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Zusammenfassung

Digitale Datennetzwerke werden in der Regelungstechnik bereits seit mehr
als 20 Jahren eingesetzt, um die verschiedenen Komponenten eines Re-
gelkreises (d.h. Sensoren, Aktoren und Regler) miteinander zu verbinden.
Klassischerweise werden dazu spezielle proprietäre Netzwerke, sogenannte
Feldbusse, verwendet, die bei ausreichender Dimensionierung eine deter-
ministische Datenübertragung mit garantierter Latenzzeit gewährleisten.
Häufig ist es allerdings wünschenswert oder sogar notwendig Drahtlos-
netzwerke und/oder nicht-proprietäre Netzwerke wie das Internet anstatt
von Feldbussen einzusetzen, da diese nicht nur kostengünstiger und fle-
xibler sind, sondern auch die Realisierung gänzlich neuer Anwendungen
ermöglichen.

So eröffnen Drahtlosnetzwerke nicht nur im Rahmen der Fahrzeug-zu-
Fahrzeug Kommunikation neue Möglichkeiten der Verkehrsfluss- und Fahr-
zeugkolonnenregelung sondern können auch in der Fertigungsautomation
kostenintensive Signalübertragungselemente überflüssig machen. Zudem
lassen sich mittels des Internets kostengünstig große Distanzen überbrücken
wie diese beispielsweise in der Telerobotik auftreten.

Der Einsatz solcher Netzwerke stellt allerdings eine erhebliche Herausfor-
derung dar, da diese Netzwerke kein deterministisches Übertragungsver-
halten aufweisen. Insbesondere können, anders als bei deterministischen
Feldbussen, starke Schwankungen der Latenzzeit sowie erhebliche Übertra-
gungsverluste auftreten. Bleiben diese Störeffekte unberücksichtigt, ist mit
einer massiven Beeinträchtigung der Regelgüte zu rechnen, die bis hin zur
Instabilität des gesamten Systems führen kann.

Innerhalb der letzten 15 Jahre konstituierte sich daher mit der Disziplin
der vernetzten Regelungssysteme (engl.: Networked Control Systems) ein
Forschungsbereich, der ebendiese Problemstellungen im Schnittpunkt von
Regelungs- und Kommunikationstechnik untersucht. Dabei wurden zahl-
reiche Methoden entwickelt, um störende Netzwerkeffekte bereits während
des Reglerentwurfs berücksichtigen zu können. Eine dieser Methoden ist
die sogenannte sequenzbasierte Regelung, deren Analyse, Erweiterung und
Anwendung Gegenstand dieser Arbeit ist.



vi Zusammenfassung

Die sequenzbasierte Methode nutzt die Eigenschaft moderner Netzwerke
wie z.B. Ethernet-TCP/IP, dass Daten in Form von Datenpaketen versen-
det werden, welche gewöhnlich mehr Informationen transportieren können
als benötigt. Ein sequenzbasierter Regler macht sich die freie Datenkapa-
zität zu Nutze, indem er zusätzliche Informationen in Form sogenannter
Stellwertsequenzen überträgt. Mit Hilfe der Stellwertsequenzen können
die Auswirkungen möglicher Verzögerungen oder Verluste nachfolgender
Datenpakete auf der Empfängerseite effektiv kompensiert werden.

Den Kern der Dissertation bildet das im Rahmen dieser Arbeit entwickelte
sequenzbasierte S-LQG (Sequence-Based Linear Quadratic Gaussian) Ver-
fahren. Das Verfahren vereint die sequenzbasierte Regelungsphilosophie mit
dem bekannten LQG-Verfahren zur stochastischen optimalen Regelung li-
nearer Systeme und bietet dadurch eine optimale Möglichkeit, um netzwerk-
bedingte Datenverluste und Übertragungsverzögerungen zu kompensieren.
Die Reglersynthese erfolgt dabei über einen optimierungsbasierten Ansatz.
Durch eine geeignete Modellierung der Übertragungscharakteristik der ver-
wendeten Netzwerke kann das resultierende Optimierungsproblem mittels
dynamischer Programmierung in geschlossener Form gelöst werden.

Ein Vorteil des S-LQG Verfahrens - insbesondere im Vergleich zu ande-
ren optimierungsbasierten Regelungsverfahren wie der modellprädiktiven
Regelung (MPC) - ist, dass das S-LQG zur Regelungslaufzeit nur einen ge-
ringen Berechnungsaufwand erfordert. Dies resultiert aus der analytischen
Lösbarkeit des unterlagerten Optimierungsproblems, da ein Großteil der
notwendigen Berechnungen bereits vor Laufzeit der Regelung ausgeführt
werden können. Zudem ergibt sich daraus ein sehr geringer Speicherbedarf
des Regelungsalgorithmus, sofern Zeitinvarianz des zu regelnden Systems
vorausgesetzt werden kann.

In der Arbeit werden ferner wichtige Erweiterungen des Basisverfahrens
behandelt. Beispielsweise wird zur Berücksichtigung möglicher Bandbrei-
tenbeschränkungen der Netzwerke eine ereignisbasierte Betriebsart des
S-LQG vorgestellt. Darüber hinaus wird basierend auf dem S-LQG ein
optimales Verfahren zur sequenzbasierten Folgeregelung präsentiert. Im
Vergleich zum Stand der Technik zeigen die entwickelten Verfahren in
Simulationen eine sehr gute Performanz, sodass die praktische Anwendung
in realen Szenarien bereits zusammen mit einem Industriepartner aus dem
Bereich der Fertigungsautomation initiiert wurde.



Abstract

Digital data networks have been used in control applications for more
than 20 years to connect sensors, actuators, and controllers of a control
loop. Typically, highly specialized networks are applied, the so called
fieldbuses. If sufficiently dimensioned, these networks ensure deterministic
data transmission with guaranteed latency. However, it is often desirable
or even necessary to use wireless networks (such as Bluetooth) and/or
general computer networks (such as the Internet) instead of the fieldbuses
due to higher flexibility, lower costs, and the potential to meet special
requirements.

In this way, the Internet can be used within the control loop to bridge
long distances as they occur in telerobotic applications, for example. In
process and factory automation, wireless networks allow the replacement
of costly transmission elements such as slip rings and cable carriers. Also,
actuators and sensors can be placed in locations that are hard to access.
Moreover, wireless car-to-car communication offers new control potential
for intelligent highway systems and self-organizing platooning vehicles.

However, using wireless networks and/or general computer networks within
a control loop presents significant challenges since these networks do
not have deterministic transmission characteristics. In contrast to the
specialized fieldbuses, there is the danger of time-varying transmission
delays and stochastic data losses, which are frequently experienced in
wireless networks in particular. These network-induced disturbances can
massively degrade the control performance and even destabilize the closed-
loop system.

In the last 15 years, research has emerged in the area of Networked
Control Systems (NCS) to investigate these problems at the intersection
of communication and control. To date, a plethora of methods have been
proposed to consider the network effects during the control design. One of
these methods is sequence-based control (also referred to as packet-based
control, packetized predictive control, or receding horizon networked control).
The analysis, extension, and application of the sequence-based method is
the main subject of this work.
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Sequence-based control uses the property of modern communication net-
works (such as Ethernet-TCP/IP) that data are sent in the form of packets,
which can transport more information than needed for a single control
data transmission. A sequence-based controller uses the available capacity
of a data packet and not only sends the current control data, but also a
sequence of predicted control inputs that can be applied at a future instant.
The predicted control inputs can be applied by the actuator if a subsequent
transmission gets delayed or lost. In this way, the network-induced effects
can effectively be mitigated.

In this work, the newly developed S-LQG (Sequence-Based Linear Qua-
dratic Gaussian) control method is presented. The method combines the
idea of the sequence-based control with the LQG approach to stochastic
optimal control in order to optimally compensate for network-induced time
delays and packet losses. For controller synthesis, the control problem is
formulated as an optimization problem that includes a simplified stochastic
model of the networks. Using a state augmentation technique, the dynamic
programming algorithm can be applied to solve the optimization problem
closed-loop optimal in analytic form.

In comparison to other optimization-based approaches such as MPC (Model
Predictive Control), the S-LQG can be calculated offline. This is a great
advantage as it also allows the application of the S-LQG in time critical
applications due to the low computation requirements during operation.
Moreover, assuming a time-invariant plant, the controller gains converge
to a steady-state so that the S-LQG only occupies a small amount of
memory.

Further, important extensions of the S-LQG are also discussed. For
example, an event-triggered extension of the proposed approach is presented
that can be used in the context of band-limited networks to reduce the
required bandwidth. Also an optimal tracking controller is derived based on
the S-LQG solution that makes optimal use of existing preview information
about the reference trajectory. In simulations, the developed approaches
show a very good performance compared to state-of-the-art methods such
that the application of the S-LQG method in the field of factory automation
has already been initiated in conjunction with an industrial partner.



Notation

General Conventions

𝑥 Scalar (lowercase)
𝑥 Vector (underlined, lowercase)
A Matrix (bold, uppercase)
(.)𝑘 Quantity at time step 𝑘
(.)* Optimized quantity, result of minimization
𝑥0:𝑘 Sequence/set of quantities {𝑥0, . . . , 𝑥𝑘}
A(𝑛) Matrix depending on integer 𝑛
A(0 : 𝑛) Sequence/set of matrices {A(0), A(1), . . . A(𝑛)}
𝒜 Set (calligraphic, uppercase)
(.)𝐸𝑣𝑡 Quantity related to event-triggered approach
(.)𝑇 𝑟𝑘 Quantity related to tracking control approach
A > 0 Matrix A is positive definite
A ≥ 0 Matrix A is positive semidefinite
A > B Matrix (A − B) is positive definite
A(0 : 𝑛) > B Abbrevation for {A(0)−B > 0, . . . , A(𝑛)−B > 0}

Operators

A⊤ Matrix transpose of A
A† Moore-Penrose pseudoinverse of A
A−1 Inverse of A
eig (A) Set of eigenvalues of A
tr (A) Trace of A
𝛿(𝑥,𝑦) Kronecker delta function
Prob (𝑎) Probability of event a
Prob (𝑎| 𝑏) Probability of event a given event b
E {𝑥} Expected value of 𝑥
E {𝑥| 𝑦} Expected value of 𝑥 conditioned on 𝑦
𝒜 ∪ ℬ Union of 𝒜 in ℬ
𝒜∖ℬ Relative complement of ℬ in 𝒜



x Notation

Symbols

I Identity matrix
0 Vector where all entries are zero
0 Matrix where all entries are zero
N0 Set of natural number including zero
N>0 Set of natural number excluding zero
R Set of real number
R𝑛 n-dimensional vector space over the field of the real numbers
∅ Empty set
� End of proof or lemma

Conventions for Variables

𝑥𝑘 System state at time 𝑘
𝜉

𝑘
Augmented system state at time 𝑘

𝑥0 Initial system state
Λ0 Covariance of the initial system state
𝑦

𝑘
Measurement obtained by sensor at time 𝑘

𝒴𝑘 Set of measurements received by controller at time 𝑘
𝑤𝑘 Process noise at time 𝑘
𝑣𝑘 Measurement noise at time 𝑘
𝑧𝑘 Plant output at time 𝑘 considered for tracking task
𝑧𝑅𝑒𝑓

𝑘 Reference value at time 𝑘
𝑢𝑘 Control input applied by the actuator at time 𝑘
𝑈𝑘 Sequence of control inputs calculated at time 𝑘
𝑢𝑘|𝑚 Control input calculated at time 𝑚, applicable at time 𝑘

𝑁 Length of control sequence 𝑈𝑘, capacity of actuator buffer
𝑢𝑑𝑓

𝑘 Default control input applied by actuator if buffer is empty
A𝑘 System matrix
B𝑘 Input matrix
C𝑘 Output matrix
W𝑘 Process noise covariance
V𝑘 Measurement noise covariance
Z𝑘 Output matrix considered for tracking control



Notation xi

Q𝑘 Weighting matrix of cost function for system states
R𝑘 Weighting matrix of cost function for control inputs
ℐ𝑘 Information set available to the controller at time 𝑘
𝐾 Terminal time of control task
𝐶0→𝑘 Expected cumulative costs from initial time to time 𝑘
𝐽*

𝑘:𝐾 Minimum expected cost-to-go from time 𝑘 to terminal time
𝜃𝑘 State of Markov chain describing the age of the control

sequence buffered in the actuator at time 𝑘
J Co-domain of 𝜃𝑘, subset of N0
T Transition matrix of 𝜃𝑘

𝑝(𝑗, 𝑖) Entry in 𝑗-th row and 𝑖-th column of T
𝜏𝐶𝐴

𝑘 Delay in controller-actuator network at time 𝑘
𝜏𝑆𝐶

𝑘 Delay in sensor-controller network at time 𝑘
𝑞𝐶𝐴(𝑚) Probability that 𝜏𝐶𝐴

𝑘 = m
𝑞𝑆𝐶(𝑚) Probability that 𝜏𝐶𝐴

𝑘 = m
𝜇𝑘 Control law at time 𝑘
L𝑘 Controller gain matrix at time 𝑘

Glossary

DDE Delayed Differential Equation
LMI Linear Matrix Inequality
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
MAC Media Access Control
MJLS Markov Jump Linear System
MMSE Minimum Mean Square Error
MPC Model Predictive Control
NCS Networked Control Systems
S-LQG Sequence-Based Linear Quadratic Gaussian
SVD Singular Value Decomposition
TCP Transmission Control Protocol
TDS Time Delay System
UDP User Datagram Protocol
i.i.d. Independent and identically distributed





1. Introduction

Feedback is a fascinating phenomenon that always occurs if the output of
a system is fed back to its input. The resulting interplay between output
and input blurs the line of causality since the output not only becomes
effect of the input but, at the same time, also is the input’s cause. In this
way, feedback can change the characteristics of the original system beyond
recognition and may create something new. It may even be the source of
human consciousness as Hofstadter postulates in his popular book “Gödel,
Escher, Bach” [51]. In this thesis, we cannot go this far but we will use
feedback as an extremely powerful engineering tool to control things and
make them do what we want them to.

In a recent publication, Åström and Kumar describe the long history
of feedback control in engineering and trace its developments from the
Industrial Revolution to now [8]. They identify that control was entering
a new stage around the year 2000. Traditional applications recorded a
significant spread due to falling computing costs, and new fields of control
emerged. Major drivers included the increasing desire for distributed and
autonomously operating systems as well as the technological advances in
computing and communication.

In particular, enhanced reliability of wireless communication systems,
growing availability of cost effective general computer networks, and the
global expansion of the Internet laid the foundations for a new era of
networked applications [87]. For example, Internet-based teleoperation
and long distance remote control were explored, and new concepts for
automated wireless highway and traffic systems as well as unmanned
aerial vehicles (UAV’s) were conceived. Moreover, wireless applications
became one of the leading technological trends in factory and process
automation [4].
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However, using wireless networks and general data networks within a
feedback loop confronted control engineers with new challenges. In contrast
to the specialized, wired fieldbuses used so far, these new networks do
not provide deterministic transmission characteristics. It was recognized
that further research is necessary to face the resulting challenges [87] and
the research area of Networked Control Systems (NCS) emerged. In this
context, new analysis tools and control methods have been developed to
deal with the network induced effects.

One of these new methods is sequence-based control [107], which is (among
others) also known as packet-based control [167], packetized predictive
control [113], and receding horizon networked control [45]. The method
is specifically designed to compensate for transmission losses and time
varying network delays that occur in wireless networks or the Internet.
The method exploits the property of these communication networks that
data are sent in the form of data packets, which can usually transport a
higher data load than needed for a single control data transmission. The
idea is to utilize this spare data capacity by sending not only the current
control data, but also information that can be beneficially used by the
receiver to compensate for subsequent packet losses or transmission time
delays.

Based on the sequence-based approach, this work presents the newly
developed Sequence-based Linear Quadratic Gaussian (S-LQG) control
method (own publs. [170–176]). The S-LQG combines the sequence-based
control philosophy, that compensates for network-induced transmission
delays and losses, with the well-known LQG (Linear Quadratic Gaussian)
theory of stochastic optimal control. The problem setup under considera-
tion and the contributions of this work are briefly summarized in the next
section.

1.1. Problem Formulation and Contribution

In this work, we deal with the problem of controller design for centralized
NCS that are subject to stochastic transmission losses and time-varying
packet delays. The basic setup is schematically depicted in Fig. 1.1. It can
be seen that the controller is connected to the actuator and the sensor via
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PlantSensor Actuator

NetworkNetwork

Controller

and
Time Delays

Packet Losses

Figure 1.1.: General NCS setup under consideration

data networks. The data networks introduce various disturbing effects into
the control loop and impose constraints not considered in standard control
theory. However, to avoid tremendous degradation of control performance,
the network effects have to be considered in the controller design. In
this thesis, we are concerned with two of the most severe network effects:
stochastic transmission losses and time-varying packet delays. Our aim
is to design a controller that is able to optimally compensate for these
network-induced disturbances.

To that end, we extend the sequence-based control approach (see e.g. [70]).
In sequence-based control, the controller not only computes a single control
input per time step, but also a whole sequence of predicted inputs applicable
at future time steps. These control inputs are all sent within the same
data packet to the actuator. In case a subsequent packet transmission
gets delayed or lost, the actuator can fall back upon the predicted control
inputs to apply reasonable inputs to the plant.

Our approach to sequence-based control is from stochastic optimal control
and, in particular, LQG theory. The main contribution of this work is
the unification of LQG theory with the sequence-based control method.
Specifically, if one can assume linear system dynamics and a so called
TCP-like (Transmission Control Protocol) network protocol providing
idealized acknowledgments between controller and actuator [55], we are
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able to derive the optimal sequence-based controller in the LQG sense (own
publ. [174]). Therefore, we also refer to this optimal controller as S-LQG
(Sequence-Based Linear Quadratic Gaussian). Based on the stochastic
transmission characteristics of the networks, the S-LQG optimally accounts
for both transmission losses and stochastic delays. This is in contrast to
former work, where only losses were considered [45].

An advantage of the S-LQG is that the control law can be computed
offline. Therefore, compared to other optimization-based approaches such
as MPC (Model Predictive Control), the computing resources required
during operation are relatively small and allow for time critical applications
such as motion control. In addition, the S-LQG has only a small demand
for memory space even for long time horizons due to convergence of the
time-varying feedback gains. Furthermore, the expected performance of the
S-LQG, measured in terms of a quadratic cost function, can be expressed
in closed-form. This allows us to derive new stability criteria for linear
sequence-based controllers with quadratic costs (own publ. [172]).

The closed-form solution also serves as the basis for an event-triggered
extension of the S-LQG that reduces the network load to consider possible
band-limitations (own publ. [170]). In addition, an optimal sequence-based
tracking controller will be presented. Based on the S-LQG results, this
controller optimally incorporates set point changes and available preview
information on the reference trajectory (own publ. [173]). Moreover, a
practical extension of the results will be presented, allowing for generaliza-
tion to network protocols that do not provide acknowledgment signals such
as UDP/IP (User Datagram Protocol/Internet Protocol) networks (own
publ. [175]).

Finally, we also mention what is not covered in this work. As we concentrate
on centralized optimal control solutions in a linear setup, we do not touch
the topic of decentralized optimization and multi-agent systems. Also,
the extension to nonlinear systems and the incorporation of quantization
effects and imperfect clock synchronization has been left to future research.
Finally, we are only concerned with the details of specific communication
technologies, protocol architectures, routing algorithms, MAC-layer de-
signs, etc. in so far as they are necessary to describe the effects perceived
within the feedback loop from a control related perspective.
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1.2. Outline of the Thesis

Chapter 2 provides a general introduction to NCS and its emergence as
one of the most active research areas within the control community. The
specific challenges arising in NCS are summarized in Section 2.2. State-
of-the-art control methods addressing these challenges are introduced in
Section 2.3, and the sequence-based method is described separately in
Section 2.4.

The main result of this work is presented in Chapter 3. It comprises the
detailed derivation and the discussion of the optimal sequence-based LQG
controller (S-LQG). To that end, the sequence-based NCS system setup
is introduced in Section 3.1, and the optimal control problem formulated
in Section 3.2. Then, in Section 3.3, a sequence-based NCS model is
derived that captures the controller-actuator network and the sequence-
based buffering scheme of the actuator. Based on this, the optimal S-LQG
controller is presented and evaluated in Section 3.4. Furthermore, a
stability analysis is carried out in Section 3.5 and minor extensions of the
algorithm are presented in Section 3.6.

The S-LQG stabilizes the plant around the zero state. In Chapter 4,
an optimal sequence-based tracking controller is presented that not only
addresses non-zero set points but to follow given reference trajectories. The
NCS setup and the problem formulation are described in Section 4.1. The
optimal solution is discussed in Section 4.2. and the resulting controller
demonstrated in simulations in Section 4.3.

The S-LQG compensates for time delays and packet losses by sending
additional information with the data packets. The additional information
can increase the network load such that it has a negative impact on the
control performance. In order to avoid this, and to address possible band-
limitations, an event-triggered operation mode of the S-LQG is presented
in Chapter 5. The problem is formulated in Section 5.1 and the solution
derived in Section 5.2. The stability of the proposed event-triggered
controller is investigated in Section 5.3 and the performance evaluated by
simulations in Section 5.4.

Finally, this work concludes with a summary of the results obtained and
an outlook on possible future research topics in Chapter 6.





2. Networked Control Systems

Looking for a broad definition of the term Networked Control Systems
(NCS), we quickly find NCS described as “closed-loop systems that have
to be considered as networked systems” in the recent publication [77].
This definition comprises two aspects. First, NCS are characterized as
feedback control systems that use data networks and, second, the data
networks impose challenges that cannot be considered independently of
the feedback control system. Interestingly, although networks have been
used in feedback control systems since the early 1980s, the term Networked
Control Systems did not appear before the late 1990s [61, 144]. This
reveals a shift in the perception of networks in feedback control with
NCS becoming one of the most active research areas within the control
community today. In the next section, we briefly trace the emergence
of NCS on a general level. Then, the specific challenges experienced in
NCS are explained in Section 2.2, and state-of-the-art control methods
to counteract these problems are reviewed in Section 2.3. In particular,
we give special emphasis to the sequence-based control method that is
described separately in Section 2.4.

2.1. Emergence and Overview of the Field

Digital data networks were introduced to the area of feedback control about
30 years ago to connect spatially distributed components of a control loop.
In contrast to the multiple wire topologies used up to that time, digital
networks only required a single data line to connect the control components
and therefore reduced installation costs. Single wire solutions, however,
present a bottleneck in the system with regard to the possible speed of
data transmissions. To satisfy the demanding real-time requirements of
industrial applications, highly specialized networks have been developed
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that are jointly referred to as fieldbuses. One of the first fieldbuses on
the market was CAN (Controller Area Network), which was developed
by the German company Robert Bosch in 1983 [20]. Other fieldbuses
followed, such as Profibus introduced in 1987 [106], Interbus and Device-
Net developed around same time [101], and Foundation Fieldbus initiated
in 1994 [32]. Sufficiently dimensioned, fieldbuses ensure deterministic
data transmissions with guaranteed latency. We therefore refer to this
kinds of networks as deterministic networks. They provide proprietary
communication solutions for control applications and are standard in
industrial control today.

Around the year 2000, efforts increased to utilize networks with non-de-
terministic transmission behavior for control purposes [86]. The desire
was fueled by two technological developments. These are the remarkable
improvements of wireless communication technologies [8, 130] on the one
hand, and the advances in general computer networks and, in particular
Ethernet, on the other hand, that also paved the way for the expansion of
the Internet.

In particular, general computer networks recorded falling prices, increased
speed, and gained expanded interoperability and reliability. As a result, net-
works such as Ethernet-based LAN were brought to various institutions and
companies and a widespread infrastructure has been formed. At the latest
with the connection to the Internet, intense endeavors have been under-
taken to employ these networks for feedback control as well [86]. Relevant
applications include Internet-based factory and building automation, as
well as remote process control [161]. Long distance telerobotics [6, 21, 150],
telesurgery [80], and haptics collaboration [50] have also been pursued.
The advantage of general computer networks, such as the Internet, is that
the already existing communication infrastructure can be used without
additional installation costs. In contrast to fieldbuses, these networks are
also non-proprietary, so no licensing fees have to be paid.

Wireless network technologies such as Bluetooth (IEEE 802.15.1), WLAN
(IEEE 802.11), and ZigBee (based on IEEE 802.15.4) have experienced
fast progress over the most recent ten years and have become strong
innovation drivers for control applications [57, 104]. For example, wireless
networks broaden the scope of feedback control to mobile objects such as
unmanned aerial vehicles (UAV) or ambient intelligent networks [68], and
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allow the placing of actuators and sensors in locations that are hard to
access. Furthermore, they can be used to replace mechanically stressed
elements such as slip rings or cable carriers as found in electric monorail
systems, automatic storage systems, and gantry cranes. In this context,
wireless networks not only reduce maintenance and installation costs, but
also increase the availability of the system [18]. The emerging field of
wireless car-to-car communication also offers new control perspectives for
automated highway systems, platooning vehicles, traffic supervision, and
intelligent cross-road-management [121,122].

However, using general data networks and/or wireless networks in feed-
back control systems also creates significant challenges. In contrast to
deterministic fieldbuses, these networks generally have non-deterministic
transmission characteristics. This means that not only can transmission
losses occur, as observed in wireless networks in particular, but also that
data transmissions may be subject to unknown and time-varying delays.
Furthermore, if the network is shared with other applications, several
sources compete for network access resulting in additional restrictions
for the control system. Experience has shown that the network-induced
effects can have a substantial negative impact on the performance of a
feedback system. For instance, even small variations of transmission times
can destabilize a control system [163].

Therefore, the need was recognized for new control strategies and analysis
tools that are able to deal with the non-deterministic network effects.
Research in this direction commenced at the late 1990s and soon became
known as Networked Control Systems. A characteristic of NCS research is
the strong interaction of control engineers with computer scientists and
communication engineers [77]. The common objective is the combination
of control theory, which describes dynamical systems connected by perfect
links, with the area of communication theory, which addresses information
transported through imperfect links. Further information on the general
field of NCS and the relation to other active research areas such as Cyber-
Physical Systems can be found in the overviews [4, 9, 12,66,77,142].

In the following section, we discuss the specific challenges introduced by
the non-deterministic networks in more detail.
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2.2. Challenges in NCS

In this section, we describe the main challenges arising when non-deter-
ministic networks are integrated into a feedback loop. The challenges
are categorized from the perspective of feedback control, i.e., grouped
regarding their appearance in the control loop. This means that we only
go into the details of communication technology and protocol layers where
this is necessary and do not strictly separate effects caused by single point-
to-point transmissions from effects induced by the interaction of several
network nodes.

2.2.1. Time Delays

A main source of performance degradation in NCS originates from the
presence of unknown or time-varying transmission delays. As shown
in [163], even comparably small variations in the time delays may lead
to instability of the entire feedback system. In NCS, different sources of
time delays can be identified [65, 66, 161]. On the one hand, these are
the computational delays of the digital control components and of the
controller in particular. On the other hand, we are faced with network-
induced delays resulting from communication related computations at
sending and receiving nodes (e.g. for coding and decoding the data),
waiting times to gain network access, and transmission delays due to
the transportation and routing of the data through the medium1. In
many NCS scenarios, the network-induced delays represent the critical
component of the overall time delay. Computational delays are usually of
minor importance and indeed are often negligible [161]. The network access
and transportation delays can be very volatile due to varying network
conditions (e.g. changing routing paths) or unsteady data load. In regard
to the control of NCS, time-varying delays are much harder to compensate
for than constant time delays. Therefore, we distinguish between the two
in the following sections.

1In this work, the terms transmission delay and time delay are used synonymously.
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Time-Invariant Delays: Constant delays occur in NCS that use (suffi-
ciently dimensioned) fieldbuses. Fieldbuses use specific hardware mecha-
nisms to accurately synchronize all distributed communication components
so that a sufficiently small jitter can be ensured [123]. Data collisions are
either avoided by using a deterministic protocol to manage network access
(e.g., in ControlNet and Profibus [123], EtherCAT [29], or FlexRay [98])
or data collisions are resolved by prioritizing the data packets (such as
in CAN bus [20]). In the latter strategy, however, the fieldbus must be
dimensioned to meet the maximum possible network load [65]. Due to the
omnipresence of dead time in all kind of applications, control of systems
with constant delays has been intensively investigated for more than 50
years. Theory has reached a mature state and well-known methods are
available such as the Padé-approximation or the Smith predictor [76, 128].
In this work, constant delays are therefore of minor interest and only seen
as a special case of time-varying delays.

Time-Varying Delays: If networks other than fieldbuses are used for
real-time control purposes, we generally have to expect that any time
delays that occur will be of a time-varying nature. In particular, this is
true for general computer networks such as Ethernet and the Internet [130].
Ethernet, for example, uses the CSMA/CD (Carrier Sense Multiple Ac-
cess/Collision Detection) method for medium access control that introduces
a random delay time if a collision is detected. Time-dependent network
load, different routing paths, and various data queues in the network
components are further sources for time-varying delays [100]. In wireless
networks, the transmission characteristics also strongly depend on the
surrounding environment [57]. Mobile objects and obstacles in the line of
sight, interferences with external sources, or fading due to reflections and
bending of electromagnetic waves can cause a time-varying SNR (signal
to noise ratio) of the received signal. As a result, time-varying delays
occur due to retransmissions of lost data packets, resynchronization, or
restoration of lost connectivity.

In Section 2.2, we will review control strategies for NCS with time-varying
delays. These methods can be categorized in terms of the model used
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to describe the time delays. We therefore distinguish whether time-
varying delays are non-deterministically varying [163], or stochastically
varying [151].

∙ Non-deterministically Varying Time Delays: In the non-determi-
nistic model, it is assumed that time delays are time-varying and
not known in advance. Information is only available on the basis of
ensemble characteristics of the time delays such as minimum and/or
maximum value.

∙ Stochastically Varying Time Delays: In the stochastic time delay
model, time delays are also time-varying and unknown in advance.
However, information is available on the probability that certain
time delays will occur. The information is usually given in the form
of probability density functions over the time delay distributions of
the networks. In this work, we assume that a stochastic time delay
model is available.

As individual data packets may suffer different time delays, it is possible
for data packets to be received in a different order than the sending order.
This is known as packet disordering and has to be detected on the receiver
side to avoid misinterpretation of the data [161]. In this work, we assume
that data packets are marked with an index or time stamp so that packet
disordering can be easily resolved.

2.2.2. Packet Losses

In contrast to time delays, packet losses have not been intensively inves-
tigated in classic control theory [77]. In NCS, packet losses occur for
many reasons [130]. One of the most common sources in general computer
networks is congestion due to high network load. Components of a net-
work infrastructure such as repeaters and switches can only hold a finite
number of data packets in their internal queues. If this memory is fully
occupied, additional incoming data packets are discarded. Packet losses
can also be caused by transmission failures resulting from malfunctions of
network components or unsuccessful decoding at the receiver node. In par-
ticular, wireless networks are extremely sensitive to environment-induced
disturbances such as interferences and fading. This often makes successful
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decoding impossible, despite error correction methods such as FEC (for-
ward error correction) or diversity techniques [57]. Indeed, the average
packet loss rate of a wireless channel in a typical industrial environment
can reach 60% [147].

Packet losses and time delays are closely related and can often be converted
back and forth. For example, using a TCP/IP protocol, data packets will
be automatically retransmitted if not received within a specified time [130].
This prevents data losses by transforming them into time delays, but
potentially increases the average packet loss rate due to the higher network
traffic. On the other hand, in many control applications, it is not useful to
process measurements and control data that have been delayed for a long
time [57]. Therefore, packets not received within a certain time are usually
discarded and, hence, time delays are transformed into packet losses.

2.2.3. Band-Limitations

Further challenges arise when the amount of data that can be transported
through the network [161] is constrained. These constraints may be
directly imposed by bandwidth limitations of the data channels in use, or
also by the control application itself. Examples are UAV’s (Unmanned
Aerial Vehicles) in stealth mode that only use minimum communication to
avoid detection or applications with energy constraints such as underwater
vehicles or planetary rovers. In compliance with [49], we summarize this
kind of network-induced challenge under the term band-limitations.

In point-to-point connections, band-limitations can be investigated from a
viewpoint of data quantization as the problems encountered are very similar
to the case of analog-digital conversion with finite word length [89]. In this
context, one aim is to find optimal coding/decoding-schemes satisfying
given data rate constraints [159]. Another line of research focuses on
band-limitations resulting from the presence and organization of multiple
network nodes. In these scenarios only a subset of the connected nodes can
simultaneously be granted access to the network. As a result, competing
network accesses occur and must be resolved [144]. Generally, this is
accompanied by additional time delays and packet losses so that the
problem of band-limitations is also closely related to the problems discussed
in the previous sections 2.2.1 and 2.2.2.
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2.2.4. Other Challenges

For the sake of completeness, we will briefly state further challenges
occurring in NCS that, however, are not directly addressed in this work.

Clock Synchronization: Due to the spatial distribution of the NCS com-
ponents, the different clocks have to be synchronized over the data network.
The occurrence of time-varying delays and packet losses in the network
complicates accurate synchronization [161]. The problem has received
much attention, not only in the context of real-time capable fieldbus
technologies, but also in general computer networks so that a plethora of
methods have been proposed to deal with these effects [56].

Time-Varying Sampling Intervals: In standard control theory, data are
assumed to be sampled periodically. In NCS, however, this might no longer
be the case [133]. In particular, band-limited networks or inaccurate clock
synchronization may lead to non-periodic sampling times. In the NCS
literature, this problem is also referred to as time-varying transmission
intervals and has been investigated in the context of event-based control
in particular (see Chapter 5).

Security: NCS are often integrated into network structures that also
provide other data services. As a result, there may be many access points
to the network, in particular, if the NCS is connected to the Internet. This
opens the door for hacking attacks and sabotage as demonstrated by the
computer virus Stuxnet [63]. Therefore, security mechanisms have been
developed that semantically analyze any control commands given from a
control perspective to detect possible intruders [25].

2.3. Control Methods

To address the challenges described in the previous section, a plethora of
control methods have been proposed in the literature. General overviews
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can be found in [49, 69, 138, 153, 161], for example. In [138], the state-
of-the-art through the year 2003 is presented. This is extended in [49]
and [161] by the methods developed from 2003 to 2007, and from 2007 to
2013, respectively.

In the following summary of NCS control methods, we concentrate on
approaches that are mainly concerned with the stabilization problem
in the presence of time-varying transmission delays and packet losses.
Approaches to NCS tracking control will be treated in Chapter 4 and
approaches dealing with band-limitations will be described in Chapter 5
in the context of the proposed event-triggered method. Here, we divide
the approaches into two classes. The first class of these methods only
uses a-priori information about the network effects. This means that the
controller does not consider any information about currently occurring
time delays or packet losses during run time. We therefore refer to these
approaches as non-adaptive methods. In contrast, the second class of
methods is characterized by its ability to incorporate online measurements
of time delays and packet losses into the control design. By doing so, the
controller adapts to the current network situation. These approaches are
therefore labeled as adaptive methods. The sequence-based control method
belongs to the class of adaptive methods and, due to its importance, is
discussed separately in Section 2.4.

2.3.1. Non-Adaptive Methods

In this section, we discuss control methods that only use offline information
on time delays and packet losses that occur. Therefore, the approaches
described each have in common that the resulting control law is independent
of the realizations of time delays and packet losses experienced during run
time. Hence, the controller must be robust against all possible realizations
of network-induced effects and therefore is often optimized for the worst
case scenario. This has the advantage that time delays and packet losses
do not have to be detected online. On the downside, this leads to control
designs that are more conservative than adaptive methods which use online
information about the current network situation.
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Time-Varying Delays: One of the earliest non-adaptive methods to com-
pensate for time-varying delays is the so called Queuing Method [75]. In
this approach, queues are used at the input of controllers and actuators
to buffer incoming data packets. A data packet is released from the
buffer once a specified time, the so called playback time, has elapsed
since creation of that data packet. In this way, time-varying delays are
transformed to constant delays (at the expense of additional time delays)
so that well-known control methods for constant delays can be used. A
recent adaption of this method in combination with Smith Predictors and
PI controllers can be found in [1], where the queues are also referred to
as playback buffers. Assuming bounded time delays, the Lyapunov-based
approach described in [163] derives a stability criterion in terms of an
LMI (Linear Matrix Inequality) feasibility problem. The criterion is not
only applicable for periodic sampling, but also for time-varying sampling
times. A good example to consider concerning time-varying delays in the
frequency domain is the robust approach presented in [39]. Time delays
are assumed to be bounded and approximated by Padé-all-passes such that
network effects can be incorporated as multiplicative noise within a robust
H∞-control design. Furthermore, fuzzy control [169] has been applied to
NCS for delay compensation, as well as stochastic optimal control [46, 67].
Finally, it is mentioned the important class of controllers that are based on
the Markov Jump Linear System (MJLS) approach [141]. One of the first
methods using a MJLS model in NCS is the work [151] where an output
feedback controller is derived.

Packet Losses: A prominent non-adaptive approach for compensating
for packet losses in the absence of time delays is summarized in [163]. In
this approach, packet losses are considered on the basis of the average loss
rate and are incorporated into the NCS model by a switch that closes the
control loop at a given rate. The slowest possible average transfer rate that
stabilizes the system can then be calculated using Asynchronous Dynami-
cal Systems (ADSs) theory [47]. Fading networks with packet losses are
discussed in [26]. The network is separated into a deterministic part and
a stochastic zero-mean multiplicative perturbation. A stabilizing robust
controller is then derived by solving a non-convex structured minimization
problem via D-K-iteration. Another robust approach that only uses offline
information of packet losses is described in [146]. The data losses are
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modeled as stochastic Bernoulli variables which are then replaced by their
expected values in order to derive a stabilizing controller with guaranteed
satisfaction of a prescribed H∞-performance level. Moreover, MJLS ap-
proaches have also been applied for packet loss compensation. A example
is the work [149], where correlated losses are modeled independently in
both networks by two separate Markov chains.

Time Delays and Packet Losses: The former approaches are applicable
to either time-varying transmission delays or packet losses. A typical
Lyapunov-based approach that is able to consider both effects simulta-
neously is described in [158]. Again, this approach requires that time
delays and consecutive packet losses are bounded. The resulting controller
ensures stability and can be computed by the solution of an LMI. An
extension of this approach to the problem of reference tracking is discussed
in [34]. In addition, the non-deterministic time-varying approach of [163]
can be extended to consider both effects simultaneously as shown in [117].
Another line of research in this category originates from the area of Time-
Delay Systems (TDS) [116]. In this methodology, the NCS is modeled
as a Delayed Differential Equation (DDE) for which stability results are
derived by finding a Lyapunov-Krasovskii functional or application of the
Razumikhin theorem [23,88,157].

2.3.2. Adaptive Methods

In contrast to the approaches in the previous section, we now survey
methods that use online information about time delays and packet losses
to adapt to the corresponding situation. Hence, the main characteristic of
these approaches is that the applied control inputs depend on the actual
time delays and/or packet losses experienced during control operation. It
is important to note that although these controllers adapt to the network
effects, the corresponding control laws can be calculated offline (with the
exception of the Model Predictive Control (MPC) approaches discussed in
Section 2.4.3). As the adaptive control methods use more information than
the non-adaptive ones, the former have the potential to provide better
performance results. However, this comes at the expense of more complex
controller structures and usually requires the actuator to be capable of
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performing minor computations. Also, time delays must be measured. To
that end, data packets are often marked with timestamps. This allows the
reconstruction of the time delays as long as the components of the control
loop are sufficiently synchronized.

Time-Varying Delays: The stochastic LQG method developed in [90,93]
is one of the first approaches that uses controller gains that adapt to
the actual time delays experienced. The computation of the controller
requires solving a Riccati equation involving expectations with respect
to the network effects. The approach has been extended to non-periodic
sampling in [92] where possible clock drifts are also considered. In this
context, the separation principle known from standard LQG control still
holds in the setup under consideration [93]. The original approach is only
applicable for time delays smaller than the sampling period. Yet, it is
extended in [125] to cover longer delays. Other important approaches
that incorporate online measurements of time delays are the stochastically
switched MJLS system approaches ( [124,151,162], see [16] for a general
overview). In the early work [151], delays between sensor and controller
are modeled by a Markov chain, and the controller adjusts according to
the actual delay occurring. The approach has been extended in [162] to
incorporate delays between the controller and the actuator where it is
assumed that the time delay is known at the controller site within the
same time step. In [124], a variation of this approach is presented in which
the current delay of the control packets is measured at the actuator site
and then sent over the sensor-controller channel.

Packet Losses: To compensate for packet losses, a stochastic approach
based on a MJLS model is described in [121,122]. The controller is located
at the actuator site and the feedback gain is adapted when a measurement
gets lost in the network between the sensor and the controller. The control
law is formulated by means of an LMI and guarantees stability in the H∞-
sense. Using a non-deterministic loss model of the network, the switched
system approach to compensate for delays [163] can also be used for the
compensation of packet losses [156]. Here, the controller must also be
collocated with the actuator.
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Time Delays and Packet Losses: Approaches that are able to adapt to
both time-varying delays and packet losses almost exclusively belong to
the class of sequence-based control methods. Due to the high relevance of
the method in the context of this work, we will discuss the sequence-based
method separately in Section 2.4. Among the rare non-sequence-based
approaches, we mention here the approach described in [137] that relies on
the queuing method to compensate for delays. The authors use a second
buffer to store the history of applied control inputs at the actuator. If a
packet loss occurs, the applied control input is calculated by interpolating
the buffered history.

2.4. Sequence-Based Control

Sequence-based control is a network-adaptive control method used in NCS
to compensate for network-induced transmission delays and data losses
between controllers and actuators. The method is also referred to as
packet-based control [167], packetized predictive control [113], and receding
horizon networked control [45]. In this work, we consistently use the term
sequence-based control to emphasize that sequences of control inputs are
sent over the network instead of single control inputs. The method was
first presented in [11] in the context of MPC. Since then, a plethora of
variations have been proposed.

2.4.1. The General Idea

Sequence-based controllers exploit the property of modern communication
networks that data are transmitted in atomic data packets. The data
payload of these packets is usually much higher than the size of a single
control input. Thus, the idea is to use the unoccupied payload of the
packet by transmitting not only the current control input to the actuator
but also a sequence of control inputs that are applicable at future time
instants. The additional inputs are buffered at the actuator and can be
applied in case a subsequent data transmission gets delayed or lost. In
this way, the effects of time-varying transmission delays and packet losses
are mitigated.
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However, the additional control inputs increase the network load and, thus,
can also cause additional time delays and/or packet losses. To reduce
this effect, long control sequences can be parameterized by appropriate
compression techniques [54] or an event-triggered strategy can be used [37,
168]. The latter strategy will be discussed in Chapter 5. Even without
these techniques, the performance increase due to the additional control
information typically outweighs the deterioration of the network quality
as demonstrated by many experimental studies with various networks [72,
94,134,136,140].

The sequence-based method is extremely powerful in combination with
networks that have a fixed minimum payload size such as Ethernet
(IEEE 802.3). An Ethernet packet contains a 112-bit or 176-bit header
and at least 368-bit of payload [100]. If less than 368-bit of data shall
be transmitted, the data frame is filled with zeros. Therefore, using this
data space does not degrade the network quality at all. The same holds
for networks that use the so called Asynchronous Transfer Mode (ATM)
protocol. In ATM, the data packets are referred to as cells and have a
fixed size with 40-bit of header information and 384-bit for data [130].

To implement a sequence-based control strategy, the actuator must have
enough computational resources to process incoming control sequences and
apply appropriate selection logic. Typically, these computing resources
already exist as the actuator uses a digital communication interface to
communicate with the controller. Another requirement for implementing a
sequence-based strategy is that the actuator is able to apply the predicted
control inputs at the intended time instances. Therefore, the actuator has
to work in a time-driven mode, which also requires that the internal clocks
of the controller and the actuator are sufficiently synchronized. Methods
for obtaining synchronization are described in [56]. However, there are also
sequence-based methods that overcome this synchronization procedure (at
the expense of more communication).

In the following, we discuss the state-of-the-art approaches to sequence-
based control. The methods are grouped in three classes according to the
applied principle of control sequence generation. We distinguish meth-
ods that are based on a nominal controller (Section 2.4.2), sequence-
based MPC methods (Section 2.4.3), and stochastic optimal control
approaches (Section 2.4.4).
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2.4.2. Methods Based on a Nominal Controller

The most popular approach to sequence-based control is via the extension
of a so called nominal controller. The nominal controller is not sequence-
based and is usually designed without taking the network-induced effects
into account. Control sequences are then calculated by predicting the
future outputs of this nominal controller over a finite horizon based on
predictions of the future states. The main advantage of the approach is that
the nominal controller can be designed by any standard control method
such as PID parameter tuning, pole placement, H2-, or H∞-methods. In
particular, the approach is very convenient if a nominal controller has
already been designed for the non-networked system.

To illustrate the idea of this approach, consider that a nominal controller
has already been designed and is described by the state feedback matrix
L such that

𝑢𝑘 = L𝑥𝑘 , (2.1)

where 𝑢𝑘 and 𝑥𝑘 are the control input and the current system state,
respectively. Then, a control sequence 𝑈𝑘 of length 𝑁 is calculated at time
step 𝑘 by

𝑈𝑘
def=

⎡⎢⎢⎢⎢⎢⎣
𝑢𝑘|𝑘

𝑢𝑘+1|𝑘
𝑢𝑘+2|𝑘

...
𝑢𝑘+𝑁−1|𝑘

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
L 𝑥𝑘

L 𝑥̂𝑘+1
L 𝑥̂𝑘+2

...
L 𝑥̂𝑘+𝑁−1

⎤⎥⎥⎥⎥⎥⎦ , (2.2)

where 𝑢𝑚|𝑘 are control inputs calculated at time 𝑘 and intended to be
applied at time 𝑚, and 𝑥̂𝑘+1, . . . , 𝑥̂𝑘+𝑁−1 denote the predictions of the
future states 𝑥𝑘+1, . . . , 𝑥𝑘+𝑁−1.

Dependent on the system setup and assumptions made, several variations
of this basic scheme have been proposed in literature.
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State-of-the-Art

The approaches [60, 73, 94] use the basic scheme (2.2) in combination
with a non-deterministic network model to predict the states. Assuming
that the system is linear and deterministic and that time delays and
consecutive packet losses are bounded, conditions for closed-loop stability
have been derived in [73] using a switched systems approach. In this case,
the conditions explicitly depend on the given controller and observer gains.
A possible extension to incorporate model uncertainties and avoid clock
synchronization in practical applications is presented in [53]. The case of
possibly unbounded consecutive packet losses has also been considered [94].
In this approach, data packets carry the information of whether the
corresponding control sequence has been calculated based on a current
measurement or based on a state estimate derived from older measurements.
Then, if a sequence does not arrive at the actuator in time, the buffered
sequence is used until a new control packet is received that is based on
a current measurement. The approach is extended in [140] to wireless
networks where experimental results are also shown.

Another group of approaches combines the idea of sequence-based control
with the queuing method described in Section 2.3.1 [22,30,41,44,70,105,132].
The approach in [70] can be interpreted as an extension of the queuing
method where not only the current control input is transmitted to the
actuator but also the (possibly already) queued content of the playback
buffer is permanently retransmitted. This has the advantage that only the
last control input of the control sequence has to be computed at each time
step as the other inputs have already been calculated in previous time steps.
Also, assuming an undisturbed deterministic linear system and bounded
network effects, the closed-loop stability of the system is independent
of the network if the control sequences are long enough. The approach
is extended in [132] to also incorporate possible disturbances. Another
very popular approach in this category is described in [105]. Therein,
the queuing method is not used on the level of single control inputs, but
applied to entire control sequences. This means that control sequences are
calculated to be applicable beginning at a certain future time step. If such
a sequence is received by the actuator, it is first buffered and only activated
when the specified playback time is reached. In the case that a sequence has
not been received in time, additional data are sent via the sensor-controller
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channel to avoid inconsistencies. The approach is applicable to nonlinear
noiseless plants with model approximation mismatch and does not require
clock synchronization. It has been further extended in [41] and [30] to also
consider multiple sensors and dynamic controllers, respectively.

In contrast to the sequence-based controllers described so far, the ap-
proaches [59,107,154] use stochastic network models for time delays and/or
packet losses. In [59], a stabilizing sequence-based controller with H∞
disturbance attenuation is derived where data losses are modeled with a so
called Gilbert Elliott Model. The approach is based on the MJLS approach
given in [121]. Another typical approach to compensate for time delays
(but no packet losses) is described in [154] where sufficient stability results
are obtained for systems with parameter uncertainties. Furthermore, we
mention the sequence-based approach [107] that is able to handle nonlinear
plants with stochastic data losses and time delays in the network between
the actuator and the controller. The model of the sequence-based NCS that
is used can be seen as a generalization of the NCS model derived in (own
publs. [174,175]). This NCS model is presented in Section 3.3. The virtual
control input approach (own publs. [177–179]) also belongs to this category.
Here, in contrast to other nominal controller methods, the proposed con-
troller is able to incorporate previously sent and possibly buffered control
sequences in the estimation of 𝑥̂𝑘:𝑘+𝑁−1 (see (2.2)). Finally, the stochastic
approach in [109] takes the idea of sequence-based control even one step
further. Instead of a single control sequence, the controller calculates
several sequences, each corresponding to a specific combination of future
delay realizations. However, the complexity of the approach exponentially
increases with control sequence length and is therefore only suitable for
short sequences.

An interesting extension of the basic sequence-based control scheme (2.2)
is presented in [152,167]. Here, the nominal controller gain L is not fixed
but varies over the prediction horizon, for example:

𝑈𝑘 =

⎡⎢⎢⎢⎣
𝑢𝑘|𝑘

𝑢𝑘|𝑘+1
...

𝑢𝑘+𝑁−1|𝑘

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
L0 𝑥𝑘

L1 𝑥̂𝑘+1
...

L𝑘+𝑁−1 𝑥̂𝑘+𝑁−1

⎤⎥⎥⎥⎦ . (2.3)
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We refer to this method as the generalized nominal controller method. A
practical approach to the method is described in [136] where experimental
studies are also carried out. Assuming direct state observations, it has
been shown in [167] that sequence-based controllers based on this approach
can be transformed to a special kind of TDS. In contrast to standard
TDS approaches (see Section 2.3.1), the controller gain also depends on
the time delays of the controller-actuator network. Stability criteria for
stochastic time delays and losses are presented in [164]. Additionally, if
the gain matrices L0, . . . , L𝑁−1 are chosen in a specific way, the resulting
controller can also be interpreted as an (unconstrained) sequence-based
MPC controller [166].

2.4.3. Methods Based on Model Predictive Control

Another class of sequence-based control methods originates in MPC the-
ory [19]. This is an intuitive connection, as an MPC controller already
computes a sequence of optimized control inputs at each time step. In
standard MPC, only the first entry of this sequence is applied to the plant
and the rest is discarded. A sequence-based MPC controller can therefore
very easily be constructed by simply not discarding the rest of the sequence,
but adding it to the data packet sent to the actuator.

In the basic MPC method, the control objective is formulated in terms
of a cost function. The control inputs are then computed by means
of numerical minimization of the cost function over a finite horizon at
each time step. The procedure is therefore also referred to as receding
horizon control. An advantage of this scheme is that state and/or input
constraints can be explicitly considered in the minimization. For example,
considering a linear quadratic cost function with weighting matrices Q and
R, the MPC controller solves the following possibly constrained (open-loop)
optimization problem at each time step 𝑘⎡⎢⎣ 𝑢*

𝑘|𝑘
...

𝑢*
𝑘+𝑁−1|𝑘

⎤⎥⎦ = argmin
𝑢𝑘|𝑘, ..., 𝑢𝑘+𝑁−1|𝑘

E
{︃

𝑁−1∑︁
𝑙=𝑘

𝑥⊤
𝑙|𝑘Q𝑙𝑥𝑙|𝑘 + 𝑢⊤

𝑙|𝑘R𝑙𝑢𝑙|𝑘

}︃
, (2.4)
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where 𝑥𝑙|𝑘 represents the open-loop prediction of the system state at time
step 𝑙 based on the information given at time 𝑘 2. While in standard MPC
only 𝑢*

𝑘|𝑘 is used and directly applied to the plant, the sequence-based
MPC approach utilizes the whole sequence

𝑈𝑘 =

⎡⎢⎣ 𝑢*
𝑘|𝑘
...

𝑢*
𝑘+𝑁−1|𝑘

⎤⎥⎦ (2.5)

and sends it as one data packet to the actuator.

It is worth clarifying that although the cost function is minimized, the
MPC scheme is not a closed-loop optimal solution for the underlying
control problem. First, at each optimization step, a shortened horizon is
considered instead of the real operation horizon of the control task. Second,
in the presence of stochastic disturbances, the real closed-loop optimization
problem (see also Section 2.4.4) is replaced by an open-loop approximation.
This means that (2.4) is solved considering only the current information
about the system state ignoring possible future measurements. Hence, a
possible dual effect [10] is not taken into account. Finally, in the sequence-
based setup, the interactions between the sequences are not considered in
the optimization problem. This can be seen in (2.4) as the minimization
is performed over the single control inputs 𝑢𝑘|𝑘, . . . , 𝑢𝑘+𝑁−1|𝑘 and not
over the control sequences 𝑈𝑘, 𝑈𝑘+1, . . . actually sent to the actuator. As
a consequence, the controller-actuator network and the buffering logic are
also ignored in the computation of the control sequences.

In summary, the difference between the methods discussed in the previous
section and the sequence-based MPC is that the latter does not use a
nominal controller to compute control sequences. Instead, the sequences
are obtained as a whole by online optimization where the buffering scheme
and interactions between sequences are neglected.

2The double index also indicates that the optimization problem has to be solved at
every time step again.
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State-of-the-Art

Early work on sequence-based MPC can be found in [68,71, 72], in which
the idea has been elaborated for unconstrained SISO (Single-Input-Single-
Output) systems. Currently, there is also a well-developed theory for
constrained nonlinear systems with direct state measurements and packet
losses [99,111,113]. The seminal work [111] derives stabilizing conditions
for systems where disturbances and consecutive packet losses are bounded.
The approach has been extended to i.i.d. packet losses [110], to stochastic
disturbances and quantization effects [108], to correlated packet losses [112],
and to piecewise-continuous plants [79]. In this context, the important
concept of prediction consistency has also been formulated [33, 44]. If
prediction consistency holds, stability properties of the standard MPC can
be easily transferred to sequence-based MPC.

In addition, MPC schemes with a variable optimization horizon have been
proposed in order to adapt the sequence lengths to the network traffic [134].
Stability results for this kind of approaches were first formulated in [135].
This variable horizon approach has also been combined with the idea of
not imposing stabilizing terminal constraints [42,43,115].

Moreover, the queuing method described in Section 2.3.1 and Section 2.4.2
can also be used in the context of sequence-based MPC. Indeed, the general
idea of sequence-based control was originally proposed as an extension of
the queuing method to handle control sequences instead of single control
inputs [11]. In this respect, [11] resembles the nominal-controller based
approach [105] previously described. Also, the works [102, 103] can be
interpreted as the MPC version of the nominal controller method [70]
that retransmits the queued content in every control packet. In the
corresponding MPC schemes [102, 103], however, the authors approach
the problem by solving a preconditioned reduced horizon optimal control
problem at each time step.

An interesting extension of the basic sequence-based MPC scheme is
presented in [95], where the usage of multiple descriptions of a certain
control sequence is proposed. The multiple descriptions are sent in several
partially redundant data packets to the actuator. The more packets the
actuator receives, the more future inputs can be retrieved from the multiple
descriptions.
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2.4.4. Methods Based on Stochastic Optimal Control

Finally, we describe the class of stochastic optimal control approaches
to sequence-based control. Similar to sequence-based MPC, these con-
trollers generate control sequences by minimizing a cost function. However,
whereas the sequences are optimized independently at each time step in
sequenced-based MPC, stochastic optimal control approaches optimize all
sequences at the same time. Hence, the interactions between the sequences
are also considered and, in particular, possible network-induced delays,
packet losses, and the buffering mechanism are explicitly incorporated into
the optimization.

To clarify the approach, let us consider a quadratic cost function with
weighting matrices Q and R. The control sequences are then computed
by solving the following stochastic closed-loop optimization problem3⎡⎢⎣𝑈*

0
...

𝑈*
𝐾

⎤⎥⎦ = argmin
𝑈0:𝐾

E
{︃

𝐾∑︁
𝑘=0

𝑥⊤
𝑘 Q𝑥𝑘 + 𝑢⊤

𝑘 R𝑢𝑘

}︃
, (2.6)

where 𝑥𝑘 is the system state and 𝑢𝑘 the control input applied by the
actuator. In constrast to the sequence-based MPC optimization prob-
lem (2.4), the optimization is carried out over all control sequences 𝑈0:𝐾
from the initial time to the terminal time 𝐾 of the control task. Hence, the
interactions between the sequences are fully captured by (2.6). In addition,
if (2.6) is optimally solved, the minimizing sequences 𝑈*

0:𝐾 are functions
that depend on the information at the corresponding time, i.e.,

𝑈*
𝑘 = 𝜇*

𝑘(ℐ𝑘) , (2.7)

where ℐ𝑘 represents the available information at time step 𝑘 and 𝜇*
𝑘 is

the control algorithm used at 𝑘. Once the functions 𝜇*
0(·), . . . , 𝜇*

𝐾(·) are
obtained, they only have to be evaluated during run time in order to
calculate the corresponding control sequence.

The sequence-based MPC approach described in Section 2.4.3 can be inter-
preted as an open-loop approximation of the optimization problem (2.6).
Reasons for this have already been discussed in the previous section. Here,

3The detailed formulation of the optimization problem is given in Section 3.2.
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it is important to note that the sequence-based MPC approaches do not
calculate the underlying optimal control law 𝜇*

0(·), . . . , 𝜇*
𝐾(·) but directly

optimize control inputs of a single control sequence 𝑢*
𝑘|𝑘, . . . , 𝑢*

𝑘+𝑁−1|𝑘.
Therefore, sequence-based MPC controllers solve the approximated op-
timization problem (2.4) at each time step numerically, which can be a
very time-consuming task. Stochastic optimal controllers solve the harder
closed-loop optimization problem (2.6), which has to be done only once.

Having said this, the question arises: Why not always use a stochastic
optimal controller instead of a sequence-based MPC-controller? The
difficulty is that stochastic optimal control problems such as (2.6) belong
to the class of optimization problems that are extremely hard to solve
analytically [14]. In particular, if we are confronted with constrained
and/or nonlinear systems, there is often no way to solve (2.6) and the use
of approximate solutions such as MPC is a good choice. However, for the
linear, unconstrained case, it has been shown that for non-sequence-based
controllers with quadratic cost function and i.i.d. Gaussian distributed
system disturbances, the optimal solution can be derived in closed-form [58].
The resulting control law is known as LQG controller, the discovery of
which has had a great influence on modern control theory.

In the next chapter, the standard LQG controller is extended to the
sequence-based NCS setup with time-varying transmission delays and
packet losses. The derived optimal sequence-based controller is referred to
as S-LQG and presented in Section 3. In this context, the idea of stochastic
closed-loop optimization is clarified and an overview over state-of-the-art
optimal control methods for NCS is presented.



3. Optimal Sequence-Based LQG
Control

In this chapter, we derive an optimal sequence-based controller that
belongs to the class of stochastic optimal control approaches that are
described in Section 2.4.4. The results obtained were first published
in [172,174,175] (own publications). Here, these results are presented in
edited form within a unified framework that (hopefully) clarifies many of
the mathematical details. The structure of the NCS under consideration
is shown in Fig. 3.1. The setup is introduced in detail in the next section
but, here, we already want to point out that the NCS comprises a linear
plant that is perturbed by Gaussian process and measurement noise. The
control objective is to minimize a quadratic cost function that depends on
the system state and the applied control inputs. If we neglect the data net-
works and forget about the sequence-based idea, the system setup exactly
corresponds to one of the most fundamental optimal control problems
encountered in feedback control. That is the LQG control problem. The
problem was solved by Kalman in 1960 [58], whose findings have had a
great influence on modern control theory [8]. Here, we revisit the LQG
control problem in the context of NCS with time-varying transmission
delays and packet losses. In particular, we use the sequence-based method
to compensate for the network-induced effects and derive the optimal
sequence-based LQG controller. We refer to the resulting controller also
as the S-LQG controller.

In the context of NCS, the LQG control problem has also been investi-
gated before. First approaches had already been developed during the
1990s [67,90]. However, these approaches are not sequence-based and do
not consider packet losses, but only time-varying delays. Work [55,120,162]
that considered the complementary setup with packet losses but no time
delays also had a significant impact. Around the same time, the first
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Figure 3.1.: NCS under consideration with sequence-based controller

optimal sequence-based LQG approach to compensate for packet losses
was presented [45]. The authors use the concept of a TCP-like network
that was also used in [55, 120] before. Yet, in [45] only packet losses
are considered and no time delays. Five years later, the approach was
extended by [83] in order to incorporate time delays, whereby the result-
ing controller is suboptimal due to approximations in the course of the
control law derivation. Finally, the S-LQG presented closes this gap and
constitutes the optimal solution for sequence-based NCS with time-varying
transmission delays and packet losses under the assumption of a TCP-like
network connection.

It is important to point out that a TCP-like protocol is an information-
theoretic concept that is only vaguely related to the real TCP/IP proto-
col [55]. The similarity of both protocols is given in the use of acknowledg-
ment messages to signal that a data packet has successfully been received.
However, in contrast to real TCP/IP networks, where acknowledgment
signals can be subject to delays or get lost, it is assumed in a TCP-like
protocol that acknowledgment signals are definitely received within the
same time step as these are sent. Another difference is that a TCP-like pro-
tocol does not initiate a retransmission of data packets that have not been
acknowledged by the receiver site. Therefore, the TCP-like protocol can
be seen as a means to provide the sender with instantaneous information
about the transmission status of data packets.
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In practice, a TCP-like network behavior can be realized within a prioriti-
zation-based network by assigning acknowledgment signals a higher priority
than other data packets, for example. In addition, acknowledgments could
be sent redundantly with a higher transmission rate. In wireless networks,
different power levels could also be used. Nevertheless, analysis of TCP-like
networks is also interesting from the theoretical point of view in its own
right. In particular, it allows insight into the far more complex case of
using delayed or no acknowledgment signals, and constitutes an upper
bound on the performance with these network schemes.

In Section 3.6.2, we will extend the results to a so called UDP-like pro-
tocol, which is named after the well-known UDP/IP protocol, as it does
not provide acknowledgment signals at all. The advantage of UDP-like
networks is that these are much easier to implement in practice. However,
the maximum achievable performance is lower than with a TCP-like pro-
tocol. Also, optimal controller design for UDP-like networks is much more
complicated than for the TCP-like case. This is also the reason why the
controller presented in Section 3.6.2 is not optimal in the LQG sense but
an approximate solution based on the results obtained in the following
sections for TCP-like networks.

Before going into the details of sequence-based controller design for TCP-
like networks, we want to illustrate the challenges of this problem class
and give a hypothesis as to why the solution to this problem has not been
obtained before. To that end, let us consider the case of [45], where only
packet losses can occur. In Fig. 3.2, a scenario with three subsequently sent
control sequences is depicted. Sequence 1 was sent first and Sequence 3
last. Each of the sequences contains four control inputs where the first one
is applicable at the transmission time of the corresponding sequence and
the following entries at the subsequent time steps. In the representation,
inputs applicable at the same time are vertically aligned. If we assume
that Sequence 1 and Sequence 3 have arrived without delay and Sequence 2
got lost, then the indicated control inputs are applied according to their
number. Note that only in the case of packet losses, a control sequence
can either be lost or received immediately. When received, control inputs
of that sequence are always applied beginning with the first entry. Also,
due to the previously mentioned TCP-like network protocol, the controller
is always informed of which control input has been applied in the previous
time step. Hence, when the controller calculates a new control sequence,
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Figure 3.2.: Example for applied control inputs with packet losses only

and we assume that this new sequence will not get lost, then the controller
knows exactly which control inputs will have been applied before the
calculation is performed for each control input of this sequence. This
is important as it means that the controller can calculate the control
sequences on a deterministic basis. Of course, the assumption that the
newly calculated sequence will not get lost might be wrong, but then the
calculated control inputs are irrelevant either way as they will not be
applied.

Now, we consider the case depicted in Fig. 3.3, in which packet losses
and time delays occur simultaneously. In this example, we assume that
Sequence 1 arrived without delay, Sequence 2 suffered a delay of one time
step, and Sequence 3 got lost. In this scenario, a control sequence might
arrive with delay and is then applied starting with the corresponding
control input. However, this control input does not have to be the first
entry of its sequence. This leads to the problem that despite the TCP-like
protocol, the controller only has stochastic knowledge of which control
inputs will have been applied before the newly calculated inputs might
be applied. Hence, the controller can no longer be synthesized on a
deterministic basis anymore, and a stochastic controller is needed to take
these uncertainties into account.
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Figure 3.3.: Example of applied control inputs with losses and time delays

In the following sections, a stochastic S-LQG approach is presented that
solves the difficulty described above on a stochastic basis. We start with a
detailed introduction of the system setup in Section 3.1 and then explicitly
define the sequence-based LQG optimization problem in Section 3.2. A
sequence-based NCS model is derived in Section 3.3 that not only comprises
the buffering scheme but also captures the stochastic nature of the problem
illustrated in Fig. 3.3. The solution to the S-LQG is then presented in
Section 3.4 and demonstrated in Monte Carlo simulations. Finally, a
stability analysis is performed in Section 3.5 and variations of the basic
algorithm, such as for UDP-like networks, are presented in Section 3.6.

3.1. NCS Setup under Consideration

The system setup under consideration is shown in Fig. 3.1. The depicted
components of the NCS operate on a time-triggered basis, and it is as-
sumed that the clocks of the controller, the sensor, and the actuator are
synchronized. The plant is linear and evolves according to

𝑥𝑘+1 = A𝑘𝑥𝑘 + B𝑘𝑢𝑘 + 𝑤𝑘 , for 𝑘 ∈ N0 (3.1)
𝑦

𝑘
= C𝑘𝑥𝑘 + 𝑣𝑘 , for 𝑘 ∈ N>0 (3.2)
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where 𝑘 is the discrete time index and 𝑥𝑘 ∈ R𝑛𝑥 , 𝑢𝑘 ∈ R𝑛𝑢 , and 𝑦
𝑘

∈ R𝑛𝑦

denote the plant state, the control input applied by the actuator, and
the measured output, respectively. The matrices A𝑘, B𝑘, and C𝑘 are
of appropriate dimensions and supposed to be known. The terms 𝑤𝑘 ∈
R𝑛𝑥 and 𝑣𝑘 ∈ R𝑛𝑦 represent mutually independent, zero-mean, Gaussian
random processes with finite covariance matrices W𝑘 and V𝑘. Likewise,
the initial state 𝑥0 is Gaussian distributed with

𝑥0
def= E {𝑥0} , (3.3)

Λ0
def= E

{︁
(𝑥0 − 𝑥0) (𝑥0 − 𝑥0)⊤

}︁
. (3.4)

The data networks connecting the controller and the actuator (CA-link), as
well as the sensor and the controller (SC-link), are subject to stochastically
varying transmission delays and stochastic packet losses. The network
effects are described by discrete random processes 𝜏𝐶𝐴

𝑘 ∈ N0 and 𝜏𝑆𝐶
𝑘 ∈ N0

that specify how many time steps a data packet will be delayed if sent at
time step 𝑘 over the CA-link and the SC-link, respectively.

Assumption 3.1 We assume that the processes 𝜏𝐶𝐴
𝑘 and 𝜏𝑆𝐶

𝑘 are mutually
independent, white stationary processes and that their characteristics are
known.

The assumption of stationary network characteristics is appropriate for
invariable environments and network topologies. Time-variant and/or
correlated network characteristics can also be considered within the pro-
posed optimal approach similar to [91] where an extended Gilbert-Elliott
model [27, 38] is applied. Here, however, we focus on time-invariant
networks for reasons of clarity.

Due to Assumption 3.1, the probability that a packet is delayed by 𝑖 ∈ N0
time steps, for example, does not depend on preceding delay realizations
and, hence, is time-invariant. We denote this delay probability by 𝑞𝐶𝐴(𝑖)
for the controller-actuator network and by 𝑞𝑆𝐶(𝑖) for the sensor-controller
connection, i.e.,

𝑞𝐶𝐴(𝑖) def= Prob
(︀
𝜏𝐶𝐴

𝑘 = 𝑖
)︀

, (3.5)

𝑞𝑆𝐶(𝑖) def= Prob
(︀
𝜏𝑆𝐶

𝑘 = 𝑖
)︀

. (3.6)



3.1. NCS Setup under Consideration 35

Within this description, packet losses correspond to infinite time delays
and their probability of occurrence is denoted by 𝑞𝐶𝐴(∞) and 𝑞𝑆𝐶(∞),
respectively.

We make the following assumptions in regard to the data networks:

Assumption 3.2 Data packets are marked with time stamps such that 𝜏𝐶𝐴
𝑘

and 𝜏𝑆𝐶
𝑘 can be recovered at the receiver site.

Assumption 3.3 Sent data fit into one data packet and are not split into
several individually routed packets.

Assumption 3.4 The payload of the packets is sufficiently large for effects
due to data quantization to be neglected.

Assumption 3.5 The controller-actuator network provides a TCP-like pro-
tocol [55, 120], i.e., data packets that are successfully transmitted to the
actuator are acknowledged at the controller within the same time step. (See
also the introduction to this chapter)

Due to time delays in the sensor-controller network, the controller can
receive none, one, or multiple measurements per time step. We denote the
set of measurements received at time step 𝑘 ∈ N>0 by

𝒴𝑘
def=
{︁

𝑦
𝑚

: 𝑚 ∈ {1, . . . , 𝑘} , 𝑚 + 𝜏𝑆𝐶
𝑚 = 𝑘

}︁
. (3.7)

Based on 𝒴𝑘 and the acknowledgment signal received, the controller com-
putes the control sequence 𝑈𝑘 of length 𝑁 ∈ N>0. The control sequence
consists of control inputs 𝑢𝑘+𝑚|𝑘 with 𝑚 ∈ {0, 1, . . . , 𝑁 − 1} such that

𝑈𝑘
def=
[︁
𝑢⊤

𝑘|𝑘 𝑢⊤
𝑘+1|𝑘 . . . 𝑢⊤

𝑘+𝑁−1|𝑘

]︁⊤
, (3.8)

where an index (k+𝑚|k) expresses that a control input is applicable at
time step 𝑘 + 𝑚 and was computed at time step 𝑘.

In analogy to the controller, the actuator may receive none, one, or multiple
data packets at each time step due to the network delays. However, in
contrast to the controller, the actuator will only keep the data packet
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carrying the most recent information among all received packets, i.e., the
packet that was generated most recently. This packet is stored in a buffer
and all other packets are discarded. Hence, the scheme is also referred to
as past packets rejection logic [161]. Note that we do not use the rejection
logic for data received over the sensor-controller network as so called
out-of-sequence measurements still contain useful information. At each
time step, the actuator applies the time-consistent control input from the
buffered sequence to the plant. It may happen that the actuator does not
receive a new admissible data packet before the last control input of the
buffered sequence has been applied. In this case, the actuator applies a
default control input 𝑢𝑑𝑓

𝑘 . There are several possibilities for how to choose
𝑢𝑑𝑓

𝑘 [119]. Here, we assume that a zero-input strategy is used, i.e.,

𝑢𝑑𝑓
𝑘 = 0 . (3.9)

Another widespread choice is the zero-order-hold strategy that will be
discussed in Section 3.6.1. Finally, we assume that no control inputs are
buffered before operation such that the buffer is initially empty.

The actuator procedure described above can be formalized by

𝑢𝑘 = 𝑢𝑘|𝑘−𝜃𝑘
, (3.10)

𝜃𝑘
def= min

(︁{︀
𝑛 ∈ N0 : 𝑚 + 𝜏𝐶𝐴

𝑚 = 𝑘 − 𝑛, 𝑚 ∈ N0
}︀

∪ {𝑁}
)︁

, (3.11)

𝑢𝑘|𝑘−𝑁
def= 𝑢𝑑𝑓

𝑘 . (3.12)

In the next section, we will demonstrate that 𝜃𝑘 can be interpreted as
the age of the sequence buffered by the actuator. In this context, age
means the difference between the time step of sequence generation and the
current time step. The value of 𝜃𝑘 is random, as it depends on the random
variable 𝜏𝐶𝐴

𝑘 . Therefore, the applied control input 𝑢𝑘 is also a random
variable because it depends on 𝜃𝑘. However, an important implication of
Assumption 3.5 is that at time step 𝑘, the controller has access to the
value of 𝜃𝑘−1 and, hence, can reconstruct 𝑢𝑘−1.

Before we introduce the sequence-based LQG control problem in the next
section, we will briefly clarify the timing scheme of a control cycle. A
control cycle starts with the sensor taking a measurement 𝑦

𝑘
of the system

state 𝑥𝑘 and dispatching it as a time-stamped data packet into the sending
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queue of the sensor-controller network. This step is skipped at the initial
time step 𝑘 = 0. Then, the controller reads the received data queued at the
controller site of the SC-link to obtain 𝒴𝑘 that could already contain 𝑦

𝑘
in

case 𝜏𝑆𝐶
𝑘 = 0. This is also done at the initial time step where 𝒴0 = ∅. The

controller uses 𝒴0:𝑘 to calculate the control sequence 𝑈𝑘 and writes it into
the sending queue of the controller-actuator network. The actuator reads
the data received over the CA-link (that already contains 𝑈𝑘 if 𝜏𝐶𝐴

𝑘 = 0)
and updates the actuator buffer if necessary. The corresponding control
input is applied from the buffer to the plant ending a control cycle.

3.2. Problem Formulation

To formulate the optimal sequence-based LQG control problem, we first
characterize the information structure of the given NCS setup in more
detail. Particular attention is being paid to the information available to
the controller for calculating control sequences. This information consists
of all received measurements and all received acknowledgment signals as
well as the initial condition and all previous control sequences sent to the
actuator. Denoting this information set at time step 𝑘 by ℐ𝑘, it holds
that

ℐ0
def= {𝑥0, Λ0} ,

ℐ𝑘
def=
{︀

𝒴1:𝑘, 𝑈0:𝑘−1, 𝜃0:𝑘−1, 𝑥0, Λ0
}︀

, for 𝑘 ∈ N>0 .
(3.13)

Remark 3.1 As described in the previous section, the information available
to the controller also comprises the plant dynamics (3.1), the measurement
model (3.2), the initial condition of the actuator buffer, and the stochastic
characteristics of disturbances and networks. For simplicity, we do not explicitly
state this time-invariant information in the sets ℐ𝑘 above.

Based on these information sets, we give two definitions that introduce
the important concept of admissible control laws.
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Definition 3.1 With 𝜇𝑘(·) denoting the algorithm used by the controller at
time step 𝑘, and with 𝐾 ∈ N0 denoting the terminal time of the con-
sidered control task, the control law is defined as the set of functions
{𝜇0(·), . . . , 𝜇𝐾−1(·)}.

Definition 3.2 A control law is called admissible if the controller computes
a control sequence exclusively based on the information available at that time.
This means that a control law is admissible if it holds for all 𝑘 ∈ {0, . . . , 𝐾 − 1}

𝑈𝑘 = 𝜇𝑘(ℐ𝑘) . (3.14)

In optimization-based control approaches, an admissible control law is
derived by minimizing a given cost function that indicates the control
performance. The cumulative cost function considered throughout this
chapter is an equivalent of the costs considered in the LQG control problem.
The cost function is quadratic and given by

𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
def= E

𝜏𝐶𝐴
0:𝐾−1
𝜏𝑆𝐶

1:𝐾
𝑤0:𝐾−1

𝑣0:𝐾

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾 +
𝐾−1∑︁
𝑘=0

𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝑢⊤

𝑘 R𝑘𝑢𝑘

⃒⃒⃒⃒
⃒ ℐ0, 𝑈0:𝐾−1

}︃
(3.15)

= E
𝑥0:𝐾

𝑢0:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾 +
𝐾−1∑︁
𝑘=0

𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝑢⊤

𝑘 R𝑘𝑢𝑘

⃒⃒⃒⃒
⃒ ℐ0, 𝑈0:𝐾−1

}︃
, (3.16)

where 𝐾 ∈ N>0 denotes the terminal time step when the control task
ends. The weighting matrices Q𝑘 and R𝑘 are design parameters and
positive semidefinite and positive definite, respectively. The expectation
is calculated with respect to all occurring random variables as indicated
in (3.15). This is equal to taking the expectation only over 𝑥0:𝐾 and
𝑢0:𝐾−1 as these depend on the former. The term 𝐶0→𝐾 is referred to as
the expected cumulative costs of the control task starting at 𝑘 = 0 and
ending at 𝑘 = 𝐾. With the notation 𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
, we emphasize that

the expected cumulative costs can be interpreted as a functional depending
on the control sequences 𝑈0:𝐾−1.
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Remark 3.2 Throughout this work, we will refer to 𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
as a cost

function instead of cost functional to be consistent with the customary use in
the NCS literature.

By minimizing the LQG cost function, the resulting controller tries to hold
the system state near the origin of the state space and, hence, pursues to
stabilize the plant. The more complex problems that arise when the plant
has to be stabilized around a non-zero set point or has to follow a given
reference trajectory is discussed in Chapter 4.

Finally, we can formulate the optimization problem to find the optimal
admissible control law that minimizes the cost function (3.16), i.e.,

𝐶*
0→𝐾

def= min
𝑈0=𝜇0(ℐ0)

...
𝑈𝐾−1=𝜇𝐾−1(ℐ𝐾−1)

𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
. (3.17)

The term 𝐶*
0→𝐾 is referred to as the optimal expected cumulative costs.

Concluding this section, we summarize the resulting optimization problem.

Problem 3.1 S-LQG Control Problem (with Zero-Input Strategy)
min

𝑈0:𝐾−1

𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
,

subject to
𝑥𝑘+1 = A𝑘𝑥𝑘 + B𝑘𝑢𝑘 + 𝑤𝑘 ,

𝑦
𝑘

= C𝑘𝑥𝑘 + 𝑣𝑘 ,

𝑢𝑘 = 𝑢𝑘|𝑘−𝜃𝑘
,

𝜃𝑘 = min
(︁{︀

𝑛 ∈ N0 : 𝑚 + 𝜏𝐶𝐴
𝑚 = 𝑘 − 𝑛, 𝑚 ∈ N0

}︀
∪ {𝑁}

)︁
,

𝑢𝑘|𝑘−𝑁 = 𝑢𝑑𝑓
𝑘 = 0 ,

𝑈𝑘 = 𝜇𝑘(ℐ𝑘) .

To solve this optimization problem, we need a model of the NCS that
adequately captures the characteristics of the sequence-based method
and allows for application of the dynamic programming procedure. The
derivation of such a model is the subject of the next section.
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3.3. Derivation of the Sequence-Based System
Model

In this section, we derive the sequence-based NCS model that we use to
solve the finite-horizon S-LQG control problem 3.1. First, we derive a
model for the controller-actuator network in combination with the actuator.
This is achieved by using a state augmentation technique together with a
probabilistic formulation of the actuator procedure. Then, the complete
NCS model is formulated by the integration of the plant dynamics.

Stochastic Network-Actuator Model

As introduced in (3.10)-(3.12), the control input applied by the actuator
at time step 𝑘 is described by 𝑢𝑘 = 𝑢𝑘|𝑘−𝜃𝑘

with

𝑢𝑘 = 𝑢𝑘|𝑘−𝜃𝑘
,

𝜃𝑘 = min
(︀{︀

𝑛 ∈ N0 : 𝑚 + 𝜏𝐶𝐴
𝑚 = 𝑘 − 𝑛, 𝑚 ∈ N0

}︀
∪ {𝑁}

)︀
,

𝑢𝑘|𝑘−𝑁 = 𝑢𝑑𝑓
𝑘 .

It can be seen that the random variable 𝜃𝑘 can only take values in the
finite set

J def= {0, 1, 2, . . . , 𝑁} .

The relationship of 𝜃𝑘 and the actuator output 𝑢𝑘 is illustrated in Fig. 3.4
which is an example with three control sequences (𝑈𝑘−2, 𝑈𝑘−1, and 𝑈𝑘)
of length 𝑁 = 2. Moreover, as a result of the past packets rejection logic
(governed by (3.11)), it holds for any realizations 𝑖, 𝑗, 𝑚, 𝑛 ∈ J of 𝜃𝑘

Prob (𝜃𝑘+1 = 𝑗| 𝜃0 = 𝑚, 𝜃1 = 𝑛, . . . , 𝜃𝑘 = 𝑖) = Prob (𝜃𝑘+1 = 𝑗| 𝜃𝑘 = 𝑖) .

Therefore, the evolution of 𝜃𝑘 can be expressed in terms of a first-order
Markov-chain with transition matrix T such that⎡⎢⎢⎢⎣

Prob (𝜃𝑘+1 = 0)
Prob (𝜃𝑘+1 = 1)

...
Prob (𝜃𝑘+1 = 𝑁)

⎤⎥⎥⎥⎦ = T⊤

⎡⎢⎢⎢⎣
Prob (𝜃𝑘 = 0)
Prob (𝜃𝑘 = 1)

...
Prob (𝜃𝑘 = 𝑁)

⎤⎥⎥⎥⎦ . (3.18)
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Figure 3.4.: Relation of acknowledgment signal and actuator output in
sequence-based NCS model: Shown is the schematic representation of the
possible buffer content with three sequences of length 𝑁 = 2 each. A
rectangle represents one entry of a data packet. The default control input
𝑢𝑑𝑓

𝑘 is added after the end of each data packet. A certain entry is applied
by the actuator if 𝜃 takes the value specified over the rectangle.

In the following Lemma 3.1, it is shown that the transition matrix is of
the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝(0, 0) 𝑝(0, 1) 0 0 · · · 0
𝑝(1, 0) 𝑝(1, 1) 𝑝(1, 2) 0 · · · 0

𝑝(2, 0) 𝑝(2, 1) 𝑝(2, 2) 𝑝(2, 3)
. . .

...
...

...
...

...
. . . 0

...
...

...
... 𝑝(𝑁 − 1, 𝑁)

𝑝(𝑁, 0) 𝑝(𝑁, 1) 𝑝(𝑁, 2) 𝑝(𝑁, 3) · · · 𝑝(𝑁, 𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.19)

where the 𝑝(𝑖, 𝑗) are the transition probabilities Prob (𝜃𝑘+1 = 𝑗| 𝜃𝑘 = 𝑖).
The entries of the transition matrix (and likewise the Markov-chain) are
time-invariant due to Assumption 3.1 and can be computed as follows.
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Lemma 3.1 The entries of the transition matrix T describing the evolution
of the Markov-chain 𝜃𝑘 (3.11) are given by

𝑝(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑗 ≥ 𝑖 + 2 ,

1 −
𝑖∑︀

𝑛=0
𝑞𝐶𝐴(𝑛) for 𝑗 = 𝑖 + 1 ,

𝑞𝐶𝐴(𝑗) for 𝑗 < 𝑖 ≤ 𝑁 ,

1 −
𝑁−1∑︀
𝑛=0

𝑞𝐶𝐴(𝑛) for 𝑗 = 𝑖 = 𝑁 .

The term 𝑞𝐶𝐴(𝑖) is defined in (3.5) and describes the probability that a packet
sent from the controller to the actuator at time step 𝑘 will arrive after 𝑢𝑘+𝑖−1
has been applied by the actuator but before 𝑢𝑘+𝑖 is applied.

Proof. There are four different situations that can occur at the actuator,
leading to four different groups of entries 𝑝(𝑖, 𝑗) of the transition matrix.

∙ Impossible transitions (𝑗 ≥ 𝑖 + 2):
The entries of the upper triangle of T describe transitions from
𝜃𝑘 = 𝑖 to 𝜃𝑘+1 ≥ 𝑖 + 2. Such transitions occur with probability zero
as 𝜃𝑘 can only increase by one per time step due to the buffering
scheme.

∙ Buffered sequence is not replaced (𝑗 = 𝑖 + 1):
These upper diagonal entries of T describe the probability that
𝜃𝑘 will increase by one, which corresponds to the case that the
buffered sequence is not replaced by another sequence at time step 𝑘.
This only occurs if the actuator does not receive a packet that was
generated after the currently buffered sequence. It therefore holds

𝑝(𝑖, 𝑖 + 1) =
𝑖∏︁

𝑚=0

(︀
1 − 𝑞𝐶𝐴 (𝑚)

)︀
, (3.20)

where 𝑞𝐶𝐴 (𝑚) is the probability that a packet generated 𝑚 time
steps ago will be received during the next time step. This probability
can be calculated by

𝑞𝐶𝐴 (𝑚) = 𝑞𝐶𝐴(𝑚) ·

(︃
1 −

𝑚−1∑︁
𝑛=0

𝑞𝐶𝐴(𝑛)
)︃−1

. (3.21)
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The intuition behind (3.21) is that the a-priori probability that
a sequence will suffer a delay of 𝑚 time steps is modified by the
knowledge that the sequence has not been received yet (𝜏𝐶𝐴

𝑘−𝑚 ≥ 𝑚).
Therefore, the second term in (3.21) normalizes 𝑞𝐶𝐴(𝑚) over the
remaining delay probability mass of that sequence. Using (3.21) in
(3.20) results in

𝑝(𝑖, 𝑖 + 1) =
𝑖∏︁

𝑚=0

(︀
1 − 𝑞𝐶𝐴 (𝑚)

)︀
=

𝑖∏︁
𝑚=0

⎛⎝1 − 𝑞𝐶𝐴(𝑚) ·

(︃
1 −

𝑚−1∑︁
𝑛=0

𝑞𝐶𝐴(𝑛)
)︃−1⎞⎠

=
𝑖∏︁

𝑚=0

(︃
1 −

∑︀𝑚
𝑛=0 𝑞𝐶𝐴(𝑛)

1 −
∑︀𝑚−1

𝑛=0 𝑞𝐶𝐴(𝑛)

)︃

= 1 −
𝑖∑︁

𝑛=0
𝑞𝐶𝐴(𝑛) . (3.22)

∙ Buffered sequence is replaced (𝑗 ≤ 𝑖 < 𝑁):
The lower triangle of T describes transitions where 𝜃𝑘 does not
increase. Hence, the buffered sequence is replaced by a newer one.
The probability of such an event is the probability that a new packet
is received (that was generated after the currently buffered sequence)
while none of the packets are received that were generated after this
new packet, i.e.,

𝑝(𝑖, 𝑗) = 𝑞𝐶𝐴 (𝑗) ·
𝑗−1∏︁
𝑚=0

(︀
1 − 𝑞𝐶𝐴 (𝑚)

)︀
. (3.23)

The probabilities involved in (3.23) have been conditioned on the
fact that all corresponding packets have not yet been received. This
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condition ensures that the transition is valid, i.e., that it can start
in 𝜃𝑘 = 𝑖. Using (3.21) and (3.22) in (3.23) results in

𝑝(𝑖, 𝑗) = 𝑞𝐶𝐴 (𝑗) ·
𝑗−1∏︁
𝑚=0

(︀
1 − 𝑞𝐶𝐴 (𝑚)

)︀
= 𝑞𝐶𝐴(𝑗) ·

(︃
1 −

𝑗−1∑︁
𝑛=0

𝑞𝐶𝐴(𝑛)
)︃−1

·

(︃
1 −

𝑗−1∑︁
𝑚=0

𝑞𝐶𝐴(𝑚)
)︃

= 𝑞𝐶𝐴(𝑗) . (3.24)

∙ Empty Buffer (𝑗 = 𝑖 = 𝑁):
The entry describes the probability that the actuator buffer was
empty during the last time step and will remain empty for at least
one more time step. This corresponds to the probability that no
admissible packet will be received in the next time step conditioned
on the fact that no relevant packet has yet been received. Hence,

𝑝(𝑁, 𝑁) =
𝑁−1∏︁
𝑚=0

(︀
1 − 𝑞𝐶𝐴 (𝑚)

)︀ (3.22)= 1 −
𝑁−1∑︁
𝑛=0

𝑞𝐶𝐴(𝑛) . (3.25)

�

To link 𝜃𝑘 with the output of the actuator, we introduce the vector

𝜌
𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[︁
𝑢⊤

𝑘|𝑘−1 𝑢⊤
𝑘+1|𝑘−1 · · · 𝑢⊤

𝑘+𝑁−3|𝑘−1 𝑢⊤
𝑘+𝑁−2|𝑘−1

]︁⊤[︁
𝑢⊤

𝑘|𝑘−2 𝑢⊤
𝑘+1|𝑘−2 · · · 𝑢⊤

𝑘+𝑁−3|𝑘−2

]︁⊤

...[︁
𝑢⊤

𝑘|𝑘−𝑁+2 𝑢⊤
𝑘+1|𝑘−𝑁+2

]︁⊤

𝑢𝑘|𝑘−𝑁+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.26)

with 𝜌
𝑘

∈ R𝑛𝜌 and 𝑛𝜌 = 𝑛𝑢 ·
∑︀𝑁−1

𝑖=1 𝑖 = 𝑛𝑢 · 𝑁 · (𝑁 − 1) /2. This vector
contains all control inputs of previously sent sequences that could still be
applied to the plant (𝑈𝑘−1, . . . , 𝑈𝑘−𝑁+1) . This is illustrated in Fig. 3.5,
where the relevant control sequences are depicted for the case of 𝑁 = 3.
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𝑢𝑘−1|𝑘−1 𝑢𝑘|𝑘−1 𝑢𝑑𝑓
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𝑢𝑑𝑓
𝑘
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Figure 3.5.: Representation of control sequences 𝑈𝑘, . . . , 𝑈𝑘−3, where
control inputs corresponding to the same time step are vertically aligned.
The default control input 𝑢𝑑𝑓

𝑘 , which is not part of the sequences, is added
to the end of each sequence. All control inputs possibly applied by the
actuator at time step 𝑘 are colored green. Control inputs that are part of
𝜌

𝑘
are marked by a red dashed rectangle.

Finally, combining (3.10), (3.12), and Lemma 3.1, leads to the following
state space model of the network-actuator system

𝜌
𝑘+1 = F𝜌

𝑘
+ G𝑈𝑘 , (3.27)

𝑢𝑘 = H𝑘(𝜃𝑘)𝜌
𝑘

+ J𝑘(𝜃𝑘)𝑈𝑘 + D𝑘(𝜃𝑘)𝑢𝑑𝑓
𝑘 , (3.28)

with

F =

⎡⎢⎢⎢⎢⎢⎢⎣

#𝑐𝑜𝑙𝑢𝑚𝑛𝑠: 𝑛𝑢⏞ ⏟ 𝑛𝑢(𝑁−2)⏞ ⏟ 𝑛𝑢⏞ ⏟ 𝑛𝑢(𝑁−3)⏞ ⏟ 𝑛𝑢⏞ ⏟ 𝑛𝑢⏞ ⏟ 
0 0 0 0 · · · 0 0
0 I 0 0 · · · 0 0
0 0 0 I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎦

#𝑟𝑜𝑤𝑠:
}𝑛𝑢(𝑁−1)
}𝑛𝑢(𝑁−2)
}𝑛𝑢(𝑁−3)

}𝑛𝑢

,
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𝛿(𝜃𝑘,𝑖) =
{︂

1 , if 𝜃𝑘 = 𝑖
0 , if 𝜃𝑘 ̸= 𝑖

, G =
[︃#𝑐𝑜𝑙𝑢𝑚𝑛𝑠: 𝑛𝑢⏞ ⏟ 𝑛𝑢(𝑁−1)⏞ ⏟ 

0 I
0 0

]︃ #𝑟𝑜𝑤𝑠:
}𝑛𝑢(𝑁−1)
} 𝑛𝑢(𝑁−1)(𝑁−2)

2
,

J𝑘(𝜃𝑘) =
[︁#𝑐𝑜𝑙𝑢𝑚𝑛𝑠: 𝑛𝑢⏞  ⏟  𝑛𝑢(𝑁−1)⏞ ⏟ 

𝛿(𝜃𝑘,0) I 0
]︁

, D𝑘(𝜃𝑘) =
𝑛𝑢⏞  ⏟  

𝛿(𝜃𝑘,𝑁)I ,

H𝑘(𝜃𝑘) =
[︁#𝑐𝑜𝑙𝑢𝑚𝑛𝑠: 𝑛𝑢⏞  ⏟  𝑛𝑢(𝑁−2)⏞ ⏟ 𝑛𝑢⏞  ⏟  𝑛𝑢(𝑁−3)⏞ ⏟ 𝑛𝑢⏞  ⏟  

𝛿(𝜃𝑘,1) I 0 𝛿(𝜃𝑘,2) I 0 · · · 𝛿(𝜃𝑘,𝑁−1) I
]︁

,

Dynamic Model of the Complete NCS

To combine the stochastic network-actuator model with the plant, we
introduce the augmented state vector

𝜉
𝑘

=
[︂
𝑥𝑘

𝜌
𝑘

]︂
,

with 𝜉
𝑘

∈ R𝑛𝜉 and 𝑛𝜉 = 𝑛𝑥 + 𝑛𝜌. Using the augmented state, we can
combine (3.1), (3.2), (3.27), and (3.28) to get the following model of the
open loop system

𝜉
𝑘+1 =

[︂
A𝑘 B𝑘 · H𝑘(𝜃𝑘)
0 F

]︂
𝜉

𝑘
+
[︂
B𝑘 · J𝑘(𝜃𝑘)

G

]︂
𝑈𝑘 + D𝑘(𝜃𝑘)𝑢𝑑𝑓

𝑘 +
(︂

𝑤𝑘

0

)︂
and

𝑦
𝑘

=
[︀
C𝑘 0

]︀
𝜉

𝑘
+ 𝑣𝑘 .

Setting 𝑢𝑑𝑓
𝑘 = 0 (zero-input strategy), we summarize the derived NCS

model.
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Sequence-Based NCS Model (with Zero-Input Strategy)

𝜉
𝑘+1 = ̂︀A𝑘(𝜃𝑘)𝜉

𝑘
+ ̂︀B𝑘(𝜃𝑘)𝑈𝑘 + D𝑘(𝜃𝑘)𝑢𝑑𝑓

𝑘 + ̂︀𝑤𝑘 ,

𝑦
𝑘

= ̂︀C𝑘 𝜉
𝑘

+ 𝑣𝑘 ,
(3.29)

with

̂︀A𝑘(𝜃𝑘) =
[︂
A𝑘 B𝑘 · H𝑘(𝜃𝑘)
0 F

]︂
, ̂︀C𝑘 =

[︀
C𝑘 0

]︀
,

̂︀B𝑘(𝜃𝑘) =
[︂
B𝑘 · J𝑘(𝜃𝑘)

G

]︂
, ̂︀𝑤𝑘 =

(︂
𝑤𝑘

0

)︂
, 𝜉

𝑘
=
[︂
𝑥𝑘

𝜌
𝑘

]︂
.

The open-loop system model described by (3.29) is a Markov Jump Linear
System (MJLS) as it consists of a set of linear models that are stochastically
switched according to a Markov chain. A general overview over this system
class can be found in [141], for example. In this context, 𝜃𝑘 is also referred
to as the mode of the MJLS. The MJLS (3.29) is non-homogenous due
to the stochastic disturbances and the control inputs. It is important to
point out that in contrast to [141], here, the mode is only available with
a delay of one time step and measurements are subject to time-varying
transmission delays and packet losses. Also, we do not assume a special
structure of the filter and the controller. The results obtained in the former
work can therefore not be applied to solve Problem 3.1.

Only recently, a similar model for sequence-based NCS was published
in [107]. The authors start with a more general setup and then derive an
equivalent model of (3.29) as a special case. Therefore, the general NCS
model of [107] can be seen as an extension of (3.29).
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3.4. The Optimal Solution

Using the system model (3.29) derived in the last section, we solve the
finite-horizon sequence-based optimization problem 3.1. This is performed
in detail in Appendix A via the dynamic programming procedure for
stochastic optimal control problems [13]. This control law obtained is
referred to as Sequence-Based Linear Quadratic Gaussian (S-LQG) control
in analogy to the standard LQG control. In the derivation of the control
law, we assume that a zero-input strategy is used, i.e., 𝑢𝑑𝑓

𝑘 = 0. Another
choice for the default control input is discussed in Section 3.6.1. In the
following, we first summarize the results derived in Appendix A on the
optimal S-LQG controller and discuss important aspects of the control law.
Then, the S-LQG is illustrated by means of a Monte Carlo simulation.

3.4.1. Main Result

Theorem 3.1 Consider the optimization problem 3.1. Then,

a) as in standard LQG control, the separation principle holds, i.e., the
optimal control law can be separated into

1) an estimator that calculates the minimum mean squared error
(MMSE) estimate E{𝜉

𝑘
|ℐ𝑘} of the augmented state, and into

2) an optimal state feedback controller with gain matrix L𝑘(𝜃𝑘−1),

b) the feedback matrix L𝑘(𝜃𝑘−1) explicitly depends on 𝜃𝑘−1 and, hence,
on the sequence buffered by the actuator at time step 𝑘 − 1 ,

c) the optimal control law is linear in the MMSE estimate of the
augmented state such that

𝑈𝑘 = L𝑘(𝜃𝑘−1) · E
{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
, (3.30)
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d) for all 𝑖 ∈ J = {0, . . . , 𝑁} the feedback matrix L𝑘(𝜃𝑘−1) is given by

L𝑘(𝑖) = −

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀R𝑘(𝑗) + ̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)

]︁⎞⎠ ,

(3.31)

where ̂︀A𝑘(𝑗), ̂︀B𝑘(𝑗), and ̂︀R𝑘(𝑗) are defined in (3.29) and the matrix
K𝑘+1(𝑗) can be computed by the recursion

K𝑘(𝑖) =
𝑁∑︁

𝑗=0
𝑝(𝑖, 𝑗)

[︁ ̂︀Q𝑘(𝑗) + ̂︀A𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)
]︁

−

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀A𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠
·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀R𝑘(𝑗) + ̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)

]︁⎞⎠ ,

(3.32)

that is initialized with K𝐾(𝑖) =
[︂
Q𝐾 0
0 0

]︂
for all 𝑖 ∈ J.

Proof. The proof is given in Appendix A. �

Theorem 3.1 implies that the optimal sequence-based controller can be
computed by first solving the recursion (3.32) in order to compute the
feedback gain (3.31). Then, the optimal control sequence is calculated
according to (3.30) by multiplication of the feedback matrix with the
MMSE estimate E{𝜉

𝑘
|ℐ𝑘}. The calculation of the MMSE estimate has

already been intensively studied in the literature [82, 118]. We will review
these results after discussing the general structure of the controller.
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Figure 3.6.: Structure of the optimal sequence-based LQG controller

The overall structure of the S-LQG is depicted in Fig. 3.6. Due to the
validity of the separation principle, the controller can be decomposed into
the optimal MMSE estimator and the optimal sequence-based feedback
controller. The latter is identical to the optimal sequence-based controller
that would be obtained if the state of the plant were directly accessible.
In this respect, it can be interpreted as the sequence-based equivalent
to the well-known LQR (Linear Quadratic Regulator). It is important
to point out that the depicted idealized acknowledgment signals of the
TCP-like connection (see Assumption 3.5) are crucial for the separation
property to hold. Similar observations have been made in [55, 120] for the
non-sequence-based setup with packet losses. Theorem 3.1 extends these
results to the sequence-based case.

An advantage of the S-LQG is that the gain matrices L𝑘(𝑗) can be com-
puted offline for all time steps 𝑘 = 0, . . . , 𝐾 − 1 and for all values of 𝑗 ∈ J.
During run time, only the corresponding matrix must be chosen according
to the current time step and the value of the last acknowledgment signal.
This allows the use of the S-LQG in applications with fast time constants
such as motion control. Furthermore, (3.31) reveals a strong relationship
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to standard LQG control and, in particular, the recursive equation K𝑘(𝑖)
is reminiscent of the standard Riccati equation [58]. In Section 3.5, it is
shown that, similar to the standard Riccati equation, the corresponding
recursion (3.32) converges to a steady state for long time horizons un-
der appropriate assumptions and depends on the network characteristics.
When convergence occurs, this leads to a huge reduction of the required
memory space needed to store the gain matrices. Especially, in practical
applications where memory might be rare, this is an extremely important
result.

Moreover, not only can the control law be derived analytically but the
expected cumulative costs 𝐶*

0→𝐾 induced by the S-LQG can as well. This
result is formalized in the next theorem.

Theorem 3.2 The minimal expected cumulative costs 𝐶*
0→𝐾 defined

in (3.17) are given by

𝐶*
0→𝐾 = E

{︁
𝜉⊤

0 K0(𝑁)𝜉0

⃒⃒⃒
ℐ0

}︁
+

𝐾−1∑︁
𝑘=0

E
{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
ℐ0
}︀

+
𝐾−1∑︁
𝑘=0

E
{︁̂︀𝑤⊤

𝑘 K𝑘+1(𝜃𝑘)̂︀𝑤𝑘

⃒⃒⃒
ℐ0

}︁
,

(3.33)

with

𝑒𝑘
def= 𝜉

𝑘
− E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
,

P𝑘
def= E

{︁̂︀Q𝑘(𝜃𝑘) + ̂︀A𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀A𝑘(𝜃𝑘)
⃒⃒⃒
ℐ𝑘

}︁
− K𝑘(𝜃𝑘−1) ,

K𝑘(𝜃𝑘−1) = E
{︁̂︀Q𝑘(𝜃𝑘) + ̂︀A𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
− E

{︁̂︀A𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀B𝑘(𝜃𝑘)
⃒⃒⃒
ℐ𝑘

}︁
· E

{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀B𝑘(𝜃𝑘)
⃒⃒⃒
ℐ𝑘

}︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
.

Proof. The proof is given in Appendix A. �
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Theorem 3.2 quantifies that the expected costs of the S-LQG can the-
oretically be calculated offline. In practice, however, it is easier to use
bounds on the costs as the terms E

{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
ℐ𝑘

}︀
are extremely difficult

to evaluate [126]. The costs are further analyzed in Section 3.5 with
respect to the stability of the S-LQG. Moreover, in Chapter 5, an event-
triggered controller is presented that evaluates the costs online for different
scenarios.

Finally, we will briefly review how the MMSE estimate of the augmented
state E{𝜉

𝑘
|ℐ𝑘} can be calculated. It has been shown in [118] that E{𝜉

𝑘
|ℐ𝑘}

can be obtained by a time-varying Kalman filter that is extended by a
buffer to account for time delays in the sensor-controller network. The
buffer is used to store the measurements received. In case a delayed
measurement is received out-of-sequence, it is sorted into the buffer at the
correct position. Then the state estimate is obtained by recalculating the
measurement history. The chosen length of the buffer, denoted by 𝑁𝐵,
has to be sufficiently large to ensure that the true MMSE is obtained. In
particular, for optimal results it is sufficient if

𝑁𝐵 = max
{︀

𝑖 : 𝑖 ∈ N>0, 𝑞𝑆𝐶(𝑖) > 0
}︀

. (3.34)

This ensures that all measurements can be buffered that are needed to
incorporate every possible out-of-sequence measurement into the state
estimation. However, measurements that have suffered a long time delay
usually have only a small influence on the state estimate. In practice, it
is therefore reasonable to save computing resources by limiting the buffer
length and treating 𝑁𝐵 as a design parameter.

Another design parameter is the length 𝑁 of the control sequences. In the
next section, we investigate the influence of this parameter on the control
performance in a simulation with a double integrator plant. In Section 3.5,
we will also derive general guidelines for the choice of 𝑁 by analyzing the
stability properties of the closed-loop system.

3.4.2. Evaluation

We perform simulations of the S-LQG with a classical double integrator
plant to give a sense of the controller and to compare it to state-of-
the-art approaches. The simulated setup is shown in Fig. 3.7. The
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Figure 3.7.: Sequence-based NCS setup for simulation with double inte-
grator plant

double integrator frequently occurs in practical control problems [114].
For example, it can be interpreted as an accelerated mass where the
position and the velocity of the mass are the states of the system and the
accelerating force is the control input. The model of the double integrator
is given by

A =
[︂
1 1
0 1

]︂
,

B =
[︂
0
1

]︂
,

C =
[︀
1 0

]︀
.

We compare the proposed S-LQG controller with two other sequence-
based LQG approaches. The first one is the optimal approach described
in [45] that does not account for delay effects (LQG-Loss). For the second
controller, we consider the approach of [83] that incorporates delays,
however, based on an approximation (LQG-Approx). In addition, we also
implement a conventional LQG controller that is collocated at the plant. In
this way, the latter gives a natural lower bound for the minimum achievable
costs of the other approaches. To implement the controllers and simulate
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Figure 3.8.: Stochastic network characteristics considered in simulations
with double integrator plant

the system, we set the weighting matrices of the cost function (3.16), the
noise covariances, and the initial condition to

Q𝑘 = I ,

R𝑘 = 1 ,

𝑥0 =
[︂
100
0

]︂
,

Λ0 =
[︂
0.52 0

0 0.52

]︂
,

E
{︀

𝑤𝑘
⊤𝑤𝑘

}︀
=
[︂
0.12 0

0 0.12

]︂
,

E
{︀

𝑣⊤
𝑘 𝑣𝑘

}︀
= 0.22 .

We conduct two different simulations with two different network models.
The probability density functions of the delay distributions of both networks
are shown in Fig. 3.8. We refer to Network A as a good network because
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small time delays occur with high probability. Correspondingly, Network B
is considered as a bad network because longer delays and packet losses
have a higher probability. For controller design, the minimum mean square
error estimate E{𝜉

𝑘
|ℐ𝑘} is obtained via the filter given in [82]. The length

of the used measurement buffer is set to 𝑁𝐵 = 11 such that the filter
yields the optimal estimate. The default control input, which is applied if
the actuator buffer runs empty, is set to 𝑢𝑑𝑓

𝑘 = 0. For each controller and
network, and for different control sequence lengths 𝑁 , 200 Monte Carlo
simulation runs are evaluated with 200 time steps each. The average of the
attained cumulative costs is determined for each case according to (3.16).
The results are plotted in Fig. 3.9.

With the good network, the costs induced by the S-LQG, LQG-Loss, and
LQG-Approx do not vary substantially. However, when considering the
bad network connections, the difference between the controllers becomes
clear. The S-LQG performs significantly better than the LQG-Loss and
the LQG-Approx. In particular, for sequence lengths 𝑁 > 2, the costs
of the S-LQG are approximately half the costs of the LQG-Loss. The
LQG-Approx is not even able to stabilize the system.

It is interesting to note that the induced costs of the optimal control
approaches, i.e., S-LQG and LQG-Loss, decrease with increasing sequence
lengths. This justifies the optimal sequence-based approach as a general
tool to compensate for time delays and packet losses in NCS. The costs also
no longer significantly decrease for 𝑁 ≥ 3. This can be used as guideline
for choosing the sequence length. Here, 𝑁 = 3 would be a good choice.
A systematic approach to choosing the sequence length is described in
Section 3.5.

3.5. Stability Analysis of the S-LQG Controller

The S-LQG is the optimal controller for the NCS setup under consideration,
as no other controller exists that leads to lower expected costs. However,
is still unclear whether these costs are reasonably bounded, i.e., whether
the S-LQG can stabilize the system. And if it does, which sequence length
is required to guarantee stability? To answer these questions, we analyze
the costs induced by the S-LQG. One problem is that these costs (3.16)
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Figure 3.9.: Averaged cumulative costs for both networks and for different
control sequence lengths

will grow unbounded with increasing terminal time 𝐾 due to the presence
of stochastic disturbances and unbounded network effects. Therefore, it is
more meaningful to analyze the long run average costs instead.

Definition 3.3 The long run average costs 𝐶∞ are defined as

𝐶∞(𝑈0, 𝑈1, . . .) def= lim sup
𝐾→∞

1
𝐾

· 𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
, (3.35)

where the expected cumulative costs 𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
are given by (3.16).
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The long run average costs represent the costs occurring per time step
when the system runs for a long time. In LQG control, the boundedness of
the long run average costs is a standard criterion for assessing the stability
of the closed-loop system [15]. In particular, if the long run average costs
are bounded from above, the system is considered to be stable. We now
give a definition of this stability criterion.

Definition 3.4 The system is said to be Long Run Average Costs stable
(LRAC-stable), if the induced long run average costs 𝐶∞(𝑈0, 𝑈1, . . .) are
bounded from above, i.e., if there exists 𝐶 ∈ R such that for all initial
conditions

𝐶∞(𝑈0, 𝑈1, . . .) ≤ 𝐶 .

Otherwise, if no such 𝐶 exists, the system is called Long Run Average Costs
unstable (LRAC-unstable).

In the context of MJLS, other stochastic stability criteria have also been
introduced such as the almost sure stability, stochastic stability (SS), or
mean square stability (MSS) [141]. Based on these and other concepts,
stability conditions have been derived for constrained systems with directly
accessible state [111, 115], for undisturbed systems [33, 41, 70, 105, 135],
for systems with bounded disturbances [103], and for NCS where only
losses and no time delays occur [79]. Yet, these results are not applicable
here because of the substantial differences in the systems in question. In
the next section, conditions for the LRAC-(in)stability of the S-LQG are
presented based on [172] (own publication). Closest to these results is
the work [45, 120], in which conditions have been derived for the non-
sequence-based setup and for the case with packet losses only, respectively.
The relationship between these conditions is pointed out at the end of
Section 3.5.1.
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3.5.1. Main Result

To analyze the stability properties of the S-LQG controller, we introduce
the following additional assumptions1.

Assumption 3.6 It holds for the system (3.1), (3.2) and cost function (3.16)

a) the plant is time-invariant, i.e., A𝑘 = A, B𝑘 = B, and C𝑘 = C,

b) (A, C) is observable,

c) (A, Q1/2) is observable,

d) (A, W1/2) is controllable,

e) V > 0.

The main results on the stability analysis are presented in the form of the
following two theorems. The first theorem gives a sufficient condition for
LRAC-stability and the second a sufficient condition for LRAC-instability.
The proofs to these theorems have been moved to Appendix B for better
readability.

Theorem 3.3 Consider the NCS setup described in Section 3.1 with
Assumption 3.6 that is controlled by the S-LQG given by Theorem 3.1 .
Then, the system is LRAC-stable if both of the following conditions are
satisfied:

a) It holds either that max |eig (A) | < 1 or 𝑞𝑆𝐶
𝑎𝑟𝑟 > 𝑞𝑆𝐶

𝑐𝑟𝑖𝑡 , where 𝑞𝑆𝐶
𝑎𝑟𝑟 =∑︀𝑁𝐵

𝑚=0 𝑞𝑆𝐶(𝑚) is the measurement arrival probability and 𝑞𝑆𝐶
𝑐𝑟𝑖𝑡 is the

critical probability that is obtained by the solution of the quasi-convex
optimization problem

𝑞𝑆𝐶
𝑐𝑟𝑖𝑡

def= argmin
𝑞

Ψ (Y, Z, 𝑞) > 0

1The assumptions could also be relaxed towards detectability, reachability, and positive
semidefiniteness. However, this proliferates the mathematical description and,
therefore, has been refrained.



3.5. Stability Analysis of the S-LQG Controller 59

with constraints

0 ≤ Y ≤ I , Ψ (Y, Z, 𝑞) =

⎡⎣ Y √
𝑞 (YA + ZC)

√
1 − 𝑞YA

(*)⊤ Y 0
(*)⊤ 0 Y

⎤⎦ .

b) There exist 𝑁 + 1 matrices ̂︀L(0 : 𝑁) and 𝑁 + 1 positive definite
matrices X(0 : 𝑁) such that

X(𝑗) >

𝑁∑︁
𝑖=0

𝑝(𝑗, 𝑖)
(︁̂︀A(𝑖) + ̂︀B(𝑖)̂︀L(𝑗)

)︁⊤
X(𝑖)

(︁̂︀A(𝑖) + ̂︀B(𝑖)̂︀L(𝑗)
)︁

,

(3.36)

Proof. The proof is given in Appendix B.1. �

Condition a) in Theorem 3.3 is derived in [120] and ensures that the
estimation error covariance E

{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀

is bounded. This is always the
case if all eigenvalues of the system are Lyapunov stable, i.e., are within
the unit circle. However, if the plant has eigenvalues outside of the
unit circle, then there exists a critical arrival probability 𝑞𝑆𝐶

𝑐𝑟𝑖𝑡 such that
the estimation error can grow unbounded when the probability that a
measurement will eventually arrive at the controller 𝑞𝑆𝐶

𝑎𝑟𝑟 is smaller than
the critical probability. The arrival probability 𝑞𝑆𝐶

𝑎𝑟𝑟 can be influenced by
the length of the measurement buffer 𝑁𝐵 used at the controller to store
the measurement history (see Section 3.4).

The second condition in Theorem 3.3 ensures that the control related
costs are bounded. The term control related costs refers to the costs that
would be induced if the controller had direct access to the plant state,
i.e., if the estimation error 𝑒𝑘 were 0. The expression in Theorem 3.3 b)
is derived by bounding the true costs of the system that depend on the
time-varying S-LQG controller gain by the costs a time-invariant controller
would induce. It is worth pointing out that the condition (3.36) depends
on the transition probabilities 𝑝 and therefore on the sequence length 𝑁 .

Next, we present a sufficient condition for LRAC-instability. Note that if
the S-LQG is not able to stabilize the system, then there will be no other
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controller that is able to stabilize the system in the LRAC-sense. Therefore,
the results presented in the next theorem constitute fundamental bounds
on the stabilizability of linear sequence-based NCS.

Theorem 3.4 Consider the NCS setup described in Section 3.1 with
Assumption 3.6 controlled by the S-LQG given in Theorem 3.1 . Then,
the system is LRAC-unstable if at least one of the following conditions
is satisfied

a) 𝑞𝑆𝐶
𝑎𝑟𝑟 ≤ 1 − (max |eig (A) |)−2 ,

where 𝑞𝑆𝐶
𝑎𝑟𝑟 =

𝑁𝐵∑︀
𝑚=0

𝑞𝑆𝐶(𝑚) ,

b) 𝑝(𝑁, 𝑁) · max |eig (A) |2 > 1 ,

where 𝑝(𝑁, 𝑁) = 1 −
𝑁−1∑︀
𝑚=0

𝑞𝐶𝐴(𝑚) is defined by Lemma 3.1.

Proof. The proof is given in Appendix B.2. �

Again, the first condition refers to the estimation error covariance and
states that the covariance grows unbounded if the measurement arrival
probability of measurements is smaller than an expression that depends on
the maximum eigenvalue of the system matrix [118]. The second condition
of Theorem 3.4 gives a sufficient condition for the unboundedness of the
control related costs. It relates the maximum eigenvalue of the system
with the probability that the actuator buffer would run out of applicable
control inputs. Hence, the condition depends on the sequence length 𝑁 .

To get an intuition for the derived criteria, let us consider that no time
delays and packet losses occur in the network connections. This is basically
the standard LQG setup and condition (3.36) producing

X(0) >
(︁̂︀A(0) + ̂︀B(0)̂︀L(0)

)︁⊤
X(0)

(︁̂︀A(0) + ̂︀B(0)̂︀L(0)
)︁

. (3.37)

According to Lyapunov theory [127], if there exists an X(0) such that the
inequality holds, then all eigenvalues of (̂︀A(0) + ̂︀B(0)̂︀L(0)) are strictly
smaller than one. This implies that the system is Lyapunov stable and one
can easily show that this also implies LRAC-stability [15]. Hence, Theorem
3.3 b) is justified in this example. Furthermore, (3.37) always has a
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solution if (̂︀A(0), ̂︀B(0)) is stabilizable, because in this case, there is an ̂︀L(0)
with max |eig(̂︀A(0) + ̂︀B(0)̂︀L(0))| < 1. Observing that the stabilizability
of (̂︀A(0), ̂︀B(0)) is equivalent to the stabilizability of (A, B) implies that
Theorem 3.3 b) reduces to the stabilizability of (̂︀A(0), ̂︀B(0)) which is
known to be a necessary stability condition in standard LQG control.

Another interesting case is when there are only packet losses and no time
delays in the network connections. This situation is investigated in [120]
for the non-sequence-based setup, i.e., 𝑁 = 1. In this case, the authors
show that the corresponding condition in Theorem 3.3 b) is not only
sufficient but also necessary. The same setup has also been investigated
for the sequence-based case, i.e., 𝑁 ≥ 1 [45]. The derived conditions are
similar to the results in Theorem 3.3 and Theorem 3.4 . However, we
do not need the assumption regarding the steady-state distribution of the
Markov chain as needed in Prop. 3 of [45].

In the following, we use Theorem 3.3 and Theorem 3.4 to derive
bounds on the critical sequence length 𝑁 𝑐𝑟𝑖𝑡 required to stabilize a system.
Information about 𝑁 𝑐𝑟𝑖𝑡 is very interesting for practical implementations
as it gives an important guideline for choosing the length of the control
sequence. However, before we state the results, we need the following
lemma that allows for evaluating of Theorem 3.3 b) in terms of a Linear
Matrix Inequality (LMI) [17] feasibility problem.

Lemma 3.2 The condition in Theorem 3.3 b) is equivalent to the existence
of 𝑁 + 1 matrices Y(0 : 𝑁) and 𝑁 + 1 matrices Z(0 : 𝑁) such that

Ξ(Y(0 : 𝑁), Z(0 : 𝑁)) > 0 and 0 < Y(0 : 𝑁) < I ,

with

Ξ(Y(0 : 𝑁), Z(0 : 𝑁)) def=

⎡⎢⎢⎢⎣
Θ(0) 0 · · · 0

0 Θ(1) 0
...

. . .
...

0 0 · · · Θ(𝑁)

⎤⎥⎥⎥⎦ ,
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Θ(𝑗) def=

⎡⎢⎢⎢⎣
Y(𝑗) Σ(𝑗, 0) · · · Σ(𝑗, 𝑁)

Σ(𝑗, 0)⊤ Y(0) 0
...

. . .
...

Σ(𝑗, 𝑁)⊤ 0 · · · Y(𝑁)

⎤⎥⎥⎥⎦ ,

Σ(𝑗, 𝑖) def=
√︀

𝑝(𝑗, 𝑖)
(︁

Y(𝑗)̂︀A(𝑖)⊤ + Z(𝑗)̂︀B(𝑖)⊤
)︁

.

Proof. The equivalence of the expression can be shown by first applying
the Schur complement [17] to (3.36) and then introducing the new variables
Y(𝑗) = (X(𝑗))−1 and Z(𝑗) = (X(𝑗))−1 · ̂︀L(𝑗). The result is the LMI given
above. �

Using Lemma 3.2, we can formulate a corollary for computing the critical
sequence length that guarantees LRAC-stability.

Corollary 3.1 Denoting the shortest sequence length that guarantees LRAC-
stability by 𝑁 𝑐𝑟𝑖𝑡, it holds that

𝑁𝑚𝑖𝑛 ≥ 𝑁 𝑐𝑟𝑖𝑡 ≥ 𝑁𝑚𝑎𝑥 , (3.38)

where

𝑁𝑚𝑖𝑛 = min
𝑛

{︃
𝑛 ∈ N0 :

𝑛∑︁
𝑚=0

𝑞𝐶𝐴(𝑚) ≥ 1 − 1
max |eig (A) |2

}︃
, (3.39)

with max |eig (A) | ̸= 0. The upper bound 𝑁𝑚𝑎𝑥 on the critical sequence
length 𝑁 𝑐𝑟𝑖𝑡 can be obtained as the solution of the optimization problem

𝑁𝑚𝑎𝑥 = argmin
𝑁

Ξ(Y(0 : 𝑁), Z(0 : 𝑁)) > 0 , (3.40)

with constraints 0 < Y(0 : 𝑁) < I .

Proof. The corollary is a direct implication of Lemma 3.2, Theorem
3.3 b) and Theorem 3.4 b). �
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Finally, we give a result concerning the convergence properties of the
S-LQG controller gain matrices.

Theorem 3.5 If the system is LRAC-stable according to Theorem
3.3 , the recursion (3.32) converges for all 𝑖, 𝑗 ∈ J to the 𝑁 + 1 matrices
K(0 : 𝑁) given by

K(𝑖) =
𝑁∑︁

𝑗=0
𝑝(𝑖, 𝑗)

[︁ ̂︀Q(𝑗) + ̂︀A(𝑗)⊤K(𝑗)̂︀A(𝑗)
]︁

−

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀A(𝑗)⊤K(𝑗)̂︀B(𝑗)

]︁⎞⎠
·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀R(𝑗) + ̂︀B(𝑗)⊤K(𝑗)̂︀B(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁̂︀B(𝑗)⊤K(𝑗)̂︀A(𝑗)

]︁⎞⎠ .

(3.41)

Proof. The proof is given in Appendix B.3. �

Theorem 3.5 has a very important consequence for the practical appli-
cation of the S-LQG. The convergence of the controller gain drastically
reduces the memory required as only 𝑁 + 1 controller gains have to be
stored instead of (𝑁 + 1) · 𝐾, which would be impossible for the infinite-
horizon scenario. The theorem also states that the convergence of the
controller gain will occur in all relevant scenarios, i.e., in all scenarios
where control makes sense due to the LRAC-stability of the system.

In the next section, we demonstrate the applicability of the derived stability
criteria with a numerical example.

3.5.2. Evaluation

In the following simulation, we focus on demonstrating the conditions
formulated in Corollary 3.1, Theorem 3.3 b), and Theorem 3.4 b), which
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refer to the LRAC-stability of the control related costs. The conditions
in Theorem 3.3 a) and Theorem 3.4 a) concerning the error covariance
of the estimated state are investigated in detail [118]. Therefore, we
consider a directly observable plant in which the network between the
sensor and the controller is replaced by a direct point-to-point connection.
The system (3.1) and (3.2) is chosen to

A =
[︂
0.5 0
1 1.5

]︂
,

B =
[︂
1
0

]︂
,

C = I .

The system matrix A has the eigenvalues 0.5 and 1.5. In the simulation,
we set the covariances and initial conditions to

W = I ,

V = 0 ,

𝑥0 =
[︀
10 10

]︀
,

Λ0 = I .

We assume that delays occur in the controller-actuator network with
uniform distribution according to 𝑞𝐶𝐴(0) = 𝑞𝐶𝐴(1) = 𝑞𝐶𝐴(2) = 𝑞𝐶𝐴(3) =
0.25, and that there are no packet losses. The controller is computed as
described in Theorem 3.1 for the control sequence lengths 𝑁 = {1, 2, 3, 4}.
The weighting matrices of the cost function are set to Q = I and R = 10 ·I.

Evaluating (3.40) of Corollary 3.1 with an LMI-solver such as SeDuMi [131],
the optimization problem is infeasible for 𝑁={1, 2} and feasible for
𝑁 = {3, 4}. The upper bound for the critical sequence length 𝑁 𝑐𝑟𝑖𝑡 that
guarantees LRAC-stability is therefore 𝑁𝑚𝑎𝑥 = 3. In addition, consider-
ing (3.39) of Corollary 3.1, it can be seen that 1 − 1/ max |eig(A)|2 ≈ 0.55
and

∑︀1
𝑟=0 𝑞𝐶𝐴

𝑟 = 0.5 and
∑︀2

𝑟=0 𝑞𝐶𝐴
𝑟 = 0.75. This shows that the system is

LRAC-unstable for 𝑁 ≤ 2 and we have 𝑁𝑚𝑖𝑛 = 3. Combining these facts,
it holds that 3 ≤ 𝑁 𝑐𝑟𝑖𝑡 ≤ 3 and, hence, 𝑁 𝑐𝑟𝑖𝑡 = 3.
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Figure 3.10.: Comparison of the averaged cumulative costs 𝐶0→𝑘/𝑘
induced until time step 𝑘 for different lengths of the control sequences.

To verify this result, we perform Monte Carlo simulations with 105 simula-
tion runs over 50 time steps for each of the control sequences 𝑁 = {1, . . . , 4}.
The induced costs are divided by the current time step 𝐶0→𝑘/𝑘 and av-
eraged over all simulation runs. The result is plotted against the time
step as shown in Fig. 3.10. The exponential increasing averaged costs for
sequence lengths 𝑁 = {1, 2} indicate that the system is LRAC-unstable for
these cases. However, for longer sequences 𝑁 = {3, 4} the costs converge
and, hence, are bounded. Therefore, the simulation verifies the theoretical
result of 𝑁 𝑐𝑟𝑖𝑡 = 3.
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3.6. Variations of the Basic S-LQG Algorithm

In this section, we discuss two variations of the basic S-LQG algorithm.
This is first the application of the so called hold-input strategy for choosing
the default control input. Second, we investigate the case of UDP-like
networks which do not provide any acknowledgment signals.

3.6.1. Hold-Input Strategy

Recall that the default control input 𝑢𝑑𝑓
𝑘 is the control input that is applied

by the actuator if the actuator buffer runs empty. In the derivation of
the S-LQG in Section 3.4, we set the default control input 𝑢𝑑𝑓

𝑘 = 0. This
strategy is also referred to as zero-input strategy. It is a good choice
in many scenarios, but might be insufficient in others. In this section,
we therefore discuss a very widespread alternative: the zero-order hold
strategy. In this scheme, the previously applied control input is applied
again until new control data are received, i.e., 𝑢𝑑𝑓

𝑘 = 𝑢𝑘−1. Note that
neither of the strategies is superior to the other in general. It depends on
the scenario which scheme performs better [119].

In the zero-input strategy, the default control input is always known by the
controller in advance. In the zero-order hold strategy, the default control
input changes every time a new sequence is received by the actuator. Due
to transmission delays and packet losses in the network, it is not known
a-priori which sequence will arrive at the actuator and therefore which
will be the last successfully received control sequence by a certain time
step. As a consequence, the default control input depends on the time
delay realizations 𝜏𝐶𝐴 of the controller-actuator network and is not known
a-priori. To cope with this effect, we integrate 𝑢𝑑𝑓

𝑘 in the augmented system
state, i.e.,

̃︀𝜉
𝑘

def=

⎡⎢⎣𝑥𝑘

𝜌
𝑘

𝑢𝑑𝑓
𝑘

⎤⎥⎦ =
[︃

𝜉
𝑘

𝑢𝑑𝑓
𝑘

]︃
, (3.42)
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where ̃︀𝜉
𝑘

∈ R𝑛𝑥+𝑛𝜌+𝑛𝑢 is the new system state and 𝑥𝑘 and 𝜌
𝑘

are given
by (3.1) and (3.26), respectively. Thus, the NCS system model derived in
Section 3.3 must be adapted according to

Sequence-Based NCS Model (with Zero-Order Hold Strategy)

̃︀𝜉
𝑘+1 = ̃︀A𝑘(𝜃𝑘) ̃︀𝜉

𝑘
+ ̃︀B𝑘(𝜃𝑘) 𝑈𝑘 + ̃︀𝑤𝑘 ,

𝑦
𝑘

= ̃︀C𝑘
̃︀𝜉

𝑘
+ 𝑣𝑘 ,

with

̃︀A𝑘(𝜃𝑘) def=

⎡⎣A𝑘 B𝑘 · H𝑘(𝜃𝑘) 𝛿(𝜃𝑘,𝑁) · I
0 F 0
0 H𝑘(𝜃𝑘) 𝛿(𝜃𝑘,𝑁) · I

⎤⎦ , ̃︀C𝑘
def=
[︀
C𝑘 0

]︀
,

̃︀B𝑘(𝜃𝑘) def=

⎡⎣B𝑘 · J𝑘(𝜃𝑘)
G
0

⎤⎦ , ̃︀𝑤𝑘
def=

⎛⎝𝑤𝑘

0
0

⎞⎠ , ̃︀𝜉
𝑘

def=

⎡⎢⎣𝑥𝑘

𝜌
𝑘

𝑢𝑑𝑓
𝑘

⎤⎥⎦ .

Using this model, we can formulate the solution to the optimal sequence-
based LQG control problem with a zero-order hold strategy.

Corollary 3.2 Consider the optimization problem 3.1 with the zero-input
strategy replaced by the zero-order hold strategy, i.e., 𝑢𝑑𝑓

𝑘 = 𝑢𝑘−1, then the
optimal solution is given by Theorem 3.1 with 𝜉

𝑘
, ̂︀A𝑘(𝜃𝑘), ̂︀B𝑘(𝜃𝑘), ̂︀C𝑘, and̂︀𝑤𝑘 are replaced by ̃︀𝜉

𝑘
, ̃︀A𝑘(𝜃𝑘), ̃︀B𝑘(𝜃𝑘), ̃︀C𝑘, and ̃︀𝑤𝑘, respectively.

Proof. Replacing the corresponding quantities, the proof follows the
lines of the proof of Theorem 3.1 exactly. �
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3.6.2. Control without Network Acknowledgments

In this section, we briefly discuss the problem of controller design for
networks that provide a UDP-like protocol instead of the TCP-like protocol
considered thus far. Using a UDP-like protocol, the network does not
provide acknowledgments for successfully sent data packets. For the
controller-actuator network connection, this implies that Assumption 3.5
does not hold, as the controller has no direct information about the control
inputs that are applied by the actuator. In particular, neither the sequence
buffered at the previous time step (as indicated by 𝜃𝑘−1), nor the applied
control input 𝑢𝑘−1 is perfectly known at time step 𝑘. However, for an
optimal controller design, these values are needed and, hence, must be
estimated based on the information available to the controller.

Unfortunately, the estimation error of these values depends on the control
sequences sent. Therefore, a control sequence not only influences the system
directly when applied by the actuator, but also indirectly by affecting
the future estimation error of the buffered sequence. A lower estimation
error allows for better control decisions and, thus, has an indirect effect
on the induced costs. This direct and indirect influence of the control
is also referred to as the dual effect [10]. The dual effect implies that
the separation property (see Theorem 3.1 for TCP-like networks) does
not hold for UDP-like networks. This means that the optimal control
problem cannot be divided into a control problem and into an estimation
problem without loss of optimality. In particular, Lemma A.3 does not hold
for UDP-like networks as the error covariance E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
depends on 𝑈𝐾−2.

It is widely recognized that optimal control problems involving the dual
effect are extremely hard to solve and optimal analytic solutions are not
available in general. Therefore, we propose an approximate solution by
means of a so called certainty equivalence control approach [10]. In this
strategy, the controller is first designed assuming that all stochastic system
variables that are subject to the dual effect are treated as if these quantities
are perfectly known. Then, the corresponding variables are replaced by
their MMSE estimates.
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Applying this idea to the S-LQG, we exchange the control law

𝑈𝑘 = L𝑘(𝜃𝑘−1) · E{𝜉
𝑘
|ℐ𝑘}

given in (3.30) with the certainty equivalence control law

𝑈𝑘 = L𝑘(E {𝜃𝑘−1|ℐ𝑘}) · E{𝜉
𝑘
|ℐ𝑘} . (3.43)

This control law is not optimal. However, it provides a feasible and easy
structure, and typically performs astonishing well in practice. We refer to
this controller as S-LQG-UDP.

Before we can use the S-LQG-UDP, we need an estimator that calculates
the estimates E {𝜃𝑘−1| ℐ𝑘} and E{𝜉

𝑘
|ℐ𝑘} for each time step. In NCS

literature, however, the problem of state estimation is typically investigated
with just one network between the sensor and the controller [118,126,129].
For cases in which there is only a network between the controller and
the actuator, methods based on the unknown input observer have been
proposed [28, 62, 96]. Yet, these filters only exist under rather strong
rank conditions on the system matrices, i.e., the system is required to be
minimum-phase. In [45, 81, 120], networks between the sensor and the
controller, as well as between the controller and the actuator, are taken
into account. However, [45] does not account for packet delays and [120]
relies on a TCP-like protocol. The approach in [81] could be used in our
scenario to estimate 𝜃𝑘. However, the filter neglects the correlation of the
state and the buffered control sequence.

Therefore, in [175] (own publication), an estimator is proposed based on
the Interacting Multiple Model (IMM) method. The approach accounts
for the correlations involved and performs a joint input-state estimation
to obtain E {𝜃𝑘−1| ℐ𝑘} and E{𝜉

𝑘
|ℐ𝑘} simultaneously. The key ingredient

to estimator is the NCS model derived in Section 3.3. In [175], it is shown
that there is a strong relationship between state estimation in predictive
NCS (in particular sequence-based NCS) and multi-target tracking. Also,
simulations are provided that demonstrate the improved performance of
the estimator.

Coming back to the control problem, we apply the estimator described
in [175] (own publication) to implement the S-LQG-UDP. In the following,
we want to get an idea of the degree of suboptimality that the approach
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comprises. To that end, we repeat the Monte Carlo simulation described in
Section 3.4.2 with the double integrator plant and compare the performance
of the S-LQG with the S-LQG-UDP. In the simulation, the S-LQG uses
a TCP-like network while the S-LQG-UDP uses a UDP-like network with
the same stochastic characteristics. Other simulation parameters are not
changed.

The simulation results are depicted in Fig. 3.11. One can see that the
S-LQG-UDP does not perform better than the S-LQG. This is expected
as the latter uses the additional information provided by the TCP-like
network optimally. For Network A, the S-LQG-UDP stabilizes the system
with around 35% higher costs than the S-LQG. This leaves room for
improvement but also seems acceptable considering that the S-LQG-UDP
requires much less communication. For Network B, we can see that the
S-LQG-UDP becomes unstable for sequence lengths 𝑁 = 1 and 𝑁 = 2.
The effective packet loss rate when using these length is more than 90% and
70%, respectively (see Fig. 3.8). As the S-LQG stabilizes the plant with
a TCP-like network, this demonstrates the value of the acknowledgment
signals, in particular, in the presence of massive packet losses and long time
delays. For sequence lengths 𝑁 ≥ 3, the S-LQG-UDP stabilizes the system
with approximately 150% higher costs than the S-LQG. Unfortunately, we
do not know the value of the minimal achievable costs that an optimal con-
troller for a UDP-like network would induce. Hence, we cannot determine
how well the S-LQG-UDP utilizes the available information. However, the
plots clearly indicate that the S-LQG-UDP provides better control quality
with longer sequence lengths. This is an important observation as the
controller is based on an approximation.
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Figure 3.11.: Simulation results for certainty equivalence based approach





4. Sequence-Based Trajectory
Tracking

The basic S-LQG controller stabilizes a system around the origin of the
state space, i.e., it keeps the state close to the point 𝑥 = 0. An extension of
this case is determining how to stabilize the system around an equilibrium
point that is not zero, i.e., around a state 𝑥̄ = A𝑥̄ with 𝑥̄ ̸= 0. This
problem can be solved in the same way as in standard LQG control [2]
by adding an appropriate constant feedforward term to the output of the
S-LQG. The feedforward term is chosen so that it shifts the operating
point from the origin to the desired equilibrium point.

In this chapter, we go one step further and consider the problem of tracking
control. In tracking control, the controller has to be designed such that
the output of the closed-loop system follows a given reference trajectory.
Hence, the aforementioned task of stabilization around an equilibrium
point can be seen as a special case of tracking control. In general, the
tracking problem is more challenging than the stabilization problem as
the closed-loop system not only has to be stabilized, but also has to follow
the given reference trajectory [127]. This is even more important in a
networked scenario where time delays and transmission losses can occur in
the network connections.

It is interesting to note that the vast majority of NCS control methods
exclusively deal with the stabilization problem. An overview of this work
has already been given in Section 2.3. Recent approaches that address
the problem of tracking control in the presence of time delays and/or
transmission losses are described in [34, 145,148,155]. Here, the controller
is designed such that the tracking error dynamics are guaranteed to be
input-to-state stable [148] or the tracking error is minimized with respect
to the 𝐻∞-norm [34,145] and the 𝐻2-norm [155], respectively. However,
the methods above only send a single control input per time step to the
actuator and, hence, make no use of the sequence-based method.
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As demonstrated in the previous chapter, the sequence-based control
approach promises improved performance due to the active compensation of
network-induced time delays and packet losses. Moreover, in the context of
tracking control, the sequence-based method offers the additional advantage
of embedding available information of the future reference trajectory in the
out-going control sequences. This can be extremely valuable in situations
such as robot control, where the reference trajectories are calculated in
advance by path planning algorithms. The available preview information
can be integrated into the control sequences sent to the actuator such that
the plant still follows the reference trajectory, even if time delays and/or
losses occur in the communication.

The tracking control problem in sequence-based control is explicitly ad-
dressed in the works [11,70,97,134]. Here, the approaches [11,134] use the
sequence-based MPC approach described in Section 2.4.3, while [70,97] are
based on the extension of a nominal controller as discussed in Section 2.4.2.
A stochastic optimal tracking controller for NCS with time-varying trans-
mission delays and/or packet losses has not yet been proposed. The
available optimal control approaches are only concerned with the stabiliza-
tion problem and not with the tracking problem. For an overview of these
non-tracking methods, the reader is referred to Section 2.4.4, where the
general idea of the optimal sequence-based control is described.

In this chapter, we derive the sequence-based closed-loop optimal tracking
controller for the networked LQG setup described in Section 3.1. Again,
we make the assumption that the controller-actuator network provides
idealized acknowledgments (Assumption 3.5). The approach was first
published in [173] (own publication). The derived controller optimally
compensates for time delays and transmission losses in the network con-
nections and optimally incorporates preview information on the reference
trajectory. An important result is that, similar to standard LQG control,
the optimal controller can be separated without loss of optimality into a
feedback part and a feedforward part. The feedback part is identical to the
S-LQG controller. As we will see, this allows for easy application of the
controller and fast adaption to online changes of the reference trajectory.
The findings extend the results obtained in [159,160], where this kind of
separation is proven to hold for non-sequence-based tracking control over
quantized networks.
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Figure 4.1.: NCS setup for sequence-based tracking control

In the next section, we will give a formal description of the tracking control
problem. The optimal solution to this problem is presented in Section 4.2
and evaluated with simulations in Section 4.3. The formal derivation of
the control law is given in Appendix C.

4.1. Problem Formulation

We consider the problem setup shown in Fig. 4.1. It is almost identical to
the S-LQG setup described in Section 3.1. Yet, we add the plant output
𝑧𝑘 ∈ R𝑛𝑧 that is considered for the tracking task. Thus, the system
equations are given by

𝑥𝑘+1 = A𝑘𝑥𝑘 + B𝑘𝑢𝑘 + 𝑤𝑘 ,

𝑦
𝑘

= C𝑘𝑥𝑘 + 𝑣𝑘 ,

𝑧𝑘 = Z𝑘𝑥𝑘 .

(4.1)

The controller shall be designed such that 𝑧𝑘 follows a given reference
trajectory 𝑧𝑅𝑒𝑓

0:𝐾 with terminal time 𝐾 ∈ N>0. For the sake of brevity, we
assume that 𝑧𝑅𝑒𝑓

0:𝐾 is fixed and directly available to the controller. The
setup can easily be extended to a case in which the reference trajectory
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may change during operation, which is discussed at the end of the next
section.

We define the tracking error Δ𝑘 as the difference between the reference
value 𝑧𝑅𝑒𝑓

𝑘 and the corresponding plant output 𝑧𝑘 at time 𝑘, i.e.,

Δ𝑘
def= 𝑧𝑘 − 𝑧𝑅𝑒𝑓

𝑘 .

To measure the tracking performance, we use the quadratic tracking error
along with the energy consumed by the control. Both are brought together
in the following finite-horizon cumulative cost function

𝐶𝑇 𝑟𝑘
0→𝐾(𝑈0:𝐾) def= E

{︃
Δ⊤

𝐾Q𝐾Δ𝐾 +
𝐾−1∑︁
𝑘=0

[︁
Δ⊤

𝑘 Q𝑘Δ𝑘 + 𝑢⊤
𝑘 R𝑘𝑢𝑘

]︁⃒⃒⃒⃒⃒ ℐ𝑇 𝑟𝑘
0

}︃
.

(4.2)
The weighting matrices Q𝑘 ∈ R𝑛𝑧×𝑛𝑧 and R𝑘 ∈ R𝑛𝑢×𝑛𝑢 are positive
semidefinite and positive definite, respectively. Further, the information set
ℐ𝑇 𝑟𝑘

𝑘 , available to the controller at time step 𝑘, consists of the information
set ℐ𝑘 (available to the S-LQG controller in Problem 3.1) extended by the
given reference trajectory such that

ℐ𝑇 𝑟𝑘
𝑘

def= ℐ𝑘 ∪
{︁

𝑧𝑅𝑒𝑓
0:𝐾

}︁
=

⎧⎨⎩
{︁

𝑥0, Λ0, 𝑧𝑅𝑒𝑓
0:𝐾

}︁
for 𝑘 = 0 ,{︁

𝒴1:𝑘, 𝑈0:𝑘−1, 𝜃0:𝑘−1, 𝑥0, Λ0, 𝑧𝑅𝑒𝑓
0:𝐾

}︁
for 𝑘 ∈ N>0 .

(4.3)

Finally, we formalize the optimal sequence-based tracking control problem.

Problem 4.1 Sequence-Based LQG Tracking Control Problem (with zero-
input strategy)

min
𝑈0:𝐾−1

𝐶𝑇 𝑟𝑘
0→𝐾

(︀
𝑈0:𝐾−1

)︀
,

subject to: 𝑈𝑘 = 𝜇𝑘

(︀
ℐ𝑇 𝑟𝑘

𝑘

)︀
, 𝑢𝑑𝑓

𝑘 = 0 , (4.1), (4.3), (3.10)–(3.11) .

The solution to this optimization problem is presented in the next section.
The corresponding proof can be found in Appendix C.
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4.2. Optimal Control Law

The optimal control law that solves Problem 4.1 is summarized in the
following theorem. In the exposition, we use the sequence-based NCS
model defined by (3.29) that contains the augmented matrices ̂︀A𝑘(𝜃𝑘),̂︀B𝑘(𝜃𝑘), and ̂︀R𝑘(𝜃𝑘) and the variable 𝜃𝑘 to specify the age of the sequence
buffered in the actuator.

Theorem 4.1 Consider the sequence-based LQG tracking problem 4.1
of minimizing 𝐶𝑇 𝑟𝑘

0→𝐾

(︀
𝑈0:𝐾−1

)︀
. Then,

a) the optimal control sequences can be separated into a feedback and a
feedforward term such that

𝑈𝑘 = 𝑈𝑓𝑏
𝑘 + 𝑈𝑓𝑓

𝑘 , (4.4)

where the feedback term 𝑈𝑓𝑏
𝑘 depends on the estimated state of the

system but not on the reference trajectory. The feedforward term
𝑈𝑓𝑓

𝑘 depends on the reference trajectory but not on the system state.

b) the control law to calculate the feedback term 𝑈𝑓𝑏
𝑘 is given by the

S-LQG controller described in Theorem 3.1 , i.e.,

𝑈𝑓𝑏
𝑘 = L𝑘(𝜃𝑘−1) · E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
, (4.5)

where L𝑘(𝜃𝑘−1) is defined in (3.31).

c) the control law to calculate the feedforward term 𝑈𝑓𝑓
𝑘 is given by

𝑈𝑓𝑓
𝑘 = −

(︁
E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤

𝜎𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
,

(4.6)
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with

K𝑘 = E
{︁̂︀Q𝑘(𝜃𝑘) + ̂︀A𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
− P𝑘 , (4.7)

P𝑘
def= E

{︁̂︀A𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)
⃒⃒⃒
ℐ𝑘

}︁
·
(︁
E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
,

(4.8)

𝜎𝑘 = E
{︁̂︀A𝑘(𝜃𝑘)⊤

𝜎𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
+ Q⊤

𝑘 𝑧𝑅𝑒𝑓
𝑘

− E
{︁̂︀A𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
·
(︁

E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤

𝜎𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
,

(4.9)

and ̂︀R𝑘(𝜃𝑘) def= J𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘) , Q𝑘
def=
[︀
Q𝑘Z𝑘 0

]︀
,

̂︀Q𝑘(𝜃𝑘) def=
[︂
Z⊤

𝑘 Q𝑘Z𝑘 0
0 H𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)

]︂
.

(4.10)

The initial conditions are given by

K𝐾
def=
[︂
Z⊤

𝐾Q𝐾Z𝐾 0
0 0

]︂
, 𝜎𝐾

def=
[︀
Q𝐾Z𝐾 0

]︀⊤
𝑧𝑅𝑒𝑓

𝐾 ,

𝑠𝐾
def= (𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝑧𝑅𝑒𝑓
𝐾 .

(4.11)

d) the minimum expected cumulative costs are given by

𝐶𝑇 𝑟𝑘*

0→𝐾
def= min

𝑈0:𝐾−1

𝐶𝑇 𝑟𝑘
0→𝐾

(︀
𝑈0:𝐾−1

)︀
= E

{︁
𝜉⊤

0 K0𝜉0

⃒⃒⃒
ℐ0

}︁
+

𝐾−1∑︁
𝑘=0

E
{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
ℐ0
}︀

+ 𝑠0

− 2 · 𝜎⊤
0 E
{︁
𝜉0

⃒⃒⃒
ℐ0

}︁
+

𝐾−1∑︁
𝑘=0

E
{︁̂︀𝑤⊤

𝑘 K𝑘+1̂︀𝑤𝑘

⃒⃒⃒
ℐ0

}︁
,
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with

𝑒𝑘
def= 𝜉

𝑘
− E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
, (4.12)

𝑠𝑘 = E {𝑠𝑘+1| ℐ𝑘} + (𝑧𝑅𝑒𝑓
𝑘 )⊤Q𝑘𝑧𝑅𝑒𝑓

𝑘 − E
{︁
𝜎⊤

𝑘+1
̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
·
(︁

E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤

𝜎𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
.

(4.13)

Proof. The proof is given in Appendix C. �

The structure of the optimal controller described by Theorem 4.1 is
illustrated in Fig. 4.2. Analogous to standard LQG tracking control, the
resulting controller consists of two parts: a feedback term and a feedforward
term. As can be seen by comparison of (4.5) with Theorem 3.1 c), the
feedback term is identical to the finite horizon S-LQG controller. In this
tracking scenario, the S-LQG has the purpose of attenuating stochastic
disturbances by state feedback and stabilizing the system around the origin
of the state space. The feedforward term then shifts the system state
from the origin to the reference trajectory. With respect to the system
state, the feedforward part is an open-loop control law. This can be seen
by (4.6) as it only depends on the reference trajectory via (4.9). However,
as the feedforward part (as well as the feedback part) also depends on the
acknowledgment signals, it is not purely an open-loop control law.

With the reference trajectory known in advance, the matrices (4.6)–(4.11)
can be precomputed. Hence, the control law of the optimal tracking
controller can also be calculated offline. During operation, only the aug-
mented state estimate has to be obtained (as discussed in Section 3.4.1)
and applied to the corresponding precomputed matrices dependent on the
current time index and acknowledgment signal. If the reference trajectory
is only partially available or changes during operation, only the feedforward
part (4.6) of the tracking controller has to be recomputed online. The
feedback control law does not change.

If long time horizons have to be considered where changes of the reference
trajectory are likely, it is also possible to apply the tracking controller in
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Figure 4.2.: Structure of the optimal sequence-based tracking controller

a receding horizon scheme as in sequence-based MPC. In this operation
mode, the reference trajectory is periodically recalculated over a finite
time horizon shorter than the horizon of the tracking task. This scheme
even allows for infinite-horizon tracking control. An appealing advantage
of considering long time horizons is that the feedback gain of the under-
lying S-LQG converges (under assumptions) to a steady state as stated
in Theorem 3.1 . This significantly reduces the memory required for the
tracking controller.

4.3. Evaluation

In the following, we illustrate the behavior of the optimal tracking controller
by simulations with an inverted pendulum on a cart that is controlled over
a network. The inverted pendulum is modeled as described in [3]. The
state of the pendulum is given by

𝑥(𝑡) =
[︀
𝑠(𝑡) 𝑠̇(𝑡) 𝜑(𝑡) 𝜑̇(𝑡)

]︀⊤
,
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Mass of the cart 0.5 kg
Mass of the pendulum 0.5 kg
Friction of the cart 0.1 N/(ms)
Length to pendulum center of mass 0.3 m
Inertia of the pendulum 0.006 kgm2

Sampling time 0.1 s

Table 4.1.: Parameters of inverted pendulum used in simulations

where 𝑠(𝑡) is the position of the cart and 𝜑(𝑡) is the angle of the pendu-
lum rod relative to an upright position. We consider a pendulum with
parameters as shown in Table 4.1. The discrete-time state space model1
of this system is then given by

A =

⎡⎢⎢⎣
1.0000 0.0200 0.0015 0.0000

0 0.9964 0.1550 0.0015
0 −0.0001 1.0103 0.0201
0 −0.0105 0.0343 1.0103

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0.0004
0.0358
0.0011
0.1054

⎤⎥⎥⎦ ,

C =
[︂
1 0 0 0
0 0 1 0

]︂
.

In the simulation, we choose the covariances of the disturbances, the initial
condition, and the weighting matrices to

W = V =

⎡⎢⎢⎣
0.0052 0 0 0

0 0 0 0
0 0

(︀ 0.2·𝜋
360

)︀2 0
0 0 0 0

⎤⎥⎥⎦ ,

𝑥0 =

⎡⎢⎢⎣
0

0.2
0

0.2

⎤⎥⎥⎦ , Λ0 =

⎡⎢⎢⎣
0.012 0 0 0

0 0 0 0
0 0 0.012 0
0 0 0 0

⎤⎥⎥⎦ , Q = R = Z = I .

The networks are modeled as two independent data links with stochastic
characteristics as shown in Fig. 4.3.

1Units are are omitted in the model for reasons of clarity.
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Figure 4.3.: Probabilities of transmission delays in the network connections
used in the simulation. Transmission losses are considered as infinite time
delays.

We calculate the optimal tracking controller for different control sequence
lengths where the default control input is set to 𝑢𝑑𝑓 = 0. The reference
trajectory is shown in Fig. 4.4. For comparison to another sequence-based
controller, we implement the approach described in [70] that is based
on a nominal controller The nominal controller is implemented as an
optimal linear quadratic tracking controller [2]. At the controller site, the
state is estimated using the optimal estimator derived in [81], which is a
time-varying Kalman filter with measurement buffer.

A typical sample run for each controller tracking the reference trajectory
is shown in Fig. 4.4. The length of the control sequence is 𝑁 = 4. At first,
the trajectories are almost identical and the cart moves from the initial
position 𝑠(0) to the reference value of 50. Then, however, the proposed
optimal tracking controller already orientates after four seconds towards
the new reference value of -50, although this reference will not be active
for another second. The extended nominal controller does not anticipate
the set point change. As a result, higher fluctuations of angle and angular
velocity occur than with the proposed optimal sequence-based controller
with preview.
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Figure 4.4.: Example of state trajectory for a simulation with control
sequence length 𝑁 = 4 for proposed controller (—) and control approach
of [70] (−−) when tracking the reference trajectory (− · −). The position
and velocities of the cart and the rod are shown.
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This also has an influence on the resulting costs. Performing 100 Monte
Carlo simulation runs over 500 time steps each, the average costs are
calculated according to (4.2) over all simulation runs. The outcome is
shown in Fig. 4.5 for different lengths of the control sequence. We notice
that the average costs of both controllers decrease with increasing sequence
length. This underpins the benefit of the sequence-based control method.
As a second observation, we can state that the proposed tracking controller
indeed leads to lower costs than the nominal-controller-based approach.
The latter is even unstable for sequence lengths shorter than 𝑁 = 3.
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Figure 4.5.: Comparison of the cumulative average costs (4.2) over different
lengths of the control sequence for 100 Monte Carlo simulation runs.

Concluding this section, we saw in the example that despite packet losses
and time-varying transmission delays, preview information on the refer-
ence trajectory can be profitably used to increase tracking performance.
Thus, the incorporation of reference preview within the sequence-based
control framework is a natural extension of the general sequence-based
control method. Furthermore, these benefits do not come at additional
communication costs.
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Control

The S-LQG is designed to compensate for stochastic packet losses and
time-varying transmission delays in NCS. As described in Section 2.2.3,
band-limitations are further challenges in control over digital networks. In
particular, these can restrict the number of possible data transmissions
between sensors, controllers, and actuators. Therefore, it is desirable to
send data over the network only when necessary. This also makes sense
under consideration of a possible deterioration of the network due to high
network load. As described in Section 2.2, transmitting data increases the
network load and, hence, can significantly increase time delays and packet
losses. Therefore, a lot of research has been conducted to develop control
schemes that minimize the communication expenditure. The proposed
approaches can be distinguished into two classes. The first one is concerned
with the problem of finding optimal scheduling protocols that manage
the network access on a MAC-layer level [144]. The other approaches are
based on the idea of event-triggered control which is also referred to as
event-based control [7, 24,48,64].

The main characteristic of event-triggered control is that data are only
transmitted when a certain event occurs. Measurements could, for example,
only be sent from the sensor to the controller if the difference between
the last transmitted measurement and the current measurement is larger
than a certain threshold, or the estimation error covariance exceeds a
specified bound [35,84,85,139]. In the same way, the controller can decide
not to send a control input to the actuator if the current control input
already provides a sufficient control performance [48]. In this scheme,
the control input is held at the actuator until a new admissible packet
is received. A recent survey of event-triggered methods can be found
in [74] and recent work concerning the non-sequence-based setting is given
in [5, 36,64,78,143].
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In this chapter, an approach is presented that combines the idea of event-
triggered control with sequence-based control. The results are published
in abbreviated form in [170] (own publication). The proposed controller
is based on the S-LQG and not only compensates for time-varying trans-
mission delays and packet losses in the controller-actuator network, but
also reduces the communication. Data transmissions are only initiated if
this is justified by sufficient improvement to the system performance. The
combination of these two methods is extremely beneficial as the control
sequences buffered in the actuator may guarantee a sufficient control perfor-
mance for quite a long time. Therefore, the number of data transmissions
can be greatly decreased. Of course, the sequence-based controller sends
more information per data packet than a controller that only computes
single control inputs. However, assuming that the control sequences are
optimally used at the actuator site, we can expect an effective reduction
of the data transmitted due to less overhead. For example, the Internet
protocol IPv4 typically has an overhead of 20 to 60 bytes per data packet
whereas a control input often only occupies around 2 bytes. Therefore,
sending fewer data packets with higher payload reduces the overhead so
that the total amount of data communicated can be reduced [37,165].

Combined sequence-based and event-triggered control has been considered
previously. A sequence-based LQ optimization approach is described
in [40]. The authors derive a sequence-based self-triggered LQR controller
that calculates the transmission times. However, the approach does not
incorporate network-induced delays or losses and requires perfect state
information. In addition, the approaches in [165,168] consider an event-
triggered sequence-based control using the generalized nominal controller
approach described in Section 2.4.2. In [168], the controller sends a control
sequence as soon as the difference between the buffered control sequence
and the newly calculated control sequence exceeds a certain threshold.
The difference of the two sequences is determined based on the maximum
norm. In [165], the event-triggered sensor only sends a measurement to
the controller if the measurement significantly differs from the last one
sent. As soon as the controller receives a triggered measurement, a control
sequence is calculated and sent to the actuator. In contrast to the approach
presented in this chapter, the decision rule in [165, 168] is not based on
the expected costs, but on empirical tuning parameters.
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In the next section, the this problem setup is introduced in detail. Then,
the proposed controller is presented in Section 5.2 and the stability of the
closed-loop is analyzed in Section 5.3. Finally, the performance is evaluated
in Monte Carlo simulations with an inverted pendulum in Section 5.4.

5.1. Problem Formulation

Here, we consider the S-LQG system setup introduced in Section 3.1
where system performance is measured in terms of the quadratic cost
function (3.16). For convenience, the cost function is restated here

𝐶0→𝐾

(︀
𝑈0:𝐾−1

)︀
= E

𝑥0:𝐾
𝑢0:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾 +
𝐾−1∑︁
𝑘=0

𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝑢⊤

𝑘 R𝑘𝑢𝑘

⃒⃒⃒⃒
⃒ ℐ0, 𝑈0:𝐾−1

}︃
.

One way to address the problem of simultaneously minimizing the cost
function and reducing the communication between the controller and
the actuator is to extend the cost function by an additional term that
represents the communication costs [74]. Therefore, we introduce the
extended cost function

𝐶𝐸𝑣𝑡
0→𝐾

(︀
𝑈0:𝐾−1, 𝑠0:𝐾−1

)︀ def= E
𝑥0:𝐾

𝑢0:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾

+
𝐾−1∑︁
𝑘=0

(︀
𝑆𝑘𝑠𝑘 + 𝑥⊤

𝑘 Q𝑘𝑥𝑘 + 𝑢⊤
𝑘 R𝑘𝑢𝑘

)︀⃒⃒⃒⃒⃒ ℐ0, 𝑈0:𝐾−1, 𝑠0:𝐾−1

}︃
.

(5.1)

This cost function contains the additional term 𝑆𝑘𝑠𝑘 where 𝑆𝑘 is a positive
scalar and 𝑠𝑘 ∈ {0, 1}. The scalar 𝑆𝑘 represents the costs for one data
transmission while 𝑠𝑘 determines whether the current control sequence 𝑈𝑘

shall be sent or not, i.e.,

𝑠𝑘 =
{︃

1 if 𝑈𝑘 is sent to actuator ,

0 if 𝑈𝑘 is not sent to actuator .
(5.2)

The transmission costs 𝑆𝑘 only occur in the cumulative costs if the con-
troller sends the data packet 𝑈𝑘 to the actuator. If the control sequence
is not sent, no transmission costs are incurred. Analogous to the weight-
ing matrices Q𝑘 and R𝑘, the transmission cost parameter 𝑆𝑘 is a design
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parameter and has to be chosen such that desired system specifications
are met.

At each time step, the event-triggered controller not only calculates 𝑈𝑘,
but also the decision variable 𝑠𝑘. Depending on 𝑠𝑘, the sequence 𝑈𝑘 is sent
or not. We denote the control law of the event-triggered controller by the
set of functions

{︀
𝜇𝐸𝑣𝑡

0 (·), . . . , 𝜇𝐸𝑣𝑡
𝐾 (·)

}︀
. Deviating from Definition 3.2,

we call a control law admissible if it holds for all 𝑘 ∈ N0

{𝑈𝑘, 𝑠𝑘} = 𝜇𝐸𝑣𝑡
𝑘

(︀
ℐ𝐸𝑣𝑡

𝑘

)︀
, (5.3)

where ℐ𝐸𝑣𝑡
𝑘 denotes the information available to the event-triggered con-

troller at time step 𝑘. The information set ℐ𝐸𝑣𝑡
𝑘 comprises the S-LQG

information set ℐ𝑘 defined in (3.13) and the past sending decisions 𝑠0:𝑘−1
such that

ℐ𝐸𝑣𝑡
𝑘

def= ℐ𝑘 ∪ {𝑠0:𝑘−1}

=
{︃

{𝑥0, Λ0} for 𝑘 = 0 ,{︀
𝑠0:𝑘−1, 𝒴1:𝑘, 𝑈0:𝑘−1, 𝜃0:𝑘−1, 𝑥0, Λ0

}︀
for 𝑘 ∈ N>0 .

(5.4)

With these definitions, we are able to formalize the event-triggered sequence-
based control problem.

Problem 5.1 Event-Triggered Sequence-Based LQG Control

min
𝑈0:𝐾−1
𝑠0:𝐾−1

𝐶𝐸𝑣𝑡
0→𝐾

(︀
𝑈0:𝐾−1, 𝑠0:𝐾−1

)︀
subject to: {𝑈𝑘, 𝑠𝑘} = 𝜇𝐸𝑣𝑡

𝑘

(︀
ℐ𝐸𝑣𝑡

𝑘

)︀
, (4.1), (4.3), and (3.10) − (3.11) .

The optimization problem contains the discrete-valued decision variables
𝑠0:𝐾−1 and the continuous-valued decision variables 𝑈0:𝐾−1. Hence, this
is a hybrid optimization problem. It is generally recognized that these
kind of optimization problems are extremely hard to solve optimally as the
decision tree spanned by the discrete variable grows exponentially with
the length of the time horizon. Thus, we do attend to find the optimal
controller, but rather propose a reasonable approximate solution in the
next section.
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5.2. Proposed Solution

We propose an approximate solution to the event-triggered sequence-based
S-LQG control problem 5.1 that is based on a so called rollout strategy.
To that end, we separate the control algorithm 𝜇𝐸𝑣𝑡

𝑘

(︀
ℐ𝐸𝑣𝑡

𝑘

)︀
at each time

step into the following two steps:

1. The first step consists of computing an optimal control sequence
candidate 𝑈 𝑐𝑎𝑛𝑑

𝑘 that is eligible to be sent to the actuator at time
step 𝑘.

2. In the second step, the controller determines the minimum expected
costs for following two cases: a) the control sequence candidate is
sent to the actuator and b) the control sequence candidate is not
sent to the actuator. If sending leads to lower expected costs, the
control sequence candidate is transmitted, otherwise it is discarded
and no sequence is sent at this time step.

Note that the separation of the control law into these two steps is not yet
an approximation. For non-trivial time horizons, however, there is neither
a known solution to analytically compute the optimal control sequence
candidate, nor to determine the minimum expected costs. Therefore, we
will apply the following rollout strategy that allows us to use a modified
version of the S-LQG to calculate a control sequence candidate and to
evaluate the resulting expected costs.

Approximation 5.1 To calculate the control sequence candidate and the
minimum expected costs at a certain time step, we make the (most likely
wrong) assumption that all future control sequences will be sent to the actuator.
This means that we assume in the calculations of 𝑈 𝑐𝑎𝑛𝑑

𝑘 and costs (5.1) that
𝑠𝑘+1:𝐾 = 1 .

Of course, this strategy is an approximation, as the controller could decide
not to send a control sequence at any subsequent time step. In context
of dynamic programming, this kind of approximation is called a rollout
strategy, as it approximates the expected cost-to-go of future time steps [15].
Therefore, we will refer to Approximation 5.1 also as rollout strategy.
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By applying the rollout strategy, the aforementioned steps of the control
algorithm can be evaluated. The structure of the resulting controller is
shown in Fig. 5.1. In the following, we describe both the modified S-LQG
to calculate the control sequence candidate 𝑈𝑘 and the event-triggered
decision rule.

𝑈𝑘

𝑈𝑐𝑎𝑛𝑑
𝑘

𝑢𝑘

Decision Rule

Modified

Unit Delay

PlantSensor
𝑦

𝑘

𝒴𝑘

𝜃𝑘

S-LQG

Actuator Buffer

NetworkNetwork

Event-Triggered

Event-Triggered S-LQG Controller

Figure 5.1.: Structure of the proposed event-triggered controller

5.2.1. Calculation of the Control Sequence Candidate

In this section, we will use Approximation 5.1 to calculate the control
sequence candidate. To distinguish true decision variables 𝑠𝑘 from believed
decision variables resulting from application of Approximation 5.1 at time
step 𝑘, we introduce the following definition.

Definition 5.1

𝑠
[𝑘]
𝑙

def=
{︃

𝑠𝑙 for 𝑙 ≤ 𝑘

1 for 𝑙 > 𝑘
with 𝑙, 𝑘 ∈ N0 and 𝑙 ̸= 𝑘 . (5.5)
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The term 𝑠
[𝑘]
𝑙 can be interpreted as the believed value of 𝑠𝑙 if Approxi-

mation 5.1 is applied at time step 𝑘. Based on this definition, we also
introduce the information set

𝒮 [𝑘]
𝑙 =

{︁{︁
𝑠

[𝑘]
𝑘 = 1

}︁
, 𝑠

[𝑘]
0:𝑙−1, 𝒴0:𝑙, 𝑈0:𝑙−1, 𝜃0:𝑙−1

}︁
(5.6)

that describes the information available to the controller at time step 𝑙 if
Approximation 5.1 is applied at time step 𝑘. The information includes the
tentative decision 𝑠𝑘 = 1 (and hence 𝑠

[𝑘]
𝑘 = 1), since we have to assume

that the current sequence is sent. Otherwise, the calculation of a candidate
sequence for time step 𝑘 would be meaningless. Note that 𝒮 [𝑘]

𝑙 is not
necessarily a subset of 𝒮 [𝑘+𝑚]

𝑙 with 𝑚 ∈ N>0 as it is assumed 𝑠
[𝑘]
𝑘:𝐾 = 1.

With these definitions, we can apply the rollout strategy to the original
optimization problem 5.1 and calculate the approximated costs

𝐶
𝐸𝑣𝑡[𝑘]
𝑘→𝐾

def= E
𝑥𝑘:𝐾

𝑢𝑘:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾 +
𝐾−1∑︁
𝑙=𝑘

(︁
𝑆𝑙𝑠

[𝑘]
𝑙 + 𝑥⊤

𝑙 Q𝑙𝑥𝑙 + 𝑢⊤
𝑙 R𝑙𝑢𝑙

)︁⃒⃒⃒⃒⃒𝒮 [𝑘]
𝑙

}︃
.

The control sequence candidate 𝑈 𝑐𝑎𝑛𝑑
𝑘 can be calculated by minimiz-

ing these costs over admissible control sequences under application of
Approximation 5.1 according to

𝑈
[𝑘]
𝑘:𝐾−1

def= argmin
𝑈

[𝑘]
𝑘 =𝜇

𝐸𝑣𝑡[𝑘]
𝑘

(︁
𝒮[𝑘]

𝑘

)︁
...

𝑈
[𝑘]
𝐾−1=𝜇

𝐸𝑣𝑡[𝑘]
𝐾−1

(︁
𝒮[𝑘]

𝐾−1

)︁
𝐶

𝐸𝑣𝑡[𝑘]
𝑘→𝐾 ,

𝑈 𝑐𝑎𝑛𝑑
𝑘 = 𝑈

[𝑘]
𝑘 .

(5.7)

Here, we have introduced the upper index [𝑘] for 𝑈
[𝑘]
𝑙 and 𝜇

𝐸𝑣𝑡[𝑘]
𝑘 (·) to

clarify that the control law 𝜇
𝐸𝑣𝑡[𝑘]
𝑘 (·), . . . , 𝜇

𝐸𝑣𝑡[𝑘]
𝑘+𝐾−1(·) for calculation of

𝑈𝑘:𝐾−1 is based on the application of Approximation 5.1 at time step
𝑘. This implies that a control law computed at time step 𝑘 is only
valid at this time step and in general cannot be used at future time
instances. In particular, the tempting equalities 𝜇

𝐸𝑣𝑡[𝑘+1]
𝑘+1 (·) = 𝜇

𝐸𝑣𝑡[𝑘]
𝑘+1 (·)

and 𝑈
[𝑘+1]
𝑘+1 = 𝑈

[𝑘]
𝑘+1 do not hold. Similarly to MPC, we therefore have to

solve the optimization problem (5.7) again at each time step.
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Remark 5.1 The optimization problem (5.7) seems to be an open-loop feed-
back (OLF) control problem [10]. Note, however, that the scheme presented
is not an OLF approximation as it utilizes future feedback from measurements
𝒴0:𝑘 and acknowledgment signals.

In the following, we solve the optimization problem (5.7). To that end,
we need to extend the system model of the S-LQG such that it captures
the effects when a control sequence is not sent to the actuator. In this
context, it is important to note that the decision of whether a sequence
is sent or not directly influences the probabilities that certain sequences
are buffered in the actuator. Therefore, the age of the buffered sequence
𝜃𝑘 and its evolution will depend on the decision variables 𝑠0:𝑘. Analyzing
this dependency, it turns out that 𝜃𝑘 is only influenced by the last 𝑁
sending decisions 𝑠(𝑘−𝑁):𝑘. Older decisions 𝑠0:(𝑘−𝑁−1) have no influence
on the value of 𝜃𝑘 as the corresponding control sequences 𝑈0:(𝑘−𝑁−1) do
not contain control inputs applicable at time step 𝑘 and, thus, can no
longer be buffered in the actuator.

Consequently, the transition matrix of 𝜃𝑘 is a time-variant function de-
pending on 𝑠(𝑘−𝑁):𝑘. This is the major difference compared to the system
model used in the derivation of the S-LQG (see Section 3.3). In the follow-
ing, we denote the time-variant transmission matrix of the event-triggered
scheme by T𝐸𝑣𝑡

𝑘 and its entries by 𝑝𝐸𝑣𝑡
𝑘 (𝑖, 𝑗). The entries are calculated

in a manner similar to Lemma 3.1 which was derived in the context of
the standard S-LQG. However, the equations (3.22) and (3.23) have to be
extended by 𝑠(𝑘−𝑁):𝑘 according to

𝑝𝐸𝑣𝑡
𝑘 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑗 ≥ 𝑖 + 2 ,
𝑖∏︀

𝑚=0

(︀
1 − 𝑠𝑘−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︀
for 𝑗 = 𝑖 + 1 ,

𝑠𝑘−𝑗 · 𝑞𝐶𝐴 (𝑗)
𝑗−1∏︀
𝑚=0

(︀
1 − 𝑠𝑘−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︀
for 𝑗 < 𝑖 ≤ 𝑁 ,

𝑁−1∏︀
𝑚=0

(︀
1 − 𝑠𝑘−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︀
for 𝑗 = 𝑖 = 𝑁 .

(5.8)
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The term 𝑞𝐶𝐴 (·) is defined in (3.21). Since T𝐸𝑣𝑡
𝑘 depends on 𝑠(𝑘−𝑁𝑘):𝑘,

there are 2𝑁+1 possible transmission matrices, each corresponding to a
unique history of the past 𝑁 preceding control sequence candidates.

In analogy to 𝑠𝑙 and 𝑠
[𝑘]
𝑙 , we introduce the matrix T𝐸𝑣𝑡[𝑘]

𝑙 to distinguish
the accurate transition matrix T𝐸𝑣𝑡

𝑙 governing the evolution of 𝜃𝑙 from the
approximated transition matrix T𝐸𝑣𝑡[𝑘]

𝑙 that results from the application
of Approximation 5.1 at time step 𝑘. The entries of the approximated
transition matrix are denoted accordingly as 𝑝

𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗) and given by

𝑝
𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑗 ≥ 𝑖 + 2 ,
𝑖∏︀

𝑚=0

(︁
1 − 𝑠

[𝑘]
𝑙−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︁
for 𝑗 = 𝑖 + 1 ,

𝑠
[𝑘]
𝑙−𝑗 · 𝑞𝐶𝐴 (𝑗)

𝑗−1∏︀
𝑚=0

(︁
1 − 𝑠

[𝑘]
𝑙−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︁
for 𝑗 < 𝑖 ≤ 𝑁 ,

𝑁−1∏︀
𝑚=0

(︁
1 − 𝑠

[𝑘]
𝑙−𝑚 · 𝑞𝐶𝐴 (𝑚)

)︁
for 𝑗 = 𝑖 = 𝑁 .

(5.9)

With these definitions, we can finally formulate the solution of (5.7) in the
following theorem.

Theorem 5.1 The control sequence candidate 𝑈 𝑐𝑎𝑛𝑑
𝑘 that minimizes (5.7)

is given by

𝑈 𝑐𝑎𝑛𝑑
𝑘 = L𝑘(𝜃𝑘−1) · E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
, (5.10)

where the feedback matrix L𝑘(𝜃𝑘−1) can be calculated for all realizations
𝜃𝑘−1 = 𝑖 with 𝑖 ∈ J by

L𝑘(𝑖) = −

⎛⎝ 𝑁∑︁
𝑗=0

𝑝𝐸𝑣𝑡
𝑘 (𝑖, 𝑗)

[︁ ̂︀R𝑘(𝑗) + ̂︀B𝑘(𝑗)⊤K[𝑘]
𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝𝐸𝑣𝑡
𝑘 (𝑖, 𝑗)

[︁̂︀B𝑘(𝑗)⊤K[𝑘]
𝑘+1(𝑗)̂︀A𝑘(𝑗)

]︁⎞⎠ ,

(5.11)
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and K[𝑘]
𝑘+1(𝑗) is the solution of the recursion

K[𝑘]
𝑙 (𝑖) =

𝑁∑︁
𝑗=0

𝑝
𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗)

[︁̂︀Q𝑙(𝑗) + ̂︀A𝑙(𝑗)⊤K[𝑘]
𝑙+1(𝑗)̂︀A𝑙(𝑗)

]︁

−

⎛⎝ 𝑁∑︁
𝑗=0

𝑝
𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗)

[︁ ̂︀A𝑙(𝑗)⊤K[𝑘]
𝑙+1(𝑗)̂︀B𝑙(𝑗)

]︁⎞⎠
·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝
𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗)

[︁ ̂︀R𝑙(𝑗) + ̂︀B𝑙(𝑗)⊤K[𝑘]
𝑙+1(𝑗)̂︀B𝑙(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝
𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗)

[︁̂︀B𝑙(𝑗)⊤K[𝑘]
𝑙+1(𝑗)̂︀A𝑙(𝑗)

]︁⎞⎠ ,

(5.12)

evolving backwards in time and initialized with K[𝑘]
𝐾 (𝑖) =

[︂
Q𝐾 0
0 0

]︂
.

Proof. The proof is analogous to the proof of Theorem 3.1 for the
S-LQG with 𝑝(𝑖, 𝑗) and ℐ𝑘 replaced by 𝑝

𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗) and 𝒮 [𝑘]

𝑙 , respectively.
�

As already mentioned, the optimization problem (5.7) has to be solved
at each time step 𝑘. This is also reflected in the solution above by the
presence of the upper index [𝑘] in several variables. For example, we
see that the recursion (5.12) in Theorem 5.1 depends on the variable
𝑝

𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗). Therefore, K[𝑘]

𝑙 (𝑗) explicitly depends on the time step at
which Approximation 5.1 is made. As a result, the recursion (5.12) must
theoretically be recomputed at each time step, since, in general, the matrix
K[𝑘]

𝑘:𝐾(𝑗) cannot be used to calculate the matrix K[𝑘+1]
𝑘+1:𝐾(𝑗). This is in

contrast to the S-LQG, where the recursion only has to be calculated
once.

However, looking deeper into the evolution of 𝜃𝑘, we can observe that the
transition probabilities 𝑝

𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗) strictly converge towards the entries

𝑝(𝑖, 𝑗) of the S-LQG transition matrix given in Lemma 3.1. Indeed, the
convergence is already completed after 𝑁 time steps. This can be directly
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induced from (5.9) as it only depends on the 𝑁 previous decisions 𝑠(𝑘−𝑁):𝑘.
The fact greatly reduces the computational complexity because we can use
the S-LQG to determine K[𝑘]

𝑘+𝑁 :𝐾(𝑗) and then only have to perform the
last 𝑁 iterations of (5.12) during run time. We summarize this finding in
the following corollary.

Corollary 5.1 The matrix K[𝑘]
𝑘+1(𝑗) needed in (5.11) to calculate the control

sequence candidate 𝑈 𝑐𝑎𝑛𝑑
𝑘 can be computed by initializing the recursion (5.12)

with the matrix K[𝑘]
𝑘+𝑁 (𝑖) = K𝑘(𝑖), where K𝑘(𝑖) is the solution of the

recursion (3.32) obtained in the derivation of the S-LQG.

In Section 5.3, we will use Corollary 5.1 to transfer stability and conver-
gence properties of the S-LQG controller to the proposed event-triggered
scheme. In particular, considering long time horizons, the S-LQG gain
matrices converge (under assumptions). This implies that the control law
in Theorem 5.1 can be computed offline even for infinite time horizons.
Further aspects on this subject are discussed in Section 5.3.

5.2.2. Decision Step

After calculating the control sequence candidate, it is determined in the
decision step whether the candidate sequence is sent to the actuator or not.
The decision is made based on the expected costs that are incurred for
each case. To evaluate these costs, we again make the assumption that all
future control sequences are sent to the actuator (see Approximation 5.1).
Recall the information set

𝒮 [𝑘]
𝑙 =

{︁{︁
𝑠

[𝑘]
𝑘 = 1

}︁
, 𝑠

[𝑘]
0:𝑙−1, 𝒴0:𝑙, 𝑈0:𝑙−1, 𝜃0:𝑙−1

}︁
,

which is defined in (5.6). The set describes the information structure
indicating that the calculated control sequence candidate 𝑈 𝑐𝑎𝑛𝑑

𝑘 is sent to
the actuator. In analogy, we also define the set

𝒩 [𝑘]
𝑙

def=
{︁{︁

𝑠
[𝑘]
𝑘 = 0

}︁
, 𝑠

[𝑘]
0:𝑙−1, 𝒴0:𝑙, 𝑈0:𝑙−1, 𝜃0:𝑙−1

}︁
, (5.13)

that describes the information structure for the case in which the con-
trol sequence candidate is not sent. Based on these information sets,
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the minimum expected costs (5.1) achievable at time step 𝑘 when using
Approximation 5.1 can be analytically determined for each of the cases.
The costs incurred by sending (or not sending) the candidate sequence are
given by

𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾

def= min
𝑈𝑘:𝐾

E
𝑥𝑘:𝐾

𝑢𝑘:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾

+
𝐾−1∑︁
𝑙=𝑘

(︀
𝑆𝑙𝑠𝑙 + 𝑥⊤

𝑙 Q𝑙𝑥𝑙 + 𝑢⊤
𝑙 R𝑙𝑢𝑙

)︀⃒⃒⃒⃒⃒𝒮 [𝑘]
𝑙 , 𝑈𝑘:𝐾−1

}︃
,

(5.14)

𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑘→𝐾

def= min
𝑈𝑘:𝐾

E
𝑥𝑘:𝐾

𝑢𝑘:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾

+
𝐾−1∑︁
𝑙=𝑘

(︀
𝑆𝑙𝑠𝑙 + 𝑥⊤

𝑙 Q𝑙𝑥𝑙 + 𝑢⊤
𝑙 R𝑙𝑢𝑙

)︀⃒⃒⃒⃒⃒𝒩 [𝑘]
𝑙 , 𝑈𝑘:𝐾−1

}︃
.

(5.15)

The decision rule is defined based on the difference of these costs:

if 𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 ≥ 0 , then do not send 𝑈 𝑐𝑎𝑛𝑑
𝑘 ⇒ set 𝑠𝑘 = 0 ,

if 𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 < 0 , then send 𝑈 𝑐𝑎𝑛𝑑
𝑘 ⇒ set 𝑠𝑘 = 1 .

(5.16)

The difference 𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 −𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 can be calculated in closed form following
the applied rollout strategy. The obtained result is summarized in the
following lemma.

Lemma 5.1 The term 𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 that describes the difference be-
tween the minimum expected costs (5.1) under Approximation 5.1 of sending
and not sending the candidate sequence is obtained by

𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 = E
{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
− E

{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+

𝑘+𝑁∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K[𝑘]
𝑖 ̂︀𝑤𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
−

𝑘+𝑁∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K[𝑘]
𝑖 ̂︀𝑤𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+ 𝑆𝑘

Proof. The proof is given in Appendix D. �
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Finally, we briefly summarize the proposed event-triggered control law.

Event-Triggered Sequence-Based LQG Controller
The control law of the event-triggered sequence-based LQG con-
troller consists of the following two steps that have to be evaluated
at each time step 𝑘:

a) Calculate the control sequence candidate 𝑈 𝑐𝑎𝑛𝑑
𝑘 according

to Theorem 5.1 .

b) Decide whether 𝑈 𝑐𝑎𝑛𝑑
𝑘 is sent or not sent to the actuator

using the decision rule (5.16) by evaluating Lemma 5.1.

5.3. Performance and Stability Analysis

Similar to Section 3.5, we assess the stability of the closed-loop system
based on the long run average costs. These are defined in analogy to
Definition 3.3 for the sequence-based event-triggered LQG controller as

𝐶𝐸𝑣𝑡
∞ (𝑈0, 𝑈1, . . . , 𝑠0, 𝑠1, . . .) def= lim sup

𝐾→∞

1
𝐾

· 𝐶𝐸𝑣𝑡
0→𝐾

(︀
𝑈0:𝐾−1, 𝑠0:𝐾−1

)︀
,

(5.17)

where the expected cumulative costs 𝐶𝐸𝑣𝑡
0→𝐾

(︀
𝑈0:𝐾−1

)︀
are defined in (5.1).

In the style of Definition 3.4, the event-triggered LQG controller is said to
be LRAC-stable if the long run average costs 𝐶𝐸𝑣𝑡

∞ (𝑈0, 𝑈1, . . . , 𝑠0, 𝑠1, . . .)
are bounded. In the LRAC-stability analysis of the event-triggered sys-
tem, we can use results already obtained for the S-LQG in Section 3.5.
In particular, the long run average costs measured by the S-LQG cost
function (3.3) can be used to constitute a lower and an upper bound for
the long run average costs of the event-triggered controller.

We start with the derivation of the upper bound. By construction, the
event-triggered controller does not send a sequence if, and only if, the
expected cumulative costs are less than or equal to the expected cumulative
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costs incurred when the candidate sequence is sent at each time step. The
optimal solution of the case in which a sequence is sent at each time step
is the S-LQG. Now, if we measure the costs of the S-LQG in terms of the
event-triggered cost function (5.17), it holds that

𝐶𝐸𝑣𝑡
∞

(︁
𝑈𝑆-𝐿𝑄𝐺

0 , 𝑈𝑆-𝐿𝑄𝐺
1 , . . . , 𝑠0 = 1, 𝑠1 = 1, . . .

)︁
= 𝐶𝑆-𝐿𝑄𝐺

∞

(︁
𝑈𝑆-𝐿𝑄𝐺

0 , 𝑈𝑆-𝐿𝑄𝐺
1 , . . .

)︁
+ 𝑆𝑘 ,

(5.18)

where the upper index 𝑆-𝐿𝑄𝐺 in 𝑈𝑆-𝐿𝑄𝐺
𝑘 indicates that a control sequence

is calculated using the S-LQG control law (see Theorem 3.1 ) and not
with the event-triggered control law. The term 𝐶𝑆-𝐿𝑄𝐺

∞ (· · · ) accordingly
refers to the long run average costs of the S-LQG given in Definition 3.3.
The left hand side of (5.18) represents the costs if we use the S-LQG, but
measure performance with the event-triggered cost function. Therefore,
the decision variables are set to 𝑠0:𝐾 = 1, as the S-LQG always sends
sequences. Evaluating the left hand side and plugging 𝑠0:𝐾 = 1 in (5.1),
we see that the term

lim sup
𝐾→∞

1
𝐾

·
𝐾−1∑︁
𝑘=0

(𝑆𝑘𝑠𝑘) = 𝑆𝑘 (5.19)

becomes constant and, hence, the equality (5.18) holds. The costs incurred
by the event-triggered controller are therefore bounded from above by

𝐶𝐸𝑣𝑡
∞
(︀
𝑈𝐸𝑣𝑡

0 , 𝑈𝐸𝑣𝑡
1 , . . . , 𝑠𝐸𝑣𝑡

0 , 𝑠𝐸𝑣𝑡
1 , . . .

)︀
≤ 𝐶∞

(︁
𝑈𝑆𝐿𝑄𝐺

0 , 𝑈𝑆𝐿𝑄𝐺
1 , . . .

)︁
+ 𝑆𝑘 ,

where we used the notation 𝑈𝐸𝑣𝑡
𝑘 and 𝑠𝐸𝑣𝑡

𝑘 to indicate that the correspond-
ing values are calculated by the event-triggered control law.

Now, looking for a lower bound, we can make the observation that

𝐶∞

(︁
𝑈𝑆𝐿𝑄𝐺

0 , 𝑈𝑆𝐿𝑄𝐺
1 , . . .

)︁
≤ 𝐶𝐸𝑣𝑡

∞
(︀
𝑈𝐸𝑣𝑡

0 , 𝑈𝐸𝑣𝑡
1 , . . . , 𝑠𝐸𝑣𝑡

0 , 𝑠𝐸𝑣𝑡
1 , . . .

)︀
.

This inequality holds as the S-LQG is the optimal control law if a sequence
is sent at each time step. Then, the S-LQG also obtains the minimum
possible costs. Hence, neglecting the sending costs, i.e., dropping 𝑆𝑘 at
the right hand side of (5.18), yields a lower bound on the real minimum
achievable costs.
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As the long run average costs of the event-triggered case are lower and
upper bounded by the long run average costs of the S-LQG (plus a finite
term in the case of the lower bound), the stability conditions of the S-LQG
derived in Section 3.5 are directly transferable to the event-based controller.
We summarize this result in the following corollary.

Corollary 5.2 Consider the setup described in Section 5.1 with the event-
triggered control law defined on page 97 . Then, the sufficient conditions in
Theorem 3.3 and Theorem 3.4 for LRAC-stability and LRAC-instability of
the S-LQG are also sufficient for the proposed event-triggered controller.

Unfortunately, the stability analysis does not reveal the stabilizing average
data rate of the controller-actuator network that is required for the event-
triggered controller to stabilize the system. It is obvious that the stabilizing
average data rate of the event-triggered controller is smaller than the
one needed for the S-LQG, but gaining more insights is still subject to
research.

5.4. Evaluation

To evaluate the proposed approach, we use the inverted pendulum described
in Section 4.3. The proposed event-triggered controller is compared to the
controller described in [168]. The approach is chosen as it is one of the rare
sequence-based controllers that can operate in an event-triggered mode
while addressing time delays in the network connections. However, time
delays are supposed to be bounded and no packet losses are considered.
The sequence-based event-triggered approach described in [165] is not
implemented here as the authors consider the sensor to be the decision
maker, which is a different problem. The controller in [168] uses the
sequence-based nominal controller method (see Section 2.4.2) to calculate
a control sequence candidate 𝑈𝑘 = [𝑢⊤

𝑘|𝑘, 𝑢⊤
𝑘+1|𝑘, . . . , 𝑢⊤

𝑘+𝑁−1|𝑘]⊤. The
candidate sequence is only sent to the actuator if it significantly differs
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from the previously sent sequence 𝑈𝑘−𝜃𝑘
. The difference is determined by

the normalized maximum norm according to

max
0≥ 𝑖 ≥𝑁−𝜃𝑘

||𝑢𝑘+𝑖|𝑘 − 𝑢𝑘+𝑖|𝑘−𝜃𝑘
||∞

||𝑢𝑘+𝑖|𝑘||∞
> 𝛿 , (5.20)

where || · ||∞ is the maximum norm and 𝛿 is a scalar design parameter,
the so called deadband. The controller sends a sequence if either (5.20)
is satisfied or the actuator is at risk of running out of applicable control
inputs, i.e., if the value 𝑁 − 𝜃𝑘 − 1 is smaller than the maximum possible
time delay in the controller-actuator network. Here, the nominal controller
is implemented as an optimal LQG controller, and we use the two different
values 𝛿 = 10 and 𝛿 = 300 for the deadband. The corresponding controllers
are referred to as DB(10) and DB(300).

In the simulation, we consider two different networks with stochastic
transmission characteristics as shown in Fig. 5.2. It can be seen that
Network A provides a better transmission quality than Network B. For each
network, the proposed event-triggered controller is designed as described
on page 97, where we choose the sending costs 𝑆𝑘 = 1000. In the following,
this event-triggered S-LQG controller is abbreviated with ET-S-LQG. In
addition, we also simulate the standard S-LQG controller that optimally
compensates for network effects but sends a control sequence at each time
step. We also implement an optimal LQG controller that is collocated at
the pendulum. The LQG is not subject to network effects and also does
not incur any sending costs. It serves as an ultimate lower bound on the
costs to get a sense of the impact of network effects.

The described controllers have been simulated in 200 Monte Carlo simu-
lation runs over 200 time steps for both networks and different sequence
lengths. For each controller, each network, and each sequence length, three
values are calculated: 1) the average transmission rate, 2) the average
LQG costs without sending costs (3.16), and 3) the total costs (5.1) that
consist of the LQG costs plus the sending costs. The sending costs are the
average transmission rate multiplied with the weighting factor 𝑆𝑘.

The results are depicted in Fig. 5.3 and Fig. 5.4 for Network A and
Network B, respectively. First, we investigate the results for Network A,
which provides a good network quality. The total costs induced by the
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Figure 5.2.: Stochastic network characteristics used in the simulation

S-LQG are almost constant over the sequence lengths (upper plot). This
is due to the good network quality; since time delays only have a small
effect on performance, longer sequences do not yield a notable performance
increase. Indeed, the difference between the S-LQG and the optimal LQG
controller collocated at the plant is almost entirely caused by the network
transmission costs that occur for the S-LQG, but not for the LQG. The
performance of the S-LQG can therefore be significantly improved by
the event-triggered approaches DB(10), DB(300), and ET-S-LQG that
reduce the transmission costs component of the total costs. For these
controllers, the costs reduce with increasing sequence length, because longer
sequences can be used by the actuator for longer periods, which decreases
the necessary transmission rate. Interestingly, for sequence lengths 𝑁 ≥ 8
all event-triggered approaches perform very similarly and even converge
to almost the same costs at around 400.



102 5. Event-Triggered S-LQG Control

The ET-S-LQG performs significantly better than DB(10) and DB(300)
with small sequence lengths. This results from the facts that, first, the
ET-S-LQG decides whether to send a sequence based on the expected total
costs, rather than only on the change of the control inputs. Second, to
ensure stability, the DB(10) and DB(300) have to send a control sequence
as soon as the actuator is at risk of running out of applicable control
inputs due to the underlying nominal-controller-based approach. Hence,
the ET-S-LQG already reduces the communication rate for 𝑁 ≥ 2 (bottom
plot), while DB(10) and DB(300) do not do this until 𝑁 ≥ 4. The early
reduction of the ET-S-LQG raises the average costs in terms of the standard
LQG cost function (middle plot), which measures the system performance
ignoring the communication costs. However, this strategy is a good tradeoff
in terms of the total costs (upper plot).

As seen in Fig. 5.4, the difference between the ET-S-LQG and the DB
approaches becomes more distinct in Network B. Now, the ET-S-LQG
shows a significantly better performance than DB(10) and DB(300) for
short, as well as for long, sequence lengths. For small sequence lengths
𝑁 ≤ 2, the latter approaches are even unstable. This is a result of
the bad network quality, since the approaches are not robust to packet
losses. Considering long sequence lengths, we can see that DB(10) and
DB(300) always send a sequence to the actuator, because the worse network
characteristic triggers the sending condition at each time step. As a
consequence, DB(10) and DB(300) perform almost identically. In the
scenario with Network B, the ET-S-LQG strongly benefits from its cost-
based decision rule that combines the properties of the S-LQG with the
event-triggered control scheme. For small sequence lengths 𝑁 ≤ 5, the
ET-S-LQG shows the same qualities as the S-LQG and is able to stabilize
the plant despite enormous time delays and packet losses. For sequences
with 𝑁 > 5, the event-triggered component recognizes that communication
can be reduced without risking stability. This allows the lowering of the
transmission rate by a factor of 2.5. Therefore, the ET-S-LQG controller
provides a reasonable tradeoff between stability and communication.
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Figure 5.3.: Results of simulations with Network A
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Figure 5.4.: Results of simulations with Network B



6. Conclusion

Since the dawn of the 21st century, considerable advances in wired and
wireless communication networks have drastically enhanced the application
range of feedback control systems on a global scale. However, the challenges
to the use of this potential are tremendous. The networks can introduce
time-varying transmission delays, packet losses, and band-limitations,
which may elicit severe performance degradation and even render the
feedback loop unstable. Therefore, the discipline of Networked Control
Systems (NCS) emerged to address these problems in the intersection of
communication and control. Among control methods discussed in the
literature, sequence-based control promises an extremely high potential to
cope with network-induced effects. The method exploits the packet-based
transmission mode of modern communication networks by embedding
additional information in the control data packets.

In this work, we approached the sequence-based method from the direction
of stochastic optimal control and, in particular, from the foundation of
LQG theory. We made the astonishing finding that the sequence-based
counterpart of the LQG control problem can be optimally solved in analytic
form despite the stochastic nonlinearity introduced by the communication
networks. The optimal control law obtained is termed S-LQG, as it reveals
much similarity to the conventional LQG control. In particular, we proved
that the celebrated separation principle of LQG control preserves its
validity in the sequenced-based NCS scenario as well. Benefits of the
S-LQG include the linearity of the control with respect to the estimated
state and the amenable convergence properties of the underlying feedback
gains. As a result, the S-LQG requires relatively little computing power
during operation and has a small memory demand. Further analysis of
the S-LQG solution revealed new sufficient stability results for sequence-
based NCS in regard to the boundedness of the long run average costs.
Bearing in mind that the S-LQG is optimal, the criteria derived constitute
fundamental bounds for the stabilizability of networked linear systems.



106 6. Conclusion

Widening the scope, we moved from the canonical stabilization problem
to the higher level of tracking control and investigated how non-zero set
points and entire reference trajectories can be brought together optimally
with the sequence-based design philosophy. The result is the optimal
sequence-based tracking controller presented in this work. This controller
is not only able to compensate for time delays and packet losses in the
network connections, but also, as a special feature, makes optimal use of
available preview information on the future reference trajectory.

Finally, we focused our attention on the question of how the S-LQG
controller can comply with additional band-limitations imposed by the
networks. A possible answer has been found in the event-triggered exten-
sion of the S-LQG controller. In the event-triggered operation mode, the
controller only occupies the network if necessary to ensure a prescribed
performance level. The implemented strategy renders the event-triggered
controller suboptimal, however, it allows for the preservation of the stability
properties of the original S-LQG controller.

Future Research Directions

Despite the considerable effort that has been made to investigate the
sequence-based stochastic optimal control problem, much remains to be
done. One aspect is the robustness analysis of the S-LQG controller with
respect to parameter uncertainties, unmodeled system dynamics, imperfect
synchronization, etc. This will not only increase the practical applicability
of the approach, but also offer a solid basis for robust sequence-based
controller synthesis in general. Also, we only touched on the topic of
sequence-based control when network acknowledgments are time delayed,
or not available at all, as in UDP-like networks. Due to the immanently
arising dual effect of the control, this problem class lacks the separation
property of standard LQG control. It is widely recognized that this kind
of stochastic optimization problem is very hard to solve. However, it
is expected that future investigations will greatly benefit from current
research activities in the field of approximate optimal control of Markov
jump linear systems (MJLS) without mode observation. Coming from
this direction, there is also great potential to gain more insights into the
stochastic stability properties of the S-LQG and to find necessary stability
criteria that complement the sufficient criteria derived in this work.
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Moreover, nonlinear systems, distributed parameter systems, and decen-
tralized control architectures are often encountered in NCS. Stochastic
optimal control solutions for these problems rarely exist, even before
applying the sequence-based method. Yet, the S-LQG can be a basis
to synthesize sequence-based control solutions for these cases using ap-
proximate approaches such as the certainty equivalence design principle.
Further, important extensions that could even permit an optimal solu-
tion within the S-LQG framework comprise the optimal compensation of
quantization effects, consideration of H∞-performance criteria, and the
incorporation of integral linear constraints. In the literature, these problem
classes have been proven to be compliant with the separation principle
and, hence, are accessible to the stochastic optimal approach described in
this work.

Finally, simulations demonstrate a very good performance of the S-LQG.
However, it remains to be proven that this will also be the case in practice.
Therefore, the practical application of the S-LQG has been initiated in
conjunction with an industrial partner specializing in automation technol-
ogy. The project aims for wireless motion control of a distributed electrical
drive system in an industrial environment. Experimentation in this setup
allows for the identification of bottlenecks of the S-LQG approach and
quantification of the effects of network disturbances. It is expected the
these practical results from this will trigger new theoretical research and,
thus, will lead to an interactive feedback between theory and practice.
Utilizing this huge feedback potential not only promises further practical
improvements but also theoretical innovations and therefore should be a
central direction of further research.





A. Proof of S-LQG Theorems

In this appendix, the proof of Theorem 3.1 is provided. In the first
part of the proof, we integrate the MJLS description (3.29) into the
optimization problem 3.1. This is done in Section A.1 by transformation
of the cost function. Then, the optimal solution is derived in Section A.2
by application of the dynamic programming algorithm [13].

Remark A.1 In the literature, several solutions are available to the LQG
control problem for MJLS [141]. However, these solutions cannot be applied
directly in our case, because the mode 𝜃𝑘 is only available with a delay of one
time step. Furthermore, measurements are subject to random transmission
delays and packet losses. Finally, as we will see later, the weighting matrix
for the control inputs of the augmented system is not positive definite, but
becomes positive semidefinite.

In the derivation of the control law, we use the following lemma and
assumption.

Lemma A.1 It holds that with any piecewise continuous function 𝑔(·) with
at most countable number of discontinuities

E
{︁
E
{︁
𝑔
(︁

𝜉
𝑘+1

)︁⃒⃒⃒
ℐ𝑘+1

}︁⃒⃒⃒
ℐ𝑘

}︁
= E

{︁
𝑔
(︁

𝜉
𝑘+1

)︁⃒⃒⃒
ℐ𝑘

}︁
. (A.1)

Proof. The proof can be found in [67]. �

Assumption A.1 The control law is deterministically structured, i.e., if ℐ𝑘

contains deterministic values, then the controller output 𝑈𝑘 = 𝜇𝑘(ℐ𝑘) is also
deterministic (for all 𝑘 ≤ 𝐾).
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A.1. Translation of Cost Function

We express the cost function (3.16) in terms of the augmented system
state 𝜉

𝑘
. With the definitions

̂︀Q𝐾
def=
[︂
Q𝐾 0
0 0

]︂
,

̂︀Q𝑘(𝜃𝑘) def=
[︂
Q𝑘 0
0 H𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)

]︂
, (A.2)

̂︀R𝑘(𝜃𝑘) def= J𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘) , (A.3)

it holds that

𝑥⊤
𝐾Q𝐾𝑥𝐾 = 𝜉⊤

𝐾
̂︀Q𝐾𝜉

𝐾
,

and

𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝑢⊤

𝑘 R𝑘𝑢𝑘

= 𝑥⊤
𝑘 Q𝑘𝑥𝑘 +

(︁
H𝑘(𝜃𝑘)𝜌

𝑘
+ J𝑘(𝜃𝑘)𝑈𝑘

)︁⊤
R𝑘

(︁
H𝑘(𝜃𝑘)𝜌

𝑘
+ J𝑘(𝜃𝑘)𝑈𝑘

)︁
(A.5)= 𝑥⊤

𝑘 Q𝑘𝑥𝑘 + 𝜌⊤
𝑘

H𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)𝜌
𝑘

+ 𝑈⊤
𝑘 J𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘)𝑈𝑘

+ 2 · 𝑈⊤
𝑘 J𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)𝜌

𝑘

(A.6)= 𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝜌⊤

𝑘
H𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)𝜌

𝑘
+ 𝑈⊤

𝑘 J𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘)𝑈𝑘

=
(︂

𝑥𝑘

𝜌
𝑘

)︂⊤ [︂Q𝑘 0
0 H𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)

]︂(︂
𝑥𝑘

𝜌
𝑘

)︂
+ 𝑈⊤

𝑘 J𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘)𝑈𝑘

= 𝜉⊤
𝑘
̂︀Q𝑘(𝜃𝑘)𝜉

𝑘
+ 𝑈⊤

𝑘
̂︀R𝑘(𝜃𝑘)𝑈𝑘 . (A.4)

In the above derivation, we used the following lemma.

Lemma A.2 It holds that

𝑈⊤
𝑘 J𝑘(𝜃𝑘)⊤R𝑘H𝑘(𝜃𝑘)𝜌

𝑘
= 𝜌⊤

𝑘
H𝑘(𝜃𝑘)⊤R𝑘J𝑘(𝜃𝑘)𝑈𝑘 (A.5)

= 0 . (A.6)
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Proof. The equality (A.5) holds since the expression is scalar. The
second equality follows due to the fact that for any 𝜃𝑘 ∈ J = {0, . . . , 𝑁} it
either holds that J𝑘(𝜃𝑘) = 0 or H𝑘(𝜃𝑘) = 0. �

Therefore, the cost function (3.16) can be written as

𝐶0→𝐾 = E
𝑥0:𝐾

𝑢0:𝐾−1

{︃
𝑥⊤

𝐾Q𝐾𝑥𝐾 +
𝐾−1∑︁
𝑘=0

𝑥⊤
𝑘 Q𝑘𝑥𝑘 + 𝑢⊤

𝑘 R𝑘𝑢𝑘

⃒⃒⃒⃒
⃒ ℐ0, 𝑈0:𝐾−1

}︃

= E
𝜉

0:𝐾
𝜃0:𝐾−1

{︃
𝜉⊤

𝐾
̂︀Q𝐾𝜉

𝐾
+

𝐾−1∑︁
𝑘=0

𝜉⊤
𝑘
̂︀Q𝑘(𝜃𝑘)𝜉

𝑘
+ 𝑈⊤

𝑘
̂︀R𝑘(𝜃𝑘)𝑈𝑘

⃒⃒⃒⃒
⃒ ℐ0, 𝑈0:𝐾−1

}︃
(A.7)

A.2. Minimization by Dynamic Programming

In the following, the transformed LQG costs (A.7) are minimized using
dynamic programming. To that end, we introduce the minimum expected
costs-to-go 𝐽*

𝑘 . These describe the minimum expected cumulative costs
attainable when operation would start at time step 𝑘 and end at 𝐾.

Definition A.1 The minimum expected costs-to-go (from time step 𝑘 to 𝐾)
are defined by

𝐽*
𝑘

def= min
𝑈𝑘

E
𝜉

𝑘
, 𝜃𝑘,

𝒴𝑘+1, ̂︀𝑤𝑘

{︁
𝜉⊤

𝑘
̂︀Q𝑘(𝜃𝑘)𝜉

𝑘
+ 𝑈⊤

𝑘
̂︀R𝑘(𝜃𝑘)𝑈𝑘 + 𝐽*

𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
, (A.8)

𝐽*
𝐾

def= E
𝜉

𝐾

{︁
𝜉⊤

𝐾
̂︀Q𝐾𝜉

𝐾

⃒⃒⃒
ℐ𝐾

}︁
. (A.9)

Bellman’s principle of optimality states that an optimal solution to an
optimization problem consists of optimal solutions of its subproblems [14].
In particular, it holds

𝐽*
0 = 𝐶*

0→𝐾 , (A.10)
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where 𝐶*
0→𝐾 are the minimum expected cumulative costs defined in (3.17).

Hence, the optimal solution to the sequence-based LQG control problem
can be obtained by recursively solving (A.8), starting with initial condi-
tion (A.9). In the following, we evaluate 𝐽*

𝐾 , 𝐽*
𝐾−1, and 𝐽*

𝐾−2. It turns
out that the subsequent expected cots-to-go 𝐽*

𝐾−3 . . . 𝐽*
0 can then be

solved via an inductive argument.

Time Step 𝐾

The minimal expected costs-to-go are directly given by (A.9). Introducing
the definition K𝐾

def= ̂︀Q𝐾 , it holds that

𝐽*
𝐾 = E

𝜉
𝐾

{︁
𝜉⊤

𝐾
̂︀Q𝐾𝜉

𝐾

⃒⃒⃒
ℐ𝐾

}︁
= E

𝜉
𝐾

{︁
𝜉⊤

𝐾
K𝐾𝜉

𝐾

⃒⃒⃒
ℐ𝐾

}︁
.

Time Step 𝐾−1

According to (A.8), the minimal cost-to-go 𝐽*
𝐾−1 are given by

𝐽*
𝐾−1 = min

𝑈𝐾−1

E
{︁
𝜉⊤

𝐾−1
̂︀Q𝐾−1(𝜃𝐾−1)𝜉

𝐾−1

+ 𝑈⊤
𝐾−1

̂︀R𝐾−1(𝜃𝐾−1)𝑈𝐾−1 + 𝐽*
𝐾

⃒⃒⃒
ℐ𝐾−1

}︁
.

Assumption A.1 allows us to explicitly condition on the minimization
variable 𝑈𝐾−1 so that

𝐽*
𝐾−1 = E

{︁
𝜉⊤

𝐾−1
̂︀Q𝐾−1(𝜃𝐾−1)𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
(A.11)

+ min
𝑈𝐾−1

[︁
E
{︁
𝑈⊤

𝐾−1
̂︀R𝐾−1(𝜃𝐾−1)𝑈𝐾−1 + 𝜉⊤

𝐾
K𝐾𝜉

𝐾

⃒⃒⃒
ℐ𝐾−1, 𝑈𝐾−1

}︁]︁
= E

{︁
𝜉⊤

𝐾−1
̂︀Q𝐾−1(𝜃𝐾−1)𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
(A.12)

+ min
𝑈𝐾−1

[︂
𝑈⊤

𝐾−1E
{︁̂︀R𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ E
{︂(︁̂︀A𝐾−1(𝜃𝐾−1)𝜉

𝐾−1 + ̂︀B𝐾−1(𝜃𝐾−1)𝑈𝐾−1 + ̂︀𝑤𝐾−1

)︁⊤
K𝐾
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·
(︁̂︀A𝐾−1(𝜃𝐾−1)𝜉

𝐾−1 + ̂︀B𝐾−1(𝜃𝐾−1)𝑈𝐾−1 + ̂︀𝑤𝐾−1

)︁⃒⃒⃒
ℐ𝐾−1, 𝑈𝐾−1

}︁]︂
= E

{︁
𝜉⊤

𝐾−1
̂︀Q𝐾−1(𝜃𝐾−1)𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ min

𝑈𝐾−1

[︃
𝑈⊤

𝐾−1E
{︁̂︀R𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ E
{︁
𝑈⊤

𝐾−1
̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)𝑈𝐾−1

+ 2 · 𝜉⊤
𝐾−1

̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀B𝐾−1(𝜃𝐾−1)𝑈𝐾−1

+ 𝜉⊤
𝐾−1

̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)𝜉

𝐾−1 + ̂︀𝑤⊤
𝐾−1K𝐾 ̂︀𝑤𝐾−1

+ 2 · ̂︀𝑤⊤
𝐾−1K𝐾

(︁̂︀A𝐾−1(𝜃𝐾−1)𝜉
𝐾−1+

̂︀B𝐾−1(𝜃𝐾−1)𝑈𝐾−1

)︁⃒⃒⃒
ℐ𝐾−1, 𝑈𝐾−1

}︁]︃
= E

{︁
𝜉⊤

𝐾−1

(︁̂︀Q𝐾−1(𝜃𝐾−1) + ̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

)︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ min

𝑈𝐾−1

[︂
𝑈⊤

𝐾−1E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾(𝜃𝐾)
⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ 2 · E
{︁
𝜉⊤

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

]︂
+ E

{︁̂︀𝑤⊤
𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
. (A.13)

In the derivation above we used the fact that if ℐ𝐾−1 is given, the aug-
mented state 𝜉

𝐾−1 is conditionally independent of 𝜃𝐾−1 and therefore of̂︀A𝐾−1(𝜃𝐾−1), ̂︀B𝐾−1(𝜃𝐾−1), ̂︀Q𝐾−1(𝜃𝐾−1), and ̂︀R𝐾−1(𝜃𝐾−1).

As ̂︀R𝐾−1(𝜃𝐾−1) ≥ 0 and K𝐾 ≥ 0, it can be seen from (A.12) that 𝐽*
𝐾−1 ≥ 0.

Since 𝐽*
𝐾−1 is also quadratic and convex in the control sequence 𝑈𝐾−1, the

minimum of 𝐽*
𝐾−1 (with respect to 𝑈𝐾−1) exists and can be computed by

𝜕𝐽*
𝐾−1

𝜕𝑈𝐾−1
= 2 · E

{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀B𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ 2 · E
{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀A𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
!= 0 . (A.14)
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The matrix E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
is not

positive definite but only positive semidefinite. Therefore, the inverse
does not exist and cannot be used to isolate 𝑈𝐾−1. However, we can use
the Moore-Penrose pseudoinverse instead, which is defined based on the
singular value decomposition (SVD) [52]. For convenience, let us introduce
the definition

R𝐾−1
def= E

{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀B𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
. (A.15)

The SVD of the positive semidefinite matrix R𝐾−1 is given by

R𝐾−1 = S⊤
𝐾−1

[︂
Σ𝐾−1 0

0 0

]︂
S𝐾−1 , (A.16)

where S𝐾−1 is a square orthogonal matrix, i.e., S⊤
𝐾−1S𝐾−1 = I, and Σ𝐾−1

is an invertible diagonal matrix that contains the positive singular values
of R𝐾−1 [52]. Based on the SVD, the Moore-Penrose pseudoinverse R†

𝐾−1
is given by

R†
𝐾−1 = S⊤

𝐾−1

[︂
Σ−1

𝐾−1 0
0 0

]︂
S𝐾−1 . (A.17)

Consequently, the condition (A.14) is equivalent to

R𝐾−1𝑈𝐾−1

= −E
{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀A𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
⇔ S⊤

𝐾−1

[︂
Σ−1

𝐾−1 0
0 0

]︂
S𝐾−1S⊤

𝐾−1

[︂
Σ𝐾−1 0

0 0

]︂
S𝐾−1𝑈𝐾−1

= −R†
𝐾−1E

{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
⇔ S⊤

𝐾−1

[︂
I 0
0 0

]︂
S𝐾−1𝑈𝐾−1

= −R†
𝐾−1E

{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
.

This leads to the solution

𝑈𝐾−1 = R†
𝐾−1 · E

{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+
(︁

I − R†
𝐾−1R𝐾−1

)︁
𝑎 , (A.18)
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where 𝑎 is an arbitrary vector. Without loss of generality, we can choose
𝑎 = 0 so that

𝑈𝐾−1 = R†
𝐾−1 · E

{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
.

(A.19)

Remark A.2 Recently, a whole article has been dedicated to the problem of
semidefinite weighting matrices and the associated discrete-time deterministic
LQR control problem [31]. In the article, results and implications of using the
Moore-Penrose pseudoinverse in the standard Riccati equation are discussed
and a geometric interpretation is given.

Remark A.3 The equation (A.18) shows that some entries of the control
sequence 𝑈𝐾−1 are arbitrary, which technically results from the fact that R𝐾−1
is positive semidefinite and not positive definite as it would be in standard
LQG control. The interpretation is that 𝑈𝐾−1 contains control inputs that
have no effect on the induced costs. That can have two reasons: First, if the
network has a minimum latency that is longer than one time step, then the
first control inputs of each sequence will never be applied. Second, the last
𝑁 control sequences 𝑈𝐾−1−𝑁 :𝐾−1 contain control inputs (such as 𝑢𝐾+1|𝐾−1)
that are supposed to be applied after the terminal time 𝐾. In this respect,
the minimization problem is ill-posed as it contains minimization variables
that have no influence on the cost function. One way to resolve this issue is
to exclude the corresponding control inputs from the system equations, which,
however, would lead to a time- and/or network dependent dimension of the
system matrices. Another way is to use the Moore-Penrose pseudoinverse as
shown above.

Using (A.19) in (A.13) restuls in

𝐽*
𝐾−1 = E

{︁
𝜉⊤

𝐾−1

(︁̂︀Q𝐾−1(𝜃𝐾−1)+ ̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

)︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
− E

{︁
𝜉⊤

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
· E
{︁̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
·
(︁

E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁)︁†

· E
{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀A𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
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+ E
{︁̂︀𝑤⊤

𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
.

We can write this in a more convenient form by defining

𝑒𝐾−1
def= 𝜉

𝐾−1 − E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
,

K𝐾−1
def= E

{︁̂︀Q𝐾−1(𝜃𝐾−1) + ̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
− P𝐾−1 ,

P𝐾−1
def= E

{︁̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀B𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
(A.20)

·
(︁

E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁)︁†

· E
{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀A𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
,

so that it yields

𝐽*
𝐾−1 = E

{︁̂︀𝑤⊤
𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ E

{︁
𝜉⊤

𝐾−1K𝐾−1𝜉
𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−1

}︀
.

Time Step 𝐾 − 2

According to (A.8) and using Assumption A.1, the minimal expected
costs-to-go at time step 𝐾 − 2 are given by

𝐽*
𝐾−2 = min

𝑈𝐾−2

[︂
E
{︁
𝜉⊤

𝐾−2
̂︀Q𝐾−2(𝜃𝐾−2)𝜉

𝐾−2

+ 𝑈⊤
𝐾−2

̂︀R𝐾−2(𝜃𝐾−2)𝑈𝐾−2 + 𝐽*
𝐾−1

⃒⃒⃒
ℐ𝐾−2, 𝑈𝐾−2

}︁]︂
= E

{︁
𝜉⊤

𝐾−2
̂︀Q𝐾−2(𝜃𝐾−2)𝜉

𝐾−2

⃒⃒⃒
ℐ𝐾−2

}︁
(A.21)

+ min
𝑈𝐾−2

[︂
𝑈⊤

𝐾−2E
{︁̂︀R𝐾−2(𝜃𝐾−2)

⃒⃒⃒
ℐ𝐾−2

}︁
𝑈𝐾−2

+ E
{︁
𝜉⊤

𝐾−1K𝐾−1𝜉
𝐾−1

⃒⃒⃒
ℐ𝐾−2, 𝑈𝐾−2

}︁]︂
+ E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
+ E

{︁̂︀𝑤⊤
𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−2

}︁
.
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The term E
{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
penalizes the weighted estimation er-

ror covariance expected in the next time step. This is reasonable as a
higher uncertainty about the future state will very likely impose addi-
tional costs. A key step in the derivation of the optimal control law is to
see that E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
is independent of the control sequence

𝑈𝐾−2 and therefore can be excluded from the minimization (as already
done in (A.21)). The proof of this proposition is given in the following
Lemma A.3.

Lemma A.3 The weighted one step prediction of the estimation error co-
variance E

{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
ℐ𝑘−1, 𝑈𝑘−1

}︀
is independent of the control sequences

𝑈0:𝑘−1 that are sent. In other words,

E
{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
ℐ𝑘−1, 𝑈𝑘−1

}︀
= E

{︀
𝑒⊤

𝑘 P𝑘𝑒𝑘

⃒⃒
{ℐ𝑘−1∖𝑈0:𝑘}

}︀
.

Proof. The proof follows the idea of Lemma 5.2.1 in [14] where the
independence of the estimation error was proven for the standard LQG
control problem. In the following, we show that the induced estimation
error of the controlled system at hand is identical to the estimation error
of the associated uncontrolled system. This directly implies that the
estimation error must be independent of the control input sequence.

Consider the system (3.29)

𝜉
𝑘+1 = ̂︀A𝑘(𝜃𝑘) 𝜉

𝑘
+ ̂︀B𝑘(𝜃𝑘) 𝑈𝑘 + ̂︀𝑤𝑘 ,

and the associated uncontrolled system with state 𝜉𝑢𝑛

𝑘

𝜉𝑢𝑛

𝑘+1 = ̂︀A𝑘(𝜃𝑘) 𝜉𝑢𝑛

𝑘
+ ̂︀𝑤𝑘 , (A.22)

that has the same system matrices, initial conditions, noise realizationŝ︀𝑤0:𝑘−1 and network delay realizations 𝜏𝐶𝐴
0:𝑘−1, 𝜏𝑆𝐶

0:𝑘−1. Both systems evolve
according to linear transformations. It is therefore possible to find
deterministic matrices Ω𝑘, Ψ𝑘, and Λ𝑘 depending on 𝜃0:𝑘−1 such that

𝜉
𝑘

= Ω𝑘𝜉0 + Ψ𝑘

[︀
𝑈⊤

0 , . . . , 𝑈⊤
𝑘−1
]︀⊤ + Λ𝑘

[︀̂︀𝑤⊤
0 , · · · , ̂︀𝑤⊤

𝑘−1
]︀⊤

,

𝜉𝑢𝑛

𝑘
= Ω𝑘𝜉0 + Λ𝑘

[︀̂︀𝑤⊤
0 , · · · , ̂︀𝑤⊤

𝑘−1
]︀⊤

.
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Then, we obtain for the expected values

E
{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
= Ω𝑘 · E

{︁
𝜉0

⃒⃒⃒
ℐ𝑘

}︁
+ Ψ𝑘

[︀
𝑈⊤

0 , · · · , 𝑈⊤
𝑘−1
]︀⊤

,

E
{︁
𝜉𝑢𝑛

𝑘

⃒⃒⃒
ℐ𝑘

}︁
= Ω𝑘 · E

{︁
𝜉0

⃒⃒⃒
ℐ𝑘

}︁
,

where Ω𝑘 and Ψ𝑘 are known since information vector ℐ𝑘 includes 𝜃0:𝑘−1.
The corresponding estimation errors

𝑒𝑘
def= 𝜉

𝑘
− E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
,

𝑒𝑢𝑛
𝑘

def= 𝜉𝑢𝑛

𝑘
− E

{︁
𝜉𝑢𝑛

𝑘

⃒⃒⃒
ℐ𝑘

}︁
,

are therefore given by

𝑒𝑘 = Ω𝑘

(︁
𝜉0 − E

{︁
𝜉0

⃒⃒⃒
ℐ𝑘

}︁)︁
+ Λ𝑘

(︀̂︀𝑤⊤
0 · · · ̂︀𝑤⊤

𝑘−1
)︀⊤

,

𝑒𝑢𝑛
𝑘 = Ω𝑘

(︁
𝜉0 − E

{︁
𝜉0

⃒⃒⃒
ℐ𝑘

}︁)︁
+ Λ𝑘

(︀̂︀𝑤⊤
0 · · · ̂︀𝑤⊤

𝑘−1
)︀⊤

.

We see that the estimation errors are identical and, consequently, 𝑒𝑘 must
be independent of 𝑈0:𝑘−1. Noting that according to (A.20) the expected
weighting matrix

E
{︀
P𝑘| ℐ𝑘−1, 𝑈𝑘−1

}︀
= E {P𝑘| 𝜃𝑘−2}

is also independent of 𝑈0:𝑘−1, concludes the proof. �

Lemma A.3 proves that the expected estimation error and its covariance
are independent of the control sequences. This implies that the separation
theorem known from standard LQG control also extends to the sequence-
based setup with TCP-like networks. The separation theorem states that
the optimal controller can be separated without loss of optimality into an
optimal state estimator and into an optimal state-feedback controller (see
also the discussion in Section 3.4). In [55,120], it is shown that separation
holds for packet-dropping TCP-like networks with optimal non-sequence-
based controllers. Lemma A.3 extends these results to the sequence-based
setup and the presence of time-varying transmission delays. It is worth
pointing out that the Assumption 3.5 of a TCP-like connection is crucial
for Lemma A.3 to hold.
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Comparing (A.11) and (A.21), it can be seen that the structure of these
equations is the same with the exception of two additive terms that are
independent of 𝑈0:𝑘−1. Hence, minimizing over 𝑈𝐾−2 will result in costs-
to-go 𝐽*

𝐾−2 of the same structure as 𝐽*
𝐾−1. Therefore, it follows that by

an inductive argument for control sequence 𝑈𝑘 and cost-to-go 𝐽*
𝑘

𝑈𝑘 = L𝑘 · E
{︁
𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
, (A.23)

𝐽*
𝑘 =

𝐾−1∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖+1̂︀𝑤𝑖

⃒⃒⃒
ℐ𝑘

}︁
+ E

{︁
𝜉⊤

𝑘
K𝑘+1𝜉

𝑘

⃒⃒⃒
ℐ𝑘

}︁
+

𝐾−1∑︁
𝑖=𝑘

E
{︀
𝑒⊤

𝑖 P𝑖𝑒𝑖

⃒⃒
ℐ𝑘

}︀
,

(A.24)

with

L𝑘 =
(︁

E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
,

(A.25)

K𝑘 = E
{︁̂︀Q𝑘(𝜃𝑘) + ̂︀A𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
− E

{︁̂︀A𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)
⃒⃒⃒
ℐ𝑘

}︁
·
(︁

E
{︁̂︀R𝑘(𝜃𝑘) + ̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀B𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁)︁†

· E
{︁̂︀B𝑘(𝜃𝑘)⊤K𝑘+1 ̂︀A𝑘(𝜃𝑘)

⃒⃒⃒
ℐ𝑘

}︁
.

(A.26)

The conditional expectations in (A.25) and (A.26) can be computed be-
cause L𝑘 and K𝑘 only depend on 𝜃𝑘−1, which is part of the information
set ℐ𝑘, and not on 𝜃0:𝑘−2 or 𝜃𝑘−1:𝐾 . To emphasize this dependency, we
write L𝑘 = L𝑘(𝜃𝑘−1) and K𝑘 = K𝑘(𝜃𝑘−1). Now, we can use the law of
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total probability by explicitly conditioning on a specific value of 𝜃𝑘−1 such
as 𝜃𝑘−1 = 𝑖 with 𝑖 ∈ J. This way, we obtain

L𝑘(𝑖) = −

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀R𝑘(𝑗) + ̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)

]︁⎞⎠ (A.27)

and

K𝑘(𝑖) =
𝑁∑︁

𝑗=0
𝑝(𝑖, 𝑗)

[︁ ̂︀Q𝑘(𝑗) + ̂︀A𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)
]︁

−

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀A𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠
·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁ ̂︀R𝑘(𝑗) + ̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀B𝑘(𝑗)

]︁⎞⎠†

·

⎛⎝ 𝑁∑︁
𝑗=0

𝑝(𝑖, 𝑗)
[︁̂︀B𝑘(𝑗)⊤K𝑘+1(𝑗)̂︀A𝑘(𝑗)

]︁⎞⎠ ,

(A.28)

with 𝑝(𝑖, 𝑗) denoting the elements of transition matrix T defined in
Lemma 3.1. This concludes the proof of Theorem 3.1 .
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This section provides proofs for the stability Theorems 3.3 , 3.4 , and
Lemma 3.2. The conditions in Theorem 3.3 a) and Theorem 3.4 a),
which refer to the boundedness and unboundedness of the error covariance
matrix, can be found in [118] and therefore are not repeated here. The
other proofs are based on [45,126], where the boundedness of the long run
average costs is only investigated for the case of packet losses.

In the derivation, we express the recursion (3.32) via the operator 𝑔(·)
such that

K𝑘(0 : 𝑁) = 𝑔(K𝑘+1(0 : 𝑁)) , (B.1)

where

𝑔(X(0 : 𝑁)) def= (𝑔0(X(0 : 𝑁)), . . . , 𝑔𝑁 (X(0 : 𝑁))) , (B.2)

and

𝑔𝑗(X(0 : 𝑁)) def=[︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀Q(𝑖) + ̂︀A(𝑖)⊤X(𝑖)̂︀A(𝑖)
)︁]︃

−

[︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀A(𝑖)⊤X(𝑖)̂︀B(𝑖)

]︃

×

[︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀R(𝑖) + ̂︀B(𝑖)⊤X(𝑖)̂︀B(𝑖)
)︁]︃† [︃ 𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀B(𝑖)⊤X(𝑖)̂︀A(𝑖)

]︃
.

In (B.2), 𝑔 : R𝑛𝜉×𝑛𝜉 , . . . ,R𝑛𝜉×𝑛𝜉 → R𝑛𝜉×𝑛𝜉 , . . . ,R𝑛𝜉×𝑛𝜉 is an operator
that maps a sequence of 𝑁 + 1 matrices X(0 : 𝑁) = (X(0), . . . , X(𝑁))
to a sequence of 𝑁 + 1 matrices with the same dimension. Further, the
operator 𝑔𝑗 : R𝑛𝜉×𝑛𝜉 , . . . ,R𝑛𝜉×𝑛𝜉 → R𝑛𝜉×𝑛𝜉 maps a sequence of 𝑁 + 1
square matrices to a matrix with the same dimension as X(𝑗).
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Based on this description, the following lemma formulates the important
observation that the control related costs can be treated separately from
the estimation error related costs when analyzing LRAC-stability.

Lemma B.1 Consider the NCS setup described in Section 3.1 with Assump-
tion 3.6 controlled by the S-LQG given in Theorem 3.1 . Then, the system is
LRAC-stable for all initial conditions (𝑥0, Λ0) if and only if

a) the sequence X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) is upper bounded, and

b) the expected estimation error covariance E
{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀

is upper bounded.

Proof. Note that for any symmetric random matrix Z and any random
vector 𝑧 that are stochastically independent of each other, it holds that

E
{︀

𝑧⊤Z𝑧
}︀

= tr
(︀
E {Z} E

{︀
𝑧𝑧⊤}︀)︀+ E

{︀
𝑧⊤}︀E {Z} E {𝑧} . (B.3)

Using (B.3), (3.33), and Definition 3.3, it holds that for the long run
average costs 𝐶𝑆-𝐿𝑄𝐺

∞ induced by the S-LQG

𝐶𝑆-𝐿𝑄𝐺
∞ = lim sup

𝐾→∞

1
𝐾

· 𝐶*
0→𝐾

= lim sup
𝐾→∞

1
𝐾

·

[︃
tr
(︂

E {K0(𝑁)| ℐ0}
[︂
Λ0 0
0 0

]︂ )︂
+
[︂
𝑥0
0

]︂⊤

E {K0}
[︂
𝑥0
0

]︂

+
𝐾−1∑︁
𝑘=0

tr
(︁

E
{︁̂︀Q𝑘(𝜃𝑘) + ̂︀A𝑘(𝜃𝑘)⊤K𝑘+1(𝜃𝑘)̂︀A𝑘(𝜃𝑘)

−K𝑘(𝜃𝑘−1)| ℐ0} E
{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀)︀

+
𝐾−1∑︁
𝑘=0

tr (E {K𝑘+1(𝜃𝑘)| ℐ0} W)
]︃

.

As the matrices ̂︀Q(𝜃𝑘), ̂︀A(𝜃𝑘), Λ0, and W are bounded, the only possibil-
ities for unboundedness of (B.4) are that the matrices E{K𝑘(0 : 𝑁)|ℐ𝑘}
or E

{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀

grow unbounded. With (B.1), this proves the necessity
of Lemma B.1 a) and b). Sufficiency of Lemma B.1 a) can be shown by
assuming that (B.1) is unbounded. Then, X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁))
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grows unbounded and together with Assumption 3.6 d) that (A, W1/2) is
controllable, it follows that

lim sup
𝐾→∞

1
𝐾

·
𝐾−1∑︁
𝑘=0

tr (E {K𝑘+1(𝜃𝑘)| ℐ0} W) (B.4)

grows unbounded. To prove sufficiency of Lemma B.1 b), we use the fact
that

E
{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀

= E
{︂(︁

𝜉
𝑘

− E
{︁
𝜉

𝑘

⃒⃒⃒
ℐ0

}︁)︁(︁
𝜉

𝑘
− E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ0

}︁)︁⊤
⃒⃒⃒⃒
ℐ0

}︂
= E

{︁
𝜉

𝑘
𝜉⊤

𝑘

⃒⃒⃒
ℐ0

}︁
− E

{︁
𝜉

𝑘

⃒⃒⃒
ℐ0

}︁
E
{︁
𝜉⊤

𝑘

⃒⃒⃒
ℐ0

}︁
. (B.5)

All terms of (B.5) are positive semidefinite. Hence, E{𝜉
𝑘
𝜉⊤

𝑘
|ℐ0} must

grow unbounded for 𝑘 → ∞ if E
{︀
𝑒𝑘𝑒⊤

𝑘

⃒⃒
ℐ0
}︀

is unbounded. Using (3.3)
and (3.16), this implies that the costs must be unbounded due to Assump-
tion 3.6 c) which concludes the proof. �

We now introduce three additional operators that will be used to constitute
an upper and a lower bound for the recursion (B.2).

Φ𝑗(̂︀L(𝑗), X(0 : 𝑁)) def=
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀Q(𝑖) +

𝑁∑︁
𝑖=0

𝑝(𝑗, 𝑖)̂︀L(𝑗)̂︀R(𝑖)̂︀L(𝑗)

+
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀A(𝑖) + ̂︀B(𝑖)̂︀L(𝑗)
)︁⊤

X(𝑖)
(︁̂︀A(𝑖) + ̂︀B(𝑖)̂︀L(𝑗)

)︁
,

(B.6)

𝐿Φ
𝑗 (X(0 : 𝑁)) def= −

[︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀R(𝑖) + ̂︀B(𝑖)⊤X(𝑖)̂︀B(𝑖)
)︁]︃†

×

[︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀B(𝑖)⊤X(𝑖)̂︀A(𝑖)

]︃
,

(B.7)

Γ(X) def= Φ𝑁

(︀
𝐿Φ

𝑁 (0, . . . , 0, X), (0, . . . , 0, X)
)︀

. (B.8)

The following Lemmas summarize useful properties of these operators.
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Lemma B.2 Assume that X(0 : 𝑁) ≥ 0, then it holds:

a) arg min̂︀L(𝑗) Φ𝑗(̂︀L(𝑗), X(0 : 𝑁)) = 𝐿Φ
𝑗 (X(0 : 𝑁)) ,

b) min̂︀L(𝑗) Φ𝑗(̂︀L(𝑗), X(0 : 𝑁)) = Φ𝑗(𝐿Φ
𝑗 (X(0 : 𝑁)), X(0 : 𝑁))

= 𝑔𝑗(X(0 : 𝑁)) ,

c) 𝑔𝑗(X(0 : 𝑁)) ≤ Φ𝑗(L(𝑗), X(0 : 𝑁)) , ∀ L(𝑗) ,

d) if X (0 : 𝑁) ≥ Y(0 : 𝑁), then 𝑔𝑗(X (0 : 𝑁)) ≥ 𝑔𝑗(Y(0 : 𝑁)) ,

e) if X (𝑁) ≥ Y, then 𝑔𝑁 (X (0 : 𝑁)) ≥ Γ(Y) ,

f) if X ≥ Y, then Γ(X) ≥ Γ(Y) .

Proof.

a) As the operator Φ𝑗(̂︀L(𝑗), X(0 : 𝑁)) is convex and quadratic in ̂︀L(𝑗)
and the matrices X(0 : 𝑁), ̂︀R(0 : 𝑁) are positive semidefinite, the
minimizer of (B.6) with respect to ̂︀L(𝑗) is obtained by

𝜕Φ𝑗(̂︀L(𝑗), X(0 : 𝑁))
𝜕̂︀L(𝑗)

= 2 ·

(︃
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀R(𝑖)

)︃ ̂︀L(𝑗)

+ 2 ·
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀B(𝑖)⊤X(𝑖)̂︀B(𝑖)̂︀L(𝑗) + ̂︀B(𝑖)⊤X(𝑖)̂︀A(𝑖)
)︁

!= 0 .

Solving for ̂︀L(𝑗) produces ̂︀L(𝑗) = 𝐿Φ
𝑗 (X(0 : 𝑁)).

b) This follows from Lemma B.2 a) by substitution.

c) This fact is a direct implication of Lemma B.2 b).

d) 𝑔𝑗(Y(0 : 𝑁)) = Φ𝑗(𝐿Φ
𝑗 (Y(0 : 𝑁)), Y(0 : 𝑁))

≤ Φ𝑗(𝐿Φ
𝑗 (X (0 : 𝑁)), Y(0 : 𝑁))

≤ Φ𝑗(𝐿Φ
𝑗 (X (0 : 𝑁)), X (0 : 𝑁)) = 𝑔𝑗(X (0 : 𝑁)) .
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e) With X (0 : 𝑁) ≥ (0, . . . , 0, Y) and Lemma B.2 d) it follows that

𝑔𝑁 (X (0 : 𝑁)) ≥ 𝑔𝑁 (0, . . . , 0, Y)
= Φ𝑁 (𝐿Φ

𝑁 (0, . . . , 0, Y), (0, . . . , 0, Y))
= Γ(Y) .

f) This follows from Lemma B.2 d) with

X (0 : 𝑁) = (0, . . . , 0, X)
Y(0 : 𝑁) = (0, . . . , 0, Y) .

�

Lemma B.3 Consider the operators

ℒ𝑗(Y(0 : 𝑁)) =
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀A(𝑖) + ̂︀B(𝑖)L(𝑗)
)︁⊤

Y(𝑖)
(︁̂︀A(𝑖) + ̂︀B(𝑖)L(𝑗)

)︁
and

ℒ(Y(0 : 𝑁)) = (ℒ0(Y(0 : 𝑁)), . . . , ℒ𝑁 (Y(0 : 𝑁))) ,

and assume that there exist 𝑁 + 1 matrices Y(0 : 𝑁) > 0 such that
Y(0 : 𝑁) > ℒ

(︀
Y(0 : 𝑁)

)︀
, then

a) it holds for the sequence M𝑘+1(0 : 𝑁) = ℒ(M𝑘(0 : 𝑁)) initialized with
M0(0 : 𝑁) ≥ 0 that lim𝑘→∞ M𝑘(0 : 𝑁) = 0, and

b) the sequence M𝑘+1(0 : 𝑁) = ℒ(M𝑘(0 : 𝑁)) + (S(0), · · · , S(𝑁)) ini-
tialized with M0(0 : 𝑁) ≥ 0 is bounded for all S(0 : 𝑁) ≥ 0.

Proof.

a) Choose 0 ≤ 𝑚 such that M0(0 : 𝑁) ≤ 𝑚Y(0 : 𝑁). Furthermore,
choose 0 < 𝑟 < 1 such that ℒ

(︀
Y(0 : 𝑁)

)︀
< 𝑟Y(0 : 𝑁) and con-

sider the sequence N𝑘+1(0 : 𝑁) = ℒ(N𝑘(0 : 𝑁)) initialized with
N0(0 : 𝑁) = 𝑚Y(0 : 𝑁). Then,

0 ≤ M𝑘+1(0 : 𝑁) ≤ N𝑘+1(0 : 𝑁) ≤ 𝑚𝑟(𝑘+1)Y(0 : 𝑁) ,
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since, first, Y(0 : 𝑁) ≥ 0 implies that ℒ(Y(0 : 𝑁)) ≥ 0 and, second,
if Y(0 : 𝑁) ≥ X (0 : 𝑁) then ℒ(Y(0 : 𝑁)) ≥ ℒ(X (0 : 𝑁)). Taking
the limit 𝑘 → ∞ justifies the proposition.

b) Choose 0 ≤ 𝑠 such that S(0 : 𝑁) ≤ 𝑠Y(0 : 𝑁). Consider the sequence
S𝑘+1(0 : 𝑁) = ℒ(S𝑘(0 : 𝑁)) initialized with S0(0 : 𝑁) = S(0 : 𝑁)
and the sequence N𝑘+1(0 : 𝑁) = ℒ(N𝑘(0 : 𝑁)) initialized with
N0(0 : 𝑁) = M0(0 : 𝑁). Then,

M𝑘+1(0 : 𝑁) = N𝑘+1(0 : 𝑁) +
𝑘∑︁

𝑡=0
S𝑡(0 : 𝑁)

and using Lemma B.3 a) it follows with 0 ≤ 𝑚𝑁 , 𝑚𝑈 and with
0 < 𝑟𝑁 , 𝑟𝑈 < 1 that

M𝑘+1(0 : 𝑁) ≤ 𝑚𝑁 · 𝑟𝑘+1
𝑁 Y(0 : 𝑁) +

𝑘∑︁
𝑡=0

𝑚𝑈 · 𝑟𝑡
𝑈 Y(0 : 𝑁)

≤
(︂

𝑚𝑁 + 𝑚𝑈

1 − 𝑟

)︂
Y(0 : 𝑁) .

�

B.1. Proof of Theorem 3.3 (LRAC-stability)

a) The proof is given in [118, Theorem 2]. Note that the corresponding
conditions are satisfied due to Assumption 3.6 b), d), and e).

b) Consider the sequence X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) defined in (B.1).
Using Lemma B.2 c), it holds that

X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) ≤ Φ(̂︀L(0 : 𝑁), X𝑘(0 : 𝑁))
= ℒ(X𝑘(0 : 𝑁)) + (S(0), . . . , S(𝑁)) ,

where

S(𝑗) def=
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)

(︁̂︀Q(𝑖) + (̂︀L(𝑗))⊤ ̂︀R(𝑖)̂︀L(𝑗)
)︁

,
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Φ(̂︀L(0 : 𝑁), X𝑘(0 : 𝑁)) def= (Φ0(̂︀L(0), X𝑘(0 : 𝑁)), . . . ,

Φ𝑁 (̂︀L(𝑁), X𝑘(0 : 𝑁)) ,

and ℒ(X (0 : 𝑁)) as defined in Lemma B.3. As it is assumed that
X(0 : 𝑁) > ℒ(X(0 : 𝑁)), the condition of Lemma B.3 is satisfied
so that it follows according to Lemma B.3 b) that the sequence
X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) is bounded. Finally, this combined with
Lemma B.1 a) reveals that the system is LRAC-stable.

B.2. Proof of Theorem 3.4 (LRAC-instability)

a) The proof is given in [118, Theorem 4]. Note that the corresponding
conditions are satisfied due to Assumption 3.6 b), d), and e).

b) Consider the sequences X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) initialized with
X0(0 : 𝑁) = 0 and the sequence N𝑘+1 = Γ(N𝑘) with N0 = 0. Then,
X1(0 : 𝑁) ≥ 0 and X1(𝑁) ≥ N1. It follows from Lemma B.2 d) that
X𝑘(𝑁) ≥ N𝑘. This implies that X𝑘(𝑁) is lower bounded by N𝑘.

Moreover, if N𝑘+1 = Γ(N𝑘) converges, N = lim𝑘→∞ N𝑘 has to be a
fixed point of Γ(·) since Γ(·) is a continuous operator. Using (B.8),
the fixed point equation N = Γ

(︀
N
)︀

is N = Q + A⊤NA , with

Q =
𝑁∑︁

𝑖=0
𝑝(𝑗, 𝑖)̂︀Q(𝑖) + 𝑝(𝑁, 𝑁)L⊤ ̂︀R(𝑖)L ,

A =
√︀

𝑝(𝑁, 𝑁)
(︁̂︀A(𝑁) + ̂︀B(𝑁)L

)︁
.

From the observability of (A, Q1/2) (Assumption 3.6 c), it fol-
lows by means of the Belovich-Popov-Hautus test that the pair
(̂︀A(𝑁), (

∑︀𝑁
𝑖=0 𝑝(𝑗, 𝑖)̂︀Q(𝑖))1/2) is observable. Consequently, (A, Q1/2)

is also observable. In addition, since Q ≥ 0, it follows according
to Lyapunov theory that if max |eig(A)| > 1, then there exists no
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positive semidefinite solution to the fixed point equation. In addition,
noting that

̂︀A(𝑁) + ̂︀B(𝑁)L = ̂︀A(𝑁) + ̂︀B(𝑁)
[︂
L11 L12
L21 L22

]︂
=

⎡⎣ A 0
L21 L22
0 F

⎤⎦ ,

it turns out that eig(A) ⊂ eig(A). Therefore, the sequence N𝑘 has
no fixed point if √︀

𝑝(𝑁, 𝑁) max |eig(A)| > 1 . (B.9)

If condition (B.9) holds, the sequence N𝑘 diverges because the
sequence does not converge to a fixed point, on the one hand, and the
sequence is monotonically increasing (Lemma B.2 f), on the other
hand. Noting that X𝑘(𝑁) ≥ N𝑘, the system is LRAC-unstable
according to Lemma B.1 a).

B.3. Proof of Theorem 3.5

Consider the sequence X𝑘+1(0 : 𝑁) = 𝑔(X𝑘(0 : 𝑁)) defined in (B.1) and
initialized with X0(0 : 𝑁) = 0. According to Lemma B.2 d), the se-
quence increases monotonically, and according to Theorem B.1 b), the
sequence is bounded from above. Hence, the sequence converges. In
addition, as 𝑔(·) is a continuous function, its limit has to be the fixed point
K(0 : 𝑁) = 𝑔

(︀
K(0 : 𝑁)

)︀
.



C. Proof of Theorem 4.1
(Optimal Tracking Controller)

To prove Theorem 4.1 , we use the same technique as in Appendix A.
The cost function is reformulated in terms of the augmented state. In this
way, the Markov property of the system is restored and we can apply the
dynamic programming algorithm. By doing so, the general optimization
problem is separated into several recursively coupled subproblems that are
solved analytically.

Using the sequence-based NCS model (3.3) and the matrices (4.10) and
(4.11), we can express the minimum cumulative costs in Problem 4.1 as

𝐶𝑇 𝑟𝑘*

0→𝐾 = min
𝑈0:𝐾−1

E
{︃

(𝑧𝑅𝑒𝑓
𝐾 )⊤Q𝐾𝑧𝑅𝑒𝑓

𝐾 + 𝜉⊤
𝐾
̂︀Q𝐾𝜉

𝐾
− 2(𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝜉
𝐾

+
𝐾−1∑︁
𝑘=0

[︁
(𝑧𝑅𝑒𝑓

𝑘 )⊤Q𝑘𝑧𝑅𝑒𝑓
𝑘 + 𝜉⊤

𝑘
̂︀Q𝑘(𝜃𝑘)𝜉

𝑘
− 2(𝑧𝑅𝑒𝑓

𝑘 )⊤Q𝑘𝜉
𝑘

+𝑈⊤
𝑘
̂︀R𝑘(𝜃𝑘)𝑈𝑘

]︁⃒⃒⃒
ℐ0

}︁
.

According to dynamic programming theory, the relation with the minimum
costs-to-go holds

𝐽𝑇 𝑟𝑘*

0 = 𝐶𝑇 𝑟𝑘*

0→𝐾 , (C.1)

where 𝐽𝑇 𝑟𝑘*

0 is given by the recursion

𝐽𝑇 𝑟𝑘*

𝑘 = min
𝑈𝑘

E
{︁
(𝑧𝑅𝑒𝑓

𝑘 )⊤Q𝑘𝑧𝑅𝑒𝑓
𝑘 + 𝜉⊤

𝑘
̂︀Q𝑘(𝜃𝑘)𝜉

𝑘
− 2(𝑧𝑅𝑒𝑓

𝑘 )⊤Q𝑘𝜉
𝑘

+ 𝑈⊤
𝑘
̂︀R𝑘(𝜃𝑘)𝑈𝑘 + 𝐽𝑇 𝑟𝑘*

𝑘+1

⃒⃒⃒
ℐ𝑘

}︁
,

(C.2)
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that is initialized at 𝐾 with

𝐽𝑇 𝑟𝑘*

𝐾 = E
{︁
(𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝑧𝑅𝑒𝑓
𝐾 + 𝜉⊤

𝐾
̂︀Q𝐾𝜉

𝐾
− 2(𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝜉
𝐾

⃒⃒⃒
ℐ𝐾

}︁
. (C.3)

Using (C.3) and the definitions in (4.11), the expected costs-to-go at time
step 𝐾 are

𝐽𝑇 𝑟𝑘*

𝐾 = E
{︁
(𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝑧𝑅𝑒𝑓
𝐾 + 𝜉⊤

𝐾
̂︀Q𝐾(𝜃𝐾)𝜉

𝐾
− 2(𝑧𝑅𝑒𝑓

𝐾 )⊤Q𝐾𝜉
𝐾

⃒⃒⃒
ℐ𝐾

}︁
= 𝑠𝐾 + E

{︁
𝜉⊤

𝐾
K𝐾𝜉

𝐾

⃒⃒⃒
ℐ𝐾

}︁
− 2 · 𝜎⊤

𝐾E
{︁
𝜉

𝐾

⃒⃒⃒
ℐ𝐾

}︁
. (C.4)

Plugging (C.4) into (C.3), it yields the minimal costs-to-go at time step 𝐾−
1

𝐽𝑇 𝑟𝑘*

𝐾−1 = min
𝑈𝑘

[︂
E
{︁
𝜉⊤

𝐾−1

(︁̂︀Q𝐾−1(𝜃𝐾−1) (C.5)

+̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾
̂︀A𝐾−1(𝜃𝐾−1)

)︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ 𝑈⊤

𝐾−1E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ 2 · E
{︁
𝜉⊤

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁̂︀A𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

− 2 ·
[︁
𝜎⊤

𝐾E
{︁̂︀A𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
+ (𝑧𝑅𝑒𝑓

𝐾−1)⊤Q𝐾−1

]︁
· E

{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
− 2 · 𝜎⊤

𝐾E
{︁̂︀B𝐾−1(𝜃𝐾−1)

⃒⃒⃒
ℐ𝐾−1

}︁
𝑈𝐾−1

+ (𝑧𝑅𝑒𝑓
𝐾−1)⊤Q𝐾−1𝑧𝑅𝑒𝑓

𝐾−1+ E
{︁̂︀𝑤⊤

𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ 𝑠𝐾

]︂
.

Differentiation of (C.5) and solving for 𝑈𝐾−1 yields the minimizer

𝑈𝐾−1 = −
(︁

E
{︁̂︀R𝐾−1(𝜃𝐾−1) + ̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀B𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁)︁†

·
[︁
E
{︁̂︀B𝐾−1(𝜃𝐾−1)⊤K𝐾

̂︀A𝐾−1(𝜃𝐾−1)
⃒⃒⃒
ℐ𝐾−1

}︁
E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
−E

{︁̂︀B𝐾−1(𝜃𝐾−1)⊤
⃒⃒⃒
ℐ𝐾−1

}︁
𝜎𝐾

]︁
. (C.6)
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Using (C.6) in (C.5) with definitions (4.7) – (4.13), the minimal costs-to-go
at time step 𝐾 − 1 are

𝐽𝑇 𝑟𝑘*

𝐾−1 = E
{︁
𝜉⊤

𝐾−1K𝐾−1𝜉
𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
− 2 · 𝜎⊤

𝐾−1E
{︁
𝜉

𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ 𝑠𝐾−1

+ E
{︁̂︀𝑤⊤

𝐾−1K𝐾 ̂︀𝑤𝐾−1

⃒⃒⃒
ℐ𝐾−1

}︁
+ E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−1

}︀
.

(C.7)

With (C.7), we can calculate the expected costs-to-go at time step 𝐾 − 2
by using (C.3) such that

𝐽𝑇 𝑟𝑘*

𝐾−2 = min
𝑈𝐾−2

[︂
𝑈⊤

𝐾−2E
{︁̂︀R𝐾−2(𝜃𝐾−2) (C.8)

+ ̂︀B𝐾−2(𝜃𝐾−2)⊤K𝐾−1 ̂︀B𝐾−2(𝜃𝐾−2)
⃒⃒⃒
ℐ𝐾−2

}︁
𝑈𝐾−2

+ 2 · E
{︁
𝜉⊤

𝐾−2

⃒⃒⃒
ℐ𝐾−2

}︁
E
{︁̂︀A𝐾−2(𝜃𝐾−2)⊤K𝐾−1 ̂︀B𝐾−2(𝜃𝐾−2)

⃒⃒⃒
ℐ𝐾−2

}︁
𝑈𝐾−2

− 2 · E
{︁
𝜎⊤

𝐾−1
̂︀B𝐾−2(𝜃𝐾−2)

⃒⃒⃒
ℐ𝐾−2

}︁
𝑈𝐾−2

]︂
−2 ·

[︁
E
{︁
𝜎⊤

𝐾−1
̂︀A𝐾−2(𝜃𝐾−2)

⃒⃒⃒
ℐ𝐾−2

}︁
+ (𝑧𝑅𝑒𝑓

𝐾−2)⊤Q𝐾−2

]︁
· E

{︁
𝜉

𝐾−2

⃒⃒⃒
ℐ𝐾−2

}︁
+ E

{︁
𝜉⊤

𝐾−2

(︁̂︀Q𝐾−2(𝜃𝐾−2)+ ̂︀A𝐾−2(𝜃𝐾−2)⊤K𝐾−1 ̂︀A𝐾−2(𝜃𝐾−2)
)︁

𝜉
𝐾−2

⃒⃒⃒
ℐ𝐾−2

}︁
+ E

{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
+ (𝑧𝑅𝑒𝑓

𝐾−2)⊤Q𝐾−2𝑧𝑅𝑒𝑓
𝐾−2

+ E {𝑠𝐾−1| ℐ𝐾−2} +
𝐾−1∑︁

𝑘=𝐾−2
E
{︁̂︀𝑤⊤

𝑘 K𝑘+1̂︀𝑤𝑘

⃒⃒⃒
ℐ𝐾−2

}︁
.

As in the S-LQG case, the term E
{︀
𝑒⊤

𝐾−1P𝐾−1𝑒𝐾−1
⃒⃒
ℐ𝐾−2

}︀
is independent

of 𝑈𝐾−2, which is justified by Lemma A.3. The minimal expected costs-
to-go 𝐽𝑇 𝑟𝑘*

𝐾−2 can be calculated similarly to 𝐽𝑇 𝑟𝑘*

𝐾−1 as the structure of (C.7)
and (C.8) is identical. Proceeding with the optimization, we therefore get
to the solution stated by Theorem 4.1 .





D. Proof of Lemma 5.1
(Event-Triggered S-LQG)

The individual costs (5.14) and (5.15) can be computed in the same way as
the costs 𝐶*

0→𝐾 (3.33) in Appendix A. Therefore, replacing the term 𝑝(𝑖, 𝑗)
by 𝑝

𝐸𝑣𝑡[𝑘]
𝑙 (𝑖, 𝑗) and exchanging ℐ𝑘 with 𝒮 [𝑘]

𝑙 in Appendix A, we obtain

𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 = E

{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
+

𝐾−1∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖̂︀𝑤𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
+

𝐾−1∑︁
𝑖=𝑘

𝑆𝑖

+
𝐾−1∑︁

𝑖=𝑘+1
E
{︁(︀

𝑒𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
,

(D.1)

with
𝑒𝑆𝑒𝑛𝑑

𝑖
def= 𝜉

𝑖
− E

{︁
𝜉

𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑖

}︁
.

The costs for not sending the sequence, 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑘→𝐾 , can be calculated

analogously by replacing ℐ𝑘 with 𝒩 [𝑘]
𝑙 instead. The result is

𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑘→𝐾 = E

{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+

𝐾−1∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K[𝑘]
𝑖 ̂︀𝑤𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+

𝐾−1∑︁
𝑖=𝑘+1

𝑆𝑖 +
𝐾−1∑︁

𝑖=𝑘+1
E
{︁(︀

𝑒𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
,

(D.2)

with
𝑒𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑖
def=
(︁

𝜉
𝑖
− E

{︁
𝜉

𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑖

}︁)︁
.

It holds for the difference 𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 of these costs

𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 = Δ𝐶𝑜𝑛
𝑘:𝐾 + Δ𝐸𝑠𝑡

𝑘:𝐾 , (D.3)
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with

Δ𝐶𝑜𝑛
𝑘:𝐾

def= E
{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
− E

{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
,

+
𝐾−1∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖̂︀𝑤𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
−

𝐾−1∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖̂︀𝑤𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+ 𝑆 ,

Δ𝐸𝑠𝑡
𝑘:𝐾

def=
𝐾−1∑︁
𝑖=𝑘

E
{︁(︀

𝑒𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
−

𝐾−1∑︁
𝑖=𝑘

E
{︁(︀

𝑒𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
.

Furthermore, Lemma A.3 also holds for the information structures 𝒮 [𝑘]
𝑘

and 𝒩 [𝑘]
𝑘 due to Assumption 3.5. This implies that the expressions

E
{︁(︀

𝑒𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
(D.4)

and

E
{︁(︀

𝑒𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

)︀⊤ P𝑖𝑒
𝑁𝑜𝑡𝑆𝑒𝑛𝑑
𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
(D.5)

are independent of 𝑈0:𝑘−1 and 𝑈 𝑐𝑎𝑛𝑑
𝑘 for all 𝑖 ∈ {𝑘, . . . , 𝐾} and, hence,

Δ𝐸𝑠𝑡
𝑘:𝐾 = 0 .

In analogy to Corollary 5.1, we can observe that the approximation of the
transition matrix for the case that 𝑈 𝑐𝑎𝑛𝑑

𝑘 is not sent to the actuator also
converges after 𝑁 time steps towards the transition matrix of the S-LQG.
Therefore, it holds that

𝐾−1∑︁
𝑖=𝑘+𝑁

E
{︁̂︀𝑤⊤

𝑖 K[𝑘]
𝑖 ̂︀𝑤𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
−

𝐾−1∑︁
𝑖=𝑘+𝑁

E
{︁̂︀𝑤⊤

𝑖 K[𝑘]
𝑖 ̂︀𝑤𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
= 0 ,

Using this result in (D.3), finally results in

𝐶𝑆𝑒𝑛𝑑
𝑘→𝐾 − 𝐶𝑁𝑜𝑡𝑆𝑒𝑛𝑑

𝑘→𝐾 = E
{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
− E

{︁
𝜉⊤

𝑘
K[𝑘]

𝑘 𝜉
𝑘

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+

𝑘+𝑁∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖̂︀𝑤𝑖

⃒⃒⃒
𝒮 [𝑘]

𝑘

}︁
−

𝑘+𝑁∑︁
𝑖=𝑘

E
{︁̂︀𝑤⊤

𝑖 K𝑖̂︀𝑤𝑖

⃒⃒⃒
𝒩 [𝑘]

𝑘

}︁
+ 𝑆𝑘 ,

concluding the proof.
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