

 Karlsruhe Reports in Informatics 2014,15
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Automatic Generation of Optimized Process

Models from Declarative Specifications

Richard Mrasek, Jutta Mülle, and Klemens Böhm

 2014

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Automatic Generation of Optimized Process
Models from Declarative Specifications

Richard Mrasek, Jutta Mülle, and Klemens Böhm

Karlsruhe Institute of Technology (KIT)
Institute for Program Structures and Data Organization

76131 Karlsruhe, Germany
{ richard.mrasek | jutta.muelle | klemens.boehm}@kit.edu

Abstract. Process models often are generic, i. e., describe similar cases or
contexts. For instance, a process model for commissioning can cover both
vehicles with an automatic and with a manual transmission, by executing
alternative tasks. A generic process model is not optimal compared to
one tailored to a specific context. Given a declarative specification of
the constraints and a specific context, we study how to automatically
generate a good process model and propose a novel approach. We focus
on the restricted case that there are not any repetitions of a task, as is the
case in commissioning and elsewhere, e. g., manufacturing. Our approach
uses a probabilistic search to find a good process model according to
quality criteria. It can handle complex real-world specifications containing
several hundred constraints and more than one hundred tasks. The process
models generated with our scheme are superior (nearly twice as fast) to
ones designed by professional modelers by hand.

1 Introduction

Scheduling tasks so that the overall execution is efficient and at the same time
no constraints are violated continues to be a fundamentally important problem.
Process models describe the possible arrangements of the tasks.

Example 1. Our application scenario is commissioning. Commissioning means
configuring and testing the electronic components of a vehicle at the end of its
production. Process models describe the arrangement of the configuration and
testing tasks. For instance, a factory worker has to configure the transmission
and to activate the anti-theft system. The transmission can either be manual,
i. e., Task M does the configuration or automatic (Task A). Task T activates the
anti-theft system. Before the activation, a central computer needs to generate
a master key (Task G), and it opens the connection to the specific control unit
(Task O). The connection has to be closed before the process finishes (Task C).
The configuration of the transmission and the activation of the anti-theft system
require a running engine; Task E turns it on. Figure 1(a) shows the tasks that
may be part of the commissioning. The second column is the expected processing
time of the tasks. Commissioning always has a context, i .e., the variation of

Task proc. time

E : Start Engine 1s
M : Conf. Manual transmission 5s
A : Conf. Automatic transmission 2s
T : Activate anti-Theft system 1s
C : Close Connection 1s
O : Open Connection 1s
G : Generate Master Key 5s

a)

A

M E C

T

O

G

b)

Fig. 1. The Tasks for the Commissioning Scenario (a) and the Ordering Relationship
Graph (b).

the vehicle, its components, their relationships and the constraints the vehicle
currently tested must fulfill. The variation determines which tasks have to be
executed, e. g., a car with a manual transmission requires different tasks than a
car with an automatic transmission.

A context c determines the tasks Tc required for a process. It is infeasible to
model all processes for each possible set of required tasks by hand. This calls for
generic process models for several contexts. With such generic models however,
one optimal arrangement of tasks for any context does not exist.

Example 2. The context characteristic transmission determines the required
tasks as follows: If the vehicle has an automatic transmission, the commissioning
requires execution of the tasks Tc ={E, A, T, C, O, G}; for a manual transmission
in turn the tasks are Tc ={E, M, T, C, O, G}. Figure 1(b) shows the dependencies
between the tasks as a graph. Directed edges represent ordering dependencies,
while dashed lines represent exclusive dependencies. The graph is the declarative
specification we generate the process model from. Section 3 shows how one can
generate such a specification from input in other languages. Section 2 will introduce
the notation behind that graph structure.

Figure 2 shows two generic process models that comply with the dependency
graph of Figure 1(b). Figure 2(a) has a shorter processing time if the transmission
is automatic (7s to 10s). For a manual transmission in turn, the process model
in Figure 2(b) has a shorter processing time (8s to 10s).

+

E

G

O

+ +

T C

M

A

+

a)

E +

M

A

O

G + T C

b)

Fig. 2. Two distinct Process Models for the graph in Figure 1(b)

With at least one process model for each possible context, the number of such
models increases exponentially with the number of context characteristics.

Example 3. Say a vehicle has 10 different context characteristics, e. g., the kind
of transmission, the navigation system, the safety system, etc. If each option can
occur or not 210 = 1024 different contexts are possible.

Next, several models typically are possible for a given context. The problem
studied here is how to generate a good process model for a given context from
a declarative specification. The model should be good according to predefined
quality criteria, e. g., average throughput time of the process. Process models that
comply with the dependencies can be very different with respect to quality and
performance criteria. Section 6 will show that models generated with our approach
are about 50% faster than ones designed by professionals with years of experience.
We focus on the restricted case that there are none repetitions, i. e., we focus on
process trees with inner nodes seq, and, xor, but not loop. There is a number
of settings with this characteristic, for instance in manufacturing. In particular,
loops are unnatural in commissioning processes, since a feature is tested only
once. On the other hand, if a problem occurs and is fixed, a new commissioning
process is started. Another assumption, which also holds for commissioning and
elsewhere, is that context information together with experience from the past
allows to reliably estimate the processing time of individual tasks.

The generation of a process model from a declarative specification bears several
challenges. There often is a great variety of models that fulfill the specification,
as mentioned before. To illustrate, the sequential arrangement of n nodes, in
the absence of any constraint, give way to n! different process models. For the
largest process in our evaluation, 4.12× 10340 models are possible. Generating all
possible models is not possible. It is challenging to detect a good process model
that does not violate any constraint.

Example 4. There are four tasks A, B, C, and D. Suppose that the following
constraints exist: B must always occur before A and C (B→A, B→C), and D
always occurs before C (D→C). It seems to be a good idea to put A and C in
parallel, because this might reduce the throughput time. But putting A and C in
parallel rules out having A and D in parallel.

Related work in process synthesis is fully automatic only for processes that
are fully specified by their dependencies [8][29]. In case of an under-specification,
[8] requires a process modeler to manually make decisions, and [29] requires a
manual clustering of the constraints. This is not practical, because of the daunting
number of possible models. To this end, we propose a novel process synthesis
algorithm whose output on the one hand complies with the dependencies and
on the other hand is good according to predefined criteria. Our approach is as
follows: First, it uses a modular decomposition of the dependencies to detect
the fully specified regions of the process as well as the under-specified ones,
so-called prime components. For each prime component, our approach partitions
the corresponding ordering graph systematically, as follows. It selects a pivot

element and generates several smaller ordering graphs from the pivot partition.
We reduce the problem in a divide and conquer fashion until it is small enough to
explicitly generate all possible models. We repeat this for different pivot elements
to have a better coverage according to our quality criterion the throughput time
of the process. Other criteria such as overall energy consumption are possible
as well. As we show in the evaluation with thousands of non-trivial process
models, our approach is efficient, i. e., is able to test thousands of models in under
a second, checking for complex constraints. On average, our approach nearly
halves the processing time compared to the reference processes, which already
are the output of a careful intellectual design. Our approach can handle complex
real-world specifications containing several hundred dependencies as well as more
than one hundred tasks. In our evaluation, the process models generated contain
between 98 and 185 tasks, and their arrangement typically is nontrivial.

Section 2 introduces some fundamentals. Section 4 describes our algorithm
for the process generation. Section 6 features our evaluation. Section 7 discusses
related work, and Section 8 concludes.

2 Fundamentals

A meaningful input for process synthesis is the declarative specification in the
form of an ordering relation graph (org) [25]. Section 3 shows how an org can
be computed from other specification languages, e. g., declare. The modu-
lar decomposition of a graph yields its components and implies a hierarchical
structure of components called the Modular Decomposition Tree (mdt)[20], see
Subsection 2.3. The mdt separates the under-specified regions from the fully
specified ones.

2.1 Ordering Relation Graph

In an ordering relation graph, each node represents a task. Each edge represents
a dependency between tasks. The dependencies consist of ordering dependencies,
i. e., in which order do the tasks occur, and exclusive dependencies, i. e., when do
two tasks exclude each other.

Definition 1. The ordering relation graph is a directed attributed graph G =
(V,E), with V being nodes and E ⊆ V × V the edges. Each node corresponds
to a task. E consists of two subsets E→ and E# such that E = E→ ∪ E# and
E→ ∩E# = ∅. E→ defines the ordering relation, i. e., two tasks that should be in
a specific order have an edge in E→. E→ is transitive and anti-symmetric:

(transitive) ∀(x, y), (y, z) ∈ E→ : (x, z) ∈ E→
(antisymmetric) ∀(x, y) ∈ E→ : (y, x) 6∈ E→

E# defines the exclusiveness relation, i. e., if two tasks exclude each other they
share an edge in E#. E# is symmetric, i. e., ∀(x, y) ∈ E# : (y, x) ∈ E#. We do
not allow self-edges, i. e., ∀v ∈ V : (v, v) 6∈ E.

SEQ

A B
A B A B

<sequence>
<invoke name="A"/>
<invoke name="B"/>

</sequence>

AND

A B

A

B

+
A

B

+
<flow>

<invoke name="A"/>
<invoke name="B"/>

</flow>

XOR

A B

A

B

A

B

<if><condition/><then>
<invoke name="A"/>

</then><else>
<invoke name="B"/>

</else></if>

⇒

⇒

⇒

process tree petri net bpmn ws-bpel

Fig. 3. Transformation of a seq-, and-, and xor-Node of a Process Tree to Petri net,
bpmn or ws-bpel.

Note that E→ does not contain any cycle. For each task we determine the
processing time. The average error of the estimated execution times of our tasks
from our application scenario is less than 17%. We had calculated these times by
analyzing the logs of existing traces.

Definition 2. The neighborhoods Nout(v), N in(v) of a node v are defined as:

Nout(v) := {w | w ∈ V ∧ (v, w) ∈ E→} N in(v) := {w | w ∈ V ∧ (w, v) ∈ E→}
Nout(v) is the set of nodes with an incoming ordering edge from v. N in(v) is
the set of nodes that have an outgoing ordering edge to v. For a set of nodes
V the incoming and outgoing set are defined as Nout(V) :=

⋃
v∈V N

out(v) and
N in(V) :=

⋃
v∈V N

in(v) respectively.

The ordering relation graph (org) describes the tasks in a process model as
nodes and their relationships to each other by different types of edges. In contrast
to an imperative process language like bpmn, org is a declarative description
and not necessarily fully specified.

2.2 Process Tree

We want to generate the process model in the form of a process tree (PT). In
contrast to a graph-based process model, the process tree has two important
characteristics. First, it can be easily transformed into an executable process
language, see Figure 3. Second, a process tree is sound by default [14]. This means
the following: First, the process will terminate properly. Second, for each task
there is at least one process instance containing it. Each process tree PT = (V, E)
is an ordered tree, thus a rooted tree for which an ordering is specified for
the children of each vertex. V consists of leaf nodes Vt and inner nodes Vc,
Vt ∪ Vc = V, Vt ∩ Vc = ∅. Each leaf node corresponds to a task, and each inner
node corresponds to a control structure. In this paper we consider three control

D

W R A

C G

L

X

D

W

R

Y

C

A

Z

G

L

Prime

Branch

D W

R Serial

C A

Parallel

G L

X Y Z

a) b) c)

Fig. 4. An ordering relation graph (a), its modular decomposition (b) and the corre-
sponding modular decomposition tree (c)

structures, namely sequence seq, parallel and and exclusive xor. These control
structures correspond to the basic control workflow patterns [4]. This study
focuses on the synthesis of process models without cycles. Hence, we do not define
a loop operator. It is possible to model the commissioning processes using those
control structures. Each control structure can be translated to another block-
oriented language, e. g., ws-bpel, otx, or to a graph-oriented process language,
e. g., Petri nets, bpmn. Figure 3 shows how each of the control structure of a PT
can be easily transformed to three of the major process languages.

2.3 Modular Decomposition

We want to generate a process tree from the declarative specification, i. e., from the
org. Let G = (V,E) be such a graph. For any W ⊆ V we say that GW (VW , EW)
is the sub-graph induced by W , i. e., VW =W and EW = E ∩ (W×W). We call
W a component iff ∀v, v′ ∈ W , Nout(v)\W = Nout(v′)\W and N in(v)\W =
N in(v′)\W . Thus v and v′ have identical neighborhoods outside of W . In other
words, a component consists of tasks with the same dependencies regarding
tasks outside of the component. In our use case, a component often consists
of tasks operating on the same electronic control unit of the vehicle. W is a
strong component if, for each component W ′ ⊆ V , one of the following holds:
W ∩W ′ = ∅, W ⊆ W ′, or W ′ ⊆ W . The decomposition of a graph into strong
components is called Modular Decomposition, and the resulting hierarchical
structure is called Modular Decomposition Tree (mdt). Figure 4 shows a simple
ordering relation graph (a), its decomposition in four components (b) and the
corresponding modular decomposition tree (c). [20] shows that a node W in a
mdt with children S1, S2, . . . , Sk is of one of the following:

Complete : ∀I ⊂ {1, . . . , k}, with 1 < |I| < k :
⋃
i∈I Si is a component

Prime : ∀I ⊂ {1, . . . , k}, with 1 < |I| < k :
⋃
i∈I Si is not a component

Example 5. The root node in Figure 4 (c) is a prime node. None of the subsets
of the children with size 2 or 3, e. g., {X,R} or {R, Y, Z}, do form a component.

A complete component W with the induced graph GW (VW , EW) either does
not contain any edges or is a clique in EW# or EW→ , see the proof of Lemma 1. A

complete component can easily be transformed to a process tree deterministically,
see [25]. For a prime component our approach will use a heuristic optimization.

Lemma 1. A strong complete component W is of exactly one of four types:

trivial : |VW | = 1
serial : For every v, v′ ∈ VW : (v, v′) ∈ EW→ ∨ (v′, v) ∈ EW→ . Recall that the

edges in EW→ are cycle-free.
branch : For every v, v′ ∈ VW : (v, v′) ∈ EW#
parallel : For every v, v′ ∈ VW : (v, v′) 6∈ EW

Proof. For |VW | = 1 the component is trivial. For |VW | = 2 the pair (v, v′) is
either (v, v′) ∈ EW→ (serial), (v, v′) ∈ EW# (branch), or (v, v′) 6∈ EW (parallel). For
|VW | ≥ 3 there exist two pairs of nodes (v1, v2), (v3, v4) with (v1, v2) 6= (v3, v4).
At least one element in the pair differs, with out loss of generality let v1 6= v3.
Each set of two elements is a component, and as shown earlier it is either a
serial, branch, or parallel. We call this the type of the pair, namely typev1,v2 .
Assume that the lemma is false. Then at least two pairs of nodes exist with
typev1,v2 6= typev3,v4 . W is a strong component and thus all combinations of child
elements are strong components. The set of nodes {v1, v3} is a strong component
⇒ N(v1) = N(v3) ⇒ typev2,v3 = typev1,v2 . If v2 = v4 this is a contradiction to
the assumption, so let v2 6= v4. The set of nodes {v2, v4} is a strong component
⇒ N(v2) = N(v4) ⇒ typev3,v4 = typev2,v3 ⇒ typev3,v4 = typev1,v2 . This is a
contradiction to the assumption.

[20] proves that the decomposition of a directed graph (V,E) can be done in
O(|V |+ |E|), thus in time linear with the size of the graph – We use the mdt to
transform the org into a process tree.

3 Generating an Ordering Relationship Graph

In this section, we explain how to generate an ordering relationship graph from a
declarative specification, e. g., declare, Compliance Rule Graphs or bpmn-q.
In our application domain, each task executes exactly once and for simplicity we
consider here the core set of specification elements that are supported by the
majority of graphical specification languages, see Table 3.

Figure 5 shows the core set of these elements and the representation for
declare. The study of [26] indicates a similar set of mostly used specification
elements. Empirical studies [11] as well as our experience [22] show that this
core set is sufficient for the majority of the specifications. Bounded existence and
chain ordering only occur rarely (in 10 out of 555 models) [11].

We describe our algorithm for declare, for Compliance Rule Graphs or
bpmn-q the algorithm would function equivalently. We start with a set of tasks Tc
the commissioning process has to comprise for the context c. Next, we check if a
task t ∈ Tc has an outgoing response, succession, responded existence or co-existence
edge to a task t2 not in Tc. If so, we add t2 to Tc. Our algorithm repeats these

Table 1. Four different declarative specification language and the patterns they can
represent directly (black mark) or by combination (gray mark).

E
xi

st
en

ce
R

es
p
.
E
xi

st
en

ce
N

ot
co

-e
xi

st
en

ce
B
ou

nd
ed

E
xi
st
en

ce
R

es
p
on

se
P

re
ce

d
en

ce
S
u
cc

es
si

on
C
ha

in
O
rd
er
in
g

D
at
a
C
on

st
ra
in
ts

BPMN-Q [7] X X X X
Comp. Rule Graph [18] X X X X X X X
Declare [1] X X X X X X X X
Prop. Spec. Pattern [10] X X X X X X X X

response A B•

precedence A B•

succesion A B• •

responded existence A B•

Aco-existence B• •

Anot co-existence B• •‖

Fig. 5. Core set of the declare elements

steps until no further change happens (Step 1-3). For each task we generate a
node in the org (Step 7-9). If an ordering edge (an edge with an arrow) exists in
the declare graph between nodes v, w ∈ Tc we add an edge (v, w) ∈ E→ to the
org (Step 10-12). At last, the algorithm delivers the ordering relationship graph
org (Step 13).

Example 6. We want to generate the ordering relationship graph for the de-
clare graph in Figure 6(a). The commissioning requires executing the tasks B
and E, highlighted in dark red in Figure 6(a). E needs the occurrence of C and C
the precedence of task D. The result is an extended set of tasks, see Figure 6(b)–

A B

C D

E F

•

•

•
••

•

•

•
‖

A B

C D

E F

•

•

•
••

•

•

•
‖

A B

C D

E F

•

•

•
••

•

•

•
‖

B

C D

E

a) b) c) d)

Fig. 6. Generation of a org from a declare graph and a list of tasks Tc

Algorithm 1 generateORG (declare graph DG, task set Tc) : org
1: while t ∈ Tc has an activation edge to a task t2 6∈ Tc do
2: Tc ← Tc ∪ {t2}
3: end while
4: for all t ∈ Tc do
5: Add a state t to org
6: end for
7: for all response, precedence or succession edges between tasks t1, t2 ∈ Tc do
8: Add an edge (t1, t2) ∈ E→ to org
9: end for
10: return The ordering relationship graph org

(c). Finally we transform the declare graph to an ordering relationship graph,
see Figure 6(d).

4 Generating a Process Tree

In this section we explain the conceptual design of our approach. Subsection 4.1
gives an overview, and Subsection 4.2 states how the algorithm handles under-
specified regions.

Algorithm 2 synthesize(org G, context c): ProcessTree PT
1: Determine Tc from c
2: G← subgraph GW of G with the nodes W = Tc
3: PT ← Modular Decomposition of G
4: for all prime nodes P ∈ PT do
5: Process tree PTP ← synPrime(P)
6: Replace P with PTP
7: end for
8: for all leaf nodes l ∈ PT do
9: if l is a partition leaf node then
10: Gl ← org of l
11: Process tree PTl ← synthesize(Gl)
12: Replace l with PTl
13: end if
14: end for
15: return PT

4.1 Overview of the Automatic Generation

Our goal is to automatically generate a process model from a declarative de-
scription. Algorithm 2 synthesizes a process tree from an org and a context c.
The context c determines the required tasks Tc (Line 1). We then reduce the
org G to the subgraph GW with the nodes W = Tc (Line 2). The algorithm
then computes a modular decomposition of the org (Line 3 in Algorithm 2).

The resulting modular decomposition tree (mdt) may contain both complete
and prime components. For complete components, a transformation to process
fragments exists, cf. [25]. For a prime component in turn, several fragments
are possible, see Figure 7. In other words, each prime component stands for
an under-specified region. For each prime component P, we use a probabilistic
optimization to find a solution (Line 5). We replace P with the solution found
(Line 6). synPrime() splits the org of the prime components into partitions.
It generates a graph with one node for each of these partitions. The algorithm
recursively calls itself, in order to replace each node with a subtree. Finally, our
approach transforms the PT into a process language, e. g., bpmn, ws-bpel.

n0 n1

n2 n3

n4

SEQ

AND AND

SEQ

AND AND

SEQ

AND AND

n0n1 n2 n4n3 n0

n1

n3 n2 n4

n0

n1 n2n3 n4

a) b) c) d)

Fig. 7. The Neighborhood Graph to Directly Generate a Process Tree (a), three Possible
Process Trees (b)(c)(d) for the Graph (a).

4.2 Under-Specified Regions

Each prime component P induces a graph GP = (VP , EP). VP denotes the set of
strong components that belong to P. Figure 4 shows that the graph GP for the
prime component P consists of VP = {X,R,Y,Z} with EP = {(R → X), (R →
Y), (Z → Y)}. P is not fully specified and thus there does not exist a unique
corresponding process tree. Due to the large number of possible process models
for a prime graph GP it is not feasible to construct every possible one.

The modular decomposition detects the fully specified and the under-specified
regions of the process. Even for small prime components it is not possible to
generate and test all possible process models. Our overall idea is to reduce the
size of the graph induced by a prime component iteratively until the number of
remaining solutions is low (< 100) so that we can solve the problem. See Figure 7.
Our intuition for the reduction is to select a pivot node v and detect which nodes
(V1) must occur before v, and which nodes (V2) can be scheduled in parallel
to v. V1 as well as V2 imply two smaller ordering graphs. We repeat this with
several different pivot nodes. Our approach randomly selects a node v ∈ VP with
Nout(v) = ∅ as pivot node. Lemma 4 will show why we need this characteristic.
The org GP is cycle-free, and thus a node v with Nout(v) = ∅ always exists.

Definition 3. The zero neighborhood of a pivot node v is N (0)(v) := {v},
N (1)(v) := N in(v). For i ∈ N, i > 1 we define the i-neighborhood as:

N (i)(v) :=

(⋃

v′∈N(i−1)(v)N
out(v′)

)
\ N (i−2)(v) if i ∈ {2, 4, 6, . . . }(⋃

v′∈N(i−1)(v)N
in (v′)

)
\ N (i−2)(v) if i ∈ {3, 5, 7, . . . }

Lemma 2. The neighborhoods for a pivot node v of a prime component GP(V,E)
contains each node exactly once. This means that:

1.
⋃
i∈NN

(i)(v) = V

2. ∀i, j ∈ N, i 6= j : N (i)(v) ∩N (j)(v) = ∅

Proof.

1. Assume that GP is not connected⇒ two sub-graphs exists G′ with the nodes
in the connected graph of v and G′′ := GP \ G′. This is a contradiction
to the assumption that GP is a prime, because G′ and G′′ would form a
component. Let w ∈ VP be a node, with w 6= v. GP is connected thus a
shortest undirected path p = (a0, a1, a2, . . . , an−1, an) exists between v = a0
and w = an. p is alternating thus ∀i ∈ [0, n] : (ai, ai+1)⇔ (ai+2, ai+1), or a
shorter path would exist. ai ∈ N (i)(v) and thus w ∈ N (n)(v).

2. Assume N (i)(v) ∩N (j)(v) 6= ∅ then a node w exists with w ∈ N (i)(v) ∧ w ∈
N (j)(v). This means that two shortest undirected paths would exist between
w and v. This is a contraction, only one path can be shortest.

We use the neighborhood information to partition the graph. Each partition
n(i) is a subgraph of the org GP with the nodes N (i)(v). In other words, the
partitioning implies a graph Gv where each n(i) is a node. We refer to this graph
as the neighborhood graph. Formally, given a pivot node v, the neighborhood
graph Gv = (Vv, Ev) is as follows

Vv = {ni | N (i)(v) 6= ∅}

Ev = {(ni, ni+1) | i ∈ {1, 3, . . . } ∧ ni, ni+1 ∈ Vv} ∪
{(ni+1, ni) | i ∈ {0, 2, . . . } ∧ ni, ni+1 ∈ Vv}

The graph contains each non-empty neighborhood as a node.

Example 7. For the graph in Figure 4(b) and the pivot Y the neighborhoods are:
N (0)(Y) = {Y}, N (1)(Y) = {R,Z}, N (2)(Y) = {X}, and for i > 2 N (i)(Y) = ∅.
The neighborhood graph GY(VY, EY) for the pivot Y is:

GY = ({n0, n1, n2} , { (n1, n0) , (n1, n2) })

Example 8. Figure 8(a) shows a more complex graph which is a prime compo-
nent, i. e., there is no unique corresponding tree. The possible pivot nodes are
in violet. The pivot node at the top of Figure 8(a) leads to the partitioning in
Figure 8(b). Figure 8(c) shows the respective neighborhood graph.

a) b) n¹ n² n³ n⁴n⁰
c)

Fig. 8. A prime component (a), its partitioning (b), and the neighborhood graph (c)

n0 n1 n2 n3 n4 n5 . . . nk

Fig. 9. Structure of the Neighborhood Graph

Lemma 3. The partitioning into the neighborhood graph for a pivot v preserves
all order dependencies. In other words, for each edge (v1, v2) ∈ EP , one of the
following holds:

(a) ∃i ∈ N0 : v1, v2 ∈ N (i)(v)

(b) v1 ∈ N (i)(v), v2 ∈ N (j)(v), i 6= j ⇒ (ni, nj) ∈ Ev

Proof. If v1, v2 ∈ N (i)(v) then the edge is in the subgraph for N (i)(v). We now
focus on Case (b).
case 1 – i ∈ {1, 3, 5, . . . }: If j = i− 1 then (ni, nj) ∈ Ev. Otherwise, if j 6= i− 1
then v2 ∈ Nout(v1) ∧ v2 6∈ N (i−1)(v) ⇒ v2 ∈ N (i+1)(v) ⇒ j = i + 1, and
(ni, nj) ∈ Ev.
case 2 – i ∈ {0, 2, 4, . . . }: In this case, a node v3 exists with (v3, v1) ∈ EP . The
transitivity of EP leads to (v3, v2) ∈ EP . v2, v1 ∈ Nout(v3)⇒ v1, v2 ∈ N (i)(v)⇒
i = j, i. e., there is a contradiction.

Lemma 3 states that our approach does not loose any dependencies. A
symmetric solution would be to select pivots with N in(v) = ∅ and change the
definition of the neighborhood accordingly. However, a pivot v with Nout(v) 6=
∅ ∧ N in(v) 6= ∅ would loose a dependency, see Lemma 4.

Lemma 4. The neighborhood graph Gv for a pivot node v with Nout(v) 6=
∅ ∧N in(v) 6= ∅ does not preserve the order dependencies.

Proof. Let v with Nout(v) 6= ∅ ∧ N in(v) 6= ∅ be the pivot node. Then a node
v− ∈ N in(v) and a node v+ ∈ Nout(v) exists. The org is cycle free, thus
v+ 6= v− 6= v. The following dependencies, i. e., elements of EP , exist: (v−, v),
(v, v+), and, because of the transitivity of the org, (v−, v+) ∈ EP . v ∈ N (0)(v),
v+ ∈ N (1)(v), v− ∈ N (2)(v) altogether imply that (v−, v) ∈ EP and (n2, n0) 6∈ Ev.
This means that the dependencies between v and v− have been lost.

Algorithm 3 synPrime (Neighborhood Graph G(V,E)) : ProcessTree PT
1: Pivot v ← randomly select a node v ∈ G with Nout(v) = ∅
2: Gv(Vv, Ev)← calculate neighborhood of v
3: if N (λ) = ∅ then
4: return (select tree pattern randomly)
5: else
6: return synPrime(Gv)
7: end if

Algorithm 3 generates a process tree for an under-specified region, i. e., a
prime component. First, the algorithm randomly selects a pivot node v (Line
1) and calculates its neighborhood graph Gv (Line 2). The parameter λ ∈ N+

defines when the neighborhood graph is small enough to generate a process
tree. If the neighborhood graph is too large, the algorithm calls synPrime again,
and everything is repeated until the graph is processable. Figure 10 shows the
reduction of a neighborhood graph. If our approach selects n2 as the pivot element,
it then builds the smaller graph on the right hand side.

n0 n1 n2 n3 n4 n5 ⇒ n2

n1

n3

n0

n3

n5

Fig. 10. Reduction of a Neighborhood Graph with the Pivot n2.

If the neighborhood graph is small enough (N (λ) = ∅), Algorithm 3 randomly
selects a tree pattern for it (Step 4). A tree pattern is a process tree for the
neighborhood graph. The neighborhood graph in Figure 7(a) contains 5 nodes
and 4 edges. For a graph with five nodes thousands of process trees are possible.
For the graph in Figure 7(a) 53 trees are possible, given the constraints. For most
of these 53 process trees, there is another tree with a lower overall processing
time, for any processing times of the tasks. If we exclude these dominated trees,
three trees remain. Figures 7(b) and (c) show two of them, randomly selected.
Section 5 shows and explains all tree patterns for λ ∈ [1, 5]. Figure 7(d) shows a
process tree fulfilling the constraints in Figure 7(a), but the processing time of
the tree in Figure 7(b) always is shorter.

For each org we have started out with, we calculate κ different process trees.
The resulting trees differ depending on the probabilistic choices in Algorithm 3
(Line 1) and (Line 4). We select the best process tree found according to quality
criteria, e. g., the processing time. We calculate a quality value of each tree as
follows. The average processing time for each node in a process tree PT(V, E) is

calculated recursively with function fit : V → R.

fit(n) :=

runtime(n) if type(n) = task

maxc∈childn
fit(c) if type(n) = and∑

c∈childn
fit(c) if type(n) = seq

maxc∈childn fit(c) if type(n) = xor

type : V → {task,and, seq,xor} is a function to determine the type of the tree
node. childn := {c | (n, c) ∈ E} is the set of nodes in the process tree with parent
node n. The fitness of a process tree fit(PT) is the fitness of its root node. The
algorithm returns the process tree with the highest fitness value.

Prime P

Branch

D W

R Serial

C A

Parallel

G L

SEQ

AND

Z R

AND

X Y

SEQ

AND

AND

G L

R

AND

XOR

D W

SEQ

C A

+

G

L

R

+

D

W

C A

+

++

+ +

⇒

PTP

ZX Y

⇒

a) b) c)

d)

Fig. 11. The mdt for the org of Figure 4 (a), the PT for the prime node PTP (b), the
resulting process tree (c) and the process model in bpmn notation (d).

5 Tree Patterns

In this section we explain the tree patterns for a neighborhood graph Gv. For all
possible runtimes of nodes in the neighborhood graph at least one of the tree
patterns is optimal according to the fitness function fit. To minimize the fitness
value we are trying to set tasks in parallel.

λ = 2 and λ = 3

For λ = 2 only one process tree is possible that fulfills the requirements. Fig-
ure 12(a) shows the org for λ = 2 and the only possible process tree. For λ = 3
it is only possible to execute n0 and n2 in parallel. This parallel arrangement
leads to one possible process tree, Figure 12(b).

n0 n1

SEQ

n0 n1
a)

n0 n1 n2

SEQ

AND

n0

n1

n2

b)

Fig. 12. Tree patterns for λ = 2 (a) and λ = 3 (b).

n0 n1 n2 n3

SEQ

AND AND

n0n1 n2n3

a)

n0 n1 n2 n3

SEQ

AND

n0

n1 n2

n3

b)

Fig. 13. The two Tree Patterns for λ = 4

λ = 4

For λ = 4 we can set in parallel three pairs of nodes (n0, n2), (n0, n3), (n1, n3).
If we set (n0, n2) in parallel, it allows to set (n1, n3) in parallel and leads to the
pattern in Figure 13(a). The dotted line shows the dependency added according to
the tree pattern. If we set (n0, n3) in parallel, we have to add the two dependencies
in Figure 13(b). This leads to the second tree pattern.

λ = 5

For λ = 5 we can set five pairs of nodes in parallel (n0, n2), (n0, n3), (n0, n4),
(n1, n3), (n1, n4), and (n2, n4). If we set (n0, n2) in parallel, then we additionally
can set in parallel either (n1, n3) or (n1, n4). If we choose (n1, n3) we can add
n4 to the parallel (n0, n2) resulting in the process tree of Figure 14(a). If we
choose (n1, n4) no other parallelism is possible resulting in the process tree of
Figure 14(b).

n0 n1 n2 n3 n4

SEQ

AND AND

n0n1 n2n3 n4

a)

n0 n1 n2 n3 n4

SEQ

AND AND

n0n1 n2

n3

n4

b)

n0 n1 n2 n3 n4

SEQ

AND AND

n0

n1

n2n3 n4

c)

Fig. 14. The three Tree Patterns for λ = 4

6 Evaluation

Our evaluation uses 21 process models from a German car manufacturer that
specify the testing and commissioning of middle-class vehicles. Professional
process developers have designed these process models. The tasks to be executed
depend on the components built into the vehicle to be tested. In cooperation with
those domain experts we have built the specification for the 21 process models,
i. e., the ordering relationship graphs, automatically using a knowledge base. See
[23]. The process models contain up to 185 tasks and over 3000 dependencies. We
choose λ = 5 for our evaluation. Figure 15(a) shows the full ordering relationship
graph for one process model. Figure 15(b) shows a prime element that the graph
contains.

Table 2 shows the results for commissioning process models A, B, and C. We
have chosen A, B, and C because they are representative for the whole set, ranging
from a relative small one (C) to one of the largest (B). For a summary of all
models see Table 3. The first row in Table 2 lists the number of tasks that belong
to the process model as well as the ordering relationship graph. The second row
in Table 2 shows the processing time measured for the process model created by
hand. Table 2 then lists the expected processing time of the process (pt) and the
time our approach needs to generate the respective model (computation time ct)
for 10 to 100,000 iterations. In all cases, the algorithm has been able to generate
a process model in less than 100ms that outperforms the reference process model.
After 100,000 iterations (in less than 1.5 minutes) it could find process models

a) b)

Fig. 15. The org for a Commissioning Process Model (a) and a Nontrivial Prime
Graph Contained (b) in it.

Table 2. Computation time (ct) and processing time (pt) of our approach

Process A Process B Process C

No. of Tasks 171 185 116
Ref. process time 171 780ms 169 606ms 148 014ms

ct
in ms

pt
in ms

ct
in ms

pt
in ms

ct
in ms

pt
in ms

10 Iterations 35 188,420 34 227,260 32 132,998
50 Iterations 69 127,687 71 131,121 66 103,234

100 Iterations 113 127,687 113 131,121 104 103,234
1 000 Iterations 823 127 687 964 116,155 788 97,264

10,000 Iterations 8,207 112,918 8,298 113,874 7,817 71,513
100,000 Iterations 78,409 112,624 86,594 106,216 77,335 65,892

pt reduction 34.437% 37.375% 50.456%

with processing times 34%, 37%, and 50% lower than their manually generated
counterparts.

For all 21 process models, Table 3 shows the minimum, maximum, and the
quartile for 7 values of the evaluation. The process models contain between 98
and 185 tasks, and need up to 178s to perform. Our approach requires ≈ 30s and
≈ 37 000 iterations on average to generate the best result found. For all instances
our approach has identified a solution that is better than the manually generated
reference point in less than 100ms. Moreover, our approach needs less than 3
iterations to do so in most cases. On average, our approach nearly halves the
processing time of the commissioning process models (47.47%) compared to the
reference points.

Table 3. The Minimum, Maximum, and the Quartile for the Evaluation of 21 Commis-
sioning Process Models

Minimum Median Maximum
Q0.00 Q0.25 Q0.5 Q0.75 Q1.00

Nr. of Tasks 98 123 133 146 185
Ref. Process Time 144.232s 151.623s 157.513s 166.138s 178.606s

best found pt 64.643s 72.637s 84.529s 93.487s 108.496s
iterations (it) 5 090 15 523 37 733 76 035 94 271
calculation time (ct) 4.641s 12.356s 30.284s 63.392s 77.480s

pt reduction 33.39% 40.62% 47.54% 53.62% 58.03%

7 Related Work

[29] synthesizes a process model directly from its specification. The specifications
are in propols [29], a high-level temporal constraint specification language. The
specifications are transformed into finite state machines and then integrated into
one machine. Next, each accepting path is generated from the state machine. An
algorithm similar to the α-algorithm [3] for process mining is applied to synthesize
a process model from its set of paths. [29] can only be applied if the specification,
i. e., the number of state machines, is small (≈ 6). To this end, [29] divides the
specification into small groups, synthesizes a process fragment for each group
and manually combines the fragments. For our use case, this approach would
require over a hundred state machines for each commissioning process model,
and the manual combination would not be feasible. [8] has specifications with
ltl as starting point. It generates a pseudo model from the specification. The
pseudo model lists all paths that fulfill the ltl formula. [8] generates an ordering
relation graph from the set of paths and uses it to synthesize a process tree. For
our use case the generation of all paths would not be feasible. This is because,
the number of paths grows exponentially with the size of the specification. Even
for the smallest process model we have evaluated the calculation of all paths has
not been possible.

Process discovery means finding a process model that can reproduce the
behavior given in a log [2]. [16] rediscovers a process model in the process-tree
notation. It generates a graph (directly-follows graph) from the log and tries
to find different kinds of cuts in the graph. Each kind of cut refers to a control
structure in the process tree (seq, and, xor, loop). The cuts partition the
graph and allow to hierarchically find a process tree for the log. In contrast to
an org, a directly-follows graph is not transitive, and if two nodes are in parallel
they share a two-way edge (no edge in the org). It is not possible to find a
cut for a prime component, thus the approach of [16] does not help in case the
specification is under-specified. Put differently, the problem statement in [16] is
different from ours; the neighborhood graph of the complete log of a process tree
never contains a prime component. For an incomplete log, a prime component

can occur. [17] propose to use probabilistic activity relations in the case of an
incomplete log. The cut with the highest probability is chosen. This means that
their algorithm generalizes from the incomplete log and assumes relationships that
are not present. An org is an upper bound of the possible behavior. Assuming
an additional relation would result in a violation of a constraint.

An approach different from generating the process model from scratch is to
extract information from process models already specified and to create a similar
process. [9] uses a cbr-based method for the composition of workflows. The
search is based on keywords that are annotations of the workflows. [13] guides the
process designer with suggestions on how to complete data-oriented visualization
models. The suggestions are generated from paths of existing visualization process
models stored in a process repository. [13] does not allow building a process
model with an and-Split and therefore is not sufficient in our case. [15] predicts
which activity pattern (generic process fragment) will follow the partly modeled
process. The paths of existing process models are extracted and analyzed with
association rule mining. [13][15] extend an existing process model, while our
approach generates one from a declarative specification. [9] requires annotations
of the existing process models. None of the approaches mentioned optimize the
runtime or consider constraints.

[25] transforms an unstructured model without cycles into a behaviorally
equivalent structured process model. ’structured’ means that for each Split-
Gateway there is a corresponding Join-Gateway. Structured processes allow
an effective verification [22] and are easy to understand [27]. [25] determines
relationships between the tasks of a process model and generates an org using
these relationships. Next, [25] decomposes the org into a Modular Decomposition
Tree. In contrast to our approach, [25] generates the org from the behavior of an
existing process model and not from a set of compliance rules. The behavior is
definite, the result therefore is a unique process model. In our approach in turn,
the behavior is under-specified, and several process models are possible.

AI planning is the task of defining a set of actions that achieve a specified aim
[12]. In a nutshell, it is the search for an applicable plan in the solution space.
[28] uses a genetic algorithm to find a manufacturing plan. Some approaches
that synthesize business processes are discussed next: [19] uses an AI planning
approach to synthesize service compositions. Without calling it AI planning,
[5] uses a similar approach for configuration-based workflow composition. [6]
introduces a planning algorithm to compose data workflows. None of these studies
focuses on optimizing the runtime of the process or considers requirements similar
to ours. These approaches are not applicable to our problem statement.

In contrast to imperative process models, declarative workflows allow for any
behavior fulfilling the declarative specification [21]. Thus, declarative workflows
provide maximum flexibility not limited by a process model. In comparison, [29],
[8] and our approach generate an imperative process model from the declarative
specification. The enactment of declarative workflows is not trivial [24], and tool
support by major vendors is missing. To our knowledge, there is no tool that
executes declarative process models comparable to the commissioning of vehicles.

8 Conclusions

We have proposed a novel approach to generate a process model for a specific
context automatically, given a set of constraints. We study the restricted case
that there are not any repetitions of a task, as is the case in commissioning
and elsewhere, e.g., manufacturing. We use a probabilistic search to find a
good process model according to quality criteria that fulfills the constraints.
Our approach can handle complex real-world specifications consisting of several
hundred constraints and more than one hundred tasks. The process models
generated with our scheme are superior (nearly twice as fast) to ones designed
by professional process designers.

References

[1] W. M. P. v. d. Aalst and M. Pesic. “DecSerFlow: Towards a Truly Declarative
Service Flow Language”. In: Web Services and Formal Methods. 2006.

[2] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. 2011.

[3] W. M. P. van der Aalst, T. Weijters, and L. Maruster. “Workflow mining: discov-
ering process models from event logs”. In: IEEE Transactions on Knowledge and
Data Engineering (2004).

[4] W. M. P. van der Aalst et al. “Workflow Patterns”. In: Distributed and Parallel
Databases (2003).

[5] P. Albert, L. Henocque, and M. Kleiner. “Configuration based workflow composi-
tion”. In: IEEE International Conference on Web Services. 2005.

[6] J. L. Ambite and D. Kapoor. “Automatically Composing Data Workflows with
Relational Descriptions and Shim Services”. In: The Semantic Web. 2007.

[7] A. Awad, G. Decker, and M. Weske. “Efficient Compliance Checking Using BPMN-
Q and Temporal Logic”. In: Business Process Management. 2008.

[8] A. Awad et al. “An Iterative Approach for Business Process Template Synthesis
from Compliance Rules”. In: Advanced Information Systems Engineering. 2011.

[9] E. Chinthaka et al. “CBR Based Workflow Composition Assistant”. In: IEEE
World Conference on Services. 2009.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. “Property Specification Patterns
for Finite-state Verification”. In: Proceedings of the Second Workshop on Formal
Methods in Software Practice. 1998.

[11] M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in property specifications for
finite-state verification”. In: Proceedings of the 1999 International Conference on
Software Engineering, 1999. 1999.

[12] J. Hendler, A. Tate, and M. Drummond. AI Planning: Systems and Techniques.
Tech. rep. University of Maryland at College Park, 1990.

[13] D. Koop et al. “VisComplete: Automating Suggestions for Visualization Pipelines”.
In: IEEE Transactions on Visualization and Computer Graphics (2008).

[14] O. Kopp et al. “The Difference Between Graph-Based and Block-Structured
Business Process Modelling Languages”. In: Enterprise Modelling and Information
Systems Architecture (2009).

[15] J. M. Lau et al. “Discovery and Analysis of Activity Pattern Cooccurrences in
Business Process Models”. In: Int’l Conf. on Enterprise Information Systems.
2009.

[16] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. “Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach”. In:
Application and Theory of Petri Nets and Concurrency. 2013.

[17] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. “Discovering Block-
Structured Process Models from Incomplete Event Logs”. In: Application and
Theory of Petri Nets and Concurrency. 2014.

[18] L. T. Ly et al. “SeaFlows Toolset – Compliance Verification Made Easy for
Process-Aware Information Systems”. In: Information Systems Evolution. 2011.

[19] M. Matskin and J. Rao. “Value-Added Web Services Composition Using Automatic
Program Synthesis”. In: Web Services, E-Business, and the Semantic Web. 2002.

[20] R. M. McConnell and F. de Montgolfier. “Linear-time modular decomposition of
directed graphs”. In: Discrete Applied Mathematics (2005).

[21] M. Montali et al. “Declarative Specification and Verification of Service Choreogra-
phiess”. In: ACM Trans. Web (2010).

[22] R. Mrasek, J. Mülle, and K. Böhm. “A new verification technique for large
processes based on identification of relevant tasks”. In: Information Systems
(2014).

[23] R. Mrasek et al. “User-Friendly Property Specification and Process Verification
- a Case Study with Vehicle-Commissioning Processes”. In: Business Process
Management. 2014.

[24] M. Pešić, D. Bošnački, and W. M. P. van der Aalst. “Enacting Declarative
Languages Using LTL: Avoiding Errors and Improving Performance”. In: Model
Checking Software. 2010.

[25] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas. “Structuring acyclic process
models”. In: Information Systems (2012).

[26] E. Ramezani, D. Fahland, and W. M. P. van der Aalst. “Where Did I Misbe-
have? Diagnostic Information in Compliance Checking”. In: Business Process
Management. 2012.

[27] H. Reijers and J. Mendling. “A Study Into the Factors That Influence the Un-
derstandability of Business Process Models”. In: IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans (2011).

[28] J. Váncza and A. Márkus. “Genetic algorithms in process planning”. In: Computers
in Industry (1991).

[29] J. Yu et al. “Synthesizing Service Composition Models on the Basis of Temporal
Business Rules”. In: Journal of Computer Science and Technology (2008).

	2014,15_Titelbl.pdf
	TR2014-15_AutomaticProcessGeneration.pdf

