## Quark mass and field anomalous dimensions to $\mathcal{O}\left(\alpha_{s}^{5}\right)$

P.A. Baikov, ${ }^{a}$ K.G. Chetyrkin ${ }^{b}$ and J.H. Kühn ${ }^{b}$<br>${ }^{a}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 1(2), Leninskie gory, Moscow 119991, Russian Federation<br>${ }^{b}$ Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 726128 Karlsruhe, Germany<br>E-mail: baikov@theory.sinp.msu.ru, Konstantin. Chetyrkin@kit.edu, johann.kuehn@kit.edu

Abstract: We present the results of the first complete analytic calculation of the quark mass and field anomalous dimensions to $\mathcal{O}\left(\alpha_{s}^{5}\right)$ in QCD.

Keywords: Renormalization Group, QCD, Quark Masses and SM Parameters
ArXiv ePrint: 1402.6611

## Contents

1 Introduction ..... 1
2 Technical preliminaries ..... 2
3 Results ..... 3
4 Discussion ..... 4
5 Applications ..... 6
5.1 RGI mass ..... 6
5.2 Higgs decay into quarks ..... 7
6 Conclusions ..... 8

## 1 Introduction

The quark masses depend on a renormalization scale. The dependence is usually referred to as "running" and is governed by the quark mass anomalous dimension, $\gamma_{m}$, defined as:

$$
\begin{equation*}
\left.\mu^{2} \frac{d}{d \mu^{2}} m\right|_{g^{0}, m^{0}}=m \gamma_{m}\left(a_{s}\right) \equiv-m \sum_{i \geq 0} \gamma_{i} a_{s}^{i+1} \tag{1.1}
\end{equation*}
$$

where $a_{s}=\alpha_{s} / \pi=g^{2} /\left(4 \pi^{2}\right), g$ is the renormalized strong coupling constant and $\mu$ is the normalization scale in the customarily used $\overline{\mathrm{MS}}$ renormalization scheme. Up to and including four loop level the anomalous dimension is known since long [1-5]. In this paper we will describe the results of calculation of $\gamma_{m}$ and a related quantity - the quark field anomalous dimension - in the five-loop order.

The evaluation of the quark mass anomalous dimension with five-loop accuracy has important implications. The Higgs boson decay rate into charm and bottom quarks is proportional to the square of the respective quark mass at the scale of $m_{H}$ and the uncertainty from the presently unknown 5-loop terms in the running of the quark mass is of order $10^{-3}$. This is comparable to the precision advocated for experiments e.g. at TLEP [6]. Similarly, the issue of Yukawa unification is affected by precise predictions for the anomalous quark mass dimension.

The paper is organized as follows. The next section deals with the overall set-up of the calculations. Then we present our results (section 3), and a brief discussion (section 4) as well as a couple of selected applications (section 5). Our short conclusions are given in section 6 .

## 2 Technical preliminaries

To calculate $\gamma_{m}$ one needs to find the so-called quark mass renormalization constant, $Z_{m}$, which is defined as the ratio of the bare and renormalized quark masses, viz.

$$
\begin{equation*}
Z_{m}=\frac{m^{0}}{m}=1+\sum_{i, j}^{0<j \leq i}\left(Z_{m}\right)_{i j} \frac{a_{s}^{i}}{\epsilon^{j}} . \tag{2.1}
\end{equation*}
$$

Within the $\overline{\mathrm{MS}}$ scheme $[7,8]$ the coefficients $\left(Z_{m}\right)_{i j}$ are just numbers $[9] ; \epsilon \equiv 2-D / 2$ and $D$ stands for the space-time dimension. Combining eqs. (1.1), (2.1) and using the RG-invariance of $m^{0}$, one arrives at the following formula for $\gamma_{m}$ :

$$
\begin{equation*}
\gamma_{m}=\sum_{i \geq 0}\left(Z_{m}\right)_{i 1} i a_{s}^{i} . \tag{2.2}
\end{equation*}
$$

To find $Z_{m}$ one should compute the vector and scalar parts of the quark self-energy $\Sigma_{V}\left(p^{2}\right)$ and $\Sigma_{S}\left(p^{2}\right)$. In our convention, the bare quark propagator is proportional to $\left[\not p\left(1+\Sigma_{V}^{0}\left(p^{2}\right)\right)-m_{q}^{0}\left(1-\Sigma_{S}^{0}\left(p^{2}\right)\right)\right]^{-1}$. Requiring the finiteness of the renormalized quark propagator and keeping only massless and terms linear in $m_{q}$, one arrives at the following recursive equations to find $Z_{m}$

$$
\begin{equation*}
Z_{m} Z_{2}=1+K_{\epsilon}\left\{Z_{m} Z_{2} \Sigma_{S}^{0}\left(p^{2}\right)\right\}, \quad Z_{2}=1-K_{\epsilon}\left\{Z_{2} \Sigma_{V}^{0}\left(p^{2}\right)\right\}, \tag{2.3}
\end{equation*}
$$

where $K_{\epsilon}\{f(\epsilon)\}$ stands for the singular part of the Laurent expansion of $f(\epsilon)$ in $\epsilon$ near $\epsilon=0$ and $Z_{2}$ is the quark wave function renormalization constant. Eqs. (2.3) express $Z_{m}$ through massless propagator-type (that is dependent on one external momentum only) Feynman integrals (FI), denoted as $p$-integrals below.

Eqs. (2.3) require the calculation of a large number ${ }^{1}$ of the five-loop p-integrals to find $Z_{m}$ and $Z_{2}$ to $\mathcal{O}\left(\alpha_{s}^{5}\right)$.

At present there exists no direct way to analytically evaluate five-loop p-integrals. However, according to (2.1) for a given five-loop p-integral we need to know only its pole part in $\epsilon$ in the limit of $\epsilon \rightarrow 0$. A proper use of this fact can significantly simplify our task. The corresponding method - so-called Infrared Rearrangement (IRR)—first suggested in [11] and elaborated further in [12-14] allows to effectively decrease number of loops to be computed by one. ${ }^{2}$ In its initial version IRR was not really universal; it was not applicable in some (though rather rare) cases of complicated FI's. The problem was solved by elaborating a special technique of subtraction of IR divergences - the $R^{*}$-operation $[15$, 16]. This technique succeeds in expressing the UV counterterm of every L-loop Feynman integral in terms of divergent and finite parts of some (L-1)-loop massless propagators.

In our case $L=5$ and, using IRR, one arrives at around $10^{5}$ four-loop p-integrals. These can, subsequently, be reduced to 28 four-loop master-integrals, which are known analytically, including their finite parts, from $[17,18]$ as well as numerically from [19].

[^0]We need, thus, to compute around $10^{5}$ p-integrals. Their singular parts, in turn, can be algebraically reduced to only 28 master 4 -loop p-integrals. The reduction is based on evaluating sufficiently many terms of the $1 / D$ expansion [20] of the corresponding coefficient functions [21].

All our calculations have been performed on a SGI ALTIX 24-node IB-interconnected cluster of eight-cores Xeon computers using parallel MPI-based [22] as well as threadbased [23] versions of FORM [24].

## 3 Results

Our result for the anomalous dimension

$$
\gamma_{m}=-\sum_{i=0}^{\infty}\left(\gamma_{m}\right)_{i} a_{s}^{i+1}
$$

reads:

$$
\begin{align*}
\left(\gamma_{m}\right)_{0}=1, & \quad\left(\gamma_{m}\right)_{1}=\frac{1}{16}\left\{\frac{202}{3}+n_{f}\left[-\frac{20}{9}\right]\right\}  \tag{3.1}\\
\left(\gamma_{m}\right)_{2}= & \frac{1}{64}\left\{1249+n_{f}\left[-\frac{2216}{27}-\frac{160}{3} \zeta_{3}\right]+n_{f}^{2}\left[-\frac{140}{81}\right]\right\}  \tag{3.2}\\
\left(\gamma_{m}\right)_{3}= & \frac{1}{256}\left\{\frac{4603055}{162}+\frac{135680}{27} \zeta_{3}-8800 \zeta_{5}\right. \\
& +n_{f}\left[-\frac{91723}{27}-\frac{34192}{9} \zeta_{3}+880 \zeta_{4}+\frac{18400}{9} \zeta_{5}\right] \\
& \left.+n_{f}^{2}\left[\frac{5242}{243}+\frac{800}{9} \zeta_{3}-\frac{160}{3} \zeta_{4}\right]+n_{f}^{3}\left[-\frac{332}{243}+\frac{64}{27} \zeta_{3}\right]\right\}  \tag{3.3}\\
\left(\gamma_{m}\right)_{4}= & \frac{1}{4^{5}}\{
\end{aligned} \begin{aligned}
& \frac{99512327}{162}+\frac{46402466}{243} \zeta_{3}+96800 \zeta_{3}^{2}-\frac{698126}{9} \zeta_{4} \\
& -\frac{231757160}{243} \zeta_{5}+242000 \zeta_{6}+412720 \zeta_{7} \\
& +n_{f}\left[-\frac{150736283}{1458}-\frac{12538016}{81} \zeta_{3}-\frac{75680}{9} \zeta_{3}^{2}+\frac{2038742}{27} \zeta_{4}\right. \\
& \left.+\frac{49876180}{243} \zeta_{5}-\frac{638000}{9} \zeta_{6}-\frac{1820000}{27} \zeta_{7}\right]  \tag{3.4}\\
& +n_{f}^{2}\left[\frac{1320742}{729}+\frac{2010824}{243} \zeta_{3}+\frac{46400}{27} \zeta_{3}^{2}-\frac{166300}{27} \zeta_{4}-\frac{264040}{81} \zeta_{5}+\frac{92000}{27} \zeta_{6}\right] \\
& \left.+n_{f}^{3}\left[\frac{91865}{1458}+\frac{12848}{81} \zeta_{3}+\frac{448}{9} \zeta_{4}-\frac{5120}{27} \zeta_{5}\right]+n_{f}^{4}\left[-\frac{260}{243}-\frac{320}{243} \zeta_{3}+\frac{64}{27} \zeta_{4}\right]\right\} .
\end{align*}
$$

Here $\zeta$ is the Riemann zeta-function ( $\zeta_{3}=1.202056903 \ldots, \zeta_{4}=\pi^{4} / 90, \zeta_{5}=$ $1.036927755 \ldots, \zeta_{6}=1.017343062 \ldots$ and $\zeta_{7}=1.008349277 \ldots$ ). Note that in fourloop order we exactly ${ }^{3}$ reproduce well-known results obtained in $[4,5]$. The $n_{f}^{3}$ and $n_{f}^{4}$

[^1]terms in (3.4) are in full agreement with the results derived previously on the basis of the $1 / n_{f}$ method in [25-27].

For completeness we present below the result for the quark field anomalous dimension $\gamma_{2}=-\sum_{i=0}^{\infty}\left(\gamma_{2}\right)_{i} a_{s}^{i+1}:$

$$
\begin{align*}
\left(\gamma_{2}\right)_{4}= & \frac{1}{4^{5}}\left\{\frac{2798900231}{7776}+\frac{17969627}{864} \zeta_{3}+\frac{13214911}{648} \zeta_{3}^{2}+\frac{16730765}{864} \zeta_{4}-\frac{832567417}{3888} \zeta_{5}\right. \\
& +\frac{40109575}{1296} \zeta_{6}+\frac{124597529}{1728} \zeta_{7} \\
& +n_{f}\left[-\frac{861347053}{11664}-\frac{274621439}{11664} \zeta_{3}+\frac{1960337}{972} \zeta_{3}^{2}+\frac{465395}{1296} \zeta_{4}\right. \\
& \left.+\frac{22169149}{5832} \zeta_{5}+\frac{1278475}{1944} \zeta_{6}+\frac{3443909}{216} \zeta_{7}\right] \\
& +n_{f}^{2}\left[\frac{37300355}{11664}+\frac{1349831}{486} \zeta_{3}-\frac{128}{9} \zeta_{3}^{2}-\frac{27415}{54} \zeta_{4}-\frac{12079}{27} \zeta_{5}-\frac{800}{9} \zeta_{6}-\frac{1323}{2} \zeta_{7}\right] \\
& \left.+n_{f}^{3}\left[-\frac{114049}{8748}-\frac{1396}{81} \zeta_{3}+\frac{208}{9} \zeta_{4}\right]+n_{f}^{4}\left[\frac{332}{729}-\frac{64}{81} \zeta_{3}\right]\right\} \tag{3.5}
\end{align*}
$$

The above result is presented for the Feynman gauge; the coefficients $\left(\gamma_{2}\right)_{i}$ with $i \leq 3$ can be found in [28] (for the case of a general covariant gauge and $\mathrm{SU}(\mathrm{N})$ gauge group).

## 4 Discussion

In numerical form $\gamma_{m}$ reads

$$
\begin{align*}
\gamma_{m}= & -a_{s}-a_{s}^{2}\left(4.20833-0.138889 n_{f}\right) \\
& -a_{s}^{3}\left(19.5156-2.28412 n_{f}-0.0270062 n_{f}^{2}\right) \\
& -a_{s}^{4}\left(98.9434-19.1075 n_{f}+0.276163 n_{f}^{2}+0.00579322 n_{f}^{3}\right) \\
& -a_{s}^{5}\left(559.7069-143.6864 n_{f}+7.4824 n_{f}^{2}+0.1083 n_{f}^{3}-0.000085359 n_{f}^{4}\right) \tag{4.1}
\end{align*}
$$

and

$$
\begin{align*}
& \gamma_{m} \overline{\overline{n_{f}=3}}-a_{s}-3.79167 a_{s}^{2}-12.4202 a_{s}^{3}-44.2629 a_{s}^{4}-198.907 a_{s}^{5}, \\
& \gamma_{m} \overline{\overline{n_{f}=4}}-a_{s}-3.65278 a_{s}^{2}-9.94704 a_{s}^{3}-27.3029 a_{s}^{4}-111.59 a_{s}^{5}, \\
& \gamma_{m} \overline{\overline{n_{f}=5}}-a_{s}-3.51389 a_{s}^{2}-7.41986 a_{s}^{3}-11.0343 a_{s}^{4}-41.8205 a_{s}^{5}, \\
& \gamma_{m} \overline{\overline{n_{f}=6}}-a_{s}-3.37500 a_{s}^{2}-4.83867 a_{s}^{3}+4.50817 a_{s}^{4}+9.76016 a_{s}^{5} . \tag{4.2}
\end{align*}
$$

Note that significant cancellations between $n_{f}^{0}$ and $n_{f}^{1}$ terms for the values of $n_{f}$ around 3 or so persist also at five-loop order. As a result we observe a moderate growth of the series in $a_{s}$ appearing in the quark mass anomalous dimension at various values of active quark flavours (recall that even for scales as small as $2 \mathrm{GeV} a_{s} \equiv \frac{\alpha_{s}}{\pi} \approx 0.1$ ).

| $n_{f}$ | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $\left(\gamma_{m}\right)_{4}^{\text {exact }}$ | 198.899 | 111.579 | 41.807 | -9.777 |
| $\left(\gamma_{m}\right)_{4}^{\text {APAP }}[29]$ | 162.0 | 67.1 | -13.7 | -80.0 |
| $\left(\gamma_{m}\right)_{4}^{\text {APAP }}[30]$ | 163.0 | 75.2 | 12.6 | 12.2 |
| $\left(\gamma_{m}\right)_{4}^{\text {APAP }}[31]$ | 164.0 | 71.6 | -4.8 | -64.6 |

Table 1. The exact results for $\left(\gamma_{m}\right)_{4}$ together with the predictions made with the help of the original APAP method and its two somewhat modified versions.

Similar behavior shows up for $\gamma_{2}$ :

$$
\begin{align*}
\gamma_{2}= & -0.33333 a_{s}-a_{s}^{2}\left(-1.9583+0.08333 n_{f}\right) \\
& -a_{s}^{3}\left(-10.3370+1.0877 n_{f}-0.01157 n_{f}^{2}\right) \\
& -a_{s}^{4}\left(-53.0220+10.1090 n_{f}-0.27703 n_{f}^{2}-0.0023 n_{f}^{3}\right) \\
& -a_{s}^{4}\left(-310.0700+76.3260 n_{f}-4.6339 n_{f}^{2}+0.0085 n_{f}^{3}+0.00048 n_{f}^{4}\right) \tag{4.3}
\end{align*}
$$

and

$$
\begin{align*}
& \gamma_{2} \xlongequal[n_{f}=3]{ }-0.33333 a_{s}-1.7083 a_{s}^{2}-7.1779 a_{s}^{3}-25.2480 a_{s}^{4}-122.5300 a_{s}^{5}, \\
& \gamma_{2} \overline{\overline{n_{f}=4}}-0.33333 a_{s}-1.6250 a_{s}^{2}-6.1712 a_{s}^{3}-17.1610 a_{s}^{4}-78.2430 a_{s}^{5}, \\
& \gamma_{2} \overline{\overline{n_{f}=5}}-0.33333 a_{s}-1.5417 a_{s}^{2}-5.1877 a_{s}^{3}-9.6824 a_{s}^{4}-42.9240 a_{s}^{5}, \\
& \gamma_{2} \xlongequal[\overline{n_{f}=6}]{ }-0.33333 a_{s}-1.4583 a_{s}^{2}-4.2274 a_{s}^{3}-2.8251 a_{s}^{4}-16.4710 a_{s}^{5} . \tag{4.4}
\end{align*}
$$

It is instructive to compare our numerical result for $\left(\gamma_{m}\right)_{4}$

$$
\begin{equation*}
\left(\gamma_{m}\right)_{4}=559.71-143.6 n_{f}+7.4824 n_{f}^{2}+0.1083 n_{f}^{3}-0.00008535 n_{f}^{4} \tag{4.5}
\end{equation*}
$$

with a 15 years old prediction based on the "Asymptotic Páde Approximants" (APAP) method [29] (the $n_{f}^{4}$ term below was used as the input)

$$
\begin{equation*}
\left(\gamma_{m}\right)_{4}^{\mathrm{APAP}}=530-143 n_{f}+6.67 n_{f}^{2}+0.037 n_{f}^{3}-0.00008535 n_{f}^{4} \tag{4.6}
\end{equation*}
$$

Unfortunately, this impressively good agreement does not survive for fixed values of $n_{f}$ due to severe cancellations between different powers of $n_{f}$ as one can see from the table 1 .

The solution of eq. (1.1) reads:

$$
\begin{align*}
\frac{m(\mu)}{m\left(\mu_{0}\right)}= & \frac{c\left(a_{s}(\mu)\right)}{c\left(a_{s}\left(\mu_{0}\right)\right)}, \quad c(x)=\exp \left\{\int d x^{\prime} \frac{\gamma_{m}\left(x^{\prime}\right.}{\beta\left(x^{\prime}\right)}\right\}  \tag{4.7}\\
c(x)= & (x)^{\overline{\gamma_{0}}}\left\{1+d_{1} x+\left(d_{1}^{2} / 2+d_{2}\right) x^{2}+\left(d_{1}^{3} / 6+d_{1} d_{2}+d_{3}\right) x^{3}\right. \\
& \left.+\left(d_{1}^{4} / 24+d_{1}^{2} d_{2} / 2+d_{2}^{2} / 2+d_{1} d_{3}+d_{4}\right) x^{4}+\mathcal{O}\left(x^{5}\right)\right\} \tag{4.8}
\end{align*}
$$

$$
\begin{align*}
d_{1}= & -\bar{\beta}_{1} \bar{\gamma}_{0}+\bar{\gamma}_{1}  \tag{4.9}\\
d_{2}= & \bar{\beta}_{1}^{2} \bar{\gamma}_{0} / 2-\bar{\beta}_{2} \bar{\gamma}_{0} / 2-\bar{\beta}_{1} \bar{\gamma}_{1} / 2+\bar{\gamma}_{2} / 2  \tag{4.10}\\
d_{3}= & -\bar{\beta}_{1}^{3} \bar{\gamma}_{0} / 3+2 \bar{\beta}_{1} \bar{\beta}_{2} \bar{\gamma}_{0} / 3-\bar{\beta}_{3} \bar{\gamma}_{0} / 3+\bar{\beta}_{1}^{2} \bar{\gamma}_{1} / 3-\bar{\beta}_{2} \bar{\gamma}_{1} / 3-\bar{\beta}_{1} \bar{\gamma}_{2} / 3+\bar{\gamma}_{3} / 3  \tag{4.11}\\
d_{4}= & \bar{\beta}_{1}^{4} \bar{\gamma}_{0} / 4-3 \bar{\beta}_{1}^{2} \bar{\beta}_{2} \bar{\gamma}_{0} / 4+\bar{\beta}_{2}^{2} \bar{\gamma}_{0} / 4+\bar{\beta}_{1} \bar{\beta}_{3} \bar{\gamma}_{0} / 2-\bar{\beta}_{4} \bar{\gamma}_{0} / 4-\bar{\beta}_{1}^{3} \bar{\gamma}_{1} / 4 \\
& +\bar{\beta}_{1} \bar{\beta}_{2} \bar{\gamma}_{1} / 2-\bar{\beta}_{3} \bar{\gamma}_{1} / 4+\bar{\beta}_{1}^{2} \bar{\gamma}_{2} / 4-\bar{\beta}_{2} \bar{\gamma}_{2} / 4-\bar{\beta}_{1} \bar{\gamma}_{3} / 4+\bar{\gamma}_{4} / 4 . \tag{4.12}
\end{align*}
$$

Here $\bar{\gamma}_{i}=\left(\gamma_{m}\right)_{i} / \beta_{0}, \bar{\beta}_{i}=\beta_{i} / \beta_{0}$ and

$$
\beta\left(a_{s}\right)=-\sum_{i \geq 0} \beta_{i} a_{s}^{i+2}=-\beta_{0}\left\{\sum_{i \geq 0} \bar{\beta}_{i} a_{s}^{i+2}\right\}
$$

is the QCD $\beta$-function. Unfortunately, the coefficient $d_{4}$ in eq. (4.12) does depend on the yet unknown five-loop coefficient $\beta_{4}$ (up to four loops the $\beta$-function is known from [14, 32-39]).

Numerically, the $c$-function reads:

$$
c(x) \xlongequal[\overline{n_{f}=3}]{ } x^{4 / 9} c_{s}(x), c(x) \xlongequal[\overline{n_{f}=4}]{ } x^{12 / 25} c_{c}(x), c(x) \underset{\overline{n_{f}=5}}{ } x^{12 / 23} c_{b}(x), c(x) \underset{\overline{n_{f}=6}}{ } x^{4 / 7} c_{t}(x)
$$

with

$$
\begin{align*}
& c_{s}(x)=1+0.8950 x+1.3714 x^{2}+1.9517 x^{3}+\left(15.6982-0.11111 \bar{\beta}_{4}\right) x^{4}, \\
& c_{c}(x)=1+1.0141 x+1.3892 x^{2}+1.0905 x^{3}+\left(9.1104-0.12000 \bar{\beta}_{4}\right) x^{4}, \\
& c_{b}(x)=1+1.1755 x+1.5007 x^{2}+0.17248 x^{3}+\left(2.69277-0.13046 \bar{\beta}_{4}\right) x^{4}, \\
& c_{t}(x)=1+1.3980 x+1.7935 x^{2}-0.68343 x^{3}+\left(-3.5130-0.14286 \bar{\beta}_{4}\right) x^{4} . \tag{4.13}
\end{align*}
$$

## 5 Applications

### 5.1 RGI mass

Eq. (4.7) naturally leads to an important concept: the RGI mass

$$
\begin{equation*}
m^{\mathrm{RGI}} \equiv m\left(\mu_{0}\right) / c\left(a_{s}\left(\mu_{0}\right)\right), \tag{5.1}
\end{equation*}
$$

which is often used in the context of lattice calculations. The mass is $\mu$ and scheme independent; in any (mass-independent) scheme

$$
\lim _{\mu \rightarrow \infty} a_{s}(\mu)^{-\bar{\gamma}_{0}} m(\mu)=m^{\mathrm{RGI}}
$$

The function $c_{s}(x)$ is used, e.g, by the $A L P H A$ lattice collaboration to find the $\overline{\mathrm{MS}}$ mass of the strange quark at a lower scale, say, $m_{s}(2 \mathrm{GeV})$ from the $m_{s}^{\text {RGI }}$ mass determined from lattice simulations (see, e.g. [40]). For example, setting $a_{s}(\mu=2 \mathrm{GeV})=\frac{\alpha_{s}(\mu)}{\pi}=0.1$, we arrive at ( $h$ counts loops):

$$
\begin{align*}
m_{s}(2 \mathrm{GeV})=m_{s}^{\mathrm{RGI}}\left(a_{s}(2 \mathrm{GeV})\right)^{\frac{4}{9}}(1 & +0.0895 h^{2}+0.0137 h^{3}+0.00195 h^{4} \\
& \left.+\left(0.00157-0.000011 \bar{\beta}_{4}\right) h^{5}\right) \tag{5.2}
\end{align*}
$$

In order to have an idea of effects due the five-loop term in (5.2) one should make a guess about $\bar{\beta}_{4}$. By inspecting lower orders in

$$
\beta\left(n_{f}=3\right)=-\left(\frac{4}{9}\right)\left(a_{s}+1.777 a_{s}^{2}+4.4711 a_{s}^{3}+20.990 a_{s}^{4}+\bar{\beta}_{4} a_{s}^{5}\right)
$$

one can assume a natural estimate of $\bar{\beta}_{4}$ as laying in the interval $50-100$. With this choice we conclude that the (apparent) convergence of the above series is quite good even at a rather small energy scale of 2 GeV .

On the other hand, the authors of [30] estimate $\bar{\beta}_{4}$ in the $n_{f}=3 \mathrm{QCD}$ as large as -850 ! With such a huge and negative value of $\bar{\beta}_{4}$ the five loop term in (5.2) would amount to 0.01092 and, thus, would significantly exceed the four-loop contribution (0.00195).

### 5.2 Higgs decay into quarks

The decay width of the Higgs boson into a pair of quarks can be written in the form

$$
\begin{equation*}
\Gamma(H \rightarrow \bar{f} f)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2}(\mu) R^{S}\left(s=M_{H}^{2}, \mu\right) \tag{5.3}
\end{equation*}
$$

where $\mu$ is the normalization scale and $R^{S}$ is the spectral density of the scalar correlator, known to $\alpha_{s}^{4}$ from [41]

$$
\begin{align*}
R^{S}\left(s=M_{H}^{2}, \mu=M_{H}\right) & =1+5.667 a_{s}+29.147 a_{s}^{2}+41.758 a_{s}^{3}-825.7 a_{s}^{4} \\
& =1+0.2041+0.0379+0.0020-0.00140 \tag{5.4}
\end{align*}
$$

where we set $a_{s}=\alpha_{s} / \pi=0.0360$ (for the Higgs mass value $M_{H}=125 \mathrm{GeV}$ and $\alpha_{s}\left(M_{Z}\right)=$ 0.118).

Expression (5.3) depends on two phenomenological parameters, namely, $\alpha_{s}\left(M_{H}\right)$ and the quark running mass $m_{q}$. In what follows we consider, for definiteness, the dominant decay mode $H \rightarrow \bar{b} b$. To avoid the appearance of large logarithms of the type $\ln \mu^{2} / M_{H}^{2}$ the parameter $\mu$ is customarily chosen to be around $M_{H}$. However, the starting value of $m_{b}$ is usually determined at a much smaller scale (typically around $5-10 \mathrm{GeV}$ [42]). The evolution of $m_{b}(\mu)$ from a lower scale to $\mu=M_{h}$ is described by a corresponding RG equation which is completely fixed by the quark mass anomalous dimension $\gamma\left(\alpha_{s}\right)$ and the QCD beta function $\beta\left(\alpha_{s}\right)$ (for QCD with $n_{f}=5$ ). In order to match the $\mathcal{O}\left(\alpha_{s}^{4}\right)$ accuracy of (5.4) one should know both RG functions $\beta$ and $\gamma_{m}$ in the five-loop approximation. Let us proceed, assuming conservatively that $0 \leq \bar{\beta}_{4}^{n_{f}=5} \leq 200$.

The value of $m_{b}\left(\mu=M_{H}\right)$ is to be obtained with RG running from $m_{b}(\mu=10 \mathrm{GeV})$ and, thus, depends on $\beta$ and $\gamma_{m}$. Using the Mathematica package $\operatorname{RunDec}^{4}$ [43] and eq. (4.13) we find for the shift from the five-loop term

$$
\frac{\delta m_{b}^{2}\left(M_{H}\right)}{m_{b}^{2}\left(M_{H}\right)}=-1.3 \cdot 10^{-4}\left(\bar{\beta}_{4}=0\right)\left|-4.3 \cdot 10^{-4}\left(\bar{\beta}_{4}=100\right)\right|-7.3 \cdot 10^{-4}\left(\bar{\beta}_{4}=200\right)
$$

[^2]If we set $\mu=M_{H}$, then the combined effect of $\mathcal{O}\left(\alpha_{s}^{4}\right)$ terms as coming from the five-loop running and four-loop contribution to $R^{S}$ on

$$
\begin{equation*}
\Gamma(H \rightarrow \bar{b} b)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2}\left(M_{H}\right) R^{S}\left(s=M_{H}^{2}, M_{H}\right) \tag{5.5}
\end{equation*}
$$

is around $-2 \%$ (for $\bar{\beta}_{4}=100$ ). This should be contrasted to the parametric uncertainties coming from the input parameters $\alpha_{s}\left(M_{Z}\right)=0.1185(6)$ [44] and $m_{b}\left(m_{b}\right)=$ $4.169(8) \mathrm{GeV}$ [45] which correspond to $\pm 1 \%$ and $\pm 4 \%$ respectively.

We conclude, that the $\mathcal{O}\left(\alpha_{s}^{4}\right)$ terms in (5.4), (5.5)) are of no phenomenological relevancy at present. But, the situation could be different if the project of TLEP [6] is implemented. For instance, the uncertainty in $\alpha_{s}\left(M_{Z}\right)$ could be reduced to $\pm 2 \%$ and Higgs boson branching ratios with precisions in the permille range are advertised.

## 6 Conclusions

We have analytically computed the anomalous dimensions of the quark mass $\gamma_{m}$ and field $\gamma_{2}$ in the five loop approximation. The self-consistent description of the quark mass evolution at five loop requires the knowledge of the QCD $\beta$-function to the same number of loops. The corresponding, significantly more complicated calculation is under consideration.
K.G.C. thanks J. Gracey and members of the DESY-Zeuthen theory seminar for usefull discussions.

This work was supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbereich/Transregio SFB/TR-9 "Computational Particle Physics". The work of P. Baikov was supported in part by the Russian Ministry of Education and Science under grant NSh-3042.2014.2.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

[1] R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].
[2] O.V. Tarasov, Anomalous dimensions of quark masses in three loop approximation, JINR-P2-82-900.
[3] S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [inSPIRE].
[4] K.G. Chetyrkin, Quark mass anomalous dimension to $O\left(\alpha_{S}^{4}\right)$, Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [inSPIRE].
[5] J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [inSPIRE].
[6] TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [inSPIRE].
[7] G. 't Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
[8] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].
[9] J.C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B 92 (1975) 477 [inSPIRE].
[10] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [inSPIRE].
[11] A.A. Vladimirov, Method for Computing Renormalization Group Functions in Dimensional Renormalization Scheme, Theor. Math. Phys. 43 (1980) 417 [InSPIRE].
[12] D.I. Kazakov, O.V. Tarasov and A.A. Vladimirov, Calculation of Critical Exponents by Quantum Field Theory Methods, Sov. Phys. JETP 50 (1979) 521 [InSPIRE].
[13] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].
[14] O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [inSPIRE].
[15] K.G. Chetyrkin and V.A. Smirnov, $R^{*}$ operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].
[16] K.G. Chetyrkin, Corrections of order $\alpha_{s}^{3}$ to $R_{\text {had }}$ in $p Q C D$ with light gluinos, Phys. Lett. B 391 (1997) 402 [hep-ph/9608480] [INSPIRE].
[17] P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].
[18] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [inSPIRE].
[19] A.V. Smirnov and M. Tentyukov, Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 40 [arXiv:1004.1149] [inSPIRE].
[20] P.A. Baikov, A Practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006) 325 [hep-ph/0507053] [INSPIRE].
[21] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett. B 385 (1996) 404 [hep-ph/9603267] [inSPIRE].
[22] M. Tentyukov et al., ParFORM: Parallel Version of the Symbolic Manipulation Program FORM, arXiv:cs/0407066.
[23] M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [inSPIRE].
[24] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [inSPIRE].
[25] A. Palanques-Mestre and P. Pascual, The $1 / N_{f}$ Expansion of the $\gamma$ and $\beta$-functions in QED, Commun. Math. Phys. 95 (1984) 277 [inSPIRE].
[26] M. Ciuchini, S.E. Derkachov, J.A. Gracey and A.N. Manashov, Computation of quark mass anomalous dimension at $O\left(1 / N_{f}^{2}\right)$ in quantum chromodynamics, Nucl. Phys. B 579 (2000) 56 [hep-ph/9912221] [inSPIRE].
[27] M. Ciuchini, S.E. Derkachov, J.A. Gracey and A.N. Manashov, Quark mass anomalous dimension at $O\left(1 / N_{f}^{2}\right)$ in $Q C D$, Phys. Lett. B 458 (1999) 117 [hep-ph/9903410] [INSPIRE].
[28] K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three loops and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [inSPIRE].
[29] J.R. Ellis, I. Jack, D.R.T. Jones, M. Karliner and M.A. Samuel, Asymptotic Pade approximant predictions: Up to five loops in $Q C D$ and $S Q C D$, Phys. Rev. D 57 (1998) 2665 [hep-ph/9710302] [INSPIRE].
[30] V. Elias, T.G. Steele, F. Chishtie, R. Migneron and K.B. Sprague, Pade improvement of QCD running coupling constants, running masses, Higgs decay rates and scalar channel sum rules, Phys. Rev. D 58 (1998) 116007 [hep-ph/9806324] [INSPIRE].
[31] A.L. Kataev and V.T. Kim, Higgs boson decay into bottom quarks and uncertainties of perturbative $Q C D$ predictions, arXiv:0804. 3992 [INSPIRE].
[32] D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [inSPIRE].
[33] H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [inSPIRE].
[34] W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [inSPIRE].
[35] D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974) 531 [inSPIRE].
[36] E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz. 41 (1979) 26 [inSPIRE].
[37] S.A. Larin and J.A.M. Vermaseren, The Three loop $Q C D \beta$-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].
[38] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop $\beta$-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [inSPIRE].
[39] M. Czakon, The Four-loop QCD $\beta$-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
[40] ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [inSPIRE].
[41] P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at $O\left(\alpha_{s}^{4}\right)$, Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
[42] K.G. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer, P. Marquard et al., Charm and Bottom Quark Masses: An Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [ivSPIRE].
[43] K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [inSPIRE].
[44] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [InSPIRE].
[45] A.A. Penin and N. Zerf, Bottom Quark Mass from $\Upsilon$ Sum Rules to $\mathcal{O}\left(\alpha_{s}^{3}\right)$, JHEP 04 (2014) 120 [arXiv:1401.7035] [inSPIRE].


[^0]:    ${ }^{1}$ We have used QGRAF [10] to produce around $10^{5}$ FI's contributing to the quark self-energy at $\mathcal{O}\left(\alpha_{s}^{5}\right)$.
    ${ }^{2}$ With the price that resulting one-loop-less p-integrals should be evaluated up to and including their constant part in the small $\epsilon$-expansion.

[^1]:    ${ }^{3}$ This agreement can be also considered as an important check of all our setup which is completely different from the ones utilized at the four-loop calculations.

[^2]:    ${ }^{4}$ We have extended the package by including the five-loop effects to the running of $\alpha_{s}$ and quark masses.

