
Meller and Kohl Geothermal Energy 2014, 2:12
www.geothermal-energy-journal.com/content/2/1/12
RESEARCH Open Access
The significance of hydrothermal alteration zones
for the mechanical behavior of a geothermal
reservoir
Carola Meller* and Thomas Kohl
* Correspondence:
carola.meller@kit.edu
Institute of Applied Geosciences,
Division of Geothermal Research,
Karlsruhe Institute of Technology
(KIT), Adenauerring 20b, 76131
Karlsruhe, Germany
©
A
m

Abstract

Background: The occurrence of hydrothermally altered zones is a commonly
observed phenomenon in brittle rock. The dissolution and transformation of primary
minerals and the precipitation of secondary minerals affect rocks in terms of
mechanics, stress conditions, and induced seismicity.

Methods: The present study investigates commonly observed phenomena of
hydrothermal alteration and observations at the geothermal site of Soultz-sous-Forêts,
which are related to the occurrence of hydrothermal alteration. Geomechanical
observations at Soultz are interpreted on the basis of synthetic clay content logs,
which are created from borehole logging data, and which identify clay in
hydrothermally altered zones.

Results: It is shown that hydrothermal alteration results in a reduction of the
frictional strength of the reservoir rock. Weak zones can act as stress-decoupling
horizons, which locally perturb the stress field and affect the evolution of the
microseismic cloud. For the first time, it is shown on a reservoir scale that large
magnitude seismic events are restricted to unaltered granites, whereas in clay
zones, only small magnitudes are observed. It is demonstrated that clay-rich zones
foster the occurrence of aseismic movements on fractures.

Conclusions: Secondary mineral precipitation during hydrothermal alteration has
a great effect on the geomechanical properties of a geothermal reservoir. The
identification of such zones is a first step towards understanding the relation
between alteration and mechanical processes inside a reservoir and can help in
reducing induced seismicity during hydraulic stimulation of a reservoir.

Keywords: Geothermal reservoir; Hydrothermal alteration; Aseismicity; Reservoir
hydraulics; Soultz-sous-Forêts; Clay
Background
The importance of clay zones for the geomechanical structure and the earthquake me-

chanics in brittle rock became an important issue in the framework of mitigation stud-

ies of natural and man-made disasters (Holmes et al. 2013). A strong focus was given

to hydrothermal alteration in crystalline rock and its effect on mechanical friction. Re-

cent studies on the San Andreas Fault revealed the significant impact of clay inside

faults and fractures on their mechanical and hydraulic properties. Faults and fractures

are target zones for enhanced geothermal systems (EGS), as they provide pathways for
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geothermal fluids. In terms of mitigation of induced seismicity, while increasing the

permeability of the geothermal reservoir, detailed understanding of hydraulic and

mechanical processes of fractured rock is the key for the success of an EGS project.

The significance of clay for geothermal projects

The development of EGS in low-enthalpy regions like the Upper Rhine Graben in central

Europe involves the application of hydraulic stimulation for permeability enhancement in

the geothermal reservoir. Mostly located near residential areas, there is a claim for safety

and controllability of the geothermal technology from the public. In the past, people were

concerned by the occurrence of small perceptible earthquakes, caused by stimulation

activities or during operation of geothermal power plants like the magnitude ML = 3.4

earthquake in Basel in 2006 (e.g., Häring et al. 2008), the ML = 2.9, ML = 2.5, and ML = 2.3

in Soultz-sous-Forêts in 2003, 2000, and 2004 (Dorbath et al. 2009), respectively, or the

ML = 2.4 and ML = 2.7 earthquakes near Landau in 2009 (Groos et al. 2013). The injection

of fluid into the underground changes the effective stress, thus inducing slips on fractures

and faults associated with seismic events in brittle rock. In order to predict or even con-

trol the seismic behavior of a geothermal reservoir, the geomechanical structures and the

associated processes must be known.

In fresh and homogeneous rock, the relation between stress and mechanical failure is

commonly described by the Mohr-Coulomb criterion (Scholz 2010) with flow through

fractures to be characterized as sublaminar by the Darcy flow (Sausse 2002). In geother-

mal reservoirs, however, the percolation by geothermal brine promotes the formation

of hydrothermally altered zones around fluid pathways. The dissolution of primary

rock-forming minerals and the precipitation of secondary minerals like quartz, clay, or

carbonates change the in situ conditions with respect to mechanical strength of the

rock. In such zones, simple models might no longer apply, and the reservoir behavior is

difficult to assess. Evidence, that simple rock mechanical models no longer account

during and especially after the shut-in of hydraulic stimulation, has been only recently

highlighted by Schoenball et al. (2014) who demonstrated a change in the stress regime

during stimulation.

Several studies demonstrate the relation between geomechanics, earthquake character-

istics, and the weakness of rocks on a crustal and regional scale. For geothermal projects,

however, the geomechanical properties of a reservoir are to be known on a very local scale

in the order of several meters. The size of hydrothermal alteration zones can range from

millimeters to several kilometers. In order to characterize a geothermal reservoir and to

assess its geomechanics, it is important to understand the significance of such alteration

zones. Therefore, it is necessary to know and to understand, if and how large-scale geo-

mechanical rules and observations can be transferred to the reservoir scale.

The present paper conducts an investigation on the significance of hydrothermal

alteration in the granite of the geothermal site in Soultz-sous-Forêts (France) and the

change of its mechanical parameters. The basis of the analyses is synthetic clay logs,

which are created from spectral gamma ray logs using a technique introduced by Meller

et al. (2014a). These logs are indicative of the occurrence of clay-bearing fractures along the

boreholes. The newly derived results are investigated under the light of the existing geome-

chanical interpretation, which is summarized in the 'Current state of research on the role of

clay in fault zones' subsection.
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Current state of research on the role of clay in fault zones

Evidence for the role of clay as zones of weakness or some kind of lubricant on faults

promoting aseismic movements has been described by Schleicher et al. (2006), Dolan

et al. (1995), and Wu et al. (1975). Clay minerals are a characteristic of creeping faults

with rates of up to 30 mm/a assumed for the San Andreas Fault (Chang et al. 2013).

Studies on the slipping behavior of the San Andreas Fault, however, suggest that it is

not merely creeping but it rather consists of creeping patches, which build up stress on

patches with high friction. If the stress is large enough, these high friction patches rup-

ture and cause seismic events (e.g., Chang et al. 2013). This theory is supported by the

work of Amelung and King (1997) who observed a continuous earthquake activity on

creeping faults. A major result of their study is that creep and earthquakes are not two

separated phenomena, but two processes which go hand in hand. This has been reported

earlier for numerous faults and continental margins (e.g., Brune 1968; Voisin et al. 2004;

Mulargia et al. 2004). Recent studies at the geothermal site in Soultz-sous-Forêts revealed

similar mechanisms during shear movements on faults. Bourouis and Bernard (2007)

observed in the data of seismicity induced during GPK1 stimulation repeated shear

movements on fault asperities surrounded by creeping zones. Schmittbuhl et al. 2014

observed in the laboratory experiments a close relationship between seismic and

aseismic movements on faults and conclude that aseismic processes can drive seismi-

city, almost independent from fluid pressure. The triggering of seismic events by

creep movements is an important issue for EGS and needs to be considered for the

mitigation of large seismic events (Figure 1).

Clay minerals, which are a main product of hydrothermal alteration (e.g., Meunier 2005;

Velde 1995), sometimes have very low friction coefficients of approximately 0.3 (e.g.,

Morrow et al. 1992 and references herein, and c.f. Figure 1b). The frictional properties

of clay minerals, however, strongly depend on their structure and water content.

Therefore, it is not easy to estimate the frictional properties of clay-filled faults (Moore

and Lockner 2007). Many studies have been conducted on the relationship between the na-

ture of fracture fillings and fault mechanics. Zoback et al. (2012) and Kohli and Zoback

(2013) investigated the relationship between clay content and the mechanical friction of

shale gas reservoir samples under wet conditions. They observed a linear decrease of the

friction coefficient with increasing clay content (Figure 1a) from 0.8 with 10 wt.% clay to 0.4

at approximately 50 wt.% clay. Similar results have been obtained by Tembe et al. (2010) for

artificial clay gouge samples of quartz and illite and for natural soil samples tested by

Akayuli et al. (2013). The friction coefficients they measured for different clays vary and are

much lower than those of other minerals like quartz or feldspars (Figure 1b).

The rupture behavior of a fault from the Dieterich-Ruina constitutive model (Ruina

1983; Dieterich 1978) describes the frictional evolution of a fault for different sliding

velocities with the material parameter (a-b) representing the difference in steady-state

friction. It indicates stable sliding of fault surfaces during slip if (a-b) > 0 or unstable

sliding if (a-b) < 0. The synonyms for stable and unstable sliding are velocity-strengthening

and velocity-weakening behavior, respectively. The effect of clay on the rupture be-

havior of faults has been studied by many laboratory experiments. Ikaris et al. (2011)

found experimental evidence for the relationship between the weakness of rocks and their

frictional stability: rock samples with a low friction coefficient show velocity-strengthening

behavior, whereas samples with high friction coefficients show velocity-weakening behavior
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Figure 1 Friction coefficient and parameter (a-b) for different rock types. (a) Friction coefficient for
rocks and a soil with different clay contents. Increasing clay content reduces the frictional strength.
(b) Range of measured friction coefficients for different rock types (data from Ikari et al. 2011). (c) (a-b)
parameter for rocks and soil with different clay contents and (d) (a-b) for different rock types. With
increasing clay content, the friction coefficient is reduced and (a-b) increases. High clay content and low
friction result in velocity-strengthening behavior. Rock types with low friction show velocity-strengthening
behavior. Experimental data from Zoback et al. (2012) is derived from measurements on shale, and Tembe
et al. (2010) measured artificial quartz-illite samples. Akayuli et al. (2013) did experimental studies on soil.
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(Figure 1). This indicates the occurrence of brittle failure only on rocks with high friction

coefficients. Zoback et al. (2012) observed experimentally on shale gas samples that faults

with clay contents higher than 30% slide stable (i.e., (a-b) > 0), whereas faults with a lower

clay content slip unstable (i.e., (a-b) < 0, Figure 1c). They reasoned that such clay-rich faults

slide aseismically, whereas the faults with lower clay contents produce microseismic events.

The dataset of Tembe illustrates a dependence of (a-b) of illite-quartz samples on the illite

content. For these samples, no velocity-weakening behavior is observed. The reason for this

is that quartz can behave both velocity strengthening and velocity weakening, and under the

experimental conditions, it was velocity-strengthening (a-b) > 0 (Figure 1c), but nevertheless

the effect of the clay proportion of the samples on (a-b) is significant.

As the frictional properties of rocks determine their slipping behavior, a correlation

between the weakness of the rocks and the occurrence of large and small earthquakes

is expected. The so-called b-value, which is derived from the Gutenberg-Richter law

(Gutenberg and Richter 1954), describes the proportion of small relative earthquakes to

large ones. A b-value of 1 represents a logarithmic relationship between the magnitude

of events and their frequency, whereas b-values >1 reflect an increased number of small

earthquakes. High b-values are expected in areas where no large differential stress can

build up. Schorlemmer et al. (2005) compared the results of numerous earthquakes

from different settings and of laboratory data. They found that the b-value differs
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systematically with the faulting regimes. The highest b-values are found in normal

faulting regimes (up to 1.2), whereas the lowest b-values occur in thrust events (as

small as 0.6), and strike-slip events are in between. Based on the stress prevailing in the

respective regimes, Schorlemmer et al. (2005) concluded that the b-value inversely cor-

relates with differential stress levels. This was also confirmed by laboratory experiments

performed by Amitrano (2003) who observed a decreasing b-value with increasing

differential stress. Creeping fault sections show very high b-values of around 1.3

(Schorlemmer and Wiemer 2005). Based on these results, the occurrence of small

events and aseismic movements in strongly altered and fractured areas is expected rather

than large earthquakes. This assumption has also been proposed by Heinicke et al. (2009)

who investigated the correlation between hydrothermal alteration and the occurrence of

earthquake swarms. They observed in the Vogtland region of northwestern Bohemia that

in addition to increased pore pressure and shear stress, the mechanical weakening of the

rocks and the dissolution of fracture walls play an important role for the evolution of

earthquake swarms. Interestingly, the maximum magnitude of such earthquake swarms is

limited to 5 (Heinicke et al. 2009), which supports the theory of only small earthquakes

occurring in regions with rocks of low friction coefficients. When analyzing b-values, one

has to consider that this value is affected by numerous parameters, not least by the way it

is computed. Besides the strength of the rock, the main affecting parameters are the stress

field, the focal mechanism of the earthquakes, and the presence of large geologic struc-

tures (Scholz 2010 and references herein). In geothermal reservoirs, large variations

of b-values in time and space have for example been observed by Bachmann et al.

(2012). They calculated the b-value for the time period during injection and after in-

jection. The b-values varied from 1.58 during injection to 1.15 after injection, which

represents a larger proportion of small earthquakes during injection.

Dorbath et al. (2009) calculated a b-value of >1.2 for the stimulations of the well

GPK2 at Soultz, whereas for the well GPK3, which is a maximum 500 m away from

GPK2, was determined to be 0.9. They related this behavior to the presence of large

fault zones in the vicinity of the well, which dominate their seismic evolution.

The Soultz geothermal site

The European geothermal project of Soultz-sous-Forêts (France) targets a geothermal

anomaly at the western border of the Upper Rhine Graben. Five wells have been drilled

to a maximum depth of 5 km. Three of these wells are currently used for operation

with two wells as injectors (GPK3 and GPK4) and one producing well (GPK2) (Genter,

personal communication). The upper geothermal reservoir is hosted by a porphyritic

Hercynian monzogranite (Figure 2a), overlain by 1.4 km of Mesozoic sediments. The

lower reservoir lies in fine-grained two-mica granite, which can be encountered at

depths greater than 4.6 km. The pluton has been affected by the Upper Rhine Graben

tectonics, which caused the formation of large sets of faults and fracture zones. These

faults and fractures are the main pathways for circulating fluids and are thus respon-

sible for the permeability of the rock (Genter and Traineau 1992). Paleo-circulation of

meteoric fluids from the Graben shoulders led to pronounced alteration of the Soultz

granite. The first pervasive alteration affected the whole granitic matrix (Figure 2b) but

had no effect on the structural properties of the granite. It involved the formation of

mainly chlorite and hematite. A subsequent vein alteration event significantly changed



5 cm

a) Fresh granite b) Pervasive Alteration c) Vein alteration

Figure 2 Core pictures of different facies of the Soultz granite. (a) Fresh granite without evidence of
hydrothermal alteration. (b) Pervasive alteration with mainly formation of hematite and no structural
influence. (c) Vein alteration with dissolution of silicates and precipitation of clay minerals.
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the granite structure (Figure 2c). During this alteration event, primary minerals were

dissolved, and secondary minerals precipitated (Schleicher 2005). Alteration halos de-

veloped enfolding the zones around fractures affected by hydrothermal alteration. These

halos can be several tens of meters thick and are characterized by the transformation of

mainly silicates and the precipitation of secondary clay minerals, quartz, carbonates,

sulfates, and iron oxides (Genter and Traineau 1996). The dominating clay minerals of the

vein alteration are several generations of illites and smectites, and minor tosudite and

chlorite (e.g., Bartier et al. 2008).

The sealing of fractures by secondary minerals and the transformation of silicates into

clay minerals affected the hydraulic and mechanical properties of the rock (Valley and

Evans 2003; Charléty et al. 2007), whereas the details of such processes are still subject

to extensive research. Bartier et al. (2008) highlighted for example the importance of

clay mineralogy for the permeability of the Soultz granite, which is reduced by illite

precipitation but enhanced by tosudite precipitation. Ledésert et al. (2010) highlighted

the complexity of processed linked to porosity/permeability formation and decrease by

the dissolution and transformation of primary minerals and the formation of new min-

erals. The type and structure of clay minerals are not only important for the evolution

of porosity and permeability but also for the shearing properties of a fault filled with

clays.

The variation of hydro-mechanical properties of the rock with different alteration

types and grades makes it important to first detect alteration zones and, second, to

understand their significance for the performance of a reservoir (Figure 2).
Methods
The basis for the rock mechanical studies are neural network-derived synthetic clay

content logs (SCCL), which present the clay content along the borehole in a semi-

quantitative way with five groups of increasing clay content. In sedimentary rocks,

clay minerals can be easily identified from peaks in spectral gamma ray (SGR) logs. In

crystalline rock in contrast, apart from clays, numerous other minerals contain radio-

active isotopes, which makes it difficult to identify clay minerals on SGR logs. Therefore, a

neural network is used, which makes it possible to identify different signal patterns on log-

ging data and to localize the clay-bearing zones. The resolution of the resulting SCCLs is

on the scale of decimeters.
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The neural network for the creation of the synthetic clay content logs uses a self-

organizing map working with a Kohonen algorithm (Kohonen 1984). The principle of

this procedure is the grouping and indexing of patterns according to their spatial dis-

tance from each other. Each combination of n logs represents a vector in n dimensions.

The location of these vectors in n dimensions determines their assignment to the nodes

of a two-dimensional self-organizing map. Thus, their dimension is reduced, which makes

it easier to classify them. The number of classes can be defined according to the desired

resolution. The network is trained using supervised learning, which means the grouping

and classification of the nodes based on reference data. These reference data are used to

teach the neural network how different parameters are correlated. For this study, the refer-

ence data consists of spectral gamma ray logs and a fracture density log. A log representing

the density of clay-filled fractures was derived from core investigations of the EPS1 refer-

ence well and served as a template for the classification of the nodes. For the deep wells

GPK1 to GPK4, the fracture density log could be computed on the basis of fractures identi-

fied on borehole image logs. The resulting SCCLs (Figure 3) semi-quantitatively represent

the density of clay-filled fractures along the boreholes with five groups. The major flow

paths through the granite are marked by dashed lines. Group 1 represents the group with

the lowest clay content, and group 5 represents the highest clay content. The comparison

with reference data has shown that only approximately 10% of the logs deviates more than

1 SCCL group from real data and the vertical resolution of the logs is between 10 and

50 cm depending on the resolution of the SGR logs, from which they are derived.

The SCCLs allow discriminating between zones of high and low clay contents. Whereas

the upper parts of all wells are characterized by high SCCL values, representing the paleo-

alteration surface, the lower parts are very different for the five wells. Intervals with high

SCCL are mostly found around fractures, which have been identified as permeable on flow

logs, but hydrothermal alteration also occurs away from such fractures. However, not all

permeable fractures are located in altered zones. This might be due to the fact that ex-

treme alteration leads to a clogging of fractures with clay minerals, thus reducing its

permeability (Sausse 2002). The actually flowing fractures might not have been per-

meable in the past, which prevented the surrounding rock from being hydrothermally

altered. Increased clay content is seen at the bottom of the wells below 4,600 m at the

transition between the porphyritic and the two-mica granite. For details of this neural

network method, the SCCLs, and the calibration of the logs by magnetic mineralogical in-

vestigations refer to Meller et al. (2014a; 2014b) (Figure 3).

For the deep wells in Soultz, no core material is available. Therefore, petrophysical

and geologic parameters can only be derived from borehole measurements and seismicity

catalogs. This study is mainly based on breakout and fracture analyses conducted on bore-

hole image logs and on a catalog of seismic events recorded during hydraulic stimulation.

Borehole breakouts are enlargements and elongations of a borehole in a preferential direc-

tion and are formed by spalling of fragments of the wellbore during drilling. They generally

form parallel to minimum horizontal stress, and their formation is facilitated in weak wall

rocks (Babcock 1978). Their analysis can therefore provide information about the orienta-

tion of the stress field and on the mechanical properties of the penetrated rock. Seismic

events induced during stimulation are an indication of structures in the geothermal reser-

voir. Their analysis provides indications about the stress state, fracture orientation, rock me-

chanics, and fluid pathways.
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Results and discussion
Impacts of hydrothermal alteration on rock mechanics

Due to their preferential formation in weak rocks, a cumulative occurrence of break-

outs in altered zones in the Soultz granite could be indicative of the weakness of alter-

ation zones. This theory was investigated on the basis of breakouts, identified by

Sahara et al. (2014). They analyzed breakouts in the deeper part of the well GPK4. On

Figure 4, a total of 2,440 breakouts from Sahara et al. (2014) together with the SCCL

for this depth interval are illustrated. A correlation between clay content and the ap-

pearance and size of the breakouts is obvious. Whereas the density of breakouts is

high in clay-rich intervals, depth sections without clay are characterized by an absence

of breakouts, as for example at 4,180, 4,480 to 4,590, and 4,730 to 4,800 m (BA in

Figure 4). Obviously, the occurrence of breakouts is strongly related to the presence of

hydrothermally altered zones. This suggests that hydrothermal alteration weakens the

rock and thus promotes the formation of breakouts. Upon the transition from the por-

phyritic granite to the two-mica granite at around 4,800 m, the breakout density
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clearly increases (2M in Figure 4). The cumulated occurrence of breakouts at this

transition might originate from the mechanical contrast between the two granites.

Such mechanical contrast occurs also at the transition between fresh granite and

strongly altered granite.

The correlation of the clay zones with the occurrence of breakouts demonstrates

their geomechanical significance. However, it is in contrast to present studies, which

seem to identify rather high friction coefficients for the Soultz granite. By applying the

Mohr-Coulomb failure criterion using effective stresses on the fractures, Cornet et al.

(2007) obtained a minimum friction coefficient of 0.81. Evans et al. (2005a) found that

fractures in highly altered zones are surprisingly strong despite the presence of illite

and ascribed this behavior to their internal architecture of intact rock bridges and jogs

between weak zones. According to Byerlee (1978), rock samples with precut fault sur-

faces have a uniform friction coefficient of 0.85 and no cohesion at normal stress below

300 MPa, independent from the rock type. However, Byerlee (1978) observed that
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fractures filled with clay minerals are an exception from his law and have much lower

friction coefficients. A gradual decrease in frictional strength with the addition of clay

has also been observed in triaxial measurements of the Berea sandstone under high

temperature and high pressure conditions. Here, a sharp drop of the friction coeffi-

cient occurred at clay contents of approximately 50% (Takahashi et al. 2007). In these

experiments, clay minerals inside fractures were observed not only to weaken faults

but also to stabilize their sliding behavior. Crawford et al. (2008) performed experi-

ments of quartz-kaolinite mixtures of different proportions and compared their

strength. They also observed a reduction of frictional strength with an increasing clay

fraction. Ikari et al. (2009) obtained low friction coefficients of fault gouges rich in

phyllosilicates (Figure 5).

These experimental results are in agreement with the breakout observations at

Soultz, which indicate weakness of the hydrothermally altered zones, but which are in

contrast to the high minimum friction coefficient of 0.81 determined by Cornet et al.

(2007) for the whole granitic rock mass. It is therefore assumed that hydrothermal

alteration causes a variation in the frictional properties of the Soultz granite on a

meter scale with higher frictional strength in unaltered rock and a lower frictional

strength in altered rock.

Elastic properties of the Soultz granite have been experimentally studied by Valley

and Evans (2003). They selected samples of different alteration grades from the EPS1

core and measured the uniaxial compressive strength (UCS) of the core pieces. Further-

more, they measured the S- and P-wave velocities of the samples in order to determine

their E-moduli. They found an inverse correlation between alteration grade and UCS

and the E-modulus of the samples (Figure 5). From the results of this study, it is ex-

pected that the highly altered clay zones affect the frictional properties in Soultz and

the friction coefficient is not uniform but is lowered by hydrothermal alteration.

Recent researches showed that a characteristic of such weak zones is that they can fail

at low stress levels, as it is for example observed on a large scale on the San Andreas Fault

in a strike slip regime, whose slip direction deviates 70° from the maximum horizontal

stress (e.g., Boness and Zoback 2006), the Zuccale normal fault on Elba (e.g., Smith et al.

2007) or some normal faults at the eastern side of the Sea of Japan (e.g., Sibson 2009;

Faulkner et al. 2010). If such observations can be transferred to the reservoir scale, hydro-

thermally altered zones might fail at lower stress levels than the surrounding intact rock

mass. This is especially important in terms of hydraulic stimulation, as weak faults could

shear at much lower stimulation pressure than unaltered rock and influence the evolution

of induced seismicity (Figure 4).
Impacts of hydrothermal alteration on the stress field

Clay layers inside rock masses give rise to large contrasts of mechanical properties. In

contrast to intact crystalline or sedimentary rock masses, weak clay-rich zones cannot

establish large differential stress (Zoback and Harjes 1997).

The stress field in Soultz has been thoroughly investigated by many scientists (Valley

and Evans 2010; Cornet et al. 2007; Rummel 1995, and references herein). This resulted

in detailed knowledge of the magnitude and orientation of the principal stress compo-

nents with depth. Based on the analysis of wellbore failure and hydraulic data as well as



Figure 5 E-moduli and uniaxial compressive strength (UCS) of samples with different vein alteration
grades. Data is taken from Valley and Evans (2003) who measured UCS and E-modulus for samples with
different alteration grades. Alteration intensity is inversely correlated with E-modulus and UCS.
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microseismic data, a linear stress model has been established for the Soultz reservoir

(Valley and Evans 2007; Cornet et al. 2007)

Sv ¼ −1:3þ 0:255z
SH ¼ 0:98 −1:3þ 0:255zð Þ
Sh ¼ −1:78þ 0:01409z
Pp ¼ 0:9þ 0:0098z

with Pp the pore pressure and z the depth in meters.
The SH orientation is approximately north-south, and the vertical stress SV is equivalent

to the overburden. However, in inhomogeneous rock masses with changing mechanical

properties, the magnitude and orientation of the stress field change at the transition be-

tween layers of different mechanical strength. The Soultz granite is very heterogeneous

due to its porphyritic structure, its lithological variations, hydrothermally altered zones,

and the profound fracturing. Borehole breakouts generally form in the direction of the

minimum horizontal stress and are therefore useful indicators of the orientation of Sh and

SH. An analysis of borehole breakouts can give evidence about local stress variations. The

high resolution of the SCCLs in the order of decimeters for the first time allows a detailed

analysis of the indications for stress field variations at Soultz on the basis of breakouts. In

the following section, the occurrence of breakouts and their orientation is interpreted on

the basis of the SCCLs.

Evidence for a change in the direction of the principal stresses can be found in break-

out data from Sahara et al. (2014) in the well GPK4. The transition from porphyritic to

two-mica granite at around 4,800 m (2M in Figure 4) is not only characterized by an

increased breakout density but also by a deviation of the mean breakout orientation. As

breakouts generally form in the direction of the minimum principal stress, an orienta-

tion deviation of the breakout could be an indicator for a rotation of Sh. Another excur-

sion of the breakout orientation is observed at a depth of 5,000 m (OD in Figure 4).

This deviation coincides with a very clay-rich interval. This clay-rich interval might act

as a small stress-decoupling horizon, which rotates the principal stress. According

to the data of Sahara et al. (2014), stress rotations in clay-rich intervals can be

as large as ±30° from the mean orientation. Deviations of breakout orientations in
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hydrothermally altered zones have also been observed by Valley (2007) in the wells

GPK3 and GPK4. He observed major stress perturbations occurring at depths of 2,000

and 4,700 m. The SCCLs show that these stress perturbations coincide with the occur-

rence of clay-rich intervals related to large-flowing fracture zones (FZ2123, FZ4760,

FZ4775, Figure 3), but it cannot be ruled out that they could also be caused by the

presence of the fracture zones as it was, for example, observed by Valley (2007). The

stress variation at approximately 4,700 m is probably caused by the contrast in the elas-

tic moduli of the rock between the standard porphyritic granite and the two-mica gra-

nite at this depth and the increased clay content (Figure 6).

Valley and Evans (2000) analyzing breakouts in the well GPK1 between 2,840 and

3,510 m found an increased breakout concentration at the top of this interval. This

agrees with the occurrence of a clay-rich interval in this section indicated by high SCCL

(Figure 6). The mean SH orientation determined from breakouts is 0° ± 19°, which is in

agreement with the mean orientation of the structures of the microseismic cloud. Excur-

sions of the mean breakout orientation occur in the intervals 2,890 to 2,950 and 3,300 to

3,350 m, which are characterized by high SCCL values. The occurrence of breakouts in

GPK1 between 2,960 and 3,500 m is not only restricted to high-clay zones but high

breakout-densities as, for example, at 3,000 to 3,050 m or at 3,400 to 3,450 m depth also

occur, when a depth interval without or with very little clay is followed by a very clay-rich

interval. Here, the contrast of elastic moduli of the two depth intervals might cause a cu-

mulating appearance of breakouts. This might also be represented in the different orienta-

tions of the microseismic cloud in the depth intervals 2,700 to 2,900 m, where it is

oriented north-south, and 3,200 to 3,600 m, where its azimuth is 145° to 160° (Cornet et al.

1997). Cornet and his colleagues (1997) linked this orientation deviation to the higher

pore pressure above 2,900 m, but it could also be related to the presence of clay-rich

zones. Such clay-rich zones could also lead to increased pore pressures (Wu 1978).
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Figure 6 SCCL and breakouts for the well GPK1. A mean breakout orientation of 90° ± 19° was determined
from 498 measurements (data from Valley and Evans 2000). The occurrence of clay-rich intervals (shaded
panels) coincides with an accumulation of borehole breakouts. At the transition between fresh and altered
granite (patterned panels), the breakout orientation rotates.
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Similar analyses have been conducted by Langenbruch and Shapiro (2014) who inves-

tigated stress states in boreholes from different regimes. Based on sonic logs, they cre-

ated a model of the in situ elastic moduli to calculate the spatial distribution of in situ

stress within a rock mass. Their large spatial variations of the stress regime suggest

that linear stress models are not sufficient for Coulomb failure within a rock mass.

Economides et al. (1989) observed that within sedimentary formations, the vertical

gradient of the minimum horizontal principal stress does not vary linearly with depth.

The authors found that elastic heterogeneity has a significant influence on stress mag-

nitudes, which vary by up to more than ±20% of the externally applied stresses. Cornet

and Roeckel (2012) observed this phenomenon in limestone layers of the Paris Basin and

in the North German Basin. They saw that the local stress magnitudes are not linearly in-

creasing with depth, and they saw variations of approximately 15° in the stress directions.

In contrast to Langenbruch and Shapiro (2014) and Economides et al. (1989), they assume

that the stress magnitudes are controlled by the creeping characteristics of the various

layers rather than by their elastic characteristics (Cornet and Roeckel 2012).

The change of the local stress field in magnitude and orientation has previously been

described for large fracture zones (e.g., Brudy et al. 1997). In the San Andreas Fault, for

example, a stress rotation of approximately 28° with respect to the stress field of the

rigid crust has been measured (Chéry et al. 2004). Cornet and Roeckel (2012) identified

soft layers as decoupling layers introducing decoupling of stress fields in the layers

above and below these layers. This was also observed by Meixner et al. (2014) who doc-

umented a rotation of the maximum horizontal stress in different facies along the

Bruchsal geothermal wells (c.f. Figure seven in his article).

However, in those studies, stress field variations are only observed on large scales of

several kilometers. The analysis of breakouts on the basis of SCCLs provides indica-

tions that changes of the stress field both in magnitude and orientation of the principal

stress can also be induced by small-scale soft alteration zones on the meter scale as ob-

served in geothermal wells. Taking these observations into account, it is obvious that

the estimation of mechanical properties on the basis of a linear stress field can only

provide far field values, especially for zones, where the SCCL is high. So, in addition to the

frictional parameters, the exact orientation of the stress field has to be constrained in

hydrothermally altered zones in order to be able to assess their mechanical characteristics.
The impacts of hydrothermal alteration on induced seismicity

At Soultz, 20 hydraulic and chemical stimulations have been performed and large catalogs

of seismic events are available (Genter et al. 2010). During hydraulic stimulation, large

amounts of water are injected into the geothermal reservoir in order to increase the pore

pressure prevailing in the reservoir rock. If the pressure increase is large enough to over-

come the frictional stability of fractures, shear movements are induced, which can be

observed by the occurrence of microseismic events. A detailed summary of the back-

ground of hydraulic stimulation can, for example, be found in Economides et al.

(1989) or Majer et al. (2007).

The parameters influencing the evolution of induced seismicity like the pressure of

the fluid, the ambient stress field, the orientation of fractures, hydraulic properties, and

the frictional characteristic of rock can be affected by hydrothermal alteration. Herein,
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the relation between hydrothermal alteration and induced seismicity at Soultz is

investigated.

Except for some new fractures, which are created during hydraulic stimulation at Soultz

by hydrofracturing (Cornet 2012), seismicity in the Soultz reservoir is mainly restricted to

shear movements on existing geological structures, which can be observed during all stim-

ulations performed on the Soultz wells (e.g., Evans et al. 2005b; Fabriol et al. 1994;

Dorbath et al. 2009). However, it is not clear why some structures are seismically

more active than others. According to the Mohr-Coulomb failure criterion, the most

important factor affecting the shearing behavior of a fracture or fault is its orientation

relative to the ambient stress field. Favorably oriented fractures lie (sub)-parallel to

the maximum principal stresses and can thus be easily sheared. The focal mechanisms

at Soultz (cf. Figure one in Schoenball et al. 2012) indicate that some fractures pro-

duce seismic events upon hydraulic stimulation unless they should be stable accord-

ing to the Mohr-Coulomb failure criterion. A possible reason for that could be a very

low shear strength of some fractures, which allows them to shear at large angles to

the maximum stress. This gives further evidence that the friction coefficient of frac-

tures at Soultz is not homogeneous but rather varies in a wide range (Figure 7).

Aseismic movements on fractures have been directly observed in Soultz by Cornet et al.

(1997). The SCCL of GPK1 indicates clay-rich intervals between 2,800 and 3,000, 3,050

and 3,100, 3,180 and 3,230, 3,340 and 3,410, and 3,450 and 3,500 m (Figure 7). The stars

in this figure mark the shear movements, which have been induced during stimulation of

GPK1, and which have been identified on image logs. All shear zones lay close to the flow-

ing zones inside hydrothermally altered intervals, whereas most of the shear movements

were aseismic (yellow stars). The higher number of aseismic movements at shallower

depths is most probably related to the higher density of (large) fractures. A comparison

between the orientation of these fractures and the orientation of SH (Figure 8) reveals that

some of the creeping fractures strike at an angle of >30° to SH. If the Mohr-Coulomb

failure criterion accounts for these fractures, their friction coefficients must be very

low that shear is induced under the present conditions.

The correlation of aseismic movements with clay-rich intervals and their orientation

at a significant angle to SH supports the assumption of clay acting as some kind of lu-

bricant on the fault zones. This makes these fractures prone for aseismic shearing, al-

though they are not optimally oriented in the present stress field. Aseismic movements

are assumed to take a big share of the movements induced during hydraulic stimulation,

and some authors even assume that the major part of shearing happens aseismically (e.g.,

Schoenball et al. 2014; Bourouis and Bernard 2007). Further evidence for aseismic

movements in Soultz in GPK1 (Bourouis and Bernard 2007; Schmittbuhl et al. 2013;

Schmittbuhl et al. 2014), GPK2 (Schoenball et al. 2014; Calò et al. 2011), and GPK3

(Calò et al. 2011; Nami et al. 2008) underlines the significance of clay on the structural

reservoir evolution of the reservoir (Figure 8).

The SCCLs provide a unique opportunity to investigate the relation between seismic

events and clay inside the reservoir. It is best constrained by calibration in the wells

GPK1 and GPK3. In GPK2, the quality of the SCCL is bad due to the lack of logging

data SCCL, and for GPK4, the location uncertainty of seismicity is too large (Gaucher,

personal communication). Therefore, the analysis is focused on GPK1 and GPK3. In

the well GPK1, the location and magnitude for several 19,000 seismic events have been
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by Cornet et al. (1997) and Evans et al. (2005a). Major flow zones are surrounded by zones of high SCCL.
Slip is restricted to hydrothermally altered clay zones with high SCCL. The occurrence of aseismic slips is
restricted to clay-rich flowing faults.
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determined (Jones et al. 1995), and for GPK3, 22,000 events have been located (Dyer et al.

2003; Dorbath et al. 2009). As the SCCLs can only indicate clay in the proximity of the

wells, the events in a radius of 100 m around the borehole are selected. For the remaining

5,600 events (4,200 for GPK1 and 1,400 for GPK3), the respective SCCL value of the

depth, where they occurred, is determined. Then, the magnitude of the respective event is

plotted against the SCCL value (Figure 9). The exciting result of this plot is that with in-

creasing clay content, the maximum magnitude of seismic events is decreasing. Recent

observations of Schorlemmer et al. (2005), Langenbruch and Shapiro (2014), and others

suggest that low differential stress in weak zones prevents large seismic events, and it has

long been assumed that the occurrence of large events in Soultz is restricted to fresh, i.e.,
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Figure 8 Strike of the aseismic movements observed by Cornet et al. (1997) versus the orientation
of SH. Some of the aseismic movements happened on fractures, which are oriented at an angle >30° to SH,
which indicates weakness of these fractures, as they are not favorably oriented for shear.
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unaltered granite, but it could never be directly observed. This figure suggests that

the b-value of Soultz, although not constant in time, is also affected by the occurrence

of hydrothermally altered zones. The b-value of the entire 2,000 stimulation test of

GPK2 was determined to be 1.29 by Cuenot et al. (2008), and for the GPK3 stimula-

tion, Dorbath et al. (2009) determined a b-value of 0.94. It would be interesting to

compare the total clay content in both wells in order to find a correlation between

the total clay content and the b-value. Unfortunately, the SCCL of the lower part of

GPK2 could not be properly created due to missing image logs. The rather large value

of 1.29 for GPK3 might be indicative of weak structures as such high values are nor-

mally only found in regions of crustal weakness (Amitrano 2003).

Therefore, the presence of large faults is most probably not the only reason for the

different seismic behaviors of GPK2 and GPK3 as it was observed by Dorbath et al.
Figure 9 SCCL versus magnitude of induced seismic events during GPK1 and GPK3 stimulation.
Seismic events with large magnitudes are restricted to low SCCL values, i.e., intervals with little clay inside
fractures. With increasing clay content (higher SCCL), the maximum magnitudes of seismic events are smaller.
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(2009). The different b-values, which can be obtained from the seismic events induced

during stimulation of these wells, could also be affected by the presence/absence of

alteration zones (Figure 9).
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From step 5 on, we assume that the pressure front migrated too far away from the borehole so that a
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There is evidence that hydrothermally altered zones not only affect the magnitude but

also the evolution of seismicity. The seismic clouds of the GPK1 and GPK3 stimulation

move downhole or uphole in steps, when the injection pressure is increased (Figure 10).

Each pressure increase is marked by colored rectangles in Figure 10. The SCCLs provide

a possible explanation of the reason of these steps. Each of these steps starts with a clay-

rich zone and ends with an interval with little clay. As mentioned before, clay-rich inter-

vals do not support large stresses and could act as small stress-decoupling horizons as

observed by Cornet and Roeckel (2012) in the Paris Basin. They might therefore prevent

the occurrence of seismic events or shear movements, or the events in such zones are

very low-magnitude events, thus being too small to be measured, i.e., those slips are aseis-

mic. With each pressure increase, the pressure front penetrates the decoupling horizon

without inducing seismicity and the seismic events start just below or above this zone, mi-

grating upward (as in GPK3, Figure 10b) or downward (as in GPK1, Figure 10a) until the

next clay-rich zone is reached. This interval will then be overcome by the next pressure in-

crease and so on, leading to a stepwise migration of microseismicity (Figure 10).
Conclusions
The present SCCL method is an important basis to localize clay-rich zones as target

zones for hydraulic stimulation and to identify fractures as candidates for aseismic move-

ments. In order to optimally use the properties of hydrothermally altered zones, further

effort has to be done on understanding of the processes affecting the geomechanical be-

havior of a geothermal reservoir. Once such processes are understood, it might become

possible to exploit the properties of altered zones in order to increase the reservoir per-

formance, while mitigating perceptible seismicity.

The occurrence of hydrothermally altered zones inside a geothermal reservoir can

have large effects on many physical aspects, which are important for the performance

of a geothermal system, and especially those related to induced seismicity. The observa-

tions at Soultz-sous-Forêts revealed that hydrothermal alteration lowers the mechanical

strength of the Soultz granite and its fractures, which results in an inhomogeneously

distributed friction coefficient. Geological units with low mechanical strength promote

the occurrence of breakouts and can rotate the stress field as much as 90° from the

mean orientation, which is indicated by high breakout-densities in clay-rich intervals

and a deviation of their mean orientation.

A major result of this study is that hydrothermally altered zones can act as decoupling

horizons, which change the local stress regime and thus significantly affect the seismicity

induced during hydraulic stimulation at Soultz. It has been shown that large seismic

events are restricted to fresh granite, whereas only small seismic events occur in clay-rich

intervals. While this behavior has often been observed on the crustal scale, the present

study for the first time confirms this effect on the scale of a geothermal reservoir.

Due to their low frictional strength and increased pore pressures, hydrothermally al-

tered zones represent major target zones for hydraulic stimulation. In the future, EGS

projects need to be structured in that prevention of large seismic events becomes a major

achievement. Future stimulations could foster the creation of aseismic instead of seismic

slip to increase the reservoir permeability, which requires knowledge on the location of

such zones and advanced research towards the evolution of aseismic movements.
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