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1. Abstract 
 

 Work described in this dissertation is focused on preparation of photoactive, reactive oxygen 

species (ROS) producing titanium oxide (TiO2) based nanomaterials to be used in either enzyme 

activation or induced cell death. TiO2 is well investigated, abundant, non-toxic semiconducting 

material with excellent photocatalytic properties at nanometer range. Namely, when irradiated with 

light of appropriate wavelengths (depending on the band gap, ~3.2eV), the electrons and hole pairs 

(excitons) are formed in TiO2 nanostructures, which subsequently, depending on surrounding 

medium,  lead to the production of different reactive species. The ROS production depends strongly 

on the fate of these excitons with quenching occurring both through entrapments of the excitons in 

the surface defect sites or through their recombination in the bulk. ROS producing ability of different 

TiO2 nanostructures (spheres or rods) coated with various dopamine stabilizing linkers is explored to 

investigate the influence of the coatings onto the ROS production. To simultaneously quantify the 

ROS production and explore enzyme activation, assay based on horseradish peroxidase (HRP) and 

fluorescent Amplex Red (AR) substrate was developed.  

 To further enhance the photo-induced ROS production and extend the inducing wavelength 

range to the visible part of the spectrum, hybrid TiO2 –metallic NP nanocomposites were prepared 

using novel bifunctional dopamine based linker. Au and Ag nanoparticles were synthesized using 

bifunctional linker, which acts both as stabilizing agent and TiO2 binding agent.  

 Upon the UV light (365nm) irradiation, all the synthesized nanocomposites showed excellent 

photocatalytic activity in comparison to the TiO2 standard. Furthermore, the nanocomposites were 

also photoactive when irradiated with visible light (470nm), which is not the case in unmodified TiO2. 

 The nanocomposites, as well as the ligand-modified TiO2 NPs, were further used in biological 

experiments exploring enzyme switchability and cell toxicity (animal and plant) upon light irradiation 

(UV and visible). 
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Kurzzusammenfassung 

 

Im Mittelpunkt dieser Dissertation steht die Preparation der photoaktiven, Radikale produzierenden 

Titaniumdioxide (TiO2) Nanomaterialien, die sowohl für Enzymaktivierung angewendet werden 

können, als auch programmierten Zelltod (Apoptose) auslösen können. TiO2 ist bekannter, 

erforschter, erhältlicher und ungiftiger Halbleiter mit außergewöhnlichen photokatalytischen 

Eigenschaften im Nanobereich. Wenn nämlich die TiO2-Nanopartikeln  mit passendem UV-Licht 

bestrahlt werden, entstehen Elektron-Loch-Paare, die in den wässerigen Lösungen zur Produktion von 

reaktiven Sauerstoffspezies (ROS) führen. Die ROS-Produktionsfähigkeit der verschiedenen TiO2-

Nanostrukturen (Nanoteilchen oder Nanostäbchen), funktionalisierten mit catecholbasierten Linkern,  

wurde erforscht, um den Einfluss der Funktionalisierung an die photokatalytische Eigenschaften der 

Nanostrukturen zu untersuchen. Um gleichzeitig ROS-Produktion zu quantifizieren und enzymatische 

Aktivität zu untersuchen, wurde ein auf Meerrettichperoxidase (HRP) und fluoreszentem Amplex Red 

(AR) Substrat basierendes Assay entwickelt und verwendet. 

 

 Um die photoinduzierte ROS-Produktion weiter zu verbessern und die induzierende 

Wellenlänge auf das sichtbare Bereich des elektromagnetischen Spektrums zu erweitern, wurden die 

Nanohybride aus  TiO2 und  Metalnanopartikeln mit Hilfe von neuem bifunktionellen 

dopaminbasierten Linker hergestellt. Der neue bifunktionelle Linker dient bei der Herstellung von Au- 

und Ag-Nanopartikeln sowohl als Stabilisierungsmittel als auch als TiO2-Bindemittel. 

 

 Alle hergestellte Nanohybride haben unter Bestrahlung mit UV-Licht (365 nm) hervorragende 

photokatalytische Eigenschaften im Vergleich mit dem TiO2 -Standard gezeigt. Die Nanohybride 

wurden außerdem unter Bestrahlung mit sichtbarem Licht photoaktiv, was bei dem unmodifizierten  

TiO2 -Standard nicht der Fall war. 

 

 Sowohl die Nanohybride als auch die  ligandmodifizierten  TiO2 -Nanopartikeln wurden 

weiterhin in biologischen Experimenten, die Enymschaltbarkeit und Zelltoxizität (bei Tieren- und 

Pflanzenzellen) unter sichtbarer und UV-Lichtbestrahlung untersuchen, verwendet. 
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2. Introduction 
 

2.1. Nanoparticles (NPs) 
 

 The scientific interest in NPs has been steadily growing in the past few decades as they are 

considered a bridge between the atomic or molecular structures and bulk material, thus presenting a 

new form of matter. By IUPAC definition, the particle has to have all its dimensions in the 1-100 nm 

range to be classified as nanoparticle (NP). The reason for such definition lies in the fact that many 

material properties change when the dimensions of the bulk material are reduced to above range. 

Quantum confinement and increased surface to volume ratio are two mechanisms that are 

responsible for most of the novel properties of the NPs. As the wavefunctions of electrons and holes 

become confined by the physical dimensions of the nanocrystals, the electronic level structure and 

the resulting optical and electrical properties significantly change. For example, reducing the size of 

direct-gap semiconductors to nanometer range leads to a characteristic blue shift of the band gap 

energy. A discrete level structure develops as a result of the quantum confinement effect, which can 

be readily observed in the absorption and luminescence spectra of colloidal quantum dots (QDs). 

Metal NPs are another good example of size-dependent properties. In such NPs, conduction electron 

cloud is oscillated by an electromagnetic field thus producing a resonant surface-plasmon response. 

For metals with free electrons, the surface plasmon resonance appears in the visible range, leading 

to rich color changes of colloidal solutions of NPs of different sizes. Another interesting effect of the 

size reduction is the changed surface to volume ratio in comparison to the macroscopic materials. As 

a consequence, surface atoms of the nanoscale objects start to play a more important role. Such 

architecture makes NPs ideal material for catalysis where large surfaces are necessary to enhance 

the rate and yield of the reactions. [1]  

 In classification of NPs there is still no unanimous agreement. One of the accepted 

classifications of engineered NPs includes carbon-based materials (nanotubes, fullerenes and 

buckyballs), metal-based materials (including metal oxides and quantum dots), dendrimers (nano-

sized polymers built from branched units of unspecified chemistry), composites (including nanoclays 

and polymers), liposomes as well as different metallic NPs.  This list is by no means complete, as 

there are many other forms of materials being investigated and especially as the combinations of all 

of the above materials are also possible in form of hybrid NPs. 

 Regarding the NPs synthesis, one can generally take three different routes, physical, chemical 

or biological. The physical is further divided into mechanical (milling and melt mixing) and vaporous 
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(deposition and ablation) approach. As it often requires high vacuum as well as complex 

instrumentation, the physical route is regarded both as the most complicated and the most 

expensive one. The most widely used route is the chemical one, offering relatively straightforward 

methodologies (colloidal and sol-gel) that can be performed with inexpensive instrumentation. The 

syntheses are done at relatively low temperatures (<350°C), resulting in large quantities of the 

material of desired shape and/or size. In addition, doping with different atoms is possible during the 

synthesis,[2] as well as during surface modification,[3] patterning or self-assembly.[4] Both chemical 

methods mentioned here were used in this dissertation for the synthesis of metal NPs (colloidal 

method) and semiconductor NPs (sol-gel method) and they will be elaborated in the following 

sections.  

 Biological route exploits various microorganisms (fungi, yeast, bacteria, etc.), plant extracts, 

enzymes or bio-based templates (DNA, viruses, diatoms, etc.) to induce conversion of NP precursor 

into NPs.[5] Even though the most environmentally friendly one, its use is mostly reserved for the 

proof of concept studies in preparation of metallic NP as the quantity of the resulting nanomaterial is 

still relatively small.  

 As the properties of the nanomaterials strongly depend on their size and shape, it is desirable 

to produce them in a controlled and reproducible way to afford monodisperse suspensions and high 

yields. Amongst the stated routes, the chemical one best fulfills these requirements, which alongside 

other benefits that it possess, makes it preferable choice when synthesizing NPs.   

 In the last few decades the NPs found numerous applications both in science, technology, 

medicine and everyday life. Due to their extraordinary properties, and especially due to their size, 

which can be several orders of magnitude smaller than the cell, nanomaterials emerged as powerful 

tools to fight the diseases on the cellular level. The first generation of the NPs-based drugs has 

already claimed recognition in the clinical cancer research community as an effective tool against 

certain forms of cancer.[6] To this date there are a dozen of NP-based anti-cancer drugs on the market 

and two dozen in clinical trials exploiting not only the carrier ability of the NPs but their physical and 

chemical properties as well (imaging, radical production, photothermal therapy, etc.). [7] Chen et al. 

recently showed that PEG coated Au nanocages can be used as photothermal transducers for cancer 

treatment as they exhibit strong light absorption in the near-infrared region in which light can 

penetrate deeply into soft tissue.[8] In another example, El-Sayed et al. functionalized the PEG coated 

Au NPs with membrane and nucleus penetrating peptides, thus delivering them to the cancer cell 

nucleus where they were shown to induce DNA Damage and cause cytokinesis arrest as well as 

apoptosis.[9] Although the initial use of NP-based medicine was entirely focused on the cancer 
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treatment and imaging, the new applications are focusing on other health problems such as cardio-

vascular diseases (CVD).[10]  

 Another interesting biomedical application of engineered NPs is in the development of 

biosensors.[11] In such applications, particularly interesting are antibody- NP conjugates. For example, 

Hall et al. developed a method to amplify the wavelength shift observed from localized surface 

plasmon resonance (LSPR) bioassays by using Au NPs labeled with antibody .[11a] The demonstrated 

400% amplification of the shift upon NP-labeled antibody binding to analyte provides a way to 

improve the sensitivity of plasmon-based bioassays, paving the way for single molecule-based 

detection and clinically relevant diagnostics. 

 Besides nanomedical applications both in design of novel diagnostic and therapeutic 

platforms,[12] NPs have found application in preparation of functional materials for energy production 

through solar energy.[13] The NPs have higher surface area and higher optical absorption (requiring 

less material), shorter charge migration length (avoiding charge trapping and recombination), higher 

solubility (reducing the light scattering), tunable electronic structure (adjusting the band gap position 

and width) and possible plasmonic resonance with assisted charge injection (transferring electrons 

from noble metal NPs to the semiconductor NPs via SPR excitation in metal-semiconductor hybrids) 

and have therefore been used to produce systems where solar energy can be used for generation of 

hydrogen via water splitting [14] or direct conversion to electricity as in solar cells.[13b, 15]  For example 

Murdoch et al. recently designed highly efficient water splitting system utilizing the synergy of Au 

and TiO2 NPs.[16] The obtained hydrogen is considered to be an alternative to the current fossil fuels 

as it is high in energy and  the combustion product is nonpolluting water. Numerous reviews are 

dedicated to the solar cell design using various types of nanomaterials.[17] One of the most promising 

designs is the solid state dye-sensitized solar cell (SS-DSSC) and recently, excellent efficiency was 

obtained using TiO2 NPs and hybrid perovskite pigment. [13b] The as synthesized SS-DSSCs are 

expected to rival the current solar cell technologies on the market. 

 Another promising application is concerning the growing problem of water pollution and 

industrial waste production. It is clear that this is one of the emerging problems to which 

nanotechnology could offer a solution. A range of materials have been employed for water 

remediation to remove antibiotics, heavy metals,  pesticides and other polluting agents including 

hybrid nanomaterials mostly based on TiO2.
[18]  Just recently, graphene embedded TiO2 NPs is an 

example of a NP-based system that shows great promise in waste water treatment, more specifically 

in removal of the toxic chromium (VI) ions. [19] Another study has shown that the nanocomposite 

Ag/TiO2 material is an effective way of virus inactivation in drinking water.[20] 
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 Above example clearly demonstrate the significance of nanoparticle materials and their use 

in a number of applications.  

 The following paragraphs will address each group of NPs employed within this thesis in a 

more detailed way, namely concerning their preparation, properties and applications.  

 

2.1.1. Metallic Nanoparticles 

 

 Metallic NPs were historically first class of NPs to be used and made, although its 

composition was not thoroughly characterized and explored until the development of advanced 

microscopic and analysis methods in the 20th century. With the rise of nanotechnology, they have 

found application in nanomedicine and biosensing as well as design of functional materials.[11b, 21] 

Three classes of metallic NPs were used in this thesis in preparation of hybrid materials with 

enhanced photocatalytical activity. These spherical NPs, namely gold (Au), silver (Ag) and copper 

(Cu), will be presented here, with particular emphasis on their properties, preparation methods and 

biomedical applications.  

 

2.1.1.1.  Gold Nanoparticles (Au NPs) 

 

2.1.1.1. A) Properties of Au NPs 

 

  The first man-made artefact containing colloidal solutions dates back to the Roman times (4th 

century AD) when stained glasses have been made using mixture of Au and Ag NPs to achieve 

dichroic character (appearance of different colors depending on the path of the light) as in the case 

of famous Lycurgus cup (Figure 1). Although the nature of the used NPs must have eluded the 

craftsman that made the cup, the practical knowledge of making colloidal gold and silver obviously 

existed as early as Roman Empire. Another famous example of the colloidal gold use for ornamental 

purposes are the stained glass windows that were decorating the European churches. Recent studies 

have shown that, in addition of being beautiful, these decorative windows also served as air-purifiers 

when irradiated with sunlight (Figure 1).[22] 
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Figure 1. Lycurgus cup dating from 4
th

 century, an example of the early use of the Au NPs – left in transmitted 

light, right in reflected light. 

   

 The modern research of colloidal Au did not start until the mid of 19th century when Michael 

Faraday published his famous work on interaction of light with matter and for this purpose prepared 

Au colloid by using phosphorus to reduce a solution of gold chloride.[23] He observed that colloidal 

gold solutions have drastically different properties from those of the bulk Au in particular concerning 

the color (colloid was intensely red). Today we know that the new optical properties, such as 

difference in color, are the result of the unique interaction between the light and the NPs.[24] Namely, 

in metals the electrons can be divided into those localized around the nuclei and those moving freely, 

which are responsible for the high electrical and thermal conductivities. These free electrons of the 

metal NPs oscillate within the metal lattice in the presence of the oscillating electromagnetic field of 

the light.[25] If the wavelength of the incident light is much larger than the particle size, the electron 

motion forms a dipole that oscillates at the frequency of the light. The resonance occurs at a 

particular frequency and such an effect is termed the localized surface plasmon resonance (LSPR) or 

the Mie resonance (after Gustav Mie who theoretically explained the effect). To calculate the 

frequency at which the resonance occurs one has to know the dielectric permittivity of the material 

(ε).  

 In general, for isotropic material, the ε is a complex quantity that depends on the frequency 

of the variable electric field ω. 

𝜺(𝝎) = 𝜺𝟏(𝝎) + 𝒊𝜺𝟐(𝝎) 
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 The imaginary part is associated with the electrical resistance of the medium and indicates 

the phase shift between the dipole and electrical field oscillations. The ε(ω) can be determined 

experimentally or calculated based on various models. According to the Mie theory, the total cross-

section (Cext) of absorption and scattering by a particle of radius R is 

 

𝑪𝒆𝒙𝒕 =
𝟐𝟒𝝅𝟐𝑹𝜺𝑴

𝟑/𝟐

𝝀

𝜺𝟐

(𝜺𝟏 + 𝟐𝜺𝑴)
𝟐 + 𝜺𝟐

𝟐
 

 

, where εM is the real part of the dielectric permittivity of the surrounding medium. Taking into 

account that for Au, ε2 depends weakly on the wavelength, and with the condition ε1=-2εM fulfilled, 

the resonance is observed. According to the formula (2), the cross-section increases with the 

increasing size of the particle. In addition to this, there is a shift of the absorption maxima towards 

the longer wavelengths due to the electromagnetic retardation in larger particles.[26] Owing to the 

above described LSPR absorption the Au NPs with sizes of 10 nm show strong absorption centered on 

520 nm (in aqueous solutions). Together with the radiative dissipation of the incident light energy 

through scattering, indicated by the above described SPR effect,  NPs have a tendency to heat up 

upon irradiation (non-radiative dissipation),  which is a  basis for hyperthermia used in some  medical 

applications, in particular for destruction of cancer cells.[27] 

 Furthermore, properties of Au NPs are not only size but also shape dependent. This 

dependence becomes obvious when gold rod-like NPs referred to as Au nanorods (Au NR) are 

compared to the spherical ones. As it is shown in Figure 2, the rods have two different plasmon 

resonances while the nanospheres possess only one. The two resonances are due to the plasmon 

oscillation along the short and the long axis of the rods, and the peak positions depend strongly on 

the ratio between these two axes (aspect ratio).[28] With the increasing aspect ratio, the long-axis 

peak is shifted towards the longer wavelengths in the near infra-red (NIR) part of the spectrum. It is 

also worth noticing that the size dependent red-shift is more dramatic for rods than for spheres, 

allowing for LSPR peak adjustments in Au NRs.[28b] In the meanwhile different shapes of Au NP have 

been successfully made among other cubes,[29] stars,[30] flowers.[31] 
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Figure 2. UV-Vis spectra of Au NPs and NR showing changing plasmon peak shifts depending on the shape and 

size of NPs. Figure adapted from Ref. 32 with permission. 
[32]

 

 

2.1.1.1. B) Different methods of Au NP preparation 

 

 To address the needs of the specific applications, many reliable and high-yielding methods 

for the synthesis of different shapes of Au NPs have been developed in the past decades. [33] 

 One of the most commonly used methods to synthesize the spherical Au NPs with small size 

deviation was established by Turkevich et al. in 1951 (Turkevich method).[34] This method uses the 

reduction of the Au salt precursor (hydrogen tetrachloroaurate, HAuCl4) with citrate yielding 

monodisperse spherical NPs with diameters in the range between 10 and 20 nm as shown below: 

 

2 HAuCl4 + 4 Na3C6H5O7  2 Au + H2 + 4 CO2 + 4 NaC5H5O5 + 8 NaCl.   

 

 The exact mechanism of the reaction is still not fully understood and is a subject of the 

ongoing scientific debate. The theory behind the NP growth, which is most widely accepted, is the 

LaMer Nucleation-Growth mechanism (Figure 3). [35] This theory states that there are several stages 



Introduction   

14 
 

of NP formation. Prior to the addition of the citrate (reducing agent), the gold in the solution is in its 

ionic form (Au3+). With the addition of the reducing agent, gold atoms start to form (Au3+
Au0) and 

their concentration increases rapidly until the solution becomes supersaturated, and the aggregation 

occurs in a process called nucleation. When the concentration of the atoms again falls below the 

supersaturation level, the formation of the new nuclei stops and the process of growth begins, where 

the freshly reduced ions attach on the surfaces of already formed nuclei.   

 

 

Figure 3. Nucleation-Growth mechanism for NPs according to Volmer, Becker and Farkas theory.  

 Both colloidal crystal nucleation and growth mechanism have been studied theoretically [36] 

and experimentally with methods ranging from confocal microscopy[37] and optical microscopy,[38] 

over laser light scattering[39] and electron microscopy.[40] The results of these studies gave 

approximations of the critical nucleation size, crystal structure, and nucleation rates in NPs synthesis. 

Nevertheless, many aspects of the mechanism remain unknown as the studies failed to address the 

early stages of homogeneous crystallization, namely the structure and morphology of the 

intermediates. There is very little known about the start of the crystal facet formation as well as of 

the role that the impurities have in the process of the nucleation. With nucleation completed, the 

remaining dissolved Au atoms attach to the nucleation sites under an energy-reducing gradient until 

all atoms are removed from the solution. The final number of the particles in the solution is governed 

by the number of initially formed nuclei. With fixed concentration of the precursor, increase in the 

concentration of the reducing agent results in larger number of the nuclei and consequently, the 

resulting NPs will be smaller and more numerous. Finding the optimal ratio between the precursor 

and the reducing agent is therefore an important task. With optimized synthesis conditions, all 

nucleation sites are formed simultaneously, resulting in formation of monodispersed solutions of Au 
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NPs. Interestingly, in the first methods of NP preparation, citrate is used as both reducing and surface 

stabilizing agent.  

Recently, there has been new development in the elucidation of the mechanism of the 

Turkevich reaction. In stark contrast to the LaMer model, it has been shown that the initially formed 

5nm Au NPs self-assemble into transient structures in form of extensive networks of nanowires.[41] 

The diameter of the nanowires progressively increases in size while simultaneously being fragmented 

into small segments until final NPs are formed. Such mechanism accounts for the color changes that 

arouse during the synthesis (pale yellow – AuCl4
-, colorless Au0, dark purple –nanowires, ruby red – 

nanoparticles).  One of the advantages of the Turkevich method is the use of relatively loosely bound 

citrate (through the –COOH groups) which allows subsequent surface ligand exchange with e.g. 

amine (–NH2) or thiol (–SH) groups, therefore facilitating further surface modification. 

Au NPs synthesized with this method are composed of an internal core of pure gold 

surrounded by a surface layer of adsorbed AuCl–2 ions. Negatively charged ions are attached to the 

positive side of the citrate molecule, while the negative side is facing the solution. The negatively 

charged citrate groups on the surface of NPs increase their stability through electrostatic repulsion 

effect. After first publication, the Turkevich method was later revisited by many authors giving 

further improvements especially in widening the size range in which the particles can be obtained. [42] 

Many other methods for the synthesis of colloidal gold follow the steps of the Turkevich 

method to a great extent. The chosen precursor is predominantly hydrogen tetrachloroaurate 

(HAuCl4) while the solvents and reducing agents are varied.  

One method, a modification of which was used in this work, was devised by Oh et al.[43] They 

reported a simple and efficient synthetic method to prepare Au NPs in aqueous phase using HAuCl4 

and thioctic acid-based surfactants. In their setup the precursor HAuCl4 was reduced by NaBH4 in the 

presence of thiolated poly(ethylene glycol) (PEG) ligands (Figure 4). The reduction follows the 

equation 

 

8 HAuCl4 x 3 H2O + 3 NaBH4   8 Au + 3 NaB(OH)4 + 12 H2O + 32 HCl. 
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Figure 4. NP synthesis using method derived by Oh et al. 
[43]

 (A) Schematic representation of the one-phase 

growth method using TA-PEG-OCH3 ligands. (B) Normalized UV−Vis absorption spectra for several Au/ligand 

molar ratios used for the growth (of AuNPs with different sizes), along with a few representative TEM images 

collected for selected subsets of these nanocrystals. (inset) Image collected from a series of AuNP dispersions 

in deionized water. Changes in solution color from light to dark brown and to red (from left to right) reflect 

increase in AuNP size. Figure adapted from Ref. 43 with permission.  
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 The ligands were appended with bidentate thiol anchoring groups, known to have high 

affinity towards Au surfaces.[44] The obtained NP´s average diameters span over the size range 

between 1.5 and 18 nm, being much wider than a range achieved with other small molecules and 

polymer ligands. Each of the synthesized batches had a very narrow size distribution of about 10% of 

the average diameter. Furthermore, the NP size was controlled by varying the molar ratio of gold to 

PEG-ligand precursors, from 1:10 for small (1.5 Nm) NPs, to 4000:1 for the big ones (18 nm). Further 

passivation of the as-prepared Au NPs allowed for in situ functionalization of the NP´s surface with 

the desired functional groups (carboxylic and amine). The Au NPs prepared using this method exhibit 

remarkable stability in the presence of high salt concentrations, over a wide range of pHs (2−13), and 

a strong resistance to competition from dithiothreitol (DTT).  

An entirely novel approach of Au NP synthesis was pioneered by Brust and Schiffrin in 1994 

when they developed two-phase water-organic solvent synthesis of the Au NPs known now days as 

Brust-Schiffrin method.[44] The idea behind this synthesis is to prepare NPs from reactants, which are 

spatially separated into two immiscible phases. In such way, the reaction rate between a metal 

precursor and a reducing agent NaBH4 is limited by the interface area between the two liquid 

systems as well as by the rate of the reactant transfer aided by quaternary alkylammonium salt 

(tetra-n-octylammonium bromide - TOAB) from the aqueous to the organic phase. It is important to 

note that TOAB does not bind to the Au NPs particularly strongly and the solution aggregates 

gradually over the course of approximately two weeks.  

 

H+(aq) + AuCl4
-(aq) +  N(n-C8H17)4Br(org)  N(n-C8H17)4 AuCl4 (org) + H+(aq) + Br-(aq) 

m(AuCl4)N(n-C8H17)4 (org) + n(n-C12H25SH)(org) + 3me-   

3mCl-(aq) + (Aum)(n-C12H25SH)n(org) + mN(n-C8H17)4Cl(org) 

 

To prevent the aggregation, Brust and Schiffrin added a stronger binding agent alkanethiol, 

which forms a protective monolayer, thus resulting in a stable NP solution. In such way hydrophobic, 

thiol stabilized NP are formed in organic layer. As some of the phase transfer agent may remain 

bound to the NPs, their physical properties, such as solubility, may be affected. In order to remove as 

much of the transfer agent as possible the NPs must be further purified by Soxhlet extraction.[45] 

Brust-Schiffrin methodology was significant as it results in Au NPs, which are easily handled and can 
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be isolated and re-dispersed in common organic solvents without aggregation or decomposition. The 

initial method was later refined and simplified into single-phase synthesis that made the use of 

phase-transfer agent redundant.[46] Many researches adopted the Brust-Schiffrin method and a huge 

variety of thiolated-derived capping agents were used in Au NPs synthesis. The method is further 

used in synthesis of metallic NPs of other metals (e.g. Ag and Cu).[47]   

Another widely used method today which allows the synthesis of larger Au NPs with small 

standard deviation in size is the seeding growth.[48] The seeding growth methods are performed in 

several steps depending on the desired NP size. Small metal NPs are prepared first (e.g. using Brust-

Schiffrin method) and later used as seeds (nucleation centers) for the preparation of larger NPs. The 

seeding growth methods were developed for size control of Au, Ag, Ir, Pd, and Pt NPs.[49] With 

controlled number of pre-synthesized seeds and a growth conditions that inhibit any secondary 

nucleation, the synthesis of NPs can be simply controlled by varying the seed to precursor ratio. In 

general, these conditions include using a reducing agent (e.g. ascorbic acid) that is too weak to 

reduce the metal salt (in the growth stage) without the presence of seeds. It has been observed that 

the presence of the seeds, in the environment with small seed-to-precursor ratio, often induced 

further nucleation (rather than growth) thus resulting in poly-dispersed batches.[50] To prevent the 

secondary nucleation, it is important that the NPs enlargement is performed gradually in a step by 

step manner, allowing a constant large seed-to-precursor ratio throughout successive growth 

steps.[50] Jana et al. used 3.5 nm Au NPs as seeds to prepare Au NPs in the size range 5−40 nm having 

standard deviation of 10−15%.[50] The Au seeds were prepared by commonly used NaBH4 reduction in 

presence of the citrate as a capping agent. Secondary nucleation during the growth stage was 

inhibited by careful control of  the growth conditions using a weak reducing agent (ascorbic acid), 

aqueous surfactant (cetyltrimethylammonium bromide - CTAB), and performing step by step seeding. 

The synthesized Au NPs were stable in the period of over 1 month. Recently, Ziegler and Eychmüller 

reported seeded growth synthesis of Au NPs in even wider range with diameters spanning over the 

15-300 nm range, using ascorbic acid as reductant and tri-sodium citrate as stabilizer.[51]  

In addition to spherical NPs, a range of Au NPs of different shapes such as rod-like, triangular, 

and polygonal can be prepared mostly using seed mediated methods with spherical seeds.[28a, 52]  To 

synthesize desired anisotropic shape, one needs to use ligands with high affinities towards certain 

crystal facets in order to stop the growth in the direction of these facets. In this way, only the free 

facets are able to receive additional material and hence the particle grows anisotropically. An 

example for this is the Au NR synthesis, where citrate capped NPs, used as seeds, are mixed with 

CTAB (detergent with affinity towards 110 facet) [52-53] and added to the growth solution (HAuCl4 

solution). 
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There are several factors that affect the quality and stability of Au NPs regardless of the 

method used for its synthesis. An important consideration leading to the preparation of stable Au NP 

solutions is the use of thoroughly cleaned glass apparatus (aqua regia cleaning), 0.2-µm-filtered 

solutions (syringe filters) and triple-glass-distilled water to remove all contaminants as even the trace 

amounts could have adverse effects on the quality of NP solution. Although the use of silanized 

glassware is often recommended, good results have consistently been obtained without any special 

glassware.  

In addition to the most common chemical methods mentioned above, Au NPs can be 

synthesized using many physical (e.g. Laser Ablation Synthesis in Solution – LASiS) and biological 

routes. In one such example, Au NPs were prepared in metallthionein (MTs) rich cells. MT is a family 

of cysteine-rich (30% of their amino acid residues are cysteins), low molecular weight (typical MW < 

7000 Da) proteins localized in the membrane of the Golgi apparatus. MTs have the capacity to bind 

both physiological (Zn, Cu, Se, etc.) and xenobiotic (Cd, Hg, Ag, As, etc.) heavy metals through the 

thiol group of its cysteine residues.[63] The MTs were used in our group to synthesize various metal 

NPs (including gold ones). In order to have the reaction conditions under control, the MTs were in-

vitro conjugated with protein of interest (POI). The maltose-binding protein (MBT) was chosen for 

that purpose, and was in-vivo connected to one, two or three copies of MTs. All the MT-MBT 

conjugates (1, 2 or 3 MTs) showed the ability to promote the Au NPs synthesis, although the 

experimental results obtained were not sufficiently clear to draw any strong conclusion on influence 

of number of MTs on the NPs growth.[64] 

 

2.1.1.1. C) Biomedical Applications of Au NPs 

 

The Au NPs have made a tremendous impact in many areas of science and technology, 

although it is in nanomedicine and biological applications that they have made the deepest mark. 

Due to their facile synthesis and surface modification, strongly enhanced and tunable optical 

properties as well as excellent biocompatibility, Au NPs have been extensively used in cancer 

research. High quality, high yield and size controllable colloidal Au NPs can be easily prepared by the 

known reduction methods (Turkevich, Burst-Schiffrin). The improvement of the of the synthetic 

methods in the last decade resulted in Au NPs of different shapes and structure including Au NRs,[53] 

silica/gold nanoshells [65] and hollow Au NPs,[66] which all show largely red-shifted absorptions, an 

important property in photothermal cancer therapy due to the increased tissue penetration of the 

infra-red light.  
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Au NRs and nanoshells have been demonstrated for selective photo-thermal therapy using 

continuous wave (CW) near-infra-red (NIR) lasers mainly by the El-Sayed [67] and Halas groups,[65a, 68] 

respectively.  

By using dark-field light scattering imaging, El Sayed and coworkers [67b] found that Au NRs 

conjugated to anti-EGFR antibodies were well organized on the surface of cancer cells with relatively 

higher binding affinity, while they were randomly distributed nonspecifically on and around the 

normal cells, similar to the case of the Au nanospheres.[67a] A CW laser with a wavelength at 800 nm, 

overlapping with the SPR absorption wavelength maximum of Au NRs at 800 nm, was used for the 

irradiation of the cells labeled with the NRs. It was found that the cancer cells required half the laser 

energy (10 W/cm2) to be photo-thermally damaged as compared to the normal cells (20 W/cm2), as 

attributed to the selective targeting of the overexpressed epidermal growth factor receptor (EGFR) 

on the cancer cell surface by the anti-EGFR conjugated Au NRs. 

The work by Halas et al. has shown that Au nanoshells can be used for photo-thermal 

therapy in the NIR region by both passive cancer targeting (through enhanced permeability and 

retention effect) using PEG-conjugated Au nanoshells [68-69] and active targeting using antibody-

conjugated Au nanoshells.[70] For in vivo therapy, the researchers achieved successful targeting using 

the PEGylated Au nanoshells injected directly into the tumor region[69] or delivered intravenously.[68] 

It was shown that NIR light of 820 nm at 4 W/cm2 caused irreversible tumor tissue damage. Most 

notably, these studies show that laser dosages required to induce tissue damage using the plasmonic 

Au nanostructures are 10 to 25-fold lower than those used in studies employing photo-absorbing 

dyes (e.g. indocyanine green dye). Currently, the Au nanoshells assisted photo-thermal therapy 

developed in Halas group is undergoing Phase III clinical trials.[65b] 

There are many known compounds exhibiting high toxicity towards cancerous cells with 

unfortunate non-specific free-form toxicity when present in the body. Thus, there is strong interest in 

modifying such drugs, thereby reducing non-specific side effects and enabling higher dose delivery to 

target (cancerous) tissues. The strategies involve either encapsulation of drugs in various nano-

engineered objects or binding of the drug molecules to the nanoparticle carriers. Multifunctional Au 

NPs have shown great potential for drug delivery as shown by Patra et al. who used 5 nm Au NPs as 

delivery vehicles for covalently bound cetuximab (active targeting agent) and gemcitabine 

(therapeutic payload in pancreatic cancer).[71] The combination of cetuximab and gemcitabine alone 

has been investigated in Phase II trials of this disease with a clinical benefit response noted in 24 of 

the evaluable 61 patients (39%). Precise cancer targeting was achieved by employing antibodies 

specific for epidermal growth factor receptor (EGFR), which is overexpressed in up to 60% of 

pancreatic cancers. The AuNP-anti-EGFR–cetuximab–gemcitabine nanocomposite was superior to 

any of the agents alone or in combination in vitro and in vivo. Low doses of complex gemcitabine (2 
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mg kg−1) led to >80% tumor growth inhibition in a pancreatic cancer model compared with 39% 

inhibition using the non-conjugated agents in combination. 

The color changes of Au NPs colloids governed by the plasmon coupling between the 

adjacent particles have been widely used in the biosensor design and applications. The red color of 

well-dispersed Au NPs in solution, turns blue (or purple) when the NPs aggregate. With this intrinsic 

property of Au NPs, a serials of biosensors based on predictable color changes have been designed to 

detect DNA (or RNA), proteins, and metal ions.[72]  

In 1997, Mirkin et al. pioneered a highly selective, colorimetric polynucleotide detection 

method based on mercaptoalkyloligonucleotide-modified Au NPs probes. As the single-stranded 

target oligonucleotides (30 bases) were introduced into a solution containing functionalized NPs, 

they triggered formation of polymeric networks of NPs with a simultaneous red to purple color 

change (agglomeration). The result is a color change from red to purple (or blue) which can be easily 

monitored by the naked eye, avoiding complicated instrumentation in the detection process. 

Hybridization was facilitated by freezing and thawing of the solutions, and the denaturation of these 

hybrid materials showed transition temperatures over a narrow range thus making the method 

highly specific. Transfer of the hybridization mixture to a reverse-phase silica plate resulted in a blue 

color upon drying that could be detected visually. It was reported that the un-optimized system could 

detect 10 femtomoles of an oligonucleotide. This creative method is quite generalizable to any other 

DNA or RNA sequence. It was subsequently used to detect various organisms including 

Staphylococcus aureus (MRSA), [73] Mycobacterium tuberculosis (MTB) and MTB complex (MTBC)[74] 

and much more as reviewed in several articles.[75] In addition, this methodology can be integrated 

with some other emerging technologies. Chan et al. combined DNAzyme amplification with 

colorimetric coupling of surface plasmons of Au NPs for detection of infectious diseases.[76] This 

method is based on a catalytic DNAzyme, which is much cheaper and more stable than its protein 

counterparts. They detected multiple DNA targets for various infectious diseases (gonorrhea and 

syphilis bacteria, malaria parasite, and hepatitis B virus). This method inherently requires no complex 

equipment, expensive reagents nor complicated operations, making it suitable for point-of-care 

diagnosis. 

The strongly enhanced radiative properties such as absorption, scattering and plasmonic field 

for surface enhanced Raman of adjacent molecules make them extremely useful for molecular 

cancer imaging. In 2008, Qian et al. demonstrated in vivo tumor targeting and detection using the 

biocompatible and nontoxic PEGylated Au NPs and the surface-enhanced Raman scattering (SERS).[77] 

Prior to this study, Krug et al. reported that Au NPs amplify the efficiency of Raman scattering by 14–

15 orders of magnitude.[78]  
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The PEGylated SERS Au NPs were found considerably brighter in comparison to 

semiconductor quantum dots with light emission in the near-infrared window. Further conjugation of 

tumor-targeting ligands such as single-chain variable fragment (ScFv) antibodies, enabled the 

researches to target the conjugated NPs to tumor biomarkers such as epidermal growth factor 

receptors (EGFR) on human cancer cells and in xenograft tumor models. The Raman enhancement 

from these tailored particles was then observed with electronic transitions at 633 or 785 nm via 

SERS.[77] 

El Sayed et al. used Au NPs for cancer imaging by transporting them into the cancer cell 

nucleus.[9] In order to do so, they conjugated arginine–glycine–aspartic acid peptide (RGD) and a 

nuclear localization signal peptide (NLS) to a 30-nm AuNPs via PEG. RGD is known to target receptors 

on the surface of the cell, whereas NLS sequence is known to associate with karyopherins (importins) 

in the cytoplasm, enabling the translocation to the nucleus.[79] The authors further demonstrated 

that RGD-AuNPs specifically target the cytoplasm and that the RGD/NLS-AuNPs specifically target the 

nuclei of cancer cells over those of normal cells.  

Due to the remarkable properties and judging from the number of synthetic methods and 

applications reported, it is clear that Au NPs are one of the nanomaterials of upmost importance in 

bio-nanotechnology.  

 

2.1.1.2. Silver Nanoparticles (Ag NPs) 

 

2.1.1.2. A) Properties of Ag NPs 

 

 Ag NPs are one of the most investigated nanomaterials today [80] and its properties and 

effects are broadly studied.[81] It is estimated that nowadays about 320 tons/year of nanosilver are 

produced and used worldwide.[82] Even though the changes in nomenclature have created confusion 

among scientists and policy makers, it is indisputable that products containing or entirely consisting 

of nanoparticulate silver have commercially been available for over 120 years and were used in 

preparation of pigments, photographic and wound treatment agents, conductive/antistatic 

composites, catalysts, and biocides. With such long and diverse history of Ag NPs application, it is 

clear that an extraordinary amount of research has been  conducted concerning the chemistry of 

nanoscale silver, although  it should be noted that until very recently, most of the researches did not 

use “nano” nomenclature.  
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 Historically, the first known wide-spread practical use of Ag NPs was for staining the glass 

yellow in European cathedrals in the medieval age. Although the mechanism of interaction of light 

with colloidal metals was not clear, the methods of reproducible synthesis clearly existed. Already in 

1889, M.C. Lea reported the controlled synthesis of citrate-stabilized silver colloid [83] which must 

have measured between 7 and 10 nm in diameter as determined in the later studies by Frens and 

Overbeek in 1969.[84] The use of proteins as stabilizers of Ag NPs has been described as early as 

1902.[85] Such protein-stabilized NPs, named Collargol, have been manufactured and used in medical 

applications commercially since 1897.[86] Collargol has a mean particle size of 10 nm [87] and as early 

as 1907 its diameter was determined to be in the nanorange.[88] Further investigations into 

bactericidal properties of silver led to findings that silver ions and silver-based compounds are highly 

efficient in killing many major types of bacteria.[89] It has been proposed that silver ions react with 

thiol groups of the vital enzymes thus inactivating them and causing bacterial death. [90] Experiments 

have also shown that DNA loses its replication ability and detrimental structural changes in the 

membranes occur when the bacteria are treated with silver ions.[91] In addition to this, antibacterial 

agents based on nanoparticulate silver have been shown to possess all the previously stated 

properties of the silver ions with an advantage of functionalization, targeting and many other 

physical properties specific to NPs .[92] In the past few decades, many new properties of the colloidal 

silver have been observed and explained to a great extent resembling those of Au NPs  including such 

phenomena as surface plasmon resonance (SPR),[24, 93] high surface to volume ratios,[24] catalytic 

activity,[94] and high electrical double layer capacitance.[95]  

 

 Among three noble metals (Au, Ag and Cu) that exhibit the SPR effect, the silver offers 

highest efficiency of plasmon excitation.[96] As a matter of fact, the plasmon resonance in Ag NPs is 

one of the most efficient light – matter interactions. In other words, an Ag NP interacts with light 

stronger than most of other particles having the same size.[97] The quantum efficiency of Rayleigh 

scattering on Ag NPs is orders of magnitude higher than that of the standard fluorophore (e.g. R6G), 

[24, 98] allowing them to be imaged and characterized using dark-field optical microscopy and 

spectroscopy (DFOMS). [98b, 99] When the size of the particles is further reduced and approaches the 

Fermi wavelength of the electrons (i.e. the electron de Broglie wavelength at the Fermi level; 0.5 nm 

for Ag and Au), the continuous density of the states gets broken up into discrete energy levels. As a 

consequence, the optical, electrical and chemical properties of these ultra-small NPs (sometimes 

called nanoclusters) changes dramatically.[100] One of the interesting properties that arises in this size 

regime and offers many possibilities for practical application, is the strong fluorescent emission 

observed upon photo-excitation in the UV-Vis range. [100b, 101] 
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 Ag NPs shows exceptional photostability (non-blinking and non-photodecomposition) and is 

the only material whose plasmon resonance can be achieved at any wavelength of the visible 

spectrum (Figure 7).[93] The drawback of Ag NPs in comparison with Au NPs lies in the ease of surface 

oxidation, which makes it less appropriate for some applications e.g. sensor and sensor and catalysts 

development. To circumvent such difficulties, methods for effective synthesis and stabilization of 

silver colloids have been developed, many of them relying on already described methodologies used 

for preparation of Au NPs. Two of the most used chemical methods that allow for synthesis of 

aqueous Ag NPs solutions are shortly discussed in the following chapter. 

 

 

 

 

Figure 7. Absorption and scattering optical properties of colloidal Ag NPs (size range 2-85 nm) studies by UV-Vis 

absorption spectroscopy. (A) Different Ag NP showing the color distribution. (B) Normalized absorbance of UV-

Vis absorption spectra of the Ag NPs shown in colloids of Ag NPs in (A). Figure adapted from Ref. 93 with 

permission. 
[93]
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2.1.1.2. B) Methods for Ag NP preparation 

 

 The method used frequently in synthesis of Ag NPs is Lee-Meisel method  based on already 

discussed Turkevich method.[102] Employed precursor is the silver nitrate (AgNO3) while citrate serves 

as the reducing and stabilizing agent. The mixture of silver nitrate and citrate is heated to the boiling 

point and the Ag NPs are subsequently formed as shown in the following reaction: 

 

3 AgNO3 + Na3C6H5O7 + 8H2O  3 Ag + C6H5O7H3+ 3 NaNO3 + 9 H2+ 4 O2. 

 

 Unfortunately, the resulting colloids lack the precision and monodispersity observed with Au 

NPs, the particles are of different shapes and have relatively wide size distribution (60-200nm).  

Referred to as Creighton method,[103] the reduction of silver salts with NaBH4 is the most 

common way of obtaining monodisperse Ag NPs. It is a 3-4 component system consisting of 

precursor, reducing agent, solvent and optionally, stabilizing agent. One of the first reports on the 

preparation of Ag NPs employed AgNO3 precursor and NaBH4 as a reducing agent:   

 

AgNO3 + NaBH4  Ag + NaNO3 + ½ B2H6 + ½ H2 

 

  and resulting in NPs in 1-10 nm size range, exhibiting the SPR peak at around 400 nm.  

The NPs used as seeds can undergo further shape and size transformations under the kinetic 

control. The two main processes involved are the crystallization of initially amorphous NPs and their 

subsequent layer growth. Strong reducing agents such as NaBH4 are conventionally used only in the 

formation of seed particle. The further controlled growth of anisotropic NPs is usually conducted in a 

medium containing organic reducing agents with hydroxyl or aldehyde functions. One compound 

often acts as both the reducing agent and the reaction medium (solvent) and one of the most 

frequently used is ethylene glycol. In the literature, use of ethylene glycol is referred to as the polyol 

methodology and it was first reported by Fiévet et al. as a simple route for obtaining colloidal 

particles of metals and alloys.[104] In contrast to the fast reduction of Ag+ to obtain spherical NPs 

measuring up to 10 nm, the further crystallization and in particular, the layer growth, are slow 
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processes that takes considerable time. To accelerate them, elevated temperatures (100-200°C) are 

often used, meaning that the synthesis is often carried out in a boiling organic solvent. 

The inner ordering and growth of NPs resemble the ageing of deposits known in inorganic 

and colloid chemistry. Ageing is accompanied by the inner structuring and growth of the coarse and 

the disappearance of the fine NPs. For NPs with the size above a certain value, the former process 

occurs while for smaller particles, the latter process takes place. This value is called the critical 

nucleus size. In the formation of Ag NP, such processes are intensified at 85°C. As the crystal 

structure of silver NP is formed, the selective dissolution of Ag+ ions from the individual facets 

becomes possible. To avoid that, a substance, which can selectively adsorb on a particular 

crystallographic facet (thus preventing their growth), is added to the system resulting in anisotropic 

growth of particles. One of the most often used growth stabilizing compound is poly(vinyl 

pyrrolidone) (PVP)[105] but similar effects were also observed  for polyacrylic [106] and ascorbic 

acids,[107] sodium citrate [108] and other reagents. 

Use of polyol method and various shape stabilizing additives allows for the synthesis of Ag 

NPs with various shapes including nanowires and NRs,[107] nanocubes,[108] nanoprisms,[109] 

nanodisks,[110] nanoplates[111] and nanobelts.[106] In addition, it has been shown previously that the 

polyol method is a convenient and versatile method for the preparation of many other metallic (Pd 

,[112] Te [113]) and bi-metallic (BiIn ,[114] FePt [115]) NPs as well as  metal-oxide[116] NPs.  

 Ag NPs can also be prepared using biological macromolecules as templates. For example, 

amine functional groups of the peptides have been used to assemble silver and gold cations and then 

cap the growing NP surface following the cation reduction.[117] Particularly interesting template is 

DNA molecule that can be used as a template for the formation of Ag nanowires due to its large 

length to diameter ratio. DNA molecules also have a high metal cation affinity, which when 

coordinated to the DNA can be reduced to form metallic NPs, which follow the helix contour of the 

template.[118] DNA affinity towards Ag ions was also recently used to prepare write once- read many 

memory device based on light induced growth of conducting Ag NPs.[119] 

 Due to the range of possible applications, the search for environmentally friendly synthetic 

methods for Ag NP preparation continues and methods based on the use of plant extracts (leaves, 

fruits, roots, seeds, and stems),[120] enzymes,[121] bacteria,[122] biodegradable polymers [123] or 

microwaves[124] are constantly being utilized and refined.[5b] 
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2.1.1.2. C) Biomedical Applications of Ag NPs 

 

In the past few decades Ag NPs have been applied in various processes, including catalysis, 

optics, electronics and material engineering owing to their unique physical and chemical properties. 

Most of the applications of Ag NPs are as antibacterial/antifungal agents in biotechnology and 

bioengineering, textile engineering, water treatment, silver-based consumer products as well as in 

medicine.  

It has long been known that Ag possesses strong antibacterial properties against both aerobic 

and anaerobic bacteria. The use of Ag in nanoparticulate form, as compared to its ionic form, 

increases its usefulness as the former keeps its antibacterial efficacy but offers reduced cellular 

toxicity. Although it was assumed that the toxicity stems from the Ag ions present on the surface of 

Ag NPs, Kim et al. clearly demonstrated that the superior antibacterial properties of Ag NPs stems 

from the free radicals formed on the surface of Ag NPs.[125] It was also shown that Ag NPs can be 

useful for destruction of the emerging antibiotic-resistant species.[126] Moreover, the combination of 

the antibiotics and Ag NPs has been recently employed showing efficient synergistic effects.[127]  

In addition to anti-bacterial properties, Ag NPs appears to have anti-inflammatory properties 

as well. Nadworny et al. investigated the effect of Ag NPs on a porcine model of contact dermatitis 

and established that Ag NPs had a direct anti-inflammatory effect, improving the healing process 

significantly in comparison with the controls.[128] 

Concerning the medicinal use in general, the use of nanoparticulate Ag is broadly divided into 

diagnostic and therapeutic applications. Early diagnosis is vital for treatment of many diseases, 

particularly different forms of cancer. Therefore there is a constant search for new methods that 

could detect low number or just a few cancer cells.  In such an attempt,  Lin et al. used Ag NPs based 

surface enhanced Raman scattering (SERS) method for non-invasive cancer detection and were able 

to perfectly differentiate the gastric cancer group from the normal group (100% sensitivity and 100% 

specificity). [129]  

In terms of therapeutics, the commonly used application of Ag NPs is in wound healing due 

to the Ag intrinsic anti-bacterial properties. In comparison to other Ag compounds, the use of Ag NPs 

has resulted in superior healing time and improved post-treatment cosmetics. Although the exact 

mechanism for these biological effects has not yet been elucidated, it was shown that wounds 

treated with Ag NPs, besides being bacteria resistant, also had improved collagen alignment resulting 

in better mechanical strength and shorter recovery times.[130] 
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Ag NPs were also used in HIV- 1 virus  inhibition and it was demonstrated that NPs undergo a 

size-dependent interaction with the virus .[131] It was suggested that Ag NPs interact with the HIV-1 

virus via preferential binding to the gp120 glycoprotein knobs and as a  consequence of this 

interaction, Ag NPs prevent viral binding to the host cells.  

Concerning cancer treatment, interesting concept was described by Tse et al. based on Ag 

nanocomposite.[132] Human epidermal cancer cells were targeted with folated Ag-dendrimer 

nanocomposite and the labeled cancer cells subsequently destroyed by the microbubbles generated 

through increased uptake of NIR laser light energy by the embedded Ag NPs. 

Ag NPs can also be used as theranostic substrates offering both diagnostic and therapeutic 

properties. Theranostics is a new field of nanobiotechnology dealing with multifunctional 

nanocomposites combining therapeutic, diagnostic, and sensing modalities in a single 

nanostructure.[12a, 133] Although the term “theranostics” has been coined quite recently,[133d] it is now 

rapidly growing and promising field at the crossroads of plasmonics and nanomedicine.[134] For 

example, Boca-Farcau et al. used folic acid conjugated, SERS-Labeled Ag nanotriangles (Ag NTs) for 

multimodal detection and targeted photothermal treatment on human ovarian cancer cells.[135] By 

having wide range of optical activity (from visible to NIR region), these Ag NT-tags are capable of 

providing detailed spectroscopic information regarding their whereabouts by dark field microscopy 

and SERS, thus opening new opportunities for molecular diagnosis. 

Currently, there is an effort to incorporate Ag NPs into a wide range of medicinal devices, 

including bone cement,[136] surgical instruments,[137]  and surgical masks[138]. Additionally, Samsung 

has created and marketed a material called Silver Nano, which includes Ag NPs on the surfaces of 

household appliances to prevent growth of bacteria. 

 

 The Ag NPs made a tremendous impact on today’s era of medicinal science. The interesting 

properties of the Ag NPs are the guarantee that they would be continuously used as newer 

applications and protocols are being developed. 
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2.1.2. Metal Oxide Nanoparticles - Titanium dioxide - TiO2 NPs 

 

2.1.2. A) Properties of TiO2 NPs 

 

Metal oxides such as, among others, titanium-dioxide (TiO2), iron oxide (Fe2O3 and Fe3O4) or 

zinc-oxide (ZnO), have an important role in numerous areas of chemistry, physics and material 

engineering. Due to their structural geometries, they can exhibit metallic, semiconductor or insulator 

characters. Furthermore, metal-oxide NPs possess many unique physical and chemical properties due 

to their size and high density of surface defects (corner or edge sites). In semiconductor metal oxide 

NPs, excitation involves separation of electron-hole pairs by a distance of several molecules or ions 

that build the lattice (Bohr radius – nanometer scale). The energy needed to make such charge 

separation is known as band-gap energy of the semiconductor.  If the NP size is decreased bellow 

Bohr radius, the space in which the charges move also decreases, thus imposing an additional 

confinement. As a result, the band gap and the electron and hole kinetic energies increase, leading to 

an increase in the density of the charge carriers within and on the surface of the particles. Change of 

the structural and electronical properties change the physical and chemical ones, e.g. a change in the 

magnitude of the band-gap energy strongly affects the conductivity and chemical reactivity of the 

particles.[139] 

The optical conductivity is one of the fundamental properties of the metal oxides and can be 

determined experimentally through scattering and absorption. Due to quantum confinement, the 

absorption of light is both discrete and size dependent, although there is no unanimous theory that 

would explain this dependence completely. [140] In some rough approximation, band gap energy 

would be governed by the inverse square of the nanoparticle size. For nano-crystalline 

semiconductors, both linear (one exciton per particle) and non-linear (multiple excitons) responses 

arise as a result of transitions between electron and hole discrete electronic levels. When considering 

transport properties, metal oxide nanomaterials may present ionic or mixed ionic/electronic 

conductivity. The number of the electronic charge carriers is a function of the band gap energy and 

the electronic conduction is referred as n- or p- type depending on the principal charge carrier (n-

electrons, p-holes).  

A special case of metal oxide nanomaterial is titanium dioxide (TiO2) due to its stability, non-

toxicity, excellent photocatalytical properties and abundance that is accompanied by its low-cost. In 

TiO2 NPs, due to the rather low exciton radii, the quantum confinement effect is restricted to the 

particles with a diameter smaller than 10 nm. There are three main polymorphs of TiO2: rutile, 

anatase and brookite (Figure 8).  
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Figure 8. Ball-stick models of three TiO2 polymorphs. Figure adapted from NANOMATERIALS: Inorganic and 

Bioinorganic Perspectives, Metal Oxide Nanoparticles, with permission. 

 

The transformation sequence among these three polymorphs is size dependent. This is due 

to the energies of the three polymorphs being sufficiently close to one another that they can be 

reversed by small differences in the surface energy. If particle sizes of  three nanocrystalline phases 

are equal, anatase is most thermodynamically stable at sizes less than 11 nm, brookite is the most 

stable for crystal sizes ranging from 11 to 35 nm, and rutile for NPs with diameters greater than 35 

nm.[141] In the TiO2 nanomaterials, surface energy appears to be related to the under-coordinated Ti 

cations (six-fold coordination within the material and five-fold coordination on the surfaces) and 

there are few studies confirming that surface passivation has an important impact on nanocrystal 

morphology and phase stability.[142]  

 

 

 

Figure 9. Fujishima-Honda experimental setup to investigate photochemical production of H2 and O2 from 

water under UV irradiation. Figure adapted from Ref. 143 with permission.
[143]

 

 

In 1972, Fujishima and Honda made an important discovery that promoted the field of 

photocatalysis and the use of TiO2 as the leading material in that field (Figure 9).[144] They found that 

photo-irradiation of an aqueous electrolyte-immersed TiO2 (rutile) single-crystal electrode led to 
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evolution of oxygen (O2) from the TiO2 electrode and hydrogen (H2) from the platinum counter-

electrode when anodic bias was applied to the TiO2 working electrode. This phenomenon is today 

known as Fujishima-Honda effect. Since then, TiO2 has been in the focus of many investigations and 

applications including renewable energy (solar cells), self-cleaning surfaces (both in construction and 

textile industry), pollutant degradation, food preservation and many more.[145]  

When observed in more detail, photocatalysis of TiO2 involves three processes: excitation, 

bulk diffusion and surface transfer of photoinduced charge carriers as presented in Figure 10.  

In the first process, the NP absorbs a photon having energy larger than the band gap of the 

material of which the NP is built. This energy propels the electrons from the valence band to the 

conduction band of the NP, while the holes are left in the valence band. 

During the second process, the excited electrons and holes separate and migrate to the 

surface of photocatalyst. This migration process is highly dependent on crystal structure, crystallinity, 

and the NP´s size. If the separated electrons and holes meet during the migration, they disappear in a 

process known as recombination of electron-hole pairs, which results in a decrease in the 

photocatalytic activity. 

 

 

 

Figure 10. Photo-excitation processes in TiO2, excitation (recombination), bulk-diffusion and surface transfer 

with subsequent reduction and oxidation. (a) Electron and hole recombination in the bulk, (b) electron and hole 

recombination at the surface, (c) adsorbate reduction at the surface and (d) adsorbate oxidation at the surface. 

Figure adapted from Ref. 146 with permission.
[146]

  

 

 

 Finally, separated electrons and holes can participate in the surface chemical reactions. For 

example, holes can react with surface adsorbed H2O to produce hydroxyl radicals, while the electrons 
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are usually scavenged by O2 to yield superoxide radical anions. These radical species formed in the 

solution can further react to give other cytotoxic reactive oxygen species (ROS) such as hydrogen 

peroxide (H2O2) and peroxy radicals, which are all harmful to cells and can be involved in a range of 

other chemical reactions. The major reactions that result in the formation of ROS are shown in 

equations (1)–(6). 

 

(1)     TiO2 + hυ → h+ + e−                          

(2)     H2O + h+ → ˙OH + H+                          

(3)     O2 + e− → O2˙
−                              

(4)     O2˙
− + H+ → HO2˙                                      

(5)     2 HO2˙ → H2O2 + O2                                

(6)    H2O2 + O2˙− → ˙OH + OH− + O2                        

 

 

When talking about TiO2 nanomaterials, it is important to mention a nanoparticulate powder 

commercially named TiO2 P25 (also known as Degussa or Aeroxide). The TiO2 P25 is a titania 

photocatalyst that is widely used due to its relatively high photocatalytic activity. As it is difficult to 

match P25 in its photocatalytic properties, it is often used as a standard. Since 1990, the 

photocatalytic reactions of P25 have been reported in more than thousand scientific reports.[147] The 

P25 is composed of anatase and rutile crystallites, the reported ratio being typically 70:30 or 80:20, 

although it is not certain if the exact composition is known, presumably due to a lack of methodology 

for determination of crystalline contents in NPs.[148] The wide-accepted, although not scientifically 

proven, hypothesis regarding P25 is that the synergetic effect of anatase and rutile crystallites 

induces its high photocatalytic activity, namely a transfer of photoexcited electrons and positive 

holes between interconnecting anatase and rutile crystals  suppresses charge recombination and 

leads to the activity enhancement.[149] 

 

2.1.2. B) Preparation of TiO2 NP 

 

 The synthesis of metal oxide NPs still poses a challenge due to the requirements for methods 

that yield monodisperse NPs of different sizes, with different dopants and surface functionalities. 

Liquid-solid transformations such as co-precipitation and sol gel processing are the mostly used ones 
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as they offer certain control over morphology as well as a possibility of in-situ functionalization of the 

particles.  

The sol-gel method produces metal oxide NPs through the inorganic polymerization reactions 

and it consists of four steps: hydrolysis, poly-condensation, drying and thermal decomposition. 

Hydrolysis of the precursors, usually alkoxides (e.g. titanium isopropoxide), takes place upon addition 

of water or alcohols and results in the corresponding oxo-hydroxide as shown below:  

 

Ti(OR)4 + 4 H2O  Ti(OH)4 + 4 ROH    (hydrolysis) 

 

, with R being an alkyl group.  

 

 The addition of an acid or a base further promotes the hydrolysis and the condensation of 

the molecules as they release water, forms networks of metal hydroxide: 

 

Ti(OH)4  TiO2 + 2 H2O (condensation) 

 

 In other words, hydroxyl species are polymerized by condensation and form porous and 

dense gel. Subsequently, drying and calcination leads to ultrafine porous oxides. The calcination at 

high temperatures is needed in order to clean the product of any remains of the organic precursor 

and to promote further crystallization. The size of the obtained NPs depends on the solution 

composition, pH and temperature and can be tuned by changing the reaction conditions.[150] The sol-

gel method has many advantages over other methods, namely ambient temperature of sol 

preparation and gel processing, product homogeneity, low temperature sintering, ease of making 

multi-component materials and most importantly, good control over NPs size and shape.[151] 

 Another important advantage concerns the doping of the metal-oxide nanomaterials. The 

introduction of the metal ion to the sol during the gelation phase, allows for the uniform cation 

incorporation into the host lattice.[152] For example, metal ions such as Ca2+, Sr2+, Ba2+,[2a]  Cu2+,[152c] 

Fe3+, V5+, Cr3+ , Mn2+,[2b] Pt4+ ,[153] Co2+ ,[154] Ni2+ ,[2b] Pb2+ ,[155] W6+ ,[154] Zn2+ ,[156] Au3+ ,[157] Ag+ [158] and 

many others were introduced into the lattice of sol-gel synthesized TiO2 NPs, improving the 
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photocatalytic properties with varying extent. Most of the above stated examples and references are 

dealing with sol-gel synthesized TiO2 NPs due to their wide-spread use. Nevertheless, other metal-

oxide nanomaterials can be synthesized and modified in the same way (e.g. ZnO, Fe2O3, MnO, Al2O3 

or MgO).[159] 

 Precipitation methodology usually involves dissolving the salt precursor (sulfate, chloride, 

nitrate, etc.) in water (or some other solvent) to precipitate the oxo-hydroxide form with the help of 

certain physical transformation (change of temperature, pH, solvent evaporation, reactant 

concentration, etc.) or chemical processes (base or acid addition, use of complex forming agent).[160] 

The formation of a new solid phase in liquid medium follows the Nucleation-Growth model. The 

controlled release of cations and anions can govern the kinetics of the nucleation and the particle 

growth thus affecting the size distribution of the obtained NPs. In TiO2 NPs synthesis, co-precipitation 

involves precipitation of hydroxides by the addition of a solution of e.g. NaOH (NH4OH, urea, etc.) to 

a precursor material and subsequent heating to promote the crystallization. It has been reported 

that lower processing temperatures result in better metal dispersion than the higher ones.[161] 

 Regardless of the method used to obtain metal-oxide NPs, the studies of the preparation 

methods have shown that the crystallization does not entirely follow the traditional Nucleation-

Growth mechanism. Although the basic idea of already discussed mechanism is regarded generally 

correct, in the growth mechanism some steps such as Ostwald ripening, a phenomenon which 

describes the change in an inhomogeneous structures over time and the growth of NPs in solution, 

may play the most significant role. .[162] 

Loryuenyong et al. used the sol-gel method to prepare TiO2 NPs from titanium (IV) 

isopropoxide using either ethanol or isopropanol as the solvent and obtained mesoporous NPs were 

calcined at temperatures ranging from 300°C up to 700°C.[163] It was found that the collapsing of the 

pores, crystal growth and anatase-rutile phase transformation were all depended on the increase in 

calcination temperature.  Material’s photocatalytic properties were also investigated and the NPs 

obtained in the isopropanol solvent showed an activity enhancement, which is explained by the 

ability of isopropanol to inhibit the anatase-rutile transformation through the control of the 

hydrolysis rate. 

In another approach, Shchipunov et al. used ethylene glycol and polyssaharide xanthan to 

mimic mineralization in living organisms and TiO2 nanomaterial formation on the polysasharide 

template. [164] The metal-oxide morphology was varied from fiber-like over nanoparticulate to plate-

like by changing the xanthan-to-water ratio. TiO2 obtained at ambient conditions did not show any 

crystallinity requiring additional calcination at temperatures ranging from 300°C to 900 °C, resulting 

in anatase and rutile, respectively. 
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The TiO2 nanomaterial has been prepared in the form of powders, crystals, films, NPs, NRs 

and nanotubes (NTs) using the above mentioned as well as other methods including microemulsion 

technique,[165] solvothermal methods,[166] template/surface derivatization and [167] laser ablation in 

solution (LASiS)[168] which will not be discussed in detail. 

 Following chapter will focus mainly on the biomedical application of TiO2 nanomaterials 

which are mainly stemming from their photocatalytic properties although TiO2 has also been used for 

design of solar cells,[169] in electronics[170] and electrochemistry.[171] 

 

2.1.2. C) Biomedical Applications of TiO2 NPs 

 

 Biomedical applications of TiO2 include the photodynamic therapy for cancer treatment, drug 

delivery systems, cell imaging, biosensors for biological assay and genetic engineering, and many 

others.[172] 

 As described in details earlier (please see paragraph 2.1.2. A) upon light irradiation 

(wavelength < 385 nm), the photoinduced electrons and holes are formed in TiO2 NPs  and can 

further react with hydroxyl ions or water to form powerful oxidative radicals (e.g., ˙OH, HO2˙),
[173] 

which are capable of destroying the cell structure of bacteria, fungi and tumors. Due to this property 

many researchers have focused on the application of TiO2 as a photosensitizer in cancer treatment. 

 The photo induced cell toxicity of TiO2 was first reported on a TiO2 film electrode by 

Fujishima et al who investigated the effect on HeLa cells.[174] 

 Seo et al. successfully fabricated water-soluble TiO2 NRs through a high-temperature non-

hydrolytic method, which had higher toxicity towards human melanoma cells (A375) in the presence 

of UV irradiation than commercially available Degussa P25 NPs.[175] 

 The important step in the study of TiO2 was a demonstration of its anticancer activity in 

vivo.[145a, 174b] Cai et al. injected HeLa cells under the skin of nude mice to induce tumor growth and w 

when the size of tumors reached 0.5 cm, a solution containing TiO2 NPs was injected directly to the 

tumor[174b]. When the tumor was exposed to UVA light, the growth was significantly inhibited and 

after a repeating irradiation marked antineoplastic effect was observed.  

 TiO2 NPs were also shown to significantly suppress the growth of bladder and glioma cancer 

cells implanted into mice, even prolonging the survival rate.[176] 

 The aforementioned approaches to the cancer treatment are efficient, but they lack 

specificity. In order to increase the selective antitumor activity and reduce the non-selective cell 

damage and death, it is necessary to functionalize TiO2 NPs with molecules that can specifically 

identify and bind to the cancer cells. Recently, monoclonal antibody proteins (CEA,[177] pre-S1/S2,[178] 
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IL13α2R[179] and EGFR[180]) with high affinity and specificity have been immobilized onto the surface of 

TiO2 NPs. As these proteins are overexpressed on the surface of certain cancer cells, the antibody 

modified TiO2 NPs are useful for directing the NPs towards the specific cell population. 

 Nanoparticulate TiO2 has received considerable attention in efficient drug delivery system 

design.  To facilitate further use in such systems, differently shaped TiO2 NPs were prepared 

(whiskers,[181]  capsules, [182] and porous shapes)[183] so that drug can be combined on the surface or 

contained in the reservoir of TiO2 NPs. In such way, nanoparticulate TiO2 has been employed  as a 

carrier material for various drugs, such as sodium phenytoin[184] valproic acid,[185] temozolomide,[186] 

and doxorubicin.[187] 

 Another application of TiO2 NPs has been demonstrated in past few years and it concerns 

possible gene treatment strategies using DNA. Rajh and coworkers have conducted extensive 

research on the preparation of TiO2–DNA hybrids.[188] In 2003, they synthesized TiO2–DNA conjugates 

containing DNA oligonucleotides covalently attached to 4.5 nm TiO2 NPs.[188] The new TiO2–DNA 

hybrids retained both the intrinsic photocatalytic capacity of TiO2 and the bioactivity of the 

oligonucleotide DNA. In addition, it was found that TiO2–oligonucleotide nanocomposites have a 

novel biochemical function—controlled photoinduced endonuclease activity [189]  Important for these 

studies was the linking of biomolecules with TiO2 through catechol containing linkers such as 

dopamine, which facilitates a hole transfer across the interface, establishing efficient crosstalk 

between the biomolecules and metal oxide NPs.[190] Such TiO2 NPs decorated with DNA 

oligonucleotides were capable of specific cleavage of mutated genomic DNA in a sequence-specific 

and inducible manner. Furthermore, the targeting activity was accomplished via oligonucleotide 

hybridization to an intracellular organelle containing complementary DNA sequence.[188] When 

irradiated, a charge separation occurs within the TiO2 NP effectively cleaving the defective gene. This 

opens new avenues not only to photo induced gene therapy but also “seek and destroy” strategy for 

elimination of defective cell. 

 It is obvious that the potential of TiO2 nanomaterials is still far from exhausted ad new 

developments in biomolecule attachment chemistry and photocatalytic activity might lead to the 

design of novel effective TiO2 based treatment strategies. 
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2.1.3. Semiconductor Nanoparticles - Quantum Dots (QDs) 

 

2.1.3. A) Properties of QDs 

 

 Colloidal semiconductor NPs or quantum dots (QD) are single crystals of semiconducting 

material having diameters in the nanometer scale. QDs were discovered in the early 1980s by 

Ekimov[191] in a glass matrix and by Brus in colloidal solutions.[192] The term "quantum dot" was later 

coined by Mark Reed.[193]  Morphology (size and shape) of QDs is precisely controlled by the duration 

of their synthesis as well as by the temperature and ligand molecules used [194] and they  have 

composition- and size-dependent absorption and emission (Figure 11 A and Figure 12). In addition, 

an electron-hole pair (or exciton) is formed when a photon with sufficient energy (Ephoton > Eband gap) 

gets absorbed. This occurs with increased probability at higher energies (i.e. shorter wavelengths) 

and results in a broadband absorption spectrum as seen in Figure 11 A and B which is in sharp 

contrast to standard fluorophores, whose absorption energies have very narrow spectral range.[195]  

 

Figure 11. (A) Emission maxima and sizes of quantum dots of different composition. (B) Absorption (upper) and 

emission (lower) spectra of four CdSe/ZnS QDs samples. The blue vertical line indicates the 488-nm line of an 

argon-ion laser, which can be used to efficiently excite all four types of QDs simultaneously. (C) Size comparison 

of QDs and other nano objects.
[196]

 Adapted from Ref 196. with permission. 
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 For nanocrystals smaller than the Bohr exciton radius (a few nanometers), energy levels are 

quantized, with values directly related to the QD size (quantum confinement).[194] The radiative 

recombination of an exciton (characterized by a long lifetime, >10 ns)[197] leads to the emission of a 

photon in a narrow, symmetric energy band (Fig. 11B) and makes another difference from the red-

tailed emission spectra and short lifetimes of most fluorophores. The long fluorescence lifetime of 

QDs enables the use of time-gated detection to separate their signal from that of shorter lived 

species (e.g. background auto-fluorescence encountered in cells).[198] 

 Surface defects prevent the exciton radiative recombination by acting as the temporary 

electron or hole “traps” in the crystal structure. The interchange between trapping and un-trapping 

events leads to irregular fluorescence (blinking), also visible at the single-molecule level.[199] 

However, another consequence of this interchange is the reduced overall quantum yield (the ratio of 

emitted to absorbed photons). An efficient way of overcoming these problems, with a benefit of 

protecting surface atoms from oxidation and other chemical reactions, is to cap the QDs. Basically, 

the capping means growing a few atomic layers-thick shell of a material with a larger band gap on 

top of the bare nanocrystal core. This shell can be designed carefully to obtain quantum yields close 

to 90% and [200] this step also enhances QD´s photostability by several orders of magnitude relative to 

conventional dyes.[201] 

 

Figure 12. Ten distinguishable emission colors of ZnS-capped CdSe QDs excited with a near-UV lamp. From left 

to right (blue to red), the emission maxima are located at 443, 473, 481, 500, 518, 543, 565, 587, 610, and 655 

nm. (Figure adapted from Ref. 202 with permission.) 
[202]

 

 

2.1.3. B) Methods of QD Preparation 

 

 There are several ways to confine excitons in semiconductors, resulting in different methods 

to produce QDs. Colloidal semiconductor nanocrystals are synthesized from precursor compounds 

dissolved in solutions in a manner very similar to already described chemical processes.  Synthesis of 
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colloidal QDs usually involves three components including precursors, organic surfactants, and 

solvents.  

The important milestone in synthesis of high-quality colloidal QDs came with the of high-

temperature growth solvents/ligands (mixture of trioctyl phosphine/trioctyl phosphine oxide, 

TOP/TOPO), combined with pyrolysis of organometallic precursors, which yielded CdSe QDs with 

highly crystalline cores and size distributions of 8–11%.[203]  The same reaction combined with 

appropriate organometallic precursors was further used to overcoat the native CdSe core with a 

layer of wider-band gap semiconducting material (for example, ZnS and CdS).[204] Fine-tuning this 

synthetic scheme highlighted the importance of the high-temperature solvent/ligand mixtures, along 

with using less pyrophoric salt precursors (CdO and Cd-acetate), for preparing reproducible high-

quality nanocrystals.[200, 205] QDs prepared using high-temperature routes are hydrophobic, thus 

phase-transfer to aqueous solution requires surface functionalization with hydrophilic ligands, either 

through 'cap exchange' or by encapsulating the original nanocrystals in a thick hetero-functional 

organic coating. These hydrophilic ligands mediate both the solubility of the QDs and serve as a point 

for further biofunctionalization (attachment of biomolecules). 

There are many other colloidal methods to produce different semiconductors in 

nanoparticulate form. Typical QDs are made of binary alloys such as cadmium selenide (CdSe), 

cadmium sulfide (CdS), indium arsenide (InAs), and indium phosphide (InP) but may also be made 

from ternary alloys such as cadmium selenide sulfide (CdSeS). These QDs can contain as few as 100 

to 100.000 atoms, with a diameter of 10 to 50 atoms. As QDs are mostly synthesized in nonpolar 

organic solvents, their hydrophobic surface ligands must be replaced by amphiphilic ones if the water 

solubility is required.[3] Cadmium (Cd) and other heavy metals used in conventional QDs are a major 

concern for commercial applications of QD due to the possible leaking of the toxic material[206] and 

efforts are made to stabilize QDs or prepare different types of more bio-friendly QD based on 

silica.[206-207] 

 

2.1.3. C) Biomedical Applications of QDs 

 

 QDs share the possible biomedical applications with other mentioned NP types including cell 

labeling and imaging as well as novel strategies to fight cancer on the molecular level.[195] Many 

researches are focusing on imaging applications in single cell microscopy, tracking of individual cells, 

e.g., metastasis, and whole animal imaging, as well as tackling the issue of targeting QDs to particular 

cellular structures, cells, and tissues.[208] 
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 Giraud et al. demonstrated the use of QDs labeling combined with fluorescence lifetime 

imaging microscopy (FLIM) for the detection of DNA hybridization events on DNA microarrays.[209] 

The combination of the relatively long lifetime of QDs with a FLIM imager (combining evanescent 

wave excitation with wide field detection and a quadrant anode mounted on an inverted 

microscope) was used to increase the contrast ratio of DNA microarrays by a factor of two. 

 Ibáñez-Peral et al. investigate QDs as suitable multicolor optical labels of specific nucleotide 

probes for microbial identification using flow cytometry (FCM).[210] Since individual QDs fluoresce and 

scatter below the resolution of the FCM, the authors conjugated QDs to paramagnetic beads (Dyna-

beads). They found that the minimum fluorophore-concentration necessary for detection of QDs, 

(above the autofluorescent background) was 100-fold less than for the commonly used fluorophore 

(FITC), even under conditions of suboptimal excitation. Furthermore, their research also showed that 

QD-bead interaction noticeably influences their optical properties requiring further study of the 

system as well as QD for FCM applications in general. 

 Recently, Haro-González et al. investigated laser-induced thermal effects in optically trapped 

microspheres and single cells by QD-luminescence thermometry.[211] Thermal spectroscopy has 

revealed a non-localized temperature distribution around the trap that extends over tens of 

micrometers, in agreement with previous theoretical models besides identifying water absorption as 

the most important heating source. The experimental results of thermal loading at a variety of 

wavelengths revealed an optimum trapping wavelength of around 820 nm for biological applications, 

producing minimum intracellular heating that is well below the cytotoxic level (43 °C), thus avoiding 

cell damage. Results included in this work reveal CdSe-QDs as versatile, efficient and accurate nano-

thermometers for real time temperature monitoring of the local environment surrounding optically 

trapped micro-sized objects and single living cells. 

 In order to circumvent the limitations of tissue-penetrating properties of external light 

source, Hsu et al. coupled light-emitting protein Renilla luciferase to QDs (QD-RLuc8) for 

bioluminescence resonance energy transfer (BRET)-mediated PDT.[212] When the conjugates are 

exposed to the luciferase's substrate coelenterazine, the energy released by substrate catabolism is 

transferred to the QDs through BRET, leading to QD light emission. This in turn activates the 

photosensitizer, meta-tetra-hydroxyphenyl-chlorin(m-THPC, Foscan®)-loaded micelles for PDT. The 

BRET-mediated PDT by QD-RLuc8 plus coelenterazine (20 μg/mL) successfully generated ROS (40.8%) 

and killed ∼ 50% A549 cells at 2 μg/mL equivalent Foscan® in vitro. Significantly delayed tumor 

growth was shown in vivo, due to cell apoptosis under terminal deoxynucleotidyl transferase dUTP 

nick end-labeling assay (TUNEL) analysis without obvious weight loss.  
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Based on immune-histochemical observations, the proliferating cell nuclear antigen (PCNA)-

negative area of tumor sections after BRET-mediated PDT was obviously increased compared to the 

PDT-untreated groups without an external light source. This QD-based PDT was shown to possess 

several clinical benefits, such as overcoming light penetration issues and treating deeper lesions that 

are intractable by PDT alone.  

 An interesting study was done by Nienhaus and coworkers in which they investigated the 

cellular uptake of small (diameter 4 nm) D-penicillamine coated QDs (DPA-QDs) by HeLa cells.[213] 

They found that in contrast to larger NPs, small DPA-QDs accumulate at the plasma membrane prior 

to internalization with the uptake efficiency scaled nonlinearly with the NP concentration. They have 

also shown that a critical threshold density of QDs on the surface has to be exceeded for triggering 

their internalization. By using specific inhibitors (e.g. dynasore which acts as a specific inhibitor of 

endocytic pathways depended on the protein dynamin including clathrin- and caveolin-mediated 

endocytosis), they showed that DPA-QDs were predominantly internalized by clathrin-mediated 

endocytosis and to a smaller extent by macropinocytosis. Clusters of DPA-QDs were found in 

endosomes, which were actively transported along microtubules toward the perinuclear region. This 

work helped shedding more light on the interaction mechanism of QDs with living organisms, which 

is a prerequisite for the safe use of nanomaterials, enhancing potential benefits while limiting the 

associated health hazards. 

 

2.2. Hybrid Nanomaterials 
 

2.2.        A) Properties of hybrid nanomaterials 

 

 In the past few decades, nanotechnology has gone from the basic research, where the 

challenge lied in devising the synthetic methods to control the morphology (size and shape) of the 

various nanomaterials, to the present, more practical stage of devising strategies where the well 

characterized building blocks are used to design more complex systems. Preparation of hybrid 

nanomaterials, containing two or more different nanostructures, creates further possibilities to 

enhance existing or tailored new properties. Actually, coating nanomaterials with stabilizing ligand, 

to prevent aggregation, make them water soluble or red-shift the excitation wavelength represents 

the simplest form of the hybrid structure. Such hybrids possess inherent characteristics of bare 

nanomaterial and ligand but synergistically introduce new properties such as changing the band gap 
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energy as in the case of ligand binding to TiO2.
[214] More complex systems are formed by addition of 

two or more nanostructured materials brought together through different synthetic methods. [14b, 215] 

 Earliest examples of such systems are metal- semiconductor nanocomposites, obtained 

through growth of metal islands (e.g. Au, Ag, Cu or Pt NPs) on semiconductor NPs (e.g. ZnO or 

TiO2).
[157, 216] In these early examples there was limited control over the architecture of the hybrid 

materials (semiconductor NPs shape and size and the metal NPs size and location) and mostly 

polydisperse suspensions were obtained. Further synthetic efforts aimed for a higher degree of 

control over the size and shape of the materials. For example, the selective growth of Au metal tips 

at the edges of CdSe semiconductor NRs was achieved via a simple solution reaction.[217] Such Au tips 

provide anchor points that enable electrical connections and facilitate self-assembly of the 

semiconductor component. In addition the light induced charge separation at the nanoscale metal-

semiconductor junction opened a possibility of various photocatalytic applications.[14b, 218]   

 In general, attached metal NPs can be considered as a near-field source of electromagnetic 

(EM) radiation,[219] whose resonant near-field penetrates into the semiconductor NP and rapidly 

decays near the metallic surface of NPs, providing a strong field gradient across the semiconductor 

NP.  

 

Figure 13. TEM images showing controlled growth of Au onto the tips of CdSe quantum rods. (A) Original rod 

sample, 29 × 4 nm. (B to D) Rod samples with Au NP head sizes of 2.2, 2.4 and 4 nm respectively. Adapted from 

Ref 217a with permission.
[217a]
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  Jain et al. presented atomistic simulations of oscillator strengths of individual 

transitions in matchstick-like CdSe–Au and CdS–Au NRs. A gradient resonant electric field propagates 

along the NR long-axis and allows quadrupole induced transitions and even higher multipolar order 

transitions, which are forbidden under far-field selection rules.[220]  

 Another interesting example of the metal-semiconductor hybrid materials is a combination 

of noble metals and TiO2, as in a case of widely studied Au/TiO2 nanocomposites.[16, 215a, 221] A number 

of studies have shown that Au NPs enable size dependent storage of electrons, with a possibility of 

their later release to the suitable acceptors.[222]  When coupled to nanoparticulate semiconducting 

TiO2 materials, Au NPs can facilitate the shuttling of the photoexcited conduction band electrons to 

the species in the solution and so improve the photocatalytic performance as the charge carriers 

escape the recombination and can be involved in other processes at the nanomaterial interface.[223] 

Recently, it has been reported that electron transfer from Au NPs to TiO2 can also occur under visible 

light irradiation tuned to the surface plasmon resonance wavelength.[222c, 224] In general, Au NPs have 

been particularly interesting for the photocatalytic nanocomposite preparation due to their stability, 

ease of preparation and remarkable electronic and optical properties. [16] Valden et al. investigated 

the particle size effect on the catalytic activity of Au NPs supported on TiO2 surface and found out 

that the maximum activity enhancement was achieved for Au NPs around 5 nm or smaller, which was 

later confirmed by other researchers.[225] Kowalska et al. reported that particle sizes of both TiO2 and 

Au are the key factors in controlling the level of photocatalytic activity.[226] Many other noble metals 

were attached on the TiO2 surfaces, including Ag,[227] Pt,[228] Cu[229] and Pd.[230] 

 Further on, various types of hybrid carbon-based nanostructures have been reported 

including metal-carbon nanotube (CNT),[231] polymer-CNT[232] and metal-graphene.[233] For example, 

Zedan and coworkers reported the enhanced photothermal energy conversion by Au NPs of well-

defined size and shape dispersed in graphene oxide (GO) solutions.[233a] They demonstrated that the 

enhanced photothermal energy conversion by the Au–GO aqueous solutions can be tuned by 

controlling the shape of the Au nanostructures from spherical particles to short and long NRs. In 

addition, they also reported the synthesis of ultra-small Au NPs with diameters of 2–4 nm well-

dispersed on the laser converted graphene nanosheets. They showed that the coupling of the laser-

induced size reduction of the Au NPs with the laser conversion of graphene oxide into graphene 

(LCG) provides a novel method for the synthesis of ultra-small Au NPs from much larger particles with 

different sizes and shapes. These ultra-small Au–graphene nanocomposites could find application as 

novel photothermal energy convertor for a variety of thermochemical and thermo-mechanical 
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applications, in addition to photothermal therapy, such as heating and evaporation of liquids by solar 

energy, ignition of solid fuels, and welding of composite materials. 

 Finally, another important nanocomposite are the metal-polymer nanostructures made with 

two distinct synthetic approaches. The first consists of usage of polymers to stabilize NPs and results 

in nanoparticulate material,[234] while the second one uses polymer matrices to embed them with 

NPs,[235] resulting in membrane-like materials or 3-D structures. A polymer that is most often used for 

physiological stabilization of various NPs is poly(ethylene glycol) (PEG) as such nanocomposite 

circumvent some of the challenges encountered in nanomedical applications of nanomaterials. These 

include uptake by the reticulo-endothelial system (RES), in which NPs are rapidly shuttled out of 

circulation to the liver, spleen or bone marrow, and nonspecific binding of NPs to non-targeted or 

non-diseased areas.[236]. In both drug-delivery and imaging applications, the addition of PEG to NPs 

reduces RES uptake and increases circulation time versus uncoated counterparts[237]. Aggregation 

decreases owing to passivized surfaces, and association with non-targeted serum and tissue proteins 

is diminished, resulting in so-called ‘stealth’ behavior. The PEG chains reduce the charge-based con-

tact typical of proteins and small-molecule interactions. Solubility in buffer and serum increases due 

to the hydrophilic ethylene glycol repeats and the enhanced permeability and retention (EPR) effect 

is modulated due to NP size changes via addition of a PEG coat.[238] Due to these attributes, 

PEGylated NPs generally accumulate in the liver a half to a third of the amount of non-PEGylated NPs 

and demonstrate higher tumor accumulation versus background.[239] PEG is inexpensive, versatile and 

FDA approved for many applications.[236]  

 As demonstrated, the number of hybrid nanomaterials is large and constantly growing. In this 

thesis we have worked typically with the metal-semiconductor nanocomposite materials and hence 

the following chapters on synthesis and biological applications are mostly dealing with such 

structures. 

 

2.2.       B) Preparation methods 

 

 Several main growth mechanisms have been used in synthesis of hybrid NPs, addressing the 

inherent challenge of combining often two intrinsically different materials within one nanocomposite 

platform in a controlled manner. The parameters that should be brought into consideration during 

the synthesis include the lattice constant mismatch and different crystal structures, the presence of 

polar facets, the interfacial energy among the materials, the materials miscibility, the presence of 

surface defects and the surface accessibility/reactivity.[240] 
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 One of the most widely used synthetic protocols for metal-semiconductor nanocomposites is 

the photoreduction of the metal salt precursors on the surface of the semiconductor NPs. This 

method is based on already discussed property of semiconductor NPs to produce electron-hole pairs 

upon appropriate light irradiation. The photo-excited electrons migrate to the surface of the 

semiconductor NP and reduce the metal ions present in the solution thus forming metallic island-

seeds onto which further material can be deposited. Such procedure has successfully been used to  

prepare metallic-semiconductor hybrid nanomaterials including Ag/TiO2,
[15, 241] Au/TiO2,

[221b, 241] 

Pt/TiO2,
[221a] Au/ZnO,[242] and Ag/ ZnO.[215b]  

 Another widely used approach is the self-assembly of NPs, in which the building blocks 

spontaneously organize into ordered structures taking advantage of the thermodynamic and spatial 

constraints.[4] Nevertheless, in order to use the self-assembly of NPs in technological applications and 

to ensure efficient scale-up, it is necessary to impose a high level of directional control. Chemically, 

this means using external stimuli such as temperature, light, pH or solvent polarity, to control the 

molecular interactions at the colloidal interfaces. [4] These stimuli induce a spatial distribution of the 

NPs, either through a direct intermolecular interaction between surface ligands or on the top of 

additional templates such as small molecules,[243] linear polymers,[244] biomolecules,[245] and 

copolymers[246]. 

 Among other successful hybrid NPs synthesis routes, facet selective growth exploits the well-

defined crystal structure of the semiconductor component to provide preferential nucleation and 

growth sites for the metal component.[217a, 247] Furthermore, the absorption of the semiconductor 

component can be used for light induced growth of the metal component. A great example of light 

induced synthesis is the photodeposition of noble metal NPs on semiconductor surfaces (e.g. TiO2 or 

ZnO), where the photoexcited electrons migrate to the surface of the semiconductor NPs and there 

reduce the noble metal ions. [216, 248] 

 New hybrid NP morphologies resembling core/shell architectures were also obtained by 

allowing a diffusion of the metal components into the semiconductor [249] or doping of semiconductor 

nanocrystals via a facile solution reaction.[250] 

The advanced strategies developed for growth of metal NPs is now allowing control of the 

morphology of the metal component in hybrid NPs.[215a, 251] More complex hybrid NP architectures 

are being developed, with two different metallic components grown onto the semiconductor 

segment. For example, Tanaka and coworkers prepared such new type of photocatalyst by combining 

Pt and Au on WO3, in which Pt NPs were loaded on Au NPs. To achieve the Pt-on-Au structure, Au 

particles were first loaded on WO3 by using colloid photo-deposition method,[252] and then Pt 
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particles were loaded on Au particles by using photo-deposition. The Pt/Au/WO3 sample was used 

for formation of H2 and O2 under visible light irradiation in the presence of sacrificial reagents such as 

biomass under mediator-free conditions.[253] Another development is the discovery of additional 

growth modes, specifically edge selective growth, which allowed for the synthesis of hybrid 

nanoscale inorganic cages. In the work by Oh et al. the manganese oxide (Mn3O4) nanocrystals were 

reacted with iron (II) perchlorate to produce hollow box-shaped nanocrystals of Mn3O4/γ-Fe2O3 

(“nanoboxes”). These nanoboxes ultimately transformed into hollow cage-like nanocrystals of γ-

Fe2O3 (“nanocages”). Because of their non-equilibrium compositions and hollow structures, these 

nanoboxes and nanocages exhibited good performance as anode materials for lithium ion batteries. 

The generality of this approach was demonstrated with other metal pairs, including Co3O4/SnO2 and 

Mn3O4/SnO2.
[254]  

Many of the previously successful hybrid NP synthetic methods together with the resulting 

properties are discussed in several excellent review papers.[14a, 215c, 240c] 

 

2.2.       C) Biomedical Applications 

 

 Due to the multifunctionality of nanocomposite materials, such structures are widely used in 

the field of theranostics (for definition see chapter 2.1.1.2. C). For example, Cheng et al. presented a 

new type of multifunctional NPs (MFNPs) based on up-conversion NPs (UCNPs) with combined 

optical and magnetic properties useful in multimodality imaging.[255] The MFNPs were prepared by 

layer-by-layer (LBL) self-assembly. Ultrasmall superparamagnetic iron-oxide (Fe3O4) NPs (IONPs) are 

electrostatically adsorbed on the surface of a NaYF4-based UCNP thus forming a UCNP–IONP 

nanocomplex, which is topped with a thin Au shell by seed-induced reduction growth. The layer of 

IONPs between UCNPs and the Au shell not only affords MFNPs magnetic properties but also strongly 

reduces the luminescence quenching effects of the Au shell to UCNPs. The UCNP–IONP–Au MFNPs 

are additionally coated with PEG to impart stability in physiological solutions used for in vitro 

targeted UCL, MR, and dark-field light scattering imaging. The SPR absorption contributed by the Au 

shell in MFNPs is used in dual-targeted photothermal ablation of cancer cells proving that such 

composite MFNPs are excellent candidate for applications in the multimodality biomedical imaging 

and therapy. 

 The use of multifunctional hybrid NPs as drug delivery systems for anticancer therapeutics 

has great potential for future targeted cancer therapy. A new drug delivery platform comprising of a 

magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer was reported by 
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Andhariya et al.[256] Oleic acid-coated Fe3O4 NPs and hydrophilic anticancer drug “doxorubicin” were 

encapsulated with PEO–PLGA–PEO (polyethylene oxide-poly D, L lactide-co-glycolide-polyethylene 

oxide) tri-block-copolymer. The hydrodynamic size of composite NPs was found to be 36.4 nm at 25 

°C. The loading efficiency of drug was shown to be 89% with a rapid release for the initial 7 h, 

followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in 

response to the physiological temperature by de-swelling of thermoresponsive PEO–PLGA–PEO 

block-copolymer. This study demonstrated that temperature can be exploited successfully as an 

external parameter to control the release of drug, while the magnetic properties of the hybrid can be 

used for the targeted delivery. 

 A slightly different system was developed by Campardelli and coworkers.[257] They produced 

stimuli-responsive drug delivery systems by encapsulating near-infrared (NIR) sensitive hollow Au 

nanoshells (Au NSs) together with the molecule to be released into biodegradable poly-lactic acid 

(PLA) sub-micron particles. The Au NSs (32 nm diameter, 4.5 nm shell thickness) were synthesized via 

galvanic replacement of cobalt NPs, using PVP as a stabilizer. The rapid heating of the PLA particles 

caused by NIR radiation enabled use of the PLA–Au NSs composites as a photo-triggered drug release 

system. Rhodamine was used as a test molecule to obtain release profiles under different irradiation 

conditions. They tuned the release by controlling the intensity of NIR exposition with complete 

release in less than 10 hours when applying intense NIR irradiation for a few minutes and 12 days of 

release when system is left undisturbed.  

 As a final example, Zhu et al. developed a multifunctional pH-sensitive superparamagnetic 

iron-oxide (SPIO) nanocomposite system for simultaneous tumor magnetic resonance imaging (MRI) 

and therapy.[258] Small-size SPIO NPs were chemically bonded with antitumor drug doxorubicin (DOX) 

and biocompatible PEG through pH-sensitive acylhydrazone linkages, resulting in the formation of 

SPIO nanocomposites with magnetic targeting and pH-sensitive properties. The DOX-conjugated SPIO 

nanocomposites exhibited not only good stability in aqueous solution but also high saturation 

magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO 

nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of 

magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating 

their magnetic targeting property. 

 An overview of further biomedical uses of nanocomposites is reviewed in many recent 

papers.[12b, 133d, 259] 
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2.3. Nanoparticle Functionalization  
 

Prerequisite for the application of the engineered NPs, in particular for biomedical uses, 

regardless of their type, is their proper surface functionalization, which controls the NP interaction 

with its environment. These interactions ultimately affect the colloidal stability and function of the 

NPs. The ligand molecules bound to the NP surface also control the growth and prevent the 

aggregation of the NPs. Depending on the NP material and a solvent in which it is dispersed, the 

choice of the appropriate ligand ultimately leads to its long-term stability and additional binding 

properties.  

The surfactants are bound to NP surface by different mechanism including chemisorption, 

electrostatic attraction or hydrophobic interaction often provided by a head group of the ligand.[3] 

Some chemical groups have been shown to possess strong affinity to inorganic surfaces (e.g. thiol to 

Au[260] or hydroxyl to TiO2)
[214], which is often exploited during synthesis and functionalization of NPs.  

 It should be noted that the interacting  bonds between the inorganic NP surface and, e.g. an 

electron-donating end group of a surfactant, such as thiol, [261] amine or phosphine,[262] undergo 

dynamic and reversible  binding ,[263] which might result in detachment of the surfactants (by 

excessive washing or mass action by another surfactant), which can further compromise the stability 

of the NPs leading to aggregation and precipitation. Therefore careful design strategies are needed 

to choose the proper binding ligand and this is largely depending on the subsequent application.  

In aqueous solutions, which are required for biological/biomedical applications, hydrophilic 

NPs are stabilized by electrostatic repulsion between equally charged surfactants. However, in the 

presence of high salt concentrations, the electric field is shielded, which might cause the 

agglomeration (via van der Waals force or hydrogen bonds between the particles).[264]  

In general, in aqueous solutions, strongly charged surfactants (e.g. containing carboxylic or 

sulphonic acid groups), are found to be better NP stabilizers. Furthermore, surfactants offering steric 

stabilization, such as PEG, are more resistant to high salt concentrations than the ones that provide 

electrostatical repulsion, provided they are strongly bound to the NP surface.[265] Finally, further 

stabilization can also be provided by surfactants having multiple anchoring heads such as polythiols 

or catechols.[43, 266]  

One of the most commonly used methods of introducing additional functional groups to the 

NP is a post-synthetic process referred to as ligand exchange.  For example, citrate coated Au NP 
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prepared by Turkevich method are often additionally modified by exchange with the ligand  

possessing higher affinity to the NP surface, often containing thiol such as  mercaptoacetic acid 

(MAA), mercaptopropionic acid (MPA) or mercaptoundecanoic acid (MUA) or any other thiol based 

surfactant.[261b] Thiol functionality is considered to show the highest affinity to noble metal surfaces, 

particularly to Au.[260] In spite this binding being often presented as chemisorption (sometimes also 

noted as covalent bond), the exact processes that occur and the microscopic nature of the bond are 

still not fully understood and are subject to research and discussion.[267] 

When high concentrations of Au particle solution are needed, NPs can first be modified with 

phosphines through salt-induced aggregation and redispersion in low-salt buffers[268] following the 

ligand exchange with thiol-containing surfactants. This strategy is often used in the modification of 

Au NPs with DNA molecules leading to densely covered, highly concentrated solution of DNA-Au NP 

conjugates.[269]  

Ligand exchange can be used to introduce various functional groups but also biomolecules 

such as DNA, peptide or proteins to the surface of different NPs.[270] 

In a case of noble metal NPs such as Au NP, ligands contribute to the stabilization of the NPs 

and server to introduce additional functional groups for further attachment of i.e. biomolecules. But 

in the case of semiconducting materials such as TiO2, ligands also affect the properties of the 

nanomaterial itself i.e. by shifting the band gap and therefore affecting the light activation energy 

needed to induce the photocatalytic activity.[214] Due to their position, surface Ti atoms are only 

partially coordinated, thus presenting trapping sites for the photoexcited electrons, who in turn 

cannot take part in the reduction processes on the surface.[271] Replacement of the solvent molecules 

(which poorly coordinate the surface Ti atoms) with strongly coordinating surfactants, shifts the 

energetic levels of such surface states above the conducting band energies. In this way, trap sites are 

removed and photoexcited electrons are free to participate in reduction processes, hence increasing 

the photocatalytic activity of TiO2 NPs. Moreover, such surfactants build an inner sphere ligand-to-

metal charge-transfer (LMCT) complex with the surface Ti atoms, which is capable of providing 

conduction band of the TiO2 with injected electrons excited by low-energy photons (visible light). This 

strategy is used to overcome one of the major disadvantages of TiO2 material, namely its wide band 

gap.    

As already mentioned, the hydroxyl (-OH) functionality has strong affinity towards metal-

oxide surfaces, [272] which makes it attractive for the functionalization of TiO2 nanoparticulate 

materials. Moreover, enediol functionalities (two OH groups) bind even stronger to TiO2 surfaces by 

bridging the neighboring Ti atoms and thus leading to restoration of six-coordinated octahedral 
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geometry of surface Ti atoms as presented in Figure 13 (as well as single hydroxyl group). 

Functionalization of nanoparticulate TiO2 of various sizes and the effect that it has on the optical and 

photocatalytical properties of TiO2 NPs has been a topic of intense research in the past two 

decades.[271, 273] It resulted in better understanding of the LMCT mechanism, in turn leading to more 

efficient and less energetically demanding TiO2 photocatalysts (e.g. DSSC).   

 

 

Figure 13. Bridging of the two surface Ti atoms with the enediol (dopamine) surfactant.  

 

Enediols, such as different dopamine derivates, were recently used also for stabilization and 

further functionalization of other oxide NP besides TiO2,
[274] and it could be envisages that increasing 

the library of catechol ligands will open a new avenues for the NP modification. 

 The use of engineered ligands for conjugating proteins to NPs has been much more 

successful in retaining protein structure and function (Figure 14). This type of attachment has 

traditionally been accomplished using standard amine-carboxylate coupling methods.[279] More 

recently, the alkyne-azide Huisgen “click” reaction has been used to attach proteins to NPs, where in 

the presence of a catalyst, reactions can proceed with high yield and can also allow the site-specific 

conjugation of the azide or alkyne tagged proteins to the NP partners.[280] This approach has been 

successful in binding a variety of proteins including lipase,[281] horseradish peroxidase,[282] and 

luciferase.[283] 
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Figure 14. NP-protein complexation through covalent conjugation (a) The direct attachment of proteins to NPs 

using a thiol group on the protein surface. (b) Amine-carboxylate coupling using carboxylate-presenting NPs 

and amine groups on protein surface. (c) “Click” reaction using azide tagged NP and alkyne tagged protein. 

Representative ligands used to modify the NP surface are presented under each strategy. Adopted from Ref 

278 with permission.
[278]

  

 

On the other hand, non-covalent conjugation of proteins to NPs provides a an additional 

strategy to prepare NP-protein conjugates, in particular when proteins do not allow the use of 

chemical methods, which could cause the loss of activity.[284] To overcome the short-comings of the 

non-covalent approach, the surface of NPs has been tailored (varying e.g. charge or hydrophobicity), 

to allow for region-specific interactions.[285] Metal-mediated interactions provide a useful alternative 

that imparts selectivity to the NP-protein conjugation process. An often used strategy is through 

nickel-mediated interactions with His-tagged proteins,[286] providing an effective control of NP-

protein stoichiometry.[287] An example of His-tag binding is given in the work by Medintz and 

cooworkers,[288] where they used the affinity of hexa-His peptides to directly conjugate fluorescent 

proteins to QD surfaces to create caspase sensors (Figure 15). In this system the His-tag and the 

peptide linker were long enough to minimize the denaturation observed above with cysteine-based 

immobilization. 
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Figure 15. Metal-mediated non-covalent conjugation and its application (a) Depiction of metal-mediated high 

affinity conjugation of hexa-His tagged protein to nitrilotriacetic acid (NTA) functionalized NP. (b) Schematic of 

the QD-fluorescent protein sensor constructed through non-covalent conjugation between DHLA coated QD 

and mCherry protein with an N-terminal linker expressing the caspase 3 cleavage site and a His6 sequence. The 

specific cleavage of the linker by caspase 3 removes FRET to enable protein sensing. Adopted from Ref 278 with 

permission.
[278]

 

 

 This chapter is by no means comprehensive as many other methods for NP functionalization 

exist and many more are developed on a daily basis. Some excellent recent reviews on the subject 

are available.[3, 278] 
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3. Goals/Aims 
 

 The main aim of presented thesis was to design hybrid TiO2 materials with enhanced 

photocatalytic activity. To achieve that, a library of catechol containing bi-functional linkers was 

explored, to investigate the effect of the linker onto the photocatalytic activity of TiO2. In such study, 

it is particularly important to investigate which (if any) ligands might have negative effects on TiO2, 

such as induced agglomeration or ROS scavenging. 

  Bi-functional catechol containing linker was then prepared to allow binding of various noble 

metal (Au and Ag) and semiconductor NPs (CdS) to the surface of TiO2 NPs in order to prepare hybrid 

nanocomposite with enhanced photocatalytic activity. Finally the photocatalytic activity of both TiO2 

and TiO2 hybrid materials were investigated in vivo using different types of plant (tobacco, BY-2) and 

mammalian cells (HeLa, MCF7 and HEK293).  
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4. Results and Discussion 
 

4.1. Lipoic Acid – Dopamine Bifunctional Linker (LA-DA) 
 

 In the following chapters, the synthesis of the N-[2-(3,4-Dihydroxyphenyl)ethyl]-5-[(3R)-1,2-

dithiolan-3-yl]pentanamide (bi-functional Lipoic acid – Dopamine (LA-DA) linker) will be treated in 

more details. In addition, the account of characterization of the LA-DA linker will be given. 

 

4.1.1. Synthesis of LA-DA Linker 

 

 Coupling of lipoic acid to dopamine hydrochloride was performed according to the literature 

procedure. [289] 

 

 

 

Figure 16. Synthetic Scheme for LA-DA linker. 

 

 In short, Dicyclohexylcarbodiimide was added to a solution of dopamine hydrochloride, 

DMAP, and (R)-R-lipoic acid in dry pyridine. The reaction mixture was stirred for 12 h at room 

temperature under anhydrous conditions. After evaporation under vacuum, the crude product was 

purified by column chromatography with CH2Cl2/CH3OH solvent mixture in ratio 19:1. The yield of 

this procedure was 30%. The synthetic scheme is presented in Figure 16. 

 

 

4.1.2. Characterization of LA-DA Linker 

 

 The final product was characterized by nuclear magnetic resonance (NMR) spectroscopy. 
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4.2. Nanoparticles Synthesis and Characterization 
 

 In the following chapters two different methods for synthesis of Au NPs will be treated in 

detail. The methods are based on the Turkevich method and its modifications. Furthermore, the 

results of the characterization of the as-synthesized NPs are presented and explained. 

 

4.2.1. Citrate Au NPs 

 

 Citrate capped NPs were synthesized following the well-known Turkevich method.[34] Prior to 

the synthesis, the glassware was thoroughly washed with 3:1 mixture of hydrochloric (HCl) and nitric 

acid (HNO3) commonly known as aqua regia and rinsed with water until no trace of HCl could be 

smelled. Aqueous solution of HAuCl4 was brought to boiling when sodium citrate was rapidly added. 

Shortly upon citrate addition, the solution rapidly changed color from pale yellow to black indicating 

the formation of dense network of Au nanowires as intermediates.  

 

Figure 17. Scheme of Au NPs synthesis by Turkevich method (citrate capped). 

 

 The solution was boiled for the next 30 s, during which the color changed from black to wine-

red indicating the formation of Au NPs. The synthesis steps are presented in Figure 17.   
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 The Au NPs were characterized using various experimental method including transmission 

electron microscopy (TEM), ultra violet – visible (UV-Vis) absorption spectroscopy, dynamic light 

scattering (DLS) and zeta potential measurements. The average size was determined to be 12.5 nm 

with standard deviation of 2 nm as measured on 100 Au NPs using the ImageJ software. The SPR 

peak was found at 525 nm, in agreement with previous research. DLS measurements gave Z-average 

of 24.3 nm, confirming the presence of citrate molecules on the surface. The measured 

hydrodynamic radii of the Au NPs are larger than radii of bare cores measured from TEM 

micrographs as they refer to particles diffusion within a fluid.  The NP diameter obtained by DLS 

measurements is the one of a sphere with same translational diffusion coefficient, which depends 

not only on core size of the NP, but also on any structure that abides on its surface. The summary of 

characterization citrate capped Au NPs is presented in Figure 18. 

 

Figure 18. Characterization of Au NP capped with citrate. (A) UV-Vis spectra averages (N=3) (peak 525 nm), (B) 

TEM micrograph and (C) Size distribution (N=100). 

 

 Furthermore, the zeta potential measurements showed that the surface of NPs has negative 

charge of – 41 mV indicating very stable colloid as the small particles with zeta potential higher than 

30 mV (or lower than – 30 mV ) are considered stable.[290] Somewhat smaller, citrate/tannic acid 

capped Au NPs, were synthesized by modifying the method reported by Slot and Geuze.[291] All the 

glass ware was washed with aqua regia and gold salt solution was prepared by diluting HAuCl4 



Results and Discussion   

57 
 

solution in Milli-Q water. A second solution containing trisodium citrate, tannic acid and potassium 

carbonate dissolved in Milli-Q water was prepared. Both solutions were stirred while being heated to 

60 °C. Once this temperature was reached, the tannic acid solution was added to the gold chloride 

solution. An immediate color change (from pale yellow to reddish-brown) was observed. The solution 

was then heated and left to boil for 2 min, and then removed from the heat source. The resulting 

colloid had a dark red color. The summary of the citric/tannic acid capped Au NPs synthesis is 

presented in Figure 19.  

 

Figure 19. Scheme of Au NPs synthesis by modified Slot and Geuze method (citrate/tannic acid capped). 

 

 The resulting Au NPs were characterized using TEM, UV-Vis, DLS and Zeta potential. From 

TEM micrographs it was determined that the average diameter of the particles is 5.3 nm with 

standard deviation of 1.1 nm (N=100). The UV-Vis spectrum shows a SPR peak centered at 519 nm in 

agreement with previous research. The hydrodynamic radii obtained with DLS are slightly bigger than 

the bare core radii measured using TEM micrographs. Their values are centered on 15 nm, indicating 

the presence of surfactants, similar to the case of citrate capped NPs described earlier. The Zeta 

potential was measured at –36 mV, indicating stability of the colloid. The summary of 

characterization citrate/tannic acid capped Au NPs is presented in Figure 20. 
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Figure 20. Characterization of Au NPs capped with citrate and tannic acid. (A) UV-Vis spectra averages (N=3) 

(peak 519 nm), (B) TEM micrograph and (C) Size distribution (N=100). 

 

4.2.2. LA-DA coated NPs 

 

 In the following chapters, three different types of noble metal NPs (Au, Ag and Cu) and one 

type of semiconductor NPs (CdS) are synthesized with LA-DA linker as capping agent. As previously 

discussed, thiol functionality has a strong binding affinity towards metal surfaces, making it ideal 

choice for surface functionalization of metal NPs. In addition, the ratio of the linker to metal salt 

precursors determines the final size of the NPs indicating that a range of sizes can be obtained by 

changing it. Finally, as-synthesized metal NPs contain catechol moieties on their surface, which can 

further be used for modification of oxide NPs.  

 

4.2.2.1.  LA-DA capped Au NPs 

 

 Out of the three types of noble metal NPs synthesized, the thiol groups of the LA-DA linker 

have the highest affinity towards gold surfaces. This affinity has been discussed at length previously 

(Chapter 2.1.1.1.), and is responsible for stability to the functionalized Au NPs. There are two possible 
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routes to obtain functionalized Au NPs, either a ligand exchange or direct one-pot synthesis in the 

presence of the linker.  

 The LA-DA capped Au NPs were synthesized by slight modification of the method developed 

by Oh et al. The glassware used in synthesis was washed with aqua regia, thoroughly rinsed with 

water and dried on air. The LA-DA linker was dissolved in ethanol (EtOH) with heating, with following 

filtration in order to remove the undissolved linker. The HAuCl4 was dissolved in Milli-Q water, added 

to LA-DA solution, and stirred for 1h. In this time the solution changed from pale yellow to 

transparent. Freshly dissolved aqueous solution of NaBH4 was added drop-wise to the rapidly stirred 

colorless mixture. The color changed slowly to black and with continuing addition of NaBH4 it turned 

wine-red, indicating NP formation. The mixture was stirred overnight on ambient temperature (RT). 

Multiple batches were synthesized with varying precursor-to-surfactant ratio (Au-to-LADA ratio from 

1 to 25). The summary of the LA-DA capped Au NPs synthesis steps is presented in Figure 21. 

 

Figure 21. Scheme of Au NPs synthesis by modified Oh et al. method (LA-DA capped). 

 

 The TEM, UV-Vis, DLS and Zeta potential measurements of the obtained colloids were 

performed following the synthesis.  As expected, the batches having higher Au-to-LADA ratio resulted 

in larger NPs, as the same amount of precursor is capped with lest linker thus allowing growth of 

particles. The average diameter sizes in which the LA-DA capped Au NPs were synthesized ranged 
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from 1.5 nm to 20 nm (Fig. 22 A-C). The very small NP did not exhibit the SPR, while the peak of the 

larger ones red-shifted from 513nm to 531 nm with increasing diameter (Fig. 22 D). 

 

 

 

Figure 22. Characterization of Au NPs capped with LA-DA. TEM micrograph of particles having average 

diameter of (A) 1.4 nm NPs, (B) 3.6 nm NPs, (C) 20 nm NPs. UV-Vis spectra averages (N=3) (D) and size 

distributions (E) of the corresponding NPs (N=100). 

 

The size distributions are presented in Figure 22 E. The standard deviation (SD) for small Au 

NPs was only 0.3 nm, for the medium ones it increased to 1.1 nm and for the largest it reached 6 nm. 

The growing SD was probably caused by the decreasing Au-to-LADA ratio, resulting in 

inhomogeneous nucleation and subsequent inhomogeneous growth.  

The DLS measurements were only partially successful, the reason being that the Au NPs from 

the smallest batch (diameters < 2 nm) were below the limit of detection for the DLS instrumentation. 

For the medium sized Au NPs (diameters 2-6 nm) the resulting hydrodynamic radii were centered on 

8.7 nm, in accordance with previous argumentation. The largest batch (diameter 10-30 nm), being 

the most polydispersed one, gave values centered on 78 nm. Zeta potential measurements gave the 
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same results for all the batches, as is to be expected due to the presence of the same surfactant 

molecule (LA-DA). The measured values were around -43 mV, indicating very stable colloid solutions 

of Au NPs in all cases. All the mentioned size dependent properties and some experimental details of 

the LA-DA capped Au NPs are summarized in Table 1. 

 

Table 1. Size-dependent properties exhibited by Au NPs capped by LA-DA.  

Sample Au:LADA d (TEM) / nm SD / nm d (DLS) / nm SPR peak / 
nm 

Zeta potential / 
mV 

Au-LADA-1 1 1,4 0,3 - - -41 

Au-LADA-2 10 3,6 1,1 8 513 -43 

Au-LADA-3 25 20 6 78 531 -43 

 

 As shown in Table 2 Au-LADA-2 (size around 3.6 nm) were prepared several times with 

excellent reproducibility and have been used in the subsequent experiments.  

 

Table 2. Properties of different Au-LADA-2 samples prepared under same experimental conditions 

demonstrating high reproducibility of one-pot synthetic procedure. 

Sample Au:LADA d (TEM) / nm SD / nm SPR peak / nm Zeta potential / 
mV 

Au NP - LADA – 2 (1) 10 3,3 0,8 516 -43 

Au NP - LADA – 2 (2) 10 3,8 1,4 519 -43 

Au NP - LADA – 2 (3) 10 3,5 1,2 513 -43 

 

 

4.2.2.2.  LA-DA capped Ag NPs 

 

 The synthesis of Ag NPs was performed using silver nitrate (AgNO3) dissolved in Milli-Q water 

as a precursor. The aqueous solution of AgNO3 was added to the EtOH solution of LA-DA in different 

Ag-to-LADA ratios and the mixture was stirred for 5 min prior to sodium hydroxide (NaOH) addition. 

Upon NaOH addition the colorless solution turned brown-yellow, indicating the formation of Ag NPs.  
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 The high pH environment de-protonates thiol groups of the linker thus providing the 

conditions for Ag+ reduction and NP formation. The synthesis of the LA-DA capped Ag NPs is 

presented in the following chemical equations (1-2): 

 

(1) AgNO3 (s)  Ag+ (aq) + NO3
-(aq) 

 
(2) Ag+ (aq) + LA-DA (aq)  Ag0LA-DA (aq). 

 

 

 The synthesized LA-DA capped Ag NPs were characterized using TEM, UV-Vis spectroscopy, 

DLS and zeta potential measurements. The Ag NPs obtained using 5, 10 and 20 Ag-to-LADA ratios, 

resulted in particles with average diameters of 4.7, 6 and 24.5 nm respectively, as measured by TEM. 

Similarly to Au NPs, they exhibit size-related red-shifting of the SPR peak. As expected, the SPR peaks 

of NPs with average diameters of 4.7 and 6 nm were both centered around 405 nm, due to their 

similar sizes. The larger particles with average diameter of 24.5 nm exhibited much broader SPR peak 

centered at 425 nm, confirming the broad size distribution of the batch as observed by TEM. The 

explanation for such broad size distribution in the batch synthesized with largest Ag-to-LADA ratio is 

the same as for the Au NPs, namely the “shortage” of surfactant results in less nucleation centers, 

which can then grow to larger sizes. The DLS measurements gave hydrodynamic radii of 10, 13 and 

53 for Ag NPs of 4.7, 6 and 24.5 nm respectively. The Zeta potential of three different batches was 

measured around -60 mV, somewhat larger than the ones of Au NPs. The TEM micrographs, UV-Vis 

spectra and size distributions of LA-DA capped Ag NPs are graphically presented for comparison in 

Figure 24, while all the data are summarized in Table 3 below. 

 

Table 3. Size-dependent properties exhibited by Ag NPs capped by LA-DA.  

Sample Au:LADA d (TEM) / nm SD / nm d (DLS) / nm SPR peak / nm Zeta potential / 
mV 

Ag-LADA-1 5 4,7 0,3 10 405 -62 

Ag-LADA-2 10 6 1,1 13 405 -60 

Ag-LADA-3 20 24,5 6 53 425 -61 
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Figure 24. Characterization of Ag NPs capped with LA-DA. TEM micrograph of particles having average diameter 

of (A) 4.7 nm NPs, (B) 6 nm NPs, (C) 24.5 nm NPs. UV-Vis spectra averages (N=3) (D) and size distributions (E) of 

the corresponding NPs (N=100). 

 

4.2.2.3.  LA-DA capped Cu NPs 

 

 The experience gathered in the synthesis of Au and Ag NPs capped with LA-DA linker was put 

to use in the attempt to synthesize Cu NPs capped with the same linker. In spite of many attempts 

using different precursor to ligand ratios and reduction methods the synthesis of Cu-1 NPs was not 

successful. Due to the fast oxidation of the small copper metal clusters it is possible that both metal 

and metal oxide surfaces are available for the linkers, which would result in LA-DA possibly binding 

with both ends to the forming particles resulting in agglomeration. A suggested solution would be 

the use of the LA-DA linker with protected catechol during the synthesis, followed by de-protection 

and the activation of the hydroxyl groups in the post synthesis treatment. Another possibility is the 

use of organic solvents in an attempt to prevent the oxidation of the forming Cu NPs, which would in 

turn expose the metal facets to the bi-dentate thiol binding as in the Au and Ag NP case.   

 

 

C 

D E 
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4.2.2.4.  LA-DA capped CdS NPs (CdS-1) 

 

4.2.2.4.  A) Synthesis of CdS-1 

 

The precursors cadmium acetate (Cd(Ac)) was dissolved in Milli-Q water and the pH was 

adjusted to 11 by NaOH addition, while the LA-DA was dissolved in EtOH and added subsequently to 

the Cd(Ac) solution. The mixture was bubbled with N2 for 30 min, after which the Na2S was added 

drop-wise into the solution. Stirring continued as well as the N2 bubbling for the next 24h. The 

solution was centrifuged and the supernatant was discarded three times, while the pellet was 

dispersed in Milli-Q water. Finally, the CdS NPs were dispersed in Milli-Q water and stored on 4°C in 

the refrigerator. The synthesis is presented in the equations (1)-(4): 

(1) Cd(CH3COO)2 (s)  Cd2+ (aq) + 2CH3COO- (aq)  
 

(2) Na2S (s)  2Na+(aq) + S2-(aq) 
 

(3) Cd2+ (aq) + LA-DA  Cd-LA-DA (aq) 
 

(4) Cd-LA-DA (aq) + S2- (aq)  CdS-LA-DA (aq). 

 

4.2.2.4.  B) Characterization of CdS-1 

 

 The synthesized CdS-1 NPs were characterized through TEM, UV-Vis, DLS and Zeta potential 

measurements. The size, size distribution and UV-Vis absorption spectra are presented in Figure 26. 

From the graphs in Figure 26 it is obvious that the synthesized CdS NPs have an average diameter of 

3.3 nm and very narrow size distribution. Zeta potential measurements were averaged on -30 mV, 

indicating a very stable colloid. The fluorescence of the CdS-1 QDs was measured upon 400 nm 

wavelength excitation. The resulting spectrum (Fig. 27) reveals that the emission of the CdS-1 

strongly depends on the size of the particles. Even though the analysis of TEM micrographs shows 

relatively small size distribution, three emission peaks are seen in the fluorescence spectrum thus 

revealing the existence of different size populations of QDs with different physical properties. Barely 

detectable peak is noticed centered on 443 nm while the two prominent ones are centered on 488 

and 533 nm. According to the literature, these peaks might be results of QDs having diameters of 1.6, 

1.9 and 2.4 nm respectively, matching the TEM analysis and explaining relatively broad absorption 

peak in Fig. 26 (B).[292] 
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Figure 26. Characterization of CdS NPs capped with LA-DA. (A) TEM micrograph of particles having average 

diameter of 3.3 nm. UV-Vis spectra averages (N=3) (B) and size distributions (C) of the corresponding NPs 

(N=100).  

 

Figure 27. Fluorescence spectra of CdS-1 excited with 400 nm wavelength irradiation. The three peaks at 443, 

488 and 533 nm are the consequence of the relatively broad size distribution (1-4 nm) of the particles and are 

assigned to the groups of particles having diameters 1.6, 1.9 and 2.4 nm respectively. 

 From the presented experimental results, it is clear that the CdS-1 QDs were successfully 

synthesized exhibiting the properties matching the ones already reported in the literature. Due to 

the size distribution, they exhibit numerous fluorescence peaks when irradiated by 400 nm light. The 

further suggested step (not done in this thesis) is the separation of the different sized QDs to obtain 

highly monodispersed batches with only one emission frequencies for the usage in e.g. cell labeling 

studies. 
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4.3. Functionalization of TiO2 nanomaterials 

 

 This chapter deals with functionalization of nanoparticulate TiO2 materials with dopamine 

based linkers. The choice of the dopamine as the head group attaching to the TiO2 surface is 

explained and the functionalization procedure is shortly described. The experimental results are 

presented and discussed with the emphasis on the photocatalytic activity of the functionalized TiO2 

and its difference from the unmodified material.  

 

4.3.1. Functionalization of commercial TiO2 NPs 

 

 TiO2 are widely available nanomaterial, often used as a standard in the investigation of 

nanomaterial photocatalysis. Therefore there is a great interest in understanding how the presence 

of different groups on the surface affects its properties. The commercial TiO2 NPs used in this work 

are the Degussa P25 TiO2 NPs and Anatase NPs which were both modified and used as obtained by 

supplier. Both materials are composed of NP of approximate diameter of 21 nm and differ only in the 

type of the crystal phase. While Degussa P25 consists of mixture of rutile and anatase in 20:80 ratio, 

Anatase TiO2 NPs are made of pure anatase.  

 

4.3.1.1. Library of Dopamine Based Linkers 

 

 As already discussed in Chapter 2.3., the surface Ti atoms within unmodified NPs are under-

coordinated in the case of unmodified NPs. The addition of linkers that covalently bind these under-

coordinated atoms reduces the surface energy and restores the initial hexa-coordination present in 

the bulk material. Hydroxyl group (-OH) has a high affinity towards metal-oxide surfaces and if 

present within bidentate or higher-dentate compounds it results in stronger binding and increased 

stability of coated NP. Modified catechols containing two OH groups have been shown to bind 

strongly to the TiO2 surface. In the study of the effect of different catechol ligands on TiO2, 10 

different catechol based linkers were used, 3 of which are commercially available (Dopamine-DA1, 

Caffeic acid-DA2 and DOPAC-DA3) and 7 synthesized within our group (DA4-DA10) (Figure 28).  
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Figure 28. DA1-DA10: catechol based linkers used in modification of commercial TiO2 NPs; structure, full 

chemical name and the lengths of the linkers. 

 

 

4.3.1.2. Functionalization/Modification of TiO2 NPs with Dopamine Based Linkers 

 

 Functionalization of both Degussa P25 and Anatase TiO2 was performed using the same 

procedure.  First, TiO2 NPs were dispersed in water and the pH was set to 1.5 using HCl resulting 

better dispersions (due to the isoelectric point of the TiO2 NPs that is near the pH of the water). The 

solutions were then pulse sonified in order to obtain the highest degree of dispersion of particles. 

The linkers were dissolved in EtOH and 2.5 µmol of linker was added per mg of TiO2 NPs. Immediately 

upon addition of the linker to the solution, the color change from white to yellow-orange (Figure 29)  

depending on the linker was observed (for DA8-DA10 the color change was less obvious).    
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Figure 29. Charge transfer and color change upon addition of different linkers to (a) anatase and (b) Degussa 

P25 TiO2 NPs.  

 

4.3.1.3. Characterization of Functionalized TiO2 NPs 

 

 The modified commercial TiO2 NPs were further characterized with UV-Vis absorbance 

spectroscopy, DLS and zeta potential measurements. The results are presented in the following 

chapters. 

 

4.3.1.3. A) UV-Vis 

 

 Representative UV-Vis spectra averages (N=3) of modified commercial (P25 and Anatase) 

TiO2 NPs are shown in Figure 30 where it is for all cases observed that the addition of catechol linkers 

causes the change in absorbance and the appearance of the broad peak around 400 nm. This is a 

consequence of ligand to metal charge transfer complex (LMTC) formation. The electrons of the 

LMCT complex are excited with lower energy photons (hence the broad peak around 400 nm) than 

the intrinsic electrons of the unmodified TiO2 NPs. In addition, the absorption is strongly enhanced 

for the UV-Vis transition region (300-400) due to the both LMCT and the intrinsic absorption of the 

pure ligands, which is mostly in the UV region. The modification of the hybrids did not affect the 

absorption in the visible and far visible range (above 500 nm) as the LMCT and ligand itself have no 

absorption in these regions. Almost identical features can be identified in the Anatase modified NPs).  
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 Figure 30. UV-Vis spectra averages (N=3) of modified TiO2 (A) P25 and (B) Anatase.  

 

 

4.3.1.3. B) DLS and Zeta potential  

 

 Zeta potential measurements of the modified TiO2 NPs were one of the methods used to 

verify if the linkers were successfully attached to the surface of the NPs. Due to the different crystal 

phase composition resulting in differently shaped surface, the bare Degussa P25 and Anatase NPs 

exhibit different zeta potentials averages (N=10) (Shown in Figure 31). When modified with same 

catechol based linker, the zeta potentials of the different types of NPs show the same trend 

indicating the same principle of binding through catechol groups. More significant differences are 

observed for linkers containing longer ethylene glycol chains namely DA8, DA9 and DA10, indicating 

possible less successful modification and matching the absence of pronounced color change during 

and after the modification (Photo in Figure 29).  



Results and Discussion   

71 
 

 

Figure 31. Zeta potentials averages (N=10) of the bare and catechol-based linker modified commercial TiO2 NPs 

(P25 and Anatase)  

 

 In the Figure 31 one can observe that for e.g. dopamine (DA 1) linker modification (having 

positively charged amine functionality exposed) a decrease of zeta potential is observed compared to 

the unmodified NPs (from -32 mV to -15 mV for Degussa), while on the other had for the DOPAC   

(DA 2), Caffeic acid (DA 3) or linker DA 7 modification (negatively charged carboxylic acid functional 

group) the zeta values are similar in value and more negative in respect to the Dopamine linker (-28,  

-28 and -25 mV respectively). Further on, the DLS of the bare NPs as well as the modified ones was 

measured for both types of commercial TiO2 NPS. The results are presented in Figure 32 (a) and (b). 

 

 

Figure 32. The average DLS measurements (N=12) of bare and linker modified (a) P25, (b) Anatase TiO2 NPs. 
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 The Figure 32 (a) and (b) present the averaged (N=12) measurements of the hydrodynamic 

radius of the bare and modified TiO2 NPs. The presentation of the average value instead of the e.g. 

number value was chosen due to the clumped form in which the bare NPs are observed in the TEM 

micrographs. Due to the same reason, it is not to be expected to obtain the DLS results that match 

the exact sizes of the NPs (diameter ~21 nm). Quite on the contrary, much larger values for the 

hydrodynamic diameters were expected as the clumped NPs scatter much more light than the single 

ones do. Exactly such values were measured and presented in the Figure 32 (a) and (b), where the 

radii are almost 10 times larger than the ones stated by the supplier. Moreover, it is seen that the 

NPs modified with smaller linkers (DA 1 – DA 5) have similar hydrodynamic radii as the bare NPs, 

while the ones modified with larger linkers (DA 6 – DA 10) exhibit larger radii. This difference does 

not match the size of the linker, but it could be taken as an indication of the better surface 

arrangement of the smaller linkers resulting in the monolayer covering of the NP surface. When 

dealing with larger linkers on the other hand, one could encounter size related problems (e.g. linker 

bending or interaction between the free ends of the linkers) when trying to connect them to the NP 

surface, resulting in non-uniform coverage and larger hydrodynamic radius. 

 

4.3.1.4. ROS Production of Functionalized TiO2 NPs 

 

 The modified commercial TiO2 NPs were investigated to determine whether there is a change 

in the photocatalytical properties upon modification. To investigate that enzyme based assay was 

employed in which a mixture of the horse radish peroxidase (HRP) enzyme and its substrate Amplex 

Red (AR) were added to the wells. In the presence of oxygen radicals (or its longer lived H2O2), HRP 

oxidizes non-fluorescent AR to highly fluorescent resorufin, which can be detected with standard 

fluorescence methods as presented in the Figure 33 (a) and (b).  In general, 1 mg/mL stock solutions 

in PB (pH=6) of modified NPs were prepared and 10 µl added to the 96 well-plates. The plates were 

then irradiated with UV (365 nm) light for 10 min in the custom made reactor. The results of the ROS 

detection are presented in the Figures 34 (a)-(c).   
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Figure 33. Generation of ROS under irradiation of semiconducting TiO2 NP in aqueous solution (a) and the 

Ampliflu activity test for HRP peroxidase (b). 

 

 Figures 34 (a) and (c) show that all the linkers enhance the ROS production of the NPs 

although not all do it to the same extent. Linker attachment creates the charge transfer sphere on 

the surface of the NPs and the under-coordinated surface Ti atoms become coordinate and the bulk 

hexagonal lattice is restored.[214] In this way the surface electron traps are eliminated allowing the 

previously trapped electrons to participate in the surface reactions. It could be expected that 

disappearance of the surface traps leads to the faster recombination of electrons with positive holes 

and therefore reduced recombination with water and O2 present at the surface, but based on the 

obtained data this is not the case. However, there are differences between linkers, which indicated 

that the presence of different functional groups as well as the length of the ethylene glycol chain 

might play the role, although there is no clear pattern.  For example, linker DA5 and DA7 show the 

smallest enhancement of the ROS production. Linker DA5 contains lipoic acid functional groups, 

which is known as strong antioxidant and could scavenge the newly produced radicals at the NP-

solvent interface.[293] However linker DA7 contains carboxylic acid group also present in linker DA2 

and DA3, which show enhancement of the ROS production indicating that other factors such as the 

hydration of the TiO2 surface (the amount of water present near the surface to allow for the ROS 

production) might play the role, but due to the time constrains this was not investigated further.  
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Figure 34. Averaged fluorescence measurements (N=3) indicating ROS production of the bare and modified (a) 

P25 and (c) Anatase TiO2 NPs, after 365 nm irradiation, based on the HRP/AR assay; (b) Overview of the used 

linkers. 
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4.3.2. Functionalization of TiO2 Nanorods (NR)  

 

 Once the role of the linkers was investigated showing that there is no significant decrease of 

the ROS production upon the surface modification, non-commercial, well defined TiO2 structures 

were investigated. In attempt to prepare well defined structures with high ROS producing ability, 

TiO2 nanorods (TiO2 NRs) were prepared within the group and dopamine modification was performed 

in order to enable further biofunctionalization.  The procedure and experimental results are 

presented in the following chapters. 

 

4.3.2.1. TiO2 NRs modification with Dopamine (DA) 

 

 TiO2 NRs were prepared within the group (by Bianca Geiseler) using the optimized procedure 

first published by Seo et al. The rods with dimensions 17.6 by 3.6 nm were confirmed to be highly 

catalytic anatase phase nanomaterial. Although the TiO2 NRs were synthesized in different batches 

with different times of synthesis, only the most catalytically active 8h ones were used for the DA1 

modification. 

 The functionalization of the as-synthesized NRs proceeded through their re-suspension in 

toluene and direct addition of DA1 linker. Immediately upon DA1 addition, a color change from 

colorless to brown was observed indicating the formation of the LMCT complex. The reaction mixture 

was further stirred overnight at room temperature, after which it was purified by repeated 

centrifugation and supernatant finally dispersed in Mili-Q water (TiO2NR+DA1). In addition to the 

color change, the modified NRs were characterized with IR spectroscopy, UV-Vis absorbance 

spectroscopy and zeta potential measurements. In Figure 37 presenting the UV-Vis absorbance 

spectra of the unmodified, DA1 modified TiO2 NRs as well as the DA1 spectrum, it is visible that the 

absorbance of the DA1 modified TiO2 NR (8h) is red-shifted towards the visible part of the 

electromagnetic spectrum due to the LMCT complex formation. 

  Successful surface modification was further confirmed by averaged (N=10) zeta potential 

measurements which changed from -39.4 mV to 38.7 mV upon addition of DA and due to the 

presence of positively charged amine group. 
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Figure 37. UV-Vis spectra average (N=3) of as-synthesized and DA 1 functionalized TiO2 NRs (8h) together with 

DA 1 alone.  

 

  

 

4.3.2.2. ROS production of modified TiO2NR  

 

 As in the case of modified commercial NPs, it was interesting to see if the photocatalytic 

properties of TiO2 NRs change with DA on their surface. HPR/AR assay was used to determine the 

ROS production upon 365 nm irradiation. The results are presented in Figure 38 and are significantly 

different from the ones obtained with the commercial NPs.  

 

 

 

Figure 38. Averaged fluorescence measurements indicating ROS production of the bare and DA1 modified TiO2 

NRs, after 10 min 365 nm light irradiation, based on the enzymatic HRP/AR assay. 
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The ROS production of the TiO2 NRs is inhibited upon the modification with DA1 linker. This 

strong inhibition effect of DA1 is at first in disagreement with the data obtained for commercial 

spherical NPs but could be clarified upon the close examination of the morphology of NR. Namely, 

NRs are merely 3.6 nm in width, which does not allow for the effective, diffusion controlled 

separation of the photoexcited electron-hole pairs thus opening the possibility for their relatively fast 

recombination. When the surface traps are additionally removed by DA1 modification, this improves 

the recombination process diminishing the possibility of electron-hole reaction with surface 

molecules and production of ROS. As the ROS production was suppressed, further attempts to 

biofunctionalize TiO2 NRs through amide coupling were not done and future work needs to be 

focused on the preparation of bigger NR with high ROS producing ability.   

 In conclusion, the modification of TiO2 nanomaterials with catechol based linkers turned out 

to be more complex than initially thought and an understanding the mechanism by which the surface 

linkers affect the ROS production will require additional experiments which were not performed due 

to the time constrains. Although it was assumed, prior to experimental study, that that catechol 

modification should decrease the photoactivity of TiO2 nanomaterials through the trap removal 

action regardless of the morphology of the support, this was not the case.  This assumption proved 

correct for the case of TiO2 NRs, however the effect of the linkers on the spherical NPs was quite the 

contrary. Modification of spherical NPs (diameter ~ 21nm) with great majority of catechol-based 

linkers resulted in strong enhancement of the ROS production. It is argued that the relatively large 

NPs allow enough room for excitons to separate and that the trap removing in this case only further 

increases the ROS production by allowing the electrons to more efficiently reach surface and 

participate in the reactions.  

 

4.4. Preparation and Study of Au/TiO2 Nanocomposite  
 

 Au/TiO2 nanocomposite synthesis method based on the building block approach is described 

below. The resulting material was studied through the information obtained with a wide range of 

available experimental methods.  

 

4.4.1. Synthesis of Au/TiO2 Nanocomposite Using Bifunctional LA-DA Linker 

 

 Two approaches were employed to obtain Au/TiO2 hybrid with a goal to create a material 

with superior photocatalytic activity. The pivoting role in both approaches is given bifunctional LA-DA 
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linker that is used to prepare LA-DA capped Au NPs (Au-1). In addition, citrate coated Au NPs (Au-2) 

were utilized for preparation of control hybrid materials to investigate the role that LA-DA linker has 

in the formation of the nanocomposites. The main principle of nanocomposite design is given in 

Figure 39.  

 

 

 

Figure 39. The scheme of the Au NP – TiO2 NP interaction using lipoic acid – dopamine (LA-DA) linker.  

 

  

4.4.1.1. Type A Nanocomposite – use of pre-prepared commercial TiO2 NP (Degussa, 

P25)  

 

 The first approach involves binding of Au-1 and commercially available TiO2 NPs (TiO2A) to 

obtain hybrid named Au-1/TiO2A. The synthesis of the Au-1 is described in Chapter 4.2.2.1., while the 

commercial TiO2 powder is used as obtained by the supplier. As stated in chapter 2.1.1.1., the thiol 

groups on the lipoic acid end of the LA-DA linker attach to the Au NPs surface during the synthesis 

process. The involved LA-DA surfactant has two roles; it acts as a stabilizer of the Au NPs due to the 

bidentate attachment, and a linker for Au NP attachment on to the surfaces such as metal-oxides, 

e.g. TiO2, which have an affinity for catechol groups. Figure 40 shows the principle of Au-1/TiO2 A 

type hybrid preparation.  
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Figure 40. Scheme of Au-1/TiO2A nanocomposite synthesis from commercial Degussa TiO2 NPs and LA-DA 

modified Au NPs. 

 

With the Au-1 in hand, the synthesis proceeds by simple mixing of the metal and 

semiconducting component in aqueous environment. More precisely, the TiO2A are dispersed in 

Milli-Q water and stirred vigorously. The desired amount of Au-1 is added to the TiO2A solution and 

the mixture is heated to boil. After 1h under reflux the synthesis is finished and the solution is left to 

cool to RT. Following the washing steps, the supernatant is discarded and the resulting material is 

vacuum-dried and stored in powder form. This procedure was repeated many times using different 

Au-1 to TiO2A ratios in order to obtain nanocomposites with different Au loadings and to investigate 

how this affects the photocatalytic activity of the commercial TiO2.  
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4.4.1.2. Type B Nanocomposite – growth of TiO2 from titanium tetra-fluoride (TiF4) 

precursor  

 

The second approach utilized the Au-1 (average diameter 3.6 nm) as seeds for TiO2 growth 

using TiF4 as precursor resulting in Au-1/TiO2 type B. As noted in the introduction, many different TiO2 

precursors have been used for preparation of crystalline nanostructures; among them TiCl4,
[295] 

titanium tetraisopropoxide (TTIP),[296] tetrabutyl titanate (TBOT)[297] or titanium tetrabutoxide 

(TTB).[298] Here, the TiF4 was used due to its low hydrolysis rate thus enabling slower and gradual 

growth of TiO2 shells as shown by Wang et al. in their work on TiO2 nanocage synthesis.[299] The 

growth of the TiO2 shells is expected to be facilitated by the catechol moiety on the free (dopamine) 

end of the linkers. 

. 

 

 

Figure 41. Scheme of Au-1/TiO2B nanocomposite synthesis from Au-1 precursor using TiO2 layer growth on Au 

seeds. 
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The principle of the Au-1/TiO2 B synthesis is shown in Figure 41 and it begins with mixing the 

desired volumes of Au-1 and TiF4. The mixture is then brought to boil and refluxed for 1h. During the 

procedure the red color of the Au NPs turns to violet due to the formation of TiO2 shell and 

subsequent change of the dielectric constant in NP environment. The solutions is cooled to RT, 

washed, dried and stored in powder form. Again, the procedure was repeated with different Au-1 to 

TiF4 ratios to obtain Au-1/TiO2B nanocomposites with varying Au loadings and to investigate the 

effect that this might have on the catalytic properties. 

 

4.4.2. Characterization of Synthesized Au/TiO2 Nanocomposites (Type A and Type B) 

 

 In spite of the vast body of literature on the subject, it is still not really clear which Au loading 

should be used in Au/TiO2 hybrid synthesis to obtain hybrid material with superior photocatalytic 

properties. Almost two decades ago, Bamwenda et al. have shown that the photo-catalytic 

properties of Au/TiO2 hybrids vary significantly with Au-to-TiO2 ratio, with highest activity reported 

for approximately 1 % wt of Au.[300] Since then, and in contrast to the previously referred work, other 

groups have claimed that both higher[16] or lower Au percentages result in higher photocatalytic 

activity of the hybrids.[301] To explore the effect of Au % wt, we have prepared hybrids with an 

extensive range of Au loadings (from 0.1 up to 50% wt), which resulted in the significant difference in 

the color of the suspensions as presented in Figure 42 (a) and (b).  

 

 

 

Figure 42. Colour changes observed in the suspension of  a) Au-1/TiO2A and b) Au-1/TiO2B nanocomposite 

in pH 6 phosphate buffer (PB) with increasing % wt of Au (0.1, 0.25, 0.5, 1, 2, 5, 10, 20 and 50 from left to 

right hand side). 
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 Subsequent TEM analysis indicated corresponding differences in the amount of Au present in 

the hybrid, while the confirmation of the exact Au loadings came from the inductively-coupled 

plasma mass spectrometry (ICP-MS) measurements.  

 

 

4.4.2.1. Microscopic Analysis 

 

4.4.2.1. A) TEM and HAADF-STEM Analysis 

 

 The synthesized hybrids were examined by TEM method to gain further information about 

their morphology. The resulting TEM micrographs of the selected hybrids of both types are 

presented in Figure 43.  

 

 

Figure 43. TEM images of a) Au-1/TiO2A nanocomposite with  i) 0.5% wt, ii) 5% wt, iii) 50% wt of Au-1 and b) 

Au-1/TiO2B i) 0.5% wt, ii) 5% wt and iii) 50% wt Au-1.  
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Common feature observed in TEM images for all hybrids of Au-1/TiO2 A type is the placement 

of Au NPs, which, in spite of 2D nature of TEM micrographs, often seems to be on the lateral surface 

of TiO2 NPs. This was confirmed by HAADF-STEM measurements in Figures 44 and 45. In contrast, 

such distribution of Au NPs is scarcely found in hybrids of the Au-1/TiO2B type (only in the high 50% 

loading of the AuNP, but very rarely). This can be explained by employed synthetic routes (Figure 40 

in 3.4.1.1. and Figure 41 in 3.4.1.2.). 

 

Figure 44. HAADF-STEM micrographs of 5% Au-1/TiO2A hybrid: a) lower and b) higher magnification. 

 

Figure 45. HAADF-STEM micrographs of 10% Au-1/TiO2B hybrid: a) lower and b) higher magnification. 

Namely, in Au-1/TiO2A, prepared using linker coated Au NP, exposed catechol groups of the 

LA-DA linker, readily attach to the TiO2 NPs, forming a nanocomposite in which Au NPs can be 

observed on the surface of the TiO2 (Figure 40 in 3.4.1.1.). On the other hand, when the AuNP-1 
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seed-TiO2 precursor methodology is used (type B composite), resulting Au-1/TiO2B hybrid contains 

Au NPs embedded within the shell of TiO2 crystalline material (Figure 41 in 3.4.1.2.).  

 

 

 

Figure 46. Schematics of the Au-1/TiO2A hybrid with the cross-section marked with red rectangle (a). HAADF-

STEM and TEM image schematics of the hybrid (b left and right). HAADF-STEM (c left) and TEM (c right) image 

of the Au-1/TiO2B hybrid (together with higher magnifications). Red circles mark thick parts of the TiO2A and 

blue ones laterally positioned Au-1. 
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Detailed TEM and HAADF-STEM analysis also indicated uniform distribution of Au NPs within 

the TiO2 matrix. In both Figures 46 (a) and 47 (a), a red rectangle marks the cross-section through the 

thickest parts of the hybrids. Since the contrast in the HAADF-STEM images depends on the atomic 

number (Z) as well as on the sample thickness, the expected brightest parts of the HAADF-STEM 

images will be Au NPs (high atomic number) and thick parts of the TiO2 (thickness). Furthermore, if 

the structure hypotheses are correct, the number of AuNP-1 in type B hybrid will correlate with the 

thickness of the hybrid (if the NPs are distributed in the volume, the thicker the hybrid the more of 

NPs present). On the other hand, such correlation is not expected in type A hybrid in which Au NPs 

are positioned on the surface of the nanocomposite.  

 The HAADF-STEM images confirm this assumptions and as expected the Au NPs in Figure 44 

are not numerous in the area of high thickness, confirming the assumption of the type-A architecture 

where NP are mainly on the surface of the hybrid materials.  In the Figure 46 (c) (right), one can see 

the TEM image of the type A hybrid, where many of the AuNPs (black spots) are to be seen attached 

on the lateral surface of the hybrid (blue circles), again confirming the assumptions of the type A 

architecture.  

The HAADF-STEM image in the Figure 47 (c) (left) has a different appearance. The thickness 

(overall brightness) correlates well with the number of AuNPs observed. In other words, the thickest 

parts of the TiO2 (red circles) are embedded with the most NPs, indicating that the Au NPs are 

volume distributed, which confirms the hypothesis about the type B architecture. The TEM image in 

the Figure 47 (c) (right) shows no AuNPs on the lateral surface of the hybrid but rather the NPs are 

embedded in the hybrid interior (green circles). 

 Further analysis of the lateral surfaces on TEM images of the hybrids only strengthens the 

two hypotheses. In Figure 48 the TEM images of the type A and B hybrids of the highest loading (20 

and 50% Au) are presented and the AuNPs found on the lateral surface are marked with red circles. 

There is an obvious difference in a number of Au NP present on the lateral surface in type A as 

compared to type B. When the loading is further increased to 50% Au, few Au NPs can be observed 

also on the Type B composite surface most probably due to the large amount of starting Au NP, 

which cannot be embedded into TiO2 material.      
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Figure 47. Schematics of the Au-1/TiO2B hybrid with the cross-section marked with red rectangle (a). HAADF-

STEM (b left) and TEM (b right) image schematics of the hybrid. HAADF-STEM (c left) and TEM (c right) image of 

the Au-1/TiO2B hybrid. Red circles mark thick parts of the TiO2B and green ones internally positioned Au-1. 

 

 In addition, the morphologies of the Au NPs (Au-1) was investigated after preparation of 

hybrid to see if there are any changes upon hybrid formation and the results show that Au NPs 

preserved their size and shape. This indicates that the both the amount and size of Au NPs in the 

hybrids can be controls enabling the study of their presence on the overall photocatalytic properties.  
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Figure 48. TEM images of: a) Au-1/TiO2A 20% Au, b) Au-1/TiO2B 20% Au, c) Au-1/TiO2A 50% Au and d) Au-

1/TiO2A 50% Au. Red circles mark the laterally positioned Au NPs. 

  

4.4.2.1. B) EDX Analysis 

 

The EDX spectra were made on both hybrids (Au-1/TiO2A and Au-1/TiO2B) with same loading 

of 20% w/w. For each hybrid, the HAADF-STEM image was taken, and according to the image, two 

spots were chosen, one on the area where the contrast was high (Point 1, presumably Au) and one 

on the low contrast area (Point 2, presumably TiO2) (Figure 49 a). The information obtained by EDX 

spectroscopy of Au-1/TiO2A hybrid, confirmed that the hybrids consists of both Au and TiO2 material. 

As expected from the HAADF-STEM micrographs, the measurement taken at Point 1 (bright area - 

presumably Au-1) contain many Au-related peaks (Figure 49 b), together with TiO2 peaks from the 

surrounding TiO2A and Cu peaks from the copper meshes on which the sample is held. Pont 2 (darker 

area - presumably TiO2A) on the other hand, shows only TiO2 and Cu related peaks, confirming that 

the Au-1 is not present o that spot (Figure 49 c). The similar study was conducted with Au-1/TiO2B 

hybrid, showing two distinct points at which EDX spectra was taken (Figure 50 a). As in the case of 

type-A hybrid, the results confirmed the presence of Au and TiO2 at expected areas of type-B. 
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Figure 49. (a) HAADF-STEM micrograph of Au-1/TiO2A (20% Au loading), with two red points designating the 

area where the measurements took place. Pont 1, bright area - presumably Au-1. Point 2, darker area - 

presumably TiO2A.  (b) EDX spectrum of Au-1/TiO2A 20% taken at Point 1. (c) EDX spectrum of Au-1/TiO2A 20% 

taken at Point 2. 
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Figure 50. (a) HAADF-STEM micrograph of Au-1/TiO2B (20% Au loading), with two red points designating the 

area where the measurements took place. Pont 1, bright area - presumably Au-1. Point 2, darker area - 

presumably TiO2B. (b) EDX spectrum of Au-1/TiO2B 20% taken at Point 1. (c) EDX spectrum of Au-1/TiO2B 20% 

taken at Point 2. 
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4.4.2.1. C) Selected Area Electron Diffraction (SAED) 

 

 SAED is an experimental technique used widely for obtaining information on the crystal 

structure of the investigated material. It was used here to determine the crystal structures of the two 

hybrid types and to detect possible differences. 

 The crystal structure of both type A and type B hybrids was determined to be mostly anatase 

TiO2. The diffraction rings are presented in Figure 51 (a) for Au-1/TiO2A and 51 (b) for Au-1/TiO2B. 

The difference between the two diffraction ring patterns was not observed (Figures 51 a and b). The 

measurements inferred that the systems are tetragonal, with space group I41/amd and lattice 

parameters of a=0.3784 nm and c=0.9514 nm, matching the anatase data. The only difference 

between the patterns is the higher intensity of the rings obtained from Au-1/TiO2A (Figure 51 a) due 

to the higher crystallinity of the TiO2A material used in its assembly. This results was confirm by 

additional Raman studies (see pg. 104)  

 

Figure 51. SAED of hybrids with 20% Au loading a) Au-1/TiO2A and b) Au-1/TiO2B. 

 

4.4.2.2. Spectroscopic analysis of Au/TiO2 Nanocomposites 

 

4.4.2.2. A) UV-Vis Absorption Spectroscopy   

 

 Further characterization of Au-1/TiO2A and Au-1/TiO2B hybrids was performed using UV-Vis 

absorption spectroscopy. Obtained spectra can be utilized for the study of the Au NPs plasmon band 
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shift due to the presence of TiO2 in their vicinity. Nanosized semiconducting TiO2 has been already 

shown to have high absorption in the UV part of the spectrum (3.0-3.2eV), which we confirmed from 

the measured absorption peaks around 340 nm in both hybrids.[302] As shown in Figures 52 (a) and 52 

(b), 550 and 580 nm Au NPs plasmon peaks are visible for Au-1/TiO2A and Au-1/TiO2B hybrid 

respectively (Au-1 plasmon peek being around 519 nm, see Table 2 in 3.2.2.1. on page 65). 

         

 
 

Figure 52. UV-Vis absorption spectra averages (N=3) of a) Au-1/TiO2A and b) Au-1/TiO2B hybrids with different 

Au loadings (1, 20 and 50% Au) 

 

Stronger red shift in the Au-1/TiO2B hybrid confirms the embedment of the Au NPs within 

TiO2 matrix resulting in the change of surrounding dielectric constant and shift of the plasmon 

peak towards the longer wavelengths. In the Au-1/TiO2A hybrid, where the Au NPs are 

attached to the surface of the TiO2 NPs (only one part of their surroundings is changed), the 

red shift of the plasmon peak is less pronounced. 

 

 

4.4.2.2. B) Raman Spectroscopy 
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Raman spectroscopy was used as a complementary method for the investigation of TiO2 

crystal structure in two types of hybrid. In Figure 53 Raman spectra of type A and type B hybrids, 

both with Au loadings of 0.25%, are presented for comparison. As expected, due to the lower 

temperatures (100 °C) used in preparation of TiO2 phase in type B hybrid, the crystallinity is not as 

high as in the case of commercially available TiO2A (annealing done on 500-600°C). Nevertheless, the 

peaks that are observed for type B hybrid still confirm the presence of the same crystal structure, 

namely the prevalence of anatase to rutile.  

 

     

Figure 53. Raman spectra comparison between the 0.25% Au loaded type A and type B hybrids. The 

measurements were performed on the hybrids in powder form having 0.25% Au loading. 

 

4.4.2.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

 

The ICP-MS measurements are done to determine the exact ratio between the amount of Au 

and Ti atoms in hybrids. In the synthesis of the hybrids, 9 different Au loadings (0.1, 0.25, 0.5, 1, 2, 5, 

10, 20 and 50%) were planned in order to investigate the influence of Au loading on the 

photocatalytic properties of the hybrids. As the mass concentrations of both Au-1 and TiO2A were 

known, simple calculations led to ratios of the materials that were supposed to result in wanted 
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ratios. With hybrids in hand the ICP-MS measurements were performed after chemical digestion of 

the hybrids in aqua regia. The theoretical and measured loadings of the two types of hybrids are 

presented and compared in Table 4. 

Table 4. Comparison of calculated and ICP-MS measured Au/Ti ratios for Au-1/TiO2A and Au-1/TiO2B hybrids 

 

Hybrid Type Method Au % 

 

Au-1/TiO2A Theory 0.1 0.25 0.5 1 2 5 10 20 50 

Experiment (ICP-MS) 0.09 0.19 0.42 0.87 1.81 4.61 9.71 19.35 43.47 

Au-1/TiO2B Theory 0.1 0.25 0.5 1 2 5 10 20 50 

Experiment (ICP-MS) 0.13 0.47 0.74 1.53 2.78 6.89 13.51 24.77 58.58 

 

 

 As it can be seen from Table 4, the Au/TiO2 hybrid synthesis using bifunctional LA-DA linker 

gives high control over the Au loading in the produced hybrids.  

 

4.4.2.4.  Zeta potential Measurement and Analysis 

 

Further confirmation of lateral arrangement of Au-1 in type-A hybrids came from the 

averaged zeta potential measurements. As mentioned before, the zeta potential of Au-1 is -43mV, 

while the potentials of commercial and synthesized TiO2 (TiO2NP B) are around 20 mV (all measured 

in phosphate buffer, pH=6.0). When the zeta potentials of the type-A hybrids were measured, a 

steady decrease from -33 mV for 0.1% to -38 mV for 50% Au loading was observed due to the 

increasing amount of Au NPs on the surface of the hybrids (Figure 54).  
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Figure 54. Zeta potential average (N=10) values of Au-1/TiO2A hybrids. 

 

On the other hand, the increase in Au loading in type B hybrid does not change the surface 

properties of the hybrid itself as the particles are embedded in TiO2 matrix. This is confirmed by the 

value of measured zeta potentials which remain around -30 mV for all type B hybrids (with zeta 

potential of pure TiO2B being around -30mV) (Figure 55).  

 

 

 

 

Figure 55. Zeta potential average (N=10) values of Au-1/TiO2B hybrids. 

 

 

4.4.2.5. Controls 

 

When the control samples were investigated containing citrate coated Au NPs (Au-2), 

resulting Au-2/TiO2A hybrids lacked the coloration of the Au-1 counterpart (data not shown), 

indicating that the bifunctional LA-DA linker plays an important role in the preparation of the Au/TiO2 

nanocomposites.  

TEM analysis of Au-2/TiO2A hybrids showed that almost no Au NPs can be observed even for 

the higher Au loadings, confirming the assumption about the importance of LA-DA linker for 

attachment of Au NPs to the TiO2 surface (Figures 56 a). In the case of type B hybrid, Au-2 were found 

to be uniformly embedded within the TiO2 material, indicating that the choice of the linker does not 

play such an important role in the resulting distribution of Au NPs in type B hybrids (Figures 56 b). 
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Figure 56. TEM images of a) Au-2/TiO2A nanocomposite with  i) 1% wt, ii) 5% wt, iii) 20% wt of Au-2, and b) Au-

2/TiO2B i) 1% wt, ii) 5% wt and iii) 20% wt Au-2. 

 

4.4.3. ROS Production of Au/TiO2 Nanocomposites 

 

As described in the chapter 4.3.1.4., we have recently used activation of horseradish 

peroxidase (HRP) to study the activity of different TiO2 nanostructures such as NRs and NPs and their 

applicability for enzymatic activation.[303] Iron containing catalytic center of the peroxidase enzymes 

is activated by hydrogen peroxide to catalyze the oxidation of different organic species.[304] We have 

therefore designed an assay to assess the photocatalytic activity of hybrid materials based on the 

HRP activation and the subsequent oxidation of its substrate, Ampliflu Red (Figure 57). Non 

fluorescent Ampliflu Red is oxidized into highly fluorescent product in the presence of HRP, which is 

activated by the ROS produced upon the irradiation of Au/TiO2 hybrid material (controls were made 

to ensure that the Ampliflu Red does not oxidize only due to the presence of radicals, data not 

shown). Hence, on one hand, the photocatalytic activity is directly assessed by the fluorescence 

measurements and on the other hand, the efficiency of the hybrid system is studied on a biological 

platform paving a way for design of artificial catalytic systems based on enzymatic reactions.  
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Figure 57. Photoexcitation of Au-1/TiO2A hybrids and the principle of the enzyme activation and subsequent 

substrate oxidation, which can be assessed with fluorescence measurements. 

 

4.4.3.1. ROS Production under UV Light Irradiation 

 

As indicated in the introduction, TiO2 nanostructured materials, in particular when doped 

with noble metals or QDs show high photocatalytic activity and have been shown to aid the 

generation of ROS species such as hydroxyl and superoxide radical and hydrogen peroxide (H2O2).
[252, 

305] [145a, 297] The mechanism of the ROS production when the hybrid is irradiated by 365nm light is 

described by the following equations (1)-(6): 

 

(1) AuTiO2 + hν (365nm)  AuTiO2 (eCB + hVB)  Au (eCB) TiO2 (hVB) 

(2) Au(eCB) + O2  Au + O2
-∙ 

(3) TiO2 (hVB) + H2O  TiO2 (hVB) + H+ + OH-  TiO2 + H+ + OH∙ 

(4) H+ + O2
-∙

  HO2
∙ 

(5) HO2
∙ + HO2

∙ 
 H2O2 + O2 

(6) O2
-∙ + 2H+ + Au (eCB)  Au + H2O2. 

 

The role of the noble metal NPs or QDs is in prevention of recombination of the excited 

charges by serving as an electron sinks (Equation 1). During this time, the holes are free to reduce the 
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water molecules on the TiO2 surface (Equation 3), having hydroxyl radical as in intermediate and 

hydrogen peroxide as an end result. 

The photocatalytic activity of the hybrids excited by 365 nm UV-light was tested in the 

following way. The hybrids of all loadings were dispersed in PB in 1mg/mL concentration. The same 

amount of each hybrid PB solution was added to the wells of the multi-titer well-plate and irradiated 

by 365nm light for 10 min. After irradiation the mixture of HRP and AR was added to the wells and 

stirred in dark for 5 additional minutes.  

The results of the fluorescence measurements with 540 nm excitations and 585 nm 

emissions are presented in Figure 58.  

The benefit of the Au loadings is clearly visible as the production of the radicals in 

comparison to the bare TiO2 NPs is increased by many folds. It is also evident that the peak 

performance is reached with relatively low Au loadings as reported previously. The reason for this 

lies in the fact that the overly charged Au NPs become recombination centers due to the 

electrostatical interaction with free holes. When the number of such centers increases, so does the 

recombination rate. This interaction is more obvious for type B hybrids, where the decline in radical 

production starts when loadings reach 5%. This is easily explained by the morphology of the hybrids. 

With type B having Au NPs distributed throughout the volume the holes do not need to diffuse long 

to find the electron residing in such a place.    

 

 

 

Figure 58. Photocatalytic activity/enzyme activation of Au-1/TiO2A and Au-1/TiO2B under 365 nm irradiation 

(N=3).  
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The photocatalytic supremacy of type-A hybrid towards type-B hybrid is explained in the 

following way. The crystallinity of TiO2 NPs is higher in type A than in type-B, as observed in both 

Raman spectra and SAED diffraction rings (Chapter 4.4.2.1. and 4.4.2.2.), resulting in higher 

probabilities of electron-hole excitation upon 365 nm light irradiation. Furthermore, the Au NPs in 

type-A hybrid are placed on the surface of TiO2 NPs thus allowing the stored electrons to play a part 

in redox reactions with the surrounding solution. On the contrary, Au NPs in type B are embedded in 

the TiO2 matrix and thus cannot offer the stored electrons to the surface reactions. Nevertheless, 

both hybrids having 1 to 50 % Au loadings are superior to Degussa P25 (TiO2A) NPs, which are used as 

standard and are considered and excellent photocatalytic material. 

The presence of the hydrogen peroxide as the main ROS was confirmed by the experiment 

where the peroxide scavenging enzyme catalase was used. After the light irradiation, 2.5µl 

(10mg/mL) of catalase was added to the controls prior to HRP and Ampliflu Red addition after which 

the fluorescence was measured. As seen from the Figure 59, the catalase containing controls showed 

no fluorescence while the catalase free ones were highly fluorescent indicating the high production 

of peroxide by the hybrids (Equations 1-6). The controls were made where only the ROS production 

of the Au-1 particles was measured under UV light irradiation and it was confirmed that the tested 

particles were not good radical producers (data not shown).  

 

 

 

Figure 59. Photocatalytic activity of Au-1/TiO2A and Au-1/TiO2B hybrids both with 2% Au loadings, without and 

in the presence of peroxide scavenging enzyme, catalase (N=3). 
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4.4.3.2. ROS Production under Visible Light Irradiation 

 

The mechanism of charge separation changes drastically when less energetic light of 470nm 

wavelength is used. Here, the Au NPs are photoexcited due to the SPR, and the electrons (hot 

electrons) are injected into the TiO2 conductive band while the holes stay in the Au NPs.[222c, 301, 306] 

The mechanism of the ROS production when the hybrid is irradiated by 470 nm light is described by 

the following equations (7)-(12): 

 

(7) AuTiO2 + hν (470nm)  AuTiO2 (eCB + hVB)  Au (hCB) TiO2 (eVB) 

(8) TiO2 (eCB) + O2  TiO2 + O2
-∙ 

(9) Au (hVB) + H2O  Au (hVB) + H+ + OH-  Au + H+ + OH∙ 

(10) H+ + O2
-∙

  HO2
∙ 

(11) HO2
∙ + HO2

∙ 
 H2O2 + O2 

(12) O2
-∙ + 2H+ + Au (eCB)  Au + H2O2. 

 

 The experimental setup is identical to the one described in the previous section differing only 

in the light source which is now taken to have wavelengths of 470 nm (visible blue light). The results 

of the fluorescence measurements with 540 nm excitations and 585 nm emissions are presented in 

Figure 60. As shown in Figure 60 the differences between the radical production of type-A and type-B 

are not as striking as in the case of 365 nm excitation. This is due to the already mentioned SPR-

related mechanism of radical production. Here, the crystallinity of the TiO2 material does not play 

such an important role as the hot electrons are injected from the Au NPs which are the same in both 

hybrids regardless of the loading. Similarly as in the 365nm irradiation case, all type-A hybrids have a 

slightly higher radical production than their type B counterparts. This is due to the morphology of the 

hybrids as discussed in the previous section, where Au NPs attached on the surface have advantage 

when compared to the embedded ones. Furthermore, the correlation between the Au loading and 

the radical production in both hybrid types, as presented in Figure 60, confirms the hypothesis of the 

SPR-related mechanism. The highest loaded hybrids (50%) show the highest fluorescence, indicating 

that the most radicals are produced for such loadings. 

The comparison with the bare TiO2 NPs shows that the produced hybrids have superior 

photocatalytic properties, especially for the Au loadings in the range of 1 to 50 %. In the case of 50% 

Au loading the hybrids exhibit ~6 fold increases in radical production in comparison to the standards. 
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Figure 60. Photocatalytic activity/enzyme activation of Au-1/TiO2A and Au-1/TiO2B under 470 nm irradiation 

(N=3).  

 

4.4.4. Switchability of the Enzymatic Activity in the Presence of Au/TiO2 

Nanocomposites 

 

Finally, we were interested to see if we can achieve temporal control over the enzyme 

activation as demonstrated by Fruk et al. in case of ROS producing, photoactivatable CdS QDs.[304b] 

We have prepared the solution of HRP, Ampliflu Red and hybrid materials, and irradiated it with two 

different light sources (365 and 470 nm) in regular intervals (2 min).  

 

4.4.4.1. Switchability of the Enzymatic Activity using UV Light Irradiation 

 

From the graph presented in Figure 61 it can be clearly seen that the oxidation of the 

Ampliflu Red in presence of Au-1/TiO2A of various loadings, increases only when irradiated with UV 

light (ON state) indicating that the enzyme is activated upon the irradiation of the hybrid material. 

The same is true for control TiO2 NP although the photocatalytic activity is lower as seen from 

fluorescence intensities measured. When the light sources are switched off (OFF state) no activity 

increase can be observed. Results shown in Figure Z are in excellent agreement with the 365 nm 

photocatalytic enzyme activation of the Au-1/TiO2A hybrid made in the previous section.  
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Figure 61. Photoswitchability of HRP by Au-1/TiO2A hybrids using 365nm light irradiation (N=3). 

 

 The increase of Au loading in the hybrids up to the 5 %, leads to the increase of fluorescence, 

which is in direct correlation with the enzyme activity. The 365 nm HRP photoswitchability is also 

possible with the Au-1/TiO2B hybrid, yet the resulting fluorescence is lower as it is in the ROS assay 

case (Figure 62).  

 

 

 

Figure 62. Photo-switchability of HRP by Au-1/TiO2B hybrids using 365 nm light (N=3). 
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4.4.4.2. Switchability of the Enzymatic Activity using Visible Light Irradiation 

 

In case of 470 nm irradiation (Figure 63), the best results were obtained for 50% Au-1/TiO2A 

and 50% Au-1/TiO2B confirming the results obtained previously using the standard enzymatic 

HRP/AR assay.  

 

 

 

Figure 63. Photoswitchability of HRP by most active 50% Au-1/TiO2A and 50% Au-1/TiO2B hybrids using 470nm 

(N=3).  

 

In conclusion, the Au/TiO2 nanocomposites were successfully prepared using bifunctional, Au 

and TiO2 binding linker, showing significant increase in photocatalytic activity and activation of 

peroxidase enzyme compared to commercial TiO2 NPs. The synthetic method is simple and allows a 

good control of both Au NPs size distribution and Au loading range (0.1 to 50%). Although UV light is 

often used to activate TiO2 based catalysts, the presence of Au NPs enables the use of visible light 

(lower energy) for activation, which is of particular interest for biological applications. Contrary to 

previous reports we have observed that in some hybrids the higher content of Au NPs leads to the 

increase of the catalytic activity of prepared material when 365nm light source is used. On the other 

hand, irradiation with visible light (470 nm) the photocatalytic activity of the hybrids increases with 

the Au loading. This type of material could find applications in catalysis, in particular light triggered 

enzyme activation or waste product removal. 



Results and Discussion   

103 
 

 

 

 

4.4.5. Other TiO2 Nanocomposite Materials 

 

In addition to already discussed Au/TiO2 hybrid, three other nanocomposite materials were 

synthesized, one semiconductor-semiconductor hybrid (CdS/TiO2) and one additional metal-

semiconductor hybrid (Ag/TiO2). As they were not a centerpiece of this work, experimental data on 

these hybrids is not as extensive as in the previous section on Au/TiO2 hybrid. 

 

4.4.5.1. Ag/TiO2 Nanocomposite Prepared Using Bifunctional LA-DA Linker 

 

Firstly, Ag/TiO2 nanocomposites synthesis will be presented together with the following 

characterization, as it is expected to possess very similar properties as Au/TiO2 hybrid due to the 

similarity of the elements involved in their production. 

 

4.4.5.1. A) Synthesis of Ag-1/TiO2A hybrids 

 

The 24.5 nm diameter LA-DA capped Ag NPs (Ag-1) and commercially available Degussa P25 

powder (TiO2A), were the chosen components for assembly of Ag-1/TiO2A nanocomposites.  

 

Figure 64. Colour changes observed in the suspension of Ag-1/TiO2A nanocomposite in pH 6 phosphate 

buffer (PB) with increasing % wt of Ag (0.5, 1, 2 and 10 from left to right hand side). 

 

Ag-1/TiO2A synthesis was identical as the synthesis of Au-1/TiO2A hybrid, only the chosen 

loadings were in a narrower range (0.5, 1, 2 and 10%). On visual inspection, the synthesized hybrids 
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had the coloration matching the loading percentages as seen on the photography of the hybrids in 

Figure 64. 

 

4.4.5.1. B) Characterization of Ag-1/TiO2A hybrids 

 

On inspection of the TEM micrographs (Figure 65), the number of the observed Ag NPs 

matches the Ag loading percentages. As the Ag NPs have similar sizes to TiO2, red arrows were used 

to discern them and to indicate the position of the Ag-1 on the micrographs. 

 

Figure 65. TEM images of Ag-1/TiO2A nanocomposite with  i) 0.5% wt, ii) 1% wt, iii) 2% wt and iv) 10% of Ag-1. 

 

The UV-Vis absorption spectra of all the hybrids are presented in Figure 66. Contrary to the 

previous case of the Au/TiO2 hybrids, here it cannot be claimed the SPR peaks of the Ag/TiO2 hybrids 

red-shift in comparison to the Ag-1 due to their attachment to the surface of TiO2 NPs (change of the 

surrounding dielectric constant), because the peaks are blended with the absorption peaks of the 

TiO2 material, making it is difficult to separate the contribution of each material. 
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Figure 66. UV-Vis absorption spectra of Ag-1/TiO2A hybrids with different Ag loadings (0.5, 1, 2 and 10% Ag) 

 Furthermore, the absorption spectra presented in Figure 66 does not match perfectly the 

naked eye observation presented in the Figure 64. A tail of absorption spectrum extending far into 

the visible region can be observed for all the synthesized hybrids, although the extent to which this 

happens does not correspond well with the loadings of the hybrids (e.g. one the basis of Figure Q, 

one would expect highest absorption for 10% loading). 

The Zeta potential measurements gave value of -43, -42.5, -43.5 and -46 mV for hybrids with 

0.5, 1, 2 and 10% respectively. This correlates relatively well with the idea that with the increasing of 

the Ag loading, the surface of hybrids becomes covered with negatively charged Ag NPs, thus shifting 

the zeta potential to more negative values. 

 

4.4.5.1.      C) Photocatalytic activity of Ag-1/TiO2A hybrids 

 

It was assumed that the Ag-1 NPs should act in a similar way when attached to TiO2 NPs as do 

the Au-1 NPs in Au/TiO2 hybrids. Hence, it is expected to observe the enhanced photocatalytic 

activity of the Ag-1/TiO2A hybrids in comparison to the standard TiO2A. The photocatalytic radical 

production of Ag-1/TiO2A hybrids upon 365 nm light irradiation was measured with the standard 

enzymatic HRP-AR assay. The results are presented in Figure 67.  
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Figure 67. Photocatalytic activity/enzyme activation of Ag-1/TiO2A under 365 nm irradiation.  

 The measurements presented in Figure W show that the photocatalytic activity of the Ag-

1/TiO2A hybrids indeed exceeds the one of the TiO2 standard by 2-3 times depending on the Ag 

loading. Similarly to Au-1/TiO2A, the radical production increases up to the 2% loading, when it starts 

to fall-off with increased addition of Ag NPs. While up to a certain loading (~2%) Ag NPs act as sinks 

for electrons and in that way prevent the charge recombination, increasing the loading to higher 

values brings an opposite effect (too many NPs at the surface, which electrostatically attract holes 

when filled with electrons and cause charge recombination). The controls were made to ensure that 

the radical production does not come from the Ag-1 alone (data not shown). 

 

Figure 68. Photocatalytic activity/enzyme activation of Ag-1/TiO2A under 470 nm irradiation.  

 

 Contrary to the Au/TiO2 hybrids, the Ag-1/TiO2A do not exhibit a high radical production upon 

visible light irradiation (Figure 68). Although, the small increase of activity compared to the TiO2 

standard is visible for all loadings, the enhancement is not comparable to the Au based hybrids. It 
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should be noted that the highest loading of the Ag/TiO2 hybrids (10%) was lower than the case of the 

 Au/TiO2 (50%), and that the sizes of the loaded Ag-1 particles (25.5 nm), were few times 

larger than the ones in the Au/TiO2 (3.6 nm) nanocomposites.  

 In conclusion, the use of bi-functional LA-DA linker for synthesis of the Ag/TiO2 

nanocomposites with different loadings was successful and the obtained material has shown 

excellent photocatalytic properties when irradiated with 365 nm light. The further optimization in 

synthesis would surely further improve these properties and possibly improve the catalysis upon 

visible light irradiation.      

 

4.4.5.2.       CdS/TiO2 Nanocomposite Prepared Using Bifunctional LA-DA Linker 

 

 Secondly, the proof-of-concept CdS/TiO2 nanocomposite synthesis will be presented, 

followed by the characterization of the obtained material. 

 

4.4.5.2.       A) Synthesis of CdS-1/TiO2A hybrid 

 

The 8 nm diameter LA-DA capped CdS NPs (CdS-1) and commercially available Degussa P25 

powder (TiO2A), were the chosen components for assembly of CdS-1/TiO2A nanocomposite. The 

steps in the CdS-1/TiO2A synthesis were identical to the steps in Au and Ag hybrid synthesis, although 

this time the procedure was only used for the proof-of-concept study with only one loading 

percentage of CdS-1 (approximately 20%). From the photography presented in Figure 69, one can see 

that the obtained hybrid (middle) is well dispersed and shares the features from both pure TiO2 (left, 

white and turbid) and CdS-1 (right, yellow and clear).  

 

Figure 69. Colours observed in the suspension of TiO2A (left),  CdS-1/TiO2A (middle) and CdS-1 (right) in pH 

6 phosphate buffer (PB). 
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4.4.5.2.        B) Characterization of CdS-1/TiO2A hybrid 

 

Unfortunately, due to the very small size of the CdS-1 particles it was not possible to detect 

them in the TEM micrographs of the hybrids. Another reason for the inability to detect the attached 

particles is the relatively low atomic number of Cd and S in respect to e.g. Au, which results in weaker 

contrast of the CdS-1 in the TEM micrographs (Figures 70 a and b). UV-Vis absorbance of the CdS-

1/TiO2A hybrid is presented in Figure 70 b. 

 

 

Figure 70. (a) and (b), TEM micrographs of the CdS-1/TiO2A hybrid with different magnifications. (c) UV-Vis 

absorbance average (N=3) of the CdS-1/TiO2A hybrid.  

 

4.4.5.2.       C) Photocatalytic activity of CdS-1/TiO2A hybrid 

 

 To investigate whether the CdS NPs have the influence on the photocatalytic activity of the 

TiO2A, the enzyme based assay was used to measure the radical production of the CdS-1/TiO2A 

hybrid under UV light irradiation. The comparison between the standard TiO2A and the CdS-1/TiO2A 

hybrid is presented in the Figure 71. 
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Figure 71. Photocatalytic activity/enzyme activation of TiO2A, CdS-1/TiO2A and CdS-1, under 365 nm irradiation 

(N=3).  

 

 At first, it seems that the CdS-1 particles have a similar effect on the photocatalysis of the 

TiO2A. In the case of CdS-1/TiO2A hybrid, the radical production is increased around 2 fold, while in 

the case of Ag-1/TiO2A and Au-1/TiO2A the increase was 3 and 5-6 fold, respectively. Nevertheless, 

when control experiments were made when only the CdS-1 particles were irradiated, it was 

discovered that they alone result in much higher radical production as presented in Figure 71. This is 

not surprising, as CdS-1 particles are semiconductor NPs, which undergo similar processes as TiO2 

NPs when irradiated with light of an appropriate wavelength. The difficulty in performing the control 

experiment is introduced as the exact loading of the CdS-1/TiO2A is not known (it is assumed to be 

20% based on the materials used in the synthesis). This unknown loading makes it difficult to 

determine the exact concentration of the CdS-1 that is to be used in control experiments and the full 

control of the experiment cannot be achieved without the exact determination of the amount of 

CdS-1 on the TiO2 surface (ICP-MS measurements). The photocatalytic activity of the CdS-1/TiO2A 

hybrid as well as CdS-1 particles was further investigated upon visible light irradiation (470 nm), 

where a different effect was observed (Figure 72). Here, both TiO2A and CdS-1 alone showed 

relatively little activity when compared to the hybrid material, which indicates certain synergetic 

processes between the materials that enhance its activity upon the visible light irradiation. 
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Figure 72. Photocatalytic activity/enzyme activation of TiO2A, CdS-1/TiO2A and CdS-1, under 470 nm irradiation 

(N=3).  

 

 The proof-of-concept CdS-1/TiO2A study lacks a strong proof of successful assembly of its 

constituents, although some of the macroscopic properties and activation upon visible light 

irradiation are indicative of the hybrid formation.  

 

4.5. Nanomaterial Light-induced (NALI) Cell Toxicity  
 

 In the following chapters the toxicity of the previously described nanomaterials in 

combination with light will be investigated using mammalian and plant cell lines. The study of toxicity 

mechanisms is one side, important to assess environmental impacts of nanomaterials and on the 

other, due to the recent developments on nanomedicine and importance of nanomaterials for 

programmed cell death.[7]  The results of such studies could have an effect on creating new strategies 

for biomedical applications or provide important information on hazards in the use of specific 

nanoparticulate structures.  

 

4.5.1.  Nicotiana tabacum cultivar Bright Yellow-2 (cv. BY-2) - Tobacco Cell Line  

 

 Established cell lines enable reproducible research and play an important role in the basic 

understanding of the molecular and cellular biology of mammalian and plant cells. The establishment 

of cell lines from plant tissues is relatively easy and numerous cell lines have been obtained from 

various tissues and species of higher plants. Among these, the tobacco BY-2 cell line, isolated by Kato 
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and coworkers in 1972,[307] is rather unique and is well characterized.[308] This cell line is highly 

homogeneous and shows an exceptionally high growth rate, multiplying 80- to 100-fold in 1 week 

and a high cell cycle synchrony can be obtained after treatment with aphidicholin. Due to their 

exceptionally high homogeneity and high growth rate, featuring still general behavior of plant cells, 

the BY-2 cells are used as model systems for higher plants. The diversity of cell types within any part 

of a naturally grown plant (in vivo) makes it very difficult to investigate and understand some general 

biochemical phenomena of living plant cells. The transport of a solute in or out of the cell, for 

example, is difficult to study because the specialized cells in a multicellular organism behave 

differently. Cell suspension cultures such as tobacco BY-2 provide good model systems for these 

studies at the level of a single cell and its compartments because tobacco BY-2 cells behave very 

similarly to one another. The influence of neighboring cells in the suspension is not as important as it 

would be in an intact plant. As a result, any changes observed as a consequence of an applied 

stimulus can be statistically correlated and it could be decided if these changes are reactions to the 

stimulus or just merely coincidental. BY-2 cells are relatively well understood, widely used and as a 

model plant system  especially useful for studies of cell division, cytoskeleton, plant hormone 

signaling, intracellular trafficking, and organelle differentiation.  

 

4.5.2. Nanoparticle Light Induced (NALI) Toxicity in plant cells 

 

 In the first NALI study, influence of the commercial P25 powder on the BY-2 cell line was 

studied. Both naked and modified TiO2 NPs as described in the chapter 4.3.1.2. were used.  

 Standard NALI toxicity experiment proceeded as follows. The BY-2 cells were used when they 

were 3 days old, e.i. in their log phase. They were distributed in two 16-well plates and the desired 

TiO2 NP (unmodified or functionalized) concentration was added to each well. One of the plates was 

then sealed with UV transparent foil and treated with UV light for 24h, while the other one was kept 

in the dark. The light source used was 4W UV hand lamp (365 nm) at distance of 3.5cm from the 

plate.  After 24h, the cell death assay with Evans Blue was used for photometrical determination of 

cell death rate.  

 

4.5.2.1. TiO2 NP (P25) Light Induced Toxicity 

 

 Firstly, the NALI toxicity was measured for the unmodified P25 TiO2 NPs. The results are 

presented in Figure 73. 
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Figure 73. NALI toxicity average (N=3) in BY-2 cells for various concentrations of unmodified TiO2 NP (P25).  

 

 As presented in Figure 73, the concentrations of TiO2 NPs from 1 to 20 µgmL-1 combined with 

24h irradiation did not result in high BY-2 cell toxicity, with maximum reached for the 10 µgmL-1 

concentration, when approximately 1.5% of the cells were killed. The toxicity of the UV light alone 

accounted for 1% of the dead cells (subtracted background). Unfortunately, the expected increase in 

toxicity with the growing concentration was not observed due to the sudden drop of the number of 

counted dead cells with the highest NP concentration used (20 µgmL-1). On the other hand, the 

expected lower toxicity in samples treated with the NPs alone, without the UV irradiation, was 

observed. The concentrations chosen were based on the data in literature, [309] which resulted in 

significant cell toxicity in various other cell lines, although the data on TiO2 NP plant cell toxicity was 

relatively scarce in comparison to bacteria or mammalian studies.  

 

4.5.2.2. Dopamine Functionalized TiO2 NP (P25) Light Induced Toxicity 

 

 The following NALI toxicity experiment was done with dopamine (DA) modified P25 TiO2 NPs 

(TiO2NP-DA) as it was shown (Chapter 4.3.1.2.) that catechol modified particles exhibit enhanced ROS 

production.  The results are presented in Figure 74. 

 As shown in Figure 74, the concentrations of DA modified TiO2 NPs from 1 to 20 µgmL-1 

combined with 24h irradiation resulted in somewhat higher BY-2 cell toxicity in comparison to the 

one demonstrated by the unmodified NPs, with maximum toxicity for 3 µgmL-1 concentration, when 

approximately 2.5% of the cells were found dead. 
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Figure 74. NALI toxicity average (N=3)in BY-2 cells for various concentrations of DA modified TiO2 NP (P25). 

 

 The difference in BY-2 toxicities inflicted by untreated and treated P25 was expected to be 

bigger, as the DA modified P25 showed higher radical production based on the HRP/AR assay 

(Chapter 4.3.1.4.). Again, the expected dose response was not observed, as with higher 

concentrations, the number of observed dead cells does not seem to change much (Figure 74). 

Somewhat decreased toxicity was observed in samples treated only with NPs, without the UV 

irradiation, as it was to be expected.  

 The relatively low toxicity of irradiated unmodified and modified P25 particles toward BY-2 

cells can be explained by the ability of plant cells to efficiently scavenge the radicals in their 

environment. In plants, ROS are continuously produced predominantly in chloroplasts, mitochondria, 

and peroxisomes [310] and the production and removal of ROS must be strictly controlled. During the 

course of evolution, plant cells have developed several mechanisms (both enzymatic and non-

enzymatic) that are able to transform highly reactive radical species into some less reactive 

compound (e.g. various peroxidases, super-oxide dismutase or cellular redox buffers ascorbate and 

glutathione) thus relieving the plant of oxidative damage. [310] Furthermore, plant cells are known to 

use the radical production as a form of self-defense against pathogens invasion in a process known as 

oxidative burst (production of superoxide and hydrogen peroxide).[310] 

 In the light of all the stated radical scavenging mechanisms, the reported low toxicity of 

various types of TiO2 NPs is not an improbable result. It should be also mentioned that no systematic 

study of cell uptake was performed and that it is likely that the effects would be significantly higher 

when NP are internalized by the cell. Therefore, the future work should be focuses on 

biofunctionalization and study of TiO2 internalization, where different, more prominent effects of the 

radical production might be expected.  
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4.5.3. Cancer Cell Lines   

 

4.5.3.1. HeLa cell line 

 

 The HeLa cells are the oldest and most commonly used human cell line which was derived 

from cervical cancer cells taken from Henrietta Lacks, a patient who eventually died in 1951. The cell 

line was found to be remarkably durable and prolific as illustrated by its contamination of many 

other cell lines used in research.[311] To a great extent it shares the similar attributes as already 

described BY-2 cell line, namely high homogeneity and an exceptionally high growth rate, as well as 

the negligible influence from the neighboring cells thus enabling good statistical analysis. HeLa cells 

have been used to explore the complex processes involved in the growth, differentiation, and death 

of cell that underlie a vast array of human diseases and have also served as the foundation for 

developing modern vaccines (polio vaccine), understanding viruses and other infectious agents and 

devising new medical techniques, such as in vitro fertilization.  While other immortalized lines are 

now available, HeLa remains the most widely used cell line in biomedical research, referred to in 

more than 83,000 scientific publications (data taken from ScienceDirect).  

 

4.5.3.2. MCF-7 cell line 

 

 MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-old Caucasian woman 

Frances Mallon who died the same year. The MCF-7 is an acronym of Michigan Cancer Foundation-7, 

referring to the institute in Detroit where the cell line was established in 1973 by Herbert Soule and 

co-workers. The study of this cell line enabled understanding the breast cancer as prior to MCF-7, it 

was not possible for cancer researchers to obtain a mammary cell line that was capable of living 

longer than a few months.[312] MCF-7 and two other breast cancer cell lines, named T-47D and MDA-

MB-231, account for more than two-thirds of all abstracts reporting studies on mentioned BCC lines, 

as concluded from a Medline-based survey.[313] Similarly to HeLa cell line, MCF-7 cells are one of the 

more often used systems to explore nanomaterial based toxicity.[314] 
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4.5.4. Non-cancer cell line 

 

 In this study also non cancer cell line were used, namely Human Embryonic Kidney 293 cells, 

also often referred to as HEK cell, which  are a specific cell line originally derived from human 

embryonic kidney cells grown in tissue culture. They were generated in the early 70s by 

transformation of cultures of normal human embryonic kidney cells with sheared adenovirus 5 DNA 

in Alex van der Eb's laboratory in Leiden, The Netherlands.[315] HEK 293 cells are very easy to grow 

and can be readily transfected and are often used biotechnology industry to produce therapeutic 

proteins and viruses for gene therapy. The HEK293 cell line is used extensively for the nanomaterial 

toxicity studies, and some of applications are described in the most recent publications including 

papers by Sadaf et al,[316] Takafuji et al.[317] and Ribiero et al.[318] 

 

4.5.5. Nanocomposite Light Induced Toxicity on mammalian cells 

 

 In this section the results regarding the studies of nanocomposites light induced toxicity will 

be presented and discussed. This in-vitro research investigated the possibility of nanocomposite-light 

based anti-cancer therapy on various standardized cancer cell lines (HeLa, HEK293 and MCF-7). 

 The cell viability is assessed using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide based assay (MTT assay) which is an established method of 

determining viable cell number (CV-cell viability) in proliferation and cytotoxicity studies.[319] This 

assay is based on the cleavage of the yellow tetrazolium salt, MTT, to form a soluble blue formazan 

product by mitochondrial enzymes, and the amount of formazan produced is directly proportional to 

the number of living cells, present during MTT exposure. Since the MTT assay is rapid, convenient, 

and economical, it has become a very popular in vitro technique for quantification of viable cells in 

many experiments. Tetrazolium dye assays can also be used to measure cytostatic activity (shift from 

proliferative to resting status) of potential medicinal agents and toxic materials.[320] The scheme of 

the assay is presented in Figure 75. 
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Figure 75. The Scheme of MTT assay. The cleavage of the yellow tetrazolium salt (MTT) by mitochondrial 

reductase enzyme leads to formation of a DMSO-soluble blue formazan product, amount of which is directly 

proportional to the number of living cells and can be detected using the standard absorption techniques. 

 

In a standard experiment for the toxicity of one type of hybrid, three different types of cells 

(MCF-7, HeLa or HEK293) are used and for each cell type one of the plates is irradiated with UV light 

and the other, control sample, is kept in dark. Cells are counted and seeded on the 96-well plates 

with cell number depending on the line used (MCF-7 and HEK293 having 40 000 cells/ml, and HeLa 

with 20 000 cells/ml) and are transferred to the incubator where they are cultivated at 37°C for 24h. 

On the following day, the investigated nanocomposites are dispersed in cell-medium in various 

dilutions and then added to the cell-containing plates. One of the plates is immediately returned to 

the incubator, while the other one is treated with UV light (365 nm) for 15 min. On day 3 of the 

experiment, the MTT assay is performed in order to determine the viability of the treated cells. The 

MTT dye is added to the wells and the plates are then incubated for 2h on 37°C, following the 

addition of the DMSO to dissolve the possibly formed formazan. The amount of the purple formazan 

is determined through UV-Vis absorption spectroscopy. 
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4.5.5.1. Nanocomposite Light Induced Toxicity on HeLa cells 

 

 The Au/TiO2 hybrid used in the NALI toxicity study HeLa cells was the Au-1/TiO2A with 2% of 

Au loading. The 2% loading was chosen as the experiments were to be done with the UV light source 

(wavelength ~365 nm) and it was previously shown that such loadings exhibit high ROS production 

enhancement (not changing for increased Au loading %). The second hybrid used was the Ag-1/TiO2A 

hybrid with 2% Ag loading as it has shown the highest ROS production among the Ag/TiO2 hybrids 

when irradiated with 365 nm light. The third hybrid was the CdS-1/TiO2A hybrid with approximate 

20% loading of the CdS NPs.   

 Figure 76 shows the results of the MTT assay for irradiated and control HeLa cells. As 

expected, less viability is observed upon the light irradiation, with Au/TiO2 hybrid exhibiting highest 

NALI toxicity due to the enhanced ROS production as shown in the previous sections (Chapter 

4.4.3.1.). The concentration dependence has shown that the tolerance of the HeLa cells are quite 

high in the dark, with about 80% of CV for the 150 µgmL-1 concentrations in Au and Ag based hybrids 

as well as for the bare TiO2 NPs. For example, the median lethal dose (LC50) reported in the TiO2 NPs 

(P25) cytotoxicity and inflammatory response study on human dermal fibroblasts and human lung 

epithelial cells was in ~250-350 µgmL-1 range, [321] with crystal phase depended toxicity (3.6 µgmL-1 

for anatase and 550 µgmL-1  rutile). On the other hand, it was previously established that Au and Ag 

have relatively high intrinsic toxicity towards mammalian cells (25 µgmL-1) when compared to the 

P25 TiO2 material. [322] As the Au and Ag based hybrids are mostly made out of the P25 TiO2 material, 

the results presented in the Figure 76 confirm the mentioned findings, as the extrapolated LC50 for 

Au-1/TiO2A and Ag-1/TiO2A would be achieved for ~300 µgmL-1 concentrations. On the other hand, 

the CdS/TiO2 hybrid resulted with only about 25% of CV when administered in the 150 µgmL-1 

concentration, most probably due to the intrinsic toxicity exhibited by the present CdS-1 NPs. The 

previous findings suggest that the CdS cytotoxicity stems from the liberation of free Cd2+ ions due to 

deterioration of the CdS lattice.[323] For example, cadmium (Cd2+) binding to sulfhydryl groups of 

critical mitochondrial proteins is suggested to be one of the mechanism of hepatocytes injury. [323] As 

the rate of Cd2+ release depends strongly on the surface coatings, the low CV (25% for 150 µgmL-1) in 

the case of the CdS/TiO2 hybrid indicates that certain ruptures might occur when LA-DA is attaching 

to both CdS-1 and P25 TiO2 NP, in which case the doors for the release of the Cd2+ would be wide 

open and high toxicity would be justified. 
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Figure 76. The cell viability (CV) of the hybrid/light treated and untreated HeLa cells determined with MTT 

assay. (a) Au-1/TiO2A 2% Au-1 loading; (b) Ag-1/TiO2A 2% Ag-1 loading; (c) CdS-1/TiO2A ~20% CdS-1 loading; (c) 

bare P25 TiO2NP (TiO2A).  

 

 When the applied light is added into the equation, the most striking difference between the 

treated and untreated cells is seen for the Au/TiO2 hybrid with ~60% decrease in CV of cells 

irradiated by 365 nm light. For all other hybrids and the bare P25 nanomaterial, in the case of the 

light irradiation, the decrease in CV is in the 25-30% range. These findings are similar to the ones 

reported by Sayes et al. who found 20% decrease in CV of the cells treated with P25 and 356 nm light 

for 20 min in comparison to the untreated ones.[321]  Given the fact that the Au/TiO2 hybrids exhibited 

highest ROS production based on the HRP/AR assay, it was to be expected to detect highest NALI cell 

toxicity for the same hybrid. The relatively low inherent toxicity in the absence of light and high 

toxicity when the light is present for a short period of time (10 min), renders the Au-1/TiO2A hybrid 

with 2% Au loading a good candidate for PDT against cancer. 
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4.5.5.2. Nanocomposite Light Induced Toxicity in MCF7 and HEK293 cells 

 

 Unfortunately the NALI toxicity studies were not successful in the case of the MCF7 cancer 

cell line and the HEK293 cell line. The reason for failure of these studies was the inability to obtain 

good correction values for the absorbance of the formazan.  

 In the previous experiment with HeLa cells, the maximum number of viable cells was 

determined from the wells containing only HeLa cells in the appropriate medium (100 % CV). As the 

hybrids/NPs that were added to the cells possess certain inherent absorption, a certain correction 

has to be made to obtain only the absorption of the formed formazan and to determine the number 

of viable cells correctly. These correction values (absorptions of the hybrids/NPs alone) were 

obtained from the wells containing only the hybrids/NPs in different concentrations (5, 150 and 500 

µgmL-1). In the case of the MCF7 and HEK293 studies, these correction wells were repeatedly 

emptied out in the process of replacement of the medium with DMSO, which is a final step of the 

MTT cell viability assay in which DMSO is needed to dissolve the otherwise cell-medium insoluble 

formazan. In this way the absorption of the finally formed formazan could not be corrected for the 

inherent absorption of the hybrids/NPs and the exact numbers for CV could not be determined. A 

possible reason could be traced to the different medium used in the case of the MCF7 and HEK293 

cells (RPMI was used in the case of HeLa cells and DMEM in the case of the MCF7 and HEK 293 cells), 

but it has to be further investigated.  
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5. Conclusion  
 

 The work presented in this thesis can be coarsely divided into three major units, the 

modification of TiO2 nanomaterials with catechol-based linkers, the synthesis of the various types of 

nanoparticulate metal-metal oxide nanocomposites and the application of the obtained 

nanomaterials in the light induced cell toxicity studies.  

 The TiO2 modification was performed on the commercial NPs and on the in house 

synthesized NRs with quite a different effect on the photocatalytical properties of the materials. The 

NPs modification led to an enhanced ROS production as the surfactants formed a LMCT complex, 

removing surface electron traps and allowing the photoexcited electrons to participate in radical 

production. Dopamine (DA 1) modification resulted in one of the highest enhancement of ROS 

production, presumably due to its size that allows efficient trap removal through dense surface 

packing. DA 1 modified NRs exhibited low ROS production as the small width of the NRs (3.6 nm) 

does not allow spatial separations of the excitons, leading to their fast recombination. The DA 1 

electron trap removal, in this case enhances the recombination process as the electrons are not 

protected by the traps. The modification of TiO2 NRs with different aspect ratios could further test 

presented findings. The TiO2 nanomaterials modified with catechol based linkers having different 

chemical functionalities at the free ends offers various possibilities for further modification (e.g. 

biofunctionalization). In addition to this, modified nanomaterials with superior photocatalytical 

properties may find application in various fields in which TiO2 is readily used, ranging from renewable 

energy production (solar cells), self-cleaning materials to medicine. 

 In the second part of the work, the LA-DA linker was used in an efficient and simple synthesis 

of various metal-metal oxide nanomaterials. The LA-DA stabilized Au NPs (Au-1) were connected to 

the P25 by simple mixing on the elevated temperature (100°C, 1h). The loading of the Au-1 was 

controlled in a wide range allowing the investigation on its influence on photocatalytic properties of 

the hybrids. The observed trend that UV induced photocatalytic efficiency does not increase above 

the 2% Au loading confirmed the earlier findings. The attached Au-1 serve as sink for the electrons 

keeping them separated from holes thus enhancing the Au/TiO2 catalytic properties. Upon 470 nm 

light irradiation, the ROS production correlates with Au loading (highest amount of ROS for the 

highest (50%) loading). This is explained by the SPR related ROS production mechanism which injects 

the hot-electrons in the conduction band of the adjacent TiO2 NP, leaving a hole on the Au-1. The 

separated excitons then participate in the redox processes on the TiO2 and Au-1 surfaces. 

Furthermore, the Ag-1/TiO2A hybrids were made with similar ROS production-Ag loading trend as the 
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Au based hybrid. It is planned to produce the Ag/TiO2 hybrids in the same loading range as for the Au 

case, and test the ROS production of such hybrids using the UV and visible light sources. To 

demonstrate versatility of the LA-DA based approach, LA-DA capped CdS QDs were made and used in 

semiconductor-metal oxide hybrid assembly. The ROS production of the CdS-1/TiO2A hybrids (~20% 

CdS-1) indicated the existence of the synergetic effect between the materials as the 470 nm light 

irradiation resulted in higher ROS production compared to the TiO2 NPs and CdS-1 alone. It is possible 

to imagine that the similar strategy would give good results even when the constituents are changed, 

e.g. Cu and ZnO, as long as they have affinity towards thiol (LA) and catechol (DA) functionalities.  

 Finally the synthesized nanomaterials were used in the NALI toxicity studies on plant (BY-2) 

and mammalian cell lines (HeLa, MCF7 and HEK293). In the BY-2 experiment it was shown that the 

cells have good tolerance to the P25 intrinsic and light-induced toxicity as the concentrations up to 

20 µgmL-1 resulted in less than 1% of cell death. The toxicity of the DA modified P25 was negligibly 

higher (~ 2% of dead cells). The small difference in number of dead cells between the light treated 

and untreated samples confirms the existence of efficient ROS scavenging mechanisms in the plant 

cell lines. The high ROS production of the hybrids motivated the investigation of their possible use in 

the PDT of cancer. The in vitro studies were made using two cancer cell lines (HeLa and MCF7) and 

one non-cancer cell line HEK293. Unfortunately, the imperfections of the MTT assay resulted in 

failure of studies on two cell lines (MCF7 and HEK293) due to the inability to obtain good corrections 

for the inherent absorbance of the used hybrids. The successful HeLa cell study showed that all the 

materials have intrinsic toxicity, resulting in no cell viability for 500 µgmL-1 concentration regardless 

of the light treatment.  On lower concentrations, the highest NALI toxicity is seen for the Au/TiO2 

hybrid with ~60% decrease in CV of irradiated cells while other hybrids and the bare P25 showed the 

25-30% decrease. In addition to the NALI mechanism, it is suspected that the CdS/TiO2 hybrid 

displays some inherent toxicity connected to the leaching of the toxic Cd2+ ions from the CdS lattice 

as the toxicity at 150 µgmL-1 results in 20% CV in dark (for comparison, other hybrids at the same 

concentrations result in ~80% CV). Further optimization of the MTT assay for the MCF7 and HEK293 

cells is planned allowing for the NALI toxicity experiments to be repeated, possibly confirming the 

findings on HeLa cells.    
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6. Experimental Part  
 

6.5. Synthesis of nanomaterials 
 

6.5.1. Synthesis of Au NPs 

 

Prior to the synthesis all the glassware and stirrers were rinsed with aqua regia, a 3:1 mixture 

of the HCl and HNO3 and were subsequently thoroughly washed with Mili-Q water until the HCl 

fumes could not be smelled. The glassware was dried and used in the synthesis. 

 

6.5.1.1. Synthesis of 13 nm citrate Au NPs 

 

In a typical procedure 30 mL (1mM) of aqueous solution of chloroauric acid (HAuCl4∙3H2O) 

was brought to boil under reflux in a three neck round bottom flask. When the boiling point was 

reached 3 mL (38.8 mM) aqueous solution of trisodium citrate (Na3C6H5O7) was added abruptly and 

the mixture is boiled and stirred for additional 30 min when it was left to cool to RT. The obtained 

gold colloid was kept refrigerated at 4°C.   

 

6.5.1.2. Synthesis of 5 nm citrate/tannic acid capped Au NPs 

 

In a typical procedure 102 mL (0.465 mM) heated (60°C) aqueous solution of chloroauric acid 

was mixed with 26 mL heated (60°C) mixture of trisodium citrate (34 mM), C76H52O46 (tannic acid) 

(5.9 mM) and potassium carbonate (K2CO3) (25 mM). The mixture was stirred overnight on RT, 

collected and kept refrigerated at 4°C.  

 

6.5.2. LA-DA coated NPs 

 

Synthesis of LA-DA coated Au NPs, Ag NPs and CdS NPs is described. 

 

 



Experimental Part   

 

124 
 

6.5.2.1. LA-DA coated Au NPs 

 

In a typical procedure 36mL (1.4 mM) of aqueous solution of chloroauric acid was mixed with 

180 µl (30 mM) EtOH solution of LA-DA linker and the mixture was stirred for 1h on RT. The mixture 

was then reduced with 6 aliquots (1.6mL, 10mM) of sodium borohydride (NaBH4) in a period of 5 

min. The mixture was stirred overnight on RT, collected and kept refrigerated on 4°C. This procedure 

yielded Au NPs with diameters around 3-4 nm. To obtain different diameters ratio between the 

chloroauric acid and LA-DA linker should be changed accordingly (Table 5). The mass concentration 

of the NPs (mg/mL) was calculated by assuming the reduction of all the Au3+ ions in the precursor 

into Au0. To make sure that such assumption is correct a two-fold excess of the NaBH4 was used than 

needed to reduce the used amount of precursor (3/8 mol of NaBH4 is needed to reduce 1 mol of 

HAuCl4). 

 

Table 5. LA-DA capped Au NPs 

Sample Au:LADA Average d / nm SD / nm 

Au-LADA-1 1 1,4 0,3 

Au-LADA-2 10 3,6 1,1 

Au-LADA-3 25 20 6 

  

 

6.5.2.2. LA-DA coated Ag NPs 

 

In a typical procedure 50mL (1.1 mM) of aqueous solution of silver nitrate (AgNO3) was mixed 

with 10 mL (1 mM) water/EtOH (9:1) solution of LA-DA linker and the mixture was stirred for 5 min 

on RT. Sodium hydroxide (NaOH, 100µl, 2M) was added to the mixture causing the color change. The 

mixture was stirred overnight on RT, collected and kept refrigerated on 4°C. This procedure yielded 

Au NPs with diameters around 5 nm. In order to obtain larger diameters, ratio between the 

chloroauric acid and LA-DA linker should be changed accordingly (Table 6). The mass concentration 

was calculated in the same way as for the Au-1. 
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Table 6. LA-DA capped Ag NPs 

Sample Au:LADA Average d / nm SD / nm 

Ag-LADA-1 5 4,7 0,3 

Ag-LADA-2 10 6 1,1 

Ag-LADA-3 20 24,5 6 

 

 

6.5.2.3. LA-DA coated CdS NPs 

 

First step in synthesis of CdS QDs was to dissolve the Cd precursor cadmium acetate 

dihydrate (Cd(CH3COO)2·2H2O) in 100 mL Milli-Q water (1mM). The pH of the solution was then 

adjusted with addition of sodium hydroxide (1M) to equal 11. The solution was bubbled with 

nitrogen gas (N2) for 30 min in order to remove the dissolved oxygen gas (O2) and prevent Cd 

oxidation (with CdO as a result). 50 mL (1.35 mM) of aqueous sodium sulfide (Na2S) was added drop-

wise to the stirred solution. The stirring and bubbling continued for 24h when the CdS colloid was 

collected and refrigerated at 4°C. 

 

6.5.3. Synthesis of hybrids 

 

6.5.3.1. Synthesis of Au/TiO2 Nanocomposite Using Bifunctional LA-DA Linker 

 

The synthesis of the hybrid Au/TiO2 material was performed in two steps. First, Au NPs 

capped with La-DA linker (linker-1) were prepared as described in the previous section on NPs 

preparation. Resulting batch of Au-1 NPs was then, in the second step, used as a starting material for 

preparation of two different types of hybrids. Type A hybrid, Au-1/TiO2A, was prepared using 

commercially available TiO2 NPs (P-25, Sigma) which was mixed with Au-1 NPs and refluxed for 1h. 

Hybrid type B, Au-1/TiO2B, was prepared using TiF4 as a precursor and Au-1 NP as seeds for the 

growth of TiO2 shell. Appropriate amount of Au-1 NPs were mixed with suspension (in Mili-Q water) 

of TiO2NPs (1mg/mL) to obtain Au loadings of 0.1, 0.25, 0.5, 1, 2, 5, 10, 20 and 50% wt (Table 7 –type 

A, Table 8-type B). The mixture was stirred vigorously and brought to boil for 1h, after which it was 

cooled down, centrifuged and washed 3 times with Mili-Q water prior to further use. The synthesis of 

control hybrids using Au NPs stabilized with citrate linker (linker-2) [324] as starting material, was 

prepared as described above. All samples were kept refrigerated in powder form and were 
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subsequently weighed and dispersed in phosphate buffer (PB, pH=6.0) in 1mg/mL concentration to 

obtain stock solutions of the hybrids. 

 

 

Table 7. Au-1 and TiO2 NPs weights used in synthesis of Au-1/TiO2A hybrids with different loadings. 

 

Au loading / % m (Au NPs) / mg m (TiO2 NPs) / mg 

0.1 0.0109 18 

0.25 0.02725 18 

0.5 0.0545 18 

1 0.109 18 

2 0.218 18 

5 0.545 18 

10 1.09 18 

20 2.18 18 

50 5.45 18 

 

 

Table 8. Au-1 and TiO2 NPs weights used in synthesis of Au-1/TiO2B hybrids with different loadings. 

 

Au loading / % m (Au NPs) / mg m (TiF4) / mg 

0.1 0.0115 29.4 

0.25 0.02875 29.4 

0.5 0.0575 29.4 

1 0.115 29.4 

2 0.23 29.4 

5 0.575 29.4 

10 1.15 29.4 

20 2.3 29.4 

50 5.75 29.4 

 

 

6.5.3.2. Synthesis of Ag/TiO2 Nanocomposite Using Bifunctional LA-DA Linker 

 

The synthesis of the Ag-1/TiO2A hybrid proceeded in two steps; firstly the LA-DA capped Ag 

NPs were synthesized as described in the previous section, and the resulting batch of Ag-1 NPs was 

then, in the second step, used as a starting material for preparation of Ag/TiO2 hybrids with different 

loadings. Hybrid of type A, Au-1/TiO2A, was prepared using commercially available TiO2 NPs (P-25, 

Sigma) which was mixed with appropriate amount of Ag-1 NPs (Table 9) and refluxed for 1h, after 
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which it was cooled down, centrifuged and washed 3 times with Mili-Q water prior to further use. In 

the last centrifugation step, the supernatant was discarded and the hybrids were kept in the rotary 

evaporator until all the water was removed leaving hybrids in the powder form. All samples were 

kept refrigerated, protected from light and were subsequently weighed and dispersed in phosphate 

buffer (PB, pH=6.0) in 1mg/mL concentration to obtain stock solutions of the Ag/TiO2 hybrids.   

 

Table 9. Ag-1 and TiO2 NPs weights used in synthesis of Ag-1/TiO2A hybrids with different loadings. 

 

Ag loading / % wt m (Ag NPs) / mg m (TiO2 NPs) / mg 

0.1 0,009 15 

0.5 0,045 15 

1 0.09 15 

2 0.18 15 

10 0.9 15 

 

 

6.6. Functionalization of TiO2 nanomaterials 
 

6.6.1. Functionalization of commercial TiO2 NPs 

 

The modification of both TiO2 P25 and TiO2 Anatase proceeded in the same way. The TiO2 

NPs were dispersed in water and the pH was set to 1.5 using HCl (1M). The stock solutions were then 

pulse sonified in order to obtain the highest degree of dispersion of particles. The used homogenizer 

was 200W Bandelin Sonoplus, pulse 0.2/0.8, and the time of the sonification was 10 min. 2 mL of TiO2 

stock solution was added to the small glass beaker and the solution was magnetically stirred. The 

linkers were dissolved in EtOH and 2.5 µmol of linker was added per mg of TiO2 NPs. Immediately 

upon addition of the linker in the solution, the color change was observed from white to yellow-

orange nuances, depending on the linker used. The mixture was stirred for 5 min, when it was 

collected, centrifuged 3 times (13.2kRPM, 3 min) and washed by collecting the supernatant and re-

dispersing in Milli-Q water using sonification (few pulses). Finally, the modified TiO2 NPs were once 

more centrifuged, the supernatant discarded and the rest of the water was removed in rotary 

evaporator (CONCENTRATOR Plus from Eppendorf) until the dry powder form of the particles was 

obtained.  
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6.6.2. DA Functionalization of TiO2 NRs 

 

TiO2 NRs (1.00 mg) were suspended in 2 mL toluene, followed by addition of 3.00 mg 

dopamine hydrochloride (DA) in 2 mL Milli-Q water. After few seconds, a color change from colorless 

to brown was observed indicating the formation of the ligand to metal charge transfer (LMCT) 

complex. The reaction mixture was further stirred overnight at 22°C. After purification by 

centrifugation (3x), the residue was dispersed in Milli-Q water. 

 

6.7. Chemicals 
 

Chemicals and solvents were purchased at Sigma-Aldrich or Carl Roth and were used without 

further purification. 

 

6.8. Instrumentation used 
 

 The following chapters hold the details about the instrumentation used in this thesis as well 

as the details about sample preparation prior to measurements.  

 

6.8.1. TEM and HAADF-STEM Microscopy / EDX Spectroscopy / Selected Area Electron 

Diffraction (SAED) 

 

Transmission Electron Microscopy (TEM) images were obtained using a CM200-FEG 

microscope (Philips) operating at 200kV together with Selected Area Electron Diffraction (SAED). 

Further TEM imaging, High Angle Annular Dark-Field Scanning Transmission Electron Microscopy 

(HAADF-STEM) and Energy Dispersive X-Ray Spectroscopy (EDXS) were done on the Titan3 80-300 

TEM microscope (FEI) operating at 300kV. TEM samples were prepared by putting droplets of sample 

suspension onto a 400 µm mesh copper TEM grid covered with a thin amorphous carbon film of less 

than 3 nm nominal thickness. Subsequently the prepared samples were dried in air at room 

temperature. 
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6.8.2. UV-Vis Absorbance Spectroscopy 

 

UV-Vis absorbance spectra usually in the range from 200-800 nm were taken with Cary 300 

Scan (Varian). The ~600µl of sample containing solvent having appropriate concentration (less than 

absorption maximum of 4 a.u.) was kept in the quartz cuvettes (Hellma Analytics, Type 104.002B-QS) 

during the measurements. All the measurements were baseline corrected.  

 

6.8.3. Fluorescence Spectroscopy 

 

Fluorescence spectra were taken with Cary Eclipse (Varian). The measurements were made 

on the sample volumes of ~200µl kept in the fluorescence quartz cuvette (Starna GmbH, Type 

26.160-F/Q/10/Z20). 

 

6.8.4. ICP-MS/ICP-OES 

 

ICP-OES and ICP-MS measurements were performed using OPTIMA 4300 DV from 

PerkinElmer and 7500ce from Agilent respectively. For the preparation, every sample was shaken for 

twenty seconds. With a single channel pipette 100 µl up to 400 µl has been taken out of the sample 

holder into a 50 ml auto sampler vial. This has been repeated for every sample twice or three times. 

To dissolve the hybrid nanoparticles a mixture of 6 ml HCl sub-boiled, 2 ml HNO3 sub-boiled and 1 ml 

HF Suprapur reagent (Merck Millipore) has been added to the samples. The chemical digestion has 

been carried out by 80 °C in a drying oven over night. Afterwards the acid solution has been diluted 

to 40 ml. For the measurement, the presence of the elements was determined by optical emission 

spectrometry (ICP-OES, OPTIMA 4300 DV from PerkinElmer). The dilution factor for Ti was 10 to 25 

and for Au 10. The matrix solution was 5% nitrohydrochloric acid. The analysis was accomplished 

with four different calibration solutions and an internal standard (Sc). The range of the calibration 

solutions did not exceed one power of ten. The three major wavelengths have been used for 

calculation. Because of the better detection limit for Au most of the samples were analyzed with ICP-

MS (Agilent 7500ce) as well. The dilution factor of the samples for Au was 5 to 50 in a matrix solution 

of 5 % nitrohydrochloric acid. Indium (In) has been used as an internal standard. The range of the 

calibration solutions did not exceed one power of ten. The mass 197 for Au and 115 for In has been 

used for the calculation of the results. The analysis has been repeated three times in a row. These 
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implemented actions ensure an accurate determination of the titanium and gold content with less 

than 2% relative standard deviation and an error of measurement less than 3%. 

 

6.8.5. DLS / Zeta potential measurements  

 

Nano Zeta-Sizer (ZS Nano, Malvern) was used for DLS and zeta potential measurements. Prior 

to the DLS measurements the samples were filtered with 0.2µm syringe filters (Spartan 30/0.2RC 

from Whatman) in order to remove the dust and bigger particles or agglomerates. The sample was 

kept either in the Low-volume quartz batch cuvette (Malvern, Type ZEN2112) or in the disposable 

capillary cell (Malvern, Type DTS1061). The samples have been run multiple times. For the larger and 

more polydispersed samples the Z-Average was reported as the result of the measurements, while 

for the samples that have been known to be monodispersed the “% By Number” was used. 

 

6.8.6. Other instrumentation 

 

Fluorescence enzymatic assays were performed using Synergy H1 Hybrid Multi-Mode Micro-

plate Reader (Biotek) using the 96-well plates (Nunc).  Raman spectra were taken using MultiRAM FT 

Raman Spectrometer (Bruker). 

 

6.9. Techniques 
 

6.9.1. The enzyme based HRP/AR fluorescence assay for determination of ROS 

production 

 

The photocatalytic activity was assessed using Horseradish Peroxidase (HRP) – Ampliflu Red 

(AR) assay. In a black 96 well-plate, 10µl of sample (1mg/mL) was dispersed in 90µl of phosphate 

buffer (PB, pH=6.0) so that the total amount of liquid in the well prior to irradiation was 100µl. The 

plates were then placed into custom made irradiation device where a row of LED diodes of wanted 

wavelength (366 nm or 470nm) irradiated the plate wells for the wanted period of time. 40µl HRP 

(1.33µM) and 10µl AR (900µM) were then added to the irradiated wells, mixed 30 seconds and the 

fluorescence was subsequently measured using the multi-well plate reader. The sensitivity was set 

fixed to 65 and excitation and emission wavelengths were 540 and 585 nm respectively.  
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6.9.2. Light controlled activity of Horseradish Peroxidase (HRP) 

 

10µl (1mg/mL) of hybrid was added to quartz cuvette containing 2 ml PB (pH=6.0) followed 

by addition of 500µl HRP (1.33µM) and 200µl AR (0.9mM) and the mixture was magnetically stirred. 

The cuvette was interchangeably kept in dark and irradiated by 366nm UV hand lamp (4W) (or 

470nm LED array) in periods of 2 min with fluorescence measurement every minute (excitation and 

emission wavelengths were 540 and 585 nm respectively). The excitation and emission slits were set 

to size 5 and 2.5 respectively. The total duration of the experiment was 10min. 

 

6.9.3. Evans Blue Cell Death Assays of Cells Treated with Nanoparticles 

 

In the following tables is the description of the materials and processes used for the 

determination of the BY-2 cell viability treated with various nanomaterials and light via Evans Blue 

Cell Death Assays. 

  

 

Day 1 

Approx. 

duration (for 

8 samples) 

(min) 

Treatment of Cells with NP / UV / Catalase 

Designing the experiment 

 Treating the samples with various NPs (due to variation, duplicates to 

quadruplicates are recommended) 

 Controls: investigating the effect of any treatment that is combined with another 

treatment by itself. For example: 

o the effect of only UV light (testing this a few times is enough if there is 

no visible difference; it doesn’t have to be repeated in each experiment) 

o the effect of NP in the dark (in each experiment because of the very large 

variation) 

o untreated cells (“negative control”) 

o a positive control (e.g. a known substrate that in the dark causes 100% 

cell death, this is included as the positive control in each experiment to 

determine the % of dead cells) 

 

It should be taken into account that depending on the UV lamp used, illumination 

might not be identical for each sample.  

20 

Materials: 

- two 24-well protein crystallization plates  

- NPs suspension (depending on the experiment) 

Pipet 1ml of 

cell 

suspension 

into each of 
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- ViewSeal UV transparent foil (Greiner) 

- Aluminium foil 

- tobacco BY-2 cells, appropriate dilution (typically 1x cells plus 2x MS 

medium, will result in approx. 2 x 10^5 cells / ml for 3 day old wild type 

cells) and of the desired age (typically 3 day old cells) 

8 labeled 

wells of a 24 

well plate 

 If some of the samples will be treated with catalase, the appropriate volume of 

50mM Tris-HCl (pH7) should be added to catalase-free samples. 

5 

 If a large volume of a NP solution is added to a sample, the same volume of 

solvent (typically ddH2O) should be added to the other samples (e.g. 10µl/ml 

of TiO2 NP added to a sample, 10µl of ddH2O should be added to all other 

samples). 

2 

 Adding catalase to appropriate samples. 5 

 Adding NP to appropriate samples. 2 

 If samples are to be kept in the dark they should be immediately (but carefully) 

wrapped in the aluminium foil. Samples that are to be treated with UV light 

should be sealed with ViewSeal (it can be re-used a few times). 

2 

 Positioning on shaker in the desired setup. 2 

 Turning on light 5 

 Turning on shaker (100rpm) 2 

 Incubating for the desired duration 1 

 Counting the cells if necessary, using the Fuch-Rosenthal chamber  

 Total duration of the experimental part 30 

 

 

Determination of Cell Density with a Fuchs-Rosenthal Chamber 

Materials: 

counting chamber “Fuchs-Rosenthal” with its cover glass, light microscope, pipet 

In the centre of the slide is the grid structure seen when looking at the  Fuchs-Rosenthal chamber 

mounted on the microscope: 
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Total area of 4 x 4 = 16 mm
2
 , is divided into 16 smaller squares of 1 mm

2
 each which are further 

divided into 16 very small squares each measuring 0.25mm x 0.25mm = 0.0625 mm
2
. The height of 

the chamber is 0.2mm. Therefore, the total volume is 0.2mm x 16 mm
2 
= 3.2 mm

3
, which equals 

3.2µl. 

 The outer “bumps” of the slide should be moistened and the cover glass should 

be pressed onto the slide in such way that an interference pattern is visible (the 

Newton’s rings, which means the two glass surfaces are close enough to each 

other), otherwise the volume will not be correct. 

5 

 Cell suspension should be pipetted to the edge of the cover glass at the central 

bump. The liquid will move to the grid structure via capillary forces. The 

chamber should be checked for air bubbles, and mounted on the microscope 

stage (objective 10x or 20x). 

2 

 The squares are counted in such a way that they are all counted without 

omitting any (such as by meandering). All cells that lie on the right and top 

lines of a square should ne counted but not on the bottom and left lines (to 

avoid counting them twice). If the density is very high, only the 4 diagonal 

squares should be counted. If there are still too many cells they should be 

diluted again. 

15 

 Calculating the cell density: number of cells counted / volume (e.g. 3.2µl)  
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 Day 2  

Cell Death Assay with Evans Blue 

Materials: 

- paper towels 

- Milli-Q water: plastic bottle (~ 250ml for 8 samples) and about 10ml in a 

small beaker 

- MS medium (~17ml)  

- Evans Blue Stock 2.5%  

- 8 staining chambers containing one of the little custom-made pots (2ml tube 

cut in half with dense grid glued in the place of the cut-off bottom; the sealing 

cap is removed as well) and a 10ml beaker each; the staining chambers are set 

into 10ml beakers, and 2mL of MS medium is added to each beaker (beakers 

should be aligned); pipetting 200µl of ddH2O to each little pot 

- Forceps for holding the staining chambers 

- timer 

- 2x8 cut 1ml pipet tips 

- 8 cut 200µl pipet tips 

- uncut 1ml and 200µl tips 

- 1ml and 200µl pipets 

- labelled 1.5ml tubes (2x8) 

For photometric measurement: 10% SDS solution, tube float, sonifier, photometer 

capable of measuring OD600, vortex, 1% SDS solution 

45min 

 Switching off the UV lamp / transferring samples to the staining room. 3 

 Carefully removing the UV transparent foil (or aluminium foil).  2 

 Transferring 800µl of each sample to a new 1.5ml tube. 3 

 Opening caps of all sample containing tubes. Pipetting 88µl of 2.5% Evans 

Blue solution (i.e. final concentration is 0.25%) to each sample. Starting timer 

(set to 5min). Closing the lids. Mixing by inverting tube a few times once every 

minute. 

6 

 Immediately transferring 700µl of each sample to a staining chamber until all 

samples are sitting in the chambers. 

3 

 Lifting chamber, flushing with about 10ml of water from the bottle, making 

sure that cells do not splash out of the chamber. Liquid draining from the 

chamber should be almost clear after 10ml. 

Removing flow-through from beaker, flushing the beaker a little, touching 

paper towel with staining chamber to remove some of the liquid (not drying 

completely), pouring some water (about 2ml) into beaker, setting staining 

chamber back into beaker. Repeating with remaining samples. 

5 

 Repeating this washing step once, setting the staining chamber into one of the 5 
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little pots (that contain 200µl of water) after drying the membrane a little bit 

with a paper towel. Proceeding with remaining samples. 

 Re-suspending samples in equal volumes in 1.5 mL tubes and assuring that 

almost all cells are recovered from the membrane: 

With the 200µl pipet and cut tips, 100µl of the cells on the membrane are 

collected and transferred to a fresh 1.5 mL tube. With the 1ml pipet, adding 

200µl of water to staining chamber in the little pot. Transferring 2x100µl of 

cell suspension to the same microfuge tube. In each suspension pipetting step 

making sure that a lot of cells are taken inside the pipet tip. Re-suspending 

them often helps. Repeating this step until the volume of 700µl has been 

transferred. 

15 

 If multiple sets of staining are done (not recommend more than 2), such as 

2x8, staining and washing of the others should be done now. 

(0 or 45min) 

 For the microscope examination, an adequate and equal volume of cells should 

be taken. For the photometric measurement, proceed with the following. 

 

 

 

 

Photometric determination of cell death rate 

 Adding 77µl of 10% SDS solution, vortex, putting tubes on a tube float 5 

 Sonifying for 10min 12 

 Vortexing 2 

 Looking at blue colour intensity of suspensions. With some experience it is 

possible to judge what dilutions are to be made in order to get reliable 

photometric data. Deciding what dilutions are to be used. 

2 

 Centrifuging for 3min at 9000rpm (table top centrifuge) 4 

 While the centrifuge is running, preparing 1.5 mL tubes with appropriate 

volume of 1%SDS for dilutions. 

Use dilutions of 1 part sample plus 4 parts 1% SDS or 1 part sample plus 9 

parts 1% SDS. i.e. prepare 400µl of 1%SDS or 450µl of 1%SDS, respectively. 

 

 Using supernatant for photometric measurements. For diluted samples, adding 

100µl or 50µl of sample to the prepared 400µl or 450µl 1%SDS containing 1.5 

mL tubes, respectively. 

5 

 Switching on the photometer (Eppendorf). Choosing OD600 mode. Blanking 

with 1%SDS (button “blank”). Measuring blank again by pressing “sample” to 

2 
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verify that the blank results in an apparent absorbance of 0. 

 Measuring the samples. Absorbance should be below 3, values above exceed 

the range in which linearity exists between the reading and the real absorbance. 

Adjusting the dilution if necessary. 

20 

 Writing down absorbance and dilution, calculating undiluted absorbance. 2 

 Cleaning the cuvette with water by rinsing a few times (no EtOH!). 2 

 

 

   

Data Analysis 

 Entering the data into an Excel spreadsheet 5 

 Calculating the cell death rate in % by dividing the OD600 by the (mean of 

the) 100 cell death positive control value 

2 

 Determining the averages for duplicates and standard errors. 2 

 

 

6.9.4. MTT Assay 

 

 
Day 1 

 

Approx. 

duration (for 

2 plates) 

(min) 

Planting the cells on the plates  

Designing the experiment 

 Treating the samples with various NPs (due to variation repetitions are 
recommended) 

 Controls: investigating the effect of any treatment that is combined with another 
treatment by itself. For example: 

- the effect of only UV(365nm)/visible(470nm) light  
- the effect of NP in the dark (in each experiment because of the very 

large variation) 
- untreated cells (“negative control”) 
- a positive control (e.g. a known substrate that in the dark causes 

100% cell death, this is included as the positive control in each 
experiment to determine the % of dead cells); in the MTT assay the 
formazan absorption determines the cell viability, the wells without 

20 
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any cells should exhibit no absorption at all, nevertheless they 
should be treated with appropriate amount of NP/hybrids as to be 
able to correct for the intrinsic hybrid absorption in treated wells 
 

Materials: 

- two 96-well plates  
- Tissue Culturing Flasks (TCF) with wanted cells 
- Glass pipettes (2mL, 5mL, 10 mL) 
- 50 mL tube 
- Clean bench 
- Suction pump 
- Incubator (37°C, 5% CO2) 
- Trypsin/EDTA  
- PBS buffer 
- Pipettes 200µl with tips 

 
Appropriate medium (depending on the experiment and cell type) 

o MCF-7 and HEK293  DMEM 
o HeLa:                              RPMI 

 

10 

 Removing the old medium from the TCF with the suction pump 1 

 Wash the dead cells with 5 mL PBS. Removing the PBS with suction pump. 1 

 Add 2mL of Trypsin/EDTA for the detachment of cells. Incubating 5 min on 

37°C and 5% CO2 atmosphere. 

7 

 Adding 8 mL medium to the TCF.  1 

 Possibly passage the cells to the new TCF when needed for further 

experiments (1mL of detached cells plus 9 mL of medium). 

5 

 Collecting the detached cells in a 50 mL tube. Centrifugation 1000 RPM, 4 

min. Re-dispersing in ca. 20 mL medium. 

7 

 Counting the cells using Fuch-Rosenthal chamber 10 

 Making cell stock solution with appropriate concentration for each cell type: 

o MCF-7: 40 000 cells/ml 
o HeLa:  20 000 cells/ml 
o HEK293: 40 000 cells/ml 

10 

 This cell suspension should be pipetted in 2 plates (200µL/well, ~40mL of 

stock solution). The last row (H) should be left empty! 

15 

 Transferring the plates to the incubator. Incubating for wanted time (e.g. 

overnight) 

2 
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Day 2 

 

Approx. 

duration (for 

2 plates) 

(min) 

Treatment of Cancer Cells with NP/hybrids + UV/visible light  

Materials: 

- two 96-well plates planted with desired cell line 
- Clean bench 
- Suction pump 
- Incubator (37°C, 5% CO2) 
- NP/hybrid materials 
- UV or visible hand lamp 
- Pipettes 200µl 
- Tips 

 
Appropriate medium without phenol red (depending on the experiment and cell 

type) 

o MCF-7 and HEK293  DMEM 
o HeLa:                              RPMI 

 

10 

 Prepare NP/hybrid solutions in an appropriate medium (without phenol red) 

having various concentrations (e.g. 5, 50, 150 and 500 µg/mL). Around 10 mL 

of solution of each concentration is needed.   

20 

 Removing the old medium from the plates with the suction pump 1 

 Loading the wells of the plates with NP/hybrid solutions of appropriate 

concentrations. See scheme X. 

20 

 Transferring the dark kept plate to the incubator. Incubating for wanted time 

(e.g. overnight). 

1 

 Irradiating the other plate with UV or visible light in the wanted duration.  10-15 

 Transferring the irradiated plate to the incubator. Incubating for wanted time 

(e.g. overnight). 

1 
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Figure 77. Scheme for loading one 96-well plate for the NALI toxicity experiment. 

 

 

Day 3 

Approx. 

duration (for 

2 plates) 

(min) 

Performing the MTT Assay  

Materials: 

- two 96-well plates planted with desired cell line, loaded with NP/hybrid 
material  

- one plate was irradiated with UV/visible light, while the other was kept in 
dark 

- Clean bench 
- Suction pump 
- Incubator (37°C, 5% CO2) 
- DMSO 
- MTT 
- Pipettes 200µl 
- Tips 

 
Appropriate medium without phenol red (depending on the experiment and cell 

type) 

o MCF-7 and HEK293  DMEM 
o HeLa:                              RPMI 

 

20 
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 Preparing the MTT-incubation solution: 

- 1mL of 12mM MTT stock solution is needed per 96-well plate (2mL 
for 2 plates) 

- Dissolving  5mg MTT (kept in the fridge) in 1mL 1x PBS (10mg in 2mL 
for 2 plates) 

- As MTT is not easily soluble, sonicating for 15-30min is advised 
(vortexing in between) 

- Centrifuging (5min. 400 rpm) to separate the undissolved part of MTT 
- MTT-incubation solution is produced from the MTT-stock solution 
- In 10mL medium without phenol rot one adds 1mL MTT-stock 

solution 
- This is the volume needed for one 96-well plate (2mL (12mM) MTT in 

20 mL medium for 2 plates)  
 

15 

 Removing the old medium suspended with NP/hybrid material with suction 

pump. 

2 

 Add 100µL of MTT-incubation solution per well (in ALL wells!) 7 

 Incubating the plates on 37°C for 2h 120 

 Removing the incubation solution with suction pump. 2 

 Adding 50µL DMSO per well.  10 

 Incubate the plates on 37°C for 10min 12 

 MTPR (Multi-titer Plate Reader) measurements  

 

 
Day 3 

 

Approx. 

duration (for 

2 plates) 

(min) 

MTPR (Multi-titer Plate Reader) measurements 

Materials: 

- two 96-well plates planted with desired cell line, loaded with NP/hybrid 
material  

- one plate was irradiated with UV/visible light, while the other was kept in 
dark 

- the medium containing NP/hybrid was discarded and the plates were treated 
with MTT, washed and DMSO was added to dissolve the formed formazan 

- Multi-titer plate reader (Biotek, H1) 
- Clean bench 
- Suction pump 
- Incubator (37°C, 5% CO2) 
- DMSO 

5 
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- MTT 
- Pipettes 200µl 
- Tips 

 

 Turn ON the computer and the instrument 2 

 Run Gen 5 1.11 software 1 

 Make the procedure with the following parameters: 

- Temp. 37°C 
- Orbital shake 1min 
- Absorption (A) at 540 nm 

 

5 

 Inserting the plate correctly into the reader (A1 upper-right when facing the 

reader) 

1 

 Pressing Read to start the measurement 1 

 When the measurement ends the results are exported in the Excel software 

by pressing the green Excel button in the software. 

1 

 Repeating for the other plates 5 

 Turn OFF the computer and the instrument 1 
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Figure 78. Inside cover image of Advanced Functional Materials journal (7/2014, page 907); a gold-titanium 

dioxide (Au/TiO2) hybrid prepared using a bifunctional bridging linker. The bright yellow spots are Au NPs 

stabilized by a LA-DA linker, which are then bound to TiO2 matrix (purple). This hybrid material shows 

remarkable catalytical activity towards activation of heme containing enzyme upon light irradiation. 
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9. List of Abbreviations  
 

°C centigrade/Celsius 

µl microliter 

Ag NP Silver Nanoparticles 

AR Amplex Red 

Au NP Gold Nanoparticles 

a.u.  arbitrary units 

BRET Bioluminescence Resonance Energy Transfer 

BY-2 tobacco cell line Bright Yellow - 2  

CEA Carcinoembryonic antigen 

cm2 squared centimeter 

CV Cell Viability 

CTAB Cetyltrimethylammonium Bromide  

CW Continuous Wave  

DA Dopamine 

DCFH Dichlorodihydrofluorescein 

DFOMS Dark-field Optical Microscopy and Spectroscopy  

DLS Dynamic Light Scattering 

DMEM Dulbecco´s Modified Eagle Medium 

DMSO Dimethyl suloxide 

DNA Deoxyribonucleic Acid 

DOX Doxorubicin 

DPA D-penicillamine  

DSSC Dye-Sensitized Solar Cell 

DTT Dithiothreitol 

EDXS Energy Dispersive X-ray Spectroscopy 

EGFR Epidermal Growth Factor Receptor 

EPR Enhanced Permeability and Retention  

FCM Flow Cytometry  

FITC Fluorescein isothiocyanate 

FLIM Fluorescence Lifetime Imaging Microscopy 

HAADF High Angle Anular Dark Field 

HEK293 Human Embryonic Kidney cells 
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HeLa Cervical cancer cell line 

HIV-1 Human Immunodeficiency Virus Type 1 

HRP Horse Radish Proxidase 

h  hour 

IR Infra-red  

IUPAC International Union of Pure and Applied Chemistry 

L liter 

LA Lipoic Acid 

LASiS Laser Ablation Synthesis in Solution 

LC50 Median Lethal Dose 

LBL Layer-by-Layer  

LCG Laser Conversion of Graphene oxide into graphene  

LMCT Ligand-to-Metal Charge Transfer 

LSPR Localized Surface Plasmon Resonance 

MAA Mercaptoacetic Acid  

MBT Maltose-Binding protein  

MCF7 Breast cancer cell line 

MF NPs Multifunctional Nanoparticles 

min minute 

mL  mililiter 

MPA Mercaptopropionic acid  

MRI Magnetic Resonance Imaging  

MRSA Methicillin-resistant Staphylococcus aureus 

MT Metallthionein 

MTB Mycobacterium tuberculosis  

MTBC Mycobacterium tuberculosis Complex 

MTT Methylthiazol Tetrazolium 

MUA Mercaptoundecanoic Acid  

MW Molecular Weight 

NALI Nanoparticle Assisted Light Induced  

NIR Near-infrared 

NLS Nuclear Localization Signal  

nm  nanometer 

NP(s) Nanoparticle(s) 

NR(s) Nanorod(s) 
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NT(s) Nanotriangle(s) 

PAA Poly(acrylic acid)  

PCNA Proliferating Cell Nuclear Antigen  

PDT Photo-dynamic Therapy 

PEG Poly(ethylenglycol) 

PEO polyethylene oxide 

PLA Poly-lactic Acid  

POI Protein of Interest 

PVP Poly(vinyl pyrrolidone) 

QD(s) Quantum Dot(s) 

R radius 

RES Reticulo-Endothelial System  

RGD Arginylglycylaspartic Acid 

RNA Ribonucleic Acid 

ROS Reactive Oxygen Species 

RPM Revolutions Per Minute 

RPMI Cell medium 

RT  Room Temperature 

SAED Selected Area Electron Diffraction 

scFv single-chain variable fragment 

SDS Sodium Dodecyl Sulfate  

SERS Surface-enhanced Ramana Spectroscopy 

SPIO Superparamagnetic iron-oxide 

SS Solid State 

STEM Scanning Electron Microscopy 

TA Thioctic Acid 

TEM Transmission Electron Microscopy 

TOAB Tetra-n-octylammonium Bromide  

TUNEL 

Terminal deoxynucleotidyl transferase dUTP Nick 

End Labeling 

UCNP Up-converting Nanoparticles 

UV Ultra Violet (light) 

Vis Visible (light) 

W Watt 



Acknowledgments   

 

158 
 

  

10. Acknowledgments 
 

 I would firstly like to thank my mentor, Dr. Ljiljana Fruk for all the inspiration and guidance 

that she provided during my stay in Karlsruhe, both in the course of my PhD studies and outside of 

the lab. I could not have imagined a better boss! 

 Secondly, I would like to thank the DAAD, without who´s financial support this work would 

not be possible.  

 Further on, I am grateful for the help of Ishtiaq Ahmed, for his hard work, for his patients and 

readiness to assists at any time.  

 I would like to thank Dennis Bauer for the scientific discussions that resulted in many nice 

ideas and great results. I would also like to thank him for the great energy and buena onda that he 

brings into everything that he does! 

 I would like to thank Bianca Geiseler and Dania Kendziora for helping me to get in the lab! 

 Cheng Chen, Antonina Vigovskaya and Lukas Stolzer were the best co-workers!   

 Many of the experiments reported in this thesis were done in collaborations with other 

groups. Many thanks go to Prof. Dr. Nienhaus and his co-workers Shang Li and Stefan Brandholt for 

the help in DLS and Zeta measurements, Prof. Dr. Stefan Bräse and Dr. Nicole Jung for the help in 

Raman Spectroscopy measurements, Prof. Dr. Dagmar Gerthsen and her co-workers Andreas Lefarth, 

Philipp Müller and Pascal Bockstaller for the TEM imaging, Prof. Dr. Peter Nick and his co-workers Dr. 

Jan Maish and Johanna Krahmer for the help in the BY-2 cell studies, Dr. Clemens Franz and his co-

workers Ramona Ring, Tetyana Gudzenko and Carina Gonnermann for help in the mammalian cell 

studies and finally Dr. Thomas Bergfeldt for the ICP-MS measurements. 

 I would like to thank the administrative staff of the CFN, Andreas Elkeries the IT (and jack of 

all trades) manager, administrative assistants Frau Bender and Frau Mösle, the financial officer 

Andreas Martin and the administrative manager Dr. Christian Röthig, for providing excellent working 

environment.    

 It is always comforting to know that whatever you do and whatever the results are, your 

family stands behind you. I would like to thank my mother Olivera, my father Vladimir and my 

grandmother Nevenka for giving me this priceless feeling. 

 The same goes for my buddies Bruno and Luka, who were always there for me. 

 The last and the most important thank you goes to my love Maja Petrovic who was all the 

time by my side, sharing all the ups and downs. This would not be possible without her. 



Curriculum Vitae   

 

159 
 

 

11. Curriculum Vitae 
 

VOĆARSKA CESTA 59 

10000 ZAGREB 
CROATIA 

CELL PHONE  0049 176 783 05658 

E-MAIL miljevic.marko@gmail.com 

Marko Miljević 

Personal Information 
 Nationality: Croatian 

 Age: 30 

 Place of Birth: Zagreb, Croatia 

Objective Gaining knowledge, working experience and PhD in the field of 
nanobiotechnology and /or  nanomedicine. 

Education [  Dates Attended  ] [  Company/Institution Name  ]  

 

2002                                Secondary School Diploma 

      

2002 – 2004                         University of  Zagreb, Croatia 

                                               Faculty of Electrotechnics and Computer Engineering 

 

 undergraduate student 

 

2004 – 2009                     University of  Zagreb, Croatia 

                                              Faculty of  Sciences , Physical Department 

 

 undergraduate student 

 Diploma thesis: “Magnetoencefalography and localization of visual 
cortical activity”, mentor doc. dr. Sc. Selma Supek 

 

2010 --  2014                    Karlsruher Institut für Technologie, Germany 

                                              Center for Functional Nanostructures 

 

 PhD student 

 

Awards received Scholarship of the Republic of Croatia , 2002-2004 

Deutscher Akademischer Austauch Dienst (DAAD), 2010-2014 



Curriculum Vitae   

 

160 
 

Interests and activities Nanotechnology applied to medicine (Biophysics, Drug delivery, Cancer 
Treatment, Imaging). 

Languages Croatian (mother language), English (fluent), German (good), French (beginner) 

Work experience [  Dates Attended  ]       [  Company/Institution Name  ]  

  

      2006 – 2007                                Ruđer Bošković Institute, Zagreb, Croatia 

                                                               Division for Marine and Environmental Research 

                                                                

 student project under supervision of prof. Vesna Svetličić 

 

 study highlights the capacity of AFM for investigating surface 
properties of live cells  

 

 project title: 

 

“MORPHOLOGICAL AND MECHANICAL CHARACTERIZATION OF MARINE 

DIATOM Cylindrotheca fusiformis”  

 

Conferences 
 

  International Meeting on AFM in Life Science and Medicine, Barcelona, 
Spain, 2007. (with poster “Morphological and mechanical 
characterization of Marine Diatom Cylindrothecae fusiformis”) 
 

 ISAC XXIV International Congress, Budapest, Hungary, 2008. 
 

 Mind and Brain VI, Dubrovnik, Croatia, 2009. 
 

 Biomag 2010, Dubrovnik, Croatia, 2010. 
 

 CFN Summer School on Nano-Biology, Bad Herrenalb, Germany, 2011. 
 

 Clinical Nanomedicine & Targeted Medicine, Basel,Switzerland, 2013. 

 

 



Statement of Originality   

 

161 
 

 
 
 
 
 
 
 
Marko Miljevic                                                                            Karlsruhe, 28.02.2014 
Sedanstrasse 4 
76185 Karlsruhe  
 

 

To whom it may concern. 

 

This thesis is the result of my work done in the Centre for Functional Nanostructures, 

Karlsruhe Institute of Technology in the period between 01.10.2010 and 05.03.2014 under the 

supervision of Dr. Ljiljana Fruk.  

With this letter I would like to declare the originality of the thesis and state that in its writing 

only the results obtained in the above stated period were used. Furthermore, these results are 

documented in the four (4) laboratory journals that were kept throughout the work and are available 

for inspection. The introductory part was written with help of the already published work in peer 

reviewed journals available through the KIT network as well as with the use of internet resources. 

The experimental results obtained in collaborations are acknowledged on the last pages of the thesis. 

 

 

Marko Miljevic 



 
 

162 
 

 


