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1 Introduction and Overview 

Evolution has come a long way since the development of the first life forms on earth. It has created a 

vast diversity of living beings, ranging from simple bacteria to complex multicellular organisms such 

as plants, insects, animals, or even intelligent humans. Despite the huge variety of life forms, they 

are developed with and do function based on the same toolkit. This toolkit is the genetic code stored 

in the DNA. The encoded genes are blueprints for proteins, which are assembled inside living cells 

according to them. 

Proteins are a crucial class of biomolecules. They participate in fulfilling or regulating nearly all 

tasks that are necessary for a cell to function and survive. These tasks include the structural stability 

of the cell, regulation of cell fusion or division, cargo transport within the cell and to other cells, 

catalysis of chemical reactions, energy conversion, metabolism, signal transmission, or the 

expression of genes to build proteins.1–3 Over the millions of years, evolution has produced ever-

new genes and, therefore, proteins that can provide increased chances of survival and reproduction. 

In combination with natural selection,4 evolution yielded the diversity of life we observe today. 

Intrigued by the possibilities that this toolkit provides, scientists have tried to understand in detail 

how it works. One of the first achievements was the proposal of the DNA double helical structure by 

Watson and Crick in 19535 along with first experimental evidence from X-ray crystallography.6,7 

Together with the proposal of Gamow that three base pairs of the DNA encode one amino acid,8 the 

mechanism how to translate the sequence of base pairs in the DNA into a sequence of amino acids 

was unraveled based on experiments of Nirenberg and Matthaei.9,10 Subsequent assembly of the 

amino acids of a given sequence into a chain forms the encoded protein. However, unraveling the 

genetic code yielded more and more questions, as it became obvious that there was no simple 

relation between a protein’s amino acid sequence and its function.3 Even today, the prediction of an 

unknown protein’s function from its amino acid sequence remains a major challenge.11 

After solving the first three-dimensional structures of proteins, it became apparent that these 

structures were the missing links between functions and amino acid sequences. The three-

dimensional structure, referred to as the protein fold or conformation, arranges particular atoms in 

just the right way to form the functional groups that allow proteins to fulfill their various 

functions.12 Since then, the determination of protein structures has been one of the cornerstones of 

structural biology and biomolecular research. Crystallizing proteins and solving their structure by 
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X-ray diffraction has thus become an essential tool for molecular biologists, as is evidenced by the 

85,000 protein structures deposited in the Protein Data Bank (PDB) that have been solved using this 

method. These are 88.4% of all protein structures currently available in the PDB.13,14 Another 

technique that allows insights into the structure of proteins is nuclear magnetic resonance (NMR) 

spectroscopy, which is the main contributor of the remaining 12.6% of protein structures in the 

PDB. 

Although X-ray diffraction provides only a single snapshot of a crystallized protein’s structure, they 

are by no means rigid. Especially NMR spectroscopy provides insights into the dynamical aspects of 

protein structures.1,15–17 Therefore, the fold of a protein refers to an ensemble of structures that 

share common topological features, but may differ, for example, in the packing of certain amino 

acids or the arrangement of other structural elements. Driven by the development of new 

experimental techniques and improved computer simulations, more and more data has been 

gathered in the last decades that stress the essential role of these dynamical to the function of 

proteins.15–18 

Due to persisting limitations of experimental techniques, computational methods are used widely by 

many biomolecular scientists nowadays. Using molecular forcefield models, molecular dynamics 

simulations19,20 can in principle generate time-resolved trajectories of the structural ensembles and 

atomistic mechanisms that underlie a protein’s function.21 This has promoted computer simulations 

to one of the standard tools for a molecular biologist. This fact was recently recognized by awarding 

the 2013 Nobel Prize in chemistry to Martin Karplus, Michael Levitt and Arieh Warshel for their 

groundbreaking work in combining macroscopic, classical and quantum mechanical methods in the 

1970s.22 Warshel and Levitt used these methods to study the behavior of a catalytic site in a 

protein.23 

However, this award also marks the greatest problem of computational biomolecular research: it is 

imperative for biomolecular simulations to use or combine methods that are as accurate as needed, 

but at the same time as fast as possible. Treating biomolecules and their environment by quantum 

mechanics on timescales relevant for biological processes is excessively demanding on the 

computational side for current state-of-the-art supercomputers. Even with classical molecular 

models, simulations typically reach only the low microsecond timescale with a reasonable amount 

of invested computation time, wherefore they are unable to elucidate many biologically relevant 

processes.21,24–26  
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One reason for the large computational cost is the incorporation of the physiological environment 

into the simulation. Usually this environment is an aqueous solution in which the biomolecule is 

embedded. The most straightforward method for the inclusion of this environment is to represent 

every solvent atom explicitly. For a typical biomolecular simulation using an explicit solvent 

representation, the number of solvent atoms may be much larger than the number of atoms in the 

biomolecule. Since every solvent atom interacts with every other atom, the number of interactions 

that must be computed increases quadratically with the number of atoms in the system. Due to this 

fact, representing the solvent explicitly will become computationally extremely expensive when 

increasing the size of the investigated system.27,28 

A vast number of algorithms have been developed to reduce the computational cost for the 

computation of the interactions in such a system.29,30 Moreover, computer scientists have designed 

and built customized hardware for these simulations. Specialized supercomputers based on this 

hardware could shift the timescale limit of biomolecular molecular dynamics simulations to the low 

millisecond range.31–34 However, only one such machine is publicly available, and only for U.S. 

scientists, which is insufficient to fulfill the high demand of the scientific community. 

Enhanced simulation techniques, such as adaptive biasing potentials, can also alleviate the 

accessible timescale problem to some extent. However, these methods require well-defined reaction 

coordinates or paths.35 These may not be available for the process to be studied, or may be 

challenging to derive beforehand. In conclusion, there is still demand for computational methods 

that allow the investigation of the structural ensembles and atomistic processes relevant to the 

function of proteins despite decades of development. 

Since the long timescales on which biologically relevant processes take place are the main issue of 

molecular dynamics, dropping the requirement of having time resolved trajectories of the processes 

will immediately remove the main issue. Instead, it is sufficient for many studies to have a 

thermodynamically representative ensemble of structures for a given process. This representative 

ensemble can be generated using Monte Carlo algorithms. However, this strategy is used only 

infrequently in computational biomolecular research. One of the reasons is the lack of an adequate 

simulation package that can use common molecular forcefields.36 

This is the point where my work sets in. The development and implementation of computational 

methods for the simulation of biomolecular systems is one cornerstone of computational biophysics 

that I address in this thesis. I will explain several methods that I have developed and implemented 
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into the SIMONA37 Monte Carlo simulation framework. These methods enable Monte Carlo 

simulations of biomolecular systems with common molecular forcefields. 

A large challenge for Monte Carlo simulations of biomolecular systems is the inclusion of the solvent 

as the physiological environment. In these simulations, the conformation of the biomolecule is 

subject to random perturbations. These perturbations will ultimately lead to overlaps between 

atoms of the biomolecule and explicit solvent atoms. Such configurations of the system are highly 

unfavorable and not representative. The proposal of too many non-representative configurations 

decreases the efficiency and thus the success of Monte Carlo simulations significantly.36 In this 

thesis, I describe an implicit solvent model that I have developed and implemented to overcome this 

challenge. In general, implicit solvent models account for the averaged effects of the solvent onto the 

biomolecules without requiring an explicit representation of the solvent atoms. Thus, these models 

are well suited for Monte Carlo simulations. 

Due to the low popularity of Monte Carlo simulations, previous implicit solvent models focused on 

the requirements of molecular dynamics simulations, which can differ substantially from those of 

Monte Carlo simulations. Consequently, I have designed a new implicit solvent model to fulfill the 

requirements of Monte Carlo simulations instead. In addition, I investigated how to improve the 

approximate description of solvent effects by implicit solvent models further and started to extend 

my implicit solvent model to account for the presence of biological membranes. They represent 

another important physiological environment for proteins. 

To demonstrate the validity and success of the Monte Carlo methods, I will examine the folding of a 

small protein FSD-EY. A comparison of the protein’s folded state in the simulation with that 

determined by NMR spectroscopy will grant insights into the accuracy of my simulation method and 

implicit solvent model. In addition, molecular dynamics data from a specialized supercomputer 

serves as a second reference for validating my methods. Finally, I will try to deduce the folding 

mechanism of this small protein from my simulation data. 

My thesis is structured as follows. In the second chapter, I will provide an introduction into several 

topics necessary to understand the work I present in this thesis. These topics include the 

composition of proteins and biological membranes, their general structural features and properties. 

The chapter also explains how classical molecular forcefields model the interactions within 

biomolecules such as proteins. It also describes how implicit solvent models include the interactions 

between biomolecules and their environment, and introduces commonly used molecular surface 
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definitions that are used in these models. Furthermore, it outlines the basics of Monte Carlo 

simulations. 

The third chapter focuses on the methods developed and implemented by me to enable simulations 

of proteins with common biomolecular forcefields with the SIMONA Monte Carlo simulation 

framework. At first, I describe the details of the implementation of the AMBER99SB*-ILDN38–41 

biomolecular forcefield terms. I have paid special attention to the different requirements of Monte 

Carlo simulations in comparison to molecular dynamics for this implementation. The next two 

sections focus on the implicit solvent model. I explain efficient methods to compute solvent 

accessible surface area and the Born radii of the generalized Born implicit solvent model. These two 

methods form the basis of my implicit solvent model. In the last section of this chapter, I present an 

overview of the achievable simulation performance of SIMONA with the methods implemented by 

me. 

Since implicit solvent models provide only an approximate description of the average solvent 

effects, the assessment of their accuracy is important for judging the errors that result from their 

application, as well as determining possible simulation artifacts due to deficiencies of the implicit 

solvent model. In chapter four, I will describe my contributions to such an assessment that I have 

performed in cooperation with others. Furthermore, I will present our main conclusions that 

resulted from this assessment. 

Biological membranes are another important physiological environment for proteins, wherefore I 

have extended my implicit solvent model to account for some basic properties of them. In chapter 

five, I will first introduce the basic idea of this extension called SLIM and then give details on its 

implementation. Subsequently, I will review the achievements of the SLIM model, which 

demonstrate its improved accuracy over prior implicit membrane models and its ability to 

reproduce established properties of small membrane proteins. Finally, I will present a 

parallelization strategy for the SLIM model to increase its computational efficiency and provide an 

overview the resulting Monte Carlo simulation performance. 

In chapter six, I will present results on the investigation of the folding of the small protein FSD-EY.42 

As an introduction, I will shortly review the problems of investigating protein folding via computer 

simulations. Afterwards, I will outline my Monte Carlo simulation setup. Subsequently, I will provide 

some performance characteristics of my employed Monte Carlo algorithm. Next, I will identify the 

folded state of FSD-EY in the simulation and compare it to the experimentally determined folded 



1 Introduction and Overview 

6 

state. In the next step, I will determine FSD-EY’s critical folding temperature and try to deduce its 

folding mechanism. 

My thesis closes with a summary of the main results described in this work and a discussion of their 

implications, as well as with ideas how to continue this work in the future. 
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2 Basic Concepts and Theory 

In this chapter, I will introduce several topics that are essential to understanding the systems I 

investigate or the methods I employ. The first section focuses on the composition, structure, and 

properties of proteins and biological membranes. The second section outlines the methods with 

which biomolecular forcefields model intra- and intermolecular interactions. The third section 

introduces three definitions of molecular surfaces that are used in implicit solvent models. The 

fourth section reviews the basic theory of implicit solvent models, the physical properties of water, 

and a common approximate approach. The last section outlines the goal of Monte Carlo simulations, 

how to carry out such simulations and an extension to increase the efficiency of such simulations for 

complex systems.  

2.1 Proteins and Biological Membranes 

Amino Acids 

The basic constituents of proteins are amino acids. There are 20 proteinogenic amino acids that can 

be encoded by the in genes. An amino acid consists of a backbone and a side chain. The backbone is 

common to all amino acids. It consists of an amine group, an alkyl group, and a carboxyl group 

(Figure 2.1). The carbon atom of the alkyl group is referred to as the C-alpha atom commonly. 

 
Figure 2.1. The chemical structure of an amino acid. The backbone consists of the amine group (blue), the 

alkyl group (black), and the carboxylic acid (red). The side chain R (purple) is bound to the carbon atom 

of the alkyl group. This atom is called the C-alpha atom. The carbon atoms of the alkyl group and the 

carboxylic acid are not shown explicitly. 

The amino acids differ in their side chain, which is bound to the C-alpha atom (Figure 2.1). The side 

chains can contain different chemical groups. As a result, the amino acids have different physical 
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and chemical properties. Key properties for the categorization of the different amino acids are the 

charge state in solution, the polarity, or the hydrophobicity. The latter is a measure of the solubility 

of an amino acid in water. Based on these three properties, different categories of amino acids exist. 

According to Branden and Tooze, these are apolar, polar, positively or negatively charged, and 

special cases.43 

Amino acids can react with each other to form peptide bonds. The carboxyl group of one amino acid 

reacts with the amine group of another amino acid to form a peptide bond under the separation of a 

water molecule, as illustrated in Figure 2.2. The peptide bond has a partial double bond character. 

Therefore, rotations around this bond are energetically disfavored, resulting in a planar bond 

geometry. Since each amino acid contains an amine group and a carboxyl group, it can form up to 

two peptide bonds. The residual parts of the amino acids after the peptide bond formation are the 

amino acid residues. Throughout this thesis, I will use the shorthand term residue to refer to amino 

acid residues. Figure 2.3 shows a ball-and-stick representation of all 20 proteinogenic amino acid 

residues together with their categorization, one-letter, and three-letter abbreviations. 

 

 

Figure 2.2. Sketch of the chemical reaction to form a peptide bond between a carboxyl group and an 

amine group. R and R’ label the residual parts of the corresponding amino acids. These parts are 

referred to as residues commonly.44 

Protein Primary Structure 

Proteins consist of chains of residues linked by peptide bonds, wherefore they are also referred to 

as polypeptides. The primary structure of a protein is the sequence in which the different residues 

are linked into the chain. More commonly, the primary structure is just called the sequence of the 

protein. By convention, this sequence starts at the residue whose amine group has no peptide bond, 

which is the N-terminus. The last residue in a chain has no peptide bond at its carboxyl group, which 

is called the C-terminus. 
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Figure 2.3. Ball-and-stick representations of all 20 amino acid residues encoded in the genome. Their 

names, one letter, and three letter abbreviations are also given. The ball color represents the following 

elements: carbon (green), hydrogen (white), nitrogen (blue), oxygen (red), sulfur (yellow). All amino acid 

residues are oriented so that their backbone atoms are on the left with the nitrogen atom of the residual 

amine group at the top left and the oxygen atom of the residual carboxylic acid at the bottom left. The 

side chains are directed to the right. The amino acids are grouped according to Brandon and Tooze43 into 

apolar (yellow label), polar (cyan label), positively charged (blue label), negatively charged (red label) 

and special cases (green label). Glycine is considered a special case because its side chain consists of only 

one hydrogen atom. The side chain of Proline is also bound to its residual amine group. 
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Protein Secondary Structure 

In contrast to the primary structure, the secondary structure describes regular spatial patterns of 

the atomic positions in a protein. These patterns are the secondary structure elements. Each residue 

can be part of one such element. Usually one discriminates alpha helices, beta bridges, beta sheets, 

3-10 helices, �-helices, turns, bends, and coil. A common property to discriminate the secondary 

structure elements is the presence or absence of backbone hydrogen bonding patterns. They form 

between the residual part of the backbone carboxyl group of one residue and the residual part of the 

backbone amine group of another residue. According to IUPAC technical report by Arunan et al., 

hydrogen bonds are an attractive interaction not to be confused with covalent bonds. One hallmark 

of such a hydrogen bond is the strong directionality of the interaction due to the significant role of 

electrostatic forces.45 

Table 2.1 provides a list of the secondary structure elements, together with a short description and 

their one-letter abbreviations. Figure 2.4 presents visualizations of examples of the secondary 

structure elements. According to Kabsch and Sander, the two most common secondary structure 

elements, alpha helices and beta sheets, are cooperative elements. This means that helices are 

consecutive turns and beta sheets are consecutive beta bridges.46 

In crystallographic structures, the crystallographers have assigned these elements to the solved X-

ray structures based on visual inspection. These data are then available via the Protein Data Bank.14 

However, these assignments are not objective. Proposed pattern recognition algorithms enable an 

assignment of the secondary structure elements based on objective criteria. These are also suitable 

for implementations on computers. One of the most common algorithms is the Dictionary of 

Secondary Structure (DSSP) proposed by Kabsch and Sander.46 It uses an empirical energy function 

plus a cutoff criterion to determine the existence of backbone hydrogen bonds. Based on the 

established hydrogen bonds, the algorithm assigns the secondary structure elements to the 

residues. In addition, the curvature between the positions of five consecutive C-alpha atoms defines 

bends. Frishman and Argos proposed a more recent algorithm named STRIDE. This algorithm 

results in better agreement with the assignments of crystallographers.47 It also uses backbone 

dihedral angle information to assign the secondary structure elements to residues. 



2 Basic Concepts and Theory 

11 

Table 2.1. List of commonly used secondary structure elements, their one-letter abbreviation, and the 

typical characteristic trait of each element. Their definitions are available for example by Kabsch and 

Sander46 or Frishman and Argos.47 

Name Abbr. Characteristic trait 
Alpha helix H Consecutive backbone hydrogen bond between residues � and � � 4 
Beta 
bridge 

B Two backbone hydrogen bonds between two non-overlapping consecutive 
residue triplets 

Beta sheet E A set of consecutive beta bridges 
3-10 helix G Consecutive backbone hydrogen bond between residues � and � � 3 �-Helix I Consecutive backbone hydrogen bond between residues � and � � 5 
Turn T Backbone hydrogen bond between two arbitrary residues 
Bend S Strong curvature in the backbone chain across five residues 
Coil C None of the above 

 

Figure 2.4. Examples of common secondary structure elements: alpha helix (panel A), 3-10 helix (panel 

B), �-helix (panel C), turn (panel D), beta bridge (panel E), beta sheet (panel F), bend (panel G). Only 

backbone atoms of the protein parts are shown. Dashed yellow lines mark hydrogen bonds. The dashed 

red line in panel G marks the strong bend of the protein backbone. 
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Dihedral angles are torsion angles around a given axis. The positions of four atoms define these 

angles. The first three atoms and last three atoms define a plane. The dihedral angle is the angle 

between these two planes. The torsion axis is the bond between the second and third atom. For 

proteins, the two most important dihedral angles are the so-called Φ and Ψ backbone dihedral 

angles. The former is defined by the backbone atoms C	
� − N	−C�	 − C	 and the latter by N	−C�	 − C	 − N	��. Here, C is the carbon atom of the residual carboxyl group, N the nitrogen of the 

residual amine group and C� the carbon of the backbone alkyl group. The superscript denotes the 

residue number. Figure 2.5A illustrates both definitions. 

The bonds corresponding to the Φ and Ψ dihedral angles have no double bond character. Therefore, 

they are the main degrees of freedom that determine the three-dimensional structure of a given 

protein. However, there are some restrictions to these angles, because specific value pairs will lead 

to atomic overlaps in the polypeptide chain. The Pauli Exclusion Principle energetically disfavors 

such overlaps. There are also energetically preferred combinations of the Φ and Ψ angles. Those 

correspond to the most common secondary structure elements, such as alpha helices or beta sheets. 

For the analysis of a given protein structure, it is common to plot each residue’s pair of Φ and Ψ 

dihedral angles as a scatter plot. This plot is called Ramachandran plot.48 It gives an overview of the 

secondary structure content of a protein structure. Figure 2.5B shows an exemplary Ramachandran 

plot for the protein ubiquitin (PDB code 1UBQ49), which contains a mixture of secondary structure 

elements. 

Tertiary Structure 

Tertiary protein structure describes the spatial arrangement and packing of the secondary structure 

elements. To highlight this packing of the secondary structure elements, proteins are visualized in a 

distinct representation called the cartoon representation. It only provides a trace of the protein 

backbone, but highlights helices and beta sheets as depicted in Figure 2.6. This representation 

allows a much easier identification of the most common secondary structure elements and their 

packing. 

A general feature of the tertiary structure in globular proteins not embedded in biological 

membranes is the burial of hydrophobic residues inside the protein. Thus, these proteins have a 

hydrophobic core. Polar or charged residues remain at the surface of the protein. These features 

generate a contribution to the stability of globular protein conformations that alone may already 

explain their stability.50 The reason for the hydrophobic core is the so-called hydrophobic effect. It is 
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discussed further in Section 2.4. In contrast, large hydrophobic regions on the outside of proteins 

allow them to be embedded in biological membranes. 

 
Figure 2.5. Panel A shows the Φ and Ψ dihedral angles in a small peptide consisting of three alanine 

residues. Arrows mark the rotation axes of the dihedrals. Panel B shows a Ramachandran plot for the 

protein Ubiquitin (PDB code 1UBQ49). Each black circle marks the dihedral angles of one residue in 

Ubiquitin. The cyan lines mark preferred regions of the dihedral angles. The dark blue lines mark the 

excluded regions due to atomic overlaps. Beta sheets correspond to the preferred region in the upper left, 

right-handed helices to the preferred central left region, and left-handed helices to the preferred central 

right region. The Ramachandran plot was generated by MolProbity.51 

 

Figure 2.6. Cartoon representation (orange) of three different proteins in addition to a translucent ball-

and-stick representation without hydrogen atoms. The identification of the most common secondary 

structure elements such as helices and beta sheets is simpler in the cartoon representation. Panel A 

shows the Villin headpiece (PDB code 1VII52) that only contains alpha helices. Panel B shows the WW 

domain protein (PDB code 2F2153) that contains a beta sheet. Panel C shows Ubiquitin (PDB code 

1UBQ49), a protein containing a mixture of secondary structure elements. 
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Biological Membranes and Phospholipids 

Biological membranes create a necessary permeability barrier between cells and their environment 

or even between cell compartments.54 About 25% of all proteins in eukaryotic genomes bind or 

associate to membranes. These membrane proteins constitute 50% of all drug targets, wherefore 

they are an important subject of pharmaceutical research.55 To understand the functions of these 

proteins, one has to account for the influence of the biological membrane on their structure and 

function. Therefore, I will shortly review the constituents of biological membranes and some of their 

properties. 

Biological membranes are composed of a double layer of phospholipids. In turn, Phospholipids are 

composed of two or three different parts. Those are the headgroup and one or two tails. There exists 

a large diversity of phospholipids.56 For example, one of the most common headgroups in cellular 

membranes contains a phosphate group, a glycerol, and a choline group.57 However, other groups 

can also be attached to a phosphate group via biosynthesis.58 The phospholipid tails are fatty acids 

that are bound to the glycerol. Those fatty acids differ in their length and saturation of the 

hydrocarbons. A wide variety of fatty acids is, for example, present in human cell membranes.59 

Figure 2.7 shows the chemical structure of an exemplary phospholipid. 

 
Figure 2.7. The chemical structure of a POPC phospholipid. The lipid tails are shown in black. The 

headgroup consists of a glycerol (green), a phosphate group (red), and a choline group (blue).60 

Phospholipids are amphipathic molecules, which mean that their long fatty acid tails at one end are 

hydrophobic, while their headgroups are hydrophilic. This property enables phospholipids to form 

bilayers in an aqueous environment.61 The phospholipid tails align in a parallel fashion. The 

hydrophilic head groups form a layer that shields the polar water molecules from the hydrophobic 

fatty acid tails. To shield the other end of the fatty acids also from water, a similar second layer can 

form. The two layers arrange so that the fatty acids face each other while the headgroups face the 

water. This bilayer is the basic constitutes a biological membrane. Figure 2.8 shows a visualization 

of such a bilayer. 
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Figure 2.8. Visualization of a phospholipid bilayer of DOPC lipids.62,63 The hydrocarbon tails of the fatty 

acids are shown as green sticks. The nitrogen and phosphorus atoms of the headgroups are shown as 

blue and orange spheres respectively, while the oxygen atoms of the headgroups and fatty acid tails are 

shown as red spheres. 

2.2 Biomolecular Forcefields 

Biomolecular forcefields model the potential energy of biomolecules such as proteins by classical 

mechanics. They consist of a set of mathematical functions that describe the general form of the 

interactions present within biomolecules. Their arguments are the coordinates of the molecule’s 

atoms. In addition, these functions contain sets of free parameters. Since quantum mechanics 

governs the behavior of molecules, these forcefields are only approximations to the real potential 

energy. Either these parameters are chosen to match the results of elaborate quantum mechanical 

calculations as closely as possible, or they are determined empirically. In the latter case, the free 

parameters are optimized so that simulations with this forcefield reproduce specific experimental 

data. 

The significant advantage of this approach is its computational efficiency. It can compute the 

potential energy for a molecule orders of magnitude faster compared to quantum mechanical 

methods.25,64–66 In addition, simple analytical formulas are available to calculate the forces acting on 

the atoms. Therefore, solving Newton’s equations of motion yields the behavior of the molecule. 

This forms the basis of molecular dynamics, for which these forcefields are typically used. 

In this thesis, I will use the AMBER99SB*-ILDN38–41 forcefield. The reasons for this decision were 

that it was able to produce repeated folding events of two structurally different small proteins on a 

rare specialized supercomputer for molecular dynamics simulations.32 In addition, simulations of 
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larger proteins with this forcefield are able to reproduce experimental NMR data.67,68 Hence, the 

forcefield seems to provide a reasonably accurate description of the interactions inside proteins. 

The AMBER99SB*-ILDN forcefield consists of the following terms: 

 � = ��� � �������� � ����� � ������ � �� !��"�� � ��
#. (2.1) 

The first term contains the Lennard-Jones interactions69 that model Pauli repulsion due to 

overlapping electron orbitals and dispersion attraction because of induced electrostatic dipoles. The 

formula to compute this term is 

 ��� = 124 ' ()* +,-)*.)*/�0 − ,-)*.)*/12
3

),*5�
, ∀	8 ∉ excluded(�). (2.2) 

The indices � and 8 denote the atoms of the molecule, B is the total number of atoms in the molecule, 

.)* is the distance between the two atoms, and ()* and -)* are given by the two formulas 

 ()* = C()(* , (2.3) 

 -)* = 12 D-) + -*E. (2.4) 

Here, () and -) are atom type dependent Lennard-Jones parameters for atom �. Certain biomolecular 

forcefields exclude specific interactions between a given atom � and other atoms 8. These other 

atoms are contained in the set excluded(�). The self-interactions � = 8 also belong to the excluded 

interactions. For the AMBER99SB*-ILDN forcefield, all Lennard-Jones interactions between atoms 

that are connected by three or less bonds are excluded. Other forcefield terms are used to model the 

interactions between those atoms. 

Electrostatic interactions caused by the varying electron density of the molecule and the positively 

charged nuclei are modeled by assigning each atom a partial charge and computing the coulomb 

interactions between these point charges: 

 �������� = 12 14�(F(G ' H)H*.)*
3

),*5�
, ∀	8 ∉ excluded(�). (2.5) 

Again, .)* is the distance between two atoms, while H)  and H*  are the partial charges, (G is the 

assumed dielectric constant inside the molecule, and (F is the vacuum permittivity. One method to 

compute the partial charges is to compute the electrostatic potential via quantum mechanics and 
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then fit point charges at the position of the nuclei so that the electrostatic potentials agrees with that 

of the quantum mechanical calculation up to a defined error.70 The definition of the excluded 

interactions is usually the same as for the Lennard-Jones term. Together, the Coulomb and the 

Lennard-Jones interactions form the non-bonded interactions, since the interacting atoms are 

usually not covalently bound to each other. 

The last four terms in Equation (2.1) are short-ranged and describe the bond geometry of the 

molecular system. These are the so-called bonded interactions. The 1-4 interactions generate the 

basic torsion potential around the axis of a dihedral angle. The 1-4 interactions include Coulomb 

and Lennard-Jones interactions between two atoms � and 8 that are separated by three covalent 

bonds 

 ��
#@�, 8A = I�����@�, 8A � I���������������@�, 8A. (2.6) 

These interactions are scaled with constant factors I�� and I������� respectively. Especially the 

Lennard-Jones repulsion is responsible for the prohibited regions of the Ψ and Φ dihedral angles in 

the Ramachandran plot discussed in section 2.1. 

Potential energy changes associated with bond stretching are modeled by �����. Usually these 

terms assume a harmonic potential depending on the bond length J with force constant K around 

the optimal bond length JF 

 �����@JA = K2 @J − JFA0. (2.7) 

The same holds for the bond angle term. The potential term has a harmonic dependence on the 

bond angle L, a force constant KM, and an optimal angle LF 

 ������@NA = KM2 @L − LFA0.	 (2.8) 

Dihedral energy terms can be divided into two categories. Improper dihedral angles penalize the 

deformation of planar chemical groups or rings. In this case, a harmonic dependence on the 

improper dihedral angle O is assumed that has a force constant KP and an optimal dihedral angle OF 

 �� !��"�� �Q"�Q�"@OA = KP2 @O − OFA0.	 (2.9) 
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Proper dihedral angles define torsion potentials around covalent bonds in addition to the 1-4 

interactions of Equation (2.6). For the AMBER99SB*-ILDN forcefield, the corresponding energy 

terms will be of the form 

 �� !��"��Q"�Q�" @OA = ' KP,	@1 � cos@TO � O	AA
#

	5�
. (2.10) 

The four terms on the right hand side can be interpreted as the first terms of the Fourier series for 

the torsion potential of the proper dihedral. The coefficients KP,	 and O	 are empirical or semi-

empirical parameters. These proper dihedral terms are corrections to the basic torsion potential of 

the 1-4 interactions. Figure 2.9 provides a sketch of all bonded energy terms, as well as the involved 

atoms and arguments. 

 

Figure 2.9. Sketch of the bonded interactions. The bond energy UVWXY is determined via the distance Y 

between the two atoms 1 and 2. The bond angle energy UZX[\] is defined via the bond angle ^ that is 

computed from the position of atoms 1 to 3. The improper and proper dihedral angle terms UY_`]YaZ\_bcaWc]a and 

UY_`]YaZ\caWc]a  depend on the dihedral angle d. This dihedral angle is the angle between the planes formed by 

atoms 1 to 3 and 2 to 4. 

2.3 Molecular Surface Definitions 

In biomolecular simulations, one usually encounters three definitions of molecular surfaces. They 

have various applications in biomolecular modeling and simulations. One application is the 

definition of the boundary between solvent and solute in implicit solvent models, which will be 

discussed in the next Section 2.4. The different surfaces are the van der Waals surface, the solvent 

accessible surface and the solvent excluded surface. I will shortly review their definitions and some 

of their important properties. Figure 2.10A shows a sketch of the differences between the three 

surfaces. 
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Van der Waals Surface 

The constituents of the van der Waals surface are spheres of radius .) = -)/2. The parameter -) is 

the Lennard-Jones parameter taken from Equations (2.2) and (2.4). These spheres are positioned at 

the center of every atom. The union of the surfaces of these spheres not located inside any other 

sphere defines the van der Waals surface. It is visualized in Figure 2.10B. The van der Waals spheres 

usually do not overlap or only by a small amount. The reason is the strong repulsion of the Lennard-

Jones potential in Equation (2.2) at interatomic distances smaller than -)*. That is an important 

property of this surface definition. Fast pairwise methods to approximate the van der Waals surface 

area exploit this property to account for the overlapping spheres in the computation of the total 

surface area of a molecule.71 Another important property is the existence of numerous small cavities 

between the spheres. Usually these cavities are much smaller than a single water molecule. 

Therefore, the usage of this surface in continuum electrostatic implicit solvent models results in 

systematic errors.72 

Solvent Accessible Surface 

Another commonly used molecular surface is the solvent accessible surface proposed by Lee and 

Richards.73 As the name already suggests, spherical solvent molecules are excluded from the volume 

enclosed by this surface. It is generated by adding the probe radius to the radii of the van der Waals 

spheres. The union of these larger spheres not located inside any other sphere then defines the 

solvent accessible surface (Figure 2.10C). Each point on that surface will be accessible to the center 

of a spherical solvent molecule, whose radius is the probe radius. In contrast to the van der Waals 

surface, this surface only possesses cavities that are large enough to contain at least one spherical 

solvent molecule. 

Solvent Excluded Surface 

The third commonly used surface definition is the solvent excluded surface proposed by Richards74 

and Connolly.75,76 Any point inside this surface is not accessible to any spherical solvent molecule 

without overlapping with spheres placed at the centers of each atom. For the latter spheres, one can 

use the Lennard-Jones radii. However, empiric radii are used often to increase agreement with 

experimental results or explicit molecular dynamics simulations.77–79 The solvent excluded surface 

can be generated by taking the volume enclosed in the solvent accessible surface and subtracting all 

points whose distance to the solvent accessible surface is smaller than the probe radius. The surface 

of the resulting volume is the solvent excluded surface, which is visualized in Figure 2.10D. This 
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surface is nearly as tight around the solute as the van der Waals surface. However, it does not 

possess cavities that are smaller than a solvent sphere. 

 
Figure 2.10. Panel A shows a schematic representation of the three molecular surfaces: van der Waals 

surface (solid line), solvent accessible surface (dotted line), and solvent excluded surface (dashed line). 

As an example, the Villin headpiece domain (PDB code 1VII52) protein is shown in the van der Waals 

surface (panel B), the solvent accessible surface (panel C) and the solvent excluded surface (panel D). 

2.4 Implicit Solvent Models 

Statistical Mechanics Formulation 

Implicit solvent models provide a technique to incorporate the effects of solvent on solutes into 

simulations without representing every solvent molecule explicitly. As explained in Chapter 1, such 

an implicit representation is desirable for successful Monte Carlo simulations of biomolecular 

systems. The formal basis for an implicit solvent description relies on statistical mechanics. I will 

provide a short overview of these foundations based on the work of Roux and Simonson.28 They 

consider a system comprised of a solute U with atomic coordinates g = hi�, 	i0, … k and solvent V 

with atomic coordinates m � hn�, n0, … k. Furthermore, they assume that the potential energy 

�@g,mA of such a system is separable into one term �o that only depends on g, one term �p that 

only depends on m, and one term for the interaction of solute and solvent �op that depends on both 

sets of coordinates 

 �@g, mA � �o@gA � �p@mA � �op@g, mA.	 (2.11) 

The probability of a microstate in the canonical ensemble with solute configuration g and solvent 

configuration m is 
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 q@g,mA = expD−s�@g, mAEt JgJmexpD−s�@g, mAE. (2.12) 

Here, s is s = 1/Kuv, where Ku is the Boltzmann constant and T the temperature. To compute any 

thermodynamic expectation value 〈x@gA〉that only depends on the solute coordinates, one has to 

compute the integral80 

 〈x@gA〉 = z JgJm	x@gA	q@g,mA. (2.13) 

According to this equation, the expectation value depends on all solute and solvent configurations g 

and m. Each microstate contributes x@gA to the expectation value, weighted by the probability q@g, mA. The goal of implicit solvent models is to create an additional potential term Δ|}@gA that 

removes the dependence on m from Equation (2.13). The name of this term is the solvation free 

energy. It depends only on the solute coordinates g and not the solvent coordinates m. Together 

with �o@gA from Equation (2.11) it forms the solute potential of mean force. It is supposed to yield 

the same expectation values as the original potential. Therefore, Simonson and Roux define a 

reduced probability function 

 q~@gA = exp �−sD�o@gA � Δ|}@gAE�t Jg exp�−sD�o@gA � Δ|}@gAE�. (2.14) 

The requirement that no expectation value may change yields the new potential term up to an 

undefined constant offset � 

 Δ|}@gA = − 1s ln �z Jm expD−s@�p@mA � �op@g, mAE� � �. (2.15) 

For applications in biomolecular forcefields that use an implicit solvent representation, it is 

common practice to separate the potential energy of solvent-solute interactions into nonpolar and 

electrostatic contributions 

	 �op@g, mA = �op�Q@g, mA � �op����@g, mA. (2.16) 

Typically, ��Q is the Lennard-Jones interaction of the biomolecular forcefield and ����� the Coulomb 

interaction. This differentiation of nonpolar and electrostatic energy terms translates to the 

solvation free energy according to Roux and Simonson28 

 Δ|}@gA = Δ|�Q@gA � Δ|����@gA. (2.17) 
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The first term on the right hand side describes the reversible work needed to embed the solute in a 

fixed configuration g into the solvent with all solute charges set to zero. The second term describes 

the reversible work of charging the solute in a fixed configuration g in the presence of the solvent. 

These two terms are28 

 Δ|�Q@gA = − 1s ln�tJm exp�−s@�p@mA � �op�Q@g, mA�tJm expD−s�p@mAE �, (2.18) 

 Δ|����@gA = − 1s ln �tJm exp �−s ���@mA � �op�Q@g, mA � �op����@g, mA��
tJm exp �−s ��p@mA � �op�Q@g, mA�� �. (2.19) 

Another reason for this separation into nonpolar and electrostatic contributions relies on the 

thermodynamic cycle in Figure 2.11. The solvation free energy Δ|} is the change in free energy by 

transferring a solute from a reference environment, e.g. vacuum or a gaseous phase, into the solvent. 

The solute is kept in a fixed configuration g during this process. One possibility to do this is to first 

discharge the solute. The associated energy change is Δ|� G�!�"��. Subsequently, the uncharged 

solute is transferred into the solvent. The required reversible work is Δ|�Q. In the last step, the 

solute is charged again, requiring the reversible work Δ|"��!�"��. 

 Δ|}@gA = Δ|� G�!�"��@gA � Δ|�Q@gA � Δ|"��!�"��@gA. (2.20) 

The work of discharging the solute in vacuum consists only of the negative Coulomb energy −��������@gA of the solute. On the other hand, charging the solvated solute requires the Coulomb 

energy �������� plus an additional term due to the interaction of the solute charges with solvent. 

Per definition, this additional contribution is the electrostatic part of the solvation free energy Δ|����, see Equation (2.17). Thus, the electrostatic contribution to the solvation free energy is also 

 Δ|����@gA = Δ|� G�!�"��@gA � Δ|"��!�"��@gA. (2.21) 

Given the results presented so far, one would need to integrate over all solvent configurations m to 

compute the solvation free energy for a single conformation g. Moreover, the solvation free energy 

also depends on the temperature v of the system via the factor s. Considering the complexity of the 

Lennard-Jones and Coulomb interactions, it is obvious that there is no trivial solution to arrive at a 

simple analytic term for Δ|}@gA. However, such an analytic term would allow for an efficient 

implementation on computers. This, in turn, would enable fast implicit solvent simulations of 

arbitrary solutes. One solution to this problem is to use approximate implicit solvation models. I will 
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introduce two common approximate models in the remainder of this section, but first, I would like 

to provide another important definition that I will use throughout this thesis. 

 

Figure 2.11. Sketch of a thermodynamic cycle to decompose the solvation free energy ��� into nonpolar 

and electrostatic contributions. 

Hydration Free Energy 

I would like to point out an important definition that I use throughout this thesis. As explained in the 

previous subsection, the solvation free energy Δ|} is the change in free energy by transferring a 

solute in a fixed configuration g from a reference environment, e.g. a gaseous state, into the solvent. 

In contrast, the hydration free energy is the free energy difference between the gaseous state and 

the solvated state. It does not require the solute to be in a fixed configuration. Therefore, it also 

accounts for conformational and entropic changes of the solute upon solvation. Experiments are 

also able to compute this quantity.81 Thus, the computation of hydration free energies provide a 

valuable test between theory and simulation on the one hand and experiment on the other hand.82 

However, the computed hydration free energies form a canonical ensemble with constant particle 

number, volume and temperature are Helmholtz free energies. In contrast, experiments usually 

measure the Gibbs free energy because it is easier to control pressure and temperature in 

laboratories. Nevertheless, these two values can be compared, because the atmospheric pressure 

under normal conditions is of the order of 10
�	kcal/@mol	Å�A, wherefore difference between the 

Helmholtz free energy and the Gibbs free energy is be negligible according to Roux and Simonson.28 
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Because my thesis is on the theory side, I will give a short overview of the techniques to compute 

free energy changes between two different states of a solute. I term these states A and B, which are 

described by the potential functions ��@gA and ��@gA respectively. The thermodynamic coupling 

parameter � describes the transition of the system from state A to state B, where � = 0 corresponds 

to state A and � = 1 corresponds to state B. To be more specific, A will be the vacuum state and B 

will be the solvated state. I define the potential ��@gA as  

 U�@gA � ��@gA � �D��@gA � ��@gAE � �o@gA � �Δ|}@gA. (2.22) 

Thermodynamic integration83 (TI) can yield the free energy difference between the two states by 

computing 

 Δ|��@� → �A = zJ�〈Δ|}@gA〉��
F . (2.23) 

The expectation value 〈Δ|}@gA〉� averages over all configurations g using the probability of a 

microstate q~�@gA at a fixed value of � 

q~�@gA = expD−s��@gAEt JgexpD−s��@gAE. (2.24) 

Another method to compute the free energy difference between two systems is free energy 

perturbation (FEP) proposed by Zwanzig84 

 Δ|� ¡@� → �A = − 1s ¢TD〈expD−sΔ|}@gAE〉�E. (2.25) 

Here, the average runs over the system in state A. However, I note that the definition of the states A 

and B is exchangeable. For proper convergence of this method, it requires that there be sufficient 

overlap between the states A and B. This means that there has to be a sufficiently large number of 

configurations g that have a non-vanishing microstate probability in both states A and B. 

A third method to compute the free energy difference between two states is the Bennet acceptance 

ratio method (BAR).85 I will use this method in my thesis. The free energy difference is estimated via 

 Δ|��£@� → �A = 〈min@exp@sΔ|}@gAA, 1A〉�〈min@exp@−sΔ|}@gAA, 1A〉�. (2.26) 

This approach was shown to be near-optimal and highly efficient.85,86 
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Physical Properties of Water 

Since the focus of my thesis is the study of biomolecules such as proteins, the solvent will be water 

because it constitutes the physiological environment of many proteins. To construct an approximate 

implicit solvent model, one has to understand the physical properties of water and the effects that 

these properties cause. Thus, I will briefly review some of the physical properties of water. 

One remarkable property of water molecules is their high dipole moment of about 3 Debye in 

solution.87 Therefore, water is a polar solvent. Consequently, water molecules around polar or 

charged solutes reorient and shield the electrostatic field created by the solute. The high reported 

relative dielectric constant of water of 78.3 to 78.5 at 25°C reflects this behavior of water.88,89 The 

temperature dependence of the dielectric constant of water on the temperature ¥ in degree Celsius 

is according to Malmberg and Maryott88 

 (¦ � 87.740 − 0.4008¥ + 9.398 ⋅ 10
#¥0 − 1.410 ⋅ 10
1¥�. (2.27) 

Another important property of water is the presence of hydrogen bonds between different water 

molecules. The two hydrogen atoms of a water molecule can act as hydrogen bond donors, while the 

oxygen atom acts as an acceptor for two other hydrogen bonds. For example, due to this favorable 

interaction, only less than 5% of all water molecules are not engaged in hydrogen bonding at any 

given time at a temperature of 10°C.90 

Another property of liquid water is the hydrophobic effect, which causes oil-water mixtures not to 

mix.91 Nonpolar solutes, such as alkanes, can disrupt the tetrahedral hydrogen bond networks 

present in water, because they do not possess hydrogen bond donors or acceptors.92 It was believed 

that this disruption causes a rearrangement and strengthening of the hydrogen bond pattern 

around the solute. The strong hydrogen bonds would reduce the translational and rotational 

degrees of freedom. This results in a decrease of the system’s entropy.90 However, recent 

experiments indicate that the hydrogen-bonding pattern may not be strengthened, while the 

reorientation of the water molecules at hydrophobic surfaces still occurs.93 

Electrostatic Continuum Solvation Models 

In the last decades, scientists have developed a wide variety of implicit solvent models that provide 

approximate descriptions of the effect of the solvent on the solute.27,28,94–97 In my thesis, I will focus 

on continuum implicit solvent models. These allow the approximate computation of the solvation 

free energy with reasonable accuracy at reduced computational cost.94,98  
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Continuum implicit solvent models describe the solvent by a continuous dielectric medium. 

Dielectric media respond with polarization to an electric field U@iA, which can be generated by 

charge distribution «@iA, e.g. the charge distribution of the solvated molecule. Implicit continuum 

solvent models assume that the solvent’s response to that electric field is local, homogenous, 

isotropic, and linear. Local means that the polarization density ¬@iA of the medium at position i 

does not depend on the polarization density of the medium at any other position n. Homogenous 

means that the polarization density at both positions is equal if the electric field is equal. 

Furthermore, in an isotropic solvent the polarization density does not depend on the orientation of 

the electric field. Finally, linear means that the polarization density is proportional to the electric 

field via the susceptibility ­. With these assumptions the polarization density is 

 ¬@iA = (F­U@iA. (2.28) 

This yields the dielectric displacement field 

 ®@iA = (FU@iA � ¬@iA = (F("U@iA, (2.29) 

where the relative dielectric constant is defined as (" = 1 � ­  and (F  is again the vacuum 

permittivity. With that, it is possible to compute the energy necessary to assemble a charge 

distribution within a dielectric medium as99 

 ¯@iA = 12 z «@iAΦ�@iAJ�± = 12z U@iA ⋅ ®@iA	J�±. (2.30) 

Using the above assumptions, the electrostatic potential Φ�@iA can be found by solving the Poisson 

equation99 

 ΔΦ�@iA = − «@iA(F(" . (2.31) 

To obtain a unique electrostatic potential, boundary conditions need to be defined and fulfilled. Let i� be a position vector on the boundary between two dielectric regions. The normal vector of the 

boundary surface is X@i�A and the relative dielectric constants of the two dielectric regions (� and (0. The following boundary conditions for the electric and the displacement fields in the 

corresponding regions must hold at the interface99 

 @®²@ibA − ®´@ibAA ⋅ X@ibA = 0, (2.32) 

 U²@ibA × X@ibA = U´@ibA × X@ibA. (2.33) 
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While a vast number of Poisson-Boltzmann solvers have been developed to compute the 

electrostatic potential from Equation (2.31) under these boundary conditions, the numerical 

methods are also computationally demanding.97 Even at low accuracy, such methods need about 0.3 

s to 22 s to compute a single solvation free energy.100 Considering that tens of millions of such 

evaluations are necessary for the simulation of biomolecular systems via molecular dynamics or 

Monte Carlo methods, the simulations would take more than a year to complete. Therefore, the 

computation time of Poisson-Boltzmann solvers is at least one to two orders of magnitude too high 

for such simulations. That is the reason the approximate generalized Born model has become so 

popular. It provides a computationally more efficient alternative while retaining good agreement 

with Poisson-Boltzmann results.94,97,100–103 

The generalized Born model is based on the Born model of ion hydration proposed by Max Born.104 

Within that model, the solvation free energy of an ion with charge H, the ion’s assumed dielectric 

constant (G, and water’s dielectric constant (¦ is given by 

 Δ|��"� = − 1
4�(F �

1(G − 1(¦�H0¶ . (2.34) 

The Born radius ¶ is an empiric parameter used to match experimentally determined solvation free 

energies. It is a measure of the amount of polarization induced in the surrounding solvent by the 

ion’s charge. The induced polarization charges can in turn interact with the ion charge. 

Still et al.105 extended this model from ions to molecules 

 Δ|·� = − 18�(F � 1(G − 1(¦� ' H)H*.)* 1I·�D.)* , ¶) , ¶*E
3

),*5� . (2.35) 

The analytical form of the generalized Born model is very similar to the Coulomb term in Equation 

(2.5). Again (G is the assumed dielectric constant inside the solute. However, there are a few notable 

differences. The sign of the generalized Born term is the opposite of the Coulomb term. The former 

term also includes self-energies that correspond to the sum of the Born terms in Equation (2.34) for 

each atom 

 ¸|G��¹ = − 1
4�(F �

1(G − 1(¦�'H)0¶)
3

)5F . (2.36) 

In addition, the factor I·� in Equation (2.35) scales the interaction terms � ≠ 8 depending on the 

distance .)* and Born radii ¶) and ¶* of the atoms in question 
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 I·�D.)*, ¶) , ¶*E = »1 � ¶)¶*.)*0 exp,− .)*04¶)¶*/	. (2.37) 

These terms model the interaction of induced polarization charges by atom � with the charge of 

another atom 8. In conclusion, the generalized Born term results in a shielding of the Coulomb 

interaction between two atoms due to the induced polarization charges.  

The remaining open question is how to compute the Born radii. According to Equation (2.36), one 

would have to compute the solvation free energy for the entire molecule if only atom � is charged to 

get the Born radius for that atom. Unfortunately, this method would also require computationally 

expensive Poisson-Boltzmann calculations. Therefore, approximate methods to compute these Born 

radii are desired. The so-called Coulomb field approximation assumes that the electric displacement 

field caused by a solute point charge is of the form 

 ®) ≈ H) i − i)|i − i)|�. (2.38) 

With this approximation, Born radii may be estimated by the integral expression97 

 
1¶) = 1

4�z
J�±

|i � i)|#¦�¾�"
. (2.39) 

For each Born radius, an integral over the whole space outside the solute has to be solved. Although 

the integrand is very simple, the integration region is non-trivial due to the complex surface of large 

molecules such as proteins. An example is the solvent excluded surface introduced in Section 2.3. To 

enhance agreement with Poisson-Boltzmann calculations, Lee et al. introduced corrections to the 

integral expression of Equation (2.39).106,107 Grycuk proposed another integral expression to 

compute the Born radii, which fully agrees with solutions of the Poisson equation for the case of a 

spherical solute and an infinite dielectric constant of the solvent108 

 
1¶)� = 3

4�z
J�±

|i � i)|1¦�¾�"
. (2.40) 

This integral expression was shown to be reasonable accurate also for non-spherical solutes and 

finite solvent dielectric constants. In addition, it is expected to be the most efficient,102 wherefore I 

will use it in my thesis. 

Considering the strong assumptions used in the implicit continuum models so far, one should be 

aware of their implications. Since water forms hydrogen-bonding networks, these may induce 
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correlation between the orientations of different water molecules. Therefore, the local response 

assumption may not hold. In addition, the dielectric constant of water also varies for very high 

strengths of the external electric field,109 wherefore water’s to such a field response is not linear 

anymore. 

Some implications of these two effects have been studied by Gong and Freed110 or Bardhan.111 They 

find that both effects lead to smaller penalties of removing ions from the solvent than compared to 

the simple Born model. However, they only investigated cases where the Born model and the 

advanced models used the same dielectric surface. As Bardhan explained, nonlocal effects lead to an 

induced surface charge distribution that is located further away from the ion. That is what causes 

the lower charge burial penalty.111 Therefore, I would like to point out that using a different ion 

radius in the Born model might partly correct these discrepancies, wherefore the real advantage of 

these models is still unclear. Since they are also computationally very expensive,111,112 I will not 

consider them further in my thesis. 

Implicit Nonpolar Solvation Models 

Implicit nonpolar solvation models should include the Lennard-Jones interactions between solute 

and solvent as well as enthalpic or entropic changes in the solvent itself, such as the hydrophobic 

effect. Early models to describe such effects in an efficient manner were proposed by Eisenberg and 

McLachlan113 and Ooi et al.114 These models approximate the nonpolar contribution to the solvation 

free energy Δ|�Qby multiplying each atomic solvent accessible surface area �) with an atom type 

dependent surface tension coefficient ¿)  

 Δ|�Q ≈ Δ|}�}� = '¿)�)
3

)5� . (2.41) 

Further support comes from experimental observations that the solvation free energy of 

hydrophobic hydrocarbons correlates well with the solvent accessible surface area of those 

molecules.115,116 This correlation is also present for analogs of hydrophobic amino acid side 

chains.117 Early theoretical investigations by Pierotti using scaled particle theory also support 

solvent accessible surface area models.118 

Furthermore, Gilson and Honig119 proposed that attractive dispersion interactions between solvent 

and solute be negligible in a first order approximation. They argued that these interactions should 

be of the same order of magnitude as the solute-solute dispersion interactions. Consequently, 
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nonpolar solvation is only modeled by Equation (2.41) in many generalized Born based implicit 

solvent models.105–107,120–124 

However, more recent studies showed that such an approximation leads to errors in estimates of 

the hydration free energy for cyclic alkanes,125 the solvation free energy of large macromolecules126 

or the differences of solvation free energies for proteins in different conformations.127 Therefore, 

nonpolar solvation should also be modeled by taking into account the solvent accessible volume 

(SAV) for small molecules and an explicitly account for attractive solute-solvent dispersion 

interactions125,127–129 

 Δ|�Q ≈ Δ|}�}� � Δ|}�p � Δ|� GQ�"G ��. (2.42) 

For molecules such as proteins, the volume term will again be negligible since they are 

macromolecules. This leaves the computation of Δ|� GQ�"G �� for practical applications in molecular 

simulations as an open question. Using the probability function of Equation (2.12), the averaged 

solute-solvent dispersion interaction for a solute in configuration g is given by 

 〈�� GQ�"G ��@gA〉 = z Jm	�� GQ�"G ��@g, mA	q@g,mA. (2.43) 

Following the suggestions of Floris and Tomasi,128 this expression can be approximated for a given 

average number density of water molecules at position i around the solute in configuration g 〈«¦@iA〉g. 
 〈�� GQ�"G ��@gA〉 ≈ Δ|� GQ�"G �� = 'z J�±	�� GQ�"G ��@i), iA〈«¦@iA〉g3

) . (2.44) 

If the Lennard-Jones potential is used to describe solute-solvent dispersion, �� GQ�" �� is the 

attractive component of this potential term. According to the well-established Weeks-Chandler-

Anderson (WCA) decomposition, this attractive term is given by130 

 �À���¾¾"��¾ Á�@i), iA = ���@i), iAθÃ �|i) − i| − 2�1-)¦� − ()¦θÃ �−|i) − i| � 2�1-)¦�, (2.45) 

where θÃ is the Heavyside function and ���@i) , iA is the Lennard-Jones potential between atom � at 

position i) and a water molecule located at position i, defined in Equation (2.2). The parameters ()¦ and -)¦ are taken from Equations (2.3) and (2.4) respectively. The index w denotes the Lennard-

Jones parameters of the water molecule’s oxygen atom. The contributions of water’s hydrogen 

atoms are neglected. A simpler decomposition of the Lennard-Jones potential into attractive and 
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repulsive terms is given by the so-called 6-12 decomposition, where the attractive term �1
�0�¾¾"��¾ Á� is 

simply the second term of Equation (2.2) according to Gallicchio and Levy131 

 �1
�0�¾¾"��¾ Á�@i) , iA = −4 ()¦-)¦1|i) � i|1. (2.46) 

Tan et al.132 have shown that the WCA decomposition yields results in better agreement with 

explicit solvent simulations than the 6-12 decomposition. Unfortunately, they also found that the 

models still have problems in reproducing nonpolar attraction between dimers.  

Nevertheless, the 6-12 decomposition is simpler and, therefore, better suited for implementation 

into efficient molecular simulations. Making the same assumptions as in the continuum 

electrostatics model, namely the uniform distribution of water outside the solute cavity, the integral 

in Equation (2.44) gives the dispersion contribution to the nonpolar solvation free energy. It is a 

striking coincidence that the dispersion integrals in Equation (2.44) are of the same form as the 

Born radii integrals in Equation (2.40), if the 6-12 decomposition is used. Unfortunately, the 

integration region may differ, since the atomic radii used to construct the dielectric surface are 

usually empirical parameters, which may not be optimal for the calculation of the dispersion 

contribution Δ|� GQ�"G �� in Equation (2.42). 

Although the dispersion integrals and the Born radii integrals are of similar form, applications 

would require the estimate of two of these integrals for each atom in molecular simulations. As I will 

show in Section 3.4, the estimate of these integrals together with the computation of the solvent 

accessible surface area is the computationally most expensive step in the evaluation of the energy of 

the system. Therefore, the extension of the nonpolar model beyond the solvent accessible surface 

area approach is likely to induce severe performance penalties, which will restrict size of 

representative ensembles that can be generated by Monte Carlo simulations. Thus, I will restrict the 

simulation of proteins to the standard solvent accessible surface area model. Only for the study of 

small molecule hydration free energies in Chapter 4, I will take the explicit modeling of the 

attractive dispersion interactions into account. 
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2.5 Monte Carlo Simulation Techniques 

Metropolis Monte Carlo 

The estimate of a physical property of a solute-solvent system by Equation (2.13) is computationally 

very expensive or even impossible, if the system may access an infinite number of microstates. To 

solve this problem, Metropolis et al.133 proposed an algorithm to create a finite set of B  

representative states for a given system. The average value of a physical observable x from that 

representative set converges to the expectation value 〈x〉 if the set is large enough 

 〈x〉 ≈ 1B  ' x).3Å
)5�  (2.47) 

As can be seen from this equation, all states of the ensemble contribute equally to the expectation 

value. Their proposed algorithm to create such an ensemble is to start at a random configuration of 

the system hgF, mFk and then perturb the system via a defined transformation and propose this new 

configuration hg�, m�k. It will be added to the ensemble with probability 

 Æ����Q¾ = minD1, expD−s�@g�, m�A − �@gF, mFAEE, (2.48) 

where s = 1/Kuv. Here, Ku is the Boltzmann constant and v is the temperature of the system. If the 

new configuration is rejected, the old configuration will be added to the ensemble, wherefore it may 

be present more than once in the ensemble. This process is iterated with the latest configuration in 

the ensemble. As shown by Metropolis et al., the structures in the ensemble will approach the 

Boltzmann distribution, if the perturbations follow the detailed balance condition133 

 �@g) , m)AÆ)* = �Dg* , m*EÆ*) , (2.49) 

Here �@g) , m)A is the probability of being in configuration hg), m)k and Æ)* the probability to perturb 

the system into state hg*, m*k from state hg) , m)k. 

In principle, it is now possible to estimate any expectation value. However, Metropolis et al. 

explicitly stated that it is unknown how fast the ensemble will approach the Boltzmann distribution. 

Therefore it is unknown, at which point the ensemble will be representative. This speed of 

convergence will strongly depend on the type of system and the possible chosen set of 

transformations.133 
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Parallel Tempering 

Considering that an arbitrary system may contain many local energetic minima separated by high 

barriers, the transition of the system between these minima is very unlikely. The reason is the 

suppressed probability to accept new configurations with higher energy, see Equation (2.48). The 

low probability for crossing energy barriers is one reason for the before-mentioned possible slow 

convergence of the algorithm to the Boltzmann distribution. Given a multidimensional system, one 

could increase this convergence by applying perturbations that take the system directly from one 

minimum to another. However, guessing such perturbations without prior knowledge about the 

locations of the barriers and minima is non-trivial. In addition, such perturbations would have to 

satisfy the detailed balance condition of Equation (2.49). Nevertheless, quite a few algorithms exist 

that allow a faster convergence of the ensemble to the Boltzmann distribution. 

One such algorithm is parallel tempering (PT) that I will use for my simulations. It was first 

proposed by Swendsen and Wang134 and extended by Geyer135 according to Deem and Earl.136 

Hansmann137 first applied this method to a biomolecular system. He showed that this algorithm 

could overcome energy barriers between multiple local energy minima successfully. Therefore, the 

convergence speed of the representative ensemble to the Boltzmann distribution increases 

considerably. 

Parallel tempering considers B� identical independent systems called replica in possibly different 

configurations hgÇ , mÇk at different temperatures vÇ. For each of the systems a Metropolis Monte 

Carlo simulation is run for a certain number of steps at the corresponding temperature vÇ. 

Afterwards, an exchange of the temperatures between two systems vÇ and vÇ�� is attempted and 

accepted with probability 

 Æ¡� = minD1, expD−ΔsÇ,Ç��Δ�Ç,Ç��EE, (2.50) 

where ΔsÇ,Ç�� and Δ�Ç,Ç�� are defined as  

 ΔsÇ,Ç�� = 1KuvÇ�� − 1KuvÇ , (2.51) 

 Δ�Ç,Ç�� = �DgÇ��, mÇ��E − �DgÇ, mÇE. (2.52) 

The probability Æ¡� guarantees that the distribution of states for each ensemble K will converge to 

the Boltzmann distribution. Moreover, the system will converge much faster, since for a given 
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energy barrier, the probability for the system to overcome this barrier will be much higher at high 

temperatures according to Equation (2.48). 

To ensure a reasonable exchange probability between temperatures vÇ and vÇ��, the temperature 

intervals have to be chosen carefully, so that there is sufficient overlap of the energy distributions at 

consecutive temperatures. Since the expectation value of the energy and the fluctuations of the 

energy will be system-specific, they will have to be adapted to each system. 
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3 Development and Implementation of Implicit Solvent 

Model and Forcefield 

This chapter focuses on the development and implementation of methods that enable Monte Carlo 

simulations of proteins in an implicit solvent model within the SIMONA simulation framework.37 

The first section discusses the challenges of transferring a common biomolecular force field usually 

used in molecular dynamics simulations to Monte Carlo simulations. Subsequently, the section 

explains the details of the implementation in SIMONA and presents results on the performance of 

the implementation. The second section gives details of the parallelization of a method to compute 

the solvent accessible surface area of proteins, which is used in the nonpolar contribution to implicit 

solvent model (see section 2.4). The third section introduces an efficient method for the accurate 

computation of Born radii in the generalized Born implicit solvent model introduced in section 2.4. 

It explains the underlying algorithm developed by me and provides an assessment of the accuracy of 

the model. Finally, this section demonstrates the efficiency of my method in comparison to 

previously published methods. In the last section, I will present results on the Monte Carlo 

simulation performance that can be achieved with these methods implemented by me into the 

SIMONA simulation framework. 

3.1 SIMONA Implementation of the AMBER99SB*-ILDN Forcefield 

As explained in Section 2.2, I will use the AMBER99SB*-ILDN forcefield in this thesis because of its 

proven accuracy. The forcefield is based on the Parm94 parameterization,138 but uses partial 

charges created with the RESP139 scheme and improved torsional potentials to yield significantly 

improved internal molecular energies in comparison to high level ab initio calculations.38 Hornak et 

al. further improved backbone dihedral torsional parameters. Their improvement yields a balance 

between the propensity of secondary structure elements in better agreement with PDB data and 

experimental NMR data, especially for Alanine and Glycine residues.39 Best and Hummer further 

fine-tuned the forcefield with an additional set of backbone dihedral torsion parameters that yield 

secondary structure propensities in better agreement with experiments.40 Lindorff-Larsen et al. 

have improved side chain torsion parameters to yield rotamer distributions in better agreement 

with PDB statistics and experimental NMR data.41 All these developments are included in the 

AMBER99SB*-ILDN forcefield. I note that the recommended water model for this forcefield is the 

explicit TIP3P140,141 water model. 
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To enable Monte Carlo simulations of proteins with common biomolecular forcefields, I will use the 

SIMONA Monte Carlo simulation framework.37 Monte Carlo simulations with common biomolecular 

forcefields such as AMBER99SB*-ILDN were previously not possible with SIMONA, because the 

framework lacked some of the necessary forcefield terms and a matching implicit solvent model. 

The first step was to implement the basic terms of the AMBER99SB*-ILDN molecular forcefield into 

SIMONA in an efficient manner. Therefore, some differences between Monte Carlo and molecular 

dynamics simulations had to be taken into account. For molecular dynamics, forces are the focus of 

computation. They are required to solve Newton’s equations of motion. However, for Monte Carlo 

simulations, the total energy of the system is the focus of computation as explained in Section 2.5, 

while forces are not required. 

Another difference is that forces in molecular dynamics have to be computed on a per-atom basis. 

The total energy in Monte Carlo simulations has to be computed for the whole system. As a result, 

the pairwise non-bonded interactions described in Section 2.2 require one additional summation for 

the computation of the total energy compared to the computation of the forces for each atom. Since 

per-atom energies of Equations (2.2) or (2.5) may have opposite signs and absolute values of 

different orders of magnitude, the final summation of the total energy may be prone to numerical 

errors due to the finite precision of floating point numbers on computers (see Appendix A.1). 

Consequently, my implementation will compute per-atom non-bonded energies in single precision 

for better performance, but sum these energies in double precision. Goetz et al showed that this 

scheme provides increased accuracy over summing the per-atom energies in single precision 

only.142 This should provide a good compromise between numerical accuracy and computational 

performance. 

A further modification required for the application of the AMBER99SB*-ILDN forcefield to Monte 

Carlo simulations is the assignment of Lennard-Jones parameter to all atoms. In the original 

forcefield, some hydrogen atoms have no Lennard-Jones parameters, but do have a partial charge 

assigned. These hydrogen atoms are covalently bound to much larger atoms such as oxygen. The 

missing parameters may lead to a Coulomb collapse of these hydrogen atoms with other nearby 

atoms that have no covalent bond to the hydrogen according to Equations (2.2) and (2.5). The 

reason is the neglected repulsion of the Lennard-Jones potential due to the missing Lennard-Jones 

parameters. This neglected repulsion poses no problem for molecular dynamics simulations that 

start from an energetically minimized conformation without a Coulomb collapse. In typical settings 

of such a simulation, the repulsion of the larger atom to which the hydrogen is bound will pose a 
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large enough energy barrier for any other approaching charged particle to prevent the Coulomb 

collapse. 

However, the Monte Carlo algorithm may propose a perturbed configuration in which the hydrogen 

without Lennard-Jones parameters is on top of another atom. In that case, the Coulomb attraction 

between the hydrogen atom and the other atom may overcome the Lennard-Jones repulsion 

between the other atom and the nearby larger atom, to which the hydrogen is bound. This event 

traps the system at a practically infinite negative energy. To prevent this Coulomb collapse, I have 

assigned Lennard-Jones parameters to all hydrogen atoms missing them. The according parameters 

are - = 1.06908	Å and ( = 0.00016	kcal/mol. Here, - is equal to the Lennard-Jones radii of other 

hydrogen atoms. The small arbitrary value of ( should prevent the Coulomb collapse, but should not 

modify the forcefield otherwise. 

Another important aspect of my AMBER99SB*-ILDN implementation is that SIMONA takes only 

dihedral degrees of freedom for proteins into account.37 Therefore, ����� and ������ of Equations 

(2.7) and (2.8) will be constant during the simulations. Thus, these potential terms can be omitted. 

The assignment of all parameters, e.g. partial charges, Lennard-Jones parameters, or dihedral terms 

to a given protein structure is done by the freely available pdb2gmx program of GROMACS.25 The 

SIMONA preprocessor reads in the parameter files generated by pdb2gmx and converts the values 

to the XML input file format of SIMONA. 

The implementation of the AMBER99SB*-ILDN dihedral potential into SIMONA is straightforward. 

Since the number of torsion potential terms depends linearly on the size the protein, this term is not 

performance-relevant. Therefore, no optimizations of the program code are needed. To check the 

correctness and accuracy of the resulting dihedral potential term, I among others have compared 

the implementation in SIMONA to that in GROMACS. I have used an already published test set of 611 

native protein structures100 for this comparison. Figure 3.1 shows a histogram of the relative errors 

between the dihedral energies of the two implementations. The average relative error is 2.5 ⋅ 10
1 

and the maximum relative error is 2.0 ⋅ 10
�. These errors are acceptable when taking into account 

the limited precision of floating point computations. One reason for the small errors may be a 

different implementation of the cosine function used in the GROMACS package compared to default 

the implementation of the C++ standard library, which I use in SIMONA (see Equation (2.10)). 
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Figure 3.1. Histogram of relative errors of the dihedral potential energy between implementations in 

GROMACS and SIMONA for the AMBER99SB*-ILDN forcefield. I used a set of 611 native protein 

structures100 for this comparison. 

Now I turn to the implementation of the non-bonded interactions of the AMBER99SB*-ILDN 

forcefield described by Equations (2.2) to (2.5). These interactions are long range and the number of 

them is proportional to B0, where B is the number of atoms in the system. As a result, their 

computation is a performance-critical step in the evaluation of the total energy of the system. With 

increasing size of the simulated system, their computation becomes extremely expensive. This issue 

becomes even more pressing in molecular simulations with explicit solvent. The high number of 

solvent atoms dramatically increases the computational cost. To decrease the computational effort, 

a number of schemes to treat long-range interactions have been developed. For example, Sagui and 

Darden29 or Sutmann et al.30 have published overviews of these schemes, which include Ewald 

summation, particle mesh, multipole expansion, and truncation. 

However, these schemes can introduce errors to the total energy of the system and the forces acting 

on each atom. As a result, the errors may lead to artifacts in the simulation. Truncation schemes are 

especially prone to this problem as shown by several recent studies.143–147 However, Smith and 

Pettit also observed artifacts with Ewald schemes.148 Their observed artifacts vanish if the size of 

the periodic system is increased or for high dielectric constants of the system. The latter condition 

may pose problems to the application of Ewald methods to simulations of biological membranes, 

because the lipid tail regions exhibit a very low permittivity (see Section 2.1). Furthermore, Piana et 

al. reported that the truncation of Lennard-Jones interactions in biomolecular simulations could also 

cause artifacts.149 
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To avoid these issues, I will not use any truncation schemes. Due to my employed implicit solvent 

representation, the number of atoms in the simulated system reduces significantly. Therefore, I 

expect the direct evaluation of the B0 terms to be very efficient anyway. The number of interaction 

energies that have to be computed can be further reduced by noting that Equations (2.2) and (2.5) 

are symmetric under the exchange of atoms � and 8. This reduces the number of interactions that 

have to be computed by a factor of two. 

The first problem in the efficient implementation of these terms is the data layout in computer 

memory of the coordinates and forcefield parameters. The architecture of modern CPUs dictates the 

answer to this problem. They achieve their high performance of floating point computations by 

using vector instructions. Vector instructions are instructions to the CPU that perform the same 

operation, e.g. a multiplication or an addition, on multiple data items such as floating point numbers. 

For more details on these instructions, see the Appendix A.2. By using these vector instructions, the 

CPU can perform an operation on two, four or eight floating point numbers instead of just one. 

Ideally, the performance will increase up to a factor of eight. However, these instructions require 

that the respective data items be arranged in a specific way in the memory. 

This requirement defines the data layout for the computation of the non-bonded interactions. Three 

separate blocks of continuous memory store all x, y, and z coordinates respectively. Storing the x, y, 

and z coordinates of the first atom, then that of the second and so on in one continuous memory 

block will in general prevent the usage of vector instructions. The forcefield parameters H) , -)  and () 
of Equations (2.2) to (2.5) are also stored in such a fashion. I note that due to the nature of proteins 

being polypeptide chains, many of these atom type dependent parameters will be equal. To lower 

memory consumption, it was, and still is common in older simulation codes to store just the atom 

type as an array index. Then there are three smaller arrays of the length of the number of different 

atom types B¾ÉQ� instead of B to store the partial charges and Lennard-Jones parameters. However, 

such a memory layout will also in general prevent the usage of vector instructions, which would 

result in a decreased performance. In addition, memory is no more a sparse resource in modern 

computers, wherefore I will not use this memory layout. 

Another important aspect is the implementation of the excluded interactions in Equations (2.2) and 

(2.5). Checking for every interaction if it is excluded and then skipping the computation is no option. 

First, this would again prevent the usage of vector instructions, because not all data items are 

treated equally. Second, this check also requires computation time and therefore decreases 

performance. Finally, it would create a branch in the execution of the program. A branch is a point in 
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the execution of the program, where depending on the input value, different instructions will be 

executed afterwards. Such branches are very costly. The reason for that cost is that CPUs are able to 

start a new operation although the last operation is not yet finished. For example, an addition or 

multiplication of two floating point numbers takes three or five CPU cycles respectively for the 

result to be available with the SSE instruction set. However, the CPU may start an addition or 

multiplication each cycle if the operands are available.150 A branch in the program execution 

prevents such overlapping instructions. In conclusion, compute intensive parts of the program 

should avoid these branches for good performance. 

My solution for the excluded interactions is as follows. Temporary arrays store all the interaction 

energies of an atom � with all other atoms 8 > �. Afterwards, the entries in the temporary arrays 

corresponding to excluded interactions are set to zero. In addition, the entries corresponding to the 

1-4 interactions in Equation (2.6) are scaled with the appropriate factors. Subsequently, the entries 

in the temporary arrays are converted to double precision floating point numbers and summed. 

This gives the interaction energy of an atom � with all other atoms 8 > �. The last step sums all per-

atom energies in double precision. 

A last important point for the implementation to consider is if two atoms have zero distance. In that 

case, the energies cannot be evaluated, because division by zero is not allowed. For floating point 

values, this would result in not a number (NAN). The occurrence of NAN in computations also 

dramatically decreases performance. To avoid this performance penalty, I modified the calculation 

of the distance .)* between all atom pairs 

 .)*0 = Ëi) − i*Ë0	 � .F0. (3.1) 

Here, .F0 = 0.000001	Å is a small arbitrary constant. Given the usual distance between nearby atoms 

of a few Angstrom in native protein structures, this change should not modify the low energy region 

of the potential. However if two atoms are closer than their Lennard-Jones radii, the potential will 

be modified due to the very rapid variation of the .�0 term in the Lennard-Jones energy of Equation 

(2.2). I have considered all these facts, when implementing the Coulomb and Lennard-Jones 

interactions into my new single energy term in SIMONA, which I will refer to as Nonbonded. 

Figure 3.2 shows a comparison of the accuracy for the Coulomb and Lennard-Jones energies of my 

implementation in SIMONA and that of GROMACS. I have used the same set of 611 protein 

structures as for the dihedral potential comparison. For the Lennard-Jones comparison, the 
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structures were subject to an energy minimization before the comparison, which enables a 

comparison of the relative errors for the low energy regions of the potential. 

The average relative error for the comparison of the Coulomb energies is 1.5 ⋅ 10
1 and the 

maximum relative error is 6.1 ⋅ 10
1. These results are within the expected range of the floating 

point precision. For the Lennard-Jones potential, the average relative error is 2.5 ⋅ 10
1, which 

slightly larger than for the Coulomb energies. However, there is one large outlier. The maximum 

relative error between Lennard-Jones energies is 4.6 ⋅ 10
# (not visible in Figure 3.2). The reason 

for this large error is the previously described modification of the distance computation in Equation 

(3.1). The relatively short energy minimization procedure was not able to remove all overlaps 

between atoms, wherefore this example demonstrates the expected deviations at low interatomic 

distances. The second largest relative error is 1.0 ⋅ 10
1, wherefore the average relative error is 

mainly because of that one large outlier. Altogether, I observe good agreement between the energies 

computed with my Nonbonded term in SIMONA and the corresponding energies computed with 

GROMACS. 

 

Figure 3.2. Histograms of relative errors for Coulomb (left panel) and Lennard-Jones (LJ, right panel) 

energies between the GROMACS and SIMONA implementations. The same set of 611 native protein 

structures as in Figure 3.1 was used. For the Lennard-Jones comparison, the structures were minimized 

energetically with GROMACS to enable a comparison of the low energy regions of the potential. 

The goal of my implementation of the Nonbonded term was not only to have an accurate 

implementation, but also a very efficient one. I have done a performance comparison of the required 

computation time between my Nonbonded term and the old Lennard-Jones and Coulomb terms 

previously present in SIMONA. Figure 3.3 shows the computation time for each of the three 
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potential terms during short Monte Carlo simulations of 10,000 steps. I used a small set of twelve 

native protein structures ranging from 267 to 5164 atoms. 

The combined computation time for the old Coulomb and Lennard-Jones terms ranges from 134 s 

up to 52,843 s for the largest protein. The latter is equivalent to 14 hours and 41 minutes. In 

contrast, the computation time for my Nonbonded term ranges from 4.3 s to only 1,315 s. Thus, the 

largest system requires only a computation time of 22 minutes instead of more than 14 hours. The 

speedup in computation time by using my new implementation increases from a factor of 31.4 for 

the smallest protein up to 40.2 for the largest. This speedup demonstrates the increased 

computational efficiency of my new Nonbonded term. 

 

Figure 3.3. Comparison of computation time as a function of the number of atoms in the system for old 

Lennard-Jones (LJ) and Coulomb potentials in SIMONA and my new implementation of these two terms, 

which is labeled as Nonbonded (panel A). The computation time was measured during a short 10,000 

step Monte Carlo simulation. The speedup in computation time achieved by using my Nonbonded term 

instead of the old Lennard-Jones and Coulomb terms is also graphed (panel B). 

Another feature of modern CPU chips is that they consist of multiple CPU cores. These cores may 

process data in parallel. To make use of this feature, I have parallelized my Nonbonded term by 

using the OpenMP standard.151 The OpenMP standard provides access to threads. These threads can 

process data in parallel while running on different CPU cores. To achieve the parallelization, the 

work of computing the Nonbonded term is split into small work packages. The available threads 

then process these work packages independently. 
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An important requirement to guarantee reproducibility of the simulation results is that the 

computed energies must not depend on the number of available threads or the scheduling of the 

work packages to the different threads. The reason is that the finite precision of floating point 

numbers invalidates the associative property of adding real numbers. Taking this into account, a 

single work package consists of computing the interaction of a single atom � with all other atoms 

8 Ê �, storing the computed energies in the temporary arrays, setting excluded and 1-4 interactions 

and summing the temporary arrays. Since the amount of work in one package depends on the index 

�, the work packages contain a varying amount of work, wherefore they are scheduled dynamically 

to the threads. This means that each thread may request a new work package after it has finished its 

previous one. 

I have tested the implementation, and the energies obtained are binary invariant under the number 

of available threads in all cases. Subsequently, I have carried out speedup measurements, where I 

ran the same simulation with an increasing number of available threads. I used five proteins with an 

increasing number of atoms for the measurements. I have measured the computation time ¥ for the 

Nonbonded term during a 10,000 step Monte Carlo simulation. More details of these measurements 

are described in the Appendix A.3. The speedup Ì	 by using T threads is given by the computation 

time ¥� for using one thread and ¥	 for using ten threads 

 Ì	 � ¥�
¥	

. (3.2) 

 
Figure 3.4. Speedup in computation time of the Nonbonded term over the number of available threads for 

five proteins with an increasing number of atoms. 
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The obtained speedups in Figure 3.4 show that for the smallest system they increase up to eight 

threads and then start to decrease again. The reason is that the work packages are too small. As a 

result, the available threads block each other while waiting for a new work package being assigned 

to them. This effect vanishes for larger systems. The implementation parallelizes well for a system 

of 1231 atoms up to 16 threads, reaching a speedup of 13.7. Even larger system scale well up to 32 

threads with a speedup of 28.3 and 30.3 for 2503 and 5164 atoms respectively. 

In summary, I have created an implementation of the AMBER99SB*-ILDN forcefield in SIMONA 

suitable for use in Monte Carlo simulations. Therefore, a number of modifications outlined above 

were necessary to guarantee proper behavior of the system even in edge cases. My implementation 

can compute total energies of that forcefield with sufficient numerical precision, high efficiency and 

good scaling behavior for multiple available threads. 

3.2 Parallel Computation of the Solvent Accessible Surface Area 

As described in Section 2.4, I will model nonpolar solvation effects via a solvent accessible surface 

area (SASA) term. Each atom � is assigned a sphere of radius .) . The SASA �) of that atom is the 

surface area of the respective sphere not covered by the spheres of any other atoms. The method I 

will employ is based on the work of Connolly76 and an implementation of Klenin et al.152,153 This 

method, called PowerSASA, estimates the SASA based on analytical formulas. These formulas can be 

evaluated for each atom separately and their computation is therefore trivial to parallelize.  

However, the evaluation of these formulas requires the knowledge of the so-called surface vertices 

for each atom. These surface vertices are points where the spheres of three different atoms intersect 

and those intersection points are not within any other sphere of an atom. A power diagram can yield 

these points.152 Unfortunately, the algorithm to construct the power diagram proposed by Klenin et 

al. is inherently serial. Given that a power diagram for a set of T spheres exists, they describe how 

the power diagram for T + 1 spheres can be constructed.152 

This non-parallelizable algorithm poses a problem. According to Amdahl’s law, the maximum 

speedup Ì	��Í of a computation parallelized with T processes or threads is154 

 Ì	��Í = �IG � 1 − IGT �
�.	 (3.3) 

Here, IG is the fraction of serial computation time. Considering that my Nonbonded interactions 

scale well up to 32 threads or processes as shown in Section 3.1, even a non-parallel fraction of 5% 



3 Development and Implementation of Implicit Solvent Model and Forcefield 

45 

in the computation would limit the maximum speedup to 12.5. As a result, a lot of the parallelization 

capability of my Nonbonded term would be wasted. Moreover, this performance bottleneck would 

strongly limit the application of the Monte Carlo simulations to investigate biomolecular processes, 

because the amount of sampling performed on the process would reduce significantly. To remove 

this bottleneck, I have also developed and implemented a parallel algorithm to construct the power 

diagram. 

A power diagram consists of the power cells Π belonging to each atomic sphere. The power cell Π) of 

a sphere � at position i)  consists of all points c) within a cubic bounding box for which the following 

condition is true 

 |c) − i)|0 − .)0 < Ëc* − i*Ë0 − .*0, ∀8 ≠ �. (3.4) 

By definition, the power cell has a convex shape. Its boundary consists of planar polygons. The 

corners of these polygons are termed vertices. These vertices are not to be confused with the 

surface vertices. The surface vertices of a sphere � required for the computation of the SASA �)  are 

the intersections of the edges of the power cell Π) with the sphere �. To enable parallelization, my 

algorithm computes these power cells independently of each other instead of computing the whole 

power diagram. 

To construct a single power cell for a given sphere �, all other spheres possibly intersecting with that 

sphere have to be determined. Therefore, I have implemented a neighbor search method. The space 

is separated into cubes with edge length 

 Ì� = 2.��Í, (3.5) 

where .��Í is the largest radius of all spheres. Subsequently, all spheres at positions i) are sorted 

into these cubes. All other spheres possibly intersecting with sphere � have to be either located in 

the same cube or any of the 26 neighboring cubes. This method is similar to that by Onderik.155 

After all neighbors have been resolved, the algorithm starts by constructing a bounding cube around 

the sphere �. This cube is the preliminary power cell that is established by having six additional 

spheres with zero radii located in each direction along the axes of the coordinate system at 

distances .). Subsequently, the algorithm constructs the final power cell by iteratively adding all 

other possibly intersecting spheres 8 to the power cell Π). Let us consider that we have a power cell Π)@8 − 1A where all 8 − 1 possibly intersecting spheres have already been added. Now we want to 

add the 8-th sphere to this power cell. 
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For all vertices of the current power cell Π)@8 − 1A, the condition in Equation (3.4) is tested. If all of 

the vertices fail this test, the corresponding sphere � is completely covered by other spheres. Thus, 

the SASA is zero and the algorithm continues with the next power cell. If not all, but one or more of 

the vertices fail this test, the intersection plane between spheres � and 8 is determined. This plane is 

orthogonal to the line connecting i) and i*. The plane includes the point Ð)*, which lies on the 

connecting line and fulfills the condition 

 ËÐ)* − i)Ë0 − .)0 = ËÐ)* − i*Ë0 − .*0. (3.6) 

The intersecting plane cuts through the power cell Π)@8 − 1A and separates it into two regions. For 

one region, the condition in Equation (3.4) is true and for the other the condition is false. The former 

region is the new power cell Π)@8A. The vertices of Π)@8A are all vertices of Π)@8 − 1A which passed 

the test of the condition in Equation (3.4). In addition, new vertices are those points where the 

intersection plane between spheres � and 8 intersected with the edges of the power cell Π)@8 − 1A. 

These points can be computed easily from the intersection of a line and a plane. 

To complete the construction of the new power cell Π)@8A, the determination of its edges remains. 

The question is how to connect the new vertices to those that remained from power cell Π)@8 − 1A 

and how to connect the new vertices among each other to form the new edges. To solve this task, let 

me note a few things about vertices and edges of a single power cell. One vertex is part of exactly 

three intersection planes. Because each intersection plane is generated by an intersecting sphere 8, 

each vertex can be uniquely labeled by the indices of these three spheres. I will denote these three 

spheres as the generators of the corresponding vertex.  

Furthermore, each possible pair out of the three intersection planes of one vertex forms an edge of a 

single power cell. In turn, each of these edges can be labeled by one pair of generators 

corresponding to two intersection planes. It also follows that each vertex is part of exactly three 

edges of a power cell. As a result, the vertices of a single power cell form a ternary net. 

Consequently, an edge between two vertices exists, if and only if the two vertices have two common 

generators. This is the criterion how to connect the vertices to form a convex power cell. 

After this procedure has been repeated for all intersecting spheres 8, the construction of the power 

cell is complete. The computation of the surface vertices and the SASA is then analog to that of 

Klenin et al.152,153 Figure 3.5 summarizes the algorithm to construct a single power cell for the two-

dimensional case. 



3 Development and Implementation of Implicit Solvent Model and Forcefield 

47 

 

Figure 3.5. Sketch of the algorithm to compute the surface vertices via a power diagram for the two-

dimensional case. At first, a cubic bounding box around the sphere of interest forms the preliminary 

power cell (panel A). An intersecting sphere (grey circle) is added to the power cell by finding any 

vertices that do not satisfy the condition in Equation (3.4) (grey diamond) and computing the 

intersection plane (dashed line) defined by Equation (3.6) (panel B). The power cell is reduced by the 

region cut away due to the intersection plane and the new vertices (grey triangles), and edges (dotted 

line) are computed (panel C). When all spheres have been added, the surface vertices (grey crosses) are 

computed as the intersections of the final power cell with the sphere of interest. 

My implementation also takes care of numerical instabilities described by Klenin et al.153 To assess 

the accuracy and stability of my new algorithm, I have run a test simulation. This simulation 

contained a protein with 1231 atoms and 10 million Monte Carlo steps. For each proposed 

configuration of a Monte Carlo step, I have compared the computed SASAs of each atom between my 

implementation and PowerSASA of Klenin et. al.152,153 Figure 3.6 shows histograms of the resulting 

root mean square and maximum difference between the two sets of atomic SASAs from the two 

methods. As the histograms show, the two methods agree very well in most cases. However, in 1166 

cases the maximum difference is larger than 1.0 Å0. 

I have investigated these cases in more detail. Therefore, I have also computed the SASA by a robust 

but computationally expensive numerical surface integration scheme for the atoms that showed the 

maximum SASA difference. The Appendix A.4 contains details about the numerical integration 

scheme. Comparison of the SASAs by PowerSASA and my parallel implementation to the results of 

the numerical integration scheme shown in Figure 3.7 reveals that, in 1163 cases, my results are 

closer to that of the numerical integration scheme, while only in three cases the PowerSASA results 

are closer to the numerical results. In addition, for the 1163 cases the SASA errors of my 

implementation in relation to the numeric integration scheme are also smaller than 0.1 Å0. For the 

remaining three cases, the errors are smaller than 1.0 Å0. This demonstrates the good numerical 

stability of my implementation. The reason for this improved numerical stability is that my 
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algorithm does not need to construct a complete self-consistent power diagram. Only each single 

power cell needs to be consistent. This is much easier to achieve. 

 

Figure 3.6. Differences of the computed solvent accessible surface areas (SASA) for each atom with the 

PowerSASA152,153 method and my new parallel implementation during a ten-million-step Monte Carlo 

simulation. Panel A shows a histogram of the root mean square differences (RMSD) between the atomic 

SASA of each method for each Monte Carlo step. Panel B shows a histogram with the maximum difference 

of the atomic SASA between the two methods for each Monte Carlo step. 

 

Figure 3.7. Histogram of the SASA errors of PowerSASA152,153 and my parallel SASA implementation 

relative to a robust but computationally expensive numerical SASA integration scheme. The data set 

contains the 1166 cases of Figure 3.6 where the computed SASA between PowerSASA and my parallel 

implementation differed by more than 1.0 Å. 

Since my algorithm computes each power cell independently of each other, there is a drawback to 

my algorithm. Each surface vertex is common to three spheres, because it marks the point where 
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these three spheres intersect. Therefore, my algorithm introduces additional workload, since it 

requires that every surface vertex have to be computed three times. The timing measurements in 

Figure 3.8 on a small set of protein structures show that the overhead introduced by the redundant 

computations increases the computation time by a factor of less than 2.3. This factor decreases 

down to 1.84 for the largest measured protein. Overall, the increase in computation time due to 

redundancies is lower than the expected factor of 3.0. However, the potential parallel execution will 

compensate this drawback. Since this implementation is part of the PowerBorn algorithm described 

in the next section, I will postpone the speedup measurements to that section. 

 

Figure 3.8. Slowdown in computation time in part due to redundant calculations in the parallel 

implementation of the SASA computation in comparison to the PowerSASA152,153 method when using only 

one thread. 

3.3 An Accurate and Efficient Generalized Born Model 

Reproduced in part with permission from Brieg, M.; Wenzel, W. PowerBorn: A Barnes–Hut Tree 

Implementation for Accurate and Efficient Born Radii Computation. J. Chem. Theory Comput. 2013, 9, 

1489–1498. Copyright 2014 American Chemical Society. 

As explained in Section 2.4, I will use the generalized Born model to describe electrostatic solvation 

effects. Onufriev et al. showed that the accuracy of the generalized Born model in relation to 

Poisson-Boltzmann methods does strongly depend on having very accurate estimates of the Born 

radii ¶) used in Equation (2.35).101 According to Mongan et al.,102 this requires the use of the more 

elaborate integral expressions of Lee et al.106,107 or Grycuk.108 In order to also achieve good 
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agreement between hybrid or explicit water calculations and generalized Born methods,156,157 one 

has to use the solvent excluded surface (see Section 2.3). 

The problem is that currently available methods and implementations to compute Born radii are 

unable to comply with all these requirements at a reasonable computational cost. They are either 

based on the outdated Coulomb field approach,105,120,121,123,131,158–168 or use the problematic van der 

Waals surface or another approximate surface.106,122,169–171 Other methods sacrifice accuracy for 

having smooth derivatives required for molecular dynamics.172 Finally, some are just too slow for 

efficient biomolecular simulations.107 Moreover, several generalized Born models approximate the 

Born radii integrals based on a pairwise descreening method.158,159 This method relies on the fact 

that the van der Waals spheres of the atoms do not overlap very much. This may be the case for 

conformations during molecular dynamics simulations, where the Lennard-Jones potential of 

Equation (2.2) prevents such conformations. However, this may not be true for perturbed 

configurations in a Monte Carlo simulation. 

Based on these facts, I decided to develop a new algorithm that combines the accuracy of Grycuk’s 

R6 integral expression of Equation (2.40) with the solvent excluded surface, and an efficient 

numerical implementation, that is suited for application in biomolecular Monte Carlo simulations. 

Together with Wolfgang Wenzel, I have published this algorithm under the name PowerBorn.173 

Algorithm for the Computation of Born Radii 

The PowerBorn algorithm to compute Born radii exploits the fact that the integrand in Equation 

(2.40) is rather simple while the integration region is very complex. The reason is the complex 

geometry of the employed solvent excluded surface definition described in Section 2.3. To ease this 

problem, I split the integral into two parts. Outside a bounding box around the molecule, PowerBorn 

uses analytical formulas to evaluate the integral of Equation (2.40).173 This is possible due to the 

simple geometry of the bounding box. Inside the bounding box, I use an efficient numerical 

integration procedure. This numerical procedure exploits the fact that the integrand in Equation 

(2.40) decrease very rapidly with the distance to the atom in question. 

PowerBorn employs an octree method based on the proposal of Barnes and Hut.174 The space inside 

the bounding box is recursively separated into nested cubes of decreasing size. This tree structure 

of nested cubes is an octree. The numerical integration procedure first computes those cubes that 

are outside the solvent excluded surface in a recursive manner. It separates the bounding box into 

eight equal sized cubes. If any of the cubes is not completely inside or outside the solvent excluded 
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surface, the algorithm again separates that cube into eight equal sized cubes. This procedure is 

recursively continued. The procedure stops when the cube size reaches a defined minimal size. 

These smallest cubes are either completely inside or outside the solvent excluded surface. In the 

former case, the center of the cube must be inside the solvent excluded surface. Otherwise, such a 

cube is considered completely outside the solvent excluded surface. 

For this decision, the PowerBorn algorithm has to approximate the solvent excluded surface 

efficiently. It uses a finite number of approximate equidistant spaced sampling points on the solvent 

accessible surface (see Section 2.3). Subsequently, it places so-called water spheres with the radius 

of the probe radius onto these points. A given point is inside the approximate solvent excluded 

surface if this point is inside any of the spheres of the solvent accessible surface and not inside any 

water sphere. For an infinite density of water spheres, this approximation converges to the solvent 

excluded surface. For a finite number of water spheres placed at distances smaller than the probe 

radius, this algorithm will provide a sufficient and efficient approximation to the volume not 

enclosed by the solvent excluded surface. 

To decrease the number of necessary sampling points, I reuse the power diagram 

representation152,153 from the computation of the solvent accessible surface area. I will place water 

spheres at each surface vertex computed from the power diagram. This increases the accuracy of 

the approximated solvent excluded surface.173 My parallel implementation of the power diagram 

described in Section 3.2 is also suitable for this application. 

Subsequently, PowerBorn calculates the volume ÑÇ¦�¾�" outside the solvent excluded surface and 

inside a cube K, as well as the centroid of that volume ÐÇ . For any cube that is completely outside the 

solvent excluded surface, the volume ÑÇ¦�¾�" is equivalent to the volume of the cube and the centroid 

is equal to the center of the cube. If the cube is completely inside the surface, ÑÇ¦�¾�" is zero. For any 

cubes that have smaller nested cubes, ÑÇ¦�¾�" is given by the sum of the volumes of the smaller 

nested cubes 

 ÑÇ¦�¾�" � 'ÑÒ¦�¾�"
Ó

Ò5�
. (3.7) 

Here, the index ¢ iterates over all eight cubes nested inside cube K. The corresponding centroid is 

the sum of the centroids of the nested cubes weighted by the fraction of corresponding volume of 

water 
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 ÐÇ � 1
ÑÇ¦�¾�" 'ÐÒÑÒ¦�¾�"

Ó

Ò5�
. (3.8) 

Subsequently, the PowerBorn algorithm uses these data to perform the numerical integration of 

Equation (2.40) inside the bounding box. If a given cube K located at centroid ÐÇ with edge length ÌÇ 

is sufficiently small or far away from an atom � at position i), it will fulfill the condition 

 |i) − ÐÇ|0 < ÌÇ0I
4 	. (3.9) 

Here, I is the so-called integration factor that defines what is meant by sufficiently small or far 

away. If this condition holds, the integral of Equation (2.40) over the cube K is approximately 

 z J�±	
|i − i)|1����	Ç

¼ ÑÇ¦�¾�"
|ÐÇ − i)|1. (3.10) 

Taylor expansion of the integrand to zeroth order and then performing the integral yields this 

approximation. 

 

Figure 3.9. Solvent excluded surface for a protein (panel A). Water spheres located on the solvent 

accessible surface that are used to approximate the solvent excluded surface (panel B). Slice of the octree 

structure showing only cubes that are located inside the solvent excluded surface (panel C).173 

To find the cubes that fulfill the condition in Equation (3.9), PowerBorn performs a recursive walk 

through the cubes of the octree, starting with the largest cube. Whenever the visited cube fulfills the 

condition of Equation (3.9), the contribution in Equation (3.10) is added to the Born radius integral 

of Equation (2.40). Otherwise, PowerBorn proceeds with the eight smaller nested cubes and tests 

them until it finds suitable cubes. If a cube does not fulfill Equation (3.9) and has no nested cubes 

either, a numerical grid integration is performed for that cube. For more details on the algorithm 

and its implementation, the reader may refer to Brieg and Wenzel.173 
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Accuracy Assessment of the Generalized Born Model 

To assess the accuracy of PowerBorn algorithm, I calculated reference Born radii for three native 

protein structures and compared them to the PowerBorn radii. The reference Born radius for an 

atom is given by setting all other atoms’ partial charges to zero. Consequently, the electrostatic 

solvation free energy Δ|���� will be equal to the self-polarization Δ|G��¹, see Equations (2.17) and 

(2.36). With the help of numerical Poisson-Boltzmann solvers such as APBS,175 Δ|���� can be 

computed. Afterwards, Equation (2.36) can be solved for the reference Born radius. 

I have compared these reference Born radii to those computed by the PowerBorn method. The 

comparison contains two different PowerBorn parameter sets, a more accurate one termed ACC, 

and a faster one termed FAST.173 Figure 3.10 shows the results of this comparison. The comparison 

reveals a very high correlation between the reference Born radii and PowerBorn radii for the three 

protein structures and both parameter sets. However, the linear fit of the PowerBorn radii to the 

reference radii shows a systematic deviation.  

 

Figure 3.10. Comparison of reference Born radii computed with the Poisson-Boltzmann solver APBS175 to 

PowerBorn radii for three different protein structures. Two different PowerBorn parameter sets are 

used, ACC and FAST. The plots also show the Pearson correlation coefficient  a and the linear fit of the 

PowerBorn radii to the APBS radii.173 

The source of this deviation is the approximation of the integral in Equation (3.10), which 

systematically underestimates the integral. This deviation can be corrected by using modified Born 

radii ¶Ô)173 

 
1
¶Ô)

� Õ
¶)

+ Ö. (3.11) 
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The free parameters Õ and Ö are fitted to reproduce electrostatic solvation free energies Δ|���� of a 

training set of protein structures computed with the numerical Poisson-Boltzmann solver APBS.175 I 

note that the reported values of Õ and Ö differ for the two PowerBorn parameter sets ACC and 

FAST.173 Since the systematic deviation will depend on the integration factor I of Equation (3.9), this 

behavior is to be expected. It also implies that changing any of the PowerBorn parameters will likely 

require a refitting the parameters Õ and Ö of Equation (3.11). 

Furthermore, I observed that the non-vanishing parameter Ö results in a decreased agreement 

between the corrected PowerBorn radii ¶Ô) of Equation (3.11) and the reference Born radii.173 

Nevertheless, the agreement between electrostatic solvation free energies computed via Equation 

(2.35) and those computed with Poisson-Boltzmann calculations increases when Born radii 

corrected by Equation (3.11) are used. Figure 3.11A shows the relative errors between the 

electrostatic solvation free energies for a test set of 611 protein structures.  

 

Figure 3.11. Histogram of relative errors between solvation free energies computed with the generalized 

Born model using PowerBorn radii with parameter sets ACC and FAST, and the numerical Poisson-

Boltzmann solver APBS175 (panel A). Visualization of the structure with the largest relative error, PDB 

code 1NLS,176 in the red cartoon representation with water cavities highlighted in blue (panel B).173 

The relative root mean square error is below 1%. However, there are a few outliers with errors of 

electrostatic solvation free energies of up to 8.2%. The reasons for the largest outlier are numerous 

water-filled cavities present in the PDB structure, as visualized in Figure 3.11B. The generalized 

Born model is known to show systematic deviations in such cases. Thus, the error is due to the 
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generalized Born model itself, and not the PowerBorn method for the calculation of the Born 

radii.173 

In conclusion, the low root mean square error of the electrostatic solvation free energies shows that 

the accuracy of the PowerBorn method is as good as the best other published method GBMV2.107 My 

result also extends the findings of Onufriev et al. They demonstrated the importance of good 

agreement between estimated Born radii and reference Born radii for obtaining accurate 

electrostatic solvation free energies from the generalized Born model.101 The results for the fit 

parameters Õ and Ö of Equation (3.11) show that even more accurate electrostatic solvation free 

energies can be achieved by using Born radii corrected by Equation (3.11). 

Since the PowerBorn algorithm solves a part of the integral in Equation (2.40) by discretizing the 

space via the octree data structure, this scheme will introduce discretization errors. There are 

several reasons for these errors. The first reason is the finite size of a smallest octree cube. The 

second is the condition in Equation (3.9). The third reason is the approximation of the Born radii 

integral in Equation (3.10). The fourth reason is the finite number of water spheres used to 

approximate the solvent excluded surface. I estimated the relative root mean square discretization 

errors to be 0.11% and 0.15% of the electrostatic solvation free energy for the ACC and FAST 

parameter set respectively.173 However, these discretization errors are averaged out when 

computing physical observables based on ensembles according to Equations (2.13) and (2.14).173 

Performance Assessment of the Born Radii Computation 

To assess the performance of the PowerBorn algorithm, I have carried out computation time 

measurements. The details of these measurements are explained by Brieg and Wenzel.173 As shown 

in Figure 3.12, my implementation of the PowerBorn algorithm performs much better than the 

GBMV2107 method implemented in CHARMM.65 It yields speedups in the range of 4.2 to 14.2, 

depending on the PowerBorn parameter set and the number of atoms in the system. In comparison 

to the GBOBC120 provided by GROMACS,25 which is based on the Coulomb field approximation, the 

PowerBorn method is slower for systems with approximately less than 1500 atoms, but much more 

accurate. For larger systems, PowerBorn outperforms the GBOBC method in terms of speed and 

accuracy. 
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Figure 3.12. Speedup of PowerBorn’s ACC and FAST version in comparison to GBMV2107 in CHARMM65 and 

GBOBC120 in GROMACS25 for different sized protein structures.173 

Parallelization of the Born Radii Computation 

To exploit modern multicore CPU architectures and further enhance performance, I have also 

parallelized the PowerBorn method using the OpenMP standard.151 Previous attempts with other 

parallelization methods showed no satisfying results.177 Here I will outline the parallelization 

strategy for the PowerBorn method. 

The generation of the sampling points on the solvent accessible surface used to approximate the 

solvent excluded surface can be done for each sphere of the solvent accessible surface 

independently. Hence, this step is trivial to parallelize. The same is true for the placing of the water 

spheres onto these sampling points. For each sphere of the solvent accessible surface, water spheres 

are placed at the corresponding surface vertices extracted from the power diagram. Therefore, my 

parallel version of the power diagram can be used (see Section 3.2). In the final step, all generated 

water spheres are combined in one set in serial. 

I have parallelized the construction of the octree in the following way. The parallel algorithm 

separates the bounding box into 83×ØÙØ× equal sized cubes. Each of these cubes corresponds to a cube 

of the octree at level B��Á��. Subsequently, the octree can be constructed in parallel within each of 

these cubes. Since the actual workload for constructing an octree within such a cube can differ 

significantly, the cubes are scheduled dynamically to the available threads. In addition, a sufficient 
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number of work packages should be present to allow for an efficient load balancing. However, if 

B��Á�� is too large, it decreases the efficiency of the PowerBorn algorithm, because it transforms the 

octree data structure into a grid data structure. In tests with a few native protein structures, 

B��Á�� � 3 provided the best average performance. Thus, there are 512 work packages in the parallel 

algorithm. After the octrees for all these 512 cubes are finished, the algorithm combines them into a 

single octree in serial with very low computational effort. 

In the final step, the algorithm carries out the numerical integration inside the bounding box with 

the help of the octree as previously explained. This can be done for each atom in parallel. The 

computation of the analytic formulas for the integral outside the bounding box and the conversion 

of the final integral value to the Born radius for every atom can be done in parallel too. 

To demonstrate the performance increase due to the parallelization of the PowerBorn method, I 

have performed speedup measurements similar to those in Section 3.1. Because the PowerBorn 

method requires a power diagram for the construction of the octree, the speedup measurements 

include the construction of a parallel power diagram as well as the time to compute the solvent 

accessible surface area described in Section 3.2. The results are shown in Figure 3.13A. In contrast 

to the parallelization of the Nonbonded term in Section 3.1, the dependence of the achieved 

speedups on the protein’s size is much smaller. For 16 available threads, the minimally achieved 

speedup is 11.9 for the smallest system and 14.0 for the largest. Only with 32 threads, the speedups 

start to show a higher dependence on the system size. The smallest system reaches 47% of the 

maximum expected speedup of 32, while largest system achieves 72%. 

The reason for this behavior is the parallelization of the octree construction, which takes up most of 

the computation time. The number of work packages does not depend on the number of atoms in 

the system. Therefore, this parallelization scales reasonably well also for systems with few atoms. In 

addition, the work packages are on average larger, since the overall effort to compute the Born radii 

and solvent accessible surface areas is larger in comparison to computing the non-bonded 

interactions. 

However, with an increasing number of atoms, the workload contained in one work package can 

differ significantly. Depending on the conformation of a protein, some of these cubes may not 

contain any protein at all, while others cubes may be filled with the protein. For a high number of 

threads, a balanced distribution of the work packages to the threads will be difficult. On average, 

each thread will only process few work packages. Those may all contain very low or high amount of 

workload. The different amount of work results in a high load imbalance and reduced parallel 
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efficiency. To improve parallelization further, future efforts may introduce a better workload 

scheduling. 

 
Figure 3.13. Speedup in computation time of the solvent accessible surface area (SASA) and Born radii 

with the parallelized PowerBorn method over the number of available threads. Five proteins with an 

increasing number of atoms were used (panel A). Speedup in computation time for the Nonbonded and 

generalized Born (GB) term of Equation (2.35) over the number of available threads (panel B). 

Optimization and Parallelization of the Generalized Born Implementation 

To be able to compute electrostatic solvation free energies within the generalized Born model for 

Monte Carlo simulations, an efficient implementation of Equation (2.35) is necessary. Due to the 

similarity to the Coulomb energy in Equation (2.5), I implemented the generalized Born formula in 

the same efficient way as the Nonbonded term described in Section 3.1. Thus, the extended 

Nonbonded+GB term computes the Coulomb, Lennard-Jones, and generalized Born energies. To 

enable the use of vector instructions, a vectorizable version of the exponential function in Equation 

(2.37) is required. The Eigen library178 provides such a function for the SSE vector instruction set. 

For the faster AVX vector instruction set, I have ported the Eigen version to the new instruction set. 

Using this implementation, I have carried out computation time measurements in analogy to Section 

3.1. The addition of the generalized Born formula to the Nonbonded term increases the computation 

time on average by 68% for the single threaded version. The speedups for the multithreaded 

version are shown in Figure 3.13B. Similar to the Nonbonded term only, the speedups for small 
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systems saturate at a medium number of threads and then decrease again. This problem is not 

observed for larger systems with more atoms. In contrast to the Nonbonded term only, the maximal 

speedups for larger systems stay clearly below the maximum expected value of 32. It is interesting 

to observe that the speedup for two threads reaches only 75% to 80% of the possible speedup of 

2.0. Increasing the number of threads for medium to large systems then yields similar fractions of 

the maximum expected speedup. The reason for this behavior is not understood yet. 

Nevertheless, the presented results demonstrate that the PowerBorn algorithm yields accurate Born 

radii and solvent accessible surface areas with high efficiency compared to similar accurate 

methods and good scaling behavior. In addition, the optimized parallel implementation of the 

generalized Born formula allows the efficient computation of electrostatic solvation free energies 

without the requirement for approximate long-range interaction schemes. 

3.4 Monte Carlo Simulation Performance 

Here I present an overview of the current performance of the SIMONA simulation package to 

simulate proteins in an aqueous environment or a biological membrane with my implemented 

methods. These data is necessary to estimate the resources required for future simulations of a 

given protein and environment. I emphasize that no cutoffs for long-range interactions such as the 

Coulomb, Lennard-Jones, or the generalized Born interaction are applied. 

Let me focus on the aqueous environment first. Table 3.1 lists the forcefield terms necessary for 

such a simulation. To run such a simulation, one has to choose the number of available threads used 

to evaluate the energy. In general, the more threads are used, the faster the simulation will run, and 

the earlier the results will be available. However, doubling the number of threads will not always 

result in a simulation running two times faster as shown in Sections 3.1, 3.2, and 3.3. Therefore, the 

decision how many threads to use, has to weigh up the available amount of computer resources 

against the time required to complete the simulation. In general, an achieved speedup of 50% of the 

maximum obtainable speedup is not a worthwhile investment of computational resources. 

Therefore, the actual speedup of the simulation should not be below half the number of available 

threads. According to Figure 3.14A, this means that proteins with less than approximately 1250 

atoms should not be simulated with more than 16 threads. Larger systems may use up to 32 

threads. If the decision on the number of available threads is done, Figure 3.14B shows how many 

Monte Carlo steps per day the simulation will complete. I note that those numbers may vary 

depending on the employed hardware. 
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Table 3.1. The forcefield terms are necessary for the simulation of proteins in an implicit water 

environment. SASA denotes the solvent accessible surface area. 

No. SIMONA Forcefield 
term 

Description References or 
Equations 

1 Dihedral potential proper and improper dihedral potentials Equations (2.9) and 
(2.10) 

2 Nonbonded Lennard-Jones, Coulomb and 1-4 interactions 
plus generalized Born term 

Equations (2.2)-(2.6), 
and (2.35) 

3 PowerBorn computation of SASA and Born radii chapters 3.2 and 3.3  
4 NPSasaEnergy nonpolar solvation free energy Equation (2.41) 
 

 
Figure 3.14. Overall simulation performance measures for protein simulations in an aqueous 

environment. Panel A shows the speedup of the computation time over the number of threads for the 

complete Monte Carlo simulation for five different proteins with an increasing number of atoms. Panel B 

shows how many million Monte Carlo (MC) steps per day can be computed as a function of the number of 

atoms in the protein and the number of available threads. 

I have further analyzed how the computation time during a simulation is distributed between the 

different forcefield terms. As Figure 3.15 shows, the computation of the Born radii and solvent 

accessible surface areas takes up the largest fraction of the runtime. For the smallest proteins, this 

fraction is as large as 96%. When the size of the protein increases, the fraction of runtime spent in 

computing the non-bonded interactions and generalized Born formula of Equations (2.2) to (2.5) 

and (2.35) increases. The reasons is that these terms scale withB0, while the solvent accessible 

surface area and Born radii computation scales approximately linearly for the considered proteins. 

Even for the largest protein with 5164 atoms, the fraction of runtime spent for the computation of 
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non-bonded and generalized Born interactions is still smaller than that for the computation of the 

Born radii and solvent accessible surface area. 

In addition, the Nonbonded energy term with the addition of the generalized Born energy 

parallelizes better with respect to the available threads (see Section 3.3). This better parallelization 

results in a decrease of the percentage of runtime spent in the Nonbonded and generalized Born 

term for larger proteins. 

 
Figure 3.15. Fraction of computation time for the two most compute intensive forcefield terms relative to 

the total computation time. The forcefield terms are the combined solvent accessible surface area and 

Born radii computation (solid lines), and the combined Nonbonded and generalized Born interactions 

(dashed lines). Five different proteins of increasing size were used for the measurements. 

This high number of Monte Carlo steps per day and the low fraction of computation time spent in 

the non-bonded interactions clearly demonstrate that it is not necessary to resort to any 

approximate long-range interaction schemes discussed in Section 3.1. As a result, the errors due to 

these schemes will not be present in SIMONA simulations using the forcefield terms implemented 

by me. 

I also note that several other factors will influence the simulation performance. This is the capability 

of the hardware employed. Details about the hardware I employed can be found in Appendix A.3. 

Faster or slower hardware will likely influence the simulation performance. Another important 

aspect is the compactness of the simulated structure. The octree for the PowerBorn method 

described in Section 3.3 has to be constructed with high resolution near the surface of the protein. 
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Since this construction is one of the most time-consuming steps, it strongly affects the overall 

simulation performance. Therefore, the simulation of a protein will progress faster during a 

compact folded state than an extended unfolded state. 

This also affects the performance of the parallel tempering method described in Section 2.5. Since 

the protein is more likely to unfold at high temperatures, the simulation will on average progress 

slower at high temperatures than at lower temperatures. The current implementation of the parallel 

tempering algorithm in SIMONA requires that all temperatures have to complete a given number of 

Monte Carlo steps before a temperatures exchange can happen. Therefore, all simulations have to 

wait for the slowest progressing simulation. The waiting time reduces the computational efficiency 

of the algorithm. 

In summary, I have implemented the force field terms and implicit solvent models necessary for a 

Monte Carlo simulation in implicit solvent with common molecular force fields in an efficient 

manner into the SIMONA Monte Carlo simulation framework. None of my implemented force field 

terms relies on a special scheme to treat long-range interaction, wherefore the Monte Carlo 

simulations are not prone to artifacts caused by such schemes as discussed in Section 3.1. The 

parallelization of my implemented methods increases the simulation performance significantly, 

allowing for better sampling of the investigated processes or the study of larger systems. 
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4 Improving Small Molecule Hydration Free Energies 

Estimates of Implicit Solvent Models 

In the previous chapter, I introduced the methods necessary for the efficient simulation of proteins 

in an implicit water model using an accurate generalized Born model and a solvent accessible 

surface area term. As stated in Section 2.4, the solvent accessible surface term may have deficiencies 

in modeling nonpolar solvation effects. Thus, extended models of nonpolar solvation effects have to 

be investigated to improve the accuracy of approximate implicit solvent models. As a start, I have 

carried out an assessment of three different implicit solvent models in cooperation with Julia Setzler 

and Wolfgang Wenzel.179 The first section of this chapter presents some background information 

that sets the results of this assessment into context with prior work on this subject and motivates 

our approach that enables a fair comparison of the models. The second section introduces the 

investigated models. The third section explains how I parameterized them to enable a fair 

comparison of them. The fourth section reviews our achieved results by comparing computed 

hydration free energies for small neutral molecules from a large database to experimental data. In 

the last section, I present my analysis of the hydration free energy data based on the classification of 

the molecules in the database into chemical groups. 

4.1 Background and Motivation 

As explained in Section 2.4, the hydration free energy is the free energy difference between gaseous 

and solvated states. Recent advances in simulation techniques and computational resources allow 

the determination of these free energy differences with very low statistical uncertainties from 

computer simulations of small neutral chemical compounds.82 The high-throughput determination 

of these free energy differences is of high relevance to pharmaceutical research. The small chemical 

compounds may be drug candidates that are supposed to bind to target proteins. The prediction of 

the binding affinities is the goal of computational methods of drug discovery.180 These methods scan 

large databases of compounds to identify possible drug candidates which show a high predicted 

binding affinity for a given target protein.181 Since the binding affinity depends on the free energy 

difference between the bound state and the solvated state, errors in describing the solvated state 

affect the binding affinity prediction.182 Thus, accurate solvent models are an essential requirement 

of methods for computational drug discovery. Due to the large size of the compound databases, 
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these solvent models should also be computationally efficient, wherefore implicit solvent models 

promise candidates for this task. 

Unfortunately, a recent study on a large set of small neutral molecules showed that the estimated 

hydration free energies of many common implicit solvent models are less accurate than the 

estimates of the explicit TIP3P water model.183 This poses a large problem to the application of 

implicit solvent models to the prediction of binding affinities. The authors that more elaborate 

nonpolar contributions to the solvation free energy could increase the accuracy of the estimated 

hydration free energy.183 As a result, an assessment of implicit solvent models with different 

nonpolar terms would provide an important basis for their improvements and future applications. 

Although there are already some studies in the literature that assessed the accuracy of one or two of 

these models,167,184–187 they used different molecule sets or atom type definitions. That makes it 

difficult to compare these studies among each other, or to compare the performance of the 

underlying nonpolar models independent of their parameterization. Together with Julia Setzler and 

Wolfgang Wenzel, I have carried out an assessment of the standard nonpolar solvation model based 

on the solvent accessible surface area and two advanced models.179 We have chosen a set of small 

neutral molecules188,189 over a set of proteins for the database of our assessment, because the small 

molecules contain a larger variety of chemical groups. Thus, they should provide a more challenging 

test for the models. This molecule set was already used to investigate how accurately the explicit 

TIP3P water model189 or many common implicit solvent models183,187,188 can reproduce 

experimental hydration free energies. In our study, we have chosen an approach that enables a fair 

comparison of the accuracy of the models. It is unbiased by the model’s parameterization In 

addition, we closely examined the computed hydration free energies, which provide insights into 

the reasons why one model performs better than others do. 

4.2 Investigated Implicit Solvent Models 

Each of the three investigated implicit solvent models in our study consists of the same generalized 

Born term to describe electrostatic solvation effects, and one of three different terms to model 

nonpolar solvation effects. Therefore, the models are abbreviated by GBNP1, GBNP2, and GBNP3. 

The generalized Born term is given by Equation (2.35). The Born radii of the generalized Born 

model are determined by the R6 integral expression of Equation (2.40). The integration region is 

defined by the solvent excluded surface defined in Section 2.3. This surface requires atomic radii .) 
and a probe radius Æ" for its construction. These are the free parameters of the generalized Born 

model. 
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The nonpolar term of GBNP1 is based on Equation (2.41) and uses only a single surface tension 

parameter ¿ that is multiplied by the sum of the atomic solvent accessible surface areas �) 

 Δ|Ú¡� = ¿ '�)
3

)5� . (4.1) 

The nonpolar term of the GBNP2 model is also based on Equation (2.41) and uses atom type specific 

surface tension coefficients ¿)113,114 

 Δ|Ú¡0 = ' ¿)�)
3

)5� . (4.2) 

Finally, the nonpolar term of the GBNP3 model is based on Equation (2.42) 

 Δ|Ú¡� = ¿ '�)
3

)5� � Æ ' Ñ)
3

)5� − ' J)@¶) � �A�
3

)5� . (4.3) 

GBNP3 additionally uses solvent accessible volumes Ñ)  to model the cost of cavity formation in the 

solvent and explicitly models dispersion interactions with the solvent via the dispersion coefficients J)  and the Born radii ¶)  plus a constant offset �. Since this nonpolar term also uses the Born radii of 

the electrostatic generalized Born term, it also depends on the atomic radii .)  and the probe radius Æ" that define the integration region for the Born radii. 

The elements present in the molecules of the data set define the atom types. The data set contains 

ten different elements, wherefore we use ten different atom types. Although defining more atom 

types is possible, we decided to start with this minimal set of atom types. We also investigated the 

models GBNP1*, GBNP2* and GBNP3*. They have one additional atom type, because they 

differentiate between nitrogen atoms with positive and negative partial charge. Table 4.1 

summarizes all three models and their freely adjustable parameters. 
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Table 4.1. Overview over the free model parameters contained in the three different investigated implicit 

solvent models GBNP1, GBNP2, and GBNP3. The number of free parameters is also given. This number is 

either one or the same as the number of atom types. GBNP* refers to the three implicit solvent models 

GBNP1*, GBNP2* and GBNP3*, which differentiate between nitrogen atoms with positive and negative 

partial charge.179 

Free model 
parameter 

Description GBNP1 GBNP2 GBNP3 parameter count 
GBNP/GBNP* 

a_ atomic radii X X X 10/11 
cÛ probe radius X X X 1/1 
Ü global SASA tension X  X 1/1 
Ü_ atomic SASA tension  X  10/11 
c global SAV pressure   X 1/1 
Y_ atomic dispersion coefficient   X 10/11 
Ý Born radii offset   X 1/1 

 

4.3 Model Parameterization 

My first task was to generate a parameter set that allows a fair comparison of the models unbiased 

by their parameterization. One parameter set that allows such a comparison is simply the best 

possible parameter set. Given a set of molecules with experimentally determined hydration free 

energies as reference data, one can determine the best possible free parameter set by optimizing all 

free parameters to minimize an accuracy measure with respect to the reference data. 

As the accuracy measure, I used the root mean square error between the experimental hydration 

free energies and computed solvation free energies for a single conformation of the molecule. The 

reason I use only single conformation solvation free energies instead of the hydration free energies 

is that the calculation of the former requires much less computational effort than the latter. This is 

necessary to enable the optimization of the large number of free parameters within a reasonable 

amount of computation time. 

According to Mobley et al.,188 the single conformation solvation free energies are in good agreement 

with experimental data, if the lowest energy snapshot from a vacuum simulation trajectory of the 

respective molecule is used as the single conformation. Thus, we will use these single conformation 

snapshots to compute the single conformation solvation free energies. We have acquired the 

vacuum trajectories from Mobley et al.188 Julia Setzler has computed the vacuum energies of each 

snapshot in all trajectories with AMBER 10.66 I have extracted the best vacuum energy conformation 

from each vacuum trajectory. 
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The next step in generating the required parameter sets for each model is to have a small computer 

program that reads in an arbitrary set of free parameters, the molecule files with the corresponding 

coordinates, atom types and AM1-BCC190,191 partial charges, assigns the free parameters to each 

atom where necessary, and computes the solvation free energies. I have implemented these 

methods in a small C++ program. The program uses the PowerBorn method173 to compute Born 

radii and the PowerSASA method152,153 to compute solvent accessible surface areas and volumes. 

The solvation free energies for a conformation of a given molecule are then computed via Equations 

(4.1)-(4.3), (2.35) and (2.37) by the program. 

The final step in generating the parameter sets is to carry out the optimization of the free 

parameters. To enable a fair comparison of the models, the optimized parameters have to represent 

the global minimum of the accuracy measure and not any local minimum. For that reason, I use a 

particle swarm global optimization implementation by Kondov.192 In this method, a swarm of BG 

individuals searches through the parameter space. The swarm’s current best location as well as 

each individual’s best location influences the search directions of the individuals. To ensure proper 

sampling of the parameter space, I have run the optimization procedure with different sets of 

swarm parameters for each model. This procedure resulted in 81 parameter sets for each model. 

For faster convergence, a local Powell optimization is carried out after 200 iterations of the particle 

swarm optimization for each parameter set. The valid ranges of all free parameters for the 

optimization procedure are given in Table 4.2. 

Table 4.2. Overview over the valid parameter ranges for all free model parameters during the parameter 

optimization procedure.179 

Parameter a_ 
[Å] 

cÛ 
[Å] 

Ü 
[Þßàá/@âãá	Å´A] 

|Ü_| 
[Þßàá/@âãá	Å´A] 

c 
[Þßàá/@âãá	Åä)] 

Y_ 
[@Þßàá	ÅäA/âãá] 

Ý 
[Å] 

Minimum 0.5 0.5 10.0
1 10.0
1 10.0
1 10.0
1 0.0 
Maximum 5.0 3.0 10.0 10.0 10.0 10.01 5.0 

 
The resulting root mean square errors ¶åæ���� from each run of the optimization procedure are 

shown in Figure 4.1. This includes the models GBNP1, GBNP2, and GBNP3 as well as the models 

with one additional atom type for nitrogen atoms with positive partial charge, GBNP1*, GBNP2*, and 

GBNP3*. I observe that the ¶åæ���� for GBNP1 and GBNP1* show a relative narrow distribution in 

comparison to the other models. For further data analysis, we only have considered the best of 81 

parameter sets of each model, e.g. the parameter set with the lowest ¶åæ����. 
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Figure 4.1. These histograms show the root mean square errors çè�Uéêë  between experimental 

hydration free energies and single conformation solvation free energies after the parameter 

optimization procedure. For each model, 81 parameter sets were generated. Panel A shows the results 

for the GBNP1, GBNP2, and GBNP3 models. Panel B shows the results for the GBNP1*, GBNP2* and 

GBNP3* models. 

4.4 Comparison of Computed Hydration Free Energies 

To enable comparison of our data to the work of others, especially that of Knight and Brooks,183 we 

decided to use hydration free energies instead of the single conformation solvation free energies for 

the assessment of the models. The hydration free energies are computed from the vacuum and 

implicit solvent trajectories of the molecules provided by Mobley et al.188 with the help of the 

Bennett Acceptance Ratio method (see Section 2.4) as implemented in pyMBAR.86 Julia Setzler 

computed the necessary molecular energies of each conformation with AMBER 10.66 She used the 

general AMBER forcefield (GAFF)193,194 and AM1-BCC partial charges.190,191 I computed the solvation 

free energies for each conformation with my C++ program, which I extended to read the trajectories 

also. Afterwards, I used pyMBAR to compute the hydration free energies from the molecular 

energies and solvation free energies. 

We have compared the computed hydration free energies of the models among each other and to 

other published results.179 The computed hydration free energies in Figure 4.2 show that the GBNP2 

model performs much better than the GBNP3 or GBNP1 models. In comparison to the results of 

Knight et al.,183 we observed that the combined optimization of polar and nonpolar model 
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parameters can provide significant improvements over just optimizing nonpolar parameters.179 In 

comparison to the explicit water TIP3P model results of Mobley et al.,189 the GBNP2 model has a 

lower root mean square error ¶åæ�Ã�  and a higher squared Pearson correlation coefficient ¶0 to 

experimental data. This demonstrates that implicit models are in principle able to compute 

hydration free energies with the same or higher accuracy as explicit models, even with a very 

limited set of only ten atom types.179 

 
Figure 4.2. Scatter plots show the computed hydration free energies over the corresponding 

experimental data for the GBNP1 (panel A), GBNP2 (panel B), GBNP3 (panel C), GBNP1* (panel D), 

GBNP2* (panel E), and GBNP3* (panel F) model. The gray line marks perfect agreement. In the plots, the 

root mean square errors that resulted from the parameter optimization procedure çè�Uéêë are also 

given. In addition, the root mean square errors between experimental and computed hydration free 

energies çè�UìéU as well as the corresponding squared Pearson correlation coefficients ç´ are also 

given. Panels A to C are taken from Brieg et al.179 Panels D to F were generated by Julia Setzler. 

To investigate the reasons for the moderate performance of the GBNP1 and GBNP3 models, Julia 

Setzler has grouped the data set into one subset for each atom type. A molecule is contained in such 

a subset, if it contains at least one atom of the respective atom type. Table 4.3 lists the size of these 

subsets and the respective root mean square errors ¶åæ��� for each subset corresponding to one 

atom type. We concluded from the relatively large size of the nitrogen subset and the respective 

large ¶åæ��� for the GBNP1 and GBNP3 models that the parameterization of nitrogen atoms is the 

source of these model’s moderate performance.179 
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A closer investigation of the errors for the nitrogen atoms by Julia Setzler revealed that the GAFF 

nitrogen atom type “no” shows large systematic deviations.179 We further found that only this 

nitrogen atom type has positive partial charge. The known asymmetric behavior of water around 

oppositely charged ions usually causes large differences in their respective hydration free 

energies.195–202 Because all nitrogen atoms are assigned the same parameters in our GBNP1, GBNP2, 

and GBNP3 models, this behavior is not accounted for in the parameterization. Thus, the good 

performance of GBNP2 over GBNP1 or GBNP3 is partly due to its ability to cope well with this 

asymmetric behavior of water.179 

Table 4.3. Root mean square errors çè�Uíë in kcal/mol for subsets of molecules containing at least one 

respective atom type. Atom types C and H are excluded, because they are contained in nearly every 

molecule in the data set. The values in parentheses for fluorine exclude hexafluoropropene, for which the 

experimental hydration free energy was in error as became apparent during the review process of our 

work.179 

atom type All O N F Br S I Cl P 
subset size 
[#] 

499 227 86 26 23 21 11 8 2 

çè�Uîï GBNP1 
[kcal/mol] 

1.30 1.65 1.93 1.67 
(1.37) 

0.69 1.08 1.21 0.66 0.74 

çè�Uîï GBNP2 
[kcal/mol] 

0.99 1.13 1.14 1.70 
(1.51) 

0.50 0.71 1.15 0.40 0.96 

çè�Uîï GBNP3 
[kcal/mol] 

1.19 1.41 1.76 1.56 
(1.04) 

0.56 0.84 1.18 0.24 0.82 

 
We have further investigated how an additional atom type for nitrogen atoms with positive partial 

charge increases the agreement to experimental data. Therefore, we have again carried out the 

parameterization procedure using the additional nitrogen atom type. We termed the models with 

the additional atom type GBNP1*, GBNP2* and GBNP3*. The agreement of the computed hydration 

free energies increased significantly for GBNP1* and GBNP3* over GBNP1 and GBNP3 respectively. 

The agreement only marginally increased for GBNP2* over GBNP2. The data is visualized in Figure 

4.2. The figure also contains the respective root mean square errors ¶åæ�Ã� , squared Pearson 

correlation coefficients ¶0, and resulting root mean square errors from the model parameterization 

procedure ¶åæ����. Nevertheless, GBNP2* has still the lowest ¶åæ�Ã�  and highest ¶0, wherefore 

it is still the best of the three investigated models. However, the GBNP3* model now comes very 

close to the performance of GBNP2*. GBNP1* is still the worst performing model.179 
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4.5 Model Assessment Based on Chemical Groups 

I have compared the experimental and computed hydration free energies for each chemical group 

present in the data set. The classification of the molecules into the chemical groups is taken from 

Knight and Brooks.183 There are 33 different chemical groups. Each molecule may be part of more 

than one chemical group. The root mean square errors between the experimental and computed 

hydration free energies for each chemical group ¶åæ��· are shown in Figure 4.3 for all six 

investigated models. The resulting average root mean square error and its standard deviation over 

all groups for a given model are listed in Table 4.4. The largest root mean square error of a chemical 

group is also listed in that table for each model. 

 

Figure 4.3. Root mean square errors between experimental and computed hydration free energies by 

chemical group (çè�Uð�) for the GBNP1, GBNP2 and GBNP3 models (panel A) and GBNP1*, GBNP2* and 

GBNP3* models (panel B). The corresponding name for each chemical group number is given in panel C. 

Carboxylic acid is denoted by CA.179 
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Table 4.4. Average root mean square error and its standard deviation for all investigated models over 

the whole set of 33 chemical groups. 

Model Average çè�Uñò 
[kcal/mol] 

Standard deviation of average 
çè�Uñò [kcal/mol] 

Maximum çè�Uñò 
[kcal/mol] 

GBNP1 1.2 0.6 3.6 
GBNP2 0.9 0.4 1.9 
GBNP3 1.1 0.5 3.2 

GBNP1* 1.1 0.4 2.1 
GBNP2* 1.0 0.5 2.3 
GBNP3* 1.0 0.4 1.6 

 
For the models with ten atom types, the GBNP2 model has the lowest average ¶åæ��·, standard 

deviation of the average ¶åæ��·  and maximum ¶åæ��· , followed by GBNP3 and GBNP1. 

Furthermore, the GBNP1 and GBNP3 models have two chemical groups with ¶åæ��· larger than 

2.0 kcal/mol, while there is no such group for the GBNP2 model. Looking at the GBNP* models with 

eleven atom types, the average ¶åæ��·, its standard deviation, as well as the maximum ¶åæ��· of 

the GBNP2* model increase over GBNP2. In contrast, the corresponding values for the GBNP1* and 

GBNP3* models are lower than those for GBNP1 and GBNP3 are respectively. The standard 

deviation of the average ¶åæ��· and the maximum ¶åæ��· of GBNP2* are now larger than that of 

the other two models with eleven atom types. In addition, the GBNP2* model has two chemical 

groups with ¶åæ��· larger than 2.0 kcal/mol, while the GBNP1* model has only one such group 

and the GBNP3* model no such group. However, the average ¶åæ��· of GBNP2* is as low as that of 

GBNP3*, while that of GBNP1* is slightly larger than that of the previous two models. 

The values in Table 4.4 suggest that GBNP3* performs better than GBNP2*. In contrast, the analysis 

of the hydration free energies based on the single molecules of the data set in Section 4.4 suggested 

that GBNP2* performs better than GBNP3*. Thus, the two analysis methods weigh the errors of the 

computed hydration free energies to the experimental data differently, due to the classification of 

the molecules into chemical groups. However, there is no clear best model according this analysis. 

The average ¶åæ��· and its standard deviation is lower for GBNP2 compared to GBNP3*, but the 

maximum ¶åæ��· of GBNP2 is larger than that of GBNP3*. Nevertheless, the GBNP1 model 

performs worst in this analysis too. 

I note that in Figure 4.3A, the maximum ¶åæ��· for the GBNP1 and GBNP3 model is for the same 

chemical group. This is the nitro group (no. 26) with ¶åæ��· of 3.6 and 3.2 kcal/mol respectively. 

These common errors suggest a systematic problem of the two models. On the other hand, the 

¶åæ��· of the GBNP2 model for that group is 1.2 kcal/mol, and therefore much smaller. Figure 4.4 



4 Improving Small Molecule Hydration Free Energies Estimates of Implicit Solvent Models 

73 

shows the structure of a nitro group. The nitrogen is bound to two oxygen atoms. The assignment of 

the partial charges via the AM1-BCC method190,191 results in a positive partial charge for the nitrogen 

atom. In contrast, all nitrogen atoms in the data set not belonging to the nitro group have negative 

partial charges. Thus, the large errors of the nitro group are due to the already discussed 

asymmetric behavior of water around oppositely charged ions in Section 4.4. The good performance 

of the GBNP2 for the nitro group in contrast to the GBNP1 and GBNP3 model suggests that the 

former model is able to handle this effect well without explicit parameterization.179 In addition, the 

increased accuracy of the GBNP1* and GBNP3* models over GBNP1 and GBNP3 respectively, 

demonstrate the importance of accounting for the asymmetry of water in implicit solvent models to 

accurately estimate hydration free energies of small molecules.179 

 

Figure 4.4. Chemical structure of the nitro group. R denotes residual chemical groups attached to the 

nitro group. Plus and minus signs mark the distribution of partial charges. The nitrogen atom carries 

positive partial charge, while the oxygen atoms carry negative partial charge.203 

The increase of the standard deviation of the average ¶åæ��· and the maximum ¶åæ��· for the 

GBNP2* model over GBNP2 in Table 4.4 is surprising. I have investigated the reasons for this 

behavior. For the GBNP2 model, a single nitrogen atom type fits all chemical groups containing 

nitrogen reasonably well. In the GBNP2* model the additional atom type for positively charged 

nitrogen atoms results in even better agreement for the nitro group. However, the nitrogen atom 

type for negatively charged nitrogen atoms has to account for all other nitrogen atoms. These 

consist of many nitrogen atoms with large negative partial charge and only a few nitrogen atoms 

with small negative partial charge. The latter belong to the carbonitrile group. Since the 

parameterization procedure tries to reduce the root mean square error ¶åæ���� over all molecules, 

it may do so by finding a parameter set with slightly better overall ¶åæ���� at the expense of 

introducing a large ¶åæ��· for the few molecules with carbonitrile groups.  

In the GBNP2 model, only two atom type dependent nitrogen parameters had for all nitrogen atoms 

with their wide range of partial charges. Thus, the nitrogen atoms in the nitro group with their large 

positive partial charge balanced out the few molecules with carbonitrile group that have small 

negative partial charges against the large number of molecules containing nitrogen atoms with large 
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negative partial charges. The extra nitrogen atom type of the GBNP2* model removes that balance. 

The positively charged nitrogen atoms of the nitro group now have a separate atom type, wherefore 

molecules containing a nitro group can no longer balance the molecules containing a carbonitrile 

group against the large amount of molecules containing any remaining chemical group with 

nitrogen atoms.179 Thus, the performance of the GBNP2* model does not increase over that of the 

GBNP2 model. 

Mobley et al.204 reported that explicit TIP3P water in combination with AM1-BCC charges and the 

GAFF forcefield has problems in reproducing hydration free energies of molecules containing 

hypervalent sulfurs (group no. 23). Knight and Brooks183 reported the same problem for many 

common implicit solvent models. They argued that it might be necessary to change Lennard-Jones 

parameters to achieve good agreement with experimental data. The computed hydration free 

energies by us show that this is not necessary. The ¶åæ��· for the hypervalent sulfur group of the 

GBNP2, GBNP2*, GBNP3 and GBNP3* model is between 1.1 and 1.2 kcal/mol and therefore in good 

agreement with experimental data. The corresponding errors for GBNP1 and GBNP1* are 1.91 and 

1.37 kcal/mol. The GBNP1 and GBNP1* have no nonpolar atom type dependent solvation 

parameters (see Table 4.1). Therefore, the larger errors for the two latter models suggest that atom 

type dependent nonpolar solvation parameters are necessary to estimate hydration free energies of 

compounds containing hypervalent sulfurs correctly. 

For GBNP1* amines, carbon amides, and carbon esters still show significant errors with 

¶åæ��· Ê 2.0	kcal/mol (Figure 4.3). The reason for this error is again the asymmetric behavior of 

water. The AM1-BCC charges for carbon atoms in these groups are positive, while carbon atoms in 

other chemical groups like alkanes carry small negative partial charges. Because charge differences 

are smaller, the induced errors are also smaller than those of the nitro group are. Nevertheless, we 

expect an additional carbon atom type to reduce these errors further.179 In addition, the exposition 

of the carbon atoms to water is very important for the asymmetric behavior of water to have an 

effect. If the carbon atom is not exposed, neglecting the asymmetric behavior of water will not 

introduce a large error. 

In conclusion, the analysis of the implicit solvent models presented in this chapter provides a solid 

foundation for future improvements of implicit solvent models. Especially the consideration of the 

asymmetry of water seems to play a key role in future improvements of implicit solvent models. 

Atom type dependent nonpolar solvation parameters can also increase the accuracy of estimated 
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hydration free energies for small molecules significantly. However, one has to define atom types 

carefully to not introduce large errors for sparsely represented entities in the training set. 

The next step in the improvement of implicit solvent models will be to see how these results 

transfer to larger molecules like proteins. These do not contain such a wide variety of chemical 

groups, e.g. nitro groups are not present in proteins. Therefore, accounting for the asymmetry of 

water may not be as important for proteins as it is for the small molecules considered in this study. 

However, proteins can undergo large conformational changes that cause the burial of specific 

groups inside the protein and the exposition of other groups to water. To improve the description of 

solvation effects related to these conformational changes, a different approach than the used one by 

us will be necessary. The reason is that the related free energy changes cannot be measured in 

experiments, because it would require enforcing a specific conformational change of the protein. 

Moreover, intramolecular interactions are also important for the thermodynamics of 

conformational changes. 

 





 

77 

5 Extensions for an Implicit Membrane Model 

Reproduced in part from Setzler, J.; Seith, C.; Brieg, M.; Wenzel, W. “SLIM: An Improved Generalized 

Born Implicit Membrane Model.” J. Comput. Chem. 2014, 35, 2027–2039. Permission granted by John 

Wiley & Sons, Inc. (License number 3511861064857). Copyright © 2014 Wiley Periodicals, Inc. 

This chapter introduces an extension of the generalized Born implicit solvent model of Section 3.3 to 

account for some basic properties of biological membranes. These membranes represent another 

important physiological environment of proteins. In cooperation with Julia Setzler and Carolin Seith, 

I have developed the so-called SIMONA layered implicit membrane (SLIM) model that enables 

Monte Carlo simulations in SIMONA with an implicit solvent and membrane representation. The 

first section explains the properties that this model accounts for and how they are incorporated into 

the SLIM model. Subsequently, the second section gives details about the implementation of this 

idea into my PowerBorn algorithm and SIMONA. The third section reviews the parameterization of 

the SLIM model, its comparison to Poisson-Boltzmann reference calculations, and results of Monte 

Carlo simulations of small membrane proteins using the SLIM model. To enable the study of larger 

systems, the fourth section describes the parallel implementation of the SLIM model, and the last 

section gives an overview of the performance of Monte Carlo simulations with the SLIM model in 

SIMONA. 

5.1 Motivation and Basic Idea of the SLIM Model 

As explained in Section 2.1, biological membranes represent another important physiological 

environment for proteins. Similar to implicit solvent models introduced in Section 2.4, implicit 

membrane models offer the possibility to reduce the computational cost for studies of membrane 

proteins significantly. However, this requires the incorporation of the membrane into the implicit 

solvent model. Due to the heterogeneous composition of the membrane bilayer with its headgroup 

region and the lipid tail region, this task is much more challenging than for homogenous water. 

For water, the generalized Born implicit solvent model introduced in Section 2.4 accounts for the 

polarization of water by the solute charges and the interaction of the induced polarization charges 

with the solute charges. The strength of this interaction strongly depends on the ratio of the 

dielectric constants of the solvent and solute regions. If the solvent is water, this ratio is very small 

and the resulting interaction rather strong.  
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In a recent study, Nymeyer and Zhou205 computed effective dielectric constants within a membrane. 

They find it should be represented by at least two different dielectric regions. These regions 

correspond to the lipid tails inside the membrane core with a very low dielectric constant and a 

transition region between the membrane core and the headgroup region with an intermediate 

dielectric constant. Thus, the induced polarization charges at these interfaces are much smaller due 

to the larger ratios of the dielectric constants between solute interior, membrane core, and 

headgroup regions. An implicit continuum membrane model will have to account for these different 

dielectric regions. Unfortunately, by construction, the computationally efficient generalized Born 

model is limited to the presence of only two different dielectric regions. 

Nevertheless, several attempts in the past have been made to include a membrane implicitly into the 

generalized Born model. Spassov et al. simply modeled the membrane as a single low dielectric 

slab.206 This results again in only two dielectric regions that can be treated with the generalized 

Born model. Im et al.207 or Ulmschneider et al208. have developed own implicit membrane models 

based on this idea. Tanizaki and Feig209 proposed a different method to include the dielectric 

regions of the membrane into the generalized Born model. They use a position-dependent dielectric 

profile function that replaces the dielectric constant of water (¦ in Equation (2.35). While this 

method allows the inclusion of any number of dielectric regions into the generalized Born model, it 

does not correctly account for the membrane in the interaction terms. For example, the interaction 

of two ions just outside the membrane will not be altered in this model by the presence of the 

membrane. Thus, qualitatively correct modeling of interactions with induced polarization charges in 

the presence of a realistic membrane representation using the generalized Born model is an 

unsolved problem. 

To address this problem, I have developed a new implicit membrane model based on the 

generalized Born model together with Julia Setzler, Carolin Seith, and Wolfgang Wenzel. We call this 

model SIMONA Layered Implicit Membrane (SLIM). This model solves the qualitative problems of 

previous generalized Born implicit membrane models. As a result, it yields electrostatic solvation 

free energies in better agreement with Poisson-Boltzmann calculations than for previous models.210 

To motivate the basic idea of the SLIM model, I will shortly review some facts about the 

electrostatics of dielectric media. According to the boundary conditions at dielectric interfaces in 

Equations (2.32) and (2.33), the interface causes a jump in the normal component of the 

displacement field. Together with Equation (2.29) and Gauss law, one can show that this jump is due 

to induced polarization charges that are located at the interface. These polarization charges are 
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induced by an electric field, e.g. that of a solute due to its charges. These polarization charges will 

interact with all other charges present in the system. This includes the sources of the external field, 

e.g. the solute charges, the induced polarization charges themselves, as well as induced polarization 

charges at other interfaces. An accurate generalized Born model only approximates the interactions 

between the solute charges and induced polarization charges as well as the induced polarization 

charges themselves.211 However, it cannot model the interaction of induced polarization charges at 

different dielectric interfaces. 

Based on these facts, my basic idea for the SLIM model was to decompose an environment 

consisting of multiple dielectric regions into multiple environments consisting of only two dielectric 

regions each (see Figure 5.1). The simpler environments can then be treated with established 

generalized Born models. However, this decomposition neglects the interactions among the induced 

polarization charges at each interface. Nevertheless, it may be possible to find some empiric 

correction that can account for the interaction of the induced polarization charge, at least if the 

system has a fixed simple geometry. 

For our SLIM model, we will consider the following geometry of dielectric regions based on the 

work of Nymeyer and Zhou205 and Tanizaki and Feig.209 The region of the protein ÑQ will have 

dielectric constant (Q. The membrane core region Ñ� is modeled by an infinite dielectric slab with 

dielectric constant (� perpendicular to the z-axis of the coordinate system. We will follow the 

approach of Spassov et al. and use the same dielectric constant for the protein interior and the 

membrane core.206 Thus, the united region is ÑQ� � ÑQ ∪ Ñ� and has dielectric constant (Q� � (Q � (�. 

However, our model does not require this decision. It can be generalized to an arbitrary number of 

dielectric regions. See Setzler et al. for a more general formulation how to decompose an 

environment consisting of an arbitrary number of dielectric regions.210 The membrane core region 

is surrounded by another two infinite dielectric slabs. These slabs constitute the region Ñ! of 

intermediate dielectric constant (!. We will refer to this region as the headgroup region. However, 

they only model the transition between the membrane core and the headgroup, wherefore they may 

not coincide with the positions of the headgroups in a real membrane. Finally, the slabs are 

embedded in implicit water denoted by the region Ñ¦ with dielectric constant (¦. This geometry is 

also depicted in Figure 5.1. 

The decomposition of the previously described environment can be translated to the decomposition 

of the electrostatic solvation free energy Δ|���� into two generalized Born terms Δ|·� of Equation 

(2.35) with two sets of Born radii h¶k� and h¶k0 respectively210 
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Δ|����D(Q�, ÑQ�; 	(!, Ñ!;	(¦, Ñ¦E ¼ Δ|����}��õD(Q�, ÑQ�;	(!, Ñ!;	(¦, Ñ¦E � 

Δ|·�D(Q�, ÑQ�;	(!, Ñ! ∪ Ñ¦;	h¶k�E � Δ|·�D(!, ÑQ� ∪ Ñ!; 	(¦, Ñ¦;	h¶k0E. 
(5.1) 

The first generalized Born term of this equation treats the interface between the membrane core or 

protein interior region ÑQ�, and the headgroup region Ñ!. In this term, the water region Ñ¦ is 

assigned the dielectric constant (! instead of (¦. Thus, there are only regions that have dielectric 

constant (Q� and (!. The set of Born radii h¶k� is computed via Equation (2.40), but the integration 

region includes all regions with dielectric constant (!, e.g. the union of regions Ñ! and Ñ¦. The 

second term in Equation (5.1) treats the interface between the headgroup region Ñ! with dielectric 

constant (! and the water region Ñ¦ with dielectric constant (¦. To have only two different 

dielectric constants in the system modeled by this generalized Born term, the dielectric constant (! 

is also assigned to the membrane core and protein interior region Ñö÷. For this generalized Born 

term, the integration region for the set of Born radii h¶k0 is the region with dielectric constant (¦, 

e.g. the water region Ñ¦. 

 

Figure 5.1. This sketch visualizes the decomposition of a complex environment into two simpler 

environments of the SLIM210 model. The protein region øc (white) with dielectric constant ùc is embedded 

in a membrane consisting of core region øÐ (yellow) with dielectric constant ùÐ	and headgroup region ø` 

(orange) with dielectric constant ù`, which is surrounded by a water region øú with dielectric constant 

ùú. The SLIM model assumes the same dielectric constant ùcÐ for the membrane core and protein regions. 

The membrane is decomposed into two simpler environments. The first of those has ù` assigned to the 

water region. In the second, ù` is assigned to the protein and membrane core region. As a result, both 

simpler environments contain only regions with two different dielectric constants. Thus, they can be 

treated with established generalized Born methods. 
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An important property of the decomposition in Equation (5.1) comes to bear if both sets of Born 

radii are equal. Since all Born radii are computed via the R6 integral expression of Equation (2.40), 

the sets will be equal if the integration regions are equal. This is for example the case if the 

headgroup region Ñ! vanishes. As a result, the membrane will be modeled by only one dielectric 

slab. It follows from Equation (2.35) that the dielectric constant (! cancels out and the two 

generalized Born terms can be combined into a single term 

 
Δ|·�D(Q�, ÑQ�;	(!, Ñ¦;	h¶k�E � Δ|·�D(!, ÑQ�;	(¦, Ñ¦;	h¶k�E

= Δ|·�D(Q�, ÑQ�; 	(¦, Ñ¦;	h¶k�E. (5.2) 

The resulting model with only one dielectric slab to represent the membrane is similar to that of 

Spassov et al.206 Another case where the sets of Born radii will be equal is when the protein will be 

far away from the slabs. In that case, all contributions of the slabs to the Born radii integrals of 

Equation (2.40) will be negligible. This is also the case if both slabs vanish. Since ÑQ� = ÑQ ∪ Ñ�, the 

single resulting generalized Born term is 

 
Δ|·�D(Q�, ÑQ;	(!, Ñ¦;	h¶k�E � Δ|·�D(!, ÑQ; 	(¦, Ñ¦; 	h¶k�E

= Δ|·�D(Q�, ÑQ; 	(¦, Ñ¦;	h¶k�E. (5.3) 

This generalized Born term consists of one protein region ÑQ with dielectric constant (Q� and one 

water region Ñ¦ with dielectric constant (¦. It is the standard implicit solvent generalized Born 

term. In conclusion, the proposed decomposition contains the limiting cases of the standard 

generalized Born model of Still et al.105 and the simple implicit membrane model of Spassov et al.206 

Another aspect that an implicit membrane model should account for is the absence of the 

hydrophobic effect introduced in Section 2.4 inside the membrane. In contrast to water molecules, 

the lipid tails have no large dipole moments. Therefore, they do not form hydrogen bond networks 

that may be disrupted due to the presence of a solute. To model this effect within the SLIM model, 

we use the empiric approach of Tanizaki and Feig.209 They use a solvent accessible surface area term 

with a z-coordinate dependent profile function s@|û)|A 

 Δ|�Q}��õ = ¿ ' s@|û)|A�)
3

)5F . (5.4) 
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The profile function is derived from explicit all-atom calculations of the solvation free energy of a 

neutral oxygen molecule at different positions in the membrane. If the thickness of the explicit 

membrane differs from that of the implicit membrane, we use a stretched profile function 

 Δ|�Q}��õ = ¿ 's�|û)| ℎ0ℎm	� �)
3

)5F
. (5.5) 

Here, ℎF = 30	Å is the membrane thickness for the original profile and ℎ� is the actual membrane 

thickness. In summary, the solvation free energy of the SLIM model is 

 ΔG}��õ = ΔG����}��õD(Q�, ÑQ�; 	(!, Ñ!;	(¦, Ñ¦E + Δ|�Q}��õ. (5.6) 

5.2 Implementation of the SLIM Model 

The SLIM model requires the computation of two sets of Born radii. For the computation of each set, 

a different dielectric slab that has the same dielectric constant as the protein interior has to be 

accounted for. This means that the region of the slab has to be excluded from the integration region 

in Equation (2.40). Therefore, some changes to the PowerBorn method for the computation of Born 

radii described in Section 3.3 are necessary. In this section, I will explain the necessary steps to 

exclude the integration from the slab region. 

To implement this feature, the treatment of three different cases is necessary, as illustrated in 

Figure 5.2. In the first case the bounding box that separates the numerical integration on the inside 

from the analytical integration on the outside, lies completely inside the slab (Figure 5.2A). In that 

case, no numerical integration procedure is necessary. The remaining regions are treated 

analytically. For an atom with z-coordinate û), the integral of Equation (2.40) over the volume 

outside the slab with lower and upper boundaries û� and û� is210 

 þG�����¾ G��(û) , û�, û�) = �6 � û) − û�(û) − û�)# − û) − û�(û) − û�)#�.	 (5.7) 

If the bounding box is completely outside the slab (Figure 5.2B), the usual PowerBorn integration 

can be applied. Before the PowerBorn integral is converted to the Born radius via Equation (2.40), 

the integral over the slab region is subtracted from the usual PowerBorn integral. This contribution 

is given by  

 þG���	 �G ��(û) , û�, û�) = −þG�����¾G ��(û), û�, û�).	 (5.8) 
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In the last case, the bounding box touches at least one of the slab boundaries. If it touches only one, 

then the bounding box is shifted just outside the slab (Figure 5.2C). If it also touches the second 

boundary of the slab, a second bounding box is constructed at the opposite side just outside the slab. 

Within these shifted bounding boxes, the usual numerical PowerBorn integration procedure 

described in section 3.3 can be applied. The integration over the region outside the slab and outside 

the bounding box is solved analytically by converting the volume integral to surface integrals via 

Gauss's law. The integrals þG���"� over the faces of the bounding box are given by Brieg and 

Wenzel,173 where the details of the PowerBorn algorithm are explained. The integral þG���
G���"� over the 

slab surface excluding the square of the bounding box can then be computed by  

 þG���
G���"� � þG��� �G �� − þG���"�. (5.9) 

With that, the Born radii can be computed in the presence of a low dielectric slab, yielding the two 

sets of Born radii in Equation (5.2). The computation of each generalized Born term in that equation 

is done as described in Section 3.3. 

The implementation of the nonpolar term in Equation (5.4) uses the PowerSASA152,153 method to 

compute the solvent accessible surface area �) of each atom. The scaling function is computed by 

the formulas given by Tanizkai and Feig.209 Afterwards, the scaling function is multiplied with the 

atomic solvent accessible surface area �)  and the surface tension coefficient ¿, and summed. 

 

Figure 5.2. Illustration of the three different cases that need to be treated to incorporate a low dielectric 

slab in the integration procedure of the PowerBorn173 method. The protein’s bounding box is either 

completely inside the slab (panel A), completely outside the slab (panel B) or partly inside the slab (panel 

C). In the last case, the bounding box is shifted to the boundary of the slab, and if it also touches the 

opposite slab boundary, a second bounding box is constructed. The low dielectric regions of the protein 

and the slab are shaded grey. The dashed line marks the bounding box inside which the numerical 

PowerBorn integration procedure is performed. 
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5.3 Assessment of the SLIM Model 

Julia Setzler and Carolin Seith carried out comparisons of the electrostatic solvation free energy of 

the SLIM model to Poisson-Boltzmann reference calculations including an implicit membrane 

representation. They first compared the electrostatic solvation free energies of a single ion that is 

pulled through the membrane. They find that if the SLIM model uses the same thicknesses and 

dielectric constants as in the Poisson-Boltzmann reference calculations (Figure 5.3A, black line), the 

SLIM model systematically overestimates the absolute value of electrostatic solvation free energy, 

especially in the transition region between the headgroup and the membrane core (Figure 5.3A, red 

dotted line).210 The reason for this behavior is likely the neglected interaction between the induced 

polarization charges at the different dielectric interfaces as described in Section 5.1. However, they 

also showed that this error could be corrected by using optimized thicknesses and dielectric 

constants (Figure 5.3A, orange dashed line). Usage of these optimized constants results in very good 

agreement with Poisson-Boltzmann calculations.210 They also compared the SLIM model with only 

one dielectric slab, which is similar to that of Spassov et al.206 to the Poisson-Boltzmann results and 

find large deviations (Figure 5.3A, blue dot-dashed line). The transition is much steeper, as could be 

expected from the results of Nymeyer and Zhou.205 

Julia Setzler and Carolin Seith further compared the interaction term of the electrostatic solvation 

free energy for two ions by computing the total electrostatic solvation free energy and subtracting 

the self-energy terms in Equation (2.36). The results in Figure 5.3B also show overestimated 

absolute values for the interaction terms if the thicknesses and dielectric constants of the Poisson-

Boltzmann membrane model are used in the SLIM model (Figure 5.3B, red dotted line). These errors 

decrease significantly if the optimized thicknesses and dielectric constants are used, however, the 

absolute values of the interaction term of the electrostatic solvation free energy is still slightly 

overestimated (Figure 5.3B, orange dashed line). Again, the model similar to that of Spassov et. al. 

shows significant deviations from the Poisson Boltzmann calculations (Figure 5.3B, blue dot-dashed 

line). These results demonstrate the improved agreement of the SLIM model to much more 

computationally expensive Poisson-Boltzmann reference calculations in comparison to the model of 

Spassov et al. 



5 Extensions for an Implicit Membrane Model 

85 

 

Figure 5.3. Comparison of electrostatic solvation free energy terms of the SLIM model (GB) to Poisson-

Boltzmann (PB) reference calculations using PBEQ.212,213 Panel A shows the comparison for the total 

electrostatic solvation free energy of a single Ion with proton charge and radius 2.0 Å. Panel B compares 

the interaction terms of Equation (5.1) for the case of two ions with radii 2.0 Å. The position of the first 

ion is fixed in the center of the membrane, while the other ion is pulled through the membrane along the 

membrane normal with a closest distance of 4.0 Å perpendicular to the membrane normal. In the legend, 

`Ð is the thickness of the core region, `` the thickness of the headgroup region. The dielectric constants 

ùcÐ � ùc � ùÐ, ù` and ùú are according to Equation (5.1). The red dotted line is the SLIM model with the 

same parameters as in the PB model. The orange dashed line is the SLIM model with optimized thickness 

and dielectric constants to reproduce PB results. The blue dot-dashed line shows a model similar to that 

of Spassov et al,.206 which uses only one dielectric slab.210 

To test the SLIM model for a more complex molecular geometry than a spherical ion, Julia Setzler 

and Carolin Seith also used the small alpha-helical protein Magainin (PDB code 2MAG214) to 

compare the self-terms of the electrostatic solvation free energy. Therefore, they removed all except 

for a single partial charge from the protein and set that single charge to that of a proton. Then they 

pulled the protein through the membrane in three different orientations with the charge located at 

the same position for every orientation and compared the electrostatic solvation free energies of the 

SLIM model to Poisson-Boltzmann calculations. As shown in Figure 5.4, they find that the SLIM 

model, in agreement with the Poisson-Boltzmann reference calculations, results in three different 

profiles corresponding to the three different orientations of Magainin. In addition, both models 

predict the orientation where Magainin is mostly inside the membrane to be energetically most 

favorable, while the orientation with Magainin mostly outside the membrane is least favorable. The 

quantitative agreement between results from SLIM and Poisson-Boltzmann calculations is also 

good. 
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This test demonstrated another important property of the SLIM model in contrast to the model of 

Tanizaki and Feig.209 Because the single charge was always located at the same position for all three 

orientations of Magainin, Tanizaki’s and Feig’s approach of using a position-dependent dielectric 

profile function would predict all three orientations to have the same electrostatic solvation free 

energy. Thus, their approach would yield results that are not even in qualitative agreement with 

Poisson-Boltzmann calculations. In conclusion, the SLIM model provides more accurate electrostatic 

solvation free energies than previous generalized Born based implicit membrane models.210 

 

Figure 5.4. Self-term comparison of the electrostatic solvation free energy between the SLIM model and 

Poisson-Boltzmann reference calculations for a more complex molecular structure. The small protein 

alpha-helical Magainin (PDB code 2MAG214) is used. Panel A illustrates the three orientations of 

Magainin’s alpha helix shown as cylinders at four different positions relative to the membrane that were 

used for this comparison. The location of Magainin’s single proton charge is shown by a red sphere. 

Panel B shows the electrostatic solvation free energy profiles of pulling three different oriented Magainin 

through the membrane. The colors for the SLIM graphs correspond to the orientations in Panel A.210 

Moreover, Julia Setzler and Carolin Seith demonstrated that SIMONA Monte Carlo simulations using 

the SLIM model are able to reproduce established properties of membrane peptides and small 

proteins. They investigated the distribution of the positions and orientations of the antimicrobial 

peptide Melittin relative to the membrane using Monte Carlo simulations with SLIM. They found 

two stable conformations that correspond to experimentally confirmed conformations. In addition, 

they found one stable set of conformations with a too strong kink in Melittin’s alpha helix. This 

conformation has not been observed experimentally, but in other implicit or coarse-grained 

membrane simulations.210 
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Furthermore, Julia Setzler and Carolin Seith investigated the tilt angle of a single transmembrane 

domain of the M2 protein. They find varying tilt angles depending on the total thickness ℎ� of the 

slabs used to model the membrane and the value of the surface tension coefficient ¿ in Equation 

(5.4). The transmembrane helix of the M2 protein tilts to overcome the unfavorable mismatch 

between the length of its hydrophobic alpha helical region and the thickness of the membrane. This 

behavior is in agreement with the concept of hydrophobic mismatch.215,216 They also find that the 

SLIM model stabilizes the transmembrane region of the Glycophorin A dimer, with a crossing angle 

of the two alpha helices of the dimer in good agreement with experimentally observed values.210 

Thus, the SLIM model provides an improved description of electrostatic solvation effects compared 

to previous generalized Born implicit membrane models and is able to reproduce some basic 

properties of small membrane peptides and proteins.210 

5.4 A Parallel SLIM Implementation 

Since the SLIM model implementation builds upon the PowerBorn method, its parallelization is 

rather trivial. The construction of the octree data structures inside the bounding boxes can be done 

in parallel with the method described in Section 3.3. However, there may be multiple bounding 

boxes in the SLIM algorithm, depending on the cases discussed in Section 5.2. To decrease load 

imbalance and idle time of the threads, I have rescheduled some functions of the octree construction 

method to reduce the number of synchronization points. These are points that all threads have to 

reach before any thread may continue. This rescheduling increases the efficiency of the 

parallelization. The analytical formulas in Equation (5.7) to (5.9) can be evaluated for each atom 

independently, hence they are also trivial to parallelize. In addition, the parallelization of the 

evaluation of Equation (2.35) for each of the generalized Born terms in Equation (5.1) can be done 

as described in Sections 3.1 and 3.3. 

I have also performed speedup measurements for the SLIM model in analogy to Section 3.3. I have 

used three membrane proteins with an increasing number of atoms. These are Melittin, which 

contains 433 atoms (PDB code 2MLT217,218), the Glycophorin A dimer with 1322 atoms (PDB code 

1AFO219) and a bacteriorhodopsin monomer containing 3538 atoms (PDB code 1FBB220). I 

measured the computation time of the SLIM model during a 10,000 step Monte Carlo simulation. 

The computation time includes the computation of both sets of Born radii and the evaluation of 

Equation (2.35) for both generalized Born terms in Equation (5.1), as well as the computation of the 

SASA for each atom as described in Section 3.2. The obtained speedups are shown in Figure 5.5. The 

algorithm scales well, as expected from the results of the power diagram and PowerBorn 
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parallelization. With 32 available threads, speedups reach from 17.2 for the smallest system to 24.1 

for the largest system. These results demonstrate that the parallel SLIM model is well suited for 

execution on modern multicore CPUs and that this parallelization significantly increases the amount 

of sampling that can be performed in a given amount of time. 

 

Figure 5.5. Speedup of the computation time to evaluate the electrostatic solvation free energy in the 

SLIM model as a function of the number of threads for three different membrane proteins with an 

increasing number of atoms. 

5.5 Monte Carlo Simulation Performance of the SLIM Model 

Here I present results on the Monte Carlo simulation performance of SIMONA with the SLIM model. 

I have done the performance measurements in analogy to Section 3.4. For the measurements, I have 

used the same three proteins as in the previous Section 5.4. The required forcefield terms for a 

SIMONA Monte Carlo simulation with the SLIM model are listed in Table 5.1. 

The simulation performance results are shown in Figure 5.6. Similar to the results for the implicit 

solvent model without the membrane discussed in section 3.4, the achieved speedup for the small 

system with 434 atoms, is lower than 16, e.g. the efficiency of the parallelization is below 50%. Thus, 

for such small systems, parallel simulations should not use more than 16 threads, while larger 

systems may also use more threads due to the achieved speedups being larger than 16.0 (Figure 

5.6A). Again, the number of Monte Carlo steps that the simulation completes per day strongly 

depends on the number of atoms in the protein and the number of available threads. For a single 
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thread, the Monte Carlo simulation of the smallest system completes 1.81 million steps per day, 

while the simulation of the largest system completes only 0.15 million steps per day (Figure 5.6B). 

Table 5.1. List of the forcefield terms that are necessary for the simulation of proteins in an implicit 

membrane environment. SASA is the abbreviation for solvent accessible surface area. 

No. SIMONA Forcefield term Description relevant sections 
or equations 

1 Dihedral potential Proper and improper dihedral potentials Equations (2.9) 
and (2.10) 

2 Nonbonded Vacuum Lennard-Jones, Coulomb and 1-4 
interactions 

Equations (2.2)-
(2.6)  

3 SLIM Computation of the SASA and Born radii, 
evaluation of 
Δ|����}��õD(Q�, ÑQ�;	(!, Ñ!;	(¦, Ñ¦E 

Sections 3.2 and 
3.3, Equation (5.1)  

4 NPSasaEnergyMembrane Nonpolar solvation free energy for 
implicit membrane model 

Equation (5.5) 

 

 

Figure 5.6. Overall simulation performance measures for protein simulations in an implicit membrane 

environment. Panel A shows the speedup of the computation time over the number of threads for the 

complete Monte Carlo simulation for three different proteins with an increasing number of atoms. Panel 

B shows how many million Monte Carlo (MC) steps per day can be computed as a function of the number 

of atoms in the protein and the number of available threads. 

Tanizaki and Feig221 reported molecular dynamics simulation of large integral membrane proteins 

using a different implicit membrane model and cutoffs on long-range interactions. Although they 

find that these cutoffs can have dramatic unphysical consequences on the orientation of membrane 
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proteins, they deem simulations without cutoffs unfeasible due to the high computational cost. With 

cutoffs, their simulation of a bacteriorhodopsin monomer required 12 days for 500,000 molecular 

dynamics integration steps on two CPUs using CHARMM.221 

I have also used this system as the largest for my performance measurements reported in Figure 

5.6. In contrast to the molecular dynamics performance of Tanizaki and Feig,221 the SIMONA 

simulation with my implementation of the SLIM model completes 300,000 Monte Carlo steps per 

day using two threads and without the need for any cutoffs (Figure 5.6B). Because the employed 

hardware in my simulation and that of Tanizaki and Feig differed strongly, I have carried out two 

test simulations with the model of Tanizaki and Feig using CHARMM and SIMONA with the SLIM 

model running on the same hardware. This test simulation again used the PDB 1FBB220 as the 

starting conformation and ran for 1000 molecular dynamics or Monte Carlo steps respectively. More 

details about this test simulation can be found in the Appendix. A.3. CHARMM required 1021 s to 

complete the respective simulation, while SIMONA with the SLIM model required only 230 s. Thus, 

the SIMONA simulation with SLIM achieves about 4.4 times more simulation steps while removing 

the requirement for cutoffs at the same time. In addition, a SIMONA simulation with the SLIM model 

scale well up to 32 threads for not too small systems, increasing the simulation performance by 

another factor of up to 22 (see Figure 5.6A). 

As in the case with the aqueous environment, the simulation performance will depend on the extent 

of the protein conformation. In addition, the position in relation to the membrane will also have a 

strong influence on the simulation performance. The reason is that, for protein regions inside the 

slab, no octree construction has to be performed. This saves a lot of computation time. In addition, if 

the bounding box of the protein is outside both slabs, only one numerical integration procedure 

inside the bounding box is required. This again reduces the computational cost. Therefore, the 

computational cost of evaluating the SLIM model for a given conformation varies even more than for 

the aqueous environment. 

I conclude that the performance of my implemented forcefield terms listed in Table 3.1 is very well 

suited for the investigation of proteins in an implicit water or membrane environment. Especially 

they do not require any cutoffs of long-range interactions to yield the demonstrated performance. 

According to Feig and Tanizaki,221 this is a large step forward in enabling realistic simulations of 

proteins and membrane proteins in implicit models. 

 



 

91 

6 A Monte Carlo Study of Protein Folding 

This chapter contains an application of the methods that I developed and implemented to study the 

folding of the small protein FSD-EY using Monte Carlo simulations. The first section gives an 

introduction into the protein folding problem with regard to computational studies. The second 

section gives details about my Monte Carlo simulation setup. The third chapter presents first results 

of the simulations with regard to the efficiency of the employed parallel tempering method 

explained in Section 2.5. In the next section, I determine the folded state of FSD-EY in my simulation 

data and compare it to experimental NMR data. Afterwards, I determine the critical folding 

temperature of FSD-EY and a metastable conformation at low temperatures. Finally, I deduce FSD-

EY’s folding mechanism from the simulation data at the critical temperature. 

6.1 The Protein Folding Problem and Computer Simulations 

The large variety of functions that proteins can carry out relies on their unique feature to fold into 

clearly defined three-dimensional structures. The question how this three-dimensional structure is 

dictated by the amino acid sequence is known as the protein folding problem.222 Nowadays, this 

large problem has been separated into three smaller problems:222 What balance of forces 

determines the native fold? How can the native fold of a protein be predicted from its amino acid 

sequence? How do proteins fold into their native state? Especially the last question was recognized 

as one of the 100 biggest questions in science by the Science magazine.223 

In principle, computer simulations can help to answer these questions. However, to have the 

computational means to carry out these investigations is a large challenge itself. The problem is the 

long timescale on which protein folding takes place. Kubelka et al.224 investigated the lower limit on 

the folding time of a protein. They assume that the folding process can be described by a one-

dimensional reaction coordinate and argue that there are two limiting factors for the folding time. 

At low temperatures, the limiting factor is the trapping of the system in local free energy minima 

that do not correspond to the folded state. At intermediate temperatures, the limiting factor is the 

crossing of the free energy barrier that separates the folded and unfolded state along the one-

dimensional reaction coordinate. At high temperatures, the protein does not fold anymore. As a 

result, Kubelka et al. argue that the speed limit of protein folding is reached in the case where the 

free energy barrier vanishes, e.g. at a sufficiently high temperature. They further argue that for a 

protein consisting of B"�G residues, the lower folding time limit is B"�G/100	μs. However, they also 

note that even the known ultrafast folding proteins take much longer to fold. 
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Since typical molecular dynamics simulations can only reach the low microsecond range,24,225 they 

are unable to thermodynamically characterize the folding process unless the protein is very small. 

One solution to the problem is to employ rare specialized supercomputers.32,33 However, even this 

approach failed to study the folding of a moderate sized protein due to the limiting time the system 

could be simulated.34 Another approach is to use replica exchange molecular dynamics.226 This is the 

molecular dynamics extension of parallel tempering, see Section 2.5. Since the system is simulated 

at different temperatures, one such replica may likely be close to the temperature where the free 

energy barrier vanishes. Thus, the folding time of the protein at this temperature is minimal. This 

has enabled the study of the folding process of a few small peptides and proteins.222,227–237 

Nevertheless, the folding speed limit still applies, wherefore even replica exchange molecular 

dynamics will eventually fail to investigate the folding of medium sized proteins with complex 

topology. In addition, a recent investigation showed that replica exchange molecular dynamics in 

explicit water only increases the efficiency of conformational sampling by a factor of two over 

multiple conventional molecular dynamics simulations.238 

Coarse-grained models have also been used to study protein folding.26,239,240 Since they average out 

the fast degrees of motion, such as atomic vibrations, they allow the use of much larger timesteps in 

molecular dynamics. However, they are usually used in conjunction with Brownian dynamics, which 

does not allow for the computation of thermodynamic expectation values.26 In addition, the 

conversion to an all-atom representation is required to extract the atomistic mechanisms of protein 

folding.26 Therefore, I will not consider them further. 

Given these circumstances, my Monte Carlo simulation methods promise to fill this gap of a 

computational method that can investigate the folding process of a protein independent of its 

folding time at an all-atom level. First studies on a small protein consisting of three alpha helices 

showed that this promise is well founded.241,242 Here I investigate the folding of another small 

protein. In contrast to the previous studies, I will focus on a small protein that contains a mixture of 

secondary structure elements. This investigation should provide further insights into the folding of 

small proteins. In addition, the mixture of secondary structure elements provides a larger challenge 

for my implicit solvent model, as some previous implicit solvent models have been show to favor 

some secondary structure elements over others.243,244 

6.2 Monte Carlo Simulation Setup for Folding of the FSD-EY Protein 

The protein I investigate is FSD-EY (PDB code 1FME42). It has a beta-beta-alpha fold. The beta sheet 

has hydrogen bonds between residue pairs 5 and 12 as well as 7 and 10. I will refer to the residues 5 
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to 6 as the first beta strand region and the residues 10 to 12 as the second beta strand region. The 

alpha helix contains the residues 15 to 24. Figure 6.1 shows a cartoon representation of the FSD-EY 

from three different perspectives. To investigate the folding of this protein, I ran a parallel 

tempering Monte Carlo simulation using SIMONA37 with code revision number 3762. I used my 

implemented forcefield terms and developed implicit solvent model described in Chapter 3 as well 

as the parallel tempering algorithm introduced in Section 2.5. The parallel tempering algorithm 

contained 32 different temperatures distributed exponentially between 250 K and 500 K as shown 

in Figure 6.2A. 

 

Figure 6.1. This is the cartoon representation of the protein FSD-EY (PDB Code 1FME42) viewed from three 

different perspectives. The protein has two beta strands forming one beta sheet and an alpha helix at the 

C-terminus. 

The simulation was run in parallel at each temperature. The parallel tempering algorithm attempted 

an exchange of the temperatures and saved a snapshot of the simulation after every 10,000 Monte 

Carlo steps. Every temperature used eight threads to evaluate the energy of the current 

configuration. In total, the simulation performed 200 million Monte Carlo steps at each temperature. 

The simulation ran about 9.1 million Monte Carlo steps per day. Thus, the total simulation took 

about 22 compute days to complete while running on 256 compute cores of the HERMIT cluster at 

the HLRS Stuttgart. 

During the simulation, only dihedral degrees of freedom were considered, while bond lengths and 

angles held constant. For a new proposal configuration, one dihedral angle was rotated relative to 

its current position by a value chosen from a Gaussian distribution with 20 degrees width and zero 

mean. Perturbing any backbone dihedral angle was twice as likely as any side chain dihedral angle. 

In addition, I used so-called local moves that are implemented in SIMONA37 during the simulation. 
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These perturb six succeeding backbone dihedral angles, while leaving the remaining protein 

unchanged. In addition, the protein was free to perform rigid rotations to average out the 

discretization errors described in Section 3.3. 

The starting structure for the simulation was the first model deposited in the PDB entry 1FME42. The 

program pdb2gmx generated the forcefield parameters of the AMBER99SB*-ILDN forcefield. The 

corresponding atomic radii of the forcefield for the GBOBC method120 and a probe radius of 1.4 Å 

were used to define the solvent excluded and solvent accessible surfaces. For all temperatures, I 

used the same dielectric constant (¦ � 80.0 in Equation (2.35), and I use a global surface tension ¿ = ¿) = 5.42	cal/mol/Å0 in Equation (2.41).183 Due to time constraints, I was not able to implement 

the temperature dependence of these values into the simulation. The dielectric constant for the 

protein interior was assumed to be (G = 1. The initial structure of FSD-EY was minimized 

energetically using GROMACS to relax unusual bond lengths and bond angles. The resulting 

structure is the starting conformation for my parallel tempering simulation at each temperature. 

6.3 Parallel Tempering Simulation Characteristics 

According to Bittner et al., each replica should spend the same amount of time at each temperature 

present in a parallel tempering simulation for it to be most efficient.245 Therefore, the first analysis 

is devoted to the course of temperatures for the replicas during my parallel tempering simulation of 

FSD-EY. Figure 6.2A graphs the exponential distribution of the starting temperatures, as well as the 

average temperatures, sorted from smallest to largest, and their standard deviations of each replica 

that resulted from the parallel tempering simulation. I observe that the resulting average 

temperatures do not follow the exponential distribution of the starting temperatures. The 15 lowest 

average temperatures all have average values below 326 K. The average temperatures for these 

replica increase moderately for the lowest three temperatures and slowly for the remaining 12 

temperatures. Then there is a jump in the average temperature from 326 K up to 379 K. The average 

temperature for the remaining replica increases moderately up to 444 K. As a result, the simulation 

seems to be inefficient according to Bittner et al., because if all replicas would have spent the same 

amount of time at each temperature, they should have the same average temperature. 

The probability to exchange two temperatures during the parallel tempering simulation is shown in 

Figure 6.2B. It lies between 0.7 and 0.9 for all temperatures. The probability is lowest at 

temperatures that lie between 325 and 375 K. This temperature range coincides with the jump in 

the average temperature (Figure 6.2A). Nevertheless, the exchange probabilities are very high for all 

temperatures. According to Deem and Earl,136 their values should be between 20% and 23% to yield 
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the largest computational efficiency. This suggests that the temperatures could be spaced even more 

widely to save computational effort. 

 
Figure 6.2. Panel A shows the starting temperatures of the FSD-EY parallel tempering simulation (black 

crosses) and the resulting average temperatures and their standard deviations sorted by average 

temperature after 200 million Monte Carlo steps (red diamonds with error bars). Panel B shows the 

probability to exchange the temperature between two replicas with adjacent temperatures. 

The standard deviation of the temperature in Figure 6.2 is another indicator how much the different 

replica move in temperature space. It is lower than 32 K for the 13 replicas with the lowest average 

temperature. It increases up to 70 K for replicas that are close to the jump in the average 

temperature and then decreases again down to 38 K for replicas with larger average temperatures 

than 379 K. Figure 6.3 graphs the course of temperature during the parallel tempering simulation 

for the replica with the lowest and highest standard deviation. In the former case, the temperature 

shortly increases and then drops towards the lowest temperature during the first 6 million Monte 

Carlo steps. Afterwards, the temperature fluctuates at low values with short spikes up to 360 K. In 

the latter case, the temperature strongly fluctuates between 250 and 420K during the first 70 

million steps. Then it increases to very high values and fluctuates between 350 and 500 K up to 170 

million steps. In the last stage, the temperature drops to a medium range and fluctuates around 

350	K. The results from Figure 6.3 show that the round-trip time of a replica from the lowest 

temperature to the highest temperature and back is very high. Because these round-trip times are 

another indicator of the efficiency of the parallel tempering algorithm,136 they also suggest that the 

parallel tempering simulation seems to be rather inefficient. According to Bittner et al.,245 this 
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behavior can be caused by phase transitions of the studied systems, where each phase transition 

corresponds to a barrier that hinders replicas to travel through temperature space. This would also 

explain the jump in the average temperature in Figure 6.2. Bittner et al. further showed that to 

lower these barriers, one has to increase the number of Monte Carlo steps between temperature 

exchanges, or to increase the speed by which the system can move through phase space. Besides an 

optimized temperature distribution, future studies should investigate how the round-trip times can 

be reduced by changing the sets of Monte Carlo moves and the number of steps between the 

attempted exchanges of temperatures. Nevertheless, the simulation was long enough for some 

replicas to visit all temperatures at least once, which indicates that the conformational space of FSD-

EY was sampled thoroughly. 

 

Figure 6.3. Course of the temperature for two replicas during the parallel tempering simulation of FSD-

EY. The black line shows the course of temperature for the replica with the lowest standard deviation of 

temperature and the red line the corresponding graph for the replica with the highest standard 

deviation of temperature. 

6.4 Comparison of the Simulated and Experimental Folded State 

Now I turn to the comparison of the folded state between the NMR ensemble of FSD-EY and the 

simulated ensemble. This comparison yields insights into the accuracy of the biomolecular forcefield 

and the implicit solvent model. For this comparison, one requires a measure that is able to 

differentiate between the folded and unfolded state. The root mean square deviation (RMSD) 

between two conformations of a protein is the minimum of the root of the mean squared distance 
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between corresponding atoms of the two conformations. To minimize this value, one can rigidly 

rotate and translate one of the conformations. Kabsch proposed a method to compute this best 

rotation and translation that minimizes the RMSD.246,247 I will use this as a similarity measure for 

different protein conformations. This measure is also used in other studies of protein folding.32–

34,227–230,232–235 

To determine a single representative folded conformation from the NMR ensemble of FSD-EY in the 

PDB entry 1FME42, I have performed a cluster analysis of this ensemble. A clustering algorithm finds 

groups of conformations that have a low RMSD to each other but a high RMSD to conformations of 

all other groups. It is implemented in the g_cluster program of the GROMACS package.25 The RMSD 

considered all non-hydrogen atoms and used a cutoff of 2.0 Å as the minimal distance between two 

conformations of neighboring clusters. The analysis of PDB entry 1FME42 resulted in only one 

cluster. The fifth model in that PDB entry was closest to the center of the cluster according to the 

program, which means that its conformation has the lowest average root mean square deviation to 

all other conformations in the cluster. I will refer to its conformation as the NMR reference 

conformation of FSD-EY. 

Subsequently, I have performed the same cluster analysis for my simulated ensemble. Since the 

temperature dependence of the dielectric constant and hydrophobic effect of water were neglected, 

I have only considered the replica at 292.36 K. The corresponding dielectric constant of water at 

that temperature is closest to the used value of (¦ � 80.0 according to Equation (2.27). Because the 

clustering algorithm is very compute intensive, as it scales quadratically with the number of 

conformations to cluster, only every fourth snapshot in the simulated ensemble was considered for 

clustering. 

This cluster analysis of the simulated ensemble resulted in 15 clusters that contain five or more 

conformations and only 4 clusters with more than ten conformations out of the 5000 conformations 

that were considered for clustering. The largest cluster contains 3777 conformations and is 7.1 

times larger than the second largest cluster. Since the protein should have a stable folded state at 

this temperature,42 I define this largest cluster to represent the folded state of FSD-EY in my 

simulations. I will refer to the central conformation of this cluster as the simulated folded 

conformation. Figure 6.4 shows a comparison of the simulated folded conformation to the NMR 

reference conformation. In general, the agreement between the two conformations is good. The 

RMSD of the C-alpha atoms (RMSDα) is 2.7 Å, and the RMSD of all atoms including hydrogen atoms is 

4.2 Å. I observe some deviations between those two conformations in the C-terminal region at the 



6 A Monte Carlo Study of Protein Folding 

98 

end of the alpha helix. The helix of the simulated folded conformation is one residue longer than that 

of the NMR reference conformation according to STRIDE.47 In addition, the beta sheet is also one 

residue longer in the simulated folded conformation than in the NMR reference conformation. There 

are also small deviations in the loop linking the two strands of the beta sheet. 

A prominent difference between the two conformations is the conformation of the side chain of 

residue Tyr7, which is part of the FSD-EY’s hydrophobic core (Figure 6.4). This residue is located at 

the N-terminal end of the loop linking the two beta strands. The side chain flips and does not point 

towards the side chains of residues Leu18 and Ile22 as in the reference conformation, but towards the 

side chain of Phe25. The former two side chains show also moderate differences in their 

conformations between the simulated folded conformation and the NMR reference conformation. 

The flip of Tyr7 is likely the reason for the different loop conformations between the beta strands, 

because this residue was shown to be very important for the loop conformation in experiments.42 

The different side chain conformations result in a higher exposition of the hydrophobic residues 

Leu18 and Ile22 to water in the simulated ensemble. Because of the hydrophobic effect explained in 

Section 2.4, the nonpolar term of the implicit solvent model should disfavor such conformations 

energetically. This suggests that my chosen surface tension coefficient of ¿ � 5.42	cal/mol/Å0 in 

Equation (2.41) may be too small. Another possibility is that the torsion potentials of the 

corresponding side chains are not accurate enough. This possibility can be checked by using the 

CHARMM22*, which was able to fold this protein in explicit water up to very high accuracy.33 In any 

case, further studies will be necessary to improve the implicit solvent model and force field so that 

the simulated ensemble of my Monte Carlo method agrees even better with the NMR ensemble. 

 

Figure 6.4. Comparison of the NMR reference conformation of FSD-EY (PDB 1FME42, model 5) (orange) 

and the central conformation of the largest populated cluster from my parallel tempering simulation at 

292.36 K (blue) viewed from two different perspectives. In addition to the cartoon representation, the 

hydrophobic core’s side chains of residues Tyr7, Leu18, Ile22, and Phe25 are highlighted by a stick 

representation because of their differences in the two conformations. 
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Nevertheless, I would like to point out that I have exchanged the recommended water model TIP3P 

of the AMBER99SB*-ILDN forcefield with my implicit water model without any other modifications 

of the forcefield. In addition, the employed set of atomic radii was straightforward available, 

although there may be other sets such as that by Swanson et al.77 that may perform better. Taking 

these facts into account, the agreement between the simulated folding state and the experimentally 

determined folded state is satisfying. 

6.5 Determination of FSD-EY’s Critical Folding Temperature 

Now I will focus on the folding transition of FSD-EY, especially the determination of the critical 

folding temperature at which the minima of the folded and unfolded states along a given reaction 

coordinate have equal free energy.248 Because my simulations do not account for the temperature 

dependence of the solvation free energy, this investigation will not present a physically and 

quantitatively correct picture of the folding process. The error of the electrostatic contribution to 

the solvation free energy can be estimated from Equations (2.27) and (2.35). Assuming (} � 1, this 

contribution’s absolute value decreases by 0.67% when increasing the temperature from 273.15 K 

to 373.15 K. The temperature dependence of the nonpolar contribution is more complex and not a 

monotonic function of temperature,91,249–251 wherefore no trivial error estimate is possible. Although 

the relative changes seem to be larger, the absolute value of the nonpolar contributions to the 

solvation free energy for proteins is usually much smaller than that of the electrostatic contribution. 

Due the marginal stability of proteins,252 even small changes of the solvation free energy can have 

significant effects. Nevertheless, this investigation should suffice to demonstrate that my Monte 

Carlo methods allow an efficient study the folding process of small proteins. 

To find the critical folding temperature, I will use the RMSDα as a reaction coordinate. A second 

reaction coordinate that can describe protein folding is the fraction of established native secondary 

structure x}} as determined by STRIDE.47 I will take all secondary structure elements listed in Table 

2.1 into account, even coil. Therefore, x}} decreases due to the formation of additional helices or 

beta sheets. In contrast to the previous Section 6.4, I will use the simulated folded conformation as 

the reference for calculating RMSDα and x}} instead of the NMR reference conformation, because I 

expect the RMSDα and x}} to provide better reaction coordinates for the folding process with this 

new reference conformation. 

To determine the critical folding temperature, I have projected my simulated ensembles at the 

different temperatures onto these two reaction coordinates and counted the number of 

conformations that fall within a given bin of the reaction coordinate. The widths of the bins are 0.5 Å 
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and 0.1 for RMSDα and x}} respectively. Since the ensembles generated by the Monte Carlo 

simulations are representative, the conformation count can be converted to a free energy landscape Δ|@xA that is projected onto an arbitrary reaction coordinate Q. This reaction coordinate is 

separated into bins x). The free energy Δ|@x)A for such a bin x) is 

 Δ|@x)A = −¶vln, n@x)Anmax@xA/. (6.1) 

Here, n@x)A is the number of conformations in the ensemble that fall into bin x), n��Í@xA is the 

maximum number of conformations in any bin, ¶ = KuB�  is the gas constant, and v is the 

temperature of the system. Per definition of this free energy landscape, the most populated bin will 

have zero free energy, while all other bins have free energies larger or equal than zero. 

Figure 6.5 shows the free energy landscapes for RMSDα and x}} of four selected temperatures, 

273.39 K, 292.36 K, 349.62 K, and 365.61 K. The first one is the lowest temperature of the replicas 

that is still above the melting temperature of water, while the last temperature is the highest 

temperature still below the boiling point of water. The second temperature was used in Section 6.4 

to compare the experimental and simulated folded conformation. The importance of the third 

temperature will be discussed later. For the computation of the four free energy landscapes, I have 

neglected the first 20 million Monte Carlo steps from each ensemble. This should account for the 

equilibration of the simulation, since all replicas started with the same conformation. In Figure 6.5A, 

I observe for RMSDα that the free energy minimum for the three lowest temperatures is between 2.0 

and 2.5 Å, while the minimum of the highest temperature is at 8.5 to 9.0 Å. For the fraction of native 

secondary structure, the replicas with the lowest three temperatures have their free energy 

minimum in the range of 90% to 100% native secondary structure. The minimum for the highest 

temperature is 60% to 70% native secondary structure. These observations are consistent with the 

fact that protein folds are stabilized at low temperatures and become unstable at high temperatures. 

The x}}  minimum of the highest temperature replica at x}} > 60%  shows that there is a 

considerable fraction of the native secondary structure still present in the unfolded state. 

I find that FSD-EY’s critical temperature of folding is slightly above 349.62 K wherefore I have 

selected the data from the corresponding replica to be present in Figure 6.5. For RMSDα, the free 

energy difference between the folded and unfolded state is 0.27 kcal/mol. The corresponding free 

energy difference for the fraction of established native secondary structure is 0.05 kcal/mol. These 

free energy differences are higher for any other replicas, wherefore the replica at 349.62 K is closest 
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to the critical folding temperature. The free energy barrier heights between the folded and unfolded 

states are 1.4 kcal/mol and 0.7 kcal/mol for RMSDα and x}} respectively. 

 
Figure 6.5. Free energy landscapes generated from parallel tempering Monte Carlo simulation of FSD-EY 

projected onto the C-alpha RMSD (panel A), and the fraction of established native secondary structure 

��� (panel B) for four selected temperatures. 

Molecular dynamics simulations of this protein in explicit water using the special purpose computer 

Anton resulted in a folding free energy of 0.7 kcal/mol at 325 K with the unfolded state already 

being the global free energy minimum.33 Thus, FSD-EY is more stable in my implicit water model 

with the AMBER99SB*-ILDN forcefield than in the explicit water simulations of Lindorff-Larson et. 

al33 using the CHARMM22*253,254 forcefield. The explicit water molecular dynamics simulations of 

Lindorff-Larsen et al. found only very little secondary structure in the unfolded state.33 This is in 

contrast to my results. One reason for this discrepancy may be the different forcefield used by 

Lindorff-Larsen et al. Another likely reason is the neglected temperature dependence of the 

solvation free energy in my implicit solvent model. Other reasons might include neglected degrees 

of freedom in my Monte Carlo simulations, such as vibrations of the bond lengths and angles. The 

matter of helix stability in my implicit solvent simulations should be looked into in further studies. 

Best and Hummer have shown how to tune forcefields to achieve better agreement to NMR 

experiments for the fraction of established secondary structure in small peptides.40 This is likely a 

good starting point for further improving my Monte Carlo simulation approach. 
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6.6 A Low Temperature Metastable State of FSD-EY 

Interestingly, the low temperature replicas, e.g. at 273.39 K, show a metastable conformation with a 

local free energy minimum at about 6 Å RMSDα (Figure 6.5A). To find the conformation that 

corresponds to this metastable state, I have again performed a cluster analysis as described in 

Section 6.4 of the ensemble from the replica at 273.39 K. The two largest clusters that resulted from 

this analysis have 3309 and 1166 conformations respectively, and the third largest cluster has 217 

conformations. The two former clusters correspond to the folded state because their central 

conformations have RMSDα values with respect to the simulated folded conformation of 0.89 Å and 

2.3 Å respectively. These values lie in the free energy minimum of the folded state (Figure 6.5A). 

However, their central conformations differ in the orientation of the N-terminal region. The third 

cluster’s central conformation has a RMSDα of 5.6 Å. This value is in agreement with the local free 

energy minimum of the metastable state observed in Figure 6.5A. Thus, I will refer to this 

conformation as the metastable conformation. 

Figure 6.6A shows a comparison of the metastable conformation to the simulated folded 

conformation. In contrast to the folded state, the residues of the first beta strand are detached from 

those of the second beta strand, thus disrupting the beta sheet. Instead, residues 3 to 5 of the first 

beta strand form a tight 3-10 helix in the metastable conformation according to STRIDE.47 Figure 

6.6B visualizes that this tight helix allows the packing of the aromatic rings of residues Tyr3 and Tyr7 

against the hydrophobic core of the protein. This packing effectively shields the hydrophobic core 

from water, wherefore the metastable conformation is energetically favorable. 

 

Figure 6.6 Panel A shows the metastable conformation (red) occurring at low temperatures in 

comparison to the central conformation of the simulated folded conformation at 292.36 K (blue). Panel B 

shows the packing of the two residues Tyr3 and Tyr7 against the hydrophobic core in the metastable 

conformation. The color code of the side chains is according to Figure 2.3. The red oxygen atoms of the 

Tyrosine side chains mark these two residues on the top left of Panel B. 
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However, it disappears at higher temperatures of about 292.36 K (Figure 6.5A). Since my 

simulations neglected the temperature dependence of the solvation free energy, the only reason for 

its disappearance can be that the entropy of the simulated folded conformation with its beta sheet 

must be higher than that of the metastable conformation. The higher entropy of the former 

conformation results in a larger free energy difference to the metastable conformation at higher 

temperatures. Because the unfolded state is characterized in general by high entropy, the free 

energy difference between the metastable conformation and the unfolded state also favors the 

unfolded state with increasing temperature. Therefore, the occurrence of the metastable 

conformation vanishes at higher temperatures, in agreement with the data of Figure 6.5. 

The explicit water molecular dynamics simulation of Lindorff-Larsen et al.33 also showed a 

metastable conformation between the folded and unfolded state. Although they do not investigate 

this conformation in detail, its RMSDα is 3.0 Å larger than the free energy minimum of their folded 

state (Supporting Information by Lindorff-Larsen et al.33). This RMSDα difference agrees with my 

data, where the folded state minimum is at 2.0 Å to 2.5 Å (see Section 6.5) and RMSDα of the 

metastable state is 5.6 Å. However, I note that the different reference structures were used to 

compute the RMSD. Nevertheless, this agreement indicates that their and mine metastable 

conformation corresponds to each other. 

6.7 Deduction of FSD-EY’s Folding Mechanism 

While the previous investigation in Section 6.5 yielded some thermodynamic characteristics of the 

FSD-EY’s folding process, it did not yield insights into the structural changes during the folding 

process. Since the Monte Carlo ensemble does not provide time resolved trajectories of the folding 

process, the deduction of these structural changes is not straightforward. 

I will focus on the secondary structure first. As already noted in Section 6.5, Figure 6.5B suggests 

that there is a high fraction of native secondary structure left in the unfolded state. The first task is 

to identify what fraction of native secondary structure remains in the unfolded state. I have 

computed the number of residues in native beta sheets B  and native alpha helices BÃ for the 

ensemble close to the critical folding temperature at 349.62 K. I also computed these values for 

subsets of the ensemble that have RMSDα values larger than 3.0 Å, 5.0 Å, and 9.0 Å respectively. I 

have converted the probabilities of specific pairs B , BÃ in analogy to Equation (6.1) to free 

energies 
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 Δ|@x), q*A = −¶vln, nDx) , q8En��Í	@x, qA/. (6.2) 

Here, Q and P are different observables separated into bins x) and q*. Again, n��Í	@x, qA is the 

maximum number of conformations for any possible pair of bins x) , q* so that the most probable 

pair has zero free energy. Since the smallest alpha helix and beta sheet consist of four residues each, 

the pairs with lower respective values but larger than zero are unpopulated in the graphs in Figure 

6.7. Moreover, beta sheets can grow only in pairs, wherefore the pairs with B  = 5 are also not 

populated. 

Figure 6.7 illustrates that with increasing RMSDα, the free energy of conformations with beta sheets 

in the ensemble significantly increases while the free energy of finding only alpha helices stays 

approximately constant for RMSDα cutoffs lower than 9.0 Å. These data proof that the remaining 

fraction of the native secondary structure in the unfolded state corresponds the native alpha helix of 

FSD-EY, while the probability of finding native beta sheets in the unfolded state is negligible. 

Therefore, the alpha helix is already present when the beta sheet is not in conformations of the 

unfolded state. As a result, these data suggest that the first step of FSD-EY’s folding mechanism with 

my employed forcefield and implicit solvent model is the formation of the alpha helix. 

I also observe that the main part of the beta sheet content in the ensemble disappears when the 

RMSDα cutoff increases from 3.0 Å to 5.0 Å. According to Figure 6.5A, the free energy barrier of 

folding is located in this RMSDα region. This suggests that the free energy barrier of the folding of 

FSD-EY is due to the formation of the beta sheet.  

The obvious question how the folding of FSD-EY continues after the formation of the alpha helix is, 

how the beta sheet forms and attaches to the alpha helix. There are three possible scenarios. In the 

first scenario, the beta sheet forms first and subsequently attaches to the alpha helix. Thus, the 

secondary structure forms before the hydrophobic collapse of the protein happens. In the second 

scenario, the region of the first beta strand (counting from the N-terminus) aligns to the helix and 

afterwards the second beta strand region attaches to the helix and forms the beta sheet. In the third 

scenario, the order of attaching the beta strand regions to the alpha helix is exchanged. The second 

beta sheet region attaches to the alpha helix first, while the first beta sheet region is still free to 

diffuse around. Subsequently, the region of the first beta sheet attaches to the helix and second 

strand to form the folded conformation. 
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Figure 6.7. Free energies of having �U residues forming part of the native beta sheet of FSD-EY and �ì 

residues forming part of the native helix of FSD-EY. The ensemble for these data is the subset of the 

simulated ensemble at 349.62 K with RMSDα larger than 0.0 Å (panel A), 3.0 Å (panel B), 5.0 Å (panel C), 

and 9.0 Å (panel D). 

To investigate these three scenarios, I have chosen three different atoms pairs of FSD-EY as distance 

measures within the protein. These three contacts are visualized in Figure 6.8 in the simulated 

folded conformation. Table 6.1 summarizes the contacts and shows their average distance and 

standard deviation. The first of these contacts measures the distance between the CB atom of 

residue Arg10 and the CZ atom of Phe21. In the simulated folded conformation, the former atom 

marks the N-terminal end of the second beta sheet, and the second atom is at the center of the alpha 

helix and points towards the former atom. The second contact measures the distance between the 

CZ atom of Phe12 and the CG atom of Phe21. In the simulated folded conformation, this contact is a 

measure between the distance of the C-terminal end of the second beta sheet and the alpha helix. 

The third contact measures the distance between atoms CB of Ala5 and CG of Leu18. This contact 

measures the distance between the N-terminal end of the first beta strand and the N-terminal end of 

the alpha helix. 
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Table 6.1. List of contacts between atom pairs that are used to deduce the mechanism of the beta sheet 

formation during the folding of FSD-EY. The last column gives the average distance and its standard 

deviation between the pairs of atoms that was computed from largest cluster at 292.36 K, see Section 6.4. 

Contact Atom 1 Residue 1 Atom 2 Residue 2 distance [Å] 
1 CB Arg10 CZ Phe21 6.6 � 1.4 
2 CZ Phe12 CG Phe21 4.0 � 0.9 
3 CB Ala5 CG Leu18 5.1 � 0.6 

 

 

Figure 6.8. Visualization of the contacts in Table 6.1 used to investigate the formation of the beta sheet 

during the folding of FSD-EY. The contacts are between the CB atom of residue Arg10 and the CZ atom of 

Phe21 (dark red spheres), the CZ atom of Phe12 and the CG atom of Phe21 (red spheres), and the CB of Ala5 

and CG of Leu18 (bright red spheres). 

Let us consider scenario one. If the beta sheet is formed but not attached to the helix, the distances 

of contacts 1 and 2 listed in Table 6.1 should show a large variation. I have measured the distance of 

these two contacts for all conformations in which the beta sheet either is at least partly established 

or is not present at all according to STRIDE.47 I used the ensemble at 349.62 K close to the critical 

folding temperature. Figure 6.9 shows the corresponding two-dimensional free energy landscape 

projected onto the two contact distances according to Equation (6.2). I observe in Figure 6.9A that 

for conformations with the native beta sheet, distances with low free energy and therefore high 

probability are in agreement with the average distances and their standard deviations that are 

present in the simulated folded ensemble, see Table 6.1. The ensemble without the beta sheet shows 

a much wider distribution of contact distances with low free energy. Even distances that are larger 

than 15 Å have free energies below 1.5 kcal/mol. These data do not match the expectation of 

scenario one, where both contact distances should show a wide distribution even if the beta sheet is 

formed. Instead, upon formation of the beta sheet, the widths of the contact distance distributions 

reduce significantly. These data are, therefore, in conflict with scenario one of the beta sheet 

formation. 
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Figure 6.9. Two-dimensional free energy landscape projected onto the distances between atom pairs of 

contacts 1 and 2 in Table 6.1 either for the conformations where the beta sheet of FSD-EY is at least 

partly established (panel A) or for the conformations with no beta sheet (panel B). The data are taken 

from the replica close to the critical folding temperature at 349.62 K. 

This leaves scenarios two and three for the formation of the beta sheet during the folding of FSD-EY. 

The second scenario would result in a narrow distance distribution for contact 3 in Table 6.1 peaked 

at low distances. Equivalently, the projection of the free energy landscape onto this distance should 

show a free energy minimum at low distances when the beta sheet is not yet established. Since an 

established contact 3 restraints the positions of those residues between that of the contact, one 

would expect a distance distribution of moderate width for contacts 1 and 2 in that case. 

The third scenario for the formation of the beta sheet should result in a free energy minimum at low 

distances for the contacts 1 and 2. Because the residue Ala5 is not located between the residues of 

contacts 1 and 2, the formation of these contacts does not restrain the distance between the atoms 

of contact 3. Thus, if the beta sheet is not formed, contact 3 should show wide distance distribution 

at the same time the other two contacts show low distances in scenario three. 

I have computed the corresponding distance distributions from the ensemble at 349.62 K excluding 

all conformations that have at least part of the native beta sheet established. Figure 6.10 shows the 

corresponding free energy landscapes for the projections onto contacts 1 and 3 as well as onto 

contacts 2 and 3. Both free energy landscapes show a similar distribution. The free energy minimum 

is located at low distances of contacts 1 or 2 and high distances of contact 3. Combinations of large 

distances of contacts 1 and 3, as well as 2 and 3, have also a low free energy. In both graphs, 

distances of contact 3 smaller than 8 Å have free energies larger than 1.5 kcal/mol. The combination 
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of a small distance for contact 3 with medium or large distance of either contact 1 or 2 have even 

higher free energies. 

 

Figure 6.10. Two-dimensional free energy landscape projected onto the distances between atom pairs of 

contacts 1 and 3 (panel A) and contacts 2 and 3 (panel B) in Table 6.1 for conformations where no beta 

sheet is present. The data are taken from the replica close to the critical folding temperature at 349.62 K. 

These data clearly support the third scenario for the formation of the beta sheet. The free energy 

minima at small distances of contacts 1 and 2 in combination with a large distance of contact three 

match the expectations of that scenario. The region of the second beta strand is likely to be attached 

to the alpha helix already, while the beta sheet is not yet formed. This especially includes the 

packing of the two very hydrophobic Phe12 and Phe21 against each other. This packing shields both 

residues from water making this conformation very favorable. Thus, part of the hydrophobic core is 

already established before the beta sheet forms. In the final step of folding mechanism of FSD-EY, 

the region of the first beta strand attaches to the alpha helix and second beta strand region to form 

the folded conformation. This completes the picture of the FSD-EY folding process. 

In conclusion, I have carried out parallel tempering Monte Carlo simulations of the FSD-EY protein. 

The simulations stabilize a folded state at low temperatures. This folded state shows good 

agreement to the experimentally determined NMR conformation (PDB code 1FME42). I observe 

changes in the packing of specific side chains and the flexible terminal regions of the protein 

backbone. In addition, the simulations showed a metastable state at very low temperatures, which is 

characterized by the formation of a 3-10 Helix instead of the beta sheet. Molecular dynamics 

simulations of FSD-EY in explicit water also found the existence of a metastable state.33 These 

results indicate that the implicit solvent model of Chapter 3 correctly balances the propensities of 
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the different secondary structure elements. The simulation replicas at higher temperatures showed 

a critical folding temperature of 349.62 K with a phase transition between folded and unfolded 

state. A closer examination of simulation data at this temperature suggested that FSD-EY folds 

through three steps. In the first step, the alpha helix of FSD-EY folds into its native conformation. In 

the second step, the region of the second beta strand attaches to the alpha helix, forming part of the 

hydrophobic core. In the third step, the region of the first beta strand attaches to the other strand 

and the alpha helix to form the folded state. 
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7 Summary and Outlook 

Proteins are an important class of biomolecules, because they take part in fulfilling or regulating 

nearly all tasks necessary for a cell to function and survive.1–3 Intrigued by the vast functionality that 

they provide, scientists have tried to unravel their molecular structure and the atomistic 

mechanisms that enable this functionality.1,12,15–18 Besides experimental techniques, biomolecular 

scientists widely use computational methods for the investigation of proteins and their functions.  

A very common approach are molecular dynamics simulations,19,20 which provide time-resolved 

trajectories of the underlying molecular mechanisms.21 Unfortunately, the timescales of many 

biologically interesting processes are much longer than those that can be reached by these 

simulations.21,24–26 Although new algorithms and improved hardware could alleviate this problem to 

some extent, they are not able to fulfill the demand of biomolecular researchers.29–34 Thus, how to 

solve the timescale problem is an open question. 

One solution could be to study protein functions by representative ensembles, instead of time 

resolved trajectories. These ensembles can be generated using Monte Carlo algorithms. However, 

this strategy is very uncommon in computational biomolecular research. One of the reasons is the 

lack of an adequate simulation package that can use common molecular forcefields.36 Another 

reason is the need to include the physiological environment into the simulation implicitly, because 

an explicit representation would dramatically reduce the efficiency and success of Monte Carlo 

algorithms.36 

The goal of this thesis was to address these problems by developing, implementing, improving and 

validating the necessary methods, especially an implicit solvent model, for Monte Carlo simulations 

of proteins with common biomolecular forcefields, as well as demonstrating their success in an 

exemplary application. 

In chapter two, I introduced the basic concepts and theories to understand the results presented in 

this thesis. These included the composition, properties, and structure of proteins as well as 

biological membranes. I summarized the potential energy terms of common biomolecular 

forcefields that were used to model the interactions within biomolecules and reviewed the basic 

theory of implicit solvent models. The second chapter closed with a brief explanation of Monte Carlo 

algorithms that I used in this thesis. 
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In the third chapter, I explained how I implemented the AMBER99SB*-ILDN biomolecular forcefield 

into the SIMONA37 Monte Carlo simulation framework. This implementation addressed specific 

requirements of Monte Carlo algorithms that are not present in molecular dynamics. I showed that 

the implemented potential terms yielded energies in good numerical agreement with 

implementations in other molecular simulation packages and performed the computations up to 40 

times faster than with previous similar forcefield terms in SIMONA. 

To account for the physiological environment of proteins, I implemented in SIMONA a continuum 

implicit solvent model based on the generalized Born model. Such a model provides solvation free 

energies that approximate the average interaction of the solvent with the protein. I developed a new 

algorithm to compute accurate Born radii in the generalized Born model efficiently. This algorithm 

yielded electrostatic solvation free energies in very good agreement with reference Poisson-

Boltzmann calculations with a relative root mean square error of less than 1%, and is therefore one 

of the most accurate methods available. Computationally, it performed up to an order of magnitude 

better than similar accurate methods. I published this method together with Wolfgang Wenzel in the 

Journal of Chemical Theory and Computation.173 Future improvements should first introduce the 

correct temperature dependence of the solvation free energy into this model. Currently, it is 

parameterized at a temperature of approximately 300 K. 

With these methods, SIMONA now provides all forcefield terms and an implicit solvent model to 

carry out Monte Carlo simulations of proteins with the common biomolecular AMBER99SB*-ILDN 

forcefield. To judge the required resources and feasibility of such Monte Carlo studies of a given 

protein, I provided an overview of the current simulation performance of SIMONA with these 

methods. Finally, I showed that the parallelization of all these methods carried out by me allows 

generating representative ensembles up to 21 times larger in the same time by using up to 32 CPU 

cores instead of just one. 

The fourth chapter focused on improving the accuracy of the approximate description of solvation 

effects provided by continuum implicit solvent models. I carried out an assessment of three 

different models together with Julia Setzler and Wolfgang Wenzel.179 We investigated how accurate 

these models can estimate experimental hydration free energies for a large database of small 

chemical compounds. I created an optimized set of freely adjustable model parameters that allowed 

a fair comparison of these models unbiased by their parameterization. The best model obtained a 

root mean square error of 1.0 kcal/mol compared to experimental data, while using only ten 

different atom types with a total of 21 freely adjustable model parameters. We found that this model 
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performed much better than its two competitors do, because it is able to account for the asymmetric 

behavior of water around oppositely charged ions without explicit parameterization of this effect. 

Accounting for it in the parameterization of the models significantly improved the accuracy of the 

other two models, while the best model improved only marginally. These data have highlighted the 

importance of accounting for this effect in implicit solvent models. In addition, the comparison to 

other generalized Born based implicit solvent models showed that the combined optimization of all 

free model parameters together is likely to improve their accuracy further. Our data also indicated 

that implicit solvent models could yield hydration free energies with better accuracy as explicit 

solvent models such as TIP3P. 

I investigated how the errors of the hydration free energies of these models were distributed among 

the different chemical groups present in the database. This investigation has also highlighted the 

importance of accounting for the asymmetry of water. The two models that did not account for this 

effect showed very large errors for the nitro group, whose nitrogen atoms carry positive partial 

charges instead of negative partial charges that are present in all other chemical groups containing 

nitrogen atoms. On the other hand, adding a nitrogen atom type to the model that already accounted 

for this effect resulted in large errors for sparsely populated chemical groups, because the added 

atom type destroyed the balance between the different charged nitrogen atoms. I further found that 

atom-type-dependent parameters for the nonpolar term are sufficient to yield reasonable accurate 

hydration free energies for compounds containing hypervalent sulfurs. Previous studies had argued 

that changes of the Lennard-Jones parameters in the general AMBER forcefield would be necessary 

to achieve this goal.183,204 

In summary, these results provide a solid basis for the future improvements of continuum implicit 

solvent models. In the next step, investigations how well these models perform for larger molecules 

such as proteins are necessary. Investigating how proteins interact with small chemical compounds 

is of high relevance to pharmaceutical research. Thus, an appropriate implicit solvent model should 

model solvation effects of small compounds and large biomolecules accurately. However, proteins 

can undergo large conformational changes, while small molecules cannot. Therefore, the improved 

modeling of solvation effects for the same protein in different conformations should play a central 

role in these investigations. 

The fifth chapter focused on implicitly modeling biological membranes because they represent 

another important physiological environment of proteins. I introduced my idea how to decompose 

an environment consisting of multiple dielectric regions into simpler environments. Each of these 
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can then be treated with an extension of the generalized Born implicit solvent model of Chapter 3. 

Based on this extension, Julia Setzler, Carolin Seith and I developed the SIMONA layered implicit 

membrane (SLIM) model. It accounts for the low permittivity inside the membrane due to the 

presence of the amphipathic phospholipids. We showed that, in contrast to previous models, SLIM 

captures all qualitative features that are present in Poisson-Boltzmann reference calculations with 

good quantitative agreement. Thus, SLIM is an important step towards a realistic implicit membrane 

model. In combination with an already existing nonpolar solvation model that accounts for the 

absence of the hydrophobic effect inside the membrane, we could study properties of small 

membrane peptides and proteins with SIMONA Monte Carlo simulations. We found that this model 

reproduced established properties of these proteins with reasonable agreement and low 

computational cost. Finally, we have prepared a publication of the SLIM model and the results 

together with Wolfgang Wenzel.210 Future efforts to improve the implicit modeling of membranes 

should focus on accounting for the permanent dipole moments present in the phospholipids as 

pointed out by Orsi et al.255 Charged phospholipid headgroups may be taken into account by 

combining the Gouy-Chapman model (see Mclaughlin256 for a review) with a generalized Born 

model that can account for aqueous solutions.257 

In Chapter 6, I demonstrated the validity and success of my methods for the investigation of 

proteins with Monte Carlo simulations by studying the folding of the small protein FSD-EY. The 

native conformation of this protein contains a beta sheet and an alpha helix. I carried out a parallel 

tempering Monte Carlo simulation of FSD-EY using SIMONA with the forcefield and implicit solvent 

model of Chapter 3. These methods allowed the simulation of the folding of FSD-EY in only three 

weeks on conventional supercomputer hardware. In contrast, molecular dynamics required a rare 

custom-built supercomputer to achieve the folding of this protein. 

I found that the simulation successfully stabilized a folded conformation at low to intermediate 

temperatures. This folded conformation agreed well with that determined by nuclear magnetic 

resonance spectroscopy. The C-alpha atom root mean square deviation was 2.7 Å. Differences in the 

conformations were present at the C-terminal end, the loop linking the two beta strands of the beta 

sheet, as well as in some specific side chains. The alpha helix and the beta sheet of FSD-EY were both 

one residue longer in the folded conformation of the simulation. 

Using the C-alpha atom root mean square deviation and the fraction of established native secondary 

structure as a reaction coordinate, as well as the fraction of established native secondary structure, I 

was able to determine the critical temperature of the folding process of FSD-EY from my simulation 
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data. At approximately 350 K, the free energy difference between the minima of the folded and 

unfolded conformations vanished. Explicit molecular dynamics simulations on a special-purpose 

supercomputer with a different molecular forcefield resulted in a critical temperature below 325 

K.33 Further investigations will be necessary to determine if this difference is due to the molecular 

forcefield or the employed implicit solvent model. Unfortunately, no corresponding experimental 

data is available. 

Furthermore, I identified a metastable conformation of FSD-EY. This conformation possesses a 

different secondary structure. The beta sheet is replaced by a tight 3-10 helix that allows the 

shielding of the protein’s hydrophobic core by the side chains of residues Tyr3 and Tyr7. Although 

this metastable conformation is energetically favorable, it vanishes at higher temperatures, because 

it possesses lower entropy than the native beta sheet conformation. The explicit water molecular 

dynamics simulation of Lindorff-Larsen et al. also showed a metastable state in agreement with my 

results.33 

Finally, I studied the mechanism by which FSD-EY folds. My simulation data suggested that the first 

folding step be the formation of the alpha helix. In the second step, the region of the second beta 

strand attaches to the alpha helix to form part of the protein’s hydrophobic core. Finally, the region 

of the first beta strand attaches to the second strand and the alpha helix to form the native 

conformation. 

With this simulation, I successfully demonstrated the investigation of the folding of a small protein 

by using Monte Carlo simulations with the methods developed and implemented by me into the 

SIMONA Monte Carlo simulation framework. The simulation stabilized a folded state in good 

agreement with experimental data and identified a metastable conformation in agreement with 

explicit solvent simulations. Due to the mixed secondary structure elements present in these 

conformations, these simulation results indicate that the implicit solvent model correctly balances 

their propensities. Consequently, SIMONA Monte Carlo simulations will allow such protein folding 

studies on a routine basis in the future. More computational resources with further optimizations of 

the Monte Carlo and parallel tempering protocol will enable the investigation of larger and 

biologically more relevant proteins in the future. Thus, the work I presented here will provide a 

useful toolkit for biomolecular scientists. 
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A Appendix 

A.1 Floating Point Numbers 

Floating point numbers and operations on them are defined in the IEEE 754 standard.258 The 

standard defines different formats of floating point numbers. The most commonly used ones are the 

so-called single and double precision floating point numbers. A real number I is converted to its 

binary representation I0 and then represented as 

 I2 = @−1AÌ ⋅	 ⋅ 2
. (A.1) 

Here Ì determines the sign of I, 	 is the mantissa, whose leading digit is defined to be non-zero, and 


 is the exponent of the floating point number. In each floating point format, the sign Ì is 

represented by a single bit. For single precision floating point numbers, the mantissa has 23 bits and 

the exponent 8 bits. Thus, a single precision floating point number is 32 bits in size. A double 

precision floating point number has 52 bits for the mantissa and 11 bits for the exponent, wherefore 

the size of a double precision number is 64 bits. 

The finite number of bits in the mantissa causes that two real numbers are represented by the same 

floating point number if their difference is small enough. Thus, floating point numbers have a 

limited precision. For real numbers close to one, this precision is about 7 decimal digits for single 

precision floating number  and is 16 decimal digits for double precision floating point numbers. The 

bit size of the exponent determines the range of real numbers that can be represented by floating 

point numbers. 

A.2 CPU Vector Instructions 

CPU vector instructions are specific instructions that can be applied to multiple data items. This 

scheme is known as single instruction multiple data (SIMD).259 Many different instruction sets 

provide vector instructions. Which of these are available depends on the employed hardware and 

compilers. Some common examples are SSE, AVX, Altivec, and NEON. Information about these 

instruction sets is available in the manuals and software developer manuals for the CPUs that 

support them. The sets also differ in the operations they offer and in the number of data items on 

which a single instruction can be performed. However, this number is usually of power of two. 

There are different methods to use these instruction sets. The most convenient method is to let the 

compiler recognize suitable operations and generate the corresponding vector instructions for the 
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targeted CPU. This process is called auto-vectorization. However, there are strict code requirements 

for the recognition, wherefore it often fails, and no vector instructions are generated. The compiler 

manuals explain what code can be vectorized under what conditions, and how to give hints to the 

compiler. 

Another way to use vector instructions is to include them into the code manually by using vector 

intrinsic functions. These intrinsic functions are translated directly to vector instructions by the 

compiler. However, each new set of vector instructions requires adaption of the code to the new 

intrinsic functions. The resulting code is also harder to read and to maintain. 

A.3 Speedup Measurements 

All speedup measurements were performed on the HERMIT cluster at the HLRS Stuttgart. The 

HERMIT cluster is a Cray XE6 supercomputer A compute node of this cluster contains a dual socket 

mainboard equipped with AMD Opteron(tm) 6276 processors. Thus, one node provides up to 32 

threads. To ensure that unused resources do not influence the computation time measurements if 

less than 32 threads are used, I have started TQ processes of SIMONA using T¾ threads each, so that  

 TQ ⋅ T¾ = 32 (A.2) 

The timing measurements were always taken from the first SIMONA process. The computation time 

was measured with the OpenMP151 omp_get_wtime function, which is part of the SIMONA timers. 

The performance comparison between SIMONA with the SLIM model and CHARMM65 with the 

HDGB model of Tanizaki and Feig209 was run on a single node of the BWunicluster at the Steinbuch 

Centre for Computing with one Intel Xeon E5-2670 processor. Only one thread was used in both 

cases. The remaining cores of the compute node were empty. GCC compiler suite version 4.8.2 was 

used to compile SIMONA and CHARMM with architecture specific optimizations and instruction sets 

enabled in both cases. The CHARMM input was prepared with CHARMM-GUI,260 whose default 

settings for the HDGB/GBMV implicit membrane model of Tanizaki and Feig209 were kept for the 

simulation. These settings use a rather coarse radial grid for the integration of the Born radii.260 

SIMONA with the SLIM model used the same input as for the performance measurements in Figure 

5.6. 

A.4 Numerical Solvent Accessible Surface Area Computation 

To ensure that the computed solvent accessible surface areas (SASA) based on my parallel power 

diagram are correct, I have implemented a robust numerical scheme to compute SASA too. This 
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scheme is based on a numerical integration in spherical coordinates @., O, N) to determine the SASA 

�) of an atom 

 �) � @.) + Æ")0 z sin@O) JOJN
����Á�"��

. (A.3) 

Here, .)  is the radius of atom � and Æ" is the probe radius. The integration region is the part of the 

sphere that is not inside any other spheres. The implementation approximates the integral by a 

finite sum over BGQ!�"�0  points on the surface of the sphere given by 

 aGQ!�"�@�, K, ¢A = @.) � Æ", OÇ ,ϕ�A, (A.4) 

 OK = πNsphere @0.5 � KA (A.5) 

 NÒ � 2�
BGQ!�"� @0.5@¢	mod	2A � ¢A, (A.6) 

The approximate surface are is  

 �) ≈ @.) � Æ"A0 ' sin@OÇA ΔOΔN3���Ø�Ø
Ç,Ò5� c@OÇ, NÒA. (A.7) 

The function c@OÒ , NÒA is zero if the point aGQ!�"�@�, K, ¢A lies inside any other neighboring sphere, 

otherwise the function is one. The implementation generates these points on the unit sphere, scales 

them according by .) � Æ" and then translates them by the position i) of the atom in question. It 

finds those points that do not lie inside any other spheres and sums the weight of these points 

according to Equation (A.7). In the last step, the sum is multiplied by the square of the sum of the 

atomic radius and probe radius. I used BGQ!�"� = 200 for the comparison of the SASA computation 

methods in Section 3.2. 
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D List of Additionally Employed Software 

Figures: 

• GIMP 

• Inkscape 

• XmGrace 

• Python’s Matplotlib 

• PyMol 

• Microsoft Word 

• 2D Sketcher of ChemDoodle 

Word processing: 

• Microsoft Word 2010 

• Zotero 

• Grammarly 
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