
Strategies to reduce friction losses and their
implications for the energy efficient design of

internal flow domains

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

der Fakultät für Maschinenbau

Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Ing. Gertraud Maria Daschiel

Tag der mündlichen Prüfung: 02. Oktober 2014

Hauptreferentin: Prof. Dr.-Ing. Bettina Frohnapfel
Korreferent: apl. Prof. Dr.-Ing. habil. Jovan Jovanović





Abstract

The aim of the present work is to develop a feasible strategy for the reduction
of the energy that is required to transport fluids. In this respect, fully developed
laminar and turbulent flows through straight ducts, which are found extensively
in many practical applications, are considered. Based on the behavior of the flow
in a specific flow regime, physical models are initially derived that lead to a re-
duction in the energy dissipated by the fluid motion, thus simultaneously reducing
friction losses and providing energy savings. An attempt is made to attain the de-
sired flow state due to appropriate designs for the cross section shape of the duct.
Optimization of the pipe cross section geometry for the pure laminar regime can
be accomplished analytically, resulting in the design of the preferred flow config-
urations.
For high Reynolds numbers, corresponding to the turbulent regime, the substan-
tial complexity of the fluid motion produces an increase in the energy dissipation.
Thus, ensuring laminar flow under conditions for which it is typically found to be
turbulent represents the promising objective for achieving energy savings. This
realization is undertaken using statistical tools that allow a mathematical descrip-
tion and correlation between the transitional and fully developed turbulent flows.
These considerations lead to the conclusion that similar conditions in the statisti-
cal flow field are assumed to provoke the delay of transition to turbulence and the
laminarisation of turbulent flow. Direct numerical simulations are performed with
the intention of exploring the possibility of initiating these particular processes
by forcing the flow structure towards the desired state through the pipe cross sec-
tion geometry. For this purpose coexisting laminar and turbulent flow regions
that appear in narrow corners of non-circular ducts are examined in great detail.
Based on these findings, novel duct geometries are suggested with the final ob-
jective being the derivation of cross section configurations for which the laminar
flow regime prevails over turbulence. The potential of various design aspects to
achieve this goal is assessed and possible energy savings are quantified.
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Zusammenfassung

Die vorliegende Arbeit zielt darauf ab technisch realisierbare Strategien zu ent-
wickeln, welche es ermöglichen die Energie, die für den Transport von Fluiden
benötigt wird, zu reduzieren. In diesem Kontext werden voll entwickelte, lami-
nare und turbulente Strömungen durch gerade Rohre betrachtet, die in zahlreich-
en praktischen Anwendungen zu finden sind. Zunächst werden für die spezi-
fischen Strömungseigenschaften eines Strömungsregimes physikalische Modelle
hergeleitet, welche zur Reduktion der, durch die Fluidbewegung dissipierten En-
ergie führen und damit gleichzeitig verringerte Reibungsverluste und Energieein-
sparungen mit sich bringen. Darauf aufbauend wird die Herbeiführung dieser
gewinnbringenden Strömungszustände durch die adäquate Gestaltung der Quer-
schnittform eines Rohres in Angriff genommen.
Für rein laminare Strömungen ist die Optimierungsaufgabe für den Rohrquer-
schnitt analytisch behandelbar und bevorzugte Konfigurationen werden aufgezeigt.
Im Bereich hoher Reynolds Zahlen, in welchem das turbulente Strömungsregime
vorherrscht, bedingt die hohe Komplexität der Fluidbewegung das Ansteigen der
Energiedissipation. Aufgrund dieser Tatsache stellt die Laminarhaltung von Strö-
mungen unter Bedingungen, unter denen sie typischerweise turbulent sind, das
viel versprechende Ziel für das Erreichen von Energieeinsparungen dar. Durch
den Einsatz von statistischen Werkzeugen, welche eine verwandte, mathematische
Beschreibung von transitionalen und voll entwickelten turbulenten Strömungen
erlauben, können Möglichkeiten zum Erreichen dieser Zielsetzung aufgezeigt wer-
den. Basierend auf diesen Betrachtungen kann gefolgert werden, dass vergleich-
bare Eigenschaften des statistischen Strömungsfeldes zum einen zur Transitions-
verzögerung und zum anderen zur Laminarisierung von turbulenten Strömungen
führen. Die Möglichkeit, die gewünschte Struktur der Strömung durch die Gestal-
tung der Rohrquerschnittgeometrie herbeizuführen, wird in direkten numerischen
Simulationen untersucht. In diesem Zusammenhang werden koexistente laminare
und turbulente Strömungsgebiete, die in spitzwinkeligen Ecken auftreten, detail-
liert untersucht. Darauf aufbauend werden neuartige Geometrien vorgeschlagen,
welche zur Herleitung von Querschnittkonfigurationen dienen, für welche sich
das laminare Regime gegenüber dem turbulenten durchsetzt. Das Potential ver-
schiedener Designaspekte für das Erreichen dieser Zielsetzung wird bewertet und
die damit einhergehenden Energieeinsparungen werden quantifiziert.
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1 Introduction

In recent last decades, engineers and scientists have been working intensively on
possible ways to reduce the energy consumption of flow systems. These efforts
are motivated by the increasing public awareness of the efficient usage of energy
resources and by the continuous increase in energy costs. In general, various
contributions to the energy dissipation in fluid flows can be distinguished. In non-
reacting, isothermal flows of incompressible fluids, which are the focus of this
work, pressure drag and friction drag are usually the most pronounced. In many
internal flow applications, e.g. in pipelines, the contribution of friction losses to
the total energy dissipation prevails. The reduction of these losses is expected to
lead to significant savings and is investigated in the present work.
Previous and ongoing attempts towards reducing friction losses in internal flows
have concentrated on the turbulent flow regime, which has led to many promis-
ing techniques being discovered. Passive methods have the longest tradition in
this respect and the most significant example has been applied to oil pipelines
since the 1970s. Small amounts of commercially available drag reduction addi-
tives (DRAs), consisting typically of long-chain polymers, result in the reduction
of losses due to friction by up to 80% [3]. Manufacturers of DRAs promote their
products with the slogan “Move more product with less energy and capital” [3]. In
fact, in the case of the Alaska pipeline, in 2003, the use of DRAs facilitated an in-
crease in the maximum daily throughput of more than 50% [2]. However, because
of chemical and environmental reasons, drag reduction with DRAs is mainly only
applicable to the transportation of crude oil, refined products and non-potable wa-
ter [4]. In addition, the efficiency of DRAs generally suffers as a consequence of
their degradation, which also depends on the working temperature and the flow
speed.
The majority of drag reducing techniques focus on influencing the fluid friction
due to specific features applied at the fluid–solid boundary. Changes in the wall
topology represent another passive control technique and are considered as one
of the earliest proposals in this respect. In a patent from 1937, Kramer [71] sug-
gested arranging thin wires at a small distance above a flat surface. The wires
are parallel to each other and aligned in the flow direction. In spite of the surface
area increase, an overall drag reduction was reported. Since this pioneering work
of Kramer, different types of structural geometries have been investigated, which
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1 Introduction

are referred to as riblets. Extensive investigations dealing with the performance
of these structures with respect to their design have been carried out. Following
more or less a trial and error approach, structures were found that are capable of
reducing the friction drag by up to 10% [11].
Moreover, active means for the reduction of friction drag in internal flows have
been studied in the literature. Actuators at the wall enabling suction and blowing,
or a defined movement are typical examples that are frequently discussed in this
context. These techniques usually are optimized towards minimal friction losses
within numerical parameter studies. By contrast to the presented passive control
methods, active control actually requires the continuous input of energy. Thus, the
reduction of friction drag does not necessarily result in energy savings. In fact, to
date these techniques typically only lead to a small reduction in the total energy
consumption [39].
Despite the drag reduction due to DRAs, the practical application of control meth-
ods is still an exception rather than the rule. One reason can be found in the fact
that some of these strategies are only tested in simulations and are rather diffi-
cult to apply to practical applications. On the other hand, the implementation of
drag reducing devices typically represents a significant effort in terms of costs
and the compliance with safety standards. Thus, their practical relevance strongly
depends on their efficiency operation.
In the present work, the question how friction losses in internal flows can be re-
duced is first approached theoretically. Strategies are derived for different flow
regimes that can provoke a significant reduction of the friction drag. An attempt
is made to implement the derived mechanisms by geometrical modifications in
the flow domain. This method is applicable to a wide range of engineering ap-
plications including different kinds of fluids and is expected to be fairly robust
with respect to the surrounding conditions. Most importantly, if this passive con-
trol method is followed, no energy input as such is required and reduced friction
losses lead directly to a reduction in the energy consumption.
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2 Conservation laws for the motion of
incompressible Newtonian fluids

2.1 Conservation of mass and momentum

In a continuum mechanical frame it is generally accepted that the following set of
partial differential equations describes the isothermal motion of fluids [106]:

∂ρ

∂t
+
∂ (ρUi)
∂xi

= 0 , (2.1)

ρ

[
∂Ui

∂t
+ Uk

∂Ui

∂xk

]
= −

∂P
∂xi

+
∂τik

∂xk
+ ρ fi . (2.2)

In these equations Ui represents the velocity vector, P the pressure and ρ the
density of the fluid. The term ρ fi describes the body force per unit volume and
τik is the stress tensor, having six independent components. The equations are
given using index notation where i, k, j = 1, 2, 3 represent the components in a
Cartesian coordinate system. Equation (2.1) ensures the conservation of mass and
is referred to as the continuity equation while Equation (2.2) is derived from the
requirement to conserve the momentum of a fluid volume element.
In order to close this system of equations, the number of unknown quantities has
to be reduced. To do this, a deformation law has to be established in order to
provide a formula to express the stress tensor, τik, in terms of velocity derivatives.
Throughout this work, the motion of incompressible (ρ = const) and Newtonian
fluids is considered, which leads to [106]:

τik = µ

(
∂Ui

∂xk
+
∂Uk

∂xi

)
. (2.3)

Here, µ represents the dynamic viscosity and can be transferred to the kinematic
viscosity, ν = µ/ρ.
In the following, plane internal flows appearing in many fluid transport processes
are considered for which the impact of body forces on the resulting velocity field
typically vanishes. This conclusion is based on the comparison of the magni-
tude of individual terms in Equation (2.2) [28, 29]. Additionaly, it is supported
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2 Conservation laws for the motion of incompressible Newtonian fluids

by the agreement of solutions to the simplified equations with experimental find-
ings [29]. However, it is pointed out that even if neglecting body forces is justified
if the resulting velocity fields in many cases that are of practical importance are
addressed, it does not apply generally to internal flows. For example, Draad and
Nieuwstadt [28] found that Coriolis forces can affect the velocity profile that de-
velops in a cylindrical pipe significantly. The effect is shown to strongly depend
on the flow regime and the fluid properties and is only expected to be observed in
a laminar flow of fluids with rather high kinematic viscosity.
Considering flow cases with a vanishing impact of body forces on the velocity
field and using the deformation law in Equation (2.3), Equations (2.1) and (2.2)
can be reformulated for an incompressible Newtonian fluid:

∂Ui

∂xi
= 0 , (2.4)

∂Ui

∂t
+ Uk

∂Ui

∂xk
= −

1
ρ

∂P
∂xi

+ ν
∂2Ui

∂xk∂xk
, (2.5)

while Equation (2.5) is referred to as the Navier–Stokes equations.
This set of differential equations can be transferred into a dimensionless form,
where ’∗’ denotes a dimensionless quantity. To do this, the dimensional quantities
are substituted using constant properties that characterize the flow and are labeled
with the index ’c’:

Ui = UcU∗i ; xi = Lcx∗i ; t = tct∗; ρ = ρcρ
∗; P = ∆PcP∗; ν = νcν

∗.

Applying these relationships to Equations (2.4) and (2.5) yields [29]

∂U∗i
∂x∗i

= 0 , (2.6)

S t
∂U∗i
∂t∗

+ U∗k
∂U∗i
∂x∗k

= −Eu
1
ρ∗
∂P∗

∂x∗i
+

1
Re

ν∗
∂2U∗i
∂x∗k∂x∗k

, (2.7)

and the characteristic quantities are used to define the following dimensionless
numbers,

S t =
Lc

Uctc
; Eu =

∆Pc

ρcU2
c

; Re =
UcLc

νc
=
ρcU2

c

τc
. (2.8)

These numbers are referred to as the Strouhal number, S t, Euler number, Eu,
and Reynolds number, Re, and describe the relevant dynamic features of the flow.
Thus, flows with similar geometrical properties and boundary conditions are dy-
namically similar as well, if the dimensionless numbers are kept constant [29].
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2.2 Conservation of kinetic energy

By setting the dimensionless numbers equal to one, relationships for the character-
istic velocity, length and time scale can be derived, as demonstrated by Durst [29].
The resulting scaling will be applied to the wall bounded flows considered further
on in this work. For this class of flows of fluids with the density ρ and the kine-
matic viscosity ν, the characteristic velocity scale reads as

Uc = uτ =
√
τw/ρ , (2.9)

where τw is the characteristic shear stress which arises at the wall. The character-
istic behavior close to the wall also determines the temporal and spatial scales of
the flow:

tc =
ν

u2
τ

, Lc =
ν

uτ
. (2.10)

2.2 Conservation of kinetic energy

The major objective of this work is based on the evaluation of possible energy
savings due to geometrical modifications of the fluid–solid boundary. Thus, the
conservation equation of kinetic energy, which is derived from the momentum
equation (2.2) is of central importance [54]:

1
2
∂UiUi

∂t︸    ︷︷    ︸
I

= −
∂

∂xk
Uk

(
P
ρ

+
UiUi

2

)
︸                   ︷︷                   ︸

II

+ ν
∂

∂xk

[
Ui

(
∂Uk

∂xi
+
∂Ui

∂xk

)]
︸                         ︷︷                         ︸

III

− ν

(
∂Uk

∂xi
+
∂Ui

∂xk

)
∂Ui

∂xk︸                   ︷︷                   ︸
IV

. (2.11)

The individual terms in Equation (2.11) can be physically interpreted as follows
(where all descriptions are defined as per unit mass and time):

I: local change of kinetic energy

II: change in convective transport of the total energy

III: work done by the viscous stresses

IV: energy dissipation, Φ.

The dissipation function,

Φ = ν

(
∂Uk

∂xi
+
∂Ui

∂xk

)
∂Ui

∂xk
, (2.12)
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2 Conservation laws for the motion of incompressible Newtonian fluids

is a measure for the energy that is converted per unit mass and time into heat in
an irreversible fashion and therefore always has to be positive [104]. Obviously,
changes in this process have a direct impact on the energy that has to be applied
to maintain the movement in a certain flow system.
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3 Objective and procedure

Depending on their appearance, wall-bounded flows can generally be classified
into two major regimes: laminar flows show a high level of regularity, which is
progressively lost, if the flow turns, during the so-called transition process, into
the turbulent state. This process was found to be accompanied by an increase in
the dimensionless Reynolds number, where the critical Reynolds number is de-
fined to describe the border between laminarity and turbulence. The substantial
differences in the flow field are reflected by the magnitude of the friction losses on
the walls, which are significantly higher in turbulent than in laminar flows. In the
case of fully developed, plane flow situations, which will be treated throughout
this work, these friction losses alone are responsible for the energy dissipation
that occurs, which is often referred to as flow resistance. Thus the energy that has
to be applied in order to maintain the movement in a system, e.g. the volume flow
rate pumped through a pipe, is only caused by the fluid friction on the solid wall
and consequently is considerably smaller for laminar than for turbulent flows.
This work focuses on studying the possibility of reducing the flow resistance of
internal, fully developed flows due to geometrical modifications of the fluid–solid
boundary. In this context, the similarities and differences between the strategies
leading to a gainful interface design in the different flow regimes are emphasized.
In a first stage, the friction behavior of pure laminar flow is considered, which
typically is supposed to lead to minimum losses [12]. Hence, the question that
has be discussed is, if and how this friction behavior can be influenced due to
geometrical modifications in the flow domain.
For increasing Reynolds numbers disturbances in the initially stable, laminar flow
state begin to be amplified, which finally leads to the breakdown to turbulence.
Previous investigations have shown that the flow field during this process and at
the final turbulent state can be described using a statistical approach, which splits
the appearing flow quantities into a mean and a fluctuating part [67, 103]. Based
on this approach, conditions can be derived analytically that lead to a vanishing
impact of the fluctuating quantities on the flow, resulting in the maintenance of
laminar flow even at high Reynolds numbers and the laminarization of turbulent
flow at the same time [65, 66].
The goal of this work is to derive duct geometries that force the flow to approach
these conditions, which are expected to lead to a significant reduction in fric-
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3 Objective and procedure

tion drag. In this context a series of direct numerical simulations of duct flows
is performed, which initially require a detailed evaluation of the accuracy in the
numerical procedure.
After doing this, a triangular duct having a small apex angle is investigated. For
this duct geometry it was observed experimentally that a laminar and a turbulent
region can coexist for a certain range of Reynolds numbers, for which the flow can
generally be expected to be fully turbulent [30]. This specific flow field shows
that the laminarization of turbulent flow due to appropriate geometrical proper-
ties, namely corner regions, is possible. In addition, further investigations aimed
to see whether the laminarization and transition processes in the triangular duct
actually follow the theoretically derived behavior. This question is of particular
interest as a positive result suggests that properly designed duct geometries can, in
agreement with the theoretical prediction, result in maintenance of laminar flow
and laminarization of turbulent flow simultaneously. This study is complemented
by the investigation of further internal flows that lead to coexisting laminar and
turbulent regions in order to generalize the observations made for the triangular
duct.
Initiated by these results, a systematic investigation of the impact of corner re-
gions on turbulent flow, considering different corner angles and wall curvatures,
is performed. In doing so, the ability of a certain geometrical property to locally
force the flow in the theoretically suggested state can be analyzed. In conclusion,
several duct geometries can be derived that are supposed to provide this state in
a large part of the flow domain. For a duct geometry, which is promising in this
sense, the ability to finally laminarize turbulent flow on the one hand and to main-
tain laminar flow on the other is analysed.
In addition to studies dealing with the influence of the duct geometry on the re-
sulting friction, the important question, under which condition these insights can
lead to benefits in engineering practice, is finally discussed.
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4 Frictional resistance and energy
consumption of internal flows

Within this chapter, the common set-up of the flow cases investigated throughout
this work is introduced. The laws describing the frictional resistance of these
flows are given and connected to their overall energy consumption. Based on these
relationships, the optimization problem addressed within this work is formulated.

4.1 General description of the flow cases
investigated

Within this work, pressure driven flows in ducts that have an arbitrary cross sec-
tion shape are considered. The straight and plane flow domains are bounded by
fixed, solid walls and the cross section shape does not vary in the streamwise x1-
direction, in the example as shown in Figure 4.1. The area of the cross section is
referred to as Acs and Aw denotes the surface area of the wall on which the flow
obeys the no-slip boundary condition. The flow through these ducts is governed
by the continuity and the Navier–Stokes equation given in (2.4) and (2.5).
These flows generally can appear in two different flow regimes, laminar and tur-
bulent. While the laminar flow is considered to be stationary, the nature of tur-
bulence leads to instantaneous velocity and pressure fields that are fluctuating in
time and space. However, time averaging enables the description of the flow field
by mean quantities, U i and P. The mean quantities are supposed to be stationary
for time periods that extend the averaging time.1

Further, the position x1 = 0 is assumed to be located at some distance from the
entrance, where the laminar and the time-averaged turbulent velocity profile have
reached constant shapes that do not vary along Lx1 .
The consideration of time-averaged turbulent quantities enables the derivation of
common relations for the frictional resistance and the entire energy dissipation in
both flow regimes. These relationships will be discussed in the following sections.

1In this Chapter, only time-averaged quantities are used to describe the properties of turbulent flow,
which are also referred to as mean quantities. For clarity, this fact is further illustrated in equations
but not repeated explicitly in the text.

9



4 Frictional resistance and energy consumption of internal flows

x3

x1x2

Lx1

Figure 4.1: Straight duct with arbitrary cross section shape that is homogeneous in
the streamwise x1-direction. Lx1 denotes the length of the considered
flow domain.

4.2 Friction laws in laminar and turbulent flows

The flow resistance of stationary and fully-developed duct flows is frequently
studied in the literature. Initial investigations mainly focus the determination of
the flow resistance using the integral balance of the forces acting in the streamwise
direction. The major findings are summarized briefly, according to the description
by Schlichting [106].
Volume integration of the momentum balance in the x1-direction leads to the equi-
librium of forces in the considered flow configuration. It is observed that the
difference between the inlet and outlet pressure forces are balanced by the shear
forces which are acting on the duct wall:

∆P Acs = τw Aw . (4.1)

The pressure difference ∆P is evaluated according to

∆P = P(x1 = 0) − P(x1 = Lx1 ) or ∆P = P(x1 = 0) − P(x1 = Lx1 ) , (4.2)

where τw corresponds to the surface averaged shear stress in the x1-direction ap-
pearing at the duct wall. The local wall shear stress is defined as the gradient of
the streamwise velocity component in wall normal direction and is not constant
along the perimeter of non-circular ducts.
In engineering practice, the dimensionless friction factor, f , is typically used to

10



4.2 Friction laws in laminar and turbulent flows

characterize the frictional resistance of internal flows. f is a measure of the sur-
face averaged shear stress at the wall and is defined as

f = τw
8
ρU2

b

=
∆PAcs

Aw

8
ρU2

b

, (4.3)

where Ub is the volume averaged streamwise velocity, which is referred to as bulk
velocity,

Ub =
1
V

∫
Ω

U1 dV or Ub =
1
V

∫
Ω

U1 dV . (4.4)

The operator
∫

Ω
()dV denotes the volume integral over the entire domain Ω. In

Equation (4.3), the friction factor is also expressed in terms of the pressure dif-
ference arising between the inlet and the outlet of the internal flow domain. This
relationship is derived from the balance of forces in Equation (4.1). It should be
noted that in German literature f is it often referred to as λ, e.g. in the book by
Schlichting [106].
The dimensionless form of the Navier–Stokes equations (2.7) shows that the con-
sidered stationary flows are characterized by the Reynolds number and the Euler
number. A comparison of Equations (2.8) and (4.3) yields the proportionality be-
tween the previously introduced friction factor f and the Euler number. Thus, it
can be concluded, for both characteristic numbers, that they are only a function
of the Reynolds number [29]. However, for the present flow cases f is preferably
used for dimensionless considerations. In the following, the friction laws, which
are based on the dependence of f on Re, are first discussed for cylindrical pipes
before ducts of arbitrary cross section shapes are addressed.
In laminar flow, the friction behavior of cylindrical pipe flow obeys the analyti-
cally derived relationship f = 64/Re, were the Re is based on the pipe diameter
and the bulk velocity. In turbulent flow, the following empirical relation was found
to describe the friction factor for flow through a cylindrical pipe with smooth
walls:

f = 0.316/Re1/4 . (4.5)

This equation is referred to as the Blasius correlation.
The relations for laminar and turbulent flow through a cylindrical pipe are plotted
in Figure 4.2. The critical Reynolds number, Recrit = 2300, after which sustained
turbulent flow can be observed, is also sketched. Experimental data for the flow
through a smooth cylindrical pipe [106] agree with the laminar solution and sup-
port the correlation suggested for the turbulent regime.
The Blasius correlation was found to also describe the friction of turbulent flow
through different ducts with non-circular cross sections if the hydraulic diameter
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4 Frictional resistance and energy consumption of internal flows
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Figure 4.2: Dependence of the friction factor on the Reynolds number for laminar
and turbulent flow through a smooth cylindrical pipe. Data presented
by Schlichting [106] has been replotted.

is used as the characteristic length scale. The definition of the hydraulic diameter
is based on the ideas of v. Mises [84]:

Dh =
4 Acs

C
, (4.6)

where C = Aw/Lx1 is the perimeter of the cross section. The Reynolds number
based on Dh is typically referred to as the hydraulic Reynolds number, Reh. In
contrast to the findings for turbulence, the friction law is not uniform if laminar
flow through non-circular ducts is considered. In this case, the friction factor
obeys the relationship

f = a/Reh , (4.7)

and the constant a is unique for a certain duct geometry.

4.3 Entire energy consumption of the flow

Frohnapfel [38] analysed the energy balance for the class of flows considered
here. The corresponding derivations focus on turbulent flow but can also be as-
signed to the laminar regime. Starting from the conservation equation of kinetic
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energy (2.11) in the streamwise direction and integrating over the volume of the
domain leads to the following equilibrium:

−
1
ρ

dP
dx1

∫
Ω

U1 dV =

∫
Ω

Φ dV or −
1
ρ

∂P
∂x1

∫
Ω

U1 dV =

∫
Ω

Φ dV . (4.8)

Using results from the balance of forces in Equations (4.1) and (4.3), the last
relationships can be reformulated:

〈Φ〉 = ρ

∫
V

Φ dV = ∆PUbAcs = AwτwUb , (4.9)

It can be concluded that the entire energy dissipation rate of the working fluid,
〈Φ〉, is balanced by the pressure difference that is required to drive a defined flow
rate, V̇ = UbAcs, in both flow regimes. Further, 〈Φ〉 is directly connected to the
frictional resistance induced by the duct wall.
In practice, a pump has to permanently supply energy in order to overcome the
irreversible losses and to maintain the movement of the fluid in an internal flow
domain. This expenditure is typically expressed in terms of the pumping power,
PP. The classical definition of PP is given in the following equation. Additionally,
applying Equation (4.9) yields the balance of PP and the absolute value of the
entire dissipation rate of the working fluid:

PP = ∆P V̇ = 〈Φ〉 . (4.10)

4.4 Formulation of the optimization problem

The present investigation addresses the reduction in the energy that is required to
drive the previously described internal flows. The aim is to achieve this objective
through the modification of the flow by a control method that is acting on the wall.
In principle, different control techniques are available for this purpose.
Active methods are found to yield the reduction of friction forces acting on the
walls which, in theory, is promising. However, it has to be considered that addi-
tional energy input is required to drive the control, which contributes to the total
energy consumption of the flow system. Thus, reduced friction forces do not au-
tomatically lead to overall energy savings.
In contrast, for all passive approaches, the entire energy consumption of the flow
system consists of energy dissipated by the working fluid itself and is directly
linked to the friction losses on the wall. Mathematically, the considered cost func-
tion can be formulated as

J (Ω) = ρ

∫
Ω

Φ dV = 〈Φ〉 . (4.11)
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4 Frictional resistance and energy consumption of internal flows

The focus is to reduce 〈Φ〉 compared with presently applied configurations due
to the appropriate design of the duct cross section shape. In doing so, the cross
section area, the bulk velocity and the volume of the pipe are kept constant. At
best, a cross section shape is found which minimizes J (Ω).
The performance of geometrical variations can be evaluated according to

∆〈Φ〉 = 1 −
〈Φ〉modified flow domain

〈Φ〉initial flow domain
, (4.12)

while ∆〈Φ〉 denotes energy savings. In the literature, the reduction of the friction
drag, DR, is also used to measure the performance of flow control methods:

DR = 1 −
(Awτw)modified flow domain

(Awτw)initial flow domain
. (4.13)

According to Equation (4.9), the measures are identical for the addressed flows:
∆〈Φ〉 = DR.

The geometrical modifications that lead to energy savings, based on theoretical
considerations, are the focus of the discussions in the following chapters. Even if
the entire energy consumption of the laminar and time-averaged turbulent flows
obey similar expressions, the physical mechanisms describing the motion in the
flow regimes are different. The specific properties of laminar and turbulent motion
are used to derive individual models that lead to the reduction of 〈Φ〉.
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5 Potentials and limits for energy
savings in laminar flows

5.1 Mathematical description of the flow

In the following, the conservation equations given in Chapter 2 are formulated for
laminar internal flow. For this purpose, the stationary and fully developed flow
case that was introduced in Chapter 4 is considered, which implies ∂Ui/∂t = 0
and ∂Ui/∂x1 = 0. The continuity equation for this type of flow reads

∂U2

∂x2
+
∂U3

∂x3
= 0 , (5.1)

while the Navier–Stokes equations give rise to

i = 1 : U2
∂U1

∂x2
+ U3

∂U1

∂x3
= −

1
ρ

∂P
∂x1

+ ν
∂2U1

∂x2∂x2
+ ν

∂2U1

∂x3∂x3
, (5.2a)

i = 2 : U2
∂U2

∂x2
+ U3

∂U2

∂x3
= −

1
ρ

∂P
∂x2

+ ν
∂2U2

∂x2∂x2
+ ν

∂2U2

∂x3∂x3
, (5.2b)

i = 3 : U2
∂U3

∂x2
+ U3

∂U3

∂x3
= −

1
ρ

∂P
∂x3

+ ν
∂2U3

∂x2∂x2
+ ν

∂2U3

∂x3∂x3
. (5.2c)

Following Equation (2.12), the dissipation function of the given flow in the
streamwise direction (i = 1) leads to:

Φ = ν

(
∂U1

∂x2

)2

+ ν

(
∂U1

∂x3

)2

. (5.3)

Obviously, the cross flow components, U2 and U3, do not affect the energy dissi-
pation, which has to be compensated to drive the flow. Actually, the velocity field
of the considered flow through a straight duct having an arbitrary cross section
shape is typically assumed to be purely axial, resulting in U2 = U3 = 0. From
this assumption, a mathematical solution to Equations (5.1) and (5.2) is obtained.
This solution is not proven to be unique but it is found to lead to a good agree-
ment of the corresponding analytical results with measurements and is generally
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5 Potentials and limits for energy savings in laminar flows

accepted for the description of the present flow situations [114]. According to
these conditions, the mass conservation of the flow is fulfilled by definition and
the Navier–Stokes equations (2.5) simplify significantly resulting in the so-called
Poisson equation:

0 = −
1
ρ

dP
dx1

+ ν

(
∂2U1

∂x2∂x2
+

∂2U1

∂x3∂x3

)
, (5.4)

where a uniform pressure drop, dP/dx1, impressed along its length, drives the
flow. Obviously, the non-linear inertia term arising at the left hand side of the
Navier–Stokes equations does not influence the flow situation described by Equa-
tion (5.4). Thus, the considered flow fields are dominated by viscous effects.

5.2 Lower limit for the energy consumption

In stationary, laminar and fully developed flows, the complexity of the conserva-
tion equations reduces significantly compared with the general form presented in
Chapter 2. This fact allows an analytical solution of the shape optimization prob-
lem formulated in Equation (4.11). As a result, Schulz [107] finds the cylindrical
pipe to lead to the lowest dissipation rate, 〈Φ〉, when transporting a given flow
rate through pipes having a constant volume and cross section area. According to
Equation (4.9), the minimization of the dissipation rate and consequently also of
the entire energy consumption due to the circular cross section shape is directly
connected to the minimal friction forces acting on the pipe wall.
Further, the question of whether the losses of laminar internal flows can be re-
duced using active control techniques is discussed in literature. Using surface
blowing and suction in the form of an upstream traveling wave, Min et al. [83]
find that the frictional resistance of an internal flow can be sustained below that
corresponding to the laminar regime. The resulting friction force on the wall is re-
ferred to as sub-laminar drag. However, theoretical analysis by Bewley [12] show
that even if the friction force acting on the wall of internal flows can be reduced
due to active methods, the lowest entire dissipation rate of the flow system be-
longs to uncontrolled laminar flow. The energy that is required to drive any active
control is shown to be higher than the potential benefits that can be gained in this
flow regime. This finding generalizes the optimality of the plain cylindrical pipe
in laminar flows if the energy consumption is to be minimized.
The optimum represented by the cylindrical pipe might only be in question, if
additional constraints come into play. The shape optimization problem solved by
Schulz [107] then has to be reformulated according to these constraints, which
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5.3 Surface structures leading to reduced friction losses of channel flow

can be various but preferentially have practical relevance. A corresponding prob-
lem formulation is treated in the following discussion.
In engineering practice, a series of applications exist where fluid is transported in
a flow domain that is restricted in its height rather than its width. These flow situa-
tions are often referred to as channel flows and are found, for example, in cooling
ducts of numerous electronic devices and heat exchangers. For channel flow it is
not proven that flat walls lead to minimal losses. The possibility to reduce the en-
ergy dissipation in a channel flow due to two-dimensional surface structures that
are aligned with the main flow is discussed in the following section.

5.3 Surface structures leading to reduced friction
losses of channel flow

The application of different shapes of rib-like surface structures oriented paral-
lel to the flow direction as drag reducing devices in laminar channel flows have
been investigated several times in recent decades. While it is well known that
so-called riblets can lead to a significant drag reduction of up to 10% in turbulent
flows [21], a similar result is not obtained for laminar flows (see Equation (4.13)
for the definition of DR). For this case, riblets are actually found to increase
the flow resistance compared with unstructured channel walls, leading to negative
values of DR [20, 26, 85]. It should be noted, that the corresponding evaluation
here and in the following discussions is based on keeping an equal cross section
area and bulk velocity and therefore a constant flow rate in the structured and
unstructured configuration. A less conservative attempt is followed within other
works, as discussed in reference [26].
Firstly, the observed increase in flow resistance due to riblets in laminar flow is
not too surprising since the mechanisms leading to benefits in turbulence were
found in the interaction with specific properties of the flow in this state. Thus,
there is no physical indication as to why this sort of surface modifications should
also cause a reduced flow resistance in laminar flows, where energy is dissipated
due to viscous effects only. However, using a variational principle for the surface
shape, Pironneau and Arumugam [98] were able to show analytically that in the
laminar case benefits in the viscous dissipation can be expected if the riblets ex-
ceed a certain width, 2l, which scales with the mean channel height, 2L, as follows
(the definitions of the variables are given in Figure 5.3):

l/L > π/z where z ≈ 1.2 is the solution of 1 − z tanh z = 0 . (5.5)
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2l
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U1/Ub
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x2
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10

b

Figure 5.1: Numerically predicted laminar flow through a flat channel (bottom)
and channel with wide surface structures (top). The boundary shape is
defined by the function x2 = ± ((a/2)cos(πx3/l) + 2b) with a/2 = L−b
(a is the amplitude of the wave), here l/L = 8.3 and a/(a + b) = 0.59.
Both channels have the same cross section area, which is indicated by
the dashed side walls in the upper figure.

Performing a numerical shape optimization for certain l/L that obeys the above
condition, Pironneau and Arumugam [98] find surface structures with smooth
contours to reduce friction losses compared with the flat channel. In the follow-
ing, this type of structure is further investigated by approximating the boundary
found by Pironneau and Arumugam through a trigonometric function of the form

x2 = ± ((a/2)cos(πx3/l) + 2b) , (5.6)

with a/2 = L − b (a is the amplitude of the wave) [22]. In Figure 5.3 a typi-
cal structure geometry is shown together with the variables that are used for its
description. The impact of the surface structure on the velocity field is also il-
lustrated as a contour plot and is compared with the flat reference channel. The
fully developed, stationary flow fields having the same bulk velocity are evaluated
solving Equations (5.1) and (5.2) numerically and symmetric boundary conditions
are applied to the lateral boundaries. This type of boundary condition is used to
model a domain of infinite width. Thus, instead of considering the cross section
area, the mean height of both channels is fixed to be identical, as indicated by the
dashed lines in the upper figure. According to Equations (4.12) and (4.13) the
drag and the energy consumption are reduced by 16% in the example shown in
Figure 5.3, where l/L = 8.3 and a/(a + b) = 0.59.

In the following, the influence of the all parameters (l, a and b) determining the
trigonometric structure on the frictional resistance is investigated. For this pur-
pose, an analogy between structural mechanics and fluid mechanics can be used.
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5.3 Surface structures leading to reduced friction losses of channel flow

Owing to the analogy between the torsion of beams and fully developed laminar
flow in ducts (the governing equation in both cases is Poisson’s equation (5.4)), the
pressure drop, and thus the skin friction drag, arising from the curved structures
can be estimated by applying Saint Venant’s principle [9]. The drag reduction is
again evaluated by comparison with the result for the flat channel having the same
mean height, 2L, the same width, 2l, and the same length, Lx1 , which obeys the
analytical relation [29]

Awτw =
12 µUb l Lx1

L
=

3 µ V̇ Lx1

L2 . (5.7)

The results for the investigated parameter range is shown on the left plot in Fig-
ure 5.2.
However, it has to be considered that the model introduced by Bahrami [9] repre-
sents the flow through closed ducts, namely ducts that would be pictured by no-
slip boundary conditions on the lateral sides of the domain shown in Figure 5.3. In
order to consider the inaccuracies resulting from the model prediction, the drag re-
duction arising at certain parameter combinations in Figure 5.2 is compared with
results of Pironneau and Arumugam [98] and our own numerical results, which
were obtained as described previously. The corresponding values are tabulated in
Appendix A. Overall, a good agreement is observed suggesting a small impact of
the lateral walls on the results in the entire parameter range. In particular, in cases
were the ratio l/b reaches high values, the model results are supposed to allow
quantitative conclusions about the energy saving that can be obtained by replac-
ing flat channel walls with the proposed surface structures (see Appendix A).
In Figure 5.2, the drag is found to be reduced compared with unstructured walls
within the entire parameter range investigated. This result is expected since l/L
obeys the theoretical condition for energy savings given in Equation (5.5). In
general, it is observed that DR increases when moving to the upper right corner of
the contour map representing wide structures that are periodically clamped such
that b vanishes, i.e. the structured channel turns into a sequence of ducts. For
this parameter range, a high accuracy of the model prediction is expected. The
results indicate an asymptotic behavior in the drag reduction that can be achieved
for large l/L, i.e. DRmax ≈ 50%.
Results for triangular surface structures with sharp corners are shown on the right
plot in Figure 5.2. Generally, the influence of variations in the parameters describ-
ing the structure are similar, as observed for the curved surface shapes. However,
the drag reduction that can be achieved with a triangular surface structure is gen-
erally smaller and reaches a maximum of about 40%. The angeled shapes consid-
ered resemble classical riblets that are used as drag reducing devices in turbulent
flow [21]. However, the width of the riblets studied in the literature is significantly
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Figure 5.2: Contour plot of the drag reduction that can be achieved with structured
walls compared with a flat reference channel depending on the param-
eters a, b and l that describe the structure geometry. Left plot: curved
surface structure. Right plot: riblet-like triangular surface structure.

smaller than the height of the channel. Thus, in the context of the present analysis,
Choi’s [20] observation of increased drag in laminar flow over these riblets is no
longer surprising and can be explained: in order to achieve energy savings in the
laminar regime for different types of structure shapes, the ratio l/L has to exceed
the critical border derived by Pironneau and Arumugam [98].

To summarize, the possibility of achieving energy savings in stationary and
fully developed laminar flow due to geometrical variations in the boundary is lim-
ited. Schulz’ [107] mathematical solution of the optimization problem shows that
the circular pipe is optimal in this respect. However, in the case of channel flow,
surface structures that are wide compared with the channel height can be shown to
lead to reduced friction losses in comparison with flat walls. These surface struc-
tures provoke the increase and decrease of the channel height in a periodic fash-
ion. The channel height generally has a strong impact on the friction forces acting
on the walls if a fixed amount of fluid is to be transported (see Equation (5.7)).
Obviously, this effect compensates the increase that is associated with the wetted
surface area. The highest value for DR in this sense is found if the channel turns
to a sequence of individual ducts. This observation indicates tendencies towards
the general optimum, namely the cylindrical pipe.
In the following discussions, flows at higher Reynolds numbers, which become
unstable for disturbances and tend to the turbulent state, are investigated. Again,
internal flows in domains that are homogeneous in the streamwise direction are
focused on. Similar to laminar flow, the height of a channel significantly influ-
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ences the arising drag and the previously discussed surface structures also can
lead to energy savings [22]. However, in contrast to the laminar regime, the en-
ergy dissipation in these cases is not just due to viscous effects and the universal
optimality of the circular pipe can no longer be proven. Thus, tackling the general
form of the optimization problem formulated in Equation (4.11) is felt to represent
a realistic challenge.
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6 Theoretical analysis of transitional and
turbulent flows

In the previous chapter, the investigation of internal flows was restricted to the
stationary, fully developed, laminar flow regime. It was shown that the high order
of regularity in laminar flow is reflected by major simplifications in the transport
equations. The flow behavior was observed to be dominated by viscous effects
independent of the Reynolds number. However, as the Reynolds number exceeds
a certain value, the non-linear term in the Navier–Stokes equation affects the fluid
motion. In practice, the flow becomes sensitive to disturbances that originate, for
example, from the surroundings or from corrugations in the domain boundary.
The destabilization of the flow due to the disturbances finally results in the transi-
tion to turbulence.
The reduction of the energy that is required to drive statistically stationary, fully
developed, internal flows at higher Reynolds numbers will now be considered.
The energy balance of this type of flow was discussed in Chapter 4. The example
for cylindrical pipe flow in Figure 4.2 illustrates that the friction factor, and also
conclusively the energy consumption, of laminar flow at a given Reynolds num-
ber Re > Recrit is significantly lower than in turbulent flow. Thus, keeping the
flow laminar at conditions where it usually turns to turbulence is supposed to be a
straightforward goal for control strategies.
In order to achieve the present objective, a statistical description of the flow is in-
troduced. The statistical framework forms the basis for the theoretical derivation
of mechanisms in the flow leading to reduced dissipative losses in the turbulent
regime, and at best, provokes the persistance of the laminar state.

6.1 Statistical description of fluid motion

The physical state of the flow at higher Reynolds numbers suggests the usage of
statistical tools for its description. These tools will be introduced next and are
first applied to fully turbulent flow fields for which the procedure is well estab-
lished. The equations governing the motion and the energy conservation of the
flow are given. The statistical tools are further used to describe laminar flows that
are affected by disturbances and eventually undergo the transition to turbulence.
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Thus, the statistical framework allows a related description of the flow in the dif-
ferent regimes. This fact forms the basis for the derivation of common conditions
leading to energy savings at higher Reynolds numbers.

6.1.1 Transport equations of turbulent flow

A turbulent flow field is generally characterized by quasi-random, time-dependent
and three-dimensional variations of all flow quantities that are spread over a wide
range of scales [63]. The largest scales in internal flows are determined by the
flow domain, while the smallest scales represent the dissipation range. The mo-
tion of turbulent flow is also described by the continuity equation (2.4) and the
Navier–Stokes equations (2.5). However, owing to the quasi-chaotic appearance
of turbulent flow, it is most suitable to use statistical tools for its further descrip-
tion. In order to allow a better understanding of turbulent motion, Reynolds [103]
proposes decomposing an instantaneous flow quantity, G, into the time-averaged
mean, G, and the time-dependent fluctuation, g:

G = G + g . (6.1)

G is defined as

G (x1, x2, x3) = lim
T→∞

1
T

∫ T

0
G (x1, x2, x3) dt , (6.2)

where T is a sufficiently long time interval compared with the characteristic time
periods of the fluctuation g.
Applying the decomposition proposed by Reynolds to the flow quantities leads to

Ui = U i + ui, P = P + p . (6.3)

This splitting of the velocity components and the pressure is inserted into the con-
tinuity equation (2.4) and the Navier–Stokes equations (2.5). After temporal av-
eraging of the resulting equations and considering averaging rules, the following
conservation laws for the mean turbulent flow are obtained [63]:

∂U i

∂xi
= 0 , (6.4)

∂U i

∂t
+ Uk

∂U i

∂xk
+
∂uiuk

∂xk
= −

1
ρ

∂P
∂xi

+ ν
∂2U i

∂xk∂xk
. (6.5)

The motion of the mean flow is characterized by the interaction of the fluctuat-
ing quantities, uiuk. This symmetric tensor of rank two contains six additional
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unknowns that lead to an unclosed system, which is referred to as the turbulent
closure problem. Turbulent motion is often described as fluid motion with in-
creased viscosity. In this understanding, the fluctuating term is typically moved to
the right side of Equation (6.5) in order to interpret it as a turbulent stress term that
acts in addition to the viscous stress term. However, a different notation is chosen
here in order to point out that the interference of turbulent fluctuations with the
mean flow originates from the nonlinearity in the Navier–Stokes equations.
The equations for the instantaneous velocity fluctuations, ui, are given by Jo-
vanović [63]:

∂ui

∂xi
= 0 , (6.6)

∂ui

∂t
+ Uk

∂ui

∂xk
+ uk

∂U i

∂xk
+
∂uiuk

∂xk
−
∂uiuk

∂xk
= −

1
ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
. (6.7)

Manipulation of these last equations leads to the transport equation of the turbu-
lent stresses, uiu j [63]:

∂uiu j

∂t
+ Uk

∂uiu j

∂xk
= −uiuk

∂U j

∂xk
− u juk

∂Ui

∂xk︸                      ︷︷                      ︸
Pi j

−
∂

∂xk
uiu juk︸        ︷︷        ︸

Ti j

−
1
ρ

ui
∂p
∂x j

+ u j
∂p
∂xi

︸                   ︷︷                   ︸
Πi j

−2 ν
∂ui

∂xk

∂u j

∂xk︸    ︷︷    ︸
εi j

+ ν
∂2uiu j

∂xk∂xk︸    ︷︷    ︸
Di j

. (6.8)

This equation contains three unclosed terms, Ti j, Πi j and εi j. A short explana-
tion of the physical meaning of the individual terms that describe the substantial
derivative of uiu j is as follows:

Pi j: production of uiu j by the mean flow

Ti j: turbulent transport

Πi j: velocity–pressure gradient correlations

εi j: turbulent dissipation, which is the essential feature of turbulence; this can
be imagined as energy transfer through a cascade process from the large
scales to the smallest ones in which the energy at the final stage is dissipated
into heat
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Di j: viscous diffusion.

Based on the statistical concept, the conservation equation of the kinetic energy
of turbulent flows can be derived as shown by Hinze [54]. For this purpose, the
decomposition of the variables introduced in Equation (6.3) is complemented by
the following rule:

UiUi = U iU i + 2U iui + uiui = U iU i + 2U iui + q2 . (6.9)

Applying these relations to Equation (2.11) leads to

1
2
∂U iU i

∂t
+

1
2
∂q2

∂t︸                ︷︷                ︸
I

= −
∂

∂xk
Uk

P
ρ

+
U iU i
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,

where k = q2/2 represents the kinetic energy of turbulence.
The individual terms in Equation (6.11) can be physically interpreted as follows
(where all descriptions are defined as per unit mass and time):

I: local change of kinetic energy

II: change in convective transport of the total energy due to the mean flow

III: work done by the viscous stresses of the mean flow

IV: direct dissipation, εd

V: convective transport of the total energy due to turbulent fluctuations

VI: work done by the turbulent stresses

VII: work of deformation by the turbulent stresses

VIII: work done by the viscous shear stress of the turbulent motion

IX: dissipation by the turbulent motion, ε.
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6.1 Statistical description of fluid motion

It is clear that the processes governing the above equation are related to both
the mean flow and turbulence. The contribution of the turbulent motion will be
addressed specifically in the following discussion. It can be explicitely described
in terms of the transport equation of the kinetic energy of turbulence [63]:
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+ Uk
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∂xk

= −uiuk
∂Ui

∂xk︸     ︷︷     ︸
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−
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∂ui
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∂ui

∂xk︸       ︷︷       ︸
ε

+ ν
∂2k

∂xk∂xk︸    ︷︷    ︸
Dk

. (6.11)

This equation can also be derived by contraction of Equation (6.8) on setting i = j.
The the physical meaning of the individual terms are related in both equations and
the nomenclature is used accordingly.

6.1.2 Basic equations for laminar flow with superimposed
small disturbances

The stability of laminar flow is traditionally analysed considering an underly-
ing laminar field that is exposed to two-dimensional perturbations applying the
method of small disturbances [106]. This procedure forms the basis for the deriva-
tion of the Orr–Sommerfeld equation. In spite of simplifying assumptions in its
derivation, this equation is found to determine the criteria leading to transition of
boundary layer flows in a satisfactory manner. However, this ansatz fails in pre-
dicting the critial conditions of internal flows [106].
Compared with the traditional procedure, Jovanović et al. [65] use a more gen-
eral approach and express the motion of laminar flow in a statistical frame. The
resulting basic equations governing the motion of laminar flow that is exposed to
disturbances are summarized as follows.
The incompressible laminar flow field with superimposed disturbances is gov-
erned by the continuity equation and the Navier–Stokes equations given in Equa-
tions (2.4) and (2.5). Starting from these equations, the method of separating the
instantaneous velocity Ui and the pressure P into the mean-laminar contribution,
U′i and P′, and disturbances superimposed on it, u′i and p′, is introduced:

Ui = U′i + u′i , P = P′ + p′ . (6.12)

This approach is related to that applied to turbulent flow. There, the instantaneous
flow quantities are decomposed into a time-averaged part, which differs from the
laminar contribution, and a fluctuating deviation. In general, the derivation of the
transport equations is similar in both flow regimes. However, it differs in the fact
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6 Theoretical analysis of transitional and turbulent flows

that the disturbances in the laminar regime are assumed to be much smaller than
the corresponding quantities of the underlying flow:

u′i << U′i , p′ << P′ . (6.13)

Thus, the influence of products of fluctuating quantities is supposed to vanish.
This fact ensures that the motion of the mean flow is not influenced by the distur-
bances and is governed by the simple continuity (2.4) and Navier–Stokes equa-
tions (2.5). Further, the equations for the disturbances are derived by applying the
previous assumption [65]:

∂u′i
∂xi

= 0 , (6.14)
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. (6.15)

By systematic manipulation of Equations (6.15) and (6.14), the transport equa-
tions for the “apparent stresses” u′iu

′
j can be derived and are given by Jovanović et

al. [65]:
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(6.16)

Obviously, the above set of equations are related to the equations for the turbulent
stresses (6.8). However, their complexity is reduced and they only imply two dif-
ferent types of unknown correlations: the velocity–pressure gradient correlations,
Πi j, and the dissipation correlations, εi j.

6.1.3 Interpretation of the statistical flow properties using
invariant theory

Based on the statistical description of turbulent flow, Lumley and Newman [82]
use kinematic considerations for the construction of a space that bounds all phys-
ically realistic states of turbulence. This space is defined in terms of the two
independent scalar invariants of the anisotropy tensor, ai j, and is shown to enable
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the transparent illustration of outstanding properties of turbulent flow.
To quantify the anisotropy in uiu j, Lumley and Newman [82] introduce the tensor

ai j =
uiu j

q2
−

1
3
δi j , (6.17)

and its scalar invariants:

II = ai ja ji ,

III = ai ja jkaik , (6.18)

where δi j represents the Kronecker delta. With ai j it is possible to distinguish the
anisotropy of uiu j from all other flow quantities. Physically, II can be understood
as the magnitude of anisotropy, III as its type. Thus, for isotropic turbulence
ai j = 0 holds and consequently II = III = 0.
A configuration of uiu j that permits the anisotropy to be quantified is the case of
axisymmetric turbulence. In such turbulence the invariants are described by [63]

II =
3
2

(
4
3
|III|

)2/3

. (6.19)

For the case of two-component turbulence the relationship between the invariants
gives rise to [63]

II =
2
9

+ 2 III . (6.20)

In Figure 6.1 these relations are plotted. The resulting “triangle” defines the
anisotropy invariant map and covers all realizable states of turbulence. The in-
tersections of the lines representing axisymmetry and two-componentality in the
stress tensor define the corners of the map. The upper branch of the map at the
position (III, II) = (2/9, 2/3), where the anisotropy is maximal, is referred to as
the one-componental state of turbulence. The lower left corner of the map at the
position (III, II) = (−1/36, 1/6) denotes the isotropic two-componental state of
turbulence.
In the present investigation, the anisotropy invariant map is used to visualize
the statistical properties of wall-bounded flows. For this flow, fluctuations are
forced to be two-componental when approaching the wall while they reach an
almost isotropic state in the center of the domain. The trajectory for turbulent
channel flow [5] is sketched in Figure 6.1 to illustrate the characteristic develop-
ment. When moving away from the wall, it can be seen, that the anisotropy in the
flow first increases and reaches its maximum at the edge of the viscous sublayer
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Figure 6.1: Anisotropy–invariant map [82]. The boundaries and corner points of
the map represent outstanding states of turbulence that are assigned in
the figure. Additionally, the arrows illustrate possible configurations
of the stress tensor represented by the boundaries of the map. The
trajectory for turbulent channel flow at the friction Reynolds number
Reτ = 180 [5] (line with dots) shows a characteristic development of
wall-bounded flows.

(x+
2 ' 8) [63]. Further, the flow approaches the isotropic state in developing along

the right branch of the map indicating an almost axisymmetrical configuration of
the stresses.
The development of Lumley and Newman originally aims at a description of tur-
bulence. So far the findings have strong and long lasting implications for the
development of turbulent closure approximations that have the potential to de-
scribe a wide range of shear flows [63]. It was also shown that the invariant map
represents a powerful tool for the illustration of mechanisms that accompany drag
reduction in turbulent flows. The success of various turbulent control strategies for
wall-bounded flows was related to the level of anisotropy in the turbulent stresses
that is achieved at the wall [41].
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6.2 Physical models for reduced friction losses of wall-bounded flows

The implication of high anisotropy and the axisymmetric state of the stresses on
the energy dissipation in the flow is discussed next. In the present flow configura-
tions, x1 is always defined as the direction of the mean flow and axisymmetry in
the stresses is limited to invariance of the stresses under rotation about this axis.
In the case of full axisymmetry in such a flow, the stress tensor can be expressed
as follows [63]:

uiu j = Fδi j + Gλiλ j , λi (1, 0, 0) , (6.21)

with F and G being scalar functions.
Next to turbulent flow, the anisotropy map can be also used to analyse statistically
described laminar flow. In this way, Jovanović et al. [65] derive constraints for
the persistance of stable laminar flow and consequently for the intended delay of
laminar to turbulent transition.
Thus, the representation of the stresses in the anisotropy–invariant map is ex-
pected to be a powerful tool for the aim of investigating mechanisms leading to
low energy dissipation in internal flows. In particular, it enables the simultaneous
investigation of the configuration of the stresses in the different flow regimes.

6.2 Physical models for reduced friction losses of
wall-bounded flows

The theoretical considerations followed within this chapter are based on the statis-
tical properties of disturbances in laminar flow and of fluctuations in fully devel-
oped turbulent flow. In this framework, analytical constraints can be formulated
that lead to reduced friction losses. In general, the implementation of these con-
straints is supposed to be associated with benefits in internal and external flows,
while the former flow situation is the focus of this work.

6.2.1 Kinematic consideration of velocity fluctuations

The analysis is based on the theoretical findings from Jovanović and Hillerbrand [67]
for the peculiar properties of velocity fluctuations in the near-wall region. In their
investigation, the implication of axisymmetry in the fluctuations is studied using
kinematic considerations.
For this purpose, the flow above a plane wall is considered were x1 is the direction
of the mean flow, x2 is the wall-normal coordinate with origin on the wall and x3 is
the spanwise coordinate. A Taylor series expansion of the instantaneous velocity
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fluctuations reads as [87]:

u1 = a1x2 + a2x2
2 + ...

u2 = b1x2 + b2x2
2 + ...

u3 = c1x2 + c2x2
2 + ... (6.22)

where the coefficients ai, bi and ci are functions of time and the space coordinates
x1 and x3. In order to satisfy the continuity equation close to the wall, the coeffi-
cient b1 vanishes, b1 → 0.
For axisymmetric disturbances that are invariant to rotation about the streamwise
x1 coordinate, the following relation is obtained for the statistics of the velocity
derivatives of nth order [45]:(
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, (6.23)

On inserting the series expansion (6.22) into these expressions, and comparing
terms corresponding to the same power of x2, it follows that all coefficients ai, bi

and ci must vanish in order to satisfy constraints imposed by axisymmetry. Thus,
it is concluded, that velocity fluctuations, and therefore the turbulent properties of
the flow, must vanish in the close proximity of the solid boundary, for the assumed
state of the fluctuations [67]. This finding also implies that the dissipation due to
turbulent fluctuations vanishes at the wall for this particular state of the stresses.
In general, the stresses at the wall are forced to be two-component due to con-
straints imposed by the continuity equation. The additional constraint of axisym-
metry leads to the one-component state. In the anisotropy invariant representation
of the stresses, the one-component limit denotes the state of maximum anisotropy,
since II denotes the magnitude of anisotropy (see Figure 6.1). Using data from di-
rect numerical simulations of turbulent wall-bounded flows, Jovanović and Hiller-
brand [67] correlate the dissipation at the wall with the magnitude of anisotropy.
In Figure 6.2 their original illustration is replotted and supplemented with addi-
tional data. The extrapolated trend in the data (dashed line) supports the conclu-
sions from the theoretical findings: If axisymmetry in the stresses at the wall, and
thus the one-component limit, is reached, the dissipation due to turbulent fluctua-
tions vanishes.
From the findings of Jovanović and Hillerbrand [67], strategies for reduced en-

ergy dissipation in the different flow regimes can be derived. Their considerations
focus on the statistical properties of turbulent flow. However, the similarities in
the statistical description results in a related statement for the laminar regime: dis-
turbances cannot be amplified if they are axisymmetrical. The physical models for
energy savings in both flow regimes are formulated in the following paragraphs.
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Figure 6.2: Turbulent dissipation rate at the wall versus the magnitude of
anisotropy at the wall following the illustration of Jovanović and
Hillerbrand [67]. Numerical data from wall-bounded flows are used
to extrapolate the trend. Pipe flow: Eggels et al. [32], Unger and
Friedrich [112], Fukagata and Kasagi [42]. Channel flow: Kim et
al. [69], Moser et al. [88], Alamo and Jimenez [5], Gilbert and
Kleiser [47], Horiuti [57], Iwamoto et al. [59]. Flat plate boundary
layer: Spalart [109], Spalart [108]. The dissipation rate is normalized
with the wall shear velocity and the kinematic viscosity of the fluid.

6.2.2 Delay of transition to turbulence

In Figure 4.2 it was demonstrated that the flow resistance due to friction forces in
a cylindrical pipe is much lower in laminar flow than in the turbulent regime. Ad-
ditionally, this difference increases with increasing Reynolds number. Thus, it is
logical to conclude that keeping flow laminar in situations in which it will usually
turn into turbulence is very promising if energy losses are to be minimized.
In Section 6.1.2 the statistical discription of laminar flow subjected to disturbances
was introduced. The presence and appearance of such disturbances form the basis
for considerations of the laminar to turbulent transition process in different types
of wall-bounded flows [65, 67]. In the previous paragraph it was shown that the
dissipation term in Equation (6.16) vanishes in the near-wall region, if the veloc-
ity fluctuations are forced to be axisymmetrical. Thus, it can be concluded that
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laminar flow in the near-wall region is stable to any level of disturbances if they
appear in the statistically axisymmetric state. The same conclusion is also drawn
by Jovanović et al. [65] in a theoretical investigation on the persistence of lam-
inar flow in the flat plate boundary layer. However, it is found that reaching the
one-component state at the wall is only a necessary but not sufficient condition for
the disturbances, if the stability of the flow is in question. In their formulation of
the transition criterion, they assume laminar flow to be exposed to small axisym-
metrical disturbances that are invariant under rotation about the axis of the main
flow direction. Further, they consider local equilibrium to exist between the pro-
duction and dissipation. From the dissipation equation, by requesting that ε must
always be positive, they derive a criterion that determines conditions that guar-
antee maintenance of the laminar regime. The limit for the ensurance of laminar
flow is quantified in terms of the magnitude of the anisotropy in the disturbances
in the free stream, II∞ [65]:

II∞ ≥ 0.141 . (6.24)

In general, this formulation is supposed to be valid for a wide range of flow situa-
tions, if the superimposed disturbances are axisymmetrical. The authors tested the
validity of the criterion for transition and the breakdown to turbulence in the flat
plate boundary layer. Comparison of the theoretically derived criterion with ex-
perimental data shows good agreement. Experimental findings and recent results
from numerical investigations of transition in the flow through a cylindrical pipe
also support these theoretical results: the laminar to turbulent transition process
in the flow is characterized by decreasing anisotropy in the disturbances [33, 93].
These findings are used to derive a physical model of how the laminar flow regime
can persist at high Reynolds numbers, which is summarized in Figure 6.3. If the
disturbances superimposed on laminar flow are axisymmetrical and reach a high
level of anisotropy, they cannot be amplified and the transition to turbulence is
delayed. In principal, the described strategy is supposed to hold for external and
internal flows. The aim is to achieve the axisymmetrical configuration of the dis-
turbances, which leads to reduced friction losses, due to geometrical modification
in the fluid–solid boundary. This approach is considered to result in practically
realizable solutions. For external flows, an appropriately designed surface mor-
phology is expected to result in the target state (left branch of Figure 6.3), while
it might be provoked by the cross section shape of ducts in internal flows (right
branch of Figure 6.3). The latter aspect is addressed in numerical investigations
in the following chapters. Since the flow is controlled passively, reduced friction
losses will directly result in energy savings, as discussed in Section 4.4.
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Figure 6.3: Physical model aiming at low friction losses and persistence of the
laminar regime in wall-bounded flows.
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6.2.3 Reduction of dissipation in turbulent flows

Laminar flow with superimposed disturbances and turbulent flow have common
properties. However, the situation in turbulent flow is more complex: the fluctua-
tions modify the mean flow, as can be seen in Equation (6.5).
The entire energy dissipation rate in turbulent flow, Φ, gives rise, according to the
corresponding terms in Equation (6.11), to

Φ = ν

∂Ui

∂x j
+
∂U j

∂xi

 ∂Ui

∂x j︸                   ︷︷                   ︸
εd

+ ν

(
∂ui

∂x j
+
∂u j

∂xi

)
∂ui

∂x j︸                 ︷︷                 ︸
ε

. (6.25)

The contribution controlled by the mean flow is referred to as direct dissipation,
εd, and the contribution originating from the fluctuating motion is termed as tur-
bulent dissipation, ε. The order of magnitude analysis shows that direct dissi-
pation, εd, is of the order O

(
U2/L2

)
where L is defined by the size of the flow

domain and is constant. The turbulent contribution, ε, is of the order O
(
q2/λ2

)
and λ is the Taylor micro-scale, which decreases with increasing Reynolds num-
ber. These relationships suggest that the contribution of turbulence to Φ prevails
at large Reynolds numbers. Data from direct numerical simulation of plane chan-
nel flow support this statement [38, 76]. Thus, at high Reynolds numbers, which
are of particular importance in practical applications, the decrease and possible
minimization of ε is promising for the achievement of significant reduction in the
entire dissipation, Φ. The control strategy emphasized in subsequent paragraphs
is derived from this deduction.
Kinematic considerations of velocity fluctuations in wall-bounded flows show that
the turbulent dissipation at the wall vanishes, if the velocity fluctuations are forced
to be axisymmetrical around the axis of the mean flow (see Section 6.2.1). This
state of the fluctuations imply that they reach the one-component state at the wall.
Frohnapfel et al. [41] study the impact of axisymmetric disturbances in the near-
wall region on the turbulent dissipation in the entire flow field. For this purpose,
numerical experiments in turbulent plane channel flow are performed. In the sim-
ulations, the flow in the vicinity of the wall is forced to be axisymmetrical by
damping of the spanwise velocity fluctuations in the near-wall region. It is found,
that this state of fluctuations at the wall results in a decrease in the turbulent dis-
sipation in the entire flow field. In the simulations, the number of points in the
wall-normal direction, for which the forcing is applied, is varied. A comparison
of the results shows, that the decrease in the turbulent dissipation is more pro-
nounced if the axisymmetric state extends further into the flow field.
The observations made in the numerical experiment can be summarized as fol-
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lows: the constraint of axisymmetry (u2
2 = u2

3 and uiu j = 0 for i , j) leads to
the conclusion, that the production of turbulent kinetic energy vanishes, Pk → 0
(since Pk = −u1u2 ∂U1/∂x2). The equilibrium consideration suggests that pro-
duction and dissipation are balanced in the flow, Pk ' ε, resulting in the same
behavior for ε as for Pk, namely ε → 0.
The impact of changes in the turbulent dissipation rate on the flow can be dis-
cussed as follows. A general property of turbulent flow is the separation of scales.
In internal flows, the largest spatial scale, L, is fixed due the restriction of the
flow domain while the smallest scales are defined in terms of ε and ν and are in
the order of the Kolmogorov length scale, ηK. The strength of turbulence can be
expressed in terms of the spectral separation in the flow, L/ηK, and might be de-
fined as function of the turbulent Reynolds number, Rλ. Vanishing turbulence is
accompanied by vanishing spectral separation, L/ηK → 1 as Rλ → 0, and strong
turbulent activity is characterized by large spectral separation, L/ηK � 1 when
Rλ � 1. The Kolmogorov length scale is connected to ε as follows [63]:

ηK =

(
ν3

ε

)1/4

. (6.26)

Obviously ηK increases as ε is decreased leading to a decrease of the spectral sep-
aration in the flow. Therefore we may expect that Rλ decreases with decreasing
ε, which additionally corresponds to a reduced turbulent contribution to the total
dissipation. This qualitative behavior of changes induced by decreasing ε leads
to the conclusion that any changes induced in turbulence with the intention of de-
creasing ε will have a strong tendency to provoke laminarization in the flow.
Similar conclusions can be drawn for fully developed flows, if the transport equa-
tion of the mean flow (6.5) is considered and the turbulent fluctuations interacting
with the mean flow field are assumed to be axisymmetrical. In this state, the
stresses can be expressed in the linear fashion given in Equation (6.21). For such
turbulence, Equation (6.5) can be rewritten as follows [78]:
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)
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∂2U i

∂xk∂xk
. (6.27)

In this equation, turbulent fluctuations have a similar impact on the flow as the
pressure. Both quantities can be expressed together as a modified pressure term,
P∗. For fully developed flow in channels, pipes and ducts, this equation leads to
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solutions that coincide with solutions for laminar flow.
The tendency towards laminarization for producing reduced friction losses is sup-
ported by many flow situations when looking at the evolution of turbulence across
the anisotropy invariant map. An example in this respect is the drag reduction
due to the addition of dilute polymers [68]. The same can also be concluded from
numerous examples of wall-bounded flows, where the same or similar drag re-
ducing effects are observed [38]. In all of these documented examples it turns out
that achieving drag reduction and a tendency towards laminarization of the flow is
accompanied by the restructuring of turbulence towards the statistically axisym-
metric state with invariance to rotation about the axis aligned with the main flow.
This analysis of the effect of axisymmetry in the stresses on turbulent flow is sum-
marized schematically in Figure 6.4 and forms the basis of the physical model for
reduced friction losses in this flow regime. The major goal is to approach the
axisymmetric state of the stresses, which implies that the fluctuations at the wall
tend towards the one-component state. As a consequence, the turbulent dissipa-
tion and also spectral separation are decreased. For full axisymmetry, turbulent
activity is totally suppressed, resulting in pure laminar flow and significant energy
savings.
The open question is how to actually achieve axisymmetry in wall-bounded flows.
For this purpose, geometrical modification in the bounding walls are proposed.
The present concept for turbulent flow is essentially similar to that introduced
for laminar flow in Figure 6.3. Again the possibility of controlling external and
internal flow is considered, which is represented by the left and right branch of
the model, respectively. The following numerical studies address the impact of
geometrical modification on internal flows but similar geometrical designs can be
imagined to result in the required configuration of the fluctuations in both flow
situations.

38



6.2 Physical models for reduced friction losses of wall-bounded flows

Fully developed
turbulent flow

uiu j → Fδi j + Gλiλ j

with λi(1, 0, 0)
in large parts
of the flow

Modify
surface

morphology

Modify
duct

geometry

II→ 2/3
III→ 2/9
at the wall

(ε)wall → 0
uiu j ' 0 for i , j

ε small
Pk small

across the en-
tire domain

Reduction of Rλ

and spectral
separation L/ηK

Vanishing of
turbulent activity

Laminarization
of the entire flow

no
no

yes

no
no

yes

Figure 6.4: Physical model aiming at the reduction of energy dissipation and lam-
inarization of turbulent flow.

39



6 Theoretical analysis of transitional and turbulent flows

6.2.4 Review of investigations on friction drag reduction
due to surface modifications

The impact of the surface design on the friction losses of flows at higher Reynolds
numbers has been studied frequently in the past. The majority of the proposed
surface structures are aligned with the mean flow direction, exceptions are repre-
sented by, for example, dimples [80] or distributed roughness elements [101]. In
Figures 6.3 and 6.4, axisymmetry of the stresses about the axis aligned with the
main flow direction is shown to be associated with reduced energy dissipation.
Geometrical modifications in the fluid–solid boundary in the form of structures
that are aligned with the bulk flow and control the development of the wall nor-
mal and spanwise component of the stress tensor are proposed to provoke the
desired state. Major findings for this class of surface structures in the literature
are summarized as follows.
One of the earliest suggestions in this respect was presented in a patent by Kramer
from 1937 [71]. He proposes thin wires to be arranged a small distance above a
flat surface. The wires are parallel to each other and aligned in the flow direction.
In spite of the surface area increase, an overall drag reduction is reported [38].
Since the pioneering work of Kramer, different types of structure geometries have
been investigated, which are referred to as riblets. Generally, riblets are benefi-
cially applied to turbulent external and internal flows. However, in most of these
investigations the riblets are implemented in channel walls. This set-up was dis-
cussed in the context of laminar flows in Section 5.3. During corresponding nu-
merical and experimental studies, riblets are found to reduce the friction losses of
turbulent flow by up to 10% [11, 21]. It is observed that the maximum reduction is
reached for a narrow range of dimensionless riblet spacings, namely for s+ ≈ 15.
For the evaluation of s+, the spacing s between two riblet tips is normalized with
the characteristic viscous length scale calculated according to Equation (2.10),
yielding s+ = s uτ/ν. For larger riblet spacings, drag increase is observed. Note
that this dependence on s+ differs from the findings in laminar flow, where drag
reduction can only be observed if the riblet structure is wide enough.
In the literature, different mechanisms are discussed to lead to the observed fric-
tion behavior of turbulent flow over riblets. However, they actually agree, that the
flow is beneficially influenced in the near-wall region within valleys between the
structures [21, 37]. The effect of riblets can also be interpreted in the context of
the strategy proposed in the previous section, as shown by Frohnapfel et al. [41].
Similar conclusions can be drawn from recent numerical results from Fink [37] for
channel flow over the riblet geometry shown in Figure 6.5. In the direct numeri-
cal simulations, the friction Reynolds number, Reτ = uτδ/ν, which is based on the
friction velocity, uτ, and half of the channel height, δ, is set to Reτ ' 180. The nu-
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6.2 Physical models for reduced friction losses of wall-bounded flows

merical work accompanies experiments performed by Güttler [50]. For s+ = 17,
the experimental as well as the numerical investigation result in DR ' 6%, while
for s+ = 30 drag increase is observed (DR ' −3%). The observed decrease in the
friction loss is supposed to be associated with the expected trend towards axisym-
metry in the stresses. In Figure 6.5 the data along the symmetry line between two
riblets are plotted in the anisotropy invariant map. For comparison, the wall point
arising from flat channel flow at a similar Reynolds number [5] is marked. In fact,
for s+ = 17, a strong tendency to reach axisymmetry in the near-wall region and
thus the one-component limit at the wall is observed. In the drag increasing case,
this trend is also present when comparison is made to the flow over flat channel
walls (see black arrow in Figure 6.5). However, it is significantly weaker and ob-
viously the resulting benefits do not overcome the increase in the wetted area and
possible negative effects on the riblet tip.
The impact of riblets that are implemented in cylindrical pipes is also investigated
by several authors. The drag reduction obtained is found to be similar to that in
channel flow, but appears at slightly higher values of s+ [81, 89].
From the results obtained for turbulent flow over riblets, it can be concluded that
the impact of these structures is restricted since the maximal drag reduction is
comparatively low. The laminarization of turbulent flow is not observed.
Along with the strategies for reduced energy dissipation presented in Section 6.2,
a surface topology consisting of square grooves was developed. The size of the
grooves is significantly smaller than that of riblets, namely in the order of 5 vis-
cous length scales. Analysis of the impact of this type of surface morphology
on turbulent channel flow is presented by Frohnapfel [38]. The investigation of
the flow field within surface embedded grooves arising from DNS indeed shows a
strong tendency of the flow to reach the statistical axisymmetric state in the near-
wall region. However, the beneficial effect appearing within the grooves does not
persist along the entire wall.
The turbulent flow through ducts with embedded corner regions along the perime-
ter is investigated numerically by Lammers et al. [78]. The spacing of the resulting
structures is significantly larger than that of the riblets of grooves. Changes in the
flow field that are linked with the modified cross section shape are discussed in
the statistical framework proposed within this chapter. These findings are closely
related to the present investigation and will be discussed further in Chapter 9.
Compared with the summarized results for turbulent flow, investigations concern-
ing the impact of surface structures on the stability of laminar flow are only rarely
presented in the literature and are mainly conducted experimentally. In this con-
text, riblets are tested for their potential to delay the laminar to turbulent transition
of boundary layer flows [48, 77] and of fully developed pipe flows [77]. However,
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Figure 6.5: Left: Sketch of the considered riblet geometry. Right: Anisotropy
invariant mapping of the stresses in turbulent channel flow over riblets
at Reτ ' 180. DNS results for a drag reducing (s+ = 17) and a drag
increasing (s+ = 30) configuration are shown [37]. The trajectories are
plotted along the symmetry line between two riblets which is marked
by a dotted line in the sketch. The wall point for flat channel flow at
Reτ ' 180 [5] whose trajectory is plotted in Figure 6.1 is highlighted
by a black arrow for comparison.

the results provide no clear answer about changes in the transition Reynolds num-
ber and in the physical properties of the flow due to the presence of the riblets. In
another experimental investigation, surface embedded grooves show indications
of stabilizing laminar channel flow [64].

6.3 Conclusions for further investigation of
internal flows

In Section 6.2, flow states that are capable of provoking flow laminarization and
delay of transition, and consequently resulting in low energy dissipation, were
presented. A common mechanism was found to be responsible for benefits in
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6.3 Conclusions for further investigation of internal flows

both flow regimes. The next task is to investigate whether geometrical properties
of the flow domain can lead to the described behavior, as is proposed in Fig-
ures 6.4 and 6.3.
In general, the desired state of axisymmetry in the stresses is more likely to be
achieved in duct flows than in channel flows: the cross section shape of the duct
directly influences the flow in the entire domain while in plane channel flow it
is only manipulated in the near-wall region due to structured walls. The invari-
ant representation of the turbulent stresses in Figure 6.6 supports the arguments
about differences between channel and duct flows. Obviously, the magnitude of
anisotropy (II) and the axisymmetry at the wall is increased in circular pipe flow
compared with channel flow. In addition, the details of the trajectories along the
right boundary of the invariant map (Figure 6.6 right) show a stronger tendency
towards the axisymmetric state for the circular pipe flow. The geometrical config-
uration of the circular pipe provokes the stress tensor uiu j to follow axisymmetry
by definition at the centerline of the pipe. The observed impact of geometrical
properties of duct flows is in agreement with findings from Pfenniger [96]: in ex-
perimental investigations of a pipe flow he observes laminar flow to persist up to
very high Reynolds numbers, for which channel flow typically turns to turbulence.
Based on these arguments, the subsequent chapters will focus on the investigation
of duct flows.
Besides these physical reasons, the consideration of duct flows also addresses the
general formulation of the optimization problem in Section 4.4, namely the min-
imization of the dissipation arising from a fixed flow rate. The difference from
the findings for pure laminar flow may be highlighted in this respect. There, the
cylindrical pipe is optimal [107] and benefits can be obtained only for the special
case of channel flow.
In order to achieve reduced energy dissipation in pipe flows, the surface of the
pipe has to be designed to achieve an extension of the axisymmetry in uiu j from
the core region towards the wall of the pipe. For this purpose, structures whose
scales are significantly increased compared with the previously mentioned riblets
are proposed. Initial attempts towards this goal are made by Lammers et al. [78]
in the scope of the Erlangen pipe concept. His findings confirm the arguments
about the strong impact of geometrical properties in the flow domain on the ax-
isymmetrical behavior of the stresses.
Within the present investigation, direct numerical simulations are performed for
the investigation of the flow through ducts of different cross section shapes. This
approach allows a detailed study of the properties in the Reynolds stress field
arising from the cross section configuration and enables a comparison with the
theoretically derived mechanisms leading to reduced energy dissipation.
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Figure 6.6: Anisotropy invariant mapping for the stresses arising from DNS of
turbulent pipe and channel flow for the same friction Reynolds number
Reτ = 180. Pipe flow: Eggels et al. [32]. Channel flow: Alamo and
Jimenez [5].

Based on the findings in the previous sections, a plan for the numerical procedure
consisting of 5 steps is elaborated and summarized in Figure 6.7. The goal of
the present study is, when starting from the laminar and turbulent flow states in
step (1) to develop duct shapes that stabilize the flow leading to the persistence
of laminar flow or the laminarization of turbulent flow (5). This strategy is moti-
vated by the fact that a common mechanism is theoretically shown to lead to these
goals. However, the numerical prediction of flow laminarization and transition is
demanding and not straightforward.
In previous analyses of transition in circular pipe flow, it is shown that the decay
of turbulent spots is a random event and the distribution of their lifetimes fol-
lows an exponential law [8, 34]. In subsequent studies, Avila et al. [8] perform at
least 100 simulations for a certain Reynolds number starting from different initial
conditions in order to clearly identify this association for the lifetimes. Based on
these studies, a beneficial modification of the duct shape is supposed to lead to
shorter lifetimes of turbulent spots at a certain Reynolds number. In order to test
whether this behavior is achieved with a certain duct shape, similar analyses to
those shown by Avila et al. have to be performed. This procedure requires a huge
numerical effort that is outside the scope of the present study.
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Laminarization of turbulent flow is studied numerically by Uhlmann et al. [111].
Their proposed value for the critial Reynolds number in square duct flow also in-
volves an extensive computational effort and requires specific codes which, how-
ever, are limited to certain geometries.
The previously described theoretical investigations, which are represented by step
(2) in Figure 6.7, form the basis for a different approach to the subject. From com-
parison of Figures 6.3 and Figure 6.4 is can be concluded that the same statistical
property, namely axisymmetry in the stresses, leads to benefits in transitional and
turbulent flow.
In order to use this similarity for the development of beneficial duct shapes, it has
to be checked whether the theoretically proposed state can be provoked in both
flow regimes by a certain geometrical property. For this purpose, the flow field in
ducts, which are known to lead to coexisting laminar and turbulent flow regions,
are investigated in step (3).
Further, the impact of different geometrical properties of ducts are investigated in
fully turbulent flow (4). Based on the verification of the theoretically derived be-
havior in (3), the results for turbulent flow also allow conclusions to be made for
the influence of certain geometrical designs on the flow in the laminar regimes.
The tendency in the flow for laminarization and the delay of transition can be dis-
cussed in this context. This approach represents a significant reduction of the nu-
merical effort compared with the alternative direct investigation of the processes.
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Figure 6.7: Procedure for the investigation of low energy dissipation in duct flows
based on theoretical analysis for laminar and turbulent flow.
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7 Presentation and evaluation of the
numerical method

Within the present study, direct numerical simulations (DNS) of turbulent flow
in straight non-circular ducts with different cross section shapes are carried out.
It is focused to investigate the distribution of the Reynolds stress field based on
these simulations. For this purpose a finite volume method in combination with
polyhedral meshes is used. Since this approach is rather unusual for DNS studies,
evaluation of its accuracy restrictions was considered to be essential.
Firstly, the general properties of the chosen approach together with its strong
points and limits are briefly summarized and the basic set-up of the computa-
tional models together with the boundary and initial conditions are introduced.
In order to evaluate the accuracy of the method for the simulation of turbulent flow
in non-circular ducts, a calculation of the flow in a square duct is performed. Ow-
ing to previous numerical investigations, detailed data for comparison are avail-
able for this duct shape. In this context, the impact of the duct length is also
studied, the importance of which for the DNS of non-circular duct flows is not
clearly determined in literature. The effects of the mesh type, which are of crucial
importance in the context of this work, are also investigated for the square duct.
Finally, the ability of the present approach to predict flow laminarization in corner
regions is tested. As mentioned previously, the investigation of coexisting laminar
and turbulent flow fields forms the basis for the present procedure, which aims to
develop duct shapes leading to low energy dissipation. However, since these flows
are rarely studied in the literature, the ability to make quantitative comparisons is
limited.

7.1 Numerical procedure for the calculation of
turbulent flow in non-circular ducts

The theoretical considerations in Chapter 6 proposed that statistical axisymmetry
of the stress tensor leads to a reduced energy dissipation of transitional and tur-
bulent flows. The aim of this investigation, within a numerical framework, is to
establish whether a preferential state can be reached in turbulent flows due to cer-
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7 Presentation and evaluation of the numerical method

tain geometrical properties of duct shapes. Thus, the numerical approach needs to
be capable of accurately predicting second order turbulent statistics, namely the
Reynolds stress tensor, in order to produce meaningful results. For this reason,
DNS studies are performed, since this approach is not biased by errors resulting
from modeling of turbulent motion. However, to perform a reliable DNS of tur-
bulent flow, the numerical procedure has to account of the outstanding physical
properties of turbulence.
Since turbulence is a three-dimensional and instationary phenomenon, its direct
simulation in principle requires the resolution of all temporal and spatial scales of
the flow. Since in turbulence the spectral separation is large, a considerable nu-
merical effort will be required. For statistically fully developed internal flows that
are simulated using periodic boundary conditions, the streamwise extension of the
domain is critical for the proper representation of the large scales of the flow: typ-
ically two-point correlations of the solution are monitored in this context, which
need to decay in the middle of the streamwise extension of the computational
domain [86]. In addition, the flow in this domain has to be resolved temporally
and spatially in order to capture the smallest scales of turbulence defined by the
Kolmogorov time scale, τK, and length scale, ηK. In practice, it was observed that
the smallest resolved length scale is only required to be of O(ηK) [86]. At the
same time, the flow field has to be averaged temporally in order to allow statisti-
cal analysis. In this context, an averaging period, which is much larger than the
time periods of the fluctuating motion, is required.

7.1.1 Numerical method

Basically, different numerical methods are applicable for the DNS of turbulent
flow. These methods are shown to lead to similar results if the high resolution re-
quirements are fulfilled [15]. One of the first attempts at the DNS of wall-bounded
flows was performed by Grötzbach [49] using a finite difference method. In gen-
eral, spectral methods are the most popular for the DNS of turbulent flow fields
due to their high accuracy at a sufficient resolution. If all scales of the turbu-
lent motion are resolved, the approximation error decreases exponentially with
the number of grid points, N, and thus much faster than it can be observed for
e.g. finite-volume and finite-difference methods [15]. Results from spectral simu-
lations essentially supported the fundamental understanding of turbulence. How-
ever, the application of spectral methods is restricted to rather simple geometries,
e.g. plane channel flow and in most cases is not applicable for engineering pur-
poses [86]. Thus, the use of a different method is required for the simulation of
more complex flow situations.
Within the present work, a second-order finite volume method is applied for
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7.1 Numerical procedure for the calculation of turbulent flow in non-circular ducts

the spatial approximation of the continuity (2.4) and the Navier–Stokes equa-
tions (2.5). Time discretization is achieved using the second-order implicit Euler-
backward scheme. The corresponding flow solver is integrated in the open source
code OpenFOAM R©. Since this work concentrates on the investigation of physical
mechanisms rather than on the development of a numerical code, the major prop-
erties of the numerical procedure are only briefly summarized. A more detailed
description may be found in related literature [61, 113].
In the present approach, variables on the cell faces are approximated by second-
order linear interpolation. The continuity and Navier–Stokes equations are cou-
pled for the calculation of the pressure using the PISO-algorithm. This method
ensures the conservation of mass and momentum by definition. However, the
collocated-mesh arrangement does not ensure the conservation of the kinetic en-
ergy [36]. Nevertheless, it is commonly used for turbulence simulations in com-
plex geometries due to its simpler form in curvilinear coordinates. A similar nu-
merical method is introduced by Felten and Lund [35] and tested in terms of
conservation errors in a large eddy simulation of a plane channel flow. They ob-
serve good agreement with reference data provided that the simulation is run at a
sufficiently high mesh resolution.

7.1.2 Spatial and temporal discretization

The majority of the duct cross sections that will be discussed are discretized using
meshes consisting of prism-layers along the walls and polyhedral core cells. This
approach allows higher flexibility in the resolution of critical regions of complex
duct shapes compared with the alternative usage of block-structured, hexahedral
meshes. This behavior is nicely demonstrated by Perić [94] for the simulation
of turbulent flow over riblet mounted surfaces. The meshes are initially set up to
ensure

(
∆x+

2

)
wall
×

(
∆x+

3

)
wall
≤ 1.6 × 4.6 where x2 is the wall-normal and x3 is the

spanwise direction. Here and subsequently, the superscript “+” stands for wall
units: l+ = l/Lc = l uτ/ν. The viscous length is based on the friction velocity
uτ estimated a priori by the Blasius correlation [106]. This spacing ensures the
resolution of the viscous sub-layer (up to x+

2 = 5) with three volume cells [32, 49].
The grids are extruded in the streamwise (x1) direction. The streamwise mesh
spacing is set to ∆x+

1 = 9.4 according to findings of Gavrilakis [44] for DNS of
square duct flow. These mesh properties are used for all subsequent cases if not
explicitly highlighted differently, and are summarized in Table 7.1. Since the skin
friction arising from the simulations deviates from Blasius law, the actual mean
resolution differs from the initial estimation and will be given for the individual
cases. In addition, the values of uτ vary along the side walls of non-circular ducts.
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Table 7.1: Standard domain size and spatial discretization where the viscous units
are calculated using the fluid viscosity and the friction velocity esti-
mated a priori with the Blasius correlation [106].

Lx1/Dh ∆x+
1

(
∆x+
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)
wall
×

(
∆x+

3

)
wall

(
∆x+

2

)
center

×
(
∆x+

3

)
center

5 9.4 1.6 × 4.6 5 × 5

The normalization based on the local value at the most critical position provides
the most conservative estimation of the grid resolution. The corresponding values
are also provided for the different flow cases.
The total streamwise extensions are set to Lx1 = 5Dh unless noted otherwise. This
duct length corresponds to the set-up of Eggels et al. [32] for the DNS of circular
pipe flow. However, the impact of the duct length on the result for non-circular
duct flow is considered explicitly in Section 7.2.
As mentioned previously, the temporal resolution of the scales of turbulent flow
is another important issue. To do this, the time step is chosen to ensure a Courant
number of Comax ≤ 0.21, which follows informations in the literature [44].

7.1.3 Initialization and evaluation of the turbulent flow field

Owing to the homogeneity of the flow in streamwise direction, periodic boundary
conditions are used. The simulations are carried out under a constant flow rate
condition, fixing the hydraulic Reynolds number in the simulations.
For the evolution of turbulent flow in the duct, appropriate initial conditions have
to be defined. Various possibilities are known for how the flow can be disturbed
in order to lead to the breakdown to turbulence [60]. However, as long as the tran-
sition to turbulence is triggered, the final turbulent flow field is memoryless with
respect to the initial condition [34]. Within the present investigations, turbulent
flow is initiated by a laminar parabolic profile with superposition of random dis-
turbances u′i = 0.1 Ub unless indicated otherwise. This procedure was also used
by Faisst and Eckhardt for numerical investigation of the lifetimes of turbulent
spots in pipe flow [34].
For the evaluation of the statistical properties of the flow, time averaging is per-
formed for at least 40 turnover times, Dh/uτ. Symmetries in the cross section and
spatial averaging in the homogeneous streamwise direction are also used in order
to speed up the convergence of statistics and to limit the computational costs.
The present approach certainly is a compromise between performing highly ac-
curate turbulent simulations and using numerical tools for the development of a
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practically realizable flow control technique leading to energy savings in internal
flows. It can be understood as an attempt to use a tool, which until now has been
mostly restricted to scientific research for an investigation motivated by needs
in engineering practice. This approach is only possible due to the considerable
growth of computational resources within recent decades. The careful evaluation
of the potentials and restrictions of the numerical procedure for the simulation of
non-circular duct flows is felt to be of great importance for the reasonable inter-
pretation of the results and will be discussed later. For this purpose, the turbulent
flow in duct geometries that are known to show specific features of non-circular
duct flows is investigated. The results are compared with findings in the literature
in order to validate the present procedure for the aimed investigation of the distri-
bution of the Reynolds stress field. It is noted, that studying the individual terms
of the transport equation of the stresses (6.8) is not focused in the following and
thus the ability of the present procedure for their computation is not evaluated.

7.2 DNS of turbulent flow in a square duct -
comparison to literature data

7.2.1 Computation model

The turbulent flow through a straight square duct has been studied in direct nu-
merical simulations, providing detailed reference data for comparison. The data
obtained by Gavrilakis [44] and by Pinelli et al. [97] for Reh = 4410 are consid-
ered in this respect. The former author uses a second-order finite difference ap-
proach for spatial discretization while in the latter investigation a spectral method
is applied. Within these studies, the numerical results are validated by experimen-
tal data from different authors. Square duct flow includes the typical property of
non-circular duct flows, i.e. the non-homogeneous distribution of the Reynolds
stresses along the wall leading to the formation of secondary flow of Prandtl’s
second kind. Thus, this flow situation is considered to be a reasonable validation
case for the present purpose.
Within the present study, the validity of the numerical method together with the
chosen spatial and temporal discretization are considered. Further, the influence
of the domain length on the computational result is analyzed, which has a sig-
nificant impact on the numerical effort, e.g. the number of grid points that are
required. Since the present investigation addresses the comparison of the flow
through a number of differently shaped ducts, it is aimed at limiting the numeri-
cal cost in this respect. From previous studies of circular pipe flow, it was found
that the convergence of different turbulence statistics depends on the length of
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the computational domain [19]. The requirements for the pipe length are more
critical for higher order statistics. According to Chin et al. [19], a duct length
of 4πδ, where δ corresponds to the pipe radius, is sufficient for the convergence
of the turbulent intensity components that will be studied in this work. However,
owing to the special properties of non-circular duct flow, it is uncertain whether
the same requirements hold here. For this reason, the results arising from square
ducts with a streamwise extension of 5 Dh (which approximately corresponds to
the requirement for circular pipe flow) and 10 Dh are compared.
As already mentioned, use of polyhedral cells for the discretization of complex
duct shapes is particularly suitable. This choice is of course not logical for the
discretization of a square duct. However, this duct shape offers the possibility
of systematically investigating the influence of a polyhedral mesh on the compu-
tational result. The lower left quadrant of the meshes used within this study is
shown in Figure 7.1.
A principal sketch of the computational domain together with the applied coor-
dinate system is shown in Figure 7.2. The symmetries within the duct shape are
used for the evaluation of statistical data. For the declaration of the characteristic
positions, the lower left quadrant of the domain is used. The domain sizes, mesh
types and grid sizes of the cases considered within this validation study together
with the information for the reference cases are summarized in Table 7.2. Some
differences in the mesh spacings are emphasized in particular. For the present
meshes consisting of hexahedral cells, the streamwise grid size is increased com-
pared with the standard set-up given in Table 7.1. In general, the mesh spacing
used for the present simulations should be geared to that used by Gavrilakis [44]
since the numerical methodologies are also related. The deviation provides in-
sights into the requirements for the streamwise resolution and has to be kept in
mind for the interpretation of simulation results.
Note that the wall units in Table 7.2 are calculated based on the fluid viscosity and
the friction velocity uτ estimated a priori with the Blasius correlation. However,
since the values of uτ vary along the side walls of non-circular ducts, the normal-
ization based on the local wall-shear velocity gives the most realistic impression
of the grid quality in the near-wall region. The grid resolution at the most critical
points, namely at x3/H = 0.5, is calculated based on this definition and given
in Table 7.3.

7.2.2 Special properties of the velocity field

Theoretical considerations indicate that reduced energy dissipation in turbulent
flows originates from a defined appearance of the Reynolds stresses as discussed
in Chapter 6. Thus, the correct prediction of these quantities is essential in order
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Figure 7.1: The lower left quadrant of the computational grids consisting of hex-
ahedral (left) and polyhedral (right) cells used for the DNS of the tur-
bulent square duct flow.

x3

x2

H

x1

Figure 7.2: The computational domain for the simulation of turbulent flow in a
square duct.
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Table 7.2: DNS of turbulent flow in a square duct: domain size and spatial dis-
cretization in the current study and in the reference cases. The viscous
units are calculated using the fluid viscosity and the friction velocity
estimated a priori with the Blasius correlation [106].

case cell type Reh Lx1/Dh ∆x+
1 ∆x+

2,min ∆x+
2,max

Current study
hex, Lx1 = 10Dh hexahedral 4405 10 15 1.6 3.3
hex, Lx1 = 5Dh hexahedral 4405 5 15 1.6 3.3
poly, Lx1 = 10Dh polyhedral 4405 5 9.4 1.2 5

DNS cases in literature
Pinelli et al. [97] hexahedral 4410 2π 14.7 0.07 5.2
Gavrilakis [44] hexahedral 4410 20π 9.4 0.45 4.6

Table 7.3: Spatial discretization close to the wall at the most critical positions in
the current study’s cases with normalization based on the maximum
friction velocity. The averaging time is expressed in terms of the mean
wall shear velocity and the bulk velocity.

case ∆x+
1 ∆x+

2 ∆x+
3 averaging time

hex, Lx1 = 10Dh 16.8 1.8 3.6 73Dh/uτ or 1035Dh/Ub

hex, Lx1 = 5Dh 17.1 1.8 3.6 44Dh/uτ or 623Dh/Ub

poly, Lx1 = 10Dh 10.2 1.3 2.6 73Dh/uτ or 1082Dh/Ub
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to evaluate duct flows in the context of the analytical findings.
In Figure 7.3 the normal components of the Reynolds stress tensor resulting from
the present simulations are compared with the results from Gavrilakis [44]. For
this purpose, the development at two different spanwise positions is presented
since the presence of side walls leads to a non-homogeneous distribution of the
velocity field in the x3-direction. Generally, a good agreement for all quantities
can be observed for the different simulation cases. In particular, the data from the
hexahedral meshes with different duct lengths generally collapse. This behavior
suggests that the influence of the duct length is only marginal for the quantities
analysed within this framework and a duct length of Lx1 = 5Dh can be assumed
to be sufficient.
However, if the development of the data is analysed in more detail, small system-
atic deviations can be observed: The magnitude of u3,rms is overestimated in the
simulations with the hexahedral grids compared with the literature data. In con-
trast, the results produced form the polyhedral grid show a very good agreement
with the data from Gavrilakis [44]. The development of u2,rms for the different
meshes suggests that a similar trend than that observed for u3,rms appears, even if
the corresponding literature data are not available for comparison. This behavior
indicates a slight overestimation of turbulent activity with the hexahedral meshes
and might be related to the increased grid spacing in the x1-direction.
Finally, the results for u1,rms show very small deviations at the position x3/H =

0.35, while they increase at the position closer to the side wall, x3/H = 0.15.
Obviously, the side walls have a strong impact leading to an increased complexity
of the flow field. This behavior is also reflected by the larger deviations in the nu-
merical results. The same trend is observed in a comparison of Gavrilakis’ results
with those of Pinelli et al. [97].

It can be shown analytically that the observed non-homogeneity of the Reynolds
stress distribution along the duct walls leads to the well known peculiarity of tur-
bulent flow through non-circular ducts, namely the formation of secondary flow of
Prandtl’s second kind [100, 104]. These counter-rotating vortices, which transport
fluid from the duct center towards its corners, can be observed in all studies. A
typical vortex pattern is shown in vector representation for the upper left quadrant
of the simulation with hexahedral mesh and Lx1 = 10Dh (see Figure 7.4). At the

same time, the magnitude of the secondary motion, namely
√

U
2
2 + U

2
3 is shown

as a contour plot in the cross section area of the duct. In the reference work, the
magnitude of the secondary flow is found to be maximal at the spanwise posi-
tion x3/H = 0.23 and reaches 1.9% of Ub [44]. Within the simulation with the
polyhedral mesh, this value is reached fairly well. The results arising from the
hexahedral mesh show a slight overestimation of the secondary motion, its mag-
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Figure 7.3: Development of the rms-values of the normal Reynolds stresses nor-
malized with Ub at two different spanwise positions: x3/H = 0.15
(upper figure), x3/H = 0.35 (lower figure).
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nitude reaches 2.1% of Ub. At the same time, the corresponding position moves
closer to the wall to x3/H = 0.20.
The secondary motion is studied in more detail in Figure 7.5, where the develop-
ment of U3 at x3/H = 0.15 is shown. This spanwise position is close to the place,
were the magnitude of the cross flow reaches its maximum. It can be clearly seen
that the velocity of the secondary flow is slightly overpredicted with the hexahe-
dral meshes and again the duct length has only a minor effect on the computational
result. The agreement of the data achieved with the polyhedral mesh with litera-
ture data is very good especially in the corner region up to x2/H = 0.15, where
the duct diagonal is reached. Obviously, U3 has a negative sign along the diagonal
meaning that fluid is transported towards the duct corner.
Even if the magnitude of the secondary motion only reaches about 2% of Ub it
influences the development of the mean streamwise velocity profile U1. In Fig-
ure 7.6, U1 is also shown at x3/H = 0.15. At this position, the secondary motion
provokes the velocity maximum to appear on the duct diagonal. This effect is
met in all simulations. It is noted that the previously observed trend for the dif-
ferent meshes does not occur. The same holds for the development of U1 along
the duct centerline shown in Figure 7.6. Obviously, the overall prediction of the
mean streamwise velocity is less sensitive to the streamwise grid spacing than was
previously found for other flow quantities.

7.2.3 The friction behavior

The special properties of the velocity distribution in non-circular duct flow strongly
affects the friction behavior along the duct walls. In Figure 7.7 the wall shear
stress distribution is shown for all simulations and normalized with the corre-
sponding value calculated from the Blasius correlation. The non-homogeneity of
the profiles along the wall is a feature of non-circular duct flow. In the duct cor-
ner the wall shear stress vanishes, while its maximum is reached in the middle of
the wall. The appearance of secondary motion leads to additional local extrema
in the distribution. These interacting effects are illustrated in Figure 7.4, where
the normalized wall shear stress distribution is shown together with the secondary
motion.
These general trends are visible in all data sets shown in Figure 7.7. However,
differences in the friction behavior at the duct walls can be observed: For the
simulations with hexahedral meshes an overestimation of the literature data along
the entire duct wall is present. Again, basically no influence of the duct length is
visible. In contrast, the data arising from the polyhedral mesh are in reasonable
agreement with the findings from Gavrilakis [44]. The deviations around the cen-
ter of the wall cannot really be explained, since the distribution is also different
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Figure 7.4: Illustration of the mechanism and the magnitude of the secondary mo-
tion together with the resulting distribution of the friction on the wall
for the square duct.
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Figure 7.7: Development of the wall shear stress along the duct walls.

for the two reference cases in this region [44, 97].
Finally, from the average wall shear stress the dimensionless friction factor f can
be evaluated according to Equation (4.3). It is shown for all simulations, together
with the correlations of Blasius [106] and Jones [62], in Figure 7.8. The Jones
correlation represents an improvement in the calculation of the friction in turbu-
lent rectangular duct flows compared with, for example, the Blasius correlation.
It is based on experimental data and is defined as

f −1/2 = 2 log10

(
2.25 Reh f 1/2

)
− 0.8 , (7.1)

for square duct flow [62, 97].
Obviously, the friction losses resulting from the reference cases and the simula-
tion with the polyhedral mesh are in very good agreement. All values are slightly
lower than predicted by the Jones correlation, while the deviation is less than 2%.
In contrast, the friction factor for both simulations with hexahedral meshes agrees
with the Blasius correlation and thus deviates from the reference data by about
5%.
The friction behavior observed in the different simulations confirms the obser-
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Figure 7.8: The friction factor resulting from square duct flow: comparison of
analytical and empirical relationships with data from simulations with
different grids and duct lengths.

vations made for the velocity distribution: for the cases containing hexahedral
meshes, higher friction losses in comparison with the reference data appear due
to an overestimation of the turbulent activity. These deviations might be related
to the larger streamwise grid spacing in these cases and highlight the importance
of sufficient resolution in this respect. At the same time, variations in the duct
length do not influence the result significantly and the duct length Lx1 = 5Dh is
chosen for further studies. The flow field and the friction behavior arising from
the polyhedral mesh shows very good agreement with reference data. These re-
sults illustrate that high quality DNS studies of non-circular duct flows can be
performed using polyhedral meshes.

7.3 Simulation of the partial laminarization of
turbulent flow

Besides the typical features of turbulent non-circular duct flow discussed in the
previous section, an additional phenomenon is observed for a certain class of duct
shapes. Experimental investigations by Eckert and Irvine [30] show the partial
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Table 7.4: DNS of turbulent flow in a square duct: domain size and spatial dis-
cretization in the current study. The viscous units are calculated using
the fluid viscosity and the friction velocity estimated a priori with the
Blasius correlation [106].

cell type Reh Lx1/Dh ∆x+
1 ∆x+

2,wall ∆x+
2,core ∆x+

3,wall

polyhedral 4500 5 9.5 1.6 5 4.6

laminarization of turbulent flow in the proximity of the acute corner of a trian-
gular duct with an 11.5◦ apex angle, leading to coexisting laminar and turbulent
flow regions. In order to validate the numerical approach for prediction of this
phenomenon, the DNS result of the flow in the duct geometry is compared with
the few experimental data that are available. The outstanding properties of the
flow field and the physical mechanisms involved in the laminarization process
will be discussed in detail in Chapter 8.
The considered isosceles triangular duct with an apex angle of 11.5◦ is sketched in
Figure 7.9. Additionally, the computational grid in the corner region, namely up
to x3/H = 0.1, is shown. The benefit arising from the usage of polyhedral cells is
obvious: even if the corner region is very narrow, the appearance of critical cells
that are skewed and have high aspect ratios is limited to the immediate vicinity of
the tip. Additional details of the mesh and the computational domain are given in
Table 7.4, while the viscous units are calculated using the fluid viscosity and the
friction velocity, which is estimated a priori using the Blasius correlation [106].
The grid resolution expressed in terms of the ratio of the grid spacing to the Kol-
mogorov length, ηK, is another important issue for assessment the grid resolution
in turbulence simulations. The value of the Kolmogorov length scale is estimated
according to Lammers et al. [78],

η+
K

= (0.25 Reτuτ/Ub)1/4 , (7.2)

and yields η+
K
≈ 1.5 when the average friction velocity arising from the simulation

result is applied. The mesh spacings expressed in terms of the Kolmogorov length
scale are given in Table 7.5. In general, the quality of the mesh is considered to
be satisfactory. However, the ability of the present numerical procedure to simu-
late the relevant scales of turbulent motion is studied in more detail. This critical
assessment is performed for the simulation of the turbulent flow in the triangular
duct. Similar results can be expected for the other flows which are studied.
In order to evaluate the adequacy of the spatial and temporal resolution of the
DNS, the energy spectra of the frequency and the streamwise wavenumber are
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Figure 7.9: Sketch of the isosceles triangular duct with an apex angle of 11.5◦

where x1 is the main flow direction (left) and the mesh in the corner
region of the duct, namely up to x3/H ≈ 0.1.

Table 7.5: Spatial discretization in the triangular duct with an apex angle of 11.5◦

based on Kolmogorov length scale.

∆x+
1 ∆x+

2,wall ∆x+
2,core ∆x+

3,wall

5.7η+
K

1.0η+
K

3η+
K

2.8η+
K

studied and are presented in Figure 7.10 and 7.11, respectively. These spectra
are evaluated at the spanwise position x3/H = 0.7 on the centerline of the duct
where the flow is found to be fully turbulent. The expected slopes for the energy
containing large scale motion (−1) and the inertial subrange (−5/3) are also in-
cluded in the plot. Owing to the normalization with Kolmogorov length and time
scales, it can be observed that the flow is spatially and temporally discretized in a
satisfactory manner: scales of O( fK) and of O(ηK) are resolved. Additionally, the
energy density associated with the high wavenumbers is several decades lower
than the energy density corresponding to the low wavenumbers and there is no
evidence of energy pile-up at high wavenumbers (see Figure 7.11). These criteria
are discussed by Kim et al. [69] and indicate adequate grid resolution.

The available experimental data base compiled by Eckert [30] is restricted.
However, the development of the mean streamwise velocity component along the
symmetry line of the duct can serve for the validation of the present approach to
predict flow laminarization. The data arising from DNS and from experiments
are compared in Figure 7.12. In experiments, the part of the flow having laminar
properties was found to be restricted to the corner region of the duct, namely to
x3/H < 0.25 [30]. The agreement of U1 in the laminar as well as in the turbulent
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Figure 7.12: Development of the mean flow component U1 along the symmetry
line of the triangular duct.

flow region is considered to be acceptable since the experimental data might also
be biased by inaccuracies in the measurement techniques.
Moving from x3/H = 0.25 in a positive x3-direction, the velocity profile was
found to deviate from the laminar parabolic shape [30]. This behavior can also
be observed in the calculated results. In Figure 7.13 the mean streamwise veloc-
ity component is plotted along the x2-direction at the spanwise positions x3/H =

0.25, x3/H = 0.3 and x3/H = 0.5. Parabolic shapes are included in order to ex-
plain the laminar properties of the flow. Obviously, at the position x3/H = 0.25
the velocity distribution is parabolic. This behavior is lost when moving away
from the corner.
Thus, the existence and extension of the laminar region observed in experiments
is also found in the numerical results. This leads to the conclusion that partial
flow laminarization appearing in a certain class of duct shapes can be simulated
with the present numerical approach.
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8 Verification of the mechanism leading
to low energy dissipation in duct flows

This chapter is dedicated to step (3) in the procedure for the development of
energy-efficient duct shapes presented in Figure 6.7. In the theoretical consid-
erations, particular statistical properties are suggested to characterize flow states
with low energy consumption. Ducts leading to coexisting laminar and turbulent
flow regions are considered for verification purposes. These flows show that ge-
ometrical properties can provoke laminarization of turbulent flow and enable the
investigation of changes in the turbulent dissipation during the process. Most im-
portantly, insights into the statistical flow properties accompanying reverse tran-
sition, transition and stable laminar flow are gained and a comparison with the
theoretical findings can be made. In this respect, the investigation of coexisting
flow regions arising in differently shaped ducts provides additional insights into
the geometrical impact on the processes.
In order to investigate the coexisting laminar and turbulent flow fields, DNS are
carried out with the method that was validated for this purpose in Chapter 7. The
cross section shapes of the ducts that are considered in this chapter are shown in
Figure 8.1. The shape in (a) represents a triangular duct with an apex angle of
12◦ and has been observed to result in the coexistence of laminar and turbulent
flow in experiments performed by Eckert and Irvine [30]. In (b) a triangular duct
with even smaller apex angle, namely 4◦ is shown, which has been investigated
experimentally by Carlson and Irvine [18]. These measurements suggest that flow
laminarization also takes place within this duct. Finally, a third duct shape was
constructed, which is shown in (c) and will be referred to as a diamond shape. The
ability of narrow corner regions to provoke the flow laminarization, which is ob-
served for the triangular shaped ducts, is also expected for the converging angle in
the corners of the diamond. All simulations are run at Reh = 4500 as a significant
laminar region and a turbulent region are expected under this condition. In Table
8.1 the mesh spacing is given at the most critical positions, namely where the wall
shear velocity reaches its maximum. In addition, the averaging time employed for
the statistical results that are discussed in the following are also listed.
In this chapter, the flow field arising from the duct shape (a) in Figure 8.1 is ini-
tially analysed and discussed within the context of experimental findings from
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Figure 8.1: Cross section shapes provoking coexisting laminar and turbulent flow
regions: (a) isosceles triangular duct with 11.5◦ apex angle, (b) isosce-
les triangular duct with 4◦ apex angle, (c) diamond shaped duct.

Eckert and Irvine [30]. The anisotropy invariant representation of the stresses
is used for the description of the variations in the flow field. This method al-
lows a comparison with theoretical findings and can also be used to describe the
transition process qualitatively. The findings for duct shape (a) are further com-
pared with properties of the stresses appearing in duct shapes (b) and (c) (see
Figure 8.1). Similarities and differences in the laminarization and the transition
process are discussed.
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Table 8.1: Spatial discretization close to the wall at the most critical position in the
flow domains with coexisting laminar and turbulent flow fields. Nor-
malization is based on the maximum friction velocity and averaging
time is expressed in terms of the mean wall shear velocity and the bulk
velocity.

case position of τw,max ∆x+
1 ∆x+

2 ∆x+
3 averaging time

(a) x3/H = 0.80 10.9 1.8 5.3 58Dh/uτ or 920Dh/Ub

(b) x3/H = 0.88 11.3 1.8 5.4 42Dh/uτ or 690Dh/Ub

(c) x3/H = 0.33 10.2 1.6 3.0 41Dh/uτ or 740Dh/Ub

8.1 Flow in a triangular duct with 11.5◦ apex angle

Eckert and Irvine [30] investigate the flow through a triangular duct with an apex
angle of 11.5◦ experimentally. Using flow visualization techniques, they observe
the coexistence of a laminar and a turbulent flow within the cross section of the
duct over a certain range of hydraulic Reynolds numbers where the flow is ex-
pected to be fully turbulent. The properties of these flow regions are further
investigated in the following sections using detailed information of the flow ex-
tracted from the DNS. The appearance of a coexisting laminar and turbulent flow
region further enables detailed studies of the transition process between the flow
regimes. Based on theoretical findings, the anisotropy invariant representation of
the stresses is expected to be a powerful tool for this purpose.

8.1.1 Properties of the coexisting laminar and turbulent
flow field

Mean flow field

In order to provide a general impression of the mean flow field arising in the tri-
angular duct with an 11.5◦ apex angle, contour plots of the mean velocity U1 and
the magnitude of the secondary flow are shown in Figure 8.2 and Figure 8.3, re-
spectively.
In Chapter 7, the flow field arising from (a) was compared with available ex-
perimental data for validation purposes. The laminar flow region was detected
in the acute corner region of the duct up to approximately x3/H = 0.25 in the
present numerical investigation as well as in the experimental studies by Eckert
and Irvine [30]. Moving further in the x3-direction towards the core region of
the duct, the mean flow field deviates from the parabolic laminar distribution and
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8 Verification of the mechanism leading to low energy dissipation in duct flows

turns to the turbulent stage. In this part of the duct, secondary flows of Prandtl’s
second kind [100] appear which are a characteristic phenomenon of turbulent flow
through non-circular ducts: the counter-rotating vortices directed towards the cor-
ners on the right side are illustrated in Figure 8.3. It is observed that the magnitude
of this secondary motion, namely up to 2.5% of the bulk velocity, is slightly larger
than that in square duct flow, which Gavrilakis [44] found to be 1.9%. By contrast,
the secondary motion directed towards the acute angle is very weak and vanishes
when approaching the laminar part of the flow.
More details about the distribution of the mean streamwise velocity field can be
gained in the comparison of streamwise profiles plotted along the x2-direction at
several spanwise positions, as shown Figure 8.4. The mean streamwise velocity
is normalized with the corresponding local wall shear velocity, uτ. In the fol-
lowing discussions the superscript “+” will refer to this type of normalization.
For square duct flows such scaling was shown to be appropriate for the investi-
gation of the near-wall region [44]. The characteristic profiles corresponding to
the viscous sublayer, given by U+

1 = x+
2 , and the logarithmic region, described by

U+
1 = (1/κ)x+

2 + B with κ = 0.41 and B = 5.2 [99], are also included in the plots.
Figure 8.4 (a) shows a velocity profile that is representative of the fully turbulent
part of the duct. The result shows the expected linear relationship in the near-
wall region. In the center of the duct U+

1 approaches a logarithmic distribution,
which is a common property of turbulent wall-bounded flows. The present data lie
slightly above the relation given in [99] for plane channel flow. This observation
is generally made for turbulent duct flows [32, 44]. When moving to positions
closer to the corner shown in Figure 8.4 (b) and (c), typical deviation from the
turbulent logarithmic distribution can be observed. The development towards a
parabolic flow profile indicates the laminarization of the flow.

U1/Ub

x3/H = 0.25

Figure 8.2: Contour plot of the mean streamwise velocity field U1 normalized
with Ub.
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Figure 8.3: Contour plot of the magnitude of the secondary flow field
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normalized with Ub together with the secondary flow developing in
the corner regions. Note that the vectors are scaled by the factor two
close to the acute angle in order to distinguish the direction of the
secondary flow in this part of the duct.

Scales and energy dissipation of the turbulent motion

Analysis of the energy spectra evaluated at three different spanwise positions
highlight the changes in the scales of the turbulent motion when approaching the
acute corner. The energy spectra of the streamwise wave numbers, E(κ), is shown
in Figure 8.5, where all quantities are normalized using Kolmogorov scales. These
scales are estimated following Equation (7.2) and using the integral value of uτ
resulting from the simulation. In the turbulence-dominated region in the center of
the duct corresponding to x3/H = 0.7 and x3/H = 0.5, the energy spectra collapse
and indicate that the spectral transfer is being established towards features com-
mon for the turbulent energy cascade at relatively low Reynolds numbers. The
energy containing, large scale motion illustrated by the slope “-1” is represented
by a rather narrow band of wave numbers. The wave number range connected to
the inertial subrange (slope “-5/3” in the plot) is also very restricted. This part
of the spectrum represents important features of turbulence and becomes progres-
sively extended for increasing Reynolds numbers [110]. Finally, at the high wave
numbers, which correspond to the small scales of the turbulent motion, dissipa-
tion takes place.
The energy spectra at the position close to the acute corner do not show the de-
velopment that is characteristic for turbulent flow. In particular, the wave number
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Figure 8.4: Mean streamwise velocity, U1, normalized with the local wall shear
velocity, uτ, plotted along the x2-direction at different spanwise posi-
tions: x3/H = 0.8 (a), x3/H = 0.5 (b) and x3/H = 0.3 (c), together
with the characteristic profile for the viscous sublayer U

+
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2 and
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2 + B with κ = 0.41 and B = 5.2 [99].
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Figure 8.5: Wave number spectrum normalized with Kolmogorov scales at dif-
ferent spanwise positions on the x3-axis of the triangular duct (a):
(x2, x3) = (0.0D, 0.3H), (x2, x3) = (0.0D, 0.5H) and (x2, x3) =

(0.0D, 0.7H).

corresponding to the small scales is reduced, indicating a decrease in spectral sep-
aration in the flow.
In Section 6.2.3 it was argued that decreasing spectral separation in the flow is
associated with reduced turbulent dissipation. The validity of this statement for
the flow behavior in the triangular duct is checked using the dissipation spectra
arising at the same positions considered in Figure 8.5. The dissipation spectra
can be evaluated from the wave number spectra, according to Tennekes and Lum-
ley [110],

D(κ) = 2νκ2E(κ) , (8.1)

and are shown in Figure 8.6. Note that again Kolmogorov scales are used for
normalization.
The integration of a dissipation spectrum over the entire wave number range yields
a quantitative measure for the turbulent dissipation at the considered position in
the duct cross section [110]:

ε = 2ν
∫ ∞

0
κ2E(κ) dκ . (8.2)

Even if the dissipation spectra in Figure 8.6 show some scatter due to the re-
stricted number of data samples, a clear tendency for ε can be extracted. While
the turbulent dissipation is similar at the positions in the center of the duct, it is
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Figure 8.6: Dissipation spectrum [110] normalized with Kolmogorov scales at
different spanwise positions on the x3-axis of the triangular duct (a):
(x2, x3) = (0.0D, 0.3H), (x2, x3) = (0.0D, 0.5H) and (x2, x3) =

(0.0D, 0.7H).

significantly reduced when moving towards the acute corner of the duct.
From this analysis, the connection between decreasing spectral separation and the
energy dissipation of the flow becomes obvious. Moreover, it can be concluded
that the duct corner provokes the aimed tendency towards reduced turbulent dis-
sipation, resulting in ε → 0 and purely laminar flow in the close vicinity of the
corner.

Statistical properties of the fluctuating motion

The statistical framework introduced in Section 6.1 is used in the following dis-
cussions to describe the suppression of turbulent flow properties towards the acute
angle that accompanies the observed flow laminarization. In Figure 8.7 the dom-
inant components of the Reynolds stress tensor are plotted along the x2-direction
at several spanwise positions. Owing to the very elongated duct shape in the x3-
direction some affinity to the profiles of plane channel flow are expected. These
profiles for similar friction Reynolds numbers, Reτ = uτd/ν, are also included,
where 2d is estimated by the width of the duct at a certain x3-position. The exact
values for Reτ are: (a) Reτ = 160, (b) Reτ = 85 and (c) Reτ = 40, while chan-
nel data for Reτ = 150 (a) and Reτ = 100 (b) and (c) are used for comparison.
The Reynolds stresses in Figure 8.7 (a) representing the core region of the duct
in general are in good agreement with the corresponding channel flow data. The
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8.1 Flow in a triangular duct with 11.5◦ apex angle

slight underestimation of the channel data in the near-wall region is also observed
by Gavrilakis [44] for square duct flow and is related to the scaling with the local
friction velocity, uτ. At a position closer to the acute angle shown in Figure 8.7 (b)
the magnitude of all stress components is considerably reduced compared with the
turbulent channel data for the lowest Reynolds number available. This tendency
increases when moving even further in the negative x3-direction (Figure 8.7 (c)),
where all components of the Reynolds stress tensor apart from u1u1 are almost
suppressed, suggesting a highly anisotropic state of turbulence. Compared with
channel flow data, a strong decrease of the maximum of u1u1 at x+

2 ≈ 20 in partic-
ular is observed. This peak in the streamwise stress component is characteristic of
wall-bounded turbulent flows and accompanies the appearance of intense turbu-
lent structures in the near-wall region [99]. The flattened maximum arising from
the triangular shape of the duct indicates a strong damping of this near wall tur-
bulent activity causing the laminarization of the flow.
Even if the magnitude of the stresses is significantly reduced when approach-
ing the transition region, they still persist in the laminar part of the flow and are
typically referred to as instabilities, disturbances or apparent stresses. The de-
velopment of these stresses at two spanwise positions is shown in Figure 8.8. In
contrast to the turbulent behavior discussed previously, these stresses reach their
maximum in the center of the duct indicating the subcritical state of the flow [53].
In the close vicinity of the acute corner, only the streamwise stress component
is present (Figure 8.8 (a)). When moving further in the spanwise direction, the
spanwise component also increases in magnitude (Figure 8.8 (b)). This behavior
is in agreement with findings from Lemoult et al. [79] for channel flow subjected
to subcritical instabilities: for low Reynolds numbers they observe that the energy
of the fluctuations is primarily related to the streamwise motion, while for higher
Reynolds numbers spanwise fluctuations also gain in energy.
In addition to the observed increase in the streamwise and spanwise fluctuations
when moving towards the turbulent part of the flow, these quantities appear to be
correlated. This behavior indicates the initiation of production of turbulent kinetic
energy.
The development of the stresses in the turbulent and laminar region of the duct
can be further investigated using their invariant representation. This procedure is
supposed to provide insights into the configuration of the stress tensor and enables
the connection to the theoretical findings discussed in Section 6.2.
In Figure 8.9 the trajectories through the anisotropy invariant map are shown at
different spanwise positions in the turbulent part of the flow. Obviously, the mag-
nitude of anisotropy (II) at the wall and on the centerline increase when starting
in the core region of the duct (Figure 8.9 (a)) and approaching the corner region
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Figure 8.7: Reynolds stresses uiu j normalized with the local wall shear velocity uτ
plotted along the x2-direction at different spanwise positions: x3/H =

0.8 (a), x3/H = 0.5 (b) and x3/H = 0.3 (c), together with the profiles
for plane channel flow at similar values of Reτ. (a) Reτ = 150 [73, 74],
(b) and (c) Reτ = 100 [73–75].
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Figure 8.7.

(Figure 8.9 (c)). A closer look also suggests that the trajectories approach the right
branch of the map representing the statistical axisymmetrical state of the stresses
during this development. This observation is in agreement with the theoretically
derived constraints for flow laminarization.
In Figure 8.10, trajectories that are representative of the laminar flow region within
the duct cross section plane are drawn in the anisotropy invariant map. It is ob-
served, that in the immediate vicinity of the duct, were the disturbances are found
to be very small, only a narrow region in the invariant map is covered (see Fig-
ure 8.10 (a)). This region denotes a high anisotropy of the disturbances. When
moving in the positive x3-direction towards the transition to turbulence, the mag-
nitude of anisotropy decreases (see Figure 8.10 (b)). The entire trajectory moves
along the two-component limit of the map, indicating a significant deviation in
the stresses from the axisymmetrical state. These tendencies conform to the the-
oretical findings since they clearly deviate from the conditions that are associated
with stable laminar flow.
The analyzed invariant representation of the stresses at certain spanwise positions
indicate an agreement with the theoretically derived constraints. In particular, the
behavior of the stresses on the centerline of the duct is observed to show the char-
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Figure 8.9: Trajectory through the anisotropy invariant map along the x2-direction
at different spanwise positions: x3/H = 0.75 (a), x3/H = 0.5 (b) and
x3/H = 0.3 (c).
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Figure 8.10: Trajectory through the anisotropy invariant map along the x2-
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0.2 (b).

acteristic trends. Thus, the trajectory along the centerline of the duct is assumed
to enable a representative continuous description of the flow field.

8.1.2 Description of the transition process using the
invariant representation of the stresses

So far, the properties of the flow in the laminar and the turbulent region appear-
ing in the cross section plane of the duct have mainly been discussed separately.
Since the present investigation focuses on discovering duct shapes that prevent
turbulence and thus provoke the laminar flow state, a deeper understanding of the
transition processes is essential. The present flow showing the coexistence of the
two flow regimes enables mechanisms involved in the transition from laminar to
turbulent flow, and vice versa, to be investigated.
In addition, the following analysis might also contribute to a fundamental area
in fluid mechanics research. Even though transition has already been studied for
many years, there are still plenty of unanswered questions concerning the phe-
nomenon and the present statistical framework has rarely been used for its de-
scription.
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8 Verification of the mechanism leading to low energy dissipation in duct flows

Continuous description of the flow field

Based on the findings in the previous paragraph, the development of the stresses
along the centerline of the duct cross section is expected to provide a continuous
and characteristic description of the flow properties in the triangular duct [23].
The observation of decreased turbulent activity when moving towards the duct
corner is confirmed by the development of the rms-values of the normal stress
components along the x3-axis in Figure 8.11. In the region close to the acute cor-
ner, the magnitude of all stress components is small, which is in agreement with
the observed laminar flow behavior. Eckert and Irvine [30] use criteria in order to
quantify the extension of the laminar and the turbulent flow region. These exper-
imentally determined borders are also included in Figure 8.11: (i) represents the
“instability line” [30] and (iii) is called the “transition line” [30]. When moving in
the positive x3-direction, Eckert and Irvine define the “instability line” at the po-
sition where they observe the first fluctuations by flow visualization. Passing this
line the magnitude of the disturbances progressively increases. When reaching the
“transition line” the mean flow profile starts to deviate from the laminar parabolic
shape indicating the breakdown to turbulence. These experimentally proposed
positions describing the transition process do partially coincide with outstand-
ing positions in the development of the normal stresses extracted from DNS. The
rms-values in Figure 8.11 are very small in the vicinity of the corner but stay al-
most constant when passing (i) up to x3/H ≈ 0.20. After reaching this position,
first the magnitude of the streamwise stress component starts to increase signif-
icantly. When (iii) is reached, finally an increase in all rms-components can be
observed indicating the breakdown to turbulence (compare also with Section 7.3).
At the spanwise position x3/H = 0.36, a local maximum of the streamwise rms-
component is found, which is referred to as (iv). When moving further in the
positive x3-direction the fully turbulent core region of the duct is approached:
at x3/H = 0.80 the mean streamwise velocity component reaches its maximum.
Passing this position the influences of the opposite wall become prominent and
the stresses show the expected behaviour of turbulent wall-bounded flows. These
effects are not the focus of subsequent discussions.

Until now, the transition from laminarity to turbulence was mainly observed to
be associated with a significant increase in the magnitude of the Reynolds stresses
(see Figure 8.7). The physical mechanisms that are involved in the transition pro-
cess will now be investigated further. In Chapter 6 the methodology to describe
the anisotropy tensor of the stresses in invariant space was presented, which il-
lustrates the appearance of the stress tensor rather than the magnitude of its com-
ponents. This tool offers the possibility to investigate the configuration of distur-
bances in laminar flow (“apparent stresses”) and of the Reynolds stress tensor in
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Figure 8.11: Development of the normalized rms-values of the velocity fluctu-
ations ui,rms along the x3-axis. (i) “instability line” at x3/H =

0.10 [30], (iii) “transition line” at x3/H = 0.24 [30], (iv) local maxi-
mum of u1,rms at x3/H = 0.36.

turbulent flow simultaneously. Based on the theoretical framework, it is expected
that the invariant representation of the stresses represents a powerful tool for the
investigation of the transition and reverse transition process since it is assumed to
illustrate the relevant mechanisms. In Figure 8.12 the corresponding development
from the corner to the core is shown in the invariant map and the resulting extrema
are highlighted.
While the maximum of anisotropy, namely the one-component state of the stresses
is reached within the corner (x3/H = 0.00), the stresses in the core (x3/H ≈ 0.80)
are almost isotropic. It is noted, that the latter spanwise position corresponds
to the point where the maximal mean streamwise velocity is reached. However,
the anisotropy in the stresses does not decrease monotonically from the wall to
the core but a rather complex trajectory through the anisotropy invariant map
arises. In the corner region of the duct, the trajectory first develops along the
two-component limit, which is associated with a strong deviation from the ax-
isymmetrical state of the stresses. After the initial decrease in anisotropy, the
development changes its direction at the position x3/H = 0.18. The anisotropy in
the stresses increases until x3/H = 0.24 is reached, corresponding to the transition
point found by Eckert and Irvine [30]. This behavior is followed by a monotonic
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Figure 8.12: Trajectory through the anisotropy invariant map along the x3-axis
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decrease of II along the axisymmetrical border of the map.
The theoretical findings suggest that a highly anisotropic and axisymmetric state
of the stresses causes reverse transition and stable laminar flow at the same time
[23]. Qualitatively, an agreement of the trends in the trajectory through the aniso-
tropy invariant map with these constraints is observed. However, a quantitative
estimation, in particular of the deviation from the axisymmetrical state of the
stresses, cannot really be made in this representation. In order to investigate the
behavior of the flow in the triangular duct in more detail, corresponding quantities
are proposed: the magnitude of anisotropy, II, and a measure for axisymmetry A,
which is defined following the ideas of Antonia et al. [7] as

A =
4/3|III|

(2/3 II)3/2 . (8.3)

IImax = 2/3 and A = 1 correspond to the maximum in anisotropy and axisym-
metry in the stresses, respectively. The development of II/IImax and A along the
centerline of duct is plotted in Figure 8.13. The outstanding spanwise positions
for the magnitude of the stresses found in connection with Figure 8.11 are also
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Figure 8.13: Development of the magnitude of anisotropy, II/IImax (red circles),
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included in the plot. It is clear that a correlation of the magnitude of the stresses
and their configuration is present: the development of II/IImax and A also show
an exceptional behaviour at the spanwise position (i), (iii) and (iv) (compare with
Figure 8.11). The curves in Figure 8.13 highlight an additional spanwise position,
x3/H = 0.18, which is referred to as (ii).

Transition and reverse transition

Based on Figure 8.13, the trends in the configuration of the stresses within the
transition from laminar to turbulent flow will be discussed first. For this purpose,
the laminar region of the flow up to the transition line (iii) is investigated. In the
direct proximity of the corner, the disturbances have an one-component shape,
which agrees with the theoretical constraint for stable laminar flow. At the posi-
tion where Eckert and Irvine [30] observe the first disturbances in the flow, the
stresses start to loose their initially axisymmetrical shape followed by a strong
and continuous decrease of A and II. This deviation of the stress tensor from the
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theoretically derived stable state is provoked by fluctuations in the streamwise and
spanwise direction. Even if these stresses are very small during this development
their configuration describes the increasing instability of the flow. At x3/H = 0.18
a local minimum in A and II is finally reached, which is marked by (ii). After this
position, a significant increase of u1u1 can be observed in Figure 8.11 suggesting
that the flow breaks down to turbulence. However, the final transition to turbu-
lence in the mean flow field is not observed before (iii) (compare also with Fig-
ure 7.13). The discrepancy between these observations concerning the transition
point will be further analysed in the next section.

Along with the transition from laminar to turbulent flow, the mechanisms in-
volved in the process of reverse transition or flow laminarization can also be anal-
ysed based on Figure 8.13. In order to do so, this time the transition line (iii) is
approached coming from the turbulent part of the flow and the discussion con-
centrates on the region 0.80 > x3/H > 0.24. When starting in the core region
of the duct, where the flow is almost isotropic on the centerline, the movement
in the negative x3-direction first is accompanied by a deviation in the stresses
from the axisymmetric state. This behavior is followed by a strong increase in A
and II. It is observed, that the position where the local maximum of A is finally
reached corresponds to the position where the local maximum of the streamwise
rms-component is also reached (see (iv) in Figure 8.13). When moving further
in the negative x3-direction a significant increase in II is observed while A stays
approximately constant. This process is associated with a drastic decrease of all
rms-values (see Figure 8.11). At the position were II also reaches a local max-
imum (iii), the mean flow is finally found to turn into the laminar state. This
behavior suggests that even if the axisymmetry in the flow is very high, its final
laminarization does not take place before a certain anisotropy level in the flow
is reached. However, it is noted that the magnitude of the stresses within the re-
gion, were they are highly axisymmetrical (A ≈ 1), i.e. at the spanwise position
x3/H = 0.3, is strongly reduced compared with the turbulent channel flow (see
Figure 8.7 (c)). The same holds for the turbulent dissipation (see Figure 8.6) indi-
cating agreement with the analytically found effect of the axisymmetrical state of
the stresses.

The border between laminarity and turbulence

A comparison of the present flow with fully turbulent circular pipe flow is used to
detect the border between laminarity and turbulence. In Figure 8.14 the develop-
ment of II/IImax and A in the triangular duct is plotted starting from x3/H = 0.18
or (ii) up to x3/H = 0.80. In this plot, the corresponding data from the literature
for fully turbulent pipe flow at Re = 4950 are also included [32]: the profiles are
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shown along the radius of the pipe starting at the wall (x′3/S = 0.00) and reaching
the center at x′3/S = 1.0. The invariant properties close to the critical point (ii)
in the triangular duct and within the viscous region of circular pipe flow show
notable similarity. This behavior suggests that the turbulent flow in the triangular
duct begins at the laminar corner layer in a similar way to that found for fully
turbulent internal flows at the wall. Subsequently, (ii) is referred to as the “origin
line”.
The development of the mean streamwise velocity U1 along the centerline of the
duct starting at (ii) can further support this finding. In Figure 8.15, U1 and x3
are normalized using the friction velocity arising at (ii). A comparison with the
expected linear behavior for turbulent flows close to the wall shows notable agree-
ment in the vicinity of (ii). At a certain distance from the origin, the turbulence-
dominated part of the flow is reached which is associated with a deviation from
the initial viscous behavior. The region where viscous effects dominate seems to
be extended compared with e.g., pipe flow. However, it is noted that the flow field
along the centerline of the duct is strongly affected by the diverging top and bot-
tom wall resulting in a rather complex flow situation.
Based on the comparison of the stress configuration and mean flow in the triangu-
lar duct and the circular pipe it is found that the local minimum in II/IImax and A
indeed can be interpreted to be the border between the laminar and the turbulent
flow region in the triangular duct. However, the viscous sublayer of the turbulent
flow connects the two coexisting regions. The mean velocity in this layer has
essentially laminar properties. Thus, when considering the mean flow field, the
breakdown to turbulence cannot be distinguished in this part of the flow. This fact
explains the differences in the critical points that are found when considering the
mean or the fluctuating motion.

Despite the similarities of the flow in the triangular duct and in the circular pipe
discussed here, differences appear when moving more to the central part of the
ducts. These differences are assumed to originate from the fact that the triangular
shape of the duct induces the laminarization of the flow. The process of reverse
transition when approaching the critical point coming from the turbulent part of
the flow is investigated in the following discussions. While the maxima in II and
A are reached at similar radial positions in a circular pipe flow, A grows much
faster than II in the triangular duct (see Figure 8.14). However, the connected
process of laminarization is rather extended and the entire switch to laminar flow
is accompanied by a significant increase in the maximum of anisotropy.
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8.2 Comparison of coexisting laminar and
turbulent flow fields in related ducts

Along with the triangular duct with the 11.5◦ apex angle, additional geometries
affecting the coexistence of laminar and turbulent flow were presented in Fig-
ure 8.1. A comparison of the observation made for the triangular duct with the
11.5◦ apex angle with the flow fields resulting from these geometries is expected
to further support the understanding of conditions in the flow that characterize
stable laminar duct flow [23]. Additionally, further insights into the constraints
for flow laminarization are expected from this comparison. Finally, the impact of
differences in the design of the corner regions on the transition scenario will be
discussed.
In the previous section, for the triangular duct with the 11.5◦ apex angle, it was
shown that the development of the magnitude of anisotropy, II, and the measure
of axisymmetry, A, along the symmetry line of the duct describe the mechanisms
involved in the transition from the laminar to the turbulent flow, and vice versa.
This illustration is also used in the following analysis of related flow fields.

8.2.1 Characterization of stable laminar duct flow

The extension of the laminar region in triangular ducts was found to be a function
of the apex angle, α. Bandopadhayay and Hinwood [10] worked out a model for
its prediction, which is validated by experimental data from Eckert and Irvine [30]
and Carlson and Irvine [18]. According to this model, the decrease in α results
in an increase of the laminar region persisting next to the turbulent flow. The
flow fields in the triangular ducts with 11.5◦ and 4◦ apex angles arising from DNS
agree with this finding. While in the former case the laminar flow field extends to
x3/H = 0.25, the latter case shows a laminar flow behavior up to x3/H ≈ 0.35.
Note that these are the spanwise positions after which the mean flow starts to de-
viate from the laminar parabolic shape.
The extension of the laminar flow region in the triangular duct with the 4◦ apex
angle is confirmed by the magnitude of the rms-values along the x3-axis in Fig-
ure 8.16. In the close proximity of the corner, all normal stresses are vanishing and
only at some distance, u1u1 start to grow followed by an increase in u3u3. When
the transition point (iii) is reached, finally the wall normal component, u2u2, also
increases denoting turbulent flow behavior. The data plotted in Figure 8.16 show
some scatter in the region where the flow becomes unstable and breaks down to
turbulence. The origin of this scatter cannot be finally clarified. Typically, the
averaging time is expected to present an important parameter for the convergence
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of turbulence statistics. In Table 8.1, this period is given for the different duct
geometries investigated. The scaling that is usually used for turbulent flows is
applied. Obviously, the averaging time is comparable for all cases and was shown
to result in a converged data set for geometry (a). However, the discussion that
follows in Section 8.2.3 suggests differences in the transition scenarios arising in
the duct geometries investigated, which might also affect the typical time scales of
the flow and thus the time ranges that need to be considered for averaging (com-
pare with Equation (6.2)). In spite of the present uncertainties, it is felt reasonable
to discuss major trends in the data arising from geometry (b). It is also checked
that these tendencies do not vary during the last 10Dh/uτ of the averaging period.

The increase in the spanwise extension of the laminar flow region, compared with
the triangular duct with the larger apex angle, suggests that the flow in the lat-
ter geometry is more stable towards the amplification of disturbances. This be-
havior is further analysed using the invariant representation of the stresses. In
Figure 8.17 the normalized magnitude of anisotropy, II/IImax, and the measure of
axisymmetry, A, are again plotted along the x3-axis of the duct. In the stable lam-
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Figure 8.17: Development of the magnitude of anisotropy, II/IImax (red circles),
and of the measure for axisymmetry, A (blue squares), along the x3-
axis of the triangular duct with the 4◦ apex angle (b). Additionally,
characteristic positions within the transition process are indicated:
(iii) “transition line”at x3/H ≈ 0.35, (iv) local maximum of u1,rms at
x3/H = 0.40.

inar region of the duct, the flow is highly anisotropic and axisymmetric denoting
the one-component state in the stresses. The agreement of this observation with
theoretical constraints for stable laminar flow indicates that the geometrical de-
sign of flow domains actually provoke the analytically proposed configuration of
the stresses.
However, after a certain distance from the corner, the axisymmetry and anisotropy
in the stresses decrease and the flow becomes unstable. This development does
not follow the clear trajectory that was observed for the triangular duct with the
11.5◦ apex angle: II/IImax and A fluctuate over a certain distance, before the mean
flow finally starts to deviate from its laminar properties at (iii). This fact most
probably arises from convergence issues in the statistics, which were discussed
previously.
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8.2.2 Constraints for flow laminarization

In the following discussion, the intention is to provide a more general view of the
mechanisms that are involved in the reverse transition process. For this purpose,
observations made for geometry (a) in Section 8.1 are compared with the flow
behavior in geometries (b) and (c) (see Figure 8.1 for references). This analy-
sis is again based on the development of the normal stresses, the magnitude of
anisotropy, II, and the measure for axisymmetry, A, along the x3-axis of the ducts,
which are shown in Figures 8.11, 8.13, 8.16, 8.17, 8.18 and 8.19. The geometri-
cal symmetries of the diamond shaped duct are exploited in order to improve the
convergence of the statistical data set.
The normal stresses along the x3-axis in the turbulent part of the flow show a
similar behavior for all ducts: When moving from the center in the negative x3-
direction, first an increase of all components is observed while u2,rms ≈ u3,rms
results in an almost axisymmetrical state. However, the magnitudes of the wall-
normal and spanwise components decrease before the streamwise component
reaches its local maximum (this spanwise position is referred to as (iv) in the
considered plots). This behavior is connected to an increase of axisymmetry and
anisotropy in the stress tensor. Actually, A reaches a local maximum at position
(iv) in all ducts. The high axisymmetry in the stress tensor persists when moving
from (iv) towards the transition line (iii). The continuous decrease of the normal
stress components in this part of the flow indicates the reduction of turbulent ac-
tivity. At the same time, a sustained increase in the anisotropy of the stresses is
observed whose local maximum is reached at the transition line (iii).
Finally, it can be concluded that the reverse transition process indeed is character-
ized by high axisymmetry in the stress tensor. However, the final laminarization
of the flow field does not take place before the stresses also are highly anisotropic.
This behavior is similar for the ducts considered here, as is clearly emphasized for
the duct shapes (a) and (c) in the inset of Figure 8.19.

8.2.3 Impact of corner designs on the transition scenarios

Within the previous paragraphs, the connection of the theoretical framework with
the observations made for different coexisting laminar and turbulent flow fields
was established. For this purpose, particular similarities in the these flows were
detected and their physical meaning was discussed. The intention is now to con-
centrate on differences in the transition processes within these ducts in order to
connect their distinct features to the individual corner designs. The following dis-
cussion is based on a comparative analysis of the development of the magnitude
of anisotropy, II, and the measure for axisymmetry, A, along the centerline of the
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Figure 8.18: Development of the normalized rms-values of the velocity fluctua-
tions ui,rms along the x3-axis of the diamond shaped duct (c): (iii)
“transition line” at x3/H = 0.24, (iv) local maximum of u1,rms at
x3/H = 0.32.

ducts shown in Figures 8.13, 8.17 and 8.19.
The impact of the corner design on the laminar to turbulent transition process is
discussed first. The configuration of the disturbances in the laminar part of the
ducts shows that the stable laminar region is large in the triangular duct with the
4◦ apex angle (b) compared with the triangular duct with the 11.5◦ apex angle (a)
and the diamond shaped duct (c) when the duct height H is applied for normal-
ization. A similar conclusion can be drawn for the regions where the disturbances
become unstable and move along the two-component border in invariant space. In
particular for geometry (c) the area where II decreases is shortened and the critical
origin point (ii) is associated with a higher magnitude of anisotropy in the stresses
than can be observed for geometries (a) and (b).
These differences in the flows can be quantified in terms of a transitional Reynolds
number, Re(iii). It is estimated using the local height of the duct at the spanwise
position (iii) as the characteristic length scale together with the bulk velocity ap-
pearing at this position. The results are summarized in Table 8.2. In the for-
mer discussion it was found that position (ii) in the flow domains describes fairly
physically the border between laminarity and turbulence. The Reynolds numbers
found at this position are also given in the table. However, since it is not pos-
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Figure 8.19: Development of the magnitude of anisotropy, II/IImax (red circles),
and of the measure for axisymmetry, A (blue squares), along the x3-
axis of the diamond shaped duct (c). Additionally, characteristic po-
sitions within the transition process are indicated: (ii) “origin line” at
x3/H ≈ 0.20, (iii) “transition line” at x3/H ≈ 0.24, (iv) local max-
imum of u1,rms at x3/H = 0.32. The inset shows the development
between the positions (ii) and (iv) in duct (c) together with the one
in the corresponding region in duct (a) extracted from Figure 8.13
(black lines). Note that the scaling used in the inset is adapted to the
data range considered.

sible to quantify Re(ii) for geometry (b) due to non-uniformities in the transition
process, Re(iii) is used instead in the following analysis. The highest transition
Reynolds number is observed for geometry (c). Interestingly this value matches
the range that is found to be characteristic for plane channel flow, namely from
1100 to 1400 [17, 54]. The critical Reynolds number for channel flow is also
given based on the bulk velocity and the entire channel height. It is noted that the
geometry of the triangular duct with the 4◦ apex angle actually resembles a chan-
nel configuration with a large aspect ratio. Compared with this case, the transition
Reynolds numbers resulting for geometries (a) and (c) are significantly reduced.
This behavior might be connected to the individual appearance of mean secondary
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8 Verification of the mechanism leading to low energy dissipation in duct flows

Table 8.2: Local Reynolds number arising at the origin point (ii) and at the transi-
tion point (iii) within the different duct geometries.

case Re(ii) Re(iii)

(a) triangular duct with 11.5◦ apex angle 210 600
(b) triangular duct with 4◦ apex angle - 1200
(c) diamond shaped duct 30 120

motion in the ducts: For the diamond shaped duct, which corresponds to the low-

est Re(iii) the magnitude of the cross flow,
√

U
2
2 + U

2
3, reaches almost 3% of the

bulk velocity, as can be seen in Figure 8.20. It is noted that this value is in-
creased compared with the maximum value found for square duct flow at a similar
Reynolds number, which corresponds to 1.9% [44]. In Figure 8.21 the magnitude
of the secondary motion is also shown for a section of the triangular ducts, which
is bounded by the transition line (iii) and extends to the center region were the
scaling is adapted to the data range. It is clear that the magnitude of the secondary
motion within these ducts, which only reaches about 0.8% of the bulk velocity, is
significantly reduced compared with the diamond shaped duct. However, while a
directed motion still is visible for the larger apex angle, it disappears for geometry
(b). The weak cross flow that is visible for geometry (b) might be affected by the
averaging issues discussed earlier. Thus, the strength of secondary motion in the
turbulent region of the duct seems to be connected to the extension of the neigh-
boring laminar region. Physically this fact might be explained by the convective
properties of the cross flow: fluid with turbulent properties is directed towards the
neighboring laminar region and limits its extension.
If the turbulent part of the flows, namely the region x3/H > (iii) is reconsidered
in Figures 8.13, 8.17 and 8.19, it can be seen that the region of high axisymmetry
in the stresses is largest for geometry (c) and decreases in (a) and further in (b).
This tendency is similar to that observed for the strength of the secondary motion
in the different ducts and an interconnection in the processes is suggested: the ap-
pearance of secondary motion is associated with highly axisymmetrical stresses
on the centerline or corner bisector of a duct.
The observed impact of corner designs on the transition scenarios in coexisting
flow situations shows that the strength of secondary motion can be linked to lim-
its in the extension of the stable laminar region and to an accelerated laminar to
turbulent transition process. However, at the same time the cross flow is accompa-
nied with an enlarged region of high axisymmetry in the stresses in the turbulent
part. Recalling findings from theoretical considerations in Section 6.2.3 and from
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Figure 8.20: Contour plot of the magnitude of the secondary flow field
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normalized with Ub (left) together with the secondary flow U3 devel-
oping in a corner of the diamond shaped duct (right).

simulations in Section 8.1.1, this appearance of the fluctuations can be linked to
reduced turbulent dissipation. The interference of the secondary flow with the
state of the stresses is not clear at this moment and its investigation is not the fo-
cus of subsequent discussions. Rather, it should be rather noted that the part of
the flow where the axisymmetry is high is limited and the following proposal is
made for the design of energy-efficient duct geometries: ducts consisting of cor-
ner regions that are shaped to extend the state of high axisymmetry in the stresses
to large parts of the flow domain are suggested to promote the entire suppression
of turbulent activity and thus enable large energy savings to be made.
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Figure 8.21: Contour plot of the magnitude of the secondary flow field
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normalized with Ub in a section of the triangular ducts with 4◦ (up-
per) and 11.5◦ apex angles (lower). The sections start at the transi-
tion point (iii) and end in the center region of each duct. Note that
the scale of the color code is changed compared with Figure 8.14.
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9 Impact of duct corners on turbulent
flow

In the previous chapter, narrow corner regions in ducts were shown to locally pro-
voke high axisymmetry and anisotropy in the stresses. This state is associated
with stability of laminar flow and reduced dissipation of turbulent motion, which
is followed by its laminarization. Generally, laminar flow is associated with sig-
nificant lower friction losses than turbulence. Thus, ducts consisting of corner
regions which can ensure laminar flow in situations where it typically is turbu-
lent, are promising for the present optimization task of addressing reduced energy
consumption of the flow (see Section 4.4).
In this chapter, the question to be discussed concerns which geometrical properties
of corner regions in straight, non-circular ducts modify the flow in the theoreti-
cally proposed manner and how the effect can be expanded to large parts of the
flow domain. For this purpose, the design of corners in the cross section plane
and the impact on turbulent flow is investigated.
Turbulent flow in non-circular ducts has already been studied frequently in the lit-
erature in the past. These investigations mainly focused on the impact of several
duct shapes on the frictional resistance and the mean flow field. First, a summary
of these results will be given according to the historical sequence. In doing so,
these findings are discussed in connection with the goals followed in this work.
Further, the available results are complemented with data from numerical simu-
lations of novel duct shapes constructed of differently designed corner regions.
These data enable the systematic investigation of how specific geometrical prop-
erties of the ducts influence the statistical flow field. Based on the findings in
the previous chapters, these results are used to establish the potential of a cer-
tain property to promote the laminarization of turbulent flow and the delay of the
laminar to turbulent transition.
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9 Impact of duct corners on turbulent flow

9.1 Flow behavior in classical non-circular ducts

9.1.1 Review of findings in the literature

Friction resistance and energy dissipation

The impact of duct geometries on turbulent flow was studied intensively in the
first half of the 20th century. Schiller [105] focused on the evaluation of the flow
resistance of different types of non-circular ducts geometries, namely a square
duct, a rectangular duct with an aspect ratio of 3.5, an equilateral triangular duct
and a duct with a wavy boundary. These experiments investigated the validity of
the concept of hydraulic diameter (see Equation (4.6)).
Schiller’s results for the friction factor f of the equilateral triangular duct arising
from these experiments are plotted in Figure 9.1 together with corresponding ex-
perimental data for the square duct [52] and isosceles triangular ducts with 11.5◦

and 4◦ apex angles [18, 31] (open symbols). The corresponding data from the
present simulations are also included in the plot (solid symbols) and a good agree-
ment for all duct geometries investigated can be observed.
In the laminar regime (Reh < 2300) analytical solutions for the friction factor are
available that obey the relationship given in Equation (4.7). For this flow regime
the values emerging from the non-circular duct geometries are lower compared
with the solution for the circular pipe. In contrast, the turbulent results for the
square duct and the equilateral duct indicate that the scaling with the hydraulic
diameter allows the adaption of the correlation describing the resistance of circu-
lar pipes to non-circular ducts with reasonable accuracy [106]. In fact, this law
for the prediction of the flow resistance gives a good estimate for numerous duct
shapes, e.g., for elliptical ducts [91] and is widely used in engineering practice.
In the present illustration, however, a deviating tendency arises for the considered
data: while for the square duct the friction factor is only slightly reduced com-
pared with the Blasius correlation, this effect becomes more pronounced for the
triangular duct shapes. The tendency to lie below the empirical correlation of Bla-
sius becomes stronger if the angle of the duct is reduced (Figure 9.1 (a)-(d)) [24].
The triangular shape with α = 11.5◦ (case (c)), for example, shows a constant
reduction of f for about 20% over the entire turbulent regime investigated [30].
This fact may be explained using results for case (c) and (d) discussed in Chap-
ter 8. There, the partial laminarization of the flow in these ducts was observed
suggesting reduced friction losses compared with the fully turbulent flow state.
Moreover, it is noted that for the acute corners the transition from the laminar to
the turbulent regime takes place at lower Reynolds numbers. This fact indicates
that the hydraulic diameter concept does not capture the underlying physics to
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generally unify the critical conditions leading to the breakdown to turbulence.
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Figure 9.1: Friction factor f plotted against the hydraulic Reynolds number Reh.
Analytic solution for circular laminar pipe flow, f = 64/Reh; Bla-
sius correlation for turbulent flow, f = 0.316/Re1/4

h [106]; (a) Square
duct: analytic solution for laminar flow, f = 57/Reh; open symbols,
measurements from Hartnett et al. [52]; solid symbol, DNS; (b) Equi-
lateral triangular duct: analytic solution for laminar flow, f = 53/Reh;
open symbols, measurements from Schiller [92]; solid symbol, DNS;
(c) Triangular duct (α = 11.5◦): laminar solution for a circular sec-
tor, f = 50.3/Reh [30]; open symbols, measurements from Eckert and
Irvine [31]; solid symbol, DNS; (d) Triangular duct (α = 4◦): laminar
analytic solution for a circular sector, f = 48.85/Reh [18]; open sym-
bols, measurements from Carlson et al. [18], solid symbol, DNS. The
right figure shows a comparative view of the DNS data at Reh ≈ 4500
(highlighted in the left picture).
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Secondary motion

Besides the evaluation of friction losses arising in non-circular ducts, characteris-
tic structures of the mean flow field that are associated with a non-circular bound-
ary are frequently discussed in the literature. In the 1920s, Nikuradse [92] per-
formed pioneering work on the special properties of turbulent velocity fields ap-
pearing in straight non-circular ducts. He observed that the lines of constant mean
streamwise velocity are displaced towards the corners at some distance from the
centers of these ducts. Based on measurements of the streamwise flow field he
and Prandtl were able to indirectly conclude the existence of secondary motion in
form of streamwise vortices directed towards the corner of the duct for the first
time [100]. Conclusively, the observed flow phenomenon is referred to as sec-
ondary motion of Prandtl’s second kind. In Figure 7.4, the mechanism and the
strength of the secondary motion arising in a square duct are shown in an example
manner. From this illustration it becomes apparent that the corner vortices can
be linked to the distribution of the wall shear stress along the duct sides and thus
contribute to the friction behavior discussed in the previous section. In contrast to
the phenomenon corresponding to the straight non-circular ducts considered here,
secondary motion of Prandtl’s first kind is pressure induced and appears in curved
ducts of any cross section shape were centrifugal forces act at right angles to the
main flow direction [27].
Owing to improvements in measurement techniques, the results of Nikuradse are
followed by numerous experimental investigations involving direct measurements
of the secondary flow field and the Reynolds stress tensor. These data fostered the
physical understanding of the reasons for the appearance of secondary motion. In
this context, Brundett and Baines [16] show that the production of streamwise vor-
ticity is due to spatial variations of certain stress components, namely of (u2

2 − u2
3)

and of u2u3, in the wall-normal and spanwise direction. These experimental stud-
ies on secondary motion are extended by Gessner and Jones [46] who performed
more detailed measurements of all Reynolds stress components. From these data
they are able to determine on the dominant terms in the transport equation of the
mean streamwise vorticity. Related studies for turbulent corner flow developing at
approximately constant pressure and for turbulent flow in an equilateral triangular
duct were conducted by Perkins [95] and Aly et al. [6], respectively.
In the early days of numerical simulation, scientists and engineers only depended
on turbulence models for the calculation of turbulent flow fields. In the begin-
ning, models were only able to handle isotropic turbulence and thus there were
large restrictions in their applicability for the prediction of many flows of practi-
cal relevance. In later stages, these models were complemented to account for the
anisotropic behavior of statistical flow fields and its spatial inhomogeneity. This
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improvement enabled the prediction of the flow field in non-circular ducts that fre-
quently appears in engineering practice, e.g., in heat exchangers, ventilation and
air-conditioning systems, turbo machinery and open channels [27]. Correspond-
ing work was done, for example, by Hanjalić and Launder [51] and Nakayama et
al. [90] who tested their modeling approach for different duct geometries. A re-
view of experimental and modeling work on turbulent flow in straight non-circular
ducts is given by Demuren and Rodi [27].
Owing to the increase of computational power, the DNS of the flow in a square
duct at low turbulent Reynolds numbers, namely Reh = 4410 or Reτ = 300, be-
came possible. The results of Gavrilakis [44] finally give detailed information of
the entire flow field, which are basically in agreement with previous experimental
findings. Huser and Biringen [58] extended the data base from direct numerical
simulation to a higher Reynolds number, Reτ = 600.
Further investigations in the present work follow the theoretical findings in Sec-
tion 6.2 and concentrate on the impact of the duct design on the distribution of
the stress field. The appearance of secondary motion is not explicitely discussed
in this context. However, the results from DNS and experiments that were sum-
marized earlier show that this property of the mean flow originates from the stress
distribution, and thus can be assumed to be captured by the present thinking.
Besides the secondary motion in the mean flow, quasi-coherent structures can be
identified in turbulent flow by conditional averaging. The interaction of the arising
near-wall streaks and the appearance of larger scale streamwise vortices, namely
secondary motion of Prandtl’s second kind, is recently discussed by Pinelli et
al. [97] using DNS data. Subsequently, these authors also investigate the flow in
a square duct at a marginally turbulent state [111]. Within this work, the char-
acteristic coherent structures appearing during flow laminarization are discussed.
Starting from a fully turbulent state, it is found, that flow laminarizes at a Reynolds
number of about Reh = 2154. This Reynolds number is higher than the critical
value found for channel flow but smaller than that of circular pipe flow. The dif-
ference from channel flow is discussed in the context of the side walls that limit
the extension of the coherent flow structures in the spanwise direction. It is found
that flow laminarization is connected to walls that are shorter than 154 wall units.
The results from Uhlmann et al. [111] support the present approach in two major
aspects. Firstly, their findings suggest that geometrical modifications leading to
spanwise limitations may interact with the transition behavior of the flow. Fur-
ther, they find that the required scale of these limitations is rather large and signif-
icantly increased compared with that of, for example, riblets that act in turbulent
flow (compare with Section 6.2.4). The underlying reasoning for the interaction
of coherent structures with flow laminarization is not focused on here. However,
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an outlook for related interpretation of the data that are presented in the following
sections is given in Section 9.2.3.

9.1.2 Properties of the turbulent stresses

Following along the path of this work, the statistical properties of the flow in the
square duct and an equilateral triangular duct are investigated. Since these data
are only partially available in literature, the results from simulations carried out
during the course of the present work are used. In order to gain further insights
into the impact of the different duct geometries on the turbulent stresses, their de-
velopment along the corner bisectors with length Rb and along the wall bisectors
with length rb (see Figure 9.2) are discussed.
In Figure 9.3 the development of the Reynolds stresses along the wall bisector
and the corner bisector of the square duct are shown. In order to highlight the
special properties of the stresses in the non-circular duct, the corresponding data
for circular pipe flow and plane channel flow are also shown [5, 32]. Note that
the stresses in the cylindrical coordinate system of the circular pipe are adapted
to the cartesian system using uz = u1, ur = u2 and uϕ = u3. Firstly it is observed
that u1u1 is increased at some distance from the wall of the circular pipe com-
pared with the plane channel, while u2u2 and u3u3 are decreased, leading to an
increase in anisotropy of the stresses in the former flow. This tendency is even
more pronounced for the flow in the square duct along the wall bisector (upper
plot in Figure 9.3). The observation made for the square duct also results from

x1

x2

R b

x3

rb

x2

x1
x3

rb

Rb

Figure 9.2: Cross section plane of the square duct (left) and equilateral triangular
duct (right) with corner and wall bisectors. The wall bisectors with
the length rb are shown as dotted lines, the corner bisectors with the
length Rb are shown as dashed lines.
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the scaling with the overall mean wall shear velocity arising from the simulation.
It is shown by Gavrilakis [44] that a scaling with the local value of uτ leads to a
reasonable agreement of the stresses along the wall bisector and in channel flow
at some distance beyond the viscous sublayer. However, since the present inten-
tion is to discuss the statistical properties of the flow in the non-circular ducts at
different positions in a general frame, scaling with the mean wall shear velocity is
felt to be an appropriate choice. This scaling allows conclusions about the relative
changes in the flow within a certain duct geometry to be made. Thus, it is possi-
ble to identify at which position the magnitude of turbulent stresses is increased
or decreased.
Compared with the observations made previously, the flow along the corner bi-
sector of the square duct (lower plot in Figure 9.3) shows a distinct behavior:
due to the geometrical properties of the duct, the stress tensor appears to simplify
since u2

2 = u2
3 and u1u2 = u1u3 suggesting an almost axisymmetrical state of the

flow [16]. This state is associated with a significant decrease of all stress compo-
nents up to a considerable distance from the wall compared with the wall bisector
and the channel and pipe flow. Close to the corner of the duct, all stress compo-
nents are damped leading to the disappearance of turbulent properties in the flow.

The impact of the corner angle on the flow behavior can be studied if the flow in
the square duct is compared with that arising in an equilateral triangular duct. The
corresponding distribution of the stresses along the wall and the corner bisectors
of these ducts are shown in Figure 9.4. It is clear that the normal stresses along
the wall bisector are increased (see upper plot in Figure 9.3) for the triangular
duct. This behavior can be interpreted as enhanced turbulent activity in the area
of the wall bisector. The shear stresses, however, are only slightly affected by the
geometrical properties. For the square duct u1u3 and u2u3 vanish along the wall
bisector due to the geometrical symmetry of the duct [16]. A similar behavior is
observed for the triangular duct by Aly et al. [6] and in the present simulations.
In the lower plot in Figure 9.3, the stresses developing along the corner bisector
are compared. The tendency towards damped turbulent activity in the corner is
increased for the smaller angle of the triangular duct. In particular, the region in
which the turbulent stresses entirely vanish is extended compared with the square
duct. Additionally, the development of u1u1 is fairly untypical: in general, the
streamwise stress component is decreased compared with the square duct and no
characteristic peak value appears.
The configuration of the stresses in the square duct and the equilateral triangu-
lar duct is further investigated in the anisotropy invariant map. In Figure 9.5 the
trajectories along the wall and the corner bisectors are presented. In general, the
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Figure 9.3: Reynolds stresses along the wall bisector (upper plot) and along the
corner bisector (lower plot) of the square duct. The data along the
corner bisector are plotted starting in the corner and using the local
coordinate x′2 along the duct diagonal. uτ resulting from the simulation
that leads to Reτ = 150 is used for normalization. Literature data for
channel flow at Reτ = 180 [5] and for pipe flow at Reτ = 180 [32] are
shown for comparison and δ is equal to the channel half height and the
pipe radius.
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Figure 9.4: Reynolds stresses along the wall bisector (upper plot) and along the
corner bisector (lower plot) of the equilateral triangular duct where rb

and Rb is the length of the bisector, respectively. The data along the
corner bisector are plotted starting in the corner and using the local
coordinate x′2 in negative x2-direction. The data for the square duct
are also shown for comparison. uτ resulting from the corresponding
simulations is used for normalization.
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9 Impact of duct corners on turbulent flow

behavior in the two different ducts is somewhat similar. Along the corner bisec-
tors (Figure 9.5 (b) and (d)) the one-component state is reached at the wall and
an overall strong tendency towards axisymmetry is observed. Differences in the
geometries appear along the wall bisector, where the anisotropy of the stresses in
the near-wall region is lower in the equilateral triangular duct.
From the observations made for the statistical flow field in the square and equi-
lateral triangular duct, it can be concluded that duct corners with different corner
angles lead locally to a strong tendency towards axisymmetry in the stresses. This
behavior is observed along the corner bisectors of the ducts. In the vicinity of the
corner angle, the disappearance of turbulent properties is observed while the ex-
tension of the effect is increased for the smaller angle. In contrast, along the wall
bisector, the anisotropy of the stresses and their tendency towards axisymmetry
is reduced and the flow shows similar properties to the turbulent channel or pipe
flow.
The goal in the following sections is to extend the benefits resulting from duct cor-
ners to a larger part of the flow domain. For this purpose, novel duct geometries
are designed, which are presented and analysed.

108



9.1 Flow behavior in classical non-circular ducts

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0 0.1 0.2

II

III

wall

center

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

(c)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0 0.1 0.2

II

III

wall

center

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

(d)

Figure 9.5: Trajectory through the anisotropy invariant map along the wall and
corner bisectors of the square duct (a), (b), and the equilateral triangu-
lar duct (c), (d). Left column and red color, wall bisector; right column
and blue color, corner bisector.
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9 Impact of duct corners on turbulent flow

9.2 Design of novel duct geometries using corner
effects

In addition to the frequently studied duct flows discussed in the previous section,
a few more investigations of turbulent flow through more complex non-circular
ducts are presented in the literature. Raiesi et al. [102] and Fukushima and
Kasagi [43] studied the flow in ducts with rhombic cross sections and focused
on the impact of different corner angles on the flow. The smallest angle consid-
ered in these investigations is 30◦ and a tendency towards flow laminarization,
similar to the observations made in the previous chapter for the triangular ducts
with 4◦ and 11.5◦ apex angles, is observed.
Lammers et al. [78] performed direct numerical simulations of the turbulent flow
through ducts of polygon-shaped cross sections using a Lattice–Boltzmann me-
thod. Starting from turbulent flow through the square duct the intention in their
work is to increase the anisotropy of turbulence along the entire wetted perime-
ter due to an increase in corner bisectors. For this purpose, ducts consisting of
eight corner regions distributed regularly along the circumference are designed.
Within the resulting octagonal cross section, the cases of straight and profiled
sides are distinguished, which intersect at corner angles of 135◦ and 90◦, respec-
tively. Along the profiled sides of the duct the anisotropy at the wall is found
to increase and reaches almost the one-component limit at the corners. In con-
trast, for the octagonal cross section with straight sides, no noticeable increase in
anisotropy is observed.
The present investigation follows the ideas of Lammers et al. In general, two
major features of duct geometries are expected to be connected to the statistical
behavior of the flow, namely the number of corner bisectors and the design of the
corner regions. This work concentrates on analysing the latter factor of relevance.
For this purpose, the number of corner bisectors is kept constant and set to nine.
This choice is based on experimental findings from Schiller [105], which will be
discussed in the context of the present results in Section 9.2.2. Variations in the
design of the corner region can generally imply different corner angles and alter-
natives for the design of the connecting side walls, which are referred to as crests.
In this approach, an initial geometry with a star-shaped cross section, which is
shown in Figure 9.6 (a), is defined. The corner angle is set to 88◦, which is similar
to Lammers’ promising case. Starting from this cross section, further geometries
are derived in Figure 9.6 (b)–(d) by variations of the angle of the duct corners
together with the shape of the sides: (b) the crest and the tip regions are rounded,
(c) the crest region is rounded while the corner angle is kept constant, (d) the crest
region is rounded and the height of the surface corrugation is kept constant. The
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9.2 Design of novel duct geometries using corner effects

(a) (b)

(c) (d)

Figure 9.6: Novel duct geometries with differently designed tip and crest regions.
(a) Initial geometry, (b)–(d) derived geometries. Case (a) includes
edged corner and crest regions, which are rounded in case (b). Addi-
tional sketches illustrate similarities and differences in the design of
the corner regions in cases (c) and (d) compared with case (a).

corner and crest design in geometry (c) is fairly similar to Lammers’ case but the
number of bisectors is changed from eight to nine.

9.2.1 Impact on the turbulent stresses

The statistical flow fields that arise in the duct geometries shown in Figure 9.6
are now investigated. In order to analyse the impact of the differently designed
corners and crests on the flow, the data are again plotted along the corresponding
bisectors, which are illustrated as an example for geometry (a) in Figure 9.7. In
the following, the corner bisector is also referred to as tip bisector.
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x2

α

rb

Rb

x3

Figure 9.7: Cross section plane of the star pipe with crest and corner bisector. The
crest bisector with the length rb is sketched with a dotted line, the tip
bisector with the length Rb is drawn with a dashed line, α = 88◦.

The Reynolds stresses developing along these lines in case (a) are shown in Fig-
ure 9.8. In the plots, the corresponding data for square duct flow (see Figure 9.3)
are also shown. The statistical properties of the flow in the ducts show similarities:
the distribution of the stresses along the crest or wall bisector resemble the char-
acteristic for turbulent wall-bounded flows, while the turbulent fluctuations along
the tip or corner bisector are damped. Above the crest region of the star-shaped
duct the extrema of all stress components are slightly increased and move closer
to the wall compared with the mid-wall region of the square duct. The increase is
more pronounced for the spanwise component than for the streamwise and wall-
normal components. Choi et al. [21] observed a similar behavior above the crest
of riblets. In general, the effect of the crest on the flow is felt to be somewhat
small considering the fact that an acute corner extends into the flow domain. The
development of the Reynolds stresses along the tip or corner bisector are shown
in the lower plot in Figure 9.8 where the extension of the corner region in the
x2-direction is marked by a vertical line. This height of the corner region corre-
sponds to approximately 50 wall units. The entire suppression of turbulence in
the close vicinity of the corners is observed in both geometries. Moving further
along the diagonal of the square duct, the geometrical properties of the duct lead
to u2u2 = u3u3. This behavior is not observed for the star-shaped pipe. Addition-
ally, the damping of the streamwise stress component, u1u1, is more pronounced
than in the square duct. These differences are noticeable due to the fact that lo-
cally the geometrical boundaries of the domains are almost identical. Moreover,
despite of the fact that the extension of the corner region is limited, the turbulent
motion above the tip is affected in large parts of the corner bisector.
In the following discussions, the statistical flow field in the star pipe (case (a)) is
compared with the geometries (b)–(d). The extension of the corner region is again
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Figure 9.8: Reynolds stresses along the crest bisector (upper plot) and along the
tip bisector (lower plot) of the star pipe (case (a) in Figure 9.6) where
rb and Rb are the lengths of the corresponding bisector. The data along
the corner bisector are plotted starting in the corner and using the local
coordinate x′2 in negative x2-direction. The data for the square duct
(dashed lines) are also shown for comparison. uτ resulting from the
corresponding simulations is used for normalization.
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9 Impact of duct corners on turbulent flow

marked by a vertical line in the development of the Reynolds stresses above the
tip. The height of the corner region is almost identical in the geometries (a), (b)
and (d) and only smaller in geometry (c) (compare the sketches in Figure 9.6).
The data arising from the different duct geometries are generally fairly similar.
The discussion will focus on highlighting the differences that appear.
In Figure 9.9 the effect of rounded crest and tip regions is illustrated. The effects
are minor and only a reduced damping of u1u1 when moving away from the tip is
observed.
The effect of entirely curved walls on the development of the stresses is shown in
Figure 9.10. The smoothing of the crest region, which also is accompanied by the
reduced extension in the flow compared with the other geometries investigated,
results in a decrease in the magnitude of all stress components in the near-wall
region. At the same time, the stresses in the vicinity of the corner are damped in
a similar manner as observed for the star-shaped duct. However, in particular the
u1u1-component increases faster in a certain distance from the tip of duct (c) com-
pared with the star-shaped pipe. This fact could be associated with the spatially
restricted influence of the corner region.
Finally, the impact of a stronger curvature of the side walls that is associated with
a smaller corner angle compared with the previous cases is analysed based on Fig-
ure 9.11. In contrast to the observations made for geometry (c), a rather high peak
value of u1u1 above the crest region shows up. At the same time, the development
of the Reynolds stresses along the corner bisector highlights an increased region,
in which turbulent fluctuations are strongly damped. Contrary to the duct geome-
tries investigated previously, entire laminarization of the flow is observed close to
the acute corner. Moving away from the corner, the stress component u1u1 devel-
ops similar to geometries (a) and (b) and a flattened peak value is observed. This
similarity together with the findings for geometry (c) suggest that the depth of the
surface structure rather than the corner angle is responsible for this property of
the flow.
In summary, the development of the stresses in the ducts composed of nine corner
regions indicate a slight enhancement of turbulence above the crest regions and a
significant damping in the corner regions. It is of particular interest in the con-
text of this work that the beneficial effect of the corner region extends far into the
flow field in order to compensate the expected negative effects originating from
the crests.
In order to gain further insights into the configuration of the Reynolds stresses in
geometries (a)–(d), the development of the anisotropy tensor is plotted in invari-
ant space. In Figure 9.12 the data are shown for geometries (a) and (b). While the
behavior is fairly similar in the center of the ducts, differences can be observed
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Figure 9.9: Reynolds stresses along the crest bisector (upper plot) and along the
tip bisector (lower plot) of case (b) in Figure 9.6 where rb and Rb

are the lengths of the corresponding bisectors. The data along the
corner bisector are plotted starting in the corner and using the lo-
cal coordinate x′2 in the negative x2-direction. The data for the pipe
with star-shaped cross section (dashed lines) are also shown for com-
parison. uτ resulting from the corresponding simulations is used for
normalization.
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Figure 9.10: Reynolds stresses along the crest bisector (upper plot) and along the
tip bisector (lower plot) of case (c) in Figure 9.6, where rb and Rb

are the lengths of the corresponding bisectors. The data along the
corner bisector are plotted starting in the corner and using the local
coordinate x′2 in the negative x2-direction. The data for the pipe with
star-shaped cross section (dashed lines) are also sketched for com-
parison. uτ resulting from the corresponding simulations is used for
normalization.
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Figure 9.11: Reynolds stresses along the crest bisector (upper plot) and along the
tip bisector (lower plot) of case (d) in Figure 9.6 where rb and Rb

are the lengths of the corresponding bisectors. The data along the
corner bisector are plotted starting in the corner and using the lo-
cal coordinate x′2 in the negative x2-direction. The data for the pipe
with star-shaped cross section (dashed lines) are also shown for com-
parison. uτ resulting from the corresponding simulations is used for
normalization.
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9 Impact of duct corners on turbulent flow

at the wall. The anisotropy above the rounded crest of geometry (b) is increased
compared with geometry (a). The rounded corner region leads to the opposite
effect and the one-component state is not reached. Above the corner regions of
both ducts, a general trend in the data to approach the axisymmetrical border of
the map is seen.
The development of the invariants of the anisotropy tensor for geometries (c) and
(d) are presented in Figure 9.13. Again no significant difference can be observed
in the center of the ducts. The same holds for the behavior above the crest and
in the corner where in both ducts similar anisotropy levels are reached. For both
geometries, the one-component state is reached within the corner edge and a ten-
dency towards axisymmetry along the corner bisector is present.

In summary, the flow properties along the corner bisectors coincide with the
theoretically derived constraints for low energy dissipation in the flow. However,
the beneficial impact of the corners does not persist towards the crest regions. In
the following paragraph, an attempt is made to link the present local observations
in the stress field to global trends in the dissipative losses. From this analysis, the
potential of different corner shapes for the present goals, suppressing turbulent
dissipation and delaying the transition to turbulence, is assessed.

118



9.2 Design of novel duct geometries using corner effects

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

case (a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

case (b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2

II

III

wall

center

Figure 9.12: Trajectory through the anisotropy invariant map along the crest and
tip bisectors of cases (a) and (b). Left column and red color, crest
bisector; right column and blue color, tip bisector.
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Figure 9.13: Trajectory through the anisotropy invariant map along the crest and
tip bisectors of cases (c) and (d). Left column and red color, crest
bisector; right column and blue color, tip bisector.
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9.2.2 Impact on the dissipative losses in the flow

The effect of the observed local properties of the stress distribution on the dissi-
pative losses in the flow is discussed in this section. For this purpose, the present
results for the global frictional resistance of geometry (b) are first complemented
by experimental results available in the literature. Further, the production of ki-
netic energy in the cross section and the dissipation along the wall are used for
comparative analysis of all duct shapes. The potential of the individual corner
designs to interact with the dissipative nature of turbulence is assessed.
Schiller [105] investigated the flow resistance of geometry (b) experimentally up
to Reh = 40000. The experimental data together with the results from the simula-
tions in the present work are shown in Figure 9.14 where a satisfactory agreement
of the data is observed [25]. Besides the numerical result for Reh = 4500, an ad-
ditional simulation is performed at Reh = 10000. At the lower Reynolds number,
no significant deviation from the Blasius correlation is observed. Interestingly, a
least square fit shows that the data tend to progressively lie below the Blasius cor-
relation for increasing Reynolds numbers. At the same time, the entire dissipation
of the flow is known to be progressively dominated by turbulent dissipation if the
Reynolds number increases [76]. Thus, the observed decrease of the flow resis-
tance might be brought about by a reduction in the turbulent dissipation. In the
context of the previously discussed localized effects on the configuration of the
stresses, the data for the friction factor suggest that overall the beneficial effects
in corner regions prevail over the critical behavior above the crest.
A data set of the friction factor arising in the duct geometries (a), (c) and (d) at
increasing Reynolds numbers is not available. However, since the observations
made for the stress fields in the different ducts in general are similar to geome-
try (b), similar implications on the trend in the overall turbulent dissipation are
also expected.
Further investigations follow the physical model summarized in Figure 6.4. These
suggest, that reduced energy dissipation in turbulent flow is strongly related to low
production of kinetic energy of turbulence in the entire domain and low turbulent
dissipation, ε, at the wall and that these states are linked to high axisymmetry in
the stresses.
The trajectories in the anisotropy maps in Figures 9.12 and 9.13 have shown a
strong trend towards axisymmetry along the corner bisectors. This behavior is as-
sumed to be associated with a reduced production of kinetic energy of turbulence
at these positions. In Figure 9.16 the contour plot of Pk arising in geometry (b)
is shown where Pk is evaluated according to Equation (6.11). For comparison,
a contour plot of Pk arising in a cylindrical pipe at the same hydraulic Reynolds
number, Reh = 4500, is also presented. In this configuration, Pk ≈ 80 is the
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Figure 9.14: Friction factor f plotted over the hydraulic Reynolds number Reh for
geometry (b). The experimental data from Schiller [105] are shown
together with data from present DNS studies elaborated in collabo-
ration with Krieger [72]. A least squares fit of the data (dashed line)
and the Blasius correlation [106] (solid line) are included.

maximum that is reached in the wall region of the pipe. This value, as well as the
distribution of Pk, is in good agreement with findings from Eggels et al. [32] for
circular pipe flow at a similar Reynolds number. It can be seen, that the production
of kinetic energy of turbulence is lower within the corner regions of duct geom-
etry (b) than along the wall of the cylindrical pipe. Additionally, the magnitude
of Pk remains low when moving from the corner further towards the duct center.
Since the color scale used for the ducts is the same, Figure 9.15 also highlights
that Pk above the crest regions of geometry (b) is increased compared with the
maximum appearing in the cylindrical pipe. Clearly, this trend contrasts with the
beneficial effect observed in the corner region.
In Figure 9.16, the distribution of Pk in all of the novel designed ducts is consid-
ered. In general, the impression is similar for all shapes: The production of tur-
bulent kinetic energy is high above the crest region but this behavior marginally
affects the flow in the proximity of the corner bisectors. There, the self-sustaining
mechanism of turbulence can be assumed to be strongly damped. The chosen
color scales also demonstrate the maximum values of Pk for the individual ducts.
In this comparison, the maximum values of Pk above the crests are found to be
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Figure 9.15: Production of kinetic energy of turbulence, Pk, in the cross section
of duct (b) and a cylindrical pipe. Both calculations are run at Reh =

4500 and uτ resulting from the corresponding simulation is used for
normalization.

the smallest for duct geometry (c).
In Section 6.2, reaching the one-component state of the fluctuations, and thus
maximum anisotropy at the wall, was linked to the entire suppression of dis-
sipation originating from the fluctuating motion [66]. Thus, an increase in the
anisotropy at the wall was suggested to be correlated with reduced turbulent dis-
sipation. This trend is confirmed by literature data for wall-bounded flows in
Figure 6.2. The corresponding illustration is reconsidered and applied to the in-
terpretation of the results for non-circular duct flows. For this purpose, the first
available data arising at the corner and wall bisector of the square duct flow at
Reh = 10300 [58] are included, which agree fairly well with the extrapolated
trend in the plot. These data correspond to the extrema arising along the duct side
and highlight that the dissipation in the corner, where the stresses reach the one-
component state, is significantly decreased compared with the wall bisector.
The extrema in the anisotropy level that are reached on the crest (red color) and in
the corner (blue color) of the non-circular ducts studied in this section are also in-
dicated in the plot. For all geometries with acute corner edges, the one-component
state of the stresses is achieved in the corner. These geometries have corner angles
of 88◦ and 42◦. For a corner angle of 135◦ Lammers et al. [78] did not observe
this high level of anisotropy. Thus, the question still remains as to which angle
limits the possibility of reaching the one-component state in the corner.
Figure 9.17 also shows that (II)wall is significantly smaller above the crests. It is
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Figure 9.16: Production of kinetic energy of turbulence, Pk, in the duct cross sec-
tions (a)–(d). uτ resulting from the corresponding simulation is used
for normalization.

noted that the magnitude of anisotropy at these positions is also decreased com-
pared with the value evaluated for circular pipe flow at a similar Reynolds number,
where (II)wall = 0.37 [32]. In addition, the comparison of (II)wall reached above
the crests of the duct geometries (a)–(d) to the value arising for the wall bisector of
square duct flow can provide insights into the impact of the wall curvature on the
dissipation. Generally, ε+ depends on the Reynolds number. Thus, the anisotropy
level that is reached on the wall bisector of square duct flow at a similar Reynolds
number is also indicated in the plot (green line). This suggests that the dissipa-
tion above the crests of the ducts (a)–(d) is significantly higher than above the flat
wall of the square duct. Comparing the minima in (II)wall arising at the crests, the
lowest value is found for geometry (a) implying highest turbulent dissipation. In
contrast to the remaining geometries, the crest is not rounded in this case.
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Figure 9.17: Extension and application of Jovanović and Hillerbrand’s [67] illus-
tration of the turbulent dissipation rate at the wall versus the magni-
tude of anisotropy at the wall for analyses of non-circular duct flows.
The references for numerical data of (cylindrical) pipe, channel and
boundary layer flows are given in Figure 6.2. Additionally, the data
for the corner and wall bisector of square duct flow at Reh = 10300
from Huser and Biringen [58] are plotted and the anisotropy level on
the wall at Reh = 4405 is shown. The anisotropy levels at the wall
arising from the present novel duct geometries (a), (b), (c) and (d)
are also included: red color, crest bisector; blue color, corner bisec-
tor (compare also Figures 9.12 and 9.13).

The comparison of the extrema in the anisotropy levels reached at the duct walls
suggests that overall (II)wall is highest for the geometries with acute corner an-
gles and profiled sides, (c) and (d) and that this configuration of the stresses is
associated with the smallest turbulent dissipation. This connection approves these
geometries for the present attempt towards the design of duct geometries leading
to the laminarization of turbulent flow. Since the one-componentality in the ap-
parent stresses at the wall is also found to provoke the persistence of laminar flow
at high Reynolds numbers, these geometries are also suggested to have largest
potential for the delay of transition.
Previous analyses have considered the production of kinetic energy in the cross

125



9 Impact of duct corners on turbulent flow

section plane and the distribution of the turbulent dissipation at the wall. These as-
sessment criteria suggest that geometry (c) has the highest potential for the present
purposes, namely the reduction of turbulent dissipation and the delay of laminar
to turbulent transition. However, in general the impact of differently shaped cor-
ner and crest regions is similar and the flow is only affected locally in the required
manner. In the most beneficial case, turbulent dissipation would vanish across
the entire flow field leading to laminar flow, which is not observed in any case.
The numerical simulation of the laminarization process was not intended in the
present approach (see Figure 6.7), since it results in a large numerical effort for
the complex duct geometries being considered. However, it is felt that this fact
requires to be pointed out. It is discussed further in the next paragraph.

9.2.3 Destabilization of the mean velocity profile

Limits for flow laminarization

The results in the previous paragraph indicate that turbulent dissipation is locally
reduced in duct geometries, including corner regions. This behavior is initiated
by beneficial effects on the statistical properties of the flow in the proximity of
the corner bisectors that locally lead to flow states that are related to laminar flow.
However, since the flow is not entirely laminarized, an attempt is made to consider
restrictions for the process. The discussion is based on the instabilities induced
by inflectional velocity profiles that can be connected to the appearance of tur-
bulence sustaining dynamic processes in the flow. Velocity profiles appearing in
geometry (b) are studied in detail in this context.
The velocity field of turbulent wall-bounded flows is characterized by the instan-
taneous formation of coherent structures in the form of quasi streamwise vor-
tices [99]. The cross flow associated with these vortices transports slow mov-
ing fluid away from the wall leading to a region of reduced streamwise velocity,
which is typically referred to as low speed streak. The streaks have a character-
istic behavior, known as bursting. With increasing downstream distance, a streak
migrates away from the wall, which leads to the ejection of low-speed fluid in the
bulk flow. This process is found to be largely responsible for the maintenance of
turbulence in wall-bounded flows. At the same time, a vortex transports higher-
speed fluid from the bulk down towards the wall leading to so-called sweeps.
The appearance and dynamics of coherent structures in turbulent wall-bounded
flows have been studied extensively in the past. Numerous of these investiga-
tions deal with the interaction of the coherent structures with the stability of the
flow. In this context it was pointed out by Blackwelder [13] that the instantaneous
streamwise velocity profile over flat walls is typically characterized by inflection
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points. These inflection profiles are generally found in the wall-normal as well
as in spanwise direction [14]. Further, in experimental investigations Kline et
al. [70] observe that strong inflection profiles are a characteristic feature of the
bursting of streaks, which represents a prominent instability mechanism.
Holmes et al. [56] consider the particular appearance of the instantaneous stream-
wise velocity profile that is formed in connection with a streak. This profile is
expected to have an inflection point in the (x1, x2)-plane and two such points in
the (x1, x3)-plane, where x1 corresponds to the streamwise, x2 to the wall-normal
and x3 to the spanwise direction. The authors argue, that either the latter pair of
inflection points, or the former one, could be responsible for the instability, since
an inflectionary profile is inherently unstable. It is proposed that the growth rate
of the instability associated with the inflection points is dependent on the shear
rate at these points, ∂U1/∂x2 and ∂U1/∂x3.
In turbulent flow over a flat wall, the shear in the spanwise direction vanishes in
the temporally averaged velocity statistics. However, the instantaneous appear-
ance of coherent structures in the flow permanently induces shear and instability
in the flow in an instationary fashion. Surface structures, which are aligned with
the mean flow direction, additionally lead to variations of the temporally averaged
streamwise velocity profile in the spanwise direction. Thus, the presence of these
structures can be believed to permanently destabilize the flow. Despite the insta-
bility induced in the spanwise direction, the surface structures might also affect
the velocity profile in the wall-normal direction.
These ideas on the impact of surface structures on the mean velocity profile can
be transferred to the duct shapes studied previously. To do this, the corresponding
flow field is chosen to be compared with the flow properties in a circular pipe in
a cylindrical frame of reference. This coordinate system for a segment of geom-
etry (b) is indicated in Figure 9.18 together with variables that are used in the
following discussion.
In turbulent flow through a circular pipe, the mean streamwise velocity, Uz, is
a function of the radial position and does not vary in the circumferential direc-
tion. A different behavior is expected within the profiled duct shapes. The left
plot in Figure 9.19 shows the turbulent mean streamwise velocity profile along
circular arcs at different radial positions in geometry (b). The symbols for these
positions are chosen according to Figure 9.18 (left). When moving in the positive
radial direction, it can be observed that circumferential variations in the stream-
wise velocity strongly increase when the duct wall is approached. At the position
r/rb = 0.9 the variation is fairly small but becomes significant at r/rb = 0.99. The
strong variation is mainly due to the fast growth of the velocity above the valley
region (ϕ+ = 0) were similar values of Uz are reached at the considered radial dis-
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Figure 9.18: Segment of the cross section plane of geometry (b) with a cylindrical
coordinate system. Left sketch: investigated trajectories in circum-
ferential direction together with allocated symbols. Circular arcs at
the positions r/rb = 0.9 (square symbol), r/rb = 0.95 (circular sym-
bol) and r/rb = 0.99 (triangular symbol) are shown. B(r) denotes
the length of a circular arc. Right sketch: investigated trajectories in
the radial direction. Allocated symbols for the valley (circular sym-
bol) and crest bisector (triangular symbol) with the length Rb and rb,
respectively.

tances. The observed variation of the velocity in circumferential direction leads
to inflectional points in the profiles.
Before these points are considered in more detail, the development of Uz in radial
direction is also studied. For this purpose, the profiles along the corner and crest
bisector are compared in the right plot of Figure 9.19. Additionally, the velocity
profile arising in circular pipe flow at a similar Reynolds number is sketched [32].
The symbols which are used in the plot are introduced in Figure 9.18 (right). It
can be seen, that the deviation of the mean streamwise velocity profile along the
crest bisector from the profile arising in circular pipe flow is marginal. Thus, it
is concluded that no additional instability is introduced due to the modified duct
shape at this position. By contrast, the development of Uz along the corner bisec-
tor differs significantly from the behavior above the crest and inflection points can
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Figure 9.19: Streamwise mean velocity profiles, Uz, along circular arcs (left plot)
and along the bisectors (right plot) for turbulent flow at Reh = 4500
in geometry (b). The trajectories in the flow domain together with
the corresponding icon shapes were introduced in Figure 9.18. The
data are fitted using bezier curves (red lines). The velocity profile of
circular pipe flow at Reh = 5300 is also shown in the right plot (blue
line) [32].

clearly be identified in the profile.
However, the previously observed variations in the Reynolds stresses in the prox-
imity of the corner bisector towards statistical axisymmetry suggest a limited ef-
fect of the inflection velocity profile on the stability of the flow. In the statistical
frame, the relationship of gradients in the mean flow and the Reynolds stresses
determines the production of the kinetic energy of turbulence. In the cylindri-
cal frame of reference, Pk in the streamwise direction z is defined according to
Rotta [104] as

Pk = uzur
∂Uz

∂r
+ uzuϕ

∂Uz

∂ϕ
. (9.1)

The distribution of the magnitude of the shear stress components appearing in this
equation are shown in Figure 9.20. It is evident that very small values are reached
along the corner bisector. Thus, the production of turbulent kinetic energy is low
at this position, even if gradients in the mean velocity are present.
Thus, the inflectional points induced by variations of the velocity profile in the
circumferential direction are assumed to be more critical for the stability of the
present flow situations. According to Holmes et al. [56] the destabilizing effect
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Figure 9.20: Magnitude of the shear stress components uzur and uzuϕ, in the cross
section of duct (b). Reh = 4500.

can be further evaluated taking the shear at the inflection points into account. For
the flow case considered here, the instability induced at these points is suggested
to be associated with a number such as (∂Uz/∂ϕ) ν/u2

τ. For the calculation of ve-
locity derivatives in the circumferential direction, the velocity data in Figure 9.22
(left) are approximated by bezier curves. This procedure certainly includes some
inaccuracies. However, Figure 9.21 might serve for the discussion of major trends.
In general, the inflection point is found between the corner and the crest bisector.
The shear and therefore the instability associated with this point significantly in-
creases when moving in the positive radial direction. For the position closest to
the wall (r/rb = 0.99), the inflection point is found fairly close to the crest region
of the duct. At this position, statistical axisymmetry in the flow is not preserved
and turbulence is assumed to be amplified by the induced instability.
The present attempt towards the identification of restrictive mechanisms for flow
laminarization shows that variations of the mean streamwise velocity profile in
circumferential direction provoked by the duct shape might be critical in this re-
spect. The findings suggest that the position of inflection instabilities and the as-
sociated shear should be considered in future investigations aimed at the preferred
design of the duct shapes.
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Figure 9.21: Shear of the streamwise velocity profiles Uz in the circumferential
direction along circular arcs in geometry (b). The derivatives are
calculated from the fitted profiles in Figure 9.22 and symbols are
used accordingly. Reh = 4500.

Potential for the persistence of laminar flow

In Chapter 8 it was argued that the same statistical properties are associated with
the laminarization of turbulent flow and the persistence of laminar flow. It was
shown that corner regions in ducts can provoke the required statistical states in
both flow regimes. However, in the previous paragraph it was discussed that in-
flection instabilities might be a further parameter influencing the process of flow
laminarization. Similar indications exist for the persistence of laminar flow. The
impact of velocity profiles with inflection points on the stability of the laminar
boundary layer has been frequently studied in the past [106]. Recent investiga-
tions by Hof et al. [55] suggest that inflection points are also characteristic for the
laminar to turbulent transition process in the flow through a cylindrical pipe.
In general, the modified duct shapes are assumed to lead to inflection velocity pro-
files in the laminar and in the turbulent flow regime. However, since the velocity
distribution in the flow regimes is different, differences are also expected in the
destabilization of the flow.
Based on the findings for turbulent flow, the variations of the flow in the radial
direction are not believed to be critical in this respect and the following analyses
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concentrate on the development in circumferential direction. The profiles along
circular arcs at the radial positions, which were previously analysed in the tur-
bulent regime, are shown in the left plot in Figure 9.22. Owing to the physical
importance in the laminar regime, the data are normalized with the bulk velocity
Ub. In laminar flow of a given medium that is governed by the Poisson equa-
tion (5.4), scaling with Ub provokes the collapse of velocity distributions in a
certain duct geometry at different Reynolds numbers, as can be concluded from
White’s findings for viscous flow [114]. For the normalization of the spatial coor-
dinate, the length of the corresponding circular arc, B(r), is used (see Figure 9.18,
left). In order to compare the behaviour in both flow regimes, the mean stream-
wise velocity field arising in turbulent flow at Reh = 4500 in geometry (b) is also
normalized with Ub in the right plot of Figure 9.22. Clearly, the development of
the flow in circumferential direction is significantly smoother in laminar flow than
in turbulence. The difference in the profiles is based on the fact that in laminar
flow the velocity distribution is only governed by viscous effects leading to a less
rapid increase above the corner (ϕ/B = 0). In contrast to the observations made
for turbulent flow, the maximum value of Uz is different at all radial position in-
vestigated.
The differences in the velocity profiles in both flow regimes also indicate differ-
ences in the resulting shear at the inflection points. For the estimation of the shear
distribution, the fitted lines through the data in Figure 9.22 are used and the result
is shown in Figure 9.23. For the applied scaling, it can be observed that in general
the shear is significantly higher in turbulent than in laminar flow.
The previous analyses suggest that the instability in the velocity profile induced
by the duct shape is less in laminar flow than in turbulence. Thus, it can be con-
cluded that the delay of transition to turbulence due to appropriate shaping of the
ducts generally is easier to establish than the laminarization of turbulent flow. In
laminar flow, the potential to prevent disturbances in the flow from increasing can
be imagined to prevail over the low instability in the flow profile induced by span-
wise variations in the boundary.
The conclusions made for the destabilization of the flow due to the circumferential
shear rates of the turbulent and laminar flow in the duct can also be discussed in
the context of previous findings for surface structures aligned with the mean flow.
In general, it can be expected that surface structures are more likely to lead to
the delay of transition to turbulence than to laminarization of turbulent flow. This
conclusion is in agreement with experimental findings from Jovanović et al. [64]
for surface embedded grooves.
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Figure 9.22: Streamwise laminar and turbulent velocity profiles Uz and Uz along
circular arcs at the positions r/rb = 0.9 (square symbol), r/rb = 0.95
(circular symbol) and r/rb = 0.99 (triangular symbol) in geometry
(b). The circular arcs are given in Figure 9.18. Left plot: turbulent
flow at Reh = 4500. Right plot: laminar flow at Reh = 4500. The data
are fitted (red lines) using polynomial functions and bezier curves,
respectively.
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Figure 9.23: Shear of the laminar and turbulent streamwise velocity profiles Uz

and Uz in the circumferential direction in geometry (b). The data are
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are calculated from the fitted profiles in Figure 9.22 and symbols are
used accordingly. Reh = 4500.
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10 Quantification of potential energy
savings

This work aims at providing solutions for the optimization task formulated in Sec-
tion 4.4. The reduction of the energy dissipation associated with a given flow rate
is intended to be induced by changes in the cross section shape of internal flow
domains. Equation (4.10) suggests that the pumping power can be used to quan-
tify possible energy savings, which are of interest in this context.
In Chapter 5, losses appearing in laminar flow were discussed. Since the pressure
difference along the length of the flow domain, ∆P/l, resulting from a given vol-
ume flow rate, V̇ , is analytically shown to be minimal in a pipe with a circular
cross section, the same conclusion follows for the pumping power [107].
At higher Reynolds numbers, for which the flow changes to the turbulent state, the
situation is more complex: the circular pipe can no longer be proven to be optimal
and corner regions in ducts are suggested to be a beneficial influence on the flow.
In Section 9.2, the impact of various corner designs on the physical properties of
the turbulent velocity field at Reh = 4500 were investigated. These flows will now
be reconsidered under the present energetic aspect. The geometries are labeled as
given in Figure 9.6, namely as (a)–(d).
In Figure 9.14, experimental and numerical values for the friction factor, f , aris-
ing in duct (b) are plotted together with the estimated development based on the
Blasius correlation (4.5), fBlasius. The plot can be interpreted as comparison of the
friction behavior of the non-circular duct with that of a cylindrical pipe having the
same hydraulic diameter (4.6). For the presently considered hydraulic Reynolds
number, no significant deviation in the friction factor was observed. The compar-
ison can also be made for the remaining duct shapes and the results for

∆ f = 1 −
f

fBlasius
(10.1)

are summarized in Table 10.1. Clearly, a reduction of the dimensionless friction
factor can only be observed for geometry (d), which consists of very narrow cor-
ner regions. This result is in agreement with findings for triangular ducts, where
only those having small apex angles lead to a deviation from the Blasius correla-
tion (see Figure 9.1).
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Table 10.1: Comparison of the friction factor and the pumping power resulting
from turbulent flow in the non-circular ducts (a)–(d) at Reh = 4500
with circular pipe flow. The duct shapes are referenced according to
Figure 9.6.

case ∆ f [%] ∆PP [%]

(a) ≈ 0 -31
(b) ≈ 0 -28
(c) ≈ 0 -15
(d) 15 -22

These considerations for the friction factor are based on the comparison of flows
having the same hydraulic Reynolds number. It is fixed by keeping UbDh con-
stant. Consequently, the flow rates through these ducts are different. For the
estimation of possible energy savings arising from corner regions, the pumping
power that needs to be applied to transport a fluid through a non-circular duct
will be compared with the pumping power that is necessary to transport this fluid
with the same volume flow rate through a cylindrical pipe. For this purpose, the
length scale Dm is introduced, which denotes the diameter of a circular-shaped
pipe having the same cross section area, Acs, as the modified duct:

Dm = 2
(Acs

π

)1/2

. (10.2)

Using the factor Dm/Dh, which depends on the non-circular duct shape consid-
ered and is always positive, the previously introduced friction factors can be used
together with the relationships given in Equations (4.3) and (4.10) to evaluate
differences in the pumping power:

∆PP = 1 −
PP, (a)−(d), turbulent

PP, circular, turbulent
= 1 −

f
fBlasius

(
Dm

Dh

)5/4

with
Dm

Dh
=

C

2 (Acs π)1/2 , (10.3)

where C is the perimeter of the non-circular duct. According to this relationship,
the pumping power resulting from turbulent flow through each duct geometry (a)–
(d) is significantly increased compared with the cylindrical pipe leading to nega-
tive values for ∆PP (see Table 10.1).
It should be noted that for turbulent flow in case (b) a progressive trend in f to
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lie below the Blasius correlation for increasing Reynolds numbers was observed
in Figure 9.14. Extrapolating this tendency, a positive result for ∆PP and thus
a reduction of the pumping power compared with the cylindrical pipe might be
possible for very high Reynolds numbers, namely beyond Reh = 170000.
The investigation of physical properties in the turbulent velocity field in Sec-
tion 9.2 suggested that the proposed modified duct shapes have potential to en-
sure laminar flow under conditions where it can be expected to be turbulent in
the cylindrical pipe. In the simulations discussed earlier, the flow is initially sig-
nificantly disturbed. For less disturbed conditions, direct numerical simulations
performed by Krieger [72] indicate that a pipe bounded by a wavy contour (see
geometry (b) in Figure 9.6) leads to laminar flow for certain initial conditions,
which are found to result in turbulent flow in a cylindrical pipe [72]. In this com-
parison the hydraulic Reynolds number is fixed to Reh = 4950. The friction law
for laminar flow in geometry (b) evaluates to f = 48/Reh. Figure 10.1 shows
that the friction factor of the laminar flow is significantly lowered compared with
the turbulent case, namely by 75%. Similar to previous analysis, the set-up used
in the simulations leads to different volume flow rates through the pipes with the
various cross section shapes. Therefore, the reduction of the friction and, conclu-
sively, the pressure drop at a fixed hydraulic Reynolds number due to geometrical
modifications does not necessarily lead to benefits in the pumping power.
The evaluation of benefits in the pumping power due to the persistence of laminar
flow in modified ducts is essential in order to evaluate the practical relevance of
the proposed flow control strategy. Its calculation will be demonstrated next. The
friction factor of a laminar, fully developed flow through a straight duct can gen-
erally be expressed by f = a/Reh (4.7), where the value of a depends on the cross
section shape of the duct [106]. Following Equation (10.3), the pumping power
can again be evaluated based on the relationship of f / fBlasius:

∆PP = 1 −
PP, (a)−(d), laminar

PP, circular, turbulent
= 1 −

f
fBlasius

(
Dm

Dh

)5/4

=

= 1 −
a

0.316 Re3/4
h

(
Dm

Dh

)5/4

with
Dm

Dh
=

C

2 (Acs π)1/2 . (10.4)

The use of Dm corresponds to the evaluation of f at a Reynolds number at which
the volume flow rate through the cylindrical pipe is equal to that in the non-circular
duct. The difference in the friction factor at this Reynolds number is proportional
to ∆PP and is illustrated in Figure 10.2 as ∆ f ∗. Obviously, the benefit in the
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Figure 10.1: Numerical results for the friction factor f arising for geometry (b)
and the cylindrical pipe at Reh = 4950. The same initial condi-
tions are used for the simulations [72]. The laminar friction law,
f = 48/Reh, for the flow through geometry (b) and the Blasius cor-
relation [106] are included.

pumping power is significant if the flow stays laminar.
According to Equation (10.4), the possibility to reduce the pumping power due to
ensuring laminar flow in modified ducts depends on the duct shape, represented by
a characteristic value of a and Dm/Dh, and on the hydraulic Reynolds number. Us-
ing the proposed procedure, the benefit in the pumping power for different pipes
can be quantified. The results at the Reynolds number considered by Krieger,
Reh = 4950, together with the individual laminar friction laws are summarized in
Table 10.2. It is evident that the possible gain in the pumping power is large for
all duct geometries considered.
Figure 10.2 illustrates that the difference in the friction factor and the pumping
power due to the persistence of laminar flow in the modified duct geometry in-
creases with increasing Reynolds number. From the dependence of f on Reh, it
can be seen that the friction factor f in the laminar regime is lower than in tur-
bulence for the entire range of Reynolds numbers where the flow might reach the
turbulent state, i.e., Reh > 2300. In contrast, for ∆ f ∗, and consequently for ∆PP, a
similar universal statement cannot be directly extracted from the plot. The border
for the hydraulic Reynolds number to achieve reduction of the pumping power
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Figure 10.2: Reduction in the friction factor for laminar flow in geometry (b) at
Reh = 4950 compared with turbulent flow in the cylindrical pipe.
For the evaluation of ∆ f ∗ the two pipes have the same cross section
area. ∆ f ∗ is proportional to the differences in the pumping power.
The hydraulic Reynolds number that has to be reached in order to
reduce PP is also indicated. Numerical results from Krieger [72],
the laminar friction law for the flow through geometry (b) and the
Blasius correlation [106] are included.

compared with turbulent flow in a cylindrical pipe gives rise to

Reh >

(
Dm

Dh

)5/3 ( a
0.316

)4/3
with

Dm

Dh
=

C

2 (Aπ)1/2 . (10.5)

The previous equation is again derived for equal volume flow rates in the ducts.
The limiting values for Reh evaluated for the different ducts are summarized in
Table 10.2. They are below the critical value after which transition to turbulence
is expected, which is illustrated as an example for geometry (b) in Figure 10.2.
These results indicate that the delay of the transition to turbulence due to similar
modifications of the duct geometry, as considered here, will lead to benefits in
the pumping power in the entire Reynolds number range in which the flow in the
cylindrical pipe can be expected to be turbulent.
The high energy savings which result from the proposed flow control technique
might be attractive for various application areas: the transport of fluid in pipe sys-
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Table 10.2: Friction laws for laminar flow in the non-circular ducts presented in
Figure 9.6, possible reduction of the pumping power at Reh = 4950
compared with turbulent flow in a cylindrical pipe and the Reynolds
number that has to be reached in order to obtain a reduction in the
pumping power.

case flaminar ∆PP [%] Reh limit

(a) 48/Reh 63 1180
(b) 48/Reh 65 1220
(c) 54/Reh 64 1160
(d) 40/Reh 67 1040

tems is ubiquitous in many industrial and civil areas. Notable examples are found
in the chemical industry and in public water supplies. In the context of the aimed
practical application of ducts with non-circular cross section shape it should be
noted that the manufacturing of these ducts can be expected to be accompanied
by increased costs. The costs, together with possible novel manufacturing tech-
niques, have to be carefully considered. However, these costs only have to be
accounted for once. The possible positive economics of the permanent operation
of pipe systems are significant and can be expected to overcome the additional
effort that is necessary for the installation.
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An investigation into the resistance of laminar and turbulent flows was undertaken
in the present work. In this context, stationary and fully developed flows through
straight ducts are considered, the entire dissipation of which can be balanced by
friction forces acting on the wall. Physical models are developed that theoreti-
cally can lead to reduction of the energy dissipated by the fluid motion and thus
potentially provide energy savings. An attempt is made to establish the relevant
mechanisms due to the appropriate design of internal flow domains.
In a laminar regime, the flow is solely governed by viscous effects and the cylin-
drical pipe can be proven to minimize the energy dissipation per volume flow
rate [107]. The optimality conditions of the pure circular cross section shape are
accompanied by the fact that they minimize the wetted perimeter compared with
the cross section area. In contrast, if the height of the flow domain is restricted
and channel flow is considered, unstructured walls are no longer optimal. Despite
the increase in the wetted surface, wall structures that are wide compared with
their height are shown to reduce the overall friction losses substantially. These
results highlight the major impact of variations in the channel height on the flow
resistance and suggest that using the available installation space in this respect has
high potential for energy savings in practical applications.
If the Reynolds number increases and the flow turns to the turbulent state, the
energy dissipated by the fluid motion increase significantly. Thus, ensuring the
laminar flow regime under conditions at which the flow is typically found to be
turbulent has a large potential for decreasing the flow resistance.
The application of statistical tools enables the derivation of related transport equa-
tions for transitional and turbulent flow [67, 103]. From this description of the
flow it is found that provoking axisymmetry in the stresses leads to suppression of
the dissipation originating from the fluctuating motion, and thus this is a common
goal for the delay of transition to turbulence and flow laminarization [65, 66]. The
potential of modifications to duct cross section shapes to provoke the theoretically
suggested mechanism is investigated in direct numerical simulations.
In this context, coexisting laminar and turbulent regions appearing in narrow cor-
ner areas of ducts are studied. Examination of the statistical properties of the flow
shows that the stability of the laminar flow region and the process of flow lami-
narization obey the theoretically derived mechanism. Corner regions in ducts are
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shown to provoke the intended tendency towards axisymmetry.
Further, the coexistence of laminar and turbulent flows allows the investigation of
the transition between the flow states. Based on the statistical description of the
flow, an attempt is made to contribute to the general understanding of this pro-
cess, which is of considerable scientific interest. The breakdown to turbulence is
observed to be associated with a decrease in the anisotropy and axisymmetry in
the stress tensor. This finding for the transition within the cross section plane of
non-circular ducts could be discussed further and possibly generalized in connec-
tion with the transition process arising in, for example, a cylindrical pipe or flat
plate boundary layer flow.
The impact of corner regions on the statistical properties of turbulent flow is inves-
tigated further. In order to do so, duct cross section shapes composed of multiple
corner regions are developed. To extend the axisymmetrical state of the stresses
to a large part of the flow, the scale of the corresponding wall structures is signif-
icantly increased compared with that proposed for example for riblets, which are
known to mainly act in the near-wall region [21]. The design of the corner and
crest regions is varied within the investigation. In general, a tendency towards
axisymmetry is observed in the proximity of the corner bisector, which causes
vanishing turbulent dissipation but a deviation from this state is present above
the crest. However, experimental results in the literature [105] suggest that the
beneficial effect arising from corners prevails and this type of duct geometries
is recommended being considered for the present purposes. This investigation
shows that acute corner angles and profiled connecting walls optimize the overall
behavior. Future numerical work might further consider the preferred shaping of
ducts in investigating the limiting angle in the corner that is necessary to provoke
axisymmetry in the stresses. Since acute corners in internal flow domains are dif-
ficult to manufacture, this fact is of importance for the practical implementation
of the described method for friction drag reduction.
In general, the theoretical analysis together with the findings for the coexisting
laminar and turbulent flow fields indicate that the same properties in the stresses
lead to laminarization and delay of transition, suggesting that the novel ducts are
suitable for both objectives. However, on further investigation of the mean flow
field in these ducts, it is found that the benefits due to the axisymmetrical state of
the stresses in the corner regions might be partially compensated. The considered
duct geometries induce inflection instabilities in the mean velocity profile in the
circumferential direction. Comparison of the inflection instability in a laminar
and turbulent velocity profile indicates that persistence of laminar flow is more
likely to be achieved than laminarization of turbulent flow. This argument is in
agreement with previous observations on the influence of surface morphology in
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the form of surface embedded grooves on transitional and turbulent flow [40, 64].
Crest regions in the form of smooth curvatures are assumed to limit the amount of
instability and should be further considered for the improvement of passive con-
trol methods.
Based on the findings for particular duct geometries, it is concluded that the cylin-
drical pipe might not be optimal if higher Reynolds numbers are considered: cor-
ner regions have the potential to ensure laminar flow where the breakdown to
turbulence is expected in a pipe with a circular cross section. The related energy
savings are quantified and found to be substantially high, supporting the modified
duct shapes for numerous practical applications.
In order to explore the efficiency of ducts that include corner regions in practice,
their stabilizing effect has to be further assessed. For this purpose, experimental
investigations are proposed. Suitable pipes are already available commercially
(e.g., Mendener Präzisionsrohr GmbH [1]). In these experiments, the impact of
different initial conditions on the possibility for laminar flow to persist can be
tested. These conditions, together with the Reynolds number under which the
experiments are run, will be initiated from the boundary conditions found in prac-
tice.
Besides investigating the physical mechanisms in the flow field that foster or limit
the potential for ensuring laminar flow, the impact of the present duct shapes on
the dissipation in the turbulent regime is analysed. At the relatively low Reynolds
number that is considered, the beneficial effects arising from the corners do not
overcome the increase in the wetted perimeter and the energy that has to be ap-
plied in order to transport the flow is increased compared with the cylindrical
pipe. However, results for higher Reynolds numbers suggest that the modification
of the flow initiated by the cross section shape leads to an overall decrease in the
turbulent dissipation, which continues to prevail the entire dissipation [76, 105].
Thus, the present type of configurations might have potential for energy savings
in the high Reynolds number range that is important in practice, and which is
reached, for example, in water supply pipelines, even if the flow cannot be kept in
the laminar state.
For future work, the continuation of investigations on the impact of the duct ge-
ometry on turbulent flow is proposed. Experimental investigations should tackle
the verification and possible extension of the discussed trend in the friction losses
for high Reynolds numbers, which can not really be reached numerically. Addi-
tionally, the direct estimation of the turbulent dissipation within the cross section
shape is of interest. In particular, its comparison for different Reynolds numbers
and various cross section designs might support the physical understanding of tur-
bulent drag reduction and lead to further optimization of cross section shapes in
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this respect. However, the calculation of the turbulent dissipation is expected to be
a challenging issue for the numerical procedure applied within the present work.
It can be assumed that the non-orthogonal nature of a polyhedral mesh influences
the evaluation of the required gradients in the fluctuating field in a critical man-
ner. Certainly, a carefully extended validation study is necessary, including the
computation and balancing of all terms in the transport equation for the Reynolds
stresses.
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Nomenclature

All indices used (i, j, k,...) run from 1-3. The superscript “+” indicates that the
quantity is normalized with the wall shear velocity uτ and the kinematic viscos-
ity ν.

Latin letters

upper case

symbol SI unit description

II, III - scalar invariants of the anisotropy tensor ai j

A - measure for axisymmetry
B - constant, B ' 5.2
B(ϕ) m length of circular arc
Acs m2 cross section area
Aw m2 lateral surface
C m perimeter
Co - Courant number
Dm m diameter of circular pipe
Dh m hydraulic diameter
Eu - Euler number
F, G - scalar functions
H m duct height
2L m mean channel height
Lx1 m streamwise extension of the low domain
P kg/(s2 m) instantaneous pressure
P′ kg/(s2 m) time averaged pressure of laminar base flow

P kg/(s2 m) time averaged pressure of turbulent flow field
∆P kg/(s2 m) pressure difference between outlet and inlet
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Nomenclature

Pk m2/(s3) production of kinetic energy of turbulence
PP kg/(s2 m) pumping power
Rb m length of corner bisector
Rλ - turbulent Reynolds number
Re - Reynolds number
Reh - hydraulic Reynolds number
Reτ - friction Reynolds number
S t - Strouhal number
Ui m/s instantaneous flow velocity
U′i m/s time averaged velocity of laminar base flow

U i m/s time averaged velocity of turbulent flow field
Ub m/s bulk flow velocity
Uz m/s laminar streamwise velocity

Uz m/s time averaged turbulent streamwise velocity
V m3 volume of the flow domain
V̇ m3/s flow rate

lower case

symbol SI unit description

a, b m variables describing structure geometry
a1, a2 - coefficients of Taylor series expansion
ai j - anisotropy tensor
b1, b2 - coefficients of Taylor series expansion
c1, c2 - coefficients of Taylor series expansion
f - friction factor
f s−1 frequency
fi m/s2 acceleration
fK s−1 Kolmogorov frequency scale
k=q2/2 m2/s2 kinetic energy of turbulence
2l m channel width
p kg/(s2 m) instantaneous turbulent pressure fluctuation
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Nomenclature

p′ kg/(s2 m) instantaneous pressure disturbance
rb m length of wall/crest bisector
s m spacing of riblets
t s time
uτ m/s wall shear velocity
ui m/s instantaneous turbulent velocity fluctuation
ui,rms m/s root mean square of the velocity fluctuations
ui,rms m/s root mean square of the velocity disturbances
u′i m/s instantaneous velocity disturbance
uiu j m2/s2 Reynolds stresses

u′iu
′
j m2/s2 apparent stresses

uK m/s Kolmogorov velocity scale
xi m Cartesian coordinates
z, r, ϕ m Cylindrical coordinates
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Nomenclature

Greek letters

upper case

symbol SI unit description

Φ m2/s3 dissipation per unit mass and time
〈Φ〉 kg m2/s3 entire dissipation rate of the working fluid

lower case

symbol SI unit description

α ◦ corner angle
δi j - Kronecker delta
δ m channel half height, pipe radius
ε m2/s3 turbulent dissipation
εd m2/s3 direct dissipation
ηK m Kolmogorov length scale
κ - constant, κ ' 0.41
κ m−1 wave number
λi - unit vector
µ kg/(m s) dynamic viscosity of the fluid
ν m2/s kinematic viscosity of the fluid
ρ kg/m3 density of the fluid
τik kg/(m s2) stress tensor
τw kg/(m s2) wall shear stress
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Nomenclature

Abbreviations

symbol description

DNS Direct Numerical Simulation
DR Drag Reduction
DRA Drag Reducing Additive
hex hexahedral
PISO Pressure Induced with Splitting of Operator
poly polyhedral
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Table A.1: Drag reduction in channel flow due to wide surface structures: Com-
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cording to the model of Bahrami [9], numerical results and results from
Pironneau and Arumugam [98].

a/(a + b) l/L model numerical result in l/b

result result literature [98]

1 9.4 ∼50% – 50% ∞

1 4.2 41% – 38% ∞

0.95 8.3 ∼48% 50% – 100
0.91 4.2 32% 33% – 25
0.74 8.3 ∼28% 30% – 20
0.74 4.2 18% 8.5% – 7.1
0.67 7.1 22% 23% – 14
0.59 8.3 ∼15% 16% – 14
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