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Chapter 1

Introduction

1.1 Motivation

We begin with the (time-dependent) nonlinear Schrödinger equation in the form

i
∂Ψ

∂t
+ ∆Ψ + |Ψ|2Ψ = 0, (†)

used in nonlinear optics or with the (standard) one-dimensional discrete nonlinear
Schrödinger equation

i
dΨn

dz
+ α(Ψn+1 + Ψn−1 − 2Ψn) + µ|Ψn|2Ψn = 0, (‡)

with α ∈ R, µ > 0, used for modeling of nonlinear waveguide arrays.
The first equation describes the envelope Ψ of a traveling wave in a weakly

nonlinear and dispersive medium (see [33], [39] and [29]). The character of the
nonlinearity |Ψ|2Ψ is due to the physical properties of the medium (so called Kerr
medium) and

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

denotes the standard Laplace operator on R3. Whereas this equation is usually
considered on the whole space corresponding to propagation in bulk media, some
phenomena can be modeled on a smooth bounded domain using the zero Dirichlet
boundary condition (e.g. the propagation of intense laser beams in hollow-core fibers
with a noble gas, see [21]).

By waveguide one understands a medium that allows wave propagation only
along its axes, i.e. it “guides light” (see [28], where the connected concept of a
photonic crystal is also described). The second equation (‡) describes the light
propagation in a one-dimensional coupled waveguide array, i.e. the propagation in
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every waveguide is allowed only along the z-axis, the waveguides lie parallel and
regularly spaced on a surface and for every waveguide we take into account only
the interaction with the two neighboring waveguides in the array. The quantity Φn

describes some transformation of the electric field En in n-th waveguide (for the
transformation, see [15]). The array is usually assumed infinite (big enough) for
modeling purposes (see [1] and [19]).

Using the standing-wave ansatz Ψ(x, t) = eiλtu(x), λ > 0 for the first equation
(†) we obtain the (time-independent) nonlinear Schrödinger equation (NLS),

−∆u+ λu = |u|p−1u (+)

with p = 3. Since the Laplacian ∆ can be approximated by its standard discretiza-
tion, the discrete Laplace operator ∆h

∆u(x) = lim
h→0

∆hu(x)

∆hu(x) :=
3∑
i=1

u(x+ hei)− 2u(x) + u(x− hei)
h2

for all sufficiently smooth u ∈ C3, it is natural to consider the discrete (time-
independent) nonlinear Schrödinger equation (DNLS)

−∆hu+ λu = |u|p−1u (∗)

on some (possibly unbounded) subset of the h-grid Rd
h := {hz | z ∈ Zd}, where d is

the space dimension and p > 1, and to investigate the behavior of its solutions as
h→ 0.

Interestingly enough, using the same ansatz Ψn(z) = eiλzun, λ > 0 for our second
motivational equation (‡), we obtain the same DNLS in one dimension

−un+1 + 2un − un−1

h2
+ λun = µ|un|2un,

with h = 1/
√
α, i.e. h now describes some physical parameter of the model.

The NLS (+), p > 1 is often treated with variational methods (see [5], [41]) using
the energy functional

V (u) =

∫
Ω

[
|∇u|2

2
+ λ

u2

2
− |u|

p+1

p+ 1
.

]
One common notion of solution is the one of ground states, i.e. minimizers of V (u)
w.r.t. a constraint (see [13] and [8] for details). The ground states usually have
no zeros (see [18], [11]). We therefore restrict our attention to the non-negative
solutions of DNLS.
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It is known that the NLS type equations accompanied with the zero Dirichlet
boundary condition on a bounded domain exhibits three different regimes depending
on the parameter p (see [35], [6]). In the subcritical region p ∈ (1, d

d−2
) all positive

distributional solutions are smooth and bounded. For p ≥ d
d−2

we begin to see
so called very weak solution, basically regular distributions that also satisfy the
equation in the distributional sense and may be unbounded. Moreover, for p ≥ d+2

d−2

under some additional regularity assumptions on the solution and the domain the
only non-negative solution is the trivial one (see [36], [20] Chapter 9 and [11], but
also [16] for existence results on other domain types).

It is therefore of interest whether the DNLS in some sense reflects such behavior:
do there exist a priori bounds as defined below or discrete solutions that blow up
for h → 0? See also [31], where the authors discuss how discrete solutions reflect
the symmetry of the corresponding continuous solutions. Such question can also
be important in numerical analysis to distinguish whether the unboundedness of a
numerical approximation is due to the purely computational reasons or is an inherent
property of the discretization (see [12]).

We consider the DNLS both on bounded box domains with the zero Dirichlet
boundary condition (next 8 chapters) and on the whole space (last chapter). An
essential feature of this thesis is the separation of a priori estimates and the conver-
gence theory:

A Priori Estimates Let h > 0, ai, bi ∈ Rh, 1 ≤ i ≤ d and define Ω :=
∏d

i=1(ai, bi)
(so called admissible domains). We are interested in non-negative functions
u : Ωh → R defined on the bounded discrete set Ωh := Ω ∩Rd

h that satisfy the
DNLS (∗)

−∆hu(x) + λu(x) = |u(x)|p−1u(x)

for x ∈ Ω ∩ Rd
h and the boundary condition u(x) = 0 for x ∈ ∂Ω ∩ Rd

h. It is
easy to show (see the proof of Theorem 10.9) that there exists a uniform (for
all such solutions) bound that may be h-dependent. It has been proved in our
joint paper [32] that the a priori estimate

‖u‖L∞(Ωh) := max
x∈Ωh
|u(x)| ≤ K

holds also for all h > 0 (for which Ω stays admissible) with some h-independent
K > 0. The corresponding statement for Ω = Rd, Theorem 10.9, is one of two
main results of the thesis. For the sake of completeness we also present the
proofs from [32] for the one-dimensional case in Chapter 2.

Convergence theory In the rest of the work, we assume a priori estimates in L∞-
norm for non-negative solutions (as discussed above) of the (general) DNLS

−∆hu = f(u) (∗∗)
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and derive the existence of a classical solution for the corresponding (general)
NLS

−∆u = f(u) (++)

by approximating it with solutions of DNLS (∗∗) (convergence theory), as-
suming only continuity of f . This is Theorem 9.10, the second main result of
the thesis. The advantage of separating a priori bounds from the convergence
theory consists in allowing the same convergence results for other types of
nonlinearities than in (∗), provided the L∞ bounds are already available.

1.2 Outline of the work

The following nine chapters of this thesis can be loosely divided in three parts.
The first part includes the next two chapters and provides motivation and some

fundamental ideas for the rest of the work. In the second chapter a priori estimates
for the one-dimensional NLS (++), Theorem 2.4, and DNLS (∗∗), Theorem 2.7, on
bounded intervals for a class of nonlinearities with superlinear growth, that includes
the case f(u) = |u|p−1u− λu from (∗), are presented. These results are generalized
to d-dimensional bounded boxes, d ≥ 1, in our joint paper [32].

In the third chapter we deal with the convergence theory on one-dimensional
bounded intervals. A uniform in space and grid spacing bound on the non-negative
solutions of (∗∗) derived in the previous chapter yields the existence of a classical
solution of (++) in Theorem 3.19; moreover, this solution u ∈ C2((a, b))∩C([a, b]),
a < b can be approximated by solutions un, un : [a, b]∩Rhn → R of (++) uniformly
on the hn-grids of un as hn → 0, i.e.

‖u− un‖L∞([a,b]∩Rhn )
n→∞−−−→ 0.

The first two chapters provide the complete theory for bounded one-dimensional
intervals and expose the main technical difficulty for the generalization to d ≥ 2,
namely the need for uniform convergence in Lemma 3.13. We used three ingredients
to obtain it in 1d case. Firstly, we needed the discrete energy estimates from Lemma
3.15 that allows us to control the discrete W 1,2-norm, i.e. the quantity

‖u‖2
W 1,2

0 ([a,b]∩Rh)
:=

∑
x∈[a,b)∩Rh

∣∣∣∣u(x+ h)− u(x)

h

∣∣∣∣2 h
of the solutions u, u : [a, b] ∩ Rh → R of (∗∗) through the L∞-norm of f(u). Sec-
ondly, by Lemma 3.11 we have a way to extend a grid function to a continuous one
that preserves W 1,2-norms, i.e. the continuous W 1,2

0 -norm of the interpolant can
be controlled by the discrete W 1,2

0 -norm of the underlying grid function. Thirdly,
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we used that W 1,2
0 (I) embeds compactly into C(I) on a bounded one-dimensional

interval I, Lemma 3.13, allowing extraction of uniformly convergent subsequences
from sequences which are bounded in W 1,2

0 . Since this embedding is valid only for
d = 1, in higher dimensions we have to use W 1,q(Ω) spaces which embed compactly
into C(Ω) for q > d and bounded Ω ⊂ Rd. This means we have to adapt the first
two steps to the W 1,q setting.

In the second part, Chapters 4 till 9 we carry out this program. In the forth
chapter we show how to obtain a W 1,q bound

‖u‖W 1,q
0 (Ω) ≤ C‖g‖Lr(Ω),

with r > dq
d+q

and C > 0 for the unique weak solution of the Poisson problem

−∆u = g in Ω,

u = 0 on ∂Ω

on a bounded convex domain Ω. The main emphasis is to present a proof of this
by no means original result that can be transferred into the discrete setting. At
the heart of the proof lie Lemmas 4.9 and 4.13 that provide pointwise estimates for
Green’s function G of Ω and its first derivative:

|G(x, y)| ≤ K1|x− y|2−d, ∀(x 6= y) ∈ Ω.

|∂xiG(x, y)| ≤ K2|x− y|1−d, ∀(x 6= y) ∈ Ω, 1 ≤ i ≤ d

with some K1, K2 > 0. We spend two next chapters obtaining analogous estimates
for the discrete Green’s function.

We start in Chapter 5 with the basic definition of discrete objects (discrete
derivatives, discrete Green’s function etc) and the crucial Theorems 5.31 and 5.37
taken from [10]. Exactly as one can control the value of a harmonic function in
the center of a ball through the values on the boundary, those theorems allow us to
control discrete derivatives D+

i u and D±i u of a grid function u, u : Ωh → R in the
center of a discrete cube Ωh := Ω ∩Rd

h, Ω = (−R,R)d, R > h through the values of
u on the boundary ∂Ω ∩ Rd

h and the values of ∆hu in Ω ∩ Rd
h.

We then proceed in Chapter 6 with pointwise estimates for the discrete Green’s
function, Lemma 6.3 and its discrete derivatives, Lemma 6.9, analogous to the ones
in Chapter 4

G(x, y) ≤ K1[|x− y|2 + γh2]
2−d

2 ∀x ∈ Ωh, ∀y ∈ Ωh

|D+
xi
G(x, y)| ≤ K2[|x− y|2 + γh2]

1−d
2 , ∀x ∈ Ωh ∪ ∂−i Ωh,∀y ∈ Ωh, 1 ≤ i ≤ d,

where K1, K2, γ > 0 are h-independent. This is the most technical part of the thesis.
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We reap the fruits of our preparations in Chapter 7, obtaining the discrete ana-
logue to the W 1,q-bound of Chapter 4 in Theorem 7.9. As a short intermezzo before
the final step we present in Chapter 8 an interpolation method that provides control
for the W 1,p norm of the continuous interpolant through the discrete W 1,p norm of
the underlying grid function, Theorem 8.13. We conclude this part with Chapter 9
where the convergence theory from Chapter 3 is carried over to the higher dimen-
sions, yielding Theorem 9.10:

Theorem
Let f : R→ R be continuous and assume that there exists a sequence of grid spac-
ings (hn)n∈N, hn

n→∞→ 0 and a corresponding sequence of solutions (un)n∈N of dis-
crete problems (∗∗) with h := hn, un|∂Ωhn

= 0 and a positive C > 0 such that
‖un‖L∞(Ωhn ) ≤ C, ∀n ∈ N. Then, there exists a (renamed) subsequence (un)n∈N and

a classical solution u ∈ C2(Ω) ∩ C(Ω) of (∗∗), u|∂Ω = 0 such that

‖un − u‖L∞(Ωhn ) → 0, as n→∞.

The third and the last part of the thesis consists of only one chapter, Chapter 10.
Here we consider the equation (∗) on the whole grid Rd

h. We derive an uniform in
space and grid spacing bound for non-negative solutions of (∗) in Theorem 10.9:

Theorem
There exists C > 0 such that ‖u‖L∞(Rdh) ≤ C for all non-negative solutions of

−∆hu(x) + λu(x) = up(x), x ∈ Rd
h

uniformly in h ∈ (0, 1] for fixed λ > 0, p ∈ (1, d
d−2

).

By analogy with the continuous case (see [30]) we believe that d
d−2

is sharp in

the sense that for every p ∈ ( d
d−2

, d
d−2

+ ε) with sufficiently small ε > 0 there is a
sequence (un)n∈N of non-negative solutions with ‖un‖L∞(Rdhn ) →∞ for n→∞.

The proof is based on a rescaling argument and yields a nontrivial solution either
of the continuous equation

−∆u(x) = up(x), x ∈ Rd

or of the discrete equation

−∆hu(x) = up(x), x ∈ Rd
h.

In the first case we obtain a contradiction to the nonlinear Liouville theorem 10.2
from [22] that prohibits any nontrivial solution. The corresponding discrete non-
linear Liouville theorem 10.8 was obtained in this thesis using a refinement of

6



the discrete Hardy’s Inequality 10.7 and the discrete version of Agmon-Allegretto-
Piepenbrink principle (see the proof of 10.8).

Finally, using the convergence theory on bounded discrete domains from Chap-
ter 9 we can convert the a priori estimates from Theorem 10.9 into the convergence
result on bounded subsets of Rd in Corollary 10.11.
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Chapter 2

A Priori Estimates for
One-Dimensional Model Problem

2.1 Model Estimate for Continuous Case

2.1 Motivation (One-dimensional a priori estimate).
The purpose of this chapter is to present the one-dimensional a priori estimates in
the continuous, Theorem 2.4, and in the discrete setting, Theorem 2.7. In both cases
we consider the class of nonlinearites with superlinear growth (see assumptions on
f in the mentioned theorems) that include the classical Schrödinger nonlinearity
f(x, u) = |u|p−1u − λu, p > 1, λ > 0 discussed in the Introduction. We begin with
the elliptic comparison in Lemma 2.3 that extends the (elliptic) maximum principle
(see [23] and Lemma 5.15 in the discrete setting) from −u′′ to −u′′ − λu with λ
below the first eigenvalue.

2.2 Remark (Publication).
The discrete a priori estimate from Theorem 2.7 together with Lemma 2.6 was
already published in [32].

2.3 Lemma (Elliptic comparison).
Let w ∈ C2((−L,L)) ∩ C([−L,L]) satisfy

−w′′(x) ≤ λ0w(x), x ∈ (−L,L),

w(−L) = w(L) = 0
(∗)

with 0 < λ0 < λ1, where λ1 = λ1([−L,L]) =
(
π

2L

)2
is the first eigenvalue of

−u′′(x) = λu(x), x ∈ (−L,L),

u(−L) = u(L) = 0.

Then w ≤ 0 on [−L,L].

9



I

We show that
w+(x) := max{w(x), 0} ∈ W 1,2

0 ((−L,L))

for w ∈ C2((−L,L)) ∩ C([−L,L]). To see this, define v(x) := χw>0 w
′(x). By

monotonicity v ∈ L2((−L,L)). Thus, it is sufficient to show∫ L

−L
w+(x)ϕ′(x) dx = −

∫ L

−L
v(x)ϕ(x) dx

for all ϕ ∈ C∞0 ((−L,L)).
Since I+ := {x ∈ (−L,L) | w(x) > 0} is open by continuity of w, we have
I+ = t∞i=1Ii with some open disjunct intervals Ii, i ∈ N. We define wk := χtki=1Ii

w,
vk := χtki=1Ii

w′ with wk → w+, vk → v pointwise, obtaining∫ L

−L
w+(x)ϕ′(x) dx =

∫
I+

w(x)ϕ′(x) dx =

∫
I+

lim
k→∞

wk(x) · ϕ′(x) dx

=
∞∑
i=1

∫
Ii

w(x)ϕ′(x) dx = −
∞∑
i=1

∫
Ii

w′(x)ϕ(x) dx

= − lim
k→∞

∫ L

−L
vk(x)ϕ(x) dx = −

∫ L

−L
v(x)ϕ(x) dx

by dominated convergence and w(x) = 0 for all x ∈ ∂Ii, i ∈ N.
The Poincaré inequality with the optimal constant yields∫ L

−L
|u(x)|2 dx ≤ 1

λ1

∫ L

−L
|u′(x)|2 dx

for all u ∈ W 1,2
0 ([−L,L]).

Multiplying (∗) with w+(x), integrating over (−L,L), we obtain∫ L

−L
−w′′(x)w+(x) dx ≤ λ0

∫ L

−L
w(x)w+(x) dx.

After integrating by parts using dominated convergence and applying the Poincaré
inequality we get∫ L

−L
|w′+(x)|2 dx ≤ λ0

∫ L

−L
|w+(x)|2 dx ≤ λ0

λ1

∫ L

−L
|w′+(x)|2 dx.

Since by assumption λ0 < λ1, ∫ L

−L
|w′+(x)|2 dx = 0

10



and the Poincaré inequality yields∫ L

−L
|w+(x)|2 dx = 0.

This implies w+ ≡ 0, i.e. w ≤ 0.
J

2.4 Theorem (Continuous Model Estimate).
Let K > 0, L > 0 and let

(1◦) g : [0,+∞)→ R be continuous, positive and strictly increasing with

(2◦) lims→∞
s√
G(s)

= 0 for G(s) :=
∫ s
K
g(t) d t;

(3◦) f : [−L,L]× R→ R be continuous with

f(x, s) ≥ g(s) > 0, ∀s ≥ K, ∀x ∈ [−L,L].

Then, there exists M = M(g, L,K) with ‖u‖∞ ≤ M uniformly for all classical
non-negative solutions of

−u′′(x) = f(x, u(x)), x ∈ (−L,L),

u(−L) = u(L) = 0.
(∗)

I
〈1 〉 Preliminary observation

From (1◦) we have G(s) ≤ (s−K)g(s), yielding

s2

G(s)
≥ s · s

(s−K)g(s)
≥ s

g(s)

for s > K. By (2◦), the l.h.s of this inequality converges to zero and since the
r.h.s. is positive, we have

lim
s→∞

s

g(s)
= 0.

This implies that g has at least linear growth, i.e. there exists K1 > K such
that

g(s) ≥ s, ∀s ≥ K1.

It follows that

g(s) ≥ λ0s, ∀s ≥ K1,

11



with every 0 < λ0 ≤ 1. Let λ0 ∈ (0,min{1, λ1/4}) be arbitrary, but fixed,

where λ1 =
(
π

2L

)2
is the first eigenvalue of

−u′′(x) = λu(x), x ∈ (−L,L)

u(−L) = u(L) = 0.

Since g is continuous, we can set

Ag := max
s∈[0,K1]

(λ0s− g(s))+ ≥ 0,

obtaining
g(s) ≥ λ0s ≥ λ0s− Ag, ∀s ≥ K1,

g(s) ≥ λ0s− Ag, ∀s ∈ [0, K1],

i.e.
g(s) ≥ λ0s− Ag, ∀s ≥ 0.

Since f is continuous on [−L,L]× [0, K1], we repeat the argument, setting

Af := max
s∈[0,K1]
x∈[−L,L]

(λ0s− Ag − f(x, s))+ ≥ 0.

Taking into account (3◦), we now analogously have

f(x, s) ≥ λ0s− A, ∀s ≥ 0, ∀x ∈ [−L,L] (+)

with A := Af + Ag.

〈2 〉 Proof idea
We have at our disposal two estimates for f . Whereas the linear estimate (+)
holds without any restriction on s, the superlinear estimate (3◦) is valid only
for sufficiently large values of s (correspondingly, for sufficiently large values
of u). Let M be the maximum of a non-negative solution u. We can assume
M to be sufficiently large, M > K, otherwise there is nothing to prove. By
continuity of u we have a closed interval, a neighborhood of the maximum
point, where u ≥ K and (3◦) still holds. Using this condition it is possible to
obtain an estimate from above for u′(x1) at the right end of this interval, point
x1. Then, using (+) and a comparison argument on [x1, L] we can obtain for
u′(x1) an estimate from below. Comparing these two estimates we will obtain
an upper bound for M .

〈3 〉 Auxiliary estimate
We want to prove that

1∫
K/µ

d t√
1− G(µt)

G(µ)

≤ 2 (†)

12



for every µ ≥ K ≥ 0. Since g is positive and strictly increasing, we have

G(µt) =

∫ µt

K

g(s) d s = t

∫ µ

K/t

g(τt) d τ ≤ t

∫ µ

K

g(τt) d τ

≤ t

∫ µ

K

g(τ) d τ = tG(µ)

for every t ∈ (0, 1]. We therefore obtain

G(µt)

G(µ)
≤ t,

1√
1− G(µt)

G(µ)

≤ 1√
1− t

, ∀t ∈ (0, 1).

Now the claim follows from monotonicity:∫ 1

K
µ

1√
1− G(µt)

G(µ)

d t ≤
∫ 1

K
µ

1√
1− t

d t ≤
∫ 1

0

1√
1− t

d t = −2
√

1− t
∣∣1
0

= 2.

〈4 〉 Descending from maximum
Let u be an arbitrary, but fixed non-negative classical solution of (∗) with
‖u‖∞ =: M . Without loss of generality we may assume M > K.

We also may assume that M = u(x0) with some x0 ∈ (−L, 0]. If this is not
the case, we replace u with v, v(x) := u(−x) which is a solution to (∗) with
r.h.s f̃(x, v(x)) := f(−x, v(x)). For this r.h.s. both (3◦) and (+) stay valid
due to uniformity in x and we then use ‖v‖∞ = ‖u‖∞.

Furthermore, we denote x1 := min{x ∈ (x0, L) | u(x) = K}, x1 > x0.
Now u(x) ≥ K for x ∈ [x0, x1]. Using (3◦) we first obtain that

−u′′(x) = f(x, u(x)) ≥ g(u(x)) > 0, ∀x ∈ [x0, x1]

i.e., u(x) is strictly concave and, since u(x0) = M , strictly decreasing on
[x0, x1], implying that

u′(x) ≤ 0, ∀x ∈ [x0, x1].

Multiplying (∗) with u′(x) ≤ 0, on [x0, x1] we also get

−(u′(x)2)′

2
= −u′′(x)u′(x) = f(x, u(x))u′(x) ≤ g(u(x))u′(x).
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Integrating this inequality over [x0, x], x0 < x ≤ x1 we obtain

−
∫ x

x0

(u′(s)2)′

2
d s ≤

∫ x

x0

g(u(s))u′(s) d s,

−u
′(x)2

2
+
u′(x0)2

2︸ ︷︷ ︸
=0

≤ G(u(x))−G(u(x0)),

u′(x)2 ≥ 2G(M)− 2G(u(x)).

Since u′(x1) ≤ 0, in particular this implies

u′(x1) ≤ −
√

2G(M)− 2G(K) = −
√

2G(M) (‡)

and, more generally, from u′(x) ≤ 0 and G(u(x)) < G(M) for x ∈ (x0, x1]
follows

u′(x) ≤ −
√

2G(M)− 2G(u(x))

u′(x)√
2G(M)− 2G(u(x))

≤ −1.

We now integrate over [x0, x1]∫ x1

x0

u′(s)√
2G(M)− 2G(u(s))

d s ≤ −
∫ x1

x0

1 d s,∫ u(x1)

u(x0)

1√
2G(M)− 2G(s)

d s ≤ (x0 − x1),∫ M

K

1√
2G(M)− 2G(s)

d s ≥ x1 − x0,

obtaining

x1 − x0 ≤
∫ M

K

1√
2G(M)− 2G(s)

d s =
1√

2G(M)

∫ M

K

1√
1− G(s)

G(M)

d s

=
M√

2G(M)

∫ 1

K/M

1√
1− G(Mt)

G(M)

d t ≤ 2
M√

2G(M)
,

where we have used the auxiliary estimate (†). Taking (2◦) into account, we
see that x1 → x0 as M →∞ uniformly for all solutions of (∗). We denote

M1 := min

{
µ > K | 2λ√

2G(λ)
≤ L

2
,∀λ ≥ µ

}
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and assume M > M1, obtaining x1 − x0 ≤ L
2
. Since x0 ≤ 0, the length of the

interval [x1, L] has a positive lower bound,

L− x1 ≥
L

2
. (#)

〈5 〉 Comparison function
We define v : [x1, L]→ R as the solution of the following linear BVP

−v′′(x) = λ0v(x)− A,
v(x1) = K,

v(L) = 0

with λ0 as in (+). Since u satisfies

−u′′(x) = f(x, u(x)) ≥ λ0u(x)− A,
u(x1) = K,

u(L) = 0,

we get for w := v − u
−w′′(x) ≤ λ0w(x),

w(x1) = w(L) = 0,

and since 0 < λ0 < λ1([−L,L]) ≤ λ1([x1, L]), Lemma 2.3 yields u ≥ v on
[x1, L]. From u(x1) = v(x1) we get

1
h
[u(x1 + h)− u(x)] ≥ 1

h
[v(x1 + h)− v(x)], ∀h ∈ (0, L− x1)

and consequently, u′(x1) ≥ v′(x1).

We have the explicit representation for v

v(x) = α cos(
√
λ0(x− x1)) + β sin(

√
λ0(x− x1)) +

A

λ0

.

From v(x1) = K we get α + A
λ0

= K, implying α = K − A
λ0

. From v(L) = 0
we get

α cos(
√
λ0(L− x1)) + β sin(

√
λ0(L− x1)) +

A

λ0

= 0.

We have λ0 <
λ1

4
=
(
π

4L

)2
, implying π

2
> 2
√
λ0L >

√
λ0(L− x1); so, we obtain

β =
− A
λ0
− (K − A

λ0
) cos

(√
λ0(L− x1)

)
sin
(√

λ0(L− x1)
) .

15



Since v′(x1) =
√
λ0β, taking into account (‡) we obtain

√
λ0

− A
λ0
− (K − A

λ0
) cos

(√
λ0(L− x1)

)
sin
(√

λ0(L− x1)
) = v′(x1) ≤ u′(x1) ≤ −

√
2G(M),

√
λ0

A
λ0

(1− cos
(√

λ0(L− x1)
)
) +K cos

(√
λ0(L− x1)

)
sin
(√

λ0(L− x1)
) ≥

√
2G(M),

Using (#), from
√
λ0

L
2
≤
√
λ0(L− x1) ≤ 2

√
λ0L ≤ π

2
we have

sin
(√

λ0(L− x1)
)
≥ sin

(√
λ0

L
2

)
,

0 ≤ cos
(√

λ0(L− x1)
)
≤ cos

(√
λ0

L
2

)
,

implying that the l.h.s. of the previous inequality, which is an upper bound
for
√

2G(M), depends only on the assumption constants, and we have

G(M) ≤ λ0

2

(
A
λ0

+K cos
(√

λ0
L
2

)
sin
(√

λ0
L
2

) )2

,

M ≤M2 := max

µ ≥ K | G(µ) ≤ λ0

2

(
A
λ0

+K cos
(√

λ0
L
2

)
sin
(√

λ0
L
2

) )2
 .

Putting everything together we get

M ≤ max{M1,M2} =: M.

J

2.2 Model Estimate for the Discrete Case

2.5 Notation.
For h > 0 denote

Gh := {zh | z ∈ Z},
(a, b)h := (a, b) ∩ Gh,
[a, b]h := [a, b] ∩ Gh

and

D+
h f(x) :=

f(x+ h)− f(x)

h
,

D−h f(x) :=
f(x)− f(x− h)

h
,

as long as r.h.s. are well-defined for f : Ωh ⊂ Gh → R.
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2.6 Lemma (Discrete Elliptic Comparison).
Let h, L > 0 with L

h
∈ N and let w : [−L,L]h → R satisfy

−D+
hD

−
h w(x) ≤ λh0w(x), x ∈ (−L,L)h

w(−L) = w(L) = 0
(∗)

with 0 < λh0 < λh1 , where λh1 = 4
h2 sin2

(
πh
4L

)
is the first eigenvalue of

−D+
hD

−
h u(x) = λu(x), x ∈ (−L,L)h,

w(−L) = w(L) = 0.

Then, w(x) ≤ 0, x ∈ [−L,L]h.

I
We multiply (∗) with w+, sum up over (−L,L)h and exploit partial summation,

obtaining

I := λh0
∑

x∈(−L,L)h

w2
+(x) ≥ −

∑
x∈(−L,L)h

D−hD
+
h w(x) · w+(x)

=
∑

x∈(−L,L)h

D+
h w(x) ·D+

h w+(x) + 1
h
[D+

h w(−L)w+(h)−D+
h w(L− h)w+(L)]

=
∑

x∈[−L,L)h

D+
h w(x) ·D+

h w+(x) ≥
∑

x∈[−L,L)h

D+
h w+(x) ·D+

h w+(x).

To see the last inequality let x ∈ [−L,L)h. If w(x), w(x+ h) ≥ 0 or
w(x), w(x+ h) ≤ 0 then

D+
h w(x)D+

h w+(x) = D+
h w+(x)D+

h w+(x).

If w(x) ≤ 0 ≤ w(x+ h) then D+
h w+(x) ≥ 0 and D+

h w(x) ≥ D+
h w+(x), implying

D+
h w(x)D+

h w+(x) ≥ D+
h w+(x)D+

h w+(x).

Finally, if w(x) ≥ 0 ≥ w(x+ h) then D+
h w+(x) ≤ 0 and D+

h w(x) ≤ D+
h w+(x), also

implying
D+
h w(x)D+

h w+(x) ≥ D+
h w+(x)D+

h w+(x).

Using the discrete Poincaré inequality, we get

0 ≤
∑

x∈[−L,L)h

(
D+
h w+(x)

)2 ≤ λh0
∑

x∈(−L,L)h

w2
+(x) ≤ λh0

λh1

∑
x∈[−L,L)h

(
D+
h w+(x)

)2
,

and since w+(−L) = 0 consequently w+ ≡ 0.
J
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2.7 Theorem (Discrete Model Estimate).
Let K,L > 0 and let

(1◦) g : [0,+∞)→ R be continuous, positive and strictly increasing with

(2◦) lims→∞
s√
G(s)

= 0 for G(s) :=
∫ s
K
g(t) d t;

(3◦) f : [−L,L]× R→ R be continuous with

f(x, s) ≥ g(s) > 0, ∀s ≥ K, ∀x ∈ [−L,L].

Now let h > 0, L
h
∈ N, L ≥ 4h and denote

Ω̊h := (a, b)h,

Ωh := [a, b]h.

Then every non-negative solution u : Ωh → [0,+∞) of

−u(x+ h)− 2u(x) + u(x− h)

h2
= f(x, u(x)), x ∈ Ω̊h

u(−L) = u(+L) = 0
(∗)

satisfies
‖u‖∞ ≤M

with some M > 0 independent of h.
I
〈1 〉 Preliminary observation

From (1◦) we have G(s) ≤ (s−K)g(s), yielding

s2

G(s)
≥ s · s

(s−K)g(s)
≥ s

g(s)

for all s > K. By (2◦), the lhs of this inequality converges to zero and since
the rhs is positive, we have

lim
s→∞

s

g(s)
= 0.

This implies that g has arbitrary linear growth, i.e. for every λ > 0 there
exists Kλ ≥ K such that

g(s) ≥ λs, ∀s ≥ Kλ.

We choose λ := λ0 :=
(
π
L

)2
, K1 := Kλ0 , yielding

g(s) ≥ λ0s, ∀s ≥ K1.

18



Since g is continuous, we can set

Ag := max
s∈[0,K1]

(λ0s− g(s))+ ≥ 0,

obtaining
g(s) ≥ λ0s ≥ λ0s− Ag, ∀s ≥ K1,

g(s) ≥ λ0s− Ag, ∀s ∈ [0, K1],

i.e.
g(s) ≥ λ0s− Ag, ∀s ≥ 0.

Since f is continuous on [−L,L]× [0, K1], we repeat the argument, setting

Af := max
s∈[0,K1]
x∈[−L,L]

(λ0s− Ag − f(x, s))+ ≥ 0.

Taking into account (3◦), we now analogously have

f(x, s) ≥ λ0s− A, ∀s ≥ 0, ∀x ∈ [−L,L] (+)

with A := Af + Ag.

〈2 〉 Equivalent estimation value
Let u be an arbitrary but fixed non-negative solution of (∗). We denote M :=
‖u‖∞ and assume without loss of generality that M > K. Since our problem is
symmetrical w.r.t axis reflection, we can assume that M = u(x0) with x0 ≤ 0.
Both R := u(x0 + h) and u(x0 + 2h) are well-defined due to L ≥ 4h and from
(+) we obtain

2R−M + 0

h2
≥ 2u(x0 + h)− u(x0)− u(x0 + 2h)

h2
= f(R) ≥ λ0R− A ≥ −A,

M ≤ 2R + Ah2 ≤ 2R + A
L2

16

i.e. a bound for R implies a bound for M . It is therefore sufficient to find a
bound for R and without loss of generality we assume R > K.

〈3 〉 Auxiliary inequality
We show the following auxiliary estimate (cf. 〈3 〉 in the proof of Theorem 2.4)∫ R

0

d s√
G(R)−G(s)

≤ 2R√
G(R)

. (†)

Since g is positive and strictly increasing we get

G(Rt) =

∫ Rt

K

g(s) d s = t

∫ R

K/t

g(tτ) d τ ≤ t

∫ R

K

g(τ) d τ = tG(R) > 0
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for every t ∈ (0, 1). This yields

G(Rt)

G(R)
≤ t,

1√
1− G(Rt)

G(R)

≤ 1√
1− t

for the same values of t and we get∫ R

0

d s√
G(R)−G(s)

= R

∫ 1

0

d t√
G(R)−G(Rt)

=
R√
G(R)

∫ 1

0

d t√
1− G(Rt)

G(R)

≤ R√
G(R)

∫ 1

0

d t√
1− t

=
2R√
G(R)

.

〈4 〉 Descending from maximum
Since 0 < K < M , there exists x1 ∈ [x0, L− h]h such that u ≥ K on [x0, x1]h
and u(x1 +h) < K. Since R > K, we have x1 6= x0, i.e. [x0 +h, x1] 6= ∅. Using
(1◦) and (3◦) we see that

D+
hD

−
h u(x) = −f(u(x)) ≤ −g(u(x)) < 0,

D−h u(x+ h)−D−u(x) < 0,

D−h u(x+ h) < D−h u(x)

as long as x ∈ [x0, x1]h. It follows inductively that

D+
h u(x) = D−h u(x+ h) < D−h u(x) < . . . < D−h u(x0 + h)

= D+u(x0) =
u(x0 + h)−M

h
≤ 0

⇒ u(x+ h) < u(x)

as long as x ∈ [x0 + h, x1]h.

〈5 〉 Derivative bound at the end of the interval
We now want to derive an upper bound for the forward difference of u at x1.
For x ∈ [x0 + h, x1]h we have on one hand, using (3◦)

−D+
h

(
(D−h u(x))2

)
= −D+

h (D−h u(x) ·D−h u(x))

= −D−h u(x+ h) ·D+
hD

−
h u(x)−D−h u(x) ·D+

hD
−
h u(x)

= −D+
hD

−
h u(x)︸ ︷︷ ︸

≥g(u(x))>0

(D−h u(x+ h)︸ ︷︷ ︸
<0

+D−h u(x)︸ ︷︷ ︸
≤0

)

≤ g(u(x))D−h u(x+ h) = g(u(x))D+
h u(x)
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and on the other hand with some ū ∈ [u(x+ h), u(x)]

D+
hG(u(x)) =

1

h
[G(u(x+ h))−G(u(x))] =

1

h

∫ u(x+h)

u(x)

g(t) d t

= g(ū)
u(x+ h)− u(x)

h
≥ g(u(x))D+

h u(x),

since ū ≤ u(x) implies g(ū) ≤ g(u(x)), and D+
h u(x) < 0. Together, we obtain

−D+
h

(
(D−h u(x))2

)
≤ D+

hG(u(x))

on x ∈ [x0 + h, x1]h and summing up over [x0 + h, x]h, x ≤ x1 we also get

−
(
D−h u(x+ h)

)2 ≤ −
(
D−h u(x+ h)

)2
+
(
D−h u(x0 + h)

)2

= −
∑

z∈[x0+h,x]h

D+
h

[(
D−h u(z)

)2
]
h ≤

∑
z∈[x0+h,x]h

D+
hG(u(z))h

= G(u(x+ h))−G(u(x0 + h))

⇒ (D+
h u(x)︸ ︷︷ ︸
<0

)2 ≥ G(R)−G(u(x+ h))︸ ︷︷ ︸
>0

and finally
D+
h u(x) ≤ −

√
G(R)−G(u(x+ h)) < 0. (‡)

In particular, this inequality holds for x1 ∈ [x0 + h, x1]h.

〈6 〉 Shrinking interval
We now want to show that [x0, x1] shrinks as R goes to infinity. More precisely,
we want to show that

x1 − x0 ≤
2R√
G(R)

.

Consider

κ(t) :=

∫ R

t

d t√
G(R)−G(s)

d s, t ∈ [0, R],

κ′(t) := − 1√
G(R)−G(t)

< 0, t ∈ [0, R)

with κ being well-defined due to (†). Since G(t) is growing on [0, R), the
derivative κ′(t) is decreasing on that interval. We gather

D+
h κ(u(x)) =

1

h

∫ u(x+h)

u(x)

κ′(t) d t =
1

h

∫ u(x)

u(x+h)

−κ′(t) d t

≥ −κ(u(x+ h)) · (−D+
h u(x)) =

−1√
G(R)−G(u(x+ h))

D+
h u(x).

21



Rewriting (‡)

D+
h u(x) ≤ −

√
G(R)−G(u(x+ h)) < 0, ∀x ∈ [x0 + h, x1]h

⇒ −D+
h u(x)√

G(R)−G(u(x+ h))
≥ 1,

we get

D+
h κ(u(x)) ≥ 1.

Using this and (†) we obtain

x1 − x0 =
∑

x∈[x0+h,x1]h

h ≤
∑

x∈[x0+h,x1]h

D+
h κ(u(x))h

= κ(u(x1 + h))− κ(u(x0 + h)) = κ(u(x1 + h))− κ(R)

=

∫ R

u(x1+h)

1√
G(R)−G(s)

d s ≤
∫ R

0

1√
G(R)−G(s)

d s ≤ 2R√
G(R)

.

From (2◦) we can define

R1 := min

{
r > K | 2ρ√

G(ρ)
≤ L

2
, ∀ρ ≥ r

}
.

Assuming now R ≥ R1, we have

x1 − x0 ≤
L

2
⇒ L− x1 ≥

L

2
.

〈7 〉 Preparations for comparison function
Let λ̃h1 be the first eigenvalue of

−D+
hD

−
h v(x) = λv(x), x ∈ (x1, L)h,

v(x1) = v(L) = 0.

Note that

L− x1 ≥
L

2
≥ 4h

2
= 2h.

Since, exactly as in the continuous case, we have the representation

v(x) = α cos(ν(x− x1)) + β sin(ν(x− x1)), x ∈ [x1, L]h
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for the general solution, plugging in the boundary conditions we find α = 0
and setting x− x1 = kh, k ∈ N we also get

−D+
hD

−
h sin(ν(x− x1)) = − 1

h2
(sin(νkh+ νh)− 2 sin(νkh) + sin(νkh− νh))

= − 1

h2
(2 sin(νkh) cos(νh)− 2 sin(νkh))

= sin(νkh)
2− 2 cos(νh)

h2
= sin(νkh)

4 sin2(νh
2

)

h2

= sin(ν(x− x1))
4 sin2(νh

2
)

h2
.

For the first (positive) eigenfunction we have

ν1(L− x1) = π ⇒ ν1 =
π

L− x1

, λ̃h1 = λ(ν1) =
4 sin2

(
πh

2(L−x1)

)
h2

.

We define ν∗ = ν1

2
= π

2(L−x1)
and

λh∗ := λ(ν∗) =
4

h2
sin2

(
πh

4(L− x1)

)
.

We aim to show that the double-sided estimate
L

2
≤ L− x1 ≤ 2L

results in a double-sided estimate λh∗ that is independent of h.
We have

π

4L
≤ ν1

2
= ν∗ =

π

2(L− x1)
≤ π

L

and from L ≥ 4h also

πh

4(L− x1)
=
ν∗h

2
≤ πh

2L
≤ πh

8h
=
π

8
.

This implies, λh∗ < λ̃h1 and, moreover, on one hand

λh∗ =
4 sin2

(
πh

4(L−x1)

)
h2

≤
4
(

πh
4(L−x1)

)2

h2
=

(
π

2(L− x1)

)2

≤
(π
L

)2

= λ0

and on the other hand

λh∗ =
4 sin2

(
πh

4(L−x1)

)
h2

=
4(

4(L−x1)
π

)2 ·
sin2

(
πh

4(L−x1)

)
(

πh
4(L−x1)

)2 ≥ π2

4(L− x1)2
·

sin2
(
π
8

)(
π
8

)2

≥
sin2

(
π
8

)(
4L1

8

)2 =
4 sin2

(
π
8

)
L2

=: λ
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since sin(x)/x is monotonically decreasing on (0, π]:

−t sin t+ cos t ≤ cos t, ∀t ∈ [0, π],∫ x

0

d (t cos t) ≤
∫ x

0

d (sin t), ∀x ∈ [0, π],

x cosx− sinx ≤ 0, ∀x ∈ [0, π],(
sinx

x

)′
=
x cosx− sinx

x2
≤ 0, ∀x ∈ (0, π].

〈8 〉 Comparison function
We define v : [x1, L]→ R as the solution of

−D+
hD

−
h v(x) = λh∗v(x)− A, x ∈ (x1, L)h,

v(x1) = u(x1),

v(L) = 0.

Since u(x) ≥ 0 satisfies

−D+
hD

−
h u(x) = f(u(x)) ≥ λ0u(x)− A ≥ λh∗u(x)− A, ∀x ∈ (x1, L)h

u(x1) = u(x1),

u(L) = 0

for w := v − u we have

−D+
hD

−
h w(x) ≤ λh∗w(x), ∀x ∈ (x1, L)h,

u(x1) = w(L) = 0

with 0 < λh∗ < λ̃h1 From discrete elliptic comparison 2.6 we obtain v(x) ≤ u(x)
on [x1, L]h and due to v(x1) = u(x1) also D+

h v(x1) ≤ D+
h u(x1).

We want to estimate D+
h v(x1). To this end we use the explicit representation

v(x) = α cos(ν∗(x− x1)) + β sin(ν∗(x− x1)) +
A

λh∗

From v(x1) = u(x1) we get α + A
λh∗

= u(x1), thus α = u(x1) − A
λh∗

. From

v(L) = 0 and ν∗(L− x1) = ν1

2
(L− x1) = π

2
we get

0 = α cos(ν∗(L− x1)) + β sin(ν∗(L− x1)) +
A

λh∗
= β +

A

λh∗
⇒ β = − A

λh∗
.
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We evaluate D+
h v(x1):

hD+
h v(x1) = v(x1 + h)− v(x1) = α cos(ν∗h) + β sin(ν∗h) +

A

λh∗
− α− A

λh∗
= α(cos(ν∗h)− 1) + β sin(ν∗h)

Since D+
h v(x1) ≤ D+

h u(x1), using (‡) and u(x1) ≤ R we get

1

h
[α(cos(ν∗h)− 1) + β sin(ν∗h)] ≤ −

√
G(R)−G(u(x1 + h)),

⇒ I :=
√
G(R)−G(K) ≤

√
G(R)−G(u(x1 + h))

≤ 1

h
[α(1− cos(ν∗h))− β sin(ν∗h)]

=

(
u(x1)− A

λh∗

)
1− cos(ν∗h)

h
+
A

λh∗

sin(ν∗h)

h

≤ R
1− cos(ν∗h)

h
+
A

λh∗

sin(ν∗h) +

≤0︷ ︸︸ ︷
cos(ν∗h)− 1

h

≤ Rν∗
1− cos(ν∗h)

ν∗h
+
Aν∗
λh∗

sin(ν∗h)

ν∗h

≤ Rν∗ +
Aν∗
λh∗
≤ R

π

L
+
Aπ

λL
,

implying
G(R)

R2
≤ G(K)

R2
+

(
π

L
+

Aπ

λLR

)2

≤ G(K)

K2
+

(
π

L
+

Aπ

λLK

)2

Since G(t)/t2 →∞ as t→∞, we have the following bound

R ≤ min

{
r > K | G(ρ)

ρ2
≥ G(K)

K2
+

(
π

L
+

Aπ

λLK

)2

∀ρ ≥ r

}
.

J
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Chapter 3

Convergence Result for
One-Dimensional Model Problem

3.1 Discrete formulation

3.1 Motivation (Model Problem).
In this chapter we consider the convergence problem in the simplest, one-dimensional
setting. The aim is to present the essential ideas without the burden of technicalities
and to point out the main difficulties which arise in higher dimensions.

3.2 Convention (Admissible grid spacings).
The grid spacing h is called admissible for the interval [0, L] if L

h
∈ Z+. We assume

all grid spacings in this chapter to be admissible.

3.3 Notation (Grid).
We denote by Mh := {xi}Nhi=0, Nh := L/h the equidistant grid on [0, L] with grid
spacing h, i.e. h = xi − xi−1, 1 ≤ i ≤ Nh. We also denote M̊h := {xi}Nh−1

i=1 .

3.4 Definition (Finite Differences).
For u : Mh → R we define the forward finite difference quotient by

D+
h u(xi) :=

u(xi+1)− u(xi)

h
, 0 ≤ i ≤ Nh − 1,

the backward finite difference quotient by

D−h u(xi) :=
u(xi)− u(xi−1)

h
, 1 ≤ i ≤ Nh,

and the discrete Laplace operator by

∆hu(xi) := D+
hD

−
h u(xi) = D−hD

+
h u(xi)

=
u(xi+1)− 2u(xi) + u(xi−1)

h2
, 1 ≤ i ≤ Nh − 1.
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3.5 Lemma (Summation by parts).
Let u, v : Mh → R. Then

Nh−1∑
i=1

D+
h u(xi)v(xi)h = −

Nh−1∑
i=1

u(xi)D
−
h v(xi)h+ u(xNh)v(xNh−1)− u(x1)v(x0),

Nh−1∑
i=1

D−h u(xi)v(xi)h = −
Nh−1∑
i=1

u(xi)D
+
h v(xi)h+ u(xNh−1)v(xNh)− u(x0)v(x1).

I
Direct calculation yields

Nh−1∑
i=1

D+
h u(xi)v(xi)h =

Nh∑
i=2

u(xi)v(xi−1)−
Nh−1∑
i=1

u(xi)v(xi)

= −
Nh−1∑
i=1

u(xi)(v(xi)− v(xi−1))− u(x1)v(x0) + u(xNh)v(xN−1)

= −
Nh−1∑
i=1

u(xi)D
−
h v(xi)h+ u(xNh)v(xNh−1)− u(x1)v(x0).

Swapping u and v in the first equality we obtain the second one.
J

3.6 Definition (Discrete Formulations).
In the classical continuous setting we are looking for u ∈ C2((0, L))∩C([0, L]) such
that

−∆u(x) = −u′′(x) = f(u(x)), x ∈ (0, L),

u(0) = u(L) = 0
(BVP)

with some f ∈ C(R).
In the discrete case we are looking for u : Mh → R that satisfy one of following three
equivalent formulations (see the next lemma).
The classical discrete formulation for (BVP) is the problem

−∆hu(x) = f(u(x)), x ∈ M̊h,

u(0) = u(L) = 0.
(Ph)

The weak discrete formulation for (BVP) is the problem

Nh−1∑
i=0

D+
h u(xi)D

+
h ϕ(xi)h =

Nh−1∑
i=0

f(u(xi))ϕ(xi)h,

u(0) = u(L) = 0,

(P ′h)
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where equality has to hold for all ϕ : Mh → R with ϕ(0) = ϕ(L) = 0.
The very weak discrete formulation for (BVP) is the problem

−
Nh−1∑
i=1

u(xi)∆hϕ(xi)h =

Nh−1∑
i=1

f(u(xi))ϕ(xi)h,

u(0) = u(L) = 0,

(P ′′h )

where equality has to hold for all ϕ : Mh → R with ϕ(0) = ϕ(L) = 0.

3.7 Remark (Summation sets).
The summation sets in the right hand sides of (P ′h) and (P ′′h ) are chosen for the sake
of symmetry with the corresponding left hand sides; condition ϕ(0) = ϕ(L) = 0
naturally implies

Nh∑
i=0

f(u(xi))ϕ(xi) =

Nh−1∑
i=1

f(u(xi))ϕ(xi) =

Nh∑
i=1

f(u(xi))ϕ(xi) =

Nh−1∑
i=0

f(u(xi))ϕ(xi).

3.8 Lemma (Equivalence of the discrete formulations).
The discrete formulations (Ph), (P

′
h) and (P ′′h ) are equivalent.

I
Let ϕ : Mh → R be a grid function with ϕ(0) = ϕ(L) = 0. We multiply (Ph) with

ϕ and sum up over 1 ≤ i ≤ Nh − 1

Nh−1∑
i=1

f(u(xi))ϕ(xi) = −
Nh−1∑
i=1

∆hu(xi)ϕ(xi) =

Nh−1∑
i=1

−D+
h u(xi) +D−h u(xi)

h
ϕ(xi)

=

Nh−1∑
i=0

−D+
h u(xi)

h
ϕ(xi) +

Nh∑
i=1

D−h u(xi)

h
ϕ(xi)

=

Nh−1∑
i=0

−D+
h u(xi)

h
ϕ(xi) +

Nh−1∑
i=0

D+
h u(xi)

h
ϕ(xi+1)

=

Nh−1∑
i=0

D+
h u(xi)D

+
h ϕ(xi).

Adding f(u(x0))ϕ(x0) = 0 to the left hand side, we get (Ph)⇒ (P ′h).
Since u(0) = u(L) = 0, we can expand

∑
D+
h u(xi)D

+
h ϕ(xi) backwards, swapping u

and ϕ. This yields (P ′h)⇔ (P ′′h ).
Plugging ϕj : Mh → R, 1 ≤ j ≤ Nh − 1, ϕj(xi) := δij, 0 ≤ i ≤ Nh into (P ′h) and
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(P ′′h ) and in each case dividing by h we obtain (Ph):

f(u(xj)) = −D
+
h u(xj)

h
+
D+
h u(xj−1)

h
= −∆hu(xj), 1 ≤ j ≤ Nh − 1,

f(u(xj)) = −
j+1∑
i=j−1

u(xi)∆hϕ(xi) = −∆hu(xj), 1 ≤ j ≤ Nh − 1.

J

3.2 Main result for the model problem

3.9 Announcement (Convergence Theorem).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, hn

n→∞→ 0, a corresponding sequence of solutions (un)n∈N, un : Mhn → R of
discrete problems (Phn) and a positive C > 0 such that

‖un‖L∞(Mhn ) := max{|un(x)| | x ∈Mhn} ≤ C, ∀n ∈ N.

Then, there exists a (renamed) subsequence (un)n∈N and a classical solution u ∈
C2((0, L)) ∩ C([0, L]) of (BVP) such that

‖un − u‖L∞(Mhn ) → 0, as n→∞.

3.10 Notation (Linear Interpolation).
For u : Mh → R we denote by û : [0, L] → R the piecewise linear approximation of
u, i.e. û(x) = u(x), ∀x ∈Mh and û is linear on [xi, xi+1], 0 ≤ i ≤ Nh − 1.

3.11 Lemma (Regularity of linear interpolation).
For u : Mh → R we have û ∈ W 1,2

0 ((0, L)) with∫ L

0

(û′(x))2 dx =

Nh−1∑
i=0

|D+
h u(xi)|2h.

I
We have the following explicit representation

û(x) =
u(xi+1)− u(xi)

h
(x− xi) + u(xi) xi ≤ x ≤ xi+1, 0 ≤ i ≤ Nh − 1

and pointwise

û′(x) = D+
h u(xi), xi < x < xi+1, 0 ≤ i ≤ Nh − 1.
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Continuous piecewise differentiable function on the real line are weakly
differentiable. We also have∫ L

0

(û′)2 dx =

Nh−1∑
i=0

∫ xi+1

xi

(û′)2 dx =

Nh−1∑
i=0

|D+
h u(xi)|2h.

J

3.12 Motivation (Embedding results).
The following classical embedding result is exceptional to R1. Since the proof is
short and does not involve geometrical considerations, we find it suitable to present
it here. This result can be extended to the compact embedding W 1,2 ↪→ C0, α for all
α ∈ (0, 1/2), see [2], Chapter 6.

3.13 Lemma (Embedding results).
Let u ∈ W 1,2

0 ((0, L)). Then there exists ū ∈ C([0, L]), ū(0) = ū(L) = 0 with
ū|(0,L) = u a.e. Now let (un)n∈N ⊂ W 1,2

0 ((0, L)) with ‖un‖W 1,2(0,L) ≤ C for some
C > 0. Then, there exists ũ ∈ C([0, L]) such that ūn ⇒ ũ (i.e. uniformly on [0, L])
up to a subsequence as n→∞, where un 7→ ūn is defined as above.
I〈1 〉 Continuous embedding

Let u ∈ C∞0 ((0, L)). We can extend it to ū ∈ C([0, L]), ū(0) = ū(L) = 0.
Identifying u and ū we obtain

|u(x)| ≤
∣∣∣∣u(0) +

∫ x

0

u′(t) d t

∣∣∣∣ ≤ ∫ L

0

|u′(t)|d t

≤
√
L

√∫ L

0

|u′(t)|2 d t ≤
√
L‖u‖W 1,2((0,L)).

Taking the maximum, we get

‖u‖C([0,L]) ≤
√
L‖u‖W 1,2((0,L)). (+)

Now let, (un)n∈N ∈ C∞0 ((0, L)) be such that un → u in W 1,2
0 ((0, L)). Since

(un)n∈N is a Cauchy sequence in W 1,2
0 ((0, L)) it is also (after the extension) a

Cauchy sequence in C([0, L]). For limit ũ ∈ C([0, L]), un ⇒ ũ, we also have
un → ũ in L2((0, L)). This yields ũ = u a.e.

〈2 〉 Compact embedding
From (+) follows that (un)n∈N is also bounded in C([0, L]). In order to use
Arzelà-Ascoli theorem we need only to show equicontinuity. Without loss of
generality assume x < y, then

|un(x)− un(y)| =
∣∣∣∣∫ y

x

u′n(t) d t

∣∣∣∣ ≤
√∫ y

x

|u′n(t)|2 d t

√∫ y

x

1 d t

≤ ‖un‖W 1,2((0,L))

√
y − x ≤ C

√
y − x.
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3.14 Convention.
We will identify the function u ∈ W 1,p

0 ((0, L)) with its continuous representative
ū ∈ C([0, L]) in the sense of the previous lemma.

3.15 Lemma (Boundedness).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, a corresponding sequence of solutions (un)n∈N, un : Mhn → R of discrete
problems (Phn) and a positive C > 0 such that

‖un‖L∞(Mhn ) ≤ C, ∀n ∈ N.

Then, there exists Ĉ > 0 such that

‖ûn‖W 1,2
0 (0,L) ≤ Ĉ, ∀n ∈ N.

I
From the uniform boundedness of (un)n∈N and the continuity of f we get
‖f(un)‖L∞(Mhn ) ≤ C̃ for some C̃ = C̃(C, f) > 0. We denote Nn := Nhn , obtaining∫ L

0

(û′n)2 dx =
Nn−1∑
i=0

|D+
h un(xi)|2hn =

Nn−1∑
i=0

f(un(xi))un(xi)hn ≤ C̃CL =: Ĉ.

J

3.16 Remark (Higher Dimensions).
The uniform convergence in the previous lemma is essential. In higher dimensions
we have to use discrete Lp-estimates instead of the energy estimates in order to
apply compact embeddings.

3.17 Lemma (Passing to the limit in the linear part).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N ⊂ R+, a corresponding sequence of solutions (un)n∈N, un : Mhn → R, Nn :=
Nhn of the discrete problems (Phn) and a positive C > 0 such that ‖un‖L∞(Mhn ) ≤ C,
∀n ∈ N. Then, there exists a (renamed) subsequence of (un)n∈N such that

−
Nn−1∑
i=1

un(xi)∆hnϕ(xi)hn
n→∞−−−→ −

∫
R
u(x)∆ϕ(x) dx,

for all ϕ ∈ C3([0, L]) and
ûn ⇒ u

for some u ∈ C([0, L]), u(0) = u(L) = 0.
I
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〈1 〉 Subsequence in C∗([0, L])
The functionals

Φn :


C([0, L])→ R

Ψ 7→
Nn−1∑
i=1

un(xi)Ψ(xi)hn

are uniformly bounded in n, because

|Φn(Ψ)| ≤ ‖un‖L∞(M̊hn )‖Ψ‖C([0,L])L ≤ CL‖Ψ‖C([0,L]).

Due to separability of C([0, L]) there exists Φ ∈ C∗([0, 1]) such that Φn
∗
⇀ Φ

up to a (renamed) subsequence.

〈2 〉 Extending the limit element to L2([0, L])
For any Ψ: Mhn → R we denote

‖Ψ‖L2(Mhn ) :=

√√√√ Nn∑
i=1

Ψ2(xi)hn.

From

|Φn(Ψ)| =

∣∣∣∣∣
Nn−1∑
i=1

un(xi)Ψ(xi)hn

∣∣∣∣∣ ≤
√√√√ Nn∑

i=1

u2
n(xi)hn

√√√√ Nn∑
i=1

Ψ2(xi)hn

≤ C
√
L‖Ψ‖L2(Mhn )

letting n→∞ we get for a fixed Ψ ∈ C([0, L])

|Φ(Ψ)| ≤ C
√
L‖Ψ‖L2([0,L]).

Since C([0, L]) is dense in the complete space L2([0, L]) we can extend Φ by
continuity onto L2([0, L]). We denote by ũ ∈ L2([0, L]) the Riesz representative
of this extension.

〈3 〉 Convergence
For Ψ: Mhn → R we set Φn(Ψ) := Φn(ψ̂). We want to show that

Φn(−∆hnϕ) = −
Nn−1∑
i=1

un(xi)∆hnϕ(xi)hn → −
L∫

0

∆ϕ(x)ũ(x) dx = Φ(−∆ϕ)
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for every ϕ ∈ C3([0, L]) as n→∞. For ϕ ∈ C3([0, L]) we have the consistency

‖∆hnϕ−∆ϕ‖L∞(M̊hn ) → 0 as n→∞,

implying

|Φn(−∆hnϕ+ ∆ϕ)| ≤ CL‖∆hnϕ−∆ϕ‖L∞(M̊hn ) → 0 as n→∞.

Hence, letting n→∞ we get

Φn(−∆hnϕ) = Φn(−∆ϕ) + Φn(∆ϕ−∆hnϕ)→ Φ(−∆ϕ) = −
∫ L

0

ũ∆ϕdx.

〈4 〉 Identification of ũ
We now want to show that ũ can also be obtained as an accumulation point
of (ûn)n∈N in C([0, L]). Taking the (renamed) subsequence (un)n∈N that cor-
responds to the extracted subsequence used in the first step and applying
Lemma 3.15 and Lemma 3.13 we extract a (renamed) convergent subsequence
(ûn)n∈N with a limit u ∈ C([0, L]), ûn ⇒ u as n → ∞. We now only need to
show that ũ = u, yielding also uniqueness of u for fixed Φ from the first step.
First we show

Φn(−∆hnϕ)
n→∞−−−→ −

∫ L

0

u(x)∆ϕ(x) dx, ∀ϕ ∈ C3([0, L]).

We get

Φn(−∆hnϕ) =−
Nn−1∑
i=1

un(xi)∆hnϕ(xi)hn = −
Nn−1∑
i=1

ûn(xi)∆hnϕ(xi)hn

=−
Nn−1∑
i=1

ûn(xi)∆ϕ(xi)hn +
Nn−1∑
i=1

ûn(xi)[∆ϕ(xi)−∆hnϕ(xi)]hn

=−
Nn−1∑
i=1

u(xi)∆ϕ(xi)hn +
Nn−1∑
i=1

[u(xi)− ûn(xi)]∆ϕ(xi)hn

+
Nn−1∑
i=1

ûn(xi)[∆ϕ(xi)−∆hnϕ(xi)]hn

n→∞−−−→ −
∫ L

0

u(x)∆ϕ(x) dx,

since for n→∞

∣∣∣∣∣
Nn−1∑
i=1

[u(xi)− ûn(xi)]∆ϕ(xi)hn

∣∣∣∣∣ ≤
→0︷ ︸︸ ︷

‖u− ûn‖C([0,L])

→
∫ L
0 |∆ϕ(x)|dx︷ ︸︸ ︷

Nn−1∑
i=1

|∆ϕ(xi)|hn → 0
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and

I :=

∣∣∣∣∣
Nn−1∑
i=1

ûn(xi)[∆ϕ(xi)−∆hnϕ(xi)]hn

∣∣∣∣∣
≤

Nn−1∑
i=1

|ûn(xi)|hn︸ ︷︷ ︸
≤CL

‖∆ϕ−∆hnϕ‖L∞(Mhn )︸ ︷︷ ︸
→0

→ 0.

We now have ∫ L

0

[u(x)− ũ(x)]ϕ′′(x) dx = 0, ∀ϕ ∈ C3([0, L]),

implying ∫ L

0

[u(x)− ũ(x)]ψ(x) dx = 0, ∀ψ ∈ C1([0, L]).

Since C1([0, L]) ⊃ C∞0 ((0, L)) is dense in L2([0, L]) we have ũ = u a.e.
J

3.18 Lemma (Passing to the limit in the nonlinear part).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, hn

n→∞→ 0, a corresponding sequence of solutions (un)n∈N, un : Mhn → R,
Nn := Nhn of discrete variational problems (Phn) and a positive constant C > 0
such that ‖un‖L∞(Mhn ) ≤ C, ∀n ∈ N. Then, there exists a (renamed) subsequence
(un)n∈N such that

Nn−1∑
i=1

f(un(xi))ϕ(xi)hn
n→∞−−−→

∫
R
f(u(x))ϕ(x) dx,

for all ϕ ∈ C([0, L]) and
ûn ⇒ u

for some u ∈ C([0, L]), u(0) = u(L) = 0.
I〈1 〉 Subsequence in C∗([0, L])

The functionals

Φn :


C([0, L])→ R

Ψ 7→
Nn−1∑
i=1

f(un(xi))Ψ(xi)hn

are uniformly bounded, because

|Φn(Ψ)| ≤ ‖f(un)‖L∞(Mhn )‖Ψ‖C([0,L])L ≤ ‖f‖L∞([−C,C])‖Ψ‖C([0,L])L.

Due to separability of C([0, L]) there exists Φ ∈ C∗([0, 1]) such that Φn
∗
⇀ Φ

up to a (renamed) subsequence.

35



〈2 〉 Extending the limit element to L2([0, L])
From

|Φn(Ψ)| =

∣∣∣∣∣
Nn−1∑
i=1

f(un(xi))Ψ(xi)hn

∣∣∣∣∣ ≤
√√√√ Nn∑

i=1

f 2(un(xi))hn

√√√√ Nn∑
i=1

Ψ2(xi)hn

≤ ‖f‖L∞([−C,C])

√
L‖Ψ‖L2(Mhn )

letting n→∞ we get for a fixed Ψ ∈ C([0, L])

|Φ(Ψ)| ≤ ‖f‖L∞([−C,C])

√
L‖Ψ‖L2([0,L]).

Since C([0, L]) is dense in the complete space L2([0, L]) we can extend Φ to
L2([0, L]). We denote by F ∈ L2([0, L]) the Riesz representative of Φ.

〈3 〉 Identification of F
We take the (renamed) subsequence (un)n∈N that corresponds to the conver-
gent subsequence in the first step. Using Lemma 3.15 and Lemma 3.13 we
now extract from it a further (renamed) convergent subsequence (un)n∈N, this
time with ûn ⇒ u as n→∞ for some u ∈ C([0, L]). Our aim is to show that
F = f(u), also implying that u is unique once F is fixed. We have

Φn(ϕ) =
Nn−1∑
i=1

f(un(xi))ϕ(xi)hn =
Nn−1∑
i=1

f(ûn(xi))ϕ(xi)hn

=
Nn−1∑
i=1

f(u(xi))ϕ(xi)hn +
Nn−1∑
i=1

[f(ûn(xi))− f(u(xi))]ϕhn

→
∫ L

0

f(u(x))ϕ(x) dx, as n→∞, for all ϕ ∈ C([0, L]),

provided ∣∣∣∣∣
Nn−1∑
i=1

[f(ûn(xi))− f(u(xi))]ϕ(xi)hn

∣∣∣∣∣→ 0.

But this claim follows from uniform continuity of f on [−C,C] and uniform
convergence of ûn toward u. We have therefore∫ L

0

[f(u(x))− F (x)]ϕ(x) dx = 0 ∀ϕ ∈ C([0, L]).

Since C([0, L]) is dense in L2([0, L]) we finally obtain f(u) = F a.e.
J
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3.19 Theorem (Convergence Theorem).
Let f : R → R be continuous and assume that there exists a sequence of grid
spacings (hn)n∈N, hn

n→∞→ 0 and a corresponding sequence of solutions (un)n∈N
of discrete problems (Phn) and a positive C > 0 such that ‖un‖L∞(Mhn ) ≤ C,
∀n ∈ N. Then, there exists a (renamed) subsequence (un)n∈N and a classical so-
lution u ∈ C2((0, L)) ∩ C([0, L]) of (BVP) such that

‖un − u‖L∞(Mhn ) → 0, as n→∞.

I
Using the convergent subsequence obtained after applying Lemma 3.17 as the

initial sequence for Lemma 3.18, we obtain a subsequence of (un)n∈N for which the
claims of both those results hold with the same uniform limit, so letting n→∞ we
have ∫ L

0

−u(x)ϕ′′(x) dx =

∫ L

0

f(u(x))ϕ(x) dx,

for all ϕ ∈ C3([0, L]) with ϕ(0) = ϕ(L) = 0 with some u ∈ C([0, L]),
u(0) = u(L) = 0. Let v ∈ C2((0, L)) ∩ C([0, L]) be the classical solution of

−v′′(x) = f(u(x)), x ∈ (0, L)

v(0) = v(L) = 0.

Taking the weak formulation of this BVP and subtracting it from the weak
formulation of our original problem we get∫ L

0

(u− v)(x)ϕ′′(x) dx = 0,

for all ϕ ∈ C3([0, L]) with ϕ(0) = ϕ(L) = 0. Repeating the final argument from
Lemma 3.17 we get u = v a.e., i.e. u ∈ C2((0, L)).
J
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Chapter 4

A Priori Estimates for Convex
Domains in the Continuous Case

4.1 Estimates for Green’s function

4.1 Motivation (Continuous case).
The results in this chapter are either known, often in a much stronger form ([4],[40])
or classical ([20],[23]). They and especially their proofs are presented here in order
to provide an guideline for and to motivate the corresponding discrete results in the
following three chapters. As in the previous chapter this has the advantage of sep-
arating the essential ideas from the technical difficulties arising from discretization.

4.2 Convention (Dimension).
We will always assume d ≥ 3.

4.3 Announcement (Regularity estimate [4]).
Let Ω ⊂ Rn be a bounded and convex domain. Let f ∈ Lq(Ω), q > dp

d+p
for some

1 < p <∞. Then, there exists a unique weak solution u ∈ W 1,p
0 (Ω) of the boundary-

value problem
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

and it holds
‖u‖1,p ≤ C(d, p, q,Ω)‖f‖q,

with some C(d, p, q,Ω) > 0.

4.4 Notation (Generic constants).
We reserve the letters K and K∗ to denote generic constants, i.e. expressions like

A(x) ≤ KB(x)
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mean that
A(x) ≤ CB(x)

for some particular real number C > 0. We explicitly allow the case B(x) ≡ 1.
The same generic constant within a chain of inequalities can stand for different
particular constants; the change of particular constants is indicated by adding or
removing of asterisk, i.e. in

A(x)
(1)

≤ KB(x)
(2)

≤ K∗C(x)
(3)

≤ K∗D(x)
(4)

≤ KP (x)

the particular constants may need to be changed in the second and fourth inequali-
ties, one can always choose the same particular constant in the third inequality, and
K in the first and in the last inequalities can stand for different particular constants.
Using the notation

A(x) ≤ KB(x) ≤: CB(x)

we pick some particular constant C for which the previous inequality holds. If we
have some (fixed within our consideration) quantities s1, . . . , sn, n ∈ N, we write
K(s1, . . . , sn) to indicate that the corresponding particular constants can be chosen
depending only on those quantities.

4.5 Theorem (Classical existence result).
Let Ω be a bounded convex domain. If f is a bounded, locally Hölder continuous
function in Ω, then the classical Dirichlet problem

−∆u = f in Ω,

u = ϕ on ∂Ω

is uniquely solvable in C2(Ω)∩C(Ω) for any continuous boundary value ϕ ∈ C(∂Ω).

I
The proof follows from Theorem 4.3 in [23] and the fact that convex domains

have regular boundary by the exterior cone condition, see Chapter 2 in the same
book.
J

4.6 Definition (Green’s Function).
We denote by Φ: Rd \ {0} → R,

Φ(x) :=
1

d(d− 2)ωd
|x|2−d

the fundamental solution to Laplace’s operator −∆ in Rd, where ωd denotes the
volume of the unit ball in Rd. We have −∆u = f for

u(x) :=

∫
Rd

Φ(x− y)f(y) d y, x ∈ Rd
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as long as f ∈ C∞0 (Rd) (see [23]).
For Ω ⊂ Rd open and bounded we define the corrector function ϕ : Ω × Ω → R

as the classical solution (if it exists) of

−∆yϕ(x, y) = 0, y ∈ Ω,

ϕ(x, y) = Φ(y − x), y ∈ ∂Ω

for all x ∈ Ω fixed.
Green’s function (if it exists) is defined by

G(x, y) := Φ(y − x)− ϕ(x, y), ∀(x 6= y) ∈ Ω.

4.7 Remark (Representation and smoothness).
It is a classical result ([20], [23]) that if the corrector function is sufficiently smooth,
ϕ(x, ·) ∈ C2(Ω) ∩ C1(Ω) for all x ∈ Ω, then the solution u ∈ C2(Ω) ∩ C(Ω) of

−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(∗)

has the representation

u = G ∗ f :⇔ u(x) =

∫
Ω

G(x, y)f(y) dx, x ∈ Ω, (+)

provided f ∈ C0,α(Ω) with some α ∈ (0, 1] and the boundary of Ω is C2.
The existence of G satisfying (+) for the weak solutions of the Poisson problem

(∗) can be obtained on general bounded domains (see [37] and [24]).
The following theorem states that in the case of convex domains the representa-

tion via the corrector function also holds.

4.8 Theorem (Green’s representation on bounded convex domains).
Green’s function G : Ω× Ω→ R exists for every bounded convex domain Ω. More-
over,

u(x) :=

∫
Ω

G(x, y)f(y) d y, x ∈ Ω

satisfies the equation
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(∗)

for f ∈ C∞0 (Ω).

I
The existence and uniqueness of G follows from Theorem 4.5. Using Definition

3.2.3 from [27] we construct G̃ : Ω× Ω→ R such that G̃(x, y) = Φ(x− y)− h(x, y)
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with ∆yh(x, y) = 0 for all x, y ∈ Ω. Theorem 3.3.15 from the same book yields
limz→y G̃(x, z) = 0 for all x ∈ Ω, y ∈ ∂Ω. This implies ϕ = h and G = G̃. We now
use three other theorems from [27]. From Theorem 3.4.10 we obtain −∆u = f for

u(x) =

∫
Ω

G(x, y)f(y) d y

with f ∈ C∞0 (Ω) and from Theorems 3.3.9 and 3.4.17 we also have limz→x u(z) = 0
for all x ∈ ∂Ω, i.e. u is the classical solution to (∗).
J

4.9 Lemma (Rough estimate for Green’s function).
Let G(x, y) be Green’s function for a bounded domain Ω ⊂ Rd. Then it holds

0 ≤ G(x, y) ≤ K|x− y|2−d, ∀(x 6= y) ∈ Ω.

I
〈1 〉 Estimate from below

Let x ∈ Ω be arbitrary but fixed. The corrector function ϕ(x, ·) is har-
monic and therefore bounded. Since Φ(x, ·) is positive and unbounded in
every pricked neighborhood of x, there exists ε > 0 such that G(x, y) > 0
for all y ∈ B(x, ε) \ {x}. We now apply the minimum principle to G(x, ·) in
Ω \B(x, ε) to obtain the claim.

〈2 〉 Estimate from above
From minimum principle for the corrector function we have ϕ ≥ 0. The
representation formula now implies

G(x, y) ≤ Φ(y − x) ≤ K|x− y|2−d, ∀(x 6= y) ∈ Ω.

J

4.10 Motivation.
From the structure of Green’s function one sees that G(x, yn) → 0 for x ∈ Ω,
x 6= yn → y ∈ ∂Ω, as n → ∞. The symmetry of Green’s function implies also
G(xn, y) → 0 for y ∈ Ω, y 6= xn → x ∈ ∂Ω, as n → ∞. The following inequality
reflects this behavior. Another possible way of looking at this result is to consider
a sequence (xn, yn)n∈N with xn → x ∈ ∂Ω, 0 6= |yn − xn| → 0 as n → ∞. The
following estimates states that G(xn, yn) will stay uniformly bounded provided

dist(xn, ∂Ω) ≤ K|yn − xn|d−1.

4.11 Lemma (Combined estimate for Green’s Function, [40]).
Let Ω ⊂ Rd be an open, bounded and convex set. Let G be Green’s function for Ω.
Then, it holds

G(x, y) ≤ K|x− y|1−dδ(x), ∀(x 6= y) ∈ Ω,

where δ(x) := dist(x, ∂Ω).
I
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〈1 〉 Auxiliary function
We construct a harmonic function to be used later in a comparison argument.
Denote A := B 11

5
(0) \B 1

5
(0) and let h : A→ R be the classical solution of

−∆h = 0, x ∈ A,
h(x) = 0, x ∈ ∂B 1

5
(0),

h(x) = 1, x ∈ ∂B 11
5

(0).

We show that

h(tz) ≤ κ
(
t− 1

5

)
, ∀t ∈

[
1

5
,
11

5

]
, ∀z ∈ S1 := {x ∈ Rd | |x| = 1}

holds for some κ > 0. Since the limit

lim
t→ 1

5
+0

h(tz)

t− 1
5

= lim
τ→0+0

h(zτ + z
5
)− h( z

5
)

τ
=

∂

∂z
h
(z

5

)
= gradh

(z
5

)
· z

is uniformly bounded on S1 ([23], Ch. 6), the claim follows. We also define
Aε := εA = {εx | x ∈ A} for all ε > 0 and the corresponding functions
hε : Aε → R by hε(x) := h(x

ε
), obtaining

hε(tz) = h

(
tz

ε

)
≤ κ

(
t− ε

5

ε

)
, ∀t ∈

[
ε

5
,
11ε

5

]
, ∀z ∈ S1.

〈2 〉 Estimate
To prove the estimate we fix a point y ∈ Ω and consider two cases

(i) |x− y| ≤ 2δ(x). In this case we have

G(x, y) ≤ K|x− y|2−d ≤ K∗|x− y|1−dδ(x).

(ii) |x− y| > 2δ(x) [⇔ δ(x) < |x−y|
2

].

Setting ε := 1
4
|x− y| we obtain 2ε = |x−y|

2
> δ(x). Let x′ ∈ ∂Ω be a point

with |x− x′| = δ(x) and denote x0 := x′ + ε
5

(x′−x)
|(x′−x)| . Since |x− x′| = δ(x)

and Ω is convex, the open half-space {p ∈ Rd | 〈p− x′, x0− x′〉 > 0} does
not intersect Ω. Therefore, B(x0,

ε
5
) ∩ Ω = {x′}.

We show that the estimate |x−z| ≤ 3ε holds for z ∈ Γ, Γ := B(x0,
11
5
ε)∩

Ω. Denote by z′ the projection of z onto the line joining x and x′, i.e.
z − x = (z − z′) + (z′ − x), 〈z − z′, z′ − x〉 = 0 (see Figure 4.1). Now
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xy

x
′

x0

Ω

Γ

z

z
′

Figure 4.1

|z − x| =
√
|z′ − x|2 + |z − z′|2 ≤

√
(2ε)2 +

(
11

5
ε

)2

=

√
4ε2 +

121

25
ε2

< 3ε.

Since |x− y| = 4ε, this implies

1

4
|x− y| = ε < |x− y| − |x− z| ≤ |z − y|, ∀z ∈ Γ.

So, the function G(·, y) is harmonic in Γ for our fixed y and satisfies the
following boundary conditions

G(z, y) = 0, ∀z ∈ ∂Γ ∩ ∂Ω,

G(z, y) ≤ K|z − y|2−d ≤ K∗|x− y|2−d

≤: K̃|x− y|2−d, ∀z ∈ ∂Γ \ ∂Ω.

We construct the following comparison function

H(z) := hε(z − x0)K̃|x− y|2−d, z ∈ Γ.
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By construction H(z) is harmonic in Γ with

H(z) ≡ K̃|x− y|2−d ∀z ∈ ∂Γ \ ∂Ω,

H(z) ≥ 0, ∀z ∈ ∂Γ ∩ ∂Ω.

So, by comparison principle we have

G(z, y) ≤ H(z) = hε(z − x0)K̃|x− y|2−d, z ∈ Γ.

Particularly, since x ∈ Γ we also have

G(x, y) ≤ hε(x− x0)K̃|x− y|2−d ≤ κK̃
|x− x0| − ε/5

ε
|x− y|2−d

= κK̃
δ(x)

ε
|x− y|2−d ≤ K∗δ(x)|x− y|1−d.

J

4.12 Motivation.
We now prove the previous result in a fashion which is more suitable for the discrete
case.
I
〈1 〉 Auxiliary function

We construct a harmonic function to be used later in a comparison argument.
Denote Qr1,r2 := {x ∈ Rd | r1 ≤ |x|∞, |x|1 ≤ r1 + r2}, r2 := 1

2
√
d
, r1 := 1

2
√
dd

and let h : Qr1,r2 → R be the solution of

−∆h = 0, x ∈ Qr1,r2 ,

h(x) = 0, |x|∞ = r1,

h(x) = 1, |x|1 = r1 + r2.

The choice of r1 and r2 implies that Qr1,r2 is a domain. Really, since from
|x|∞ = r1 follows |x|1 ≤ dr1, it is sufficient to have

dr1 < r1 + r2 ⇔ r1 <
r2

d− 1
:⇔ 1

2
√
dd

<
1

2
√
d(d− 1)

.

From the classical Schauder ([23], Ch. 6) estimates we have

h(te1) ≤ κ(t− r1), ∀t ∈ [r1, r1 + r2],

with some κ > 0. By scaling

Qε
r1,r2

:= εQr1,r2 = {εx | x ∈ Qr1,r2}

the corresponding function hε : Qε
r1,r2
→ R, hε(x) := h

(
x
ε

)
satisfy

hε(te1) = h

(
te1

ε

)
≤ κ

(
t

ε
− r1

)
= κ

(
t− r1ε

ε

)
, ∀t ∈ [εr1, ε(r1 + r2)].
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〈2 〉 Estimate
To prove the estimate we fix a point y ∈ Ω and consider two cases

(i) |x− y|1 ≤ 4
√
dδ(x). In this case we have

G(x, y) ≤ K|x− y|2−d = K|x− y|1−d|x− y|
≤ K∗|x− y|1−d|x− y|1 ≤ K|x− y|1−dδ(x).

(ii) |x− y|1 > 4
√
dδ(x) [⇔ δ(x) < |x−y|1

4
√
d

].
Setting

ε := |x− y|1 > 4
√
dδ(x)⇒ r2ε >

4
√
d

2
√
d
δ(x) = 2δ(x).

Let x′ ∈ ∂Ω be a point with |x−x′| = δ(x) and denote x0 := x′+r1ε
(x′−x)
|x−x′| .

Let O ∈ SO(d) be a rigid rotation that transforms the vector x0 − x′ to
r1εe1. We now define

Cr(z) := {y ∈ Rd | |O(y − z)|1 < r} = {y ∈ Rd | |O(y)|1 < r}+ z,

Qr(z) := {y ∈ Rd | |O(y − z)|∞ < r} = {y ∈ Rd | |O(y)|∞ < r}+ z.

By construction and convexity we have (see Figure 4.2).

xy

x
′

x0

Ω

Γ

z

z
′

Qr1ε

C(r1+r2)ε

Figure 4.2

Qr1ε ∩ Ω = ∅,
Qr1ε ∩ Ω ⊃ {x′}.
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We now show that the estimate |x − z| ≤ ε
√

2r2 holds for z ∈ Γ, Γ :=
C(r1+r2)ε(x0)∩Ω. Denote by z′ the projection of z onto the line joining x
and x′, i.e. {

(z − z′) + (z′ − x) = z − x,
〈z − z′, z′ − x〉 = 0.

By geometrical properties of C(r1+r2)ε we obtain

|z − x| =
√
|z′ − x|2 + |z − z′|2 ≤

√
(r2ε)2 + (r2ε)2 =

√
2r2ε.

We now have

|z − y| ≥ |x− y| − |x− z| ≥ 1√
d
|x− y|1 − |x− z| ≥

1√
d
ε−
√

2r2ε

= ε

(
1√
d
−
√

2

2
√
d

)
︸ ︷︷ ︸

:=γ>0

= γε = γ|x− y|1 ≥ γ|x− y|

for all z ∈ Γ. So, the function G(·, y) is harmonic in Γ for our fixed y and
satisfies the following boundary condition

G(z, y) = 0, ∀z ∈ ∂Γ ∩ ∂Ω,

G(z, y) ≤ K|z − y|2−d ≤: K̃|x− y|2−d, ∀z ∈ ∂Γ \ ∂Ω.

We construct the following comparison function

H(z) := hε(O(z − x0))K̃|x− y|2−d, z ∈ Γ.

By construction H(z) is harmonic in Γ with

H(z) ≥ 0, z ∈ ∂Γ ∩ ∂Ω,

H(z) ≡ K̃|x− y|2−d, z ∈ ∂Γ \ ∂Ω.

So, by comparison principle we have

G(z, y) ≤ H(z) = hε(z − x0)K̃|x− y|2−d, z ∈ Γ.

Particularly, since x ∈ Γ and moreover O(x − x0) ∈ span{e1}, we also
have

G(x, y) ≤ hε(O(x− x0))K̃|x− y|2−d ≤ κK̃
[
|x− x0| − r1ε

ε

]
|x− y|2−d

≤ κK
δ(x)

ε
|x− y|2−d ≤ κKδ(x)|x− y|1−d |x− y|

|x− y|1︸ ︷︷ ︸
≤1

≤ K∗δ(x)|x− y|1−d.
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4.13 Lemma (Estimates for the derivatives of Green’s function, [40]).
Let Ω ⊂ Rd be an open, bounded and convex set. Let G be the Green’s function for
Ω. Then the estimate holds

|∂xiG(x, y)| ≤ K|x− y|1−d, ∀(x 6= y) ∈ Ω, 1 ≤ i ≤ d.

I
〈1 〉 Case distinction

Let y be arbitrary but fixed. As above we denote δ(x) := dist(x, ∂Ω) and
consider two cases

〈2 〉 |x− y| ≥ δ(x)

Denote R := δ(x)
2

. The function G(·, y) is harmonic in B(x,R) since B(x,R) b
Ω and |x− y| ≥ 2R. We can therefore write

|∂xiG(x, y)| = 1

ωdRd

∣∣∣∣∫
B(x,R)

∂ξiG(ξ, y) d ξ

∣∣∣∣
≤ 1

ωdRd

∫
∂B(x,R)

G(ξ, y)
|ξi − xi|

R
dσξ

≤ 1

ωdRd

∫
∂B(x,R)

G(ξ, y) dσξ.

(∗)

Since for ξ ∈ ∂B(x,R)

δ(ξ) ≤ δ(x) + |x− ξ| = 3R,

|ξ − y| ≥ |x− y| − |x− ξ| = |x− y| −R ≥ |x− y| − |x− y|
2

=
|x− y|

2
,

using Lemma 4.11 we obtain

|∂xiG(x, y)| ≤ K

ωdRd

∫
∂B(x,R)

|ξ − y|1−dδ(ξ) dσξ

≤ K∗

ωdRd
|x− y|1−dR

∫
∂B(x,R)

dσξ

≤ K|x− y|1−d.

〈3 〉 |x− y| < δ(x)

Denote R := |x−y|
2

. Once again G(·, y) is harmonic in B(x,R) b Ω. Since
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|ξ − y| ≥ |x − y| − |x − ξ| = |x−y|
2

for ξ ∈ ∂B(x,R), using (∗) together with
Lemma 4.9 we obtain

|∂xiG(x, y)| ≤ 1

ωdRd

∫
∂B(x,R)

G(ξ, y) dσξ

≤ K

ωdRd

∫
∂B(x,R)

|ξ − y|2−d dσξ

≤ K∗

ωdRd
|x− y|2−ddωdRd−1

≤ K
|x− y|2−d

R
= K∗|x− y|1−d.

J

4.2 Riesz potentials

4.14 Motivation.
In order to obtain the Lp estimates for Green’s function we introduce the following
potential operator. Lemma 4.17, Theorem 4.18 and Theorem 4.5 are taken from
[23], Ch. 7. The proofs of the first two results will be translated into discrete setting
in Chapter 7.

4.15 Definition (Riesz Potential Operator).
The Riesz Potential Operator is defined by

(Vµf)(x) =

∫
Ω

|x− y|d(µ−1)f(y) d y

with µ ∈ (0, 1] and Ω ⊂ Rd, |Ω| := meas(Ω) <∞.

4.16 Motivation (Well-Posedness and Continuity).
Our next aim will be to show that Vµ is well-posed and continuous as a mapping
from Lp(Ω) into Lq(Ω) for some p, q ≥ 1. In order to apply the Young inequality for
convolution we need the following lemma.

4.17 Lemma (Lp estimate for the Riesz Potential).
Let Ω ⊂ Rd be bounded and x ∈ Ω be fixed. Then h(y) := |x− y|d(µ−1) ∈ Lp(Ω) for
all 1 ≤ p < 1

1−µ , µ < 1 and all 1 ≤ p ≤ ∞, µ = 1, with

‖h‖p ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ

where δ := 1− p−1.
I
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〈1 〉 L1 estimate
Since h(y) is radial-symmetric around x and decreasing along axes of sym-
metry, changing Ω to a ball B(x,R) with wdR

d = |B(x,R)| = |Ω| will not
decrease the integral:∫

Ω

|x− y|d(µ−1) d y ≤
∫
B(x,R)

|x− y|d(µ−1) d y = dωd

∫ R

0

rd(µ−1)rd−1 d r

=
ωdR

dµ

µ
=
ω1−µ
d |Ω|µ

µ
.

〈2 〉 Lp estimate
The assumption 1 ≤ p < 1

1−µ , µ < 1 implies that d(µ − 1)p = d(µ′ − 1) for

some µ′ ∈ (0, 1), since

µ− 1 ≥ p(µ− 1) > −1⇒ 1 > µ ≥ µ′ = p(µ− 1) + 1 > 0.

We therefore have

‖h‖p ≤

(
ω1−µ′
d |Ω|µ′

µ′

)1
p

= (p(µ− 1) + 1)−
1
pω1−µ

d |Ω|µ−1+
1
p

=

(
µ− 1 + 1− δ

1− δ

)δ−1

ω1−µ
d |Ω|µ−δ =

(
1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ

for µ ∈ (0, 1) and

‖h‖p = |Ω|1/p = |Ω|1−(1−1/p), 1 ≤ p <∞,
‖h‖∞ = 1 = |Ω|0

for µ = 1.
J

4.18 Theorem (Lp estimates for the Riesz potential operator).
The operator Vµ maps Lp(Ω), 1 ≤ p ≤ ∞ continuously into Lq(Ω) for any q, 1 ≤
q ≤ ∞ satisfying

0 ≤ δ :=
1

p
− 1

q
< µ.

Under this assumption we have

‖Vµf‖q ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ‖f‖p, ∀f ∈ Lp(Ω).

I
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〈1 〉 µ = 1
For 1 ≤ q <∞ we get

‖V1f‖q =

(∫
Ω

∣∣∣∣∫
Ω

f(y) d y

∣∣∣∣q dx

) 1
q

≤
(∫

Ω

‖f‖q1 dx

) 1
q

= ‖f‖1|Ω|
1
q

p>1

≤ |Ω|
1
q

+ 1
p′ ‖f‖p = |Ω|1−δ‖f‖p,∀∀f ∈ Lp(Ω)

for all 1 ≤ p ≤ ∞ and for q =∞ we get

‖V1f‖∞ ≤ ‖f‖1

p>1

≤ |Ω|1/p′‖f‖p, ∀f ∈ Lp(Ω)

also for all 1 ≤ p ≤ ∞.

〈2 〉 µ ∈ (0, 1)
Denote r := 1

1−δ . From 1 ≥ 1−δ > 1−µ > 0 we obtain 1 ≤ r < 1
1−µ , implying

h(y) := |x− y|d(µ−1) ∈ Lr(Ω), x ∈ Ω

with uniform in x bound

‖h‖r ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ =: C.

Writing

h|f | = hr/q|f |p/q · hr(1−1/p) · |f |pδ

where
r

q
+ r

(
1− 1

p

)
= r(1− δ) = 1,

p

q
+ pδ = p

(
1

q
+

1

p
− 1

q

)
= 1

we can apply the Hölder inequality with three multipliers (assuming q < ∞
and w.l.o.g ‖f‖p 6= 0)

I := |(Vµf)(x)| ≤
∫

Ω

h(x− y)|f(y)|d y

≤
{∫

Ω

hr(x− y)|f(y)|p d y

}1/q {∫
Ω

hr(x− y) d y

}1−1/p{∫
Ω

|f(y)|p d y

}δ
.
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Since the last two multipliers can be estimated independently of x we obtain

‖Vµf‖q ≤
{∫

Ω

∫
Ω

hr(x− y)|f(y)|p d y dx

}1/q

Cr−r/p‖f‖pδp

=

{∫
Ω

∫
Ω

hr(y − x) dx|f(y)|p d y

}1/q

Cr−r/p‖f‖pδp

≤ sup
y∈Ω

{∫
Ω

hr(y − x) dx

}1/q

‖f‖p/qp Cr−r/p‖f‖pδp

= Cr(1−1/p+1/q)‖f‖pδ+p/qp =

(
1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ‖f‖p.

We have used h(x− y) = h(y − x) and the Fubini-Tonelli theorem.
For q =∞ we have r = p′ and therefore

‖Vµf‖∞ ≤ ‖h‖r‖f‖p ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
d |Ω|µ−δ‖f‖p.

J

4.19 Remark (Lp estimates for the Riesz potential operator).
The previous result still holds in the case δ = µ for p > 1 (the proof requires the
classical integral Hardy-Littlewood inequality [26]). For the corresponding result
with Ω = Rd see Chapter 5 in [38]. The same remark applies to the case dp

d+p
= q in

the following theorem. The questions concerning the regularity of the boundary are
discussed in [14] and [24].

4.3 Linear a priori estimate

4.20 Theorem (Regularity Estimates).
Let Ω ⊂ Rn be a bounded and convex domain. Let f ∈ Lq(Ω), q > dp

d+p
for some

1 < p <∞. Then, there exists a unique weak solution u ∈ W 1,p
0 (Ω) of the boundary-

value problem

−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

and it holds

‖u‖1,p ≤ C(d, p, q,Ω)‖f‖q,

with some C(d, p, q,Ω) > 0.
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I
〈1 〉 Restricting q

Without loss of generality we can assume q ∈ ( dp
d+p

, p] 6= ∅, since

‖f‖q ≤ K(q, p,Ω)‖f‖p ≤ K∗(q, p, q̃,Ω)‖f‖q̃

for all q ≤ p < q̃.

〈2 〉 Estimates for Green’s function
We want to show that under our assumption f 7→ G∗ f is a bounded operator
from Lq(Ω) to W 1,p(Ω). Since all finite-dimensional norms are equivalent, it
is sufficient to show that

‖G ∗ f‖p ≤ K‖f‖q, ∀f ∈ Lq(Ω),

‖∂i(G ∗ f)‖p ≤ K‖f‖q, ∀f ∈ Lq(Ω), 1 ≤ i ≤ d.

Furthermore, Lemmata 4.9 and 4.13 yield∣∣∣∣∫
Ω

G(x, y)f(y) d y

∣∣∣∣ ≤ ∫
Ω

G(x, y)|f(y)|d y ≤ K

∫
Ω

|f(y)|
|x− y|d−2

d y,∣∣∣∣∫
Ω

∂xiG(x, y)f(y) d y

∣∣∣∣ ≤ ∫
Ω

|∂xiG(x, y)||f(y)|d y ≤ K

∫
Ω

|f(y)|
|x− y|d−1

d y,

i.e. it is enough to show that V1/d and V2/d have the desired properties. By
Lemma 4.18 this is the case, if

0
!

≤ 1

q
− 1

p

!
<

1

d
<

2

d
.

From our assumption we have

0 ≤ 1

q
− 1

p
<
d+ p

dp
− 1

p
=

1

d
.

〈3 〉 Approximating solution
We approximate f with (fk)k∈N ⊆ C∞0 (Ω) in Lq,

‖f − fk‖q → 0 as k →∞.

By the classical existence result 4.5 and the representation theorem 4.8 there
exist (uk)k∈N ⊆ C2(Ω) ∩ C(Ω), solutions of

−∆uk(x) = fk(x), x ∈ Ω,

uk(x) = 0, x ∈ ∂Ω.
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with uk = G ∗ fk. The a priori estimate

‖uk‖1,p ≤ C(d, p, q,Ω)‖fk‖q

yields the uniform boundedness of uk,k ∈ N, implying the existence of a weak
limit uk ⇀ u in W 1,p(Ω) as k →∞. Passing to the limit in the weak formula-
tion of our problem, we see that u is indeed a weak solution.

〈4 〉 Uniqueness
Suppose that u1, u2 ∈ W 1,p

0 (Ω) are two weak solutions for our problem. Then
u = u1 − u2 satisfies ∫

Ω

∇u · ∇ϕdx = 0, ∀ϕ ∈ C∞0 (Ω)

By Hölder inequality this holds also for all ϕ ∈ W 1,p′

0 (Ω). For u ∈ Lp(Ω)

we have |u|p−2u ∈ Lp′(Ω). From 〈2 〉 we can choose ϕ ∈ W 1,p′

0 (Ω) as a weak
solution of

−∆ϕ = |u|p−2u, in Ω

ϕ = 0, on ∂Ω.

Testing the weak formulation of this equation against u ∈ W 1,p
0 (Ω) we obtain

0 =

∫
Ω

∇u · ∇ϕdx =

∫
Ω

|u|p dx⇒ u = 0.

J
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Chapter 5

Discrete Laplace Operator

5.1 Discretizations

5.1 Convention.
We will always assume that the dimension of the underlying space is d ≥ 3.

5.2 Notation (Grid, Discrete Neighbors).
For 0 < h ≤ 1 we denote by Gh := {hk | k ∈ Zd} the equidistant grid on Rd with
grid spacing h. We call subsets of Gh discrete sets. For x ∈ Gh we define

Nh(x) := {x± hei | 1 ≤ i ≤ d} ⊂ Gh

the set of discrete neighbors. Note that x 6∈ Nh(x).

5.3 Remark (Discrete Laplace).
We want to use the classical discretization of the Laplace operator which determines
the way we define Nh(x) and, successively, other “discrete topological” concepts. For
other discretizations and operators we may need to use different definitions of the
discrete neighborhood.

5.4 Motivation (Discretization, Recovery).
We will now consider the two following questions concerning discretization: firstly,
how general sets in Rd are discretized, and, secondly, which sets can be uniquely
recovered from their discretizations.

5.5 Notation (Domain Discretization).
Let Ω ⊂ Rd be a bounded domain and let h > 0. For x ∈ Ω ∩ Gh and y ∈ Nh(x) we
set

nΩ(x, y) := x+ α(y − x),

where α := sup{γ ∈ [0, h] | x+sγ(y−x) ∈ Ω ∀s ∈ [0, 1)}. We denote for x ∈ Ω∩Gh

NΩ
h (x) := {nΩ(x, y) | y ∈ Nh(x)}
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the set of discrete neighbors w.r.t. Ω.
We define the discretized interior by

(Ω)
◦

h := {x ∈ Ω ∩ Gh | Nh(x) = NΩ
h (x)}.

Further, we define the discretized boundary layer by

(Ω)′h := (Ω ∩ Gh) \ (Ω)
◦

h.

In other words, Ω∩Gh consists of two types of points: those which can be connected
with all their discrete neighbors by open line segments lying fully in Ω and those
which cannot. We also define the discretized boundary by

∂hΩ := ∪x∈Ω∩Gh ∪y∈Nh(x) {nΩ(x, y) | nΩ(x, y) ∈ ∂Ω},

i.e. in general ∂hΩ 6⊂ Gh and we set

clh Ω := (Ω ∩ Gh) ∪ ∂hΩ ⊂ Ω.

for the discretized closure.

5.6 Remark (Discrete closure).
Take note that in general Ω ∩ Gh 6⊂ clh Ω 6⊂ Gh. First, consider Ω = (−h, h)2 ⊂ R2.

Then (Ω)
◦

h = {(0, 0)}, (Ω)′h = ∅ and ∂hΩ = {(0,±h), (±h, 0)}. This shows that

{(h, h)} ⊂
(
Ω ∩ Gh

)
\ (clh Ω) 6= ∅.

Now, let Ω := {x ∈ R2 | |x| < 2h}. We have (Ω)
◦

h = {(0, 0), (±h, 0), (0,±h)},
(Ω)′h = {(±h,±h)} (4 points) and

∂hΩ = {(0,±2h), (±2h, 0), (±h,±
√

3h), (±
√

3h,±h)} 6⊂ Gh.

5.7 Notation (Discrete Sets).
Let Ωh ⊂ Gh be bounded. We denote

Ωh := ∪x∈Ωh(Nh(x) ∪ {x}),
∂Ωh := Ωh \ Ωh.

the discrete closure and the discrete boundary, correspondingly.

5.8 Remark (Analogy with open sets).
Take note that for bounded discrete sets one always has ∂Ωh∩Ωh = ∅ and Ωh ( Ωh.

5.9 Convention.
To avoid confusion we use the following convention: discrete sets will always be
denoted with the grid spacing in the subscript.
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5.10 Definition (Admissible Domains, Grid Spacing and Discrete Sets).
If for Ω :=

∏d
i=1(ai, bi), ai, bi ∈ R, ai < bi, 1 ≤ i ≤ d holds

{a1, b1} × · · · × {ad, bd} ⊂ Gh,

i.e. if the corners of Ω belong to Gh, then the domain Ω is called admissible w.r.t.
h (if h is considered to be fixed) or the grid spacing h is called admissible for Ω (if
Ω is considered to be fixed).

Take note that not every rectangular domain possesses an admissible grid spacing
(e.g. (0, 1)× (0,

√
3) ⊂ R2). If Ω is admissible w.r.t. h, then (Ω)′h = ∅ and defining

Ωh := (Ω)
◦

h

we get
∂Ωh = ∂hΩ,

Ωh = clh Ω.

Moreover, as long as Ωh 6= ∅ we can recover

Ω =
d∏
i=1

(
min
x∈Ωh

xi,max
x∈Ωh

xi

)
.

In general, we call a non-void discrete set Ωh ⊂ Gh admissible if Ωh = (Ω)
◦

h or,
equivalently Ωh = clh Ω for some admissible (w.r.t. h) domain Ω; in this case we
define the full discretized closure and the full discrete boundary by

cl+h Ω := Ω ∩ Gh,
∂̂Ωh := ∂Ω ∩ Gh.

5.11 Notation (Faces).
Let Ωh ⊂ Gh be admissible. We denote by

∂+Ωh := ∪di=1∂
+
i Ωh

∂+
i Ωh := ∂Ωh ∩ {xi = max

x∈Ωh

xi}

discrete front face (in the direction i) and by

∂−Ωh = ∪di=1∂
−
i Ωh

∂−i Ωh = ∂Ωh ∩ {xi = min
x∈Ωh

xi}

discrete back face (in the direction i).
Take note that

∂+
i Ωh ∩ ∂+

j Ωh = ∂−i Ωh ∩ ∂−j Ωh = ∂+
i Ωh ∩ ∂−j Ωh = ∅
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for 1 ≤ i 6= j ≤ d.
Analogously are defined

∂̂+Ωh := ∪di=1∂̂
+
i Ωh,

∂̂−Ωh := ∪di=1∂̂
−
i Ωh,

∂̂+
i Ωh := ∂̂Ωh ∩ {xi = max

x∈Ωh

xi},

∂̂−i Ωh := ∂̂Ωh ∩ {xi = min
x∈Ωh

xi}.

5.2 Discrete Green’s function

5.12 Definition (Finite difference quotients).
Let Ωh ⊂ Gh be admissible and let u : Ωh → R. The forward respectively backward
finite difference quotient are defined as

D+
i u(x) :=

u(x+ eih)− u(x)

h
, x ∈ Ωh \ ∂+

i Ωh,

D−i u(x) :=
u(x)− u(x− eih)

h
, x ∈ Ωh \ ∂−i Ωh.

In the case of several variables we write D+
xi
u(x, y).

5.13 Definition (Discrete Laplace Operator).
Let Ωh ⊂ Gh, x ∈ Ωh and u : Ωh → R. The discrete Laplace operator is defined by

∆hu(x) :=
1

h2

−2du(x) +
∑

y∈Nh(x)

u(y)

 .

5.14 Definition (Discretely connected component).
Two points x, y in Ωh ⊂ Gh are discretely path-connected if there is a sequence
x = x1, x2, . . . , xn = y, n ∈ N such that x2, . . . , xn−1 ∈ Ωh and xi+1 ∈ Nh(xi),
1 ≤ i ≤ n− 1. This defines an equivalence relation that divides Ωh into equivalence
classes which we call discretely connected components. A discrete set consisting of a
single discretely connected component is called discrete-connected.

5.15 Lemma (Discrete Maximum Principle).
Let Ωh ⊂ Gh, u : Ωh → R and λ ≥ 0 be such that

−∆hu(x) + λu(x) ≤ 0, x ∈ Ωh.

58



If maxx∈Ωh
u(x) =: u(x̄) ≥ 0 with some x̄ ∈ Ω, then u ≡ u(x̄) on the discretely

connected component of Ωh containing x̄. If Ωh is bounded with

u(x) ≤ 0, x ∈ ∂Ωh,

then u(x) ≤ 0, x ∈ Ωh.

I
For the first part, assume that maxx∈Ωh

u(x) =: u(x̄) ≥ 0 for some x̄ ∈ Ωh. Since

(−∆h + λ)u(x̄) =
1

h2

(2d+ λh2)u(x̄)−
∑

y∈Nh(x̄)

u(y)

 ≥ 1

h2

∑
y∈Nh(x̄)

[u(x̄)− u(y)] ,

we obtain ∑
y∈Nh(x̄)

[u(x̄)− u(y)] ≤ 0.

On the other hand, since u(x̄) ≥ u(y) for all y ∈ Ωh, we obtain u(y) = u(x̄) for
y ∈ Nh(x̄). Repeating this argument, we see that u is constant (and non-negative)
on the discretely connected component of Ωh which contains x̄.
For the second part, assume u(x̄) > 0 and let z ∈ ∂Ωh belong to the discretely
connected component containing x̄. The first part yields u(z) > 0, a contradiction.
J

5.16 Theorem (Solvability for the discrete Poisson equation).
Let Ωh ⊂ Gh be bounded with f : Ωh → R, g : ∂Ωh → R. Then there is a unique
solution u : Ωh → R to discrete Poisson equation

−∆hu(x) = f(x), x ∈ Ωh,

u(x) = g(x), x ∈ ∂Ωh.

I
This is a linear system with equal number of variables and equations. The

solvability is therefore equivalent to the uniqueness of the trivial solution for

−∆hu(x) = 0, x ∈ Ωh,

u(x) = 0, x ∈ ∂Ωh.

This follows from the Discrete Maximum Principle 5.15. See Ch. 4 from [25]) for
numerical treatment.
J
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5.17 Notation (Discrete δ-function).
The function δh : Gh → R is defined by

δh(x) :=

{
1
hd
, x = 0,

0, x 6= 0.

We set δ(x) := δ1(x).

5.18 Definition (Discrete Green’s function).
Let Ωh be a bounded subset of Gh. We define the discrete Green’s function (for zero
boundary conditions) G : Ωh ×Ωh → R as the solution of the following DBVP with
fixed y ∈ Ωh

−∆h,xG(x, y) = δh(x− y), x ∈ Ωh,

G(x, y) = 0, x ∈ ∂Ωh.

5.19 Lemma (Representation formula).
Let Ωh be a bounded subset of Gh and let G : Ωh × Ωh → R be the corresponding
Green’s function. Let u : Ωh → R be an arbitrary grid function with u|∂Ωh

= 0.
Then the following representation holds

u(x) =
∑
y∈Ωh

G(x, y)[−∆hu(y)]hd, x ∈ Ωh.

I
We denote the right hand side of the representation by v. By direct calculations

we obtain

−∆hv(x) =
∑
y∈Ωh

[−∆h,xG(x, y)][−∆h,yu(y)]hd =
∑
y∈Ωh

δh(x− y)[−∆y,hu(y)]hd

= −∆hu(x), x ∈ Ωh,

v(x) =
∑
y∈Ωh

0 · [−∆h,yu(y)]hd = 0, x ∈ ∂Ωh.

Since −∆h[v(x)− u(x)] = 0 for x ∈ Ωh and v(x) = u(x) = 0 for x ∈ ∂Ωh, the
discrete maximum principle 5.15 yields v(x) ≡ u(x) in Ωh.
J

5.3 Comparison principle

5.20 Motivation.
We want to obtain a result which represents a discrete generalization of the mean
value property for harmonic functions (see [23]), namely an estimate for a discrete
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difference quotient of a grid function in the center of a | · |∞ ball given the boundary
values of the function, the values of the discrete Laplacian in the ball and the radius
of the ball.

Such a result was obtained by Brandt in ([10]). This paper deals rigorously only
with the case of the central finite difference quotients with a concluding remark that
analogous estimates for the forward f.d.q. can be obtained in a similar manner.

We therefore include full proofs for the forward f.d.q. case and, for the sake of
completeness, also the proofs for the central f.d.q. case. The proofs in the rest of
this chapter are essentially due to Brandt.

5.21 Definition (Nearest neighbor to a boundary point).
Let Ωh ⊂ Gh be admissible. For x ∈ ∂Ωh we denote x̌ ∈ Ωh with |x− x̌| = h. Since
Ωh is admissible, x̌ is unique.

5.22 Notation (Disjoint union).
We write C = A tB for disjoint union, i.e. for C = A ∪B with A ∩B = ∅.

5.23 Lemma (Discrete Maximum Principle for admissible set).
Let Ωh ⊂ Gh be admissible, with u : Ωh → R such that

−∆hu(x) ≤ 0, x ∈ Ωh,

u(x) ≤ 0, x ∈ Γ′h,

u(x) + u(x̌) ≤ 0, x ∈ Γ′′h,

where Γ′h t Γ′′h = ∂Ωh. Then

u(x) ≤ 0, x ∈ Ωh.

I
Let, by contradiction, u(x̄) = maxx∈Ωh u(x) > 0 with some x̄ ∈ Ωh. Exactly as in

the proof of the Discrete Maximum Principle 5.15, this implies u(y) > 0 in some
boundary point y ∈ ∂Ωh. If y ∈ Γ′h we get a direct contradiction. Otherwise,
y ∈ Γ′′h and by the construction also u(y̌) > 0, i.e.

u(y) + u(y̌) > 0

again a contradiction.
J

5.24 Remark (Generalization).
In the previous result the assumption of admissibility can be replaced with the
assumption that x 7→ x̌ is uniquely defined only on Γ′′h, since the proof does not
change in this case.
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5.25 Theorem (Solvability for generalized boundary condition).
Let Ωh ⊂ Gh be admissible with ∂Ωh = Γ′h t Γ′′h. Further, let f : Ωh → R and
g : ∂Ωh → R. Then there exists a unique solution to

−∆hu(x) = f(x), x ∈ Ωh,

u(x) = g(x), x ∈ Γ′h,

u(x) + u(x̌) = g(x), x ∈ Γ′′h.

I
Replace Lemma 5.15 with Lemma 5.23 in the proof of Theorem 5.16.
J

5.26 Lemma (Comparison principle).
Let Ωh ⊂ Gh be admissible with u : Ωh → R such that

ν1 ≤ −∆hu(x) ≤ ν2, x ∈ Ωh

µ1 ≤ u(x) ≤ µ2, x ∈ Γ′h
2µ1 ≤ u(x) + u(x̌) ≤ 2µ2, x ∈ Γ′′h,

where Γ′h t Γ′′h = ∂Ωh and ν1,2, µ1,2 ∈ R. Then if Ωh = clh
(
(−R,R)d

)
we have

µ1 +
ν1

2
(R2 − x2

i ) ≤ u(x) ≤ µ2 +
ν2

2
(R2 − x2

i ), ∀x ∈ Ωh, 1 ≤ i ≤ d

and if Ωh = clh
(
(−R,R)d ∩ {xi > 0}

)
we have

µ1 +
ν1

2
xi(R− xi) ≤ u(x) ≤ µ2 +

ν2

2
xi(R− xi), ∀x ∈ Ωh, 1 ≤ i ≤ d.

I
〈1 〉 First reduction

Let i ∈ {1, . . . , d} be arbitrary, but fixed. We denote

v(x) :=


ν2

2
(R2 − x2

i ) if Ωh = clh
(
(−R,R)d

)
,

ν2

2
xi(R− xi) if Ωh = clh

(
(−R,R)d ∩ {xi > 0}

)
.

It is only necessary to prove the estimates from above using the upper bounds
from the assumptions. Considering −u we then obtain the corresponding
estimates from below.

〈2 〉 Second reduction
It is also sufficient to show that

−∆hw(x) ≤ ν2, x ∈ Ωh,

w(x) ≤ 0, x ∈ Γ′h,

w(x) + w(x̌) ≤ 0, x ∈ Γ′′h
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for w : Ωh → R implies
w(x) ≤ v(x),

since plugging in w := u− µ2 yields the previous claim.

〈3 〉 Comparison function
Direct calculation yields

−∆hv(x) =
ν2

2
∆h

(
x2
i

)
=
ν2

2

(xi + h)2 − 2x2
i + (xi − h)2

h2
= ν2, x ∈ Ωh,

since constant and linear functions are discrete harmonic. This implies

−∆h[w(x)− v(x)] ≤ 0, x ∈ Ωh

and since v(x) ≥ 0, x ∈ Ωh also

w(x)− v(x) ≤ 0, x ∈ Γ′h,

[w(x)− v(x)] + [w(x̌)− v(x̌)] ≤ 0, x ∈ Γ′′h.

Applying Lemma 5.23 we get the claim.
J

5.4 Inner estimates for forward differences

5.27 Notation.
We introduce the following notation

(x1, xi = a, xd) := (x1, . . . , xi−1, a, xi+1, . . . , xd).

5.28 Lemma (Vanishing boundary values estimate, Forward Differences).
Let Ωh ⊂ Gh, Ωh = clh((−R,R)d ∩ {xi > −R + h}) be admissible with R > h and
i ∈ {1, . . . , d}. Let ν > 0 and let u : Ωh → R satisfy

|∆hu(x)| ≤ ν, x ∈ Ωh,

u(x) = 0, x ∈ ∂Ωh.

Then
|D+

i u(0)| ≤ νR.

I
We define Gh := clh

(
(−R,R)d ∩ {xi > 0}

)
and U : Gh → R

U(x) := 1
2

[u(x)− u(x1, xi = −xi + h, xd)] ,
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implying

U(x1, xi = h, xd) =
h

2
D+
i u(x1, xi = 0, xd), x ∈ Ωh.

Moreover, we have for x ∈ ∂−i Gh

I := 2 [U(x) + U(x̌)] = 2 [U(x1, xi = 0, xd) + U(x1, xi = h, xd)]

= u(x1, xi = 0, xd)− u(x1, xi = h, xd) + u(x1, xi = h, xd)− u(x1, xi = 0, xd) = 0

and for x ∈ ∂+
i Gh

U(x) = U(x1, xi = R, xd) =
1

2
[u(x1, xi = R, xd)− u(x1, xi = −R + h, xd)] = 0.

Finally, for x ∈ ∂Gh \ ∂iGh holds

U(x) = 0,

since x ∈ ∂jGh ⊂ ∂jΩh implies (x1, xi = −xi + h, xd) ∈ ∂jΩh, 1 ≤ i, j ≤ d, i 6= j.
Since |∆hU | ≤ ν on Gh, we can apply Lemma 5.26 on this set, yielding∣∣D+

i u(x1, xi = 0, xd)
∣∣ =

2

h
|U(x1, xi = h, xd)| ≤

2

h

ν

2
h(R− h) ≤ νR,

for x ∈ Gh ⊂ Ωh. Since hei ∈ Gh this estimate also holds for D+
i u(0).

J

5.29 Lemma (Simple harmonic estimate, Forward Differences).
Let Ωh ⊂ Gh, Ωh := clh

(
(−R,R)d ∩ {xi > −R + h}

)
be admissible with R > h. Let

µ > 0 and let u : Ωh → R satisfy

−∆hu(x) = 0, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂iΩh,

u(x) = 0, x ∈ ∂Ωh \ ∂iΩh.

Then ∣∣D+
i u(0)

∣∣ ≤ 2
µ

R
.

I
Define Gh := clh

(
(−R,R)d ∩ {xi > 0}

)
, and U : Gh → R

U(x) := 1
2

[u(x)− u(x1, xi = −xi + h, xd)] ,

then, for x ∈ Gh we have

∆hU(x) = 0,

U(x1, xi = h, xd) = h
2
D+
i u(x1, xi = 0, xd).
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Moreover, we have for x ∈ ∂−i Gh

I := 2 [U(x) + U(x̌)] = 2 [U(x1, xi = 0, xd) + U(x1, xi = h, xd)]

= u(x1, xi = 0, xd)− u(x1, xi = h, xd) + u(x1, xi = h, xd)− u(x1, xi = 0, xd) = 0
(1)

and for x ∈ ∂+
i Gh

|U(x)| = |U(x1, xi = R, xd)| = 1
2
|u(x1, xi = R, xd)− u(x1, xi = −R + h, xd)| ≤ µ.

(2)
Finally, for ∂Gh \ ∂iGh holds

U(x) = 0, (3)

since x ∈ ∂jGh ⊂ ∂jΩh implies (x1, xi = −xi + h, xd) ∈ ∂jΩh, 1 ≤ i, j ≤ d, i 6= j.
We introduce V (x) := µ

R
xi, x ∈ Gh. Subtraction of a linear function preserves

harmonicity, i.e.
−∆h (U(x)− V (x)) = 0, x ∈ Gh.

From V (x) ≥ 0 in Gh we get on ∂−i Gh

U(x)− V (x) + U(x̌)− V (x̌) ≤ U(x) + U(x̌) = 0

and on ∂Gh \ ∂iGh

U(x)− V (x) ≤ U(x) = 0.

Since V (x) = V (x1, xi = R, xd) ≡ µ, we obtain

U(x)− V (x) ≤ 0

on ∂+
i Gh. Applying Lemma 5.23 we get

U(x) ≤ V (x), x ∈ Gh.

Analogously, since (1)− (3) hold also for −U(x) we can apply the same argument
to −U(x)− V (x), obtaining

U(x) ≥ −V (x), x ∈ Gh,

i.e.
|U(x)| ≤ V (x), x ∈ Gh

Since (x1, xi = h, xd) ∈ Gh for x ∈ Gh we get

|D+
i u(x1, xi = 0, xd)| =

2

h
|U(x1, xi = h, xd)| ≤

2

h
µ
h

R
= 2

µ

R
,

and setting x = 0 ∈ Gh we get the claim.
J
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5.30 Lemma (Difficult harmonic estimate, Forward Differences).
Let Ωh ⊂ Gh, Ωh := clh

(
(−R,R)d ∩ {xi > −R + h}

)
be admissible with R > h and

i ∈ {1, . . . , d}.
Let j ∈ {1, . . . , d} \ {i}, µ > 0 and let u : Ωh → R satisfy

−∆hu(x) = 0, x ∈ Ωh

|u(x)| ≤ µ, x ∈ ∂jΩh

u(x) = 0, x ∈ ∂Ωh \ ∂jΩh.

Then ∣∣D+
i u(0)

∣∣ ≤ 2
µ

R
.

I
〈1 〉 Auxiliary function

We introduce the following notation Pi, Pj : Ωh → Ωh

Pi(x) := (x1, xi = −xi + h, xd),

Pj(x) := (x1, xj = −xj, xd)

with PiPj = PjPi due to orthogonality. We define

U(x) := 1
4

[u(x)− u(Pix) + u(Pjx)− u(PiPjx)] ,

obtaining

U(hei) = 1
4

[u(hei)− u(0) + u(hei)− u(0)] = h
2
D+
i u(0).

Define Gh ⊂ Gh, Gh := clh
(
(−R,R)d ∩ {xi > 0}

)
(see Figure 5.1). We observe

that
x ∈ ∂jGh ⊂ ∂jΩh ⇒ Pix, Pjx, PiPj ∈ ∂jΩh,

implying
|U(x)| ≤ µ, x ∈ ∂jGh.

Considering analogous properties of Pi,Pj, PiPj on the other parts of the
boundary, we get

U(x) = 0, x ∈ ∂Gh \
(
∂jGh ∪ ∂−i Gh

)
For x = (x1, xi = 0, xd) ∈ ∂−i Gh we have x̌ = x + hei, i.e. Pix̌ = x, Pix = x̌,
PiPjx̌ = Pjx, PiPjx = Pjx̌. This yields

U(x) + U(x̌) = [u(x)− u(Pix̌)]− [u(Pix)− u(x̌)]

+ [u(Pjx)− u(PiPjx̌)]− [u(PiPjx)− u(Pjx̌)] = 0
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Figure 5.1: Sets Ωh and Gh
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Figure 5.2: Sets Dh and Dh ∩ {xi > xj}
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for x ∈ ∂−i Gh. In other words, U satisfies

−∆hU(x) = 0, x ∈ Gh,

U(x) = 0, x ∈ ∂Gh \
(
∂jGh ∪ ∂−i Gh

)
,

|U(x)| ≤ µ, x ∈ ∂jGh,

U(x) + U(x̌) = 0, x ∈ ∂−i Gh.

〈2 〉 First comparison function
We define V : Gh → R by

−∆hV (x) = 0, x ∈ Gh

V (x) = 0, x ∈ ∂Gh \
(
∂jGh ∪ ∂−i Gh

)
V (x) = µ, x ∈ ∂jGh,

V (x) + V (x̌) = 0, x ∈ ∂−i Gh.

Here and further in this proof such definitions are well-defined due to Theo-
rem 5.25. Applying Lemma 5.23 to U − V and −U − V we get

|U | ≤ V on Gh.

It is therefore sufficient to estimate V .

〈3 〉 Second comparison function
Define W : Gh → R by

−∆hW (x) = 0, x ∈ Gh,

W (x) = µ, x ∈ ∂+
i Gh,

W (x) = 0, x ∈ ∂Gh \ (∂iGh ∪ ∂jGh) ,

W (x) = −µ, x ∈ ∂jGh,

W (x) +W (x̌) = 0, x ∈ ∂−i Gh.

The sum V +W is discrete harmonic with

(V +W )(x) + (V +W )(x̌) = 0, x ∈ ∂−i Gh,

(V +W )(x) = µ, x ∈ ∂+
i Gh,

(V +W )(x) = 0, x ∈ ∂Gh \ ∂iGh.

Since X(x) := µ
R
xi is non-negative on Gh and discrete harmonic in Gh with

X(x) = µ, x ∈ ∂+
i Gh,
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we can apply Lemma 5.23 to V +W −X, obtaining

V (x) +W (x) ≤ µxi
R
, x ∈ Gh.

We will see later that W (thei) ≥ 0 for t ∈ {t ∈ N | thei ∈ Gh}. In particular,
for t = 1 this implies

V (hei) ≤
µh

R

and consequently

|D+
i u(0)| = 2

h
|U(hei)| ≤

2

h
V (hei) ≤

2

h

µh

R
= 2

µ

R
.

〈4 〉 Third comparison function
We want to prove that W is non-negative along ei. To this end, we define
Ψ+ : Dh → R, Dh := clh

(
(−R,R)d ∩ {xi > 0} ∩ {xj > 0}

)
(see Figure 5.2) by

∆hΨ
+(x) = 0, x ∈ Dh,

Ψ+(x) + Ψ+(x̌) = 0, x ∈ ∂−j Dh ∪ ∂−i Dh,

Ψ+(x) = −µ, x ∈ ∂+
j Dh,

Ψ+(x) = µ, x ∈ ∂+
i Dh,

Ψ+(x) = 0, x ∈ ∂Dh \ (∂jDh ∪ ∂iDh)

Taking the symmetric part of Ψ+ w.r.t. hyperplane {xj = xi},

Ψ+
sym := Ψ+(x) + Ψ+(x1, xi = xj, xj = xi, xd)

we observe that

−∆hΨ
+
sym = 0, x ∈ Dh

Ψ+
sym = 0, x ∈ ∂Dh \

(
∂−j Dh ∪ ∂−i Dh

)
Ψ+
sym(x) + Ψ+

sym(x̌) = 0, x ∈ ∂−j Dh ∪ ∂−i Dh,

implying Ψ+
sym = 0 in Dh by Lemma 5.23. In particular, we have

Ψ+
sym(x) = 2Ψ+(x) = 0, x ∈ Dh ∩ {xi = xj}.

Applying now Lemma 5.23 and the Remark thereafter to Ψ+ on Dh∩{xi > xj}
(not an admissible set!) we get Ψ+ ≥ 0 on this set, in particular

Ψ+(x) ≥ 0, x ∈ Dh ∩ {xj = h},
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implying from Ψ+(x) + Ψ+(x̌) = 0 on ∂−j Dh

Ψ+(x) ≤ 0, x ∈ Dh ∩ {xj = 0}.

We now construct Ψ: Gh → R by

Ψ(x) :=


Ψ+(x), if xj > 0,

Ψ+(x1, xj = −xj, xd), if xj < 0,

0, if xj = 0 and xi < R,

µ, if xj = 0 and xi = R.

This function is discrete subharmonic in Gh, since it is harmonic in Gh∩({xj >
h} ∪ {xj < −h}) by construction, for x ∈ Gh ∩ {xj = h} (analogously, for
x ∈ Gh ∩ {xj = −h})

−∆hΨ =
1

h2
[−Ψ(x− hej)︸ ︷︷ ︸

=0

+ Ψ+(x− hej)︸ ︷︷ ︸
≤0

]−∆hΨ
+︸ ︷︷ ︸

=0

≤ 0.

and for x ∈ Gh ∩ {xj = 0} we have Ψ(x) = 0, Ψ(y) ≥ 0 for y ∈ Nh(x), so
−∆hΨ(x) ≤ 0 by definition.

〈5 〉 Final comparison
Now consider the difference Ψ−W . We want to show that Ψ−W ≤ 0 in Gh.
We have

−∆h(Ψ(x)−W (x)) ≤ 0, x ∈ Gh,

(Ψ−W )(x) = 0, x ∈ ∂Gh \ ∂−i Gh,

(Ψ−W )(x) + (Ψ−W )(x̌) = 0, x ∈ ∂−i Gh.

Once again, using Lemma 5.23, we get claim. This implies 0 ≤ Ψ(x) ≤ W (x)
for x ∈ {thei ∈ Gh | t ∈ N} ⊂ Gh ∩ {xj = 0}.

J

5.31 Theorem (Combined estimate for the forward finite difference quotient).
Let Ωh ⊂ Gh, Ωh := clh((−R,R)d ∩ {xi > −R + h}) be admissible with R > h and
with some i ∈ {1, . . . , d}. Let ν, µ > 0 and let u : Ωh → R satisfy

|∆hu(x)| ≤ ν, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂Ωh.

Then

|D+
i u(0)| ≤ 2dµ

R
+ νR.
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I
By Theorem 5.16, we can decompose u =

∑d
j=0 uj, where

−∆hu0(x) = −∆hu(x), x ∈ Ωh,

u0(x) = 0, x ∈ ∂Ωh

and, for 1 ≤ j ≤ d,

−∆huj(x) = 0, x ∈ Ωh,

uj(x) = u(x), x ∈ ∂jΩh,

uj(x) = 0, x ∈ ∂Ωh \ ∂jΩh.

Using Lemmas 5.28, 5.29 and 5.30, we get

|D+
i u(0)| ≤

d∑
j=0

|D+uj(0)| = |D+u0(0)|+
d∑
j=1

|D+uj(0)| ≤ νR + 2
dµ

R
.

J

5.32 Remark (Special case).
We conclude with the proof of the special case R = h that is not covered by the
previous theorem.

5.33 Lemma (Forward differences, special case).
Let Ωh ⊂ Gh, Ωh := clh((−h, h)d) be admissible. Let ν, µ > 0 and let u : Ωh → R
satisfy

|∆hu(x)| ≤ ν, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂Ωh.

Then

|D+
i u(0)| ≤ 2µ

R
+

ν

2d
R, 1 ≤ i ≤ d.

I
From

|∆hu(0)| ≤ ν,

we get
−νh2 − 2dµ

2d
≤ u(0) ≤ νh2 + 2dµ

2d
,

|u(0)| ≤ νh2

2d
+ µ.

Direct calculation yields

|D+
i u(0)| = |u(eih)− u(0)|

h
≤ |u(eih)|+ |u(0)|

h
≤ 2

µ

h
+
νh

2d
.

J
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5.5 Inner estimates for central differences

5.34 Lemma (Estimate for vanishing boundary value, Central Differences).
Let Ωh ⊂ Gh, Ωh = clh((−R,R)d) be admissible. Let ν > 0 and u : Ωh → R satisfy

|∆hu(x)| ≤ ν, x ∈ Ωh,

u(x) = 0, x ∈ ∂Ωh.

Then
|D±i u(0)| ≤ ν

2
R, 1 ≤ i ≤ d.

I
We introduce Gh ⊂ Gh, Gh = clh

(
(−R,R)d ∩ {xi > 0}

)
and define U : Gh → R

by

U(x) :=
1

2
[u(x)− u(x1, xi = −xi, xd)] ,

obtaining
U(x1, xi = h, xd) = hD±i u(x1, xi = 0, xd), x ∈ Gh.

We now have for x ∈ ∂−i Gh

U(x) = U(x1, xi = 0, xd) = 1
2
[u(x1, xi = 0, xd)− u(x1, xi = 0, xd)] = 0,

respectively for x ∈ ∂+
i Gh

U(x) = U(x1, xi = R, xd) = 1
2
[u(x1, xi = R, xd)− u(x1, xi = −R, xd)] = 0,

and finally, U(x) = 0 for x ∈ ∂Gh \ ∂iGh.
This means that U satisfies the assumptions of Lemma 5.26 on Gh, yielding∣∣D±i u(x1, xi = 0, xd)

∣∣ =
1

h
|U(x1, xi = h, xd)| ≤

1

h

ν

2
h(R− h) ≤ ν

2
R,

for x ∈ Ωh, in particular for x = 0, and all 1 ≤ i ≤ d.
J

5.35 Lemma (Simple harmonic estimate, Central Differences).
Let Ωh ⊂ Gh, Ωh := clh

(
(−R,R)d

)
be admissible. Let µ > 0 and u : Ωh → R satisfy

−∆hu(x) = 0, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂iΩh,

u(x) = 0, x ∈ ∂Ωh \ ∂iΩh.

Then ∣∣D±i u(0)
∣∣ ≤ µ

R
, 1 ≤ i ≤ d.
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I
We introduce Gh ⊂ Gh, Gh = clh

(
(−R,R)d ∩ {xi > 0}

)
and define U : Gh → R

by

U(x) :=
1

2
[u(x)− u(x1, xi = −xi, xd)] ,

obtaining
U(x1, xi = h, xd) = hD+

i u(x1, xi = 0, xd), x ∈ Gh.

We now have

U(x) =
1

2
[u(x1, xi = 0, xd)− u(x1, xi = 0, xd)] = 0, x ∈ ∂−i Gh (1)

and

|U(x)| = 1
2
|u(x1, xi = R, xd)− u(x1, xi = −R, xd)| ≤ µ, x ∈ ∂+

i Gh. (2)

Moreover,
U(x) = 0, ∂Gh \ ∂iGh. (3)

We define V (x) := µ
R
xi, x ∈ Gh. Subtraction of a linear function preserves discrete

harmonicity, i.e.
−∆h (U(x)− V (x)) = 0, x ∈ Gh.

From V ≥ 0 on Gh we get

U(x)− V (x) ≤ U(x) = 0, x ∈ ∂Gh \ ∂+
i Gh.

Finally, since V (x) ≡ µ, x ∈ ∂+
i Gh we obtain

U(x)− V (x) ≤ 0, x ∈ ∂+
i Gh.

Applying Lemma 5.15 we get

U(x) ≤ V (x), x ∈ Gh.

Analogously, since (1)-(3) hold also for −U we can apply the same argument to
−U − V , obtaining

U(x) ≥ −V (x), x ∈ Gh,

i.e.
|U(x)| ≤ V (x), x ∈ Gh.

This yields

|D+
i u(0)| = 1

h
|U(hei)| ≤

1

h
V (hei) =

µ

h

h

R
=
µ

R
.

J
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5.36 Lemma (Difficult harmonic estimate, Central Difference).
Let Ωh ⊂ Gh, Ωh = clh

(
(−R,R)d

)
be admissible.

Let i, j ∈ {1, . . . , d}, i 6= j be arbitrary but fixed, µ > 0 and let u : Ωh → R satisfy

−∆hu(x) = 0, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂jΩh,

u(x) = 0, x ∈ ∂Ωh \ ∂jΩh.

Then ∣∣D±i u(0)
∣∣ ≤ µ

R
.

I
〈1 〉 Auxiliary function

We denote Pi, Pj : Ωh → Ωh

Pix := (x1, xi = −xi, xd),
Pjx := (x1, xj = −xj, xd)

with PiPj = PjPi due to orthogonality. We now define

U(x) := 1
4

[u(x)− u(Pix) + u(Pjx)− u(PiPjx)] ,

obtaining

U(hei) = 1
4
[u(hei)− u(−hei) + u(hei)− u(−hei)] = hD±i u(0).

Introducing Gh ⊂ Gh, Gh = clh
(
(−R,R)d ∩ {xi > 0}

)
we get

−∆hU(x) = 0, x ∈ Gh,

U(x) = 0, x ∈ ∂Gh \ ∂jGh,

|U(x)| ≤ µ, x ∈ ∂jGh,

since

x ∈ ∂Gh \
(
∂jGh ∪ ∂−i Gh

)
⊂ ∂Ωh \ ∂jΩh ⇒ Pix, Pjx, PiPjx ∈ ∂Ωh \ ∂jΩh

x ∈ ∂jGh ⊂ ∂jΩh ⇒ Pix, Pjx, PiPjx ∈ ∂jΩh,

x ∈ ∂−i Gh ⇒ Pix = x, Pjx = PiPjx.

〈2 〉 First comparison function
We define V : Gh → R by

−∆hV (x) = 0, x ∈ Gh,

V (x) = 0, x ∈ ∂Gh \ ∂jGh,

V (x) = µ, x ∈ ∂jGh.
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Applying Lemma 5.15 to U − V and −U − V we get

|U(x)| ≤ V (x) x ∈ Gh.

It is therefore sufficient to estimate V .

〈3 〉 Second comparison function
Define W : Gh → R by

−∆hW (x) = 0, x ∈ Gh,

W (x) = 0, x ∈ ∂−i Gh,

W (x) = µ, x ∈ ∂+
i Gh,

W (x) = −µ, x ∈ ∂jGh,

W (x) = 0, x ∈ ∂Gh \ (∂iGh ∪ ∂jGh) .

The sum V +W is discrete harmonic on Gh with

(V +W )(x) = 0, x ∈ ∂Gh \ ∂+
i Gh

(V +W )(x) = µ, x ∈ ∂+
i Gh.

Since X(x) := µ
R
xi is discrete harmonic on Gh and non-negative on Gh with

X(x) = µ, x ∈ ∂+
i Gh,

we can apply Lemma 5.15 again, obtaining

V (x) +W (x) ≤ X(x), x ∈ Gh.

We will see later that W (thei) ≥ 0 for t ∈ {t ∈ Z+ | thei ∈ Gh}. In particular,
for t = 1 this implies

V (hei) ≤ X(hei) =
µh

R
and consequently

|D±i u(0)| = 1

h
|U(hei)| ≤

1

h
V (hei) ≤

1

h

µh

R
=
µ

R
.

〈4 〉 Third comparison function
We want to prove that W is non-negative along ei.

To this end, we denote Dh ⊂ Gh, Dh := clh
(
(−R,R)d ∩ {xi > 0} ∩ {xj > 0}

)
(in general not admissible) and define Ψ+ : Dh → R by

∆hΨ
+(x) = 0, x ∈ Dh,

Ψ+(x) = −µ, x ∈ ∂+
j Dh,

Ψ+(x) = µ, x ∈ ∂+
i Dh,

Ψ+(x) = 0, x ∈ ∂Dh \
(
∂+
j Dh ∪ ∂+

i Dh

)
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Taking the symmetric part of Ψ+ w.r.t. hyperplane {xj = xi},

Ψ+
sym := Ψ+(x) + Ψ+(x1, xi = xj, xj = xi, xd)

we observe that
−∆hΨ

+
sym = 0, x ∈ Dh,

Ψ+
sym = 0, x ∈ ∂Dh,

implying Ψ+
sym = 0 in Dh by Lemma 5.16. In particular, we have

Ψ+
sym(x) = 2Ψ+(x) = 0, x ∈ Dh ∩ {xi = xj}.

Applying now Lemma 5.15 to Ψ+ on D∩{xi > xj} we get Ψ+ ≥ 0 on this set,
in particular

Ψ+(x) ≥ 0, x ∈ Dh ∩ {xj = h},
Ψ+(x) = 0, x ∈ Dh ∩ {xj = 0}.

We now construct Ψ: Gh → R by

Ψ(x) :=


Ψ+(x), if xj > 0,

Ψ+(x1, xj = −xj, xd), if xj < 0,

0, if xj = 0 and xi < R,

µ, if xj = 0 and xi = R.

This function is discrete subharmonic in Gh, since it is harmonic in Gh∩({xj >
h} ∪ {xj < −h}) by construction, for x ∈ Gh ∩ {xj = h} (analogously, for
x ∈ Gh ∩ {xj = −h})

−∆hΨ(x) =
1

h2
[−Ψ(x− hej)︸ ︷︷ ︸

=0

+ Ψ+(x− hej)︸ ︷︷ ︸
=0

]−∆hΨ
+(x)︸ ︷︷ ︸

=0

= 0.

and for x ∈ Gh ∩ {xj = 0} we have Ψ(x) = 0, Ψ(y) ≥ 0 for y ∈ Nh(x), so
−∆hΨ(x) ≤ 0 by definition.

〈5 〉 Final comparison
Now consider the difference Ψ−W . We want to show that Ψ−W ≤ 0 in Gh.
We have

−∆h(Ψ−W )(x) ≤ 0, x ∈ Gh,

(Ψ−W )(x) = 0, x ∈ ∂Gh.

Once again, using Lemma 5.15, we get claim. This implies 0 ≤ Ψ(x) ≤ W (x)
for x ∈ {thei ∈ Gh | t ∈ N} ⊂ Gh ∩ {xj = 0}.

J
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5.37 Theorem (Combined estimate for the central finite difference quotient).
Let Ωh ⊂ Gh, Ωh = clh((−R,R)d) be admissible. Let ν, µ > 0 and let u : Ωh → R
satisfy

|∆hu(x)| ≤ ν, x ∈ Ωh,

|u(x)| ≤ µ, x ∈ ∂Ωh.

Then

|D±i u(0)| ≤ dµ

R
+
ν

2
R,

for all 1 ≤ i ≤ d.

I
By Theorem 5.16, we can decompose u =

∑d
j=0 uj, where uj, 0 ≤ j ≤ d are

defined as the unique solutions of

−∆hu0(x) = −∆hu(x), x ∈ Ωh,

u0(x) = 0, x ∈ ∂Ωh

and
−∆huj(x) = 0, x ∈ Ωh,

uj(x) = u(x), x ∈ ∂jΩh,

uj(x) = 0, x ∈ ∂Ωh \ ∂jΩh.

Using Lemmas 5.34, 5.35 and 5.36, we get

|D±i u(0)| ≤
d∑
j=0

|D±uj(0)| = |D±u0(0)|+
d∑
j=1

|D±uj(0)| ≤ ν

2
R +

dµ

R
,

for all 1 ≤ i ≤ d.
J
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Chapter 6

Pointwise estimates for discrete
Green’s function

6.1 Estimates for discrete Green’s function

6.1 Motivation.
The following two lemmas are due to Bramble, Hubbard and Zlámal [9]. Since we
need the extension of the first lemma, we present the complete proof. The rather
short proof of the second lemma is given for the sake of completeness.

6.2 Lemma (First estimate for discrete potentials, [9]).
Define

σ(x) := σγ(x) :=
√
|x|2 + γh2, x ∈ Gh.

Then, on the one hand

−β(d− 2 + β)σβ−2(x) ≤−∆h[σ(x)β], x ∈ Gh \ {0},

and on the other hand

−∆h[σ(x)β] ≤ −β(d− 2 + β + ε)σβ−2(x), x ∈ Gh, |x| ≥ Rh,

−∆h[σ(x)β] ≤ −dβσ(x)β−2, x ∈ Gh,

for every β < 0, ε ∈ (0, 2− β), and γ > γ̃ > 0, R > R̃ with some γ̃ := γ̃(d, β) > 0,
R̃ := R̃(ε, d, β, γ).
I
〈1 〉 Discretization error

From the mean value theorem we obtain

−∆h[σ(x)β] = −∆[σ(x)β]− h2

24

d∑
i=1

{
∂4

∂x4
i

σβ(ξi) +
∂4

∂x4
i

σβ(ηi)

}
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with ξi ∈ [xi, xi + hei], η ∈ [xi − hei, xi], 1 ≤ i ≤ d.
For the continuous Laplacian we have

−∆[σ(x)β] = −
d∑
i=1

∂2

∂x2
i

[
(|x|2 + γh2)

β
2

]
= −

d∑
i=1

∂

∂xi

[
βxi(|x|2 + γh2)

β−2
2

]
= −

d∑
i=1

[
β(|x|2 + γh2)

β−2
2 + β(β − 2)x2

i (|x|2 + γh2)
β−4

2

]
= −dβσ(x)β−2 − β(β − 2)|x|2σ(x)β−4

= −dβσ(x)β−2 − β(β − 2)(σ2(x)− γh2)σ(x)β−4

= −β(β + d− 2)σ(x)β−2 + β(β − 2)γh2σ(x)β−4.

〈2 〉 Estimates for the derivatives
We calculate the derivatives needed for the error estimate:

∂

∂xi
σ(x)β =

∂

∂xi
(|x|2 + γh2)

β
2 = βxiσ(x)β−2,

∂2

∂x2
i

σ(x)β = βσ(x)β−2 + β(β − 2)x2
iσ(x)β−4,

∂3

∂x3
i

σ(x)β = β(β − 2)xiσ(x)β−4 + β(β − 2)
[
2xiσ(x)β−4 + (β − 4)x3

iσ(x)β−6
]

= 3β(β − 2)xiσ(x)β−4 + β(β − 2)(β − 4)x3
iσ(x)β−6,

∂4

∂x4
i

σ(x)β = 3β(β − 2)σ(x)β−4 + 3β(β − 2)(β − 4)x2
iσ(x)β−6

+ 3β(β − 2)(β − 4)x2
iσ(x)β−6 + β(β − 2)(β − 4)(β − 6)x4

iσ(x)β−8

= β(β − 2)σ(x)β−4

[
3 + 6(β − 4)

x2
i

σ(x)2
+ (β − 4)(β − 6)

x4
i

σ(x)4

]
.

We observe that

0 ≤ x2
iσ(x)−2 =

x2
i

|x|2 + γh2
≤ |x|2

|x|2 + γh2
≤ 1.

With

p(s) := 3 + 6(β − 4)s+ (β − 4)(β − 6)s2,

p(x2
iσ(x)−2) = 3 + 6(β − 4)x2

iσ(x)−2 + (β − 4)(β − 6)x4
iσ(x)−4,

we can estimate

min
s∈[0,1]

p(s) ≤ p(x2
iσ(x)−2) ≤ max

s∈[0,1]
p(s).
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We have (β − 4)(β − 6) > 0 and the minimum is attained in

smin =
−6(β − 4)

2(β − 4)(β − 6)
=

3

6− β
≤ 1

2
,

taking into consideration the symmetry of p(s) w.r.t. smin this yields smax = 1.
We therefore obtain

∂4

∂x4
i

σ(x)β ≤ β(β − 2)σ(x)β−4[3 + 6(β − 4) + (β − 4)(β − 6)]

= β(β − 2)σ(x)β−4[3 + β(β − 4)]

= β(β − 1)(β − 2)(β − 3)σ(x)β−4,

∂4

∂x4
i

σ(x)β ≥ β(β − 2)σ(x)β−4

[
3 + 6(β − 4)

3

6− β
+ (β − 4)(β − 6)

9

(6− β)2

]
=

3

6− β
β(β − 2)σ(x)β−4[(6− β) + 6(β − 4)− 3(β − 4)]

=
3β(β − 2)

6− β
σ(x)β−4[6− β + 6β − 24− 3β + 12]

= −6β(β − 2)(β − 3)

β − 6
σ(x)β−4.

〈3 〉 Neighbors comparison
Let x ∈ Gh \ {0} and ξ ∈ [x − hei, x + hei] for some i ∈ {1, . . . , d}. We now
show than for every k ∈ (0, 1) it is possible to determine γ̃ (independent of h
and x) such that

k−2σ2(x) ≥ σ2(ξ) ≥ k2σ2(x)

for all γ ≥ γ̃. For ξ = x+ τhei with |τ | ≤ 1 we obtain

σ2(ξ) = |x+ τhei|2 + γh2 = |x|2 + 2τhxi + τ 2h2 + γh2.

and consequently

σ2(ξ)− k2σ2(x) = (1− k2)|x|2 + 2τhxi + τ 2h2 + (1− k2)γh2

≥ (1− k2)|x|2 − 2h|x|+ (1− k2)γh2

≥ [(1− k2)γ − (1− k2)−1]h2

≥ 0, for γ ≥ (1− k2)−2,

since

(1− k2)|x|2 − 2|x|h ≥ −(1− k2)−1h2
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by the arithmetic-geometric mean inequality.
Now, using h|x| ≥ h2 we also obtain

k−2σ2(x)− σ2(ξ) = (k−2 − 1)|x|2 − 2τhxi − τ 2h2 + (k−2 − 1)γh2

≥ (k−2 − 1)|x|2 − 2h|x| − h2 + (k−2 − 1)γh2

≥ (k−2 − 1)|x|2 − 4h|x|+ (k−2 − 1)γh2

≥ [(k−2 − 1)γ − 4(k−2 − 1)−1]h2

≥ 0, for γ ≥ 4(k−2 − 1)−2,

since
(k−2 − 1)|x|2 − 4|x|h ≥ −4(k−2 − 1)−1h2

by the arithmetic-geometric mean inequality.

〈4 〉 Estimate from below
We now can estimate

−∆h[σ(x)β] = −∆[σ(x)β]− h2

24

d∑
i=1

{
∂4

∂x4
i

σβ(ξ) +
∂4

∂x4
i

σβ(η)

}
≥ −β(β + d− 2)σ(x)β−2 + β(β − 2)γh2σ(x)β−4

− h2

24
β(β − 1)(β − 2)(β − 3)

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}

≥ −β(β + d− 2)σ(x)β−2,

provided γ can be chosen to satisfy

β(β − 2)h2

[
γσ(x)β−4 − (β − 1)(β − 3)

24

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}]
≥ 0.

This is possible due to neighbors comparison

S := γσ(x)β−4 − (β − 1)(β − 3)

24

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}

≥ γσ(x)β−4 − (β − 1)(β − 3)

24

d∑
i=1

2k−β+4σ(x)β−4

= σ(x)β−4

[
γ − d(β − 1)(β − 3)k−β+4

12

]
≥ 0,

for sufficiently large

γ > γ̃(β, d) := inf
k∈(0,1)

max

{
4(k−2 − 1)2, (1− k2)−2,

d(β − 1)(β − 3)k−β+4

12

}
.
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〈5 〉 Restricted estimate from above
We now can estimate

−∆h[σ(x)β] = −∆[σ(x)β]− h2

24

d∑
i=1

{
∂4

∂x4
i

σβ(ξ) +
∂4

∂x4
i

σβ(η)

}
≤ −β(β + d− 2)σ(x)β−2 + β(β − 2)γh2σ(x)β−4

+
h2

4

β(β − 2)(β − 3)

β − 6

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}

≤ −β(β + d− 2 + ε)σ(x)β−2

+ [βεσ(x)β−2 + β(β − 2)γh2σ(x)β−4

+
h2

4

β(β − 2)(β − 3)

β − 6

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}

]

≤ −β(β + d− 2 + ε)σ(x)β−2,

provided the sum in the square brackets can be made non-positive for |x|
sufficiently large. By neighborhood comparison we have

d∑
i=1

{
σ(ξi)

β−4 + σ(ηi)
β−4
}
≤ 2dkβ−4σ(x)β−4,

for all k ∈ (0, 1) with corresponding γ > γ̃k. We see that

−βσ(x)β−4h2

[
−ε
(
|x|2

h2
+ γ

)
+ (2− β)γ +

d

2

(2− β)(β − 3)

β − 6
kβ−4

]
≤ 0

for sufficiently large γ and sufficiently large |x| ≥ Rh for all R ≥ R̃(ε, d, β, γ).

〈6 〉 Unrestricted estimate from above
For β < 0 and x > −1 it holds

(1 + x)β ≥ 1 + βx.

This follows directly from Taylor’s expansion for (1 + x)β at zero

(1 + x)β = 1 + β(1 + 0)β−1x+ β(β − 1)(1 + ξ)β−2x2 ≥ 1 + βx
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with some intermediate value ξ. Using this we finally obtain

∆hσ
β(x) =

d∑
i=1

σ(x+ eih)β − 2σ(x)β + σ(x− eih)β

h2

=
d∑
i=1

√
|x|2 + 2xih+ h2 + γh2

β − σ(x)β

h2

+
d∑
i=1

√
|x|2 − 2xih+ h2 + γh2

β − σ(x)β

h2

= h−2σ(x)β
d∑
i=1

[(
1 +

2xih+ h2

σ2(x)

)β
2

− 1

]

+ h−2σ(x)β
d∑
i=1

[(
1 +
−2xih+ h2

σ2(x)

)β
2

− 1

]

≥ h−2σ(x)β
d∑
i=1

(
β

2

2xih+ h2

σ2(x)
+
β

2

h2 − 2xih

σ2(x)

)
= βdσ(x)β−2,

since
±2xih+ h2

σ2(x)
≥ −2|x|h+ h2

|x|2 + γh2
> −1

⇐ −2|x|h+ h2 > −|x|2 − γh2

⇐ |x|2 − 2|x|h+ h2 > −γh2.
J

6.3 Lemma (Basic estimate for discrete Green’s function, [9]).
Let Ωh ⊂ Gh be bounded and let G : Ωh × Ωh → R be its discrete Green function.
Define

vγ(x) := [|x|2 + γh2]
2−d

2 .

Then for every γ > γ̃(d, 2− d) with γ̃ as in the previous lemma holds

G(x, y) ≤ K(d, γ)vγ(x− y), ∀x ∈ Ωh, ∀y ∈ Ωh.

For fixed γ := 2γ̃(d, 2− d) we correspondingly have

G(x, y) ≤ K(d)vγ(x− y) ∀x ∈ Ωh, ∀y ∈ Ωh.

I
〈1 〉 Maximum principle

Let y ∈ Ωh be arbitrary but fixed. We want to apply the discrete maximum
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principle to G(·, y) −Kv(· − y) on Gh. Since the condition on the boundary
follows from the positivity of v and K, we only need to show

−∆h,x[G(x, y)−Kv(x− y)]
!

≤ 0, ∀x ∈ Ωh.

We consider two cases:

〈2 〉 x 6= y
In this case we have

−∆h,x[G(x, y)−Kv(x− y)] = K∆h,xv(x− y).

From the previous Lemma with β := 2 − d < 0 and sufficiently large γ >
γ̃(d, 2− d) one obtains

−∆h,x[v(x− y)] ≥ 0.

〈3 〉 x = y
In this case the symmetry of v, v(hei) = v(hej), 1 ≤ i, j ≤ d yields

∆h v(x)|x=0 =
2d

h2

[
((1 + γ)h2)

2−d
2 − (γh2)

2−d
2

]
=

2d

hd

[
(1 + γ)

2−d
2 − γ

2−d
2

]
=:

1

hd
Θ(d, γ) < 0

and consequently

−∆h [G(x, y)−Kv(x− y)] =
1

hd
(1 +KΘ(d, γ)) ≤ 0

for all K ≥ − 1
Θ(d,γ)

.

J

6.4 Lemma (Stairs estimate).
Let sh : [h,+∞)→ Nh, sh(x) :=

⌊
x
h

⌋
h for some h > 0. Then

sh(x) >
m

m+ 2
(x+ h), ∀x ≥ mh

holds for all m ∈ N. In particular,

sh(x) >
1

3
(x+ h), ∀x ≥ h.
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I
Let sh(x) = kh for some k ∈ N and x ≥ mh implying k ≥ m. Then

kh ≤ x < (k + 1)h yields

x+ h < (k + 2)h.

So, k ≥ m implies

sh(x) = kh ≥ m

m+ 2
(k + 2)h >

m

m+ 2
(x+ h).

J

6.5 Lemma (Discrete Schwarz’s reflexion principle).
Let Ωh ⊂ Gh, Ω ⊂ Rd, Ωh = clh Ω be admissible with ∂−1 Ωh ⊂ {x ∈ Rd | x1 = 0}
and let u : Ωh → R be discrete harmonic with u|∂−1 Ωh

= 0. Further, let Gh ⊂ Gh,
Gh = clhG with G := Ω ∪ {(−x1, x2, . . . , xd) | x ∈ Ω}, and define v : Gh → R by

v(x) :=


u(x1, x2, . . . , xd), if x1 > 0, x ∈ Gh

0, if x1 = 0, x ∈ Gh

−u(−x1, x2, . . . , xd), if x1 < 0, x ∈ Gh.

Then v is discrete harmonic in Gh.

I
By direct computation.
J

6.6 Lemma (Second lemma on harmonic estimate).
Let σ2 ∈ N and σ1 :=

⌊
σ2

d

⌋
∈ N ∪ {0}. We define

Uh := {x ∈ Gh | σ1h < |x|∞, |x|1 < (σ1 + σ2)h}

for some h > 0. Furthermore, let η : Uh → R be discrete harmonic in U with

η(x) = 0, for |x|∞ = σ1h,

η(x) = 1, for |x|1 = (σ1 + σ2)h

Let s̄ :=
⌊
σ2

d+1

⌋
. Then, the following inequality holds

η(x) ≤ K(d)
(t− σ1)

σ2

= K(d)
|x− σ1eih|

σ2h
(∗)

for all x = htei, σ1 ≤ t ≤ σ1 + s̄, 1 ≤ i ≤ d.
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I
〈1 〉 Generality

From symmetry it sufficient to show the claim for e1. Both the left and the
right side of the inequality are independent of h, and we therefore can assume
h to be fixed. Now, for every fixed σ2 the claim follows from the finiteness of
Uh. Inductively, the claim also holds for finite set {1 ≤ σ2 ≤ 2(d + 2)}. We
can therefore assume for the rest of the proof that

σ2 ≥ 2(d+ 2).

〈2 〉 Admissible geometry
We want to show that

{x ∈ Gh | |x|∞ = σ1h} ⊂ {x ∈ Gh | |x|1 < (σ1 + σ2)h},

i.e. that the boundaries do not intersect.
First, we note that σ1 <

σ2

d−1
by observing that

σ1 =
⌊σ2

d

⌋
≤ σ2

d
<

σ2

d− 1
.

This implies dσ1 < σ1 + σ2 and consequently

|x|1 ≤ d|x|∞ = dσ1h < (σ1 + σ2)h

for |x|∞ = σ1h.

〈3 〉 Admissible shifting depth
To prove our estimate, we first want to obtain an estimate forD±1 η along {e1th |
σ1 ≤ t ≤ σ1 + s} using the combined harmonic estimate from Theorem 5.37.
To use this theorem near the inner boundary of Uh, we need to be able to
harmonically continue η onto some parts of {x ∈ Gh | |x|∞ < σ1h} using
Schwarz’s reflection principle 6.5. This imposes the additional constraint s <
σ1.
To this end, we are looking for s ∈ N, s < σ1 such that

{y ∈ Gh | |x− y|∞ ≤ sh} ⊂ {y ∈ Gh | |y|1 ≤ (σ1 + σ2)h}

for all x = e1th, σ1 ≤ t ≤ σ1 + s (see Figure 6.1 where d = 2, σ1 = 3, σ2 = 7,
s = 2, t = 4). Since ‖ · ‖1-balls are invariant in the sense

{z ∈ Gh | |z|1 ≤ Rh}∩{z ∈ Gh | z1 ≥ h} =

{z ∈ Gh | z1 ≥ h} ∩ {z ∈ Gh | |z − e1h|1 ≤ (R− 1)h}
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88



for all R ∈ N (see Figure 6.2 with d = 2, R = 3), it is sufficient to check

{y ∈ Gh | |x− y|∞ ≤ sh, y1 ≥ x1}
⊂ {y ∈ Gh | y1 ≥ x1, |x− y|1 ≤ (σ2 − (t− σ1))h}

for x = e1th, σ1 ≤ t ≤ σ1 + s (see Figure 6.3 where the left and right set in
the situation of Figure 6.1 are marked by correspondingly darker and lighter
filling). Using monotonicity of inclusion (if inclusion holds for t = σ1 + s it
also holds for all σ1 ≤ t < σ1 +s), symmetry (dropping y1 ≥ x1 condition) and
translation invariance w.r.t. shift | · −x|, we can reduce this condition even
further to

{y ∈ Gh | |y|∞ ≤ sh} ⊂ {y ∈ Gh | |y|1 ≤ (σ2 − s)h}.

From our previous geometrical considerations in 〈2 〉, this holds if

ds ≤ σ2 − s⇔ s ≤ σ2

d+ 1
,

i.e. we need to demand s ≤
⌊
σ2

d+1

⌋
. We also need to ensure s < σ1 for Schwarz’s

reflection principle 6.5. This can be achieved by setting

s := min

{⌊
σ2

d+ 1

⌋
,
⌊σ2

d

⌋
− 1

}
.

We now have s ≥ 1 due to the assumptions in 〈1 〉 and s+ 1 ≥
⌊
σ2

d+1

⌋
= s̄.

〈4 〉 Linear estimate
Let t ∈ {σ1, . . . , σ1+s} be arbitrary, but fixed. By discrete maximum principle
5.15 we have 0 ≤ η ≤ 1. Using discrete Schwarz reflection principle 6.5 if
necessary, we can apply the combined harmonic estimate 5.37 to the discrete
domain {y ∈ Gh | |y − the1|∞ ≤ sh}, obtaining

η((t+ 1)he1)− η((t− 1)he1)

2h
≤
∣∣D±1 η(the1)

∣∣ ≤ d

sh
.

We now prove by induction that

η(te1h)
!

≤ d
t− σ1

s

holds for σ1 ≤ t ≤ σ1 + s + 1. For t = σ1 the claim follows by assumption,
since |σ1e1h|∞ = σ1h. For t = σ1 + 1 Schwarz’s reflection principle gives
η((σ1 − 1)he1) = −η((σ1 + 1)he1), implying

2η((σ1 + 1)he1)

2h
= D±1 η(σ1he1) ≤ d

sh
,

η((σ1 + 1)he1) ≤ d

s
.
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Now let the claim hold for all t ∈ N, σ1 ≤ t ≤ t̂, t̂ ≤ s. Using Theorem 5.37
again and the induction step, we obtain

η((t̂+ 1)he1)− η((t̂− 1)he1)

2h
≤ d

sh
,

η((t̂+ 1)he1) ≤ 2d

s
+
d

s
[(t̂− 1)− σ1],

η((t̂+ 1)he1) ≤ d

s
[(t̂+ 1)− σ1].

〈5 〉 Inequality
Using the linear estimate from the previous step we only need to show that

d

s
(t− σ1)

!

≤ K(d)d
t− σ1

σ2

⇔ s
!

≥ σ2

K(d)
.

Applying the stairs estimate from Lemma 6.4 and using the assumption −2 ≥
− σ2

d+2
we obtain

s ≥
⌊

σ2

d+ 1

⌋
− 1 >

1

3

(
σ2

d+ 1
+ 1

)
− 1 =

1

3

(
σ2

d+ 1
− 2

)
≥ 1

3

(
σ2

d+ 1
− σ2

d+ 2

)
=

1

3(d+ 1)(d+ 2)
σ2.

J

6.7 Lemma (Combined estimate for discrete Green’s function).
Let Ωh be an admissible subset of Gh and let G : Ωh×Ωh → R be its discrete Green’s
function. Then it holds

G(x, y) ≤ K(d)[|x− y|2 + γh2]
1−d

2 ρ(x), x ∈ Ωh, y ∈ Ωh,

where ρ(x) = dist(x, ∂Ωh) and γ is like in the Basic Estimate 6.3.
I
〈1 〉 Proof idea

Let y ∈ Ωh be arbitrary but fixed and we can always assume x ∈ Ωh, i.e.
ρ(x) ≥ h. We prove the estimate by distinguishing two cases: we use a direct
proof in the first case and a comparison argument in the second.

〈2 〉 |x− y| ≤ 2(d+ 1)ρ(x)
Since h ≤ ρ(x) we have

|x− y|2 + γh2 ≤ 4(d+ 1)2ρ2(x) + γρ2(x) = [γ + 4(d+ 1)2]ρ2(x),

and the basic estimate 6.3 yields

G(x, y) ≤ K[|x− y|2 + γh2]
2−d

2 ≤ K∗[|x− y|2 + γh2]
1−d

2 ρ(x).
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〈3 〉 |x− y| > 2(d+ 1)ρ(x)
Here we proceed in two stages: firstly, we choose a suitable set and secondly,
we construct an appropriate comparison function on this set.

(a) We set

σ2 :=

⌈
|x− y|

2h

⌉
, σ1 :=

⌊σ2

d

⌋
, s :=

⌊
σ2

d+ 1

⌋
.

We see that
|x− y|

2h
≤ σ2,

|x− y|
2(d+ 1)h

≤ σ2

d+ 1
≤
⌈

σ2

d+ 1

⌉
≤ s+ 1,

and also ⌈
σ2

d+ 1

⌉
≤ σ2

d+ 1
+ 1 ≤ σ2

since σ2 ≥ 2 ≥ d+1
d

.

(b) Let x′ ∈ ∂Ωh be such that |x−x′| = ρ(x) and denote x0 := x′+σ1h
(x′−x)
|x′−x|

We introduce the following discrete sets

Ah := {x ∈ Gh | |x|1 < (σ1 + σ2)h, |x|∞ > σ1h},
Uh := (Ah + x0) ∩ Ωh,

with the usual notation S + z0 := {z+ z0 | z ∈ S}. (see Figure 6.4 where
d = 2, ρ(x) = 2, |x − y| =

√
146 > 12 = 2(2 + 1)ρ(x), σ2 = 7, σ1 = 3,

s = 2, Uh is filled). Since Ωh is admissible, we have |x − x′|1 = |x − x′|
and

|x− x′| = ρ(x) <
|x− y|

2(d+ 1)
≤ h

d+ 1
σ2 ≤

⌈
σ2

d+ 1

⌉
h
≤ (s+ 1)h

≤ σ2h
,

implying
|x− x0| ≤ |x− x′|+ |x′ − x0| ≤ (σ1 + s)h (∗)

and analogously |x− x0|1 = |x− x0| < (σ2 + σ1)h, i.e. x ∈ Uh.
Now let z ∈ Uh. We decompose z − x = (z − z′) + (z′ − x), where
〈z − z′, z′ − x〉 = 〈z − z′, x− x′〉 = 0. We now have

|z − x| =
√
|z′ − x|2 + |z − z′|2 ≤

√
σ2

2h
2 + σ2

2h
2 =
√

2σ2h

=
√

2

⌈
|x− y|

2h

⌉
h <
√

2

(
|x− y|

2
+ h

)
<
√

2

(
|x− y|

2
+
|x− y|

2(d+ 1)

)
=

√
2

2

d+ 2

d+ 1︸ ︷︷ ︸
=:κ(d)=:κ

|x− y|,
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′

zz
′

Figure 6.4

since h ≤ ρ(x) < |x−y|
2(d+1)

. From d ≥ 3 we infer κ ∈ (0, 1). This implies

|z − y| ≥ |x− y| − |x− z| > (1− κ) |x− y| > 0,

i.e. y 6∈ Uh.
We therefore obtain that G(·, y) is discrete harmonic in Uh with

G(z, y) = 0, ∀z ∈ ∂Ωh,

G(z, y) ≤ K(d)[|z − y|2 + γh2]
2−d

2 ≤ K∗(d)[|x− y|2 + γh2]
2−d

2

=: K1(d)[|x− y|2 + γh2]
2−d

2 , ∀z ∈ ∂Uh ∩ Ωh,

since for all z ∈ Uh holds

|z− y|2 +γh2 ≥ (1−κ)2|x− y|2 + (1−κ)2γh2 = (1−κ)2(|x− y|2 +γh2).

(c) Choosing a comparison function
Let η : Ah → R be defined as in Lemma 6.6. We now define H : Uh → R
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by

H(z) := η(z − x0)K1(d)[|x− y|2 + γh2]
2−d

2 .

This function is discrete harmonic by construction and

G(z, y) ≤ H(z), ∀z ∈ ∂Uh ∩ Ωh,

G(z, y) = 0 ≤ H(z), ∀z ∈ ∂Uh ∩ ∂Ωh.

By discrete maximum principle we obtain

G(z, y) ≤ H(z) = η(z − x0)K1(d)[|x− y|2 + γh2]
2−d

2 , ∀z ∈ Uh.

Taking into account that x ∈ Uh satisfies (∗) we can apply Lemma 6.6
with ei = x−x0

|x−x0| , i ∈ {1, . . . , d}, getting

G(x, y) ≤ η(x− x0)K1(d)[|x− y|2 + γh2]
2−d

2

≤ K(d)
|x− x0 − σ1eih|

σ2h
[|x− y|2 + γh2]

2−d
2

= K(d)
|x− x′|
σ2h

[|x− y|2 + γh2]
2−d

2

≤ K∗(d)
ρ(x)

[|x− y|2 + γh2]
1
2

[|x− y|2 + γh2]
2−d

2

= K∗(d)[|x− y|2 + γh2]
1−d

2 ρ(x),

since

σ2h ≥
|x− y|

2
>
|x− y|

2(d+ 1)
> ρ(x) ≥ h,

⇒ (1 + γ
4
)σ2

2h
2 >
|x− y|2

4
+
γ

4
h2,

⇒ σ2h ≥
(
1 + γ

4

)−1/2 1
2
(|x− y|2 + γh2)

1
2 =

1√
γ + 4

(|x− y|2 + γh2)
1
2 .

J

6.8 Remark (Norm equivalence).
It holds

|x− y| ≤
√
d|x− y|∞,

|x− y|∞ ≤ |x− y|

for all x, y ∈ Rd. Moreover, for any a1, a2, b1, b2 > 0 we have

a1|x1|+ a2|x2| ≥ K(a1, a2, b1, b2)
√
b1x2

1 + b2x2
2, ∀x1, x2 ∈ R

due to the theorem of Riesz about equivalent norms.
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6.9 Lemma (Estimates for quotients of discrete Green’s function).
Let Ωh ⊂ Gh be admissible, and let G : Ωh×Ωh → R be its discrete Green’s function.
Then

|D+
xi
G(x, y)| ≤ K(d)[|x− y|2 + γh2]

1−d
2 , x ∈ Ωh ∪ ∂−i Ωh, y ∈ Ωh, 1 ≤ i ≤ d

with γ like in the Basic Estimate 6.3.
I
〈1 〉 Dealing with the boundary

Let y ∈ Ωh be arbitrary but fixed. Again we denote ρ(x) := dist(x, ∂Ωh). For
x ∈ ∂−i Ωh we have∣∣D+

xi
G(x, y)

∣∣ =

∣∣∣∣G(x+ hei, y)−G(x, y)

h

∣∣∣∣ =

∣∣∣∣G(x+ hei, y)

h

∣∣∣∣
≤ K(d)[|x− y + hei|2 + γh2]

1−d
2 ρ(x+ hei)

h

≤ K∗(d)[|x− y|2 + γh2]
1−d

2

due to Lemma 6.7, the identity ρ(x+ hei) = h and the third step in the proof
of Lemma 6.2 (note x 6= y). We can now assume that ρ(x) ≥ h.

〈2 〉 Case distinction

We introduce d+ := b
√
dc + 1 >

√
d, κ :=

√
d

d+ < 1 and consider the following
three cases

〈3 〉 |x−y|∞
d+ ≥ ρ(x)

Choose R := ρ(x). Since for ξ ∈ Bh(x,R, | · |∞) := {z ∈ Gh | |z − x|∞ ≤ R}

ρ(ξ) ≤ ρ(x) + |x− ξ|∞ ≤ R +R = 2R,

|ξ − y| ≥ |x− y| − |x− ξ| ≥ |x− y| −
√
d|x− ξ|∞

≥ |x− y| −
√
dR = |x− y| −

√
dρ(x)

≥ |x− y| −
√
d
|x− y|∞
d+

≥ |x− y| − κ|x− y|
= (1− κ)︸ ︷︷ ︸

=:κ̄∈(0,1)

|x− y| > 0,

we have y 6∈ Bh(x,R, | · |∞), i.e. G(·, y) is discrete harmonic in this set. We
denote

Bi
h(x,R, | · |∞) := {z ∈ Gh | |z − x|∞ ≤ R, zi − xi > −R + h}.
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Using Lemma 6.7 and Theorem 5.31 together with the previous estimates we
obtain

|D+
xi
G(x, y)| ≤ 2

d

R
max

ξ∈∂Bih(x,R,|·|∞)
|G(ξ, y)|

≤ 2
d

R
max

ξ∈∂Bih(x,R,|·|∞)
K(d)[|ξ − y|2 + γh2]

1−d
2 ρ(ξ)

≤ 4K(d) max
ξ∈∂Bih(x,R,|·|∞)

κ̄1−d[|x− y|2 + γh2]
1−d

2

≤ K∗(d)[|x− y|2 + γh2]
1−d

2 ,

if ρ(x) = R > h (see assumptions in 5.31). Using Lemma 5.33 instead of
Theorem 5.31 one obtains the case ρ(x) = h.

〈4 〉 h ≤ |x−y|∞
d+ < ρ(x)

Choose R := b |x−y|∞
d+h
ch. This leads to

h ≤ R ≤ |x− y|∞
d+

≤ |x− y|
d+

and also to y 6∈ Bh(x,R, | · |∞) ⊂ Ωh, since for ξ ∈ Bh(x,R, | · |∞) we have

|ξ − y| ≥ |x− y| − |x− ξ| ≥ |x− y| −
√
d|x− ξ|∞ ≥ |x− y| −

√
dR

≥ |x− y| −
√
d

d+
|x− y| = (1− κ)︸ ︷︷ ︸

=:κ̄∈(0,1)

|x− y| > 0.

The stairs estimate 6.4 and the norm equivalence gives

R >
1

3

(
|x− y|∞
d+

+ h

)
≥ 1

3

(
|x− y|√
dd+

+ h

)
≥ K(d)[|x− y|2 + γh2]

1
2 ,

implying

|D+
xi
G(x, y)| ≤ 2

d

R
max

ξ∈∂Bih(x,R,|·|∞)
|G(ξ, y)|

≤ 2
d

R
max

ξ∈∂Bih(x,R,|·|∞)
K(d)[|ξ − y|2 + γh2]

2−d
2

≤ 2
d

R
max

ξ∈∂Bih(x,R,|·|∞)
κ̄2−dK(d)[|x− y|2 + γh2]

2−d
2

≤ K∗(d)[|x− y|2 + γh2]
1−d

2 ,

for R > h and analogously with Lemma 5.33 for R = h.

96



〈5 〉 |x−y|∞
d+ < h

Choose R := d |x−y|∞
d+h
eh = h. Then for ξ ∈ ∂Bh(x,R, | · |∞), we can estimate

h ≤ [|ξ − y|+ h] ≤ K[|ξ − y|2 + γh2]
1
2 ,

h ≥ h

2
+
|x− y|∞

2d+
≥ h

2
+
|x− y|
2d+
√
d
≥ K(d)[|x− y|2 + γh2]

1
2 .

From the representation of Green’s function and Lemma 5.33 we obtain (recall
that −∆h,xG(x, y)|y=x = h−d)

|D+
xi
G(x, y)| ≤ 2

R
max

ξ∈∂Bh(x,R,|·|∞)
|G(ξ, y)|+ 1

2d
h

1

hd

≤ 2

h
max

ξ∈∂Bh(x,R,|·|∞)
K(d)[|ξ − y|2 + γh2]

2−d
2 +

1

2dhd−1

≤ K∗(d)
2

h
h2−d +

1

2dhd−1
≤ K(d)[|x− y|2 + γh2]

1−d
2 .

J
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Chapter 7

Discrete A Priori Estimates for
the Linear Case

7.1 Discrete Riesz potentials

7.1 Motivation (Discrete linear a priori estimates).
The results of this chapter are essentially discrete pendants to the results of Chap-
ter 4. For this section see also Chapter 7 from [23].

7.2 Definition (Discrete Lq Norms).
Let Ωh ⊂ Gh be bounded and let u : Ωh → R. We define by

‖u‖qLq(Ωh) =
∑
x∈Ωh

|u(x)|qhd

the discrete Lq norm.

7.3 Definition (Discrete Riesz potential operators).
Let α ∈ (0, 1], γ > 0 be fixed. The discrete Riesz potential is defined on Gh by

vα,γ(x) := [|x|2 + γh2]
−d(1−α)

2 .

For bounded Ωh ⊂ Gh it generates the discrete Riesz potential operator defined by

(Vα,γf)(x) =
∑
y∈Ωh

vα,γ(x− y)f(y)hd, x ∈ Ωh

which maps f : Ωh → R to Vα,γf : Ωh → R.

7.4 Notation (Diameter of an admissible set).
Let Ω ⊂ Rd be admissible. We denote

diam Ω := max
1≤i≤d

sup
x,y∈Ω

|xi − yi|.
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7.5 Lemma (Uniform estimate for the discrete Riesz potential).
Let Ωh ⊂ Gh, Ωh = clh Ω be admissible with admissible Ω =

∏d
i=1(ai, bi), ai < bi,

1 ≤ i ≤ d. Then

‖vα,γ(x− ·)‖Lq(Ωh) ≤ K(α, γ, d, q, diam Ω), ∀x ∈ Ωh

for

1 ≤ q <


1

1− α
, α ∈ (0, 1),

∞, α = 1.
I
〈1 〉 Symmetrization

We will sometimes suppress the (α, γ)-dependence, writing v := vα,γ. Let
x ∈ Ωh be arbitrary. Since v is positive and radially symmetric we have

‖v(x− ·)‖Lq(Ωh) ≤ ‖v‖Lq(Ω±h ) ≤ 2d‖v‖Lq(Ω+
h ),

where Ω
±
h = clh((−c, c)d), Ω+

h = cl+h ((0, c)d), c = max1≤i≤d(bi − ai) = diam Ω
(see Figure 7.1 with d = 2, Ω = (5h, 10h)× (5h, 9h)). It is therefore sufficient

e1

e2

x

Ω̄
±

h
Ω

+

h

x− Ω̄h

Ω̄h

Figure 7.1

to establish an upper bound on Lq(Ω+
h ). We also can assume α ∈ (0, 1), since

for α = 1 we have

‖v1,γ‖qLq(Ω+
h )

=
∑
x∈Ω+

h

hd ≤ (diam Ω + 1)d.
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〈2 〉 Isolating the origin
Using radial symmetry of v we can write

‖v‖q
Lq(Ω+

h )
=
∑
x∈Ω+

h

|v(x)|qhd =
∑
x∈Ω+

h
|x|∞≤h

|v(x)|qhd +
∑
x∈Ω+

h
|x|∞>h

|v(x)|qhd

≤ 2d|v(0)|qhd +
∑
x∈Ω+

h
|x|∞>h

|v(x)|qhd,

since 2d = #{x ∈ Gh | xi ≥ 0, 1 ≤ i ≤ d, |x|∞ ≤ h}. The term

|vα,γ(0)|qhd = γ−
d(1−α)q

2 hd(1−(1−α)q)

is bounded uniformly in h due to q < 1
1−α . We denote

Gh := {x ∈ Ω+
h | |x|∞ > h}.

and prove the boundedness of ‖v‖qLq(Gh) in two steps.

〈3 〉 Interior estimate by comparison integral
The main idea of the estimate is to interpret ‖v‖qLq(Gh) as a lower Riemann

sum for ‖v‖qLq(G) with some G ⊂ Rd. If x ∈ Gh with xi > 0, 1 ≤ i ≤ d then it
follows by direct calculations that

v(x) = min{v(y) | y ∈
d∏
i=1

(xi − h, xi)}.

Denoting G+
h := {x ∈ Gh | xi > 0, 1 ≤ i ≤ d} and G := [0, c]d \ [0, h]d we

obtain ∑
x∈G+

h

|v(x)|qhd ≤
∫
G

|v(x)|q dx.

Replacing G with the larger set (see Figure 7.2, where the dots represents G+
h )

Grad := {x ∈ Rd | h < |x|2 ≤
√
dc, xi > 0, 1 ≤ i ≤ d}

and using polar coordinates we finally get∑
G+
h

|v(x)|qh ≤
∫
G

|v(x)|q dx ≤
∫
Grad

|v(x)|q dx ≤
∫
Grad

|x|−d(1−α)q dx

=
ωd
2d

∫ √dc
h

r−d(1−α)qrd−1 d r =
ωd
2d

rd(1−(1−α)q)

d(1− (1− α)q)

∣∣∣∣
√
dc

h

d r

=
ωd
2dd

(
(
√
dc)d(1−(1−α)q) − hd(1−(1−α)q)

1− (1− α)q

)
,
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e1

e2

G

Grad

Figure 7.2

where ωd/2
d is the surface area of {|x| = 1}∩Rd

+. Since (1−α)q < 1, we avoid
the logarithmic singularity and have uniform in h boundedness.

〈4 〉 Dimensional reduction
Denoting G0

h := Gh \G+
h we now have to show the boundedness of ‖v‖q

Lq(G0
h)

.

The set G0
h represents points from Gh, for which at least one component xi,

i ∈ {1, . . . , d} is zero. We can partition it in sets where exactly 1, 2, . . . , d− 1
components are non-zero. For instance, the subset with exactly one non-zero
component corresponds to the intersection of Gh with axes. Since v is radially
symmetric, the sum over every such subset with exactly k non-zero components
can be calculated via (

d

k

) ∑
x∈Rkh

|v(x)|qhd,

with
Rk
h := Rk ∩Gh,

Rk := {x ∈ [0, c]k \ [0, h]k | xi > 0, 1 ≤ i ≤ k} × {0}d−k.
We now have to show boundedness for every such sum. Using the approach
from the previous step (observe Rd

h = G+
h ) and introducing

Rk
rad := {x ∈ Rd | h < |x|2 ≤

√
kc, xi > 0, 1 ≤ i ≤ k} × {0}d−k.

we estimate∑
x∈Rkh

|v(x)|qhd = hd−k
∑
x∈Rkh

|v(x)|qhk ≤ hd−k
∫
Rk
|v(x)|q dx

≤ hd−k
∫
Rkrad

|v(x)|q d (x1, . . . , xk) ≤ hd−k
∫ √kc
h

rk−1−d(1−α)q d r

= hd−k · (
√
kc)k−d(1−α)q

k − d(1− α)q
− hd(1−(1−α)q)

k − d(1− α)q
,
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for k 6= d(1− α)q and

∑
x∈Rkh

|v(x)|qhd ≤ hd−k
∫ √kc
h

rk−1−d(1−α)q d r = hd−k
(

log(
√
kc)− log(h)

)
otherwise. In both cases d > k and 1 − (1 − α)q > 0 ensure uniform in h
boundedness.

J

7.6 Lemma (Discrete Hardy-Littlewood-Sobolev inequality).
Let Ωh ⊂ Gh, Ωh = clh Ω be admissible with admissible Ω =

∏d
i=1(ai, bi), ai < bi,

1 ≤ i ≤ d. Then

‖Vα,γf‖Lq(Ωh) ≤ K(α, d, diam Ω, p, q, γ)‖f‖Lp(Ωh)

for every f : Ωh → R, provided

0 ≤ δ := δ(p, q) :=
1

p
− 1

q
< α

I
〈1 〉 Case α = 1

After setting 1
p

+ 1
p′

= 1, 1 ≤ p′ ≤ ∞ direct calculations yield

‖V1,γf‖Lq(Ωh) =

∑
x∈Ωh

|(V1,γf)(x)|qhd
1/q

=

∑
x∈Ωh

∣∣∣∣∣∑
y∈Ωh

f(y)hd

∣∣∣∣∣
q

hd

1/q

≤
∑
y∈Ωh

|f(y)|hd ·

∑
x∈Ω

hd

1/q

≤
∑
y∈Ωh

|f(y)|hd · (diam Ω + 1)d/q

≤

(∑
y∈Ωh

|f(y)|phd
)1/p

(diam Ω + 1)d/q+d/p
′

= ‖f‖Lp(Ωh)(diam Ω + 1)d/q+d/p
′

for all 1 ≤ p ≤ q < +∞. We are therefore left with the

〈2 〉 Case α ∈ (0, 1)
Denote r := 1

1−δ . From 1 ≥ 1− δ > 1− α > 0 we obtain

1 ≤ r <
1

1− α
.
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Using Lemma 7.5 this implies

vα,γ(x− ·) ∈ Lr(Ωh), x ∈ Ωh

with a uniform bound

‖vα,γ(x− ·)‖Lr(Ωh) ≤ C(α, γ, d, r, diam Ω) =: C.

We can write

vα,γ|f | = vr/qα,γ |f |p/q · vr(1−1/p)
α,γ · |f |pδ

and apply the Hölder inequality with three multipliers

I := |(Vα,γf)(x)| ≤
∑
y∈Ωh

vα,γ(x− y)|f(y)|hd

≤

(∑
y∈Ωh

vrα,γ(x− y)|f(y)|phd
) 1

q
(∑
y∈Ωh

vrα,γ(x− y)hd

)1−1
p
(∑
y∈Ωh

|f(y)|phd
)δ

≤

(∑
y∈Ωh

vrα,γ(x− y)|f(y)|phd
) 1

q

Cr−r/p‖f‖pδLp(Ωh).

Lemma 7.5 finally yields

‖Vα,γf‖Lq(Ωh) ≤

∑
x∈Ωh

∑
y∈Ωh

vrα,γ(x− y)|f(y)|phdhd
1/q

Cr−r/p‖f‖pδLp(Ωh)

=

∑
y∈Ωh

∑
x∈Ωh

vrα,γ(x− y)hd

 |f(y)|phd
1/q

Cr−r/p‖f‖pδLp(Ωh)

≤ Cr/q‖f‖p/qLp(Ωh)C
r−r/p‖f‖pδLp(Ωh)

= Cr(1−δ)‖f‖Lp(Ωh).

J

7.7 Remark (Extension).
We did not consider the case δ = α, p > 1, since it is not necessary for our purposes
(cf. Remark 4.19).
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7.2 Discrete Linear A Priori Estimate

7.8 Definition (Discrete Sobolev Norms).
Let Ωh ⊂ Gh be admissible and let u : Ωh → R with u|∂Ωh

= 0. We define by

‖u‖p
W 1,p

0 (Ωh)
:=

d∑
i=1

∑
x∈Ωh∪∂−i Ωh

|D+
i u(x)|phd.

the discrete W 1,p
0 norm.

7.9 Theorem (Discrete Linear A Priori Estimate).
Let Ωh ⊂ Gh, Ωh = clh Ω be admissible with some admissible Ω ⊂ Rd. Let f : Ωh →
R be given and u : Ωh → R be defined as the solution of

−∆hu(x) = f(x), x ∈ Ωh,

u(x) = 0, x ∈ ∂Ωh.

Then, for p ∈ (1,∞), q > dp
d+p

it holds

‖u‖W 1,p
0 (Ωh) ≤ K(d, p, q, diam Ω)‖f‖Lq(Ωh).

I
Without loss of generality we can assume q ∈ ( dp

d+p
, p] 6= ∅, since

‖f‖Lq(Ωh) ≤ K(q, p, d, diam Ω)‖f‖Lp(Ωh) ≤ K∗(q, p, q̃, d, diam Ω)‖f‖Lq̃(Ωh)

for q ≤ p < q̃. Due to norm equivalence on Rd we obtain

‖u‖W 1,p
0 (Ωh) =

 d∑
i=1

∑
x∈Ωh∪∂−i Ωh

|D+
i u(x)|phd

1/p

=

(
d∑
i=1

‖D+
i u(x)‖p

Lp(Ωh∪∂−i Ωh)

)1/p

≤ K(d) max
1≤i≤d

‖D+
i u(x)‖Lp(Ωh∪∂−i Ωh).

It is therefore sufficient to have an estimate for ‖D+
i u‖Lp(Ωh), 1 ≤ i ≤ d.

From the Representation Lemma 5.19 we have

u(x) =
∑
y∈Ωh

G(x, y)f(y)hd, x ∈ Ωh,

implying

D+
i u(x) =

∑
y∈Ωh

D+
xi
G(x, y)f(y)hd, x ∈ Ωh ∪ ∂−i Ωh
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for 1 ≤ i ≤ d. From Lemma 6.9 we know that

|D+
xi
G(x, y)| ≤ K(d)[|x− y|2 + γh2]

1−d
2 , x ∈ Ωh ∪ ∂−i Ωh, y ∈ Ωh

for fixed γ := γ(d), yielding

|D+
i u(x)| ≤ K(d)

∑
y∈Ωh

[|x− y|2 + γh2]
1−d

2 |f(y)|hd = K(d)(V1/d,γ|f |)(x)

for x ∈ Ωh ∪ ∂−i Ωh, 1 ≤ i ≤ d. We now have

‖D+
i u‖Lp(Ωh∪∂−i Ωh) ≤ K(d)‖V1/d,γ|f |‖Lp(Ωh∪∂−i Ωh) ≤ K(d)‖V1/d,γ|f |‖Lp(Ωh)

= K∗(d, diam Ω, p, q)‖f‖Lq(Ωh),

for 1 ≤ i ≤ d, since

0 ≤ 1

q
− 1

p
<
d+ p

dp
− 1

p
=

1

d

as Lemma 7.6 demands.
J
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Chapter 8

Interpolation

8.1 Tensor product interpolation

8.1 Motivation (Interpolation).
Exactly as in the model problem 3 we need a way to interpolate a grid function in
such a way that

1. the interpolated function coincides with the grid function in the grid points;

2. the interpolated function belongs to W 1,p and is continuous;

3. the W 1,p-norm of the interpolated function can be estimated by the discrete
W 1,p-norm of the grid function up to a grid-independent factor.

8.2 Motivation (Reference box).
We first construct an interpolation process on the simplest discrete set – reference
box – and then we extend it to a general discrete admissible domain.

8.3 Notation (Reference box, tensor element, natural numeration).
Let (i1, . . . , id) ∈ {0, 1}d. We denote

x(i1,...,id) := xi11 · · ·x
id
d

with the convention x0 ≡ 1.
Using binary representation we can map the set {0, 1}d one-to-one onto the set

{0, 1, . . . , 2d − 1}. We denote by π : {0, . . . , 2d − 1} → {0, 1}d the corresponding
binary decomposition written in reverse order, i.e. π is additive with

π(0) = (0, . . . , 0),

π(2k) = (0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0), 0 ≤ k ≤ d− 1.
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We also define
σ(k) := |π(k)|1, k ∈ {0, 1, . . . , 2d − 1},

i.e. if π(k) = (i1, . . . , id), then

σ(k) =
d∑
j=1

ij.

We now define by
Q := [0, h]d

the reference box with

Qh := Q ∩ Gh = {hπ(k) | 0 ≤ k ≤ 2d − 1}.

Moreover, we define τk : Q→ R by

τk(x) = xπ(k) = x
π1(k)
1 · · ·xπd(k)

d

for 0 ≤ k ≤ 2d − 1; for instance,

τ0(x) = 1,

τ3(x) = x1x2,

τ5(x) = x1x3.

8.4 Definition (Interpolation on the reference box).
Let f : Qh → R be given. Define f̂ : Q→ R by

f̂(x) :=
2d−1∑
k=0

αkτk(x),

where (αk)
2d−1
k=0 is the solution of the linear system

2d−1∑
k=0

αkτk(x) = f(x), x ∈ Qh,

⇔
2d−1∑
k=0

αkτk(hπ(j)) = f(hπ(j)), 0 ≤ j ≤ 2d − 1.

This system is lower triangular with a positive diagonal, i.e. always solvable. Really,
let k ∈ {0, . . . , 2d − 1}, π(k) = (i1, . . . , id) ∈ {0, 1}d. Then,

τk(hπ(k)) = xi11 · · ·x
id
d

∣∣
x=hπ(k)

= (i1h)i1 · · · (idh)id = h
∑d
j=1 ij = hσ(k) > 0.
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Now let k > j, π(j) = (i′1, . . . , i
′
d). This implies 1 = is > i′s = 0 for some s ∈

{1, . . . , d} and consequently

τk(hπ(j)) = (i′1h)i1 · · · (i′sh)is︸ ︷︷ ︸
=0

· · · (i′dh)id = 0.

8.5 Example (Interpolation in 2d).
For instance, for d = 2 we have

τ0(x1, x2) = 1, hπ(0) = (0, 0),

τ1(x1, x2) = x1, hπ(1) = (h, 0),

τ2(x1, x2) = x2, hπ(2) = (0, h),

τ3(x1, x2) = x1x2, hπ(3) = (h, h).

i.e. the system for determining (αk)
3
k=0 is given by

α0 +0 +0 +0 = f0 := f(0, 0),
α0 +α1h +0 +0 = f1 := f(h, 0),
α0 +0 +α2h +0 = f2 := f(0, h),
α0 +α1h +α2h +α3h

2 = f3 := f(h, h).

8.6 Motivation (Representation lemma).
We want to estimate the W 1,p

0 -norm of the interpolant against the discrete W 1,p
0 -

norm of the corresponding grid function. As the first step towards this aim we want
to obtain a representation of the coefficients αi through the finite differences of the
grid function. From Example 8.5 we see

α0 = f0,

α1h = f1 − f0,

α2h = f2 − f0,

α3h
2 = (f3 − f0)− (f1 − f0)− (f2 − f0).

The following lemma generalizes this observation.

8.7 Lemma (Representation lemma).
Let f : Qh → R, fk := f(hπ(k)), 0 ≤ k ≤ 2d − 1 be given and let f̂ : Q→ R

f̂(x) =
2d−1∑
k=0

αkτk(x), x ∈ Q

be the corresponding interpolant. Then it holds

αkh
σ(k) =

k∑
j=1

(fj − f0)β
(k)
j , 1 ≤ k ≤ 2d − 1,
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where β
(k)
j , 1 ≤ j ≤ k, 1 ≤ k ≤ 2d − 1 are some dimension-dependent constants. In

particular this implies

|αk| ≤ C(d)
1

hσ(k)

k∑
j=1

|fj − f0|,

for 1 ≤ k ≤ 2d − 1 with some C(d) > 0.

I
We prove this statement by induction. Let the statement hold for (αk)

n
k=1 with

some n ∈ [1, 2d − 1) ∩ N. Since the matrix for determining (αk)
n+1
k=1 is lower

diagonal with α0 = f0 and τk(hπ(n+ 1)) = hσ(k)tk(π(n+ 1)), we have

αn+1h
σ(n+1) = (fn+1 − f0)−

n∑
k=1

αkh
σ(k)γ

(n+1)
k ,

with γ
(n+1)
k := tk(π(n+ 1)), 1 ≤ k ≤ n. Using the induction assumption we get the

claim:

αn+1h
σ(n+1) = (fn+1 − f0)−

n∑
k=1

γ
(n+1)
k

k∑
j=1

(fj − f0)β
(k)
j

= (fn+1 − f0) 1︸︷︷︸
=:β

(n+1)
n+1

+
n∑
j=1

(fj − f0)

{
−

n∑
k=j

γ
(n+1)
k β

(k)
j

}
︸ ︷︷ ︸

=:β
(n+1)
j

.

J

8.8 Corollary.
Let f : Qh → R, fk := f(hπ(k)), 0 ≤ k ≤ 2d − 1 be given and let f̂ : Q→ R

f̂(x) =
2d−1∑
k=0

αkτk(x), x ∈ Q

be the corresponding interpolant. Then it holds

‖f̂‖L∞(Q) ≤ K(d)‖f‖L∞(Qh).

I
By direct calculation and the previous lemma

‖f̂‖L∞(Ω) ≤
2d−1∑
k=0

|αk|‖τk‖L∞(Q) = |f0|+
2d−1∑
k=1

|αk|hσ(k)

≤ |f0|+
2d−1∑
k=1

C(d)|fk − f0| ≤ 2d+1C(d)‖f‖L∞(Qh).
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8.9 Lemma (Estimate for a tensor product element).
The following estimate ∫

Q

(
∂

∂xi
τk(x)

)p
dx ≤ hp(σ(k)−1)+d

holds for 1 ≤ i ≤ d, 0 ≤ k ≤ 2d − 1 and p ∈ [1,∞).

I
By definition

τk(x) = xπ(k) = x
π1(k)
1 · · ·xπd(k)

d

and therefore

∂

∂xi
τk(x) =

{
0, if πi(k) = 0

x
π1(k)
1 · · ·xπi−1(k)

i−1 · xπi+1(k)
i+1 · · ·xπd(k)

d , if πi(k) = 1

for all 1 ≤ i ≤ d, 0 ≤ k ≤ 2d − 1. For πi(k) = 1 this yields

I :=

∫
Q

(
∂

∂xi
τk(x)

)p
dx = h

d∏
j=1

j 6=i

∫ h

0

x
πj(k)p
j dxj

= h

 d∏
j=1,j 6=i
πj(k)=1

∫ h

0

x
πj(k)p
j dxj


 d∏

j=1,j 6=i
πj(k)=0

∫ h

0

x
πj(k)p
j dxj



= h

 d∏
j=1,j 6=i
πj(k)=1

hp+1

p+ 1


 d∏

j=1,j 6=i
πj(k)=0

h


≤
(

1

p+ 1

)σ(k)−1

︸ ︷︷ ︸
≤1

h(p+1)(σ(k)−1)hd−σ(k)+1 ≤ hp(σ(k)−1)+d.

and for πi(k) = 0 we immediately get I = 0.
J

8.10 Lemma (W 1,p
0 norm on reference box).

Let f : Qh → R, fk := f(hπ(k)), 0 ≤ k ≤ 2d − 1 be given and let f̂ : Q→ R

f̂(x) =
2d−1∑
k=0

αkτk(x)
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be the corresponding interpolant. Then for p ∈ [1,∞) holds∫
Q

d∑
i=1

∣∣∣∣ ∂∂xi f̂(x)

∣∣∣∣p dx ≤ K(p, d)hd
∑
x∈Qh

∑
1≤i≤d:

x+hei∈Qh

|D+
i f(x)|p.

I
We estimate

I :=

∫
Q

d∑
i=1

∣∣∣∣ ∂∂xi f̂(x)

∣∣∣∣p dx =

∫
Q

d∑
i=1

∣∣∣∣∣∣ ∂∂xi
2d−1∑
k=0

αkτk(x)

∣∣∣∣∣∣
p

dx

=

∫
Q

d∑
i=1

∣∣∣∣∣∣
2d−1∑
k=1

αk
∂

∂xi
τk(x)

∣∣∣∣∣∣
p

dx ≤
∫
Q

d∑
i=1

2d−1∑
k=1

|αk|
∂

∂xi
τk(x)

p

dx

By norm equivalence on R2d we have

2d−1∑
k=1

|αk|
∂

∂xi
τk(x) ≤ K(p, d)1/p

2d−1∑
k=1

|αk|p
(
∂

∂xi
τk(x)

)p1/p

,

for all 1 ≤ i ≤ d, x ∈ Q, yielding

I ≤ K(p, d)

∫
Q

d∑
i=1

2d−1∑
k=1

|αk|p
(
∂

∂xi
τk(x)

)p
dx

= K(p, d)
2d−1∑
k=1

{
|αk|p

d∑
i=1

∫
Q

(
∂

∂xi
τk(x)

)p
dx

}
Invoking Lemmas 8.9 and 8.7 we obtain

I ≤ K(p, d)
2d−1∑
k=1

|αk|p
d∑
i=1

hp(σ(k)−1)+d

≤ K ′(p, d)
2d−1∑
k=1

hp(σ(k)−1)+d

hσ(k)p

(
k∑
j=1

|fj − f0|

)p

≤ K(p, d)hd−p
2d−1∑
j=1

|fj − f0|p

≤ K(p, d)hd
2d−1∑
j=1

∣∣∣∣fj − f0

h

∣∣∣∣p .
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Geometrically, for every 1 ≤ j ≤ 2d − 1 we can represent the difference (fj − f0) as
a telescope sum of at most d terms of the form fp − fq, where hπ(p) and hπ(q)
have a common edge in Q. Really, let j ∈ {1, . . . , 2d − 1}, π(j) = (i1, . . . , id).

Choose k
(j)
n , 0 ≤ n ≤ d like this

π(k
(j)
0 ) = (0, 0, 0, . . . , 0),

π(k
(j)
1 ) = (i1, 0, 0, . . . , 0),

π(k
(j)
2 ) = (i1, i2, 0, . . . , 0),

. . .

π(k
(j)
d ) = (i1, i2, i3, . . . , id),

where some k
(j)
n ’s can possibly coincide. By construction

fj − f0 =
d∑

n=1

f
k

(j)
n
− f

k
(j)
n−1

and hπ(k
(j)
n−1), hπ(k

(j)
n ), 1 ≤ n ≤ d, unless they coincide, have a common edge

hπ(k
(j)
n ) = hπ(k

(j)
n−1) + hen with∣∣∣∣∣fk(j)

n
− f

k
(j)
n−1

h

∣∣∣∣∣ =
∣∣∣D+

n fk(j)
n−1

∣∣∣ .
So finally, we write

I ≤ K ′(p, d)hd
2d−1∑
j=1

d∑
n=1

k
(j)
n−1 6=k

(j)
n

∣∣∣∣∣fk(j)
n
− f

k
(j)
n−1

h

∣∣∣∣∣
p

= K ′(p, d)hd
2d−1∑
j=1

d∑
n=1

k
(j)
n−1 6=k

(j)
n

∣∣∣D+
n fk(j)

n−1

∣∣∣p
≤ K(p, d)hd

∑
x∈Qh

∑
1≤i≤d:

x+hei∈Qh

|D+
i f(x)|p,

since every term in the penultimate sum appears in the last sum with multiplicity
at most 2d.
J

8.11 Lemma (Lower dimensional facets).
Let f : Qh → R, fk := f(hπ(k)), 0 ≤ k ≤ 2d − 1 be given and let f̂ : Q→ R

f̂(x) =
2d−1∑
k=0

αkτk(x), x ∈ Q

be the corresponding interpolant. Further, let S := S1 × · · · × Sd with Si ∈
{{0}, {h}, [0, h]}, 1 ≤ i ≤ d. Then f̂ |S depends only on {f(x) | x ∈ Qh ∩ S}.
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I
Define s := #{i | Si = [0, h]}, in other words S is an s-dimensional facet of Q.

Since the other d− s variables are fixed, f̂ |S possesses exactly 2s degrees of
freedom. The set Qh ∩ S consists of exactly 2s points. Repeating the argument
from the Definition 8.4 we get the claim.
J

8.12 Definition (Interpolation on discrete admissible set).
Let Ω ⊂ Rd, Ωh ⊂ Gh, Ωh = clh Ω be admissible with Ω̂h := Ωh∪∂̂Ωh. Let u : Ω̂h → R
be given. For every x̄ ∈ Ω̂h \ ∂̂+Ωh define

Qx̄ := x̄+Q =
d∏
i=1

[x̄i, x̄i + h].

We construct û : Qx̄ → R in the following way. First, define f : Qh → R by

f(x) := u(x+ x̄), x ∈ Qh.

Now, using f̂ : Q→ R from Definition 8.4 define

û(x) := f̂(x− x̄), x ∈ Qx̄.

Since
Ω = ∪x̄∈Ω̂h\∂̂+Ωh

Qx̄

we have defined û on Ω, provided the values û on ∂Qx̄ are well-defined for all
x̄ ∈ Ω̂h \ ∂̂+Ωh, i.e. the values on the common facets of two different boxes coincide.
This follows from Lemma 8.11.

8.13 Theorem (Norm estimate).
Let Ω ⊂ Rd, Ωh ⊂ Gh, Ωh = clh Ω be admissible with Ω̂h := Ωh ∪ ∂̂Ωh. Further,
let u : Ω̂h → R, u|∂̂Ωh

= 0 be given with its tensor product interpolant û : Ω → R.
Then it holds

‖û‖W 1,p
0 (Ω) ≤ K(d, p)‖u‖W 1,p

0 (Ωh)

for p ∈ [1,∞).

I
As in the previous Definition we write Qx̄ := Q+ x̄ for all x̄ ∈ Ω̂h \ ∂̂+Ωh =: Gh

Using Lemma 8.10 we estimate

‖û‖p
W 1,p

0 (Ω)
=
∑
x̄∈Gh

∫
Qx̄

d∑
i=1

∣∣∣∣ ∂∂xi û(x)

∣∣∣∣p dx ≤ K(p, d)hp
∑
x̄∈Gh

∑
x∈Qx̄

∑
1≤i≤d:

x+hei∈Qx̄

|D+
i u(x)|p

≤ K∗(p, d)hp
d∑
i=1

∑
x∈Ωh\∂+

i Ωh

|D+
i u(x)|p = K∗(p, d)‖u‖p

W 1,p
0 (Ωh)

.
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Chapter 9

Convergence Result for bounded
domains

9.1 Discrete formulation

9.1 Motivation (Main Result).
After the preparations in Chapters 5, 6 and 7 we are finally in the position to carry
out the program outlined in Chapter 3.

9.2 Definition (Discrete Formulations).
Let Ω ⊂ Rd and Ωh ⊂ Gh, Ωh = clh(Ω) be admissible.
In the classical continuous setting we are looking for u ∈ C2(Ω) ∩ C(Ω) such that

−∆u(x) = f(u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
(BVP)

with some f ∈ C(R).
In the discrete case we are looking for u : Ωh → R that satisfy one of following three
equivalent formulations (see the next lemma).
The classical discrete formulation for (BVP) is the problem

−∆hu(x) = f(u(x)), x ∈ Ωh,

u(x) = 0, x ∈ ∂Ωh.
(Ph)

The weak discrete formulation for (BVP) is the problem

d∑
i=1

∑
x∈Ωh∪∂−i Ωh

D+u(x)D+ϕ(x)hd =
∑
x∈Ωh

f(u(x))ϕ(x)hd,

u(x) = 0, x ∈ ∂Ωh,

(P ′h)
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where equality has to hold for all ϕ : Ωh → R with ϕ|∂Ωh = 0.
The very weak discrete formulation for (BVP) is the problem

−
∑
x∈Ωh

u(x)∆hϕ(x)hd =
∑
x∈Ωh

f(u(x))ϕ(x)hd,

u(x) = 0, x ∈ ∂Ωh,

(P ′′h )

where equality has to hold for all ϕ : Ωh → R with ϕ|∂Ωh = 0.
Analogously to Lemma 3.8 we obtain

9.3 Lemma (Equivalence of the discrete formulations).
The discrete formulations (Ph), (P

′
h) and (P ′′h ) are equivalent.

I
Let ϕ : Ωh → R be a grid function with ϕ|∂Ωh

= 0. We multiply (Ph) with ϕ and
sum up over x ∈ Ω

∑
x∈Ωh

f(u(x))ϕ(x) = −
∑
x∈Ωh

∆hu(x)ϕ(x) =
d∑
i=1

∑
x∈Ωh

−D+
i u(x) +D−i u(x)

h
ϕ(x)

=
d∑
i=0

 ∑
x∈Ωh∪∂−i Ωh

−D+
i u(x)

h
ϕ(x) +

∑
x∈Ωh∪∂+

i Ωh

D−i u(x)

h
ϕ(x)


=

d∑
i=0

∑
x∈Ωh∪∂−i Ωh

(
−D+

i u(x)

h
ϕ(x) +

D+
i u(x)

h
ϕ(x+ hei)

)

=
d∑
i=0

∑
x∈Ωh∪∂−i Ωh

D+
i u(x)D+

i ϕ(x),

obtaining (Ph)⇒ (P ′h).

Since u|∂Ωh
= 0, we can expand

∑d
i=1

∑
x∈Ωh∪∂−i Ωh

D+
i u(x)D+

i ϕ(x) backwards,

swapping u and ϕ. This yields (P ′h)⇔ (P ′′h ).
Define ϕy : Ωh → R by

ϕy(x) :=

{
1, if x = y,

0, otherwise.

with an arbitrary but fixed y ∈ Ωh. Plugging ϕy into (P ′h)

f(u(y)) =
d∑
i=1

[
−D

+
i u(y)

h
+
D+
i u(y − hei)

h

]
= −∆hu(y),
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and (P ′′h )

f(u(y)) =
1

h2

d∑
i=1

[−u(y + hei) + 2u(y)− u(y − hei)] = −∆hu(y).

and in both cases dividing by hd, we obtain (Ph).
J

9.2 Main result for bounded domains

9.4 Announcement (Convergence Theorem).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, hn

n→∞→ 0, a corresponding sequence of solutions (un)n∈N, un : Ωhn → R of
discrete problems (Phn) and a positive C > 0 such that

‖un‖L∞(Ωhn ) := max{|un(x)| | x ∈ Ωhn} ≤ C, ∀n ∈ N.

Then, there exists a (renamed) subsequence (un)n∈N and a classical solution u ∈
C2(Ω) ∩ C(Ω) of (BVP) such that

‖un − u‖L∞(Ωhn ) → 0, as n→∞.

9.5 Lemma (Embedding results).
Let u ∈ W 1,p

0 (Ω) with Ω admissible and p > d. Then there exists a continuous
representative ū ∈ C(Ω) with ū|∂Ω = 0 and ū|Ω = u a.e. Now let (un)n∈N ⊂ W 1,p

0 (Ω)
with ‖un‖W 1,p(Ω) ≤ C for some C > 0. Then, there exists ũ ∈ C(Ω) such that ūn ⇒ ũ

(i.e. uniformly on Ω) up to a subsequence as n → ∞, where ūn is the continuous
representative of un, n ∈ N, as defined previously.

I
The continuous embedding follows from Theorem 4.12 in [2]. From Theorem 6.3

in [2] we have the compact embedding W 1,p(Ω) ↪→ CB(Ω). Extracting if needed a
subsequence we obtain ūn ⇒ ũ with some ũ ∈ C(Ω).
J

9.6 Convention.
We will identify the function u ∈ W 1,p

0 (Ω) with its continuous representative ū ∈
C(Ω) in the sense of the previous lemma.

9.7 Lemma (Boundedness).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
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(hn)n∈N, a corresponding sequence of solutions (un)n∈N, un : Ωhn → R of the discrete
problems (Phn) and a positive C > 0 such that

‖un‖L∞(Ωhn ) ≤ C, ∀n ∈ N.

Then, there exists Ĉ > 0 such that

‖ûn‖W 1,p
0 (Ω) ≤ Ĉ, ∀n ∈ N,

where ûn is the tensor product interpolant (as defined in 8.12) of un, n ∈ N and
p ∈ (1,∞).

I
From the uniform boundedness of (un)n∈N and the continuity of f we get
‖f(un)‖Lp(Ωhn ) ≤ C̃ with some C̃ = C̃(C, f, p) > 0 for all p ∈ [1,∞). Using
Theorem 8.13 and Theorem 7.9, we obtain

‖ûn‖W 1,p
0 (Ω) ≤ K(d, p)‖un‖W 1,p

0 (Ωhn ) ≤ K∗(d, p, diam Ω)‖f‖Lq(Ωhn )

≤ K(d, p, diam Ω, C, f), ∀n ∈ N.

with q = 2dp
d+p

> dp
d+p

.
J

9.8 Lemma (Passing to the limit in the linear part).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N ⊂ (0, 1], a corresponding sequence of solutions (un)n∈N, un : Ωhn → R of the
discrete problems (Phn) and a positive C > 0 such that ‖un‖L∞(Ωhn ) ≤ C, ∀n ∈ N.

Then, there exists a (renamed) subsequence of (un)n∈N such that

−
∑
x∈Ωhn

un(x)∆hnϕ(x)hdn
n→∞−−−→ −

∫
Ω

u(x)∆ϕ(x) dx,

for all ϕ ∈ C3(Ω) and

ûn ⇒ u

for some u ∈ C(Ω), u|∂Ωh = 0.
I
〈1 〉 Subsequence in C∗(Ω)

The functionals

Φn :


C(Ω)→ R

Ψ 7→
∑
x∈Ωhn

un(x)Ψ(x)hdn
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are uniformly bounded in n with ‖Ψ‖C(Ω) := maxx∈Ω |Ψ(x)|, because

|Φn(Ψ)| ≤ ‖un‖L∞(Ωhn )‖Ψ‖C(Ω)|Ω| ≤ C|Ω|‖Ψ‖C(Ω).

Due to separability of C(Ω) there exists Φ ∈ C∗(Ω) such that Φn
∗
⇀ Φ up to

a (renamed) subsequence.

〈2 〉 Extending the limit element to L2(Ω)
For any Ψ ∈ C(Ω) we denote

‖Ψ‖L2(Ωhn ) :=

√ ∑
x∈Ωhn

Ψ2(x)hdn.

From

|Φn(Ψ)| =

∣∣∣∣∣∣
∑
x∈Ωhn

un(x)Ψ(x)hdn

∣∣∣∣∣∣ ≤
√ ∑

x∈Ωhn

u2
n(x)hdn

√ ∑
x∈Ωhn

Ψ2(x)hdn

≤ C
√
|Ω|‖Ψ‖L2(Ωhn )

letting n→∞ we get for a fixed Ψ ∈ C(Ω)

|Φ(Ψ)| ≤ C
√
|Ω|‖Ψ‖L2(Ω).

Since C(Ω) is dense in the complete space L2(Ω) we can extend Φ by continuity
onto L2(Ω). We denote by ũ ∈ L2(Ω) the Riesz representative of this extension.

〈3 〉 Convergence
We formally extend Φ to all grid functions Ψ: Ωhn → R and implicitly restrict
all ϕ ∈ C(Ω) to the corresponding grids if necessary. We want to show that

Φn(−∆hnϕ) = −
∑
x∈Ωhn

un(x)∆hnϕ(x)hdn
n→∞−−−→ −

∫
Ω

∆ϕ(x)ũ(x) dx = Φ(−∆ϕ)

for ϕ ∈ C3(Ω). For ϕ ∈ C3(Ω) we have the consistency

‖∆hnϕ−∆ϕ‖L∞(Ωhn ) → 0 as n→∞,

implying

|Φn(−∆hnϕ+ ∆ϕ)| ≤ C|Ω|‖∆hnϕ−∆ϕ‖L∞(Ωhn ) → 0 as n→∞.

Hence,

Φn(−∆hnϕ) = Φn(−∆ϕ) + Φn(−∆hnϕ+ ∆ϕ)→ Φ(−∆ϕ) = −
∫

Ω

ũ∆ϕdx,

for all ϕ ∈ C3(Ω) as n→∞.

121



〈4 〉 Identification of ũ
We now want to show that ũ can also be obtained as an accumulation point of
(ûn)n∈N in C(Ω). Taking the (renamed) subsequence (un)n∈N that corresponds
to the extracted subsequence used in the first step and applying Lemma 9.5
and Lemma 9.7 we extract a (renamed) convergent subsequence (ûn)n∈N with
a limit u ∈ C(Ω), ûn ⇒ u as n→∞. We now only need to show that ũ = u,
yielding also that the limit u is independent from the choice of the convergent
subsequence from the sequence fixed in the first step. First we show

Φn(−∆hnϕ)
n→∞−−−→ −

∫
Ω

u(x)∆ϕ(x) dx, ∀ϕ ∈ C3(Ω).

We get

Φn(−∆hnϕ) =−
∑
x∈Ωhn

un(x)∆hnϕ(x)hdn = −
∑
x∈Ωhn

ûn(x)∆hnϕ(x)hdn

=−
∑
x∈Ωhn

ûn(x)∆ϕ(x)hdn +
∑
x∈Ωhn

ûn(x)[∆ϕ(x)−∆hnϕ(x)]hdn

=−
∑
x∈Ωhn

u(x)∆ϕ(x)hdn +
∑
x∈Ωhn

[u(x)− ûn(x)]∆ϕ(x)hdn

+
∑
x∈Ωhn

ûn(x)[∆ϕ(x)−∆hnϕ(x)]hdn

n→∞−−−→ −
∫

Ω

u(x)∆ϕ(x) dx,

since for n→∞∣∣∣∣∣∣
∑
x∈Ωhn

[u(x)− ûn(x)]∆ϕ(x)hdn

∣∣∣∣∣∣ ≤
→0︷ ︸︸ ︷

‖u− ûn‖C(Ω)

→
∫
Ω |∆ϕ(x)|dx︷ ︸︸ ︷∑

x∈Ωhn

|∆ϕ(x)|hn → 0

and

I :=

∣∣∣∣∣∣
∑
x∈Ωhn

ûn(x)[∆ϕ(x)−∆hnϕ(x)]hdn

∣∣∣∣∣∣
≤
∑
x∈Ωhn

|ûn(x)|hdn︸ ︷︷ ︸
≤C|Ω|

‖∆ϕ−∆hnϕ‖L∞(Ωhn )︸ ︷︷ ︸
→0

→ 0.

We now have ∫
Ω

[u(x)− ũ(x)]∆ϕ(x) dx = 0, ∀ϕ ∈ C3(Ω).
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Consider the problem
∆ϕ(x) = ψ(x) x ∈ Ω

ϕ(x) = 0, x ∈ ∂Ω
(†)

with a prescribed ψ ∈ C∞0 (Ω). By the classical existence and regularity theory
(see Chapter 4 in [23]) we have a unique solution in C2(Ω)∩C(Ω). But since Ω
is admissible with zero boundary condition, we can exploit Schwarz reflection
principle (see Chapter 2 in [23]). The Schwarz reflection ϕ̃ of ϕ, i.e. after 2d
reflections over the boundaries with sign change, satisfies (†) on the reflected
domain Ω̃, Ω ⊂ Ω̃. Due to the compactness of the support of ψ the reflected ψ̃
is in C∞0 (Ω̃). Applying the classical regularity theory (see Chapter 8 in [23]),
we get ϕ ∈ C∞(Ω), and in particular ϕ ∈ C3(Ω). This yields∫

Ω

[u(x)− ũ(x)]ψ(x) dx = 0, ∀ψ ∈ C∞0 (Ω).

Since C∞0 (Ω) is dense in L2(Ω) we have ũ = u a.e.
J

9.9 Lemma (Passing to the limit in the nonlinear part).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, hh

n→∞→ 0, a corresponding sequence of solutions (un)n∈N, un : Ωhn → R of
the discrete variational problems (Phn) and a positive constant C > 0 such that
‖un‖L∞(Ωhn ) ≤ C, ∀n ∈ N. Then, there exists a (renamed) subsequence (un)n∈N
such that ∑

x∈Ωhn

f(un(x))ϕ(x)hdn
n→∞−−−→

∫
Ω

f(u(x))ϕ(x) dx,

for all ϕ ∈ C(Ω) and
ûn ⇒ u

for some u ∈ C(Ω), u|∂Ω = 0.
I
〈1 〉 Subsequence in C∗(Ω)

The functionals

Φn :


C(Ω)→ R

Ψ 7→
∑
x∈Ωhn

f(un(x))Ψ(x)hdn

are uniformly bounded, because

|Φn(Ψ)| ≤ ‖f(un)‖L∞(Ωhn )‖Ψ‖C(Ω)|Ω| ≤ ‖f‖L∞([−C,C])‖Ψ‖C(Ω)|Ω|.

Due to separability of C(Ω) there exists Φ ∈ C∗(Ω) such that Φn
∗
⇀ Φ up to

a (renamed) subsequence.
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〈2 〉 Extending the limit element to L2(Ω)
From

|Φn(Ψ)| =

∣∣∣∣∣∣
∑
x∈Ωhn

f(un(x))Ψ(x)hn

∣∣∣∣∣∣ ≤
√ ∑

x∈Ωhn

f 2(un(x))hn

√ ∑
x∈Ωhn

Ψ2(x)hn

≤ ‖f‖L∞([−C,C])

√
|Ω|‖Ψ‖L2(Ωhn )

letting n→∞ we get for a fixed Ψ ∈ C(Ω)

|Φ(Ψ)| ≤ ‖f‖L∞([−C,C])

√
|Ω|‖Ψ‖L2(Ω).

Since C(Ω) is dense in the complete space L2(Ω) we can extend Φ to L2(Ω).
We denote by F ∈ L2(Ω) the Riesz representative of Φ.

〈3 〉 Identification of F
We take the (renamed) subsequence (un)n∈N that corresponds to the conver-
gent subsequence in the first step. Using Lemma 9.5 and Lemma 9.7 we now
extract from it a further (renamed) convergent subsequence (un)n∈N, this time
with ûn ⇒ u as n→∞ for some u ∈ C(Ω). Our aim is to show that F = f(u).
We have

Φn(ϕ) =
∑
x∈Ωhn

f(un(x))ϕ(x)hdn =
∑
x∈Ωhn

f(ûn(x))ϕ(x)hdn

=
∑
x∈Ωhn

f(u(x))ϕ(x)hdn +
∑
x∈Ωhn

[f(ûn(x))− f(u(x))]ϕ(x)hdn

→
∫

Ω

f(u(x))ϕ(x) dx, as n→∞, for all ϕ ∈ C(Ω),

provided ∣∣∣∣∣∣
∑
x∈Ωhn

[f(ûn(x))− f(u(x))]ϕ(x)hdn

∣∣∣∣∣∣→ 0.

But this claim follows from uniform continuity of f on [−C,C] and uniform
convergence of ûn toward u. We have therefore∫

Ω

[f(u(x))− F (x)]ϕ(x) dx = 0 ∀ϕ ∈ C(Ω).

Since C(Ω) is dense in L2(Ω) we finally obtain f(u) = F a.e.
J
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9.10 Theorem (Convergence Theorem).
Let f : R→ R be continuous and assume that there exists a sequence of grid spacings
(hn)n∈N, hn

n→∞→ 0 and a corresponding sequence of solutions (un)n∈N of the discrete
problems (Phn) and a positive C > 0 such that ‖un‖L∞(Ωhn ) ≤ C, ∀n ∈ N. Then,

there exists a (renamed) subsequence (un)n∈N and a classical solution u ∈ C2(Ω) ∩
C(Ω) of (BVP) such that

‖un − u‖L∞(Ωhn ) → 0, as n→∞.

I
Using the convergent subsequence obtained after applying Lemma 9.8 as the

initial sequence for Lemma 9.9, we obtain a subsequence of (un)n∈N for which the
claims of both those results hold with the same uniform limit, so letting n→∞ we
have ∫

Ω

−u(x)∆ϕ(x) dx =

∫
Ω

f(u(x))ϕ(x) dx,

for all ϕ ∈ C3(Ω) with ϕ|∂Ω = 0 with some u ∈ C(Ω), u|∂Ω = 0. Let
v ∈ C2(Ω) ∩ C(Ω) be the classical solution of

−∆v(x) = f(u(x)), x ∈ Ω

v(x) = 0, x ∈ ∂Ω.

Taking the weak formulation of this BVP and subtracting it from the weak
formulation of our original problem we get∫

Ω

(u− v)(x)∆ϕ(x) dx = 0,

for all ϕ ∈ C3(Ω) with ϕ|∂Ω = 0. Repeating the final argument from Lemma 9.8 we
get u = v a.e., i.e. u ∈ C2(Ω).
J
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Chapter 10

A Priori Estimates on Gh

10.1 Discrete Nonlinear Liouville Theorem

10.1 Motivation (Discrete Nonlinear Liouville Theorem).
We want to generalize the following nonlinear Liouville Theorem from [22] to the
discrete setting. This is needed for a contradiction argument in the proof of the final
result of this chapter, Theorem 10.9. We begin with the discrete version of Hardy’s
Inequality (see [7]) and one useful refinement thereof.

10.2 Theorem (Nonlinear Liouville Theorem, [22]).
Let u(x) be a non-negative C2 solution of

∆u+ up = 0

in Rd, d ≥ 3 with

1 ≤ p <
d+ 2

d− 2
.

Then

u(x) ≡ 0.

10.3 Lemma (Discrete Regularized Hardy Inequality).
Let d ≥ 3. There exists C(α, d) > 0 such that

∑
x∈Gh

|u(x)|2

|x|2 + αh2
≤ C

∑
x∈Gh

d∑
i=1

(
D+
i u(x)

)2

for all u : Gh → R with finite support and for all sufficiently large α > 0.
I
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〈1 〉 Vector field method
Let u : Gh → R with finite support and Fi : Gh → R, 1 ≤ i ≤ d be arbitrary.
Then

D+
i

(
u2(x)Fi(x)

)
=
u2(x+ hei)Fi(x+ hei)− u2(x)Fi(x)

h

= u2(x+ hei)D
+
i Fi(x) +

u2(x+ hei)− u2(x)

h
Fi(x)

= u2(x+ hei)D
+
i Fi(x) +D+

i u(x) [u(x+ hei) + u(x)]Fi(x)

≤ u2(x+ hei)D
+
i Fi(x) +

(
D+
i u(x)

)2

+

(
u(x+ hei) + u(x)

2

)2

F 2
i (x)

≤ u2(x+ hei)D
+
i Fi(x) +

(
D+
i u(x)

)2

+

(
1

2
u2(x+ hei) +

1

2
u2(x)

)
F 2
i (x)

holds for all x ∈ Gh and 1 ≤ i ≤ d. Since

d∑
i=1

∑
x∈Gh

D+
i

(
u2(x)Fi(x)

)
= 0

due to the finiteness of suppu, we obtain

d∑
i=1

∑
x∈Gh

(
D+
i u(x)

)2 ≥ −
d∑
i=1

∑
x∈Gh

u2(x+ hei)D
+
i Fi(x)

−
d∑
i=1

∑
x∈Gh

(
1

2
u2(x+ hei) +

1

2
u2(x)

)
F 2
i (x)

= −
d∑
i=1

∑
x∈Gh

u2(x)

[
D−i Fi(x) +

1

2
F 2
i (x− hei) +

1

2
F 2
i (x)

]
.

〈2 〉 Comparison estimate
We show that the estimates

(1− ε)(|x|2 + αh2) ≤|x− τeih|2 + αh2

|x− τeih|2 +
α

d
h2 ≤ (1 + ε)

(
|x|2 +

α

d
h2
)

hold for all x ∈ Gh, τ ∈ [0, 1], i ∈ {1, . . . , d} and every ε ∈ (0, 1) with
sufficiently large α(ε, d). Denote β0 = 1 − ε, β = 1 + ε and let x ∈ Gh,
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i ∈ {1, . . . , d} and τ ∈ [0, 1] be arbitrary but fixed. We estimate, on the one
hand

|x− τeih|2 +
α

d
h2 = |x|2 − 2τhxi + τ 2h2 +

α

d
h2 ≤ |x|2 + 2h|x|+

(α
d

+ 1
)
h2

≤ |x|2(1 + ε) +
d(α/d+ 1 + 1/ε)

α(1 + ε)
(1 + ε)

α

d
h2

≤ β
(
|x|2 +

α

d
h2
)
,

provided
α + d+ d/ε

α(1 + ε)
≤ 1⇔ α ≥ d

ε
+
d

ε2
.

On the other hand

|x− τeih|2 + αh2 = |x|2 − 2τhxi + τ 2h2 + αh2

≥ |x|2 − 2h|x|+ αh2 ≥ |x|2(1− ε) +

(
α− 1

ε

)
h2

= (1− ε)
[
|x|2 +

α− 1/ε

α(1− ε)
αh2

]
≥ β0(|x|2 + αh2),

provided
α− 1/ε

(1− ε)α
≥ 1⇔ α ≥ 1

ε2
.

〈3 〉 Choice of the vector field
We set

Fi(x) = − txi
|x|2 + αh2

, x ∈ Gh

for 1 ≤ i ≤ d, where t, α > 0 are parameters yet to be determined. We now
can estimate

F 2
i (x) =

t2x2
i

(|x|2 + αh2)2
, 1 ≤ i ≤ d,

F 2
i (x− eih) =

t2(xi − h)2

(|x− eih|2 + αh2)2
≤

βt2(x2
i + α

d
h2)

β2
0(|x|2 + αh2)2

, 1 ≤ i ≤ d,

obtaining
d∑
i=1

F 2
i (x) ≤ t2

|x|2 + αh2
,

d∑
i=1

F 2
i (x− eih) ≤ β

β2
0

t2

|x|2 + αh2
.
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Moreover, from the mean value theorem

D−i Fi(x) =
Fi(x)− Fi(x− eih)

h
=

∂

∂xi
Fi(x− τeih)

with some τ ∈ [0, 1], 1 ≤ i ≤ d. We calculate

∂

∂xi
Fi(x) =

−t
|x|2 + αh2

+
2tx2

i

(|x|2 + αh2)2

and obtain

D−i Fi(x) =
−t

|x− τeih|2 + αh2
+

2t(xi − τh)2

(|x− τeih|2 + αh2)2

≤ −t
β(|x|2 + αh2)

+
2tβ(x2

i + α
d
h2)

β2
0(|x|2 + αh2)2

,

for all 1 ≤ i ≤ d. Summing up we also see that

d∑
i=1

D−i Fi(x) ≤ t

(
2β

β2
0

− d

β

)
1

|x|2 + αh2
.

Plugging this estimates into the first step

d∑
i=1

∑
x∈Gh

(
D+
i u(x)

)2 ≥ −
∑
x∈Gh

u2(x)
d∑
i=1

[
D−i Fi(x) +

1

2
F 2
i (x− hei) +

1

2
F 2
i (x)

]
≥
∑
x∈Gh

u2(x)

|x|2 + αh2

[
t

(
d

β
− 2β

β2
0

)
− t2

(
1

2
+

β

2β2
0

)]
For d ≥ 3 we can achieve

d

β
− 2β

β2
0

=
d

1 + ε
− 2

1 + ε

(1− ε)2
> 0

by making ε > 0 sufficiently small, i.e. for all sufficiently large α. Since now

max
t∈[0,+∞)

t

(
d

β
− 2β

β2
0

)
− t2

(
1

2
+

β

2β2
0

)
is positive, we get the claim by setting t := t̄, where t̄ is the corresponding
maximizer.

J
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10.4 Corollary (Discrete Hardy Inequality).
Let d ≥ 3. There exists C > 0 such that

∑
x∈Gh\{0}

|u(x)|2

|x|2
≤ C

∑
x∈Gh

d∑
i=1

(
D+
i u(x)

)2

for all u : Gh → R with finite support.

I
For x 6= 0 we have

|x|2 ≥ h2 ⇒ |x|2 + αh2 ≤ (α + 1)|x|2,

where α is sufficiently large for the previous lemma to hold, yielding

1

α + 1

∑
x∈Gh\{0}

|u(x)|2

|x|2
≤

∑
x∈Gh\{0}

|u(x)|2

|x|2 + αh2
≤
∑
x∈Gh

|u(x)|2

|x|2 + αh2
.

J

10.5 Remark (Dimension).
Compare the condition d ≥ 3 with the best possible constant C = 4

(d−2)2 , d ≥ 3 in

the continuous case, see [7].

10.6 Motivation (Shifted Hardy Inequality).
One possible question connected with the previous result is the following: can the
constant C be made arbitrary small if we restrict the validity of the inequality to
the functions whose support is far away from zero. The answer is negativ as the
following lemma shows.

10.7 Lemma (Shifted Hardy Inequality).
There exists a sequence (un)n∈N, un : Gh → R with finite support, un 6≡ 0, supp(un) ⊂
{x ∈ Gh | x1 > nh}, n ∈ N such that

d∑
i=1

∑
x∈Gh

∣∣D+
i un(x)

∣∣2 hd ≤ C
∑

x∈Gh\{0}

|un(x)|2

|x|2
hd,

with C > 0 independent of h and n.
I
〈1 〉 Reduction

Exploiting the scaling invariance w.r.t. h∑d
i=1

∑
x∈Gh

∣∣D+
i un(x)

∣∣2 hd∑
x∈Gh\{0}

|un(x)|2
|x|2 hd

=

∑d
i=1

∑
x∈Gh |un(x+ eih)− u(x)|2∑

k∈Zd\{0}
|un(kh)|2
|k|2
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and to norm equivalence on Rd it is sufficient to show∑d
i=1

∑
x∈Gh |un(x+ eih)− u(x)|2∑

k∈Zd\{0}
|un(kh)|2
|k|21

!

≤ C. (∗)

〈2 〉 Construction of un
We set

un :=
n∑
i=0

n− i
n

χ{x∈Gh||x−2nhe1|1=ih},

where χ denotes the characteristic function of a set (see Figure 10.1 with n = 3,
d = 2, where the values of u3 in the corresponding points are labeled). By
construction we have supp(un) ⊂ {x ∈ Gh | x1 > nh}.

1

2

3

2

3

2

3

2

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

0

0

0

0

0

0

0

0

0

0

0

0

e1

e2

Figure 10.1

〈3 〉 Estimate for the numerator
We estimate the numerator in (∗). By construction of un we have

|un(x+ eih)− un(x)|2 =

{
0, if {x, x+ eih} ∩ supp(un) = ∅,
1
n2 , otherwise.

for n ∈ N, 1 ≤ i ≤ d, x ∈ Gh. We should therefore estimate the number of
elements in

d⋃
i=1

{x ∈ Gh | {x, x+ eih} ∩ supp(un) 6= ∅}.
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Since

{x± eih | 1 ≤ i ≤ d, x ∈ supp(un)} = {x ∈ Gh | |x− 2nhe1|1 ≤ n},

we obtain

d∑
i=1

∑
x∈Gh

|un(x+ eih)− un(x)|2 ≤ d(2n+ 1)d
1

n2
≤ K(d)nd−2.

〈4 〉 Estimate for the denominator
We can estimate∑

k∈Zd

|un(kh)|2

|k|21
=
∑
k∈Zd

n∑
i=0

(n− i)2

n2

χ{x∈G | |x−2hne1|1=ih}(kh)

|k|21

≥
∑
k∈Zd

n∑
i=0

(n− i)2

n2

χ{x∈G | |x−2hne1|1=ih}(kh)

(2n+ i)2

≥
n∑
i=0

(n− i)2

n2(2n+ i)2

∑
k∈Zd

χ{x∈G | |x−2hne1|1=ih}(kh)

≥ K ′(d)
1

(3n)2

n∑
i=0

(n− i)2

n2
(i+ 1)d−1 ≥ K(d)nd−2,

provided

n∑
i=0

(n− i)2

n2
(i+ 1)d−1 ≥

n∑
i=1

(n− i)2

n2
id−1

!

≥ K(d)nd.

To see this just observe that

1

nd

n∑
i=1

(n− i)2

n2
id−1 =

n∑
i=1

(
1− i

n

)2(
i

n

)d−1
1

n

is a Riemann sum for∫ 1

0

(1− x)2xd−1 dx =
2

d(d+ 1)(d+ 2)
> 0.

J

10.8 Theorem (Discrete Nonlinear Liouville Theorem).
Let d ≥ 3 and 1 < p < d

d−2
. Then u ≡ 0 is the only non-negative solution of

−∆hu(x) = up(x), x ∈ Gh.
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I〈1 〉 Comparison argument
Let there be a further non-negative solution, u ≥ 0, u 6≡ 0. Suppose u(x0) =
minx∈Gh u(x) = 0 for some x0 ∈ Gh. By Lemma 5.15, we obtain u ≡ 0, hence
we may assume u > 0 on Gh. From 1 < p < d

d−2
we get

δ := 2− (p− 1)(d− 2) > 0

and setting ε := δ
2(p−1)

we also get

ε(p− 1) < 2− (p− 1)(d− 2)

(p− 1)(2− d− ε) > −2
(∗)

Setting β := 2− d− ε and using Lemma 6.2 we obtain

−∆hσ
β
γ (x) ≤ −β(d− 2 + β + ε)σβ−2(x) = 0

for x ∈ Gh, |x|∞ ≥ Rh with sufficiently large γ and R.
The set {x ∈ Gh | |x|∞ = Rh} is finite, i.e. we can always find C > 0 such
that

Cσ(x)β ≤ u(x), x ∈ Gh, |x|∞ = Rh.

Since σβ is radially falling to zero, for every w > 0 there exists R̄w ∈ N such
that

Cσ(x)β − w ≤ 0 x ∈ Gh, |x|∞ = R̄wh

with R̄w →∞ as w → 0. This implies

Cσβ(x)− w ≤ u(x), |x|∞ = R̄wh

Cσβ(x)− w ≤ Cσβ(x) ≤ u(x), |x|∞ = Rh

−∆h

[
Cσβ(x)− w − u(x)

]
≤ 0, |x|∞ > Rh

with R̄w > R for all w > 0 sufficiently small. Applying the discrete maximum
principle on the set {x ∈ Gh | Rh ≤ |x|∞ ≤ R̄wh} and letting w → 0, we
obtain

u(x) ≥ Cσ(x)β ≥ C
(

1 +
γ

R

)β
2︸ ︷︷ ︸

C̃

|x|β

for all x ∈ Gh, |x| ≥ Rh. This implies

−∆hu(x) = up−1(x)u(x) ≥ C̃p−1|x|2+β(p−1)|x|−2u(x)

for x ∈ Gh, |x|∞ ≥ max{Rh, 1}. From (∗) we get 2 + β(p− 1) > 0, i.e. for all
sufficiently large K there exists RK ∈ N (depending on h in general) such that

−∆hu(x) ≥ K|x|−2u(x)

for all |x|∞ > RKh.
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〈2 〉 Allegretto-Piepenbrinck-Agmon-Trick
We now apply the discrete version of the so called Allegretto-Piepenbrinck-
Agmon-Trick (see [3], Theorem 3.1 or [17], Theorem 1.5.12). Let

−∆hv(x)− K

|x|2
v(x) ≥ 0, ∀x ∈ Hs (+)

hold for a fixed v : Gh → R, v > 0 and a fixed s ∈ Z+, Hs := {x ∈ Gh |
x1 ≥ sh}. Let ϕ : Gh → R, supp(ϕ) ⊂ Hs be arbitrary. Multiplying (+) with
ϕ2/v ≥ 0 and partially summing over Hs we obtain

∑
x∈Hs

{
d∑
i=1

D+
i v(x)D+

i

ϕ2

v
(x)− K

|x|2
ϕ2(x)

}
≥ 0.

By direct calculation for every 1 ≤ i ≤ d and x ∈ Gh we obtain

I :=D+
i v(x)D+

i

ϕ2

v
(x) =

1

h2
(v(x+ hei)− v(x))

(
ϕ2(x+ hei)

v(x+ hei)
− ϕ2(x)

v(x)

)
=

1

h2

[
ϕ2(x+ hei)− 2ϕ(x+ hei)ϕ(x) + ϕ2(x)

]
− v(x+ hei)v(x)

h2

[
ϕ2

v2
(x)− 2

ϕ(x+ hei)ϕ(x)

v(x+ hei)v(x)
+
ϕ2

v2
(x+ hei)

]
=
(
D+
i ϕ(x)

)2 − v(x+ hei)v(x)
(
D+
i

ϕ

v
(x)
)2

,

yielding

J :=
∑
x∈Hs

{
d∑
i=1

(
D+
i ϕ(x)

)2 − K

|x|2
ϕ2(x)

}

≥
∑
x∈Hs

d∑
i=1

v(x+ hei)v(x)
(
D+
i

ϕ

v
(x)
)2

≥ 0.

Together with the first step this implies that for all sufficiently large C > 0
there exists s ∈ Z+ such that

∑
x∈Hs

d∑
i=1

(
D+
i ϕ(x)

)2 ≥ C
∑
x∈Hs

ϕ2(x)

|x|2

for all ϕ : Gh → R with supp(ϕ) ⊂ Hs. This contradicts Lemma 10.7, i.e. our
original equation admits only the trivial solution.

J
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10.2 A Priori Estimate and Convergence Theory

on Gh
10.9 Theorem (A Priori Estimate on Gh).
There exists C > 0 such that ‖u‖L∞(Gh) ≤ C for all non-negative solutions of

−∆hu(x) + λu(x) = up(x), x ∈ Gh (∗)h

uniformly in h ∈ (0, 1] for fixed λ > 0, p ∈ (1, d
d−2

).
I

〈1 〉 Boundedness
Let u : Gh → R be a non-negative solution for (∗)h. This implies

up(x) = −∆hu(x) + λu(x) ≤ 2du(x)

h2
+ λu(x)

⇒ up−1(x) ≤ λ+
2d

h2
, ∀x ∈ Gh.

This yields the uniform boundedness for every fixed h ∈ (0, 1]. Moreover, we
have

(hu
p−1

2 (x))2 ≤ h2λ+ 2d ≤ λ+ 2d

for all x ∈ Gh and h ∈ (0, 1].

〈2 〉 Rescaling
Arguing by contradiction, assume there exists a sequence (hn)n∈N ⊂ (0, 1] and
a corresponding sequence (un)n∈N, un : Ghn → R of non-negative (and w.l.o.g.
non-trivial) solutions for (∗)h such that

‖un‖L∞(Ghn )
n→∞→ ∞.

This implies the existence of (xn)n∈N, xn ∈ Ghn such that Mn := un(xn)→∞
as n→∞ and un(x) ≤ 2un(xn) for all x ∈ Ghn and n ∈ N. We set µn := M

1−p
2

n

and define vn : Gτn → R by

τn :=
hn
µn

= M
p−1

2
n hn,

vn(x) :=
1

Mn

un(xn + µnx), x ∈ Gτn ,
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implying vn(0) = 1 and vn(x) ≤ 2 for all x ∈ Gτn , n ∈ N. We obtain

I = −∆τnvn(x) =
d∑
i=1

2vn(x)− vn(x+ eiτn)− vn(x− eiτn)

τ 2
n

=
µ2
n

Mn

d∑
i=1

(
2un(y)− un(y + eiµnτn)− un(y − eiµnτn)

h2
n

)∣∣∣∣
y=xn+µnx

=
µ2
n

Mn

(−∆hnun(y)) |y=xn+µnx =
µ2
n

Mn

(−λun(y) + upn(y)) |y=xn+µnx

=
µ2
n

Mn

(−Mhλvn(x) +Mp
nv

p
n(x)) ,

i.e. vn satisfies the equation

−∆τnvn(x) = −µ2
nλvn(x) + µ2

nM
p−1
n︸ ︷︷ ︸

=1

vpn(x) = −µ2
nλvn(x) + vpn(x).

(†)

The first step assures the boundedness of (τn)n∈N. Two cases are therefore
possible: either τn → τ > 0 for n → ∞ up to a subsequence or τn → 0
as n → ∞. We consider those cases separately. Take note that µn → 0 as
n→∞.

〈3 〉 Positive accumulation point
We construct vτ : Gτ → [0,∞) as follows. The sequence (vn(e1τn))n∈N ⊂ (0, 2]
possesses by Bolzano-Weierstrass a convergent subsequence (vnk(e1τnk))k∈N
with some limit in [0, 2]. We assign this limit to vτ (e1τ). Analogously, we
extract a convergent subsequence from (vnk(e2τnk))k∈N and assign its limit to
vτ (e2τ), and so on for every vτ (x), x ∈ Gτ . Since the discrete Laplacian de-
pends only on a finite number of points, taking the limit in (†) after having
extracted and renamed all involved subsequences, we obtain

−∆τvτ (x) = vpτ (x), x ∈ Gτ

with vτ (0) = 1, resulting in a contradiction to Theorem 10.8.

〈4 〉 Continuous limit
Let (Rn)n∈N, Rn > 0, n ∈ N be a strictly increasing sequence with Rn → ∞
as n→∞, i.e. ([−Rn, Rn]d)n∈N monotonically exhausts Rd. We define

R(k)
n :=

⌈
Rn

τk

⌉
τk

for n, k ∈ N, implying that (−R(k)
n , R

(k)
n )d is admissible for Gτk with Rn ≤

R
(k)
n ≤ Rn + 1 for sufficiently large k ∈ N.
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From ‖vk‖L∞(Gτk ) ≤ 2 we obtain

‖∆τkvk‖L∞(Gτk ) ≤ λµk‖vn‖L∞(Gτk ) + ‖vpk‖L∞(Gτk ) ≤ 2 + 2p.

for all sufficiently large k ∈ N. Since for every τk ∈ (0, 1] exists a natural
number sk ∈ N with skτk ∈ (1/2, 1] we use Theorem 5.31 and obtain

‖D+
i vk‖L∞([−R(k)

1 ,R
(k)
1 ]d∩Gτk )

≤ 2d

skτk
‖vk‖L∞([−R(k)

1 ,R
(k)
1 ]d∩Gτk )

+ skτk‖∆τkvk‖L∞([−R(k)
1 ,R

(k)
1 ]d∩Gτk )

≤ K
(+)

for all sufficiently large k ∈ N and all 1 ≤ i ≤ d.

Using the interpolation operator from Definition 8.12 we now construct v̂k ∈
C([−R(k)

1 , R
(k)
1 ]), k ∈ N.

Since by Corollary 8.8

‖v̂k‖Lq([−R(k)
1 ,R

(k)
1 ]d)

≤ (2R
(k)
1 )d/q max

x∈[−R(k)
1 ,R

(k)
1 ]d
|v̂k(x)| ≤ 21+d/q(R1 + 1)d/qK.

for sufficiently large k ∈ N and by Theorem 8.13 with (+) (we write the
seminorm | · |W 1,p instead of ‖ · ‖W 1,p

0
, because we in general do not have zero

on the boundary)

|v̂k|W 1,q([−R(k)
1 ,R

(k)
1 ]d)

≤ K,

we get

‖v̂k‖W 1,q([−R(k)
1 ,R

(k)
1 ]d)

≤ K

with q > d. Extracting from
(
v̂k|[−R1,R1]d

)
k∈N

a uniformly convergent subse-

quence we obtain v ∈ C([−R1, R1]d) ∩ W 1,q([−R1, R1]d), v ≥ 0, v(0) = 1.
Using the extracted subsequence as a starting point we repeat this argu-
ment on [−R2, R2]d and so on. The resulting function v : Rd → [0,∞) lies
in C(Rd) ∩ W 1,q

loc (Rd) with v(0) = 1. Moreover, taking the diagonal subse-
quence, i.e. the first element of the convergent subsequence on [−R1, R1]d, the
second element of the convergent subsequence on [−R2, R2]d etc., we obtain
subsequence (vki)i∈N of (vk)k∈N such that v̂ki → v uniformly on every bounded
subset of Rd as i → ∞. We want to show that v is a classical solution of the
continuous nonlinear Liouville equation 10.2, thus yielding a contradiction.

〈5 〉 Passing to the limit in the equation
Repeating the arguments in Theorems 9.10 and noting that the µ2

nλvn(x) term
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converges to zero due to the uniform boundedness of vn(x) in x ∈ Ghn and
n ∈ N, we get that v satisfies∫

Rd
v(−∆ϕ) =

∫
Rd
vpϕ

for all ϕ ∈ C∞0 (Rd). Here the boundedness of suppϕ for ϕ ∈ C∞0 (Rd) and uni-
form convergence on bounded subsets derived above replaces the boundedness
of the domain in the original Theorem 9.10, but we obtain only a very weak
solution. Nonetheless, it is well-known (see [35], [34]) that if 1 < p < d

d−2
,

v ∈ Lploc(Rd), then v ∈ C2 and Theorem 10.2 applies.
J

10.10 Remark (Convergence).
Now we know that every sequence (un)n∈N, un : Ghn → R of non-negative solutions
of (∗)hn is uniformly bounded in L∞(Ghn). Assuming hn → 0 as n → ∞ we can
repeat the last two steps in the proof with vn := un, n ∈ N. The crucial difference
is that whereas vn satisfies

−∆τnvn(x) = −µ2
nλvn(x) + vpn(x), x ∈ Gτn

with µn → 0 as n→∞, we now have

−∆hnun(x) = −λun(x) + upn(x), x ∈ Ghn

and the linear part of r.h.s. does not vanish in the limit.

10.11 Corollary (Convergence on Gh).
Let λ > 0 and p ∈ (1, d

d−2
) be fixed. Further, let (un)n∈N, un : Ghn → [0,∞) satisfy

−∆hnun(x) + λun(x) = upn(x), x ∈ Ghn

with hn ∈ (0, 1], n ∈ N, hn
n→∞−−−→ 0.

Then, there exists a (renamed) subsequence of (un)n∈N and a non-negative solu-
tion u ∈ C2(Rd) of

−∆u(x) + λu(x) = up(x), x ∈ Rd

such that
‖u− un‖L∞(Ω∩Ghn ) → 0

as n→∞ for every bounded Ω.
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143
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