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Low-energy experiments studying single beta decay can serve as sensitive probes of Lorentz invariance that can complement
interferometric searches for deviations from this spacetime symmetry. Experimental signatures of a dimension-three operator for
Lorentz violationwhich are unobservable in neutrino oscillations are described for the decay of polarized and unpolarized neutrons
as well as for measurements of the spectral endpoint in beta decay.

1. Introduction

The foundations of modern physics assume the invariance of
physical laws under rotations and boosts, known as Lorentz
symmetry. In our search for new physics, the possibility of
minute violations of Lorentz invariance has become an active
field of study by the development of theoretical formalisms
and mainly by searching for key signatures in a wide range
of experiments [1]. Precise studies of beta decay offer the
opportunity to search for physics beyond the StandardModel.
For instance, many experiments measuring the decay of
neutrons are searching for unconventional couplings in weak
interactions leading to new sources of CP violation [2].
Similarly, the search for a distortion in the spectrum of
tritium decay would provide an absolute measurement of
the neutrino mass. These experiments can also search for
deviations from the exact Lorentz symmetry. The interfero-
metric nature of quantum oscillations gives neutral mesons
[3] and neutrinos [4] a remarkable sensitivity to signals of
new physics; nonetheless, there are certain signals that are
unobservable in these experiments. For neutrinos, it has been
shown that beta decay experiments have unique sensitivity
to the so-called countershaded operators, which produce
no effects in oscillations nor modifications of the neutrino
velocity; therefore, their effects can only be studied via weak
decays [5].

This paper describes the relevant signatures of Lorentz
and CPT violation in single beta decay experiments. High-
precision measurements of beta decay spectra for the

determination of neutron and neutrino properties offer an
attractive opportunity to test Lorentz invariance by searching
for distinctive signals that could arise in current and future
experiments. Observable effects can also appear in double
beta decays [6]. Systematic searches for Lorentz violation
in experiments use a general framework based on effective
field theory known as the Standard Model Extension (SME)
[7–9]. This framework incorporates coordinate-independent
terms that break Lorentz symmetry in the Standard Model
action in the form of conventional operators contracted with
controlling coefficients for Lorentz violation. These terms
can trigger observable signals under the rotation and/or the
boost of the relevant experimental system. The spontaneous
breakdown of Lorentz symmetry at high energies in
some string-theory scenarios [10] suggests that the SME
coefficients should be small due to the relevant energy
scale suppression, such as the Planck scale. Nevertheless,
potentially large deviations from Lorentz symmetry have
been considered in systems involving weak decays [5] and
matter-gravity couplings [11].

For neutrinos, the SME has been used to search for signa-
tures of Lorentz violation in oscillations [12, 13] using accel-
erators [14–20], atmospheric neutrinos [21, 22], and reactors
[23, 24], reaching impressive sensitivity. Neutrino oscillations
are powerful tools to test Lorentz symmetry; nonetheless,
there are operators that are unobservable in these types
of experiments. For these oscillation-free operators, other
kinematical effects must be invoked such as modifications
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of the neutrino velocity, which lead to Cherenkov radiation
and threshold effects [25]. In these scenarios, the effects of
Lorentz violation can be enhanced by the neutrino energy
and propagation time, which makes astrophysical sources
sensitive probes of Lorentz symmetry [26], particularly when
operators of arbitrary dimension are incorporated in the
action [27].

The fundamental role of beta decay experiments is the
study of countershaded operators that are oscillation-free
terms of mass dimension three in the Lagrangian which are
controlled by the SME coefficient 𝑎(3)of .These CPT-odd opera-
tors leave the neutrino velocity unchanged, and their experi-
mental signatures are unaffected by the neutrino energy [27].
This feature makes beta decay experiments unique probes
of Lorentz symmetry [5]. For illustration purposes, some
neutron experiments such as 𝑎CORN [28], 𝑎SPECT [29], and
PERKEO [30] are discussed; nevertheless, several observable
signatures can be studied by other experiments including
𝑎𝑏BA [31], emiT [32], N𝑎𝑏 [33], nTRV [34], PERC [35], and
UCNB [36]. Similarly, the analysis of tritium decay can be
applied to experiments for neutrino mass measurements,
Mainz [37], Troitsk [38], and Karlsruhe Tritium Neutrino
experiment (KATRIN) [39] as well as the Princeton Tritium
Observatory for Light, Early-Universe, Massive-Neutrino
Yield (PTOLEMY) [40] proposed to search for the cosmic
neutrino background.

2. Beta Decay

At low energies, the transition amplitude describing nuclear
beta decay is well described by the Fermi four-fermion
interaction of the form

𝑖M =

𝑖𝐺𝐹

√2

𝑉𝑢𝑑 [𝑢 (𝑝) 𝛾𝛼 (1 − 𝛾5) V (𝑞)] 𝐽
𝛼
, (1)

where 𝐽𝛼 is the current describing the nuclear states, the
spinor 𝑢(𝑝) corresponds to the emitted electron of 4-
momentum 𝑝

𝛼
= (𝐸, p) and mass 𝑚𝑒, and the antineutrino

of mass 𝑚] and 4-momentum 𝑞
𝛼
= (𝜔, q) is given by spinor

V(𝑞). The constant factors are the Fermi constant 𝐺𝐹 and
the relevant element of the CKM matrix 𝑉𝑢𝑑 ≈ cos 𝜃𝐶. In
this work we are interested in the potential breakdown of
Lorentz invariance in the neutrino sector [25]. Recent studies
have also considered Lorentz-violating effects in weak decays
arising in the gauge sector [41, 42]. The emitted antineutrino
escapes unmeasured in beta decay experiments; however,
imprints of its behavior can be inferred from the decay
products experimentally accessible. The effects of Lorentz
violation are controlled by the four components of the coef-
ficient 𝑎(3)of , which, in the spherical basis introduced in [27],
are denoted by (𝑎(3)of )00, (𝑎

(3)

of )10, Re(𝑎
(3)

of )11, and Im(𝑎
(3)

of )11. To
date, only theoretically estimated bounds exist on (𝑎(3)of )00 and
(𝑎
(3)

of )10 [1, 5, 27], whereas the real and imaginary parts of
(𝑎
(3)

of )11 remain unexplored. Below we present the signatures
of these four coefficients so they can be directly studied in
experiments.

3. Neutron Decay

For the transition amplitude in (1) describing beta decay of a
neutron we write the nuclear current in the form

𝐽
𝛼
= 𝑢𝑝𝛾

𝛼
(1 + 𝜆𝛾5) 𝑢𝑛, (2)

where 𝑢𝑛 and 𝑢𝑝 represent the neutron and proton, respec-
tively, and 𝜆 = 𝑔𝐴/𝑔𝑉 is the ratio between the axial and
vector couplings. It is important to emphasize that Lorentz
violation modifies the neutrino dispersion relations and the
spinor solutions satisfy a modified equation of motion.

The sum over the final spin states allowing for a polarized
neutron in the direction n̂ can be written in terms of the
electron energy 𝐸 and velocity 𝛽 in the form [43]

∑

spin
|M|
2
= 16𝑀

2

𝑛𝐶𝐸𝜔 (1 + 𝑎𝛽 ⋅
̂q̃ + 𝐴n̂ ⋅ 𝛽 + 𝐵n̂ ⋅ ̂q̃) , (3)

where Lorentz-violating effects appear in the form of an
effective momentum ̂q̃ = (q + a(3)of −

∘

𝑎

(3)

of q̂)/𝜔 for the antineu-
trino, with the isotropic component of 𝑎(3)of denoted by ∘𝑎(3)of =
(𝑎
(3)

of )00/√4𝜋.The constant factor is given by𝐶 = 𝐺
2
𝐹|𝑉𝑢𝑑|

2
(1+

3𝜆
2
), the nucleon mass is𝑀𝑛, and the correlation parameters

are given by the conventional definitions [2]

𝑎 =

1 − 𝜆
2

1 + 3𝜆
2
, 𝐴 = −

2𝜆 (𝜆 + 1)

1 + 3𝜆
2
, 𝐵 = 2

𝜆 (𝜆 − 1)

1 + 3𝜆
2
.

(4)

The decay rate is given by

𝑑Γ =

1

4𝑀
2
𝑛

∫

𝑑
3
𝑝

(2𝜋)
3
2𝐸

𝑑
3
𝑞

(2𝜋)
3
2𝜔

𝐹 (𝑍, 𝐸)

× ∑

spin
|M|
2
2𝜋𝛿 (𝐸𝐴 − 𝐸𝐵 − 𝐸 − 𝜔) ,

(5)

where the Fermi function has been included to incorporate
the electrostatic interaction between the proton (𝑍 = 1)
and the outgoing electron. Integrating over the antineutrino
energy 𝜔 and using 𝑑

3
𝑝 = |p|𝐸 𝑑𝐸 𝑑Ω𝑒 and 𝑑

3
𝑞 =

(𝜔
2
+ 2𝜔

∘

𝑎

(3)

of )𝑑𝜔𝑑Ω], we can write the electron differential
spectrum

𝑑Γ

𝑑Ω𝑒 𝑑Ω] 𝑑𝑇
=

𝐶

(2𝜋)
5
𝐹 (𝑍, 𝐸) |p| 𝐸 (𝜔20 + 2𝜔0

∘

𝑎

(3)

of )

× (1 + 𝑎𝛽 ⋅ ̂q̃ + 𝐴n̂ ⋅ 𝛽 + 𝐵n̂ ⋅ ̂q̃) ,
(6)

with 𝜔0 = 𝑇0 − 𝑇. The kinetic energy of the electron is given
by 𝑇 = 𝐸 − 𝑚𝑒, and 𝑇0 denotes the maximum kinetic energy
available in the decay.

3.1. Unpolarized Neutrons. Experiments with unpolarized
neutrons (n̂ = 0) can be classified into two categories: those
that only measure the electron spectrum and those in which
the relative orientation between the two emitted leptons can
be identified, relevant to the measurement of the electron-
antineutrino asymmetry 𝑎 defined in (4). The signatures of
Lorentz violation for these two cases are presented below.
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3.1.1. Spectrum Measurements. For experiments with unpo-
larized neutrons that onlymeasure the outgoing electrons, the
directions of the two final leptons can be integrated to reduce
the spectrum (6) to the form

𝑑Γ

𝑑𝑇

=

𝐶

2𝜋
3
𝐹 (𝑍, 𝑇) |p| (𝑇 + 𝑚𝑒) (𝜔

2

0 + 2
∘

𝑎

(3)

of 𝜔0) . (7)

This expression shows that the Lorentz-violating modifi-
cation to the antineutrino spinors (3) plays no role and
the isotropic effect is purely kinematic due to the modified
antineutrino phase space. The effect of Lorentz violation
appears as a small perturbation of the beta decay spectrum,
similar to the effect in two-neutrino double beta decay [6].
The energy dependence of themodification introduced by the
isotropic coefficient ∘𝑎(3)of can be used to determine the relevant
energy for studying this modification, thus serving as a guide
for a future experimental search of this effect.

The exact value requires a numerical solution due to the
involved energy dependence of the Fermi function; never-
theless, a reasonable estimate can be obtained by considering
that, for neutron decay, this function remains almost constant
for energies above 200 keV. Using this approximation, the
maximum of the Lorentz-invariant spectrum satisfies the
cubic equation

0 = 4𝑇
3
+ 2 (5𝑚𝑒 − 𝑇0) 𝑇

2
+ 𝑚𝑒 (5𝑚𝑒 − 4𝑇0) 𝑇 − 𝑚

2

𝑒𝑇0.
(8)

Using 𝑇0 = 780 keV and 𝑚𝑒 = 511 keV, we find that, in the
absence of Lorentz violation, the spectrum has its maximum
at 246 keV. In the presence of Lorentz violation, themaximum
gets shifted. Instead of the cubic equation (8), the maximum
of the modified spectrum satisfies the quartic equation

0 = 4𝑇
4
+ 2 (5𝑚𝑒 − 3𝑇0 − 3

∘

𝑎

(3)

of )𝑇
3

+ (2𝑇
2

0 + 5𝑚
2

𝑒 − 14𝑚𝑒𝑇0 + 4
∘

𝑎

(3)

of 𝑇0 − 14𝑚𝑒
∘

𝑎

(3)

of )𝑇
2

+ 2𝑚𝑒 (2𝑇
2

0 − 3𝑚𝑒𝑇0 − 3𝑚𝑒

∘

𝑎

(3)

of + 4
∘

𝑎

(3)

of 𝑇0)𝑇

+ (2𝑚
2

𝑒

∘

𝑎

(3)

of 𝑇0 + 𝑚
2

𝑒𝑇
2

0) .

(9)

Here we find a method to search for a nonzero value of
the coefficient ∘𝑎(3)of : the maximum of the spectrum can be
experimentally determined and its value can be replaced in
(9), which gives a linear equation for ∘𝑎(3)of .

It should be noticed that this shift in the maximum
of the spectrum can be small and the application of the
methodmentioned abovewill depend on the resolution of the
experiment. An equivalent method is the search for a direct
deviation of the experimental spectrum from the expected
prediction in the absence of Lorentz violation.This deviation
or residual spectrum reaches its maximum at a well defined
energy𝑇𝑚 which is independent of the size of

∘

𝑎

(3)

of and satisfies
the cubic equation

0 = 3𝑇
3

𝑚 + (7𝑚𝑒 − 2𝑇0) 𝑇
2

𝑚

+ 𝑚𝑒 (3𝑚𝑒 − 4𝑇0) 𝑇𝑚 − 𝑚
2

𝑒𝑇0.

(10)

For the numerical values used before, we find that the effect
of a nonzero coefficient ∘𝑎(3)of is maximal at 𝑇𝑚 = 406 keV;
hence, this is the region of the spectrum where deviations
from the conventional spectrum should be explored.The size
of the deviation corresponds to a direct measurement of the
magnitude of the coefficient ∘𝑎(3)of .

3.1.2. Electron-Antineutrino Asymmetry. The decay of unpo-
larized neutrons is also used to measure the antineutrino-
electron asymmetry 𝑎 in (3). The 𝑎CORN experiment has
a proton detector and an electron detector aligned perpen-
dicular to the neutron beam, in which only decay products
emitted along the axis of the detectors are analyzed [28]. The
design of the experiment allows identifying events in which
the two leptons emitted are parallel 𝑁+ and antiparallel 𝑁−,
which can be determined from the spectrum and time-of-
flight measurements. Since the directionality of the emitted
antineutrino can be inferred from the measurement, we have
access to the anisotropic coefficients (𝑎(3)of )1𝑚, with𝑚 = 0, ±1.

Let us define the number of events in a given direction as

𝑁(𝑇) =

𝑑Γ

𝑑𝑇𝑑Ω𝑒 𝑑Ω]

= 𝐶 (𝑇) (1 + 𝑎𝛽 ⋅ ̂q̃)(1 +
2𝑎
(3)

of
𝜔0

) ,

(11)

where we have defined the function 𝐶(𝑇) = 𝐶𝐹(𝑍,

𝑇)|p|𝐸𝜔20/(2𝜋)
5 and the coefficient 𝑎(3)of involves isotropic

(𝑎
(3)

of )00 and anisotropic components (𝑎(3)of )1𝑚.The experimen-
tal asymmetry 𝑎exp is defined as

𝑎exp =
𝑁+ − 𝑁−

𝑁+ + 𝑁−

, (12)

which provides a directmeasure of the parameter 𝑎 defined in
(4). From the number of events in a determined orientation
given by (11), we find that at leading order the experimental
asymmetry (12) becomes

𝑎exp = 𝑎




𝛽




+ √

3

𝜋

(𝑎
2𝛽2 − 1)

𝜔0

(𝑎
(3)

of )
lab

10
, (13)

where the first term corresponds to the conventional expres-
sion for determining the parameter 𝑎, with the electron speed
given in terms of its kinetic energy as |𝛽| = √𝑇(𝑇 + 2𝑚𝑒)/(𝑇+
𝑚𝑒). The second term in (13) corresponds to the Lorentz-
violating part written in the laboratory frame. Direct com-
parison between different experimental searches for Lorentz
violation in a physically meaningful way requires a common
reference frame, for which the Sun-centered frame is widely
used in the literature for reporting constraints on SME
coefficients [1]. The transformation to this frame is obtained
by a sequence of rotations of the form [27]

(𝑎
(3)

of )
lab

10
= ∑

𝑚

𝑒
𝑖𝑚𝜔
⊕
𝑇
⊕

𝑑
(1)

0𝑚 (−𝜒) (𝑎
(3)

of )1𝑚
, (14)

where 𝑑(1)0𝑚(−𝜒) are the little Wigner matrices and 𝜒 is the
colatitude of the experiment.The dependence on the sidereal
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time 𝑇⊕ is a consequence of the variation of the coupling
between the SME coefficient and the antineutrino direction
of propagation due to the Earth rotation with frequency𝜔⊕ ≃
2𝜋/(23 h 56 min). The explicit form of expression (14) is

(𝑎
(3)

of )
lab

10
= cos𝜒(𝑎(3)of )10

+ √2 sin𝜒 Im (𝑎
(3)

of )11
sin𝜔⊕𝑇⊕

− √2 sin𝜒Re (𝑎(3)of )11 cos𝜔⊕𝑇⊕.

(15)

Equation (13) shows that the effect of Lorentz violation
becomes more noticeable near the endpoint; however, for
electron energies above 400 keV the measurement of the
asymmetry becomes hard because the low energy of the
protons makes the proper identification of 𝑁+ and 𝑁−

using the proton time-of-flight method difficult. In order to
properly measure the asymmetry, the beta spectrometer runs
in the range 50 to 350 keV [28].

Another experiment designed to measure the parameter
𝑎 is 𝑎SPECT, in which a magnetic field perpendicular to
the neutron beam guides the protons emitted in the decay
towards a proton detector for a precise measurement of
the proton spectrum [29]. Protons emitted in the opposite
direction of the detector are reflected by an electrostatic
mirror; thus, the detector can examine protons emitted in
all directions. This feature of the experimental setup makes
𝑎SPECT insensitive to the Lorentz-violating anisotropies
produced by the coefficients (𝑎(3)of )1𝑚. Nonetheless, data col-
lected with the electrostatic mirror switched off allowing that
only a 2𝜋 coverage can be used to implement a search for
anisotropies [44].

3.2. Polarized Neutrons. Experiments with polarized neu-
trons that measure both the beta electron and the recoiling
proton can reconstruct the direction of the emitted antineu-
trino. Experiments such as 𝑎𝑏BA [31], emiT [32], PERC
[35], PERKEO [30], and UCNB [36] could access anisotropic
effects due to Lorentz violation. For instance, unconventional
energy- and direction-dependent effects could be studied
by an experimental setup for the measurement of the spin-
antineutrino asymmetry parameter 𝐵 in (3).

For the decay of polarized neutrons, Lorentz-violating
effects appear due to the modified spinor solutions as well
as the unconventional antineutrino phase space. Although
the antineutrino escapes unmeasured, the direction of its
momentum can be inferred if both the electron and the pro-
ton are emitted in the same direction because conservation of
momentum along the neutron spin axis can be used to write

0 = n̂ ⋅ q + n̂ ⋅ p + n̂ ⋅ k

= |q| cos 𝜃] + |p| cos 𝜃𝑒 + |k| cos 𝜃𝑝.
(16)

For this reason, an asymmetry for coincident events in
which both the electron and the proton are emitted in the
same direction is appropriate for the determination of the
parameter 𝐵 that appears with the antineutrino momentum
[45].

The number of events in which the electron and the
proton are emitted along the direction of the neutron spin is
𝑁
++
= 𝑄
++
𝐶(𝑇), where

𝑄
++
= ∫

Ω+
𝑒

𝑑Ω𝑒 ∫

Ω−]

𝑑Ω](1 +
2𝑎
(3)

of
𝜔0

)

× (1 + 𝑎𝛽 ⋅ ̂q̃ + 𝐴n̂ ⋅ 𝛽 + 𝐵n̂ ⋅ ̂q̃) .

(17)

The integration ranges for the electron and the antineutrino
are related by the constraint (16), which implies that when
the proton is emitted perpendicular to the neutron spin then
the antineutrino polar angle 𝜃] can take the maximum value
cos 𝜃] = −𝑟 cos 𝜃𝑒, with 𝑟 = √𝑇(𝑇 + 2𝑚𝑒)/(𝑇0 − 𝑇). The
integration regions are given by Ω−] : 𝜙] ∈ [0, 2𝜋], cos 𝜃] ∈
[−1, −𝑟 cos 𝜃𝑒] and Ω

+
𝑒 : 𝜙𝑒 ∈ [0, 2𝜋], cos 𝜃𝑒 ∈ [0, cos 𝜃max

𝑒 ],
where we have defined cos 𝜃max

𝑒 = 1(𝑟
−1
) for 𝑟 < 1 (𝑟 > 1).

The number of events in which the electron and the proton
are emitted against the direction of the neutron spin 𝑁−− =
𝑄
−−
𝐶(𝑇) is found directly from𝑁

++ by reversing the sign of
the parameters 𝐴 and 𝐵. We can now define the following
experimental asymmetry:

𝐵exp =
𝑁
−−
− 𝑁
++

𝑁
−−
+ 𝑁
++

=

𝑄
−−
− 𝑄
++

𝑄
−−
+ 𝑄
++
. (18)

Depending on the range of the parameter 𝑟 and keeping
leading-order terms, the experimental asymmetry can be
written in the form 𝐵exp = (𝐵exp)0 +𝛿𝐵exp, where the conven-
tional asymmetry takes the form [45]

(𝐵exp)0 =
4

3

{
{
{
{

{
{
{
{

{

[𝐴𝛽 (2𝑟 − 3) + 𝐵 (3 − 𝑟
2
)]

8 − 4𝑟 + 𝑎𝛽 (𝑟
2
− 2)

, 𝑟 < 1

−𝐴𝛽 + 2𝐵𝑟

4𝑟 − 𝑎𝛽

, 𝑟 > 1,

(19)

and the Lorentz-violating modification can be written as

𝛿𝐵exp = 𝛿𝐵C + 𝛿𝐵A
𝑠

sin𝜔⊕𝑇⊕

+ 𝛿𝐵A
𝑐

cos𝜔⊕𝑇⊕,
(20)

which explicitly shows the sidereal-time dependence of this
quantity. The amplitudes 𝛿𝐵C, 𝛿𝐵A

𝑠

, and 𝛿𝐵A
𝑐

are functions
of the location of the apparatus and the electron energy.They
are explicitly presented in Appendix A.1.

4. Spectrum Endpoint Measurements

Direct measurements of the neutrino mass 𝑚] can be per-
formed by searching for a spectral distortion near the end-
point of beta decay, for which tritium appears as an ideal
isotope [46]. In an isotropic decay, the anisotropies produced
by Lorentz violation are usually unobservable; nonethe-
less, the use of inhomogeneous magnetic fields for guiding
electrons into electrostatic filters (MAC-E) allows selecting
electrons emitted in determined directions. Superconducting
magnets produce the guiding magnetic field for the electrons
isotropically emitted from the decay of gaseous tritium.
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Electrons with very long paths within the tritium source
exhibit a high scattering probability; therefore, only electrons
with short paths are accepted to be analyzed. Varying the
magnetic field from a value in the tritium source 𝐵𝑆 to a
maximum value𝐵max creates a cone of acceptance of aperture
𝜃0, with

sin 𝜃0 = √
𝐵𝑆

𝐵max
. (21)

Electrons emitted at angles 𝜃 > 𝜃0 are reflected due to a
magnetic mirror effect. This selection is what permits the
study of anisotropic effects.

Given the configuration of tritium-decay experiments,
the sequence of rotations implemented for relating the
components of 𝑎(3)of in the laboratory frame to the relevant
components in the Sun-centered frame differs from the one
used in the previous section and it takes the explicit form [5]

(𝑎
(3)

of )
lab
= ∑

𝑗𝑚

𝑒
𝑖𝑚𝜔
⊕
𝑇
⊕

∑

𝑚𝑚

𝑌𝑗𝑚 (𝜃, 𝜙) 𝑑
(𝑗)

𝑚𝑚
(−𝜋/2)

× 𝑒
−𝑖𝑚


𝜉
𝑑
(𝑗)

𝑚𝑚
(−𝜒) (𝑎

(3)

of )𝑗𝑚
,

(22)

where the extra rotations implemented in this transformation
set the laboratory 𝑧-axis along the direction of the axis of the
experiment determined by the magnetic field in the decay
region.The spherical harmonics 𝑌𝑗𝑚(𝜃, 𝜙) are written in this
laboratory frame and 𝜉 indicates the angle formed by the
magnetic field at the tritium source measured counterclock-
wise from the local north.This choice allows us tomake use of
symmetry properties of the spherical harmonics to perform
the integration within the acceptance cone ΔΩ : 𝜃 ∈ [0, 𝜃0],
𝜙 ∈ [0, 2𝜋] with ease.

Conventionally, near the endpoint, the spectrum takes the
form

𝑑Γ

𝑑𝑇

= 3𝐶𝑅 [(Δ𝑇)
2
−

1

2

𝑚
2

]] , (23)

where𝐶𝑅 is approximately constant and Δ𝑇 = 𝑇0−𝑇 denotes
the kinetic energy of the electron measured from the point
𝑇0 where the spectrum would end in the absence of neutrino
mass. In the presence of Lorentz violation, the spectrum gets
modified by the four components of the coefficient 𝑎(3)of in the
form 𝑇0 → 𝑇0 + 𝛿𝑇, with

𝛿𝑇 =

1

ΔΩ

∫

ΔΩ

𝑑Ω](𝑎
(3)

of )
lab

= 𝛿𝑇C + 𝛿𝑇A
𝑠

sin𝜔⊕𝑇⊕ + 𝛿𝑇A
𝑐

cos𝜔⊕𝑇⊕,
(24)

which shows the sidereal-time dependence of this modifi-
cation. The amplitudes 𝛿𝑇C, 𝛿𝑇A

𝑠

, and 𝛿𝑇A
𝑐

are explicitly
presented in Appendix A.2. The energy independence of 𝛿𝑇
allows a direct determination of the integrated spectrum

Γ (𝑇) = ∫

𝑇eff

𝑇

𝑑Γ

𝑑𝑇

𝑑𝑇


= 𝐶𝑅 [(𝑇eff − 𝑇)
3
−

3

2

𝑚
2

] (𝑇eff − 𝑇)] ,

(25)

where the effective null-mass endpoint energy 𝑇eff = 𝑇0 + 𝛿𝑇
is a fit parameter that, in the presence of Lorentz violation,
depends on the orientation of the experiment and the loca-
tion of the laboratory and varies with sidereal time.The use of
MAC-E filters was implemented in the past by theMainz [37]
and Troitsk [38] experiments, and unprecedent sensitivity
will be achieved in KATRIN [39]. These experiments appear
as ideal setups to search for the signals of Lorentz violation
described here.

The study of Lorentz-violating neutrinos shows inter-
esting features absent in other sectors. In particular, the
incorporation of Dirac andMajorana couplings as well as the
implementation of the seesawmechanism that suppresses the
left-right handed mixing produces terms in the Hamiltonian
which appear as the product of the neutrino mass and a
Majorana coefficient for CPT-even Lorentz violation [27].
Some of these mass-induced coefficients (𝑐(2)eff )𝑗𝑚 modify the
neutrino mass measured as the parameter in spectrum (23)
in the form 𝑚

2
] → 𝑚

2
] + 𝛿𝑚

2, where the Lorentz-violating
modification can be written in the form

𝛿𝑚
2
= 𝑚
2

C + 𝑚
2

A
𝑠

sin𝜔⊕𝑇⊕ + 𝑚
2

A
𝑐

cos𝜔⊕𝑇⊕, (26)

to explicitly show the sidereal-time dependence of this
parameter that mimics a neutrino mass. The amplitudes𝑚2C,
𝑚
2
A
𝑠

, and 𝑚2A
𝑐

are explicitly presented in Appendix A.3. This
result shows that the experimental mass-squared parameter
𝑚
2 measured in the experiment includes the actual neutrino

mass 𝑚] and a Lorentz-violating component that depends
on the orientation and location of the laboratory as well as
sidereal time. Since there is no restriction on the sign of 𝛿𝑚2,
the coefficients (𝑐(2)eff )𝑗𝑚 could even produce a negative 𝑚2

without a tachyonic neutrino [47].

5. Conclusions

In this paper, the low-energy signatures of Lorentz invari-
ance violation in neutrinos in the context of the Standard
Model Extension have been presented. The main focus is
on a particular type of countershaded operator [5] that is
unobservable in neutrino oscillations and modifications to
the neutrino velocity. The main features that could arise in
measurements of neutron decay as well as studies of the
endpoint of beta decay are described. Different experimental
setups can be sensitive to the effects of this type of Lorentz
violation, including a distortion of the entire beta spectrum
in neutron decay, modifications to the measurement of the
antineutrino-electron correlation in the decay of unpolarized
neutrons, a correction to the electron-proton coincidence
asymmetry in the decay of polarized neutrons, and a shift in
the endpoint energy of the beta decay spectrum. A remark
on the effects of a mass-induced coefficient is also presented
in the context of tritium decay because these coefficients can
mask the effects of the actual neutrino mass in novel ways.

Experimental signatures of the breakdown of Lorentz
symmetry in the neutrino sector have been mostly explored
using high-energy and interferometric phenomena; nonethe-
less, the high precision of low-energy experiments studying
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single beta decay can play a key complementary role in the
search for deviations from exact Lorentz in variance.

Appendix

A. Sidereal Amplitudes

A.1. Sidereal Amplitudes for 𝛿𝐵. The amplitudes for the
sidereal decomposition of the Lorentz-violating experimental
asymmetry defined in (20) are given by

𝛿𝐵C = √
3

𝜋

𝑓 (𝑇) cos𝜒(𝑎(3)of )10,

𝛿𝐵A
𝑠

= √
6

𝜋

𝑓 (𝑇) sin𝜒 Im (𝑎
(3)

of )11
,

𝛿𝐵A
𝑐

= −√
6

𝜋

𝑓 (𝑇) sin𝜒Re (𝑎(3)of )11,

(A.1)

where 𝑓(𝑇) is a function of the electron’s kinetic energy and
other parameters. Depending on the value of the factor 𝑟, the
function 𝑓(𝑇) takes the form

𝑓 (𝑇)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

((𝐴𝛽 − 𝐵𝑟) (2 − 𝑟
2
) − (𝐵exp)0

×[(

2𝑟
2

3

+

2𝛽𝑟

3

− 𝛽 − 2) + 𝑎𝛽(1 −

2𝑟
3

5

)])

×(8 − 4𝑟 + 𝑎𝛽 (𝑟
2
− 2))

−1
, 𝑟 < 1

(𝐴𝛽 − 𝐵𝑟) + (𝐵exp)0 [2𝛽/3 + 8𝑟/3 − 6𝑎𝛽/5]

4𝑟 − 𝑎𝛽

,

𝑟 < 1.

(A.2)

A.2. Sidereal Amplitudes for 𝛿𝑇. The amplitudes for the
sidereal decomposition of the Lorentz-violating shift of the
endpoint energy defined in (24) are given by

𝛿𝑇C =
∘

𝑎

(3)

of − √
3

4𝜋

cos2
𝜃0

2

sin𝜒 cos 𝜉(𝑎(3)of )10,

𝛿𝑇A
𝑠
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3

2𝜋
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𝜃0

2

(sin 𝜉Re (𝑎(3)of )11

− cos 𝜉 cos𝜒 Im (𝑎
(3)

of )11
) ,

𝛿𝑇A
𝑐

= −√
3

2𝜋

cos2
𝜃0

2

(sin 𝜉 Im (𝑎
(3)

of )11

+ cos 𝜉 cos𝜒Re (𝑎(3)of )11) .

(A.3)

A.3. Sidereal Amplitudes for 𝛿𝑚2. The amplitudes for the
sidereal decomposition of the Lorentz-violating shift of the
neutrino mass parameter defined in (26) are given by

𝑚
2

C = √
3

𝜋

cos2
𝜃0

2

sin𝜒 cos 𝜉(𝑐(2)eff )10,

𝑚
2

A
𝑠

= √
6

𝜋

cos2
𝜃0

2

× [sin 𝜉Re (𝑐(2)eff )11 − cos𝜒 cos 𝜉 Im (𝑐
(2)

eff )11
] ,

𝑚
2

A
𝑐

= √
6

𝜋

cos2
𝜃0

2

× [sin 𝜉 Im (𝑐
(2)

eff )11
+ cos𝜒 cos 𝜉Re (𝑐(2)eff )11] .

(A.4)
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