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Chapter 1

Introduction

1.1 Motivation

Bond markets are an important source of financing for private and public companies as

well as for sovereigns. The total volume of outstanding bonds worldwide amounts to

about 85 trillion USD and exceeds both the annual world GDP (72 trillion USD) and the

market capitalization of global stock markets (53 trillion USD).1 For all investors in bond

markets, the recent financial crisis has highlighted the tremendous importance of liquidity

risk management. Since investors demand higher future expected returns for illiquid assets,

deteriorating liquidity directly transfers to a decrease of a bond’s fair value. Therefore,

as liquidity dried up in many markets during the financial crisis, investors not only faced

large trading costs, but additionally suffered losses due to increased yield spreads of their

bonds. Dick-Nielsen, Feldhütter, and Lando (2012) estimate that after the collapse of

Lehman Brothers, the median yield spread component due to illiquidity for speculative

U.S. corporate bonds increased to a peak of about 10% compared to less than 1% before

the crisis. The decreasing value of illiquid bonds thus contributed to the capital losses

of financial institutions and amplified the financial crisis (see, e.g., Brunnermeier, 2009).

For that reason, an effective liquidity risk management requires both the quantification of

liquidity and an understanding of its impact on bond prices.

However, measuring liquidity in bond markets is difficult. As bond trading is not

centrally organized on exchanges like it is the case for stocks, intraday data on quotes is

not available. Therefore, trading cost measures like intraday effective bid-ask spreads (i.e.,

1Data for 2012, see Bank of International Settlements (2013), International Monetary Fund (2013),
and World Bank (2013).
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Chapter 1. Introduction

the average difference of trade prices from quoted mid prices), which are established as

the standard choice in equity markets (see, e.g., Lee, 1993; Hasbrouck, 2009), cannot be

computed for bond markets. Rather, many researchers either design their own liquidity

measures based on transaction data or simply use liquidity proxies developed and tested

in stock markets. Due to the different market structure of decentralized over-the-counter

(OTC) markets compared to centralized exchange markets, it is unclear whether these

measures originally developed and tested in stock markets work in bond markets as well.

Moreover, the lack of a comparative analysis of the different liquidity measures makes the

choice of a particular measure often arbitrary. Such benchmarking studies are available for

exchange traded stocks (see, e.g., Goyenko, Holden, and Trzcinka, 2009; Fong, Holden, and

Trzcinka, 2010) or commodity futures (see Marshall, Nguyen, and Visaltanachoti, 2012),

but it is unclear how their results transfer to decentralized OTC bond markets. In this

thesis, we implement and empirically compare all the different liquidity measures used in

the literature so far. Our goal is to provide guidance to researchers and practitioners by

answering the question which liquidity measure is best suited in a particular situation.

Regarding the impact of illiquidity on asset prices, there are also fundamental dif-

ferences between bonds and stocks. First, bonds offer investors the opportunity to wait

until maturity and thereby avoid transaction costs. This opportunity impacts the value

of liquidity and leads to a relation between the time until a bond’s maturity and its yield

spread due to illiquidity. Second, contrary to stock markets, bond issuers usually have

multiple bonds outstanding. These securities are often very close substitutes with respect

to credit risk and other characteristics and differ only in their maturity. Therefore, price

discounts due to illiquidity should be analyzed from an aggregate perspective and not

on an individual security level. Both reasons point to employing the term structure of

liquidity premia as a natural means to describe the impact of illiquidity on bond prices.

From a risk management perspective, it is important to understand how this term

structure of liquidity premia is related to fundamental economic factors. Although there

are studies that analyze such a dependence (see, e.g., Longstaff, 2004; Kempf, Korn, and

Uhrig-Homburg, 2012), it remains an open question how the influence changes in a crisis

compared to normal times. Since the relationship between liquidity and bond prices is

strongly dependent on the economic environment (see Acharya, Amihud, and Bharath,

2013), it is likely that the influence of fundamental factors on the term structure of liquidity

premia is also different in crisis times. If this is the case, calibrating risk management

models in normal times could potentially misjudge illiquidity risk. We analyze this issue

by empirically investigating the difference in the zero coupon yield curves of two bond

2



1.2. Structure of the Thesis

classes that only differ in their liquidity within a regime-switching model.

Since bonds of different maturities from the same issuer are often close substitutes,

dependencies between different maturities, which are one of the constituting characteris-

tics of bond markets, are of great importance. However, existing theoretical papers either

analyze liquidity premia of bonds with infinite maturity (see, e.g., Vayanos and Vila, 1999;

Huang, 2003) or look at bonds of one single maturity but do not allow for dependencies be-

tween different maturities (see, e.g., Feldhütter, 2012). There is also little consensus even

on the most fundamental question: What is the shape of the term structure of liquidity

premia in equilibrium? Empirically, the term structure is found to be decreasing (Ericsson

and Renault, 2006), increasing (Dick-Nielsen, Feldhütter, and Lando, 2012), or U-shaped

(Longstaff, 2004). Moreover, the literature offers no explanation for the puzzling observa-

tion that bonds with very short and long maturities are rarely traded, while there is an

active market for bonds with intermediate maturities (Elton and Green, 1998; Hotchkiss,

Warga, and Jostova, 2002). In this thesis, we provide a theoretical framework that al-

lows investors with different investment horizons to simultaneously trade in bonds with

different maturities. With this framework, we are able to unify many previous empirical

results.

1.2 Structure of the Thesis

This thesis is structured as follows:

In Chapter 2, which is based on the working paper Schestag, Schuster, and Uhrig-

Homburg (2014), we analyze how to best measure bond liquidity. We first implement

and compare eight high-frequency liquidity measures based on a full trade record for the

U.S. corporate bond market. We establish that these high-frequency transaction cost and

price impact measures are highly correlated with each other. Based on this result, we

take the high-frequency measures as benchmarks and test whether they are connected to

a battery of transaction cost and price impact proxies that only need daily information

and thus can be computed much more efficiently. We include those liquidity proxies that

have been frequently used in the literature (see, e.g., Chen, Lesmond, and Wei, 2007;

Goyenko, Subrahmanyam, and Ukhov, 2011; Lin, Wang, and Wu, 2013) but also some

measures that have been only applied in stock markets so far (see, e.g., Goyenko, Holden,

and Trzcinka, 2009; Hasbrouck, 2009; Holden, 2009; Fong, Holden, and Trzcinka, 2010;

Corwin and Schultz, 2012). We analyze the ability of liquidity proxies to capture time

3



Chapter 1. Introduction

series and cross sectional variations of transaction cost and price impact benchmarks as

well as the magnitude of transaction costs.

After having established how to best quantify liquidity, we analyze in Chapters 3 and

4 how illiquidity is priced. In Chapter 3, which builds on the working paper Schuster

and Uhrig-Homburg (2014), we study the term structure of liquidity premia as the dif-

ference between the zero coupon yield curves of German government bonds (BUNDs)

and government guaranteed bonds issued by a German federal agency (Kreditanstalt für

Wiederaufbau, KfW). Both bond segments differ in their liquidity, but bear the same de-

fault risk. In this clean setting, we empirically analyze how liquidity related risk premia

behave in different economic regimes. Moreover, we identify drivers of different parts of

the term structure of liquidity premia and analyze their relations in crisis and non-crisis

times.

In Chapter 4, which is based on the working paper Schuster, Uhrig-Homburg, and

Trapp (2014), we propose a parsimonious equilibrium model where investors that differ in

their investment horizons trade bonds of different maturities. Our model predicts different

shapes of the term structure for liquidity premia computed from bid and ask prices and

explains the well documented aging effect (see, e.g., Alexander, Edwards, and Ferri, 2000;

Edwards, Harris, and Piwowar, 2007), i.e., the observation that other things equal, old

bonds trade less frequently than newly issued bonds. We test and confirm our theoretical

predictions using data for U.S. corporate bonds.

Chapter 5 summarizes the main results of the thesis and gives a concise outlook on

possible future research questions.
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Chapter 2

Measuring Liquidity in Bond

Markets

2.1 Introduction

As pointed out in Chapter 1, there is no consensus how to adequately measure bond

liquidity. The goal of this chapter is to evaluate and comprehensively benchmark the

different liquidity measures used in the literature so far. We first implement and compare

eight high-frequency liquidity measures based on full intraday information from TRACE,

which contains a full trade record for the U.S. corporate bond market. Due to the OTC

nature of the bond market, this database does not contain data on quotes and it is thus

not possible to calculate intraday effective bid-ask spreads, which are standard in equity

markets. As a consequence, researchers in bond markets have developed a multitude of

different liquidity measures and, so far, there is no comprehensive analysis of whether these

measures work equally well. We therefore first have to establish that these high-frequency

transaction cost and price impact measures are highly correlated with each other. Since

this is the case, we can take the high-frequency measures as benchmarks and test, whether

they are connected to a total of 23 transaction cost and price impact proxies. These

proxies only need daily information, that can be easily downloaded, e.g., from Bloomberg.

To find out whether the daily proxies actually measure intraday transaction costs and

price impact, we run various tests analyzing the ability of liquidity proxies to capture

time series and cross sectional variations of transaction cost and price impact benchmarks

as well as the correct scale of transaction costs. Whereas the ability to capture liquidity

differences is especially important for asset pricing studies, many studies that analyze, e.g.,

5



Chapter 2. Measuring Liquidity in Bond Markets

trading strategies or portfolio allocations depend on the magnitude of transaction costs.

The correct scale of transaction costs is also most important for all dealers and investors

trading bonds. Our observation period spans the time since the full implementation of

TRACE from October 1, 2004 to September 30, 2012.

Our results show that most of our liquidity proxies indeed capture transaction costs.

Time series and average cross sectional correlations between benchmark measures and

proxies are on average even higher than in Goyenko, Holden, and Trzcinka (2009) for the

stock market. The best measures in our competitions are the bid-ask spread estimator

derived from high and low prices developed by Corwin and Schultz (2012), Hasbrouck’s

(2009) Gibbs measure, and the widely used Roll (1984) measure. The former two also

estimate the magnitude of transaction costs very precisely. All three measures perform

very consistently for different liquidity portfolios and different subperiods. In contrast

to the stock market, the effective tick size measure is not in the winning group, which

is most likely due to the OTC nature of bond markets. Measures based on quoted bid-

ask spreads from Bloomberg are generally suited to capture effective transaction costs

as well. Thereby, measures based on executable quotes do better than proxies based

on the Bloomberg Generic bid-ask spread, which is probably the most widely employed

daily liquidity measure (e.g., Longstaff, Mithal, and Neis, 2005; Chen, Lesmond, and Wei,

2007; Bao, Pan, and Wang, 2011). In one subperiod, this measure even yields a negative

time series correlation with our liquidity benchmarks, presumably due to methodological

changes by Bloomberg in the process to derive bid and ask prices.

For price impact, we find that the daily Amihud (2002) measure and the price im-

pact version of the high-low measure (Corwin and Schultz, 2012; Goyenko, Holden, and

Trzcinka, 2009) are best suited to proxy for the intraday price impact benchmarks. How-

ever, these results have to be interpreted with great caution since measuring price impact

in decentralized OTC bond markets generally poses a conceptual problem. First, due to

the decentralized market structure, it is unclear how information from a trade gets in-

corporated into subsequent prices. Second, without intraday quote data, the impact of a

trade on the quoted midpoint cannot be observed (see Hasbrouck, 1991, who uses quote

data to determine price impact). Third, effective transaction costs, especially for corpo-

rate and municipal bond markets and in sharp contrast to most other markets, decrease

with trade size (see, e.g., Schultz, 2001; Harris and Piwowar, 2006; Edwards, Harris, and

Piwowar, 2007). Thus, with the usual notion of static price impact as the first derivative

of transaction cost with respect to size (see, e.g., Goyenko, Holden, and Trzcinka, 2009),

price impact is negative. Nevertheless, intraday and daily measures of price impact are

6



2.2. Data

widely used in the literature (see, e.g., Mahanti et al., 2008; Dick-Nielsen, Feldhütter, and

Lando, 2012; Lin, Wang, and Wu, 2013). Their value can be justified as they incorporate

volume data and therefore capture an additional dimension of liquidity, which might be

important, e.g., for asset pricing.

Our results imply that for many applications, especially if the focus is on average

market liquidity, it might be sufficient to use liquidity measures based on daily data.

The necessary daily closing, high, and low prices as well as trading volumes or bid-ask

quotations can be downloaded conveniently, e.g., with Bloomberg. By employing daily

liquidity proxies, researchers can circumvent the computationally intensive data handling

and cleaning procedures resulting from using the full TRACE data set (which is by now

more than 10 gigabytes large). Moreover, our results provide guidance for all markets

where a trade reporting system is not implemented and therefore intraday data is not

available which applies to all bond markets except the U.S. For these markets, we recom-

mend using bid-ask spreads derived from executable quotations as data providers cannot

distribute closing, high, and low prices, and daily trading volumes.

The remainder of this chapter is organized as follows. Section 2.2 describes the

data used in our analyses. Section 2.3 presents the high-frequency benchmarks and low-

frequency proxies. The testing methodology and our main findings regarding the measure-

ment of bond liquidity are provided in Section 2.4. Section 2.5 concludes the chapter.

2.2 Data

To calculate our high-frequency liquidity benchmarks, our main source of data is the

Trade Reporting and Compliance Engine (TRACE) established by the Financial Industry

Regulatory Agency (FINRA) in July 2002. Since October 1, 2004, all OTC trades in the

U.S. corporate bond market have to be reported to the TRACE database within a time

window of 15 minutes. These reports contain the date, time, volume,2 and price of a trade.

Since November 2008, the data includes also information on whether the trade is a buy, a

sell, or an interdealer transaction. Our sample ranges from October 1, 2004 to September

30, 2012. Following Bao, Pan, and Wang (2011), we only include bonds in our analysis

that are active for at least one year during our period of observation and are traded on at

least 75% of trading days during their lifespan. Bonds in default are only included up to

2The volume is capped at $5 million for investment grade and $1 million for non-investment grade
bonds.
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Chapter 2. Measuring Liquidity in Bond Markets

Table 2.1: Summary statistics of the overall TRACE database and our sample
The table compares bond characteristics from all bonds reported to TRACE and our sample.

Panel A describes the overall TRACE data set where duplicates, withdrawn entries, and correc-

tions are already accounted for using the filters proposed by Dick-Nielsen (2009). Our sample

consists of all non-defaulted bonds that are active for at least one year within our observation

period and which are traded on at least 75% of the trading days during their lifespan (see Bao,

Pan, and Wang, 2011). A comparison of Panel B and C illustrates the impact of our error

correction filters described in the text. Data on bond characteristics, ratings, and outstanding

amounts is obtained from Thomson Reuters and Bloomberg and averaged over the life of a bond

before calculating summary statistics. The observation period is October 1, 2004 to September

30, 2012.

Mean Q0.05 Q0.25 Q0.5 Q0.75 Q0.95 Not applicable

Panel A: All bonds in TRACE after removing duplicates, withdrawn entries, and corrections (see Dick-Nielsen, 2009)
# Bonds 72571
# Trades per bond 859.57 1 6 47 355 3922 -
Amount outstanding (in mn. USD) 213.2 0.65 4.34 25 203.47 1000 6375
Annual turnover (in %) 57.2 0.78 9.64 25.15 52.01 164.9 6375
Time to maturity at issuance 8.8759 1.1333 3.0278 6.0000 10.0194 29.75 6387
Numerical Rating (1: AAA,..., 22: D) 6.2207 1 2.7791 5.5 8.6667 15.376 15969

Panel B: Selected bonds after removing duplicates, withdrawn entries, and corrections (see Dick-Nielsen, 2009)
# Bonds 3494
# Trades per bond 10449.07 1511 3458 6889.5 12593 30635 -
Amount outstanding (in mn. USD) 987.37 167.43 500 750 1250 2500 -
Annual turnover (in %) 90.27 33.89 56.72 75.94 104.85 190.01 -
Time to maturity at issuance 10.6891 3.0055 4.9639 9.7889 10.0333 30.0028 20
Numerical Rating (1: AAA,..., 22: D) 8.0567 2.4029 5.1591 7.1582 10.2935 15.8338 25

Panel C: Final sample (3494 bonds) after applying all error correction filters
# Trades per bond 10002.55 1374 3274 6531 12060 29481 -
Annual turnover (in %) 86.23 32.42 55 73.21 98.46 183.04 -

three months before the default date to prevent an impact of abnormal trading behavior

around and after the default event. To account for duplicates, withdrawn and corrected

trade entries, we apply the procedures described in Dick-Nielsen (2009). Additionally,

we exclude trades under special conditions and delete records of trades taking place on a

holiday and before the bond’s origination or after it has been fully repaid. Further, we

use the median and reversal filters introduced by Edwards, Harris, and Piwowar (2007)

to eliminate extreme outliers and erroneous entries. After all these corrections, our final

TRACE data sample consists of 3,494 bonds and 34,948,920 single trades, which is about

56% of all trades reported to TRACE.

Table 2.1 gives a brief summary of the characteristics of the bonds in our sample

(Panel B) and compares them to the overall TRACE database (Panel A). Compared to

the full TRACE data set, our bonds are on average more actively traded and have higher

amounts outstanding.3 Further, for time to maturity, the upper quantiles Q0.75 and Q0.95

3This implies that one should be cautious to transfer our results to very illiquid bonds. However, it
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are very similar, whereas the lower quantiles are higher in our sample due to the fact

that we demand a bond to be active for at least one year. In our sample, ratings are on

average about two notches worse than for the overall TRACE database. Panel C shows

the changing values when the error filters are applied. The decline in the number of trades

per bond and annual turnover is only marginal.

In addition to TRACE data, some of our high-frequency liquidity measures depend also

on a bond’s fair market valuation. The Markit Group Limited, a leading global financial

information service, collects price information from more than 30 dealers to compute a

composite price and ensures its quality by running multiple data cleaning procedures on

the contributed inputs (see Markit Group Limited, 2013). Therefore, we follow, e.g.,

Friewald, Jankowitsch, and Subrahmanyam (2012) and use Markit composite prices as

fair market valuations. In total, Markit provides composite prices for 3,143 bonds in our

TRACE sample.

To calculate our daily liquidity proxies, we use daily end of day, high, and low prices,

trading volumes, and bid-ask quotations from Bloomberg. End of day prices as well

as high and low prices and volumes are downloaded from Bloomberg’s TRACE pricing

source. Again, we correct the data using the above median and reversal filters, and delete

days outside a bond’s lifespan. Additionally, we delete data for days where the total

trading volume is more than half of the total amount outstanding. We do not correct for

discrepancies between our daily data and our intraday TRACE data set, as this would

also not be possible for someone only employing our daily proxies. We thus fully separate

our daily data from our intraday data set. End of day, high, and low prices as well as

volumes are available for all 3,494 bonds in our sample. Volume data is only available in

Bloomberg since March 29, 2005.

Daily bid-ask quotes are downloaded using the Bloomberg Generic Quote (BGN) and

Composite Bloomberg Bond Trade (CBBT) pricing sources. Amongst others, Bao, Pan,

and Wang (2011), Chen, Lesmond, and Wei (2007), and Longstaff, Mithal, and Neis

(2005) employ BGN bid-ask spreads on the U.S. corporate bond market. BGN prices are

computed as a weighted average of quotes from participating dealers and include indicative

and executable quotes. Similarly, the CBBT pricing source also provides average bid-ask

quotes, but is only based on executable quotes that are listed on Bloomberg’s trading

would hardly make sense to construct intraday liquidity benchmarks for bonds that trade on average, e.g.,
one time per day. On the other hand, our robustness checks for different liquidity portfolios show that
liquidity proxies, if anything, perform better in the more illiquid than in the more liquid portfolios. This
is also found by Goyenko, Holden, and Trzcinka (2009) for stocks.
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platform.4 In addition to these already aggregated pricing sources, we use Bloomberg

quotes contributed from 228 investment firms and exchanges where some of our bonds

are listed. We eliminate all entries for BGN, CBBT, and single dealers’ quotes with an

ask quote larger than the corresponding bid quote and days outside the bond’s lifespan.

For the single dealers’ quotes, we additionally delete stale prices,5 duplicate time series,

prices that would allow for arbitrage with Bloomberg’s consensus prices, and quotes with

corresponding bid-ask spreads that are more than ten times larger than the median bid-ask

spread for that bond or all bonds in the sample on that day. After these corrections, we find

BGN, CBBT, and single dealers’ quotes for 3,480, 3,145, and 3,463 bonds, respectively.

For the daily proxies that need a fair market valuation as input, we use composite

prices from the BGN pricing source. We do not use Markit composite prices, which we

use for our intraday benchmarks, to ensure a full separation of our intraday and our daily

data set. For proxies that need a reference index, we obtain price data for the FINRA-

BLP Active Investment Grade US Corporate Bond Price Index and FINRA-BLP Active

High Yield US Corporate Bond Price Index from Bloomberg. These indexes are based on

the most frequently traded fixed coupon bonds in the TRACE database with rebalancing

taking place each month (for details, see Financial Industry Regulatory Authority and

Bloomberg, 2007).

Data on bond characteristics, historical ratings from Moody’s, Standard & Poor’s, and

Fitch, and outstanding amounts are obtained from Thomson Reuters and Bloomberg.

2.3 Liquidity Measures

In this section, we briefly describe our high-frequency liquidity benchmarks as well as all

liquidity proxies. We compute eight high-frequency measures calculated from our TRACE

intraday sample and 23 liquidity proxies based on daily price, quote, and volume data

collected from Bloomberg. For all bonds, we then compare high-frequency benchmarks

with low-frequency proxies on a monthly basis. Following Goyenko, Holden, and Trzcinka

(2009), we distinguish between spread and price impact measures and mainly compare our

results within these subgroups.

4The exact methods of calculation are not disclosed by Bloomberg. CBBT prices are available since
November 1, 2004.

5Specifically, we delete a quotation if it is stale for more than five business days (except, the respective
BGN price does not change either, indicating that the fundamental value of the bond stays identical).
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2.3.1 High-Frequency Benchmarks

As there is not one broadly accepted transaction cost benchmark in bond markets, we

implement and compare all commonly used high-frequency transaction cost measures.

Thereby, we slightly modify some of the measures so that they are able to fully exploit

the information in our data set. As an example, we simplify the rather complex methods

in Schultz (2001) or Edwards, Harris, and Piwowar (2007) to compute a fair reference

price for a bond by using Markit composite prices. Some of our proxies have been initially

defined on an absolute, and some on a relative (i.e., in percent of trade prices) level. As

we also want to compare the scale of two measures, we standardize all benchmarks and

proxies to measure relative transaction costs. For price impact, we calculate the intraday

Amihud (2002) measure and a modified version of Hasbrouck’s (2009) lambda.

2.3.1.1 Spread Benchmarks

Roundtrip Transaction Costs: Feldhütter (2012) develops an approach to compute

roundtrip transaction costs based on trade prices. He argues that bonds are often traded

with multiple trades taking place in a short time frame with identical trade volumes.

Hence, it is safe to assume that dealers are undertaking what he calls imputed roundtrip

trades (IRT) to coordinate buys and sells of investors. We aggregate all trades per bond

with the same volumes that occur within a 15 minute time window to an IRT. We then

compute the absolute effective spread estimator as the doubled difference between the

lowest and highest trade prices for each IRT.6 To get a relative spread proxy, we divide

the roundtrip transaction costs by the mean of the maximum and minimum prices. A

bond’s monthly liquidity measure is then obtained as the average from all IRTs in a

month.

Inter-Quartile Range: Han and Zhou (2007) and Pu (2009) use the inter-quartile range

of trade prices as a bid-ask spread estimator. They divide the difference between the 75th

percentile P 75th
t and the 25th percentile P 25th

t of intraday trade prices on day t by the

6Feldhütter (2012) notes that in his sample, only 4% of the imputed roundtrips after November 2008
consist of one single buy and one single sell transaction. However, nearly 90% include one buy or sell
trade combined with one or two interdealer trades. Therefore, the doubled difference should be used to
estimate bid-ask spreads. As in Feldhütter (2012), we exclude an IRT when the difference between the
highest and lowest price is zero.
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average trade price Pt of that day:

B IQR =
P 75th
t − P 25th

t

Pt

. (2.1)

This measure is similar to measures based on the price range (see also Han and Zhou,

2007), but is less sensitive to outliers. We calculate B IQR for each day that has at least

three observations and use the monthly mean as our monthly liquidity benchmark.

Roll: Friewald, Jankowitsch, and Subrahmanyam (2012) and Dick-Nielsen, Feldhütter,

and Lando (2012) employ an intraday version of the Roll (1984) estimator for effective

spreads. We adapt their measure to relative bid-ask spreads:

B Roll =




2
√

−Cov(ri, ri−1) if Cov(ri, ri−1) < 0,

0 otherwise,
(2.2)

where ri =
Pi−Pi−1

Pi−1
is the return of the ith trade.

Adjusted Schultz: Schultz (2001) estimates transaction costs in the corporate bond

market by running the following regression on a data set including a trade side indicator:

∆i = α0 + α1 ·DBuy
i + ǫi. (2.3)

For each trade i,DBuy
i is a dummy variable indicating whether the trade is a buy (DBuy

i = 1)

or a sell (DBuy
i = 0) and ∆i is the difference of the trade price and the asset’s bid quote.7

The parameters estimated are α0 and α1 with the latter being an estimator for the ef-

fective bid-ask spread. We refine his model to get a relative spread proxy and to include

information from interdealer trades, exploiting our full TRACE data set:

∆rel
i = αrel

0 + αrel
1 ·Di + ǫi, (2.4)

where ∆rel
i is the relative deviation of the trade price from the bond’s mid quote. We use

the Markit composite price as proxy for the mid quote and adjust the dummy variable as

follows:

Di =





1 if trade i is a buy,

0 if trade i is an interdealer trade,

−1 if trade i is a sell.

(2.5)

7Schultz estimates bid quotes using a three-step procedure. For further details, see Schultz (2001).
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We exclude the possibility of getting negative bid-ask spreads with the constraint αrel
1 ≥

0. Our monthly bid-ask spread estimate is then obtained by first running the regres-

sion in Equation (2.4) on all trades in a given month, including only days on which

a composite price is available. Second, as αrel
1 only estimates the half spread, we use

B AdjustedSchultz = 2 · α̂rel
1 and calculate this measure for the time when a buy/sell

indicator is available from November 2008 onwards.

Adjusted EHP: Edwards, Harris, and Piwowar (2007) and Harris and Piwowar (2006)

use an econometric model to estimate transaction costs utilizing the difference between

returns from trade prices and returns from (unobserved) ‘true values’. We proxy for the

bond’s unobserved true value return rVi with the log return of the Markit composite price

rComposite
i :

rVi = rComposite
i + ǫi. (2.6)

In the spirit of Edwards, Harris, and Piwowar (2007), the error in the measurement of

the unobserved true value return ǫi between trades i− 1 and i is proportional to the time

between both trades ∆Ti. Since we only observe rComposite
i 6= 0 if trades i − 1 and i take

place on different days, we additionally distinguish between overnight and intraday error

variance:

σ2
ǫi
= σ2

overnight ·Dovernight + σ2
intraday · (1−Dovernight) ·∆Ti, (2.7)

whereDovernight has value one if r
V
i is an overnight return and zero otherwise. Our modified

version of their model for the observed (log) return rObs
i = log

(
Pi

Pi−1

)
is then given by:

rObs
i − rComposite

i = c · (Di −Di−1) + ηi, (2.8)

where Di is defined as in Equation (2.5) and ηi is an error term with mean zero and a

variance σ2
i that is the sum of error variances from the measurement of unobserved true

value returns (σ2
ǫi
), transaction costs (σ2

c ), and interdealer price concessions (σ2
δ ):

σ2
i = σ2

ǫi
+ (2−DInt

i ) · σ2
c +DInt

i · σ2
δ . (2.9)

The variable DInt
i equals zero, one, or two, when zero, one, or two of trades i − 1 and

i are interdealer trades. We estimate c from Equation (2.8) with the iterated weighted

least-squares method for each bond and month, again starting in November 2008.8 Since

8Following Harris and Piwowar (2006), we estimate the variance Equation (2.9) in a pooled regression
over the whole sample. Since our simplified model has less parameters than the original model, we only
need two observations (with different Di) to identify the regression for a given bond/month combination.
Further, we stop the iteration, if the maximum difference in c for our bonds is less than 10−6 between two
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c only measures the half spread, we double the estimates to get our benchmark measure

B EHP.

Price Dispersion: Jankowitsch, Nashikkar, and Subrahmanyam (2011) introduce the

following liquidity measure:

d =

√√√√ 1∑N

i=1 Qi

N∑

i=1

(Pi −m)2Qi. (2.10)

This measure gives the daily dispersion of all N intraday trading prices Pi from the market-

wide consensus price m. The higher this dispersion, the higher are the trading costs for

investors. The authors develop a market microstructure model in which dealers’ inventory

risk and investors’ search costs in addition to transaction costs are the drivers of price

dispersion. Due to these additional cost components, the scale of this benchmark cannot

be directly compared to the other transaction cost measures. A transaction’s volume Qi

is used as a weighting factor, because it is assumed that dispersion in large trades reveals

more information. We use a modified version of this measure for relative dispersions and

double it to get an estimate for the effective spread.

B PriceDispersion = 2 ·

√√√√ 1∑N

i=1 Qi

N∑

i=1

(
Pi −m

m

)2

Qi. (2.11)

We calculate this benchmark for each day with at least one trade if a composite price m

is available in Markit. Monthly measures are obtained as the mean of daily measures.

2.3.1.2 Price Impact Benchmarks

Amihud: Dick-Nielsen, Feldhütter, and Lando (2012) utilize the Amihud (2002) price im-

pact measure on intraday TRACE data. We apply their approach and define the monthly

price impact measure as

B Amihud =
1

N

N∑

i=1

|ri|
Qi

, (2.12)

where N is the number of consecutive returns ri in a sample month and Qi is the volume

(in USD) of trade i.

Lambda: Hasbrouck (2009) uses the estimator for λ in the following regression as high-

iteration steps. For more details on the regression method, see Harris and Piwowar (2006).
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frequency price impact measure for equities:

rτ = λ · sign(Qτ )
√

|Qτ |+ ǫτ , (2.13)

where rτ is the stock’s return and Qτ is the signed traded dollar volume within the five-

minute period τ . We adjust this measure to our TRACE data as follows. First, we do

not restrict our intraday returns to originate within five-minute intervals, because price

influences of single trades circulate much slower in decentralized OTC markets than it is

the case for centrally cleared equity markets. Second, we do not need to accumulate traded

volumes, since every return included in our regression arises from adjacent transactions.

We therefore run the adjusted regression

ri = λ ·Di

√
Qi + ǫi, (2.14)

where Di is defined as in Equation (2.5). In the estimation of Regression (2.14), we

preclude negative price impact by imposing λ ≥ 0 and we exclude all overnight returns.

B Lambda = λ is computed starting in November 2008 for the lack of a buy/sell side

indicator beforehand. Note, that both price impact benchmarks B Amihud and B Lambda

also capture components of the bid-ask spread as larger bid-ask spreads increase price

fluctuations.

2.3.2 Low-Frequency Proxies

We implement a total of 23 low-frequency liquidity proxies in our analysis, whereof eleven

estimate effective spread and twelve measure price impact. Measures, which need end of

day trade prices, are calculated using the Bloomberg TRACE pricing source. For measures

on quotes, we utilize BGN, CBBT, or single dealers’ quotes from Bloomberg. To ensure

robustness of our results and to allow for fair comparisons between our proxies, we only

calculate a measure for months with at least eight observations.

2.3.2.1 Spread Proxies

Our bid-ask spread proxies that only need end of day prices can be classified in the follow-

ing sub-groups. First, we use two proxies that employ the negative auto-covariance of trade

prices based on the idea of Roll (1984) and refined by Hasbrouck (2009) with his Gibbs

measure. Second, our Effective-Tick proxy estimates bid-ask spreads based on price clus-
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tering. Third, we use two proxies that utilize the number of zero returns based on the paper

of Lesmond, Ogden, and Trzcinka (1999) and enhanced by Fong, Holden, and Trzcinka

(2010). Fourth, our high-low proxy developed by Corwin and Schultz (2012) filters bid-ask

spreads out of daily high- and low prices which are also available in Bloomberg. Regard-

ing the proxies that need information on quotes, we calculate quoted bid-ask spreads from

three different pricing sources available in Bloomberg. Our last two proxies measure quote

dispersion based on the idea of the price dispersion benchmark.

Roll: Analogously to our benchmark measure, we compute the daily Roll (1984) proxy as

P Roll =




2
√

−Cov(rt, rt−1) if Cov(rt, rt−1) < 0,

0 otherwise,
(2.15)

where rt is the return on day t.

Gibbs: Hasbrouck (2009) estimates the effective half-spread by using a Bayesian Gibbs

sampler on the following model:

rt = c ·∆Dt + βm · rmt + ǫt. (2.16)

Equation (2.16) adds a market factor m with return rmt on day t to the otherwise identical

Roll (1984) approach with rt being the return of the bond, Dt a sell side indicator9 and

c the half-spread. For m, we use the FINRA-BLP Active Investment Grade index, if in

month t, the observed bond is rated investment grade on average (using the ratings from

Moody’s, Standard & Poor’s, and Fitch) and the FINRA-BLP Active High Yield index,

otherwise. We estimate c using the standard Bayesian normal regression model for each

month and bond and double it to get our effective spread proxy P Gibbs.10

Effective Tick: Goyenko, Holden, and Trzcinka (2009) together with Holden (2009)

develop an effective spread proxy, called Effective Tick, that captures price clustering.11

9Dt = 1 for a buy and Dt = −1 for a sell. Information on Dt is not needed, since Dt is estimated
using the Gibbs sampler.

10We thank Joel Hasbrouck for sharing his programming code on http://pages.stern.nyu.edu/

~jhasbrou/Research/GibbsCurrent/Programs/RollGibbsLibrary02.sas and use his code in our anal-
ysis. As priors for c, βm, and σ2

ǫ , we use normal distributions N(µ = 0.01, σ2 = 0.012), N(1, 1), and the
inverted gamma IG(α = 10−12, β = 10−12), respectively (see, e.g., Marshall, Nguyen, and Visaltanachoti,
2012). We run the sampler for 10,000 sweeps and discard the first 2,000 as burn-in period. For consistency
with the original paper and mathematical tractability, we use log returns for this measure.

11Holden (2009) also develops another measure based on price clustering, called Holden. Like Marshall,
Nguyen, and Visaltanachoti (2012), we do not incorporate this measure as it is very computationally
intensive and therefore not widely used.
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They assume the clustering of trade prices, e.g., at whole dollars, half-dollars, or quarters,

to be determined by spread size, which enables them to compute the spread probabilities

for a given set of possible mutually exclusive effective spreads sj with j = 1, 2, ..., J . Their

spread proxy is then defined as a probability-weighted average of all possible spreads sj:

P EffectiveTick =
J∑

j=1

γ̂j · sj
P

, (2.17)

where P is the average trade price in the observation period and γ̂j is the (constrained)

probability to trade at the jth spread (see Appendix A.1 for details on the calculation of

γ̂j). Based on a histogram of the digits after the decimal point, we employ eight possible

spread sizes, namely s1 = 0.001, s2 = 0.01, s3 = 0.05, s4 = 0.1, s5 = 0.125, s6 = 0.25,

s7 = 0.5, and s8 = 1 and calculate P EffectiveTick for each month and bond.

Zeros and FHT: Lesmond, Ogden, and Trzcinka (1999) use the proportion of zero return

days as a measure of liquidity for equity markets. They argue that zero volume days (and

thus zero return days) are more likely in less liquid stocks. We compute their measure on

a monthly basis with T as the number of trading days in a month:

P Zeros =
# of zero return days

T
. (2.18)

Fong, Holden, and Trzcinka (2010) establish a new effective spread proxy based on the

Zeros measure.12 In their framework, symmetric transaction costs of S/2 lead to observed

returns of

R =





R∗ + S
2

if R∗ < −S
2
,

0 if − S
2
< R∗ < S

2
,

R∗ − S
2

if S
2
< R∗,

(2.19)

where R∗ is the unobserved true value return which they assume to be normally distributed

with mean zero and variance σ2. Hence, they equate the theoretical probability of a zero

return with its empirical frequency, measured via P Zeros. Solving for the spread S, they

get:

P FHT = S = 2 · σ · Φ−1

(
1 + P Zeros

2

)
, (2.20)

where Φ−1 is the inverse of the cumulative standard normal distribution. We compute a

12They find their measure to be simpler and perform better than LOT Mixed and Y-split, which also
utilize zero returns. Therefore, we do not include these measures in our analysis.
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bond’s σ for each month and then calculate P FHT.

High-Low Spread Estimator: Corwin and Schultz (2012) approximate bid-ask spreads

for stocks based on high and low prices. They argue that daily high prices are likely

to result from buy orders and low prices correspond to sell orders. Therefore, the ratio

between those two reflects both the security’s variance and the bid-ask spread as well.

To separate these two components, the authors employ the high-low ratio on consecutive

days. The variance component should be proportional to time, whereas the bid-ask spread

should be constant. With this, their effective spread proxy is

P HighLow =
2(eα − 1)

1 + eα
, (2.21)

where

α =

√
2β −

√
β

3− 2
√
2

−
√

γ

3− 2
√
2
, (2.22)

β =
1∑

j=0

(
ln

(
Ht+j

Lt+j

))2

, (2.23)

γ =

(
ln

(
Ht,t+1

Lt,t+1

))2

. (2.24)

Ht (Lt) is the highest (lowest) price on day t and Ht,t+1 (Lt,t+1) is the highest (lowest)

price on two consecutive days t and t+ 1. Again, we take the mean of the daily values in

a month to get a monthly spread proxy for each bond.13

Quoted Spreads: We use quoted bid-ask spreads from the various Bloomberg pricing

sources described in Section 2.2 as effective spread estimators. Let Bt and At be the bid

and ask quotes for a given bond and day t. We get our daily relative spread estimate for

the pricing sources s = BGN and s = CBBT as

P Spread s =
At −Bt

1
2
(Bt + At)

. (2.25)

Additionally, we calculate the daily means of the single dealers’ bid and ask quotes and

replace Bt and At, respectively, to get P Spread Mean. Monthly liquidity proxies are again

obtained as the mean of daily bid-ask spreads.

Quote Dispersion: We apply the idea of our benchmark price dispersion measure to

13We adjust our data for the implicit assumptions made in the derivation of the measure (for details,
see Corwin and Schultz, 2012, Sections 2.1 - 2.3). If the proxy is negative for a day, we follow Corwin and
Schultz (2012) and set it to zero.
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daily bid-ask quotes. Garbade and Silber (1976) show that it is reasonable to approximate

the dispersion of trade prices via the dispersion of quotes. We measure the daily quote

dispersion for a given bond as follows:

P QuoteDispersion = 2 ·

√√√√ 1

2N

N∑

i=1

((
Bi −m

m

)2

+

(
Ai −m

m

)2
)
, (2.26)

where N is the number of available pricing sources and Bi and Ai are the Bloomberg

bid and ask quotes of dealer i. In contrast to the above B PriceDispersion, we do not

use Markit data for the consensus market valuation m, but employ the Bloomberg BGN

composite price to fully separate our high- and low-frequency input data sets. Furthermore,

we use the daily average mid quote, calculated from all single dealers’ bid and ask quotes

available, as a proxy for the market valuation m to get an additional effective spread

estimator P QDmid.14 Again, our monthly liquidity proxies correspond to the means of

daily values for P QuoteDispersion and P QDmid.

2.3.2.2 Price-Impact Proxies

Amihud: As Amihud (2002) originally developed his measure for end of day data, we

include it as a price impact proxy in our analysis:

P Amihud =
1

N

N∑

t=1

|rt|
Qt

, (2.27)

where N is the number of positive-volume days in a given month, rt the return and Qt the

traded dollar volume on day t, respectively. As volume data is only available in Bloomberg

since March 29, 2005, all price impact proxies are calculated from April 2005 onwards.

Extended Amihud: Goyenko, Holden, and Trzcinka (2009) derive extended Amihud

measures which for every relative effective spread proxy sp and average daily dollar volume

Q in the period under observation are defined as

P PI sp =
sp

Q
. (2.28)

14Garbade (1978) shows that the market valuation and the average mid-quote are in fact different from
each other, because dealers account for inventory. To account for the degree of freedom we lose when
calculating mid prices from dealer quotes, we use 2N − 1 instead of 2N in the denominator of Equation
(2.26).
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We make use of their findings and compute monthly price impact liquidity measures for

our Roll, Gibbs, Effective Tick (sp = ET), FHT, High-Low (sp = HL), Quoted Spreads,

and Quote Dispersion (sp = QD and sp = QDmid) proxies.

Pastor and Stambaugh: Pastor and Stambaugh (2003) develop a measure for price

impact based on price reversals for the equity market. It is given by the estimator for γ

in the following regression:

ret+1 = θ + φ · rt + γ · sign(ret ) ·Qt + ǫt, (2.29)

where ret is the asset’s excess return over a market index, rt is the asset’s return and Qt is

the traded dollar volume on day t. For our market index, we use the same method as for

the Gibbs proxy to assign Bloomberg’s Investment Grade or High Yield index, respectively.

γ should be negative and a larger price impact comes along with a larger absolute value.

As all of our liquidity measures assign larger (positive) values to more illiquid bonds, we

define P PastorStambaugh = −γ and expect it to be positively correlated with the other

measures in this study.

2.4 Results

We first present descriptive statistics for each measure in Section 2.4.1, assess the consis-

tency of our liquidity benchmarks by comparing them with each other in Section 2.4.2,

and then compare our transaction cost and price impact proxies with the respective bench-

marks in Sections 2.4.3 and 2.4.4. Tests based on time series and average cross sectional

correlations allow us to analyze whether our proxies are useful for asset pricing. For our

transaction cost proxies, we additionally run two tests analyzing to what extent the proxies

are able to capture the correct scale of the benchmarks. In various robustness checks, we

assess the consistency of our results for different liquidity portfolios and subperiods. Since

in the literature, proxies like Amihud’s (2002) price impact measure or the Pastor and

Stambaugh (2003) measure are often used to proxy for liquidity in general, we compare

these measures not only to price impact, but also to transaction cost benchmarks.
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2.4.1 Descriptive Statistics

Table 2.2 shows descriptive summary statistics for our monthly high-frequency and low-

frequency liquidity measures. Benchmarks depending on a buy/sell indicator are calculated

for the last 47 sample months, whereas the remaining ones span our complete observation

period of 96 months. For our effective spread high-frequency benchmarks in Panel A, with

the exception of the price dispersion measure, we get average effective spread estimates

between 0.93% and 1.23%. This means that a roundtrip trade for bonds of $100,000 on

average leads to transaction costs between $930 and $1,230. B Roundtrip and B Roll

yield very similar results in all categories. Although B AdjustedSchultz and B EHP are

calculated only from November 1, 2008 onwards, they are on average of comparable size

compared to the other measures. The different behavior of the price dispersion benchmark

compared to the other transaction cost benchmarks is obvious as it produces by far the

largest spread estimates. This result confirms findings of Jankowitsch, Nashikkar, and

Subrahmanyam (2011) that price dispersion contains additional cost components over and

above direct transaction costs. For this reason, the price dispersion benchmark essentially

constitutes a separate category (in addition to pure transaction cost and price impact

benchmarks). Nevertheless, for the sake of brevity, we discuss this measure together with

the other transaction cost estimators.

Looking at our low-frequency spread proxies, the best measure regarding the magnitude

of our benchmarks seems to be P HighLow with an average value of 0.9738%, followed by

P Gibbs. Proxies calculated from executable quotes (P Spread CBBT, P Spread Mean,

and both quote dispersion measures) are generally larger than effective spread benchmarks

since many trades occur inside the bid-ask spread (see, e.g., Petersen and Fialkowski, 1994).

The average P Spread BGN amounts to less than a third of its CBBT counterpart, indicat-

ing that the BGN does not give the magnitude of the bid-ask spread correctly. Bloomberg

seems to have realized this shortcoming and presumably changed its methodology in March

2011 when bid-ask spreads for the BGN measure increased sharply. Because of this struc-

tural break, we restrict the observation period for P Spread BGN and P PI Spread BGN

to the time before February 28, 2011. P EffectiveTick shows a very small mean of about

0.09% which is due to the fact that although price clustering is clearly present in our data,

the majority of trades does take place at an 1/1000 price tick, leading to an assumed

spread of $0.001 for these trades.15 Also P FHT does not seem to accurately capture the

15In bond markets, price clustering takes place both at the price and the yield level. However, the
effective tick measure only captures clustering at the price level which might be one of the reasons this
measure does not grasp the magnitude of bid-ask spreads correctly.
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Table 2.2: Descriptive statistics for benchmark and proxy liquidity measures
Benchmark liquidity measures are calculated from high-frequency transaction data reported to

TRACE from October 1, 2004 to September 30, 2012. Low-frequency proxies are computed based

on daily price, volume, and quote data provided by Bloomberg. We calculate monthly measures

as described in Section 2.3. B AdjustedSchultz, B EHP, and B Lambda are only available since

November 2008, resulting in 47 observation months. The remaining benchmarks are calculated for

all 96 sample months. P Spread CBBT is calculated for the last 95 sample months. P Amihud,

P PastorStambaugh, and all other price impact proxies, except P PI Spread BGN, start in April

2005 and span 90 observation months. Both measures linked to the Bloomberg BGN quote are

only calculated until February 2011, resulting in 77 and 71 observation months for P Spread BGN

and P PI Spread BGN, respectively. All other low-frequency proxies are calculated for each of

the 96 months in our observation period.

Unit Mean Std.dev. Q0.05 Q0.25 Median Q0.75 Q0.95 N

Panel A: Effective spread measures
Benchmarks
B Roundtrip % 1.2299 0.8966 0.2478 0.5999 1.0056 1.6124 2.9893 164674
B IQR % 0.9717 0.8413 0.1697 0.3918 0.7049 1.2749 2.6912 165205
B Roll % 1.1882 0.9512 0.2362 0.5636 0.942 1.5388 2.9914 165500
B AdjustedSchultz % 1.2280 1.2005 0.156 0.4723 0.8836 1.5971 3.3972 72468
B EHP % 0.9316 0.8047 0.1329 0.3734 0.688 1.2405 2.5665 72468
B PriceDispersion % 1.8064 3.0239 0.2681 0.6244 1.084 1.9473 5.3214 125209
Proxies
P Roll % 1.7686 1.6676 0.1339 0.6799 1.3102 2.3325 4.9447 163304
P Gibbs % 1.4529 1.0405 0.2552 0.6714 1.2016 2.0006 3.4130 163293
P EffectiveTick % 0.0945 0.1656 0.001 0.005 0.0231 0.1320 0.3772 163304
P Zeros % 11.876 13.410 0 0 8.6957 19.047 40 163304
P FHT % 0.4497 1.0503 0 0 0.1731 0.5035 1.7416 163298
P HighLow % 0.9738 1.0781 0.1201 0.3183 0.6372 1.2729 2.8294 163304
P Spread BGN % 0.4550 0.2834 0.0918 0.2495 0.4049 0.5931 0.9869 111416
P Spread CBBT % 1.7769 2.2315 0.2726 0.6333 1.2016 2.1293 4.9934 103374
P Spread Mean % 1.8585 2.1100 0.2404 0.704 1.337 2.2519 5.0584 133228
P QDmid % 2.6350 2.9794 0.3339 0.9931 1.8845 3.2069 7.1887 133228
P QuoteDispersion % 2.4660 2.7381 0.3331 0.9538 1.7875 3.0058 6.6539 122652

Panel B: Price impact measures
Benchmarks
B Amihud 10−6 0.8308 2.0311 0.0389 0.1851 0.408 0.8752 2.7558 165616
B Lambda 10−6 10.980 35.557 −0.0001 1.0944 2.8767 7.7279 50.758 97990
Proxies
P Amihud 10−6 0.2207 1.0308 0.0017 0.0101 0.0399 0.1552 0.8775 156216
P PI Roll 10−6 0.0511 0.5089 0.0002 0.0021 0.006 0.0189 0.2059 156216
P PI Gibbs 10−6 0.0365 0.3352 0.0006 0.0021 0.0056 0.0164 0.1662 156205
P PI ET 10−6 0.0029 0.0312 0 0 0.0001 0.0009 0.0095 156216
P PI FHT 10−6 0.0257 0.3703 0 0 0.0007 0.0041 0.0684 156210
P PI HL 10−6 0.0285 0.3053 0.0003 0.0011 0.0031 0.0093 0.1069 156216
P PI Spread BGN 10−6 0.0089 0.0332 0.0002 0.0007 0.0018 0.0048 0.0370 104257
P PI Spread CBBT 10−6 0.0168 0.0914 0.0006 0.0019 0.0048 0.0125 0.0585 100126
P PI Spread Mean 10−6 0.0286 0.1731 0.0006 0.0023 0.0059 0.0161 0.0949 128516
P PI QD 10−6 0.0322 0.1864 0.0008 0.003 0.0076 0.0195 0.1028 118176
P PI QDmid 10−6 0.0402 0.2393 0.0008 0.0032 0.0084 0.0229 0.1350 128516
P PastorStambaugh 10−6 0.0009 0.1454 −0.0076 −0.0005 0 0.0004 0.0080 156210
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scale of the effective spread when compared to the benchmark measures.

Panel B compares the different price impact measures. As discussed in the introduction,

measuring price impact in the U.S. corporate bond market poses a conceptual problem.

Most importantly, the fact that transaction costs are smaller for larger trades (see, e.g.,

Edwards, Harris, and Piwowar, 2007), implies that a static definition of price impact as

the ‘first derivative of the effective spread with respect to order size’ (see, e.g., Goyenko,

Holden, and Trzcinka, 2009) leads to a negative price impact (which is precluded in the

definition of most of the price impact measures). However, price impact measures are used

in the literature and provide additional value as they depend on both effective transaction

costs and trading volume. Therefore, we include them in our correlation analyses, but

refrain from interpreting their magnitudes.

2.4.2 High-Frequency Benchmarks Correlation Analysis

Figure 2.1 presents the evolution of our high-frequency bid-ask spread benchmarks. Fol-

lowing Goyenko, Holden, and Trzcinka (2009), we compute the monthly average for each

measure as the equally weighted mean across all bonds. We find a high level of co-

movement between all measures. With the exception of price dispersion, which besides

measuring transaction costs also captures inventory risk and search costs (see Jankow-

itsch, Nashikkar, and Subrahmanyam, 2011), all benchmarks are always located within a

narrow range. Consistently, we find lowest levels of liquidity in the months that followed

the default of Lehman Brothers in September 2008.

Next, we determine time series correlations based on the monthly means and provide

our results in Panel A of Table 2.3. Regardless of whether effective spread measures, price

impact measures, or a combination of both is considered, all of our benchmarks show high,

positive, and significant pairwise time series correlations.16 The smallest value is 0.8739

for B PriceDispersion and B Roundtrip and the highest correlation of 0.9978 comes from

B AdjustedSchultz and B EHP.

Panel B shows average cross sectional correlations. We determine cross sectional cor-

relations for each month across all bonds, transform them using Fisher’s Z, compute the

mean of the transformed values and re-transform the results (see, e.g., Fama and MacBeth,

16In this study, we test whether time series correlations ρ are significantly different from zero at the 5%

level, using the test statistic t = ρ ·
√

n−2

1−ρ2 (see, e.g., Swinscow, 1997) with n as the sample size. Under

the null hypothesis, t is t-distributed with n− 2 degrees of freedom.
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Figure 2.1: Time series of monthly effective spread benchmarks
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. All

measures are described in Section 2.3. B AdjustedSchultz and B EHP are calculated since November 2008, resulting in 47 observation

months. The remaining benchmarks are calculated for all 96 sample months.
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Table 2.3: Monthly benchmark comparison
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October

1, 2004 to September 30, 2012. B AdjustedSchultz, B EHP, and B Lambda are calculated since

November 2008, resulting in 47 observation months. The remaining benchmarks are calculated

for all 96 sample months. Bold numbers are statistically significant at the 5% level.

B Round- B IQR B Roll B Adjusted- B EHP B Price- B Amihud
trip Schultz Dispersion

Panel A: Time series correlations
B IQR 0.9494
B Roll 0.9533 0.9689
B AdjustedSchultz 0.9823 0.9975 0.9937
B EHP 0.9887 0.9951 0.9874 0.9978
B PriceDispersion 0.8739 0.9595 0.8991 0.9811 0.9721
B Amihud 0.9298 0.9652 0.9638 0.9773 0.9667 0.9392
B Lambda 0.935 0.9621 0.9729 0.9709 0.9597 0.9484 0.9775

Panel B: Average cross sectional correlations
B IQR 0.7465
B Roll 0.7775 0.8247
B AdjustedSchultz 0.7209 0.8186 0.7751
B EHP 0.7875 0.7941 0.8215 0.9103
B PriceDispersion 0.5627 0.6815 0.6337 0.6277 0.5814
B Amihud 0.5242 0.5832 0.5386 0.5412 0.4896 0.4595
B Lambda 0.5232 0.5031 0.5267 0.5721 0.5801 0.5201 0.4463

1973). As in Goyenko, Holden, and Trzcinka (2009), average cross sectional correlations

of our benchmark measures do not reach the level of Panel A, but they are always positive

and significantly different from zero.17 Also, they have a wider bandwidth than the time

series correlations, ranging from 0.4463 to 0.9103. The highest value comes again from

our adjusted versions of the Schultz (2001) and Edwards, Harris, and Piwowar (2007)

measures, which is not surprising considering their similarities in design. We find that all

correlations within the group of spread benchmarks are higher than the correlation of the

two price impact benchmarks.18

17We test average cross sectional correlations for significance at the 5% level by running a t-test with
a Newey-West correction of four lags (see, e.g., Goyenko, Holden, and Trzcinka, 2009).

18Friewald, Jankowitsch, and Subrahmanyam (2012) also conduct a correlation analysis for three of
our high-frequency benchmarks. In contrast to our findings, their correlations are much lower, e.g., only
0.20 for the correlation between Roll and price dispersion. Possible reasons for the different results are
(i) that the authors compute liquidity measures on a weekly rather than monthly basis leading to more
noise, (ii) that they include also very illiquid bonds in their analysis with presumably very little trade
data leading to large outliers, and (iii) that they compute correlations on a bond-week level, whereas
we compute time series correlations aggregated over all bonds and average cross sectional correlations.
However, if we calculate correlations on an individual bond-month level, we get, e.g., 0.51 for the Roll vs.
price dispersion measure compared to the 0.20 they find.
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Chapter 2. Measuring Liquidity in Bond Markets

2.4.3 Monthly Spread Proxy Results

2.4.3.1 Correlation Analysis and Prediction Errors

Figure 2.2 presents the evolution of our monthly low-frequency spread estimates together

with one of our benchmark measures B Roll. In the financial crisis, our quote based mea-

sures increase most strongly, which confirms results of Petersen and Fialkowski (1994)

that in stock markets, effective spreads increase only up to 22% of the increase of quoted

spreads. It seems that in times of stress, dealers protect themselves against further de-

teriorating conditions by quoting extremely wide spreads that do not represent actual

transaction costs. The evolution of P FHT closely resembles our quoted bid-ask-spread

measures, indicating that the use of zero return days leads to a good approximation of

quoted spreads.

Table 2.4 shows the main findings of our analysis regarding the question which daily

spread proxies are best suited to approximate intraday effective bid-ask spreads. We also

include P Zeros, P Amihud, and P PastorStambaugh as these measures are often used to

capture liquidity in general. Panel A reports time series correlations of each high-frequency

spread benchmark with all low-frequency spread proxies and therefore analyzes the ability

of our proxies to capture liquidity dynamics over time. Drawn through boxes mark the

best-performing proxy for each benchmark and values significantly different from zero are

written in boldface. Dashed boxes identify correlations which are insignificantly different

from the best correlation in the same row. We test whether two measures are significantly

different from each other at the 5% level by applying Steiger’s Z test. Again, we find very

high levels of correlation for all benchmarks and spread estimates and also for P Amihud.

P Zeros and the Pastor and Stambaugh (2003) measures are clearly outperformed by the

other proxies. The highest correlations with our high-frequency benchmarks are mostly

found for P Roll and P Gibbs which are both based on the auto-covariance of daily trade

prices. The high-low measure also performs quite well. From the quoted spread proxies,

those based on executable quotes (P Spread CBBT) and on the average of all dealers’

quotes (P Spread Mean) clearly dominate the Bloomberg Generic Quote (P Spread BGN).

Panel B provides our average cross sectional correlations results to analyze the ability

of our proxies to capture liquidity differences between bonds. We test for significant

differences between the proxies by computing the differences in monthly cross sectional

correlations and t-testing their mean.19 Again, the level of correlations is lower than for

19For calculating the mean, Fisher’s Z is applied. Standard errors are computed with a Newey-West
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Figure 2.2: Time series of monthly spread proxies
Monthly low-frequency spread proxies are calculated from daily Bloomberg price, volume, and quote data from October 1, 2004 to

September 30, 2012. B Roll is computed based on intraday TRACE data. All measures are described in Section 2.3. P Spread BGN is

only computed until February 2011 and spans the first 77 sample months. P Spread CBBT is not available for the first sample month,

resulting in 95 observation months. The remaining proxies and B Roll are calculated for all 96 months in the observation period.27
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Table 2.4: Monthly spread proxies compared to spread benchmarks
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. B AdjustedSchultz and B EHP are calculated since November 2008, resulting in 47 observation months. The remaining

benchmarks are calculated for all 96 sample months. P Spread BGN is only computed until February 2011 and spans the first 77

sample months. P Spread CBBT is not available for the first sample month, resulting in 95 observation months. Both price impact

measures start in April 2005 spanning the last 90 sample months. The remaining proxies are calculated for all 96 months in the

observation period. Bold numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row and

dashed boxes give numbers that are not significantly different from this value at the 5% level.

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel A: Time series correlations
B Roundtrip 0.943 0.9486 0.9429 0.278 0.8356 0.938 0.7241 0.7768 0.7551 0.7311 0.7405 0.8986 0.3351
B IQR 0.9978 0.9896 0.9682 0.4135 0.9331 0.9782 0.7607 0.9034 0.8851 0.8652 0.8729 0.9493 0.3897
B Roll 0.9657 0.9708 0.9405 0.4525 0.9269 0.9471 0.6207 0.8159 0.7839 0.7609 0.769 0.9662 0.4358
B AdjustedSchultz 0.9961 0.9936 0.9879 0.3906 0.9281 0.994 0.9512 0.9652 0.9665 0.954 0.9586 0.9571 0.3189

B EHP 0.9934 0.9944 0.9828 0.3598 0.908 0.9884 0.9646 0.9519 0.952 0.9385 0.9437 0.9401 0.2973
B PriceDispersion 0.9625 0.9222 0.9614 0.3761 0.9415 0.9769 0.8201 0.9673 0.9626 0.9514 0.9562 0.9111 0.435

Panel B: Average cross sectional correlations
B Roundtrip 0.567 0.5422 0.33 0.0513 0.3578 0.6979 0.4357 0.4661 0.4969 0.4636 0.4681 0.3027 0.0088
B IQR 0.7019 0.6731 0.4255 0.0983 0.4656 0.7571 0.5349 0.6483 0.6385 0.5883 0.5977 0.3845 0.0081

B Roll 0.6738 0.6426 0.3635 0.0832 0.4416 0.7273 0.5187 0.5883 0.5948 0.5533 0.5573 0.3622 0.0075
B AdjustedSchultz 0.6443 0.6039 0.3236 −0.01 0.2992 0.7294 0.4201 0.5529 0.5361 0.5229 0.5179 0.2738 −0.0249
B EHP 0.6053 0.5766 0.2548 −0.0584 0.2198 0.7589 0.3729 0.4918 0.4904 0.4892 0.4812 0.1951 −0.0073

B PriceDispersion 0.5474 0.4715 0.3429 0.0845 0.3802 0.555 0.429 0.5572 0.5484 0.5043 0.5037 0.309 0.0069

Panel C: Mean bias
B Roundtrip 0.0054 0.0022 −0.0113 −0.0078 −0.0025 −0.0078 0.0069 0.0071 0.0133 0.0149

B IQR 0.008 0.0048 −0.0088 −0.0052 0.0000 −0.0056 0.01 0.0098 0.016 0.0175

B Roll 0.0058 0.0027 −0.0109 −0.0074 −0.0021 −0.0077 0.0077 0.0077 0.0139 0.0155

B AdjustedSchultz 0.0035 0.0008 −0.0114 −0.009 −0.0029 −0.0092 0.0083 0.0085 0.0163 0.0173

B EHP 0.0065 0.0037 −0.0085 −0.006 0.0001 −0.0055 0.0107 0.0113 0.0191 0.0201
B PriceDispersion −0.0021 −0.0046 −0.0171 −0.0144 −0.0089 −0.0146 0.0025 0.0008 0.0076 0.0084

Panel D: Root mean squared error (RMSE)
B Roundtrip 0.0149 0.0093 0.0141 0.0137 0.0089 0.0109 0.0216 0.0202 0.0283 0.031
B IQR 0.0146 0.0088 0.0117 0.0111 0.0072 0.0093 0.0211 0.0195 0.0282 0.0308
B Roll 0.0139 0.0084 0.0138 0.0125 0.0083 0.0111 0.0207 0.0193 0.0276 0.0303

B AdjustedSchultz 0.0121 0.0093 0.016 0.0146 0.0093 0.0155 0.0195 0.0186 0.0272 0.0296
B EHP 0.0135 0.0085 0.0114 0.0114 0.0077 0.0096 0.0218 0.0211 0.0302 0.0327
B PriceDispersion 0.0254 0.0269 0.0335 0.0302 0.0269 0.0329 0.0196 0.023 0.025 0.0278
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the time series case,20 but still most figures are significantly different from zero. Medium

and high values are obtained for the Roll, Gibbs, High-Low, and quote based proxies,

whereas P EffectiveTick, P Zeros, P FHT, P Amihud, and P PastorStambaugh do not

seem to capture cross sectional variation well. P HighLow clearly dominates this analysis,

showing the highest correlations for all benchmarks except B PriceDispersion for which it

is insignificantly different from the winning proxy P CBBT.

To examine the capability of our proxies to capture the correct magnitude of our

benchmarks, we report two metrics for the prediction errors: mean bias in Panel C and

root mean squared error (RMSE) in Panel D. As before, we cannot compare the scales of

our spread estimators with P Zeros, P Amihud, and P PastorStambaugh.

We find mean biases for all benchmarks ranging from 0.0000 to 0.0201 in absolute

terms. Especially the Roll, Gibbs, FHT, High-Low, and quoted spread proxies yield small

biases, but with the exception of one mean bias, all are significantly different from zero.21

P Gibbs and P HighLow show the smallest errors for all benchmark measures except

B PriceDispersion which is best captured by the average of dealers’ quotes P Spread Mean.

Panel D paints a similar picture when it comes to RMSEs with P Gibbs and P HighLow

again winning all benchmarks except B PriceDispersion. We also test whether a proxy

significantly better captures the scale of a benchmark compared to using the benchmark’s

sample mean (values written in boldface). We find that only the best proxies P HighLow

and P Gibbs outperform the mean when it comes to capturing the scale of many bench-

marks.22

2.4.3.2 Robustness Checks

We perform robustness checks to assess the performance of our measures in different

market conditions and to explore their consistency for more liquid and illiquid bonds.

Additionally, we analyze their behavior when calculating them on an annual instead of a

correction of four lags (see, e.g., Goyenko, Holden, and Trzcinka, 2009).
20Goyenko, Holden, and Trzcinka (2009) note that part of this difference may result from a diversifi-

cation effect when forming portfolios in the time series analysis.
21We test the mean bias for significance with a t-test and for significant differences between the measures

by running a paired t-test.
22For this analysis, we compute a benchmark’s sample mean over all bonds and the whole observation

period when the respective proxy is available. We then use the U-Statistic from Theil (1966) to test
whether the RMSE is significantly smaller when using the proxy to predict the benchmark compared to
using the benchmark’s sample mean. To test for significant differences between the RMSEs for each proxy,
we employ a paired t-test (see, e.g., Goyenko, Holden, and Trzcinka, 2009).
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monthly basis.23

Table 2.5 shows time series and cross sectional correlations for three subperiods, span-

ning around the financial crisis that started in 2007. Our pre-crisis period begins on

October 1, 2004 and ends at March 31, 2007. We follow Dick-Nielsen, Feldhütter, and

Lando (2012) and set the beginning of the financial crisis to April 1, 2007. We define its end

as December 31, 2009. Hence, the final period is January 1, 2010 to September 30, 2012.

Our modified versions of the Schultz (2001) and Edwards, Harris, and Piwowar (2007)

measures can only be computed after November 1, 2008. Hence, the pre-crisis period is

missing for them. Time series correlations in Panel A for nearly all benchmark-proxy

combinations are lowest before and highest during the crisis.

Whereas the price based spread proxies only show low variations between the periods,

measures based on quoted spreads perform poorly in the pre-crisis period, even yielding

some negative correlations. Thus, the latter do not respond consistently in different market

situations.24 Measures based on zero returns (P Zeros and P FHT) also behave badly pre-

and post-crisis as the number of zero returns is only positively correlated during the

crisis period with all benchmarks. The best measures in our main analysis perform very

consistently during all periods. So the two measures based on the auto-covariance of daily

prices (P Roll and P Gibbs) as well as P HighLow almost always produce the highest

correlations.

Panel B provides the results for the subperiods with regard to average cross sectional

correlations. Here, correlations do not vary as much between the periods as in Panel A

and there is no clear direction of variation. Also the magnitudes are very similar to those

in Table 2.4. Again, P HighLow is the clear winner for all benchmarks except the price

dispersion measures. In the last two subperiods, price dispersion is best captured by the

quoted CBBT spread confirming results from our main analysis.

In the spirit of Goyenko, Holden, and Trzcinka (2009), Table 2.6 presents two additional

robustness checks and assesses the consistency of our measures for more liquid and illiquid

bonds. In Panel A, we form portfolios of equal size ranked by liquidity, which is measured

23In additional robustness checks, we show that results do not change qualitatively when weighting
observations with the number of trades in TRACE in a month. Moreover, we experiment with the
methodology how to handle the situation when a measure cannot be calculated for a bond in a given month
due to missing data. In our main analyses, we ignore such a missing observation when averaging over all
bonds. Alternative ways to handle such a situation, like the use of a default value or the confinement
of our analyses to bonds where we can always calculate all benchmarks and proxies, do not change our
findings. All results are available upon request from the authors.

24Another reason for the bad performance of our quoted spread proxies could be a possible change in
Bloomberg’s methodology in computing and distributing bid and ask prices.
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Table 2.5: Subperiod analysis: spread proxies
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. The pre-crisis period is October 1, 2004 to March 31, 2007. The crisis period is defined as April 1, 2007 until December

31, 2009. The post-crisis period is January 1, 2010 until September 30, 2012. B AdjustedSchultz and B EHP are calculated since

November 2008. The remaining benchmarks are calculated for all 96 sample months. P Spread BGN is only computed for the pre-

crisis and crisis period. P Spread CBBT is only available since November 2004. Both price impact measures start in April 2005. The

remaining proxies are calculated for all 96 months in the observation period. Bold numbers are statistically significant at the 5% level.

Drawn through boxes give the best value in a row and dashed boxes give numbers that are not significantly different from this value

at the 5% level.

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel A: Time series correlations
B Roundtrip
Pre-crisis 0.8725 0.8575 0.8573 −0.1878 0.4995 0.9301 −0.5111 −0.0542 −0.0197 0.0793 0.0745 0.8295 0.0281
Crisis 0.9579 0.949 0.976 0.0152 0.8373 0.9642 0.8929 0.914 0.9336 0.934 0.9374 0.8675 0.3114

Post-crisis 0.9008 0.9056 0.922 −0.4515 0.1803 0.9539 0.3872 0.4305 0.3558 0.3303 0.5457 0.0164
B IQR
Pre-crisis 0.9466 0.8875 0.9348 −0.2208 0.4502 0.9669 −0.3495 0.1732 0.238 0.4423 0.4197 0.8064 0.0139
Crisis 0.9986 0.9952 0.9615 0.2105 0.9266 0.9837 0.814 0.9796 0.9827 0.9824 0.9838 0.9322 0.3743

Post-crisis 0.987 0.9886 0.9663 −0.2064 0.4927 0.9411 0.7403 0.7601 0.72 0.6979 0.7898 0.0238
B Roll
Pre-crisis 0.9376 0.9077 0.9182 −0.2324 0.4722 0.9621 −0.4207 0.04 0.0881 0.2487 0.2326 0.8415 0.0399
Crisis 0.9891 0.9829 0.9442 0.3178 0.9657 0.9732 0.7564 0.982 0.9841 0.9834 0.9835 0.9644 0.4509

Post-crisis 0.9843 0.9884 0.9469 −0.2665 0.4409 0.9548 0.6736 0.6787 0.6402 0.6127 0.7321 0.016
B AdjustedSchultz
Crisis 0.9899 0.9862 0.9756 0.6618 0.9232 0.9932 0.9345 0.993 0.9899 0.9911 0.9924 0.9433 0.2878
Post-crisis 0.9797 0.975 0.9632 −0.2265 0.4443 0.9536 0.7031 0.7393 0.6829 0.6645 0.7622 0.0174
B EHP
Crisis 0.9884 0.987 0.978 0.6272 0.9054 0.9889 0.9399 0.9907 0.9841 0.9859 0.9877 0.9263 0.2574
Post-crisis 0.9674 0.961 0.9541 −0.2468 0.4138 0.9608 0.668 0.703 0.6415 0.6238 0.7236 0.0397
B PriceDispersion
Pre-crisis 0.8323 0.8038 0.8965 0.0491 0.6184 0.948 −0.4979 0.0964 0.0873 0.233 0.1912 0.7219 −0.1238
Crisis 0.985 0.969 0.9697 0.1976 0.9322 0.9875 0.8272 0.9779 0.9865 0.9877 0.9884 0.9153 0.4118

Post-crisis 0.8887 0.8741 0.85 −0.0075 0.5993 0.8147 0.8657 0.9102 0.8772 0.8706 0.8593 −0.0304
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Table 2.5 continued

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel B: Average cross sectional correlations
B Roundtrip
Pre-crisis 0.6129 0.5422 0.4133 0.0899 0.4386 0.7196 0.499 0.4703 0.5574 0.4775 0.4944 0.3968 0.0006

Crisis 0.4992 0.5174 0.2843 0.1442 0.3897 0.6314 0.3939 0.4511 0.5061 0.4997 0.4968 0.3084 0.0309
Post-crisis 0.5874 0.5661 0.2962 −0.0776 0.2448 0.7366 0.4772 0.4273 0.4127 0.413 0.2241 −0.0073
B IQR
Pre-crisis 0.7452 0.6579 0.4903 0.1004 0.5024 0.813 0.6095 0.6107 0.6719 0.5635 0.5835 0.4426 0.0108
Crisis 0.6617 0.6791 0.4046 0.1778 0.497 0.7191 0.4954 0.6643 0.6558 0.645 0.647 0.3575 0.0255

Post-crisis 0.698 0.6807 0.3842 0.0155 0.3969 0.7351 0.6635 0.5867 0.5493 0.5574 0.3675 −0.0112
B Roll
Pre-crisis 0.7308 0.6582 0.4197 0.0804 0.4938 0.78 0.5913 0.5577 0.6324 0.535 0.551 0.4556 0.0046
Crisis 0.6154 0.6169 0.3595 0.1926 0.4866 0.6561 0.4732 0.6112 0.6116 0.6 0.6009 0.3607 0.0319

Post-crisis 0.6724 0.6532 0.3142 −0.0258 0.3419 0.7392 0.5912 0.5397 0.5203 0.5166 0.2908 −0.0149
B AdjustedSchultz
Crisis 0.5613 0.5707 0.3382 0.146 0.3581 0.5899 0.3311 0.5507 0.5397 0.5624 0.5381 0.3118 −0.0012
Post-crisis 0.6756 0.6173 0.3174 −0.0764 0.2734 0.7753 0.5539 0.5345 0.5054 0.5092 0.2575 −0.035
B EHP
Crisis 0.5291 0.5589 0.2522 0.076 0.2728 0.6119 0.2749 0.47 0.4954 0.5171 0.4978 0.2304 0.0119
Post-crisis 0.6347 0.5839 0.2558 −0.115 0.1968 0.8052 0.5009 0.4883 0.477 0.4741 0.1799 −0.0155
B PriceDispersion
Pre-crisis 0.6482 0.4987 0.5018 0.0831 0.4355 0.6739 0.5778 0.6241 0.6414 0.5272 0.543 0.3542 0.0006

Crisis 0.4478 0.4252 0.2585 0.1444 0.3834 0.4578 0.2979 0.5018 0.4766 0.49 0.4716 0.3017 0.0503
Post-crisis 0.5401 0.4913 0.2671 0.0254 0.3241 0.5241 0.5478 0.5244 0.4973 0.4983 0.2827 −0.032
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Table 2.6: Portfolio analysis: spread proxies
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. B AdjustedSchultz and B EHP are calculated since November 2008, resulting in 47 observation months. The remaining

benchmarks are calculated for all 96 sample months. P Spread BGN is only computed until February 28, 2011 and spans the first 77

sample months. P Spread CBBT is not available for the first sample month, resulting in 95 observation months. Both price impact

measures start in April 2005 spanning the last 90 sample months. The remaining proxies are calculated for all 96 months in the

observation period. Portfolios are equally weighted and stratified by the level of liquidity implied by the respective benchmark or the

number of trades in the bond. As the number of a portfolio increases, its liquidity declines. The number of monthly trades is obtained

from TRACE. Bold numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row and dashed

boxes give numbers that are not significantly different from this value at the 5% level.

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel A: Time series correlations based on equally weighted portfolios ranked by the respective benchmark liquidity measure (1: most liquid, 10: least liquid)
B Roundtrip
Portfolio 1 0.733 0.6888 0.7518 −0.4543 0.4378 0.7743 0.7732 0.6929 0.6036 0.528 0.5694 0.4111 0.1437

Portfolio 2 0.8687 0.878 0.8482 −0.3421 0.6523 0.8852 0.8448 0.7731 0.7243 0.6939 0.7033 0.6053 −0.062
Portfolio 5 0.9227 0.9333 0.9111 0.1146 0.7872 0.9445 0.7998 0.8234 0.8104 0.7857 0.7926 0.7295 0.0859
Portfolio 9 0.9298 0.9328 0.8981 0.6549 0.8019 0.9013 0.4929 0.7342 0.7194 0.7257 0.7283 0.8919 0.4136
Portfolio 10 0.9169 0.8777 0.8589 0.8223 0.819 0.8666 0.4733 0.7263 0.7319 0.7429 0.7415 0.8849 0.3662
B IQR
Portfolio 1 0.9627 0.9121 0.8649 0.1859 0.8197 0.9543 0.8288 0.9499 0.9298 0.9035 0.9114 0.6607 −0.0746
Portfolio 2 0.9808 0.9495 0.952 0.1617 0.8415 0.971 0.8351 0.9566 0.931 0.9031 0.9121 0.7554 0.3268
Portfolio 5 0.9849 0.9834 0.9465 0.1408 0.8145 0.977 0.7652 0.9415 0.9033 0.876 0.8831 0.8314 0.2189

Portfolio 9 0.9854 0.9645 0.9322 0.7027 0.9365 0.9584 0.5348 0.9019 0.8871 0.8889 0.8928 0.9201 0.3854
Portfolio 10 0.9558 0.8598 0.8987 0.7958 0.8855 0.9265 0.5536 0.8694 0.844 0.86 0.8505 0.9258 0.3534
B Roll
Portfolio 1 0.6587 0.6536 0.6255 −0.1742 0.5477 0.6396 0.5624 0.5174 0.4927 0.4705 0.4734 0.5805 0.0692

Portfolio 2 0.9523 0.9615 0.9104 −0.1877 0.815 0.947 0.69 0.841 0.7737 0.7408 0.743 0.669 −0.1426
Portfolio 5 0.9695 0.9788 0.899 0.0231 0.8266 0.9533 0.6635 0.8627 0.8103 0.7784 0.7846 0.8366 0.1833
Portfolio 9 0.9533 0.9444 0.9226 0.7656 0.919 0.9216 0.391 0.8321 0.7984 0.8184 0.817 0.9244 −0.1873
Portfolio 10 0.9334 0.7678 0.8533 0.8702 0.9048 0.9137 0.4299 0.784 0.7893 0.7908 0.7917 0.9285 0.5535
B AdjustedSchultz
Portfolio 1 0.8197 0.8518 0.7979 0.0038 0.7009 0.7607 0.8752 0.7268 0.7659 0.7424 0.7515 0.6745 0.3607
Portfolio 2 0.9836 0.9801 0.9181 −0.1923 0.7885 0.9813 0.9372 0.9286 0.943 0.9261 0.9296 0.8335 0.0467
Portfolio 5 0.9916 0.9921 0.9647 −0.2164 0.8207 0.9948 0.8369 0.9541 0.9443 0.9304 0.9308 0.8247 0.0707

Portfolio 9 0.994 0.9916 0.9643 0.5965 0.923 0.9904 0.3632 0.9743 0.9687 0.9524 0.9617 0.9035 0.0876
Portfolio 10 0.9687 0.9078 0.9761 0.9321 0.969 0.9766 0.3887 0.9862 0.9862 0.9779 0.9795 0.9645 0.1091
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Table 2.6 continued

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

B EHP
Portfolio 1 0.9257 0.9357 0.8821 −0.0424 0.8163 0.8935 0.9387 0.8734 0.8574 0.8357 0.8462 0.7445 0.0071
Portfolio 2 0.9898 0.9843 0.9439 0.0013 0.8806 0.9844 0.9376 0.9281 0.9535 0.9404 0.9442 0.7725 0.2747

Portfolio 5 0.9873 0.9865 0.9712 −0.112 0.8014 0.9937 0.872 0.9473 0.9403 0.9267 0.9279 0.8595 −0.2616
Portfolio 9 0.988 0.9901 0.9359 0.5907 0.8891 0.9854 0.4469 0.9477 0.9464 0.9349 0.937 0.8861 −0.0002
Portfolio 10 0.9822 0.9546 0.9487 0.8796 0.9139 0.9674 0.0177 0.9715 0.9614 0.9507 0.9557 0.8848 0.3672
B PriceDispersion
Portfolio 1 0.9642 0.9219 0.8882 0.0286 0.8731 0.978 0.7984 0.9636 0.963 0.945 0.952 0.8014 0.0355
Portfolio 2 0.9734 0.9256 0.9475 0.1425 0.8857 0.9817 0.8378 0.9747 0.9688 0.9524 0.958 0.7427 −0.2657
Portfolio 5 0.9803 0.9544 0.9606 0.1098 0.8794 0.9805 0.7647 0.9812 0.9664 0.9505 0.9545 0.8415 0.1325
Portfolio 9 0.933 0.8783 0.8961 0.5419 0.928 0.9551 0.6 0.9539 0.963 0.9566 0.9618 0.8675 0.4983

Portfolio 10 0.9027 0.7283 0.8306 0.7399 0.9408 0.9003 0.2342 0.9319 0.958 0.9481 0.9542 0.8651 0.4121
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Table 2.6 continued

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel B: Time series correlations based on equally weighted portfolios ranked by the number of trades in the bond (1: highest number of tr., 10: lowest number of tr.)
B Roundtrip
Portfolio 1 0.5808 0.5234 0.4176 0.1015 0.3148 0.8022 0.4096 0.4825 0.4579 0.4858 0.4837 0.0245 0.1541

Portfolio 2 0.7806 0.7628 0.5559 0.1483 0.4606 0.8548 0.5938 0.7085 0.6773 0.674 0.6704 0.2376 0.0226
Portfolio 5 0.9074 0.9096 0.8779 0.0909 0.6505 0.8974 0.7566 0.7175 0.7066 0.6902 0.6944 0.6005 −0.0384
Portfolio 9 0.9356 0.9468 0.8906 0.4794 0.8637 0.9172 0.7615 0.7895 0.7589 0.7333 0.7459 0.9087 0.27
Portfolio 10 0.9568 0.9389 0.9125 0.5644 0.9075 0.9326 0.8337 0.8171 0.8084 0.7928 0.8006 0.9165 0.3772
B IQR
Portfolio 1 0.9513 0.9357 0.5386 0.2822 0.694 0.9015 0.0026 0.8325 0.7777 0.7656 0.7692 0.4662 0.0529
Portfolio 2 0.9812 0.9768 0.7205 0.2671 0.7263 0.9178 0.3294 0.8692 0.8254 0.795 0.8029 0.5818 0.0155
Portfolio 5 0.9912 0.9797 0.9703 0.2841 0.8413 0.9788 0.7688 0.9007 0.8906 0.8762 0.8795 0.7361 0.0299

Portfolio 9 0.9933 0.9737 0.954 0.5083 0.9372 0.9706 0.8843 0.9114 0.8982 0.8799 0.8896 0.9414 0.2721
Portfolio 10 0.9924 0.963 0.9435 0.5416 0.9382 0.9564 0.906 0.8951 0.8972 0.8859 0.8926 0.9241 0.3708
B Roll
Portfolio 1 0.8017 0.8394 0.7261 0.3501 0.7062 0.8249 0.0223 0.5848 0.4812 0.5151 0.504 0.404 0.2427

Portfolio 2 0.8934 0.9177 0.832 0.313 0.7331 0.8361 0.1556 0.7027 0.624 0.5977 0.6037 0.6447 0.0146
Portfolio 5 0.9465 0.9508 0.9035 0.2754 0.7934 0.9202 0.6154 0.7834 0.7395 0.7244 0.7244 0.7862 0.0535
Portfolio 9 0.9702 0.964 0.9147 0.5586 0.9248 0.9553 0.7906 0.85 0.8231 0.8018 0.8119 0.9539 0.2454
Portfolio 10 0.9529 0.9165 0.8999 0.6041 0.9761 0.9809 0.793 0.8613 0.8941 0.8759 0.8876 0.9278 0.5659
B AdjustedSchultz
Portfolio 1 0.8976 0.9133 0.7333 0.0484 0.4693 0.9246 −0.4315 0.9105 0.9173 0.8743 0.8909 0.3479 −0.0023

Portfolio 2 0.975 0.9723 0.8282 0.1352 0.631 0.9793 −0.0932 0.9454 0.9339 0.9059 0.9105 0.5068 0.2043
Portfolio 5 0.9899 0.9854 0.9654 0.1138 0.8028 0.9841 0.8609 0.9456 0.9524 0.9408 0.9448 0.7724 −0.2568

Portfolio 9 0.9921 0.9747 0.9745 0.6227 0.9503 0.9794 0.9648 0.9603 0.9697 0.9621 0.9669 0.9517 0.355
Portfolio 10 0.9706 0.9421 0.9628 0.7439 0.9371 0.9633 0.913 0.9146 0.9728 0.9679 0.9711 0.9724 0.2624
B EHP
Portfolio 1 0.838 0.8533 0.7084 0.0651 0.4396 0.8744 −0.3477 0.8485 0.8554 0.8369 0.8501 0.2702 −0.0358

Portfolio 2 0.9583 0.9575 0.8223 0.1166 0.6003 0.966 −0.0395 0.9285 0.9165 0.8943 0.8968 0.4698 0.1762

Portfolio 5 0.983 0.9796 0.9568 0.0494 0.754 0.9805 0.8581 0.9178 0.9222 0.9109 0.9147 0.7227 −0.2681
Portfolio 9 0.9906 0.9827 0.9622 0.5891 0.9332 0.9703 0.9655 0.9442 0.9529 0.9411 0.9497 0.9398 0.3452
Portfolio 10 0.9792 0.9522 0.9644 0.733 0.9404 0.9651 0.9255 0.9199 0.9737 0.9678 0.9723 0.9559 0.2732
B PriceDispersion
Portfolio 1 0.9283 0.8457 0.2765 0.1715 0.5369 0.8926 0.1481 0.9606 0.9403 0.8901 0.9042 0.4175 −0.1169
Portfolio 2 0.9336 0.8925 0.545 0.1938 0.6435 0.9512 0.5092 0.9544 0.9311 0.9087 0.9135 0.3921 0.0256

Portfolio 5 0.9427 0.9102 0.9407 0.2786 0.843 0.9595 0.7809 0.9612 0.9578 0.9483 0.951 0.6474 −0.0057
Portfolio 9 0.9438 0.8872 0.9594 0.4506 0.9338 0.9577 0.8939 0.9605 0.9571 0.9496 0.955 0.9045 0.2609

Portfolio 10 0.9417 0.8645 0.9258 0.5339 0.9735 0.9782 0.8528 0.9194 0.9627 0.957 0.9586 0.9398 0.5299
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by the respective benchmark. We then calculate means of the benchmark and proxies

within each portfolio. Finally, we calculate time series correlations for each portfolio.

We find high levels of correlations for most of the benchmark-proxy combinations in

Portfolios 2-10. For the most part, our measures show highest correlations in the middle

portfolios and lower figures on the edges. The decline is more severe for the most liquid

bonds in Portfolio 1, which confirms results by Goyenko, Holden, and Trzcinka (2009) for

stocks that liquidity measurement is more challenging when liquidity is high. The majority

of wins is claimed again by our auto-covariance measures P Roll and P Gibbs, as well as

by P HighLow. The measures based on quoted spreads from pricing sources CBBT and all

dealers’ quotes (P Spread CBBT and P Spread Mean) also perform quite well, especially

for the price dispersion benchmark. Proxies based on zero returns (P Zeros and P FHT)

always perform best in Portfolio 9 or 10, which confirms the intuition that they work well

for illiquid bonds with many zero returns.

In Panel B, bonds are allocated to portfolios by the number of monthly trades. Again,

Portfolio 1 contains the most liquid and Portfolio 10 the most illiquid bonds. The results

confirm our findings in Panel A. Again, most of the proxies have their lowest correlations in

the most liquid portfolio. The outcome for our effective spread estimators is basically the

same as before. We find that they are the most consistent proxies, taking their maximum

in the small and middle trade size portfolios with somewhat lower correlations in Portfolio

1. B PriceDispersion aside, our benchmarks are best captured by P Roll, P Gibbs, and

P HighLow.

In Table 2.7, we perform the same analysis as in Table 2.4 but aggregate benchmark

and proxy liquidity measures on an annual instead of a monthly basis. Panel A shows

extremely high time series correlations especially for P Roll, P Gibbs, and P HighLow.

Part of this result might be due to the fact that correlations are biased to one if the number

of observations is small which is a side effect for time series correlations when aggregating

annually. Average cross sectional correlations in Panel B are also higher than in the

monthly analysis, but not to the same extent as for time series correlations. Contrary to

the monthly results where the high-low bid-ask spread estimator clearly performed best,

most of the wins in the annual comparisons are claimed by Hasbrouck’s (2009) Gibbs

measure.25 Panels C and D paint a very similar picture for the prediction errors compared

to our main analysis in Table 2.4 with the high-low and Gibbs measure splitting their

25The better performance of the Gibbs measure in the annual compared to the monthly sample is in
line with Goyenko, Holden, and Trzcinka (2009) for the stock market. Hasbrouck (2009) also comments
on problems that arise when calculating his measure on a monthly basis.
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Table 2.7: Annual spread proxies compared to spread benchmarks
Annual high-frequency benchmarks are calculated from intraday TRACE data from January 1, 2005 to September 30, 2012. Annual

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. B AdjustedSchultz and B EHP are calculated since January 2009, resulting in four observation years. The remaining

benchmarks are calculated for all eight sample years. P Spread BGN is only computed until December 2010 and spans the first six

sample years. Both price impact measures start in January 2006 spanning the last seven sample years. The remaining proxies are

calculated for all eight years in the observation period. Bold numbers are statistically significant at the 5% level. Drawn through boxes

give the best value in a row and dashed boxes give numbers that are not significantly different from this value at the 5% level.

P Roll P Gibbs P Effective- P Zeros P FHT P HighLow P Spread- P Spread- P Spread- P Quote- P QDmid P Amihud P Pastor-
Tick BGN CBBT Mean Dispersion Stambaugh

Panel A: Time series correlations
B Roundtrip 0.9609 0.9682 0.9673 0.2003 0.8255 0.9661 0.7789 0.764 0.7657 0.7211 0.7465 0.9033 0.5677

B IQR 0.9987 0.9932 0.9693 0.436 0.9484 0.9904 0.6874 0.8658 0.8559 0.8052 0.8363 0.9744 0.7173
B Roll 0.9651 0.9575 0.9192 0.4883 0.9234 0.9311 0.4879 0.728 0.7098 0.6423 0.6847 0.9883 0.7585
B AdjustedSchultz 0.999 0.9986 0.9987 0.037 0.9881 0.9991 0.9846 0.9833 0.9652 0.9724 0.9904 −0.5782
B EHP 0.99999 0.9999 0.9998 −0.0026 0.9813 0.9998 0.9768 0.9756 0.9545 0.9625 0.9842 −0.5914

B PriceDispersion 0.9508 0.9494 0.9502 0.3181 0.8921 0.9766 0.8289 0.9483 0.9492 0.9244 0.9393 0.9155 0.6233

Panel B: Average cross sectional correlations
B Roundtrip 0.7701 0.797 0.4073 0.038 0.4427 0.8202 0.5293 0.5634 0.5593 0.5501 0.5436 0.4176 0.0566
B IQR 0.8906 0.9067 0.5072 0.0989 0.5544 0.8284 0.6195 0.7184 0.6942 0.658 0.6677 0.5187 0.0409
B Roll 0.8594 0.8809 0.4416 0.0963 0.5317 0.8223 0.6184 0.6756 0.662 0.6424 0.64 0.4641 0.0563

B AdjustedSchultz 0.8317 0.864 0.375 −0.0291 0.362 0.786 0.4695 0.5975 0.604 0.6109 0.601 0.4191 −0.0315
B EHP 0.8048 0.8449 0.303 −0.0876 0.2759 0.8308 0.4478 0.5477 0.5676 0.5995 0.5756 0.3263 −0.0015
B PriceDispersion 0.7484 0.7373 0.3846 0.1081 0.4759 0.6467 0.5073 0.6167 0.5947 0.564 0.5645 0.4875 0.0444

Panel C: Mean bias
B Roundtrip 0.0057 0.0009 −0.0111 −0.0072 −0.0027 −0.0084 0.008 0.0065 0.0127 0.0142
B IQR 0.0085 0.0037 −0.0083 −0.0044 0.0001 −0.0059 0.0111 0.0093 0.0155 0.0171

B Roll 0.0059 0.0011 −0.0108 −0.0069 −0.0025 −0.0085 0.0084 0.0068 0.013 0.0145

B AdjustedSchultz 0.0033 −0.001 −0.0113 −0.0089 −0.0037 −0.0103 0.0074 0.0068 0.0142 0.015

B EHP 0.0065 0.0023 −0.0081 −0.0057 −0.0005 −0.0057 0.0105 0.01 0.0174 0.0183

B PriceDispersion −0.001 −0.0057 −0.0166 −0.0135 −0.0087 −0.0155 0.0025 0.0005 0.0068 0.008

Panel D: Root mean squared error (RMSE)
B Roundtrip 0.0099 0.0059 0.0132 0.0112 0.006 0.0108 0.0187 0.0156 0.0219 0.0248
B IQR 0.0108 0.0058 0.0104 0.0083 0.0046 0.0086 0.019 0.0157 0.0228 0.0255
B Roll 0.0091 0.0049 0.0129 0.0103 0.0057 0.0108 0.0179 0.0148 0.0214 0.0242

B AdjustedSchultz 0.0068 0.0056 0.0152 0.013 0.0076 0.0158 0.015 0.0124 0.0195 0.021

B EHP 0.009 0.005 0.0104 0.009 0.0045 0.0088 0.0177 0.0149 0.0227 0.0243
B PriceDispersion 0.0169 0.0185 0.0272 0.0235 0.0201 0.0292 0.0164 0.0179 0.0202 0.021637
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wins.

Despite of the completely different market design of decentralized bond markets com-

pared to centralized stock markets, low-frequency spread proxies developed mainly for

stock markets generally approximate our high-frequency bond market liquidity bench-

marks very well. Especially the two measures based on the auto-covariance of trade prices,

P Roll and P Gibbs as well as P HighLow show high, consistent, and robust results in time

series and average cross sectional correlations. In contrast, only P HighLow and P Gibbs

are able to measure the scale of transaction costs correctly, resulting in low mean biases

and RMSEs. P HighLow claims the most wins for the monthly comparisons, whereas

P Gibbs performs especially well when aggregating annually. Measures based on zero re-

turns (P Zeros and P FHT) suffer from small time series correlations when bonds are more

liquid. Our quote based measures show small time series correlations before the crisis which

might indicate some consistency problems. However, the quoted spreads from Bloomberg’s

CBBT pricing source and average dealers’ quotes often give the best results in capturing

price dispersion. For quoted spreads, these two pricing sources generally perform better

than quotes from Bloomberg’s Generic Quote (BGN). P PastorStambaugh is clearly dom-

inated by the other proxies. Although P Amihud has high time series correlations with

our benchmarks, it does not do a good job considering cross sectional correlations and

performs somewhat worse for highly liquid bonds and in the pre-crisis period. In compar-

ison to stock markets, our measure based on price clustering (P Effective-Tick) performs

worse which is probably due to the different market design of the bond market.

2.4.4 Monthly Price Impact Results

Table 2.8 presents our main findings for the low-frequency price impact proxies. Panel A

shows time series correlations based on the monthly means of our benchmarks and proxies.

Again, we find high and significant values for all benchmark-proxy combinations. Quote

based measures seem to work better when it comes to capturing B Lambda, whereas for

the other proxies, results for the two benchmarks are very similar. Both high-frequency

benchmarks are best captured by the low frequency Amihud (2002) measure. In contrast

to that, the price impact proxy of Pastor and Stambaugh (2003) performs worst.

Panel B reports average cross sectional evidence. P PastorStambaugh aside, which is

again clearly dominated by all other proxies, all average correlations are significant, ranging

from 0.3642 to 0.7428. With the exception of P Amihud, which captures B Amihud best,

our low-frequency proxies seem to grasp B Lambda better than B Amihud. The price
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Table 2.8: Monthly price impact proxies compared to price impact benchmarks
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described in

Section 2.3. B Lambda is calculated since November 2008, resulting in 47 observation months. B Amihud is calculated for all 96 sample

months. Due to the availability of volume data in Bloomberg, all proxies start in April 2005. P PI Spread BGN is only computed until

February 2011 and spans 71 sample months. The remaining proxies are calculated for the last 90 months in the observation period.

Bold numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row and dashed boxes give

numbers that are not significantly different from this value at the 5% level.

P Amihud P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P Pastor-
Roll Gibbs ET FHT HL Spread- Spread- Spread- QD Qdmid Stambaugh

BGN CBBT Mean

Panel A: Time series correlations
B Amihud 0.9757 0.9269 0.8433 0.9431 0.9168 0.9675 0.601 0.7599 0.9099 0.9082 0.9064 0.4835
B Lambda 0.9789 0.9021 0.8262 0.8798 0.8392 0.9189 0.849 0.8537 0.942 0.9427 0.9393 0.3245

Panel B: Average cross sectional correlations
B Amihud 0.5702 0.5049 0.538 0.415 0.4291 0.5538 0.4852 0.3653 0.4336 0.4181 0.4331 −0.0017

B Lambda 0.3642 0.6607 0.6985 0.5307 0.5203 0.7428 0.7082 0.6154 0.6415 0.6242 0.6419 −0.0333
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impact adaptation of the high-low spread proxy P PI HL yields the highest correlation

for B Lambda. In contrast to the time series results, the correlation of P Amihud with

B Lambda is relatively low.

In Tables 2.9, 2.10, and 2.11 we perform robustness checks regarding the consistency of

our price impact measures in different subperiods, for more liquid and illiquid bonds, and

when aggregating measures yearly instead of monthly. Due to the conceptual problems in

the interpretation of price impact measures in the corporate bond market (see the intro-

duction), we refrain from discussing these tables in detail but instead directly summarize

the price impact evidence including the robustness checks.

We find that time series and average cross sectional correlations between our bench-

mark and proxy measures are high and significant for the most part. P Amihud and

P PI HL clearly show up as winners in our analysis. The former wins both time series

competitions and is significantly better than the remaining proxies for B Lambda. Cross

sectional correlations are best captured by P Amihud and P PI HL dependent on the cho-

sen benchmark. Both measures, but especially P PI HL, are robust against changes in

market or bond liquidity (see Tables 2.9 and 2.10), being in the leading group in most of

our robustness tests and showing relatively small variations in correlations. Quote based

price impact proxies, like their spread proxy counterparts, show high variations for differ-

ent subperiods, even yielding some unreasonable correlations prior to the financial crisis.

In all analyses, the Pastor and Stambaugh (2003) measure is consistently dominated by

all other measures.

2.5 Conclusion

In this chapter, we address the issue of how to best measure liquidity in OTC bond markets.

Goyenko, Holden, and Trzcinka (2009) answer this question for the stock market, but due

to the fundamental differences in market structure, it is highly questionable whether their

results are valid for bond markets. To provide guidance for researchers and practitioners,

we adapt their empirical methodology on the U.S. corporate bond market. With the help

of the TRACE database, which provides a complete trade record for this market after

October 1, 2004, we calculate a total of eight monthly high-frequency benchmark liquidity

measures. We compare them to 23 liquidity proxies that only need daily data (last price,

volume, high- and low price, or bid-ask quotes) which can be conveniently downloaded,

e.g., from Bloomberg.

40



2.5.
C
on

clu
sion

Table 2.9: Subperiod analysis: price impact proxies
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. The pre-crisis period is October 1, 2004 until March 31, 2007. The crisis period is defined as April 1, 2007 until

December 31, 2009. The post-crisis period is January 1, 2010 until September 30, 2012. B Lambda is calculated since November 2008.

B Amihud is calculated for all 96 sample months. Due to the availability of volume data in Bloomberg, all proxies start in April 2005.

P PI Spread BGN is only computed for the pre-crisis and crisis period. The remaining proxies are calculated for the last 90 months in

the observation period. Bold numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row

and dashed boxes give numbers that are not significantly different from this value at the 5% level.

P Amihud P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P Pastor-
Roll Gibbs ET FHT HL Spread- Spread- Spread- QD Qdmid Stambaugh

BGN CBBT Mean

Panel A: Time series correlations
B Amihud
Pre-crisis 0.8546 0.7343 0.6817 0.5273 0.4569 0.8726 −0.2555 −0.3939 −0.4581 −0.3923 −0.4125 0.088
Crisis 0.9731 0.9015 0.7607 0.9293 0.9045 0.9567 0.4599 0.809 0.9377 0.9118 0.9381 0.486
Post-crisis 0.5128 0.7477 0.7115 0.8297 0.3084 0.8148 −0.1378 0.3476 0.7749 0.2943 0.0145
B Lambda
Crisis 0.9662 0.7338 0.4521 0.7377 0.7248 0.8107 0.6659 0.9646 0.9017 0.8915 0.8979 0.2689
Post-crisis 0.7159 0.8999 0.8725 0.8421 0.5803 0.9022 0.1648 0.5893 0.8569 0.5532 −0.0118

Panel B: Average cross sectional correlations
B Amihud
Pre-crisis 0.6006 0.6096 0.6222 0.4746 0.5113 0.6498 0.5344 0.3076 0.4482 0.4378 0.4481 0.0015
Crisis 0.7015 0.6096 0.6717 0.5287 0.5467 0.6783 0.4889 0.3704 0.4693 0.4709 0.4689 0.0165

Post-crisis 0.3729 0.2844 0.2879 0.2363 0.2233 0.3019 0.4006 0.3852 0.3469 0.3845 −0.0221
B Lambda
Crisis 0.4785 0.4957 0.5865 0.5109 0.5024 0.5259 0.6739 0.5649 0.6122 0.6239 0.6218 −0.0772
Post-crisis 0.3119 0.7164 0.7378 0.5389 0.5278 0.8057 0.6355 0.6534 0.6242 0.6503 −0.0146
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Table 2.10: Portfolio analysis: price impact proxies
Monthly high-frequency benchmarks are calculated from intraday TRACE data from October 1, 2004 to September 30, 2012. Monthly

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described in

Section 2.3. B Lambda is calculated since November 2008, resulting in 47 observation months. B Amihud is calculated for all 96 sample

months. Due to the availability of volume data in Bloomberg, all proxies start in April 2005. P PI Spread BGN is only computed until

February 2011 and spans 71 sample months. The remaining proxies are calculated for the last 90 months in the observation period.

Portfolios are equally weighted and stratified by the level of liquidity implied by the respective benchmark or the number of trades in

the bond. As the number of a portfolio increases, its liquidity declines. The number of monthly trades is obtained from TRACE. Bold

numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row and dashed boxes give numbers

that are not significantly different from this value at the 5% level.

P Amihud P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P Pastor-
Roll Gibbs ET FHT HL Spread- Spread- Spread- QD Qdmid Stambaugh

BGN CBBT Mean

Panel A: Time series correlations based on equally weighted portfolios ranked by the respective benchmark liquidity measure (1: most liquid, 10: least liquid)
B Amihud
Portfolio 1 0.7767 0.7995 0.8339 0.54 0.7581 0.7418 0.7145 0.7196 0.6981 0.6956 0.698 −0.189
Portfolio 2 0.7915 0.8398 0.7934 0.4151 0.6963 0.886 0.5518 0.7137 0.6621 0.6392 0.6397 −0.4804
Portfolio 5 0.8053 0.8851 0.8343 0.7001 0.7882 0.9186 0.4029 0.7702 0.7759 0.7729 0.7534 −0.2067

Portfolio 9 0.9735 0.9427 0.912 0.9322 0.9305 0.9581 0.3232 0.7858 0.8757 0.8499 0.8757 0.4362
Portfolio 10 0.9756 0.8551 0.704 0.9507 0.9127 0.9575 0.6242 0.6783 0.9313 0.9246 0.931 0.4946
B Lambda
Portfolio 1 0.2957 0.1251 0.2731 0.2913 0.0585 0.1633 0.5376 0.4974 0.5347 0.5292 0.5322 −0.051

Portfolio 2 0.9018 0.5516 0.8886 0.5597 0.3958 0.6517 0.8193 0.8956 0.8883 0.9016 0.8706 0.3357
Portfolio 5 0.9116 0.9685 0.9491 0.9408 0.9068 0.9764 0.7928 0.9404 0.9366 0.9406 0.9201 −0.2936
Portfolio 9 0.9307 0.9358 0.9453 0.9465 0.9142 0.9137 0.8796 0.8744 0.9311 0.9257 0.9321 0.4389

Portfolio 10 0.9661 0.8406 0.7529 0.8941 0.9048 0.9252 0.7996 0.8464 0.9385 0.9195 0.9395 0.0508

B Amihud
Portfolio 1 0.5419 0.6035 0.5588 0.4116 0.5469 0.5626 0.103 0.5035 0.4813 0.4417 0.4108 0.1402

Portfolio 2 0.7294 0.5784 0.5567 0.4726 0.5979 0.6712 0.0757 0.5729 0.5689 0.5921 0.5434 0.0546

Portfolio 5 0.8017 0.6319 0.557 0.6693 0.7206 0.7655 0.1519 0.7659 0.7859 0.8166 0.7782 0.0079
Portfolio 9 0.9592 0.8783 0.7922 0.934 0.9074 0.9524 0.6406 0.5646 0.8671 0.8303 0.8641 0.2869

Portfolio 10 0.9679 0.8398 0.7523 0.9531 0.9318 0.951 0.7662 0.6603 0.9187 0.9081 0.9168 0.5565
B Lambda
Portfolio 1 0.3437 0.6119 0.5512 0.5365 0.4363 0.6431 −0.4173 0.7177 0.713 0.7441 0.7707 0.0319
Portfolio 2 0.6116 0.7067 0.6493 0.5258 0.464 0.7868 0.0454 0.7539 0.7443 0.7929 0.7317 0.3518
Portfolio 5 0.7681 0.8011 0.6798 0.8637 0.7543 0.8187 0.5609 0.6742 0.8091 0.796 0.7998 −0.3763

Portfolio 9 0.9704 0.891 0.8556 0.9126 0.8926 0.9497 0.8851 0.8013 0.8851 0.8606 0.8775 0.2799
Portfolio 10 0.96 0.769 0.6638 0.8505 0.8137 0.8349 0.7535 0.7915 0.8721 0.8194 0.8668 0.2982
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Table 2.11: Annual price impact proxies compared to price impact benchmarks
Annual high-frequency benchmarks are calculated from intraday TRACE data from January 1, 2005 to September 30, 2012. Annual

low-frequency proxies are computed based on daily price, volume, and quote data provided by Bloomberg. All measures are described

in Section 2.3. B Lambda is calculated since January 2009, resulting in four observation years. B Amihud is calculated for all eight

sample years. Due to the availability of volume data in Bloomberg, all proxies start in January 2006. P PI Spread BGN is only

computed until December 2010 and spans five sample years. The remaining proxies are calculated for the last seven years in the

observation period. Bold numbers are statistically significant at the 5% level. Drawn through boxes give the best value in a row and

dashed boxes give numbers that are not significantly different from this value at the 5% level.

P Amihud P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P PI- P Pastor-
Roll Gibbs ET FHT HL Spread- Spread- Spread- QD Qdmid Stambaugh

BGN CBBT Mean

Panel A: Time series correlations
B Amihud 0.9791 0.8626 0.8917 0.9539 0.9796 0.9836 0.8258 0.7112 0.9502 0.9582 0.9488 0.6911

B Lambda 0.9806 0.9841 0.9838 0.9871 0.9762 0.9861 0.6303 0.9776 0.9908 0.9756 −0.5863

Panel B: Average cross sectional correlations
B Amihud 0.7123 0.5485 0.5708 0.4813 0.5197 0.5996 0.6219 0.5158 0.5829 0.5877 0.5826 0.0437
B Lambda 0.4393 0.8033 0.8088 0.6847 0.615 0.8693 0.7878 0.7629 0.7498 0.7188 0.7504 −0.0017
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We find that although most studies in corporate bond markets use their own approach

to measure liquidity, results of previous studies using high-frequency bid-ask spread mea-

sures should be robust regarding the chosen approach as all of these measures are highly

correlated.

Second, we test whether low-frequency liquidity proxies that only need daily data are

useful to measure intraday transaction costs and price impact. We provide clear evidence

that most of our proxies are able to capture variations in transaction costs on both a

time series and cross sectional level. In contrast, only two of the low-frequency proxies

precisely estimate the magnitude of transaction costs. Consistent with Goyenko, Holden,

and Trzcinka (2009) for the stock market, intraday price impact is somewhat harder to

grasp than transaction costs. Nevertheless, most of our price impact proxies are able to

capture time series and cross sectional variations of price impact benchmarks. For some

of our transaction cost and price impact proxies, the ability to capture the features of our

high-frequency benchmarks varies over time and in different levels of market and bond

liquidity. However, the group of dominant measures mostly stays the same.

When estimating effective spread, we find that, with the exception of our price dis-

persion benchmark, low-frequency proxies calculated from Bloomberg’s TRACE pricing

source, rather than quote data, are the superior choice. The proxies developed for stock

markets by Corwin and Schultz (2012), Hasbrouck (2009), and Roll (1984) give high time

series and cross sectional correlations and also perform well in our robustness tests. Fur-

ther, the first two show low prediction errors. If computational costs are crucial, we

recommend Roll’s measure because of its low data and processing demands. In a monthly

setting, the high-low bid-ask spread estimator of Corwin and Schultz is preferred over

Hasbrouck’s Gibbs measure because of its overall better performance and lower compu-

tational requirements. When aggregating liquidity annually, the Gibbs measure performs

slightly better than the high-low estimator. If daily data on trades is not available, quoted

bid-ask spreads distributed in Bloomberg are also suited to capture intraday liquidity. It

is important to note, however, that one should prefer data from executable quotes (pricing

source: CBBT) over Bloomberg’s Generic bid-ask spread (pricing source: BGN). BGN

bid-ask spreads, although useful in capturing time series and cross sectional variations, do

not provide a correct scale of transaction costs. Quote based measures also do have some

consistency problems especially for the time before 2007.

For price impact, the daily Amihud (2002) measure and the price impact version of

the high-low bid-ask spread estimator win in the most categories with the Amihud (2002)
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measure performing better in the time series and the high-low estimator being superior

in capturing cross sectional variations. Especially the high-low price impact measure,

but also the Amihud (2002) low frequency proxy, give consistent and robust results for

different levels of market and bond liquidity. However, the latter needs less data input and

preprocessing in comparison. The Pastor and Stambaugh (2003) price impact Gamma,

on the other hand, is inferior to merely all other proxies. Although price impact measures

are employed in the bond market literature, we only recommend to use them with great

caution. The reason is that larger sizes trade at better prices in many bond markets. This

induces a negative price impact component and leads to difficulties in the interpretation

of price impact measures.

Summarizing, our results in this chapter provide clear evidence that the reduction

in data requirements and computational burden, when using low-frequency proxies over

high-frequency liquidity measures, for many applications might outweigh the small losses

in accuracy for the U.S. corporate bond market.
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Chapter 3

The Term Structure of Liquidity

Premia Conditional on the Economic

Environment

3.1 Introduction

After having established how to best measure liquidity in the previous chapter, we now

study the pricing implications of illiquidity for bonds of different maturity. For that, we

analyze the term structure of liquidity premia as the difference between the zero coupon

yield curves of two bond segments that differ only in their liquidity. Although, it is

consensus in the literature that a large part of the yield spread compensates investors

for the illiquidity of a bond (see, e.g., Longstaff, Mithal, and Neis, 2005), disentangling

illiquidity related risk premia from other systematic factors such as default risk is in most

papers subject to strong assumptions. In contrast, German government bonds (BUNDs)

and government guaranteed bonds issued by the German federal agency Kreditanstalt

für Wiederaufbau (KfW) provide a near-ideal setting to study liquidity premia. Both

constitute major bond market segments in the eurozone with a sufficient number of bonds

from both issuers in all maturity segments. Since KfW bonds are explicitly guaranteed by

the German government, they bear effectively the same default risk as government bonds.

However, trading volumes and bid-ask spreads indicate that they are less liquid.

In this clean setting, we study the following three questions based on 15 years of data

from 1996 to 2010: How do liquidity related risk premia behave in different economic
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regimes? What are the drivers of different parts of the term structure of liquidity premia?

And are relations between fundamental factors and liquidity premia different in crisis

and non-crisis times? All three questions are relevant for investors and issuers active in

global bond markets as an increase of the liquidity premium directly translates into a price

decrease of a bond.26

Three main results emerge from the analysis. First, our regime-switching approach

identifies the 1998 bailout of Long Term Capital Management (LTCM), the period after

the burst of the dot-com bubble as well as the financial crisis starting in summer 2007 as

liquidity stress periods in the European bond market. Within these stress periods, the

extra yield to maturity of an illiquid agency bond compared to a liquid government bond

is on average around 25 bps, compared to 15 bps in normal times. The increase is most

prevalent at the short end, where premia, e.g., for two year bonds reach all-time highs

of more than 120 bps after the collapse of Lehman Brothers. Thus, term structures of

liquidity premia in times of stress are often strongly downward sloping as predicted by

theoretical models when probabilities to sell are above their long-term mean (see Ericsson

and Renault, 2006) or when aggregate liquidity shocks are more likely (see Feldhütter,

2012).

Second, we find that liquidity premia are highly dependent on the global availability

of arbitrage capital as well as on foreign flows into bond markets. As suggested by the

recent literature on slow moving capital, the supply of liquidity depends on sophisticated

arbitrageurs providing liquidity for investors (see, e.g., Gromb and Vayanos, 2010). On

the other hand, demand for liquidity only drives short-term liquidity premia.

Third and probably most importantly, we find that none of our economic drivers plays

a major role in explaining premia in normal times. In contrast, a decrease in the available

arbitrage capital directly translates into higher liquidity premia in crisis periods. This re-

sult goes well together with the theoretical insights of Brunnermeier and Pedersen (2009)

that the impact of changes of speculator capital on liquidity is significantly stronger when

funding is scarce and the system is in stress. Additionally, the regime-switching depen-

dency of short-term liquidity premia on liquidity demand translates into an additional

source of risk for short-term bonds. This risk factor mirrors the increasing demand for

short-term and highly liquid bonds during liquidity stress periods. As as direct result,

26As a concrete example, insurance companies currently face the challenge to mark-to-market their
hold-to-maturity assets in the light of Solvency II. In this regard, the European Insurance CFO/CRO
Forum stresses that there is a lack of research regarding the term structure of liquidity premia (see
European Insurance CFO Forum and CRO Forum (2010), p. 55).
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short-term premia in crisis times increase disproportionately leading to pronounced term

structure effects. The highly non-linear influence of fundamentals on liquidity premia

implies that calibrating, e.g., risk management models in normal times, where liquidity

premia are largely invariant to changes in fundamentals, heavily underestimates the sys-

tematic component of liquidity risk.

Our study relates to several strands of literature. First, papers like Longstaff (2004),

Koziol and Sauerbier (2007), Bühler and Vonhoff (2011), and Kempf, Korn, and Uhrig-

Homburg (2012) study the term structure of liquidity premia for Refcorp and Treasury

bonds as well as for German Pfandbriefe. All of these studies do not pursue a conditional

approach, rather they analyze ‘average’ effects over the whole business cycle. Second,

Brunnermeier (2009), Dick-Nielsen, Feldhütter, and Lando (2012), and Acharya, Amihud,

and Bharath (2013) analyze the different behavior of liquidity during stress and normal

times. In contrast to these papers, we study the pricing implications across different

maturity segments and do not rely on strong assumptions regarding the separation between

liquidity and credit risk. Finally, Goyenko, Subrahmanyam, and Ukhov (2011) study the

term structure of Treasury market illiquidity. Although their focus is on bond market

trading cost measured via bid-ask spreads instead of yield differentials, their findings

of increasing illiquidity in recessions is pretty much consistent with our insights on the

premium side.

The remainder of the chapter is structured as follows: Section 3.2 extracts the term

structure of liquidity premia and provides insights on its characteristics. In Section 3.3,

we analyze economic determinants of liquidity premia of different maturities conditional

on the economic environment in a regime-switching model. Section 3.4 performs several

robustness checks. Section 3.4 concludes the chapter.

3.2 Liquidity Premia

The interpretation of the KfW-BUND bond yield spread curve as the term structure of

liquidity premia (see also, e.g., Schwarz, 2010; Monfort and Renne, 2011, 2013) depends

on two key assumptions: that federal agency bonds are less liquid than government bonds

and that credit risk in both segments is exactly the same. We first provide evidence for

both of these assumptions and describe our data set. We then discuss the economics of

the KfW-BUND yield spread and provide first evidence of its regime-switching nature.
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3.2.1 Data and Term Structure Estimation

We estimate zero coupon yield curves for German government bonds (BUNDs) and bonds

of the Kreditanstalt für Wiederaufbau (KfW) using the parametric Nelson-Siegel approach

(see, e.g., Kempf, Korn, and Uhrig-Homburg, 2012). KfW is a promotional bank owned

by the German government and federal states. It was founded in 1948 to further the

reconstruction of the German economy after World War II. Today, it serves as the leading

financier of small and medium size enterprises, provides credit to retail customers for

subsidized projects (e.g., improving energy efficiency of buildings), and acts on behalf

of the German government on special tasks. The government of Germany guarantees

the continuation of KfW through a maintenance obligation (‘Anstaltslast’). In addition,

all KfW bonds are explicitly guaranteed by the German government. Thus, they bear

effectively the same default risk as government bonds. This is recognized, e.g., by the

U.S. economic magazine ‘Global Finance’ honoring KfW as the world’s safest bank in

2009, 2010, 2011, and 2012. Rating reports and conversations with analysts from different

rating agencies suggest that they apply a ‘credit substitution approach’, equalizing the

rating of KfW with that of the Federal Republic of Germany. Analysts state that only

an extremely unlikely change of the legal framework would break down the direct link

between the ratings of the two segments. Therefore, it is safe to assume that credit

risk in both segments is identical. Moreover, KfWs and BUNDs are zero weighted in

determining capital requirements within the Basel regulations, and are also identical in

their tax treatment.

Our data set consists of weekly closing prices for BUNDs and KfW bonds from the

Frankfurt Stock exchange from February 14th, 1996 to September 29th, 2010. During this

period, there are always a sufficient number of bonds from both issuers in all maturity

segments available. Closing prices either result from trades or are determined in an auction

like mechanism. We only include those KfW bonds that are well comparable to BUNDs:

plain vanilla fixed coupon bonds with annual coupon payments that are exchange-tradable

and denominated in Euro. Table 3.1 gives an overview of all bonds in our sample.

In contrast to their identical credit risk, the two segments differ in their liquidity due

to the about eleven times higher outstanding total volume and the more than three times

higher average issue size of BUNDs compared to KfW bonds (see Table 3.1). Regarding

trading volume and turnover, KfW collects information from 25 banks trading in its bonds

and shares the data with us. From July 2011 to June 2012, traded volume in Euro

denominated KfW bonds amounts to 127.4 billion EUR compared to 5.4 trillion EUR
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Table 3.1: Summary statistics for KfW bonds and BUNDs
This table shows summary statistics for the bonds included in the sample. The observation
period is February 14th, 1996 to September 29th, 2010.

Kreditanstalt für German government
Wiederaufbau (KfW) bonds (BUND)

Number of bonds 68 227
Average time to maturity 6.09 7.52
at issue date (in years)
Average coupon (in %) 4.13 4.90
Average issuing volume (incl. 2.99 9.83
all reopenings) (in bn EUR)
Total volume (in bn EUR) 203 2 231

in BUNDs in 2012. KfW bonds are approximately turned over once per year, compared

to a turnover of five for BUNDs. In contrast to the U.S. bond market, where trading

activity concentrates on just issued on-the-run bonds, trading in KfW bonds is distributed

relatively equally on all maturities (see also, e.g., Ejsing and Sihvonen, 2009, who find the

on-the-run status to have only negligible influence on liquidity for BUNDs). Thus, we do

not separate between on-the-run and off-the-run bonds. Note also that although KfWs

and BUNDs are both accepted by the European Central Bank (ECB) as collateral for

repo transactions, ECB divides securities in liquidity categories. KfWs are in the second

highest category, whereas BUNDs are in the highest.27

The estimation of the zero coupon yield curves for both BUND yBUND
t (T ) (where T

denotes the time to maturity) and KfW yKfW
t (T ) using the Nelson-Siegel approach is

detailed in the Appendix B.1. The term structure of liquidity premia at time t is then

obtained as the difference between the two estimated Nelson-Siegel curves

illiqt(T ) = yKfW
t (T )− yBUND

t (T ). (3.1)

27This leads to small additional haircuts for KfWs of up to 2% for the longest maturities. KfWs
and BUNDs are both accepted by the Federal Reserve for discount window loans with the same margin
haircuts. The Bank of England accepts KfWs only as ‘wider collateral’ which can be used for long-term
open market operations and the discount window facility, whereas BUNDs are accepted for all monetary
policy operations.

51



Chapter 3. Liquidity Premia Conditional on the Economic Environment

3.2.2 Economics of the KfW-BUND Yield Spread

An obvious question is why yield differences between KfW bonds and BUNDs are not

arbitraged away. The KfW-BUND yield spread is in this aspect in line with the Refcorp-

Treasury spread (see Longstaff, 2004), the spread between Treasury bonds and inflation-

swapped TIPS issues (see Fleckenstein, Longstaff, and Lustig, 2013), or the spread between

Treasuries of different liquidity (see Fontaine and Garcia, 2012; Banerjee and Graveline,

2013). Although the arbitrage strategy of buying a KfW bond and short-selling a gov-

ernment bond of the same maturity (and rolling over the respective repo positions) is

riskless in theory, in practice this strategy is costly, it consumes capital, and it is risky

in the short run. The strategy is costly as, in addition to direct transaction costs, repo

rates for BUNDs are lower than for KfW bonds (see Banerjee and Graveline, 2013, for a

related discussion on Treasury markets). It consumes capital as margins of KfW bonds

and BUNDs are different (see footnote 27) and it is risky, at least in the short-run, as the

yield spread could widen (see Liu and Longstaff, 2004, for a formal discussion).

Thus, besides interpreting our yield-spread as a liquidity measure, it could also be

interpreted as a measure of textbook arbitrage in a frictionless market. In contrast to the

yield-spreads discussed above, but also in contrast to a recent measure of price deviation

in the yield curve of Treasuries (see Hu, Pan, and Wang, 2013), we are able to derive a

full term structure of our measure. Each point on this term structure can be interpreted

as an arbitrage risk premium, i.e., an ex-ante return of a textbook arbitrage strategy in

the respective maturity. It therefore not only incorporates the severeness of frictions, but

also market expectations regarding these frictions for different time horizons, as well as

risk premia. To back up this interpretation, we regress yearly excess returns rxt+1(T ) of

T -year KfW bonds over T -year BUNDs on our liquidity premia of three maturities and

their principal components (see, e.g., Cochrane and Piazzesi, 2005) for maturities T of

two, five, and ten years:

rxt+1(T ) = γ0 + γ1 · illiqt(2) + γ2 · illiqt(5) + γ3 · illiqt(10) + ǫTt+1, (3.2)

rxt+1(T ) = γ0 + γ1 · PCilliq1t + γ2 · PCilliq2t + γ3 · PCilliq3t + ǫTt+1. (3.3)

The large R2s in Table 3.2 show that our measure has indeed explanatory power for

excess returns. In the regression of excess returns on liquidity premia in Equation (3.2),

the premium with the maturity that equals the maturity of the excess return is always

significant at the 1% level. When we use principal components instead of liquidity premia,

52



3.2. Liquidity Premia

Table 3.2: Excess return regressions
In this table, we regress yearly excess returns rxt+1(T ) of T -year KfW bond over T -
year BUNDs on liquidity premia and their principal components. rxt+1(T ) is the yearly
excess return from buying a T -year KfW bond in t, financing it with a T -year BUND
and liquidating the position one year later, i.e., rxt+1(T ) ≡ rKfW

t+1 (T ) − rBUND
t+1 (T ). Log

returns are defined, e.g., for KfW bonds, as rKfW
t+1 (T ) ≡ pKfW

t+1 (T − 1) − pKfW
t (T ), where

pt(T ) denotes the log price of a T -year discount bond that can be derived directly from
the estimated yield curves of KfW bonds and BUNDs. illiqt(T ) refers to T -year liquidity
premia. PCilliq1t, PCilliq2t, and PCilliq3t, denote the first, second, and third principal
component derived from the two, five, and ten year liquidity premia. Standard errors are
calculated using a Newey-West correction with 18 lags and are given in parentheses. The
observation period is from February 1996 to September 2010 (164 monthly observations).

rxt+1(T ) = γ0 + γ1 · illiqt(2) rxt+1(T ) = γ0 · const+ γ1 · PCilliq1t

+γ2 · illiqt(5) + γ3 · illiqt(10) + ǫTt+1 +γ2 · PCilliq2t + γ3 · PCilliq3t + ǫTt+1

Short Medium Long Short Medium Long
T=2 yr. T=5 yr. T=10 yr. T=2 yr. T=5 yr. T=10 yr.

γ0 −0.0019∗∗ −0.0041∗ −0.0095∗ 0.0014∗ 0.0014 0.0013
(0.0006) (0.0017) (0.0039) (0.0006) (0.0014) (0.0029)

γ1 0.0114∗∗ −0.0112 −0.0192 0.0017∗∗ 0.0028∗∗ 0.0052∗∗

(0.0039) (0.0097) (0.0192) (0.0001) (0.0004) (0.0009)
γ2 0.0084 0.0459∗∗ −0.0003 −0.002∗∗ 0.0015 0.0117∗∗

(0.0063) (0.0154) (0.0362) (0.0006) (0.0012) (0.0023)
γ3 −0.0035 −0.0025 0.0798∗∗ 0.0004 0.0068∗ −0.0042

(0.0038) (0.0053) (0.0183) (0.0013) (0.0029) (0.007)

adj. R2 0.5473 0.396 0.3701 0.5473 0.396 0.3701

the first principal component is always significant. Interestingly, the second principal

component is significant with oposite signs for two and ten year excess returns which

confirms its interpretation as the slope of the term structure of risk premia.28

To provide further support that liquidity premia are driven by liquidity differences

between the two segments, we analyze the time series relation between liquidity premia and

corresponding transaction cost measures for our three maturity segments in more detail.

In contrast to the U.S. corporate bond market, the last price of a trade on a day, but

also high- and low prices for a given German government or agency bond are not publicly

28As in Cochrane and Piazzesi (2005), we use month-end instead of weekly data to reduce overlapping
of yearly excess returns. R2s are slightly lower when we exclude the financial crisis and are larger when
only incorporating the crisis. The results are robust when using lagged liquidity premia (see Cochrane
and Piazzesi, 2005) or when calculating excess returns of T -year KfW bonds over 1-year BUNDs (instead
of T -year BUNDs).
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available. Therefore, we cannot use transaction cost measures based on trade prices like

Roll (1984), Hasbrouck’s (2009) Gibbs measure, or the high-low spread estimator from

Corwin and Schultz (2012), which performed best in our analyses in Chapter 2. From the

quote based measures, we cannot use bid-ask spreads calculated from CBBT prices as this

pricing source is not available before 2004. Based on the results in Chapter 2, we therefore

use average bid-ask spreads from all dealers quoting prices in Bloomberg. As Table 2.4

shows, average bid-ask spreads from all dealers (P Spread-Mean) have higher time series

and cross sectional correlations with our benchmark measures than bid-ask spreads from

Bloomberg’s Generic pricing source (P Spread-BGN) and the quote dispersion measures

(P QuoteDispersion and P QDmid). Especially the high time series correlations between

bid-ask spreads from all dealers’ quotes and our intraday transaction cost benchmarks in

Table 2.4 confirm that this liquidity measure captures liquidity dynamics well. We use

the average bid-ask spreads of all dealers’ quotes to estimate a ‘term structure of bid-ask

spreads’ (for details, see Appendix B.2).

Figure 3.1 presents the evolution of the two, five, and ten year liquidity premia over

time together with the respective quoted bid-ask spread differences between KfW bonds

and BUNDs. For all three maturity segments, the figure shows a remarkable connection

between bid-ask spread differences and liquidity premia. Their large unconditional corre-

lations of 0.89 for two years, 0.85 for five, and 0.81 for ten years maturity provide clear

evidence in favor of liquidity-driven yield spreads. But despite of the large unconditional

correlations, when looking only at the period before the beginning of the subprime crisis

from August 2001 to June 2007, correlations are much lower with 0.01 for two years, 0.16

for five years, and with -0.11 for ten years even (insignificantly) negative. In contrast, in

the crisis period since June 2007 up to the end of the observation period, correlations are

between 0.8 and 0.85 for all three series. This observation confirms findings of Acharya,

Amihud, and Bharath (2013) that the impact of liquidity on bond prices is primarily rel-

evant in times of stress. Therefore, in our analysis of the economic drivers of liquidity

premia in Section 3.3, we use a regime-switching model allowing for different sensitivities

during stress and normal times.

Liquidity premia of maturity two, five, and ten years (as well as their first principal

component) are all significantly negatively correlated with German GDP. More impor-

tantly, the slope of the term structure of liquidity premia, i.e., the difference between ten

year and two year liquidity premia, is significantly positively correlated with GDP. Thus,

the shape of the term structure of liquidity premia is related to the economic environ-

ment. To further analyze the different shapes over time, Figure 3.2 plots the slope of
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Figure 3.1: Liquidity premia and quoted bid-ask spreads
This figure shows the development of liquidity premia (solid lines) and quoted relative
bid-ask spread differences between KfW bonds and BUNDs (dotted lines) over time. The
upper graph depicts a time to maturity of two years, the middle graph provides five years,
and the lower graph ten years time to maturity. Quoted bid-ask spread differences can only
be calculated since January 6th, 1999 for five and ten years and since August 22nd, 2001
for two years maturity. The observation period is from February 14th, 1996 to September
29th, 2010 (764 weekly observations).
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Figure 3.2: Slope of the term structure of liquidity premia and bid-ask spread
differences
This figure shows the development of the slopes of the term structures of liquidity pre-
mia (solid line) and quoted relative bid-ask spread differences between KfW bonds and
BUNDs (dotted line) over time. The slope of quoted bid-ask spread differences can only
be calculated since August 22nd, 2001. The observation period is from February 14th,
1996 to September 29th, 2010 (764 weekly observations).

the term structure of liquidity premia together with the slope of the term structure of

bid-ask spreads. Whereas the slope of the term structure of liquidity premia is negative

during the financial crisis and also after the burst of the dot-com bubble, the slope of

bid-ask spread differences between KfW bonds and BUNDs is positive during these times.

The fact that rising term structures of bid-ask spreads do not simply transfer to rising

term structures of liquidity premia, together with the close connection of bid-ask spreads

and liquidity premia observed in Figure 3.1, suggests that there is no simple one-to-one

relation between bid-ask spreads and liquidity premia. Rather, more fundamental factors,

that potentially impact liquidity premia of different maturities differently, seem to be at

play. We will explore this question further in the next section and more generally analyze

how liquidity premia depend on global demand and supply of liquidity.
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3.3 Term Structure Dynamics: A Conditional Ap-

proach

We are now ready to study the drivers of the term structure of liquidity premia in a

regime-switching model in order to analyze the influence of liquidity supply and demand

on liquidity premia of different maturities conditional on the economic environment.29

3.3.1 Economic Factors Driving Liquidity Premia

We measure the supply of liquidity with the global availability of arbitrage capital. As

argued, e.g., by Duffie (2010), Gromb and Vayanos (2010), and many other papers in the

context of the current discussion on slow moving capital, the provision of liquidity depends

on sophisticated arbitrageurs providing liquidity to less sophisticated investors. Hu, Pan,

and Wang (2013) proxy for the global availability of arbitrage capital with a measure of

noise in the yields of U.S. Treasuries. They argue that in episodes of low liquidity, a

shortage of arbitrage capital allows prices to fluctuate more freely relative to the yield

curve. Moreover, they show that their measure is more informative on liquidity conditions

than other liquidity measures like the bid-ask spread. The interpretation of this measure is

also consistent with Vayanos and Vila’s (2009) notion of arbitrageurs that arbitrage away

yield differences between different maturities. We use data on the noise measure available

on Jun Pan’s website.

We control for possible differences in the global versus local availability of arbitrage

capital with data on foreign flows into German bond markets. Deutsche Bundesbank

calculates net fund flows of foreign investors into bonds from public and non-public issuers,

where the KfW is classified as a non-public issuer. We expect an inflow of capital in

bonds from public issuers to increase the liquidity difference between KfW and BUND

and therefore widen liquidity premia. On the other hand, a capital inflow into bonds from

non-public issuers might decrease the liquidity difference and thus lower liquidity premia.

Data on net foreign flows (in EUR) is available from Deutsche Bundesbank and we deflate

the data with the consumer price index.

In addition to these market wide proxies, bond specific liquidity differences between the

29The regime-switching behavior of liquidity premia is also supported by Chow tests rejecting the null
hypothesis of parameter constancy in autoregressive models of different lag length for a wide range of
break dates and all three series.

57



Chapter 3. Liquidity Premia Conditional on the Economic Environment

two segments are proxied by differences in the outstanding volume that is freely available

for trading. For this, we construct measures of the amount of bonds outstanding of the

representative two, five, and ten year KfW bond relative to the outstanding amount of the

corresponding German government bond (for details, see Appendix B.3). As can be seen

in Table 3.3, the average outstanding volume of the representative KfW bond is about

20% of the volume of its BUND counterpart.

We measure demand for liquidity with proxies for future trading needs and market wide

risk premia. As a measure for information flowing into the market and thus for future

trading needs, we select the benchmark volatility index for the German stock market

(VDAX New). VDAX New is calculated by Deutsche Börse from options on futures on

the DAX. As a measure of global financial uncertainty, which is closely linked to future

liquidation needs, we use the TED spread. Brunnermeier (2009) points out that in times

of higher uncertainty in the banking system, the risk of unsecured loans rises which in turn

leads to higher LIBOR rates. Additionally, in times of higher uncertainty the value of first

rate collateral rises pushing down T-Bill rates and widening the TED spread further. As

a proxy for market wide risk premia or required returns, we select the dividend yield of

the German stock market index DAX. Cochrane (2011) points out that variations in the

market wide dividend yield reflect changes in risk premia rather than changes in future

dividend growth (see also, e.g., Gârleanu and Pedersen, 2011). The dividend yield is

calculated by Bloomberg under the assumption that for all 30 constituents of the DAX,

realized dividends in the year before the observation date are paid as an infinite annuity.

It is available after May 7th, 1997. We use the first principal component of VDAX New,

TED spread, and dividend yield as our aggregate measure for liquidity demand.30

As we want to separate the effects of liquidity supply and demand, we do not use bid-ask

spreads in our main analysis. Bid-ask spreads could be interpreted as price for immediate

liquidity provision, and are thus influenced by both demand and supply of liquidity. How-

ever, we use bid-ask spreads in the robustness section for a shortened observation period

as they are available only since August 2001 for all maturities.

As an additional explanatory variable, we include a measure for the market wide credit

spread to control for perceived credit risk. We use the spread between the Bloomberg index

for the yield of BBB rated industrial USD bonds and the corresponding AA index. Note

30It is not possible to separate the impacts of trading needs and risk premia, since both TED spread and
VDAX New, besides being measures for trading needs, are also expected to be sensitive to an increase
in risk premia. Moreover, the dividend yield is supposed to rise in uncertain times (with high future
liquidation needs) due to declining stock prices.
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Table 3.3: Summary statistics of explanatory variables
This table shows summary statistics for the variables included in the analysis. Noise
refers to a measure of noise in U.S. Treasury yields (in bps, see Hu, Pan, and Wang,
2013). ForeignPub (ForeignNonPub) refers to the capital inflow into German bonds
from public (non-public) issuers deflated with the consumer price index (in trillions of
EUR, prices of 2005). V olume(T ) measures the outstanding volume of the representative
KfW bond compared to its BUND counterpart with T years to maturity and LiqDemand
is the first principal component of the VDAX New, the TED spread, and the dividend yield
of the DAX. Credit(T ) refers to the spread between the Bloomberg indices for AA rated
corporate bonds and BBB rated corporate bonds (in percentage points). The observation
period is May 7th, 1997 to September 29th, 2010 (700 weekly observations).

Mean Standard Minimum Median Maximum
Deviation

Noise 3.5557 2.7249 1.0424 2.8817 20.4675
ForeignPub 0.0036 0.0077 -0.0151 0.0032 0.0284
ForeignNonPub 0.0047 0.0083 -0.0241 0.0055 0.0223
V olume(2) 0.2117 0.0787 0.0838 0.2108 0.3782
V olume(5) 0.2014 0.0544 0.0923 0.2051 0.3031
V olume(10) 0.2452 0.0624 0.1324 0.2456 0.3763
LiqDemand 0 1.2989 -1.6635 -0.2836 7.8201
Credit(2) 0.7344 0.4583 0.1500 0.5992 2.3919
Credit(5) 0.7783 0.4309 0.1400 0.6947 2.4948
Credit(10) 0.7955 0.3577 0.3308 0.7293 2.4632

that we cannot utilize credit spreads of EUR bonds since these are available only after

August 2001. The credit spread indexes are available with different maturities and we use

the index with the corresponding time to maturity in the regression equations for short-,

medium-, and long-term liquidity premia. Table 3.3 shows summary statistics for our

explanatory variables.

3.3.2 Methodology

Most authors put liquidity stress periods on a level with financial crises and rely on ex-

ceptional events to identify them (see, e.g., Chordia, Sarkar, and Subrahmanyam, 2005).31

In contrast, we endogenously identify liquidity stress periods by means of the Markov

regime-switching model first proposed by Hamilton (1989). So essentially the data tell us,

when the system is likely to be in the stress regime. We also check the robustness of our

31See also Barrell et al. (2010) for a short discussion of the problems of exogenous crisis identification.
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results using exogenously specified financial crisis periods in Section 3.4

To analyze the different behavior of liquidity premia during liquidity stress periods and

normal times, we estimate a two-regime AR model for two, five, and ten year liquidity

premia and augment it with the economic drivers discussed in Section 3.3.1 An autore-

gressive model in levels is used to capture level relations between liquidity premia and our

explanatory factors (see also Kempf, Korn, and Uhrig-Homburg, 2012).32

illiqt(2) = a2y0,s +

p∑

i=1

(
b2yi,silliqt−i(2)

)
+ a2y1,sNoiset + a2y2,sForeignPubt (3.4)

+ a2y3,sForeignNonPubt + a2y4,sV olumet(2) + a2y5,sLiqDemandt

+ a2y6,sCreditt(2) + ǫ2ys,t,

illiqt(5) = a5y0,s +

p∑

i=1

(
b5yi,silliqt−i(5)

)
+ a5y1,sNoiset + a5y2,sForeignPubt (3.5)

+ a5y3,sForeignNonPubt + a5y4,sV olumet(5) + a5y5,sLiqDemandt

+ a5y6,sCreditt(5) + ǫ5ys,t,

illiqt(10) = a10y0,s +

p∑

i=1

(
b10yi,s illiqt−i(10)

)
+ a10y1,s Noiset + a10y2,s ForeignPubt (3.6)

+ a10y3,s ForeignNonPubt + a10y4,s V olumet(10) + a10y5,s LiqDemandt

+ a10y6,s Creditt(10) + ǫ10ys,t ,

where the state s ∈ {1, 2} follows a homogeneous Markov chain with constant transition

probabilities33

P (st = 1|st−1 = 1) = p1,1, (3.7)

P (st = 2|st−1 = 2) = p2,2.

The vector of error terms (ǫ2ys,t, ǫ
5y
s,t, ǫ

10y
s,t ) is multi-normally distributed with mean zero and

32Augmented Dickey Fuller (ADF) tests for the time series of liquidity premia reject the non-stationary
hypothesis for the time period before the beginning of the financial crisis in June 2007 for all three time
series of liquidity premia. If we include the whole time period, non-stationarity can only be rejected for
two and five year premia. As these results are inconclusive regarding the stationarity of the variables,
lagged values of the endogenous variables ensure that asymptotic distributions of the regression coefficients
maintain their standard form (see Sims, Stock, and Watson, 1990).

33Although switching probabilities are assumed to be constant, the probability to be in the stress
regime depends on the economic environment as illustrated in Section 3.3.3, Figure 3.3. See also Acharya,
Amihud, and Bharath (2013) for a related discussion.
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variance-covariance matrix Ωs where

Ωs =




(σ2y
s )2 ρ2y,5ys · σ2y

s · σ5y
s ρ2y,10ys · σ2y

s · σ10y
s

ρ2y,5ys · σ2y
s · σ5y

s (σ5y
s )2 ρ5y,10ys · σ5y

s · σ10y
s

ρ2y,10ys · σ2y
s · σ10y

s ρ5y,10ys · σ5y
s · σ10y

s (σ10y
s )2


 . (3.8)

We select this flexible variance-covariance matrix to allow for heteroskedasticity between

the two regimes. Also, correlations of the error terms of different segments can be regime-

switching. The model is estimated along the lines described in Hamilton (1994) using the

expectation-maximization (EM) algorithm to maximize the log-likelihood function.

3.3.3 Results

Table 3.4 gives the estimation results of Model (3.4)-(3.8) with p = 2 lags. Due to the

availability of data for our exogenous variables, the observation period is May 7th, 1997

to September 29th, 2010. We choose a lag-length of two to allow for a possible influence

of past changes of liquidity premia, but results are generally robust if we use different

lag lengths. We first present results regarding regime identification and average term

structures of liquidity premia within the two regimes. We then discuss the results regarding

our economic drivers.

The estimation of the parameters delivers the probability of the system being in the

stress regime for each date in the sample. This probability is plotted in Figure 3.3. Stress

periods can often be associated with economic events that might be causal for poor liq-

uidity. So the 1998 bailout of LTCM, the period after the burst of the dot-com bubble

as well as the financial crisis starting in summer 2007 are all identified as liquidity stress

periods.

Figure 3.4 shows average term structures of liquidity premia in both regimes. A clear

separation in the two regimes can be recognized. Whereas in the non-stress regime (regime

1), on average the extra yield to maturity of an illiquid KfW bond compared to the liquid

BUND is around 15 bps, this liquidity premium nearly doubles in the stress regime (regime

2). Additionally, the standard deviation of the innovations is about two to three times

larger in the stress regime. The shape of the term structure is slightly U-shaped in both

regimes, but the decreasing part is much more pronounced in the stress regime due to

large short-term liquidity premia. This result confirms our observation from Figure 3.2

that within crisis periods, the slope of the term-structure is negative.
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Table 3.4: Estimation results for Markov regime-switching AR model with ex-
ogenous variables
This table shows the results of the maximum likelihood estimation of Model (3.4)-(3.8)
with p = 2. White’s (1982) standard errors are given in parentheses. *, ** indicate sig-
nificance at the 5% or 1% level. The observation period is May 7th, 1997 to September
29th, 2010.

Regime 1 (normal times) Regime 2 (stress regime)

Short Medium Long Short Medium Long
T=2 yr. T=5 yr. T=10 yr. T=2 yr. T=5 yr. T=10 yr.

mean illiq. 16.6 bps 14.1 bps 15.1 bps 31.3 bps 24.5 bps 25.3 bps
premium (T)

σ 0.0255 0.022 0.0246 0.0695 0.0584 0.0551
(0.0024) (0.0017) (0.0018) (0.0047) (0.0041) (0.0035)

correlation ρ2y,10y1 ρ2y,5y1 ρ5y,10y1 ρ2y,10y2 ρ2y,5y2 ρ5y,10y2

parameters 0.0915 0.6702 0.3899 0.171 0.4801 0.4008
(0.0702) (0.0537) (0.0626) (0.0702) (0.0691) (0.0605)

transition p1,1 p2,2
probabilities 0.907 0.8483

(0.0231) (0.0495)

Constant 0.0047 0.0043 0.0073 0.0564∗∗ 0.0651∗∗ 0.0127
(0.0069) (0.0065) (0.0112) (0.021) (0.0235) (0.034)

illiqt−1(T ) 0.6728∗∗ 0.7594∗∗ 0.7009∗∗ 0.5224∗∗ 0.5404∗∗ 0.5181∗∗

(0.0916) (0.1003) (0.0705) (0.0766) (0.081) (0.0851)
illiqt−2(T ) 0.2607∗∗ 0.186 0.2659∗∗ 0.2207∗∗ 0.2095∗∗ 0.2871∗∗

(0.0859) (0.1089) (0.072) (0.0589) (0.0686) (0.0757)
Noiset 0.001 0.0012 0.0013 0.006 0.005∗ 0.0061∗

(0.002) (0.0019) (0.0022) (0.0032) (0.0023) (0.0029)
ForeignPubt 0.1586 0.2585 0.3128 0.6017 1.0487 0.9702∗

(0.2261) (0.1807) (0.218) (0.6955) (0.548) (0.4921)
ForeignNonPubt −0.0129 −0.0454 −0.066 −2.2655∗∗ −2.0112∗∗ −1.34∗

(0.2472) (0.2069) (0.2482) (0.7953) (0.6731) (0.643)
V olumet(T ) 0.0013 0.0159 −0.0097 0.0529 −0.1515 0.0595

(0.023) (0.0262) (0.041) (0.0658) (0.0803) (0.1164)
LiqDemandt 0.0023 0.0037 0.0003 0.031∗∗ 0.0115 0.0034

(0.0038) (0.0033) (0.0037) (0.0079) (0.0061) (0.0049)
Creditt(T ) 0.0058 −0.0039 −0.0077 −0.0342∗ −0.0005 −0.0094

(0.0099) (0.01) (0.0119) (0.0152) (0.0163) (0.0205)

Log-Likelihood N AIC BIC
4196.85 700 -8257.7 -7873.52
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22th June 2007:

efforts to bailout

23th April 2010: 

Greece seeks

23th September 

1998: bailout of 

12th March 

2003:
5th May 2005: 

downgrading of

11th September 

2001: efforts to bailout 

two Bear Stearns 

hedge funds (not 

successful) 

Greece seeks 

help from the EU 

and the IMF to  

avoid bankruptcy

Long Term 

Capital 

Management 

(LTCM)

lowest level of 

DAX after 

bursting of dot!

com bubble

downgrading of 

GM and Ford 

bonds to junk 

status

2001:

terrorist attacks

on New York and 

Washington D.C.

0.6

0.8

1

0

0.2

0.4

0.6

Figure 3.3: Endogenously derived probability to be in the stress regime
This figure shows smoothed probabilities of being in the stress regime (regime 2) estimated
from the Markov regime-switching Model (3.4)-(3.8) with two lags. Additionally, events
anecdotally linked to financial stress or low liquidity are marked. Recessions, defined as
at least two consecutive quarters of negative real GDP growth in Germany (Q4 2002 – Q2
2003, and Q2 2008 – Q1 2009) are shaded.
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Figure 3.4: Shapes of liquidity premia in different regimes
This figure shows the shapes of the term structure of liquidity premia in the stress regime
(solid line) and in the non-stress regime (dashed line). The average term structure of
liquidity premia in one regime is calculated by weighting the term structure of each day
with the probability to be in that regime on that date (see Figure 3.3).
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We now discuss our main results concerning the explanatory variables in Table 3.4.

First, the large and significant values of the lagged parameters for all maturities and both

regimes show the high persistence of liquidity premia over time.

Second, liquidity supply proxied by the global availability of arbitrage capital as well as

capital inflows into the German bond market is only significant in the stress regime. More

available arbitrage capital proxied by lower noise in U.S. Treasury prices as well as capital

inflows into bonds from non-public issuers (the KfW is classified by Bundesbank as a non-

public issuer) lead to lower liquidity premia. On the contrary, more available arbitrage

capital in the market for public bonds increases the KfW-BUND spread. To illustrate the

economic significance, we look at a 10 billion Euro re-allocation of foreigners from public

to non-public bond markets. Such a re-allocation leads to a decrease of, e.g., the ten year

KfW-BUND spread of 2.3 bps. In Table 3.5, we analyze the regime-switching behavior

of the sensitivities. The null hypotheses of identical influence of liquidity supply in both

regimes (i.e., H0 : a2yj,s=1 = a2yj,s=2, a
5y
j,s=1 = a5yj,s=2, and a10yj,s=1 = a10yj,s=2 for j ∈ {1, 2, 3})

can only be rejected for capital inflow into bonds of non-public issuers and short- and

medium-term premia, but parameter estimates for all nine liquidity supply parameters

are clearly higher in the stress regime. The more important influence of liquidity supply

in stressful times is consistent with Brunnermeier and Pedersen’s (2009) result that ‘the

effect of speculator capital on market liquidity is highly nonlinear: a marginal change in

capital has a small effect when speculators are far from their constraints, but a large effect

when speculators are close to their constraints’.

The measured impact of capital inflows into the market for bonds of non-public issuers

is well comparable to the effect of ECB’s 2009 Covered Bond Purchase Programme (CBPP)

on the covered bond market. Purchases of covered bonds in 2009 and 2010 amount to 60

billion Euro and tighten the spread of covered bonds on average by 12 bps (see Beirne,

Dalitz, Ejsing, Grothe, Manganelli, Monar, Sahel, Sušec, Tapking, and Vong, 2011). This

translates to a sensitivity of 2 bps per 10 billion Euro and approximately fits our sensitivity

for medium-term liquidity premia of 2.0112 (% per trillion Euro = bps per 10 billion

Euro).34

Third, liquidity differences, proxied by the fraction of outstanding volume of the rep-

resentative KfW bond compared to its BUND counterpart, do not have any significant

influence. A similar result is also observed for the Pfandbrief market by Kempf, Korn,

34The total outstanding notional volume of bonds from non-public issuers in prices of 2005 amounts
to on average 1.7 trillion Euro during our observation period and is somewhat larger than the total
outstanding volume of covered bonds of approximately 1.1 trillion Euro.
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Table 3.5: Regime-switching behavior of economic determinants
This table shows the differences of the parameter estimates between the two regimes. The
null hypothesis H0 is that parameter estimates are identical in both regimes, i.e., the
difference is 0. The Wald chi-squared statistics W = (Rα̂ − r)′(RV̂ R′)−1(Rα̂ − r)′ are
given in square brackets, where R and r define the hypotheses for the parameter vector α.
*, ** indicate rejection of H0 at the 5% or 1% level. The observation period is May 7th,
1997 to September 29th, 2010.

Differences between regimes

Short Medium Long
T=2 yr. T=5 yr. T=10 yr.

Constant : a0,s=2 − a0,s=1 0.0517∗ 0.0608∗ 0.0054
[5.5435] [6.3438] [0.0236]

illiqt−1(T ) : b1,s=2 − b1,s=1 −0.1504 −0.219 −0.1828
[1.1564] [2.0708] [2.0653]

illiqt−2(T ) : b2,s=2 − b2,s=1 −0.04 0.0235 0.0212
[0.1139] [0.0235] [0.0308]

Noiset : a1,s=2 − a1,s=1 0.005 0.0038 0.0048
[1.5277] [1.3964] [1.6014]

ForeignPubt : a2,s=2 − a2,s=1 0.4431 0.7902 0.6574
[0.3352] [1.8265] [1.4862]

ForeignNonPubt : a3,s=2 − a3,s=1 −2.2526∗∗ −1.9658∗∗ −1.274
[6.826] [7.5632] [3.194]

V olumet(T ) : a4,s=2 − a4,s=1 0.0516 −0.1674∗ 0.0692
[0.5212] [3.9848] [0.279]

LiqDemandt : a5,s=2 − a5,s=1 0.0287∗∗ 0.0078 0.0031
[9.4873] [1.0987] [0.2247]

Creditt(T ) : a6,s=2 − a6,s=1 −0.04∗ 0.0034 −0.0017
[4.6878] [0.0275] [0.0045]
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and Uhrig-Homburg (2012). A possible explanation the authors provide is that perceived

liquidity differences do not change with each issued bond but are rather static. Another

explanation could be that the value investors attribute to liquidity increases with less

available liquid BUNDs due to the law of supply and demand (see Krishnamurthy and

Vissing-Jorgensen, 2010). If this is the case, there are two opposite effects from an increase

of the BUND volume. First, the relative liquidity of KfW bonds decreases leading to an

increase in liquidity premia. Second, the value of liquidity decreases which should decrease

liquidity premia.

Fourth, coefficients on liquidity demand suggest that investors concentrate on short-

term bonds when disengaging from illiquid securities in times of stress. The effect is

both statistically and economically significant. A one standard deviation shock of our

variable on liquidity demand leads to an impact on the two year liquidity premium of

4 bps in the stress regime. This is about 13% of the average premium in this regime.

Moreover, the regime-switching impact of liquidity demand on the short end is confirmed

by Table 3.5. In contrast, coefficients are insignificant both in normal times and for

longer maturities. These results are particularly interesting as on the one hand, they

constitute pronounced term-structure effects. On the other hand, they help to identify

flight-to-liquidity periods that coincide with stressful periods. The increased demand for

short-term and highly liquid BUNDs within these periods leads first to a strongly increased

level of the short-term KfW-BUND yield spread (see Figure 3.4). Second, amplified by

the increased wariness to bear risks within stress periods, effects stemming from liquidity

demand become more important. This result also explains the opposite behavior of the

slopes of the term structures of liquidity premia and bid-ask spreads in Figure 3.2: In

stressful times, especially long-term bid-ask spreads increase strongly (presumably due to

liquidity providers demanding larger compensations for the increased interest rate risk in

long-term bonds). On the premium side, the effect is much more pronounced for short-

term bonds with low risk due to flight to liquidity effects that drive up short-term yield

difference between liquid BUNDs and illiquid KfW bonds.

Credit risk seems to have no effect on liquidity premia. Like in Longstaff (2004) for

Refcorp bonds or in Kempf, Korn, and Uhrig-Homburg (2012) for the Pfandbrief market,

parameter estimates are mostly negative and insignificant (for all but one maturity). For

the one maturity, where credit risk is significant at the 5% level, the sign is negative. If

credit spreads had an influence on the KfW-BUND spread, we would expect the parameter

estimates to be positive. Note that our analysis does not simply imply that credit risk

and liquidity premia are unrelated. Instead, unreported results show that economy wide
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credit spreads have significant explanatory power for the probability to be in the liquidity

stress regime.

Overall, our results confirm the prediction of the theoretical literature (see, e.g., Brun-

nermeier and Pedersen, 2009) that the impact of changes in fundamentals on liquidity

premia is significantly stronger when the system is in stress. Moreover, flight-to-liquidity

effects contribute to declining term structures of liquidity premia in times of stress. Thus,

calibrating, e.g., risk management models in normal times, when the influence of funda-

mentals on liquidity premia is weak, strongly underestimates the contribution of illiquidity

to systematic risk and might systematically misjudge term structure effects.

3.4 Robustness

In this section, we perform several robustness checks. Most importantly, we use bid-

ask spreads to proxy for the bonds’ liquidity instead of our proxies for liquidity supply

and demand. Additionally, we check the robustness against our regime identification

methodology.35

Bid-ask spreads, as the price of immediate liquidity provision, are influenced by both

liquidity supply and demand. Since our objective was to separate both effects on liquidity

premia, we could not employ bid-ask spreads in Section 3.3 However, to validate our

finding that the influence of economic factors on liquidity premia is much more pronounced

in times of economic stress, we substitute our proxies for liquidity supply and demand

through quoted bid-ask spread differences (see Figure 3.1) and re-estimate Model (3.4)-

(3.8).

Table 3.6 presents the results for the shortened observation period since August 22nd,

2001 for which bid-ask spreads are available on a continuous basis. Bid-ask spread differ-

ences are significant for all maturities only in liquidity stress periods. The insignificance of

bid-ask spread differences in normal times confirms the low correlations of bid-ask spreads

and liquidity premia before the financial crisis discussed in Section 3.2.2

Next, we control for the mechanism to identify liquidity stress periods. As Boldin

(1996) argues, the regime identification in Markov regime-switching models is sometimes

35In further unreported robustness checks, we control for the level of interest rates as well as specialness
of BUNDs, look at the influence of the principal component analysis on our results, and exclude the time
after the collapse of Lehman Brothers until the end of 2008 from the estimation. In all cases, our main
results are qualitatively unchanged. The results are available from the authors upon request.
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Table 3.6: Robustness check: bid-ask spread
This table shows the results of the maximum likelihood estimation of Model (3.4)-(3.8)
with p = 2 with BidAskDifrt(T ) instead of the proxies for liquidity supply and demand.
BidAskDifrt(T ) refers to quoted relative bid-ask spread differences between KfW bonds
and BUNDs (see also Figure 3.1). White’s (1982) standard errors are given in parentheses.
*, ** indicate significance at the 5% or 1% level. The observation period is August 22nd,
2001 to September 30th, 2010.

Regime 1 (normal times) Regime 2 (stress regime)

Short Medium Long Short Medium Long
T=2 yr. T=5 yr. T=10 yr. T=2 yr. T=5 yr. T=10 yr.

mean illiq. 16.0 bps 10.4 bps 12.0 bps 33.1 bps 25.1 bps 25.8 bps
premium (T)

σ 0.022 0.0171 0.0166 0.0767 0.06 0.053
(0.0025) (0.0013) (0.0017) (0.0055) (0.004) (0.0036)

correlation ρ2y,10y1 ρ2y,5y1 ρ5y,10y1 ρ2y,10y2 ρ2y,5y2 ρ5y,10y2

parameters −0.0682 0.5958 0.1445 0.2148 0.5014 0.4358
(0.1268) (0.0793) (0.0896) (0.0685) (0.0671) (0.0589)

transition p1,1 p2,2
probabilities 0.8372 0.8535

(0.04) (0.0366)

Constant 0.0102∗∗ 0.0016 0.0112 0.0041 0.0099 0.0099
(0.0035) (0.0034) (0.0062) (0.0105) (0.0084) (0.0119)

illiqt−1(T ) 0.6923∗∗ 0.7446∗∗ 0.5949∗∗ 0.6141∗∗ 0.5565∗∗ 0.5211∗∗

(0.082) (0.0731) (0.0633) (0.0712) (0.0731) (0.0683)
illiqt−2(T ) 0.1372∗∗ 0.1109 0.2783∗∗ 0.2619∗∗ 0.2243∗∗ 0.3053∗∗

(0.0451) (0.0763) (0.0455) (0.062) (0.0684) (0.0786)
BidAskDifrt 0.13 0.0046 −0.0072 0.1965∗∗ 0.2448∗∗ 0.0825∗

(0.076) (0.0267) (0.0259) (0.0681) (0.0525) (0.0323)
Creditt(T ) 0.0059 0.015 0.0003 0.0032 −0.0056 0.0173

(0.0081) (0.0087) (0.0106) (0.0136) (0.0148) (0.0178)

Log-Likelihood N AIC BIC
2741.12 476 -5394.23 -5162.62
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vulnerable to relatively small changes in the data. To rule out such an effect in our study,

we perform our analysis (a) with a new data set with month-end liquidity premia and

explanatory variables and (b) by exogenously specifying crisis and non-crisis periods.

The monthly analysis with the new data set in Table 3.7 confirms our main results. In

the stress regime, the influence of liquidity supply proxied by the noise in U.S. Treasury

prices and the two flow variables is significant in the expected direction in six out of nine

cases. In contrast, in normal times, only three parameter-maturity combinations yield

significant results. Additionally, all but one of the estimated sensitivities are larger in the

stress regime. Although liquidity demand is now significant also for short-maturities in

normal times, the influence is about three times larger during times of economic stress.

For the exogenous crises specification, we define the LTCM crisis as the time between

June and October 1998 (see Acharya and Pedersen, 2005). The beginning of the dot-com

stress period is dated on May 10th, 2001, the day the ECB started cutting back interest

rates. As the end of the crisis, we select the end of the 2002-03 recession in Germany in

June 2003. The financial crisis starts in June 2007 when two of Bear Stearn’s hedge funds

ran into trouble and transforms into the European debt crisis which lasts up to the end of

the observation period.

The results in Table 3.8 confirm our main findings. In crisis times, less available arbi-

trage capital proxied by more noise in U.S. Treasury prices significantly increases medium-

and long-term liquidity premia. Additionally, the foreign flow variables are significant in

the expected direction in three out of six cases. Again, liquidity demand is only significant

in stress periods and for short-term maturities. In normal times, none of the explanatory

variables are significant. Although conclusions do not change when using exogenously

defined crisis dates, our approach to endogenously identify stress periods does not require

to assume that liquidity stress periods and financial crises fully coincide.

3.5 Conclusion

In this chapter, we extract the term structure of liquidity premia from the spread be-

tween two bond classes differing only in their liquidity. The availability of a data set of

homogeneous bonds spanning a large time to maturity segment over a long period of time

allows us to quantify the term structure of liquidity premia without strong assumptions

regarding the separation of credit and liquidity risk. We analyze this term structure in a

setting allowing for a different behavior during stressful and normal periods. We find that
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Table 3.7: Robustness check: monthly analysis
This table shows the results of the maximum likelihood estimation of Model (3.4-(3.8) with
p = 2. White’s (1982) standard errors are given in parentheses. *, ** indicate significance
at the 5% or 1% level. The observation period is May 31th, 1997 to September 30th, 2010.

Regime 1 (normal times) Regime 2 (stress regime)

Short Medium Long Short Medium Long
T=2 yr. T=5 yr. T=10 yr. T=2 yr. T=5 yr. T=10 yr.

mean illiq. 13.2 bps 10.2 bps 10.3 bps 41.0 bps 35.4 bps 37.8 bps
premium (T)

σ 0.0331 0.0298 0.0414 0.0725 0.0593 0.0636
(0.0031) (0.0034) (0.0044) (0.0084) (0.0048) (0.0053)

correlation ρ2y,10y1 ρ2y,5y1 ρ5y,10y1 ρ2y,10y2 ρ2y,5y2 ρ5y,10y2

parameters −0.0064 0.1121 0.0674 −0.1371 0.4163 0.6444
(0.1084) (0.1291) (0.0897) (0.2188) (0.1653) (0.0931)

transition p1,1 p2,2
probabilities 0.9614 0.9375

(0.0171) (0.0407)

Constant 0.0636∗∗ 0.0251 −0.0559 0.0771 0.1733∗∗ 0.2018∗∗

(0.0208) (0.0175) (0.0317) (0.0836) (0.0647) (0.063)
illiqt−1(T ) 0.5203∗∗ 0.3846∗∗ 0.373∗∗ 0.5199∗∗ 0.3381∗ 0.4194∗∗

(0.108) (0.1138) (0.1223) (0.1151) (0.1483) (0.1179)
illiqt−2(T ) 0.1202 0.166 0.0924 −0.3214∗∗ −0.0315 0.111

(0.125) (0.0871) (0.0721) (0.1062) (0.1214) (0.1077)
Noiset 0.0019 0.0178∗∗ 0.0134∗∗ 0.0103 0.0139∗∗ 0.0213∗

(0.0046) (0.0047) (0.0046) (0.0095) (0.0052) (0.009)
ForeignPubt 0.3677 0.7525∗ 0.7661 3.5481∗∗ 1.7063 1.5629

(0.3814) (0.3378) (0.4954) (1.3459) (1.0037) (1.2025)
ForeignNonPubt −0.158 −0.3314 0.1837 −3.2908 −2.878∗ −3.2047∗∗

(0.5604) (0.3728) (1.0312) (1.7255) (1.4405) (1.1282)
V olumet(T ) 0.0423 0.0484 0.2581 0.4814 −0.3251 −0.2809∗

(0.0572) (0.0677) (0.1326) (0.3362) (0.3588) (0.1392)
LiqDemandt 0.0237∗∗ 0.0133 0.0067 0.063∗ 0.011 −0.0074

(0.0077) (0.0071) (0.0066) (0.0278) (0.0125) (0.0232)
Creditt(T ) −0.0394 −0.0585∗ 0.0168 0.0441 0.0518 −0.0427

(0.0265) (0.0281) (0.0317) (0.0418) (0.0495) (0.0592)

Log-Likelihood N AIC BIC
847.46 161 -1558.91 -1274.67
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Table 3.8: Robustness check: exogenous crises specification
This table shows the results of the estimation of Model (3.4) - (3.6) with exogenously
specified stress periods (LTCM-crisis: June, 1st to October 31st, 1998; burst of dot-com
bubble: May 10th, 2001 to June 30th, 2003; financial and subsequent European debt crisis:
June 1st, 2007 to September 29th, 2010). Newey and West’s (1987) standard errors with
five lags are given in parentheses. *, ** indicate significance at the 5% or 1% level. The
total observation period is May 7th, 1997 to September 29th, 2010.

Non-Crisis Crisis

Short Medium Long Short Medium Long
T=2 yr. T=5 yr. T=10 yr. T=2 yr. T=5 yr. T=10 yr.

mean illiq. 14.1 bps 12.0 bps 13.5 bps 32.6 bps 25.7 bps 26.0 bps
premium(T)

Constant 0.049∗∗ 0.0042 −0.0045 0.0567∗ 0.0311 −0.021
(0.0127) (0.0054) (0.0123) (0.0235) (0.017) (0.0209)

illiqt−1(T ) 0.3952∗∗ 0.756∗∗ 0.641∗∗ 0.5886∗∗ 0.6702∗∗ 0.6055∗∗

(0.0646) (0.0496) (0.0657) (0.0682) (0.0637) (0.0668)
illiqt−2(T ) 0.2637∗∗ 0.1694∗∗ 0.3197∗∗ 0.2225∗∗ 0.1972∗∗ 0.2115∗∗

(0.0511) (0.0513) (0.0618) (0.0592) (0.0649) (0.0663)
Noiset 0.0015 0.0021 0.0032 0.0039 0.0039∗ 0.006∗

(0.0023) (0.0019) (0.0022) (0.0029) (0.0017) (0.0024)
ForeignPubt −0.0282 0.1365 0.2895 0.2765 0.8315∗ 0.9995∗∗

(0.2262) (0.1556) (0.2153) (0.4874) (0.3915) (0.3363)
ForeignNonPubt −0.1056 −0.2627 −0.2689 −1.0905 −0.8993 −0.9107∗

(0.246) (0.1633) (0.2578) (0.6211) (0.4778) (0.3753)
V olumet(T ) −0.0368 −0.0065 −0.0077 −0.0963 −0.0452 0.1847∗∗

(0.0276) (0.0361) (0.0521) (0.0799) (0.0695) (0.0691)
LiqDemandt 0.0083 0.0024 −0.0019 0.0207∗∗ 0.007 0.0037

(0.0046) (0.0042) (0.004) (0.0055) (0.0037) (0.0031)
Creditt(T ) 0.0164 0.0061 0.0047 −0.0056 −0.0114 −0.0167

(0.0115) (0.012) (0.012) (0.0151) (0.0124) (0.0174)

adj. R2 0.5393 0.8978 0.9267 0.9465 0.9332 0.9347
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the term structure of liquidity premia varies over time and is strongly dependent on the

general financial and economic situation. The availability of arbitrage capital influences all

maturities, whereas our measure for liquidity demand only impacts short-term maturities.

The regression coefficients display a significant impact only in the stress regime.

Our findings imply that systematic liquidity risk is prone to be underestimated. Through

its regime-switching behavior, the illiquidity discount increases sharply when the general

state of the economy is bad. Additionally, the sensitivity of liquidity premia to funda-

mentals increases in stressful periods. Ignoring one of these two channels systematically

underestimates liquidity risk. From the issuer’s perspective, our results show that in times

of stress, it is even more important to optimize the liquidity of an issue. This is particu-

larly true in the light of systematically different term structure effects during normal times

and liquidity stress periods.
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Chapter 4

A Heterogeneous Agents Equilibrium

Model for the Term Structures of

Liquidity Premia and Trading

Volume

4.1 Introduction

After exploring the term structure of liquidity premia empirically in crisis and non-crisis

times in the previous chapter, we now derive an equilibrium model for this term structure

as well as for trading volumes. The model provides a new perspective on our previous

results and at the same time helps to unify the different empirical outcomes regarding the

shape of the term structure of liquidity premia of other papers. Our unified framework

also explains the empirically observed hump-shaped term structure of trading volume and

the well-documented aging effect (see, e.g., Alexander, Edwards, and Ferri, 2000; Edwards,

Harris, and Piwowar, 2007): other things equal, old bonds trade less frequently than newly

issued bonds.

In our model, agents with heterogeneous investment horizons trade bonds with a con-

tinuum of different maturities in a market with two simple frictions: transaction costs and

shocks to investors’ time preference parameter. If a preference shock occurs, the investor

faces the trade-off between the cost (in terms of utility) of awaiting the asset’s maturity,

which is higher for long-term bonds, and the bid-ask spread charged by an exogenous
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market maker or dealer. Prior to the preference shock, the investor determines her opti-

mal portfolio allocation by comparing the higher return earned when holding a long-term

bond until the maturity date to the higher expected costs of selling this asset in case of

a potential preference shock. Due to these investor-specific endogenous decisions on the

portfolio composition and bonds’ decreasing time to maturity, we obtain spill-overs from

the short to the long end of the term structure. This agrees with the empirical evidence on

liquidity transmission between different maturity segments by Goyenko, Subrahmanyam,

and Ukhov (2011).

Our model offers four key testable predictions. First, assets with very short maturities

are traded less frequently, as are assets with long maturities. The first effect arises because

investors prefer the disutility from waiting to paying the bid-ask spread when maturity

is short. As only investors with low preference shock probabilities hold assets with long

maturities, these assets are rarely traded as well. Second, since these low preference shock

investors still hold a proportion of aged (formerly long-term, but now short-term) bonds,

our model endogenously explains the well-documented aging effect. We believe that ours

is the first equilibrium model to explain the impact of aging on trading volume via a simple

transaction cost friction. Third, liquidity premia in bond yields computed from ask prices

are negligible for short maturities, and increase for longer maturities. The increasing term

structure arises, even for constant bid-ask spreads, because the disutility from waiting

increases with maturity. For longer maturities, the term structure flattens out as investors

with low probabilities of preference shocks dominate. Fourth, liquidity premia from bid

yields depend on the term structure of bid-ask spreads. If transaction costs do not depend

on the bond’s maturity, short-term liquidity premia are large, then decrease and flatten

out at longer maturities. If transaction costs are increasing in maturity, the term structure

takes on a U-shape.

We verify these key model predictions empirically using transaction data for highly

rated U.S. corporate bonds from the TRACE database. The results of multiple regressions

confirm the intuition from our equilibrium model. Transaction volume is hump-shaped and

securities are traded less frequently as they age. Liquidity premia computed from ask prices

are monotonously increasing with a decreasing slope. Liquidity premia computed from bid

prices are U-shaped with significant liquidity premia even for very short maturities.

Our model also sheds new light on our previous results on the average shape of the

term structure of liquidity premia in crisis and non-crisis times. Due to the availability

of data and to enhance comparisons with other empirical studies, we used closing prices
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to calculate liquidity premia in Chapter 3. As closing prices are a mixture of bid and ask

prices, the on average U-shaped term structure of liquidity premia of KfW bonds is in line

with the model predictions. Additionally, the more inverse shape of the term structure in

crisis times can be attributed to an increased demand for liquidity within the model as

discussed in Section 4.3.2.

Our study adds to several strands of literature. Ericsson and Renault (2006) model

the liquidity shock for assets with different maturities as the jump of a Poisson process

that forces investors to sell their entire portfolio to the market maker, who charges a pro-

portional spread. Liquidity premia are downward-sloping because only current illiquidity

affects asset prices, and because investors have the option to sell assets early to the mar-

ket maker at favorable conditions. Kempf, Korn, and Uhrig-Homburg (2012) extend this

analysis by modeling the intensity of the Poisson process as a mean-reverting process. In

this setting, liquidity premia depend on the difference between the average and the current

probability of a liquidity shock, and can exhibit a number of different shapes. In contrast

to these papers, we allow investors to trade-off the transaction costs when selling immedi-

ately versus the disutility from awaiting the bond’s maturity. By endogenizing investors’

trading decisions in bonds of different maturities, our model provides an equilibrium-based

explanation for spill-overs of liquidity shocks between different ends of the maturity range.

Feldhütter (2012) is most closely related to our study, since he considers an investor’s

optimal decision to a holding cost shock. Search costs allow market makers to charge a

spread, which results in a difference between the asset’s fundamental value and its bid

price. However, Feldhütter (2012) abstracts from aging as in his model, bonds mature

randomly with a rate of 1
T
. Additionally, his model cannot accommodate any spill-over

effects between maturities because bonds of different maturities T are not considered

simultaneously.

Besides supporting the equilibrium model predictions, our results provide an explana-

tion for the variation in the term structures found in previous empirical studies. Studies

that document a decreasing term structure (Amihud and Mendelson, 1991; Ericsson and

Renault, 2006) or a U-shaped term structure (Longstaff, 2004) use mid quotes or ask

quotes net of a spread component such as brokerage costs. In contrast, Dick-Nielsen,

Feldhütter, and Lando (2012) find an increasing term structure for the U.S. corporate

bond market computed from average quarter-end prices. However, average trade prices in

this market are dominated by buy transactions as the numbers of observations in our Ta-

ble 4.5 document. Hump-shaped (Koziol and Sauerbier, 2007) or variable term structures
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(Kempf, Korn, and Uhrig-Homburg, 2012; Feldhütter, 2012) arise from a varying mixture

of bid and ask prices. Hence, consistent with our theoretical predictions, the shape of

the liquidity term structure is crucially driven by whether most transactions occur at the

dealer’s bid or ask price.

Last, our study contributes to the growing literature on asset pricing in heterogeneous

agents models. Similar to Beber, Driessen, and Tuijp (2012), we study optimal portfolio

choice of heterogeneous investors faced with exogenous transaction costs in a stationary

equilibrium setting. Duffie, Gârleanu, and Pedersen (2005), Vayanos and Wang (2007),

and Weill (2008) endogenize transactions costs through search costs and bargaining power.

None of these studies, however, can address the relation between maturity and liquidity

as they do not simultaneously consider assets with different finite maturities.

The remainder of the chapter is structured as follows. We introduce our model setup

and derive the equilibrium in Section 4.2. In Section 4.3, we display the resulting turnover

and liquidity term structure. Section 4.4 describes the data used for the empirical tests of

our model predictions, and discusses the results. We check the robustness of our empirical

results in Section 4.5. Section 4.6 summarizes and concludes.

4.2 Model Setup

4.2.1 Assets and Investors

We consider a continuous-time model with an infinite horizon and cash as the numéraire.

There are two types of assets: the money-market account, which is in infinite supply and

which pays a constant non-negative return r, and a continuum of illiquid zero-coupon

bonds with time to maturity between 0 and Tmax. Bonds are perfectly divisible and pay

one unit of the numéraire at maturity. Each bond is characterized by its initial maturity

at issuance Tinit ≤ Tmax, and bonds of each initial maturity are issued with rate a. Thus,

in steady state, for each Tinit, there are in total a · Tinit bonds outstanding, and equally

distributed with respect to their remaining time to maturity T in (0, Tinit]. Hence, total

outstanding volume of all bonds amounts to
∫ Tmax

0
a ·Tinit dTinit =

1
2
· a · (Tmax)

2. Note that

with the assumption of a given issuance rate a, we take maturity dispersion as given. This

assumption is supported for example by firms managing rollover or funding liquidity risk

by spreading out the maturity of their debt (Choi, Hackbarth, and Zechner, 2013; Norden,
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Roosenboom, and Wang, 2013).36

There are three types of agents, one unit measure of short-horizon investors (type S),

one unit measure of long-horizon investors (type L), and dealers who act as market makers.

Dealers continuously quote competitive bid and ask prices at which they stand ready

to trade. As in Amihud and Mendelson (1986), dealers are compensated for providing

liquidity by a bid-ask spread s(T ) dependent on the (remaining) time to maturity T .37

Hence, dealers quote an ask price P ask(T ) =P (T ) and a bid price P bid(T ) = (1− s (T )) ·
P (T ) for a bond with remaining maturity T . Investors are risk-neutral, i.e., they discount

all cash flows with the risk-free rate r, and each investor is infinitesimally small. Type-i

investors have aggregate wealth Wi and utility from consumption Ui (c) , i ∈ {S, L}. An

investor can consume cash she either receives from the money-market account or as the

proceeds from sold or matured bonds.

4.2.2 The Liquidity Shock

The liquidity shock arises in our model as follows. Each investor experiences a single

preference shock with Poisson rate λi, i ∈ {S, L}, that increases her time preference

rate from r to r + b > r. We can economically interpret this event as a funding shock

that leads to an incentive for the investor to reduce her positions (see Brunnermeier and

Pedersen, 2009).38 Hence, total utility from consumption for an infinitesimally small

investor of group i, given that a liquidity shock occurs at time T̃i, is given by Ui (c) =
T̃i∫
0

e−r·tct dt+
∞∫
T̃i

e−r·T̃i−(r+b)·(t−T̃i)ct dt, i.e., consumption discounted at the rate r prior to the

shock and at r + b after the shock. Since a short-horizon investor expects to experience

an earlier preference shock than a long-horizon investor, we define that λS > λL. As a

consequence, marginal utility of holding an illiquid bond is larger for long-horizon investors

than for short-horizon investors for bonds of all maturities.

At the preference shock, the investor decides for each bond whether to sell it to the

36In contrast, Greenwood, Hanson, and Stein (2010) endogenize maturity structure with the argument
that firms absorb supply shocks induced by changes in sovereign debt structure by varying the maturity
of the bonds they issue both cross-sectionally and over time. He and Xiong (2012) take liquidity as
exogenously given, and endogenize the choice of debt maturity and a firm’s default decision. He and
Milbradt (2012) endogenize liquidity, but only consider homogeneous investors.

37As bid-ask spreads s(T ) only depend on the remaining maturity T , bonds with the same time to
maturity (but different initial maturities Tinit) are used interchangeably by investors and dealers.

38Feldhütter (2012) or Duffie, Gârleanu, and Pedersen (2005) obtain a similar effect through an in-
creased holding cost for the bond.
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market maker at the bid price and consume the proceeds, or to hold the bond despite the

increased time preference rate. It is intuitive that bonds with shorter maturity lead to

less disutility from waiting, as disutility approaches zero for T → 0. Therefore, investors

will never sell bonds with very short maturities prematurely. We denote the maturity for

which an investor is indifferent between selling the bond (left-hand side of Equation (4.1))

and holding it until maturity (right-hand side) by τ . τ therefore satisfies

P (τ) · (1− s(τ))) = e−(r+b)·τ (4.1)

and is identical for both investors.

4.2.3 The Investors’ Optimization Problem

We consider a steady-state equilibrium where type-i investors experience preference shocks

with a rate λi. Such a shock leads to an incentive for an investor to unwind her portfolio

and exit the market. Investors having experienced a preference shock are replaced by

new investors such that aggregate wealth from each investor group Wi remains constant.39

As neither aggregate wealth nor the supply of bonds change over time, prices of bonds

for a given time to maturity are constant over time. Note, however, that for aggregate

wealth to remain constant, the wealth of any investor group cannot grow with a higher

rate than members of the respective investor group leave the market. It turns out that in

equilibrium, r + b is an absolute upper bound for the growth rate of wealth. To ensure

that constant aggregate wealth exists, we therefore assume r + b < λL < λS.

From the investors’ risk neutrality and the corresponding additive structure of the

expected utility function, it directly follows that investors either want to invest nothing

or the maximum amount possible in a particular maturity (see, also, e.g., Feldhütter,

2012). Therefore, an investor who initially chooses to invest in a bond of some maturity

T , again invests in a bond with this maturity if her old bond matures – or, in other

words, the investor’s willingness to invest in a particular maturity does not depend on

her wealth or her portfolio holdings in other maturities. Hence, each investor chooses an

initially optimal allocation strategy when she first enters the market and has no incentive

39As investors are infinitesimally small, the distribution of the investors’ age remains constant over
time in steady state. An investor’s age determines how long she was able to collect liquidity premia
and risk-free returns and therefore her individual wealth gains. Hence, as all newly arriving investors
have an identical capital endowment, the constant distribution of investors’ age directly leads to constant
aggregate wealth.
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Figure 4.1: Investor’s decision problem
The figure presents the trade-off within the investor’s decision problem and her optimal
reaction to a preference shock for a bond with given maturity T . At time 0, the investor
buys the bond at a price P (T ). If a preference shock occurs between 0 and T − τ , the
disutility from awaiting the bond’s maturity is larger than the disutility from selling the
bond. Hence, the investor sells the bond prior to maturity. If a preference shock hits the
investor between T −τ and T , disutility from awaiting the bond’s maturity is smaller than
the disutility from selling the bond. Hence, the investor holds the bond until maturity and
realizes the bond’s notional value. If the investor does not experience a preference shock
until time T , she again invests into a bond with maturity T . Since the price of the bond
P (T ) is smaller than the notional value 1, she realizes a wealth gain 1 − P (T ) and her
individual bond position grows over time. We denote the number of investment rounds
during which an investor (re-)invests in bonds of maturity T by j.

to change her portfolio prior to a preference shock. For a given bond maturity T , we

display the investor’s decision problem in Figure 4.1.

Figure 4.1 also incorporates two implicit assumptions that we use in deriving the

investor’s optimization problem. First, we assume that in the case of a preference shock, it

is either optimal to immediately sell the bond or hold it until maturity. Second, we assume

that it is never optimal to sell bonds when no preference shock occurred. In Section 4.2.4

and in Appendix C.4, we discuss these assumptions in more detail and derive general

conditions, under which investors have no incentive to deviate from them.

Since neither prices nor aggregate wealth changes over time, it is sufficient to consider

the decision problem at time t = 0, where each type-i investor maximizes her expected

utility E[Ui(c)] from consumption by choosing the amount of money Xi invested into

the money market account (Xi (0)) and into bonds with maturity T between 0 and Tmax
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(Xi(T )). Short sales are not allowed, such that Xi(T ) ≥ 0, ∀T ∈ [0, Tmax]. Hence, a type-i

investor solves the following optimization problem:

max
Xi

E

{∫ Tmax

0

Xi(T ) ·
∞∑

j=1

1

P (T )j
· (1− s(T · j − T̃i))

·P (T · j − T̃i) · e−r·T̃i · 1{T ·(j−1)<T̃i<T ·j−min(τ,T )} dT

+

∫ Tmax

0

Xi(T ) ·
∞∑

j=1

1

P (T )j
· e−r·T̃i−(r+b)·(T ·j−T̃i) · 1{T ·j−min(τ,T )≤T̃i≤T ·j} dT

+Xi(0)} . (4.2)

The first summand in Expression (4.2) denotes utility of consumption from bonds which

the investor sells to the dealer at the bid price (1− s(T · j− T̃i)) ·P (T · j− T̃i) immediately

after a preference shock. The amount invested in bonds Xi(T ) · 1
P (T )j

grows for as many

investment rounds j as the investor (re-)invests in the bond until the preference shock and

thereby in each round collects the price difference between the notional value of the bond

and the price of the bond P (T ) (see Figure 4.1). The second summand gives the utility

of consumption from bonds which the investor holds after the preference shock until their

maturity date. The third summand measures the utility from cash invested in the money

market account.

The investor’s budget constraint is given by Wi =
Tmax∫
0

Xi(T ) dT +Xi(0). Simplifying

Expression (4.2), taking expectations, and replacing Xi (0) via the budget constraint yields

the following optimization problem:

max
Xi

{∫ Tmax

0

Xi(T ) ·
λi · eλi·T

P (T ) · er·T · eλi·T − 1
·
∫ T

min(τ,T )

P (x) · er·x · (1− s(x)) · e−λi·(T−x) dx dT

+

∫ Tmax

0

Xi(T ) ·
λi · (1− e(λi−b)·min(τ,T ))

(1− P (T ) · er·T · eλi·T ) · (λi − b)
dT

+Wi −
∫ Tmax

0

Xi(T ) dT

}
. (4.3)

Taking partial derivatives with respect to each Xi(T ) yields the marginal utility of holding
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bonds with maturity T for a type-i investor:

∂E[Ui(c)]

∂Xi(T )
=

λi · eλi·T

P (T ) · er·T · eλi·T − 1
·
∫ T

min(τ,T )

P (x) · er·x · (1− s(x)) · e−λi·(T−x) dx

+
λi · (1− e(λi−b)·min(τ,T ))

(1− P (T ) · er·T · eλi·T ) · (λi − b)
− 1=: ∆i(T ). (4.4)

The fact that marginal utility does not depend on Xi simplifies our analysis of the equilib-

rium allocation. As investors are indifferent between all bonds they invest in, the marginal

utility of these bonds must be equal. Otherwise, given prices cannot be equilibrium prices.

As marginal utility does not depend on Xi, it is sufficient to consider whether an investor

buys a bond at all. Given that the investor buys the bond, she is indifferent on how she

distributes her wealth across all bonds she invests in.

Equation (4.4) also shows that the time preference rate r which applies prior to the

liquidity shock does not affect the investor’s optimization problem. To see why, we rewrite

bond prices as P (T ) = e−r·T · Q(T ). Here, Q(T ) is the discount of an illiquid bond

compared to the price of a perfectly liquid bond e−r·T . Substituting Q(T ) = er·T · P (T )

into Equations (4.1) and (4.4) would lead to an identical optimization problem independent

of r. To simplify notation, we therefore set r = 0 in the following analysis.

4.2.4 Equilibrium Mechanism

Our model can be viewed as a continuous modification of a linear exchange model (see

Gale, 1960) for which unique solutions exist. The equilibrium mechanism is similar to

the ones in Amihud and Mendelson (1986) and Beber, Driessen, and Tuijp (2012). We

first derive prices for a particular equilibrium allocation, then analyze whether market

clearing holds for these prices, show that no investor has an incentive to deviate from the

allocation for the given bond prices, and last demonstrate that the implicit assumptions

used in formulating the investor’s optimizations problem hold.

Note that marginal utility for holding bonds is larger for long-horizon investors than for

short-horizon investors, whereas the marginal utility of the money-market account is equal

for both. Hence, we are able to exclude the allocation that short-horizon investors buy

bonds and at the same time, long-horizon investors invest in the money-market account.

We therefore focus on the most general remaining allocation: both short- and long-horizon

investors hold bonds, and short-horizon investors additionally invest in the money-market
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account.40

When both short- and long-horizon investors hold bonds and short-horizon investors

additionally invest in the money-market account, we show in Appendix C.2 that for the

derived equilibrium prices there exists a maturity limit Tlim such that long-horizon investors

buy only bonds with maturity between Tlim and Tmax, and short-horizon investors buy only

bonds with maturity between 0 and Tlim. This case corresponds to a clientele effect. The

equilibrium conditions for short-horizon (S) and long-horizon (L) investors are then given

by

∆S(T ) = 0 for all T ∈ (0, Tlim], (4.5)

∆L(T ) = ∆L(Tlim) for all T ∈ (Tlim, Tmax]. (4.6)

Short-horizon investors are indifferent between holding bonds with a maturity up until

Tlim and the money-market account, long-horizon investors are indifferent between buying

bonds with maturities between Tlim and Tmax. For given limiting maturities τ and Tlim,

the conditions in Equations (4.5) and (4.6) lead to closed-form solutions for P (T ). We

summarize these results in Proposition 1, which we prove in Appendices C.1 and C.2.

Proposition 1. (Equilibrium prices and clientele effect)

For constant or monotonously increasing bid-ask spreads s(T ) with 0 < s(T ) < 1, prices

of illiquid bonds P (T ) are given in closed form

P (T ) =





b·e−λS ·T−λS ·e
−b·T

b−λS
, if T ≤ min(τ, Tlim)

e−
∫ T

τ
λS ·s(x) dx · P (τ), if τ < T ≤ Tlim

e
−

∫ T

Tlim

(∆L(Tlim)+s(x))·λL
1+∆L(Tlim)

dx · P (Tlim), if τ < Tlim < T

e−T ·λL ·
(
1− λL·(1−eT ·(λL−b))

(1+∆L(Tlim))·(λL−b)

)
, if Tlim < T ≤ τ

e
−

∫ T

τ

(∆L(Tlim)+s(x))·λL
1+∆L(Tlim)

dx · P (τ), if Tlim ≤ τ < T

(4.7)

In equilibrium, there arises a clientele effect that leads to long-horizon investors investing

only in bonds with T > Tlim and short-horizon investors investing in short-term bonds with

T ≤ Tlim.

40The case where short-horizon investors only invest in the money-market account and long-horizon
investors invest in bonds and the money-market account is discussed in Footnote 41. We do not consider
the degenerate allocations where the wealth of long-horizon investors or both investor groups exactly
equals total bond supply. These cases are only valid for rather narrow combinations of total wealth
and bond supply. Additionally, prices would strongly depend on total wealth which is hard to quantify
empirically.
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Both maturity limits τ and Tlim in Proposition (1) themselves depend on bond prices

(because τ solves Equation (4.1), and because the wealth of long-horizon investors must

be sufficient to buy all bonds with maturities larger than Tlim). Hence, we use an iterative

algorithm to simultaneously derive equilibrium prices P (T ) and critical maturities τ and

Tlim for a given parameter set (λL, λS, WL, WS, a, b, Tmax) and bid-ask spread function

s(T ). From initial values of τ and Tlim, we use Proposition 1 to derive bond prices P (T ).

We then use Equation (4.1) to compute a new τ . To determine a new Tlim, we use a market

clearing argument for long-horizon investors that we formally derive in Appendix C.3.

Given the derived equilibrium prices, we analyze whether market clearing holds and

check whether the allocation of bonds is as assumed. Both requirements are satisfied if

aggregate wealth of both investor types exceeds total bond supply (left inequality), but

on the other hand, total wealth of long-horizon investors alone does not suffice to buy all

bonds (right inequality):

WS +WL >

Tmax∫

0

P (T ) ·
Tmax∫

T

a dTinit dT > WL. (4.8)

The right inequality of (4.8) is automatically satisfied if the condition to determine Tlim

(see Appendix C.3) yields a Tlim ∈ (0, Tmax). By inserting the closed form solutions for

P (T ) from Proposition 1 for a given parameter set, it is easy to verify the left inequality

of (4.8).41

Additionally, we analyze whether the two implicit assumptions used in formulating the

investor’s optimization problem hold, i.e., we check that for T > τ , it is always optimal

to immediately sell the bond if an investor experiences a preference shock and second,

that no investor has an incentive to sell bonds prematurely without having experienced

a preference shock. We formalize these assumptions in Appendix C.4 and show that for

constant bid-ask spreads s(T ) = s, they are always satisfied. For an arbitrary bid-ask

spread function s(T ), we show that the first assumption always holds if bid-ask spreads

do not ‘grow too strongly’ with maturity, since investors might otherwise postpone selling

the bond until the bid-ask spread has decreased sufficiently (for a formal condition, see

Appendix C.4). For arbitrary bid-ask spreads s(T ), the condition in Appendix C.4 for the

second assumption has to be verified by plugging in prices P (T ) from Proposition 1.

41If the long-horizon investors’ wealth alone is sufficient to buy all bonds, prices are as in Proposition 1

with Tlim = 0. The market clearing condition is then given as WL >
Tmax∫
0

P (T ) ·
Tmax∫
T

a dTinit dT . However,

this case is not very interesting as short-horizon investors do not play a role.
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Summarizing the results of this section, we have derived the equilibrium prices for

the allocation where the wealth of both investor types is required to absorb total bond

supply. An endogenous clientele effect arises that causes long-horizon investors to invest

exclusively in long-term bonds, whereas short-horizon investors prefer short-term bonds.

This result holds even if bid-ask spreads are identical for all bonds and is thus a more

general case of the clientele effect in Amihud and Mendelson (1986). In analogy with their

paper, short-term bonds are more “liquid” since they offer the opportunity to liquidate

a portfolio without paying transaction costs more quickly. In contrast, such a result is

not obtained if liquidity shocks are modeled as, e.g., in Ericsson and Renault (2006). In

their paper, when investors experience a liquidity shock, they are forced to sell a bond

immediately. Hence, in a continuous time setting, a liquidity shock and the maturity of a

bond never coincide and there is no advantage from investing in short-term bonds.

4.3 Trading Volume and Liquidity Term Structure

4.3.1 Trading Volume

We first present the predictions of our model regarding the relations between trading

volume, maturity, and age. These relations crucially depend on three intuitive effects.

First, bonds of short maturities are not sold prematurely, since the disutility from awaiting

maturity is low. Second, the clientele effect (short-horizon investors with strong trading

needs only hold short-term bonds) translates into lower trading volumes for bonds with

longer maturities. The first and second effect lead to a hump-shaped relation between

maturity and trading volume. Third, an aged formerly long-term but now short-term

bond is still partially locked up in the portfolios of long-horizon investors. This leads

to a lower trading volume of this bond compared to a young short-term bond. We are

not aware of any other model that is both able to endogenously derive relations between

maturity, age, and trading volume and predict term structures of liquidity premia. The

predictions regarding trading volume are summarized in the following proposition, which

we prove in Appendix C.5. We focus on seller initiated turnover as a proxy for trading

volume for two reasons. First, total trading volume equals seller-initiated trading volume

plus trading volume from issuing activities in the primary market, which is exogenous in

our setting. Second, we look at turnover, i.e., trading volume in percent of the outstanding

volume for each maturity since the outstanding volume of short-term bonds exceeds that

of long-term bonds due to the latter’s aging.
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Proposition 2. (Trading volume)

Consider the case that τ < Tlim.

1. Seller initiated turnover is hump-shaped in the time to maturity T , i.e., it is zero

for T < τ and equals λL for T > Tlim. For T with τ < T < Tlim, seller initiated

turnover exceeds λL.

2. For two bonds 1 and 2 that both have a remaining maturity T with τ < T < Tlim, but

a different initial maturity Tinit,1 < Tlim and Tinit,2 > Tlim, seller initiated turnover is

higher for the younger bond 1 compared to the older bond 2.

In the (less interesting) case that Tlim ≤ τ , short-horizon investors never sell bonds

prematurely, and seller-initiated turnover is determined by long-horizon investors only.

Hence, seller-initiated turnover is zero for T < τ , and equals λL for T > τ . Then, no aging

effect arises.

We illustrate the relation between maturity and trading volume with the help of a

baseline parameter specification in Figure 4.2. In this specification, bid-ask spreads are

0.3% for all maturities T , short-horizon investors experience preference shocks with a

rate of λS = 0.6, i.e., they experience on average one preference shock every 20 months.

Long-horizon investors experience half as many shocks compared to short-horizon investors

(λL = 0.3).42 b equals 2%, i.e., if a shock arises, investors’ time preference rate increases

by 2% which can be thought of as the additional borrowing cost in excess to the risk-free

rate. In Figure 4.2, the solid line presents seller initiated turnover aggregated over all

bonds, i.e., volume from trades triggered by investors who sell their bonds prematurely,

divided by the total outstanding volume of all bonds with the respective maturity:

Turnover(T ) =

1{T>τ} ·
Tmax∫
T

a ·∑i=S,L Yi (T, Tinit, Tlim) · λi dTinit

Tmax∫
T

a dTinit

, (4.9)

where in the numerator and the denominator, we integrate over all bonds with initial ma-

turity Tinit and remaining maturity T that are held by both investor types. Yi(T, Tinit, Tlim)

denotes the fraction of bonds with remaining maturity T and initial maturity Tinit held

in the portfolios of type-i investors (where YS(T, Tinit, Tlim) = 1 − YL(T, Tinit, Tlim) and

42Our parameter values are well comparable to Feldhütter (2012) who estimates for the U.S. corporate
bond market that investors experience a preference shock once every three years.

85



Chapter 4. Equilibrium Model for Liquidity Premia and Trading Volume

YL(T, Tinit, Tlim) is formally defined in Equation (C.31) in Appendix C.3). This fraction

is multiplied with the rate at which preference shocks arrive. The denominator gives the

total volume of all bonds with remaining maturity T and initial maturity Tinit between T

and Tmax. The entire fraction is multiplied by 1{T>τ}, since investors who experience a

preference shock only sell bonds with maturity T > τ .

The dependence of trading volume on the distribution of bonds over the portfolios

of short- and long-horizon investors leads to the endogenous aging effect (second part of

Proposition 2) which we illustrate in Figure 4.2. Bonds with initial maturity Tinit < Tlim

(dotted line in Figure 4.2) are only held by short-horizon investors. These investors sell

the bonds when experiencing a preference shock if the remaining maturity T is larger than

τ . This leads to a turnover of these bonds which equals λS for T > τ and drops to zero

for T < τ .

The same intuition applies for long-horizon investors and bonds with initial maturity

Tinit > Tlim (dashed line in Figure 4.2) when these bonds have a remaining maturity

T > Tlim. If they reach a remaining time to maturity T below Tlim, both long- and short-

horizon investors sell the bonds if they experience a preference shock (for T > τ), but only

short-horizon investors purchase the bonds. Hence, when bonds reach a remaining time to

maturity below Tlim, they gradually move into the portfolios of short-horizon investors who

suffer preference shocks with a higher rate. Therefore, the turnover increases for decreasing

maturity until at τ , it drops again to zero. As a direct consequence, a bond with remaining

maturity T < Tlim has a lower turnover if its initial maturity was larger than Tlim (the

bond is older), compared to a younger bond with initial maturity Tinit < Tlim.

The solid line in Figure 4.2 shows turnover for all bonds. It can be viewed as a weighted

average of the other two lines, where the weights equal the proportion of bonds of remaining

maturity T that have an initial maturity below or above Tlim. Our model predictions are

consistent with the aging effect discussed in Warga (1992) and empirically documented,

e.g., in Fontaine and Garcia (2012) for U.S. Treasuries and Hotchkiss, Warga, and Jostova

(2002) for corporate bonds.

4.3.2 The Term Structure of Liquidity Premia

To demonstrate the effect of illiquidity on the term structure of interest rates, we depict

liquidity premia computed from both ask prices P ask(T ) = P (T ) and bid prices P bid(T ) =

(1− s(T )) ·P (T ). Liquidity premia are then defined as the bond yield minus the risk free
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Figure 4.2: Seller initiated turnover – hump-shaped trading volume and aging
effect
The figure presents seller initiated turnover for the baseline case where the rate at which
preference shocks occur λ equals 0.6 for short-horizon investors and 0.3 for long-horizon
investors, the time preference rate increases from 0 to b = 0.02 if a preference shock
occurs, the bid-ask spread s equals 0.003, the maximum bond maturity Tmax equals 10
years, both investor types have the same aggregate wealth W of 1, and for each initial
maturity, bonds are issued with a rate of a = 0.025, leading to a total bond supply of
1.25. In the resulting equilibrium allocation, short-horizon investors invest in bonds with
maturities up to Tlim = 2.68 years, and only bonds with a maturity higher than τ = 0.16
years are sold if a preference shock arises. The dotted line presents turnover of bonds
with initial maturity Tinit < Tlim, the dashed line depicts turnover of bonds with initial
maturity Tinit > Tlim, and the solid line aggregates turnover over all bonds.
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rate r, i.e.,

Illiqask(T ) = − log
(
P ask(T )

)

T
− r= − log (P (T ))

T
− r,

Illiqbid(T ) = − log
(
P bid(T )

)

T
− r= − log (1− s(T ))

T
− log (P (T ))

T
− r. (4.10)

In the following, we again set r = 0 for ease of exposition. The formulas for liquidity premia

can be interpreted as distributing the “liquidity discount” over the time to maturity T .

Bid premia are increased in addition by bid-ask spreads s(T ), which are distributed over T ,

as s(T ) ≈ − log (1− s(T )) for small s(T ). We summarize our model predictions regarding

the term structure of liquidity premia in Proposition 3, which we prove in Appendix C.5.

Proposition 3. (Term structure of liquidity premia)

1. The term structure of liquidity premia from ask prices Illiqask(T ) is monotonously

increasing in time to maturity T for all T and goes to zero for T → 0. The term

structure flattens at Tlim, i.e.,

lim
T↑Tlim

(
Illiqask(T )

)′
> lim

T↓Tlim

(
Illiqask(T )

)′
. (4.11)

2. The term structure of liquidity premia from bid prices Illiqbid(T ) is decreasing in T

at the short end.

The predictions in Proposition 3 are illustrated in Figure 4.3 for constant and in Fig-

ure 4.4 for monotonously increasing bid-ask spreads. First, ask premia Illiqask(T ) always

go to zero for T → 0 as the disutility from awaiting the bond’s maturity vanishes in the

case of a preference shock. Second, in Figure 4.3, the ask term structure Illiqask(T ) flattens

out quickly. Since the slope is already close to zero for T ↑ Tlim, the small kink at Tlim is

hard to detect as Illiqask(T ) cannot decrease in time to maturity. Otherwise, long-horizon

investors would invest in bonds with shorter maturities. In Figure 4.4, ask liquidity premia

increase more strongly for longer maturities as expected trading costs increase due to the

increasing term structure of bid-ask spreads s(T ). Hence, the kink at Tlim becomes more

apparent. Bid-premia Illiqbid(T ) always exhibit an inverse shape.

Apart from these predictions of Proposition 3, Figure 4.3 and Figure 4.4 allow us to

make two additional observations. First, for constant bid-ask spreads, bid liquidity premia

also flatten out for longer maturities because the fixed bid-ask spread is distributed over a

longer time period.43 Second, for the empirically relevant case of bid-ask spreads increasing

43A recent working paper of Huang et al. (2013) confirms our model predictions empirically. The
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Figure 4.3: Liquidity premia – baseline case and spill-over effects
The figure presents liquidity premia for the baseline case (thick lines) where the rate at
which preference shocks occur λ equals 0.6 for short-horizon investors and 0.3 for long-
horizon investors, the time preference rate increases from 0 to b = 0.02 if a preference
shock occurs, the bid-ask spread s(T ) equals 0.003 for all maturities, the maximum bond
maturity Tmax equals 10 years, both investor types have the same aggregate wealth W of
1, and for each initial maturity, bonds are issued with a rate of a = 0.025, leading to a
total bond supply of 1.25. In the resulting equilibrium allocation, short-horizon investors
invest in bonds with maturities up to Tlim, baseline = 2.68 years, and only bonds with a
maturity higher than τbaseline = 0.16 years are sold if a preference shock arises. Thin lines
present liquidity premia for the case of higher liquidity demand for short-horizon investors
(λS = 1.2). All other parameters are identical to the baseline case. For this specification,
critical maturities τλS=1.2 = 0.17 and Tlim, λS=1.2 = 2.63 only change marginally compared
to the baseline specification. Solid lines depict Illiqask(T ), dashed lines show Illiqbid(T ).
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Figure 4.4: Liquidity premia – bond-specific spreads increase in maturity
The figure presents liquidity premia for the case where we have calibrated bid-ask spreads
to observed prices: s(T ) = 0.00446 + 0.01868 ·

(
1− e−0.1205·T

)
(see also Section 4.4.2 and

Figure 4.5). The rate at which preference shocks occur λ equals 0.6 for short-horizon
investors and 0.3 for long-horizon investors, the time preference rate increases from 0 to
b = 0.02 if a preference shock occurs, the maximum bond maturity Tmax equals 10 years,
both investor types have the same aggregate wealth W of 1, and for each initial maturity,
bonds are issued with a rate of a = 0.025, leading to a total bond supply of 1.25. In the
resulting equilibrium allocation, short-horizon investors invest in bonds with maturities
up to Tlim = 2.6 years, and only bonds with a maturity higher than τ = 0.28 years are
sold if a preference shock arises. The solid line depicts Illiqask(T ), the dashed line shows
Illiqbid(T ).
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in maturity, bid liquidity premia increase at the long end. Liquidity premia for long-term

bonds therefore reflect the shape of the bid-ask spread curve, which results in increasing

term structure of liquidity for ask and U-shaped ones for bid liquidity premia.

Finally, Figure 4.3 also illustrates a spill-over effect of short-horizon investors’ liquidity

demand on long-term premia. For the thin lines, all parameters are identical as before,

except λS which is twice as large as in the baseline case. Although only short-horizon

investors’, who hold bonds with maturities smaller than Tlim, are affected by this change,

liquidity premia of all maturities increase. The reason for this spill-over is the same as

above: long-horizon investors would prefer short-term bonds over long-term bonds if long-

term ask liquidity premia were lower than short-term premia.

Taking into account that empirically observed bond yield spreads are typically com-

puted from mid prices and incorporate a liquidity component, our model can also shed

light on the credit spread puzzle. This puzzle refers to the observation that empirically

observed bond yield spreads are too high, especially at the short end, compared to what

structural models à la Merton (1974) can explain, see, e.g., Huang and Huang (2012). If

we average ask and bid prices to compute mid liquidity premia in our framework, we get

an inverse shape with large premia for very short maturities: in our baseline specification,

we obtain about 185 bps for one month time to maturity.

In summary, the model predicts four main testable effects. First, seller initiated

turnover is hump shaped. Second, for bonds which have identical maturity T but a differ-

ent age, the older bond has lower or equal seller initiated turnover compared to the younger

bond. Third, liquidity premia computed from ask prices are monotonously increasing in

maturity at the short end, and, depending on the shape of the bid-ask spreads s(T ), either

flatten out or keep increasing for longer maturities. Fourth, liquidity premia computed

from bid prices are monotonously decreasing at the short end and, again depending on

the shape of s(T ), flatten out or start increasing for longer maturities.

Before explicitly testing our model predictions using data from the U.S. corporate bond

market, we now discuss the empirical results from Chapter 3 on the shape of liquidity

premia during crisis and non-crisis times through the lenses of our equilibrium model.

To enhance comparisons with previous empirical studies and most importantly due to

missing data on bid and ask prices during our observation period, we used closing prices

from the Frankfurt stock exchange to calculate liquidity premia in Chapter 3. These

authors find that long-horizon investors on average hold more illiquid bonds (with higher liquidity premia),
but demand less compensation for less liquid bonds than short-horizon investors would. These empirical
results correspond to our clientele effect and the flattening term structure of liquidity premia.
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closing prices either result from a buy or a sell trade or are determined in an auction like

setting. Therefore, the resulting term structure of liquidity premia can be interpreted as

a weighted average computed from the term structures of bid and ask prices where the

weightings are the probabilities for a buy or sell, respectively.

Through the lenses of our model, the reason for the more inverse shape of the term

structure of ‘closing price’ liquidity premia in crises times is a mixture of two mechanisms.

First, in crisis times, the incentive to sell in the case of a preference shock modeled though

the increase in the time preference rate b is larger (since the alternatives to get funding

become more expensive). This lowers τ and thus shrinks the maturity range where ask

liquidity premia are small. Second, in crisis times, the probability for a particular trade

to result from a sell order might be higher due to increased liquidity needs. Thus, the

term structure of closing price liquidity premia is closer to the bid curve which results in

a more inverse shape. Both mechanisms are in line with the empirically found increased

impact of liquidity demand at the short end.

4.4 Empirical Analysis

In this section, we verify the four main predictions from our equilibrium model using

empirical data. Our model forecasts non-linear relations between maturity T and bid and

ask liquidity premia. More formally, it predicts that the sensitivity of liquidity premia on

time to maturity T is different for short- and long-term bonds. To test these relations, we

employ piecewise linear regressions that explicitly allow for such a different sensitivity for

maturities below and above a breakpoint y. Regressions are of the form

Illiqask(T ) = αa + βa
1 · 1{T≤y} · (T − y) + βa

2 · 1{T>y} · (T − y) + γa · Controls + ε,

Illiqbid(T ) = αb + βb
1 · 1{T≤y} · (T − y) + βb

2 · 1{T>y} · (T − y) + γb · Controls + ε, (4.12)

where Illiqbid(T ) (Illiqask(T )) is the liquidity premium computed from bid (ask) prices, T

is the time to maturity for which the liquidity premium applies, and ε is an error term.

We explore a wide range of possible breakpoints y between 3 months and 3 years and

do not endogenously derive an optimal breakpoint to avoid overfitting. If our hypotheses

regarding the liquidity term structures are confirmed, we expect the following behavior.

For ask premia, we should find positive and significant estimates for βa
1 and βa

2 as the

slope of the ask liquidity premium term structure is positive for all maturities. Because

our model predicts a flattening term structure, we expect βa
1 to be larger than βa

2 . For bid
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premia, we should find significant negative estimates for βb
1. The shape of the bid term

structure at the long end depends on the shape of bid-ask spreads s(T ), which we will

show to be strongly increasing in the time to maturity T for our data set. Therefore, we

expect βb
2 to be positive.

A similar intuition holds for trading volume. There, we use a regression of the form

Turnover(T ) = α + β1·1{T≤y}· (T − y) + β2·1{T>y}· (T − y) + β3·Age + γ·Controls + ε,

(4.13)

and expect positive and significant estimates for the slope at the short end β1 and negative

and significant estimates of β2. We expect a significant and negative estimate for β3 since

our model predicts a negative relation between the age of a bond and trading volume.

4.4.1 Data

We use bond transaction data from TRACE (Trade Reporting and Compliance Engine) to

test the predictions of our model. This database was introduced by the Financial Industry

Regulatory Agency (FINRA) to increase transparency in the U.S. corporate bond market.

It lists information concerning secondary market transactions of U.S. corporate bonds,

e.g., actual trade prices, yields resulting from these prices, and trade sizes. Trades have

to be reported since July 1, 2002 and reporting requirements have been tightened over

three phases. According to Goldstein and Hotchkiss (2012), transaction information for

nearly all U.S. corporate bonds is disseminated in TRACE since October 1, 2004. For that

reason, the time period of our study starts on October 1, 2004 and ends on December 31,

2011.

We calculate bid and ask liquidity premia based on yields of investment grade bonds

adjusted for riskless interest rates and credit risk. Turnover is based on trading volume

and outstanding amounts. Table 4.1 summarizes the data selection procedure and the

number of observations for our final sample and the subsamples used in our robustness

checks in Section 4.5. We start with filtering out erroneous trades as described in Dick-

Nielsen (2009). For the remaining bonds, we collect information on the bond’s maturity,

coupon, and other features from Reuters and Bloomberg using the bond’s CUSIP. We

drop all bonds which are not plain vanilla fixed rate bonds without any extra rights. We

also collect the rating history from Reuters and drop all observations for bonds on days

where fewer than two rating agencies (S&P’s, Moody’s, Fitch) report an investment-grade
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rating. We exclude private placements, bonds with more than 30 years remaining time to

maturity, and all bonds that are not classified as senior unsecured in the Markit database.

For the analysis of liquidity premia, we follow Dick-Nielsen (2009) and additionally drop all

transactions with non-standard prices, e.g., prices which explicitly include a commission

or only apply for specific settlement conditions.

We then collect the transaction yield, price, and volume, and the reporting date and

time. To differentiate between bid and ask liquidity premia, we require bid and ask bond

yields. As this information is only provided for transactions starting from November 1,

2008 in TRACE, we use the methodology of Feldhütter (2012), which we also employed for

the roundtrip transaction cost measure in Section 2.3.1.1, to calculate bid and ask yields.

As discussed in Section 2.3.1.1, a large part of the trades reported in TRACE are part of so

called imputed roundtrip trades (IRTs), i.e., pre-matched arrangements where a customer

trades a bond with a dealer and the dealer (in the case of a sell) resells it to another

dealer (who possibly again sells it). As over 90% of these IRTs are either dealer-seller

or dealer-buyer arrangements, we interpret the difference between the highest and lowest

yield within an IRT as the half-spread. This half-spread is then added to the midpoint to

get the bid-yield and deducted from the midpoint to get the ask-yield.44 In a robustness

analysis for the subperiod where TRACE information on bid and asks is available, we

explore whether the identification procedure has an impact on our results.

To determine liquidity premia, we adjust for risk-free interest rates and for credit risk.

We derive the risk-free rate that would apply to a specific bond using Treasury yields.

We collect daily constant-maturity yields from the Federal Reserve’s H-15 release, and

derive a full term structure using linear interpolation. In a robustness check, we employ

swap rates instead of Treasury yields as the risk-free rate.45 As a measure of credit risk,

we collect a time series of daily credit default swap (CDS) mid quotes of all available

maturities for each bond issuer from Markit and again derive a full term structure by

interpolating between the available maturities.46 We then compute a bond’s ask (bid)

liquidity premium as the difference between the bond’s ask (bid) yield and the sum of the

44The midpoint of the IRT equals the midpoint of either the bid or the ask and the price at which
dealers trade among each other. Therefore, in about half of the cases we overestimate the real mid and
in the other half, we underestimate the mid. Hence, on average, there should not be any bias from this
methodology.

45We use the USD swap curves available via Bloomberg for maturities larger than three months and
extend the curve at the short end by linearly interpolating the 6-months rate with USD LIBOR rates for
a maturity of 1 and 3 months. We are cautious to account for the different day count conventions in swap
and LIBOR markets.

46Since the shortest available maturity for CDS quotes is six months, we have to extrapolate the term
structure of CDS premia at the short end.
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Table 4.1: Sample description
The table presents the procedure used to arrive at the final samples employed in our main analysis and in the robustness
checks in Section 4.5, the number of trades, the number of bonds, and the traded notional value in billion USD. The sample
period is from October 1, 2004 to December 31, 2011.

Number of trades Number of bonds Traded notional value
(in bn. USD)

All trades within the TRACE database 57,192,955 65,900 19,901

Subtotal after filtering out erroneous trades with the procedures described in Dick-Nielsen (2009) 53,738,948 65,183 17,558

Subtotal after removing bonds with missing information (in Bloomberg, Reuters, or Markit),
callable bonds (incl. make-whole call provisions), bonds with remaining time to maturity of more
than 30 years, puttable bonds, bonds with sinking funds, zero coupon bonds, convertible bonds,
bonds with variable coupon payments, bonds with other non-standard cash flow or coupon
structures, issues which do not have an investment grade rating from at least two rating agencies
(i.e., Moody’s, S&P, or Fitch) at the trading date, bonds which are not classified as senior
unsecured, private placements (sample used to calculate turnover)

13,544,882 10,327 3,910

Excluding trades under non-standard terms (e.g., special settlement or sale conditions) and
trades where the price explicitly includes a commission (see Dick-Nielsen, 2009)

12,695,725 10,305 3,532

Imputed Roundtrip Trades (IRTs) (see Feldhütter, 2012) 5,983,293 (within
2,458,325 distinct

IRTs)

9,768 1,188

Main sample: IRTs matched with respective Constant Maturity Treasury (CMT) yield and
CDS premium, no government guarantee

5,167,485 (2,124,932
IRTs)

8,576 952

Sample swap-implied liquidity premia (Section 4.5.1): IRTs matched with respective
swap rate and CDS premium, no government guarantee

5,202,564 (2,139,337
IRTs)

8,590 973

Sample AAA before financial crisis (Section 4.5.3): IRTs in AAA bonds matched with
respective CMT yield, until Mar. 2007

131,420 (56,514
IRTs)

344 28

Sample TRACE-identified ask trades since Nov. 2008 (Section 4.5.2): dealer is
seller, no interdealer trades, matched with respective CMT yield and CDS premium, no
government guarantee

1,908,478 3,660 432

Sample TRACE-identified bid trades since Nov. 2008 (Section 4.5.2): dealer is
buyer, no interdealer trades, matched with respective CMT yield and CDS premium, no
government guarantee

1,153,607 3,671 378
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risk-free yield and the CDS premium. For the turnover analysis and as a control variable,

we collect the history of outstanding notional amounts for each bond from Reuters. To

prevent an impact of outliers on our results, we winsorize liquidity premia and turnover

at the 1% and 99% quantile.

4.4.2 Liquidity Premia Analysis

Our model predictions for the long end of the term structure of liquidity premia depend

on the shape of the term structure of bid-ask spreads. Therefore, we first calibrate a

parametric form for s(T ) to our data set. Using non-linear least squares, we minimize the

sum of squared errors ǫi in the following equation:47

si(Ti) = abid-ask + bbid-ask ·
(
1− e−cbid-ask·Ti

)
+ ǫi, (4.14)

where bid-ask spreads si(Ti) for each IRT i in a bond with maturity Ti are computed using

the roundtrip transaction cost measure (see Feldhütter, 2012, and Section 2.3.1.1). We

winsorize bid-ask spreads at the 1% and 99% quantile. Figure 4.5 presents the calibrated

function s(T ) together with average bid-ask spreads for monthly time to maturity buckets

and shows three important properties of bid-ask spreads. First, bid-ask spreads are non-

zero even for securities with very short maturities, which corresponds to a fixed component

of transaction cost. Second, bid-ask spreads increase in maturity. Third, the slope of the

bid-ask spread term structure decreases for large maturities.48

We next present an overview over the average term structure of ask and bid liquidity

premia together with the respective model predictions. Visual inspection of Figure 4.6

suggests that our main hypotheses regarding liquidity premia hold for the full sample.

Ask liquidity premia go through the origin and are mostly increasing in maturity, while

bid liquidity premia exhibit a U-shape. At the long end, both bid and ask premia slightly

increase with maturity.

We now formally explore the effect of maturity on liquidity premia in bond bid and

ask yields and estimate Equation (4.12). As control variables, we use age, outstanding

amount, and credit risk effects not captured by subtracting the CDS premium via the

47Since the bond-specific spread should be limited between 0 and 1, a range of simple functions such as a

linear form s(T ) = abid-ask+bbid-ask ·T or its exponential counterpart s(T ) = abid-ask+bbid-ask ·
(
ec

bid-ask
·T
)

for cbid-ask > 0 are not suitable for all possible Tmax.
48We also find these properties when looking at TRACE-identified bid and ask trades.
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Figure 4.5: Empirical term structure of bid-ask spreads
The figure presents the average term structure of proportional bid-ask spreads (squares) to-
gether with the calibrated bid-ask spread function s(T ) = 0.00446+0.01868·

(
1− e−0.1205·T

)

(solid line). To calculate bid-ask spreads, we use the roundtrip transaction cost measure
(for details, see Feldhütter, 2012, or Section 2.3.1.1). The depicted average spread for a
given maturity is computed as the mean spread across all bonds of a given maturity. The
sample period is from October 1, 2004 to December 31, 2011.
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Chapter 4. Equilibrium Model for Liquidity Premia and Trading Volume
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Figure 4.6: Empirical term structure of ask and bid liquidity premia
The figure presents the average term structure of ask and bid liquidity premia together with
the predictions of our model (see Figure 4.4). The liquidity premium for a given bond is
determined as the TRACE-reported bond yield minus the interpolated constant-maturity
Treasury yield and the interpolated CDS premium from Markit. Bid and ask yields are
calculated using the methodology of Feldhütter (2012). The depicted average liquidity
premium for a given maturity is computed as the mean liquidity premium across all bonds
of a given maturity. Squares indicate average ask liquidity premia, circles show average bid
liquidity premia. The solid line depicts model implied Illiqask(T ), the dashed line shows
model implied Illiqbid(T ). The sample period is from October 1, 2004 to December 31,
2011.
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4.4. Empirical Analysis

numerical rating (where AAA (D) corresponds to a rating of 1 (22)). We control for

age and the outstanding amount as, e.g., Edwards, Harris, and Piwowar (2007) report

a dependence of transaction costs on age and outstanding volume which is not directly

captured by our model. We expect a positive coefficient estimate for age and credit risk,

and a negative estimate for the outstanding amount. We use standard errors clustered

by firm as suggested by Petersen (2009) and include month fixed and firm fixed effects.

As the exact location of the limiting maturities depends on unobservable factors like the

wealth of investors, we test our predictions for a range of exogenously specified short-

term breakpoints y. Note, however, that the predictions do not imply the U-shape in bid

premia and the kink in the slope for ask premia for all specifications of y. The results of

the regression are given in Table 4.2.

Table 4.2 confirms our hypotheses regarding liquidity premia. For ask liquidity premia,

the estimates for the slope at the short end, βa
1 , are always positive. They are significant

in 5 out of 6 specifications of the breakpoint y. The estimates for the slope at the long

end, βa
2 , are also always positive and significant. In 5 out of 6 specifications, the slope

is significantly steeper at the short end. Overall, the results strongly support our model

prediction that ask liquidity premia are more strongly increasing for shorter maturities,

and flatten out for longer maturities.

Regarding the results for bid liquidity premia, we obtain negative and in 4 out of 6

cases significant estimates for the slope at the short end. The positive but insignificant

estimate for the 3-year breakpoint agrees with the intuition from Figure 4.6 that the break

between short and longer maturities occurs at maturities below three years. Consistent

with the increasing bid-ask spreads, all estimates for the slope at the long end (except for

the 3-year breakpoint) are significantly positive. Overall, bid liquidity premia exhibit a

U-shape with a strongly negative slope for short maturities and a subsequent positive, but

flatter, slope for longer maturities.

The impact of the control variables is also as expected. Age, in the one case where it is

significant, has a positive impact on liquidity premia. Outstanding volume has a negative

and significant impact in all cases. The numerical rating always has a positive impact that

is significant in 11 out of 12 cases, which implies that credit risk and liquidity premia are

positively correlated.

Overall, the results of the regression analysis confirm our model predictions. Ask liquid-

ity premia are monotonously increasing with a decreasing slope, while bid liquidity premia

are decreasing for short maturities and, due to increasing bid-ask spreads, increasing at
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Table 4.2: Regression of ask and bid liquidity premia on maturity
The table presents the regression analysis of ask and bid liquidity premia on maturity and control variables for different
breakpoints that separate the short end from longer maturities of the liquidity term structure:

Illiqask(T ) = αa + βa
1 · 1{T≤y} · (T − y) + βa

2 · 1{T>y} · (T − y) + γa · Controls + ε,

Illiqbid(T ) = αb + βb
1 · 1{T≤y} · (T − y) + βb

2 · 1{T>y} · (T − y) + γb · Controls + ε,

where Illiqask/bid(T ) is the liquidity premium computed from the ask or bid yield for a given transaction minus the interpolated
Treasury yield as a proxy for the risk-free rate and the CDS premium as a proxy for the credit risk premium, all in percentage
points. The explanatory variables are the (remaining) time to maturity T (in years) minus the breakpoint y for T ≤ y and
T > y, as well as the control variables age in years, the average numerical rating (Rating), and the natural logarithm of the
outstanding amount (ln(Amt)). The breakpoints y equal three months, six months, nine months, one year, two years, and
three years. We use firm and month fixed effects. Clustered standard errors at the firm level are presented in parentheses.
The sample period is from October 1, 2004 to December 31, 2011. *, ** indicate significance at the 5% or 1% level.

Ask Bid

y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3 y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3

Constant 2.6982∗∗ 2.6981∗∗ 2.6995∗∗ 2.715∗∗ 2.854∗∗ 3.0569∗∗ 2.8296∗∗ 2.8456∗∗ 2.8466∗∗ 2.8283∗∗ 2.8221∗∗ 2.8626∗∗

(0.5489) (0.5492) (0.5503) (0.5516) (0.5597) (0.5743) (0.6339) (0.6283) (0.6264) (0.6284) (0.6337) (0.6374)

1{T≤y} · (T − y) 2.665 1.2509∗ 0.8951∗∗ 0.7924∗∗ 0.4493∗∗ 0.2914∗∗ −11.1866∗∗ −2.9179∗∗ −1.2532∗∗ −0.5649∗∗ −0.0184 0.0346
(1.5043) (0.5559) (0.2927) (0.2017) (0.0874) (0.0487) (1.9409) (0.6415) (0.3206) (0.2144) (0.0878) (0.0476)

1{T>y} · (T − y) 0.0389∗∗ 0.0376∗∗ 0.036∗∗ 0.0333∗∗ 0.0234∗∗ 0.0163∗ 0.0171∗∗ 0.0192∗∗ 0.02∗∗ 0.0196∗∗ 0.0163∗ 0.0132
(0.0057) (0.0057) (0.0058) (0.0058) (0.0067) (0.0075) (0.0061) (0.0061) (0.0061) (0.0062) (0.0071) (0.0077)

Age [in years] −0.0098 −0.0086 −0.007 −0.0047 0.0024 0.0059 0.0065 0.0046 0.0038 0.0044 0.0077 0.01∗

(0.0057) (0.0057) (0.0055) (0.0054) (0.0051) (0.0051) (0.005) (0.0051) (0.0051) (0.005) (0.005) (0.005)

Rating 0.1223 0.1245∗ 0.1265∗ 0.1286∗ 0.1362∗ 0.1387∗ 0.2095∗∗ 0.2057∗∗ 0.2054∗∗ 0.2073∗∗ 0.2116∗∗ 0.2141∗∗

(0.0627) (0.0626) (0.0627) (0.0629) (0.0628) (0.0627) (0.068) (0.0675) (0.0674) (0.0677) (0.0683) (0.0686)

ln(Amt) −0.0862∗∗ −0.0867∗∗ −0.0875∗∗ −0.0885∗∗ −0.0922∗∗ −0.0955∗∗ −0.1057∗∗ −0.1047∗∗ −0.1042∗∗ −0.1046∗∗ −0.106∗∗ −0.1073∗∗

(0.0103) (0.0104) (0.0105) (0.0107) (0.0117) (0.0126) (0.0129) (0.0128) (0.0126) (0.0127) (0.0132) (0.0137)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>y} · (T − y) −2.6262 −1.2133∗ −0.8592∗∗ −0.7591∗∗ −0.4259∗∗ −0.2751∗∗ 11.2037∗∗ 2.9371∗∗ 1.2732∗∗ 0.5845∗∗ 0.0347 −0.0213
−1{T≤y} · (T − y) (1.5054) (0.5572) (0.2941) (0.2033) (0.0908) (0.0531) (1.9434) (0.6437) (0.3227) (0.2165) (0.0911) (0.0516)

N 2,124,932

R2 0.323 0.324 0.3254 0.3284 0.337 0.3394 0.3155 0.3168 0.3153 0.3127 0.3096 0.3096
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4.4. Empirical Analysis

the long end.

4.4.3 Turnover Analysis

To formally explore the hypotheses regarding trading volume, we consider two subsam-

ples. First, we use all transactions available in TRACE, standardized with the outstanding

amount of the bond under consideration. Second, we exclude bonds immediately around

changes in their outstanding volume (through new issues, reopenings, and bond repur-

chases) since we do not consider these events in our model. When bonds are newly issued,

they are often first held by dealers, who distribute them to clients and other dealers.

Hence, the time interval around new issues of bonds might consist of multiple inter-dealer

trades. We therefore exclude transactions two months prior to a new issue and six months

following the issue, and denote this sample by Excl[-2,+6].49 We now apply our piecewise

regression approach with age as an additional explanatory variable according to Equa-

tion (4.13). The control variables we use are again the outstanding amount and credit

risk. Since turnover cannot be calculated on a trade-by-trade basis, we aggregate traded

volume for each bond and calendar month and compute average daily turnover to account

for a different number of business days per month. The regression results are displayed in

Table 4.3.

Table 4.3 confirms our model predictions regarding the hump-shaped turnover. For

both subsamples, trading volume first increases strongly, since the factor loadings for

the slope at the short end, β1, are positive and significant in 10 out of 12 specifications.

Following the breakpoint, trading volume decreases slowly, but the effect is only significant

in the sample where we exclude bonds around changes in the outstanding amount. The

negative loading for age in all specifications is consistent with our second model prediction

regarding the aging effect: bonds which have been outstanding for a longer amount of time

are traded less frequently.50 The results for the outstanding amount are also as expected:

bonds with a higher outstanding volume are on average more liquid, and thus display a

higher trading volume.

49We exclude the time two months before changes in the amount outstanding mainly because of trades
taking place in connection with bond repurchases that are typically announced about one month in
advance.

50As discussed in Section 4.4.2, part of the effect could result from the dependence of bid-ask spreads
on age, which is not explained in our model.
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Table 4.3: Regression of turnover on maturity and age
The table presents the regression analysis of turnover for the two subsamples on maturity, age, and control variables for
different breakpoints:

Turnover(T ) = α + β1 · 1{T≤y} · (T − y) + β2 · 1{T>y} · (T − y) + β3 · Age + γ · Controls + ε,

where Turnover(T ) is calculated as the average daily turnover for each bond and each calendar month. The left panel contains
the regression results for the full sample, the right panel contains the regression results for the subsample that excludes bonds
two months prior to and six months after changes in their outstanding amount. The explanatory variables are the (remaining)
time to maturity T (in years) minus the breakpoint y for T ≤ y and T > y as well as age (in years). The control variables are
the average numerical rating (Rating) and the natural logarithm of the outstanding amount (ln(Amt)). The breakpoints y are
given by three months, six months, nine months, one year, two years, and three years. We use month fixed effects. Clustered
standard errors at the firm level are presented in parentheses. Parameter estimates and standard errors are multiplied by
1,000. The sample period is from October 1, 2004 to December 31, 2011. *, ** indicate significance at the 5% or 1% level.

All Excl[-2, +6]

y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3 y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3

Constant −1.8381∗∗ −1.8365∗∗ −1.8366∗∗ −1.8379∗∗ −1.8455∗∗ −1.8434∗∗ −1.4082∗∗ −1.408∗∗ −1.4093∗∗ −1.4117∗∗ −1.4258∗∗ −1.4348∗∗

(0.2947) (0.295) (0.2953) (0.2956) (0.2975) (0.2992) (0.2464) (0.2468) (0.2471) (0.2475) (0.2498) (0.2523)

1{T≤y} · (T − y) 3.0653∗∗ 1.0484∗∗ 0.5219∗∗ 0.3∗∗ 0.0603∗ 0.0321 3.2045∗∗ 1.1245∗∗ 0.5734∗∗ 0.3364∗∗ 0.0684∗ 0.0258
(0.1954) (0.0922) (0.0618) (0.047) (0.0268) (0.0192) (0.1875) (0.0895) (0.061) (0.0469) (0.0272) (0.0196)

1{T>y} · (T − y) −0.0052 −0.0062 −0.0065 −0.0064 −0.005 −0.0055 −0.0137∗∗ −0.015∗∗ −0.0156∗∗ −0.0157∗∗ −0.0144∗∗ −0.014∗∗

(0.0043) (0.0043) (0.0044) (0.0044) (0.0045) (0.0048) (0.004) (0.004) (0.004) (0.004) (0.004) (0.0042)

Age [in years] −0.0879∗∗ −0.0874∗∗ −0.0873∗∗ −0.0875∗∗ −0.0885∗∗ −0.0886∗∗ −0.0722∗∗ −0.0717∗∗ −0.0716∗∗ −0.0717∗∗ −0.0727∗∗ −0.0731∗∗

(0.0074) (0.0074) (0.0074) (0.0074) (0.0075) (0.0075) (0.0055) (0.0055) (0.0055) (0.0055) (0.0056) (0.0056)

Rating 0.0301 0.0302 0.0303 0.0304 0.0304 0.0306 0.0316∗ 0.0319∗ 0.032∗ 0.0321∗ 0.0321∗ 0.0321∗

(0.0171) (0.0171) (0.0171) (0.0171) (0.0172) (0.0172) (0.0159) (0.0159) (0.0158) (0.0158) (0.0159) (0.0159)

ln(Amt) 0.1889∗∗ 0.1891∗∗ 0.1892∗∗ 0.1892∗∗ 0.189∗∗ 0.189∗∗ 0.1564∗∗ 0.1566∗∗ 0.1567∗∗ 0.1567∗∗ 0.1566∗∗ 0.1565∗∗

(0.016) (0.016) (0.016) (0.016) (0.0159) (0.0159) (0.0132) (0.0132) (0.0132) (0.0132) (0.0131) (0.013)

Firm Fixed Effects No
Month Fixed Effects Yes

1{T>y} · (T − y) −3.0705∗∗ −1.0546∗∗ −0.5284∗∗ −0.3064∗∗ −0.0652∗ −0.0376 −3.2183∗∗ −1.1395∗∗ −0.589∗∗ −0.3521∗∗ −0.0828∗∗ −0.0398
−1{T≤y} · (T − y) (0.1965) (0.0932) (0.0627) (0.0478) (0.0279) (0.0209) (0.1886) (0.0904) (0.0617) (0.0475) (0.0281) (0.021)

N 385,232 357,826

R2 0.05887 0.05843 0.05804 0.05772 0.05709 0.05704 0.04685 0.04638 0.04592 0.0455 0.04456 0.04436
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4.5. Robustness

4.5 Robustness

In the previous section, we compute ask and bid liquidity premia under three important

assumptions. First, we use U.S. Treasury yields as the risk-free reference curve. Second,

we identify bid and ask trades using the method of Feldhütter (2012). Third, we use

CDS premia as a proxy for the credit risk premium.51 In this section, we show that

these assumptions do not affect the relation between liquidity premia and maturity by

repeating our analysis for different subsamples. In Section 4.5.1, we repeat the regression

analysis using swap rates instead of Treasury yields as a proxy of the risk-free interest rates.

Section 4.5.2 contains the analysis for the TRACE subsample that includes information

of whether a transaction occurred at the ask or at the bid price. In Section 4.5.3, we

restrict liquidity premia to AAA bonds where the impact of credit risk on yield spreads is

minimized and do not subtract the CDS premium.52

4.5.1 Swap Rates as Risk-Free Interest Rates

As mentioned in Section 4.4.1, instead of using Treasury yields, we also interpolate swap

rates with maturities between one month and 30 years to obtain an alternative risk-free

yield curve. Table 4.2 shows the results when we re-estimate Equation (4.12) using swap

rates as the risk-free reference curve to calculate liquidity premia.

Table 4.4 shows that our estimation results are mostly unaffected by the use of swap

rates as risk-free rates. For ask liquidity premia, the estimates for the slope at both the

short and the long end are positive and significant in all specifications, with the estimates

for the short end significantly exceeding those for the long end. For bid liquidity premia,

the slope at the short end for a breakpoint of one year now also becomes insignificant, but

remains negative. The impact of the rating control variable decreases, which may be due

to the higher credit risk contained in swap rates. Our main conclusions, however, remain

unaffected: ask liquidity premia increase in time to maturity, bid liquidity premia exhibit

a U-shape.

51Since we also use daily ratings as a control variable, we already account for a possible correlation
between credit risk and liquidity premia.

52In additional robustness checks, we restrict our dataset on transactions with a volume of $100,000 or
more and only look at the time before the onset of the subprime crisis. All results confirm our hypotheses
and are available upon request.
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Table 4.4: Regression of swap-implied ask and bid liquidity premia on maturity
The table presents the regression analysis of swap-implied ask and bid liquidity premia on maturity and control variables for
different breakpoints that separate the short end from longer maturities of the liquidity term structure:

Illiqask(T ) = αa + βa
1 · 1{T≤y} · (T − y) + βa

2 · 1{T>y} · (T − y) + γa · Controls + ε,

Illiqbid(T ) = αb + βb
1 · 1{T≤y} · (T − y) + βb

2 · 1{T>y} · (T − y) + γb · Controls + ε,

where Illiqask/bid(T ) is the liquidity premium computed from the ask or bid yield for a given transaction minus the interpolated
swap rate as a proxy for the risk-free rate and the CDS premium as a proxy for the credit risk premium, all in percentage
points. The explanatory variables are the (remaining) time to maturity T (in years) minus the breakpoint y for T ≤ y and
T > y, as well as the control variables age in years, the average numerical rating (Rating), and the natural logarithm of the
outstanding amount (ln(Amt)). The breakpoints y equal three months, six months, nine months, one year, two years, and
three years. We use firm and month fixed effects. Clustered standard errors at the firm level are presented in parentheses.
The sample period is from October 1, 2004 to December 31, 2011. *, ** indicate significance at the 5% or 1% level.

Ask Bid

y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3 y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3

Constant 2.3436∗∗ 2.3412∗∗ 2.3452∗∗ 2.3665∗∗ 2.5192∗∗ 2.7234∗∗ 2.4482∗∗ 2.4652∗∗ 2.4721∗∗ 2.4624∗∗ 2.4765∗∗ 2.5229∗∗

(0.5658) (0.5652) (0.5656) (0.5658) (0.571) (0.5834) (0.6382) (0.6343) (0.6327) (0.6338) (0.6358) (0.637)

1{T≤y} · (T − y) 3.6781∗ 1.8134∗∗ 1.1554∗∗ 0.928∗∗ 0.4677∗∗ 0.2964∗∗ −9.9741∗∗ −2.3077∗∗ −0.971∗∗ −0.4158 0.0053 0.0427
(1.5024) (0.5886) (0.3114) (0.2133) (0.0907) (0.05) (1.9065) (0.6697) (0.3379) (0.225) (0.0907) (0.0489)

1{T>y} · (T − y) 0.056∗∗ 0.0544∗∗ 0.0527∗∗ 0.0502∗∗ 0.0418∗∗ 0.0363∗∗ 0.0354∗∗ 0.0367∗∗ 0.0373∗∗ 0.037∗∗ 0.0347∗∗ 0.0329∗∗

(0.0059) (0.0061) (0.0062) (0.0063) (0.0073) (0.0079) (0.0068) (0.0068) (0.0069) (0.007) (0.0077) (0.0081)

Age [in years] −0.0127∗ −0.011 −0.0092 −0.007 −0.0006 0.002 0.0036 0.0023 0.0017 0.0022 0.0046 0.0061
(0.0062) (0.0062) (0.0061) (0.0059) (0.0058) (0.0057) (0.0053) (0.0055) (0.0055) (0.0054) (0.0055) (0.0055)

Rating 0.1164 0.1195 0.1218 0.1236 0.1304∗ 0.1321∗ 0.2017∗∗ 0.199∗∗ 0.1987∗∗ 0.2003∗∗ 0.2035∗∗ 0.2052∗∗

(0.0629) (0.0628) (0.0628) (0.0629) (0.0626) (0.0625) (0.067) (0.0667) (0.0666) (0.0668) (0.0672) (0.0674)

ln(Amt) −0.0874∗∗ −0.0881∗∗ −0.089∗∗ −0.0898∗∗ −0.0929∗∗ −0.0955∗∗ −0.1064∗∗ −0.1057∗∗ −0.1054∗∗ −0.1056∗∗ −0.1066∗∗ −0.1073∗∗

(0.011) (0.0111) (0.0113) (0.0115) (0.0125) (0.0133) (0.0139) (0.0138) (0.0138) (0.0138) (0.0142) (0.0146)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>y} · (T − y) −3.6221∗ −1.7591∗∗ −1.1027∗∗ −0.8777∗∗ −0.4258∗∗ −0.2601∗∗ 10.0095∗∗ 2.3444∗∗ 1.0083∗∗ 0.4527∗ 0.0294 −0.0098
−1{T≤y} · (T − y) (1.5041) (0.5904) (0.3132) (0.2153) (0.0943) (0.0545) (1.9096) (0.6725) (0.3405) (0.2275) (0.0942) (0.0528)

N 2,139,337

R2 0.3214 0.3235 0.3253 0.3282 0.3349 0.3356 0.2985 0.2984 0.2974 0.2956 0.2938 0.2937
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4.5.2 Identification of Bid and Ask Quotes

In this section, we focus on the impact of the method we use to identify ask and bid quotes.

In the previous sections, we have followed Feldhütter (2012) to calculate bid and ask yields.

We now exclusively focus on transactions between November 1, 2008 and December 31,

2011, for which TRACE indicates whether a transaction reported by a dealer occurred

at the dealer’s ask or bid quote. For these trades, we compute the liquidity premium by

subtracting the interpolated Treasury yield and the CDS premium from the yield. We

show the regression results where we only use TRACE-identified ask and bid transactions

in Table 4.5.

As Table 4.5 shows, our main results hold for the subsample where bid and ask quotes

are identified directly from TRACE-reported information. For ask premia, the coefficient

estimate for the slope at the short end is always positive and significant, the slope at the

long end is always positive and significant in 4 out of 6 cases, and significantly flatter than

at the short end. For bid premia, the estimates for the short end are always negative

and statistically significant in 4 out of 6 cases, the slope at the long end is, though not

statistically significant, positive. Hence, our identification method does not affect the

results materially.

4.5.3 Analysis of AAA Bonds

In our final robustness analysis, we analyze whether our results are sensitive to how we

adjust the observed yield spreads for credit risk. To do so, we drop all transactions where

the traded bond does not exhibit a AAA rating by at least two rating agencies on the

transaction date. We also drop all transactions which occurred after March 31, 2007 since

a AAA rating might not be indicative of negligible credit risk during the financial crisis.

General Electric bonds, e.g., exhibited increasing yields long before the downgrade from

AAA to AA+ by Standard&Poor’s on March 12, 2009. We then interpret the difference

between the bond’s yield and the interpolated Treasury yield as a pure liquidity premium.53

We explore the relation between liquidity premia and maturity for AAA rated bonds in

Table 4.6. Since all bonds exhibit a AAA rating, we exclude rating as an explanatory

variable.

Table 4.6 shows that our results are, if anything, stronger for the AAA sample than for

53In an alternative robustness check, we use agency bonds instead of AAA rated bonds. The results
are virtually the same.
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Table 4.5: Regression of TRACE-identified ask and bid liquidity premia on maturity
The table presents the regression analysis of ask and bid liquidity premia on maturity and control variables for different
breakpoints that separate the short end from longer maturities of the liquidity term structure:

Illiqask(T ) = αa + βa
1 · 1{T≤y} · (T − y) + βa

2 · 1{T>y} · (T − y) + γa · Controls + ε,

Illiqbid(T ) = αb + βb
1 · 1{T≤y} · (T − y) + βb

2 · 1{T>y} · (T − y) + γb · Controls + ε,

where Illiqask/bid(T ) is the liquidity premium computed from the ask or bid yield for a given transaction minus the interpolated
Treasury yield as a proxy for the risk-free rate and the CDS premium as a proxy for the credit risk premium, all in percentage
points. Bid and ask quotes are identified directly from TRACE-reported information. Hence, all observations are between
November 1, 2008, and December 31, 2011. The explanatory variables are the (remaining) time to maturity T (in years) minus
the breakpoint y for T ≤ y and T > y, as well as the control variables age in years, the average numerical rating (Rating),
and the natural logarithm of the outstanding amount (ln(Amt)). The breakpoints y equal three months, six months, nine
months, one year, two years, and three years. We use firm and month fixed effects. Clustered standard errors at the firm level
are presented in parentheses. *, ** indicate significance at the 5% or 1% level.

Ask Bid

y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3 y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3

Constant −0.2156 −0.1168 −0.03 0.0677 0.2782 0.5318 0.0747 −0.0169 −0.0221 0.0015 0.0828 0.1256
(1.2803) (1.2828) (1.2781) (1.2588) (1.2208) (1.229) (2.4159) (2.4114) (2.4166) (2.4226) (2.4355) (2.4386)

1{T≤y} · (T − y) 8.1854∗∗ 3.8802∗∗ 2.542∗∗ 2.0449∗∗ 0.9296∗∗ 0.5337∗∗ −11.1225∗∗ −2.6877∗∗ −1.1245∗∗ −0.5227∗∗ −0.0537 −0.0073
(2.7247) (1.0627) (0.5405) (0.3375) (0.1262) (0.0641) (0.9474) (0.3638) (0.2126) (0.1491) (0.0649) (0.0377)

1{T>y} · (T − y) 0.0316∗∗ 0.0298∗∗ 0.0276∗∗ 0.0245∗ 0.0138 0.0061 0.0059 0.0067 0.007 0.0067 0.0056 0.005
(0.0093) (0.0094) (0.0095) (0.0096) (0.0107) (0.0111) (0.0074) (0.0074) (0.0074) (0.0074) (0.008) (0.0085)

Age [in years] −0.0458∗∗ −0.0419∗∗ −0.0379∗∗ −0.0329∗ −0.02 −0.0136 0.0007 −0.0012 −0.0014 −0.0006 0.0022 0.0035
(0.0141) (0.0143) (0.0143) (0.0142) (0.0143) (0.0148) (0.005) (0.0049) (0.0048) (0.0048) (0.0046) (0.0046)

Rating 0.4232∗∗ 0.4227∗∗ 0.4228∗∗ 0.4256∗∗ 0.4568∗∗ 0.4659∗∗ 0.4684 0.4692 0.4694 0.4689 0.4671 0.4676
(0.1431) (0.1437) (0.1434) (0.1413) (0.1346) (0.1347) (0.2407) (0.241) (0.2419) (0.2426) (0.2416) (0.2409)

ln(Amt) −0.0959∗∗ −0.0988∗∗ −0.1022∗∗ −0.1059∗∗ −0.1159∗∗ −0.121∗∗ −0.1628∗∗ −0.1612∗∗ −0.1609∗∗ −0.1616∗∗ −0.1641∗∗ −0.165∗∗

(0.0259) (0.0261) (0.0262) (0.0264) (0.0271) (0.0284) (0.0289) (0.0285) (0.0281) (0.0281) (0.0286) (0.0291)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>y} · (T − y) −8.1538∗∗ −3.8505∗∗ −2.5144∗∗ −2.0204∗∗ −0.9158∗∗ −0.5276∗∗ 11.1284∗∗ 2.6945∗∗ 1.1315∗∗ 0.5294∗∗ 0.0593 0.0123
−1{T≤y} · (T − y) (2.7281) (1.0657) (0.5435) (0.3407) (0.1321) (0.0707) (0.9499) (0.365) (0.2133) (0.1501) (0.0683) (0.0418)

N 1,908,478 1,153,607

R2 0.4779 0.4833 0.4891 0.4983 0.5166 0.5177 0.4941 0.4934 0.4911 0.4886 0.4859 0.4857
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Table 4.6: Regression of ask and bid liquidity premia on maturity for AAA rated bonds
The table presents the regression analysis of ask and bid liquidity premia on maturity and control variables for different
breakpoints that separate the short end from longer maturities of the liquidity term structure:

Illiqask(T ) = αa + βa
1 · 1{T≤y} · (T − y) + βa

2 · 1{T>y} · (T − y) + γa · Controls + ε,

Illiqbid(T ) = αb + βb
1 · 1{T≤y} · (T − y) + βb

2 · 1{T>y} · (T − y) + γb · Controls + ε,

where Illiqask/bid(T ) is the liquidity premium computed from the ask or bid yield of a AAA rated bond for a given transaction
minus the interpolated Treasury yield as a proxy for the risk-free rate, both in percentage points. All observations are between
October 1, 2004, and March 31, 2007. The explanatory variables are the (remaining) time to maturity T (in years) minus the
breakpoint y for T ≤ y and T > y, as well as the control variables age in years and the natural logarithm of the outstanding
amount (ln(Amt)). The breakpoints y equal three months, six months, nine months, one year, two years, and three years.
We use firm and month fixed effects. Clustered standard errors at the firm level are presented in parentheses. *, ** indicate
significance at the 5% or 1% level.

Ask Bid

y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3 y = 0.25 y = 0.5 y = 0.75 y = 1 y = 2 y = 3

Constant −0.0597 −0.0354 −0.0039 0.0335 0.2053 0.3883 1.0089∗∗ 0.9844∗∗ 0.9776∗∗ 0.968∗∗ 0.9542∗∗ 0.9591∗∗

(0.3053) (0.3013) (0.2944) (0.2879) (0.262) (0.2316) (0.1567) (0.1641) (0.1696) (0.1738) (0.1898) (0.2109)

1{T≤y} · (T − y) 0.1611 0.3071∗ 0.3109∗∗ 0.2754∗∗ 0.1805∗∗ 0.1409∗∗ −4.9768∗∗ −1.4072∗∗ −0.6178∗∗ −0.3364∗∗ −0.0635∗∗ −0.0149
(0.3316) (0.1152) (0.0673) (0.0468) (0.0197) (0.0109) (0.308) (0.0624) (0.0245) (0.0191) (0.0112) (0.0084)

1{T>y} · (T − y) 0.0651∗∗ 0.0642∗∗ 0.0623∗∗ 0.0602∗∗ 0.0514∗∗ 0.0426∗∗ 0.0233∗∗ 0.0263∗∗ 0.0279∗∗ 0.029∗∗ 0.0307∗∗ 0.0312∗∗

(0.0132) (0.0132) (0.0132) (0.0132) (0.0129) (0.0123) (0.0051) (0.0057) (0.006) (0.0064) (0.008) (0.01)

Age [in years] 0.0128∗ 0.0135∗ 0.0145∗ 0.0154∗ 0.0167∗∗ 0.0162∗∗ 0.0244∗∗ 0.0222∗∗ 0.0216∗∗ 0.0218∗∗ 0.0234∗∗ 0.0247∗∗

(0.006) (0.0059) (0.0059) (0.0058) (0.0058) (0.0053) (0.006) (0.0057) (0.0058) (0.0058) (0.0057) (0.0061)

ln(Amt) −0.0277∗∗ −0.0278∗∗ −0.028∗∗ −0.028∗∗ −0.0283∗∗ −0.029∗∗ −0.0514∗∗ −0.0509∗∗ −0.0511∗∗ −0.0512∗∗ −0.0513∗∗ −0.0512∗∗

(0.001) (0.001) (0.0009) (0.0008) (0.0007) (0.0006) (0.0006) (0.0005) (0.0005) (0.0005) (0.0005) (0.0006)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>y} · (T − y) −0.096 −0.243 −0.2486∗∗ −0.2152∗∗ −0.1291∗∗ −0.0983∗∗ 5.0001∗∗ 1.4335∗∗ 0.6457∗∗ 0.3654∗∗ 0.0942∗∗ 0.0461∗∗

−1{T≤y} · (T − y) (0.3349) (0.1222) (0.0761) (0.0569) (0.0302) (0.021) (0.3126) (0.0677) (0.0288) (0.0226) (0.0171) (0.0164)

N 56,514

R2 0.3579 0.3589 0.3624 0.3664 0.3798 0.388 0.1963 0.2068 0.2015 0.1958 0.1829 0.1778
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the entire sample. For ask liquidity premia, the estimates for βa
1 are always positive and

significant in 5 out of 6 cases. The slope at the long end is always significantly positive

and flatter than at the short end, and the control variables have the expected impact. Bid

liquidity premia exhibit negative (positive) and significant estimates for the slope at the

short (long) end in 5 out of 6 (all) specifications. The impact of the control variables is

again as expected.

Summarizing the robustness section, we find that our results are robust against changes

in the methodology to compute bid and ask liquidity premia.

4.6 Conclusion

In this chapter, we develop a parsimonious equilibrium model that generates a hump-

shaped term structure of trading volume and, depending on whether we consider bid or

ask prices, different shapes for the term structure of liquidity premia. Investors sell bonds

of intermediate and long maturities because they experience a preference shock. Liquidity

is supplied by an exogenous market maker who charges a positive spread. We then analyze

liquidity premia of corporate bonds with a wide range of maturities, and show that the

observed trading behavior and liquidity premia from ask and bid yields are consistent with

our model predictions. The main conclusion from our analysis is that the different term

structures can arise because of two frictions which are prevalent in bond markets: First,

traders who provide liquidity charge a non-zero spread for bonds of all maturities. Second,

investors differ with respect to their probability of experiencing a liquidity shock. Such a

difference is obvious if we, for example, consider insurance companies who are unlikely to

experience frequent liquidity shocks, and bond market funds which frequently experience

cash outflows.

Our model also yields two central implications for market microstructure and financial

stability. First, our model allows us to quantify the well-established price impact of any

given bid-ask spread term structure for assets of different maturities. This is important

because of two effects. First, artificially increasing transaction costs, especially at the short

end such as through a fixed financial transaction tax, lead to uniformly higher required

yields, and thus lower prices, for all bonds. Reversely, a decrease of transaction costs, e.g.,

via a subsidized dealer system, uniformly decreases yields and increases prices. Second, an

increase (decrease) of transaction costs will shift the maturity limit below which investors

do not sell bonds in spite of a preference shock to higher (lower) values. Therefore, our
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model predicts that higher bid-ask spreads can dry out the market for short-term securities.

The second important implication of our results concerns the interplay of liquidity

and credit risk. As He and Xiong (2012) show, liquidity premia for corporate bonds can

have a strong impact on the issuer’s optimal default boundary. Hence, higher bid-ask

spreads, which lead to higher liquidity premia, increase individual and aggregate credit

risk. To the best of our knowledge, we are the first to also show that a higher probability

of a liquidity shock for short-horizon investors also affects liquidity premia for long-term

securities. Hence, even firms that issue long-term bonds might be affected by shocks to

institutional investors who hold short-term debt to a similar extent as firms with short-

term debt. This mechanism implies that liquidity risk management of investors with

short investment horizons (e.g., liquidity buffers for banks under Basel III, or for mutual

funds under the Investment Company Act) might increase financial stability for the entire

economy.
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Chapter 5

Summary and Outlook

In this thesis, we analyze how to measure and price illiquidity in bond markets.

In Chapter 2, we comprehensively compare all commonly employed liquidity measures

based on intraday and daily data for the U.S. corporate bond market. We find that

high-frequency measures based on intraday transaction data are very strongly correlated

implying that previous results should be robust regarding the chosen measure. Most low-

frequency proxies based on daily data generally also measure transaction costs and price

impact well. When using a daily liquidity proxy, the best choices for effective transaction

costs are the high-low spread estimator from Corwin and Schultz (2012), Roll (1984), and

a measure based on Gibbs sampling introduced by Hasbrouck (2009). When only daily

data on quotes is available, bid-ask spreads based on executable quotes should be preferred

over data from Bloomberg’s Generic Quote (BGN). To measure price impact, the adapted

version of the high-low measure wins most comparisons, followed by the low-frequency

Amihud (2002) measure. However, the interpretation of price impact in bond markets is

difficult as larger sizes, in contrast to stock markets, often trade at more favorable prices.

Chapter 3 analyzes the term structure of liquidity premia as the difference between

the yield curves of two major bond segments that are both government guaranteed but

differ in their liquidity. We show that its characteristics strongly depend on the economic

situation. In crisis times, liquidity premia are higher with the largest increase for short-

term maturities. Moreover, their reaction to changes in fundamentals is only significant

during stress: Premia of all maturities depend on the availability of arbitrage capital as

a proxy for liquidity supply. In contrast, liquidity demand only impacts short maturities.

Therefore, calibrating risk management models in normal times underestimates illiquidity

risk and misjudges term structure effects.
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Chapter 5. Summary and Outlook

In Chapter 4, we develop an equilibrium model to analyze the impact of market frictions

on trading volume and liquidity premia for finite maturity assets when investors differ in

their investment horizons. In equilibrium, short-horizon investors only invest in short-

term bonds and illiquidity spills over from short-term to long-term maturities. The model

predicts i) a hump-shaped relation between trading volume and maturity, ii) lower trading

volumes of older compared to young assets, iii) an increasing liquidity term structure when

considering ask prices, and iv) a liquidity term structure from bid prices that is decreasing

or U-shaped. We verify these predictions empirically using data for U.S. corporate bonds.

Our results lead to interesting starting points for future research. Regarding the mea-

surement of liquidity, it would be interesting to analyze other OTC markets, e.g., CDS or

swap markets. However, in contrast to the U.S. corporate bond market, where transaction

level data is publicly available, data for many other OTC markets is not available at all

or only available on a proprietary basis.54 It is, however, likely that the quest for trans-

parency in response to the recent financial crisis leads to new data sources that could be

exploited for future research endeavors in that direction.

With respect to the dependence of liquidity premia on the economic environment, it

would be interesting to simultaneously model the yield curves of illiquid and liquid bonds

within an integrated and arbitrage free macro finance model (see Ang and Ulrich, 2012,

for a macro finance model with only liquid bonds and equity). Within such a model, the

risk free yield curve and the term structure of liquidity premia could depend on forecasts

for inflation and real output as well as central bank interventions modeled with the help of

a Taylor (1993) rule. Another promising approach is to analyze dependencies of liquidity

premia in different markets, e.g., U.S. and European bond and stock markets. The better

understanding of spill-over effects between different markets could potentially help to

curtail and dampen future liquidity stess periods and thus help to prevent global liquidity

crises like the financial crisis of 2008.55

Regarding possible extensions of our equilibrium framework, it would be interesting to

incorporate the risk of changing interest rates or credit risk into the model. For that, it

would be reasonable to abandon the assumption of risk neutral investors. Both credit and

interest rate risk could potentially impact short- and long-horizon investors differently

and thus interact with our liquidity clientele effect. Further challenging extensions of

54So for example the Depository Trust & Clearing Corporation (DTCC) collects data on CDS trans-
actions settled over their platform (see, e.g., Gündüz, Nasev, and Trapp, 2013).

55All of these issues are further explored within an ongoing project funded by the German Research
Foundation (DFG). The working paper Schuster and Uhrig-Homburg (2014), which forms the basis for
Chapter 3 of this thesis, is an outcome of this project.
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our equilibrium model are to endogenize either bid-ask spreads or bond supply. On the

one hand, a meaningful endogenization of bid-ask spreads would require to specify the

optimization problem of dealers who set bid-ask spreads for different maturities dependent

on their inventory risk or other costs. On the other hand, the endogenization of bond

supply would require to model the decisions of bond issuers. Since they are the ones

who finally have to pay for the liquidity premium, they have an incentive to issue those

maturities with small liquidity premia. However, constraints like the matching of cash

flows from investment projects or fixed costs of bond issuances might prevent them from

issuing only bonds with very short maturities.
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Appendix A

Additional Information on Liquidity

Measures

A.1 Details on the Effective Tick Proxy

The (constrained) probabilities γ̂j used in Equation (2.17) are calculated as follows:

γ̂j =




min[max{Uj , 0}, 1] if j = 1,

min
[
max{Uj, 0}, 1−

∑j−1
k=1 γ̂k

]
if j = 2, 3, ..., J,

(A.1)

with Uj =





A1

B1
· F1 if j = 1,

Aj

Bj
· Fj −

∑j−1
k=1

Ojk

Bk
· Fk if j = 2, 3, ..., J,

(A.2)

and Fj =
Nj∑J

j=1 Nj

for j = 1, 2, ..., J. (A.3)

Fj and Nj give the empirical probability and number of prices, respectively, belonging to

the jth spread, where only positive-volume days are considered. With them, the uncon-

strained probabilities Uj are calculated as input for Equation (A.1). Aj gives the total

number of possible trade prices corresponding to the jth spread. Bj is the number of

so called special price increments, which are defined as prices that can be generated by

the jth spread, but not by any larger spreads in the price grid. Finally, Ojk defines the

number of price increments for the jth spread overlapping the price increments of spread

k, but not overlapping the price increments of any spread between spreads j and k. The
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following table reports Aj, Bj, and Ojk for our price grid:56

j Corresponding Aj Bj Ojk

spread

1 $0.001 1000 896

2 $0.01 100 80 O21 = 100

3 $0.05 20 8 O31 = 0, O32 = 20

4 $0.1 10 8 O41 = 0, O42 = 0, O43 = 10

5 $0.125 8 4 O51 = 4, O52 = 0, O53 = 2, O54 = 2

6 $0.25 4 2 O61 = 0, O62 = 0, O63 = 0, O64 = 0, O65 = 4

7 $0.5 2 1 O71 = 0, O72 = 0, O73 = 0, O74 = 0, O75 = 0, O76 = 2

8 $1 1 1 O81 = 0, O82 = 0, O83 = 0, O84 = 0, O85 = 0, O86 = 0, O87 = 1

56Please refer to www.kelley.iu.edu/cholden/examples.pdf and Holden (2009) for further details.
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Appendix B

Term Structure Estimations

B.1 Estimation of Zero Coupon Yield Curves

We estimate the term structure of zero coupon yields of BUNDs and KfW bonds using

the Nelson and Siegel (1987) approach. Within this approach, the entire term structure

information at time t is condensed in four parameters (β0,t, β1,t, β2,t, τt). The zero coupon

yield of bond class i ∈ {BUND,KfW} at time t for time to maturity T is given as

yit(T ) = βi
0,t + βi

1,t


1− e

− T

τi
t

T
τ it


+ βi

2,t


1− e

− T

τi
t

T
τ it

− e
− T

τi
t


 . (B.1)

We minimize the sum of squared differences between observed and Nelson-Siegel im-

plied yields for both segments and each week. To make the β-factors of both BUNDs and

KfWs directly comparable, we impose τBUND
t = τKfW

t = τt (see also Nelson and Siegel,

1987 or Kempf et al., 2012 who restrict τ to be constant over time t). To put equal weights

on both segments for the estimation of the common τt, we weight the sum of squared yield

differences with the inverse of the number of bonds in the respective bond class. We

exclude bonds with time to maturity less than three months since for them small errors

in the price would translate to large yield errors (see, e.g., Schich, 1997). Fitting errors

are presented in Table B.1. Root mean square errors (RMSE) are in the same order of

magnitude for all maturities and both segments and there is no systematic bias of yield

curve estimates.
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Table B.1: Fitting errors
This table shows the distribution of observations over different maturity segments, average
root mean square errors (RMSE), and mean estimation errors of the yield curve estimation.
Estimation errors are defined as yldobservedj,t −yldNelson−Siegel

j,t where yldobservedj,t is the observed

yield of bond j (calculated from its closing price) and yldNelson−Siegel
j,t is the theoretical yield

one gets when discounting all cash flows of the bond with the respective KfW or BUND
zero coupon yield (see Equation (B.1)). The maturity segments (short, medium, and long)
are chosen around our benchmark maturities of two, five, and ten years. The observation
period is February 14th, 1996 to September 29th, 2010.

Distribution of Average RMSE Mean estimation
observations error

KfW BUND KfW BUND KfW BUND

Short: T ≤ 3.5 yr. 49.2% 51.4% 8.7 bps 4.9 bps −0.3 bps 0.6 bps
Medium: 3.5 yr. < T ≤ 7.5 yr. 30.2% 24.7% 5.0 bps 4.4 bps 0.7 bps −1.2 bps
Long: 7.5 yr. < T 20.6% 24.0% 3.5 bps 6.7 bps −0.8 bps 0.1 bps

All 100.0% 100.0% 7.3 bps 5.5 bps 0.0 bps 0.0 bps

B.2 Estimation of Term Structures of Bid-Ask

Spreads

We compute the average relative bid-ask spread for each bond and each date from all

quotations provided in Bloomberg. To calculate a time to maturity dependent measure,

we estimate a linear relation between the duration of the bond and the bid-ask spread for

each segment and each date. With the estimated ‘term structure of bid-ask spreads’, we

are able to aggregate the information from all bonds of a segment in maturity dependent

bid-ask spreads similarly as for the estimation of the term structure of liquidity premia.

Bid-ask quotations are available only since 1999 for a majority of KfW bonds, two-sided

quotes for bonds of durations less than two years are only available after August 22nd,

2001 on a continuous basis.

B.3 Maturity Dependent Outstanding Volumes

We calculate the measures of the amount of bonds outstanding of the representative two,

five, and ten year KfW bond relative to the corresponding German government bond in

three steps. First, we adjust for the effect that as bonds age, an increasing fraction of
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their issue amounts are locked away in the portfolios of buy-and-hold investors (see, e.g.,

Warga, 1992). Ejsing and Sihvonen (2009) estimate for German government bonds that

the trading volume of an issue declines by eight percent each year. Therefore, we multiply

the outstanding volume of each bond with e−0.08·Age of the issuet . Second, we aggregate the

volume of all outstanding bonds from each segment into the outstanding volume of three

representative bonds (with two, five, and ten years time to maturity). More precisely,

we weight the volume of each bond with the influence it has on the zero coupon yield

of the respective maturity. To measure this influence, we calculate the sensitivity of a

small yield change of this bond on the zero coupon yield curve. The advantage of this

weighting scheme is the independence from arbitrarily selected time to maturity bucket

bounds. Additionally, it minimizes the time series variation resulting from bonds changing

buckets. Third, we divide the volume of each representative KfW bond by that of the

respective German government bond.
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Appendix C

Equilibrium Model for Liquidity

Premia and Trading Volume: Proofs

and Derivations

As discussed in Chapter 4, we set r = 0 in all derivations to simplify notation. However, as

discussed in the last paragraph of Section 4.2.3, our results generally hold also for positive

interest rates.

C.1 Derivation of Equilibrium Prices

For given limiting maturities τ and Tlim, we derive equations for P (T ). In total, there are

five different ranges: T ≤ min(τ, Tlim), τ < T ≤ Tlim, τ < Tlim < T , Tlim < T ≤ τ , and

Tlim < τ < T .

(i) For T ≤ min(τ, Tlim), the integral term of Equation (4.4) is zero. Using the first

order condition (4.5), we get

∆S(T ) =
λS · (1− e(λS−b)·T )

(1− P (T ) · eλS ·T ) · (λS − b)
− 1

!
= 0. (C.1)

Solving Condition (C.1) for P (T ) directly yields

P (T ) =
b · e−λS ·T − λS · e−b·T

b− λS

for T ≤ min(τ, Tlim). (C.2)
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(ii) For τ < T ≤ Tlim, using again the first order condition (4.5), Equation (4.4)

evaluates to

∆S(T ) =
λS · eλS ·T

P (T ) · eλS ·T − 1
·
∫ T

τ

P (x) · (1− s(x)) · e−λS ·(T−x) dx

+
λS · (1− e(λS−b)·τ )

(1− P (T ) · eλS ·T ) · (λS − b)
− 1

!
= 0. (C.3)

The solution of this integral equation is given as

P (T ) = e−
∫ T

τ
λS ·s(x) dx · P (τ) for τ < T ≤ Tlim, (C.4)

which can be verified by plugging in (C.4) into (C.3). It is instructive to note that (C.4)

corresponds to the market value of a defaultable bond with a default intensity λS and a

“recovery-rate” of (1 − s(T )) when using the “recovery of market value assumption” in

Duffie and Singleton (1999).

(iii) For τ < Tlim < T , we insert Equation (4.4) into the first order condition for the

long-horizon investors (4.6) and get

∆L(T ) =
λL · eλL·T

P (T ) · eλL·T − 1
·
∫ T

τ

P (x) · (1− s(x)) · e−λL·(T−x) dx

+
λL · (1− e(λL−b)·τ )

(1− P (T ) · eλL·T ) · (λL − b)
− 1

!
= ∆L(Tlim). (C.5)

By plugging in

P (T ) = e
−

∫ T

Tlim

(∆L(Tlim)+s(x))·λL
1+∆L(Tlim)

dx · P (Tlim) for τ < Tlim < T (C.6)

into (C.5), we show that (C.6) solves the integral equation.

(iv) For Tlim < T ≤ τ , we can ignore the first term of Equation (4.4) and then employ

again the first order condition for the long-horizon investors (4.6) to get

∆L(T ) =
λL · (1− e(λL−b)·T )

(1− P (T ) · eλL·T ) · (λL − b)
− 1

!
= ∆L(Tlim). (C.7)

Rearranging terms directly yields

P (T ) = e−T ·λL ·
(
1− λL ·

(
1− eT ·(λL−b)

)

(1 + ∆L(Tlim)) · (λL − b)

)
for Tlim < T ≤ τ. (C.8)
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(v) For Tlim ≤ τ < T , as in (iii), we obtain (C.5). Since Tlim < τ < T , we get the

solution

P (T ) = e
−

∫ T

τ

(∆L(Tlim)+s(x))·λL
1+∆L(Tlim)

dx · P (τ) for Tlim < τ < T, (C.9)

which we again verify by plugging it into (C.5), but now use ∆L(Tlim) from (C.7).

C.2 Clientele Effect

In this section, we prove that for the derived equilibrium prices and constant or monot-

onously increasing bid-ask spreads s(T ) with 0 < s(T ) < 1, investors do not have any

incentive to deviate from the assumed allocation of bonds, i.e., short-horizon investors

only buy short-term bonds and long-horizon investors only invest in long-term bonds.

This case corresponds to a clientele effect. It holds if there is a maturity Tlim such that

short-horizon investors have no incentive to invest in bonds with longer maturity:

∆S(T ) < 0 for all T ∈ [Tlim, Tmax], (C.10)

and long-horizon investors have no incentive to invest in bonds with shorter maturity:

∆L(T ) < ∆L(Tlim) for all T ∈ (0, Tlim], (C.11)

nor in cash, since they hold only bonds, i.e., ∆L(T ) > 0. Long-horizon investors have

higher marginal utility for all bonds than short-horizon investors, who have a marginal

utility of 0 for bonds with maturity Tlim, therefore ∆L(Tlim) > ∆S(Tlim) = 0. Hence, the

condition ∆L(Tlim) > 0 trivially holds.

Proof of Equation (C.11): We verify that ∆L(T ) is strictly monotonously increasing

in T for T ≤ Tlim and arbitrary Tlim, i.e., ∆
′
L(T ) > 0: For the case T ≤ τ , ∆L(T ) is given

as

∆L(T ) =
λL · (1− e(λL−b)·T )

(1− eλL·T · P (T )) · (λL − b)
− 1. (C.12)

By employing Equation (C.2) for P (T ), using 0 < b < λL < λS (see Section 4.2.3), and

substituting b = λL − c1 and λS = λL + c2 with c1, c2 > 0 and c1 < λL, ∆
′
L(T ) > 0
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simplifies to

e(c1+c2)·T · c1 + c2 > ec1·T · (c1 + c2). (C.13)

(C.13) holds for all T > 0 since for T = 0, both sides are equal (c1 + c2), and the first

derivative with respect to T of the left-hand side of (C.13) is larger than that of the

right-hand side, i.e.,

(c1 + c2) · c1 · e(c1+c2)·T > (c1 + c2) · c1 · ec1·T (C.14)

which is always true since c1, c2 > 0.

For the second case with T > τ , rearranging terms and using again 0 < b < λL < λS,

the condition ∆′
L(T ) > 0 simplifies to

(1− s(T )) ·
(
eT ·λL · P (T )− 1

)
−



(
1− e(λL−b)·τ

)
·
(
−λL − P ′(T )

P (T )

)

(λL − b)

+

(∫ T

τ

e−(T−x)·λL · (1− s(x)) · P (x) dx

)
·
(
eT ·λL · λL + eT ·λL · P

′(T )

P (T )

)
 > 0. (C.15)

We prove that (C.15) holds in two steps: In step (a), we show that (C.15) holds for T ↓ τ ,

i.e., we look at the right-sided limit of (C.15). In step (b), we then show that the first

derivative with respect to T of the left-hand side of (C.15) is positive. For (a), rearranging

Equation (4.1) yields57

s(τ) =
b ·
(
e(b−λS)·τ − 1

)

b · e(b−λS)·τ − λS

. (C.16)

Using again our substitutions b = λL − c1 and λS = λL + c2 with c1, c2 > 0 and c1 < λL

and plugging in (C.16) we can simplify (C.15) to

ec2·τ · c1 + e−c1·τ · c2− (c1 + c2) > 0. (C.17)

Again, it is easy to show that (C.17) holds for all τ > 0 by verifying that its left-hand side

equals 0 for τ → 0 and its first derivative with respect to τ is larger than 0.

57Note that for T > τ , we implicitly assume that τ exists. If τ does not exist due to bid-ask spreads
being to large, the already discussed case for T ≤ τ applies for all T .
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C.2. Clientele Effect

For (b), we rearrange (C.15) by employing (C.4) for P (T ) and substituting g(T ) =

T · λL −
∫ T

τ
λS · s(x) dx and g′(T ) = λL − λS · s(T ) to finally get

(
eg(T ) · P (τ)− 1

)
· (λS − λL)

λS

+

(
eλL·τP (τ)− 1

λS

+
e(λL−b)·τ − 1

b− λL

−
∫ T

τ

eg(x) · P (τ) · (λS − λL)

λS

dx

)
· g′(T ) > 0 (C.18)

and it remains to show that the first derivative with respect to T of the left-hand side of

(C.18) has to be positive:

(
eλL·τ · P (τ)− 1

λS

+
e(λL−b)·τ − 1

b− λL

−
∫ T

τ

eg(x) · P (τ) · (λS − λL)

λS

dx

)
· g′′(T ) > 0. (C.19)

As g′′(T ) = −λS·s′(T ) ≤ 0 for monotonously increasing s(T ) and−
∫ T

τ

eg(x)·P (τ)·(λS−λL)
λS

dx <

0 (since all factors in the numerator of the integrand are positive), a sufficient condition

for (C.19) to hold is that

eλL·τ · P (τ)− 1

λS

+
e(λL−b)·τ − 1

b− λL

< 0. (C.20)

Using once more our substitutions b = λL − c1 and λS = λL + c2 with c1, c2 > 0 and

c1 < λL and utilizing (C.2) for P (τ), (C.20) simplifies to

c1 · (λL − c1) + ec2·τ ·
(
c12 − c1 · λL +

(
ec1·τ − 1

)
· c2 · (c2 + λL)

)
> 0. (C.21)

As before, it is easy to show that (C.21) holds for all τ > 0 by verifying that its left-hand

side equals 0 for τ → 0 and its first derivative with respect to τ is larger than 0.

Proof of Equation (C.10): Inequality (C.10) directly follows from ∆′
L(T ) > 0 for

T ≤ Tlim. To see this, assume that for some parameter set (λS, λL, a, b, Tmax) and given

bid-ask spread function s(T ), the wealth of short-horizon investors is sufficient to buy all

bonds and the wealth of long-horizon investors goes to zero (W ∗
L → 0), so that T ∗

lim → Tmax.

Suppose now, that for the same parametrization (λS, λL, a, b, Tmax) and bid-ask spread

function s(T ), the wealth of long-horizon investors W+
L >> 0, so that T+

lim << Tmax. Then

it follows with the long-horizon investors’ first order condition (4.6) that

∆+
L(T ) = ∆+

L(T
+
lim) for all T ∈ (T+

lim, Tmax], (C.22)
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where we use (+) to indicate for which case ofW+/W ∗ ∆L(T ) applies. Moreover, it follows

that

∆+
L(T

+
lim) = ∆∗

L(T
+
lim) (C.23)

as P (T+
lim) is not affected from the choice of Tlim ≥ T+

lim (dependent on τ , but independent

of Tlim, either Equation (C.2) or (C.4) apply for P (T )). From the fact that ∆′
L(T ) > 0 for

T ≤ Tlim, we directly get

∆∗
L(T

+
lim) < ∆∗

L(T ) for all T ∈ (T+
lim, T

∗
lim = Tmax]. (C.24)

Putting together (C.22)-(C.24), we get

∆+
L(T ) < ∆∗

L(T ) for all T ∈ (T+
lim, Tmax]. (C.25)

From the last Inequality (C.25), it directly follows that

P+(T ) > P ∗(T ) for all T ∈ (T+
lim, Tmax] (C.26)

since lower prices P (T ) directly result in higher marginal utilities due to higher wealth

gains. Turning this argument around, we get

∆+
S (T ) < ∆∗

S(T ) for all T ∈ (T+
lim, Tmax]. (C.27)

Employing the short-horizon investors’ first order condition (4.5)

∆∗
S(T ) = 0 for all T ∈ (0, T ∗

lim = Tmax], (C.28)

it directly follows from (C.27) that

∆+
S (T ) < 0 for all T ∈ (T+

lim, Tmax], (C.29)

which equals Inequality (C.10) for Tlim = T+
lim. �
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C.3 Determination of Tlim

To determine Tlim, we exploit the market clearing condition for bonds with maturities

Tinit ∈ (Tlim, Tmax] that are held by long-horizon investors, i.e., we solve

WL =

Tmax∫

0

P (T ) ·
Tmax∫

T

a · YL (T, Tinit, Tlim) dTinit dT (C.30)

for Tlim. Here, YL(T, Tinit, Tlim) denotes the fraction of bonds with remaining maturity T

and initial maturity Tinit for a given Tlim that are held in the portfolios of long-horizon

investors, i.e.,

YL (T, Tinit, Tlim) =





0, if T, Tinit ≤ Tlim

e−λL·(Tlim−T ), if T ≤ Tlim and Tinit > Tlim

1, if T > Tlim .

(C.31)

For bonds with initial maturity Tinit > Tlim and current maturity T ≤ Tlim, a fraction of

e−λL·(Tlim−T ) is held by old long-horizon investors. Bonds with initial and current maturity

smaller than Tlim are not held by long-horizon investors, bonds with current and initial

maturity larger than Tlim are only held by long-horizon investors. To illustrate the me-

chanics of the market clearing argument for long-horizon investors, consider the extreme

case of WL → 0. For Equation (C.30) to hold, YL(T, Tinit, Tlim) has to be 0 for all T and

Tinit. Hence, Tlim → Tmax.

C.4 Optimal Investor Behavior

Bonds are sold immediately after a preference shock occurs if T > τ : To formalize

this requirement, we define the utility of an investor she receives if she sells a T -year bond

d time periods after she experienced a preference shock:

f(d) = (1− s(T − d)) · P (T − d) · e−b·d. (C.32)
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Bonds are always sold immediately, iff f ′(d) ≤ 0. For τ < T ≤ Tlim, this condition holds

iff

s′(T − d) ≤ (1− s(T − d)) · (b− λS · s(T − d)), (C.33)

i.e., if bid-ask spreads do not grow with maturity ‘too strongly’. Note, that for constant

bid-ask spreads s(T ) = s, (C.33) always holds since s′(T ) = 0, s < 1, and b−λS ·s > 0. The

latter condition holds as inserting b−λS ·s ≤ 0 into Equation (4.1) leads to a contradiction

(i.e., τ would not exist). Condition (C.33) also ensures that Equation (4.1) cannot have

more than one solution for τ .

For the other two relevant cases Tlim ≤ τ < T and τ < Tlim < T , it can be formally

shown that f ′(d) < 0 also holds when (C.33) applies. This follows intuitively from the

clientele-effect since P (T ) decreases slower for increasing T when T > Tlim compared to

T ≤ Tlim (due to long-horizon investors demanding lower compensation for holding longer

term bonds compared to short-horizon investors). Thus, the incentive to wait in the case

of a preference shock is reduced, compared to T ≤ Tlim (since gains from increasing prices

when the maturity decreases are smaller).

It is never optimal to sell bonds without preference shock: For short-horizon

investors, this is intuitively clear since they are indifferent between all bonds with matu-

rities between 0 and Tlim. Hence, selling one bond with T ∈ (0, Tlim], paying the bid-ask

spread s(T ), and buying another bond with Tnew ∈ (0, Tlim] can never be optimal. With

the same argument, long-horizon investors can never have an incentive to sell bonds with

maturity T ≥ Tlim. For them, selling bonds with T < Tlim without having experienced a

preference shock can only be optimal if the marginal utility through the early reinvestment

in a bond with maturity Tnew ∈ (Tlim, Tmax] plus the proceeds from selling the bond with

maturity T ∈ (0, Tlim) is higher than the marginal utility from the later reinvestment (at

maturity of the respective bond) plus the proceeds from the maturing bond if no prefer-

ence shock occurs, or the proceeds from the optimal decision given that a preference shock

occurs:

(∆L(Tlim) + 1) · P (T ) · (1− s(T )) > Pr(T̃L > T ) · (∆L(Tlim) + 1)

+

∫ T−min(T,τ)

0

λL · e−λL·y

︸ ︷︷ ︸
density function of the preference shock time

·(1− s(T − y)) · P (T − y) dy

+

∫ T

T−min(T,τ)

λL · e−λL·y · e−b·(T−y) dy. (C.34)
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Note that in deriving (C.34), we exploit the fact that marginal utility does not depend

on the invested amount (see Equation (4.4)), i.e., the optimal investment of an amount z

for a long-horizon investor leads to an expected utility of (1 + ∆L(Tlim)) · z. Rearranging
Equation (C.34) shows that long-horizon investors have no incentive to sell bonds without

having experienced a preference shock if

(1 + ∆L(Tlim)) · e−TλL +
e−T ·λL

(
−1 + e(−b+λL)·min(T,τ)

)
· λL

−b+ λL

+

∫ T

min(T,τ)

e(−T+x)·λL · λL · P (x) · (1− s(x)) dx− (1 + ∆L(Tlim)) · P (T ) · (1− s(T )) > 0.

(C.35)

It can be formally shown that Condition (C.35) holds for T ≤ τ . This is intuitively clear

since for T < τ , a sell is not optimal even in the case of a preference shock. As b is

an upper bound for the ask liquidity premium of an arbitrary maturity (and thus the

maximum return a selling investor could gain from her new bonds), the incentive to sell

is lower when no preference shock occurred. For constant bid-ask spreads s(T ) = s, it can

also never be optimal to sell prematurely for τ ≤ T < Tlim, as the relative wealth gain

−P ′(T )
P (T )

is higher than for T > Tlim. Since we have already shown that it is never optimal to

sell prematurely for T ≤ τ and T ≥ Tlim, it can also not be optimal to sell during the time

of highest wealth gains. In the most general case with increasing bid-ask spreads s(T ) and

for T ∈ (τ, Tlim), (C.35) has to be verified by plugging in prices P (T ) from Proposition 1.

C.5 Proof of Propositions 2 and 3

Proposition 2

The fact that seller initiated turnover is 0 for T < τ with τ > 0 follows directly from

Equation (4.1) as P (τ) · (1− s(τ)) < 1. The fact that seller initiated turnover is larger for

T < Tlim than for T > Tlim if τ < Tlim is a direct consequence from the clientele effect. As

elaborated in the main text, the second part of Proposition 2 also directly follows from

the clientele effect proven in Appendix B. �
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Proposition 3

Illiqask(T ) is monotonously increasing in T : To formalize this requirement, we

calculate its first derivative with respect to T and show that it is greater or equal to zero,

i.e.,

(
Illiqask(T )

)′
=

log(P (T )

T 2
− P ′(T )

T · P (T )
≥ 0. (C.36)

(i) For T ≤ min(τ, Tlim), plugging in prices P (T ) from Equation (C.2) into (C.36) and

multiplying with T 2 leads to the condition

b · T +
b · eb·T · T · (b− λS)

−b · eb·T + eT ·λS · λS

+ log

(
b · e−T ·λS − e−b·T · λS

b− λS

)
≥ 0. (C.37)

(C.37) trivially holds for T = 0. Moreover, for the first derivative with respect to T of the

left-hand side of (C.37) it holds

b · eT ·(b+λS) · T · (b− λS)
2 · λS

(b · eb·T − eT ·λS · λS)
2 ≥ 0 (C.38)

such that (C.37) is true for all T .

(ii) For T with τ < T ≤ Tlim, multiplying (C.36) by T and exploiting the relation
P ′(T )
P (T )

= −s(T ) · λS from (C.4) as well as − log(P (T ))
T

= Illiqask(T ) yields

Illiqask(T ) ≤ s(T ) · λS. (C.39)

s ·λS is the liquidity premium for the extreme case that bid-ask spreads s remain constant

and investors are forced to immediately sell after a preference shock (see Equation (C.4)).

As actual bid-ask spreads s(T ) can only decrease when the bond ages and investors have

the option to wait until maturity, s(T ) · λS is an upper bound for Illiqask(T ).

(iii) For T with τ < Tlim < T , multiplying again (C.36) by T and exploiting the relation
P ′(T )
P (T )

= − (∆L(Tlim)+s(T ))·λL

1+∆L(Tlim)
from (C.6) yields

Illiqask(T ) ≤ (∆L(Tlim) + s(T )) · λL

1 + ∆L(Tlim)
. (C.40)
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P forced(T ) = e−T ·Illiqforced with Illiqforced = (∆L(Tlim)+s)·λL

1+∆L(Tlim)
solves the indifference condition

λL · eλL·T

P forced(T ) · eλL·T − 1
·
∫ T

0

P forced(x) · (1− s) · e−λL·(T−x) dx
!
= ∆L(Tlim). (C.41)

Therefore, Illiqforced can be interpreted as the liquidity premium long-horizon investors

would demand for an artificial bond with the following characteristics: (a) only long-

horizon investors are allowed to invest in this bond, (b) the bond has constant bid-ask

spreads s, (c) investors are forced to immediately sell after a preference shock (see also

(C.5)) . As actual bid-ask spreads s(T ) can only decrease when the bond ages, short-

horizon investors are not excluded, and investors have the option to wait until maturity,
(∆L(Tlim)+s(T ))·λL

1+∆L(Tlim)
is again an upper bound for Illiqask(T ).

The same reasoning as for (iii) applies also for our case (v), i.e., Tlim ≤ τ < T .

(iv) For the last case of T with Tlim < T ≤ τ , we exploit that P (T ) is continuously

differentiable at T = τ (which can be shown using (C.8) and (C.9) for P (T ) as well as (4.1)

solved for s(τ)). If P (T ) is continuously differentiable at τ ,
(
Illiqask(T )

)′
is continuous at

τ (see (C.36)). Since we have already shown that
(
Illiqask(T )

)′
is larger or equal to zero

for T with Tlim ≤ τ < T (case (v)),
(
Illiqask(T )

)′ ≥ 0 then also holds for T = τ . To show

that
(
Illiqask(T )

)′ ≥ 0 for any T with Tlim < T ≤ τ , we introduce an artificial bid-ask

spread function ŝ(T ) ≤ s(T ) such that the corresponding τ̂ that solves Equation (4.1)

equals T . Now, we can again exploit case (v) with the artificial bid-ask spread function

ŝ(T ), i.e.,
(
Îlliq

ask
(T )
)′

≥ 0 for T with Tlim ≤ τ̂ < T . As prices do not depend on bid

ask spreads when investors wait when experiencing a preference shock (see also Equation

(4.7)), it holds that P (T ) = P̂ (T ) for T ≤ τ̂ < τ . Applying the same continuity argument

as above for
(
Îlliq

ask
(T )
)′

then proves the assertion for all T (= τ̂) with Tlim < T ≤ τ . �

Illiqask(T ) goes to zero for T → 0: Applying l’Hôpital’s rule and using (C.2) for

P (T )) directly leads to limT→0 Illiq
ask(T ) = limT→0

− log(P (T ))
T

= 0. �

Illiqask(T ) flattens at Tlim: We prove condition (4.11) separately for Tlim < τ ,

Tlim = τ , and Tlim > τ . For Tlim < τ , using (C.2) and (C.8) for P (T ), (4.11) transforms to

the condition

b · eb·Tlim ·
(
b ·
(
eTlim·λL − eTlim·λS

)
− eTlim·λL · λS + eb·Tlim · (λS − λL) + eTlim·λS · λL

)

(eb·Tlim − eTlim·λL) · Tlim · (b · eb·Tlim − eTlim·λS · λS)
> 0.

(C.42)
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Exploiting that the denominator of (C.42) is positive and using our earlier substitution

b = λL − c1 and λS = λL + c2 with c1, c2 > 0 and c1 < λL, (C.42) simplifies to

eTlim·c2 · c1 + e−Tlim·c1 · c2− c1− c2 > 0. (C.43)

We show that this condition holds by again verifying that the left-hand side of (C.43)

equals 0 for Tlim → 0, and its first derivative is strictly positive for Tlim > 0.

For Tlim = τ , exactly the same line of arguments as for Tlim < τ , but using (C.9)

instead of (C.8) proves the assertion.

For Tlim > τ , using (C.2) and (C.4), condition (4.11) evaluates to

s(Tlim) · λS >
λL · (∆L(Tlim) + s(Tlim))

1 + ∆L(Tlim)
, (C.44)

which always holds due to the clientele effect. To see why, note that due to the clientele

effect (see Equation (C.10)), short-horizon investors are not willing to invest in long-term

bonds. Thus, for a fixed T , the price P (T ) is lower if Tlim is below T compared to a

situation with Tlim above T . From that, it directly follows that the integrand in Equation

(4.7) for τ < T ≤ Tlim is larger than the integrand for τ < Tlim < T , which directly implies

(C.44). �

Illiqbid(T ) is decreasing in T at the short end: We use (4.10) and (C.2) to

calculate

(
Illiqbid(T )

)′
=

T ·
(
b+ b·eb·T ·(b−λS)

eT ·λS ·λS−b·eb·T
+ s′(T )

1−s(T )

)
+ log

(
(1−s(T ))·(b·e−T ·λS−e−b·T ·λS)

b−λS

)

T 2
.

(C.45)

Plugging in T = 0, the numerator of (C.45) evaluates to log(1 − s(0)), which is strictly

negative for s(0) > 0. Hence, limT→0

(
Illiqbid(T )

)′
= −∞. �
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