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Chapter 1

Introduction

Nothing tends so much to the advancement of knowledge as the application
of a new instrument. The native intellectual powers of men in different

times are not so much the causes of the different success of their labours, as
the peculiar nature of the means and artificial resources in their possession.

Sir Humphry Davy (1778-1829)[1]

This work is on the topic of electronic transport in nanodevices using numer-
ical techniques, targeting advancements in electronic circuitry. Within this
research area, the thesis pursues two routes. On the one hand the author
uses already existing computational ’instruments’ at the frontier of research
on electronic devices, where the theoretical understanding of an electric cur-
rent asymmetry in certain types of molecules is improved [2]. This improve-
ment is achieved via simulation of isolated effects which can not be separated
experimentally. On the other hand limitations of these ’instruments’ are at-
tacked, resulting in new tools with a broadened scope of application [3]. Thus
the ’artificial resources’ available are improved, enabling new insights to be
gained and new discoveries to be made, in the spirit of Sir Humphry Davy.

The story of electronic circuitry started when Frederick Guthrie discove-
red the first one-directional current flow in 1873. He observed the discharging
of a positively charged electroscope when a glowing, electrically grounded
metal was brought nearby, while negatively charged electroscopes did not
discharge. This effect is nowadays called Edison effect and led to the deve-
lopment of vacuum tube diodes. In the following year, Karl Ferdinand Braun
discovered the ’dependence of electric conductance upon the direction of the
current’ – which will be called in short ’rectification’ within the scope of this
thesis – in a semiconductor coupled to a metallic wire [4]. This discovery
paved the way for semiconductor based diodes.
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Frederick Guthrie

After the Edison-Richardson-effect was redis-
covered by Thomas Edison in 1880, electronic cir-
cuits became prominent, e.g. for use in the ’first
automatic electronic computer’ in 1942 [5]. Since
then, there has been huge progress in electronic
circuitry due to advances in the construction of
semiconducting elements such as diodes and tran-
sistors. The first microprocessor was presented in
1971 by Intel. It had 2300 transistors on a 3 × 4
mm area, with each transistor having a length
of 10µm. Nowadays the size of single parts of
circuits has been reduced to a remarkeably small
scale with the prospect of a further reduction in
size. For example the graphics chip ’Hawaii’ pro-
duced by the enterprise ’Radeon’ in 2013 contains
6.2 million transistors with a length of 28 nm on an area of 438 mm2, hence
the linear size of the transistors has been reduced by roughly a factor of thou-
sand over 40 years. While today’s semiconducting electronic elements span
over a length of the order of one hundred atom radii, the next big step, which
might be the production of electronic devices of a different kind, will lead
to sizes of the order of only a few atoms. There is already ongoing research
on devices consisting of single molecules [6, 7]. In these devices rectifica-
tion effects have been predicted and experimentally confirmed. However, the
mechanisms causing this rectification are yet to be fully understood. It is
unclear whether the originally proposed mechanism is the cause and even
whether it contributes at all. The controversy is challenging to solve ex-
perimentally, because elements of the mechanisms are difficult to separate
physically, so one cannot rule out contributions from any of them. The au-
thor contributes to the discussion by artificially separating the elements in
his simulations and testing them for their ability to cause the observed effect,
as well as proposing a new mechanism [2].

On the mesoscopic scales and nanoscales of devices encountered in in-
dustrial production and research quantum mechanical effects influence the
electric currents significantly. Thus one needs to check the devices for their
electronic properties. This is done in environments where such a device is
separately coupled to a source and drain via two leads. There, the electrical
current in response to applied voltages between source and drain is studied.
Theoretical analysis guides the experiments on the search for suitable devices
with the requested properties. However, the systems are still too big to solve
the full quantum mechanical problem exactly.

So in order to study the influence of quantum effects on the electric cur-
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CHAPTER 1. INTRODUCTION

rents running through nanodevices theoretically, different approaches have
been developed. Beyond the Born-Oppenheimer approximation of station-
ary cores and mobile electrons people reduced the full interaction to sets
of interactions relevant for the effects they wanted to study. Within the
resulting models Landauer [8, 9] and Büttiker [10] developed a formalism
to analytically calculate the direct currents through extended structures of
arbitrary shape.

Scanning transmission electron mi-
croscopy image of a Pt/ZnO nanonee-
dle shottky diode, published in
Ref. [11]. The contrast is directly
related to the atomic number (Z-
contrast).

Their work builds upon time-
dependent scattering theory intro-
duced by Lippmann and Schwin-
ger [12]. However interactions may
only appear implicitly within their
approach. This is valid for ex-
tended metallic devices where in-
teractions are screened by elec-
trons and charge carriers therefore
act like free, interactionless par-
ticles. For small devices the ef-
fective dimensionality reduces and
screening gets weaker, hence inter-
actions play a greater role. Meir
and Wingreen formally solved this
problem in 1993 [13]. In practice,
their solution often has to be ap-
plied in perturbation theory. The
resulting current is expanded in
some small parameter which con-
nects the system under considera-
tion to one of the few exactly solvable systems. This confines the set of
models one can investigate suggesting the application of complementary ap-
proaches.This work is based on such an approach in the form of numerical me-
thods. With increasing computational power available numerical simulations
have become important. They allow to investigate the systems in different
parameter regimes and allow for either independent crosschecks with ana-
lytical predictions or comparisons between predictions made from assumed
models and experiments where the analytical methods fail. An example for
the latter case is the author’s work on rectifying molecules [2].

The most important methods that were developed in this context are the
density functional theory (DFT) [14, 15], quantum monte carlo (QMC) [16,
17, 18, 19, 20, 21, 22] and numerical renormalization group (NRG) [23],
which has later been generalized to the density matrix renormalization group
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(DMRG) [24]. The latter algorithm is tailor-made for one-dimensional prob-
lems and is therefore the method chosen in this thesis regarding current
measurement setups on small devices. It started as a means to study ground
state properties in 1992, was modified in a first attempt to account for time
evolution in 2002 [25] and was used for wave packet dynamics in 2004 [26].
The first conductance calculations using DMRG variants were published in
2006 [27, 28].

An integrated elec-
tronic circuit.

Of course, these methods still have their short-
comings. For the DMRG, one problem in the con-
text of this work is that of the simulation of suf-
ficiently large baths acting as source and drain
due to limitations in storage and computational
power. As a result, the steady states one encoun-
ters in experiments are only reproduced in very
rough approximations. Therefore there is an un-
certainty in theoretical predictions on the current
measured in steady states. A solution to this is
provided by the author [3] by introducing a new
type of drain through energetic damping. It is shown within this thesis that
this indeed produces steady states even for very small system sizes. Also,
so far the traditional algorithm has only been applicable in static cases.
Within this work the algorithm is extended to simulation of dynamic con-
ditions. To achieve this, a time-dependent exponential perturbation theory
is used. Amongst other advantages this allows for time-dependent driving
of systems, alternating current measurements and studies of the interaction
with photons or adiabatic boundary conditions when switching on currents
very slowly. The results of this new algorithm are crosschecked using the
required independence of the result from the choice of source type, voltage
or current source. The reason for the good quality of the approximation is
subsequently discussed.

To summarize, the work of the author contributes to the understanding
of the basic electronic nanoelements both via numerical studies on properties
required for such elements, and via providing tools which help with the study
of nanodevices. Hopefully, this will ultimately lead to similar success stories
as the discovery and understanding of the macroscopic counterparts of these
devices.

This thesis is organized as follows: In chapter 2 the notation used in
this thesis is introduced. Experiments on electric current measurements are
discussed. The simplifications made by the modeling of the measurement
setups are explained. Subsequent to this it is outlined how to simulate the
process of the measurement within the modeled setup. In chapter 3 the
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CHAPTER 1. INTRODUCTION

numerical techniques used in the framework of this work are presented and
explained. The presentation starts with an approach to treat noninteract-
ing systems in a single particle picture in order to diagonalize them exactly.
Then the ideas behind the different DMRG variants used in the context of
this work and provided by Peter Schmitteckert are restated. The parser of
these DMRG tools is also included within the author’s implementation of
the approach on noninteracting systems in order to allow the handling of
common input files. In the chapters 4–6 results on the author’s work are
presented. In chapter 4 the interest in simple models of molecular rectifiers
is motivated. Then models of proposed mechanisms are revisited and they
are tested for their ability to cause rectification. The chapter continues with
the presentation of a new ingredient for rectification embedded in another
simple model and of its potential to be physically relevant. Chapter 4 fin-
ishes with a simulation of a bridge rectifier as a first device built on the
proposed rectification effect. Chapter 5 reports on the author’s implementa-
tion of time-dependent exponential perturbation theory which allows for fully
time-dependent Hamiltonians. First the reader is reminded of the basics of
time-dependent exponential perturbation theory. Then the terms needed for
a quality check of the implementation up to second order in the perturbation
are calculated. Using the results of the quality check it is shown that terms
of second order and beyond can be neglected in the calculation. An appli-
cation of this in form of different shapes of an adiabatic current switch-on
is discussed. Chapter 6 is about the author’s work on steady state current
simulations in finite one-dimensional systems. After an illustration of the
problem, the idea is imparted and results are shown for a toy model which
is used to test the proposal. Finally, conclusions are presented in chapter 7.
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Chapter 2

Modeling the experiment

The purpose of theoretical studies and simulations is to make predictions
for experiments or to explain the outcome and gain understanding of ex-
periments. Therefore, the experimental situation needs to be mapped to a
mathematical model which keeps only the key properties determining the
experimental result while neglecting the unimportant details. In this work
the situation for transport experiments through nanostructures is simulated
and studied. To be more precise, the experimental setups under regard con-
sist of a left and a right lead attached to two separate baths. The leads are
coupled to a structure whose transport properties are to be investigated. In
Sec. 2.2 three examples for this class of experimental setups are discussed.
The aim of this chapter is to lead the reader on the route from the mentioned
experiments, via the process of mapping the experiments, to the theoretical
models and the simulations. The basic assumptions are given in Sec. 2.1 as
a starting point. Then the general setting for the mentioned class of expe-
riments is translated into a specific class of models in Sec. 2.2. Also some
time is devoted revisiting the most basic model of that class, motivated by
the ambition to keep models as simple as possible while still reproducing the
desired effects. This ambition suggests that the models used will be close to
this minimal model.

In Sec. 2.3 the attempt to replicate the processes happening during the
measurement is explained. The explanation includes the definition of the
theoretical quantity ’electrical current’ which is calculated during the sim-
ulation as well as a guide to its extraction from simulation. The quantity
that is calculated in theory and simulations is also compared to the quantity
measured in experiment, and differences are commented on.

7



2.1. THE BASIC ASSUMPTIONS AND NOTATION IN THIS WORK

2.1 The basic assumptions and notation in

this work

The experiments discussed in this thesis take place on the scale of a few
nanometres, see the experiments discussed in Sec. 2.2. This fact necessitates
the use of quantum mechanics to describe the outcome of such experiments.
Therefore the language of second quantization is applied in the scope of this
work. The creation and annihilation operators are denoted by ĉ†x and ĉx with
lower indices containing information like position, energy band, momentum,
spin and so on.

The quantity of interest is the expectation value of the measurement.
The calculated current expectation values are often referred to as ’resulting
currents’ for convenience. The experimental setups are assumed to consist
of two baths at different chemical potentials with two leads attached, which
are connected to a structure at the quench at time t = 0. The two baths are
considered to be at their respective equilibrium at zero temperature before
they are connected via leads and structure, meaning that the leads are sim-
ulated starting from their respective ground states. It is assumed that the
systems consisting of the two leads and the structure are closed, meaning
that pure states |Ψ 〉 are simulated. The influence of baths on the system
is either neglected or incorporated into properties of the Hamiltonian Ĥ of
the system. Also only the conduction band is simulated, and only the fully
polarized limit is considered, i.e. the spin is neglected. The electrical charge
defined as 〈

Q̂
〉

= −e
M
2∑

x′=−M
2

〈
ĉ†x′ ĉx′

〉
, (2.1)

where M is the system size and e is the absolute value of the electron charge,
is conserved in the simulations.

The connecting area between structure and leads is supposed to be small,
kFa� 1, with a the diameter of the area. Therefore the systems are treated
as one-dimensional, see the discussion in Sec. 2.2. Although one-dimensional
systems in general show Luttinger liquid behaviour [29], a Fermi liquid lan-
guage [30, 31, 32, 33] is used throughout this thesis, i.e. the annihilation and
creation operators obey Fermi statistics.

Energies are given relative to the Fermi energy of a system without exter-
nal voltage applied and at half filling. Systems are considered to be at half
filling unless stated otherwise. The electrochemical potentials are refered to
as chemical potentials throughout this thesis, and an inclusion of electrostatic
potentials in the definition of the chemical potential is implied.
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CHAPTER 2. MODELING THE EXPERIMENT

(a) Sketch of the setup.

(b) Scanning tunneling microscope pic-
ture.

Figure 2.1: Field effect transistor built of a carbon nanotube, taken from
Ref. [34]. The nanotube is put on an insulator and attached to two leads
connected to two electron reservoirs, a source and a drain. The gate voltage
of the transistor is denoted by Vg, the applied voltage between source and
drain by Vsd.

In this work the system size is finite, and hard wall boundaries are used.
As a last note, this thesis does not differ between elementary particles and
quasiparticles, and both kinds of particles are called particles for simplicity.

2.2 From quantum mechanical devices to their

theoretical models

When looking for smaller electronic circuits, there is ongoing research on a
huge variety of realizations of the basic ingredients like diodes and transistors,
with each one needing different experiments to probe its properties.

2.2.1 Examples of relevant experiments

Examples of different realizations are given in Ref. [34, 35, 36] and shown in
Figs. 2.1–2.3. In the situation shown in Fig. 2.1, a nanotube is used as elec-
tronic device, namely as field transistor [34]. In the measurement, a voltage
source and an amperemeter connected to a second bath are wired to a gold
lead each. The gold leads are then connected electrically via said nanotube
placed on an insulating surface. There is an aluminium layer below the insu-
lating Al2O3 layer, which is coupled to another voltage source. This voltage

9



2.2. FROM QUANTUM MECHANICAL DEVICES TO THEIR
THEORETICAL MODELS

Figure 2.2: STM picture of a one electron transistor built of a two dimen-
sional electron gas (2DEG) and metallic gates, taken from ref. [35]. Grey
areas on the top and bottom are the leads of the 2DEG. White areas are the
metallic gates. The gate on the right and the top and bottom gate on the left
are used to control the tunneling barrier between leads and the grey quantum
dot in the middle. The gate in the middle left is used to adjust a gate voltage.
The 2DEG is realized on the border of a GaAs- and a AlGaAs-compound.

source is used to tune the distribution of the electrons in the nanotube, acting
as a gate voltage.

Carbon nanotubes like the one used in this experiment usually are built
out of graphene layers. The layers are rolled in order to form tubes. There
are several ways to roll them. One distinguishes between different directions
relative to the carbon lattice in which the layers are rolled and the number
of times the layer is wrapped around itself. The direction of rolling then
decides whether the nanotube shows metallic, insulating or semiconducting
behavior [37].

Another relevant system [35], a one electron transistor, consists of a two-
dimensional electron gas (2DEG), and is shown in Fig. 2.2. The transistor is
realized as a quantum dot coupled to two leads, with a gate voltage control-
ling the properties of the dot.

The 2DEG forms at the interface between gallium arsenide (GaAs) and
an aluminium gallium arsenide (AlGaAs) layer, followed by an additional,
n-doped AlGaAs layer [38]. The AlGaAs is a GaAs structure, where a not
specified amount of gallium is substituted with aluminium. Since the AlGaAs
has a larger band gap than GaAs, see e.g. Ref. [39], electrons from the
doped energy level can move to the conduction band of the GaAs where

10



CHAPTER 2. MODELING THE EXPERIMENT

(a) Experimental current measure-
ment setup on a C59N molecule
attached to a gold diode via an
alkanethiol self assembled monolayer
(SAM). Voltage was put between gold
diode and the scanning tunneling mi-
croscope (STM) tip. Schematic dia-
gram on the right hand side.

(b) STM picture of the molecule on
the SAM. In the top right corner,
there is a line profile shown along the
line between A and B.

Figure 2.3: The setup of a molecular current measurement, taken from
Ref. [36].

they are confined to the border of the compound by a potential formed due
to their interaction with the dopant atoms, see e.g. Refs. [40] and [41].
Therefore, GaAs hosts electrons in its conduction band which cannot move
perpendicular to the surface, hence one finds a 2DEG. Application of metal
electrodes on top of the AlGaAs and GaAs mixtures leads to a structure
inside the 2DEG. By setting the electrodes to chemical potentials different
from the one in the GaAs mixture, an electric field is created below the
electrodes which is felt in the 2DEG and forces electrons out of the regions
below the electrodes. In this way structures like one-dimensional leads or
quantum dots can be achieved within the 2DEG. Parameters of the structures
like the tunneling between different parts can be controlled by the variation
of the different electrode chemical potentials.

The third example of relevant experiments [36], namely current measure-
ments on molecules, is seen in Fig. 2.3. In the past molecules were defined as
the smallest particle of a pure chemical substance that still keeps the prop-
erties of the substance. In that sense, molecules are a natural choice in the
search for smaller devices with given electric properties. In Fig. 2.3 there is
a single C59N molecule attached to a gold electrode via a substrate. The
measurement takes place using a STM tip as second electrode as described
above.

11



2.2. FROM QUANTUM MECHANICAL DEVICES TO THEIR
THEORETICAL MODELS

As pointed out in Ref. [42] the idea of molecular electronic devices de-
veloped from electron transfer research within molecules [43, 44, 45]. The
same molecular structure that served as a model system in this research
area [46, 47] was proposed in Ref. [6] as a possible molecular diode. The
first current measurements on molecules used multilayered molecular films
and monolayers of molecules [48] created via the Langmuir-Blodgett (LB)
technique. The metal electrode was dipped into a liquid whose surface was
covered with the molecules. Then a bias voltage was applied between the
electrode and a scanning tunneling microscope (STM) which served as sec-
ond electrode, and the current flow was measured with an amperemeter.
Nowadays currents can also be measured through single molecules using the
mechanically controlled break junction technique [49, 50] (MCB). Two elec-
trodes with an LB film between them are attached to a piezo element which
bends under applied voltage. The bending then opens or closes a gap bet-
ween the electrodes. This way the number of molecules connecting them is
adjustable. The point of only a single molecule connecting the electrodes
then is fine tuned using conduction measurements.

2.2.2 Modeling the general pattern of the presented
examples

Although very different in their details, there is common ground between the
named experiments. All of them are two terminal transport setups. They
include two different electron reservoirs or baths kept at different chemical
potentials. Two macroscopic leads connect one bath each to a very small
structure, which is much smaller than leads or bath. After the voltage is
applied, a current flows between the baths and is measured in a measurement
device in one of the leads. An instructive introduction into calculations for
such setups is given e.g. in Ref. [51].

This general pattern, which is sketched in Fig. 2.4, is described by a
theoretical model in the following lines. The starting assumption is that the
diameters of the areas where structure and leads connect are small. This
means that kFa � 1 with Fermi wave vector kF and a being the diameter
of the coupling areas. This assumption causes a restriction to one single
transverse transport channel. The result is a description of the leads as one-
dimensional chains without interaction. This line of reasoning is shown more
explicitly in the simplifying calculation performed in the next paragraph.

The coupling area transverse to the current flow is approximated by a
box potential with infinitely high potential walls [52]. The transverse part of
propagating waves must be of the form sin (kxx) for the transverse direction

12



CHAPTER 2. MODELING THE EXPERIMENT

HL HR

Figure 2.4: The situation modeled in this thesis. The oval blob in the middle
represents a structure, probe or system under investigation. It is coupled via
few atoms to macroscopic leads. Only the ends of the leads, the round grey
areas on the left and the right of the structure, are shown in this sketch. For
simplicity, the model includes the effects of the baths in the leads.

x, with the hard wall boundary conditions giving 2kxa = nπ, n integer. The
time-independent Schrödinger equation yields for the energy contribution
from the transverse direction

Ex (n) =
~2k2

x (n)

2m
=

~2n2π2

8ma2
. (2.2)

The difference between the lowest two energies, and thus the energy needed
to excite propagating particles in the transverse direction, is

∆Ex =
3π2~2

8ma2
, (2.3)

The highest energy EF available in longitudinal direction is supposed to be
much smaller than this transverse energy difference, meaning that no energy
is available to excite the particles in transverse direction. This means that

k2
F

2m
� 3π2

8ma2
, (2.4)

and as a consequence,

kFa� 1. (2.5)

In this limit the energy needed for excitations in transverse directions ex-
ceeds the excitation energy available. Higher excitations are frozen out. An
analogous discussion is valid for the second transverse direction y. Particles
therefore all have the same behavior in transverse directions, described by

13
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THEORETICAL MODELS

the same transverse quantum numbers kx and ky. This means that they are
all situated in the same transverse channel described by the lowest transverse
quantum numbers, and only this one transverse channel contributes to the
current. As a result the structure is coupled to only one state of the lead. An
orthogonal basis of the Hamiltonian of the lead which has the one state that
couples to the structure as basis state automatically yields a tight-binding
Hamiltonian without interactions, as is shown at the end of this section. To
summarize, the assumption of a small connection between structure and leads
enables the description of a lead by a one dimensional tridiagonal so-called
tight binding Hamiltonian without interactions yielding Hamiltonians for the
left (L) and the right (R) lead

ĤL =− J
1
2∑

ν=− 1
2

−2∑
x=−M

2

(
ĉ†x,ν ĉx+1,ν + ĉ†x+1,ν ĉx,ν

)
,

ĤR =− J
1
2∑

ν=− 1
2

M
2
−1∑

x=1

(
ĉ†x,ν ĉx+1,ν + ĉ†x+1,ν ĉx,ν

)
. (2.6)

M is the system size, and ν sums over the spin degree of freedom. Neglecting
inhomogeneities in the leads yields a constant nondiagonal element −J for
the Hamiltonians used in this work, which is also called hopping amplitude.

This form of the Hamiltonian is obtained via an orthonormalization us-
ing the Gram-Schmidt method [53] with respect to the state the structure
couples to. In the new basis the Hamiltonian has the form of a Hessenberg
matrix, i.e. the matrix elements hij vanish for i > j + 1. This is true since
the eigenstates are expressed exclusively via the previously orthonormalized
states and the original state. On top of that, the Hamiltonian has to be her-
mitian hence being a tridiagonal matrix in the chosen basis. This can be seen
e.g. from a comparison to the Krylov space construction in appendix A.3.3.
The hermiticity requirement sets all matrix elements beyond the elements of
the first off-diagonal line to zero.

2.2.3 Introduction of the noninteracting resonant level
model

For the simplest model of a probe coupled to two leads described by tight-
binding Hamiltonians, the structure can be replaced by a single site with
again no interactions between electrons on the site and any other electrons.
When omitting the bath, the resulting Hamiltonian for the simplest case of
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J J J JJC

I

JC

left lead right leadstructure

Figure 2.5: Drawing of the RLM. The red lines denote the hopping elements
included in the Hamiltonian used. J and Jc are the hopping parameters of
the system. As in Fig. 2.4 the baths are included in the leads.

negligible spin degree of freedom, or the fully polarized limit, reads

Ĥ =ĤL + ĤR + ĤL/R + Ĥg,

ĤL/R =− Jc
(

ĉ†0ĉ1 + ĉ†1ĉ0

)
− Jc

(
ĉ†−1ĉ0 + ĉ†0ĉ−1

)
,

Ĥg =eVg ĉ
†
0ĉ0. (2.7)

Here, ĤL/R accounts for the tunneling between structure and the first sites of
the two leads and Vg is a gate voltage applied to the structure. The electron
charge is denoted by e. For the remainder of the thesis Vg = 0. Since all
effects discussed in this thesis can be observed without spin-spin interactions,
only models in the fully polarized limit are used, leading to spinless fermions.
At the end, a structureless probe is attached to two chains. This model is
named noninteracting resonant level model (RLM), sketched in Fig. 2.5. Its
name stems from the resonance ocurring in a narrow energy range, which
can be observed as a transmission probability of 1 for particles in that energy
range. Since the RLM is noninteracting its exact eigenbasis is known and
the current voltage characteristics can be calculated analytically, as has been
done e.g. in Ref. [54]. Many theoretical models are small extensions of the
RLM due to the ambition to reduce a problem as much as possible without
losing the effects under investigation. The RLM is broached as a toy model
to test a new method in chapter 5 and as noninteracting limit of a model
proposed in chapter 3.

2.3 Measurements of electrical currents

In this section, the way the current is created and the exact definition of the
measured quantity are discussed with focus on transfer to theory. First the
current operator is defined. Then different ways to cause a current flow in a
theoretical model are presented, and their differences are pointed out. The
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discussion also involves a derivation of the current voltage statistics for the
RLM in Sec. 2.3.4.

2.3.1 Definition of the electrical current operator

In experiments, current measurements usually are performed by inclusion of
an amperemeter in the electronic circuit. Amperemeters often measure po-
tential differences at left and right side of a small ohmic resistance, which
then allows for reconstruction of the current via Ohm’s law U = RI. The
theoretical treatments presented here do not want to reconstruct this way of
measurement. First, not all of the influences on the ohmic resistance, includ-
ing electron phonon interactions, interactions with impurities and electron
electron interactions, can be written down in a model that is supposed to be
simple. Then, the current is only measured this way in experiments because
there is no direct access to the movement of electric charges in the wire. In-
stead the current is accessed via its definition in the continuity equation as
the change of electric charge over time, see e.g. Ref. [55]:

d
〈
Q̂
〉

(~x, t)

dt
+ ~∇

〈
~̂j
〉

(~x, t) = 0, (2.8)

with charge operator Q̂ and current density operator ~̂j. In one dimension
this reduces to

d
〈
Q̂
〉

(x, t)

dt
+
(〈
Îr

〉
(x, t)−

〈
Îl

〉
(x, t)

)
= 0. (2.9)

The formula expresses that the change of electric charge at a certain position
x adds up with the difference between net current flowing to the right and
net current flowing in from the left to zero. Not the difference in currents
is of interest but the net current flow to the right. Therefore the equation
is summed over all sites to the left, starting from position x. Because of
〈Îl〉(x) = 〈Îr〉(x − 1) and the hard wall boundary conditions, which state
that there is no current from the left at the leftmost site, the result reads for
the expectation value 〈Q̂x〉 of the accumulated charge up to position x

〈
Îr

〉
(x) :=

〈
Îx

〉
= −

d
〈
Q̂x

〉
dt

= − i
~

〈[
Ĥ, Q̂x

]
−

〉
. (2.10)

In the last step the Ehrenfest theorem was used to replace the time derivative.
〈Îx〉 is the net current between site x and site x+ 1. The charge is expressed
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in terms of the number of particles left of position x + 1 via Q̂x = −eN̂x.
This gives 〈

Îx

〉
=
ie

~

〈Ĥ, x∑
x′=−M

2

ĉ†x′ ĉx′


−

〉
. (2.11)

The RLM consists of nearest neighbor hopping and density terms. If only
those terms are present in the vicinity of x1, one findsĤ, x∑

x′=−M
2

ĉ†x′ ĉx′


−

= 2i
(
Jx+1,xIm

{
ĉ†x+1ĉx

})
, (2.12)

with 2iIm{ĉ†x+1ĉx} = ĉ†x+1ĉx − ĉxĉ
†
x+1. In the derivation of this formula,

the anticommutator relations for the ladder operators lead to commutator
relations for combinations of ladder operators,[

ĉ†z ĉx, ĉ
†
y

]
− = ĉ†zδx,y[

ĉ†z ĉx, ĉy
]
− = −δz,y ĉx

→
[
ĉ†xĉy, ĉ

†
z ĉw
]
− = ĉ†xĉwδy,z − ĉ†z ĉyδx,w. (2.13)

Jx+1,x corresponds to the value of the hopping between site x and x+1 where
the current is calculated. This leads to a net current flow of [55]〈

Îx

〉
= −2e

~
Jx+1,xIm

{〈
ĉ†x+1ĉx

〉}
. (2.14)

2.3.2 Application of a bias voltage

The next step after the definition of the current for the simulation of ex-
periment is to model the way this current is created. In experiments, the
leads usually are at equilibrium with the structure and at the same chemical
potential as the structure. To generate the current, a connection between the
leads and the two baths at different chemical potentials which act as source
and drain is established. The reaction of the leads to the bath then depends
on the properties of the leads, as well as the properties of the bath which is
assumed to be large and metallic. The leads are divided into metallic and
semiconducting leads. In metallic leads the energy bands are shifted when
connected to the bath, while in semiconductors the key effect is a change
in particle density within the leads. The next two paragraphs give a short
explanation of these different effects.

1Since the general form of the investigated models contains noninteracting tight-binding
leads, chosing a position x within the leads will yield this form of the current.
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Behavior of the leads upon connection with the baths

If the leads are metallic, particles moving from source to lead will add electric
charge to the lead. Due to the high number of mobile particles in metals [56]
the charge is screened within the lead. The additional charge is located
at the boundaries of the lead. Due to the displacement of the particles
needed in order to screen the charge the energies in the metallic lead now are
shifted, resulting in shifted energy bands. At the same time the amount of
particles that actually move to the lead until the chemical potentials in lead
and bath coincide can be neglected in comparison with the charge carriers
in the leads. As a result, the energy band of the metallic lead will change
so that chemical potential of bath and lead will coincide without noticeable
change in the number of quasiparticles in the lead. The resulting energy level
adjusting is found e.g. in Ref. [38]. The process of particle exchange happens
between lead and structure through a much weaker link. One approximates
the adaption of the lead to the bath as instantaneous on the relevant timescale
in the structure lead dynamics.

For semiconducting leads the situation is different and more complicated,
see Ref. [38] for details. Only few charge carriers are available. Depending
on the details of lead and bath, the lead bath contact can be e.g. ohmic or a
shottky diode. Upon contact of lead and bath, if the energy band of the lead
is deformed, it is only deformed significantly in the vicinity of the bath. This
is due to the smaller amount of charge carriers available for the screening. If
electric current is allowed to flow, the energy band is filled up to the Fermi
energy of the bath without changing its energy globally. Since the initial
carrier density in the lead is small the number of additional particles added
from the bath cannot be neglected. Therefore the density of charge carrying
particles will change.

Modeling the leads upon connection with the bath

When simulating the situation numerically, the leads are represented by small
chains due to limitations in computational power. For the same reason,
the baths are omitted and the leads themselves are treated as source and
drain, whereby the effects of the baths are included in the properties in
the leads. For the two different situations described above, two different
methods are needed, see Fig. 2.6. In both cases the problem is separated in
time into two different parts. These parts can be described in short as initial
state preparation for the equilibrium situation before the quench and time
evolution during the nonequilibrium situation after the quench. As a matter
of notation, the system before the quench is described by a Hamiltonian
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Figure 2.6: Energy bands of the two leads attached to the structure for two
physically different situations leading to current flow through the structure.
The illustrated situation happens right after the quench. The leads are con-
nected via the structure, whose energy levels depend on details of the model
and are not sketched here.
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Figure 2.7: Overview of the composition of the initial Hamiltonian Ĥs and
the time evolution Hamiltonian Ĥt, depending on the situation one intends
to simulate. The effect of the inclusion of the voltage term ĤV in either Ĥs

or Ĥt on the density or the shift of energy bands is seen in Fig. 2.6.

labeled Ĥs, while the system after the quench is described by Ĥt. While the
next three paragraphs discuss the cases in more detail, an overview on the
approaches for different situations is given in Figs. 2.7 and 2.8.

The first part of the problem is the preparation of the system before the
quench, which means before the system is changed on a short timescale. In
the context of the experiments discussed above the quench is the process
of connecting leads to the structure. This part differs from the procedure
in experiments due to the need to include the effect of the baths in the
Hamiltonian of the leads. The simulations model the leads as being connected
to the structure before the quench, and being target of a rapid change in
their electrostatic potentials at the quench. Before the quench the system
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Inclusion of ĤV in: Ĥs Ĥt

Induced changes The initial particle den- The energy levels
in: sity in the leads. in the leads.
The reason for the The density is obtained as The energy levels influ-

induced changes: ground state of Ĥs. ence the time evolution.

Figure 2.8: Overview of the various possibilities to use the voltage term
ĤV. The effect of the inclusion of the voltage term ĤV in either the initial
Hamiltonian Ĥs or the time evolution Hamiltonian Ĥt on the density or the
shift of energy bands is seen in Fig. 2.6.

is assumed to be in equilibrium in its ground state. The second part is the
time evolution of the system. Since the energy offset of the bands influences
time evolution, effects of the bath on the energy bands are included here. In
the second part, the current is measured. The evolution of the system also
differs from the situation in experiment due to the concessions which have
to be made to system size. Details of this are discussed in Sec. 2.3.3.

In case of semiconducting leads or reproduction of scattering theory re-
sults, an initial density distribution inequality in the two leads is needed.
Therefore the electrostatic potentials in the leads before the quench are
changed by a voltage term. For the case of electrostatic potentials being
placed symmetrically around the chemical potential of the structure, which
means 2µR/L = ±eVSD, the term

ĤV =

(
µR

right lead∑
x

n̂x + µL

left lead∑
x

n̂x

)

=
eVSD

2

(
right lead∑

x

n̂x −
left lead∑

x

n̂x

)
(2.15)

is added to the Hamiltonian Ĥs. Time evolution then is carried out without
this charge imbalance or voltage term.

In case of metallic leads the energy bands of the leads have to shift relative
to each other while still having the same charge carrier density. The initial
state is prepared using the unmodified Hamiltonian of the system, yielding
the same particle density in both leads. For time evolution, the voltage
term (2.15) is subtracted from the Hamiltonian in order to change the energy
bands of the leads. In the previous case the energy of the source had to be
lowered in order to attract more particles to the source and to increase its
filling. Here, the energy of particles in the source has to be increased to allow
them to move to the drain, thus the difference in sign of the voltage term
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Figure 2.9: Current over applied bias voltage in the RLM. The system size
is M = 130 and the lead to probe hopping amplitude is Jc = 0.3J with J
being the lead hopping amplitude.

e.g. in Fig. 2.7. This sign difference leads to positive currents for positive
voltages, as shown in chapters 4, 5 and 6.

Comparison of the two prescriptions available for the leads

The two options named here correspond to two physically different processes
leading to different currents, as seen in Figs. 2.9 and 2.10. An explanation for
the different results between those two cases can be found e.g. in Ref. [55].
For small voltages, the two cases coincide. Their results differ most for large
voltages, so it is instructive to look at the different situations in the large
voltage region. In scattering theory, if the votage term is large enough, the
left lead will be fully occupied with charge carriers with none available in
the right lead. Therefore all possible energy channels will contribute to the
current. As a result, the current saturates at its maximum value. In the
other situation, for voltages larger than eVSD > 4J , the overlap between the
two energy bands reduces to zero. Due to energy conservation no energy level
corresponds to a wavefunction extending over the two leads and allowing for
transport between left and right lead. No channel contributes to the current,
so the current drops to zero. A current flow can also be created by insertion
of a current source instead of the applied voltage. This case is discussed in
Sec. 2.3.5.
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Figure 2.10: Current over time in the RLM. Parameters are system size M =
130, lead to probe hopping Jc = 0.3J and applied bias voltage VSD = 0.5J
with J being lead hopping.

2.3.3 Extraction of electrical current values

Comparison of simulated currents with experiments

After setting up the system, the expectation value of the current operator is
calculated for the chosen bias voltage. The current obtained in the described
simulations differs from the current obtained in experiment for long times,
see Ref. [57]. For long times the leads can no longer be regarded as baths
since charge carriers, after moving through the measurement position, will
see the boundaries of the system and return to the measurement position.
Also, the small, finite system size of the system results in gaps between the
energy levels. At half filling, the Fermi vector is 2kF = π, so the energy for
states with k-momentum near the Fermi vector, k = kF + ∆k, reads

E = −2J cos
(π

2
+ ∆k

)
≈ 2J∆k =

4πJ

M
. (2.16)

The energy gap is the difference of this energy and the Fermi energy EF = 0.
The current shows oszillations with amplitude proportional to the energy
gap and frequency being charge times voltage over ~. These oszillations look
similar to Josephson oscillations between two gapped superconductors and
are not present in experiments with large leads and thus vanishing gaps.
The expectation values of simulated currents calculated within this work
qualitatively look like the one shown in Fig. 2.10.
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In experiments, the current after the quench first enters a transient regime
which then decays towards a steady state. Measurements then are made in
the steady state. This transient regime can be seen in Fig. 2.10 or, more
prominently, in Fig. 2.11. For the RLM, the transient current decays expo-
nentially with a decay rate Γ of ~JΓ = 2J2

c [13]. After the transient regime,
a quasi steady state or current plateau with the discussed oscillations on top
of the steady state current sets in. At the return time 2tJ = M~ of charge
carriers with Fermi velocity ~vF = 2J after the quench the current suddenly
drops and the quasi steady state is destroyed. The sudden drop of the cur-
rent marks the beginning of interference of the particles returning from the
boundaries with the desired current.

Details on the extraction of the current

The steady state value is extracted using a fit including the oscillatory terms.
The fitting range is the time interval between the decay of the transient
regime and the sudden drop of the current. At the time of the fit, the
charge carriers only know about the finite size of the system through the
finite gap in energy between ground state and first excited state. The effect
of the energy gap is averaged out by the fit. The steady state current in
experiment is approximated by this extracted current. The fitting procedure
has to be stopped at the drop of the current. At this point information
on the boundaries of the system reaches the position where the current is
calculated. Since no boundaries are encountered in experiments the result
crucially differs from the experiment starting at this point in time.

Here, oszillations and interferences are mentioned as effects caused by
the finite size of the system. There are also other effects of the finite size
of the system on the extracted current, like the even-odd effect or a density
shift in the leads. They are discussed extensively in Ref. [55] and are beyond
the scope of this work. They are accounted for by an investigation of the
dependence of extracted current on the system size.

2.3.4 Electric current in the noninteracting resonant
level model

Since the RLM does not involve interaction, its electric current can be cal-
culated analytically using the scattering ansatz proposed by Landauer and
Büttiker [8, 9, 10]. The result, whose derivation is repeated here, is given
e.g. in Refs. [58, 54]. Without interaction, particles with different energy do
not see each other. As a consequence, it is natural to use a single particle
picture. Each single particle energy channel contributes separately to the
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Figure 2.11: Current over time for the RLM with M = 400, Jc = 0.1J and
VSD = 0.5J . The voltage term is added to Ĥs.

current. A derivation of this is given in Sec. 3.1. Unlike in Sec. 3.1 a scatter-
ing picture is used so time-dependence is of no interest now. In comparison
to the calculation in Sec. 3.1 the time evolution operator is set to unity here.
Without loss of generality the left bath is taken as the particle source. The
idea is now that the voltage corresponds to occupation of higher energy levels
in the left bath than in the right bath, see Fig. 2.6a in Sec. 2.3.2, but leaves
the energy bands unchanged. In other words, the voltage does not enter the
Hamiltonian but only the initial conditions. The assumption behind this is
that the voltage is caused by the distribution function in the baths. These
baths are far away from the structure. The leads do not change their energy
levels at the quench but are filled up to the chemical potentials in the baths.
The whole information about the chemical potential is stored in the density
distribution of the incoming waves but not in their form. The assumption
gives good results for small voltages eVSD � 2J , a limit which is called wide-
band limes, or for semiconducting leads. Therefore scattering theory is often
used to obtain the linear response of the system to a small external voltage,
called linear conductance. For other cases, generalizations of the method
presented here are available [59].

As a result, particles with energies higher than the highest occupied

25



2.3. MEASUREMENTS OF ELECTRICAL CURRENTS

energy level of the right bath will move to the right and will scatter at the
structure leading either to reflection or transmission of the particle. Since the
voltage does not enter the Hamiltonian the eigenstates of the system are also
not effected by the voltage, and for M →∞ are asymptotically plain waves2

incoming from the left which are scattered at the structure. The creation
operator is transformed in between the position and energy bases by

√
M ĉ†k =

−1∑
x=−M

(
eikx + re−ikx

)
ĉ†x + dĉ†0

M∑
x=1

teikxĉ†x. (2.17)

The parameters t(k), d(k) and r(k) as well as the energy Ek are obtained
from the eigenvector requirement[

Ĥ, ĉ†k
]

= Ekĉ
†
k (2.18)

by insertion of Eq. (2.17) and solution of the resulting system of equations.
The current between position x = 0 and x = 1 resulting from particles
traveling towards an empty lead is〈

Î0

〉
= −2e

~
J1,0

∑
k

Im
{
〈Ψk| ĉ†1ĉ0 |Ψk〉

}
, (2.19)

with J1,0 = Jc and |Ψk〉 being the plane waves traveling to the right. Trans-
formation of the ladder operators between position and energy basis using

ĉ†1 =
∑
l

ĉ†lU
†
l,1,

ĉ0 =
∑
m

U0,mĉm,

U0,m =
d∗√
M

=
t∗J√
MJc

,

U †l,1 =
t√
M

exp (il), (2.20)

where Ux,n denotes the transformation matrix element between position x
and energy label n, leads to〈

Î0

〉
= − 2e

M~
J
∑
k

|t|2 Im {exp (ik)} . (2.21)

2Since the systems under consideration are large but still finite, the eigenstates are still
normalized by the square root of the system size.
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Writing the sum as an integration over energy via the density of states with
M∆k = 2π and Ek = −2J cos (k) finally gives

〈
Î0

〉
= − eJ

2π~

∫
dEk |t|2 . (2.22)

Here, one also needs to account for the distribution functions of incoming and
outgoing waves since only empty states in the right lead can be occupied,
and only if there is a particle with that energy in the left lead. Thus the
energy range at which a net current will flow is limited, and the corrected
current reads

〈
Î0

〉
= − eJ

2π~

∫
dEk |t|2 (f (Ek − µL)− f (Ek − µR)) . (2.23)

Here, µR/L denotes the chemical potential in the left and right bath, respec-
tively, and f(E) is the Fermi distribution function for energy E. In this work,
models of current measurement setups always assume a symmetric bias, so
2µR/L = ±eVSD with voltage VSD being caused by the difference in chemical
potential between left and right bath. The energy is measured relative to the
Fermi energy with no voltage applied. Since the baths are assumed to be in
their respective ground states, f(E) = Θ(−E) and

〈
Î0

〉
= − eJ

2π~

∫ VSD
2

−VSD
2

dEk |t|2 . (2.24)

For large voltages eVSD & J , one has to check from the details of the sim-
ulated setup whether the finite width of the energy bands (4J) needs to
be considered [57]. It can be included via modification of the integration
borders, leading to

〈
Î0

〉
= − eJ

2π~

∫ min
{

VSD
2
,2J−VSD

2

}
−min

{
VSD

2
,2J−VSD

2

} dEk |t|2 . (2.25)

From Eq. (2.18) one finds for small voltages and the Hamilton operator given
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in Eq. (2.7) that

t =
2i sin (k)J̃2

c

Ẽk + 2J̃2
c exp (ik)

, (2.26)

|t|2 =

(
4− Ẽ2

k

)
J̃4
c

J̃4
c + Ẽ2

k

(
1− 2J̃2

c

)
= a

(
4 (1 + a)

4a+ Ẽ2
k

− 1

)
, (2.27)

a =
J̃4
c

1− 2J̃2
c

, (2.28)

where tilded parameters are given in units of J, so JÕ = O. The current
then reads 〈

Î0

〉
= −eJ

h
a

(
4 (1 + a)√

a
arctan

ṼSD
4
√
a
− ṼSD

)
. (2.29)

For small Jc � J the linear term can be neglected and the current is pro-
portional to an arcus tangens of the voltage. It should be highlighted that
the dispersion relation E(k) obtained from Eq. (2.18) follows from equations
for positions deep within the leads. The structure has no influence on this
result, so it is valid for any choice of structure.

2.3.5 Electrical currents created by current sources

This section covers a known correspondence between the current created by
voltage sources and by certain current sources in the RLM [25]. The main
goal is the establishment of a connection between the current of a time-
dependent system, in this case represented by a Hamiltonian including a
time-dependent phase, and the current of a time-independent system. The
correspondence is used in chapter 5 to test the good quality of the work on
simulation of time-dependent systems presented in that chapter, in analogy
to the work in Ref. [25]. The derivation of the correspondence goes along
the lines of the tunneling current calculation in Ref. [60]. The situation
under investigation is the one with metallic leads, so the energy bands are
shifted during time evolution. Starting point of the derivation is the current
expectation value 〈

Î−1

〉
= −

d
〈

Q̂−1

〉
dt

. (2.30)
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This expression is now evaluated in the interaction picture, which is also
called Dirac picture. The Hamiltonian of the system during time evolution
reads

Ĥ =ĤL + ĤR + ĤL/R − ĤV, (2.31)

and the term ĤL/R is split from the time evolution of the operators. This
means that states and operators follow the Heisenberg and Schwinger-Tomonaga
equations, with starting time t0 = 0,

i~
d

dt
|Ψ (t)〉 = ĤL/R (t) |Ψ (t)〉 , (2.32)

i~
d

dt
Q̂−1 (t) =

[
Q̂−1 (t) , ĤL (t) + ĤR (t)− ĤV (t)

]
−

= 0,

i~
d

dt
ĤL (t) =

[
ĤL (t) , ĤL (t) + ĤR (t)− ĤV (t)

]
−

= 0,

i~
d

dt
ĤR (t) =

[
ĤR (t) , ĤL (t) + ĤR (t)− ĤV (t)

]
−

= 0,

i~
d

dt
ĤV (t) =

[
ĤV (t) , ĤL (t) + ĤR (t)− ĤV (t)

]
−

= 0,

i~
d

dt
ĤL/R (t) =

[
ĤL/R (t) , ĤL (t) + ĤR (t)− ĤV (t)

]
−
. (2.33)

Under time evolution of a system with no coupling between the leads and the
structure, the charge in the left lead cannot change, hence the time derivative
vanishes. Similar reasoning goes for the particle density in left and right lead
separately and thus for the voltage term. This argument gives the reason for
the time-independence of the intra lead Hamiltonians. Inserting Eq. (2.32)
into Eq. (2.30) yields〈

Î−1

〉
=− i

~
〈Ψ (t)|

[
ĤL/R (t) , Q̂−1

]
−
|Ψ (t)〉

=− i

~
〈Ψ0| T̂ exp

{
i

~

∫ t

0

dt′ĤL/R (t′)

}
[
ĤL/R (t) , Q̂−1

]
−
T̂ exp

{
− i
~

∫ t

0

dt′ĤL/R (t′)

}
|Ψ0〉 , (2.34)

with time ordering operator T̂ imposing an ordering of the operators in the
Taylor expansion of the exponential function with decreasing t, i.e. the
Hamiltonians at earliest times have to stand on the right. Operators at
time t = 0 are written without explicit time-dependence. Time evolution of
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each ĤL/R (t) then reads

ĤL/R (t) = exp

{
i

~

(
ĤL + ĤR − ĤV

)
t

}
ĤL/R exp

{
− i
~

(
ĤL + ĤR − ĤV

)
t

}
. (2.35)

The use of the fact that the operators ĤL, ĤR and ĤV commute with each
other and that

exp

{
i

~
ĤVt

}
=

right lead∏
x

(
n̂x

(
exp

{
i

~
eV

2
t

}
− 1

)
+ 1

)
left lead∏

x

(
n̂x

(
exp

{
− i
~
eV

2
t

}
− 1

)
+ 1

)
, (2.36)

n̂xĉ
†
y =ĉ†y (δx,y + n̂x (1− δx,y)) ,

n̂xĉy =ĉyn̂x (1− δx,y) ,
ĉ†yn̂x =n̂x (1− δx,y) ĉ†y,

ĉyn̂x = (δx,y + n̂x (1− δx,y)) ĉy, (2.37)

leads to

ĤL/R (t) = exp

{
i

~

(
ĤL + ĤR

)
t

}(
n̂−1

(
exp

{
i

~
eV

2
t

}
− 1

)
+ 1

)
(

n̂1

(
exp

{
− i
~
eV

2
t

}
− 1

)
+ 1

)
ĤL/R

(
n̂−1

(
exp

{
− i
~
eV

2
t

}
− 1

)
+ 1

)
(

n̂1

(
exp

{
i

~
eV

2
t

}
− 1

)
+ 1

)
exp

{
− i
~

(
ĤL + ĤR

)
t

}
= exp

{
i

~

(
ĤL + ĤR

)
t

}
Ĥ′L/R (t) exp

{
− i
~

(
ĤL + ĤR

)
t

}
. (2.38)
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Figure 2.12: RLM with time-dependent phase acting as a current source in
the system. ~ = 1 and e = 1 in this sketch.

At this point, the whole voltage influence on time evolution of the current
expectation value is hidden in Ĥ′L/R (t), with

Ĥ′L/R (t) =− Jc exp

{
i

~
eV

2
t

}
ĉ†−1ĉ0

− Jcĉ†0ĉ−1 exp

{
− i
~
eV

2
t

}
− Jcĉ†0ĉ1 exp

{
i

~
eV

2
t

}
− Jc exp

{
− i
~
eV

2
t

}
ĉ†1ĉ0

=− J ′c
(

ĉ†−1ĉ0 + ĉ†0ĉ1

)
+ h.c. . (2.39)

The same result is obtained for the modeling of a setup that does not include
the voltage term in the time evolution Hamiltonian, which means that the
leads do not feel the influence of source and drain in form of energy band
shifts, so no voltage source is included in the model. Instead, the voltage
adds a time-dependent phase to the hopping

J ′c = exp

{
i

~
eV

2
t

}
Jc, (2.40)

which then acts as current source in the system. The resulting model is
sketched in Fig. 2.12.
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Chapter 3

Numerical techniques in
transport simulations

involving electrical currents

So far a motivation of the work presented in this thesis and an explanation
of the theoretical modeling of the current measurements were provided. In
this chapter the numerical techniques used for the initial setup and the time
evolution of the systems under investigation are presented.

In order to calculate any expectation values for a given system, operators
need to be applied to states, and eigenstates of operators like the Hamiltonian
of the system need to be found. Numerical performance of these computa-
tions –the action of operators onto states or the diagonalization of operators
– requires states and operators to be expressed in vector or matrix form. In
the scope of this thesis they have to be represented in a finite basis on a
computer.

In the non-interacting case the Hilbert space can be written in form of a
direct sum of separate spaces where the Hamiltonian and other observables
of interest only act within one of the spaces. This is due to the large number
of conserved quantities, like the energies, spins and momenta of each particle.
The operators are expressed as matrices in this significantly smaller space.
This makes numerical computations with these operators feasible and allows
one to solve the problem numerically without approximations. The known
formula used to solve the problem is derived in Sec. 3.1.

However, most cases of interest include interaction. The Hilbert space
as the natural choice of a representation basis is then too large. Usage of
symmetries and conserved quantities in this case does not suffice to reduce
the problem to a manageable size. Subspaces small enough to perform com-
putations in them can not contain all the information stored in the Hilbert
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space. In numerical simulations information pertaining to the system is nec-
essarily lost and the problem can no longer be solved exactly. In this thesis
the Hilbert space of such systems is approximated by a subspace containing
the most relevant information required for the description of the physical
system. This subspace yields optimal approximations to exact results in the
sense which is discussed in Sec. 3.3.3. The implementation of this known
approximation is provided by Peter Schmitteckert in the scope of this work,
and its discussion is included for the sake of completeness.

In Sec. 3.2 an overview of the approximations used to prepare the initial
state is given. First the procedure to generate a basis of reduced dimension-
ality for a specified system size is discussed in detail. In this procedure the
size of the system is slowly increased while the size of the basis is kept at a
constant value. Then a way to improve the overlap of the basis states and
the low lying unprojected states is presented. The combination of these two
procedures allows for the initial state preparation. Different generalizations
of the previous methods are discussed in Sec. 3.3, giving good approximations
of the time evolution of the initial state.

Most simulations of current measurements only deal with two time-inde-
pendent Hamiltonians to describe their systems at different times. This cor-
responds to situations where the system experiences one quench but no other
change over time. Section 3.3 covers methods dealing with that situation.
For some applications, it might be essential to use a Hamiltonian with a
time-dependency beyond the initial quench. Cases that come to mind are
e.g. systems reacting to time-dependent voltages or magnetic fields but also
systems subject to time-dependent strain. One main part of this work is
focused on a method tailored to these problems. At the beginning of Sec. 3.3
one way to account for this with limited applicability is described. A new
implementation that overcomes the limitations of the previous method is
described in chapter 5.

3.1 Exact diagonalisation of quadratic many

body Hamiltonians

In general, the Hilbert space for a system consisting of M sites with f degrees
of freedom (DOF) per site has a dimension of d = fM , scaling exponentially
with system size. The number of DOF f and thus d strongly depend on the
type of particles which are considered. For fermions the most common cases
are spin 1/2 particles, e.g. electrons, and spinless fermions. In case of spinless
fermions each site can be either occupied or empty and thus contributes
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f = 2 degrees of freedom. For spin 1/2 particles each site is either full,
empty or contain either a spin up or a spin down particle, contributing f = 4
degrees of freedom. In both cases the Hilbert space becomes huge already
for moderate system sizes. Calculations for interacting systems using modern
computational techniques without approximations break down at a system
size of a little bit more than forty sites [61]. When dealing with noninteracting
problems the relevant subspace one needs to look at scales only linearly with
system size, d ∝ M . This allows to simulate noninteracting systems up
to much larger system sizes. In this section it is shown how currents are
calculated for noninteracting problems with spinless fermions and how the
required space collapses to the small subspace.

In order to calculate currents one has to evaluate expectation values of
the form 〈

ĉ†xĉy
〉
, (3.1)

where ĉ†x and ĉy are creation and annihilation operators of the considered
particles at positions x and y. For example, the current between two sites x
and x+1 in a noninteracting region1 is given by

Ix,x+1 = −2Jc
e

~
Im
{〈

ĉ†x+1ĉx

〉}
, (3.2)

where Jc is the coefficient of the hopping between the two sites. For time-
independent Hamiltonians expectation values of the form

〈
ĉ†xĉy

〉
=
n

D
≡ 〈Ψ (t)| ĉ†xĉy |Ψ (t)〉

〈Ψ (t) |Ψ (t)〉

=
〈Ψ (0)| exp

{
i
~Ĥ
†
tt
}

ĉ†xĉy exp
{
− i

~Ĥtt
}
|Ψ (0)〉

〈Ψ (0)| exp
{
i
~Ĥ
†
tt
}

exp
{
− i

~Ĥtt
}
|Ψ (0)〉

, (3.3)

have to be evaluated, where Ĥt is the time evolution Hamiltonian of the
system after quenching, assumed to be time-independent. A generalization
to time-dependent Hamiltonians will be given at the end of the section. For
hermitian Hamiltonians the denominator D becomes one due to probability
conservation. For application attempts to nonhermitian Hamiltonians, see
Sec. 6.4, D 6= 1 and as a consequence the norm of the wavefunctions has to
be considered. Let us turn our attention to the expression in the numerator
n. The first step is to commute the time evolution with the creation and

1All models considered within this thesis contain noninteracting leads. Therefore the
current is of this form in all cases of interest.
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annihilation operators. The creation and annihilation operators are rotated
into the eigenbasis of the time evolution Hamiltonian Ĥt of the system at
t > 0, which in its eigenbasis reads

Ĥt =
M−1∑
c=0

εtcĉ
t†
c ĉt

c (3.4)

with eigenenergies εtc. The transformation is defined via

ĉy =
M−1∑
b=0

U t
ybĉ

t
b, (3.5)

with U t transforming between position space and energy space for t > 0. In
practice, U t and εtc are obtained using LAPACK [62] routines. The commu-
tation is performed using

exp
{
−iĤtt

}
=

N−1∏
c=0

(
1− n̂t

c

(
exp

{
−iεtct

}
− 1
))
, (3.6)

with operators n̂t
c of the occupation number of the eigenenergies for t > 0

and

n̂t
aĉ

t†
a = ĉt†

a ,

n̂t
bĉ

t
b |Ψ (0)〉 = 0,

ĉt†
a n̂t

a |Ψ (0)〉 = 0,

ĉt
bn̂

t
b = ĉt

b. (3.7)

This yields

n =
M−1∑
a,b=0

U t
yb exp

{
−iεtbt

}
〈Ψ (0)| ĉt†

a f
({

n̂t
})

ĉt
b |Ψ (0)〉×

exp
{
iεt∗a t

}
U t
ax
−1
, (3.8)

with

f
({

n̂t
})

=
∏
c 6=a,b

((
1 + n̂t

c

(
exp

{
iεt∗c t

}
− 1
))

(
1 + n̂t

c

(
exp

{
−iεtct

}
− 1
)))

. (3.9)

In case of hermitian Hamiltonians and therefore real eigenvalues the equation
f ({n̂t}) = 1 holds. In chapter 5 quadratic nonhermitian Hamiltonians for
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non-interacting problems will be encountered. There holds f({n̂t}) 6= 1 and
this method cannot be applied. The operators ĉt†

a and ĉb are rotated back to
the site representation and from there to the eigenbasis of the Hamiltonian

Ĥs =
M−1∑
c=0

εsγ ĉ
s†
γ ĉs

γ (3.10)

before the quench via the transformation matrix U s. This gives

n =

M
2
−1∑

w,z=−M
2

Uy,w (t) Φn
w,zU †z,x (t) (3.11)

with

Uy,w (t) ≡
M−1∑
b=0

U t
yb exp

{
−iεtbt

}
U t
bw
−1
,

Φn
w,z ≡

M−1∑
α,β=0

U s
wβ 〈Ψ (0)| ĉs†

α ĉs
β |Ψ (0)〉U s

αz
−1. (3.12)

Since this work is about physics at zero temperature, the initial state is the
ground state of Ĥs. Therefore exactly the Nel lowest eigen levels of Hs are
occupied with Nel being the particle number,

ĉs
β |Ψ (0)〉 = Θ (Nel − β − ε) |Ψβ〉 ,
〈Ψ (0)| ĉs†

α = 〈Ψα|Θ (Nel − α− ε) . (3.13)

|Ψβ〉 denotes the Fock state that is the ground state with an empty position
at energy εsβ and ε is a small number introduced to get the right occupation.
Orthonormality of the Fock states,

〈Ψα|Ψβ〉 = δα,β, (3.14)

leads to

Φn
w,z =

Nel−1∑
α=0

U s
wαU

s
αz
−1. (3.15)

As a result only the eigenenergies of the Hamiltonians Ĥs and Ĥt and the
transformation matrices of single particle creation and annihilation operators
between these basis sets are needed in order to calculate the desired quan-
tities. These transformation matrices operate on M states and are therefore
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M by M matrices, which gives a huge advantage over calculations using rep-
resentations on the 2M -state Fock basis.

This formula enables an easy way of calculating expectation values at
intermediate timesteps tn = n∆t and incorporating time-dependent Hamil-
tonians. The exponential function of the Hamiltonian is approximated by
the first order Magnus expansion, discussed in chapter 5,

exp

{
− i
~
Ĥt (t) t

}
≈

nmax∏
n=1

exp

{
− i
~

∫ tn

tn−1

Ĥt (t′) dt′
}

≈
∏
n

exp

{
− i
~
Ĥt (tn) ∆t

}
. (3.16)

where the decomposition is exact for Hamiltonians Ĥt constant in time. The
last step holds approximately for slowly varying Hamiltonians. It omits terms
of the form

exp

{
−
(

∆t

~

)2 [
Ĥt (tj) , Ĥt (tk)

]
−

}
, (3.17)

corresponding to an approximation of order

O

(
exp

{
−
(
J∆t

~

)2
})

. (3.18)

This is a good approximation for J∆t � ~, where J is the energy scale at
which the Hamiltonian varies over time, or if the commutator of the Hamilto-
nian at different times is small. It leads to an expansion of the time evolution

U (t) =
∏
n

U (n,∆t) ,

Uy,w (n,∆t) ≡
M−1∑
b=0

U t,n
yb exp

{
−iεt,nb ∆t

}
U t,n
bw

−1
. (3.19)

In this notation U t,n
yb diagonalizes Ĥt (tn). The numerator then reads in ma-

trix notation

n (t) =

(
T̂
∏
n

U (n,∆t)

)
Φn

(
T̂ †
∏
n

U † (n,∆t)

)
(3.20)

= U (nmax,∆t)n (t−∆t)U † (nmax,∆t) , (3.21)

with time ordering T̂ putting earliest times to the right and conjugated time
ordering putting them to the left. The result is obtained from steps analo-
gous to the previous calculations, with basis transformations in between each
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time evolution step to commute the single steps with ĉ†x and ĉy. In practice,
expectation values are calculated for the first timestep. Then the time evo-
lution U(n,∆t) is applied to the result to get the result for the next timestep
and so on.

3.2 The time-independent DMRG procedure

In case of systems including interaction, the Hilbert space does not split into
a small relevant space and a rest space. Thus, states and operators have
to be represented in the full Hilbert space and are too large to be stored
even on a modern computer. Therefore approximations have to be used.
There exists a variety of solutions to this problem. The one primarily used
in the context of this work is the Density Matrix Renormalization Group
technique [24, 63, 26, 64, 65] (in short: DMRG), which is the most common
numerical method for one dimensional systems. It was proposed by Steven
White in 1992 [24] as a generalization of the numerical renormalization group
procedure invented by Kenneth Wilson [23]. In short, it tries to construct a
reduced Hilbert space consisting of the states with the highest weight in the
density matrix, following the idea that these states contribute most to the
physical attributes of the system. It keepsN2

Cut states, NCut being the number
of states kept per system half. It owes its name to the similarities to other
renormalization group techniques, where one adjusts some system parameters
while stepwise changing another parameter. In the most basic DMRG the
system size is changed leading to a change of the basis states. However this
correspondence is not exact because in DMRG steps information is lost, so
there exists no inverse operation. This is a necessary ingredient for operations
to form a group.

There are several algorithms with different tasks running under the DMRG
tag. One combines them depending on the goals one wants to achieve. Out
of those the infinite lattice DMRG (iDMRG) and time-independent finite
lattice DMRG (DMRG) will be described on the next few pages. These al-
gorithms are used to obtain generic ground state properties of the system.
For current transport calculations, they are used to generate the initial state
of the system before the quench. The initial state is obtained as the ground
state of the initial Hamiltonian represented in the new basis. This represen-
tation is computed by the DMRG. Section 3.3 covers time-dependent finite
lattice DMRG including dynamic (adaptive DMRG) [66, 67, 68, 27] and static
Hilbert spaces (fully time-dependent DMRG) [25, 69, 26]. Adaptive DMRG
and fully time-dependent DMRG (full td-DMRG) are used to investigate dy-
namic properties of the system. In the framework of this thesis they are used
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to describe the system at different times and allow for current calculations at
those times. Afterwards, there will be a few words regarding the applicability
of the technique.

3.2.1 iDMRG

The iDMRG algorithm is a tool tailored for the investigation of the properties
of a large system at low energies. Its purpose is to represent the low energy
eigenstates of a system of gradually increasing size by a fixed number of basis
states. This basis of course has to be adjusted each time the system changes.
Starting point of the iDMRG procedure is a small system of a handful of
sites, which is small enough so that its exact Hilbert space can be stored
on a computer. It then iteratively produces bases for systems growing to an
arbitrary size, even to infinite size at the prize of infinite iterations, hence
the name.

The iterations are summed up briefly as two-stepped procedures: in a
first step, the extension of the system, the basis obtained from the previous
iteration is extended to include more sites. In the more complicated second
step, this basis of increased size is reduced to a basis of the desired size. The
basic idea behind this reduction is to build a many-body density matrix out
of the low energy states of the system, and then keep the desired number of
eigenstates of the density matrix with the highest eigenvalues. The eigenval-
ues of density matrices are called weights. The principle behind this idea is
that chosing the eigenstates of a density matrix with the highest weight gives
the best suited basis to approximate the states contributing to the density
matrix. Details for this scheme and measures of the good quality of this
approximation are given in Sec. 3.3.3.

In order to fully comprehend the second step yet another idea needs to
be motivated. As stated before the algorithm starts from a small system
and then adapts the basis with increasing system size. However, calculations
in closed small systems lead to eigenstates of the small system which are
localized in larger systems since the models used contain hard wall boundary
conditions. The ground state of the larger system S is a delocalized state,
and a combination of localized states is a bad approximation for delocalized
states. This can be seen from the number of nodes of the states, which
are the points with zero amplitude in the wavefunction. In general, the
wavefunctions of the low energy eigenstates will have only few nodes where
its value drops to zero. Due to the hard wall boundary conditions applied,
two of the nodes will be at the two borders of the system. Combining the
ground states of two smaller systems A and B always creates a node at the
border of the two systems, as scetched in Fig. 3.1.
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A B
S

Figure 3.1: Red straight line: The ground state wavefunction of a system
S consisting of two blocks A and B. Green, dashed lines: the ground state
wavefunctions of the blocks A and B.

In order to overcome this, the small system A is coupled to a bath B. The
states are calculated for the combined, closed system Sred which for small
systems A and B still is smaller than the system S of desired size. Then the
bath degrees of freedom are traced out from the density matrix of system S in
order to obtain the density matrix for an open system A. From this density
matrix, states for an open system are obtained. This way the computed
states are not localized in A any more. There is no need for a node at the
border of system A and bath B. Combinations of states computed this way
approximate the ground state of a larger system S much better. However,
there is still a node at the other border of A. In order to create a bath with
size equal to the system size at each step in the iteration two systems A and
B are grown at the same time. In the calculation of the basis of one of the
systems, the other system acts as a bath. This way both system and bath
grow at same speed. After the growth of the systems ends, the systems A
and B are combined to form the large system S of the desired size. Since the
wavefunctions of both systems still have a node at the outer border which
does not connect A and B, the growth of the system starts at the borders of
the system S. This way the two nodes are at the same position as the nodes
of the wavefunctions of S. A more in-depth description of the algorithm is
now given by the example of the construction of a one dimensional chain of
sites.
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Sred(4)

Sred(6)

I I

Figure 3.2: iDMRG base construction prescription. Top: Chain S. Middle:
Starting system Sred of size four, consisting of blocks A and B. Bottom:
Increasing size of Sred to six by adding one site to each block respectively.
The blocks now are A’ and B’ and contain tree sites instead of two.

Initial step of the algorithm

The iDMRG normally creates systems from the borders towards the middle,
the way it is sketched in Fig. 3.2. It choses a few sites beginning from the left
end of the chain S as ’block A’ and a few sites beginning from the right end as
’block B’. Those blocks are the two halves of the system Sred of reduced size.
The basis for A and B at this step is chosen as their exactly known Hilbert
space. The basis is written in tensor product form. This helps to reduce the
size of matrices one has to deal with and speeds up the computation. E.g.
the approximated state space ΩS of system S is decomposed into subspaces
ωx of the blocks A and B representing the states at position x as

ΩS = ωA ⊗ ωB
ωA = ω1 ⊗ ω2 ⊗ · · · ⊗ ωM

2
,

ωB = ωM
2

+1 ⊗ ωM
2

+2 ⊗ · · · ⊗ ωM , (3.22)

with M being the size of S and ωA/B the subspace of block A/B. The per-
formance of the algorithm is increased by dissection of ΩS into a direct sum
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of subspaces with different quantum numbers. More information on this is
given in appendix B.1.

The important part is not the exact form of the base states but the ope-
rators expressed in this basis. Therefore creation and annihilation operators
acting on the states included in the blocks are stored. E.g. for Block A
consisting of just two sites, with each site being either in an occupied (|1〉)
or unoccupied (|0〉) state, the creation operator acting on site 1 would read
for the basis {|1〉1|1〉2, |1〉1|0〉2, |0〉1|1〉2, |0〉1|0〉2}

ĉ†1 (2) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (3.23)

Since a tensorial notation is used, it reads in the basis of {|1〉, |0〉}1⊗{|1〉, |0〉}2

ĉ†1 (2) =

(
0 1
0 0

)
1

⊗
(

1 0
0 1

)
2

. (3.24)

The annihilation operator acting on site two reads

ĉ2 (2) =

(
1 0
0 1

)
1

⊗
(

0 0
1 0

)
2

. (3.25)

The Hamiltonian describing the two blocks as closed systems is constructed
out of the annihilation and creation operators. This means that the part
of the Hamiltonian of the full system which connects different sites within
blocks is constructed out of the operators which are given a representation
above. For the given example the Hamiltonian Ĥ (x) of an x = 2-site block
within the leads is

Ĥ (2) = −J
(

ĉ†1 (2) ĉ2 (2) + ĉ†2 (2) ĉ1 (2)
)
,

= −J
((

0 1
0 0

)
1

⊗
(

0 0
1 0

)
2

+

(
0 0
1 0

)
1

⊗
(

0 1
0 0

)
2

)
. (3.26)

Any other operators of interest, like the current operator, can later be com-
posed out of the stored ladder operators.

Increasing the system size of single blocks

Now that the starting point is given the size of Sred will be increased by two.
This corresponds to the addition of one site to each of the blocks A and B,
respectively to form the blocks A’ and B’. The increment of size follows the
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same algorithm at each point in the procedure. A site is added to each of the
blocks respectively towards the middle of the chain. All operators included
so far in the calculations concerning block A have to be expressed in a rep-
resentation defined on the larger Hilbert space of block A’. The subspaces
of A’ are written as tensor products of subspaces of A and subspaces of the
added site. If an operator is presented by the matrix ÔA in block A, then its
representation in block A’ is given by

ÔA′ = ÔA ⊗
(

1 0
0 1

)
x

, (3.27)

where x is the position of the added site. Next, the ladder operators acting
on the freshly added site are expressed in the expanded basis. They only
have nontrivial representations in the one-site subspaces and are represented
by tensor products of unity matrices in the subspaces of blocks A or B. E.g.
if block A contains m sites, then the creation operator of the newly added
site at position m+ 1 is given by

ĉ†m+1 (m+ 1) =

(
1 0
0 1

)
1

⊗ · · · ⊗
(

1 0
0 1

)
m

⊗
(

0 1
0 0

)
m+1

. (3.28)

So far only the Hamiltonian describing the old block was extended to a
representation in the new block. The Hamiltonian acting on all sites included
in the new block is needed. The Hamiltonian governing the expanded system
is written down as combination of terms: on the one hand the Hamiltonian
of block A with its operators expressed in the Hilbert space of A’ contributes.
On the other hand new terms which connect the added site with block A are
included. E.g. assume that the newly added site located at position m + 1
lies within leads which only contain a constant nearest neighbor hopping
with amplitude −J . If ĤA(m + 1) is the Hamiltonian of block A expressed
through ĉ†x(m+ 1) and ĉx(m+ 1), then

ĤA′ (m+ 1) = ĤA (m+ 1)− J
(
ĉ†m (m+ 1) ĉm+1 (m+ 1) + h.c.

)
. (3.29)

Reduction of basis space

Now that the size of the blocks is increased, the bigger sized Sred(n + 2) is
obtained by connecting the two blocks. The operators are extended to a
representation in Sred(n + 2) by forming a tensor product between the sub-
spaces of the two blocks. The operators are represented by unity matrices
in the respective other block. Then the two Hamiltonians of A and B as
well as a hopping term between the two parts are summed up to form the
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new Hamiltonian of Sred(n+ 2). If the number of basis states is still smaller
than the treshold, the procedure of increasing the system size is repeated.
Else this number is reduced as follows. Since the goal is to approximate
the halves of the lowest lying energy eigenstates in their respective block,
these eigenstates are calculated for Sred(n+ 2). The composite Hamiltonian
of Sred(n + 2) is diagonalized using a modified Jacobi-Davidson algorithm
described in appendix A.2 and making use of the representation of the ma-
trix through tensor products. From this the p lowest energy eigenstates are
obtained, where p is chosen freely depending on how excited the state of the
system is supposed to be. A density matrix ρ̂S of the sum of those states is
formed,

ρ̂S =
1

p

∑
m

|Ψm〉 〈Ψm| ,

=
1

p

∑
i,j,k,l,m

(〈i, k|Ψm〉 〈Ψm|j, l〉) |i, k〉 〈j, l| . (3.30)

Here, i, j are indices of the states of one block, k, l are state indices of the
second block and m runs over the different states defined in system Sred(n+2)
which were added to the density matrix. In the second line of Eq. (3.30) the
density matrix is represented in the bases of blocks A and B. The aim is to
obtain states which are only defined in block A or B. One reduced density
matrix is built for each block by tracing out the degrees of freedom belonging
to the other block, respectively. This corresponds to writing the elements

ρi,j =
1

p

∑
k

∑
m

(〈i, k|Ψm〉) (〈Ψm|j, k〉) (3.31)

into the reduced density matrix

ρ̂A/B =
∑
i,j

ρi,j |i〉 〈j| . (3.32)

In this notation, i, j are indices of the states of the kept block and k is the
index of states of the traced out block. The NCut highest eigenstates of
the reduced density matrices, obtained by diagonalization using LAPACK
routines [62], form the new bases in the two blocks with increased size, re-
spectively. The obtained NCut eigenstates are written into the columns of a
projection matrix. The previously stored operators then are projected onto
the new bases. This is done separately for all subspaces of interest.

The density matrix of Sred(n + 2) can also be formed for a state which
is the sum of the lowest energy eigenstates, just as before, plus the sum of
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states obtained by applying an operator of interest to those lowest energy
eigenstates. If the operator of interest is denoted by Ô and Ô|Ψm 〉 = |Φm 〉,
then the resulting density matrix entries read

ρi,j =
1

2p

∑
k

∑
m

(〈i, k|Ψm〉 〈Ψm|j, k〉+ 〈i, k|Φm〉 〈Φm|j, k〉) . (3.33)

This way the expectation values of Ô are approximated with a lower error
in this step since their weight is considered in the density matrix explicitly.
However, the energy eigenstates are approximated with a higher margin of
error in this case. This fact can overshadow the advantage of a better initial
approximation, since the low energy eigenstates and eigenenergies are impor-
tant for the time evolution of the state of the system. Therefore it must be
weighted whether to include the additional states.

As a result, one site was added to each block while keeping the number
of basis states low and computable. This procedure of increasing the system
size and then approximating the bases of the blocks is repeated until the
desired system size is reached. If interested in ground state properties only,
iDMRG can be used to obtain them. Then the repetition continues until the
expectation value for the ground state properties of interest converges.

3.2.2 DMRG

The iDMRG gives a reasonable but crude idea of the real lowest lying states
of the system. The algorithm discussed now takes the basis produced by
iDMRG as its starting point. Then it iteratively improves that basis with
respect to the approximation of the low energy eigenstates. The adjustment
of the basis is done under the restriction of a constant number of basis states,
just as before. The additional constraint for the DMRG is that the size of
the system S now stays fixed. The algorithm is built upon two main ideas.

The first idea is a reformation process of the blocks of the system. This
process is split into single steps which update only one site of the block
per step, and which are similar to the initial construction steps done during
iDMRG. This time however the overall system size is kept fixed while vary-
ing the size of the two blocks. Since the system size heavily influences the
properties of the system’s states this yields a more accurate description of
the system. In order to use DMRG the blocks of differing sizes computed
during the runtime of the iDMRG have to be stored and kept.

The second idea is to iteratively improve the basis. Better initial guesses
of the optimal basis lead to better bases resulting from the reformation pro-
cess. Therefore, after rebuilding the system once and having more accurate
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A(5) B (3)stored

B (2)storedA(6)
I

Figure 3.3: First and second step of a sweep. Starting point is the situation
after the iDMRG runs which are shown in Fig. 3.2. From iDMRG a system
S consiting of ten sites is constructed. This system is composed of the two
blocks A and B, each containing five sites. The upper and middle figures
show the first step of a sweep. At the start of the first step, shown in the
upper figure, a system is constructed containing block A, two additional sites
and a block B for the remaining system. The required block B has already
been calculated in the third last iDMRG step, which lead to an expanded
block size of three sites. Overall, the system still contains 10 sites. The size
of block A is increased by one and A’ is generated and stored. A’ is shown in
the middle figure. The lower figure pictures the beginning of the second step.
Now the system S contains the updated block A’, two additional sites with
the exactly known basis and a smaller block B with only two sites, which was
stored in the iDMRG step before the block B with 3 sites was generated and
stored. From this point the growth of block A continues and the sequence is
repeated up to the smallest stored version of block B with an exact basis.
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blocks than in the first rebuild, it is rebuilt again. This leads to more ac-
curate blocks, which can be used to make even more appropriate blocks by
rebuilding the system again, and so on. This idea is similar to other iterative
schemes known in physics such as the iterative solution of the Dyson series
discussed e.g. in Ref. [70]. Each rebuild of the system is called a sweep.

The algorithm starts with a step similar to the iDMRG iteration. How-
ever, block A is taken at its full size obtained from the last iDMRG step that
was performed before. Operators defined on block A in that iDMRG step
are also kept. Block B and corresponding operators are obtained from earlier
iDMRG steps. This earlier step is chosen such that block B is 2 sites smaller
than block A, so after adding 2 sites the original size of S is restored, see
Fig. 3.3. Only the properties of operators acting on block A of increased size
are of interest since those of block B with decreasing size are already known.
Hence the reduction of basis size is only applied for block A, e.g. only the
reduced density matrix with block B traced out is created.

A more detailed explanation of such a single step can be found in ap-
pendix B.2, where the step is revisited in a different context. Since S is
at the final size and all positions of the full Hamiltonian are included, all
operators can be included in each step. This is repeated with blocks A of
increasing and blocks B of decreasing size until the exactly known basis for
block B is used, see Fig. 3.4.

A B
updated sites

Figure 3.4: Sketch of a sweep to the right. In this sketch, A and B denote
the two blocks and •• are the two respective sites which are added in the
beginning of each step, and whose representation is updated during the step.

Starting from the exactly known basis of block B, similar steps are taken
with increasing size of block B and decreasing size of block A, see Fig. 3.5.
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A B
updated sites

Figure 3.5: Sketch of a sweep to the left.

Now the already existing blocks B of various sizes are replaced by their
newly calculated and improved counterparts. Once the smallest block A
is reached, the direction is changed again and the blocks A are improved.
After reaching the middle of the system again, each block of each size has
been calculated once with a constant system size, and one sweep is finished.
This can then be continued to improve the results. Afterwards the resulting
operators can be used to calculate the ground state properties of interest, or
the initial state as ground state of the initial Hamiltonian.

3.3 Time evolution using DMRG

After the DMRG methods to obtain ground state properties have been dis-
cussed in the previous sections, this section deals with DMRG procedures for
the treatment of the dynamics of the system. The first such procedure was
proposed for low energy excitations in Ref. [25]. Cazalilla and Marston used
the algorithm of Sec. 3.2.2 to create a low energy basis. They used this basis
to express the initial state and to evolve it in time, arguing that for short
times the system could still be adequately described by the low energy states
of the initial Hamiltonian. However in Ref. [69] Luo et al. show cases where
the basis approximating the low energy states of the initial Hamiltonian is
not suitable to describe the time evolved states. In this section two solu-
tions to the problem of adequate bases for time evolved states are presented,
the adaptive DMRG and fully time-dependent DMRG (full td-DMRG). The
topic of DMRG is concluded by remarks on the good quality of the DMRG
approximation and the applicability of the DMRG algorithms presented in
Secs. 3.2.1, 3.2.2 and 3.3.
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3.3.1 Adaptive DMRG

Adaptive DMRG carries out the time evolution step by step. In each timestep
the basis approximating the time evolved state is adapted to the change
due to time evolution, hence the name. The algorithm again consists of
sweeps through the system and starts after a normal DMRG sweep. Its exact
form depends on the implementation of time evolution. The two proposed
implementations discussed in this section are based on the Suzuki-Trotter [71,
72, 73] and Runge-Kutta [74, 75, 76] approximations, which are given in
appendices A.3.1 and A.3.2, respectively.

Suzuki-Trotter based time evolution

The procedure for the Suzuki-Trotter time evolution [66, 67] will be dis-
cussed first. After evaluating the ground state properties of interest, e.g.
the initial state calculation, block A of half the system size and block B
with two sites less are loaded, see the upper subfigure of Fig. 3.3. Then
the standard DMRG procedure described in Ref. 3.2.2 is carried out until
just before the calculation of energy eigenvalues of Sred. In time-independent
DMRG, the Jacobi-Davidson algorithm to diagonalize the Hamiltonian of
Sred would be carried out now. In adaptive DMRG the wavefunction of the
initial state is evolved in time instead using the Suzuki-Trotter algorithm for
half a time step, and the diagonalization is skipped. The wavefunction is
obtained by the basis transformations discussed in appendix B.2. The first
order Suzuki-Trotter algorithm approximates a time evolution operator of
the form exp {(h1,...,M/2+1 + hM/2+1,...,M)∆t}, where hx,...,y acts on sites x till
y, by

exp
{
h1,...,M/2+1∆t

}
exp

{
hM/2+1,...,M∆t

}
+O(∆t2). (3.34)

In a second step, the second order algorithm approximates

exp {(AM/2+1,M/2+2 + ...+BM−1,M)∆t} = exp

{
AM/2+1,M/2+2

∆t

2

}
× ...

...× exp {BM−1,M∆t} × ...

...× exp

{
AM/2+1,M/2+2

∆t

2

}
+O(∆t3), (3.35)

where Ax,x+1 acts on the sites x and x+1 and M is the system size. In the
scope of this thesis, Ax,x+1 consists of the prefactor −i/~ and those terms of
the Hamiltonian that act only on the two sites x and x+ 1, e.g. the hopping
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between these two sites. The time evolution is executed only locally on the
bond between the two newly added sites, see Fig. 3.6.

A Bbond
e

-iH   t
bond

Figure 3.6: Sketch showing the time evolution operator that acts locally on
the two added sites.

E.g. in the first step, where sites M/2+1 and M/2+2 are added, only the
part exp {AM/2+1,M/2+2∆t/2} is applied. This means that only those terms in
the Suzuki-Trotter approximated time evolution operator are applied to the
wavefunction that consist only of creation and annihilation operators acting
on the two added sites. The representation of the Hilbert space of the two
added sites, in the given example the sites M/2+1 and M/2+2, is still exact
at this point during the algorithm. Therefore no approximation error occurs
due to the time evolution of some approximated states. The only approxima-
tion error in this step is the one resulting from the decomposition of the time
evolution operator, which is the Suzuki-Trotter error. The course of action
described here corresponds to application of a second order Suzuki-Trotter
decomposition of the time evolution operator. A generalization to other or-
ders is straightforward and reduces the mentioned error. In the next step
where sites M/2 + 2 and M/2 + 3 are added, only exp {AM/2+1,M/2+2∆t/2}
is applied. After one sweep has been concluded, a whole time evolution op-
erator will have been applied to the initial wavefunctions and further time
evolution can be performed by more sweeps. This method is very powerful
for Hamiltonians including only on-site and nearest neighbor interactions and
hoppings where the effort computation time scales linearly in time and the
needed resources do not scale in time, but not applicable otherwise.

Runge-Kutta based time evolution

Time evolution schemes using Runge-Kutta are an example of methods suit-
able for a more general set of systems. One such scheme is implemented in
Ref. [68]. This implementation is discussed in the next few paragraphs. Here,
the time evolution operator in its Runge-Kutta approximation is applied af-
ter each half sweep, which means whenever the two sites are being added in
the center of the system. Again the time evolution replaces the diagonal-
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ization of the Hamiltonian and the search for the lowest energy eigenstates
which would be performed in time-independent DMRG. The time evolution
of the wavefunctions is not only carried out to the next timestep to obtain
|Ψ(t+∆t)〉 from |Ψ(t)〉, but also for |Ψ(t+∆t/3)〉 and |Ψ(t+2/3∆t)〉, where
a generalization to a different number of intermediate timesteps is possible.
The obtained wavefunctions are still a rough approximation for time evolved
wavefunctions themselves. However, they provide additional directions in
the basis in which the time evolution can then be carried out in better ap-
proximation. The obtained states all are added to the density matrix, which
then is traced out as normal. This way the resulting basis states are also
optimized to approximate the time evolved low energy states well up in the
interval between t and t + ∆t. Time evolution of the states of interest is
carried out in this basis. Expectation values at t + ∆t are evaluated, then
the next half of a sweep is executed, again with time evolution of the states
in its last step.

The strength of adaptive td-DMRG methods is their ability to simulate
systems up to arbitrary large times with a fixed number of states which are
dynamically adapted during time evolution. However the methods share the
weakness that any approximation error made to the states grows during time
evolution since the erroneous states are used to find an optimal basis at the
next time step. The next section presents a method which does not suffer this
runaway error since it uses a static Hilbert space. This comes at the cost of a
time-dependence of the size of this static Hilbert space if the approximation
error is to be kept constant.

3.3.2 Full td-DMRG

Instead of adapting the basis to the time evolution of the initial state one
can also use a static basis which already is optimized to approximate the
low lying energy eigenstates at each timestep. This has been proposed in
Ref. [26] and is called full td-DMRG. Full td-DMRG does not start after
the initial DMRG sweeps, but replaces them. At each step in a sweep after
performing the Jacobi-Davidson algorithm to find the low energy eigenstates,
these states are evolved in time for the desired number of timesteps. This
time evolution is carried out using the time evolution Hamiltonian expressed
in the current basis and can be done using any time evolution scheme. In
the scope of this thesis a method that searches the Krylov space for the
closest match to exp {−i(Ĥt − E0)∆t}|Ψ〉 is used. The method is described
in appendix A.3.3, reviews are also available e.g. in Ref. [77]. All the states
obtained from timesteps during time evolution are included in the density
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matrix. The reduced density matrix is calculated via

ρi,j = N
∑
k

∑
l

(∑
n

〈Ψl (n∆t) |j, k〉

)(∑
o

〈i, k|Ψl (o∆t)〉

)
, (3.36)

with N being a normalization factor that is irrelevant for the determination
of the eigenstates. After enough sweeps when the results converged, the
initial state is calculated as ground state of the initial Hamiltonian. This
state is then evolved in time using the time evolution Hamiltonian. At each
step in the time evolution the current expectation values as well as any other
expectation values can be calculated using the respective operators and the
time evolved states. All operators occurring here are expressed in terms of
creation and annihilation operators, which again are represented in the basis
found by the full td-DMRG.

The method actually used in this work is an adaption of full td-DMRG.
After the iDMRG, full td-DMRG is used with a small number of kept states
for a small time interval for the initial sweeps. Expectation values up to the
interval border are calculated. Then, additional sweeps are carried out with
a larger number of states. In those sweeps, states that are evolved further in
time are added to the density matrix, so a larger time range is considered.
This is repeated with a growing number of kept states and time intervals.
Before each change in the time interval, expectation values are calculated for
the present time interval. This reduces overall computation time and gives
preliminary results for the time evolution which are nonetheless at usual
precision for the time interval under consideration.

3.3.3 Assumptions in DMRG and field of usage

In the motivation of the iDMRG procedure two main points were made. The
first statement is that keeping the states with the highest weight in the den-
sity matrix leads to the best approximation of the unprojected wavefunction
and therefore to the best approximation of the expectation value. The second
statement is that by tracing out the environment block parts of wavefunctions
are obtained which can be composed to the low energy eigenstates of larger
systems. In this section measures for the approximations made by the two
points are presented and motivated. The link between these measures and
the success of DMRG in one-dimensional problems is shown. This discussion
can also be found in various reviews on the topic, see e.g. Ref. [63, 64, 65].

Consider a system U divided into two smaller systems S and E with bases
{|i〉} and {|j〉}, so that it is formed by the tensor product of the two smaller
systems. The dimension of S be NS, the dimension of E be NE. A state of
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U then is given by

|Ψ〉 =

NS∑
i=1

NE∑
j=1

φij |i〉 |j〉 . (3.37)

A state in S, called |Ψ̃〉, is intended to approximate |Ψ〉. It is given by∣∣∣Ψ̃〉 =

NS∑
i=1

NE∑
j=1

ci |i〉 |j〉 . (3.38)

The good quality of the approximation is then determined by the distance
between the two states in Hilbert space, defined by the 2-norm∣∣∣∣∣∣|Ψ〉 − ∣∣∣Ψ̃〉∣∣∣∣∣∣2 =

(
〈Ψ| −

〈
Ψ̃
∣∣∣) (|Ψ〉 − ∣∣∣Ψ̃〉)

= 〈Ψ|Ψ〉+
〈

Ψ̃|Ψ̃
〉
− 2Re

{〈
Ψ̃|Ψ

〉}
= 1 +

NS∑
i=1

cic
∗
i − 2Re

{
NS∑
i=1

NE∑
j=1

c∗iφij

}

= 1 +

NS∑
i=1

(
Re {ci}2 + Im {ci}2)

− 2

NS∑
i=1

NE∑
j=1

(Re {ci}Re {φij}+ Im {ci} Im {φij}) . (3.39)

Let the size of S, NS, be given. Let the separation of U into S and E and thus
the exact form of S be adjustable. Different realizations of the separation are
determined by the coefficients φij of |Ψ〉 in the realized bases. Minimizing
the distance with respect to the real and imaginary part, Re{...} and Im{...},
of the coefficients ck and φlm thus gives the optimal approximation of |Ψ〉
for given NS. The choice of φlm determines the basis {|i〉}, the choice of ck
determines the approximating state |Ψ̃〉. Minimizing with respect to Im{ck}
gives

Re {ck} −
NE∑
j=1

Re {φkj} = 0. (3.40)

Using this and the complex conjugated equation gives for the 2-norm∣∣∣∣∣∣|Ψ〉 − ∣∣∣Ψ̃〉∣∣∣∣∣∣2 = 1−
NS∑
i=1

NE∑
j,k=1

φ∗kiφij (3.41)
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Comparison of the resulting equation to the density matrix in its general
form in the basis {|i〉 |j〉} and in its eigenbasis |α〉,

ρ̂ = |Ψ〉 〈Ψ|

=

NE∑
j,k=1

NS∑
i,l=1

φ∗klφij |i〉 |j〉 〈k| 〈l|

=

NE×NS∑
α=1

wα |α〉 〈α| , (3.42)

shows that Eq. (3.41) corresponds to the basis states |i〉 being a subset of
the eigenstates |α〉 of the density matrix with eigenvalues, or weight, wα. No
limitations to the explicit form of the basis states |j〉 were made. They are
rotated to the eigenstates of the density matrix. Eq. (3.41) then reads

∣∣∣∣∣∣|Ψ〉 − ∣∣∣Ψ̃〉∣∣∣∣∣∣2 = 1−
NS×NE∑
i=1

wα (3.43)

and can be minimized for a fixed number of states by keeping the states with
the highest weight. This corresponds to S being spanned by the eigenstates
|α〉 with heighest weight wα. The approximation error, or the distance of the
two states, then is given by the discarded weight ε = 1−

∑NS

i=1 wα.
Up to a prefactor the same approximation error is obtained for expecta-

tion values. In the normalized eigenbasis of the density matrix, one finds

〈
Â
〉

=

NE×NS∑
α=1

wα 〈α| Â |α〉

=

NS∑
α=1

wα 〈α| Â |α〉+

NE×NS∑
α=1+NS

wα 〈α| Â |α〉

≤ (1− ε)
〈
Â
〉

red
+ Amaxε, (3.44)

where Amax is the maximum eigenvalue of Â and 〈Â〉red is the expectation
value of Â in the reduced, approximated basis. The DMRG requires ε to
be small in order to be appropriate. Thus the difference between expecta-
tion value in the full Hilbert space and in the basis created by DMRG is
proportional to ε.

In DMRG, the whole system is separated into a system block and an
environment block to create entangled states. If the system is in a pure state
in one of the blocks, the wavefunction is composed of pure wavefunctions
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within the respective blocks and thus has nodes at the edges of the blocks.
A measure for the entanglement is the von Neumann entropy

S = −
∑
α

wα log2 {wα} . (3.45)

For pure states the weight is proportional to a kronecker delta and S =
0. When truncating states with small weight, also contributions to S are
discarded and information on the correlations between the two parts of the
system is lost. In that sense the DMRG truncation of states with lowest
weight can also be understood as the maximization of kept S for a fixed
number of basis states. Therefore the discarded von Neumann entropy also
serves as measure for the good quality of the DMRG approximation. High
entropy implies strongly entangled states which means that the weights of
the different density matrix eigenstates vary slowly. As a result, more states
need to be kept for a higher entropy in order to keep the discarded weight
small. In this work the number of kept states was varied dynamically at each
step of the algorithm to keep the discarded weight and entropy below fixed
thresholds, as proposed in Ref. [78].

In Ref. [63] the shape of the weight distribution ist discussed. For gapped
one-dimensional systems discussed in the scope of this thesis, the weight falls
off exponentially. Therefore only a small number of basis states is needed in
one dimension to reduce the discarded weight to a negligible amount. In the
DMRG simulations the gap originates in the finite size of the system. Also
the dependence of entropy on the system size is discussed. For a gapped
one-dimensional system the entropy scales logarithmically with system size
up to a maximum depending on the correlation length in the system. This
means that in one dimension the DMRG procedure can be performed up to
large system sizes without the need of increasing the kept number of states.
For those reasons DMRG is a powerful method in one dimension, especially
for systems involving only short ranged interactions and couplings.
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Chapter 4

Models for molecular diodes

In this chapter the numerical transport calculation methods presented in
chapter 3 are used as a tool to study an open question in the field of molec-
ular electronics.
The aim of this field is to realize basic electronic modules that consist of
single molecules and therefore allow the composition of electronic devices of
atomic scales. The chapter refers to work published in Ref. [2].
The first step in molecular electronics has been the paper of Aviram and
Ratner [6] (AR), who gave a first theoretical proposal for a molecule based
diode. Up until then, electron transport has been investigated for single
electrons within molecules [43, 44, 45, 42]. In those studies two molecular
subunits of a certain kind are encountered [46, 47]. The highest occupied
molecular orbital (HOMO) of one of the subunits is situated close to the
Fermi energy and serves as electron donor, so an electron is easily available
for transport. In the other subunit, the lowest unoccupied molecular orbital
(LUMO) is close to the Fermi energy and therefore functions as an acceptor
to catch the transfered electron. AR have suggested that polarizable molec-
ular units containing this donor and acceptor and connecting them via an
electron bridge would show direction dependent current, also called current
rectification, when coupled to external leads.

Afterwards experiments have mainly tried to realize the molecular struc-
ture proposed by AR, or they have used other strongly polarized molecules.
Although rectification has been observed, there is still discussion about mech-
anisms contributing to or causing the respective rectification [79, 80, 81, 82,
83, 84]. For example, many molecules with a donor-bridge-acceptor struc-
ture did not show any rectification [85], casting doubts on the AR proposal.
Also [86] for example reviews two more mechanisms besides the AR pro-
posal and its adaptions, and rates their applicability to the molecule under
investigation in that paper. Both additional mechanisms assume a polar-
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ized molecule but look at different effects of the polarization. In the first
mechanism an ’asymmetric field’ [86] acts on the molecule. As a result the
energy levels of the molecule adjust to the energy band of one of the leads.
The other case introduces a fixed asymmetry in the tunneling rate between
molecule and leads, leading to an ’asymmetric charging’ [86] of the molecule
for the two different bias directions. It might help the understanding and
improvement of molecular diodes if the mechanisms responsible for the re-
spective rectification could be identified. However, the special case of these
two mechanisms illustrates the problems encountered when testing single
mechanisms separately in experiment. In order to realize one of the two, a
polarization has to be introduced in the molecule which most likely will also
add contributions from the other effect [86]. The entanglement of the two
effects increases the difficulty of a separation of their contributions to recti-
fication. Also other unwanted effects like the chemical binding of molecules
to one of the leads [83, 86] can influence the results of the experiments. In
the work presented here [2] these mechanisms are approached from a differ-
ent perspective. They are investigated by extraction of particular molecular
properties given by energy levels, interactions and tunneling rates, which
define these mechanisms. The properties then are embedded into simple
models, and their abilities to cause current asymmetries within the models
are tested. This then hints at the usability of mechanisms built around the
embedded properties. Some proposals for molecular diodes are built around
mechanisms between the molecule and a specific material coupled to it, e.g.
gold [36]. If those molecules are instead coupled to a different kind of lead,
the functionality of the diode no longer is guaranteed. In this chapter, the
focus lies on universally usable diodes. Therefore, the current asymmetries
should be independent of the specific form of the environment of the molecule.
After a short description of the applied methods given in Sec. 4.1, the most
commonly discussed mechanisms are tested under these considerations in
Secs. 4.2 and 4.3. In Sec. 4.4 a different mechanism is proposed and tested,
with an application given in Sec. 4.5.

4.1 Methods

In literature [86] the rectification ratio, defined as

r =
I (V )

−I (−V )
, (4.1)

often is used as a measure for the ability to rectify. Since this quantity can
diverge for vanishing I(−V ), this chapter instead uses the current asymmetry,
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defined as

A (V ) =
I (V ) + I (−V )

I (V )− I (−V )
, (4.2)

with I being a current. This current is generated and extracted as described
in chapter 2. However, for the results obtained the values of the current
asymmetry do not need to be calculated since rectification is evident from
the plotted data.

The setup corresponding to scattering theory calculations is used to test
mechanisms for their ability to rectify currents. More information on the
setup, as well as the comparison of simulations using the same assumptions
as scattering theory and simulations using shifted energy bands, can be found
in Sec. 2.3.2. In the scattering theory calculations, the dispersion relation
and the density of states cancel each other. The two terms cancel in the
step between Eq. (2.21) and Eq. (2.22). The dispersion relation appears
in Eq. (2.21) due to the assumption of plane waves, which is integral to
scattering theory. Due to the cancellation the results obtained via scattering
theory do not depend on band structure effects like the finite bandwidth,
e.g. the current will not vanish for voltages larger than the bandwidth. This
leads to the conclusion that rectification achieved in scattering theory does
not depend on the specific form of the leads. The corresponding models
allow for universally applicable diodes. Currents are also calculated using
the second setup corresponding to metallic leads. On the onme hand this
is done as a comparison. On the other hand it allows one to discuss the
influence of the band structure of the leads on the results.

For noninteracting models the scattering theory calculations are per-
formed analytically, for interacting models the DMRG is used. For the setup
leading to shifted bands exact diagonalization is applied in the noninteracting
case, and the DMRG is used in the interacting case. The numerical calcula-
tions involve systems of finite size M . Since only integer numbers of particles
N are possible in those systems and the systems are prepared either at half
filling or at quarter filling, it holds either M = 2N or M = 4N . The system
size is even. In cases of molecules being represented by an odd number of
sites, an odd number of sites has to be distributed among the two leads. Thus
the sizes of the two leads differs by at least one site. This size difference is
used for finite size estimates. Comparing the current for a system where the
left lead is the larger one with the current in case of a larger right lead hints
at the error induced by leads of finite size.
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Figure 4.1: Sketch of the system modeled by Eq. (4.3). Red lines connecting
dots describe hopping terms, blue, long lines describe the quenched potential,
and purple, short lines the energy levels of the two-level systems.

4.2 The Aviram-Ratner proposal

In their paper, AR look at a class of molecules consisting of donor and accep-
tor subunits. The subunits are coupled by a bridge part and symmetrically
connected to the two leads. The donor and acceptor are approximated by
two-level systems, keeping only HOMO and LUMO of each subunit. The
acceptor upper level has slightly higher energy than the Fermi surface, the
donor lower level has an energy closely below the Fermi surface. In the
proposal, different kinds of interactions are assumed implicitly. Incomplete
screening leads to an electric field. The field causes each of the two two-level
systems to adjust their energy to the energy band of one of the leads sim-
ilar to the ’asymmetric field’ case discussed earlier. The chemical potential
is supposed to increase or decrease linearly between the leads, so the leads
act as parallel-plate capacitors with the molecule in between. Additionally,
interactions between system and bath cause the relaxation of electrons after
hopping on a two level system. According to AR, a shift in chemical po-
tentials leads to significant current flow from donor to acceptor for a donor
HOMO with higher energy relative to the chemical potential than the energy
of the acceptor LUMO. Due to the small difference in energy between donor
HOMO and acceptor LUMO this situation is already realized for small volt-
ages. Significant current flow in the other direction requires a donor HOMO
with higher energy than the Fermi energy in the nearby lead. The difference
between donor HOMO and Fermi energy in the nearest lead depends on the
chosen parameters. In general it deviates from the energy difference between
donor HOMO and acceptor LUMO, hence the rectification.

This situation is modeled without electric field and system bath interac-
tions for several reasons. As stated before, the different mechanisms should
be separated in models in order to analyze their individual contributions to
rectification. The adjustment of energy levels due to the electric field is es-
sentially the same mechanism as the one containing an ’asymmetric field’
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and a molecule represented by one level. As argued e.g. in chapter 5 of
Ref. [51] the ’asymmetric field’ depends on form and other qualities of the
leads. There is experimental evidence suggesting that the electric field dif-
fers from the one assumed by AR for some realizations of the two leads [83].
Mechanisms relying on such external factors are not considered in this work.
Interactions between system and bath leading to relaxation effects clearly
also need external factors to work and therefore are disregarded here. As
will be shown in the rest of this section, the remaining model after omission
of the named interactions does not rectify currents in scattering theory. The
proposed mechanism is not sufficient for rectification independent of external
factors.

The investigated model is sketched in Fig. 4.1 and is described by the
Hamiltonian

Ĥ =− J
−1∑

x=−∞

(
c†xcx−1

)
− J

∞∑
x=5

(
c†xcx−1

)
− J1

(
c†0c−1 + c†1c−1 + c†4c3 + c†4c2

)
+ h.c.

− J2

(
c†2c0 + c†3c0 + c†2c1 + c†3c1

)
+ h.c.

+
3∑
i=0

win̂i. (4.3)

Here, J is the lead hopping, J1 denotes hopping from leads to the two-level
systems, J2 hopping between the two-level systems and the wi are the energies
of the different energy levels. The plane wave ansatz in Eq. (2.17) for the
eigenfunctions has to be modified to

c†k =
−1∑

x=−∞

(
eikx + re−ikx

)
c†x

+
∞∑
x=4

teikxc†x

+
3∑
i=0

ai c
†
i , (4.4)

with r being the reflection and t the transmission amplitude, and ai are the
amplitudes on the two-level systems. The transmission amplitude is obtained
from the requirement of the ansatz being an eigenstate with eigenenergy Ek:[

Ĥ, c†k
]

= Ekc
†
k. (4.5)
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Figure 4.2: Result for the model given by Eq. (4.3), calculated via scattering
theory (the blue ’x’) and via exact diagonalization (the red ’+’). The green
circles denoting −I(−V ) are meant to visualize the size of the asymmetry.
Parameters are J1 = 0.3J , J2 = 0.09J , w0 = −J , w1 = 0.3J , w2 = −0.3J ,
w3 = 1.5J and for the diagonalization M = 500.

The current is calculated via Eq. (2.24) [8, 9, 10],

I =
e

h

∫ eV
2

− eV
2

dE |t (E)|2 . (4.6)

Fig. 4.2 shows the results from this scattering theory ansatz and from exact
diagonalization for one set of parameters. The current asymmetry is zero
within numerical precision in the whole parameter range.

For shifted energy bands, simulation using exact diagonalization leads
to the current given in Fig. 4.3. An additional narrow resonance leads
to very long decay times of the transient current, see Fig. 4.4. Fitting
a straight line to the logarithm of the current between Jt = 100~ and
Jt = 400~ gives a an exponential decaying current proportional to Itrans ∝
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Figure 4.3: Result for the model given by Eq. (4.3) when considering shifted
energy bands. The blue ’x’ are the analytic results from Fig. 4.2. Parameters
are J1 = 0.3J , J2 = 0.09J , w0 = −J , w1 = 0.3J , w2 = −0.3J , w3 = 1.5J ,
timesteps J∆t = 0.25~ and System size M = 1000.
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Figure 4.4: Logarithm of dimensionless current vs.time for model (4.3). The
green ’+’ and blue ’x’ are plotted data, the red line denotes the fit applied
to the exponential decaying transient current. Parameters are J1 = 0.3J ,
J2 = 0.09J , w0 = −J , w1 = 0.3J , w2 = −0.3J , w3 = 1.5J , timesteps
J∆t = 0.25~ and System size M = 1000.
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exp (− (0.00193± 4 · 10−6) Jt/~). The current at Jt = 113~ has a value of
I = 0.0076 eJ~ , the current obtained analytically for scattering theory calcu-
lations including the effect of finite finite bandwidth gives for that voltage
I(3.8J) = 0.0017 eJ~ . In these calculations the upper and lower bound of the
integral have to be adapted in case the voltage exceeds the bandwidth. It
would take Jt & 3000~ for the transient current to decay to one percent of
the value expected from the scattering theory calculations. A system size
of M & 6000 would be required for the plateau to persist to that time.
This transient decay does not affect the currents for voltages in the range of
eVSD ∈ [−2J, 2J ]. In the case of shifted energy bands plotted in Fig. 4.3 a
slight asymmetry is visible for large voltages. However there is no asymmetry
in the scattering theory calculation, see Fig. 4.2. These results demonstrate
that that the system described by the Hamiltonian of Eq. 4.3 is not sufficient
to describe a diode under the constraints made in this work.

4.3 ’Asymmetric charging’

Another candidate to cause rectification is the mechanism of ’asymmetric
charging’, with differing tunneling rates of the molecule to left and right
lead. A more general simple model including this mechanism, an interacting
resonant level model (IRLM) with in general asymmetric couplings and in-
teractions sketched in Fig. 4.5, is investigated in Ref. [79]. The Hamiltonian
of this model reads

Ĥ =− J
−2∑

x=−∞

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)
− J

∞∑
x=1

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)
− Jc2

(
ĉ†0ĉ1 + ĉ†1ĉ0

)
− Jc1

(
ĉ†−1ĉ0 + ĉ†0ĉ−1

)
− Jnn1 (n̂−1 n̂0)− Jnn2 (n̂0 n̂1) , (4.7)

with the different J ’s being various hopping and coupling parameters. The
paper concludes that asymmetries in the interactions between structure and
leads do not lead to rectification. The ’asymmetric charging’ mechanism,
represented by asymmetries in the hopping elements between leads and struc-
ture, Jc1 6= Jc2 , can cause an asymmetric I/V curve, but only for a ’nonlinear
dispersion’ [79]. The effect therefore depends on the band structure of the
leads. The linear term in a Taylor expansion around the Fermi surface in the
energy dispersion is required to be small compared to higher order terms.
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Figure 4.5: Sketch of the model used in Sec. 4.3. Red lines below the dots
denote hopping, the green lines above the dots denote density-density inter-
action.

This statement is verified in this work by DMRG calculations. In order to be
sensitive to details of the dispersion, simulations are run for shifted energy
bands and for the scattering theory setup. The importance of nonlinear
terms in the cosine dispersion relation of the tight binding leads, discussed
in Sec. 2.3.4, needs to be increased for the DMRG simulation. Filling the
leads only up to crystal momentum k = π

4
instead of π

2
yields the desired

result.

The resulting currents are displayed in Figs. 4.6-4.9. In Fig. 4.6 the I(V )
and I(−V ) characteristic are compared for shifted energy bands. As pre-
dicted, no asymmetry is found in the I/V characteristic. This also holds
true for the case of the initial density distribution influenced by voltage, see
Fig. 4.7. Consistent with prediction, the current in Fig. 4.8 is asymmetric
with respect to the voltage in the case of shifted energy bands, symmetric
interactions and asymmetric junctions. As shown in Fig. 4.9 this asymmetry
reduces to the order of the finite size effects in scattering theoretic setups.
This verifies the conclusion from Ref. [79]. The asymmetry relies on environ-
mental factors and therefore this mechanism is not in line with the purposes
of this work.

4.4 Proposed model and Results

None of the mechanisms investigated so far rectifies currents in scattering
theory. Revisiting the scattering theoretic approach [12] helps to understand
why. It also clarifies which kind of ingredient is needed for rectification and
therefore why the model proposed in this section causes asymmetric I/V .
In Sec. 2.3.4 a scattering theoretical expression for the current in case of
small voltages is derived using the Landauer approach [8, 9, 10]. The main
general result, Eq. (2.24), states that the voltage eVSD = µL − µR enters the
result via the integration borders while the details of the system enter via
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Figure 4.6: Current vs. bias voltage in an IRLM system for a total system
size M = 140, quarter filling, left lead to impurity density-density interaction
Jnn1 = 0.2J , system to right lead density-density interaction Jnn2 = 0.5J ,
timesteps J∆t = 0.25~ and system to lead hopping Jc = 0.5J . Here, the bias
voltage affects the time evolution Hamiltonian. The red ’o’ mark the current
itself, the green ’+’ mark -I(-U) to visualize the size of the asymmetry.
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Figure 4.7: Current depending on bias voltage in IRLM system for system
size M = 140, quarter filling, left lead to system density-density interaction
Jnn1 = 0.2J , system to right lead density-density interaction Jnn2 = 0.8J ,
timesteps J∆t = 0.25~ and system to lead hopping Jc = 0.5J . The red ’o’
mark the current itself, the green ’+’ mark -I(-V) to visualize the size of the
asymmetry, and the blue ’x’ mark the current for swapped left and right lead
to give an estimate of the finite size effects. The bias voltage is used to alter
the initial state.
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Figure 4.8: Current vs. bias voltage in an IRLM system of total system size
M = 140, quarter filling, density-density interaction Jnn1/2

= 0.5J , time steps
J∆t = 0.25~, left lead to system hopping Jc1 = 0.2J and system to right
lead hopping Jc2 = 0.5J . The bias voltage is included in the time evolution
Hamiltonian. The red ’o’ mark the current itself, the green ’+’ mark -I(-U)
to visualize the size of the asymmetry, and the blue ’x’ mark the current for
swapped left and right lead to give an estimate of the finite size effects.
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Figure 4.9: Current depending on bias voltage in IRLM system for system
size M = 130, quarter filling, left lead to system hopping Jc1 = 0.2J , system
to right lead hopping Jc2 = 0.8J , timesteps J∆t = 0.25~ and density-density
interaction strength Jnn1/2

= 0.5J . The red ’o’ mark the current itself, the
green ’+’ mark -I(-V) to visualize the size of the asymmetry, and the blue ’x’
mark the current for swapped left and right lead to give an estimate of the
finite size effects. In this calculation the bias voltage enters the Hamiltonian
that determines the initial state.
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Figure 4.10: Sketch of our proposed model. Red lines below the dots denote
hopping, the green lines above the correlated hopping term.

the transmission amplitude T = |t|2:

〈
Î0

〉
= − eJ

2π~

∫ eVSD
2

− eVSD
2

dE T. (4.8)

In the cases considered above, the transmission amplitude only depends on
the energy, T = T (E). In those cases a sign change in the voltage only swaps
the integration borders and the equation〈

Î0

〉
(eVSD) = −

〈
Î0

〉
(−eVSD) (4.9)

necessarily holds, giving an antisymmetric I/V. In order to introduce an
asymmetry a voltage dependence of the transmission needs to be introduced.
This corresponds to a system with parameters sensitive for the voltage ap-
plied. For scattering theory this statement is equivalent to the condition that
the parameters of the system have to be sensitive to the density distribution
in the leads. In the model proposed in this work the condition is satisfied by
introduction of a correlated hopping interaction, leading to a description of
the system via the Hamiltonian sketched in Fig. 4.10:

Ĥ =− J
−2∑

x=−M
2

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)

− J
M
2
−1∑

x=1

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)
− J2

(
ĉ†0ĉ1 + ĉ†1ĉ0

)
− (Jn n̂1 − J1)

(
ĉ†−1ĉ0 + ĉ†0ĉ−1

)
. (4.10)

In terms of mechanisms, the ’asymmetric charging’ model discussed in Sec. 4.3
describes molecules with a strong but constant polarization. The model pro-
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Figure 4.11: Result for the value of the current plateau (measured at x = 0)
for J1 = 0.11J , J2 = 0.5J , Jn = 0.5J , system size M = 110 and timestep
size J∆t = 0.25~.

posed in this section describes a strongly polarizable molecule that gets po-
larized by the applied voltage, with a polarization strength depending on the
applied voltage.

Numerical simulation of the current measurement leads to the I/V shown
in Fig. 4.11. Due to the finite size of the leads there are finite gaps between
the energy levels. This means that new levels are occupied or emptied only
after discrete shifts in the electrostatic potentials, leading to the observation
of steps in the I/V curve. The steps get smoother for bigger systems. For
general parameters the resulting I/V is a mix of the results in the two limiting
cases. For a vanishing polarizing hopping term Jn = 0 the standard resonant
level result is obtained. It is approximately an arcus tangens, as calculated
in Eq. (2.29). A pure polarizable hopping, J1 = 0, gives an asymmetric
I/V with minimum at roughly eVSD = −J . Current values and exact form
of course depend on the choice of J1 and Jn. This situation is plotted in
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Figure 4.12: Current depending on bias voltage for J1 = 0, J2 = 0.5J ,
Jn = −0.5J , system size M = 50 and time step size J∆t = 0.25~.

Fig. 4.12.

Two of the three regions characterizing a diode, the forward bias region
with high conductivity and the reverse bias region with low but finite satura-
tion current, are generated by the interaction. To see the breakdown region,
in which electrons from lower bands are excited into the conduction band,
more than just one energy band would be needed. The steady states obtained
during the simulation of the I/V in Fig. 4.11 as well as the curves fitted to
them are shown in Fig. 4.13 for a small selection of voltages. Fig. 4.14 en-
ables a closer look at the transient regime. The behaviour of currents in the
large reverse bias regime is showcased by the current at eVSD = −2J . A peak
at early times is followed by a fast drop and an unusually fast decay of the
transient oscillations.

Fig. 4.11 contains the simulation results for both shifted bands and dif-
ferent occupation numbers in the leads. While the asymmetry is tailored
for scattering theory where the density differs for the two leads, it is also
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Figure 4.13: Absolute value of the current over time for various bias voltages
for J1 = 0.11J , J2 = 0.5J , Jn = 0.5J , system size M = 110 and timestep
size J∆t = 0.25~. The case of shifted energy bands is plotted. Continuous
lines are fits to extract the plateau value of the current for I/V curves.
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Figure 4.14: Absolute value of the current over time for J1 = 0.11J , J2 =
0.5J , Jn = 0.5J , system size M = 110 and timestep size J∆t = 0.25~.
Currents are plotted before current suppression (eVSD = −0.37J), at its
onset (eVSD = −1.12J), in the reverse bias regime (eVSD = −2.12J) and in
the forward bias regime.

observed for the metallic case describing two leads with equal initial parti-
cle density. This hints at the robustness of the effect against environmental
influences.

4.5 A bridge rectifier

One practical application of diodes is the bridge rectifier [87]. A bridge rec-
tifier has two incoming and two outgoing leads, with an alternating voltage
applied between the two incloming leads. The basic operation of the rectifier
is to transform the voltage with changing sign into a strictly positive voltage
between the two outgoing leads. This is achieved by connecting each inco-
ming lead with each outgoing lead via one diode, respectively. The direction
in which current can flow through the diode changes with each permutation
of choice of incoming and outgoing lead. This section discusses the realiza-
tion of the basis operation of a bridge rectifier using the rectification effect
of the model proposed in last section.
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direct current 
output

+

-

alternating current
input

~
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Figure 4.15: An illustration of the basic bridge rectifier setup including four
diodes.

In a naive assessment of the situation four uniform diodes are required
in the construction of the basic bridge rectifier unit sketched in Fig. 4.15.
The change of forward bias direction between the different diodes is then
achieved by swapping incoming and outgoing wire at the corresponding diode
device. This does not work for the mechanism reduced to the simple model
presented here. The molecule is only sensitive to the voltage in the wire
connected via the interacting hopping term. However, voltage is only applied
to the incoming wires, so it is always them being connected to the molecule
via the interacting hopping term. The different directions of rectification
are realized by different choices of parameters. The Hamiltonian describing
bridge rectifier and leads is

Ĥ =ĤL1/2 + ĤLD + ĤD + ĤDL + ĤL3/4, (4.11)

with ĤL1/2 the term covering the incoming leads (one and two) acting as

baths, ĤLD the connection between incoming leads and diodes, ĤD the four
diodes, ĤDL connections between diodes and outgoing leads and ĤL3/4 the
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outgoing leads (three and four) acting as baths. The single terms read

ĤL1/2 =− J
2L−1∑
x=2

(
ĉ†xĉx−2 + ĉ†x−2ĉx

)
, (4.12)

ĤD =Ĥw1−4 + Ĥmol + Ĥw5−8, (4.13)

Ĥw1−4 =− J
2L+15∑
x=2L+4

(
ĉ†xĉx−4 + ĉ†x−4ĉx

)
, (4.14)

Ĥmol =−
2L+21∑

x=2L+20

(
(J3 − g2n̂x−6)

(
ĉ†x−2ĉx+2 + ĉ†x+2ĉx−2

)
− (gn̂x−8 − J1)

(
ĉ†x−4ĉx + ĉ†xĉx−4

))
− J2

2L+19∑
x=2L+16

(
ĉ†x−4ĉx + ĉ†xĉx−4

)
, (4.15)

Ĥw5−8 =− J
2L+35∑

x=2L+24

(
ĉ†xĉx−4 + ĉ†x−4ĉx

)
, (4.16)

ĤL3/4 =− J
4L+35∑

x=2L+38

(
ĉ†xĉx−2 + ĉ†x−2ĉx

)
, (4.17)

ĤLD =ĤL1D1 + ĤL1D3 + ĤL2D2 + ĤL2D4, (4.18)

ĤL1D1 =− J
(

ĉ†2Lĉ2L−2 + ĉ†2L−2ĉ2L

)
, (4.19)

ĤL1D3 =− J
(

ĉ†2L+2ĉ2L−2 + ĉ†2L−2ĉ2L+2

)
, (4.20)

ĤL2D2 =− J
(

ĉ†2L+1ĉ2L−1 + ĉ†2L−1ĉ2L+1

)
, (4.21)

ĤL2D4 =− J
(

ĉ†2L+3ĉ2L−1 + ĉ†2L−1ĉ2L+3

)
, (4.22)

ĤDL =ĤD1L3 + ĤD2L3 + ĤD3L4 + ĤD4L4, (4.23)

ĤD1L3 =− J
(

ĉ†2L+36ĉ2L+32 + ĉ†2L+32ĉ2L+36

)
, (4.24)

ĤD2L3 =− J
(

ĉ†2L+36ĉ2L+33 + ĉ†2L+33ĉ2L+36

)
, (4.25)

ĤD3L4 =− J
(

ĉ†2L+37ĉ2L+34 + ĉ†2L+34ĉ2L+37

)
, (4.26)

ĤD4L4 =− J
(

ĉ†2L+37ĉ2L+35 + ĉ†2L+35ĉ2L+37

)
. (4.27)

Here, the term Ĥw1−4 denotes wires connecting the leads one and two to
the diodes and Ĥw5−8 denotes wires connecting the diodes to leads five till
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eight. The term ĤDxLy connects the wire outgoing from diode x to lead y,

and the term ĤLyDx connects incoming lead y to the wire leading to diode
x. The variable L gives the length of each lead, such that the system size is
M = 4L+36. The sketch in Fig. 4.16 helps getting an overview of the setup.
The voltage is applied via the term

ĤV =
eVSD

2

2L+11∑
x=0

((−1)x n̂x) . (4.28)

Instead of a time-dependent alternating voltage, two voltages with same abso-
lute value and different sign are applied in a first step. Parameters g = 0.5J ,
J1 = 0.11J and J2 = 0.5J are chosen in order to match the parameters of the
system producing the diodelike I/V in Fig. 4.11. The parameter g2 is chosen
such that effective hopping for rectification in both directions has the same
scaling with voltage, which means g2 = g. Also J3 should produce the same
effective hopping as for the diode in reverse direction. This means that for
zero voltage or average lead density 2n = 1, the equation

n · g − J1 = J3 − n · g (4.29)

needs to be satisfied, meaning that J3 = 0.39J . The last two conditions lead
to four diodes with effectively the same behaviour, and two of them being
connected in reverse direction.

The system is investigated by simulating the current through the outgoing
leads. For that purpose the current is averaged over the first two sites in each
lead, then the difference between the currents of the two outgoing leads is
plotted. So the object plotted is

Idiff (VSD) = −1

2

2L+39∑
x=2L+36

(−1)x
〈

Îx

〉
(VSD) . (4.30)

For L = 20 sites per lead no current plateau was reached. Larger systems
are unfortunately very costly in computational effort. The result for L = 40
after a few timesteps, resulting from 120 days of computation, is shown in
Fig. 4.17. The onset of current corresponds to the measurement position
being at the beginning of the two leads. After passing the molecule the
charge carriers have to travel eight sites with a Fermi velocity of two sites
per unit of time before they reach the leads and the current changes. No
current plateau is shown. However, the currents clearly have the same sign
for applied bias voltages of opposite sign, and do not change sign over time.
Therefore, a particle density difference between the two leads accumulates
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Figure 4.16: Sketch of the bridge rectifier model. Black lines correspond to
ĤL1/2 and ĤL3/4, blue lines to Ĥw1−4 and Ĥw5−8. Bright blue frames enclose
leads which are put at the electrostatic potential given by the bright blue
number inside the frame. Green dots denote the sites of the molecules. Terms
in Ĥmol are given explicitly, with normal hopping terms given by continuous
red lines and correlated hopping given by green lines. The continuous part
connects the sites connected by the hopping, the dotted lines connect the
continuous line to the site which influences the hopping. Black lines labeled
x are connected to the neighboring blue lines leading to molecules labeled y
by ĤLxDy or ĤDyLx.
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 0.5
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I[e
 J

/h
]

time[ℏ/J]

Idiff(e VSD = -J)
Idiff(e VSD = J)

Figure 4.17: Current over time for the model given in Eq. (4.11). Parameters
are L = 40, g = 0.5J , J1 = 0.11J , J2 = 0.5J , g2 = 0.5J and J3 = 0.39J .
Timesteps J∆t = 0.25~ were used.

over time. The difference does not depend on the applied voltage and can
be interpreted as difference in bias potential. This is a strong hint that the
rectifier model should work, given enough time for the simulation.

4.6 Conclusion

In this chapter a mechanism causing molecular rectification independently of
assumptions on the environment has been searched for. Prominent proposals
have been revisited. Although these proposals can rectify under the right
conditions, they do not rectify currents universally. The reasons for this
have been investigated. The cause of the failure to rectify is found in the
assumption of static setups within the models, where the underlying system
does not react to the applied voltage. A model is proposed which corresponds
to an effective RLM. In this model the effective parameter characterising the
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RLM, the resonance width, changes with varying voltage. It changes the
behaviour of the whole system, corresponding to the molecule reacting to
the applied voltage. This fact allows the molecule to rectify currents by
itself, independently of external factors.

This quality allows for universally applicable devices. A model for such
a device, namely a bridge rectifier, has been proposed. Its behaviour has
been simulated for static applied bias. The simulation strongly hints that
the device functions correctly. If not for the high cost in computational time
the next step would be to simulate a dynamic bias. This could be achieved
by an initial density profile strongly varying over the chain within the single
leads, or by application of a time-dependent bias term. An implementation
of a time-dependent voltage is discussed in the next chapter.
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Chapter 5

DMRG for fully
time-dependent
Hamiltonians

In 1992, Steven White proposed the density matrix renormalization group
approach [24] (DMRG) as a generalization of the numerical renormaliza-
tion group procedure by Kenneth Wilson [23]. The DMRG allowed for the
calculation of ground state properties of low dimensional systems. Over
time the DMRG was expanded to be applicable to time evolving problems
[25, 69, 66, 67, 26, 68, 27]. In previous implementations of the time-dependent
DMRG (td-DMRG), e.g. in Ref. [55], the time-dependence during time evo-
lution consists of the switch between two otherwise constant Hamiltonians
at a certain point in time. This allows to simulate quenches and hence
nonequilibrium transport problems. However, for problems involving e.g. a
time-dependent force driving the system or alternating currents, algorithms
which are able to deal with more generic time-dependences are needed. In
Ref. [25] Cazalilla and Marston use the Magnus expansion [88, 89] to simulate
systems with Hamiltonians that change during time evolution. Their imple-
mentation uses the basis of the initial states, which is not necessarily suited
for the representation of time evolved states and can lead to large errors [69].
This chapter introduces an implementation of the Magnus expansion which
approximates time evolved states with only small errors.

The time-dependence of a system is described by the time-dependent
Schrödinger equation,

i~∂t |φ (t)〉 = Ĥ (t) |φ (t)〉 .
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One popular solution to the equation is the Dyson series

|φ (t)〉 = T̂ exp

{
− i
~

∫ t

t0

dt′Ĥ (t′)

}
|φ (t0)〉 ,

where T̂ denotes time ordering. In the corresponding perturbation theory,
the series is approximated by its first few terms. This approximation does
not preserve the unitarity of the time evolution operator. An alternative
perturbation theory, which is used in this work, instead approximates the
time evolution for small timesteps Jc∆t = Jc(t − t0) � ~ by using the first
few terms of the Magnus expansion [88, 89]. In this context Jc denotes the
relevant energy scale in the Hamiltonian. This procedure is also known as
time-dependent exponential perturbation theory. The td-DMRG algorithm
evaluates operators of the form exp {− i

~Ĥ∆t}. Since the Magnus expansion
expresses the time evolution as an exponential of a series of operators, as will
be shown in the next section, this expansion of time evolution is rewritten as
an expansion of the Hamiltonian. The exponential is exactly unitary in con-
trast to the expansion of the Dyson series, which is only unitary up to leading
order in the perturbative expansion. Fully time-dependent Hamiltonians are
then implemented by replacing the previously constant Hamiltonian at each
step ∆t of the time evolution with the first terms of a Magnus series resulting
from a time-dependent Schrödinger equation. This procedure yields opera-
tors that depend on time. The time interval is then split into small timesteps
∆t during which the operators are approximated as constant in time.

Section 5.1 contains an overview of the Magnus expansion. It is followed
by an example up to second order, where the resonant level model (RLM,
see Eq. (2.7)) with a time-dependent phase in the hopping between probe
and leads as presented in Sec. 2.3.5 is considered. Resulting currents for the
presented method and the given example are compared to reference results
in Sec. 5.4. The reference results are calculated in an equivalent current
measurement setup using a time-independent Hamiltonian and the standard
td-DMRG algorithm. This serves as crosscheck and test of the extent of error
introduced by the truncation.

5.1 Using the Magnus expansion

The Magnus series is a representation of the solution to the linear differential
equation

∂tŶ (t) = Â (t) Ŷ (t) . (5.1)

Here, ∂t is the differentiation towards some parameter t, and Â(t) and Ŷ (t)
are some Matrices depending on t, with Â known and Ŷ to be found. This
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equation is of great importance in physics. Substitution of i~Â with the
Hamiltonian Ĥ and Ŷ with the time evolution operator transforms Eq. (5.1)
into the Schrödinger equation for the time evolution operator.

Magnus has stated in Ref. [88] that the solution can be written in the
form

Ŷ (t) = exp
{

Ω̂ (t, t0)
}
Ŷ (t0)

=

[
exp

{
∞∑
n=1

Ω̂n (t, t0)

}]
Ŷ (t0) , (5.2)

so that

Ω̂ (t, t0) =
∞∑
n=1

Ω̂n (t, t0) . (5.3)

The single contributions Ω̂n are chosen such that a truncation after the n-th
term approximates the full series up to an order of O((Jc∆t/~)n+1). Again,
Jc denotes the relevant energy scale of the system. The Ω̂n are calculated as
shown in Ref. [89], i.e. recursively via

Ω̂1 (t, t0) =

∫ t

t0

dt′Â (t′)

Ω̂n (t, t0) =
n−1∑
j=1

Bj

j!

∫ t

t0

dt′Ŝ(j)
n (t′, t0)

Ŝ(1)
n (t′, t0) =

[
Ω̂n−1 (t, t0) , Â (t′)

]
−

Ŝ(j)
n (t′, t0) =

n−j∑
m=1

[
Ω̂m (t, t0) , Ŝj−1

n−m (t′, t0)
]
−
. (5.4)

Here, Bj denote the Bernoulli numbers.

As with the Dyson series, truncation of Ω̂ after the n-th order term Ω̂n
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leads to omission of terms of the order

exp
{

Ω̂
}
− exp

{∑
k=1

nΩ̂k

}
= exp

{∑
k=1

nΩ̂k +O

((
Jc∆t

~

)n+1
)}

− exp

{∑
k=1

nΩ̂k

}

=

(
exp

{
O

((
Jc∆t

~

)n+1
)}
− 1

)
×

× exp

{∑
k=1

nΩ̂k

}

=O

((
Jc∆t

~

)n+1
)
. (5.5)

In some cases, the convergence of the series is enhanced by small or vanishing
contributions of the commutator between the Hamiltonians at different times,
or between the Hamiltonian and the previous commutators in the series.

5.2 Time-dependent phase

In the case of an RLM with a time-dependent phase of the hopping between
probe and leads as discussed in Sec. 2.3.5, the operator has the form

i~Â (t) = ĥ0 + ĥ†0 + f (t) ĥ1 + f ∗ (t) ĥ†1. (5.6)

This gives the Schrödinger equation for a Hamiltonian which consists of a
time-independent part and a part which time-dependence can be written into
a scalar function. More general problems will not be discussed here, but their
solution can be found in Ref. [90]. The ingredients of Â read for t ≥ 0

ĥ0 =− J

(
−2∑

x=−∞

(
ĉ†xĉx+1

)
+
∞∑
x=1

(
ĉ†xĉx+1

))
+ Vg

(
ĉ†0ĉ0

)
, (5.7)

ĥ1 =− Jc
(

ĉ†0ĉ1 + ĉ†−1ĉ0

)
, (5.8)

f (t) = exp

(
i
VSD

2~
t

)
. (5.9)

J and Jc are hopping constants, Vg is a gate voltage which is set to zero, VSD

is the bias voltage and ĉx and ĉ†x are the annihilation and creation operator
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at site x. In the td-DMRG, time is discretized into timesteps ∆t. In this
section, the approximated time evolution operator for one single timestep ∆t
from t0 to t is calculated. Since the time evolution used in this thesis requires
constant Hamiltonians, the Hamiltonian is approximated for small timesteps
by Ω̂(t). Up to second order the series reads

Ŷ (t, t0) = exp
(

Ω̂ (t− t0)
)
,

Ω̂ (t− t0) = Ω̂1 −
1

2
Ω̂2 + ...

=

∫ t

t0

dt1Â (t1)− 1

2

∫ t

t0

dt1

∫ t1

t0

dt2

[
Â (t1) , Â (t2)

]
−

+ ... (5.10)

Within the single timestep, this corresponds to the time-independent solution
with Hamiltonian

Ĥ = i~
Ω̂

t− t0
= Ĥ1 −

i

~
Ĥ2 + ..., (5.11)

Ĥ1 = ĥ0 + ĥ†0 + ĥ1F1 (t, t0) + ĥ†1F1,cc (t, t0) ,

F1 (t, t0) =
1

t− t0

∫ t

t0

dt1f (t1) ,

= Re (F1 (t, t0)) + iIm (F1 (t, t0)) ,

F1,cc (t, t0) =
1

t− t0

∫ t

t0

dt1f
∗ (t1)

= Re (F1 (t, t0))− iIm (F1 (t, t0))

→ Ĥ1 =
(
ĥ0 + ĥ†0

)
+ Re (F1 (t, t0))

(
ĥ1 + ĥ†1

)
+ iIm (F1 (t, t0))

(
ĥ1 − ĥ†1

)
. (5.12)

Note that for t → t0, F1(t, t0) → f(t) and higher orders in the expansion
tend to zero, so that the continuous limit is restored. Also, the antihermitian
operator (ĥ1 − ĥ†1) gets multiplied by a purely imaginary part so that Ĥ1

again is hermitian and therefore the time evolution operator up to first order,
exp {− i

~Ĥ1}, is unitary. The use of Eq. (5.9) leads to

Re (F1 (t, t0)) =
2~
[
sin
(
VSD

2
t
)
− sin

(
VSD

2
t0
)]

VSD (t− t0)
,

Im (F1 (t, t0)) =
2~
[
cos
(
VSD

2
t0
)
− cos

(
VSD

2
t
)]

VSD (t− t0)
. (5.13)
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5.3 Second order

Considering terms of second order yields (5.11) with

Ĥ2 =
1

2 (t− t0)

∫ t

t0

dt1

∫ t1

t0

dt2

[
Â (t1) , Â (t2)

]
−

=
1

2 (t− t0)

∫ t

t0

dt1

∫ t1

t0

dt2[
ĥ0 + ĥ†0 + f (t1) ĥ1 + f ∗ (t1) ĥ†1, ĥ0 + ĥ†0 + f (t2) ĥ1 + f ∗ (t2) ĥ†1

]
−

=F2,1 (t, t0)
[
ĥ0, ĥ1

]
−

+ F2,2 (t, t0)
[
ĥ†0, ĥ

†
1

]
−

+ F2,1 (t, t0)
[
ĥ†0, ĥ1

]
−

+ F2,2 (t, t0)
[
ĥ0, ĥ

†
1

]
−

+ F2,3 (t, t0)
[
ĥ†1, ĥ1

]
−

(5.14)

F2,1 (t, t0) =
1

2 (t− t0)

∫ t

t0

dt1

∫ t1

t0

dt2 (f (t2)− f (t1))

F2,2 (t, t0) =
1

2 (t− t0)

∫ t

t0

dt1

∫ t1

t0

dt2 (f ∗ (t2)− f ∗ (t1))

F2,3 (t, t0) =
1

2 (t− t0)

∫ t

t0

dt1

∫ t1

t0

dt2 (f ∗ (t1) f (t2)− f (t1) f ∗ (t2)) (5.15)

The scalar functions are given by

Re [F2,1 (t, t0)] =
4~2

V 2
SD (t− t0)

(
cos

(
VSD

2
t0

)
− cos

(
VSD

2
t

))
− ~
VSD

(
sin

(
VSD

2
t

)
+ sin

(
VSD

2
t0

))
Im [F2,1 (t, t0)] =

4~2

V 2
SD (t− t0)

(
sin

(
VSD

2
t0

)
− sin

(
VSD

2
t

))
+

~
VSD

(
cos

(
VSD

2
t

)
+ cos

(
VSD

2
t0

))
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Re [F2,2 (t, t0)] =Re [F2,1 (t, t0)]

Im [F2,2 (t, t0)] =− Im [F2,1 (t, t0)]

Re [F2,3 (t, t0)] =0

Im [F2,3 (t, t0)] =
4~2

V 2
SD (t− t0)

sin

(
VSD

2
(t− t0)

)
− 2~
VSD

(5.16)

and therefore

Ĥ2 = Re [F2,1 (t, t0)]
[
ĥ0 + ĥ†0, ĥ1 + ĥ†1

]
−

+ iIm [F2,1 (t, t0)]
[
ĥ0 + ĥ†0, ĥ1 − ĥ†1

]
−

+ iIm [F2,3 (t, t0)]
[
ĥ†1, ĥ1

]
−
. (5.17)

As a next step commutators of the kind [ĥ0 + ĥ†0, ĥ1 + ĥ†1]− have to be cal-
culated. Inserting Eq. (2.13), Eq. (5.7) and Eq. (5.8) results in[

ĥ0 + ĥ†0, ĥ1 + ĥ†1

]
−

= JJc

(
ĉ†2ĉ0 − ĉ†0ĉ−2

)
− h.c.[

ĥ0 + ĥ†0, ĥ1 − ĥ†1
]
−

= JJc

(
ĉ†2ĉ0 − ĉ†0ĉ−2

)
+ h.c.[

ĥ†1, ĥ1

]
−

= J2
c

(
ĉ†−1ĉ−1 − ĉ†1ĉ1

)
. (5.18)

When calculating currents using this model, one should take into account
that the Heisenberg equation leading to the current operator between sites
x = −1 and x = 0, which was defined in Sec. 2.3.1, now involves the modified
term

i
[
f (t) ĥ1 + f ∗ (t) ĥ†1, ĉ

†
0ĉ0

]
−

= 2Jc sin

(
VSD

2
t

)
Re
[(

ĉ†1ĉ0 − ĉ†0ĉ−1

)]
+ 2Jc cos

(
VSD

2
t

)
Im
[(

ĉ†1ĉ0 − ĉ†0ĉ−1

)]
. (5.19)

The current operator therefore now reads

Î =
2ie

~
Jc

(
cos

(
VSD

2
t

)
Im
{

ĉ†1ĉ0

}
+ sin

(
VSD

2
t

)
Re
{

ĉ†1ĉ0

})
. (5.20)

5.4 Quality of the approximation

In Sec. 2.3.5 it was shown for the RLM that a time-dependent phase in the
hopping between leads and probe leads to exactly the same current through
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Figure 5.1: Comparison of resulting currents, averaged over two neighboring
sites, for calculations of the RLM using a time-dependent phase as described
in Sec. 2.3.5 and the reference calculation using a RLM including a quench as
described in 2.3.2. In all cases, exact diagonalization was used for a system
of system size of M = 50 sites, voltage VSD = 0.5J , coupling Jc = 0.3J
between probe and leads and timesteps ∆t. The RLM with time-dependent
phase was implemented via the Magnus expansion.

the probe as a voltage quench induces. This allows for a comparison between
a fully time-dependent current calculation for the RLM including a time-
dependent phase and a standard current calculation using voltage quenches.
In both cases exact diagonalization has been used. The results are shown in
Figs. 5.1 and 5.2. The approximations work especially well in regions where
the current takes a constant value. This is very fortunate, since the main
results of this work’s simulations are the plateau values of currents. Also, the
first order approximation is already a very good guess towards the current
for the timesteps usually used in the simulations.

In regions where f(t) is analytic, i.e. not at the borders of the theta
functions, the Ω̂k are odd functions in ∆t when written in a Taylor series
around

tmean = t0 +
∆t

2
. (5.21)

As a consequence, since the lowest contribution to Ω̂k is of order O((∆t)k+1),
the lowest contribution to Ω̂2k+1 is of order O((∆t)2k+3). The terms Ω̂k in
the approximation are chosen such that

∑k
l=1 Ω̂l − Ω̂ = O((∆t)k+1), e.g. the

terms of first order are chosen such that deviations of the full series are at
least of the second order in ∆t. The two points combined ensure that the
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Figure 5.2: Relative differences of currents obtained via the Magnus expan-
sion up to different orders in O(exp Jc∆t) compared to currents obtained
from time-independent current calculations in the RLM. Parameters used
are given in the caption of Fig. 5.1.

expansion up to order Ω̂2k already has to determine the full series up to
(∆t)2k+3 and therefore the

∑2k
l=1 Ω̂l − Ω̂ = O((∆t)2k+3). This was found in

Ref. [91, 92]. Therefore an inclusion of the next order in the series will not
improve the margin of error by an order in ∆t and the result is basically a
third order result.

5.5 Adiabatic voltage switching

A sudden quench in the voltage leads to a current peak and ringing (oscilla-
tions) of the current in the transient regime. From Ref. [13] it is known that
the transient effects remain prominent in the thermodynamic limit M →∞.
An increase in the system size therefore cannot suppress them. Implementa-
tion of the Magnus expansion allows the simulation of other protocols that
generate currents, and that diminish the current peak. In this section differ-
ent ways to apply a bias to the system during time evolution are investigated
and their effects on the current are compared. The goal is a reduction of
transient regime effects in order to improve the good quality of the approx-
imation that will be discussed in chapter 6, which will yield quasi-steady
states.

The terms contributing to the time evolution Hamiltonian are in all cases
discussed in this section the RLM Hamiltonian Ĥ defined in Eq. (2.7) and
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the voltage term ĤV defined in Eq. (2.15). The time evolution Hamiltonian
then reads

Ĥt = Ĥ + f (t) ĤV, (5.22)

and the operator Â(t) from Eq. (5.1) is given by

Â (t) = − i
~

(
Ĥ + f (t) ĤV

)
. (5.23)

First, a linear increase over a timespan τ is studied,

f (t) =
t

τ
Θ (τ − t) Θ (t) + Θ (t− τ) . (5.24)

The problem is solved via Eqs. (5.2), (5.3) and (5.4). The first order expan-
sion in the exponential of the time evolution from t = t0 to t = t0 + ∆t then
reads

Ω̂1 (t0 + ∆t, t0) =

∫ t0+∆t

t0

dt′Â (t′)

= − i
~

∫ t0+∆t

t0

dt′
(
Ĥ + f (t′) ĤV

)
= − i

~

(
Ĥ∆t+ ĤV

∫ t0+∆t

t0

dt′f (t′)

)
= − i

~
∆t

(
Ĥ + ĤV

(
Θ (τ − t0 − ε) Θ (t0 + ε)

1

2τ
(2t0 + ∆t)

+Θ (t0 + ε− τ)))

= − i
~

∆t

(
Ĥ + ĤV

(
Θ (τ − tmean) Θ (tmean)

tmean

τ

+Θ (tmean − τ))) , (5.25)

tmean = t0 +
∆t

2
, (5.26)

where ε is a small positive number. In this expression the fact that time is
dicretized in the numerical evaluation and therefore τ is either outside or at
one of the borders of the integration was used,

τ ∈]−∞, t0] ∪ [t0 + ∆t,∞[. (5.27)

The result in Eq. (5.25) is an example of the statement that only linear terms
contribute to the Taylor expansion around tmean in the analytic regions of
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f(t). The second order term reads

Ω̂2 (t0 + ∆t, t0) =

∫ t0+∆t

t0

dt′
∫ t′

t0

dt′′
[
Â (t′′) , Â (t′)

]
−

=

(
− i
~

)2 [
Ĥ, ĤV

]
−

∫ t0+∆t

t0

dt′
∫ t′

t0

dt′′ (f (t′′)− f (t′))

= −
(
− i
~

)2 [
Ĥ, ĤV

]
−

∆t3

6τ
×

×Θ (τ − tmean) Θ (tmean) . (5.28)

The commutator reduces to[
Ĥ, ĤV

]
−

=
VSD

2
Jc

([
ĉ†−1ĉ0 + h.c., ĉ†−1ĉ−1

]
−

−
[
ĉ†1ĉ0 + h.c., ĉ†1ĉ1

]
−

)
,

= 2i
eVSD

2
JcĈ, (5.29)

where the last line defines the dimensionless and hermitian operator Ĉ. Using
the commutator relations of Eq. (2.13) leads to

Ĉ = − i
2

(
ĉ†0ĉ−1 − ĉ†−1ĉ0 − ĉ†0ĉ1 + ĉ†1ĉ0

)
〈
Ĉ
〉

= Im
{〈

ĉ†0ĉ−1 + ĉ†1ĉ0

〉}
, (5.30)

Ω̂2 (t0 + ∆t, t0) = − i
~

∆t
eVSDJc∆t

2

6τ~
Θ (τ − tmean) Θ (tmean) Ĉ. (5.31)

The resulting current at the different orders is compared in Fig. 5.3. As in
Fig. 5.1, the error correction by Ω̂2 is negligible. The maximum value of the
dimensionless coefficient a2(t0, t0 + ∆t) in

Ω̂1 (t0 + ∆t, t0) = − i
~

∆t
(
Ĥ + a1 (t0, t0 + ∆t) ĤV

)
,

Ω̂2 (t0 + ∆t, t0) = − i
~

∆t2
eV

~
Jca2 (t0, t0 + ∆t) Ĉ (5.32)

for the chosen parameters is 2.8 × 10−3, while a1(t0, t0 + ∆t) tends towards
one. Comparison of the behavior of the transient current in Fig. 5.4 illustrates
that a slower increase in voltage reduces the size of the transient peak but
does not influence the oscillations superposing the steady state.
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Figure 5.3: Comparison of first and second order current for a linear increase
in voltage over a timespan of τJ = 10~. The system has a size of M =
50 sites, tunneling element Jc = 0.3J , maximal voltage eVSD = 0.5J and
timestep size J∆t = 0.25~.
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Figure 5.4: Comparison of first order currents for a linear increase in voltage
over different timespans τ . The system has a size of M = 80 sites, tunneling
element Jc = 0.3J , maximal voltage eVSD = 0.5J and timestep size J∆t =
0.25~.
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The function f(t) that was used so far is not analytic and has kinks. In
order to find out whether the choice of a smoother f(t) can improve the
passage to the steady state, an increase with

f (t) = sin

(
π

2

t

τ

)2

Θ (τ − t) Θ (t) + Θ (t− τ) (5.33)

is investigated. As a result the coefficients defined in equation (5.32) read

a1

(
tmean −

∆t

2
, tmean +

∆t

2

)
=

∫ tmean+ ∆t
2

tmean−∆t
2

dt′

∆t
f (t′)

=

(
1

2
− τ

π
cos
(π
τ
tmean

)sin
(
π
2τ

∆t
)

∆t

)
×

×Θ (τ − tmean) Θ (tmean)

+ Θ (tmean − τ) , (5.34)

a2

(
tmean −

∆t

2
, tmean +

∆t

2

)
=

∫ tmean+ ∆t
2

tmean−∆t
2

dt′

∆t

∫ t′

tmean−∆t
2

dt′′

∆t
(f (t′′)− f (t′))

=
τ

π2∆t
sin
(π
τ
tmean

)
×

×
{
π cos

(
π

τ

∆t

2

)
− 2

τ

∆t
sin

(
π

τ

∆t

2

)}
×Θ (τ − tmean) Θ (tmean) . (5.35)

Again, the change in current due to the inclusion of Ω̂2 is marginal, according
to Fig. 5.5. The comparison of currents for the two different adiabatic in-
creases of voltage done in Figs. 5.6, 5.7 and 5.8 results in the insight that the
choice of a specific shape of voltage increase has only a minor influence on
the height of the current peak in the transient regime. The best possibility
of a reduction of this peak is an increase of τ .

5.6 Applications and outlook

The combination of td-DMRG and time-dependent exponential perturbation
theory allows for a wealth of new systems to be studied. Alternating voltages
can be simulated, allowing for an investigation of the interaction of systems
with external photons. Other time-dependent manipulations of the systems
can also be simulated. An example would be the simulation of qubit oper-
ations on quantum dot realizations of qubits in the case that a modeling of
the surrounding bath is available or neglected.
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Figure 5.5: Comparison of first and second order current for a smoother
increase in voltage over a timespan of τJ = 10~. The system has a size of
M = 50 sites, tunneling element Jc = 0.3J , maximal voltage eVSD = 0.5J
and timestep size J∆t = 0.25~.
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Figure 5.6: Comparison of currents for linear and smoother increase in volt-
age over a timespan of τJ = 5~. The system has a size of M = 80 sites,
tunneling element Jc = 0.3J , maximal voltage eVSD = 0.5J and timestep
size J∆t = 0.25~. Currents were simulated using the first order Magnus
expansion.
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Figure 5.7: Comparison of currents for linear and smoother increase in volt-
age over a timespan of τJ = 160~. The system has a size of M = 400 sites,
tunneling element Jc = 0.3J , maximal voltage eVSD = 0.5J and timestep
size J∆t = 0.25~. Currents were simulated using the first order Magnus
expansion.
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M [1] τ
[ ~
J

]
Ismooth

[
eJ
h

]
Ilin

[
eJ
h

]
80 5 0.381 0.381
80 10 0.381 0.381
80 20 0.377 0.373
200 30 0.360 0.359
200 50 0.357 0.358
200 70 0.356 0.358
400 100 – 0.355

Figure 5.8: Comparison of current peaks Ilin and Ismooth in the transient
regime for linear and smoother increase in voltage over different timespans τ
and in different system sizes M . The systems have tunneling element Jc =
0.3J , maximal voltage eVSD = 0.5J and timestep size J∆t = 0.25~. Currents
were simulated using the first order Magnus expansion. For τJ = 130~ and
τJ = 160~ no peaks are observed in the transient regime, see Fig. 5.7. For
τJ = 100~, only the setup with linear increase in voltage shows a peak
in the transient regime. The steady state current resulting from analytic
calculations for the chosen parameters is Ih = 0.355eJ .

The RLM containing a current source served here as a validation of the
use of time-dependent exponential perturbation theory in the DMRG. but
it was also investigated with another application in mind. The reflection of
particles at the boundaries of the system connects the timespan available for
current extraction to the system size. To decouple timespan from system
size, absorbing boundary conditions could be introduced at the borders of
the leads. However a lead which absorbs particles is a bad particle source, so
in this case a current source in the center of the system would be prefered. So
far no absorbing boundaries have been implemented successfully either due
to reflections at the absorbing layer [93, 28, 94] or due to other unwanted
effects [95]. In the scope of this work, no local absorption proved successful
and a global energetic damping in the system leading to steady states will be
presented in chapter 6. An introduction of current sources therefore is not
needed in the end. Modification of the steady state to a closer resemblance
of the thermodynamic steady state is one of the reasons to adiabatic voltage
increases. It was shown in the previous section that the first order approx-
imation of the Magnus row sufficiently reproduces the full time evolution.
Work in that direction ultimately proved to be not successful.
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Chapter 6

Towards steady state
current simulations on finite

systems

In the simulations performed in chapter 4, quasi steady state currents are
only observed up to a finite time scale. This is a common problem for numer-
ics which simulate finite systems out of equilibrium evolving in time. For a
one-dimensional problem, interferences will occur in the center of the system
after a return time τr given by vF τr = M , where vF is the Fermi velocity
of the particles and M is the length of the system, as has been discussed in
Sec. 2.3.3. The interferences carry information about the boundaries of the
system, which distinguishes the simulated system from the larger systems re-
alized in experiment and from systems in the thermodynamic limit assumed
in analytic calculations. Simulated currents thus cease to mimic experimen-
tally observed currents or analytically calculated currents once excitations
return from the boundaries of the system. Thus the finite size of the system
limits the measurement time during simulation and, as a result, adds finite
time effects to the obtained current [96]. So far, efforts to overcome this limi-
tation of the simulation methods have included smooth [93] and damped [28]
boundary conditions, among other things. Also integrable impurities [94]
and baths acting as source and drain attached in a one-directional way to the
leads [95] have been tested. Some of these attempts delay the emergence of
interferences, but none reduce them, see for example Ref. [57]. Within other
areas of research, the problem is solved by using absorbing boundary condi-
tions. Examples include photonic transport calculations in a single particle
picture [97] or energy resolved Green’s function approaches to the extraction
of transport properties using density functiontal theory [98, 99]. This ap-
proach fails when applied to time resolved simulations of particle conserving
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fermionic systems due to an unphysical long-range interaction generated by
the normalization of the wave functions [100]. An example of this failure
even for a noninteracting system when considering a single particle picture
as described in Sec. 3.1 is given in Sec. 6.4. In order to introduce damped
boundaries to many particle wave functions in a mathematically correct way
a DMRG method based on a density matrix description of the system is
needed. As a reminder the DMRG procedures explained in Sec. 3.2 are based
on many particle wavefunctions describing pure states. The density matrix
based DMRG method would need as its basis the space of all the possible
density matrices. This is a very resource demanding requirement [101] and
is therefore not suitable for the transport calculations targeted in this work.
The current chapter contains the study of a less rigorous and less resource
costly method to simulate steady states.

Section 6.1 again highlights the restriction on numerical transport sim-
ulations on finite systems. The main idea of the method, namely to use
the nonhermiticity of the hamiltonian to generate energetic damping, is pre-
sented in Sec. 6.2. The method then is tested on the RLM in Sec. 6.3. The
obtained steady state currents are compared to the known analytic steady
state currents of the RLM, and the outcome is discussed. Section 6.5 sum-
marizes the results of this chapter. Calculations in this chapter have been
performed using the DMRG algorithms discussed in chapter 3 unless stated
otherwise.

6.1 Restrictions on numerical current simu-

lation in finite systems

In Sec. 2.3.2 two different prescriptions to quench the system have been dis-
cussed. Within this chapter the focus is on the quench to shifted energy bands
sketched in Fig. 2.6b. The quench is realized by the addition of the voltage
term given in Eq. (2.15) to the time evolution hamiltonian Ĥt. Fig. 6.1 shows
the resulting time evolution of the particle density per site in a simulation
for the RLM. The RLM is defined in Sec. 2.2, and its Hamiltonian is given in
Eq. (2.7) with Vg = 0. A density wave travels towards the boundaries, gets
reflected and returns to the center of the system, as discussed earlier. The
return time is given by

tr =
M

vF

=
M

2

~
J
, (6.1)
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where M is the system size and the last equation holds true for filling up to
crystal momentum π/2 with Fermi velocity ~vF = 2J . In this simulation a
transient current is observed, see Fig. 6.3, which decays exponentially with
a decay time of

td =
~J
2J2

c

(6.2)

in which the transient current reduces to a fraction of e−1 of its original value.
After this time the steady state contribution to the current becomes dom-
inant, but is still superposed by an oscillatory term with oscillation period
of

T =
2π~
eVSD

. (6.3)

Fig. 6.2 visualizes the oscillation as well as the interference. The steady
state current can be separated from the superposed oscillation if T . tr− td.
For small voltages VSD or small couplings Jc between lead and structure the
system size M needs to be large for this requirement to hold. In order to
obtain low margins of error from the DMRG, the number of basis states kept
after the DMRG reduction of the Hilbert space needs to be increased with
increasing system size. Similar statements hold true for other numerical pro-
cedures. In general, a larger system size means higher cost of computational
resources. This limits the parameter ranges of applicable voltages and system
parameters for numerical investigations of systems. The method presented
in the next section targets to overcome this limitation.

For an additional point of view on this motivation the correspondence
between currents generated by a voltage source and currents generated by a
current source is required. A derivation of the fact that both sources produce
the same current in the RLM is given in Sec. 2.3.5. If the current is generated
by a current source in the center of the system, the source and the drain in
form of the leads are spacially separated. However in finite systems the leads
do not act as drains in the sense that they remove incoming particles from
the measurement. The functionality of a drain has to be added, e.g. by
absorption in the leads. Simply adding absorbing reservoirs to the leads
does not produce the desired results for the reasons discussed in Ref. [100]
and, briefly, in the next section. In the next section an energetic damping is
proposed that is active in the whole system and simulates an environment of
the system. It is realized by the use of nonhermitian Hamiltonians, or put
in an alternative picture, by the use of complex timesteps.
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Figure 6.1: Color encoded density distribution over site and time in the
RLM after quench as described in Sec. 6.1. Starting from uniform density at
t = 0, particles initially move to the right. The first particles get reflected
at Jt = 12.5~ and return to the system again at Jt = 25~. Parameters are
M = 50, eVSD = 0.5J , J∆t = 0.25~ and Jc = 0.3J .
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Figure 6.2: Current over time calculated numerically in the RLM via exact
diagonalization. Parameters are M = 150, eVSD = 0.5J , Jc = 0.3J and
timesteps J∆t = 0.25~.

105



6.1. RESTRICTIONS ON NUMERICAL CURRENT SIMULATION IN
FINITE SYSTEMS

-0.05

 0

 0.05

 0.1

 0.15

 0  100  200

I[e
 J

/h
]

t[ℏ/J]

Figure 6.3: Current over time calculated numerically in the RLM via exact
diagonalization. Parameters are M = 400, eVSD = 0.5J and Jc = 0.1J and
timesteps J∆t = 0.25~.
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6.2 Method

In statistical physics, instead of an explicit inclusion of baths into the de-
scription of a system, their effect is occasionally regarded by addition of
antihermitian terms to the self energy of the system in a Green’s function
formulation [60] of the problem [102, 99]. As a short reminder, the Green’s
function G(x, x′, E) of a one-dimensional system without interaction contai-
ning only one particle is defined as the solution of the equation [103]

(E −H0 (x))G (x, x′, E) =δ (x− x′) . (6.4)

The Dirac delta distribution is denoted by δ (x) andH0(x) describes the inter-
actionless system. This equation is formally solved by the retarded Green’s
function

GR (x, x′, E) =
1

E −H0 (x) + i0+
. (6.5)

In momentum space, with Ep being the eigenfunctions of the Hamiltonian

Ĥ0 of the system, the solution reads [60]

GR (p, E) =
1

E − Ep + i0+
. (6.6)

The concept of Green’s functions also exists for interacting many particle
systems with Hamiltonian Ĥ0 + ĤI where the interactions are described by
ĤI. There, the formal solution reads

GR (p, E) =
1

E − Ep + i0+ − Σ (p, E)
, (6.7)

and the self energy Σ(p, E) incorporates the effects of ĤI. Interactions in-
cluded in ĤI usually affect the real and imaginary part of Σ(p, E). The
addition of an antihermitian term to the Hamiltonian which does not explic-
itly include interactions is a simple way to mimic the ad-hoc addition of only
an imaginary part to Σ(p, E). This happens on the level of the definition of
Hamiltonians and is thus independent of the language of Green’s functions.

A noninteracting term in the Hamiltonian which varies in space, as would
be the case for absorbing terms added to the ends of the leads, will lead to
an additional source of wave reflection. This is due to the correspondence of
a change in hopping elements to the physical phenomena investigated e.g. in
the RLM. The reflected current is equal to e2VSD/h minus the transmitted
current and is different from zero in the RLM case for Jc 6= J , as seen from
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Eq. (2.29). In order to overcome the reflections, the proposal introduces a
global antihermitian term which is constant in the leads to the Hamiltonian
leading to a mixed real and imaginary time evolution. The antihermitian
term is chosen to share the same eigenstates and the same hierarchy of ei-
genenergies with the initial Hamiltonian. This choice yields a projection to
the initial state by the imaginary time evolution operator.

In the procedure picked in Sec. 6.1 for this chapter and described in
Sec. 2.3.2 time evolution is governed by the Hamiltonian Ĥt = Ĥs +ĤV, with
ĤV given in Eq. (2.15). The proposal now replaces Ĥs by the nonhermitian
Hamiltonian

Ĥ′ = exp (−iΦ)Ĥs

= cos (Φ)Ĥs − i sin (Φ)Ĥs

= cos (Φ)Ĥs + sin (Φ)Â, (6.8)

with Ĥs being hermitian, e.g. the Hamiltonian written down in Eq. (2.7),
and Â = −iĤs. The phase Φ ∈ [0, π/2] is chosen as an arbitrary phase that
dictates the strength of the energetic damping. Its influence on the result is
discussed in Sec. 6.3. The operator Ĥ′ conserves the particle number if Ĥs

does, as is the case in considerations within the scope of this thesis. Â has
the same eigenfunctions as Ĥs. The eigenenergies EĤs

n of Ĥs are real since

Ĥs is hermitian, so the eigenenergies EÂn of Â are imaginary, with

EÂn = −iEĤs
n . (6.9)

In td-DMRG the state of the system |Ψ(t) 〉 is evolved in time with timesteps
∆t as

| Ψ̃(t+ ∆t) 〉 = exp(−iĤ′∆t) |Ψ(t) 〉 (6.10)

|Ψ(t+ ∆t) 〉 = | Ψ̃(t+ ∆t) 〉/
√
〈 Ψ̃(t+ ∆t) | Ψ̃(t+ ∆t) 〉. (6.11)

Expressing |Ψ(t) 〉 in terms of eigenstates |Ψn 〉 of Ĥs and assumption of
small J∆t� ~ yields

| Ψ̃(t+ ∆t) 〉 =
∑
n

cn(t) exp(−i sin (Φ)EĤs
n ∆t) exp(− cos (Φ)EĤs

n ∆t) |Ψn 〉.

(6.12)

The coefficients cn(t) which give the weight of the eigenfunctions |Ψn 〉 in
the state of the system therefore aquire an exponential damping factor of
exp(− cos (Φ)EĤs

n ∆t), which depends on their corresponding eigenenergies.
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By definition the initial state |Ψ0 〉 of the system has the lowest eigenenergy.
The coefficients of other eigenstates are suppressed relative to c0(t) since they
aquire stronger damping factors. In that sense Â enhances the contribution
from the initial state during time evolution, or put differently, the resulting
state is closer to the initial state due to Â. On the other hand states contai-
ning excitations have higher energies than the ground state. Â reduces the
relevance of contributions from these states during time evolution. Excita-
tions correspond to moving particles, and since the excitations are created in
the center of the system the particles initially move towards the boundaries.
This means that states containing particles which move towards the bound-
aries of the system become less relevant over time. As a result the wavefronts
moving towards the edges of the system shrink over time. Fig. 6.4 shows the
effect of Â on the current at different positions in the system and the re-
duction in net particle flow towards the boundaries. The time averaging for
this figure was performed over the time range in which the system is in a
(quasi-)steady state, i.e. starting from the time when the transient current
has decayed up to the time at which the simulation ends.

As stated before, particle conservation still holds in the presented pre-
scription for the RLM. The shrinking wavefronts are part of a non-local
change in density. This unphysical effect does not obey causality and is
caused by the normalization of the wavefunction, see Eq. (6.11). It can actu-
ally increase the contribution of eigenstates and therefore the local density at
some positions. A more detailed discussion of the effect is given in Ref. [100].
The time evolution contains a competition between Â, which moves the sys-
tem towards the initial state, and ĤV, which drives the system away from the
initial state. Together the two terms force the system into a (quasi-)steady
state. The error of this approximation with respect to the introduction of an
unphysical effect is discussed in the next section.

An equivalent description of the method uses the hermitian Hamiltonian
Ĥs and includes the phase in the definition of the parameter time. The new
time t′ is complex,

t′ = exp (−iΦ)t. (6.13)

This leads to the same mixed time evolution present in Eq. (6.12), which can
be separated into real and imaginary time evolution. The imaginary time
evolution acts approximately as projection of the state onto the initial state,
yielding the energetic damping.

In a finite system, the steady state means that there is no net change
of charge within the leads. According to the definition given in Sec. 2.3.1,
the current therefore vanishes. Yet there is still a flow of particles through
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Figure 6.4: Time averaged current over site index for
Ĥ′ = exp (−i0.494π)ĤRLM, with RLM-Hamiltonian ĤRLM. Parameters are
M = 50, eVSD = 0.5J , and Jc = 0.3J , and time evolution is discretized with
timesteps J∆t = 0.25~.
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the structure. This flow is compensated by the change of charge due to
the damping in the leads. The current for this method is defined as the
flow of particles in the absence of damping. It is calculated as expectation
value of the operator −i/~[Ĥs, Q̂]−. This is the expression obtained from
the Heisenberg equation of motion for −∂tQ̂ in a system governed by the
hermitian Hamiltonian Ĥs, with Q̂ being the charge operator. For each point
in time this corresponds to the fictitious situation that at this time of the
measurement the damping is turned off, and the system is described again by
Ĥs+ĤV. To see this one needs to remember that the time evolution up to the
current measurement for this meausrement point in time was governed by the
system including damping. The current then is calculated from−i/~[Ĥs, Q̂]−,
which means that the system is described by Ĥs in the near future of that
point in time.

6.3 Results

In a first step big phases are considered. The result for one realization of a
current measurement simulation in the RLM using nonhermitian time evo-
lution Hamiltonians is shown in Figs. 6.5 and 6.6. The interference which
manifests as sudden drop in current is no longer observable due to the strong
energetic damping reducing the reflected wave to a neglectable amount. The
current shows a transient regime, just as with the methods discussed in
Sec. 2.3.2. However, the transient current does not show an exponential
decay. The superposed oscillations show a changed behavior since the eigen-
energies and therefore the energy gap which causes the oscillations now are
complex quantities. The steady state current is extracted by averaging out
the superposed oscillations. Simulations for different parameters in the RLM
and for different voltages result in the I/V given in Fig. 6.7. As shown in
Fig. 6.4 the value of the current changes depending on the position of the
extraction in the system. In Fig. 6.7 was extracted at the connection between
structure and lead. This means that at the point of measurement between
the structure and the first site of the lead, a mean current of〈

I
〉

(t) =

∫ 1

0

dx f (x, t) 〈I〉 (t) (6.14)

was calculated. Here, the integration goes from the structure (x = 0) to the
first site of the lead (x = 1). f(x, t) is the function describing the decay of
the current, and 〈I〉(t) is the expected current on the structure. The current
intended to calculate is obtained from 〈I〉(t) by inversion of the equation. If
this effect is included in the extrapolation of the current flowing in through
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the structure in the center of the system, the I/V changes to the curve plotted
in Fig. 6.8 . The extrapolation used approximated the damping to be of
exponential form, f(x, t) = exp {−Γxx}.

The resulting currents over time show remnants of the interference, which
reduce for values of Φ close to π/2, see Figs. 6.9, 6.10 and 6.11. The suppres-
sion of the remnants depends on Φ and Jc, and for small Jc they reduce faster
with increasing Φ. A variation of the extracted currents with the phase Φ
and the size M is observable. This variation is slow in the region of Φ that
shows a strong suppression of the interferences. Fig. 6.12 shows the I/V for
currents with strongly differing phases and sizes.

The I/V in Figs. 6.7 and 6.8 contain results obtained with the two dif-
ferent phases Φ = 0.494π and Φ = 0.49π, which yield very similar re-
sults due to the small difference in phase and the slow variation in that
region. The method gives good results even for very low decay rates of up
to ~JΓ = 2J2

c = 2 ∗ 10−4J2 in systems with M = 50 sites. This should
be compared with the resulting current for Φ = 0 for the same system
size in Fig. 6.6. These systems should have an energy resolution of roughly
∆E = 4πJ/M ≈ 0.25J . The mismatch between the shapes of the currents
obtained for the two different methods can not be explained by finite size
effects, as seen in Fig. 6.12. One possible explanation builds on the observa-
tion that the density at the structure oscillates in time, as seen in Fig. 6.13.
This hints at an excitation on the resonant level which cannot decay due to
the interplay of damping and voltage terms. In simulations not using the
phase, the resonance builds up in the transient regime and then decays over
time, which leads to the decay rate of the transient current being connected
to the resonance width. As a consequence of this, the forced quasi steady
state differs from the steady state obtained in the thermodynamic limit or in
experiments. Fig. 6.14 shows the current resulting from an adiabatic voltage
switch. Adiabatic voltage switches modify the transient behavior and par-
tially prevent the resonant level from being excited, as can be seen by the
reduced peak in Fig. 5.8. Since the measurement time is no longer restricted
by the return time of a wavefront, the possibility of long switching times τ
is given. For the simulation with a phase applied to the Hamiltonian, adi-
abatic switching does not improve the situation. Another source of error is
the extrapolation formula which assumes exponential damping of the current
towards the leads. A formula matching the actual damping in a better way
might improve the resulting I/V. However, the damping within the leads
seems to be rather independent from the coupling to the structure and only
weakly dependent on the applied voltage. Assuming exponential damping,
the current decay rate per site for Jc = 0.3J , eVSD = 0.5J and Φ = 0.494π
equals Γx = 0.86/site. For Jc = 0.01J and same parameters otherwise, it
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Figure 6.5: Current over time in the noninteracting resonant level model
with M = 50, Jc = 0.3J and eVSD = 0.5J . The blue line gives the result for
the method presented in this chapter. The red line gives the result using the
usual method.

also equals Γx = 0.86/site. Most importantly, the damping will not lead to
an increase in the current from the structure towards the lead. Errors made
in the formula can not explain the overestimation of current for larger values
of Jc.

Fig. 6.15 shows the I/V resulting from different values of φ and M . The
data is chosen from the pool of performed simulations as the simulations
using the smallest phases that generate currents without visible remnants of
the interferences. This approach is supposed to give the optimal I/V possible
since the error introduced by the large phase has not been removed by the
proposed treatments. The method gives results which are in accordance with
analytic solutions for the range of small Jc. This is the range of main interest
in the scope of this work. However, due to the large phase needed in order
to remove the interferences the results differ from analytic results for larger
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Figure 6.6: Current over time in the noninteracting resonant level model
with M = 50, Jc = 0.1J and eVSD = 0.5J . The blue line gives the result for
the method presented in this chapter. The red line gives the result using the
usual method.
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Figure 6.7: Extracted I/V for RLM hamiltonian with phases of Φ = 0.494π
and Φ = 0.49π for multiple values of Jc. The straight line gives the ap-
proximated analytic scattering theory result. System size used is M = 50,
timesteps are J∆t = 0.25~ and eVSD ∈ [0.3J, 0.8J ].
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Figure 6.8: Extracted I/V for RLM hamiltonian with phases of Φ = 0.494π
and Φ = 0.49π for multiple values of Jc. The straight line gives the ap-
proximated analytic scattering theory result. System size used is M = 50,
timesteps are J∆t = 0.25~ and eVSD ∈ [0.3J, 0.8J ]. In this plot, the damp-
ing towards the edges of the system is considered in the extrapolation of the
current through the structure.
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Figure 6.9: Resulting currents for RLM hamiltonian with various phases.
System size used is M = 50, timesteps are J∆t = 0.25~. The hopping
amplitue is Jc = 0.3J , and the bias has the value eVSD = 0.5J .
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Figure 6.10: Resulting currents for RLM hamiltonian with various phases.
System size used is M = 150, timesteps are J∆t = 0.25~. The hopping
amplitue is Jc = 0.3J , and the bias has the value eVSD = 0.4J .
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Figure 6.11: Resulting currents for RLM hamiltonian with various phases.
System size used is M = 50, timesteps are J∆t = 0.25~. The hopping
amplitue is Jc = 0.01J , and the bias has the value eVSD = 0.5J .
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Figure 6.12: Extracted I/V for RLM hamiltonian with different phases and
system sizes for multiple values of Jc. The straight line gives the approxi-
mated analytic scattering theory result.
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Figure 6.13: Color encoded density distribution over site and time in the
RLM, with density oscillations at the structure and uniform density distri-
bution otherwise. Parameters are M = 50, eVSD = 0.5J , J∆t = 0.25~,
Jc = 0.3J and Φ = 0.494π.
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Figure 6.14: Current over time in the noninteracting resonant level model
with M = 50, Jc = 0.3J , eVSD = 0.5J and Φ = 0.494π. The voltage is
switched on adiabatically according to the prescription given in Sec. 5.5 and
the function given in Eq. (5.33) over the time Jτ = 60~. The blue line marks
the extracted current value for the situation shown in Fig. 6.5, where the
same system parameters and voltage value were used in a sudden voltage
switch. The green line marks the analytic result obtained from Eq. (2.29).
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Figure 6.15: Extracted I/V for RLM hamiltonian with different phases and
for multiple values of Jc and M . The straight line gives the approximated
analytic scattering theory result. The timesteps used in the DMRG time
evolution are J∆t = 0.25~, and eVSD ∈ [0.3J, 0.8J ]. In this plot, the damping
towards the edges of the system is considered in the extrapolation of the
current through the structure.

Jc.

6.4 Steady states and the single particle pic-

ture

For noninteracting fermions one usually can apply a single particle picture
for the simulation of currents, see Sec. 3.1. Since this chapter has treated
the noninteracting RLM as toy model it is enticing to use the single particle
picture for the description of transport in the presence of nonhermitian terms
in the Hamiltonian. On a closer look it turns out that this does not work.
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In the derivation of the end result of Sec. 3.1 the expression f({n̂t}) given
in Eq. (3.9) reduces to unity due to the hermiticity of the Hamiltonian.
For nonhermitian Hamiltonians f({n̂t}) does not reduce due to the complex
eigenvalues of the Hamiltonian and the method breaks down. In a naive
application of the single particle picture prescription for current simulation
given in Eq. (3.11) the breakdown manifests as infringement of the Pauli
principle, see Fig. 6.16. The result of the single particle picture is equivalent
to a description of the transport using single particle states in an energy basis.
These states do not contain a mechanism to enforce the Pauli principle,
i.e. to limit the number of fermions per state to a maximum of one. In
noninteracting systems, there is no interplay between the energy levels and
the Pauli principle can be regarded via the initial state configuration. The
normalization of the wavefunction for nonhermitian time evolution leads to
a mix between the single particle energy levels, which will in general lead to
a higher occupation of low energy levels.

6.5 Conclusion

In this chapter a simulation prescription which generates steady states during
time evolution in finite, one-dimensional systems is presented. The method
is based on nonhermitian Hamiltonians, and it is the first method known to
the author which generates steady states under the given conditions. Gen-
erated currents in general differ from the analytic results for the RLM. A
strong agreement of the results is reached for the targeted parameter regime
however. The method provides the foundation for the development of refined
methods to obtain steady states in many particle wave funtion approaches
to the simulation of finite systems.
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Figure 6.16: Occupation of the two hundred lowest single particle eigenenergy
levels of Ĥs in complex time evolution at different times within a naive sin-
gle particle picture calculation in the spinless fermion RLM at half filling.
Parameters are M = 350, eVSD = 0.5J , Jc = 0.3J and J∆t = 0.25~.
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Chapter 7

Summary and conclusions

The aim of this thesis is to improve the understanding of nanodevices. This
is achieved both by the investigation of mechanisms that could explain expe-
rimentally observed properties, and by the provision of new means to study
the behavior of such components.

The part of this work on a molecular diode falls into the former category.
In a first step a standard is defined which states that molecular rectification
effects need to be independent of any external factors. This is required in
order to obtain universally applicable molecular diodes, that function in var-
ious environments. Known and popular mechanisms that are traditionally
used to explain molecular rectification are reviewed, analyzed and investi-
gated. The first investigated and dissected mechanism is the proposal made
by Aviram and Ratner that consists of a donor-bridge-acceptor setup. The
second one is a static polarization of the molecule. It manifests as both
’asymmetric charging’, i.e. an asymmetric transition probability to the two
connected leads, and ’asymmetric field’, i.e. an adjustment of the energy
levels of the molecule depending on the applied voltage. It is also checked
whether these single effects meet the standard for rectification defined by the
author, yielding a negative result. A new model is therefore proposed rep-
resenting a dynamical polarizability of the molecule. This mechanism fulfills
the posed requirements on molecular rectification and is subsequently used
in the simulation of a bridge rectifier. The simulation confirms the usability
of the proposed polarizability in electronic devices.

The author’s work on molecular rectification provides clarification on the
much debated topic of mechanisms that cause molecules to rectify. It pro-
vides such a mechanism whose experimental realizations should reliably show
asymmetric I/V curves. This is an improvement to e.g. the Aviram Ratner
proposal whose early realizations sometimes did not show this feature.

Another part of this work is the project on time evolution in numerical
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simulations of systems that vary in time or are exposed to time-dependent in-
fluences. In this project the known time-dependent exponential perturbation
theory based on the also known Magnus series is embedded in a traditional
simulation method. The implementation is based upon an already existing
version of DMRG. The good quality of the approximation is tested on a toy
model. This results in the finding that very good approximations of the cur-
rent can be obtained already from the first order of the series. Then the
effects of an adiabatic increase of the voltage on the current are investigated,
where form and length of the increase are varied. The aim of the inves-
tigation is to find a way to reduce the effects of the transient regime and
especially the current peak. The result is that the exact form of the increase
is of only minor importance. The dependence of the size of the current peak
on the duration of the increase is obtained. This knowledge is used in later
calculations in order to find an optimum between reduction of the peak and
simulation time.

This implementation allows its user to investigate time-dependent sys-
tems and time-dependent driving such as the problem of a structure coupled
to an alternating voltage.

The third project discussed in this work concentrates on a possibility to
obtain steady states in time-resolved simulation on finite one-dimensional
fermionic systems. An energetic damping is proposed for this purpose. The
good quality of the approximation is tested on the noninteracting resonant
level model, and different approaches are tried in order to increase the agree-
ment with analytical results. One of these approaches is an adiabatic voltage
increase, which constitutes the motivation for the author’s previous investi-
gation of this topic. In the end, very good results are obtained for narrow
resonances.

This is the first proposal known to the author that manages to gener-
ate steady states for the stated kind of simulations. The steady states are
required for current simulations in parameter ranges of interacting systems
which contain narrow resonances. In these situations very long simulation
times are needed in traditional simulations, which require large system sizes
and a huge amount of computational resources. The proposal is a first step
towards simulations on these systems.

Four key new results are distilled from this thesis:

• The dissection and analysis of known mechanisms that try to explain
molecular rectification into single effects, in combination with

• the investigation of a model of dynamically polarizable molecules which
leads to rectification effects independent of external factors.
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• The implementation of a Krylov space technique to perform time evo-
lution with time-dependent Hamiltonians, tests on the good quality of
the approximation and its application to systems under an adiabatic
voltage increase.

• The proposal and investigation of energetic damping as a means to
obtain steady states in the time-resolved simulation of fermions on
finite systems.

The impact and implications of these results can be summarized as:

• A better understanding of the underlying mechanisms of molecular rec-
tification.

• The ability to simulate systems with alternating voltages, interactions
of the system with classical electromagnetic fields and other time-
dependent systems.

• The advance in the effort to simulate steady state currents in small
systems over long times.

• Access to parameter regimes which are not accessible in the time-
resolved simulation of electrical currents using traditional methods.

Beyond the presented results some open questions remain. The proposed
mechanism of a rectifying molecule needs to be implemented in extended
models of real molecules in order to predict or explain rectification. Also
the simulation of the bridge rectifier should be completed in order to prove
that the rectification effect persists when included in larger devices. The
method incorporating the truncated Magnus series is yet to be used in the
investigation of a model. Also an improvement of the energetic damping
yielding better agreement with analytic results in the regime of large current
flow, or a better understanding of the causes for the reduction in agreement
in such a regime, would be of advantage. And finally, the proposed energetic
damping needs to be tested on known interacting models in a next step.
These open questions ensure that the topics encountered in this work will
remain interesting for further investigation.

Overall this thesis contributes to the understanding of molecular diodes.
It provides a method to treat time-dependent problems and makes the first
step towards a steady state simulation on finite systems.
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Appendix A

Algorithms used in DMRG
procedures

In chapter 3 the DMRG methods are explained. In the explanation algo-
rithms used to obtain eigenvalues of matrices or, closely connected to that,
exponentiate matrices in the vicinity of fixed points in time, are mentioned.
The appendix introduces these algorithms.

Since some of the algorithms presented here are connected to the Krylov
space the main ideas behind Krylov space methods will be given in Sec. A.1.
In Sec. A.2 the Jacobi-Davidson algorithm [104], an algorithm for itera-
tively diagonalizing sparse matrices, is reviewed. In the work presented in
this thesis the Jacobi-Davidson algorithm is used for this task over other
popular algorithms such as the Lanczos algorithm [105], the Arnoldi algo-
rithm [106, 107] and the Davidson algorithm [108]. This choice is made due
to the faster convergence of Jacobi-Davidson and due to the higher stability
of the algorithm [65].The difference between Jacobi-Davidson and Davidson
algorithm [108] is pointed out in the discussion of the former one in Sec. A.2.
The Lanczos algorithm is mentioned in Sec. A.3.3 in which it is compared to
the Arnoldi algorithm. Section A.3 thematizes the different approximations
made evaluating the time evolution operator in the different time evolution
schemes discussed in Sec. 3.2.2. This includes Suzuki-Trotter [71, 72, 73],
Runge-Kutta [74, 75, 76] and Arnoldi algorithm. Further information on
approximations and algorithms discussed in this appendix is available in
Refs. [65, 53, 109, 110, 111].

A.1 The Krylov space

This section contains two viewpoints which motivate the usage of Krylov
spaces for the representation of large matrices in algorithms such as the
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Lanczos and Arnoldi algorithms.
The first point gives an argument for the usage of Krylov spaces in the ex-

traction of eigenvalues of matrices. After applying Ĥ a high number of times
D to a random vector and renormalizing the resulting vector afterwards, the
resulting states read

1

N
ĤD |ν〉 =

1

N
ĤD

∑
i

ai |xi〉

=
1

N

∑
i

aiE
D
i |xi〉

≈
∑
i

ai

(
Ei
Emax

)D
|xi〉 . (A.1)

The normalization of the vectors is namedN and for largeD, i.e. a2
max|E2D

max| �
|sumi 6=maxa

2
iE

2D
i |, is approximately given by

N =
√
a2

1E
2D
1 + · · ·+ a2

maxE
2D
max + · · ·

≈amaxE
D
max. (A.2)

Only eigenvectors |xi 〉 with the absolute values of their eigenvalues Ei close
to the absolute value of the maximum eigenvalue Emax contribute signif-
icantly. Therefore the elements of Krylov space with Ĥ applied repeat-
edly point strongly towards the eigenstates with high absolute eigenvalues.
Searching for the extremal eigenvectors by iteratively applying the matrix
is called power method. Krylov space methods search in the space spanned
by the vectors resulting from the power method for the best approximation
to the eigenvector. This yields a convergence which is greatly improved in
comparison to the power method.

Since the initial vector is randomly chosen, it can be far – in the sense
of the two-norm of the difference between the two vectors being large – to
an extremal eigenvector |xmax〉. In that case the limitations of the naive
picture given are shown and a large Krylov basis is needed in order to obtain
a good approximation of the extremal eigenvector. Orthonormalization of
added basis states with respect to all other basis states is an easy way to
account for this and to improve the convergence of Krylov space methods.

The second viewpoint is about the approximation of functions of matrices
Ĥ, which act on a given state, using Krylov spaces. It notes that, neglecting
symmetries for the moment, the full Hilbert space of dimension d of a problem
can be spanned by the states

|ν〉 , Ĥ |ν〉 , Ĥ2 |ν〉 , ..., Ĥd |ν〉 , (A.3)
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where |ν〉 is a random state or a guessed state with nonvanishing contri-
butions ai of all eigenstates |xi〉 of H. A nonrandom state, or with a very
small chance a random state, can have vanishing ai. If so, only a subspace
is spanned, the initial assumption fails and the procedure may break down.
In that case, a different choice of starting vector is needed. The argument
infers from Eq. (A.3) that the Krylov space is given by states which result
from application of polynomials of a matrix to the initial state. Now a func-
tion of this matrix acts on a given state which is used as initial state for
the construction of a Krylov space. An approximation of the resulting state
within the Krylov space then corresponds to an approximation of the matrix
function by polynomials, which is a very common approximation, see e.g.
the Taylor expansion.

To conclude this section note that the gain of the Krylov space usage
is rooted in the fact that application of large matrices to states is much
faster than the diagonalization of the matrices. The diagonalization would
be needed to execute the operations which are approximated by the Krylov
space techniques exactly.

A.2 The Davidson and Jacobi-Davidson me-

thods

The Davidson and Jacobi-Davidson algorithms are recursive diagonalization
algorithms used to obtain good approximations for the m lowest eigenvalues
up to Em and eigenvectors up to |xm〉 of the diagonalized matrix form of an
operator Ĥ for large Hilbert spaces. In a first step they need a number of
l ≥ m initial states in vector form |νi〉 which give the initial basis. These
vectors can be orthonormalized random vectors. Starting from these vectors
the basis is expanded step by step, and then it is used to represent Ĥ. In later
steps of the DMRG procedure the wavefunction prediction is used instead of
random vectors to obtain the starting vectors, see the discussion in Sec. B.2
or Ref. [112].

The Jacobi-Davidson algorithm tries to approximate the m lowest eigen-
values of a matrix Ĥ. For that purpose the basis is expanded by correction
vectors |z〉, one for each eigenvector to approximate. The choice of |z〉 sep-
arates the Davidson algorithm from the Jacobi-Davidson algorithm. For
pedagogic reasons this section first discusses its calculation in a generalized
modification of the Davidson algorithm which is described in Ref. [65]. Then
the differences between this version and the traditional Jacobi-Davidson al-
gorithm as well as the used modified versions of the Davidson and Jacobi-
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Davidson algorithms is highlighted. The latter is implemented in the DMRG
procedure used in the scope of this thesis.

A.2.1 The fundamental concept of the Davidson me-
thod

In the Davidson method the correction vectors are approximately given as the
difference of the unknown eigenstates of Ĥ and the corresponding eigenstates
of the reduced representation of Ĥ in the given basis. This way the Basis
space is expanded towards the m lowest eigenstates . This is continued until
the approximation error given by the two-norm of |z〉 is below the desired
threshold. A requirement to have a m-th lowest eigenvector at each step
is that the algorithm starts with at least m orthonormalized initial vectors
spanning an initial basis. In order to calculate one of the correction vectors |z〉
for a given basis spanned by the basis vectors |νi〉 and for the approximation of
the k-th lowest eigenvector |xk 〉 at an intermediate step, the vectors |νi〉 are
written as columns into the matrix V̂l. The product of V̂l with its transposed
matrix, V̂ T

l is the projection onto the l-dimensional basis spanned by the |νi〉:

P̂l = V̂lV̂
T
l . (A.4)

Ĥ is applied to V̂l to obtain the matrix Ã:

Ã = ĤV̂l. (A.5)

In practice, Ĥ is only applied to the newest addition to the basis, |νl〉, since
the other results have already been obtained in previous steps. The result-
ing vector is used as additional column of Ã. Ã is then multiplied to the
transposed matrix V̂ T

l , yielding the matrix elements ĥi,j = 〈νj|Ĥ|νi〉 of the

inclomplete representation ĥ of Ĥ:

ĥ = V̂ T
l Ã = V̂ T

l ĤV̂l. (A.6)

In an actual algorithm the amount of calculations is again reduced since most
of the matrix elements are already known. 〈νj|Ĥ|νi〉 is only calculated for

fixed j = l, and the hermiticity of ĥ is used to obtain 〈νi|Ĥ|νl〉. The matrix
ĥ is diagonalized exactly in order to obtain its k-th lowest eigenvector |αk〉νj
expressed by the basis states |νi〉. The corresponding eigenvalue of ĥ is λk,
and its eigenvector represented in the full basis is

|αk〉 = V̂l |αk〉νj . (A.7)
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With this, the correction |z〉 to |αk〉 in order to obtain |xk〉 is approximated
by

|z〉 := (|xk〉 − |αk〉) , (A.8)(
Ĥ − Ek

)
|z〉 =−

(
Ĥ − Ek

)
|αk〉

≈ −
∑
j

(
Ĥ − Ek

)
|νj〉 〈νj|αk〉

≈ −
(
Ã− λk

)∑
j

|νj〉 〈νj|αk〉

=−
(
Ã− λk

)
|αk〉νj

=:− |q〉

|z〉 ≈ −
(
H̃ − λk

)−1

|q〉 . (A.9)

The preconditioner H̃ is chosen as an easily invertible approximation to Ĥ.
The original Davidson algorithm uses a diagonal matrix as preconditioner
containing the diagonal elements of Ĥ. Other choices of H̃ are possible,
yielding generalized Davidson algorithms, which are more general and more
flexible than the original Davidson algorithm [65]. In the scope of this thesis
H̃ is a Hamiltonian consisting of the diagonalizable Hamiltonians of smaller
blocks of the system without interconnections between them. The different
terms in the Hamiltonian are diagonalized simultaneously, so that the full
Hamiltonian is diagonalized. To be more specific, the system is divided into
blocks A’ and B’ in Sec. 3.2.1 which are given by the expansion of the blocks
A and B by one additional site each. The matrix Ĥ is the full Hamiltonian
of the system:

Ĥ = ĤA ⊗ 12 ⊗ 1B + 1A ⊗ 12 ⊗ ĤB + 1A ⊗ Ĥ2 ⊗ 1B + ĤA′B′ . (A.10)

In this notation ĤA/B/2 is the Hamiltonian of block A/B represented in the
basis of this block or the hamiltonian describing the two additional sites in
their basis. The matrices 1A/B/2 are unity matrices represented in block A

or B or on the two additional sites, and ĤA′B′ are terms connecting block A’
and B’, which are represented in the basis of the combined blocks. The used
preconditioner H̃ then reads

H̃ =ĤA ⊗ 12 ⊗ 1B + 1A ⊗ 12 ⊗ ĤB + 1A ⊗ Ĥ2 ⊗ 1B

=Ĥ − ĤA′B′ . (A.11)
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The vector |q〉 is calculated in an intermediate step. If its norm is smaller
than a chosen error treshold, then |αk〉 and λk are the desired results of the
algorithm. Else |z〉 is orthonormalized with respect to the remaining basis
states via Gram-Schmidt, yielding a new basis state |νl+1〉, and the procedure
is repeated.

A.2.2 Adressing the issue of slow convergence in the
modified Davidson algorithm

The method described above may experience a slow convergence in case H̃
is close to Ã. This is connected to the vector | q 〉 that was implicitly defined
in Eq. (A.9) being close to an eigenvector of (H̃ − λk)

−1. If H̃ = Ã the
procedure even breaks down since Eq. (A.9) then would yield

|z〉 =−
(
Ã− λk

)−1

|q〉

= |αk〉νj , (A.12)

and |z〉 would not expand the basis any more. A possible solution to this
problem is to modify the vector | q 〉. The traditional Jacobi-Davidson algo-
rithm modifies | q 〉 such that the new search direction |z〉 is orthogonal to
the previous basis vectors | νj 〉, i.e. 〈z|νi〉 = 0:

|q′〉 =

(
|q〉+

∑
i

εi |νi〉

)
,

|z〉 ≈ −
(
H̃ − λk

)−1
(
|q〉+

∑
i

εi |νi〉

)
, (A.13)

where the εi are chosen such that |z〉 is orthogonalized against the | νj 〉
as discussed, compare with Eq. (A.14). For the purposes of this work the
requirements in computational resources of the traditional Jacobi-Davidson
algorithm are too high. In a modified version of the generalized Davidson
algorithm [113], which is discussed in Ref. [65], | q 〉 is modified only in the
direction of the newest addition to the basis, | νl 〉. This is used only to
orthogonalize |z〉 against | νl 〉 instead of all the basis vectors:

|z〉 ≈ −
(
H̃ − λk

)−1

(|q〉+ ε |νl〉) ,

ε = 〈νl|
(
H̃ − λk

)−1

|q〉 . (A.14)
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Within this thesis, a modified version of the Jacobi-Davidson method is
applied instead. This version splits objects defined in the original Hilbert
space into their projection on the reduced space and their projection orthog-
onal to the reduced space, e.g.

|z〉 =V̂lV̂
T
l |z〉+

(
1− V̂lV̂ T

l

)
|z〉

=P̂l |z〉+ |z〉⊥ . (A.15)

It searches for the orthogonal part | z 〉⊥ instead of first calculating | z 〉 and
then orthogonalizing. This leads to an equation similar to Eq. (A.9), where
the projection P̂⊥l = (1− V̂lV̂ T

l ) is used:

|z〉⊥ =−
(
P̂⊥l H̃P̂

⊥
l − λk

)−1

P̂⊥l |q〉 ,

|q〉 =−
(
Ã− λk

)
|αk〉νj . (A.16)

The objects |q〉, Ã, λk and H̃ are still given by their previous definitions.

A.3 Approximations of the time evolution ex-

ponential function

A.3.1 The Suzuki-Trotter approximation

States |Ψ(t)〉 of the system are evolved in time by application of an expo-
nential function with an antihermitian operator Â as its argument [89]. E.g.
for constant Hamiltonians Ĥ, Â is given by

Â = − i

~
Ĥ (t− t0) , (A.17)

with the initial time t0 and the final time t up to which the state evolves.
Therefore a matrix representation of

Û = exp {Â} (A.18)

is needed for a given matrix representation of Â. If Â is of sufficently small
dimension to be exactly diagonalizable, Û is calculated easily in the eigenbasis
of Â as shown e.g. in Sec. 3.1. Unfortunately there is no general precondition
method, i.e. a method using preconditioners similar to the Jacobi-Davidson
method, available to compute matrix exponentials [114] for larger dimensions
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of Â. Three feasible schemes for the approximation of Û are presented in
Sec. A.3.

The first scheme is the Suzuki-Trotter approximation [71, 72, 73]. It is
used in Sec. 3.3.1 as a means to separate the exponential function Û acting
on all sites simultaneously into exponentials which act locally on the bond
of only two sites. They are expressed in a reduced Hilbert space and com-
puted exactly. The algorithm is based on the observation that for arbitrary
operators Â1...Âm the series

Ûn =

[
exp

{
1

n
Â1

}
exp

{
1

n
Â2

}
· · · exp

{
1

n
Âm

}]n
(A.19)

converges for large n towards the exponential

Û ′ = exp

{
m∑
j=1

Âj

}
. (A.20)

The observation is known as generalized Trotter formula [72]. In the context
of Sec. 3.3.1 the operators Âj correspond to non-commuting parts of Â, are

expressed through time independent hamiltonians Ĥj via

Âj = − i
~
Ĥj (t− t0) , (A.21)

and Û ′ = Û . Also the systems considered with Suzuki-Trotter contain nearest
neighbour interactions only. One possible method [66] uses the splitting

Â = Â1 + Â2, (A.22)

where Â1 contains interactions of even bonds, i.e. between sites zero and
one, zwo and three and so on. Â2 contains interactions of odd bonds, i.e.
between sites one and two, three and four etc. This way every term in Â1

commutes with each other, and the same goes for Â2, but Â1 and Â2 do not
commute. As an example, for an infinite chain with constant hopping,

i~Â =− J
∞∑

x=−∞

c†xc
†
x+1 + h.c.,

i~Â1 =− J
∞∑

x=−∞

c†2xc
†
2x+1 + h.c.,

i~Â2 =− J
∞∑

x=−∞

c†2x+1c†2x+2 + h.c.. (A.23)
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Û is approximated by the n = 2 term of the series [66]

Û2 = exp

{
1

2
Â1

}
exp

{
Â2

}
exp

{
1

2
Â1

}
. (A.24)

This term is a second order approximation of Û in (t− t0) [66], and a gener-
alization to higher orders is straightforward. Since the local Hamiltonians of
all even bonds commute with each other, their time evolution exponentials
separate exactly,

exp
{
Â1

}
=

∞∏
x=−∞

exp

{
− i

~

(
c†2xc

†
2x+1 + h.c.

)
(t− t0)

}
. (A.25)

After an analogous treatment of the odd bonds, the whole time evolution is
carried out by an application of the single local operators to even bonds first
in any order, then to odd bonds, then to the even bonds again.

The method discussed in Sec. 3.3.1 for a system with M sites separates
Â into M − 1 operators Âj with

Âj ∝ c†j−1c†j + h.c. (A.26)

and approximates the exponential at the same order of Trotter error by

Û2 = exp

{
1

2
Â1

}
exp

{
1

2
Â2

}
· · · ... exp

{
1

2
Â2

}
exp

{
1

2
Â1

}
. (A.27)

This allows to apply the local time evolution operators ordered in the same
way as the recursion procedure of the improvement of the basis in DMRG,
see Sec. 3.2.2 and Sec. 3.3.1 for details. The method is widely used if only
nearest neighbour hopping problems are considered, but is not applicable for
more general problems.

A.3.2 The Runge-Kutta method

For general Â another approach has to be used. In the approach discussed in
this section, instead of the exponential function governing the time evolution,
the Schrödinger equation

d

dt
|Ψ (t)〉 = − i

~
Ĥ (t) |Ψ (t)〉 (A.28)

for the state |Ψ(t)〉 of the system is considered. An approximated solution
to this equation is given by the Runge-Kutta prescription [74, 75, 76]. A
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thorough discussion of this approximation is given e.g. in Ref. [115]. There
exist many Runge-Kutta prescriptions. They have in common that solutions
at later timesteps |Ψ(t + ∆t)〉 are constructed by addition of interpolated
solutions ki = |Ψ(t + x)〉, xi < ∆t, at intermediate timesteps with a weight
bi. The exact interpolation formulas and weights distinguish the different
realizations as well as the order of the approximation. Unfortunately the
various Runge-Kutta methods share the lack of unitarity. A common ex-
ample for a Runge-Kutta method is the standard fourth-order Runge-Kutta
algorithm [67]

|Ψ (t+ ∆t)〉 = |Ψ (t)〉+
4∑
i=1

biki, (A.29)

bi =
1

6
(1 + δi,2 + δi,3) ,

k1 =− i

~
∆tĤ (t) |Ψ (t)〉 ,

k2 =− i

~
∆tĤ

(
t+

∆t

2

)
(|Ψ (t)〉+ k1) ,

k3 =− i

~
∆tĤ

(
t+

∆t

2

)
(|Ψ (t)〉+ k2) ,

k4 =− i

~
∆tĤ (t+ ∆t) (|Ψ (t)〉+ k3) . (A.30)

A.3.3 The Arnoldi algorithm

Another approach to the problem of exponentiating large matrices is to ap-
proximate the matrix in a small subspace, which then allows for an exact
diagonalization. Since the exponential can be written in form of a Taylor
series, i.e. a series of polynomials of the matrix, the Krylov spaces which are
constructed of such polynomials and which are introduced in Sec. A.2 are a
common choice for the subspace. The Krylov space method of choice within
the scope of this work is based on the Arnoldi algorithm [106, 107]. This
method is presented in Ref. [116]. As starting vector for the construction of
the Krylov space the vector

|v1〉 =
1√
N
|Ψ (t)〉 (A.31)

which is to be evolved in time as in Eq. (A.28) by application of the time evo-
lution Û given in Eq. (A.18) is used. |v1〉 is normalized by division through
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the norm
√
N of |Ψ(t)〉. Now the standard Krylov space construction with

modified Gram-Schmidt orthonormalization is applied to obtain the addi-
tional Krylov space basis vectors |v2〉 · · · |vm〉 for an m-dimensional subspace
of the d-dimensional representation of |Ψ(t)〉. In step j this means that first
the not yet orthonormalized vector

|vj+1〉 = Â |vj〉 (A.32)

is calculated in the d-dimensional space. The modified Gram-Schmidt or-
thogonalization is then carried out with respect to one basis vector at a
time, meaning that ∣∣v′j+1

〉
= |vj+1〉 − 〈vi|vj+1〉 |vi〉 ,

|vj+1〉 :=
∣∣v′j+1

〉
/
〈
v′j+1|v′j+1

〉
(A.33)

for the indices i = 1 · · · j in ascending order. The vector |vj+1〉 is normalized
after the orthogonalization. If the normalization constant is smaller than a
chosen lower bound or if the chosen dimension of the subspace is reached,
the construction of the Krylov subspace is stopped. The overlaps

ai,j = 〈vi|vj+1〉
= 〈vi| Â |vj〉 ,

aj+1,j = 〈vj+1|vj+1〉
= 〈vj+1| Â |vj〉 (A.34)

form the matrix elements of the projection Âm of Â onto the Krylov subspace
with dimension m. The vectors |vj〉 correspond to the columns of a projection

operator V̂m with ÂV̂m = V̂mÂm. In the d-dimensional space this operator
reads V̂mV̂

†
m. The time evolution can now be approximated by a projection

onto the constructed Krylov space:

|Ψ (t+ ∆t)〉 =Û |Ψ (t)〉
≈Û V̂mV̂ †m |Ψ (t)〉

=
1√
N
V̂m exp

{
Âm

}
V̂ †m |v1〉

=
1√
N
V̂m exp

{
Âm

}
|e1〉 . (A.35)

Here, |e1〉 denotes the unit vector in the direction of the first basis vector in
the m-dimensional Krylov space, and the exponential of Âm can be calculated
exactly using exact diagonalization.
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The Arnoldi algorithm gives very good approximations already for small
Krylov spaces [77]. For hermitian matrices and in exact numerics it is for-
mally equivalent to the Lanczos Algorithm, which typically needs less than
one hundred iterations for high accuracy approximations [65]. The difference
between the two algorithms is that Lanczos requires only up to three vectors
to be stored at any step. On the downside of this, orthogonality is often lost
after some iterations and the algorithm is less stable than Arnoldi. Also the
Lanczos method by construction only applies to hermitian matrices while
Arnoldi generalizes Lanczos to non-hermitian matrices [65].

The advantage of Krylov subspace methods leading to their application
over e.g. Runge-Kutta in the context of this work is the preservation of
unitarity during time evolution, which is not guaranteed for arbitrary order
Runge-Kutta approximations.
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Appendix B

Improvements on the
performance of DMRG

procedures

This chapter provides some information on the ideas behind two modifica-
tions of the DMRG procedures discussed in chapter 3. The modifications are
not necessary for the DMRG in order to perform their task but they improve
the performance.

B.1 Conserved generalized charges in DMRG

procedures

In Sec. 3.2.1 a basic form of the iDMRG algorithm is presented which dissects
the basis space ΩS into a tensor product of subspaces ωx at positions x. there,
the dissection takes the form of Eq. (3.22),

ΩS = ω1 ⊗ ω2 ⊗ · · · ⊗ ωM . (B.1)

Computations using the DMRG algorithms are performed much faster if the
algorithms make use of the quantum numbers of the system. The states are
sorted according to their quantum numbers labeling conserved generalized
charges due to symmetries. This leads to some bookkeeping but speeds up
matrix multiplications applied e.g. during the Jacobi-Davidson diagonaliza-
tion algorithm [108, 104]. E.g. for conserved particle number N ΩS is written
as direct sum of subspaces ωS(n) with particle number n. The ωS(n) then
are decomposed as a tensor product of the subspaces ωB(n) of two blocks A

XIII



B.1. CONSERVED GENERALIZED CHARGES IN DMRG
PROCEDURES

and B by

ΩS = ωS (n = 0)⊕ ωS (n = 1)⊕ · · · ⊕ ωS (n = N + 1)

ωS (n = 2) = ωA (n = 2)⊗ ωB (n = 0)

⊕ ωA (n = 1)⊗ ωB (n = 1)

⊕ ωA (n = 0)⊗ ωB (n = 2) . (B.2)

The decomposition continues up to systems consisting of just one site. Sub-
spaces containing too many particles are omitted. Subspaces containing one
more particle than the desired number of particles have to be kept in order
to represent creation operators.

In the example given in Sec. 3.2.1 the creation operator acting on site 1
described in a two-site block read

ĉ†1 (2) =

(
0 1
0 0

)
1

⊗
(

1 0
0 1

)
2

, (B.3)

see Eq. (3.24). Written in terms of subspaces, the projection of the operator
ĉ†x (y, n,m) acting on site x = 1 represented in a y = 2-site basis connecting
the subspace with m = 0 particles to the one with n = 1 particles reads

ĉ†1 (2, 1, 0) =

(
0 1
0 0

)
1

⊗ (1)0
2 , (B.4)

where (1)0
2 is the unit matrix in the one dimensional subspace of site two

with zero particles. E.g. an expansion of (1)0
2 to the full Hilbert space at site

two gives

(1)0
2 →

(
0 0
0 1

)
2

. (B.5)

The annihilation operator acting on site x = 2 gets projected to

ĉ2 (2, 0, 1) = (1)0
1 ⊗

(
0 0
1 0

)
2

. (B.6)

Analogously, the connection between the one and two particle subspaces and
the operator on the full subspace expressed through these operators read

ĉ†1 (2, 2, 1) =

(
0 1
0 0

)
1

⊗ (1)1
2 , (B.7)

ĉ†1 (2) = ĉ†1 (2, 1, 0)⊕ ĉ†1 (2, 2, 1) . (B.8)
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In the notation using direct sums of subspaces the Hamiltonian Ĥ (x) of the
x = 2-site block within the leads now becomes

Ĥ (2) = −J
(

ĉ†1 (2) ĉ2 (2) + ĉ†2 (2) ĉ1

)
,

= Ĥ (2, 0)⊕ Ĥ (2, 1)⊕ Ĥ (2, 2) (B.9)

Ĥ (2, 0) = 0,

Ĥ (2, 1) = −J
(

ĉ†1 (2, 1, 0) ĉ2 (2, 0, 1) + ĉ†2 (2, 1, 0) ĉ1 (2, 0, 1)
)
,

= −J
((

0 1
0 0

)
1

⊗
(

0 0
1 0

)
2

+

(
0 0
1 0

)
1

⊗
(

0 1
0 0

)
2

)
,

Ĥ (2, 2) = 0. (B.10)

Here, Ĥ (x, n) denotes the hamiltonian of a subsystem with x sites and n
particles. The example given here is about the construction of an exact basis
in the initial step. However the categorization by quantum numbers is also
applied in the other steps, e.g. during the expansion of the system.

B.2 The wavefunction prediction

The amount of iterations needed for the Jacobi-Davidson method described
in Sec. A.2 is reduced by the usage of the wavefunction prediction proposed
in [112]. In the finite lattice DMRG discussed in Sec. 3.2.2 the wavefunction
prediction replaces the initial random vectors by the resulting low energy
wavefunctions of the previous DMRG iteration step, which are represented
in the transformed basis. In order to give an explicit transformation for the
wavefunctions, one step of the process of updating the basis needs to be
revisited.

Let us assume that the Jacobi-Davidson of the previous step results in
the low energy wavefunctions |Ψn 〉 given by

|Ψn〉 →
∑
i,j,k,l

Ψn
i,j,k,l |i〉A |j〉1 |k〉2 |l〉B . (B.11)

Here, | i 〉A/B are the basis vectors of blocks A and B, and | i 〉1/2 denote the
basis vectors of the two added sites, indexed as site one and two. The |Ψn 〉
are used to obtain the reduced density matrix ρ̂A′ of block A’ which is com-
posed of block A and additional site one via Eq. (3.31). ρ̂A′ is diagonalized

XV



B.2. THE WAVEFUNCTION PREDICTION

via the transformation matrix ÛA′ to the new basis |m 〉full
A′ :

|m〉full
A′ =

∑
i,j

[
ÛA′

]
ijm
|i〉A |j〉1 ,

|i〉A |j〉1 =
∑
m

[
Û †A′
]
mij
|m〉full

A′ . (B.12)

Here, [Ô]ij denotes element ij of the matrix Ô. The basis is projected to the

Ncut highest weights of ρ̂A′ via P̂A′ = V̂A′V̂
T

A′ , resulting in the basis given by
|m 〉A′ :

|m〉full
A′ →

[
V̂A′

]
m,o
|o〉A′ . (B.13)

The matrix V̂A′ has dimensions d × Ncut and entries V̂A′ ,ij = δi,j. In other
words it contains the Ncut kept eigenvectors of ρ̂A′ represented in the eigen-
basis of ρ̂A′ as columns. Its transposed matrix is given by V̂ T

A′ . The arrow
→ indicates that information is irreversibly lost going in its direction due to
the projection. The representation of |Ψn 〉 in the reduced basis of block A’,
and the bases of block B and site two, thus reads

|Ψn〉 =
∑
k,l,o

Φn
k,l,o |o〉A′ |k〉2 |l〉B ,

Φn
k,l,o ≡

∑
i,j,m

Ψn
i,j,k,l

[
Û †A′
]
ijm

[
V̂A′

]
m,o

. (B.14)

In a previous step, either in DMRG or iDMRG, the basis | i 〉B of block B
with x sites was obtained from the basis | i 〉Bprev of block Bprev with x − 1
sites and an additional site three by

|l〉B ←
∑
q

[
V̂ T

B

]
lq

[
ÛB

]
qrs
|r〉3 |s〉B′′ . (B.15)

Inserting Eq. (B.15) into Eq. (B.14) yields the transformation to the basis
which is present in the Jacobi-Davidson of this step:

|Ψn〉 →
∑
o,k,r,s

φno,k,r,s |o〉A′ |k〉2 |r〉3 |s〉B′′ ,

φno,k,r,s ≡
∑
i,j,m,q

Ψn
i,j,k,l

[
Û †A′
]
ijm

[
V̂A′

]
m,o

[
V̂ T

B

]
lq

[
ÛB

]
qrs
. (B.16)

These wavefunctions replacing |Ψn 〉 are used as initial guesses for the Jacobi-
Davidson algorithm. In the first DMRG step, transformations and wavefunc-
tions obtained from iDMRG are used.
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APPENDIX B. IMPROVEMENTS ON THE PERFORMANCE OF
DMRG PROCEDURES

The difference in the Hamiltonians used in the Jacobi-Davidson run and
in the previous run is due to the different spaces spanned by the bases and
is small. Since the wavefunctions were solutions of the previous run and
therefore of a nearly identical problem, they are supposed to be good initial
guesses to the solution of the current run.

In adaptive DMRG the time evolving wavefunction is present in all steps
during the iterations. The required basis transformations of the wavefunction
are performed in analogy to Eq. (B.16).
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