is supplied by countercurrent sumps within the ponds. CO2 

delivery is controlled by pH, as described by Park and Craggs, 2011a and Lundquist et al., 

2010.  

As base case performance of algae systems at WWTPs, the total biomass productivity is as-

sumed with 18 g/m²*d during vegetation season. Compared to the literature, the total biomass 

productivity assumed in this study is in the lower range. Many other studies use 25-30 g/m²*d 

(Campbell et al., 2011; Lardon et al., 2009; Collet et al., 2011; Lundquist et al., 2010; Ste-

phens et al., 2010). This conservative assumption of biomass productivity is based on values 

reported from a pilot project in New Zealand with microalgae systems using sludge water 

from a WTP as growth medium (Park and Craggs, 2011a). 

The cultivation and harvesting module of the SFA model is based on the following parame-

ters: 

 partitioning factor of CNP to harvested biomass 

o nutrient uptake efficiencies (CNP from growth medium, and C from flue gas) 

o stoichiometric composition of biomass  

o harvesting efficiency  

 partitioning factor of CNP to air  

o unused CO2 from flue gas 

o unused N2 from flue gas 

o unused CO2 from DOC in growth medium 
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 partitioning factor of CNP to effluent  

o non-harvested biomass in effluent (containing CNP from growth medium, and 

C from flue gas) 

o free nutrients in effluent (unused) 

 

For the harvesting efficiency, 88% is assumed for the model. Values for harvesting efficien-

cies in the literature range from 65%-83% for settling cones, depending on the size of flocs 

(Park and Craggs, 2011) to 95% for underground continuous flow clarifiers (Lundquist et al., 

2010). The authors point out the large uncertainty associated with these values. Therefore the 

harvesting efficiency is included in the analysis of parameter variations (see chapter 3.2). 

Nutrients (CNP) are supplied to algae systems via: 

 growth medium: sludge water and PTW (C as dissolved organic carbon DOC, N, P)  

 CO2 from flue gas and from biological wastewater treatment  

 

Nutrient uptake efficiencies are important parameters for algae systems at WWTPs, as they 

define the maximum amount of biomass that can grow with a given amount of nutrients avail-

able. Also, they influence effluent quality. Table 2-12 gives an overview of the nutrient up-

take efficiencies assumed in this study, differentiating between uptake efficiencies of total 

biomass and uptake efficiencies of harvested biomass.  

 

Table 2-12: Algae systems: Nutrient uptake efficiencies of biomass 

Total nutrient uptake efficiencies and uptake efficiencies of harvested biomass (gm: growth medium, fg: flue 

gas). 1= load received by algae systems. 

 C (gm) C (fg) N P 

uptake efficiencies of total biomass 0.50 0.75 0.75 0.80 

uptake efficiencies of harvested biomass 0.43 0.64 0.64 0.68 

 

For N, the nutrient uptake efficiency is assumed with 75%. This assumption is based on val-

ues reported from a pilot project in New Zealand (Park and Craggs, 2011a). The authors 

measured 59% reduction in total Nitrogen at a harvesting efficiency of 69% and gaseous loss-

es of 5-9% (Park and Craggs, 2011a). Therefore, total N uptake by biomass (harvested and 
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non harvested) would be approximately 72-78%. In laboratory studies, also higher uptake 

efficiencies of 95% were measured (Shi et al., 2007). For P uptake efficiencies, there is no 

data available from pilot projects. In laboratory studies, 90% were measured (Shi et al., 2007). 

In the model a 80% P uptake efficiency is assumed. As P is the limiting nutrient in many 

aquatic ecosystems, microalgae developed efficient mechanisms to assimilate available P. 

Also, luxury uptake of P has been described (Powell, 2008). Combined with the assumed har-

vesting efficiency of 88%, nutrient uptake efficiencies of harvested biomass are 64% for N 

and 68% for P. 

C is supplied to algae systems by two ways, via flue gas as CO2 and via growth medium 

(sludge water mixed with primary treated wastewater) as dissolved organic carbon (DOC). 

For C from CO2, Lundquist et al, (2010) approximate uptake efficiencies with 75% for flue 

gas and 85-90% for pure CO2, based on prior estimates (e.g. Benemann et al., 1982; 

Weissman et al., 1987). The uptake efficiency for CO2 from flue gas is assumed with 75% for 

total biomass and 64% for harvested biomass. This means that 25% of C from flue gas is lost 

to atmosphere, while 9% is incorporated in non-harvested biomass and remains in effluent of 

microalgae systems. 

Algae can use DOC in growth medium after transformation to CO2 by oxidation with free 

oxygen from photosynthesis or by bio-oxidation by accompanying heterotrophic microorgan-

isms, as well as during mixotrophic growth (Lundquist et al., 2010, Bhatnagar et al., 2011). It 

was observed in a pilot project in New Zealand with microalgae systems using sludge water 

from a WTP as growth medium, that heterotrophic biomass accounts for 15-55% of total bio-

mass, depending on HRT (Park and Craggs, 2011a). O2 for heterotrophic metabolism is sup-

plied by algae (autotrophs), while CO2 for autotrophic metabolism is supplied by hetero-

trophs. According to Lundquist et al. (2010), 1.55 g O2 is produced with every g of algae bi-

omass, while 1.1 g O2 is required to oxidize 1 g of BOD (biological oxygen demand, typical 

ratio BOD to COD is 2). Therefore, with 1 g of algae biomass produced, accompanying het-

erotrophic biomass removes approximately 1.4 g of BOD or 0.7 g of COD or 0.2 g of C 

(DOC).  

It is assumed that over the described biochemical processes: mixotrophic growth of algae, 

growth of heterotrophic biomass with CO2 production and growth of autotrophic biomass 

with O2 production, 50% of C delivered to algae systems as DOC in growth medium is incor-

porated in total biomass. Combined with the harvesting efficiency of 88%, uptake efficiency 

of harvestable biomass is 44%. For air emissions, it is assumed that 43% of C delivered to 
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algae systems as DOC in growth medium is transferred to air as CO2. This accounts for un-

used amounts of CO2 due to elimination efficiency (75-90%) and release of CO2 during night 

time by heterotrophs and autotrophs. The rest of C delivered to algae systems as DOC in 

growth medium remains in effluent: 7% as non-metabolized DOC plus 6% as non-harvested 

biomass. 

For the stoichiometric composition of biomass, 36.7% C, 6.1% N and 0.81% P on a mass base 

are assumed (Collet et al., 2011). C and N content is based on experimental data (Ras et al., 

2011), while P content is calculated using C/P ratio of Chlorella vulgaris as proxy (Lardon et 

al., 2009). This is in the medium range of algal biomass composition reported by Lundquist et 

al. 2010: 45 -50% C, 4-10% N, and 0.3 -1.2% P. 

The reported nutrient uptake efficiencies are used to calculate the amount biomass generated 

with the nutrients provided in different scenarios (light/medium/full). Biomass generation is 

limited by stoichiometric composition i.e. by the limiting nutrient. The amount of primary 

treated wastewater delivered to algae systems is chosen to meet the nutrient demand for full 

exploitation of CO2 supplied in different scenarios. Therefore, the limiting nutrient is C. The 

limiting nutrient sets the ceiling for biomass generation. It is assumed that surplus nutrients 

are not incorporated in biomass: there is no luxury uptake of N or P. 

Emissions to air from microalgae systems include unused CO2 from flue gas (25% of C sup-

plied by flue gas), unused N2 from flue gas (100%), unused CO2 from DOC in growth medi-

um (43% of C supplied by growth medium) and gaseous losses of N (as NH3, N2 or NOx). 

According to Park et al., 2011, gaseous losses of N can be kept low by feeding growth medi-

um shortly after carbonization sump, when the pH is controlled by CO2 addition. Park et al., 

2011 approximates losses with 5-9%, while Roesch et al., 2011 and Lundquist et al., 2010 use 

5%. For the model, 9% gaseous losses of N from microalgae systems are assumed. It is note-

worthy, that the air emissions of N are considerably lower than for activated sludge process. 

Effluent loads of CNP include nutrients incorporated in non-harvested biomass remaining in 

effluent and unused amounts of nutrients. Non-harvested biomass contains CNP from growth 

medium and C from flue gas. 9% of C delivered to algae systems as CO2 in flue gas are in-

corporated in non-harvested biomass and remain in effluent of algae systems. For C from 

growth medium (DOC), it is assumed that 93% are metabolized by the consortium (hetero-

trophic, mixotrophic and autotrophic microorganisms) and therefore 7% remain in effluent of 

algae systems. Additionally, 6% of C from growth medium (DOC) are incorporated in non-
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harvested biomass. In total, 13% of C delivered to algae systems as DOC remain in effluent of 

algae systems(7% as DOC/”free” nutrients, plus 6% incorporated in non-harvested biomass).  

For N, it is assumed that 18% of N delivered to algae systems in growth medium remain in 

effluent of algae systems(7.5% ”free” nutrients, mainly NO3- plus 10.5% incorporated in non-

harvested biomass). For P it is assumed that 13% of P delivered to algae systems in growth 

medium remains in effluent of algae systems, mainly incorporated in non-harvested biomass. 

Effluent quality of algae systems is subject to high uncertainties. There are only few studies, 

which address the subject.  

For the model WWTP with integrated algae systems, the following assumptions are made: 

 simplified partitioning factors over the whole described process as shown in Table 2-

13 for nutrients from growth medium and in Table 2-14 for nutrients from flue gas 

 nutrients are incorporated in total biomass according to uptake efficiencies reported in 

Table 2-12 (giving the maximum possible uptake), limited by stoichiometric require-

ments (no luxury uptake of nutrients) 

 non-harvested biomass remains in effluent and contributes to effluent loads (even 

though the nutrients are not “free” i.e. in ionic or dissolved organic form) 

 harvested biomass is transferred to sludge, which is fed to AD 

 nutrients from sludge water and flue gas from anaerobic digestion are recycled to al-

gae systems 

 

Table 2-13: Algae systems: Partitioning factors for growth medium 

Partitioning factor to effluent includes the contribution of non-harvested biomass. 1= load received by 

algae systems from growth medium. 

Partitioning 

factors 

sludge wastewater air 

C 0.44 0.13 0.43 

N 0.66 0.25 0.09 

P 0.70 0.30 0 

Water 0.01 0.94 0.05 
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Table 2-14: Algae systems: Partitioning factors for flue gas  

Partitioning factor to effluent includes the contribution of non-harvested biomass. 1= load received by 

algae systems by flue gas. 

Partitioning 

factors 

sludge wastewater air 

C 0.66 0.09 0.25 

N 0 0 1 

 

 

2.5.2.2 Anaerobic digestion of harvested biomass 

Harvested biomass is co digested with sewage sludge to produce biogas. Values for mono 

digestion of algae biomass in literature range from 40-60% (Clarens et al., 2011, Collet et al., 

2011), to 66% (Sialve et al., 2009) or 70-90% (Hernandez and Cordoa, 1993). Co digestion 

with sewage sludge potentially enhances digestibility of algae biomass (Lundquist et al., 

2010; Sialve et al., 2009; Samson and LeDuy 1983), due to reduced ammonia inhibition. 

Lundquist et al., 2010 assumes anaerobic digestibility of harvested biomass with 70% as co 

substrate with PS. This value is adopted for the model. With 70%, the anaerobic digestibility 

of harvested biomass as co substrate is higher than for primary sludge (55%) and secondary 

sludge (35%).  

Assuming 0.5 g C/l biogas at a typical CH4 content of 65%, and 70% anaerobic digestibility 

of harvested biomass gives 1536 l biogas/kg C or 569 l biogas/kg volatile suspended solid 

(VSS) loaded to AD, or 370 l CH4/kg VSS. A laboratory study (Samson and LeDuy 1983) 

reported 350 l CH4/kg VSS for mono digestion of algae biomass and 700 l CH4/kg VSS for co 

digestion of algae biomass with sewage sludge, but with a long sludge retention time (SRT). 

Clarens et al., 2011 evaluated different studies and reports likeliest value with 490 l CH4/kg 

VSS and a range from 180-990 l CH4/kg VSS. The authors point out the large uncertainty 

associated with these values. Therefore, the anaerobic digestibility of harvested biomass is 

included in the analysis of parameter variations (see chapter 3.2). 

For transfer of N to air, 25% is assumed. This is the same value as for PS and SS. Laboratory 

studies reported 16% (Samson and LeDuy 1983).  

For transfer of CNP to sludge water, the same values as for PS and SS are assumed: 10% of 

C, 45% of N and 10% of P loaded to AD. These assumptions are conservative compared to 

values from literature. Laboratory studies reported N mineralization efficiency of algae bio-
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mass (i.e. transfer of Norg to effluent of anaerobic digestion as NH4
+
) with 47-69% (Samson 

and LeDuy, 1983) and 68% (Ras et al.; 2011). For P, there is no experimental data available. 

In another SFA study, Roesch et al., (2011), approximated P mineralization efficiency of al-

gae biomass with 80%. Assumed partitioning factors for anaerobic digestion of biomass har-

vested from algae systems are shown in Table 2-15. 

Table 2-15: Algae systems: Partitioning factors for anaerobic digestion  

Partitioning factors for anaerobic digestion of biomass harvested from algae systems. 1= load received 

by anaerobic digestion via biomass harvested from algae systems. 

 

Partitioning 

factors  

sludge ww air 

C 0.20 0.10 0.70 

N 0.30 0.45 0.25 

P 0.90 0.10 0 

Water 0.10 0.90 0 
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2.5.3 External energy balance 

For the WWTP with 20 000 p.e. that is used as example, the energy consumption is assumed 

with 55 kWhel/p*a. This is higher than the german average reported by Haberkern et al. 

(2008) but typical for the considered size class.  

The water pathway consumes 70% of the energy, especially for aeration and N elimination in 

BWT. 20% are consumed in the sludge pathway, especially for operation of digester and de-

watering, and 10% for other uses. Energy demand of BWT depends mainly on volume of 

wastewater treated, on received loads of CNP and on C/N ratio. N backload in sludge water 

contributes considerably to energy demand (Haberkern et al. 2008). P load in contrast has a 

much lower impact on energy demand -unless post treatment is required to meet limit values- 

as P elimination requires no energy intensive aeration. 

To assess the implications of integration of algae systems for energy consumption, changes in 

loading rates have to be considered. The changes in loading rates to different treatment steps 

are assessed by the SFA.  

The integration of algae systems changes loading rates in water pathway, as sludge water is 

rerouted to algae systems together with a fraction of primary treated wastewater. Besides re-

ducing volume and load, the diversion of N rich sludge water also favorably changes the C/N 

ratio in BWT. The reduction in N load to BWT compared to WWTP without algae (in %) is 

used as proxy for reduction in electricity consumption in the model. While the energy demand 

of the water pathway is reduced, additional loads increase energy demand of sludge pathway. 

Here, the increase in C load to anaerobic digestion (in % compared to WWTP without algae) 

is used as proxy.  

The energy demand for algae cultivation and harvest is assumed with 70 kWhel/ha*d, with a 

total biomass productivity of 18 g/m²*d during vegetation season (and 88% harvesting effi-

ciency). The biomass productivity is based on results from a pilot project for microalgae sys-

tems running on wastewater (Park and Craggs, 2011a). This study reports no energy demand. 

Values in literature for energy demand and biomass productivity of algae systems include: 

 65 kWhel/ha*d (30 g/m²*d, Campbell et al., 2011) 

 50-70 kWhel/ha*d (with 20-30 g/m²*d, Lardon et al., 2009) 

 74 kWhel/ha*d (with 25 g/m²*d, Collet et al., 2011) 

 91 kWhel/ha*d (with 25 g/m²*d, Lundquist et al., 2010) 

 100 kWhel/ha*d (with 20-50 g/m²*d, Stephens et al., 2010)  
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Compared to the literature, the total biomass productivity assumed in this study is in the lower 

range and the energy demand is in the medium range. Therefore, energy demand per ha and 

total biomass productivity is included in the analysis of parameter variations. 

The required area is calculated from the SFA results specifying the respective amount of bio-

mass generated with the available nutrients CNP in the different scenarios. The reported ener-

gy consumption accounts for CO2 supply, nutrient supply, mixing, harvesting and water recy-

cling after harvest.  

On the energy generation side, SFA results for biogas production are used to calculate bio-

electricity generation. For biogas, a 65% methane content corresponding to a lower heating 

value of 6.5 kWh/m³, and 35% electrical efficiency are assumed. There is no external supply 

of heat required for anaerobic digestion operation. Thermal energy is fully supplied by on site 

co-generation. 
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2.5.4 Mathematical operations  

This chapter describes the mathematical operations underlying the SFA model. Compared to 

the WWTP without algae (see chapter 2.4.4), the flows for a WWTP with algae are more 

complex. In total, 13 flows (F1-F13) have to be considered (Figure 2-4). Algae systems re-

ceive four different inputs: rerouted primary treated wastewater (PTW, F2-2) plus sludge wa-

ter (F4) as growth medium (green arrows in Figure 2-4) and recycled CO2 from activated 

sludge process (F7) and combustion gas (F8) as CO2 supply (purple arrows in Figure 2-4).  

For the WWTP without algae, one backload cycle between AD and AS via the sludge water 

have to be considered. For the WWTP with algae, there are two backload cycles to consider: 

via sludge water (F4) and via combustion gas (F8) to harvested biomass (F10), back to sludge 

water and combustion gas.  

To calculate the flow of harvested biomass (F10), two further aspects have to be considered. 

Firstly, the stoichiometric requirements have to be taken into account. The ratio of C:N:P of 

algae biomass in combination with the uptake efficiencies for CNP determines the ideal 

C:N:P ratio of nutrient supply. For C, the supply via CO2 has to be added to the C supplied by 

growth medium. For the technical setup for integration of algae systems presented in this 

study, C is the limiting nutrient. N and P not assimilated due to the stoichiometric require-

ments remain in effluent of algae systems. They are termed unused nutrients (U). The amount 

of unused nutrients depends on the actual C:N:P ratio of nutrient supply in relationship to the 

ideal C:N:P ratio.  

There are two algae modules distinguish between nutrients from growth medium and CO2 

supply. The module [AL1] is for the growth medium. The module [AL2] is for the CO2 sup-

ply by combustion gas or by air emissions from AS. For the [AL1] module, the PF to biomass 

for N and P needs to be corrected by the unused nutrients (U). The amount of C in biomass is 

known from the calculation of F10. As C is the limiting nutrient, there is no correction for 

unused nutrients (UC = 0). The flow of unused nutrients UN and UP can be calculated using the 

C/N ratio and the C/P of the ideal supply (Table 2-16). 
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Table 2-16: Algae systems: Calculation of unused nutrients 

 Ideal supply Actual  supply U 

C cI = z cA  = z 0 

N nI = (z / a) nA = (z / a) + UN UN = nA - (z / a)  

P pI =  (z / b) pA =  (z / b) + UP UP = pA - (z / b)  

Remarks: The ideal supply of C is set as the actual supply, as C is the limiting 

nutrient. The ratio of C/N and C/P of the ideal supply is calculated: 

a = C/N (ideal) 

b = C/P (ideal) 

Further it is known that there is surplus N and P. Thus the actual supply of N 

and P is higher than the ideal supply by a factor UN > 0 and UP > 0.  

Substracting the ideal supply from the actual supply gives UN and UP 

 

Thus, N and P cannot be assimilated by the total biomass (F9) with the efficiencies reported 

by the PF of the module [AL1]. The unused N and P contribute to effluent load (F11). But 

also the CNP assimilated in biomass (F9) is not fully transferred to harvested biomass (F10). 

The harvesting efficiency (HE) has to be taken into account. The non harvested biomass re-

mains in effluent (F11) and contributes to CNP load.  

The module [AD3] describes the anaerobic digestion of harvested biomass (F10). Compared 

to the module [AD1] for primary sludge PS and [AD2] for secondary sludge SS, it has higher 

anaerobic digestibilities.  

As the WWTP with algae is a steady state equilibrium, the described backload cycles (flows 

F4 and F8 plus F10) have to be calculated by the model. The calculation is stopped when 

more than 99% of the input is transferred to the output (6 cycles for the WWTP with algae). 

The full load of CNP to effluent includes the effluent load of AS (reduced flows compared to 

WWTP without algae) and the effluent load of algae systems. The latter includes the nutrients 

not assimilated due to uptake efficiency plus those which are not assimilated due to C limita-

tion (NP) and those incorporated in the non harvested biomass. It is noteworthy, that C from 

CO2 supply can contribute to the effluent load of algae systems via the non harvested bio-

mass. The air emissions from the algae systems include: unused CO2 from flue gas, unused N2 

from flue gas, unused CO2 from DOC in growth medium and gaseous losses of N. The calcu-

lation steps for the flows F1-F13 are reported in Table 2-17. 

. 
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Figure 2-4: Algae systems: Overview of SFA model 

 

Table 2-17: Algae systems: Calculation of substance flows for the SFA 

Calculation Remarks 

F1 = F6 + F9 + F12 + F13 Inflow = Outflow 

F2-1 = [F1 x Sed-W] * (1-x) Primary treated wastewater PTW to Algae, 

with x <1 

F2-2 = [F1 x Sed-W] * (x)  PTW to AS → Δ in load to AS compared to 

WWTP without algae used for calculation 

of energy savings (E1) 

F3 = F1 x Sed-S Primary sludge PS 

F4 = F2-1 x AS-S Secondary sludge: no backload cycle to 

consider  

F5 = F5i + F5b + F5(b+n) Sludge water: Backload cycle to consider, 

input to algae systems 

F5i = [F3 x AD1-W] + [F4i x AD2-W] Sludge water: initial flow, AD1 for primary 

sludge –F3, AD2 for secondary sludge –F4 

F6 = [(F2-1) x AS-W] Output: Effluent AS 

F7 = [(F2-1) x AS-A] Air emission from AS rerouted to Algae → 

no output 
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Table 2-17 (continued): Algae systems: Calculation of substance flows for the SFA 

Calculation Remarks 

F8 = F8i + F8b + F8(b+n) Combustion gas: Backload cycle to consider 

→ F8 (biogas/combustion gas) for calcula-

tion of energy generation via biogas (E4) 

F8i = [F3 x AD1-A] + [F4 x AD2-A] Combustion gas: initial flow 

F9 = [F9i + F9b + F9(b+n)] Total biomass: Backload cycle to consider 

F9i = [[(F2-2 + F5i) x AL1-S/U] + [(F7 

+ F8i) x AL2-S]] 

Total biomass: initial flow  

U condition applies: stoichiometric re-

quirements reduce PF for N and P for [AL1-

S/U] 

F10i = F9i * HE Harvested biomass, HE harvesting efficien-

cy  

F5b = F9i x AD3-W Sludge water: Backload cycle 1 

F8b = F9i x AD3-A Combustion gas: Backload cycle 1 

F9b= [F5b x AL2-S/U] + [F8b x AL2-

S] 

Total biomass: Backload cycle 1; U condi-

tion applies 

F10b = F9b * HE Harvested biomass, HE harvesting efficien-

cy 

F5(b+n) = F9b x [AD3-W]^n Sludge water: Backload cycle (b+n) 

F8(b+n) = F9b x [AD3-A]^n Combustion gas: Backload cycle (b+n);  

F9(b+n) = [F5b x [AL2-S/U]^n] + [F8b 

x [AL2-S] ^n] 

Total biomass: Backload cycle (b+n); U 

condition applies 

F10(b+n) = F9(b+n) * HE Harvested biomass: Backload cycle (b+n) 

F11 = [(F2-2 + F5i) x AL1-W/U] + [F9 

* (1-HE)] 

Output: Effluent Algae  

CNP not eliminated due to 

uptake efficiency + C limitation (NP) + non 

harvested biomass 

F12 = [(F2-2 + F5i) x AL1-A] + [(F7 + 

F8) x AL2-A]  

Output: Air Algae 

Air emission of CN from growth medium + 

CO2-supply 

F13 = [F3 x AD1-S] + [F4 x AD2-S] + 

[F10 x AD3] 

Output: Sludge 

CNP from primary sludge PS + secondary 

sludge SS + harvested biomass 
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The calculations presented above show the internal cycling of CNP and the output to air, wa-

ter and sludge. The SFA is the basis the emission balance. The emission balance is calculated 

from the overall partitioning factors to air, water and sludge. It is expressed as mass flow on a 

per person base, by multiplying the overall partitioning factors with the input load per person 

(I).  

Table 2-18: Algae systems: Calculation of emission balance 

 [WWTP with algae] [WWTP without algae] 

Air Em (A) = F12 *I Em (A) = (F7 + F8) * I 

Water Em (W) = (F6 + F11) * I Em (W) = F6 * I 

Sludge Em (S) = F13 * I Em (S) = F9 * I 
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For the WWTP with algae, the SFA is also the basis to assess the energy balance. The energy 

consumption and generation of the WWTP with algae is adapted to the altered internal flows 

of CNP by assigning factors E1-E4. These show:  

 the reduced energy demand of AS (E1) 

 the additional energy demand of AD (E2) 

 the additional biogas for additional energy generation (E3) 

 the additional sludge for additional energy generation (E4) 

 

To derive the factors, the flows of the WWTP without algae (marked grey in Table 2-19) are 

compared to the flows of the WWTP without algae (marked green). For E1, the flow of N is 

used as a proxy, for the other factors, the flow of C is used as a proxy.  

 

Table 2-19: Algae systems: Calculation of energy balance 

Calculation Remarks 

E1 = [ [F2 + F5] - [F2-1] ] / 

[F2 + F5] 

 

 

Reduced energy demand of AS  

[energy consumption AS] with algae = E1 * [energy 

consumption AS] 

N as proxy, E1 < 1 → less N loaded to AS for the 

WWTP with algae 

 

E2 = [ [F3+ F4] - [F3 + F4 + 

F9] ] / [F3+ F4] 

Additional energy demand of AD  

[energy consumption AD] with algae = E2 * [energy 

consumption AD] without algae  

C as proxy, E2 > 1 → additional C loaded to AD for 

the WWTP with algae 

E3 = [ [F8] - [F8] ] / [F8] 

 

Additional biogas  

[energy generation biogas] with algae = E3 * [ener-

gy generation biogas] without algae  

C as proxy, E3 > 1 → additional C in biogas 

E4 = [ [F9] - [F13] ] / [F9] 

 

Additional sludge for incineration 

[energy generation sludge] with algae = E4 * [ener-

gy generation sludge] without algae  

 

[energy consumption sludge handling] with algae = 

E4 * [energy consumption sludge handling] without 

algae  

C as proxy, E4 > 1 → additional C in sludge  
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2.6 Inventory for model city 

2.6.1 System description 

The model city analyzed in this study has 20 000 inhabitants (corresponding to the size of the 

WWTP without and with algae systems analyzed in chapter 3.2). While model city is pictured 

in a rural setting with land resources available around the WWTP, gardening and urban agri-

cultural activities (own production of food) are excluded from the present analysis. The focus 

of this analysis lies on the household consumption, and industrial or commercial activities are 

also excluded.  

To extent the perspective, the flows representing the connection points of the urban water 

chain to the full urban metabolism are analyzed: the flows of energy, water, food and cleans-

ing product related to daily household consumption. The input of water (chapter 2.6.2), ener-

gy (chapter 2.6.3), food (chapter 2.6.4) and cleansing products (chapter 2.6.6) to the house-

hold and the associated flows of CNP are quantified. The pathways of CNP are traced from 

the point where they enter the household until they leave the astysphere as emission to air, 

water and land/soil. This includes the transformations of CNP in the consumed food during 

human metabolism (chapter 2.6.5); on the post use side it includes organic waste treatment 

(chapter 2.6.8), in addition to the wastewater and sludge treatment (chapter 2.6.7). To discuss 

the problem of AMPs, PFOS is included as a model substance (chapter 2.6.9). 

For the wastewater and sludge treatment (post use side of the urban water chain), four cases 

are assessed. Two of them include algae systems. All other analyzed flows of UM: energy, 

water, food and detergents consumption, human metabolism and organic waste disposal are 

assumed equal for these four cases.  

 

2.6.2 Water consumption 

For water use in households, the average values as described in chapter 2.2 are assumed: con-

sumption of 41 m³/p*a, with an associated energy consumption of 26 kWh/p*a for the supply 

side of the urban water chain. 
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2.6.3 Energy consumption 

Energy consumption in households includes electricity and thermal energy. Electricity con-

sumption in households in model town is assumed with 1300 kWh/p*a (Schmidt et al. 2011). 

This electricity is provided from German grid. It is produced from brown coal (24.6%), black 

coal (18.5%), nuclear energy (17.7%) and natural gas (13.6%). Other energy carriers, includ-

ing oil account for 5.1%. Renewable energy sources contribute (20.3%) (year 2011, AGEB 

2012).  

The CO2 emission factor for electricity is 566 g/kWh. This value refers to emission of CO2 

equivalents and includes the contribution of non C based GHG as for example N2O. Without 

these contributions, CO2 emissions (not CO2 equ.) are 409 g/kWh (UBA 2010a). Converted to 

C using the molecular weights (factor 0.27 for CO2 to C), this gives a C intensity of electricity 

production of 110 g C/kWh. This value is used to calculate the C flows associated with elec-

tricity production. 

For consumption of thermal energy in households, an average value of 8000 kWh/p*a is as-

sumed. This includes 1000 kWh/p*a for hot water preparation. Interestingly, most of the en-

ergy consumed for hot water preparation in households remains stored in wastewater as ther-

mal energy. This provides an opportunity for reuse of thermal energy.  

As a simplification, it is assumed that all thermal energy in model city is provided by natural 

gas. The emission factor is 0.2 kg/kWh [CO2-equivalents] and the C intensity is 

0.005 kg/kWh [C] (UBA 2010B probas). This simplification neglects other energy sources 

with a higher (e.g. oil or electricity, used by 30% of German population) or lower CO2 emis-

sion factor (renewable heat sources e.g. solar thermal, used by 10% of German population). 

The average figures for energy consumption used in this study does not take into account that 

energy consumption varies considerably with household size, appliances used and user habits.  

There are also N flows related to energy consumption, as energy carriers such as coal and 

natural gas contain a certain amount of N that is released during combustion mostly as N2 

(e.g. coal 3%, natural gas <1%). For this study, 0.5% of C content is assumed. Thus, the N 

flows N related to energy consumption amount to 2.9 kg/p*a. As the released N2 adds to the 

non-reactive N pool in the atmosphere, its ecological relevance is low. But more ecologically 

relevant, the combustion processes may also transform this internal N or N2 from air to N2O. 

N2O has a high global warming potential (GWP) of 298 (IPCC 2006). The emission factors 

for N2O are 7.7 mg/kWh for electricity and 0.4 mg/kWh for thermal energy from natural gas 

(UBA 2010b).  
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2.6.4 Food consumption 

For the purpose of this study, the magnitude of flows is exemplified for a semi hypothetical 

model city, based on statistics, scientific publications and own calculations. A full assessment 

of household food consumption requires an analysis on its own right, as there are large varia-

tions in consumption patterns i.e. between sexes, age, income, preferences and special diets. 

According to BMELV (2012), the average of the total food provision in Germany amounts to 

682 kg/p*a (average 2005-2011). This list is adapted by grouping similar entries to simplified 

food groups.   
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Table 2-20 shows the simplified food groups and the average amounts per person and year 

(BMELV 2012). 

This amount includes in house (household) and out of house consumption, as well as losses 

along the supply chain (food refused or wasted, excluding losses during agricultural produc-

tion). In absence of data on the ratio of in house and out of house consumption, 100% is as-

signed to the household consumption for the purpose of this study. This simplification allows 

including the full food consumption per person. Also, journeys out of the boundaries of model 

city are neglected. These journeys basically represent a replacement of resource consumption 

and/or waste discharge to another urban area i.e. to a different sewer system and organic 

waste (ow) collection and treatment system. 

The food provided per person is not equal to the actual food consumption. In a recent study, it 

was found that food waste amounts to 134 kg/p*a (Kranert et al. 2012). 52 kg/p*a of food 

waste are generated by commercial operators and 82 kg/p*a in households. In the household, 

losses include unavoidable losses during preparation: peels, inedible parts etc, and avoidable 

losses: food refused due to mismanagement, transgression of best-before-date or personal 

preferences. 65% of household food wastes are avoidable i.e. are attributed to the latter cate-

gory (Kranert et al. 2012).  

Using the presented data in conjunction gives the following picture of food flows in Germany: 

682 kg/p*a of food are provided, 134 kg/p*a are transferred to organic waste and 548 kg/p*a 

are consumed by humans. Actual human consumption of food is 80% of the food provided. 

For the purpose of this study and in absence of more detailed data, it is assumed that food 

losses are distributed evenly over all food groups and also that the CNP content is reduced 

proportional to the CNP content of bulk food (see below). 

The assessment of the content of CNP in the food flows is not straightforward: from the bulk 

consumption of food, to food losses to actual human consumption to content of CNP in con-

sumed food, uncertainty becomes higher. For C content of food groups, 0.77 is assumed for 

fat and 0.43 for sugars (carbohydrates) (Baker et al. 2007). For the remaining food groups: 

animal and plant products, an average dry weight of 40% and a C content of 45% of dw are 

assumed. Based on these estimates, the food in model city contains 136 kg/p*a of C. This 

gives an average C content of 20% for the bulk food, which seems plausible.  

This value is also in agreement with an estimate of C content of food from the wastewater 

side. For the dimensioning of treatment steps, an incoming load of 120 g/p*d of COD is as-

sumed according to the technical standards (ATV 2000). It is estimated that 60% of COD 
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originate from feces and urine (ultimately food consumption) and the remaining 40% from 

detergents (DWA 2008, DWA 2013). With a factor of 3 from C to COD, this amounts to 

9 kg/p*a C transferred to wastewater from food consumption. Adding 100 kg/p*a for respira-

tion losses (human metabolism, see chapter 2.6.5 below), gives 109 kg/p*a of C consumed via 

food. Including the 20% that are transferred to organic waste, gives 136 kg/p*a C in food.  

N in food is almost exclusively incorporated in proteins (Fissore et al. 2011, González et al. 

2011). Proteins have an average N content of 16%. Food groups high in protein include ani-

mal products, and some plant products, such as soy (leguminoses) or cereals. González et al. 

(2011) lists the protein content of several food groups (  
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Table 2-20, second column). Using these data in conjunction with the contribution of several 

food groups to total food provision in Germany (  
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Table 2-20, first column), gives a total of 6.7 kg/p*a of N in food (  



 

 

82 

Table 2-20, last column). Some food groups contribute over proportionally to the total N con-

sumed with food (see also Figure 3-15).  

With 20% transferred to organic waste (1.3 kg/p*a), the amount of N in food consumed by 

humans is 5.4 kg/p*a. If the losses during human metabolism are assumed with 10% (0%: 

Baker et al. 2007, Fissore et al. 2011; 10%:  Villarroel Walker 2010, Antikainen 2007; see 

also chapter 2.6.5 below), a N load of 4.8 kg/p*a or 13.2 g/p*d can be expected from food 

consumption based on the “top down” calculation from the food side. 
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Table 2-20: Model city: Bulk food, protein content and amount of N in food  

 

 kg/p*a 

(bulk) 

protein 

content 

[mg/g] 

kg/p*a (N) 

Fruits 122 5 0.10 

Vegetables 92 10 0.15 

Cereals 91 100 1.45 

Rice 5 66 0.05 

Legumes 1 210 0.02 

Potatoes 64 17 0.18 

Meat  89 200 2.84 

Fish 15 207 0.51 

Cheese 15 249 0.60 

Milk products 19 32 0.10 

Milk   87 32 0.44 

Eggs 13 126 0.26 

Fat (total) 22   

Sugar 49   

    

Sum 682  6.7 

 

But calculating the amount of N in food “bottom up” with values reported from the 

wastewater side gives a different picture. For the dimensioning of treatment steps, an incom-

ing load of 11 g/p*d of N is reported in the relevant norms (ATV 2000). It is estimated that 

92% of N originate from feces and urine (ultimately food consumption) and the remaining 8% 

from other sources, e.g. detergents (DWA 2008, DWA 2013).This amounts to 3.7 kg of N 

transferred to wastewater from food consumption. This is considerably lower than the value 

from the “top down” calculation from the food side. As this discrepancy cannot be solved 

with the available data, 30% N losses during human metabolism are assumed for the model 

city to close the gap, acknowledging the uncertainty.  
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The P content of food in model city is assessed based on the N/P ratio. The N/P ratio of food 

is assumed with 9, which gives 0.75 kg/p*a of P in food. The N/P ratio of food reported in 

other studies is: 

 4.1-5.2 ( Villarroel Walker 2010)  

 5.9 (Antikainen 2007)  

 9.5 (Neset 2005) 

 10.5 (Baker et al. 2007, Fissore et al. 2011) 

With the N/P ratio of 9, a 20% transfer rate of food to organic waste; and a 100% transfer rate 

from consumed food to wastewater; gives a load of 0.6 kg/p*a of P to wastewater in model 

city. This value is in agreement with an estimate of P content of food from the wastewater 

side. According to the relevant norms (ATV 2000), the load in wastewater is 0.75 kg/p*a. 

This includes 0.55 kg of P transferred to wastewater from food consumption (75%) and 0.2 kg 

from detergents (25%) (DWA 2008, DWA 2013). 

 

2.6.5 Human metabolism 

The food consumed by humans provides nutrients for human metabolism: for energy produc-

tion (heat and chemical energy) and for “biomass growth” e.g. cell regeneration, protein 

building and other fundamental functions. As in all heterotrophic organisms, C from food is 

oxidized to CO2, fueling the energy metabolism (catabolism). While anabolic processes run 

continuously, the human body can be considered as steady-state equilibrium. All CNP taken 

up is released to the environment (Villarroel Walker 2010, Baker et al. 2007, Fissore et al. 

2011). Exemptions are phases of net biomass generation: growth in young people, pregnancy 

or lactation. The temporary stock of CNP in human biomass will ultimately be released upon 

death and decay. During lifetime, CNP is released to the environment via breath, via feces and 

urine or via sweat and losses of skin cells, hairs etc. 

For this study, human respiration is estimated with 100 kg C/p*a (366 kg CO2/p*a) in average 

(Villarroel Walker 2010, Baker et al. 2007, Fissore et al. 2011, Prairie and Duarte 2007). The-

se 100 kg represent 92% of the C consumed with food. The remaining 8% are assumed to be 

transferred to wastewater via feces and urine. For N consumed with food, 30% losses are as-

sumed, during human metabolism (see chapter 2.6.4). Other studies report higher transfer 

rates for N from consumed food to wastewater (90%:  Villarroel Walker 2010; 100%: Baker 
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et al. 2007, Fissore et al. 2011). For P, 100% transfer to feces and urine is assumed (Baker et 

al. 2007, Fissore et al. 2011, Villarroel Walker 2010).  
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2.6.6 Detergents 

Cleansing products for house and body are consumed on a daily base in households. Accord-

ing to UBA (2012), private end users consume 1.3 million tons of detergents, including: 

630 000 t of cloth washing products, 220 000 t of fabric softeners, 260 000 t of dish washing 

products and 480 000 t cleansing products for body and hair. The use of these products trans-

fers a total of 630 000 t of active ingredients (7.7 kg/p*a), including 31 860 t of Phosphates to 

wastewater (UBA 2008).  

Assuming a P content of 0.33, based on molecular weights, gives an annual load of 0.13 kg 

P/p*a. In addition, approximately 4 000 t of phosponates are transferred to ww. Phosponates 

are organic substances containing C-PO(OH)2 or C-PO(OR)2 groups, which are used to che-

late metal ions which can disturb bleaching processes (UBA 2008). They are only slowly de-

gradable in natural waters. Assuming an average P content of phosponates of 0.2, gives an 

additional load of 0.009 kg/p*a. Based on these estimates, the load of P in detergents for 

model city is assumed with 0.13 kg/p*a.  

This is value is in good agreement with an estimate of P load from detergents from the 

wastewater side, albeit. It is estimated that 25% of the 2 g/p*d P load in wastewater, originate 

from detergents (DWA 2008). This adds up to an annual load of 0.18 kg of P per person from 

detergents. This value is slightly higher than calculated from the data from UBA (2008). For 

model city, the values based on the data from UBA (2008) is used (0.14 kg/p*a). 

To calculate the C content of detergents, the C content of active ingredients (7.7 kg/p*a, UBA 

2012) is estimated with 0.75. The resulting 5.8 kg C/p*a are in good agreement with the val-

ues given by other sources (DWA 2008, DWA 2013). From the wastewater side, the reported 

annual load from detergents is 5.7 kg of C per person17. 

For N content of detergents, it is estimated that from the 11 g/p*d in wastewater, 9% originate 

from detergents (DWA 2008, 2013). This adds up to an annual load of 0.4 kg of N per person 

from detergents. This value was adopted for the present study. 

Detergents can also be transferred to waste e.g. left-over product in discarded packaging etc. 

This pathway was neglected in the present study. 

 

                                            

17 116 g/p*d of COD in wastewater, 40% from detergents (DWA 2008, 2013), factor 3 for C to COD (Henze 
2000) 
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2.6.7 Wastewater and sludge treatment  

For the model city, a mixed sewer system is assumed with 91 m³/p*a of wastewater generated 

in average, including rainwater and sewer infiltration. The electricity demand for wastewater 

transport is 5.5 kWhel/p*a. Four cases for wastewater and sludge treatment are assessed; two 

of these cases include algae systems.  

The first case “basic urban water chain” (Model city MC1) corresponds to the basic case as 

analyzed in chapter 3.1, without anaerobic digestion and with agricultural reuse of sludge 

which represents 25% of German population. It has a WWTP with simultaneous aerobic 

sludge stabilization followed by land use of sludge. The energy demand of the WWTP is as-

sumed with 37 kWh/p*a. This is slightly lower than the average used for case 3 in chapter 3.1 

(40 kWh/p*a), as the WWTP in the model city with 20 000 p.e. represents a larger plant of 

this category which mostly contains small plants with less than 10 000 population equivalents. 

In terms of energetic recycling, this represents a worst case scenario. For transport of sludge, 

short distances are assumed (20 km). Due to the minor contribution to the energy balance with 

low distances, the transport is neglected. 

The second case “best available technology” (MC2) refers to an optimistic scenario with an-

aerobic digestion and sludge incineration. The energy balance for the best available technolo-

gy case is well above the German average due to minimized energy losses and maximized 

electricity production (see best available technology case in chapter 3.1). It represents a best 

case scenario employing current technology. Compared to case 1 and 2, which represent 

mostly larger WWTPs, the energy demand is slightly increased (37 kWh/p*a vs. 33 kWh/p*a 

for case 1 and 2). 

The third case “algae” (MC3) is based on the “best available technology” case and employs 

algae systems with full CO2 recycling as described in chapter 3.2 (without post treatment). 

The required area is 6 m²/p, totaling 12 ha around the WWTP. For the fourth case “algae +” 

(MC4), the algae systems receive additional CO2 and the cultivation area can be extended to 

9 m²/p (18 ha). For the „algae +” case, CO2 from the composting facility is transferred to the 

algae systems during growing season (ca. 4 kg C). This additional source of CO2 allows full 

exploitation of N and P available in wastewater. With the additional CO2, post treatment is 

mandatory to achieve limit values for effluent (see chapter 3.2). Post treatment reduces the 

load of CNP in effluent, as well as the load of AMPs. The eliminated fraction is transferred to 

sludge. For the algae systems a vegetation season of 250 days is assumed. Table 2-21 shows 

the resulting energy balances.  
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Table 2-21: Model city: Electricity consumption and generation at WWTP  

WWTP  MC1 MC2 MC3 MC4 

Energy use water pathway -35 -26 -15 -9 

Energy use sludge pathway  -7 -13 -16 

Energy use others -4 -4 -4 -4 

Energy use algae pathway  0 -9 -14 

Energy use post treatment    -5 

Energy generation sludge (PS)  10 12 12 

Energy generation sludge (SS)  6 4 2 

Energy generation algae  0 26 42 

     

net consumption -6 4 4 5 

brut consumption -6 -13 -14 -18 

own generation 0 16 19 23 

 

Compared to the algae full scenario in chapter 3.2, the algae scenarios used for model city 

have a better energetic performance. While the parameters for the algae systems were adopted 

from chapter 3.2, the WWTP processes are assumed to be more efficient. The WWTP pro-

cesses are based on the best available technology case, which represents a best practice exam-

ple for WWTPs of this size class. Therefore, energy consumption for BWT and anaerobic 

digestion are reduced compared to chapter 3.2, while the energy consumption of the algae 

systems and the energy generation from algae biomass (ABM) is the same.  

For sludge treatment in model city, a modern mono incineration facility, as described in chap-

ter 3.1 is assumed for all cases except for the basic case with land use of sludge. The transport 

is neglected. As the integration of algae systems slightly increases the amount of sludge, it 

also increases energy consumption for sludge treatment, as well as the energy generation (  
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Table 2-22).  
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Table 2-22: Model city: Electricity consumption and generation for sludge treatment  

  MC1 MC2 MC3 MC4 

dewatering (EL) -2,5 -2,5 -2,9 -3,6 

storage (EL) -4  0 0 

drying (EL)  -5 -6 -7 

incineration/flue gas cleaning 

(EL) 

 -5 -6 -7 

incineration electricity gen. 

(EL) 

 16 19 23 

  

drying (TE)  44 51 64 

incineration (TE)  29 33 42 

external te required (TE)  15 18 22 

transport (fuels PE) 0,7 3,5 4,0 5,1 

 

net consumption (EL) -6 4 4 5 

brut consumption (EL) -6 -13 -14 -18 

own generation (EL) 0 16 19 23 

 

 

2.6.8 Organic waste treatment 

Composting is the main process employed in Germany for organic waste treatment. 90% of 

organic waste is treated in composting facilities, only 10% in digestion facilities. For model 

city, a composting facility for organic waste treatment is assumed. As a particularity, this fa-

cility is in close distance to the WWTP to allow reuse of CO2 emissions from composting in 

algae systems at the WWTP in the algae + case.  

For the collection and transport to the facility, a distance of 20 km is assumed. For transport 

of 134 kg/p*a over this distance, the energy consumption (PE) is ~2 kWh/p*a (see chapter 

2.4.2). The transport is neglected for the purpose of this study.  

For the composting process, reported partitioning factors for losses to air are 30-60% for C 

and 10-40% for N (Villarroel Walker 2010, Hao et al., 2004, Eghball et al., 1997). For this 

study, 40% for C and 30% for N are used. Losses to water occur during leaching and depend 

on water content of composted materials and water input e.g. by precipitation. The organic 

waste is a relatively dry substrate for composting. The water content is approximately 70% 

(30% dw, Villarroel Walker 2010) and facilities are covered. For this study, no leaching and 

thus no losses to water are assumed. 
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For model city, the values reported by Kranert et al. (2012) are used: production of 

134 kg/p*a of organic waste. As a simplification, a 100% transfer rate to the organic waste 

system is assumed. In reality, organics are also transferred to mixed waste, to own composting 

devices or directly to the environment (dumping). 
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2.6.9 PFOS 

Estimating the load of PFOS for model city is not straightforward, due to lack of data and the 

multitude of potential sources and pathways. For the load of PFOS to water, a monitoring 

study of rivers in the EU (Pistocchi and Loos 2009) found 10 mg/p*a. This includes many 

potential sources for PFOS: household wastewater18, leaching and erosion from land, atmos-

pheric deposition, and emissions from landfills, direct discharge of urban run off and com-

bined sewer overflow. WWTPs are often the main source of PFOS to water (Huset et al. 2008 

Becker et al.2008).  

The load of PFOS to water found in the monitoring study does not capture the emissions to 

other environmental compartments: to land and to air. Assuming that emissions to water rep-

resent 50% of total emissions, the load of PFOS19 to all environmental compartments is esti-

mated with 20 mg/p*a for model city.  

The load of PFOS in wastewater is estimated with 14 mg/p*a, representing 70% of the total 

load. Due to its persistence, PFOS cannot be degraded by biological processes during “stand-

ard wastewater treatment”. But it can be removed from effluent by sorption to sludge.  

For the standard treatment, the partitioning factors reported by Buser and Morf (2009) are 

applied. Taking into account recent studies (Schultz et al. 2006, Sinclair and Kannan 2006, 

Loganathan et al. 2007, Heidler and Halden 2008, Huset et al. 2008); the authors estimated 

that 65% of the incoming PFOS are transferred to sludge.  

The load of PFOS in sludge is 9 mg/p*a, representing 45% of the total load to the environ-

ment. If sludge containing PFOS is applied to land, the chemical quality of soils deteriorates 

and it may become a secondary source of emission to water. During incineration of sludge, 

the Carbon-Fluorine bond is broken and PFOS is degraded20.  

35% of the incoming PFOS remain in effluent resulting in an effluent load of 5 mg/p*a. The 

effluent from WWTP contributes 50% to the load of PFOS to water and 25% of the total load 

to the environment.  

                                            

18 Industrial applications of PFOS are banned in the EU 

19 This includes the load of precursor substances that are degraded to PFOS during wastewater treatment, such 
as longer chained per- and poly-fluorinated substances 

20 Other AMPs, especially heavy metals remain in the ashes or the air filter material. 
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This estimate is backed up by WWTP studies, which often show even higher loads per capita 

and by studies in Switzerland and Germany which found WWTPs the major source of PFOS 

to rivers (Huset et al. 2008, Heidler and Halden 2008, Becker et al.2008). But the input of 

PFOS to WWTPs and the fate during treatment is subject to large uncertainties. For the pur-

pose of this study, the estimate serves to illustrate the problem of AMPs in wastewater in rela-

tion to CNP recycling and the potential improvement by integration of algae systems. 

For the algae systems, it has been shown that processes during algae growth can increase the 

elimination of AMPs from effluent. Due to intense contact to cell surfaces capable of bio-

sorption during a long hydraulic retention time of 3-6 days in an aerated environment, the 

transfer of AMPs to biomass and ultimately sludge can be increased compared to standard 

process. Elimination of heavy metals (Mallick 2002) and persistent organic pollutants (Munoz 

and Guieysse 2006, Borde et al. 2003 Arranz et al. 2008) is described for laboratory studies, 

but remains to be proven in pilot projects.  

For model city, it is assumed that 85% of PFOS are adsorbed to biomass during algae cultiva-

tion, compared to 65% for the standard process. As this value is based on laboratory studies, it 

is subject to large uncertainties. Combined with an HE of 88%, elimination efficiency from 

effluent is 75%. The resulting effluent load is 3.5 mg/p*a, compared to 4.9 mg/p*a for the 

standard treatment. PFOS in sludge is degraded during incineration. Thus, sludge incineration 

is necessary to make algae systems clean cycles. But algae systems increase the amount of 

PFOS that is degraded during incineration. 

Post treatment further reduces the load of PFOS in effluent, as the majority of the non-

harvested biomass is removed from effluent. With the assumption that 95% of biomass is re-

moved from effluent with post treatment, the elimination rate for PFOS from effluent increas-

es to 80%. 2.7 mg/p*a remain in the effluent and 11.2 mg/p*a are transferred to sludge. The 

energy required for post treatment included in the energy balance of the algae + case. 
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3 Results and Discussion  

3.1 Status quo of the urban water chain in Germany 

For a holistic picture of the status quo of the urban water chain in Germany, first the external 

energy flows are presented and discussed, followed by the internal energy flows and the met-

abolic efficiency. Then, the extended energy balance is complimented by the emission bal-

ance. 

To assess the current the current situation of the urban water chain, different cases are consid-

ered. For the water supply side, the average groundwater (70%) and surface water use (30%, 

ATT et al. 2011) is presented. For wastewater and sludge treatment, three cases are distin-

guished (Figure 3-1). The weighted average of these three cases gives the average for Germa-

ny. 

Case 1 represents a medium to large WWTP employing anaerobic sludge stabilization with 

subsequent drying and incineration (52% of population served). Case 2 represents a medium 

to large WWTP employing anaerobic sludge stabilization with subsequent land use (23%). 

Case 3 represents a small WWTP with aerobic wastewater treatment and simultaneous sludge 

stabilization with subsequent land use (25%).  
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Figure 3-1: Status quo: Three cases for wastewater and sludge treatment  

Legend: Basic, medium and advanced case of wastewater and sludge treatment. (Top) Case 1 represents a me-

dium to large WWTP employing anaerobic sludge stabilization with subsequent drying and incineration (52% of 

population served). (Not shown) Case 2 represents a medium to large WWTP employing anaerobic sludge stabi-

lization with subsequent land use (23%). (Bottom) Case 3 represents a small WWTP with aerobic wastewater 

treatment and simultaneous sludge stabilization with subsequent land use (25%).  

The direct energy consumption and generation for the different stages of the urban water 

chain is shown in Figure 3-2. Red color represents electricity, orange color represents thermal 

energy and black represents primary energy in form of fuels for transport of sludge. The first 

stage of urban water chain, the extraction, treatment and distribution of drinking water re-

quires 26 kWhel/p*a for 41 m³/p*a. This value represents the weighted average of drinking 

water supply from groundwater (70%) and surface water (30%). It is noteworthy, that the 
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German value (0.3 kWh/m³ for sourcing and treatment) is low when compared to other coun-

tries (Plappally and Lienhard 2012), reflecting the outstanding quality and accessibility of 

water resources in Germany.  

In general, the energy demand for drinking water supply depends mainly on the accessibility 

and quality of water resources, but also on the size of facilities and of distribution networks. 

Accessibility of water resources and extent of distribution network determines the required 

pumping energy and quality of water resources determines the required treatment. In water 

scarce regions, sourcing and treatment may much more energy. Plappally and Lienhard 

(2012) report up to 3 kWh/m³ for California. 

 

Figure 3-2: Status quo: External energy balance of the urban water chain (1) 

Legend: Accumulated consumption and generation of electricity (red) and heat (orange) along the urban water 

chain for basic case (case 3), medium case (case 2), advanced case (case 1). Energy for transport (fuels, 

primary energy, low and high consumption) shown separately i.e. not accumulated. 

 

For wastewater and sludge treatment, three cases are distinguished with different technical 

setups and different degrees of energy recovery. In all cases, transport of wastewater requires 

5.5 kWhel/p*a. Energy demand for wastewater transport is highly variable, as it depends on 

topography, characteristics of sewer system and amount of rainwater and extraneous water 
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infiltrating the sewers. For Sweden, due to higher amounts of wastewater generated (mainly 

rainwater), energy demand per person in is much higher than in Germany: averaging 

20 kWhel/p*a with 313 m³/p*a, with a range from 1-89 kWhel/p*a (Olsson 2012, Lingsten et 

al. 2008). 

Case 3 with the most basic technical setup, requires 40 kWhel/p*a and 15 kWhthermal/p*a for 

biological wastewater treatment and simultaneous sludge stabilization. Mechanical dewater-

ing of sludge requires approximately 2 kWhel/p*a. Land use of sludge requires storage with 

3.5 kWhel/p*a, but no other processing. Without anaerobic digestion or incineration, there is 

no energy recovery in case 3. 

As there is no information available for transport distances of sludge to reuse sites in Germa-

ny, an average transport distance of 20 km (MUNLV 2001) as lower and 600 km (Haberkern, 

2008) as higher value was chosen to give an envelope for energy demand of sludge transport. 

Energy demand is negligible for short distances with 0.7 kWhprimary/p*a, but increases to 

21 kWhprimary/p*a for long distances. For land use of sludge, distances can be assumed to be at 

the lower end of the envelope.  

Case 2 with anaerobic sludge stabilization requires 28 kWhel/p*a for biological wastewater 

treatment. The energy demand for the biological wastewater treatment is lower than in case 3 

described above. The simultaneous aerobic sludge stabilization requires additional aeration. 

Instead, sludge is stabilized anaerobically in case 2, requiring 6 kWhel/p*a and 

22 kWhthermal/p*a for operation of digester.  

The produced biogas has a lower heating value of 47 kWh/p*a. Due losses by flaring or ther-

mal only use of biogas and a low average efficiency of electricity generation (30%), co gener-

ation currently recovers only 9 kWhel/p*a and 22 kWhthermal/p*a. Further processing of sludge 

follows case 3 described above. 

Case 1 employs anaerobic sludge stabilization, as described for case 2 above, but with subse-

quent drying and incineration of stabilized sludge. For the model, a mixture of co incineration 

of sludge in coal fired power plants (50%), and mono incineration in older and newer facili-

ties (each 25%) was assumed. In average, drying consumes 5 kWhel/p*a and 44 kWhtherm/p*a 

and incineration generates 12 kWhel/p*a and 32 kWhtherm/p*a. Input of waste heat from coal 

fired power plants for co incineration contributes additional 8 kWhtherm/p*a. Energy require-

ments for treatment of flue gas to German standards for mono incineration is 2.5 kWhel/p*a. 

Taken together, sludge drying and incineration generate surplus electricity of 4.5 kWhel/p*a 
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and requires external supply of thermal energy of 2.2 kWhtherm/p*a. If no waste heat was used, 

the required external supply of thermal energy was 10.2 kWhtherm/p*a. 

Figure 3-3 summarizes the brut and net consumption of electricity and thermal energy of the 

urban water chain. Brut consumption is similar in case 1-3 with 75-71-77 kWhel/p*a. But 

electricity generation from internal resources varies: for case 1 with biogas use and incinera-

tion of sludge, 21 kWhel/p*a are generated, covering 28% of brut consumption, for case 2 

with biogas use without incineration of sludge, 9 kWhel/p*a are generated, covering 13% of 

brut consumption. Net electricity consumption i.e. external supply required, is lowest in case 

1 with 54 kWhel/p*a, followed by case 2 with 62 kWhel/p*a. For case 3, there is no energy 

recovery and net consumption equals brut consumption with 77 kWhel/p*a.  

 

 

Figure 3-3: Status quo: External energy balance of the urban water chain (2) 

Legend: Brut consumption of electricity and thermal energy for water and wastewater infrastructures (case 1-3), 

including consumption of energy generated from internal resources (own generation from C resources, grey) and 

external or net consumption on level of water (light blue) and wastewater infrastructures (dark blue). Percentages 

refer to current energetic reuse in relation to brut consumption  

 

While case 1 employs energy harvesting from biogas and incineration processes, there are 

considerable losses. If the processes were optimized according to the best available technolo-

gy, the energetic reuse can be considerably increased (case 1+). If all produced biogas con-
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tributed to electricity generation, i.e. no flaring or thermal only use of biogas occurred, and 

with improved electrical efficiency of 35%, electricity generation from biogas can be in-

creased to 16 kWhel/p*a. If old facilities for mono incineration were replaced by newer facili-

ties, electricity generation from sludge incineration can also be increased to 16 kWhel/p*a. 

With a total electricity generation of 32 kWhel/p*a due to optimized processes, 43% of the 

brut electricity demand of the urban water chain would be covered.  

Looking at the thermal energy, the brut consumption of is highest in case 3 due to sludge dry-

ing. But 88% of brut demand is covered by internal resources or by waste heat in case of 

sludge co incinerated in coal fired power plants. The net consumption of thermal energy is 

small and very similar in case 1-3 with 5-8 kWhthermal/p*a. 

The weighted average for Germany over case 1 (representing 52% of population served), case 

2 (23%) and case 3 (25%) is net consumption of 62 kWhel/p*a and 7 kWhthermal/p*a. In aver-

age, current reuse covers 18% of brut electricity demand and 84% of brut demand for thermal 

energy.  

On a primary energy base, net energy demand of infrastructures averages 189 kWhprimary/p*a 

(Figure 3-4). Primary energy consumption includes the electricity consumption for water sup-

ply and wastewater and sludge treatment, the thermal energy consumption and the consump-

tion of fuels for transport (low: 20 km distance, and high: 600 km distance) with the respec-

tive conversion factors.  

The CO2 emissions associated with the energy consumption average 36 kg/p*a (CO2 equiva-

lents). These originate mainly from electricity consumption for water supply and wastewater 

and sludge treatment with a low contribution of thermal energy consumption. With large 

transport distances for sludge, fuels can add considerably to CO2 emissions (up to 6 kg for 

600 km sludge transport). 
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Figure 3-4: Status quo: Primary energy demand and CO2 emissions 

Legend: Average primary energy demand (kWh/p*a PE, left) and off site CO2 emissions of the urban water 

chain (kg/p*a CO2 equivalents, right). Contribution of net electricity consumption EL, consumption of thermal 

energy TE and fuels. Contribution of fuels for short and long transport distance of sludge (green). Weighted 

average from case 1-3 representing the average for Germany. 

 

To extend the usual approach to energy balances as presented above, the internal energy flows 

are included. By quantification of the energetic value of CNP and application of the respective 

theoretical energy potential (TEP) factors to the SFA, the internal energy flows are traced 

along the urban water chain. Thus, the metabolic efficiency of the urban water chain can be 

assessed: the degree of energetic reuse of internal resources CNP (Figure 3-5).  

For an input of 14 kg C/p*a (see chapter 2.2) and the derived TEP factor for C (chapter 2.3), 

the theoretical energy potential of C resources is 254 kWhprimary/p*a. With 4 kg N/p*a, TEP of 

N is 66 kWhprimary/p*a, which is lower by a factor of 4 than TEP of C. Again lower is TEP of 

P with 6 kWhprimary/p*a for 0.7 kg P/p*a.  
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Figure 3-5: Status quo: TEP of CNP and metabolic efficiency 

Legend: Theoretical energy potentials of CNP in [kWh/p*a primary energy]. Weighted average over the three 

cases. Percentages refer to current metabolic efficiency i.e. energetic reuse in relation to TEP on a primary ener-

gy base [%] 

Energetic resources in wastewater differ not only in quantity, but also in quality. C resources 

have a high quality: they can be exploited for electricity and heat generation via biogas or 

incineration of sludge. Based on the TEP and the actual electricity generation from C re-

sources (see Figure 3-3), the current metabolic efficiency for C is 15% in average (23% for 

case1, 9% for case 2 and 0% for case 3).  

In contrast to direct energetic reuse of C, reuse of N and P only gains indirect energy credits 

by substituting energy intensive fertilizer. Taking into account the amount of N and P applied 

to agricultural land and the plant availability, reuse of N averages 4% of TEP N (0% for 

case1, 6% for case 2 and 8% for case 3). The reuse rate for P averages 19% (0% for case121, 

30% for case 2 and 30% for case 3). Expressed in energetic terms, reuse of N recovers 

2.8 kWhprimary/p*a and reuse of P recovers 1.2 kWhprimary/p*a. Despite the considerably small-

er reuse rate of N compared to P, N contributes more than double in absolute terms to the re-

covered TEP.  

Taken together, the energetic reuse of CNP averages 42 kWhprimary/p*a on a primary energy 

base with a metabolic efficiency of 13%. Thus, 283 kWhprimary/p*a of TEP CNP are not re-

                                            

21 P remains in ashes and can theoretically be recovered. While the technologies have been developed, there is 
no large-scale application (UBA 2012). 
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covered. It is noteworthy that the non recovered energy potentials are higher than the primary 

energy demand of the urban water chain of 189 kWhprimary/p*a (see Figure 3-4).  

 

 

Figure 3-6: Status quo: Extended energy balance of the urban water chain  

 

Legend: Extended energy balance in kWhel/p*a for the German average, basic case (case 3), medium 

case (case 2), advanced case (case 1) and best available technology case (case 1+) showing the net 

electricity consumption. The metabolic efficiency or recovered TEP of C is shown as percentage of 

full TEP.  

 

The C resources can be exploited for electricity generation. The maximum electricity genera-

tion, based on the TEP and 35% electrical efficiency, is 89 kWhel/p*a. Thus, in theory elec-

tricity from C resources in wastewater can cover the current brut electricity consumption of 

the full urban water chain. The extended energy balance, comparing net electricity consump-

tion, current electricity generation of from C resources and theoretical potential of C resources 

is shown in Figure 3-6. The average reuse rate for Germany i.e. the ratio of own generation to 

TEPel C, is 15%. For the three cases, reuse is 23% of TEP in case 1, 9% in case 2 and 0% in 
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case 3. Thus, even with biogas generation and incineration of sludge (case 1), 77% of TEP C 

is currently not recovered. And even for the best available technology case with optimized 

biogas and incineration processes (case 1+, as described above) the metabolic efficiency for C 

is only 40%.  

Looking at the SFA results give an indication of where the energy is lost. Following the C 

flows through the system shows that more than one third of incoming C is lost to air without 

energetic reuse during biological wastewater treatment (37%, Figure 3-7). But even in the 

steps with energy recovery, there are losses. This becomes obvious when comparing the sub-

stance flows of C with the actual energy recovery expressed as % of TEP. SFA results show, 

that 65% of incoming C is transferred to AD. Then, 29% of C is transferred to biogas resp. 

flue gas from biogas use. But the electricity generation from biogas combustion recovers only 

9% of the TEP of C.  

The sludge incineration receives 29% of incoming C and recovers 14% of TEP. While sludge 

incineration is slightly more efficient than biogas combustion in terms of TEP recovery, the 

picture is different when the external energy requirements are included (see Figure 3-2). For 

AD, electricity consumption is 6 kWhel/p*a (9 kWhel/p*a generated), while for dewatering, 

drying and flue gas treatment, electricity consumption is 9.5 kWhel/p*a (12 kWhel/p*a gener-

ated)22. Thus, net electricity gain is slightly higher for biogas processes than for sludge incin-

eration.  

 

 

                                            

22 As simplification, this calculation excludes the consumption of thermal energy and energy for transport, as 
shown in Figure 3-2 
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Figure 3-7: Status quo: Emission balance  

Legend: Fate of C (left bar), N (middle bar) and P (right bar) in case 1 (top), case 2 (middle) and case 3 (bottom). 

Emission to water (W), air (A1: BWT, A2: AD, A3: Inc) and sludge resp. land (S1: stabilized sludge for land 

application, case 2 and 3, S2: ashes from sludge incineration, case 1). 

In analogue to the metabolic efficiency, the CO2 intensity of electricity production reflects the 

degree of reuse of internal C resources. On site emissions of CO2 are considered renewable 

and are not accounted for in GHG reporting based on IPCC convention (Sahely et al. 2006, 

Rosso and Stenstrom, 2008). But the magnitude of CO2 emissions from the flow streams of 

the urban water chain (internal resources) is noteworthy. These internal CO2 emissions add up 

to 48 kg/p*a in case 1, 33 kg/p*a in case 2 and 25 kg/p*a in case 3 (see also Figure 3-7 for C 

emissions to air). This is in the same range as the CO2 emissions originating from energy con-

sumption off site (fossil C, average 36 kg/p*a CO2 equ. see Figure 3-4). While the on site 

emissions cannot be avoided, as C is part of the flow streams, their magnitude underlines the 

importance of improving the CO2 intensity of bio-electricity production. 
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If all C from the flow streams was degraded to CO2, the emission would be 50 kg/p*a of CO2. 

In combination with the TEP, this gives an ideal CO2 intensity of 0.6 kg/kWh. The current 

CO2 intensity of electricity from biogas is 1.9 kg/kWh. When the emissions during BWT are 

included, it rises to 3.2 kg/kWh. For sludge incineration it is 1.2 kg/kWh. The low metabolic 

efficiency is also reflected in the high (on site) CO2 intensity of electricity generation. 

Figure 3-7 summarizes the emission of CNP to water; air and land. The applied treatment 

technologies remove the majority of CNP from effluent. Elimination efficiency is 95% for C, 

80% for N and 95% for P in case 1 and 2. For case 3, which represents smaller plant with aer-

obic sludge stabilization, elimination efficiencies are slightly lower: 93% for C, 75% for N 

and 85% for P. The non degradable C fraction remaining in effluent also contains organic 

AMPs, such as PFOS (see chapter 3.3).  

Effluent quality is the traditional focus of urban water infrastructures, in line with the protec-

tion of water resources from eutrophication as a major function. But the systems perspective 

in this study requires accounting for emissions to all environmental compartments, as CNP 

eliminated from effluent is transferred to air or to sludge. In case of P, the majority (90% for 

case 1and 2 and 85% for case 3) is transferred to sludge either biologically: by assimilation in 

microbial biomass, sorption to flocs and or chemically: by precipitation with added iron or 

alum based precipitants. The iron or alumo phosphates contribute to the low plant availability 

of P in sludge of 61% (Bengtsson et al. 1997, Houillon and Jolliet 2005). Besides P, 29% of 

incoming C and 19% of incoming N are transferred to sludge in case 1 and 2. For case 3 with 

aerobic sludge stabilization, the ratios are slightly higher: 43% of C and 25% of N. Sludge is 

also an important sink for many AMPs (see chapter 3.3).  

In contrast to P, the majority of C and N are transferred to air. In total, 95% of C is transferred 

to air in case 1, 66% in case 2 and 50% in case 3. The picture is similar for N: in total, 81% of 

C is transferred to air in case 1, 61% in case 2 and 50% in case 3.  

Besides the bulk flow, the speciation of C and N released to air is important, as it has a large 

influence on the global warming potential (GWP). In the best case, all C is emitted as CO2 

and all N as N2. To recap, on site emissions of CO2 are considered renewable and are not ac-

counted for in GHG reporting based on IPCC23 convention (Sahely et al. 2006, Rosso and 

                                            

23 Intergovernal Panel on Climate Change 



 

 

106 

Stenstrom, 2008). But other speciations, especially CH4 and N2O have a much higher GWP 

than CO2: 25 and 298, respectively (IPCC 2006). 

For WWTPs with anaerobic digestion (case 1 and 2), it is estimated that in average 0.0084 g 

of CH4 are produced for every g influent chemical oxygen demand (COD) at (Lazarova et al. 

2012). These emissions occur especially with out gassing from sludge water after anaerobic 

digestion or with leakages. At 116 g/p*d COD, and a global warming potential of 25, this 

gives 9 kg/p*a CO2 equivalents contributed by CH4 emissions at WWTPs (359 g/p*a CH4). 

In addition, CH4 may also evolve in the sewer system in case of long retention times and lack 

of oxygen (independent from AD). 

For N2O emission, it is estimated that 0-5% of incoming N can be emitted to atmosphere as 

N2O at WWTP (Lazarova et al. 2012). According to IPCC guidelines (IPCC 2006), a factor of 

0.035% is applied. This applied value is based on a single study, while other studies show 

higher emission factors (Kampschreur 2009). For the low factor from IPCC, the annual load 

of N2O is 2 g/p*a. With a higher, but still plausible factor of 0.5% the annual load is 30 g/p*a. 

With a GWP of 298 (IPPC 2006), N2O emissions contribute 0.6 to 9 kg/p*a CO2 equivalents. 

In the worst case (5% as reported in Lazarova et al. 2012) emissions amount to 90 kg/p*a 

CO2 equivalents.  

To conclude, the analysis showed the low metabolic efficiency of the urban water chain to-

day. The magnitude of the non recovered energy potentials underlines the importance of ener-

getic reuse of CNP resources in wastewater. This is especially important for C, which can be 

exploited for bio-electricity generation. The current metabolic efficiency for C averages only 

15%. Comparing the external and internal energy flows shows that C resources in wastewater 

can theoretically supply enough electricity to cover the demand of the full urban water chain. 

With the best available technology, the metabolic efficiency of the urban water chain can be 

increased to 36% of TEP C (case 1+). Further increase requires minimization of losses occur-

ring during BWT (AS). Today, more than one third of C energy is lost at this treatment step. 

These air emissions without energy recovery contribute considerably to the high CO2 intensity 

of current bio-electricity generation. These emissions are considered renewable and cannot be 

avoided, as C is a major constituent of the flow streams. Nevertheless, their magnitude – same 

range as the (fossil) emissions from energy consumption - underlines the importance of in-

creased energetic reuse of C resources. 

The energetic value of N and P is considerably lower than for C. Their reuse only gains indi-

rect energy credits for substitution of fertilizer. The metabolic efficiency averages 4% for N 



3.  Results and Discussion 

 

107 

and 20% for P. While reuse of N and P from wastewater on agricultural soils is beneficial 

from the energy and resource perspective, AMPs can be transferred to soils together with the 

nutrients (see chapter 3.3). While the metabolic efficiency for N and P is already low, it can 

be expected to further decrease in the future. Due to concerns about soil contamination, land 

application of stabilized sludge shows a decreasing trend in Germany (UBA 2012). 

The current technical setup of wastewater and sludge treatment can also be considered a clean 

cycle process. It works reliably and fulfills its main functions for public health and protection 

of water resources from eutrophication. But the quantity and quality of CNP recycling from 

wastewater needs to be improved to contribute to clean cycles for sustainable urban metabo-

lism.   
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3.2 Algae systems for increased metabolic efficiency 

While the focus of the preceding chapter was the full urban water chain in its current state and 

the national averages, this chapter zooms in to the level of an individual WWTP. The integra-

tion of algae systems in the existing WWTP processes is investigated with focus on the CNP 

recycling in algae systems and the energy and emission balances of the WWTP with and 

without algae systems (Menger-Krug et al. 2012). As an example, a WWTP for 20 000 p.e. 

employing anaerobic digestion was chosen.  

A process design (Figure 3-8) is proposed for integration of algae systems, which relies solely 

on resources from wastewater, with no external input of water, fertilizer or CO2. The whole 

algae process chain, from cultivation to production of bio-electricity, takes place on site of the 

WWTP.  

For growth medium, the algae systems receive primary treated wastewater (PTW, blue arrow 

to algae systems) and sludge water (brown arrow to algae systems). These flows are rerouted 

to algae systems instead of the biological wastewater treatment (BWT) step. Algae systems 

receive additional CO2 which is delivered from sources on site the WWTP: combustion gas 

from biogas based co generation and gaseous emission from biological wastewater treatment 

(BWT, purple arrows to algae systems). The harvested biomass (green arrow) is co-digested 

with sludge to produce biogas. Biogas is used for co generation of electricity and heat on site 

(see section on energy balance below). The combustion gas, as well as sludge water, is recy-

cled back to algae systems (back load cycles). 

As this is a prospective analysis, there is no empirical data available. Therefore, the implica-

tions for the energy balance of the WWTP are calculated based on SFA results. The amount 

of biomass is calculated based on the nutrients provided to the algae systems combined with 

the uptake efficiencies and the stoichiometric requirements. From the amount of biomass gen-

erated, taking into account the harvesting efficiency and the anaerobic digestibility, the addi-

tional biogas generation is calculated. The changes in loads to different treatment steps arising 

from rerouting of internal flows to algae systems are used as proxies to calculate the changes 

in energy consumption.  
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Figure 3-8: Algae systems: Proposed process design  

Legend: Overview of inputs, internal flows and outputs of WWTP (A) and WWTP with integrated algae systems 

(B). PS: primary sludge from mechanical treatment and SS: secondary sludge from biological wastewater treat-

ment (BWT). WWTP with algae systems employs full CO2 recycling (algae full scenario): gaseous emission 

from BWT and combustion gas are fully recycled to algae systems for CO2 supply (purple arrows). N and P 

requirements to exploit the provided CO2 are met by sludge water (fully diverted to algae systems, brown arrow) 

and a fraction of PTW (rerouted before BWT, blue arrow). Harvested biomass (green arrow) is co-digested with 

sludge to produce biogas. Biogas is used for co generation of electricity and heat on site (see section on energy 
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balance below). The combustion gas, as well as sludge water, is recycled back to algae systems (back load cy-

cles). 

 

Three scenarios are presented for integration of algae systems at WWTPs (Table 3-1). The 

“algae light” scenario uses CO2 generated at the WWTP during daytime (60% of total CO2 

available). To fully exploit the CO2 provided, nutrient rich sludge water plus 11% of primary 

treated wastewater (PTW) are required to supply sufficient N and P. With the limitations im-

posed by nutrient requirements and uptake efficiencies of algae, and the reported rates of nu-

trient recycling via combustion gas and sludge water (back loads), 30 g of biomass are har-

vested daily for every person served by the WWTP. With an areal productivity of 18 g/m²*d 

and a harvesting efficiency of 88%, this requires 1.7 m² of cultivation area. Co digestion of 

harvested biomass increases biogas production by 61% compared to WWTP without algae 

systems.  

The “algae medium” scenario uses 80% of total CO2 available. It requires storage capacities 

for CO2 which cannot be directly supplied to algae system (as it is generated during night 

when there is no light available). With more CO2, more biomass can be produced, requiring 

more area, as well as more N and P. 32% of primary treated wastewater (PTW) is required for 

nutrient supply in addition to sludge water, producing 57 g/p*d of biomass. With constant 

areal productivity, required cultivation area expands to 3.2 m²/p. Co digestion more than dou-

bles biogas production compared to WWTP without algae systems. The “algae full” scenario 

fully exploits CO2 generated on site and therefore requires large capacities for night time stor-

age. Here, 57% of primary treated wastewater (PTW) together with sludge water is fed to 

5.7 m²/p of algae systems to fully exploit the CO2 provided from on site sources. 90 g/p*d of 

biomass are harvested and biogas production almost triples compared to WWTP without al-

gae systems.  

Integration of algae systems changes loading rates to biological wastewater treatment (BWT) 

and anaerobic digestion (AD). The BWT step receives 110% of influent N due to back load 

from sludge water at the WWTP without algae systems. Rerouting sludge water together with 

a fraction of primary treated wastewater (PTW) to algae systems considerably reduces loading 

to BWT. The reduction in N load is larger than the reduction in volume (26-44-64% reduction 

in N load vs. 11-32-57% reduction in volume), as sludge water is low in volume but high in 

N. The C/N ratio in the BWT step becomes more favorable, moving from 2.4 to 2.6 with inte-

gration of algae systems (on a mass base).  
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With decreased load to BWT, less secondary sludge is produced. Secondary sludge has a low-

er anaerobic digestibility and produces less biogas and more stabilized sludge than biomass 

harvested from algae systems. Reduction of secondary sludge contributes to the relatively 

higher increase in biogas production (by 65-115-183%) compared to the increase in loading of 

C to anaerobic digestion (by 35-65-103%). This indicates an efficient use of digester capaci-

ties at WWTP with algae systems. 

 

Table 3-1: Algae systems: Summary of SFA results  

 no  

algae 

algae 

light 

algae 

medium 

algae 

full 

Algae systems 

Harvested biomass [g/p*d]  30 57 90 

Area needed (cultivation) [m²]  1,9 3,6 5,7 

PTW diverted to algae systems[%]  11 32 57 

Biological wastewater treatment (BWT) 

Loading of C [% of incoming] 73 60 46 29 

Loading of N  [% of incoming] 110 81 62 39 

Loading of P [% of incoming] 100 80 61 39 

Anaerobic digestion(AD) 

Loading of C [% of incoming] 65 87 107 131 

Biogas produced- total [l/p*d] 23 36 49 64 

Contribution of harvested biomass 

to biogas production [%] 

 42 60 73 

 

Changes in loading rates induce changes in energy demand of the different treatment steps: 

lower volume and loads reduce the energy demand of the biological wastewater treatment 

(BWT), while additional loads increase energy demand of anaerobic digestion (AD). The re-

duction in N load to BWT and the increase in C load to anaerobic digestion are used as prox-

ies for changes in electricity use of these treatment steps. Figure 3-9 shows energy balances 

for the WWTP without and with algae systems per person served and day of growing season. 

On the demand side, the electricity use of WWTP increases moderately with integration of 
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algae systems: the savings in biological wastewater treatment (BWT) counterbalance in-

creased consumption in sludge and algae pathway.  

On the supply side, co digestion of biomass from algae systems considerably increases elec-

tricity generation from biogas. This outweighs slightly reduced amounts of biogas from sec-

ondary sludge. The contribution of primary sludge is stable in all four scenarios, as 

wastewater is rerouted to algae systems after primary treatment. In total, the net energy bal-

ance of WWTP improves by 41-71-102% with rising degree of CO2 exploitation in algae sys-

tems.  

 

 

Figure 3-9: Algae systems: External energy balance  

Legend: Energy balance of WWTP (no algae) and WWTP with integrated algae systems in Whel per person 

served and day of growing season. The algae light scenario with 1.9 m²/p of cultivation area uses 60% of CO2 

generated at the WWTP, algae medium 80% (3.6 m²/p), algae full 100% (5.9 m²/p). Demand side: electricity use 

of water pathway (light blue), sludge pathway (dark blue), algae pathway (green) and other uses (grey). Supply 

side: electricity generation from biogas from primary sludge (dark purple), secondary sludge (light purple) and 

co digestion of biomass harvested from algae systems (green). Black bars represent net energy balance (demand 

– supply). 
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For comparison to other energy systems, the energy return on investment (EROI) is a useful 

measure. For algae systems, weighing the energy generation from co digestion and the sav-

ings in biological wastewater treatment (BWT) (energy output) against the energy consumed 

for biomass cultivation, harvesting and processing and the reduced energy generation from 

secondary sludge (energy input), gives an EROI of 2.1-2.4. For every kWh of electricity con-

sumed due to the integration of algae systems more than 2 kWh of electricity are generated. 

Looking at the full WWTP, the EROI is 0.38 without algae systems. With an EROI below 1, 

more electricity is consumed than generated. The integration of algae systems improves the 

EROI of the WWTP to 0.62 in the light, 0.8 in the medium and 1.01 in the full scenario. With 

full CO2 exploitation in algae systems, WWTP can run energy neutral during vegetation sea-

son. 

 

 

Figure 3-10: Algae systems: Annual energy balance  

Legend: Annual energy balance depends on length of vegetation season. WWTP (no algae, blue) and WWTP 

with algae systems: algae light (light green), medium (green) and full (dark green) scenarios. Results on plant 

level for 20,000 persons served. 

 

On an annual basis, the energy balance depends on the length of the vegetation season (Figure 

3-10), which equals the number of days per year with a minimum temperature above 5°C and 
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maximum temperature below 35°C (Murphy and Allen 2011). But the growth medium for 

algae systems at WWTPs has relatively high temperatures of approximately 15-20°C, even at 

low ambient temperatures, due to digester heating and hot water use in households. Warm 

growth medium may prolong the vegetation season for algae systems at WWTPs. Assuming 

200-250 days per year algae systems improve the annual energy balance compared to WWTP 

without algae systems by 22-28% in the light scenario, 39-49% in the medium scenario and 

56-70% in the full scenario.  

So far, the positive implications for energy balance arising from integration of algae systems 

at WWTPs were presented. But for a full picture, the emission side has to be included (Table 

3-2). The results of the SFA show, that integration of algae systems also has disadvantages for 

WWTPs. It reduces the elimination efficiency for CNP from effluent. To recap, C in effluent 

of WWTP is usually measured with the sum parameter chemical oxygen demand as proxy 

(COD, factor 3 for C to COD). While in the WWTP without algae systems, 8% of incoming 

C, 28% of incoming N and 9% of incoming P remain in effluent, loads increase with rising 

degree of CO2 exploitation in algae systems. In the full scenario, 17% of incoming C, 35% of 

incoming N and 22% of incoming P remain in effluent.  

Table 3-2: Algae systems: Emission balance  

 no  

algae 

algae 

light 

algae 

medium 

algae 

full 

Water     

Elimination efficiency C/COD [%] 95 91 87 83 

Elimination efficiency N [%] 72 67 66 65 

Elimination efficiency P [%] 90 86 81 78 

Sludge     

Total stabilized sludge [g/p.e.*d] 60 64 66 69 

Additional sludge [%]  7 10 14 

load of C in sludge [% of incoming] 29 31 33 36 

Air     

Load of C to air [% of incoming] 66 59 54 46 

CO2 emission on site (renewable) [g/p.e.*d] 93 84 76 66 

CO2 intensity of bio-electricity production 

[kg/kWh] 

1,8 1,0 0,7 0,5 
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The amount of stabilized sludge also increases slightly by +7-10-14% compared to WWTP 

without algae. Increase of stabilized sludge is modest compared to the increase in biogas pro-

duction (see Table 3-1) due to the high anaerobic digestibility of biomass harvested from al-

gae systems and reduced amounts of secondary sludge fed to anaerobic digestion (AD).  

Looking at the fate of C shows that the load of C to water (17% of incoming C with algae full 

vs. 5% for WWTP) and to sludge (36% vs. 29%) increase with the integration of algae sys-

tems, while the load of C as CO2 to air decreases (46% vs. 66%). While combustion gas is 

emitted to air at WWTPs without algae, it is recycled and partially transferred to biomass with 

algae systems. Despite the high anaerobic digestibility of harvested biomass, more C accumu-

lates in stabilized sludge than without algae systems. Likewise, the amount of non-harvested 

biomass, which escapes via effluent, increases with increased C recycling and yield. The de-

crease of CO2 emissions is noteworthy, as bio-electricity generation is considerably increased 

at the same time. The reduced CO2 intensity of bio-electricity production indicates a more 

efficient energetic reuse of renewable C resources from wastewater with integration of algae 

systems. Due to recycling of combustion gas, one C atom can contribute to energy generation 

via CH4 more than once before leaving the system in effluent, stabilized sludge or as air emis-

sion. 

Zooming in on the effluent quality of WWTPs with algae systems, Figure 3-11 shows the 

contribution of free nutrients (blue) and nutrients incorporated in non-harvested biomass 

(green) to effluent concentrations of COD, total N and total P. Effluent concentrations meet 

limit values (dashed lines) with the assumed harvesting efficiency of 88% and in absence of 

post treatment in all scenarios, but they are very close in the full scenario.  

Free nutrients are present in effluent in dissolved form, as organic or inorganic ions, while the 

non-harvested biomass incorporates nutrients mainly as organic molecules, such as lipids, 

carbohydrates and proteins. It represents the fraction of biomass not captured by harvesting 

process, likely consisting of smaller cells not forming flocs. The contribution of non-

harvested biomass is visible for all nutrients, but most strongly for COD effluent concentra-

tions (Figure 3-11-1). The effect of intense C recycling for effluent quality is obvious: the 

amount of non-harvested biomass in effluent increases in parallel with improved energy bal-

ances (Figure 3-11-2). The non-harvested biomass in effluent resp. the COD concentrations 

and the energy balances are tightly connected. Both are strongly influenced by total yield (at a 

given harvesting efficiency), which in turn is governed by the degree of C recycling.  
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Figure 3-11: Algae systems: Effluent quality  

Legend: Contribution of non-harvested biomass (green) and free nutrients (blue) to effluent concentrations of 

COD, N and P. Dashed lines represent respective limit value for effluent concentrations for German WWTP with 

10,000-100,000 p.e.. Black bars represent energy balance for comparison. COD: Lighter shade of green repre-

sents C delivered as CO2 in combustion gas and dark green represents C delivered as DOC in growth medium. 

 

With rising degree of C recycling, COD effluent load increases by 21-72-136% compared to 

WWTP without algae systems. With full C recycling, more than half of the C in effluent orig-

inates from combustion gas recycled back to algae systems and incorporated in the non-

harvested biomass. While contribution of non-harvested biomass pushes effluent concentra-

tions towards limit value, the concentration of free COD is similar to WWTP without algae 

systems. It can be assumed that algae systems reach the same elimination efficiency for free 

COD as BWT (93%), albeit with a much longer hydraulic retention time. 

To a lesser extent the non-harvested biomass also contributes to N and P in effluent, but there 

is also an increase in loads of free nutrients with integration of algae systems. Increase in load 

of free P in effluent is caused by the lower elimination efficiency in algae systems. With the 

assumed uptake efficiency of 80% for total biomass, 20% remains in the effluent as free P, 
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while elimination efficiency in BWT is 90%. Therefore, the more PTW is rerouted from BWT 

to algae systems, the higher the load of free P in effluent. In algae systems, adsorption to bio-

mass or higher uptake efficiencies would reduce effluent concentrations of free P. But in ab-

sence of these processes, P effluent concentrations move close to limit values with full C re-

cycling in algae systems, as do COD effluent concentrations. 

For free N, the increase in effluent load is not caused by differences in elimination efficien-

cies: the reported N uptake efficiency for total biomass in algae systems is the same as the 

elimination efficiency in standard biological wastewater treatment (BWT) (75%). To recap, 

nutrient rich sludge water is fully diverted to algae system in all three scenarios. The amount 

of primary treated wastewater (PTW) varies between 11% and 57%, according to the N and P 

required to fully exploit the CO2 available. In all scenarios, this approach leads to a slightly 

higher than required N supply i.e. the amount of primary wastewater required to supply suffi-

cient P supplies surplus N. The N/P ratio of growth medium (determined by the mixing ratio 

of sludge water and primary treated wastewater) is above optimum: 10 in the light scenario, 9 

in the medium and 8.6 in the full scenario. The ideal growth medium has an N/P ratio of 8, 

based on the reported biomass composition of and uptake efficiencies. The N/P ratio is closest 

to optimum in the full scenario, as reflected by slightly decreasing free N concentrations from 

light to full scenario. For the full scenario the concentration of free N is similar to WWTP 

without algae systems. 

As effluent concentrations are close to limit values with full exploitation of CO2, it is prudent 

to add a post treatment step to maintain barrier function of WWTPs and protect aquatic eco-

systems from eutrophication. Post treatment with activated carbon seems a viable option: ab-

sorption processes reduce the non-harvested biomass and the incorporated CNP, as well as 

free COD and free P. The energy demand is approximately 2.5 to 5 kWhel/p*yr or 7-

14 Whel/p*d (Haberkern et al. 2008, Hansen et al. 2012). Between 8% and 16% of energy 

savings in algae full scenario would be scavenged by post treatment. But as an additional ben-

efit, post treatment also reduces the loads of many other pollutants in wastewater, e.g. heavy 

metals or AMPs (see chapter 3.3). 

For the scenarios presented so far, average values for wastewater composition were used. 

With full C recycling, N/P ratio is close to required optimum and effluent concentrations are 

just below limit values. Changes in influent loads can push effluent concentrations above limit 

values. For a wastewater composition deviating by 20% from average, limit values are ex-

ceeded and post treatment becomes mandatory for WWTPs with full C recycling in algae sys-
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tems (except for lower C influent load, see Figure 3-13). The same applies for reduced uptake 

efficiencies for N and P. With the same influent variations, effluent concentrations of WWTP 

without algae systems stay safely below limit values despite moderate increases. Higher influ-

ent loads of C and especially N increase the energy demand of WWTP. P load in contrast has 

a much lower impact on energy demand (unless post treatment is required). 

First, changes related to N and P flows are considered: variations of wastewater composition, 

uptake efficiencies and biomass composition (Figure 3-12). As C is the limiting nutrient, 

changes related to N and P flows have little effect on total yields and consequently COD con-

centrations and energy balances. Deficits of N or P in relation to available CO2 can be com-

pensated by increasing the amount of primary treated wastewater (PTW) rerouted to algae 

systems. Related energy savings in biological wastewater treatment (BWT) moderately im-

prove the energy balance in most scenarios but at cost of effluent quality. Changing the 

amount of PTW rerouted to algae systems impacts on the N/P ratio of the growth medium. 

The N/P ratio of the actual supply moves away from the respective optimum and causes 

exceedance of limit values for the respective surplus nutrient. As discussed above, the model 

does not allow luxury uptake of N or P above stoichiometric requirements or adsorption of 

free P to biomass. These processes could reduce effluent concentrations below limit values 

despite variations. It is concluded that in absence of these processes, flexibility for changes in 

N and P flows requires addition of a post treatment step to meet effluent limit values with full 

C recycling.  
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Figure 3-12: Algae systems: Scenario Analysis (1) 

Legend: Energy and emission balances for variations of algae full scenario. Energy balances of no algae, algae 

full and parameter variations of algae full scenario (bars). Red bar to the right shows energy demand of post 

treatment for comparison. Below bars: (1) Limit value: Exceedance of effluent limit value(s) is indicated by red 

letters: N and/or P. Effluent concentrations of C resp. COD stays below limit values with all analyzed variations, 

as yield is not affected. (2) Supply N/P: the N/P ratio of the growth medium in the scenario, determined by the 

mixture ratio of PWT and sludge water (3) Ideal N/P: optimum N/P ratio required by biomass based on the re-

spective stoichiometric composition of biomass and the respective nutrient uptake efficiencies. If supply is above 

optimum, surplus N stays in effluent. If below optimum, surplus P stays in effluent. (4) PWT: amount of primary 

treated wastewater rerouted to algae systems. In most scenarios, a higher amount of PWT is required to compen-

sate deficits of N or P in relation to available CO2. Related energy savings in BWT moderately improve the en-

ergy balance. Except for scenario with high P influent load: here only 49% PWT are required to meet N and P 

demand, downgrading the energy balance by 7% compared to algae full scenario. In scenario with low P uptake 

efficiency, N and P limit values are exceeded. The former due to N/P balance (surplus N) the latter due to the 

reduced uptake efficiency. In contrast, with reduced uptake efficiencies for N, effluent concentrations increase 

but stay below limit values. Parameter variations: (1st set) changes in wastewater composition with +/-20% in-

fluent load for N and P; (2nd set) changes in nutrient uptake efficiencies for N (60% instead of 75%, -20%) and 

P (65% instead of 80%, -20%), and higher N content of biomass (9% N content instead of 6%, +33%). 

 

On the upside, energy demand of post treatment (red bar in Figure 3-12) can easily be afford-

ed by the energy savings compared to WWTP without algae and has additional benefits for 

effluent quality. Actually, with a higher N influent load energy demand for WWTP can be 

expected to increase by 15% due to higher energy consumption for aeration and less favorable 

C/N ratio in biological wastewater treatment (BWT), increasing the relative savings in this 

scenario. 

Including the energy demand of post treatment, reduces energy savings compared to full sce-

nario (without post treatment): by 2% or less for lower uptake efficiencies for N or P, for low-

er influent load of P and for a higher N content of biomass; by 7% for a lower N influent load; 

by 15% resp. 20% for a higher N resp. P influent load. To recap, while the algae full scenario 

just meets limit value, adding post treatment is prudent and scavenges 16% of savings com-

pared to WWTP without algae systems. Compared to algae full scenario with post treatment, 

all analyzed variations have an equal or better energy balance except the scenario with higher 

influent load of P.  

In contrast to changes related in N and P flows, changes related to C flows affect total yield, 

as C is the limiting nutrient. Total yield is tightly connected to the energy balance, as well as 

to effluent concentration of COD by the contribution of non-harvested biomass. In Figure 3-

13, the interrelationship between energy balance (y-axis) and COD concentration in effluent 
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(x-axis) is further investigated. Increasing the influent load of C by 20% (black triangle) im-

proves the energy balance by 34%, compared to the algae full scenario. With more C availa-

ble, total yield increases: more area is needed for algae cultivation (6.8 m²/p instead of 

5.7 m²/p) and more primary wastewater is required to supply demand of N and P (69% instead 

of 57%). But the increase in non-harvested biomass in effluent accompanying the higher yield 

pushes COD concentration above limit value. Scenario moves to upper right in Figure 3-13. 

Effluent concentrations of N and P show only small effects due to increased contribution of 

non-harvested biomass, and stay below limit values (compare Figure 3-11 for contribution of 

non-harvested biomass to effluent concentrations of N and P). But meeting COD limit values 

requires a post treatment step, which can easily be afforded with the energy savings compared 

to algae full scenario. Savings compared to WWTP are 120% or more. With a higher C influ-

ent load energy demand for WWTP can be expected to increase by 5-10%, thus increasing the 

relative savings in this scenario.  

A lower C influent load reduces the total biomass yield together with the area required and the 

volume of PTW rerouted to algae systems. While energy balance is downgraded by 37%, ef-

fluent concentrations of COD (and to a lesser extent N and P), decrease and scenario moves to 

lower left towards algae medium scenario. Similar to lower C influent loads, lower uptake 

efficiencies for C considerably downgrade energy balances, while non-harvested biomass and 

therefore effluent concentrations decrease. A lower uptake efficiency for C as CO2 delivered 

by combustion gas shows a stronger effect, than for C delivered as DOC by growth medium. 

Reduced C influent load and reduced uptake efficiencies move the scenarios to lower left, 

close to or even below algae medium scenario. While the area demand is also reduced in these 

scenarios, the scenarios with reduced uptake efficiencies require the same CO2 storage infra-

structure as the full scenario.  

Given the importance of non-harvested biomass for effluent quality, especially for COD, har-

vesting efficiency is a key factor at WWTP with algae systems. To recap, the algae full sce-

nario requires a harvesting efficiency of 88% to stay below COD limit values, which is in the 

higher range of values reported in the literature (65%, Park and Craggs 2010; to 95%, 

Lundquist 2010). Increasing the harvesting efficiency (+10%) moves the algae full scenario to 

upper left, improving energy balance and effluent quality simultaneously. By removing the 

formerly non-harvested biomass, load of COD in effluent is reduced. Energetic reuse of the 

formerly non-harvested biomass improves energy balance compared to full scenario by 19%. 

Adding a post treatment step to algae full scenario (blue square), which removes the non-

harvested biomass but without energetic reuse, can reach the same effluent quality. But due to 
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the additional energy demand, energy balance is moderately downgraded compared to full 

scenario (16%).  

With decreased harvesting efficiency (80%), increasing contribution of non-harvested bio-

mass pushes COD concentration, as well as P concentration above limit values. As conse-

quence of lower harvesting efficiency, the amount of harvested biomass decreases downgrad-

ing the energy balance by 10%.The medium scenario with 80% CO2 recycling still meets limit 

values with 76% harvesting efficiency and the light scenario (60% CO2 recycling) even with 

only 55%, but with a similar downgrading of energy balance.  

 

 

Figure 3-13: Algae systems: Scenario Analysis (2) 

Legend: Energy balance vs. COD effluent concentrations for WWTP without algae (no algae, black circle), algae 

light, algae medium and algae full (green circles) and parameter variations of full scenario: Influent load of C +/-

20% (influent C high, back triangle; influent C low, grey triangle); lower uptake efficiencies for C delivered as 

DOC by growth medium (25% instead of 50%, DOC l) and for C as CO2 delivered by combustion gas (50% 

instead of 75%, CO2-l, grey triangles); Harvesting efficiency 88+/- 10% (blue circles); Post treatment (blue 

square): algae full scenario with post treatment step, which removes 66% of the non-harvested biomass but with-
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out energetic reuse (energy demand 14 Whel/p*d); Anaerobic digestibility 70+/-10% (purple circles); Energy 

demand of algae systems(Energy-high and Energy –low, 70 kWh/m²*d +/-25%, grey circles); Areal productivity 

(Prod.-high, 18 to 25 g/m²*d, +38%, black circle behind “Energy –low”); Super algae: combining optimistic 

values for harvesting efficiency (97%), anaerobic digestibility (77%), energy demand (53 kWh/ha*d) and bio-

mass productivity (25 g/m²*d). 

 

Compared to variations of the harvesting efficiency, variation of the anaerobic digestibility 

(purple circles) has a considerably lower impact on COD effluent concentrations, but a slight-

ly higher impact on energy balance. Variation of anaerobic digestibility by 10% give +22% 

resp. -14% change in energy balance compared to full scenario (harvesting efficiency +19% 

resp. -10%). A higher anaerobic digestibility increases the energy output per unit of harvested 

biomass. It also increases C recycling via combustion gas and reduces the amount of stabi-

lized sludge generated. Values for mono-digestion of algae biomass in the literature range 

from 40-60% (Clarens et al. 2010) to 70-90% (Hernandez and Cordoba 1993). But it has to be 

taken into account that co-digestion with sludge potentially enhances digestibility of algae 

biomass compared to mono digestion, due to reduced ammonia inhibition (Sialve 2009, Sam-

son and Leduy1983).  

Two more parameter variations are included in Figure 3-13: the energy demand of algae sys-

tems and the areal productivity. In contrast to the parameter variations discussed so far, they 

have no effect on effluent quality, only on energy balance. For the base scenarios 

70 kWhel/ha*d for cultivation and harvest, and a total biomass productivity of 18 g/m²*d dur-

ing the vegetation season (and 88% harvesting efficiency) is assumed. Values in the literature 

for energy demand of algae systems range from 50 (Campbell 2011) to 127 kWh/m²*d (Collet 

2011), with biomass productivities around 25 g/m²*d. Increasing the biomass productivity to 

25 g/m²*d improves energy balance by 17% compared to full scenario and as positive side 

effect considerably reduces area demand. Reduced energy demand for algae cultivation and 

harvest, has a similar effect on energy balance, but not on area demand.  

A “super algae” scenario is created to show the potential of the approach with optimized tech-

nologies. It combines optimistic values for harvesting efficiency, anaerobic digestibility, en-

ergy demand, and biomass productivity (as reported in the legend of Figure 3-13). With a 

vegetation season of 250 days, super algae can fully supply annual electricity demand of 

WWTP, and produce a surplus of more than 100 MWhel/yr, while WWTP without algae sys-

tems has an electricity demand of 600 MWhel/yr. Effluent concentrations of COD are similar 

to the algae light scenario i.e. slightly higher than for the WWTP without algae. 
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To conclude, the results show that it is feasible from a flow stream perspective to produce 

enough bio-electricity from algae systems, to run WWTP energy-neutral during the vegetation 

season or even turn them into net energy producers. This can be achieved with nutrients and 

CO2 from wastewater, without any external resource input. C resp. CO2 availability is the 

limiting factor for yield with the proposed process design i.e. in absence of external CO2 

sources. Bio-electricity produced at WWTPs with algae systems has a low CO2 intensity, in-

dicating efficient re-use of renewable C resources from wastewater.  

While intensive C recycling in algae systems considerably improves the energy balance, it 

also impacts on effluent quality, mainly via the contribution of non-harvested biomass. This 

effect is most visible for C resp. COD: effluent concentrations increase due to the contribution 

of non-harvested biomass in parallel to improved energy balances, as both depend strongly on 

total yield. Non-harvested biomass also contributes to effluent concentrations of P and N, al-

beit to a lesser extent.  

The algae full scenario marks the upper limit for C recycling in absence of post treatment: 

limit values are met while an energy neutral operation of the WWTP during vegetation season 

is achieved. The results highlight the tight connection between C flows, total yield and efflu-

ent quality for algae systems at WWTPs. The harvesting efficiency is identified as a technical 

key parameter at the crossroads of energy balance and effluent quality.  

As effluent concentrations are close to limit values with full C recycling, post treatment is 

highlighted as an opportunity to reliably meet effluent limit values for COD, N and P. The 

energy costs for post treatment are determined at 8-16% of total savings.  

Post treatment becomes mandatory with a wastewater composition deviating from average. 

Besides reliably meeting effluent limit values for COD, N and P, adding post treatment also 

improves the effluent quality in terms of AMPs.  

It is noteworthy that besides the post treatment also processes in algae systems themselves can 

contribute to elimination of anthropogenic pollutants: bio-oxidation, bio-sorption or bio-

assimilation, supported by a long hydraulic retention time of 3-6 days in an aerated environ-

ment. Elimination of heavy metals and persistent organic pollutants is described for laboratory 

studies (see chapter 1.3.3, but remains to be proven in pilot projects. Besides the fate of AMPs 

in algae systems, there are other important research needs. This includes the possible for-

mation of algae toxins during biomass growth under certain growth conditions, as known 

from eutrophic water bodies, and the N2O emission from N in wastewater. 
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3.3 Connecting the urban water chain to urban metabolism  

 

The previous chapters described the status quo of energy and material flows along the urban 

water chain (chapter 3.1) and assessed the integration of algae systems for increased metabol-

ic efficiency (chapter 3.2). In this final chapter, the perspective of the analysis is extended to 

put the results generated so far into context of the urban metabolism.  

The aim of this chapter is to assess the importance of the urban water chain – with and with-

out algae systems - in context of the urban metabolism. This includes the role of the urban 

water chain in context of: 

 the urban energy and C flows 

 the urban nutrient flows (N and P) 

 the urban flows of anthropogenic micropollutants (AMPs) 

 

 

Figure 3-14: Model city: Overview of material and energy flows  

Legend: Households consumption in model city. Extended perspective of the analysis includes the connection 

points of the urban water chain to full urban metabolism: the flows of energy, water, food and cleansing product 

related to daily household consumption and the associated flows of CNP. On the post use side, air emissions, 

wastewater and organic waste are included.  

 

For the extended perspective, the flows of energy, water, food and cleansing products related 

to daily household consumption are quantified for a semi hypothetical model city (Figure 3-

14). The bulk flows (energy and material) and the associated CNP flows are traced from the 

point where they enter the household until they leave the astysphere as emission to air, water 
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and land/soil. This includes the transformations of CNP in the consumed food during human 

metabolism; on the post use side it includes organic waste treatment, in addition to the 

wastewater and sludge treatment analyzed in the previous chapters. For wastewater and 

sludge management, four different cases – with and without algae systems - are compared. 

Besides CNP, also the flows of PFOS are assessed to discuss the problem of AMPs.  

The model city analyzed in this study is pictured in a rural setting - with land resources for 

algae cultivation available around the WWTP - with 20 000 inhabitants. But gardening and 

urban agricultural activities (own production of food), as well as industrial or commercial 

activities are excluded from the present analysis. The focus lies on the daily household con-

sumption. The daily household consumption of water, food and cleansing products represent 

the input side of the urban water chain and thus the connection between the urban water chain 

and the full urban metabolism. On the post use side, the organic waste management is includ-

ed as “sister infrastructure” which receives parts of the food flows. The energy consumption 

of households is included to put the energy balance and the C flows of the urban water chain 

into the urban perspective. While far from a complete analysis of the urban metabolism, the 

analyzed flows cover large parts of the daily household consumption and allow a first assess-

ment of the relevance of the urban water chain for different aspects of the urban metabolism. 

Input flows: Energy  

Energy represents a large part of daily household consumption. Household related energy 

consumption includes electricity and thermal energy. Energy consumption varies between 

individuals and depends on many factors such as household size, user behavior, floor space, 

insulation, appliances used, mode of hot water preparation (electricity or gas) (Schmidt et al. 

2011, ). For model city, it is assumed that thermal energy for hot water and space heating is 

provided by natural gas with an average consumption of 8000 kWhtherm. As natural gas is used 

for thermal applications, the electricity consumption in model city is slightly lower than the 

German average: 1300 kWhel (Schmidt et al. 2011). With the C intensity of natural gas 

(50 g/kWh) and electricity from German grid (110 g/kWh)24, the flows of C total 

~550 kg/p*a. The largest contribution comes from the thermal energy (400 kg/p*a). The low 

C intensity of electricity from German grid reflects the large share of renewable (20%) and 

nuclear (18%) energy sources in German electricity mix (AGEB 2012). With electricity from 

                                            

24 C and N emissions from electricity consumption occur upstream of the household and only the energy enters 
the household - in contrast to natural gas for thermal energy which is physically transferred to the house-

hold. For simplicity, air emission from electricity consumption are also termed “household emissions“ 
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brown coal with a high C intensity (up to 600 g/kWh, UBA 2012), the contribution of elec-

tricity would be ~800 kg/p*a.  

Besides C, most energy carriers such as coal and natural gas contain a certain amount of N 

that is released during combustion mostly as N2. These flows add up to 2.9 kg/p*a N released 

to air. As the released N2 adds to the non reactive N pool in the atmosphere, its ecological 

relevance is low. But the combustion processes may also transform a small fraction of this 

internal N or N2 from air to N2O. Air emissions of N2O are highly relevant as it is a very po-

tent GHG. The emission of N2O totals 10 g/p*a for electricity consumption and 3.2 g/p*a for 

natural gas consumption.  

It is noteworthy, that the wastewater treatment may contribute more to the N2O emissions 

than the full energy consumption albeit with large uncertainties. As calculated in chapter 3.1, 

wastewater treatment may release 2 g/p*a (IPCC 2006) to 30 g/p*a (Lazarova et al. 2012, 

Kampschreur et al. 2009) of N2O from N in the flow streams. This underlines the importance 

of further research in the topic of N2O emission from N in wastewater.  

Input flows: Water 

Looking at the mass flows related to daily household consumption, it is obvious that water 

represents the largest mass flow: 41 t/p*a or 820 000 t for model city. On the outgoing side, 

the mass flow is even larger as it includes also urban run off and sewer infiltration, which 

more than double the volume of flow streams. For comparison, material consumption of a 

typical city in an average industrialized country is estimated with 15–25 t/p*a (Krausmann et 

al. 2008). Thus, the urban water chain is a very important mass transport system in urban are-

as. Other studies confirm, that water is the largest component of the urban metabolism in 

terms of mass (Kennedy et al. 2007, Decker et al. 2000).  

Input flows: Food 

But the mass flows related to food consumption should not be underestimated. Even though 

conventionally not regarded as infrastructure system, the food supply system in cities also 

manages large mass flows. For model city, the food consumption accounts for ~680 kg/p*a or 

13 600 t/a. To recap, while the focus of this study lies on the household consumption, it quan-

tifies the full food consumption of the inhabitants of model city (including out of house con-

sumption). The contribution of the major food groups to total food provision in model city, 

based on data from BMVEL (2012), is shown in Figure 3-15 (grey bars).  
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Figure 3-15: Model city: Food consumption (bulk food and N content) 

Legend: Contribution of several food groups to total food provision (grey) and to total N content (blue) 

[%].Values for total food provision (grey) based on BMELV 2012, values for N content calculated from protein 

content reported in González et al. 2011 applied to BMELV 2012 data. 

 

Not all food entering the household is consumed. In a recent study, it was found that food 

waste in Germany amounts to ~130 kg/p*a (Kranert et al. 2012). In the households, 65% of 

the food wastes are avoidable, for example food refused due to mismanagement, transgression 

of best-before-date or personal preferences (SRU 2012). The avoidable losses are considera-

bly higher than the unavoidable losses during preparation, such as peels and inedible parts. 

Actual human consumption of food is ~550 kg/p*a (80% of food entering the households). 

Thus, the transfer rate to organic waste is 20% for model city. 

Having established the bulk flows of food in model city, the associated CNP flows can be 

assessed. The assessment of the content of CNP in the food flows is not straightforward: from 

the provision of food, to food losses to actual human consumption to content of CNP in food, 

uncertainty becomes higher. For C content of food, an average of 20% of bulk food or 

~136 kg/p*a is calculated. 80% of that amount is consumed with the food (~109 kg C) and 

20% is transferred to the organic waste (27 kg C).  

In absence of net biomass generation: growth in young people, pregnancy or lactation, the 

human body can be considered as steady-state equilibrium. All CNP taken up is released to 

the environment (Villarroel Walker 2010, Baker et al. 2007, Fissore et al. 2011). C is the en-
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ergy source for human metabolism. As in all heterotrophic organisms, C from food is oxi-

dized to CO2, fueling the energy metabolism (catabolism). For model city, human respiration 

is estimated with 100 kg C/p*a in average, based on ( Villarroel Walker 2010, Baker et al. 

2007, Fissore et al. 2011, Prairie and Duarte 2007). This leaves ~9 kg/p*a C from food trans-

ferred to wastewater. It is noteworthy, that the energy consumption of the human body itself 

causes considerable emissions of (renewable) C to air: ~100 kg vs. 140 kg for electricity and 

400 kg for natural gas consumption (fossil C). 

The N content of food can be quantified via the protein content, as N is almost exclusively 

incorporated in proteins (Fissore et al. 2011, González et al. 2011). Based the share of several 

food groups (BMELV 2012) and their protein content (González et al. 2011), the amount of N 

in food entering the household in model city is calculated with 6.7 kg. Of that amount, 5.4 kg 

is consumed by the human body and 1.3 kg is transferred to organic waste.  

Some food groups contribute over proportionally to N content of food (Figure 3-15, blue 

bars). Food groups high in protein include animal products: meat and milk products, fish and 

eggs, and some plant products, such as cereals. Interestingly, potatoes which are an important 

part of the German diet are particularly low in N, while leguminoses with high protein content 

are sparsely consumed in Germany. The contribution of animal based products to total protein 

and N consumption is 70%.  

The majority of N consumed with food leaves the body via urine and feces. The transfer rate 

to wastewater used in other studies is 90-100%. This means losses to air during human me-

tabolism of less than 10% (0%: Baker et al. 2007, Fissore et al. 2011; 10%:  Villarroel Walker 

2010, Antikainen 2007). With a 90% transfer rate, the expected N load in wastewater from 

food consumption is 4.8 kg/p*a or 13.2 g/p*d, based on the food data (“top down” calcula-

tion).  

But calculating the amount of N in food “bottom up” with values reported from the 

wastewater side gives a different picture. The relevant technical standards report 3.7 kg of N 

transferred to wastewater from food consumption (ATV 2000, DWA 2008, DWA 2013). The-

se values refer to average loads in wastewater, including commercial operation and indirect 

dischargers, fitted to “person equivalents (p.e.)” via the C content. The results of this study 

indicate that these values may be underestimating the N load when applied to mainly residen-

tial areas such as model city. For the purpose of this study, a transfer rate to wastewater of 

70% (losses to air during human metabolism of 30%) are assumed to resolve the discrepancy 

between bottom up and top down calculation, acknowledging the uncertainty. 
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The P content of food is calculated with 0.75 kg/p*a for model city. Of this amount, 

0.14 kg/p*a (20%) are transferred to organic waste. The P in consumed food (80%) is fully 

transferred to wastewater via urine and feces (Baker et al. 2007, Fissore et al. 2011, Villarroel 

Walker 2010). The N/P ratio of food with the reported values is 9, which is plausible albeit on 

the higher end of the spectrum. In Figure 3-16, the values for the load of N and P in food cal-

culated in this study are compared to published values (Baker et al. 2007, Fissore et al. 2011, 

Villarroel Walker 2010, Beck and Villarroel Walker 2012, Neset et al. 2007, 2008, 

Antikainen 2007). N and P load of food entering the household is in the medium to lower 

range of published values.  

 

Figure 3-16: Model city: Food NP in comparison to other studies 

Legend: Comparison of published values for the load of N and P in food entering the household with the values 

used in this study. Published values for the load of N (blue) and P (purple) in food. V1: Villarroel Walker 2010, 

low value; V2: high value; A: Antikainen 2007; Fo: Forkes et al. 2007; M: Metson et al. 2012; N: Neset et al. 

2007 (N flows), 2008 (P flows); Fi: Fissore et al. 2011. 

Despite the different geographical focus and regional dietary habits, the standard deviation for 

N load in food is only 10%. For P it is considerably higher (40%)25. The N/P ratio of food lies 

between 4.1-5.9 for the studies of the Upper Chattahoochee Watershed (Villarroel Walker 

2010, Beck and Villarroel Walker 2012) and Finland (Antikainen 2007) and 9.5-10.5 for 

                                            

25 When the present study is excluded, the standard deviation is not considerably changed for N, but decreases 
to 37% for P 
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Linkoeping (Sweden, Neset et al. 2008) and Minneapolis (Baker et al. 2007, Fissore et al. 

2011) (this study 9). 

 

Input flows: Detergents  

Like energy, water and food, also detergents are used in household on a daily base. Data from 

UBA (2012) show that private end users consume 1.3 million tons of detergents, including: 

630 000 t of cloth washing products, 220 000 t of fabric softeners, 260 000 t of dish washing 

products and 480 000 t cleansing products for body and hair.  

For model city, the associated load of CNP is calculated to 5.7 kg C, 0.3 kg N and 0.14 kg P 

per person and year. CNP from detergents is transferred to wastewater, contributing consider-

ably to the P load and the C load in wastewater, while the contribution is negligible for N. 

Figure 3-17 sums up the flows of CNP entering the households: energy, water, food, and de-

tergents (top); and leaving the household as air emissions (energy and human metabolism), in 

wastewater or in organic waste (bottom). 

Flows to and from households exhibit different patterns for CNP 

Looking at the flows of CNP entering and leaving the household reveals different patterns for 

the elements. Looking at the C flows, the most dominant flows are associated with energy 

consumption. They account for approximately 80% of analyzed C flows to households. But 

the C flows related to food should not be underestimated (~20%).  

On the outgoing side, the majority of C flows are transferred to air as CO2. This includes the 

energy related C flows as well as the majority of C in food. All these emissions of C to air 

occur with energy recovery. This is obvious for the C flows related to consumption of elec-

tricity and thermal energy in households, but also the C from food is used energetically to fuel 

human metabolism. Only a fraction of the analyzed C flows is collected in the infrastructure 

systems for organic waste and wastewater. 
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Figure 3-17: Model city: Summary of CNP flows to and from households  

Legend: Overview of flows of CNP entering the household on a daily base related to energy, water, food, and 

detergents (top); and leaving the households as air emissions (energy and human metabolism), in wastewater or 

in organic waste (bottom) [% of total analyzed flows]. 

 

For N and P, the picture looks different than for C. Here, food represents the dominant inflow 

and wastewater the dominant outflow. For N, food accounts for 6.7 kg/p*a, while energy re-

lated flows contribute 2.9 kg/p*a. The contribution of detergents is small (0.4 kg/p*a). A large 

share of N is transferred to wastewater, with a load of ~4 kg. In context of total analyzed N 
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flows (~9.5 kg) the load in wastewater represents 42%, in context of the non energy related N 

flows (~7 kg) it represents 56%. The organic waste receives a considerably smaller share of 

N.  

For P, the food also represents the dominant flow in the analyzed system, accounting for 

0.75 kg/p*a P and 84% of analyzed P flows. In case of P, detergents contribute considerably 

to the analyzed P flows (0.13 kg/p*a, 24%) despite strict regulations in Germany. The majori-

ty of P (90% of analyzed P flows) is transferred to wastewater, while organic waste contains 

only a small share (<10%).  

The urban water chain receives the majority of N and P from food, albeit only a fraction of the 

C (10%). During human metabolism, the majority of C in consumed food is emitted to air, 

explaining the C depletion and the unfavorable26 C/N ratio in wastewater (see chapter 1.3.2). 

While wastewater contains only a fraction of food C, it can in theory fully supply the energy 

consumption of the infrastructures (see chapter 3.1). The organic waste contains considerably 

less N and P on a per person base than wastewater, despite the high collection rate. To recap, 

a high collection rate for organic waste is assumed for model city, while in reality only half of 

food waste is collected in the organic waste. The C load is higher than in wastewater and rep-

resents a considerable energy resource in analogy to wastewater.  

Urban flows of anthropogenic micropollutants (AMPs) 

While wastewater represents a large pool of N and P for recycling, the presence of anthropo-

genic micropollutants (AMPs) is a challenge. AMPs enter the household with products and 

goods such as impregnated carpets and clothes, electronics, cleaning products for house and 

body, biocides for house and garden, paints and plastics. Together with the built environment, 

these products and goods represent the urban stock of AMPs.  

The exact pathways of AMP transfer to the environment are largely unknown. They may be 

released by abrasion, by cleaning with water or by out gassing. AMPs may accumulate in 

household dust which is transferred to wastewater during cleaning. Run-off from urban sur-

faces collected in mixed sewer systems also contribute to the AMP load of the urban water 

chain.  

                                            

26 Unfavourable C/N ratio for heterotrophic organisms: not enough C to assimilate the available N. C is required 
as fuel and as „building blocks“ for biomass. In contrast, autotrophs can use CO2 from air to assimilate N in 

biomass, fueled by solar enery 



3.  Results and Discussion 

 

133 

The load of AMPs in wastewater thus mirrors chemical use in modern society. Other path-

ways from household to the environment may include the household waste27, litter28 or dif-

fuse emissions to land, water and air. The current technical setup of the urban water chain is 

not effective against AMPs due to their low biodegradability. Based on their biochemical 

characteristics, AMPs are transferred to sludge or remain in effluent. It is estimated, that the 

effluent contains 100 - >1000 different AMPs in concentrations in the ng to µg range 

(Schluep et al. 2006). Assuming that 10-50% of the effluent load of WWTP can be attributed 

to AMPs, the load to water via this pathway adds up to 50 g to 500 g per person and year. For 

model city, this means a load of 1 t to 10 t of AMPs to water via the effluent. For the sludge, a 

similar or even higher load can be expected. Given the large pool of potential AMPs with 

100 000 different chemicals used in the EU, 30 000 of them in amounts larger 1 t, this esti-

mate seems plausible (Schluep et al. 2006). 

For this study, PFOS was chosen as a model substance to discuss the problem of AMPs. 

PFOS can be regarded as a prime example to illustrate the chemical pollution problem. It is 

exclusively of anthropogenic origin and not formed in nature (UBA 2007). It is a 

perfluorinated substance and there are no known degradation mechanisms under environmen-

tally relevant conditions (Buser and Morf 2009). Since start of production in the 1960´s, it has 

reached a worldwide distribution. Since 2008, PFOS is banned in the EU. Despite the ban, 

PFOS is still emitted from long lived products in the so called urban stock, for example car-

pets. In an EU wide survey of rivers, the JRC detected PFOS in more than 95% of samples, 

underlining the ubiquitous distribution of this AMP. A related study found a load of 27 

μg/p*day (10 mg/year) in EU rivers. The contribution of wastewater to the load in rivers is 

unknown, but studies in Switzerland and Germany found WWTPs the major source of river 

pollution with per-and polyfluorinated substances (Huset et al. 2008 and Becker et al. 2008). 

For model city, the load of PFOS to the environment is estimated with 20 mg/p*a. This in-

cludes the 10 mg/p*a emitted to water, as found in a monitoring study of rivers in the EU 

(Pistocchi and Loos (2009). The load of PFOS29 in wastewater is estimated with 14 mg/p*a, 

representing 70% of the total load. With the reported partitioning factors for the “standard 

                                            

27 Household waste is transfered to landfills or incinerated. Possible pathways from landfills: leachate (usually 
treated on site or transfered to WWTP) and air emissions. 

28 Waste accidentilly or illegally disposed of in the environment, including „wild“ landfills 

29 Including precursor substances that are degraded to PFOS during wastewater treatment (Buser and Morf 
2009) 



 

 

134 

treatment” (Buser and Morf (2009), Huset et al. 2008 and Becker et al. 2008), effluent from 

WWTP contributes 50% to the load of PFOS to water (25% of the total load).  

During “standard treatment”, PFOS accumulates in sludge (65% of the incoming PFOS) and 

is thus removed from effluent. The load of PFOS in sludge is 9 mg/p*a, representing 45% of 

the total load. If sludge containing PFOS is applied to land, quality of soil deteriorates and it 

becomes a secondary source of emission to water. If sludge is incinerated, the Carbon-

Fluorine bond is broken and PFOS is degraded30. 

As the effluent (and sludge) contains 100 - >1000 different AMPs besides PFOS, cocktail of 

AMPs is a growing concern for WWTPs in Germany: a 4
th
 treatment stage for effluent, as 

recently introduced in Switzerland, is discussed; sludge use on land has shown a decreasing 

trend in the last years due to concerns about soil contamination (UBA 2012). While the con-

centrations of individual AMPs in effluent is in the ng to µg range, the total load adds up to 

50 g to 500 g per person and year.  

The relative importance of wastewater as a pathway – compared to others such as industrial 

sources or atmospheric deposition – is uncertain for many AMPs, as it requires detailed data 

on use pattern, regulatory status and enforcement and environmental fate. But for the totality 

of AMPs in urban areas, the urban water chain is recognized as an important pathway 

(Schluep et al. 2006, Diamond and Hodge 2007, Zimmerman et al. 2008, Fatta-Kassinos et al. 

2011, Ferrari et al. 2004a+b, Muñoz et al. 2009a+b, Bolong et al. 2009). 

In contrast to wastewater or sludge from wastewater treatment, organic waste contains less 

AMPs, but also considerably less N and P. AMPs may also be present in organic waste, for 

example remainders from agrochemicals, conservation agents, or wrongly disposed (house-

hold) chemicals. But as the food was destined for human consumption, low loads can be ex-

pected. 

 

  

                                            

30 Other AMPs, especially heavy metals remain in the ashes or the air filter material. 
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Flows of CNP and AMPs in post use infrastructure systems 

Having established the inputs of CNP and AMPs to the post use infrastructure systems, their 

further pathways can be assessed. In model city, organic waste is treated in a composting fa-

cility. Most of the organic waste in Germany is treated by composting (70%); the remaining is 

treated by anaerobic digestion or other processes. The final product of organic waste treat-

ment, compost, can be used as fertilizer and soil conditioner. During the treatment processes, 

most of the N and P are transferred to the final product and thus recycled (70% of incoming N 

and 100% of incoming P), while some C is lost to air (40% of incoming C). In relation to total 

input flows of N and P to households, the plant available N and P in compost represents 6% 

(N) and 8% (P). There for, reuse of compost from organic waste can be classified as a clean 

cycle, but with a low magnitude. While the quality of recycling is good, the quantity of N and 

P for recycling is low.  

The C resources in organic waste represent a considerable energy potential in analogy to 

wastewater. The organic waste contains more than double the amount of C compared to 

wastewater. While the exploitation via biogas is no technical challenge, most of the organic 

waste in Germany is treated aerobically. This is mainly due to economies of scale, as the in-

vestment in digester and generator requires large mass flows to amortize in due time, as al-

ready discussed in relation to anaerobic digestion of sludge at small WWTPs. Sometimes, an 

integrated anaerobic treatment of organic waste and sludge is proposed. But if AMPs are pre-

sent in the sludge, this contradicts the clean cycle approach. The AMPs would be diluted in 

the mixed substrate but nevertheless transferred to land with the agricultural application. On 

the other hand side, if the sludge is incinerated the nutrients from the “clean” substrate organ-

ic waste are lost for reuse.  

The algae + case represent a synergy that follows the clean cycle approach. The CO2, which 

would otherwise be lost to air during treatment in the composting facility, can be used as addi-

tional supply to algae systems at WWTPs. 

For the wastewater and sludge management, 4 different cases are analyzed for model city. 

Looking at the flows of CNP and the fate of AMPs, there are considerable differences be-

tween the 4 cases.  

The first case “basic urban water chain” corresponds to the basic case as analyzed in chapter 

3.1, without anaerobic digestion and with agricultural reuse of sludge. In the basic case, N and 

P are recycled by land application of stabilized sludge. Compared to compost (6% of N and 

8% of P), the recycling rate for sludge is considerably higher: 14% (N) and 47% (P). While 
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beneficial from an energy and resource (P) perspective, recycling of NP in sludge to agricul-

tural lands holds the risk of chemical pollution of soil resources, as sludge may also contain 

many AMPs. For PFOS, 65% of the load in wastewater accumulate in sludge, resulting in 

9 mg/p*a transferred to agricultural soils. Thus, every kg of P recycled also introduces more 

than 10 mg of PFOS to agricultural soils. While the application on soils represents a large 

dilution, this cannot be classified as a clean cycle. While the quantity of recycling is good - 

nutrients in sludge from wastewater treatment represent a large pool for recycling - the quality 

of recycling is low due to the emission of AMPs to soil. Compared to nutrient recycling via 

compost from organic waste, the quantity of nutrients is higher for sludge but the quality of 

recycling is lower. 

The second case “best available technology” refers to an optimistic scenario with anaerobic 

digestion and sludge incineration. The energy balance for the best available technology case is 

well above the German average due to minimized energy losses and maximized electricity 

production (see chapter 3.1). Sludge is incinerated and the nutrients are lost for reuse. But 

incineration also degrades the PFOS contained in sludge (65%, right side of  

Figure 3-18). As there is no emission via sludge, the emission of PFOS to the environment is 

considerably lower than in the basic case. But the effluent load of PFOS is the same as in the 

basic case (35%). 

The third case “algae” is based on the “best available technology” case and employs algae 

systems with full CO2 recycling as described in chapter 3.2 (without post treatment). The re-

quired area is 6 m²/p, totaling 12 ha around the WWTP. To recap from chapter 3.2, a large 

fraction of N and P is recycled between the algae systems and the anaerobic digestion before 

leaving the system boundary of the WWTP via air emission, effluent or sludge (left side of  

Figure 3-18).  
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Figure 3-18: Model city: Flows of CNP and PFOS for WWTP with algae  

C N

4
7

%

4
3

%

C N

3
6

%

2
1

%

P
7

7
%

C N P

1
7

%

3
6

%

2
3

%

C N P

5
1

%

8
4

%

6
0

%

C
8

3
%

C
O

2
 r

e
c

y
c

li
n

g
G

ro
w

th
 m

e
d

iu
m

C N P

1
3

0
%

7
0

%

8
6

%

L
o

a
d

 A
D

 (
2

)

C N

3
7

%

4
6

%

C N P

5
%

2
8

%

1
0

%

C N

2
9

%

7
%

C N P

2
9

%

1
9

%

9
0

%

W
W

T
P

 w
it

h
o

u
t 

a
lg

a
e

B
io

g
a

s

1
5

%

S
lu

d
g

e

A
ir

 (
B

io
g

a
s

)

S
lu

d
g

e

C N P

2
9

%

3
9

%

3
9

%

L
o

a
d

 B
W

T
 (

1
)

6
 m

²/
p

C

B
A

D
C

E

1

2

D

3
5

%
x

P
F

O
S

6
5

%
x

P
F

O
S

7
5

%
x

P
F

O
S

2
5

%
x

P
F

O
S

C N P

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

x
P

F
O

S

W
W

T
P

 w
it

h
 a

lg
a

e

A
ir

 

E
ff

lu
e

n
t

S
lu

d
g

e

E
ff

lu
e

n
t

A
ir

 



 

 

138 

Legend: WWTP with algae systems (left): Internal cycling via growth medium (flow A+B) and CO2 reuse (flow 

C+D). Harvested biomass (flow E) is transferred to AD to contribute to biogas generation. Emission to air – 

water – land shown as % of incoming load.  WWTP without algae systems (right): emission to air – water – 

land as % of incoming load for comparison. 

The reuse rates for N and P with the growth medium (flows labeled “A” and “B” in  

Figure 3-18) are high (84% for N, 60% for P). They are in the same range (P) or higher (N) 

compared to sludge application on agricultural land and thus much higher than for compost 

from organic waste. But in contrast to sludge application on agricultural lands, there is no 

emission of AMPs to soil resources during biomass cultivation with algae systems. PFOS in 

sludge is degraded during incineration. Thus, sludge incineration is necessary to make algae 

systems clean cycles. But algae systems increase the amount of PFOS that is degraded during 

incineration. In combination with sludge incineration, algae systems are clean cycles with a 

high magnitude. 

While the recycling of CNP for biomass generation in algae systems increases the bio-

electricity generation, it has a negative effect on the effluent quality. While limit values are 

met, the load of “misplaced resources” CNP in effluent increases (in absence of post treat-

ment). But looking at the load of anthropogenic micropollutants (AMPs) gives a totally dif-

ferent picture: effluent quality related to AMPs can be improved by the integration of algae 

systems.  

For the standard technical setup, 35% of PFOS in wastewater remain in effluent and 65% are 

transferred to sludge, representing a load of 4.9 mg/p*a and 9.2 mg/p*a (see  

Figure 3-18). Processes during algae growth can increase the elimination of PFOS from efflu-

ent. Due to intense contact to cell surfaces capable of bio-sorption during a long hydraulic 

retention time of 3-6 days in an aerated environment, the transfer of PFOS to biomass and 

ultimately sludge can be increased compared to activated sludge process (Mallick 2002, 

Munoz and Guieysse 2006, Borde et al. 2003 Arranz et al. 2008).  

For model city, it is assumed that 85% of PFOS are adsorbed to biomass during algae cultiva-

tion, compared to 65% during conventional wastewater treatment (BWT). As this value is 

based on laboratory studies, it is subject to large uncertainties. Combined with an HE of 88%, 

the algae systems reach an elimination efficiency from effluent of 75%. The resulting effluent 

load is 3.5 mg/p*a, compared to 4.9 mg/p*a for the standard treatment. PFOS in sludge is 

degraded during incineration. 
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Thus, algae systems have the potential to simultaneously improve the effluent quality related 

to AMPs as well as the energy balance (Figure 3-19). The extended energy balance shows that 

algae systems reduce the net electricity consumption by increasing the metabolic efficiency of 

the urban water chain. The metabolic efficiency of the urban water chain with algae systems 

is considerably higher than for the German average or for the best available technology case. 

 

 

Figure 3-19: Model city: Extended energy balance of the urban water chain  

Legend: The extended energy balance for the german average and the cases: best available technology, algae and 

algae+. A: gross consumption of electricity for handling of flow streams (grey); B: own generation of electricity 

from the resources in the flow streams (dark purple); C theoretical potential for electricity generation based on 

the resources in the flow streams (light purple); B/C: metabolic efficiency. 

 

The metabolic efficiency of the urban water chain can be further increased with an additional 

CO2, as C is the limiting factor for biomass production. For the fourth case “algae +”, the al-
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gae systems receive additional CO2 from the composting facility during growing season (ca. 

4 kg C/p*a). The transfer of CO2 requires the close proximity of facilities for example the 

organic waste treatment on site of the WWTP. With additional CO2, the cultivation area can 

be extended to 9 m²/p (18 ha) with further improvement of the energy balance (algae + case in 

Figure 3-19). 

With increased biomass generation, post treatment is required to achieve limit values for ef-

fluent (see chapter 3.2). Post treatment reduces the load of CNP in effluent to values compa-

rable to the WWTP without algae systems, as the majority of the non-harvested biomass is 

removed from effluent. Post treatment also increases the elimination of PFOS from effluent. 

Assuming that 95% of the non-harvested biomass is removed from effluent with post treat-

ment, gives an elimination rate of 80%. Thus, 2.7 mg/p*a remain in the effluent and 

11.2 mg/p*a is transferred to sludge and degraded during incineration. The energy required 

for post treatment is included in the energy balance of the algae + case (Figure 3-19).  

The algae + case represent a synergy for organic waste and wastewater treatment that follows 

the clean cycle approach. The CO2, which would otherwise be lost to air during treatment in 

the composting facility, can be used as additional supply to algae systems at WWTPs. The 

“clean” substrate organic waste does not receive AMPs from wastewater. 

For model city, not only the quantity, but also the quality of CNP recycling in algae systems 

is important. PFOS is included as a model substance for AMPs in this study. Despite the large 

uncertainties related to the flows and fate of PFOS, the results highlight two important as-

pects. Firstly, there is no emission of AMPs during cultivation, in contrast to „open” applica-

tion of sludge from agriculture. Thus, algae systems represent clean cycles. Secondly, pro-

cesses during algae growth can increase the elimination of AMPs from effluent. This effect is 

reinforced if post treatment is applied (energy requirements included in the energy balance of 

the algae + case). If the increased elimination works reliably under operating conditions, this 

provides a strong additional incentive for integration of algae systems. While other technolo-

gies for advanced effluent treatment reduce the load of AMPs in effluent at cost of increased 

net energy consumption, algae systems can decrease AMP load in effluent while considerably 

increasing the production of bio-electricity (Figure 3-20). 
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Figure 3-20: Model city: Advantages of algae systems 

Legend: Advantages of algae systems compared to other technologies: Other technologies for advanced effluent 

treatment reduce the load of AMPs in effluent at cost of increased net consumption (left), while algae systems 

can simultaneously decrease AMP load in effluent and net consumption (right). 

 

The urban water chain in context of the urban energy balance 

With the extended scope in this chapter, the energy balance of the urban water chain – with 

and without algae systems – can be put in context of the urban energy balance. Household 

electricity consumption in model city averages 1300 kWhel/p*a (Schmidt et al. 2011). Setting 

this electricity consumption for household in model city (26 GWh/a) as 100%, the electricity 

demand of the urban water chain adds 5.5% to 3% without algae systems (basic and best 

available technology) and 1.7% to 1.2% with algae systems (Figure 3-12). For the German 

average of 62 kWhel/p*a, as calculated in chapter 3.1, the additional contribution of urban 

water infrastructures is 5% of household electricity consumption. 

While the net electricity consumption of the urban water chain represents only a fraction of 

household electricity consumption on a per person base, its importance becomes obvious 

when seen from the city perspective (Figure 3-21). Seen from the city perspective, facilities 

are large single consumers. As illustrated in Figure 3-21, energy consumption is concentrated 

there, while households are distributed with different densities over the city area. For model 

city with 20 000 inhabitants, the electricity consumption for the water supply facilities equals 

the household electricity consumption of 400 persons (all cases). For wastewater and sludge 

management facilities, net consumption equals the household electricity consumption of 550 

persons (German average). In fact, for many cities the WWTP is the largest single electricity 

consumer.  
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For the best available technology case, urban net consumption can be reduced by the equiva-

lent of 230 persons; with algae systems (algae case) by the equivalent of 600 persons When 

additional CO2 from the composting facility is diverted to algae systems (algae + case), by the 

equivalent of 704 persons. 

 

 

Figure 3-21: Urban energy balance: Electricity demand for the urban water chain com-

pared to household demand and spatial distribution  

Legend: Electricity demand for the urban water chain vs. household electricity demand on a per person base (left 

A) and seen from city perspective (spatial distribution; right B)  

 

The improved energy balance of the urban water chain is due to the increased production of 

bio-electricity (Figure 3-19). The integration of algae systems considerably increases energy 

recovery from biogas and to a lesser extent from sludge incineration. This increased bio-

electricity generation can contribute considerably to the electricity production from renewable 

sources (currently 20% of total electricity production in Germany). Setting the per person 

share of current renewable electricity production in model city to 100%, the urban water chain 

with integrated algae systems can contribute 23% to 29% additional bio-electricity. To recap, 

this is achieved by recycling CNP from wastewater in algae systems, without external input of 

water or fertilizer as required by other energy crops. In contrast, the best available technology 

case employs optimized anaerobic digestion and sludge incineration, but only contributes 

12% additional bio-electricity. In the basic case, there is no generation of bio-electricity. 
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Figure 3-22: Urban energy balance: Potential contribution of the urban water chain to 

renewable energy production  

 

Bio-electricity even holds a special role within the renewable energy sources. The profile of 

electricity generation over time is steady (basic load). For many other renewable energy 

sources, such as sun and wind, the electricity generation depends on external factors which 

cannot be controlled. Furthermore, biogas and dried sludge can be stored, thus the electricity 

can be produced when demand is high and production can be reduced when the demand is 

low. In contrast to electricity from sun, wind and water, bio-electricity represents a tunable 

energy. Thus, an increased share of bio-electricity is beneficial for the (urban) energy system 

beyond the sheer number of kWh produced, as it can contribute to cover peak demand and 

balance out electricity generation and demand (Schmidt et al. 2011).  

Excursion: Comparison of algae systems integrated in the urban water chain with alternative 

systems for bio-electricity production. 

Given the importance of bio-electricity for sustainable energy systems, the question arises 

how clean cycles in algae systems compare with alternative systems for bio-electricity pro-

duction. While a full comparison of algae systems integrated in the urban water chain with 

alternative systems is outside the scope of this study, some important aspects are highlighted 

here. Compared to other energy crops, the algae systems integrated in the urban water chain 

require a smaller area to provide the equivalent amount of bio-electricity (Wijffels and Bar-

bosa 2010, Colosi and Clarens 2010, Miller 2011). Furthermore, they do not require fertile 

soils. Looking at the water use, there is no external water demand from algae systems, while 

other energy crops may require irrigation.  

The higher areal productivity of algae systems compared to other energy crops comes at the 

cost of higher N requirements (Miller 2011). While algae systems require more N per unit 

biomass, they allow the reuse of nutrients N and P from wastewater in closed systems. Thus 
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they require no external input of N or P. In contrast, for other energy crops, the majority of N 

and P may come from mineral fertilizer. On the emission side, fertilizer application on agri-

cultural soils causes diffuse emission of N and P to water by leaching or erosion (particle 

bound transport). Groundwater pollution (N) is also an issue accompanying energy crops in 

intensive farming systems. These emissions have to be added to the emissions from the 

WWTP (without algae). In contrast, for the integrated algae systems the CNP emissions to 

water are accounted for in the WWTP emissions. While the load in effluent is slightly higher 

than without algae systems (in absence of post treatment), it meets the limit values.  

Looking at the AMPs, there are no emissions of AMPs during cultivation and potentially a 

reduced load from WWTP to the environment for the integrated algae systems. In contrast, for 

the other energy crops, the higher emissions of the WWTP without algae have to be account-

ed for plus potentially additional emission of AMPs due to application of agro chemicals such 

as herbicides, pesticides or fungicides. To conclude, clean cycles in algae systems are an in-

teresting alternative to other energy crops as they offer synergies on the supply side and the 

emission side including AMP emission. 

Excursion: Urban nutrient flows in a wider context. 

While the urban water chain foremost represents a water infrastructure, transporting large 

mass flows of water through urban areas, it can also be regarded as a part of the urban “nutri-

ent infrastructure”. The food supply system is rarely perceived as an infrastructure system, 

despite its managing of large volume of flow streams. Therefore also the tight connection to 

the urban water chain is often overlooked. The majority of N and P in the consumed food are 

transferred to the urban water chain, underlining the importance of nutrient reuse from 

wastewater for a sustainable urban metabolism.  

Within the flows analyzed in this study, food clearly contributes the majority of N and P. But 

also in context of the full urban metabolism, food arguably represents a major flow of N and 

P. Other large urban sources may include industrial sources, for example the chemical indus-

try: basic chemicals, fertilizer and detergent production and the food processing industry such 

as slaughterhouses, cheese making and breweries; or urban agriculture and gardening (Leach 

et al. 2012, Fissore 2011). While a full assessment is outside the scope of this study, some 

considerations about upstream burdens of food production are included here to assess the 

magnitude of N and P flows associated with the urban food and consequently with the urban 

water chain.  
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For N, upstream burdens for various food groups are listed by Xue and Landis (2010). For P, 

upstream burdens of factor 2 for plant products and factor 2.6 for animal products were re-

ported (Cordell et al. 2009). Applying these factors to the N and P content of food for model 

city gives an upstream burden of 28 kg/p*a for N and 1.8 kg/p*a for P (Figure 3-23). Thus, 

even if the full food supply for model city is produced within the city boundaries, the N and P 

in food would still represent a considerable portion of the flows: 19% and 29% of the total 

flows for N and P. As the area demand for the full food supply is estimated with 2500 m²/p 

(SRU 2012), it is unlikely that food is fully produced within the city boundaries. 

 

 

Figure 3-23: Urban nutrient flows: Upstream burdens for food supply 

Legend: Upstream burdens for N and P for full food supply for model city and N and P content of food [kg/p*a]. 

P content of detergents shown for comparison.  
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Looking at the full nutrient pathway through the agrosphere and astysphere shows that nutri-

ent reuse is important for both: for the supply chain including agriculture, animal husbandry31 

and food processing and distribution; as well as for the disposal chain including wastewater 

and to a lesser extent organic waste.  

For another comparison, one can consider that the average fertilizer consumption in Germany 

is 19 kg N and 1.3 kg P on a per capita base (on an elemental base, destatis 2012) for an avail-

able agricultural area of 2100 m²/p – slightly lower than the area required for the full food 

supply (SRU 2012). Thus, the amount of N and P in food represents 35% and 54% of the av-

erage fertilizer consumption in Germany. These comparisons underline the magnitude of N 

and P flows associated with the urban food and consequently with the urban water chain.  

 

 

Figure 3-24: Urban nutrient flows: Upstream burdens and downstream emissions  

 

As illustrated in Figure 3-24, the urban water chain receives the majority of N and P from 

food: 50-70% of N and 80% of P from food are transferred to ww. While the pool of N and P 

for recycling in wastewater is smaller than the upstream burdens associated to the food sup-

                                            

31 Concerning animal husbandry, it is noteworthy that the animal metabolism is no different than the human 

metabolism concerning the flows of CNP. But the animals are kept in an active growth / biomass producing 
state so that a much higher fraction of CNP is diverted to the biomass (meat, eggs, milk) than in the average 

human. But also for animals, the majority of N and P from feed is transferred to manure and can be recy-

cled. Whether and which AMPs are present depends on the agricultural system. 
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ply, it still represents a considerable fraction of the total flows and is thus an important start-

ing point for N and especially P reuse.  

 

Relevance of the urban water chain for the urban metabolism  

The analysis showed that clean cycles in algae systems can contribute to a sustainable urban 

metabolism in several aspects. Figure 3-25 gives a summary of the topics discussed above and 

grades the performance of the urban water chain for different indicators, with and without 

algae, as well as the relevance of the indicator for the urban metabolism. 

 

 

Figure 3-25: The relevance of the urban water chain in context of urban metabolism 

 

Firstly, in context of the urban energy balance, the consequent energetic reuse of resources 

from wastewater in algae systems can considerably contribute to electricity production from 

renewable sources on an urban scale. Bio-electricity is an important pillar for sustainable en-

ergy systems as it covers base loads. The net consumption of the urban water chain on a per 

person base is rather low compared to total electricity consumption in households. Despite 

this, the spatial concentration and potential contribution to bio-electricity production make the 
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urban water chain with algae systems an important player for the transition towards a sustain-

able urban energy system. 

Secondly, in context of the urban nutrient flows, the recycling of the resources of N and P in 

wastewater is highly relevant for a sustainable urban metabolism. These flows represent a 

large share of the urban nutrient flows and are also important with a wider perspective on the 

food supply. But as the urban water chain is also a major pathway of anthropogenic 

micropollutants (AMPs), clean cycles are required. Urban flows of AMPs are the third im-

portant aspect to consider. In algae systems, N and P can be recycled despite the presence of 

AMPs. There is no emission of AMPs to the environment during cultivation in closed sys-

tems, in contrast to”open” agricultural applications. Their closed nature makes algae systems 

clean cycles. Furthermore, algae systems can reduce the load of AMPs to the environment. In 

that sense, the area designated to algae systems has a double function: to produce biomass for 

electricity generation and to allow for a long hydraulic retention time for the wastewater 

treatment. Taken together, the synergies offered by the integration of algae systems in the 

urban water chain can contribute considerably to a sustainable urban metabolism.  
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4 Conclusion 

The analysis showed that algae systems integrated in the urban water chain can contribute to a 

sustainable urban metabolism in several aspects. They use resources for bioenergy production 

which would otherwise be wasted. Thereby, they increase the metabolic efficiency compared 

to the current situation. At the same time, they improve the emission balance regarding 

AMPs. Thus, algae systems are clean cycles and potentially even “cleaning cycles”, reducing 

the emissions of AMPs during recycling. The methodology applied in this study allowed for 

assessing these synergies and their relevance in context of urban metabolism.  

In the first part of the study, the status quo of the urban water chain in Germany was assessed 

(chapter 3.1). The results show the low metabolic efficiency of the urban water chain today. 

For C, the metabolic efficiency for C is below 25%, even for facilities employing biogas 

combustion and sludge incineration. Even with the best available technology, it is below 40%. 

The non reused energetic potential is large compared to brut consumption. In theory, bio-

electricity from C resources can fully supply the energy demand of the urban water chain. 

For N and P, the metabolic efficiency of the urban water chain is also low: 20% for P and 4% 

for N. The concept for reuse of N and P currently employed is the application of sludge gen-

erated during wastewater treatment on agricultural land. While the sludge contains considera-

ble amounts of nutrients, especially P, agricultural reuse is decreasing in Germany due to con-

cerns about chemical pollution of soils (UBA 2012). 

While the focus lies on the post use side of the urban water chain, the scope of the study in-

cludes the full pathway of water through settlements: from sourcing of water to treatment and 

provision of tap water for water use in households, to transport and treatment of wastewater 

and sludge. Due to the extent and complexity of the system, there are important limitations. 

Data for the individual stages of the urban water chain were compiled from statistics and vari-

ous sources in literature. The analysis also has to rely on assumptions as for some stages of 

the urban water chain, especially for sludge handling, data availability is low. A detailed ac-

count is found in the methods section. 

In this study, three cases were used to represent wastewater and sludge treatment in Germany. 

In reality, every WWTP is different and there are many particularities in process design and 

associated energy consumption and generation. An SFA was used to assess the current ener-

getic reuse of N and P, to analyze flows and fate of C and to quantify on site CO2 emissions. 

The SFA method is inherently subject to uncertainties. Influent loads and partitioning factors 
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are average empirical values, which are subject to large variations in reality. Partitioning fac-

tors can only reflect tendencies of elemental behavior within a complex system.  

The theoretical energy potentials estimated in this study mark the upper limit of energy har-

vesting, constrained only by resource characteristics. They provide no information about the 

technical feasibility of increased energy harvesting from flow stream resources (technical po-

tential), and the related costs (economic potential), which are reserved for future studies. De-

spite the limitations, the applied methodology provided a holistic picture of the status quo of 

the urban water chain in Germany.  

Based on the status quo as baseline for comparison, a concept for increased reuse of CNP is 

assessed: the integration of algae systems at WWTPs (chapter 3.2). A technical setup is pro-

posed in this study. It relies solely on the resources available on site, with no external input of 

fertilizer, water or CO2 required. This study provides the first detailed description of integra-

tion of algae systems; including a SFA of CNP and the implications for energy and emission 

balance (see also Menger-Krug et al. 2012). 

The results show that it is feasible from a flow stream perspective to produce enough bio-

electricity from algae systems, to run WWTP energy-neutral during the vegetation season or 

even turn them into net energy producers. This can be achieved with nutrients from 

wastewater, without any external resource input. C resp. CO2 availability is the limiting factor 

for yield with the proposed process design i.e. in absence of external CO2 sources.  

While intensive C recycling in algae systems considerably improves the energy balance, it 

also impacts on effluent quality, mainly via the contribution of non-harvested biomass. The 

harvesting efficiency is identified as a technical key parameter at the crossroads of energy 

balance and effluent quality. Post treatment is highlighted as an opportunity to reliably meet 

effluent limit values for COD, N and P. Besides reliably meeting effluent limit values for 

COD, N and P, adding post treatment also improves the effluent quality in terms of AMPs. 

Due to the prospective nature of the system under analysis, there is no empirical data for 

many key parameters, such as nutrient uptake efficiencies, areal productivity, harvesting effi-

ciency and anaerobic digestibility. Instead, the analysis had to rely on data from pilot applica-

tions and laboratory studies, which remain to be confirmed or rejected in practice. Ranges of 

values from literature were used in a scenario analysis highlighting the key factors for the 

performance of algae systems at WWTPs. The influence of algae systems on the energy de-

mand of other processes at the WWTP was assessed based on SFA results and the validity of 

the applied proxies remains to be proven in practice.  
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While this study has shown the feasibility of the concept from a flow stream perspective, 

many other aspects require analysis on the way to implementation. This includes acceptance 

and social aspects, as well as political and economical aspects. For the latter, the future devel-

opments of energy costs - for fossil and renewable energy which again depend on the political 

framework - are important aspects to consider. 

To put the potential improvement with algae systems in context of the urban metabolism, the 

scope of the study is extended (chapter 3.3). The extended perspective includes the flows that 

represent the connection points between urban water chain and the full urban metabolism. The 

system boundaries include the daily household consumption of energy, water, food and 

cleansing products. The study traces the pathways of CNP: the input, the transformations dur-

ing human metabolism, the transfer to wastewater and organic waste infrastructures and the 

fate during the treatment processes and the emissions to air. While information on the bulk 

flows are available from official sources (BMELV, UBA, AGEB), this is the first study to 

quantify CNP flows associated to household consumption in Germany, albeit only for a semi 

hypothetical model city with high uncertainties. 

Besides CNP, also the flows of PFOS are included in this study. Including this notorious 

AMP into the analysis of CNP recycling, serves as a starting point to discuss the AMP prob-

lem and the quality of recycling. But for a full picture many more AMPs (>1000) with differ-

ent use patterns, biochemical characteristics and toxicological end points – as well as the ef-

fect of mixtures - need to be included. While the AMP problem, especially for wastewater and 

the necessity for clean cycles is used as the base of the argument, the results of this study 

highlighted two important aspects. Firstly, algae systems can provide bio-electricity without 

emission of AMPs during biomass cultivation. Thus, they can be characterized as a clean cy-

cles. “Closed” algae systems fulfill the requirements for nutrient recycling from the urban 

water chain –given the presence of AMPs - in contrast to „open” application of sludge in agri-

culture. Secondly, processes during algae growth can increase the elimination of AMPs from 

effluent. If the increased elimination works reliably under operating conditions, this provides 

a strong additional incentive for integration of algae systems. Besides the fate of AMPs in 

algae systems, there are other important research needs. This includes N2O emission from N 

in wastewater and the possible formation of algae toxins during biomass growth. 

For algae-to-energy systems integrated in the urban water chain, the results of this analysis 

warrant further research on the scale of pilot applications. The developed model of substance 

and energy flows of the integrated system provided information on energy flows, on nutrient 
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recycling within the system, on loads to the individual treatment steps and on loads to the en-

vironment. This information is useful to design pilot projects. Data gathered from pilot pro-

jects can in turn refine the model. In that sense, the model presented in this study can be used 

as a tool for system design and optimization.  

For this study, a framework for analysis of water infrastructures was developed: the extended 

energy balance. It proofed a useful tool to analyze the integration of algae systems, as it as-

sesses the metabolic efficiency in addition to the external energy flows. As required by the 

clean cycle approach, it includes an emission balance covering all environmental compart-

ments. This framework for analysis of water infrastructures can also be useful for evaluation 

of other reuse oriented concepts. 

On the way towards a sustainable future, humanity faces many challenges. Given the high 

share of humanity living in cities, the urban metabolism needs to be reorganized from its pre-

sent linear form towards a higher metabolic efficiency and clean cycles. Cities need to restruc-

ture their resource consumption and energy systems to negotiate the human impact on their 

hinterlands and ultimately on the planetary boundaries. Human activity in its present form 

highly alters the global cycles of CNP. Given the risks associated with a transgression of the 

planetary boundaries, a more sustainable management of these flows also in urban areas is 

required. This includes a sustainable, C efficient and renewable energy supply, as well as re-

cycling of resources from food and other consumption related CNP flows. At the same time, 

cities need to find ways to minimize pollution of the environment. This includes CNP as mis-

placed resources, but also AMPs, as the chemical pollution problem is another planetary 

boundary. While algae systems cannot provide the single solution for any of these challenges, 

the synergies can contribute to solving all of them. 
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