
Sensorimotor Learning for an Artificial

Body Schema on Humanoid Robots

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Stefan Ulbrich

aus Heilbronn-Neckargartach

Tag der mündlichen Prüfung: 10. Februar 2014

Erster Gutachter: Prof. Dr.-Ing. Rüdiger Dillmann

Zweiter Gutachter: Prof. Dr. Carme Torras

Deutsche Zusammenfassung

Menschen verfügen über die angeborene Fähigkeit, die Lage einzelner eigener Körperteile im
Raum zu schätzen, die Gestalt ihres Körpers durch Selbstexploration zu erlernen, Bewegungen
im voraus zu planen und darüber hinaus Bewegungen anderer Menschen zu erkennen und zu
analysieren. Diese Fähigkeiten setzen eine mentale Repräsentation des eigenen Körpers vor-
aus, die zugleich hochgradig anpassungsfähig als auch multimodal sein muss, um den Menschen
die Möglichkeit zu geben, zu planen und dynamisch Änderungen des eigenen Körpers auszu-
gleichen. Beobachten lassen sich diese Fähigkeiten bereits bei Kleinkindern, die direkt nach der
Geburt mit der Erkundung des eigenen Körpers beginnen und sich im Laufe ihrer Entwicklung zum
Erwachsenen an eine sich ständig verändernde Erscheinung anpassen, sowie in der Akzeptanz
künstlicher Prothesen, die sich bei Menschen mit amputierten Gliedmaßen beobachten lässt. Die
Mechanismen, die diese Fähigkeiten ermöglichen und tief im menschlichen Gehirn verankert sind,
werden in den Neurowissenschaften oftmals unter dem Begriff des Körperschemas (engl. Body
Schema) vereint (Head and Holmes, 1911). Die Leistung, die das Gehirn dazu erbringen muss,
ist beachtlich, denn bereits an den einfachsten, alltäglichen Handlungen ist das Körperschema
maßgeblich beteiligt. Insbesondere gilt dies bei der Verwendung von Werkzeugen. Es lässt sich
beobachten, dass unter Verwendung solcher Werkzeuge, die den Aktionsradius vergrößern (z.B.
ein Zeigestab oder auch ein Tennisschläger), der fremde Gegenstand direkt in das Körperschema
integriert und somit als Teil des eigenen Körpers wahrgenommen wird. Daraus resultiert, dass
dieser Gegenstand mit vergleichbarem Geschick zur Manipulation der Umwelt eingesetzt werden
kann. Das Körperschema trägt somit maßgeblich zur menschlichen Anpassungsfähigkeit und der
Möglichkeit mit der Umwelt auf vielfältige Weise zu interagieren bei.

Versuche, vergleichbare nützliche Eigenschaften auf künstliche Systeme wie einen Roboter zu
übertragen, waren bisher wenig erfolgreich. Humanoide Roboter, deren Erscheinungsbild, wie der
Name suggeriert, dem des Menschen nachempfunden ist, bieten eine ideale Grundlage, um die
Nachbildung eines Körperschemas zu erforschen. Das liegt zum einen daran, dass ihr Körper
dem Menschen ähnliche Möglichkeiten zur Interaktion mit der Umwelt bietet. Zum anderen erfor-
dert die Regelung des Roboters genaue Modelle, die – bedingt durch den komplexen Aufbau und
das Einsatzgebiet in menschenzentrierten Umgebungen – mittels klassischer Vermessung und
Kalibrierung nur schwierig zu ermitteln sind. Solche Modelle sind obendrein statisch, so dass ein
Roboter nicht Veränderungen seines Körpers ausgleichen oder Werkzeuge in die Repräsentie-
rung des Körpers einbinden kann.
Gegenstand der Forschung in dieser Arbeit sind daher geeignete Modellrepräsentationen und Al-
gorithmen, die Nachbildung eines Körperschemas auf humanoiden Robotern ermöglichen. Dabei

werden insbesondere die Arten von Modellen, die die direkte Kinematik und die inverse Dyna-
mik des Roboters abbilden und mit den Steuer- und Sensorsignalen des Roboters verbinden,
betrachtet. Das Lernen solcher Modellrepräsentationen wird als sensomotorisches Lernen (eng.
sensorimotor learning) bezeichnet. Zusätzlich zu der Möglichkeit der Verknüpfung verschiedener
Modalitäten sollen die Repräsentationen obendrein ein möglichst effizientes Lernen ermöglichen,
da mit steigender Anzahl von Bewegungsfreiheitsgraden des Roboters die Anzahl der Trainings-
beispiele, die zum Lernen benötigt werden, exponentiell steigt.
In dieser Arbeit wurden viele Methoden, die sich zum sensomotorischen Lernen eignen, unter-
sucht. Prinzipiell lässt sich jedes Verfahren zur allgemeinen Funktionsapproximation für das Er-
lernen der Relationen zwischen sensorischen Stimuli und Motorsignalen verwenden. Da jedoch
die Anzahl von Beobachtungen während des Trainings sehr groß werden kann, wird die Wahl
des Verfahrens entscheidend für den Einsatz auf einem humanoiden Roboter. Bei der Funktions-
approximation kann zwischen globalen und lokalen Lernen unterschieden werden. Modelle, die
für globales Lernen geeigneten sind, ermöglichen generalisierte Vorhersagen für nicht explorierte
Konfigurationen des Körpers, während beim lokalen Lernen Modelle verwendet werden, die zuver-
lässige Aussagen lediglich in gut erforschten Bereich des Konfigurationsraumes treffen können.
Prinzipiell erscheinen somit globale Verfahren als die geeignetere Wahl. Dennoch hat sich lokales
Lernen aufgrund der höheren Lerngeschwindigkeit und dem Fehlen geeigneter globaler Modelle
durchgesetzt.

Aufgrund dieser Begebenheit wurden in dieser Arbeit neue Modellrepräsentationen entwickelt,
die sich für die Beschreibung sowohl der direkten Kinematik als auch der inversen Dynamik ver-
wenden lassen. Diese Modelle können mit globalen Lernverfahren ermittelt werden und zeichnen
sich in Verbindung mit ebenfalls neuentwickelten Lernalgorithmen durch eine Effizienz aus, die
den Stand der Forschung übertrifft. Durch ihren Ursprung im computergestützten geometrischen
Design und ihr Einsatzgebiet wurden die Modelle kinematische Bézier Karten (engl. Kinematik
Bézier Maps, KBM) beziehungsweise dynamische Bézier Karten (engl. Dynamic Bézier Maps,
DBM) benannt. Das hervorstechendste Merkmal dieser Repräsentationen ist die Tatsache, dass
die Modelle linear in ihren Modellparametern sind und somit die Entwicklung besonders effizienter
Lernalgorithmen, die ebenfalls in dieser Arbeit vorgestellt werden, ermöglichen.
Da der Bedarf an Trainingsbeispielen während des Lernens jedoch exponentiell bleibt, wurde im
Rahmen dieser Arbeit ebenfalls ein Algorithmus entwickelt, der im Falle der direkten Kinematik
eine Reduktion der Komplexität zu Lasten einer komplizierteren Explorationsstrategie ermöglicht.
Basierend auf bereits vorhandenen Dekompositionstechniken, die das Lernproblem in einfachere
Teilprobleme zerlegen, wurde ein neues Verfahren entworfen, das weder Vorraussetzungen an
die Struktur des Roboters stellt, und somit allgemeiner ist, noch erhöhte Anforderungen an die
Sensorik des Roboters stellt. In Kombination mit diesem Verfahren ist es möglich, zusammen mit
den KBM die kinematische Struktur auch sehr komplexer Roboter mit vielen Freiheitsgraden zu
erlernen.

Alle in dieser Arbeit entwickelten und vorgestellten Verfahren wurden ausgiebig evaluiert und mit
dem Stand der Forschung verglichen. Dazu wurden sowohl Experimente in Simulation durchge-

führt, um die generellen Eigenschaften der Methoden zu untersuchen und zu belegen, wie auch
Experimente auf dem humanoiden Roboter ARMAR-III durchgeführt, die die Anwendbarkeit auf
einem echten System verdeutlichen.

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Contributions . 3
1.4 Outline . 5

2 Related Work . 7
2.1 The body schema in neuroscience . 7
2.2 The body schema in robotics . 11
2.3 Sensorimotor learning in robotics . 20

2.3.1 Fundamentals . 21
2.3.2 Taxonomy . 23
2.3.3 Artificial neural networks . 24
2.3.4 Statistical learning . 32
2.3.5 Probabilistic learning . 38
2.3.6 Decomposition . 46
2.3.7 Discussion . 49

3 Representations for kinematic and dynamic models . 53
3.1 Introduction . 53

3.1.1 Polynomial function approximation . 54
3.1.2 Primer on projective Geometry . 58
3.1.3 Rational Bézier form . 62

3.2 Kinematic Bézier Maps . 63
3.2.1 Formulation . 63
3.2.2 Modeling the inverse dynamics . 80

3.3 Summary . 86

4 Learning kinematic and dynamic models . 87
4.1 Linear least mean squares . 87

4.1.1 Normal equations . 87
4.2 Partial least squares . 89

4.2.1 The algorithm . 89
4.2.2 Learning KBM models with partial least squares 91

4.3 The δ -Rule . 93
4.3.1 The algorithm . 94

i

Contents

4.3.2 Initialization . 95
4.4 Approximation with nonlinear symmetry constraints 97

4.4.1 Symmetry and regularity in the control net . 97
4.4.2 Formulation of the error terms . 99
4.4.3 Summary . 104

5 Dimensionality reduction for sensorimotor learning . 105
5.1 Introduction . 105
5.2 Kinematics Decomposition . 106
5.3 Kinematics Composition . 109
5.4 Learning . 110

5.4.1 Independent learning . 110
5.4.2 Concurrent learning . 111

6 Evaluation in simulation . 117
6.1 Evaluation of learning kinematic models . 117

6.1.1 Setup . 117
6.1.2 Linear least mean squares . 121
6.1.3 Symmetry constraints . 123
6.1.4 Partial least squares . 126
6.1.5 Incremental learning . 128

6.2 Evaluation of learning dynamic models . 129
6.2.1 Setup . 129
6.2.2 Batch learning . 129
6.2.3 Incremental learning . 133

6.3 Decomposition . 133
6.3.1 Offline learning . 135
6.3.2 Online learning . 138

7 Evaluation on a humanoid robot . 141
7.1 Data acquisition . 142

7.1.1 Setup . 142
7.1.2 Data sets . 143
7.1.3 Analysis of the data . 145
7.1.4 Evaluation of partial least squares . 147

7.2 Evaluation of the initialized incremental learning . 149
7.3 Conclusion . 152

8 Conclusion . 155
8.1 Contributions . 155
8.2 Outlook . 157

A Naming conventions . 159

ii

Contents

B Software . 161
B.1 The robot modeling tool . 161
B.2 The Tracking Studio . 163

iii

1. Introduction

1.1. Motivation

The body schema Human beings possess a natural unconscious awareness which enables them to learn

and explore their bodies from pure self-observation, to plan motions, and even to recognize and analyze

the movements of others individuals. The mental representation of the own body is highly adaptable and

allows us humans to dynamically compensate for changes of our body. This amazing phenomenon can be

observed in newborns that already begin to explore their bodies, in the adaptation to growth during human

development or in how amputees manage to handle their prosthesis. The mental representation of the own

body within the cerebral system is called the body schema (Head and Holmes, 1911).

Even in the most trivial motoric day-to-day actions, the body schema is involved. In particular, this includes

handling tools. In such cases where the desired effect of tool use is the extension of the own body and its

action space (when using a rake for instance), the tool literally becomes incorporated into the body schema

(“makes it disappear from the immediate awareness”1). This phenomenon grants an agility similar to as if

the tools were a real part of the body. The remarkable human ability to acquire and maintain a coherent

body schema leads to a high degree of adaptability and autonomy and facilitates sophisticated interaction

with the environment. To date, a comparable cognitive skill could not successfully be recreated in artificial

systems such as robots.

Humanoid robots As the name suggests, humanoid robots are directly modeled after the human body

and consequently possess an embodiment that intentionally has a great resemblance to the human appearance

(see Figure 1.1). It is especially this shape that makes these robots appear ‘human’ and raises the expectation

of human-like behavior and cognition. It also opens the possibility to move and interact in our environment

the same way as humans do. However, this versatility comes at the price of high complexity. The control

of many degrees of freedom (DoF) implied by the humanoid shape is difficult to handle. For instance,

calculating the joint configuration to a given shape (the inverse kinematics) becomes a challenging task with

infinitely many solutions as human limbs are composed of redundant joints.

In addition to that, classical calibration of such mechanisms can be extremely expensive and time-consuming

requiring sophisticated instruments. Today, a robot still cannot perform a calibration all by itself as it lacks

the necessary adaptability. Relying on classical techniques leaves it unaware of a possibly continuously

changing body structure and incapable of adaptation—a basic property that humans rely on already from on

the very beginning of their early development. Even though the body of a humanoid robot does not develop,

1Nabeshima et al. (2007)

1

1. Introduction

(a) ARMAR-III. Source: (Asfour et al.,
2006)

(b) iCub.
Source: (Metta et al., 2008)

(c) HRP-4C.
Source: (Kaneko et al., 2009)

(d) Roboy.
Source: awtec, 2012

(e) ARMAR-4. Source: (Asfour et al.,
2013)

Figure 1.1.: Assortment of humanoid robots.

it undergoes many changes throughout its lifetime. This often occurs after repair or may be the result of wear

and tear in tendon driven joints for instance. Another example is handling a tool—the dynamic connection

between a complex hand and arbitrary tools can neither be predicted during the design stage nor be planned

beforehand.

Artificial body schema The examples above motivate the development of cognitive mechanisms which

eventually will manifest in an artificial body schema. where machine learning is used to acquire the neces-

sary sensorimotor skills. This is a challenging task, however, and the learning problem becomes critically

complex when confronted with the high number of independent degrees of freedom that a humanoid robot

typically possesses. The development and evaluation of suitable and efficient methods for learning and di-

mensionality reduction is an essential step towards the establishment of an artificial body schema for greater

autonomy of humanoid robots.

2

1.2. Problem statement

1.2. Problem statement

The biological body schema is multimodal which means that it relates multiple sensor and motor control

signals to each other. The different sensor modalities can be hereby divided into two categories: i.) Extero-

ception, the perception of the outside world, reacts to stimuli outside the body (for instance, vision, touch,

audition and forces). ii.) Proprioception denotes the perception of the own body state, for instance muscle

tension or joint positions on a robot. As such, they are closer related to the motor control signals. Attempts

to recreate the body schema on robots by means of machine learning mostly consist of constructing map-

pings between the high-dimensional spaces of these signals—the so called sensorimotor maps. The creation

of sensorimotor maps usually refers to supervised and continuous function regression that learns from ob-

servations in form of proprioceptive input and exteroceptive output values. An example of a sensorimotor

relation is the forward kinematics—the most basic and most important aspect of the body schema. This is

the relation between the visually perceived state of the body, the position of the end-effector for instance,

and the respective motor control signals or joint angles as perceived by the proprioception.

In contrast to classical approaches, which either involve extensive measurement of the robot’s kinematics

and dynamics or rely on possibly inaccurate or distorted models from computer aided design (CAD), learn-

ing means a more flexible alternative that does not require manual modeling and therefore grants a much

higher degree of autonomy. However, the achievable accuracy of the models depends on the exploration and

the associated quantity of observable training samples such that there is always a tradeoff between accuracy

and autonomy: In case of an industrial robot, accuracy is the highest priority. In contrast, a humanoid robot’s

purpose is the autonomous interaction in a human-centered environment where precision is less important.

In principle, many nonlinear function regression algorithms are potentially well suited to learn nonlinear re-

lations between sensor stimuli and motor signals. However, the number of observations necessary to learn an

accurate representation is often exponential in the number of sequential degrees of freedom. The right choice

of learning algorithm then becomes crucial: Local regression quickly produce accurate local representations

but generalizes poorly in unexplored regions while global regression and model-based approaches gener-

alize well but are notoriously slower. The ability to incrementally update the sensorimotor map is also a

necessity for meeting the requirement of online adaptability, that is, to learn during application.

1.3. Contributions

This work contributes to the implementation of artificial body schemas on humanoid robots that replace

classical modeling, calibration, and system identification methods. Therefore, novel computational mod-

els are proposed and evaluated that are especially designed for sensorimotor maps, and suitable learning

algorithms are adapted and newly developed that exceed current state-of-the-art techniques with respect

to precision and learning from few examples. In addition, an effective novel approach for dimensionality

reduction is proposed. The main contributions of this thesis are summarized as follows:

3

1. Introduction

• Representations for kinematic and dynamic models
The main contribution of this work are novel methods for the representation of kinematics and dynamics

such that their model parameters can be easily determined.

i.) The Kinematic Bézier Maps (KBM) are models for machine learning created in this thesis. They

are derived from projective geometry and have an inductive bias that specializes them to combina-

tions of trigonometric functions. This makes them predestined as models for learning the forward

kinematics (FK) of serial robot manipulators with only rotational joints which includes humanoid

robots. Learning creates a mapping from the configuration space to a manifold that describes all

possible end-effector positions. The most prominent property of the KBM is that they represent this

mapping as a linear combination of spatial points (that is, the model parameters). Experiments with

a humanoid robot show that machine learning using the KBM perform better than the state-of-the-

art. They require fewer examples for the same precision and predict values even for unexplored

regions.

ii.) In addition, the concept of the KBM is transferred to learning the inverse dynamics of robotic sys-

tems. Starting from the Lagrangian formulation of the equations of motion, the KBM are modified

to represent the components that influence the joint torques necessary to achieve or maintain a given

state of the dynamic system. The model has a significantly higher number of parameters and learning

the inverse dynamics is slower compared to learning the FK but still benefits from the linearization

of its target function.

• Learning kinematic and dynamic models
The most prominent property of the KBM is the linearization of complex sensorimotor relations and it

facilitates the adaptation and creation of very efficient learning algorithms:

i.) Linear least squares methods are adapted to build models from given data sets in a single step (Batch

learning). They are capable of building exact models if there is no sensor noise. For instance, in

simulation, these models are exact representations of the sensorimotor relation. However, some of

them also are sensible to sensor noise which leads to overfitting which has to be compensated by

redundant training samples. Therefore, a more sophisticated regression technique has been adapted

for learning with the KBM.

ii.) Incremental learning applies the δ -rule usually known for learning single-layer artificial neural

networks to a previously learned model. This results in instant and mainly local adaptation to

alterations of the body but learn much slower compared to batch learning. However, they are less

prone to overfitting and allow the adaptation of initial models obtained from simulation on real

hardware.

iii.) nonlinear symmetry optimization is a more complex and novel algorithm that enforces symmetry

constraints of the KBM models during learning which greatly reduces the risk of overfitting to

adverse training data.

4

1.4. Outline

• Dimensionality reduction through decomposition

Independently of the chosen machine learning method, the problem of sensorimotor learning remains

exponential. The complexity, however, can be influenced by an exploration strategy—at least so in the

case of the forward kinematics. This strategy implements a novel decomposition technique developed

in this thesis that, unlike previous work, neither restricts the kinematics nor requires additional sensors.

The kinematics is decomposed into a lateral and a proximal partial kinematics preferably of the same

length which have to be successively learned. This reduces the dimension of input spaces of both partial

kinematics and reduces of the number of required training samples to its square root rendering learning

more applicable.

1.4. Outline

This thesis documents the contributions to sensorimotor learning which is essential for the implementation

of an artificial body schema on humanoid robots. Therefore, the second chapter gives an overview over

the related work including neuro-scientific research, developmental robotics and tool use in robotics and

presents the state-of-the-art in sensorimotor learning. The next chapters present the contributions to this field

in detail—the novel models for sensorimotor learning in chapter three, the associated learning algorithms

in chapter four and, in chapter five, the approach for dimensionality reduction. In chapter six, the concepts

and results of the evaluation both in simulation and with experiments on a real humanoid platform are

documented. The work concludes in chapter seven with a discussion and summary of the presented methods

and their evaluation and an outlook on future work.

5

2. Related Work

In this chapter, all work related to the creation of an artificial body schema for robots as well as closely

related topics will be presented and discussed. In the first section, an overview over related research in neu-

rosciences is be given. Afterwards, a history of conceptual work of modeling a body schema for robots on a

higher abstraction level is given. This refers to the work that does not directly focus on modeling the mech-

anisms in the brain that relate high-dimensional sensor to motor signals but rather on the design of complete

architectures or cross-modality relations. The topic of tool use in robotics is also addressed in this section as

well as a summary on traditional approaches preceding the idea of body schema learning such as modeling,

calibration and parameter estimation. Section three exhibits the state of the art in sensorimotor learning.

As this thesis concentrates on the development of novel sensorimotor learning algorithms, this section is the

most important and therefore most comprehensive in this chapter. In there, all relevant methods are analyzed

and compared and the relevant design decisions affecting the development of this thesis are discussed. It

provides the fundamental terms and ideas and therefore, it contributes heavily to the understanding of the

methods presented in subsequent chapters.

2.1. The body schema in neuroscience

The execution of coordinated and complex actions requires an awareness of the current state of the body

that humans naturally possess. It allows us to interact with our environment and open doors, for instance,

even without the need for visual feedback. In this example, we can reliably estimate the pose of our hand

and other body parts. Further, this ability has to adapt to a constantly changing embodiment, for instance

during human development and after injury or impairment. It is most remarkable that, when handling a tool

that extends the reach, it disappears from the immediate awareness (Nabeshima et al., 2007) after a short

period time and can be handled with the same dexterity as if it were one with the body. Although human

capabilities in tool use are unmatched, this ability is not unique to humans only. They can be observed in

many animals obviously ranging from primates to animals not particularly known for such highly developed

cognitive abilities such as birds and even invertebrates (for a review, see Shumaker et al., 2011) (see Fig-

ure 2.1).

In the human brain, the awareness of the body requires dynamic representations of the embodiment that

contain information on the hierarchical arrangement of body parts (body topology) and their relative posi-

tions. They also have to integrate feedback from many different senses and motor commands into a coherent

mental image of the body (Haggard and Wolpert, 2005). These neural representations and their nature have

been the subject of research in neuroscience already for a long time. Head and Holmes (1911) first intro-

duced the concept of body schema for the action-related and unconscious awareness of the body, while the

7

2. Related Work

(a) Chimpanzee. (Credit: Mike Richey) (b) Corvus moneduloides.
(Credit: Dr. Simon Walker)

(c) Veined octopus.
(Credit: Nick Hobgood)

Figure 2.1.: Tool use in the animal kingdom.

more conscious and mainly visual perception but also emotional perception of the own appearance is often

referred to as body image (Paillard, 1999; de Vignemont, 2010). However, there exists no clear definition of

the body schema and its interpretations vary throughout different disciplines. It is out of the scope of this

thesis to report the comprehensive scientific literature on the body schema in detail and the interested reader

is referred to the reviews in (Berlucchi and Aglioti, 2009; Maravita and Iriki, 2004; Maravita et al., 2003).

This section focuses on the properties of human body awareness and selected evidence for its existence, and

adopts the characterization proposed by Haggard and Wolpert (2005) (who preferred the term body scheme

to prevent ambiguity). The characterization is based on properties supported by evidence observable in le-

sion patients exposing a dysfunctional body schema (after a stroke for instance) and experimental studies

with humans and monkeys.

Spatial encoding: First, the body schema obviously is spatially encoded as it grants an awareness of the

position of the body parts in the external 3D space. Therefore, it integrates tactile and proprioceptive

sensations (Head and Holmes, 1911) and makes stimuli on the body surface localizable in the external

space. Gallagher and Cole (1995) reported the case of a patient with peripheral deafferentation, that

is, the loss of proprioceptive and tactile sensation below the neck. Although the patient could partially

recover control of its body when relying heavily on visual feedback, even blind people possess better

sensorimotor control emphasizing the importance of the tactile and proprioceptive senses.

Modularity: Another important property is the modularity of the body schema. Stamenov (2005) sug-

gested that the body schema is not a single wellformed pattern but rather a set of several connected

groups of neurons that represent opportunistically learned manifolds that are distributed over different

regions in the brain. There also is evidence for the encoding of individual body parts in different neural

modules (Tessari and Rumiati, 2002). Disorders in the body schema that affect only the fingers (fin-

ger agnosia in this case, the inability to name and identify the own fingers) indicate the existence of a

separate ‘finger schema’ (Benton, 1959). Surprisingly, the simultaneous occurrence of finger agnosia,

dyscalculia (impairment of understanding arithmetics), left-right confusion and agraphia (the inabil-

ity to write despite mental and sensorimotor ability) in the Gertmann syndrome (Gerstmann, 1942)

is interpreted as evidence for a relation between the modularity of the body schema and abstract and

symbolic thinking in general (Haggard and Wolpert, 2005).

8

2.1. The body schema in neuroscience

five minutes of food retrieval with the handheld rake
(Figure 1c). Bimodal neurons with the above properties
were named ‘distal type’ neurons. Other bimodal neurons
with sRFs located around shoulder/neck (named ‘proximal
type’, Figure 1e) had vRFs covering the space reached by
the arm (Figure 1f). After tool-use, these proximal vRFs

expanded to code the space now accessible with the rake
(Figure 1g).

Such vRF expansions may constitute the neural
substrate of use-dependent assimilation of the tool into
the body schema, suggested by classical neurology [1] (see
also Box 2). Hence, any expansion of the vRF only followed

Box 1. Genetic recruitment of evolutionary precursors?

Before Köhler’s classical findings in chimpanzees [59], tool-use was
believed to be peculiar to humans. It is still the case that evidence for
consistent tool-use is rather fragmented in lower primates and even in
great apes other than chimpanzees [60]. Old world macaque monkeys
seldom use tools. In particular, the existence of spontaneous use is
uncertain, whereas this is more frequent in New world monkeys [60].
Suchsporadic emergenceof tool-use indifferentprimates ledus to think
about the mental and neural substrates that are essential for tool-using
behaviours. A keyquestion iswhether there are differences in the neural
machinery among different primates corresponding to their tool-use
abilities, or whether they could show the ability to use tools whenever
particular conditions are met.

Although Japanese macaques rarely use tools spontaneously in the
wild [60] they couldbe trained touse a rake to retrievedistant food [30] –
the evidence for this has so far been confirmed inover thirty individuals.
The training took about two weeks (never less than this) to accomplish.
During the learning phase, augmented expression of immediate-early-
genes [50], neurotrophic factors (BDNF, NT-3) and receptor trkB [51,52]
were observed. This expression might represent a genetic indicator of

tool-use learning, as it was found selectively in the intraparietal area,
which has been shown to contain bimodal neurons with expanding
visual receptive fields with tool-use (see main text), and was no longer
found once the learning was complete. The above training-dependent
genetic expressionmight induce a reorganization of the neural circuitry
with the appearance of novel bimodal somatosensory-visual response
properties in some neurons [61,62]. This, in turn,might be the substrate
for coding a modified body representation following tool-use.

Given the above evidence, we could imagine that some precursor
(or basic buildingblock)of human tool-use abilitywasalready furnished
in the brain of our common ancestor with monkeys, and was pushed to
full expression by some sort of ‘evolutionary pressure’. Demanding
training might mimic such a pressure and activate some silent
neurogenetic mechanisms. Similar genetic mechanisms could be
present for some other functions, not spontaneously expressed in the
wild. Exploring this issue would not only shed light on developmental
and evolutionary aspects of higher cognitive functions in primates, but
might provide an intriguing viewpoint on the potential, unexpressed
faculties of the intact and brain-damaged human brain.

Figure 1. Changes in bimodal receptive field properties following tool-use. The somatosensory receptive fields (sRF) of cells in this region were identified by light touches,
passive manipulation of joints or active hand-use. The visual RF (vRF) was defined as the area in which cellular responses were evoked by visual probes (the most effective
ones being those moving towards the sRF). (a) sRF (blue area) of the ‘distal type’ bimodal neurons and their vRF (pink areas) (b) before tool-use, (c) immediately after tool-
use, and (d) when just passively grabbing the rake. (e) sRF (blue area) of ‘proximal type’ bimodal neurons, and their vRF (pink areas) (f) before and (g) immediately after
tool-use.

TRENDS in Cognitive Sciences

Proximal-type neurons

Distal-type neurons

(a)

(e) (f) (g)

(b) (c) (d)

sRF

sRF

Before tool-use After tool-use Passive holding

Before tool-use After tool-use

Review TRENDS in Cognitive Sciences Vol.8 No.2 February 200480

www.sciencedirect.com

Figure 2.2.: Source: (Maravita and Iriki, 2004), TRENDS in cognitive science

Update by movement: The brain updates the body schema when the body moves (it is “updated by

movement” (Haggard and Wolpert, 2005)) to maintain a representation that is always synchronous

and consistent with the current body state. Experiments supporting this property focus on special

bi-modal neurons that respond to proprioceptive information and visual stimuli localized within a

receptive field (a volume in the external space). Graziano and Gross (1993) showed that many bi-

modal neurons in the parietal lobe of the brain, which respond to visual stimuli close to one hand,

update the location of the receptive fields to follow the hand’s movement.

Adaptability: The most notable property of the body schema is its adaptability. As stated earlier, the

body schema gradually adapts to a growing body or incorporates tools in shorter time spans. Iriki

et al. (1996, 2001) showed that, during tool use, the receptive fields of bi-modal neurons in the brain

of Japanese macaque monkeys previously linked to the position of the hand (peripersonal space) ex-

tended towards the tip of the tool. A similar experiment was reported in (Maravita and Iriki, 2004)

that examined the distal visual receptive field (the area in external space where stimuli activate the

neurons associated to grasping). It was shown that this field was enlarged by the length of a tool

that the monkeys used once they had been trained to do so (see Figure 2.2). These experiments lead

to the theory that the tool itself became incorporated into the monkey’s own body schema. Similar

conclusions were drawn from experiments with human patients who suffered from brain damage or

phantom pain after having lost a limb. Although the methodology of the ground-breaking work of

Iriki et al. (1996) has been criticized by Holmes (2012), recent research confirms the plasticity of the

body schema and the peripersonal space (Canzoneri et al., 2013; Holmes, 2012) The observation that

the effects of tool use can still be observed after the tool has been laid aside (Cardinali et al., 2012)

further supports this theory. Maravita and Iriki (2004) provide an extensive review of the research on

the incorporation of tools into the body schema. The brain regions that are active during tool use can

be detected and localized by functional magnetic resonance imaging (fMRI) and position emission

tomography (PET). For a review, the reader is referred to (Lewis, 2006).

Apart from tool use, the plasticity could be observed in an experiment by Botvinick and Cohen

(1998)—the famous rubber hand illusion. Participants receive tactile stimuli on one hand which

is hidden from their vision. At the same time, they observe the same stimulus applied to a rubber

9

2. Related Work

replica close to the position of the real hand. After a short time, the participants had the illusionary

sensation to feel the stimuli on the rubber hand instead of on their own. They established a sense of

ownership. This impression is so strong that the participants experienced fear when they observed a

syringe close to the rubber hand (Armel and Ramachandran, 2003).

The limitations of the adaptability were investigated in an interesting experiment by Kilteni et al.

(2012). In virtual reality, the participants experienced a different embodiment with elongated arms

controlled by their real movements. They showed that the body schema easily adapted to virtual limbs

up to a length of three times of the length of the real body parts.

Supra-modality: In order to maintain a spatial representation of the current body state, the body schema

has to process various (and possibly redundant) sources of information from multiple senses such as

proprioception, hearing, vision and the somatosensory system (touch). This property is called supra-

modality or multisensory (Heed and Röder, 2012; Maravita et al., 2003; Lackner, 1988). For instance,

Rorden et al. (1999) showed with the rubber hand illusion that simultaneous visual and tactile stimuli

on the same body part amplify each other and hence are integrated into a single representation.

Coherence: While processing information from different sources with different biases for the integration

into a representation of the body, the brain optimally resolves discrepancies in these signals to obtain

a coherent body representation (van Beers et al., 2002). Lackner (1988) describes an experiment that

shows the capability of the brain to actively compensate discrepancies in the perception: A blind-

folded person had to touch his nose while his proprioception was actively distorted by mechanical

vibrations on the biceps tendon creating the illusion of an extension of the forearm. The subject’s

brain compensated the discrepancy by altering the perceived size of the subject’s nose to conserve

the information of the contact between the finger and the nose. Reversely, the opposite effect can be

generated by vibrations acting on the oponent tendons (Longo et al., 2009).

Ritchie and Carlson (2013) investigated afterimages during tool use. First participants of this exper-

iment had to adapt to darkness. A single flash of light then creates a long-lasting visual impression,

the so-called afterimages. When a limb is moved, it fades away much more quickly than the rest

of the image. This confirms the idea of a coherent body schema where the brain actively resolves

the discrepancy in the afterimage and the proprioception by manipulating the perceived image. This

experiment also supports the theory of tool incorporation as the tool disappears together with the limb

from the afterimage.

Interpersonality: Finally, the body schema is not only the representation of our own perceived body

but also enables us to recognize the body state of other individuals (interpersonality) and to analyze

their actions through observation. Experiments by Tessari and Rumiati (2002) and Reed and Farah

(1995) confirmed this theory by showing that observed actions can be better analyzed and recalled

by simultaneous imitation. The mirror neural system (MNS) are groups of neurons related to this

phenomenon. Their activity can not only be detected during motor actions but when these actions are

observed by other individuals. The effect is the strongest for actions that involve grasping and mirror

neurons seem to be strongly related to the canonical neurons which response to the recognition of

objects that require a specific grasp type (see Lopes and Santos-Victor, 2005; Murata et al., 1997).

10

2.2. The body schema in robotics

Stamenov (2005) proposed that the mirror neuron system is mainly responsible for the creation and

the interlinking of the modular body schema in the brain.

In sum, the body schema is a modular, coherent, adaptable awareness of our spatial configuration of the

body and that of other observed individuals. The development of an artificial body schema for humanoid

robots should therefore be driven by the reproduction as many of these characteristics as possible.

2.2. The body schema in robotics

The last section gave an impression of the cognitive abilities of humans to create and maintain action-

oriented representations of the own body and the resulting cognition that inspired researchers to try to

reproduce similar abilities on artificial systems. Over the last years, the development of artificial body

schemas has gained a lot of attention and led to its own field of research in robotics. This section reviews the

evolution and progress of related studies divided into traditional approaches such as calibration and param-

eter estimation, the conceptual design of cognitive architectures, developmental robotics, and the closely

related tool use in robotics. These subjects were also addressed in a very comprehensive survey by Hoff-

mann et al. (2010) which is an excellent source of further information.

Traditional approaches At first, classical approaches of robot modeling, calibration and parameter es-

timation should be briefly mentioned here as they were the predominant methods before the emergence of

biologically inspired approaches and still are predominant in industrial applications and represent an enor-

mous field of research for themselves. As a predecessors to adaptive body representations, models of the

kinematics and dynamics of robot manipulators had to be created by experts that required detailed knowl-

edge on the structure and properties of the robots (Sciavicco and Siciliano, 2000; Craig, 2005). Because

such models are expressed as algebraic functions that directly reflect this knowledge, they are called ex-

plicit (Hoffmann et al., 2010). After the process of manufacture, the parameters of the models have to

be calibrated to compensate for production tolerances. The creation of accurate explicit models is expen-

sive with respect to manual work and measuring equipment but enable the precise control in the complete

workspace of the robot without the need for external perception. The biggest disadvantage, however, is that

they are static, that is, the robot has to be calibrated after every structural change (for instance, caused by

wear and tear). If explicit models are parameterized, the process of calibration can be made more flexible by

parameter estimation (Ljung, 2009) and autonomous self calibration (Bennett et al., 1991; Ma and Holler-

bach, 1996; Hollerbach and Wampler, 1996). This requires at least an additional source of perception (a

camera for instance) and reduces the cost as human intervention can be minimized. That way, even tools

can be integrated into the body representation (Hersch et al., 2008; Martinez-Cantin et al., 2010)

When robot systems grow more complex—especially in the case of humanoid robots—, explicit models

become intractable and the focus shifts from precision to flexibility. Biologically inspired methods such as

artificial neural networks (see Section 2.3.3) gain importance as explicit models are more difficult to obtain.

11

2. Related Work

The design parameters cannot explicitly be derived from such representations which is why they are called

implicit models.

(a) Bi-manual reaching. (b) Tool use. (c) Using a toy crane.

Figure 2.3.: The humanoid robot iCub learning complex tasks. Source: (Morasso, 2013)

Conceptual artificial body schemas One of the first to use the notion of the ‘body schema’ in

robotics were Morasso and Sanguineti (1995). They presented a non-parametric statistical technique closely

related to the self organizing feature maps (Morasso and Sanguineti, 1995) later presented in Section 2.3.3.

For control, the model could be combined with a potential field to solve the inverse kinematics. It was

extended by Stoytchev (2003) to be extendable for the incorporation of tools by representing the tooltip in

the coordinate frame of the end-effector. Very recently, Morasso (2013) and De Santis et al. (2013) asked

the questions “Do humanoid robots need a body schema” and “What is the use of the body schema for hu-

manoid robots?”. Less complex mobile robots (for instance, the Braitenberg vehicles (Braitenberg, 1986))

exploit their morphology to express complex, coordinated and adaptive behavior by purely reactive neural

circuits (Morasso, 2013). They consequently do not require a complex representation of their bodies. Hu-

manoid robots, on the other hand, have many redundant degrees of freedom that are much more difficult

to control and their universal embodiment requires a body schema for the same reasons as the human body

does in their opinion. In their work, they interpreted the body schema as a middle-ware between motor con-

trol and cognition. Goal-oriented actions that involve movement (‘overt actions’) rely as much on a model

of the body as ‘covert actions’, that is, actions that are not executed on the hardware and serve as simulations

for high-level planning.

Over the years, their research evolved into a comprehensive computational model for an artificial body

schema (Mohan et al., 2013; Mohan and Morasso, 2012; Mohan et al., 2011a,b, 2009; Mohan and Morasso,

2007) on the humanoid robot iCub (see Figure 1.1b). Their approach heavily relied on force-fields (‘passive

motion paradigm’ (Mussa Ivaldi et al., 1988) formalism) for the control in accordance with the equilibrium

point hypothesis (Feldman, 1966) that states that motion is controlled such that an equilibrium between all

muscular and environmental forces is maintained. That way, they could perform complex bimanual and

full-body actions even for complex tasks (see Figure 2.3) such as tool use. The transition between planning

in external space and execution in the configuration space is realized by first-order Taylor approximations

(Jacobians) that can be obtained from general function approximation by neural networks such as multilayer

perceptrons (see Section 2.3.3).

12

2.2. The body schema in robotics

(a) (b) (c)

Figure 2.4.: A probabilistic framework for learning an artificial body schema. Source: (Sturm et al., 2012)

Cabido-Lopes and Santos-Victor (2003) presented a complete architecture for the imitation and recognition

of gestures without a deeper understanding of their meaning. Their work was motivated by the idea that

traditional programming of humanoid robots is very inefficient and that the natural and intuitive interaction

should be a long-term goal in robotic research. The discovery of mirror neurons (see Section 2.1) used

both for the body schema and the recognition of body postures of other individuals drove the development

of sensorimotor maps for an anthropomorphic robot arm with four degrees of freedom. Therefore, they

used artificial neural networks (multilayer perception) and decomposed the learning into a sequence of

smaller learning problems (a similar concept as presented in Section 2.3.6) motivated by the increasing

abilities during human development (Metta et al., 2000). After learning in a phase of self-observation the

sensorimotor map could be used in combination with a viewport transformation to detect gestures shown

by a human teacher. Later work (Lopes and Santos-Victor, 2005) added context information about objects

motivated by canonical neurons (Murata et al., 1997) in the brain and iconic visual representations of hand

postures. That way, their recognition method was extended to detect action goals by the application of a

Bayesian network for classification.

Sturm et al. (2012, 2009) presented a probabilistic framework for learning a body schema of robots that

learned geometric relations between the observed poses (position and orientation) of a robot’s segments

in dependance of motor control signals (so-called ‘local models’) as well as learned the robot kinematic

topology, that is the arrangement and the type of its joints and segments. It allowed prediction and control

of the robot even in the presence of hardware failures. The structure of the robot is transformed into a fully

connected Bayesian network (Pearl, 1988) and local models were learned with Gaussian process regression

(GPR, see Section 2.3.5) for every possible combination of motor signals. As GPR is also a probabilistic

approach, it could be easily integrated into the optimization of the Bayesian network. The detection of

the optimal network topology boiled down to the search of a minimal spanning tree that discards local

models that were either too inaccurate (depending on the wrong motor signals) or too complex (depending

on irrelevant motor signals). This is depicted in Figure 2.4b for an industrial manipulator with four degrees

of freedom (Figure 2.4a). Local signals could depend on multiple motor control signals (spherical joints for

instance) but learning suffered from the curse of dimensionality for higher numbers.

13

2. Related Work

Figure 2.5.: Example of the ‘subjective body schema’ in (Hersch et al., 2008). On the left, the real (‘objective’) body
of the robot is shown while two images on the right show possible (‘subjective’) valid variants of the same
robot. Source: (Hersch et al., 2008)

The framework relied on multiple visual markers attached to the surface the robot’s segments (Figure 2.4c)

such that their pose could be detected by an external monocular camera (Fiala, 2005). Because of the

redundancy induced by the many markers, this approach scaled well to many degrees of freedom (in here,

seven) and bears a great resemblance to the work of Ruiz de Angulo and Torras (2008). Although, the

markers did not have to be visible at all times and it was possible that more than one degree of freedom lied

in between them, this is still a requirement that cannot be met on most humanoid platforms: Learning from

self-observation on humanoid robots means relying on visual perception of the own body by stereo cameras

mounted in the head such that pose detection in general and on more than one segment is often not viable.

Hersch et al. (2008) took a different approach. Unlike those of Sturm et al. (2012), their biologically moti-

vated body schemas for humanoid robots required the kinematic topology to be static and known in advance,

that is, the number of joints and in which order they are connected. On the other hand, the body represen-

tation could be learned by self-observation as only the end-effector position had to be observable during

training. Unlike implicit models found in classical machine learning, the method applied here obtained

the explicit 6D parameters of the rigid body transformations between all body parts in an gradient-based

optimization process—the iterative estimator of rigid body transformations (IERBT) (Hersch et al., 2011).

The authors stated that this is conform to biological findings suggesting that the sensor information is par-

tially coded in frames of reference lying in the body parts (Graziano and Gross, 1993) and would enable the

integration of tactile information into the same representation in future work. There is an infinite number

of possible rigid body transformations that explain the training data and it could be determined to which

solution the optimization would converge. The authors referred to this as a ‘subjective body schema’ (see

Figure 2.5). Further, the IERBT algorithm is not guaranteed to always converge to a valid solution for

more than one degree of freedom. Above all, convergence was very slow and required numbers of training

samples in the order of 1 · 106. This rendered its application on a full humanoid robot inapplicable as the

exploration would require days to collect the millions of necessary samples according to the authors. As

shown later, implicit models as used in machine learning can find such solutions much faster but cannot

construct the intermediate frames of references. To speed up learning, the authors suggested the application

of intermediate markers on the robot arms that would also reduce the ambiguity of possible solutions. This

suggestion is very similar to the work of Ruiz de Angulo and Torras (2008).

14

2.2. The body schema in robotics

The work of Martinez-Cantin et al. (2010) improved the idea of Hersch et al. by using a more sophisticated

optimization method—the recursive least squares (RLS) estimator—to calculate the rigid body transfor-

mations between consecutive joints. Moreover and in contrast to exploration by motor babbling (random

movements), they presented a probabilistic active learning strategy for the selection of joint configurations

during exploration based on the potential gain of information. In a Bayesian approach, the probability den-

sity of a model parameter given an observed position and respective joint angles was linearized and the

model parameters were updated by the RLS accordingly. The constantly refining model could then be used

to decide the direction of movement during exploration. They compared the results from experiments on

a humanoid platform with the approach of Hersch et al. (2008) and showed that RLS in combination with

active learning clearly outperforms the gradient-based optimization. Yet, both methods rely on knowing the

arrangement of the joints and require significantly more training data than learning algorithms with implicit

models (see Section 2.3).

Yoshikawa et al. (2002) had a completely different interpretation of an artificial body schema. They did not

focus on learning the forward model of the kinematics or the dynamics but rather on learning the causal

relationship between multiple sensor modalities. This was motivated by the apparent observation that if the

robot touches itself, the visual observable distance between the involved body parts had to be very small.

Following the principles in (Asada et al., 2001), the robot had to acquire all necessary kinematics and spatial

properties from self-observation without any prior knowledge. Therefore, they combine tactile sensations,

proprioception and vision into a ‘cross-modal map’ as isolated senses alone cannot be interpreted without

prior knowledge of the body structure because of the missing frames of reference. On their robot, they

attached tactile sensors to the limbs and the hand that provided binary contact information on contacts

and the position of the body parts were localized by stereo cameras in the robot’s head. The cross-modal

map itself was a neural layer where each neuron represented a sensor signal which was quantized in the

case of vision and proprioception. The network was trained following the Hebbian rule (Hebb, 1949) such

that simultaneous stimulation created a causal relationship, that is, “Cells that fire together, wire together.”,

(Doidge, 2007). The body schema that resulted from this procedure was suitable for the prevention of self-

collisions but less so for control due to the quantization error. In (Yoshikawa et al., 2004), the problem

of body extraction in uninterpreted visual data with the help of proprioceptive data addressed (that is, an

artificial body image). Their most recent work (Yoshikawa et al., 2007) presented a framework that enables

building cross-modal maps while exploring the whole body. The main problem they addressed rises from the

(multiple) self-occlusion that aggravated the detection of unique causalities between touch and vision. To

find pairs of correlated sensations, they proposed a neural structure with two layers—one for tactile and one

for visual sensations—and a learning scheme based on the Hebbian learn rule called cross anchoring (see

Figure 2.6). Each neuron in the tactile layer represented a discrete arm configuration whereas each neuron in

the visual layer referred to a configuration of the head joints. This means that the visual space was encoded

in the joint configuration in the head and the hand-eye kinematics was decomposed (see Section 2.3.6).

Connections between neurons of the two layers representing a kinematic posture were then connected and

reinforced when a tactile stimulus occurred and a synchronized self-occlusion had been detected. The

increase in the connection weight, however, depended on the connectivity of the neuron and was damped

by the sum of the connections to other neurons. The connections of neighboring neurons were weakened

(called lateral inhibition) such that unique occurrences were learned much more quickly. Their approach

15

2. Related Work

occlusion at A. Note that the matched response of a cue
node is also experienced with mismatched response. For
example, the robot sometimes detects a self-occlusion
also at D0 during the cue double-touching in YD, whereas
it sometimes detects a double touching in YB while
detecting the cue self-occlusion at A. Since the desired
correspondence between touch and vision can be found by
unique association in this case, we can utilize such cue
nodes as anchors of the unique association. Therefore, we
introduce a learning rule with an anchoring mechanism
which can adapt the learning rate according how much
the simultaneous responses are regarded as unique to
each other.

4. Cross-anchoring Hebbian learning rule

In this section, we introduce a cross-anchoring Hebbian
learning rule as an implementation of the learning rule with
the anchoring mechanism. The architecture consists of two
layers called the double-touching layer and the self-
occlusion layer (see Fig. 5). In the double-touching layer,
there are N t nodes, each of which is responsible for a set of
certain posture of the arm Yi; ði ¼ 1; . . . ;N tÞ which is
assumed to be quantized in advance. When the posture of
the arm is h 2 Rm, the activation of the ith node is
calculated by

taiðhÞ ¼
1; h 2 Hi;

0 otherwise:

!
(1)

By contrast, in the self-occlusion layer, there are No nodes,
each of which is responsible for the self-occlusion in a set of
certain posture of the camera head Fj ; ðj ¼ 1; . . . ;NoÞ
which is assumed to be quantized in advance. When the
posture of the camera head is / 2 Rn, the activation of the
jth node is calculated by

oajð/Þ ¼
1; / 2 Uj ;O;

0 otherwise;

(

ð2Þ

where O is the phenomenon of detecting occlusion.
Let a connection weight between the ith neuron in the

double-touching layer and the jth neuron in the self-
occlusion layer be wij. By the cross-anchoring Hebbian
learning rule, wij is updated as following:

Dwij ¼ Zðtdij
tai$ %

odij
oaj$ & wij Þ, (3)

where i$ and j$ are the most activated units in the double-
touching and the self-occlusion layer, Z is a constant
learning rate. The dynamic anchoring rates, tdij and

odij,
determine the degrees of anchoring on a ‘‘target’’ node
from a ‘‘root’’ node, in this case, one on the jth node in the
self-occlusion layer from the ith nodes in the double-
touching layer and one on the ith node in the double-
touching layer from the jth nodes in the self-occlusion
layer, respectively. The values indicate how much connec-
tion to other nodes other than the target one the root one
has; in other words, the uniqueness of connection between
them. They are calculated by

tdij ¼ exp &
P

k;kajwik

ts2

" #
,

odij ¼ exp &
P

k;kaiwkj

os2

" #
, (4)

where ts and os are parameters that determine the degree
of anchoring. Therefore, if a node has stronger connections
to certain nodes than those to others, these connections are
more strengthened than those according to this updating
rule. Meanwhile, the remaining connection weights are
decreased by lateral inhibition:

wij$ ðtþ 1Þ ¼ wij$ ðtÞ & Ztð1&
tdij$ ÞDwij ,

wi$jðtþ 1Þ ¼ wi$jðtÞ & Zoð1&
odi$jÞDwi$j$, (5)

where Zt and Zo are constant coefficients of the competi-
tion.
In such an anchoring process, more unique combinations

of double-touching and self-occlusion are bound earlier.

ARTICLE IN PRESS

ΘB

BA C

ΘB

BA C

ΘB

BA C

ΘC

BA C

ΘA

BA C

a b c d e

Fig. 4. Simplified situations of double-touching and self-occlusion concerning a point (labelled B) on the body: The top rectangles indicate the robot’s
trunk while the lower ones with circles indicate the robot’s arm. The bottom object shows the robot’s gaze. It detects double-touching at B in (a)YB and B,
(b) YB and A, and (c) YB and C as well as self-occlusion at B in (a), (b) and (d) YC and B. (e) YA and B. Notations correspond to those in Fig. 3.

a
o
j

ta
i

td
ij

od
ij

double-touching layer

self-occlusion layer

double-touching

detector

self-occlusion

detector

Fig. 5. The architecture.

Y. Yoshikawa et al. / Neurocomputing 70 (2007) 2234–22442238

Figure 2.6.: Architecture of the cross-anchored learning. Source: (Yoshikawa et al., 2007)

(a) Starting point. (b) After 2400 steps. (c) After 7200 steps.

Figure 2.7.: A framework for exploring invisible regions on the body. Source: (Fuke et al., 2007)

is intriguing because of the integration of many different modalities and is surprisingly straightforward.

However, It required constant visual feedback and could not be applied to explore regions of the robot

surface that cannot be observed by the camera such as the face and the back. This problem was addressed

by Fuke et al. (2007) who developed a framework for hand-to-face cross-modal mapping. In a first phase,

a neural network learned a sensorimotor mapping from motor control signals to the optical flow (Lucas and

Kanade, 1981) induced by the movement of the end-effector when the hand was directly in front of the face.

For the small angular changes required to touch the face, this sensorimotor relations were assumed to be a

sufficient approximation for the exploration. When the hand pose could be estimated, the robot began to

explore its face and created a cross-modal map that includes the tactile sensors (learned as a self-organizing

map, see Section 2.3.3), the estimated hand pose and the proprioception (see Figure 2.7). The exploration

of the back or the robot as supposed for future work, however, would require a more sophisticated sensor-

motor mapping. In (Hikita et al., 2008), the concept of learning cross-modal maps with the Hebbian learn

rule (Hebb, 1949) was combined with visual attention by saliency that allowed the robot to learn visual

receptive fields of its hands or a tool.

An interesting case is the work of Oztop et al. (2006). Instead of learning an artificial body schema of their

robotic hand with sixteen degrees of freedom, they exploited the adaptability of the human cerebral body

16

2.2. The body schema in robotics

(a) (b)

Figure 2.8.: Teaching of a ball-swapping motion. The teacher exploits its own body adaptation to demonstrate the
correct movements. Source: (Oztop et al., 2006)

representation. In their experiments, the movements of the participants’ hands were optically tracked and

mapped onto the robotic hand. After a learning period that took several days (mostly because of the lack of

tactile feedback), the participants could control the robot hand dexterously enough to perform ball-swapping

movements confirming the plasticity of the human body schema. The authors suggested, that their approach

could also be applied to teach a robot how to walk like a human.

Robot tool use So far, the presented related work relates to learning a plastic body representation on

robots and did not directly address tool use. The topic of tool use, however, is perhaps the most intriguing

aspect of the body schema and enables humans to “move beyond the limits of their bodies” (Nabeshima

et al., 2006). The following section will hence give a brief overview on recent research related to tool use

in robotics and is not exclusively limited to robot body schema as most research focuses either on learning

the consistent correlation between different sensor modalities or sensorimotor control and only a minority

directly addresses robot tool use.

Nabeshima et al. (2006) presented a system realizing an adaptive body schema for tool use and the evaluation

on a small tabletop humanoid robot. Whereas (Fitzpatrick and Metta, 2003) were able to detect alterations

in the body, they provided no mechanism for adaptation. Nabeshima et al. emphasized the importance

of tactile sensor and visual information under the aspect of timing (“temporal integration”). When using

a tool, the robot has to recognize the tool as part of the body through the simultaneous observation of

tactile and visual contact. In their system, the endpoint of the tool was detected by vision and through

interaction with environment, that is, the feedback by hitting objects. They implemented their system with

neural networks acting as associative memories on a simple robot arm with only two degrees of freedom.

As it only used a stick as a tool, the new kinematics could be learned in form of a linear offset to the

prior known kinematics. This differs from previously presented approaches, as the body structure of the

robot, for instance, its kinematics, is not learned but assumed to be known in advance (that is, an explicit

model). They refined the approach of tool assimilation in (Nabeshima et al., 2007) to detect collisions of

the tool with the environment through the tactile sensors in the hand (‘instantaneous sensor extension’). The

inertia properties of the tool could be derived from observations while swinging the object. Further, they

17

2. Related Work

generalized the functionality of the tool through visual and haptic interaction. The approach was evaluated

in simulation where a planar robot with three degrees of freedom had to use several tools to retrieve an

occluded object. The robot was able to learn shape and dynamic properties of these tools. In their most

recent work, Nabeshima and Kuniyoshi (2010) presented a complete framework for marker-less visual-

motor coordination and the identification of the dynamic properties of an attached tool. A robust method

for the detection of an altered kinematics, by tool use for instance, were provided. The authors emphasize

the importance of incremental and lightweight algorithms that enable online application on recent hardware.

However, the identification of body parts still required a kinematic model of the robot but could be performed

online and without further restrictions (i.e., no periodic movements) in contrast to prior work of Fitzpatrick

and Metta (2003) or Natale (2005). This framework was successfully evaluated on a robot arm with six

revolute degrees of freedom.

Kobayashi and Hosoe (2010) proposed a framework for a hierarchical and extendable body schema for

tool use that did not require any prior knowledge on the kinematics and provided an efficient algorithm

for planning in low-dimensional spaces. The detection of objects that can be used as a tool happened on

a less abstract level and was based on the observation of synchronous motion between objects and the end

effector—under the assumption that objects only move on contact with the robot. Once a contact between

the robot and (possibly multiple) objects was established, this configuration was called a ‘mode’. The frame-

work determined the possible actions that maintain the current mode by means of a support vector machine

(see Section 2.3.4) and parameterized the transition actions between different modes. The actions them-

selves were learned by instance-based statistical learning (see Section 2.3.4). Trajectory planning within

and in between such modes, called ‘plan shift’, was a problem in lower-dimensional spaces that could be

solved more easily. Although the work provided an intriguing view on goal directed planning and tool

use, the framework was restricted to very simple scenarios, with planar objects and robots with circular

end-effectors, and had only been evaluated in simulation. While the authors claimed the scalability of their

method, the high dimensionality in a scenario with humanoid robots would require drastical modifications

of the underlying representations.

The remaining recent efforts on tool use mostly focus on either learning and representing domain knowledge,

that is, knowledge on why and which objects are suitable for what tasks. Brown and Sammut (2007) used a

small mobile platform to learn the relation between tools and the goals they help to solve, and to generalize

the properties that qualify an object as a tool. Their robots learned with an inductive logic programming

(ILP) algorithm from demonstration of a similar agent. More recently in (Brown and Sammut, 2012), they

proposed a system that also reduced the hypothesis space through active experimentation and used a novel

action representation for symbolic planning, constraint solving and motion planning.

Stoytchev (2007, 2008) investigated tool affordance, that is the set of actions that tools can be used for due

to their shape. Therefore, he learned tool use with an industrial robot arm with five degrees of freedom.

The tools were of an abstract and simple shape and color-coded for easy visual detection and identification

(see Figure 2.9). The robot had a programed repertoire of behaviors which it used to randomly explore the

effect of an attached tool even if the tool breaks. The observations were organized in an ‘affordance table’

which related the tool to its usefulness to achieve a goal. After learning, the robot could select a tool by

18

2.2. The body schema in robotics

(a) The robot can select a assortment of simple and color coded
tools.

(b) The view the robot has on its wrist the tool and an
attractor object.

Figure 2.9.: The experimental setup for learning tool affordances.
Source: (Stoytchev, 2008)

Figure 2.10.: Autonomous investigation of tools in an unstructured environment. Source: (Katz et al., 2008)

multiple nested line searches on the affordance table based on empirical heuristics. In their more recent work

(Sinapov and Stoytchev, 2008), they concluded that the outcome of actions would be too high-dimensional

for machine learning. Therefore, they organized the affordances in an ontology with an adaptive taxonomy

to accurately describe the effects a robot can have on the environment and also detect these.

Although not directly related to tool use, research by Katz et al. (2008) should also be mentioned in this

context. Their work included the autonomous investigation of articulated objects in unstructured environ-

ments by manipulation with a robot agent. By reinforcement learning and a symbolic representation, the

robot acquired the skill to discover exploration strategies that lead to the efficient creation of a kinematic

model of the explored object (see Figure 2.10).

Developmental robotics Metta et al. (1999, 2001) and Asada et al. (2001) suggested to apply the prin-

ciples of the human ontogenesis also to artificial systems. Instead of the classical data collection, training

and control cycle—often performed offline and manually—principles to create an autonomous and adaptive

system were presented. One of the principles was called “Modularity versus Integration”. The traditional

approach of modularizing a complex problem should be replaced according to the human development:

19

2. Related Work

Newborn babies possess limited integrated movement capabilities in form of reflexes (Metta et al., 1999).

These reflexes help infants to partially learn their body schema. Learning is hence balanced from simpler

to more complex over time. The authors state that learning is, in general, an ill-posed problem and most

learning could be subsumed as function mapping where the complexity is exponential in the number of

dimensions (Bellman’s curse of dimensionality (Bellman, 1960)). Tuning the parameters of a function ap-

proximation always means a trade-off between overfitting (good approximation – poor generalization) and

over-smoothing (using a too simple model of the system) also called Exploration–Exploitation dilemma.

Development is seen as the key to overcome this problem. The reduced sensori-motor abilities of an infant

were consequently regarded as crucial to learning a body schema that becomes increasingly complex dur-

ing its development. As a consequence, development was interpreted as an abstract control facility of the

complexity of the learning process.

2.3. Sensorimotor learning in robotics

This thesis main focus lies on the development of new machine learning methods for sensorimotor learning

and therefore the work related to this field will be presented in detail in this section. The main aspect of

sensorimotor learning is the generation of models that optimally describe the complex relationships between

sensor modalities and motor commands. In this context, two classes of models are predominant in the litera-

ture. The first class represents the kinematics of the own body and is consequently closely related to forward

and inverse kinematics known in classical robotics. These models provide transformations between spaces

that are crucial for planning in the external (Cartesian) space and execution in the robot’s configuration

space. While accurate kinematics knowledge is essential for action planning in Cartesian space, the second

class of sensorimotor maps enhances greatly its execution, that is, the control of the robot. Such methods

have to represent the dynamics of a robot. This knowledge is required for a maintained stability, energy

optimized execution, and risk reduction through compliant control to name a few.

The idea of sensorimotor learning already exists for a long time starting with early approaches based on

neural networks in last century’s late eighties up to modern state-of-the-art machine learning techniques.

This long history reflects in a vast literature available on this topic, and several recent surveys and compar-

ative analyses (Nguyen-Tuong and Peters, 2011; Nguyen-Tuong et al., 2008; Sigaud et al., 2011). Notably,

Sigaud et al. (2011) provide a comprehensive summary of sensorimotor learning methods and their applica-

tion with a focus on online learning. Rather than attempting to duplicate this comprehensive overview, this

section contains an excerpt that focuses on the analysis selected methods that lead to and justify the research

of new techniques. As a consequence, those that are either the most prominent in the literature or those that

are of importance in later chapters of this work are highlighted. This includes the methods that are used

for evaluation purposes or those that reveal similarities with the proposed methods in this thesis. Therefore,

parametrized self-organizing maps, locally weighted projection regression, gaussian mixtures regression

and gaussian process regression will be studied in depth including their mathematical derivation while the

remaining approaches will be addressed more in brief on few selected examples.

20

2.3. Sensorimotor learning in robotics

2.3.1. Fundamentals

For reasons of clarity and comprehensibility, the most important terms and concepts used to describe and

classify the machine learning related to sensorimotor learning will be presented briefly.

Function regression: From a machine learning point of view, sensorimotor learning is almost always to

be classified as an inductive and supervised function regression. Function regression creates a model

of a physical process that can be described by a latent function. This manifests in an approximation

which assigns a unique (continuos or discrete) output value to each element of a continuous input

space. If a function with discrete outputs is searched for instead, this is referred to as a classifica-

tion problem. In the context of function regression, inductive learning means that knowledge about

the relation between the modalities is extracted from a set of examples according to an underlying

assumption about the nature of the physical process—the so called inductive bias.

Supervised and unsupervised learning: The term ‘supervised learning’ refers to the nature of the

examples from which is learned. Here, an example consists of tuples containing the input values

(control signals) and the output values observed from the underlying process (that is, the supervisor)

in response.

In opposition, unsupervised learning aims at extracting structures or topologies present within a set

of unlabeled data that is not separated into input and output variables (also called stimuli). It is also

called structural or topological learning (Barreto et al., 2003) and closely related to self-organization.

Forward and inverse models: As mentioned, models learned with function regression map a control

signal to a single and unique response sometimes together with a confidence indicator. They are called

forward models (Massone, 1994) for their control/response nature. The direct or forward kinematics

is an example of a forward model that can be expressed as a function

k(θθθ) = xxx, θθθ ∈Θ
din , xxx ∈ R3 or xxx ∈ SE3, (2.1)

where θθθ denotes a joint configuration and xxx an end-effector position (in the Cartesian space R3) or

pose (out of the special Euclidean group SE3). The natural number din denotes the number of the input

dimensions, that is, the number of controllable joints or degrees of freedom (DoF).

Consequently, this excludes all redundant processes with a non-convex one-to-many relation (Bern-

stein, 1967), that is, the same input creates different outputs whose average is not a solution. Such

processes are modeled by inverse models. The inverse kinematics of redundant robots is an important

example for such a process that cannot be learned by function regression directly (see Jordan and

Rumelhart, 1992)

k−1(xxx) = θθθ (2.2)

If the number of input variables n is bigger than the output dimension this function is ill-posed and

undefined. The same holds for the forward dynamics which, despite of the name, is ascribed to the

class of inverse models much like the inverse kinematics in this context. Findings from brain research

suggests that it is likely that the brain also encodes only forward models in its sensorimotor maps too

21

2. Related Work

Figure 2.11.: Schematic illustrations of the ratio between joint angles in natural postures while pointing at a distant
target on a humanoid robot as suggested by Soechting and Flanders (1989).

(see Wolpert et al., 1998).

Although some research addressed learning the inverse kinematics directly (Rolf et al., 2010b,a),

learning an inverse model often involves a forward model. For instance, it is possible to learn the

(invertible) first Taylor expansion (i.e., the Jacobian matrix) instead of the forward kinematics to

achieve a local inverse model. This mainly becomes necessary, for instance, if the forward model is

represented by a function that cannot be differentiated easily (Gaskett and Cheng, 2003).

Alternatively, a pure forward model can be inverted if the redundancy is resolved explicitly. This is

a more universal approach as it puts one in a position to select how the redundancy is to be resolved.

Psychological research suggests that humans resolve the redundancy in arm movements by means of

cost functions (Cruse et al., 1990). In pointing gestures, a fixed ratio between the joint angles could be

statistically observed in dependence of the location of the distant target (Soechting and Flanders, 1989;

Asfour and Dillmann, 2003). Such a natural arm posture is exemplarily shown on the humanoid robot

ARMAR-III in Figure 2.11. The inverse kinematics can also be numerically obtained by resolved

motion rate control (RMRC) as presented by Whitney (1969) where target velocity is used to control

the robot

J(θθθ) ·∆θθθ = ∆xxx ⇔ ∆θθθ =
(

J(θθθ)T ·A · J(θθθ)
)−1
· J(θθθ)T ·∆xxx, (2.3)

where J(θθθ) is the Jacobian matrix that contains all partial derivatives of the current configuration with

respect to all joints and A is a matrix that regulates the influence of the joint axis.

Bi-directional models: Note that there a third option of modeling sensorimotor maps as, strictly speak-

ing, some of the algorithms presented later in this section belong into the field of unsupervised learn-

ing. With a trick, they can still be applied to sensorimotor maps when used to detect structures in

supervised training data. Therefore, input and output values are combined into a single data vector

22

2.3. Sensorimotor learning in robotics

(also called feature vector).

yyy =

(
yyyin

yyyout

)
∈ Rdin+dout , where yyyin := θθθ ∈ Rdin and yyyout := xxx ∈ Rdout (2.4)

where dout denotes the output dimension (either dout = 3 for positions or, for instance, dout = 6 for

the spatial pose). Learning in this form is sometimes called ‘self-supervision’ (Barreto et al., 2003)

and distinguishes itself from supervised learning because no error signals are explicitly calculated for

learning. Consequently, it approximates the physical process as a bi-directional model rather than

being limited to learning forward models only. Upon prediction, individual components of the feature

can be designated as input or response values. This selection determines the ‘direction’ of the model.

The problem of redundancy and multiple solutions still cannot be completely eluded and has to be

dealt with when predicting in the ‘inverse model’ direction which involves the selection of an optimal

solution with respect to some selection criteria.

Offline and online learning: Online learning refers to the ability of a learning system to learn and build

a model during the regular operation of the robot. Offline learning refers to all opposing cases, for

instance, if the robot has to perform special movements such that it cannot continue its regular ap-

plication. Offline and online learning are closely related to the notions of Batch and incremental

learning. If a system processes the complete training data set in one step this is called batch learning.

In opposition, incremental learning successively processes the data to refine an already created model.

Generalization: The capability of making assumptions on unseen data is called generalization which can

be divided into interpolation for prediction in between known data, or extrapolation for predictions

that lie beyond the observation interval.

2.3.2. Taxonomy

The methods presented later in this section are mainly classified by two criteria: The distinction between

parametric and non-parametric models on the one hand and, on the other hand, the distinction between

global or local models.

Parameterization: A model is called parametric when its complete behavior can be described by a fixed

and finite number of parameters. An artificial neural network, for instance, can completely be repre-

sented by the number of its neurons, the connection between them and the weights of the connections.

Analogously, if there does not exit any fixed or finite number of parameters, the model is called non-

parametric. To latter also belongs the group of lazy learning where a variable number of data points

is not processed during learning and a prediction is directly made based on the examples. Learning

that remember each training data are further called memory-based or instance based learning.

23

2. Related Work

Type Name Scope Parameterization Comments

ANN MLP global parametric
RBF local parametric
SOM global parametric
NGA, TPN local parametric
ITM local non-parametric
PSOM global parametric

Statistical SVR global parametric lazy learning
iRFRLS local
LWR local non-parametric lazy learning
RFWR local non-parametric
LWPR local non-parametric
XSCF local non-parametric

Stochastic GMR local parametric
local non-parametric with modifications

GPR non-parametric lazy learning
local stationary kernel
global non-stationary kernel

Table 2.1.: Taxonomy for classification of sensorimotor learning methods.

Scope: In global learning, one single model makes predictions for the whole configuration space—even

if the required examples to cover the whole space accurately could not be collected. In contrast, local

learning finds multiple simpler (usually linear) models that are valid only in a vicinity of the observed

training examples. For a prediction, only the models that lie close to the query point contribute.

Extrapolation is a property that naturally only to be found in global learning (Sigaud et al., 2011)

Because of the linear models, local learning lacks the capability of extrapolation.

In the following sections, the most important methods from machine learning that were applied in the

context of sensorimotor learning. In Table. 2.1, an overview over those method classified by the taxonomy is

presented. Additionally, they are divided into artificial neural networks, statistical and stochastic learning

and presented accordingly. Alongside, a selection of application in the field robotics will be presented in

brief.

2.3.3. Artificial neural networks

Multilayer perceptrons and radial basis functions

Multilayer perceptions (MLP) are artificial neural networks in which the neurons are arranged in a directed

graph. The neurons are organized in multiple layers where the first layer of din is directly connected to the

inputs (the input layer) and the dout neurons of the last layer (the output layer) provide the output of the

network. In between those layer, there can be multiple hidden layers embedded. If the connections between

layers is strictly proceding from the input layers through the hidden layers to the output layer, the network

is called a feed forward network. The MLP is called a recurrent network if the connections between the

neurons is less restrictive such that neurons can connect to neurons of the same or the preceding layer. A

24

2.3. Sensorimotor learning in robotics

neuron is modeled by its excitation level, that is, the weighted sum of its input signals and an activation

function. For the i-th neuron in the j-th layer, the excitation can be expressed as the function

ei, j(xxx) =
n j−1

∑
k

wk ·θk = wwwT · xxx, xxx,www ∈ Rn j−1

given an stimulus vector xxx and a weight vector www where n j−1 is the number of neurons in the preceding layer

with n1 = din. The activation function generates the response of the neuron with respect to its stimulation.

Typically, strictly monotonically increasing functions such as the hyperbolic tangent

yi, j = tanh
(
ei, j(xxx)

)
or the sigmoid function

yi, j =
(

1+ exp
(
ei, j(xxx)

))−1
.

Learning with such MLP is global and parametric.

However, the Gaussian bell can also be used as a localized activation function

y = a · exp
(
− e(x−b)2

2 · c2

)
, a,b,c ∈ R.

Networks using the latter activation function are called radial basis functions (RBF) networks, and have no

hidden layers. Because of missing monotony learning with RBF still is parametric but the model is local.

At a first glance, neural networks like the multilayer perceptron seem to be the most obvious choice for

the replication of a cerebral system, which is a neural circuit in reality after all. They also constituted the

first attempts of sensorimotor learning, for instance in the work of Jordan and Rumelhart (1992) which also

provides a good overview over the topic. This first impression, however, has to be revised as the learning of

complex nonlinear functions with many inputs such as kinematics and dynamics, albeit possible (because

they are proven universal function approximators (Hornik et al., 1989)), requires a very large number of

neurons depending on the desired accuracy (Bishop, 2006). It is consequently very expensive in terms of

robot movements and not the best choice for sensorimotor learning with many input dimensions.

Artificial neural networks are used, for instance, in the work of Nabeshima et al. (2006) as associative memo-

ries. In the experiments of Jordan and Rumelhart (1992), they were used to learn the forward kinematics and

inverse dynamics of a planar robot with three degrees of freedom. Rolf et al. (2010c) used recurrent MLP

networks to learn the full inverse kinematics of a humanoid robot, linking simultaneous stimuli together.

Chinellato et al. (2011) used RBF networks to learn sensorimotor maps of inverse kinematics models that

emerged from coordinated arm and eye movement. In their experiments, a humanoid robot learned these

maps by exploring reaching and gazing actions.

Artificial neural networks: Self-organizing feature maps

Kohonen networks Self organizing feature maps or shorter Self organizing Maps (SOM) and Koho-

nen networks—named after Teuvo Kohonen who discovered/invented them in the early 1980ies (Kohonen,

1982)—embody a very different type of artificial neutral networks. They can also be used in a particularly

25

2. Related Work

interesting approach to learning sensorimotor relations. Despite their limitation to discrete outputs and the

fact that they are best suited for clustering problems in their original form, they perhaps bear the strongest

relation of all techniques together presented in this thesis to the biological example. In the human brain,

low-dimensional neural grid structures have been discovered that represent motor commands/body parts and

map them into the peripersonal space.

The artificial neural networks described by Kohonen (1982) are topology preserving. This means that the

SOM form a projection from the high-dimensional feature space (in this context, the combination of in-

put and output space) to a discrete and lower dimensional space (a discrete multivariate interval or lattice)

called competitive or neural layer. They have the remarkable property that they detect (i.e., learn) structures

in the data and map them into a lower dimensional regular structure of connected neurons (King and Hwang,

1989; Caselli et al., 1994). Each neuron then represents a region in the feature space and neighborhood and

distance relations between those regions are preserved. That way, relations can be detected and even the di-

mensionality can be reduced using a decidedly simple learning rule. As a typical (unsupervised) clustering

algorithm, learning is unsupervised and sensorimotor learning consequently requires the combination of the

input and output values into a single feature vector (see Eq. (2.4)).

yyy =

(
yyyin

yyyout

)
, yyy ∈ RRRdin+dout ,

In other words, although it is an unsupervised learning algorithm it operates on data collected in a supervised

data acquisition process. One benefit that results from that technique is that the strict separation between

forward and inverse model is removed and the role of the features (i.e., components/dimensions of the data

vectors) can be freely assigned for prediction (see Demers and Kreutz-Delgado, 1996). So if the joint angles

are treated as outputs, and the Cartesian coordinates conversely as inputs, for instance, the SOM that models

the inverse is

yyy =

(
yyyin = xxx

yyyout = θθθ

)

Likewise, incomplete or missing data can be completed. For example, when the cartesian coordinates and

all joints positions but the elbow are given, the elbow joint can be complemented by the model.

Self-supervision This mixture of the supervised and the unsupervised learning paradigms has been

called self-supervised learning (Barreto et al., 2003). The model is constructed by first defining neurons

rigidly connected to the nodes of a low-dimensional lattice that defines the neighborhood relations between

the neurons. Each neuron is additionally connected to a point in the feature space called weight from now

on:

wwwi =

(
wwwin

i

wwwout
i

)
, wwwi ∈ RRRdin+dout .

At the beginning of the learning process, these points are distributed randomly in the feature space. For

each example or stimuli yyy observed during training, the one neuron is found, which weight lies closest—the

26

2.3. Sensorimotor learning in robotics

so-called winning neuron:

wwwi? = argmin
i
‖yyy−wwwi‖.

Its weight is adjusted such that the neuron becomes even more receptive to similar examples, that is, its

weight is shifted towards the location stimulus. In addition, the neurons in the immediate neighborhood

are also affected but to a lesser extent depending on their distance to the winning neuron in map space

coordinates.

∆wwwi = ν · (yyy−wwwi) ·h(i, i?),

where h is a distance metric and ν is a learn rate factor. The rule can can be further modified to repel points

at a certain distance (by using the Mexican hat function) (Coiton et al., 1991). This rule is usually referred

to as the “the winner takes it all”-rule and is inspired by the concept of lateral inhibition in the brain. The

adaptation to the feature space is damped over the time by a factor that regulates to what extend weights

are modified. Ultimately, this rule projects the topology embedded in the feature space onto the neutral

structure. The problem of redundancy encountered with supervised function regression when learning for-

ward models does not occur during learning—it is resolved by the combination of input and output which is

always unique. However, predictions require the detection of the winning neuron and, for redundant func-

tions, one has to choose one out of multiple possible candidates. This means that the problem of redundancy

remains and has to be resolved just like in the case of supervised learning—at different time though.

The next paragraph contains an overview on the achievements that could be made when using SOM and

related algorithms for sensorimotor learning. Note that this has to be considered as an excerpt due to the

large literature. A more comprehensive list and a very detailed introduction to self-organized learning can

be found in (Barreto et al., 2003). The idea of learning the inverse kinematics with a SOM is quite old. For

instance, it has been used in (Coiton et al., 1991) for learning the inverse kinematics of a robot arm with

three non-redundant degrees of freedom. They applied a Mexican hat function for the determination of the

lateral inhibition. Jones and Vernon (1994) showed that the same technique can be used to incorporate the

camera calibration by directly relating the retinal coordinates of a stereo camera system (i.e., the pair of

two-dimensional projections of the 3D cartesian coordinates) consequently evading the need for a recon-

struction of the 3D coordinates of the end-effector. They also operated a robot arm with one prismatic and

two rotary DoF and used infrared LEDs and filters to obtain the retinal coordinates. That way, they proposed

a complete self-calibrating system.

This concept has been carried on in a more recent approach by Gaskett and Cheng (2003) that offered a

complete integrated system. They used self-organizing maps with an underlying three-dimensional map

space, to learn the kinematic models from uncalibrated vision of a humanoid robot with 30 DoF from which

only 14 were controlled in this experiment. Their system is divided into two operation modes. It acts as

an open loop controller when the hand is not visible relying on the already learned model. The closed loop

control continues model learning when the hand is within the field of vision. In addition to sensorimotor

learning, a motor-motor map was involved in the task to keep the end-effector always in the center of the

view, that is, to keep the cameras fixated on the end-effector. This decomposition resulted in a reduction of

27

2. Related Work

the input space which was also enfaced by mapping onto a three-dimensional neural structure embedded in

the map space which is of lower dimensionality than the input space. The immediate benefit is that learning

can be achieved in a comparably short amount of time. Further, they applied a relaxation measurement to

achieve natural poses that also takes care that the object was only touched and not pushed away. Altogether,

this demonstrated that the Kohonen rule is capable of capturing the most important characteristics of the

topology in the feature space shown by an acceptable accuracy despite the dimensionality reduction.

Kihl et al. (1995) improved the learning process by sampling along randomly generated trajectories whereas

usually random configurations were approached and observed. The work of Ritter et al. (1992) aimed at

learning dynamic models for robots with three DoF.

Original Kohonen networks, however, expose several severe drawbacks—at least when applied to sensori-

motor learning. One the one hand, the number of neurons is exponential in the dimension of the neuronal

lattice. Both learning and prediction require the determination of the winning neuron, and they become

hence very slow (i.e., computational time and quantity of training data) when mapping high-dimensional

data. This problem is exponential complexity in the number of dimensions O(exp(n)) and is commonly

called the “curse of dimensionality” (Bellman, 1960). On the other hand, the net produces strictly discrete

output such that a high predictive accuracy also requires a very high density of neurons which amplifies the

problems rising from high dimensionality. Several variations of the algorithms and extensions have been

proposed over the yearrs to overcome these problems. The most important that are also related to sensori-

motor mapping will be presented in the following. They can be separated into two classes: those without

and those with predefined neighborhood relations.

Without predefined neighborhood relations Opposed to the original Kohonen networks, the idea of

a fixed lattice which is responsible for concrete neighborhood relations between neurons is discarded and the

connections are developed during the training phase. That way the prediction error can be reduced in regions

of higher interest by dynamically increasing the density and connectivity in the related region without the

immediate necessity to increase the overall granularity of the lattice. This improves the quality prediction

and handles better the high dimensionality but contradicts the paradigm of a strictly global model.

The neural gas algorithm (NGA) presented by Martinetz and Schulten (1991) completely discards the lattice

and the winning neuron. Only distances in the feature space influence the adjustments of the weights when

learning from new observations (Behera et al., 1995) (i.e., the distance between weight and sample) leading

to a very simple adaptation rule. The smaller this distance, the stronger is the adaptation to the example.

A more complex approach mark the topology preserving networks (TPN). They are the result of the com-

bination of the NGA with a competitive Hebbian learning rule (Hebb, 1949) that again projects into a

low-dimensional space and hence preserves the topology. Weights are adjusted according to the rule inher-

ited from the NGA (i.e., without consideration of the neurons location in map space) while the Hebbian rule

is applied to the coordinates in the neural layer. The combination of topology preservation and increased

accuracy bears advantages over the genuine SOM. An example for its deployment is a TPN that learns the

model of a pneumatical driven robot using visual feedback presented in (Zeller et al., 1997)

28

2.3. Sensorimotor learning in robotics

(a) Edge insertion. (b) Neuron insertion.

Figure 2.12.: Rules for adding and removing new edges and neurons in instantaneous topological maps
Source: (Jockusch and Ritter, 1999)

The instantaneous topological maps (ITM) by Jockusch and Ritter (1999) introduce the idea of undirected

and unweighted edges between neurons to the Kohonen networks. That way, the algorithms overcomes

degradation of the Kohonen network that arises if the stimuli are not statistically uncorrelated. This is then

the case, for instance, if the feature space is not explored by approaching random configurations but along

continuous movements resulting in temporarily connected stimuli from recorded trajectories. The ITM

require adaptation of the edges connecting neighboring neurons during learning. Upon reception of a new

stimulus, the two winning neurons are determined

n1 = argmin
i
‖yyy−wwwi‖, and n2 = arg min

j, j 6=n1
‖yyy−www j‖,

the weight wn1 is adjusted towards the stimulus and an edge is created (if not already present) connecting

the two winning neurons. Edges between the first winning neuron n1 and its already existing neighbors are

removed if the second winning neuron n2 lies within the Thales circle over their line segment connecting

their weights (see Figure 2.12a). If this leaves the neighbor neuron without any remaining edges, it is

removed. A new neuron sf added if the stimulus yyy lies outside the Thales circle over the line segment

spanned by wwwn1 and wwwn2 (see Figure 2.12b). The removal and creation of new neurons weakens the paradigm

of global non-parametric learning. The ability to process temporarily connected stimuli renders the ITM well

suited for learning from trajectories as done in (Vasquez et al., 2009).

Predefined neighborhood relations An alternative to abandoning predefined and fixed neighborhood

relations to improve the prediction accuracy are variations of the Kohonen networks that add continuity to

the neural net’s output.

Local linear maps (LLM) defined by Ritter et al. (1989) add continuity to the output of the Kohonen network

by combining neurons’ weights with linear approximations of the manifold. In a vicinity of the weights,

these linear models locally approximate the relation between the input wwwin
i and output values wwwout

i of the

neuron’s weight. Their construction rule can be found in (Ruiz de Angulo and Torras, 1997). This means

that, despite the self-supervised Kohonen that is used for learning the topology, the linear models are again

learned locally in a supervised process. After learning, this linear model is used to obtain a more precise

29

2. Related Work

(a) The smooth manifold in
the work space.

(b) The bi-directional mapping between workspace (left) and joint space (middle). On the right, the
connection to the neural lattice (right) is shown.

Figure 2.13.: Example of a kinematics model of robot finger with three degrees of freedom. Source: (Walter, 1996)

network output:

yyyout = wwwout
i? +Ai?

(
yyyin−wwwin

i? (t)
)

The linear models approximate the Jacobian matrix at wwwi vector so that the LLM results in a discrete first-

order Taylor approximation of the sensorimotor map. That way, they show a great similarity with the locally

weighted learning presented in the following section with the difference that the model is parametric and

globa.l Notably, with this method, it is further possible to learn forward and inverse models alike. Its field

of application, among others, includes calibration of a robot with three DoF in retinal coordinates obtained

from stereo vision (Martinetz and Schulten, 1993), control of a robot with three degrees of freedom driven

by pneumatic artificial muscles with taking the roles agonist and antagonist (Hesselroth et al., 1994), and

the autonomous calibration of a space robot (Ruiz de Angulo and Torras, 1997).

The idea of self-organizing feature maps with continuous outputs has been pushed further by Ritter (Ritter,

1993). This effort led to the development of the parameterized self-organizing maps (PSOM) which can

be used for efficient global and non-parametric sensorimotor learning. For that reason, they are be used

for evaluation purposes in later chapters of this thesis (see Chapter 6.3). The main idea behind the PSOM

algorithm is the interpolation of the neurons’ weights in the feature space with a continuous manifold. The

discrete neural lattice is now defined in a continuous space with coordinates λλλ .

In contrast to the LLM, this approach does not require a modification of the learning rule nor a decom-

position of the training data. Yet a higher precision can be achieved with a smaller number of neurons

because of the curvature continuous manifold that interpolates the weights of the neurons. In the PSOM

algorithm, the continuous manifold is realized by a multivariate Lagrange interpolation through the weights

of all neurons (see Section 3.1.1 for polynomial approximation). Altogether, this means that the learning

rule is not affected and the continuity is an interpretation of the network that becomes relevant when the

network performs a prediction. On the downside, this choice of interpolation leads to polynomials of high

degrees directly depending on the number of neurons per dimension. The results are higher computational

costs, and unintended oscillations and asymptotic behavior (see Figure 3.1).

Still, the PSOM combine the benefits of the topological learning of the Kohonen networks with accurate con-

30

2.3. Sensorimotor learning in robotics

tinuous outputs. However, one of the problems mentioned earlier persists. Sensorimotor maps relate usually

low-dimensional sensations (outputs) with high-dimensional motor-signals (inputs or proprioception). In

case of the forward model of the kinematics of a humanoid robot, for instance, the perceived position of the

hand in the frame of reference in the head depends on a large numbers of joint positions of the resulting

kinematic chain. Consequently, the manifold to be learned cannot easily be mapped into the map space of a

competitive layer unless its dimensionality equals the number of inputs (i.e., joints). Although this has been

done by Gaskett and Cheng (2003) and Ruiz de Angulo and Torras (1997), it results in a dimensionality

reduction and the lesser the dimensionality and number of inputs differ, the more detailed the input-output

relation can be captured. As stated earlier, the number of neurons grows exponentially to the number of di-

mensions, hence capturing the complete relation is expensive in terms of computation time and quantity of

the training data (i.e., robot movements). This problem is addressed by Walter (1996) for kinematic models,

where the Kohonen learning rule is replaced by the direct assignment of the correct weights to the neurons

by sampling the configuration space in a regular grid and the perceiving the respective outputs. That way, the

topology is explicitly defined, and the underlying SOM degrades to an associative array (see Walter, 1998).

While this appears to be a step backwards, it has to be considered that this also tremendously reduces the

required quantity of training samples. It also comes at the price of a more complicated learning procedure

and also reduces noise tolerance. In (Walter, 1996), the possibility of obtaining the optimal weights from

randomly generated samples by linear optimization is suggested where the input values are used as map

space coordinates effectively resulting in a supervised function regression. A rudimentary implementation

of this idea is used in later chapters where a basic global non-parametric and incremental learning method is

required (see Section 6.3.2). With their newest incarnation, named the PSOM+ (Klanke and Ritter, 2005),

a more elaborate variant has been introduced that also includes a smoothness metric to learn sensorimotor

maps from noisy and not necessarily grid-organized training data. This efficiently prevents oscillation by

the regulation of the curvature but also requires more hyper parameters that require task-specific tuning.

The PSOM variants gained popularity in sensorimotor learning. It has been applied for learning the inverse

kinematics of robot fingers with three DoF (Walter and Ritter, 1995) (see Figure 2.13) or of a PUMA indus-

trial robot arm with the same amount of DoF (Walter, 1996). Nolker and Ritter (2002) combined a LLM for

learning visual features in 2D images with an inverse kinematics learned by a PSOM to recognize human

hand postures. Cases with higher numbers of degrees of freedom were investigated by Ruiz de Angulo

and Torras (2005a) where the kinematic model of PUMA industrial robot arm with six revolute joints was

learned with slightly modified PSOM in a virtual decomposition (see Section 2.3.6). The PSOM+ are the

most capable global non-parametric learning method suitable for high-dimensional sensorimotor learning.

For that, the newly developed techniques presented in later chapters of this thesis are evaluated against

them.

31

2. Related Work

2.3.4. Statistical learning

Support vector regression

The support vector regression (SVR) is the equivalent of the support vector machine (SVM) in functions

regression. In short, the SVM is a supervised classification algorithm that is based on the observation

that many (if not all) classification problems that are not linearly separable can be transformed by a basis

transformation ϕ(·) into a higher dimensional space in which they can be they can be linearly separated by a

hyperplane. In addition, the hyperplane is obtained in a way that it optimally separates the labeled data. The

margin that lies between the points classes is maximized with respect to its width during this optimization.

Data points that lie on the boundaries of the margin are called support vectors as they determine the margin

and they give the methods its name. Interestingly, it turned out not to be necessary to transform every data

point explicitly into the high-dimensional space. In order to calculate the support vectors and the margin it

is only necessary to calculate the scalar product in the transformation space which can be performed by a

kernel function without explicit computation of ϕ(·)

k(θθθ i,θθθ j) :=< ϕ(θθθ i),ϕ(θθθ j)>,

for a latent function f (θθθ) = xxx (e.g., a kinematics). This implicit transformation is called the kernel trick, and

through it, it even is possible to separate classes in infinite spaces. The Support Vector Regression transfers

this concept to function regression and is a parametric model if the ϕ(·) maps into an finite d-dimensional

feature space.

f (θθθ) = ϕϕϕ(θθθ)T ·www = xxx, www ∈ RRRn,

where the model parameters in the weight vector www are a linear combination

www =
n f

∑
i=1

βiϕ(θθθ i)

of the transformed data points (i.e., support vectors) θθθ i. Using a kernel this leads to

ŷ = f̂ (xxx) =
n f

∑
i=1

βi < ϕ(xxxi),ϕ(xxx)>= ∑βi · k(xxxi,xxx)

The approach is strongly related to the Gaussian process regression (GPR) that also applies the kernel

trick (see Section 2.3.5). It has been applied to learn the inverse dynamics and has also been compared to

locally weighted projection regression (LWPR) and GPR in (Fumagalli et al., 2010). Learning with SVR

in general produces a global model of the latent functions. The method can be localized leading to the

incremental random features regularized least squares (iRFRLS) presented by Gijsberts and Metta (2011).

The authors evaluated the algorithm for learning the inverse dynamic model on simulated robot arms with

four and seven degrees of freedom respectively. In (Droniou et al., 2012), the algorithm was compared to the

extended classifying system for functions (XSCF) and LWPR (see the following paragraph) on the example

of learning velocity kinematics. They showed that iRFRLS outperforms these methods.

32

2.3. Sensorimotor learning in robotics

Nonparametric local learning

In the previous sub-section, mainly parametric global models were presented. Despite of being the first

methods for sensorimotor learning and being efficient for low dimensions, they were progressively replaced

by methods better suited for dealing with the high dimensionality of the input space. The biggest problem

is that a global model of a complex latent function that depends that many inputs requires a quantity of

training data that is exponential in the number of inputs. The main idea behind local learning in general

is the approximation of the sensor relation with a combination of linear models that are valid only within

a vicinity of the observed training samples similar to the first taylor expansion of the target function. That

way, these techniques are very similar to the LLM variant of the SOM with the only difference that not

the complete domain of the target is approximated but only that portions that are actively explored. The

immediate benefits that lead to the persistent success of local learning mainly are the observations that, on

the one hand, learning starts immediately and on the other hand, that apart from being continuous, only very

few assumptions have to be made about the target function and learning is very fast in general—the mini-

mal number of training samples required to create the linear models equals the dimensionality of the input

O(n). Compared to a PSOM+ with four neurons per input dimension, for instance, learning the forward

kinematics of a robot arm with seven degrees of freedom requires only eight observations to build a single

locally valid model and hence a minimally small portion of the robot’s workspace—opposed to at least 47

for the complete space. Resulting from this locality rises the real strength of the local methods which lies in

learning subspaces of the model and especially trajectories. According to (Sigaud et al., 2011), this is one

main reason for the difficulty of comparing global and local models directly. And as a matter of fact, local

methods also require huge amounts of training data when capturing the whole workspace—most likely more

than a global learning—at least if a good inductive bias can be chosen for them. The boundaries between

parametric and nonparametric local learning are less obvious. The individual linear models encountered

in local learning are of course parametric. Their number is not limited though and is only regulated by

the desired accuracy of the approximation or coverage of the action space. For that reason, they have to

be considered nonparametric as opposed to the Gaussian mixture regression, for instance, which creates

a parametric model that consists of a predetermined number of local models. In the following paragraph,

the evolution of locally weighted learning (LWL) is presented from which the locally weighted projection

regression (LWPR) finally emerged—the most prominent local nonparametric model in the literature. A

summary of the algorithms within this class of algorithms is given in (Schaal et al., 2002). Despite its pop-

ularity, the extended classification system for function regression (XSCF), which developed independently,

addresses the remaining issues the LWR are facing. However, they do have a lot in common and mainly

differ in the way the receptive fields are constructed.

Locally weighted regression Locally weighted learning (LWL) encompasses several related algo-

rithms. Among the initial attempts at local learning was the Locally Weighted Regression (LWR) (Schaal

and Atkeson, 1994a). It is the most basic type of local learning and belongs to the class of memory-based

and lazy learning algorithms. This means that no model (not even local ones) are created during learning.

33

2. Related Work

Linear models are only implicitly created when the values of the latent function

xxx = f (θθθ), xxx ∈ Rdout ,θθθ ∈ Rdin

are evaluated. For a given query θθθ q, the local linear model q(·) is defined by

q(θθθ q) = θθθ
T
q ·βββ .

Its model parameters βββ are obtained by

W ·B ·βββ =W · xxx⇐⇒ βββ = (BT ·W ·B)−1 ·BT ·W · xxx (2.5)

from the training data. They weighted by their distance to the query vector θθθ q encoded in the diagonal

matrix W with

wi, j =

exp(−1/2(θθθ i−θθθ q) ·D · (θθθ i−θθθ q)) , i = j

0, i 6= j
,

and the distances stored in

B =


(θθθ 1−θθθ q)

T 1
...

...

(θθθ ns−θθθ q)
T 1

 .

The prediction results from the insertion of x in all possible models hence the quadratic complexity. This

procedure is influenced by a single hyper parameter h embedded into the distance metric D,

D = h ·


1/σ2

1 0
. . .

0 1/σ2
m

 ,

where the σ2
i denote the variance of input valued in the i-th component of the input data θθθ i. Its value is

selected from a set of possible values using “leave-one-out” cross validation. This means that in a data set

T of n training samples is divided into n subsets Ti each reduced by a single different data point:

Ti := T \{xxxi}

For each set Ti, a LWR predicts the value one data point xxxi that has been left out and the mean squared

error (MSE) over all n sets Ti is computed. The procedure is repeated for all candidate values for the

hyperparameter h and the optimal value is chosen with respect to the smallest MSE. In the context of

sensorimotor learning, LWR has been successfully applied by Schaal and Atkeson (1994b) who applied it

for the control of a robot with two degrees of freedom playing devil sticks (see Figure 2.14a).

The concept introduced by LWR was then refined in the Locally weighted partial least squares (LW-

PLS) (Schaal et al., 1998) using partial least squares regression (PLS-1) (Wold, 1975; Frank and Friedman,

34

2.3. Sensorimotor learning in robotics

(a) Robot playing devil stick. (b) Robot balancing a pole stick.

Figure 2.14.: Dexterous manipulation with locally weighted learning. Source: (Schaal et al., 2002)

1993) which enables learning data with high-dimensional input spaces, above all, with irrelevant and corre-

lated input dimensions. Due to the otherwise necessary matrix inversion (see Eq. (2.5)) this approach is also

responsible for a significant increase in numeric stability. Partial least squares is also an integral part of the

LWPR algorithm introduced later in this section and will be explained more in detail in that context.

So far, locally weighted learning consisted only of memory based and lazy learning methods. This bears

the disadvantage that at any time all encountered training samples have to be remembered (i.e., kept in

memory)—a number that is bound to grow very quickly for redundant robots with many input dimensions.

Because of this observation, the receptive field weighted regression (RFWR) was developed by Schaal and

Atkeson (1997) as an incremental variant of LWL. It uses recursive least squares (RLS) (Ljung and Söder-

ström, 1985) to incrementally create local models. These can be updated when new data is observed without

the need of keeping all samples constantly in memory. In addition, for each model, all data points during

learning and prediction are weighted by the influence of a receptive field, that is, a Gaussian kernel with its

center γγγ i in the input space and a designated covariance matrix Di (Gaussian kernel).

wi = exp(−1/2(θθθ − γγγ i) ·Di · (θθθ − γγγ i))

A prediction is obtained by the weighted sum

xxxq =
∑

nm
i=1 wi ·θθθ T

q ·βββ i

∑
nm
i wi

The receptive fields are stationary, that is, their centers γγγ i are not modified once created. However, their

shape Di, vary with each newly encountered observation according to a rule that it shares with the LWPR.

The algorithm starts with an empty list of receptive fields. Every time a new observation is processed, the

activation wi of every receptive field is computed (Eq. (2.3.4)). This value is required to update the shape

Di of already existing receptive fields. A new receptive field is only then created if none of the activation

exceeds given threshold. In this case, which occurs already with the very first example, the current input θθθ

is used as the center in the input space and a default covariance is chosen. The algorithm is shown in pseudo

code in Algorithm. 1. The complete procedure can be found in (Schaal et al., 2002). With RWRF, it was

possible to learn the control of a industrial robot arm for a dexterous task. The robot balanced a pole stick

35

2. Related Work

Algorithm 1: The update rule for the receptive fields in receptive fields weighted regression and locally
weighted projection regression (Schaal et al., 2002).

1 Initialization: Number of receptive fields nm← 0;
2 for every new training sample (xxx,y) do
3 for i = 1 to nm do
4 Activation wi← exp(−1/2(xxx− ccci) ·Di · (xxx− ccci));
5 Update shape Di;

6 if wi < wg, ∀i ∈ {1, . . . ,nm} then
// Add new receptive field:

7 nm← nm +1;
8 cnm = xxx;
9 Dnm = D0;

upright using all of its seven degrees of freedom (Schaal et al., 2000) (see Figure 2.14b). The work of Nori

Figure 2.15.: The schematic description of the locally weighted projection regression (Source: Vijayakumar and
Schaal, 2000).

and Natale et al. in (Nori et al., 2007; Natale et al., 2007) differed from classical approaches by offering a

method for neglecting the calibration of the camera and the kinematic parameters. The key is that the robot

has to fixate the object that is to be reached for hence implicitly encoding the world position of the objects

within the neck and eye degrees of freedom. Then joint values of the head have to be mapped to joint values

of the arm — a motor-motor map has to be learned. The method does not cope redundant robot though,

the authors refer to (Lopes and Santos-Victor, 2006). Open and closed loop approaches are both included

in this work as the closed loop is used as soon the visual feedback becomes available. A neural network

(receptive field weighted regression mode) is used to calculate a rough prediction for the open loop control.

Redundancy is resolved by containing joints. Learning takes 200 points for a 4 degrees of freedom arms.

Closed loop learning maps the eye-to-hand Jacobian again by neural nets.

The probably most popular and most widely applied algorithm for learning sensorimotor maps with non-

parametric local learning, however, is the locally weighted projection regression (LWPR) by Vijayakumar

and Schaal (2000). It combines the incremental nature of its predecessor RWRF with the partial least squares

regression of LWPLS which has been enhanced to allow incremental updates of the linear models. LWPR

36

2.3. Sensorimotor learning in robotics

has been applied to numerous use-cases in robot control, for instance, in (Lammert et al., 2013; Sun de la

Cruz et al., 2011; Stalph et al., 2010; Salaün et al., 2009; Sun de la Cruz et al., 2010; Hoffmann et al., 2009;

D’Souza et al., 2001) to name just a few, and has often been compared to competitive methods (Droniou

et al., 2012; Stalph et al., 2010; Sun de la Cruz et al., 2010; Nguyen-Tuong et al., 2008; Flentge, 2006).

A very well documented and freely available implementation with interfaces to various programming lan-

guages probably holds a big share of responsibility for its wide popularity. Some aspects of this algorithm

partly inspired the development of the new methods presented in later chapters—above all, the incremental

partial least squares regression and its ability to deal with high input dimensions. For that reason, it will be

described in a more detailed and mathematical way in the following paragraph.

As we will see later, the property of LWPR that it distinguishes it most from the afterwards introduced XSCF

is the procedure used to create new receptive fields and how they finally are distributed in the input space.

As mentioned in the paragraph of the RFWR, the LWPR algorithm decides whether it is already sufficiently

influenced by a receptive field or whether to create a new one for every new data point. That is, if

wi < wg, ∀i ∈ {1, . . . ,nm} (2.6)

holds, the point is sufficiently covered by the model/field Mi. However, the shape of the receptive field might

have to be adjusted to increase its influence in this region according to Algorithm. 1. Consequently the same

as before for the RFWR applies: If a newly presented example cannot be explained by any of the existing

models (i.e., activates no receptive field), a new receptive field is created with its center at exactly this point

and an initial default covariance. Unlike the covariance, which is updated in a gradient descent, the center

of the receptive field cannot be altered once created (although models and receptive fields can degrade by a

forgetting factor over time). The mechanism that regulates the distribution and creates them on demand is

very straightforward and easy to implement. This comes at the price of flexibility as it cannot consider the

whole data set and choose the optimal distribution though. Outliers, for instance, may result in unnecessary

receptive fields that interfere with correct data. Another attribute of LWPR that is often criticized is the large

number of hyper parameters such and the sensitivity that make parameter tuning challenging (Sigaud et al.,

2011).

Extended classifying system for function regression (XSCF)

A more robust and recent approach tries to evade the problems accompanying LWPR: The extended clas-

sification system for function regression (XSCF)—although closely related—does not originate from the

development line of LWL. It is an advancement of the extended classifying system (XSC) that allows func-

tion regression with local linear models in a very similar way as the locally weighted learning methods do.

Consequently, we will focus on the differences to LWPR in the following. The first eminent difference to

LWPR lies in the receptive fields. Models do not contribute to the weighted sum at all when the input lies

outside the region of influence—in LWPR, every model contributes to the sum albeit often only very little.

Another difference is that the choice receptive fields is not limited to ellipsoid shapes (the equivalent to the

Gaussian kernel) even if they are prevailing in sensorimotor-related learning and allow the best compari-

son. Local models are learned with recursive least squares (RLS) optimization that also is incremental and

37

2. Related Work

assumably faster than the partial least squares method. It cannot not equally profit from a dimensionality

reduction whereas the authors argue that this is mainly important when learning trajectories. The biggest

distinction, however, is the distribution of the receptive fields. In LWPR their creation follows a relatively

simple rules—they are created in the data points if those cannot sufficiently be explained by existing mod-

els. XSCF uses a different approach. A steady-state genetic approach determines the allocation of receptive

fields that optimally explain the training data. In an artificial evolution, receptive fields are created as chil-

dren of existing fields and selected such that in the end the data is optimally explained by as few local models

as possible. These theoretical differences have also been evaluated for applications in the robotics domain.

In (Butz et al., 2009; Butz and Herbort, 2008; Stalph et al., 2009) the XCSF was used to learn a simulated

robot arm with four degrees of freedom. Later (Stalph et al., 2010), they compared their approach to the

LWPR.

In total, XSCF and LWPR (and the other locally weighted learning approaches) have many concepts and

properties in common and it has been suggested to combine their strength into a single practice. Nonpara-

metric and local learning methods, in general, expose their real strength when the input dimensionality of

the sensorimotor map is large and not the whole input space is to be covered but only a small portion of

it or low-dimensional subspace. This makes them the ideal choice for learning trajectories, for instance, in

imitation learning.

2.3.5. Probabilistic learning

Gaussian mixture regression (GMR)

In machine learning, a Gaussian Mixture Model (GMM) is used for probabilistic learning and refers to an

inductive bias with the assumption that the observed data is distributed according to a mixture of Gaussian

distributions (i.e., models). This means that in a data set, each observation belongs to one of a finite num-

ber of Gaussian models (normal distribution) similar to the receptive fields in locally weighted learning.

Formally, let

Y = {Y1, . . . ,Yn}, Yi ∈ RRRd ,

be a set of n random variables that are distributed by a mixture of m Gaussian models. Then there also exist

n latent (i.e., hidden, unobservable) random variables

Z = {Z1, . . . ,Zn}, Zi ∈ {1, . . . ,m},

indicating the association of an obervation to one of the Gaussian models such that for n given observations

yyy = {yyy1, . . . ,yyyn} and latent variables zzz = {z1, . . . ,zn}, the probability density for the observations is

p(yyy) =
⋂

i

P(Yi = yyyi) =
n

∏
i

p(yyyi),

38

2.3. Sensorimotor learning in robotics

where the density for each observation is

p(yyyi) =
⋃

j

P(Yi = yyyi∧Zi = j) =
m

∑
j

P(Zi = j) · p(yyyi|Zi = j),

where the density for each Gaussian model

p(yyyi|Zi = j) = N (yyyi; µµµ j,Σ j)

is a multivariate normal distribution with mean µµµ j and covariance matrix Σ j. In this definition all p(yyy�) 7→
P(Y� = yyy�) are (continuous) probability density functions and p(z�) 7→ P(Z� = z�) (discrete) probability

mass functions.

The parameters that completely define a Gaussian mixture model are the parameters of the individual Gaus-

sian Models and the prior probability distribution of the Gaussian models p(z) forming a parameter set

M

M := {p(z),µµµ1, . . . ,µµµm,Σ1, . . . ,Σm}.

Gaussian mixture models, in general, are used for clustering and classification. This means that, after

having learned the model, the conditioned probability distribution p(z|Y = yyy?) given an observed variable

yyy? is computed, and the most likely Gaussian model z? is obtained.

Further, it is an unsupervised learning process as the data is not divided into input and output data. Less

frequently, however, it is also used for general function regression which is then called Gaussian Mixture

Regression (GMR). Here, the coordinates of the data points are divided into din input values and dout output

values after the learning process (i.e., self-supervised learning, Section 2.3.3). In the case of learning a FK,

for instance, the data are joint angles and the end-effector positions

yyy = (θθθ ,xxx)T , θθθ ∈ RRRdin ,xxx ∈ RRRdout .

Learning a GMM is obviously a case of parameterized (or model-based) learning as observed data is used

for deriving the model parameters and neither for inference nor classification. In the next sections, the most

prominent learning algorithm for GMM—Expectation Maximization—and the Gaussian Mixture Regres-

sion are presented.

Expectation Maximization The standard algorithm used for learning mixtures of Gaussians is called

Expectation Maximization (EM). This algorithm finds the parameter set M̂ for the Gaussian models that

maximizes the expectation E of the log-likelihood:

M̂ = argmax
M

(E(log l(M |xxx,zzz))). (2.7)

As it is not possible to express the optimal parameters in a closed form, the EM-algorithm iteratively

searches for a solution. In brief, the algorithm performs two steps in each iteration starting with an ar-

39

2. Related Work

bitrarily chosen initialization of the parameters. The expectation step estimates for each given data point

and each Gaussian model the probability that the data belongs to this model. In the maximization step,

new model parameters are calculated that match best this estimated distribution. The algorithm terminates

as soon as the improvements after an iteration drop below a certain threshold. Although the algorithm is

guaranteed to find better parameters in every step, it is prone to getting caught in local minima, giving the

initial assignment of the parameters a special importance.

Gaussian Mixture Regression (GMR) Learning the parameters of Gaussian Mixture Models imposes

a clustering on the observed data points. This section shows how this learned clustering can also be used to

predict smooth and continuous functions. Therefore, the coordinates the data points are divided into input

and output dimensions. Given a data random variable Y ∈ Rd in kinematics, for instance, the coordinates

can be separated into a new random variable for input dimensions T ∈Rdin (for joint values) and one for the

output dimensions X ∈ Rdout (for the end-effector position)

X = (T,X)T ,X ∈ Rdin+dout

For prediction, a data point Y = yyy? with

yyy? = (θθθ ?,xxx?)T ,

is assumed where only the joint values θθθ
? are known. The forward kinematics for θθθ

? can then be predicted

by first calculating the probability distribution of xxx? given the learned model parameters M ,

pM (xxx?|θθθ ?) =
m

∑
j

PM (Z? = j) · pM (xxx?|θθθ ?,Z? = j), (2.8)

where Z? again refers to the non-observable Gaussian model that xxx? belongs to. The conditional proba-

bility distribution assuming a a Gaussian model Z = j essentially is a d-variate normal distribution that is

intersected with a subspace by a projection

πθθθ
?

(
(θθθ ,xxx)

)
= (θθθ ?,xxx)

for a constant θθθ
? The result of this intersection is again a normal distribution N X which is dout-dimensional

pM (yyy?|θθθ ?,Z? = j) = N X
j (µµµX

j ,Σ
X
j).

and is called a emphconditioned distribution. The parameters of N X can be obtained easily from the

parameter set M . First, we have to decompose the components of the known parameters µµµ j and Σ j

µµµ j = (θ µµµ j, xµµµ j)
T , Σ j =

[
θ Σ j σσσT

j

σσσ j xΣ j

]
, (2.9)

40

2.3. Sensorimotor learning in robotics

Then, the intersection N X
j (µµµX

j ,Σ
X
j) then is determined by

µµµX
j = θ µµµ j +σσσT

j · θ Σ
−1
j · (θθθ − θ µµµ j),

ΣX
j = xΣ j−σσσ j · θ Σ j ·σσσT

j .
(2.10)

The prediction xxx?j of the Gaussian model given the joint values θθθ
? now is the most likely vector, that is, the

mean µµµX
j of named distribution. Finally, the sum in Eq. (2.8) is solved for x?. An important property of the

GMM and other probabilistic approaches is that the covariance matrix Σ? can also be computed easily. It is

a very good indicator for the confidence of the prediction.

Figure 2.16 shows the results of an evaluation of the GMM where the x-coordinate of a robot with two

orthogonal axis has been learned from a training set

T = {(θ1,i,θ2,i,xi)
T : i = 1, . . . ,8000}

an GMM model of ten models. This number is the only hyper parameter in the GMR approach.

In general, Gaussian mixture regression is parametric learning as the number of Gaussians models is con-

stant. In (Lopes and Damas, 2007; Damas and Lopes, 2007) however, Damas and Lopes presented a mod-

ification of the of the expectation maximization process such it can be learned incrementally and online.

Further, the number of Gaussian models is not fixed anymore. New models are added to the mixture when-

ever a training sample is observed that cannot be explained if the probability for belong to one of the models

is smaller than a threshold. That way the algorithm resembles very much to the locally weighted progression

regression with the exception that the centers of the Gaussians are updated by the EM algorithm. Recently,

Chatzis et al. (2012) presented another non-parametric variant of GMR-based Dirichlet process mixture

models.

Similar to non-parametric statistical learning, Gaussian mixture models are best suited for learning along

trajectories. Calinon et al. (2007), for instance, applied the GMR for programming-by-demonstration (sim-

ilar to (Chatzis et al., 2012)). However, it could also be applied to directly learn the inverse kinematics

of a planar robot with three degrees of freedom as shown in an early work of Ghahramani (1993). It has

also been use to learn the whole configuration space (see Figure 2.16) and in combination with a kinematic

decomposition (Ulbrich et al., 2012b)).

Gaussian process regression

Definition The easiest approach to understanding Gaussian processes is to think of them as a generaliza-

tion of multivariate Gaussian distributions that can hold an infinite number of random variables. So they are

formally defined as the distribution of set of random variables X over an arbitrary index set S

X =
{

Xs : s ∈S
}
∼ GPS

41

2. Related Work

(a) The kinematic function. (b) The predicted function with the centers of the Gaussian models.

Figure 2.16.: Example of a forward model learned with GMR. It shows the x-coordinate of the end-effector in depen-
dance of the joint angles of a robot with two degrees of freedom. The composition of linear models is
observable.

which must fulfill the single requirement that each finite subset of the random variables is distributed by

multivariate Gaussian.

∀Sn =
{

s1, . . . ,sn

}
, n ∈ N, Sn ⊆S : ∃ µµµ,Σ : (Xs1 , . . . ,Xsn)∼N (µµµ,Σ)

The most simple example of a Gaussian process is, consequently, the multivariate Gaussian distribution

itself with—it is defined over the finite index set S = {1, . . . ,n} where n is the number of variables. Each

subset of its random variables is also normally distributed by definition (the so-called affine property of

multivariate Gaussians).

However, the index set does not necessarily have to be finite or even countable and can be multi dimen-

sion. It could consequently be, for instance, the real numbers R or a vector space Rn. When there is an

infinite number of random variables, it is impossible to describe the distribution by a single mean µµµ and or

covariance Σ. The continuity in the indices of the random variables requires the mean and covariance to be

defined as continuous functions—the mean function µ(s) and covariance function k(s, t) where s, t ∈S are

the indices of two random variables out of X . These two functions are sufficient to completely describe a

Gaussian process.

If used in the context of regression in machine learning, nearly exclusively finite numbers of random vari-

ables are encountered—each variable represents training sample from a physical process. That way, one can

use the calculus known for multivariate Gaussians. For instance, predictions are made by conditional dis-

tributions similar as in the GMR (see Eq. (2.10)). In the example of kinematics this means that the training

set

T =
{
(θθθ i,xxxi) : i =,1 . . . ,m

}

42

2.3. Sensorimotor learning in robotics

defines an index over all observed joint angles

Sθ =
{

θθθ : (θθθ ,xxx) ∈T
}

and the end-effector positions are the random variables

X =
{

Xθθθ : θθθ ∈Sθ

}
∼ GPSθ

distributed by the Gaussian process. Together with a mean and covariance function m(·) and k(·, ·), the

Gaussian process can then be interpreted as the random distribution of functions over index set Sθ

f ∼ GP(m,k)

The greatest strength of the Gaussian process regression lies in the freedom of the definition the covariance

function which is only restricted to be positive semi-definite. This allows the inclusion of different degrees

of a-priori knowledge about the nature of the underlying physical processes that one is trying to model. It

also makes the Gaussian Processes Regression a very powerful tool that has been becoming increasingly

popular in machine learning for robotics recently and many prominent instance-based machine learning

methods can be expressed in terms of a Gaussian process as we will see later in this chapter. On the other

hand, the weakness of the GPR is also related to the covariance function. It is instance-based learning and, as

such, requires the calculation of the covariance of all known random variables, that is, all observed samples.

Furthermore, the resulting covariance matrix has to be inverted for making predictions which cannot be done

with a complexity less than O(n3).

Kernels and mean functions The covariance function is also often referred to as kernel. Gaussian

process regression can be used for Bayesian linear regression when using a linear kernel

kl(s, t) := 〈ϕ(s),ϕ(t)〉n , s, t ∈S , n ∈N+. (2.11)

with n = 1 where a basis transformation ϕ(·) can be applied to the indices. For n > 2 the kernel is called

polynomial.

The most popular kernel in the context of learning robot models, is the squared exponential function

kse(x,y) = e−a·(x−y)2
, a ∈ R+, x,y ∈ S, (2.12)

where a is weighting hyper parameter. A Gaussian process with zero mean and the squared exponential

kernel is a distribution of smooth and differentiable functions which resembles greatly renders it especially

well suited for general function approximation. Alternatively, it can be defined in dependence of the distance

between two random variables:

kse(d) = e−a·d2
, a ∈ R+, d(s, t) = ||s− t||, s, t ∈S . (2.13)

43

2. Related Work

A covariance function that is defined that way is called stationary and shares similarities with local learning

whereas non-stationary kernels such linear or polynomial kernels implement global learning. In addition,

kernels can be defined for periodic and symmetric functions.

The mean function also allows expressing prior knowledge on the target function. Still, it is set to constant

zero in nearly all applications. This is because often there is more knowledge about the relation between

observations available than about how to make an absolute assumption. Further, absolute model knowledge

can be directly included into the covariance where it can be more efficiently combined with noise models.

(a) The Gaussian process regression if only one training sample at
x0 = 3.0 has been observed.

(b) The bivariate distribution of function values given
S = {x0 = 3.0,x? = 1.0}. If the distribution is conditioned for an

observed y0, the most likely value for f (x?) can be computed.

(c) Prediction of the latent function if two training samples are provided.

Figure 2.17.: Example of the squared exponential kernel.

Gaussian Process Regression (GPR)

Regression This paragraph explains the calculus necessary to make a prediction of an unknown output

given its input and a set of previously sampled observations. shown on the illustrative example in Fig-

ure 2.17a using single training data point with s0 = 3.0 and the squared exponential kernel with zero mean.

44

2.3. Sensorimotor learning in robotics

One can see that points that lie closer to the data point on the x-axis have a similar function value. They

are closer to the x-axis otherwise because of the zero mean function. In order to evaluate a function f dis-

tributed by this Gaussian process at a given x?, the conditional distribution has to be observed. The index

set is then

S = {x0 = 3.0,x?}, x? ∈ R

and the covariance matrix of the bivariate Gaussian is

Kx? =

[
1 k(x?,3.0)

k(x?,3.0) 1

]
.

Then, the conditioned distribution for an unknown x? is (according to Eq. (2.10))

p(s?|s0)∼N

(
k(s?,s0)

k(s0,s0)
· f (s0),k(s?,s?)−

k(s?,s0)
2

k(s0,s0)

)
.

The actual prediction is the most likely value given s? and s0 which is exactly the mean value of the condi-

tional distribution

f (s?) =
k(s?,s0)

k(s0,s0)
· f (s0).

The variance, which is also shown in Fig. 2.17a, is a good measure for the confidentiality which decreases the

farer one get away from the actual data point. The bivariate distribution for x? = 1.0 is shown in Fig. 2.17b.

In the more general case of multiple data points, the conditional distribution becomes more complex to

compute. This case is displayed for two data points in Fig. 2.17c. Again, it can be observed that the

confidence decreases the further one gets away from the sample points, and the plot gives an idea of the

smooth interpolation through data points. The general formula for the conditional distribution given an

unknown position x? and the n observed training samples (x0, f (x0)) up to (xn, f (xn)) is given by

p(s?|sss) = N
(
kkks? · K̄−1 · yyy,k(s?,s?)− kkks? · K̄−1 · kkkt

s?

)
, (2.14)

where (similar to Eq. (2.10))

Ks? :=

(
k(s?,s?) kkks?

kkkt
s? K̄

)
, K̄ :=


k(s0,s0) · · · k(s0,sn)

...
...

k(sn,s0) · · · k(sn,sn)

 ,

kkks? =: (k(s?,s0), . . . ,k(s?,sn)) , yyy := (f (sss0), . . . , f (sssn))
t

It is important to note that the matrix K̄−1 has to be calculated and inverted newly every time a new sample

is added to the training data. This is the bottleneck in incremental and online learning as with increasing

accuracy the computation time increases cubically. As a consequence, a sparsification of the data is required

for learning in high-dimensional spaces (see Csató and Opper, 2002; Nguyen-Tuong et al., 2009).

A comprehensive introduction to GPR including applications in robotics is given in (Rasmussen and

Williams, 2005). The approach of a body schema by Sturm et al. (2009) presented in the previous sec-

tion also relied on GPR to learn the low-dimensional forward kinematics models in between observable

45

2. Related Work

body parts. More recently, Hartmann et al. (2012) used multiple local Gaussian processes to learn the in-

verse dynamics for robot arm with seven degrees of freedom and artificial pneumatic muscles which cannot

be modeled by classical methods. de la Cruz et al. (2012) recently presented an modification of the GPR

(Csató and Opper, 2002) to learn the inverse dynamics of a simulated industrial robot with six degrees of

freedom.

2.3.6. Decomposition

All methods presented in the previous subsections suffer from Bellman’s “curse of dimensionality” (Bell-

man, 1960) when learning forward models with high-dimensional input spaces. When the number of input

dimensions increases, the number of training samples required to learn the model grows exponentially. This

means that no matter how efficient the learning algorithm is, the construction of a sensorimotor map that

covers the whole configuration space becomes intractable on a humanoid robot with many degrees of free-

dom. Up to a certain degree, local methods can evade this problem. A single linear model requires only

O(n) training examples for its construction. However, the number of local models itself grows exponentially

when the complete configuration space has to be approximated.

To solve this problem, several methods have been proposed that attempt to decouple the input signals and

decompose the learning problems into partial problems that can be learned more easily. Currently, such

methods can only be applied to forward and inverse models of the kinematics. They impose restrictions

that hinders the application on a humanoid robot that learns through self-observation. This section presents

several approaches and how they can be applied for learning robot kinematics.

Function decomposition

Ruiz de Angulo and Torras (2005b) proposed a decomposition of the kinematics of robot manipulators with

six controllable degrees of freedom with the additional restriction that the last three joint axes intersect

in a single point. This restriction holds for the most industrial and anthropomorphic robot arms and allows

decoupling the joint angles and therefore learning the inverse (and forward) kinematics more easily. Further,

the pose of the end-effector, that is, its position and orientation, has to be observable by the sensors. This

paragraph presents the decomposition using the notation used throughout this thesis. The function describing

the kinematics is decomposed into two shorter partial inverse kinematic functions and two helper functions.

At first, the joint angles θθθ are separated into proximal and lateral joint angles θθθ
p and θθθ

l , that is, the joint

angles closer and more distal to the robot’s base respectively

θθθ =
(
θ1, . . . ,θ6

)
,

θθθ
p :=

(
θ1,θ2,θ3

)
, θθθ

l :=
(
θ4,θ5,θ6

)
. (2.15)

Then, the observations of the end-effector are separated into the position xxx and orientation X of the end-

effector. Without loss of generality, the orientation will be expressed as a rotation matrix for simplicity.

46

2.3. Sensorimotor learning in robotics

The forward kinematics can then be decomposed into two functions—one for the position and one for the

orientation

fx(·) : Θ
3×Θ

3→ R3, (θθθ p,θθθ l) 7→ xxx, (2.16)

fX(·) : Θ
3×Θ

3→ SO3, (θθθ p,θθθ l) 7→ X . (2.17)

Learning then uses a training set of the following form

T =
{(

θθθ
p
i ,θθθ

l
i,xxxi,Xi

)
: i = 1, . . . ,n,θθθ p

i ,θθθ
l
i ∈Θ

3, xxx ∈ R3, X ∈ SO3

}

Definition The first of the partial inverse kinematics function maps the position of the cross point xxx?—the

point where the last three axes intersect—to the proximal joint angles

kxxx?(·) : R3→Θ
3, xxx? 7→ θθθ

p (2.18)

The first helper function hxxx? maps the orientation of the end-effector to the translation from the end-effector

position to the cross-point

hxxx?(·) : SO3→ R3, X 7→ ttt = xxx− xxx?, (2.19)

such that

kxxx?

(
xxx−hxxx?(X)

)
= fx(xxx)−1 (2.20)

The helper function hxxx? can directly be determined by moving the last two joints which yields the last two

joint axis and their intersections.

The second partial inverse kinematic function kX maps the orientation to lateral joints θθθ
l for a fixed set of

proximal joint angles θθθ
p
0

kX(·) : SO3→Θ
3, X 7→ θθθ

l (2.21)

It is accompanied by the second helper function hX that maps proximal joints θθθ
p to a rotation R

hX(·) : Θ
3→ SO3, θθθ

p 7→ R = fX(θθθ
p
0 ,θθθ

l) ·X−1, (2.22)

such that

kX

(
fX(θθθ

p
0 ,θθθ

l)
)
= kX

(
hX(θθθ

p) · fX(θθθ
p,θθθ l)

)
. (2.23)

Each of the functions maps between spaces with lower dimensions such that the joint angles are effectively

decoupled and learning requires much less training samples.

Learning and Application Ruiz de Angulo and Torras (2005b) proposed several schemes to learn the

partial kinematics and helper functions with different degrees of parallelism. Here, only the algorithm that

synchronously learns all functions will be presented. It is the only capable of learning online during the

47

2. Related Work

Algorithm 2: Pseudo code the parallel refinement of the function decomposition by Ruiz de Angulo and
Torras (2005b)
Input: Initialized estimators for hX ,kxxx? and kX

1 for (θθθ p
i ,θθθ

l
i,xxxi,Xi) ∈T do // For all samples

2 Adapt estimator for hX to
(

θθθ
p
i ,k
−1
X (θθθ l

i) ·Xi

)
3 Adapt estimator for kxxx? to

(
xi−hxxx?(Xi),θθθ

p
i

)
4 Adapt estimator for kX to

(
hX(θθθ

p
i) ·Xi,θθθ

l
i

)

normal application of the robot. For every sample, the functions are learned relying on the other’s estima-

tions. With the time, the estimators will converge to accurate approximations of the partial kinematics. The

algorithm is shown in Algorithm. 2. The authors evaluated the decomposition with simple nearest-neighbor

learning and parameterized self organized maps (see Section 2.3.3) on a simulated industrial robot.

This approach could successfully reduce the number of training samples required to learn the kinematic

functions describing the robot. However, the restrictions to six degrees of freedoms and the necessity for

the last axes to intersect is very exclusive and a more general learning approach is therefore desirable for the

application on humanoid robots.

Decomposition into virtual robots

In a more recent work Ruiz de Angulo and Torras (2008) presented a decomposition of the forward kinemat-

ics that is less restrictive with respect to the kinematic structure of the robot, that is, it is not limited to six

joint axes and the intersection of the last three axes in a single point is no more a requirement. However, it

require that not only the pose of the end-effector is observable but also the pose of intermediate body parts,

that is, markers attached to them. Then, a forward kinematics of the form

f (·) : Θ
din → SE3

θθθ 7→ t0,1(θ1) · t1,2(θ2) · . . . · tdin−1,din(θdin) = X ,

where the functions

ti−1,i(·) : Θ→ SE3,

are partial kinematics that map joint angles to rigid body transformations (homogeneous transformation

matrices for instance) out of the special Euclidean group. They describe the transformation from one joint

to its successor in dependence of the respective joint angle. A decomposition of the end-effector pose into

position and orientation (as in the previous section) is not necessary.

The main idea is to decompose f such that partial kinematics that are observable can be learned separately.

If the pose of the k-th body part Xk is observable for instance, f can be written as the product of two partial

kinematics. Therefore the joint angles are divided into proximal and lateral joint angles (analogously to

48

2.3. Sensorimotor learning in robotics

Eq. (2.15))

θθθ
p :=

(
θ1, . . . ,θk

)
, θθθ

l :=
(
θk+1, . . . ,θdin

)
.

The partial forward kinematics are then

f1
(
θθθ

p)= t0,1(θ
p
1) · t1,2(θ

p
2) · . . . · tk−1,k(θ

p
k) = Xk

f2
(
θθθ

l)= tk,k+1(θ
l
1) · tk+1,k+2(θ

l
2) · . . . · tdin−1,din(θ

l
din−k) = X ·X−1

k .

As a result, the joint angles are completely decoupled and can be learned separately and simultaneously

with training sets

T1 =
{
(θθθ p

i ,Xi) : i ∈ {1, . . . ,n}, θθθ
p
i ∈Θ

k, Xi ∈ SE3

}
,

T2 =
{
(θθθ l

i,Xi ·X−1
k,i) : i ∈ {1, . . . ,n,}, θθθ

l
i ∈Θ

din−k, Xi,Xk,i ∈ SE3

}
.

Ruiz de Angulo and Torras (2008) evaluated the decomposition with a localized version of the parameterized

self-organizing maps (see Section 2.3.3)

The effect of the decomposition is then biggest when k≈ din/2. Then the required number of training samples

is reduced from O(exp(din)) to nearly its square O(exp(din/2) which renders sensorimotor learning of

kinematics with many degrees of freedom much more tractable. Further, the number of partial kinematics

can be increased such that the number becomes linear in the number of inputs din. The decomposition then

becomes similar to the body schema learning presented by Sturm et al. (2012) (see Section 2.2). The main

drawback, however, is the increase of the number of observable body parts of the robot which have to be

visible simultaneously during training. On a humanoid robot learning from self-observation with cameras

mounted on the head, this is a restriction which often cannot be met. When the hand is close to the head,

the field of vision is usually too small to observe more body parts than the end-effector. For that reason, the

decompositions presented here were improved in this thesis to dispose of this necessity.

2.3.7. Discussion

In this last section, various methods from the field of machine learning were presented that are suitable for

and have been applied to sensorimotor learning. They are able to create approximations of the complex non-

linear relations between the different sensor and control modalities of a robot and map a high-dimensional

input spaces (proprioception, i.e., joint angles and motor commands) to the usual lower-dimensional carte-

sian task space (kinematics) or force/torque space (dynamics).

The necessity for learning arises only if it becomes intractable to obtain sufficient knowledge about a robot’s

structure by classical means, for instance, due to discrepancies between design parameters and the actual

robot or the lack of adequate measuring instruments and human intervention. Even if models can be deter-

mined, they are yet static and cannot account for dynamic changes in the robot’s structure. Such changes

can result from wear and tear but also from the interaction with the environment—most notably, the use

of tools. Further, these problems usually coincide with higher numbers of controllable degrees of freedom.

This also increases the complexity of the sensorimotor relations further impeding parameter identification.

49

2. Related Work

Humanoid robots typically fulfill all these criteria: Due to energy and safety restrictions they are built more

lightweight and less robust compared to their industrial counterparts and their anthropomorphic appearance

and potentially likewise dexterity almost enforces the idea of tool use. Further, they usually come with

a huge number of controllable degrees of freedom. Altogether, this qualifies them as the ideal target for

sensorimotor learning.

The main criteria that allow a distinction of the presented methods into groups are the scope (global and

local) and the nature of the model parameters (parametric and non-parametric) learning. Unfortunately,

it is very difficult to directly compare and judge the members belonging to different groups as they all

have evolved to be most efficient in their field of application. Furthermore, a fair comparison is almost

always impossible due to different experimental conditions under which they were evaluated. That way,

non-parametric and local learning has nearly always been used to learn mappings along trajectories—a

reduction of the problem to one-dimensional subspaces embedded in the workspace. However, sensorimotor

maps that represent a complete humanoid robot’s body require learning of the whole reachable action space.

In theory, all presented methods are capable of learning the complete region but their different paradigms

render them differently qualified for this task. From this point of view, global learning seems to be the best

for this task and the idea of the ability to generalize from few examples to the whole configuration space is

intriguing. But the few global approaches presented within this section also require many training samples

that have to be well distributed in the work space to build a globally accurate model.

It is an important observation that all presented methods act as general function approximations. Usually,

this generality is an advantage as little to no knowledge of the target function is required in opposition to

classical methods. The lack of a specialized inductive bias, however, is main reason that prevents rapid and

exact global learning.

For this reason, the main contributions of this thesis are novel model representations for global parametric

learning that exploit the nature of dynamic and kinematic forward models. The analytical functions that

describe these models are composed of trigonometric functions. The new models and associated learning

algorithms expose a bias to this type of functions and are consequently less general as the discussed ap-

proaches. Instead, they require significantly less training samples and generalize very well even to regions

of the configuration space that were not explored during training (extrapolation). Sensor noise can reliably

be compensated and under the perfect conditions in a simulation, the models are an exact representation of

the underlying physical processes. Further, they are computationally tractable and can be learned incremen-

tally such that they can be applied for online learning.

Bellman’s ‘curse of dimensionality’ cannot be evaded however and the number of required training samples

still grows exponentially in the number of controllable degrees of freedom. On the one hand, the decom-

position techniques that were presented at the end of this section provide a simple method to overcome

this problem. On the other hand, they are either limited to a subset of robots in their application or require

perception that is not available on a humanoid robot. For this reason, a novel decomposition had to be

developed that combines and extends the characteristics of the available techniques.

50

2.3. Sensorimotor learning in robotics

In the following three chapters, these contributions will be presented in detail along with the derivation of

their mathematical foundation.

51

3. Representations for kinematic and dynamic models

The contributions of this thesis to the research in the field of body schema and sensorimotor learning in

particular are presented in this and the following two chapters. They are mainly centered around a novel

method for the representation of trigonometric sensorimotor relations and their related learning algorithms,

which, above all, cover forward models of the kinematics and dynamics of robots with revolute joints. Be-

cause their principal use in kinematics and their mathematical roots in projective geometry these maps have

been named Kinematic Bézier Maps (KBM) (Ulbrich et al., 2012c). The first section in this chapter provides

a brief introduction to polynomial function approximation and projective geometry which both are funda-

mental for the definition of the KBM models. Section two consist of the detailed mathematical definition of

these models, and their properties and relation to forward models. After that, in section three, their evolu-

tion to represent dynamic models is presented. The related algorithms for learning the proposed models will

presented in the subsequent chapter four followed by the presentation of an enhanced variant of virtual robot

decomposition in chapter five that addresses the problem of Bellman’s “curse of dimensionality” (Bellman,

1960) in Chapter 5.

3.1. Introduction

The investigation of the state-of-the-art in body schema and particularly sensorimotor learning in chapter

two showed that, although global model learning has superior characteristics for robot control, currently

local linear techniques prevail due to the overwhelming complexity inherent in complex robot systems—

especially in humanoid robots. This observation led to the emergence of novel methods for the global

representation of sensorimotor relations designed for sensorimotor learning even in high-dimensional input

spaces. The underlying mathematics is well-known in the domain of computer aided geometric design

(CAGD) but have not been applied in robots in the context of sensorimotor learning so far. Sensorimotor

maps inherently involve nonlinearities mostly in form of trigonometric relations to the input signals. A

revolute joint, for instance, defines a trigonometric relation between its joint angle and the spatial location

of the following arm element as it moves along a circular trajectory around the joint axis. Polynomials,

for instance, cannot be used for creating an exact sensorimotor map and approximations require high-order

polynomials, PSOM for instance (Klanke and Ritter, 2005), or have to be a composition of low-degree

polynomials only with local validity such as LWPR in(Vijayakumar and Schaal, 2000), GMR in (Lopes and

Damas, 2007), and XCSF in (Sicard et al., 2011).

In this chapter, it will be shown that the nature of the nonlinearities can also be exploited and forward

models can be derived from projective geometry. Originally, this technique was designed to model just the

53

3. Representations for kinematic and dynamic models

direct kinematics but it can be adopted to closely related sensorimotor maps as is shown for the inverse

dynamics.

3.1.1. Polynomial function approximation

In this thesis, polynomial functions were investigated as possible candidates for global models applicable

for sensorimotor learning at first. The only technique encountered that relies on higher-order polynomials

encountered in the context of sensorimotor learning are the Parameterized Self-Organizing Maps (PSOM)

(see Section 2.3.3). One property of function approximation with polynomials that simplifies learning is the

linearity in the their parameters. Given two vector spaces V din and V dout over the field V (the real numbers R

for instance), a polynomial is defined as

p(xxx) = ∑
iii∈I n

din

ppp
i
·Piii(xxx), P : V din →V dout , xxx ∈V dout , pppiii ∈V dout (3.1)

where Piii(·) denotes the elements a polynomial basis of degree n in di input dimensions identified by index

vectors iii out of a set I n
din

. The parameters pppiii then can be interpreted as points in the output space and appear

only linear in this equation. For instance, the monomials

M 2 = {x2y2,x2,y2,x2y,xy2,xy,x,y,1}

form a basis for all quadratic polynomials (that is, d = 2 and n = 2) and can exemplarily be addressed by

the degree of their variables

Miii=(i, j) = xiy j, I 2
2 =

{
(i, j) : i, j ∈ {0,1,2}

}
.

Multivariate Lagrange interpolation

PSOM are representatives of self-organizing feature maps which in general do not divide training data into

input and output signals during training (i.e., semi-supervised learning, see Section 2.3.3). The continuity

introduced by the PSOM, however, requires this separation. The same learning rule as for Kohonen maps is

applied and after learning, the weights of the neurons are interpolated by polynomials

p(θθθ) = ∑
aaa∈A

pppaaa ·HA (aaa,θθθ),

that uses a multivariate basis of the form

HA (aaa,θθθ) =
din

∏
j=1

LA j(a j,θ j)

54

3.1. Introduction

with the Lagrange polynomials

LA�(ā,θ) = ∏
α∈A�\{ā}

θ −a
ā−a

.

The index set A = Ai× . . .×Adin contains all possible coordinates of the neurons in the competitive layer.

Using this base allows the parameters pppaaa of the resulting polynomial to be interpreted as points that are

directly interpolated by the polynomial at θθθ = aaa ∈A .

If not enough training data can be sampled for learning with the Kohonen rule, the parameters can directly

be assigned to the output signals observed when sampling the input space in a regular grid such that the

robot moves to each configuration aaa ∈A . The observation of all configurations is problematic because of

possible self-collision or occlusion. Further, the model over-fits to the noise in the output signals.

A simple alternative that completely discards the connection to self-organizing feature maps has been sug-

gested without further investigation by Walter (1996). This approach exploits the linearity of the parameters

in Eq. 3.1. The training with m observations in a training set

T =
{
(θθθ j,xxx j) : j ∈ {1, . . . ,m}

}
(3.2)

yields optimal parameters ppp?aaa that can be determined such that they minimize the mean least squares error

(MSE)

ppp?aaa = argmin
pppaaa

m

∑
j

∥∥∥∥∥
(

∑
aaa∈A

pppaaa ·HA (aaa,θθθ)

)
− xxx j

∥∥∥∥∥
2

, aaa ∈A ,m≥∏(n j +1). (3.3)

Algorithms for finding the optimal parameters are explained in Chapter 4 including online-applicable in-

cremental versions for life-long learning. Due to the resulting simplicity of incrementally learning this

polynomial model, it has been chosen for the experiments for the decomposition by Ulbrich et al. (2012b).

The extension of the PSOM, called PSOM+, continues this path by not only optimizing the MSE but also

regulating the curvature of the resulting polynomial manifold—considering all output dimensions. This

results in a nonlinear optimization that also enforces the global character of the learning of polynomial

models.

This demonstrates that global models can adequately be created with higher-order polynomial and robust

algorithms minimizing the MSE. However, the choice of the polynomial order is important. The higher it is

chosen, the more accurately the latent function can be approximated. This results also in a higher number

model parameters which is directly linked to the volume of the training data. Thus a balance between

accuracy and the duration of the training has to be found. In case of an anthropomorphic arm, it is nearly

impossible to have a degree higher than two which already results (given seven degrees of freedom) in

37 = 2187 samples per arm. While a quadratic or cubic interpolation may be adequate if only a small

portion of the robots configuration space is relevant, it certainly is not for the complete space (see Fig. 3.1).

This problem can only be overcome by the combination of locally valid polynomial models (cf., LWPR or

local PSOM) or by a non-polynomial basis. This thought resulted in the continued research for a global

model with the same benefits but maintain a lower level of complexity.

55

3. Representations for kinematic and dynamic models

Figure 3.1.: Example of the approximation of the workspace of a robot with two orthogonal axes. The workspace
is a torus. Ißt can be seen a segment of the torus is approximated very well (the area where training
samples were taken from) but the extrapolation over the whole configuration space produces quickly large
estimation errors because of the high polynomial degree of the Lagrangian basis.

Bézier approximation

There are many possible polynomial basis with different properties that can be considered for sensorimotor

learning. The Bézier form will be of greater importance later in this chapter and is therefore introduced in

brief1. The introduction in this paragraph is based on the detailed literature in (Prautzsch et al., 2002). It is

an alternative polynomial representation based on a basis of Bernstein polynomials,

Bn
i (t) =

(
n
i

)
· t i · (1− t)n−i, t ∈ R. (3.4)

A Bézier curve of degree n using this basis has the following form

b(t) =
n

∑
i=0

bbbi ·Bn
i (t). (3.5)

For a given t ∈ (0,1) the Bernstein polynomials Bn
i (t) are positive and sum up to one

B2
i (t) ∈ (0,1)∧

(2

∑
i

B2
i (t) = (1− t + t)n = 1

)
: ∀t ∈ (0,1).

From this follows the important convex hull property—all points of the Bézier curve with parameters t ∈
(0,1) lie in the convex hull spanned by the parameters bbbi, which are called control points or control vertices

1The Bézier form was developed in the automotive industry by Pierre Bézier at Renault and Paul de Casteljau at Citroën in the
1960ies

56

3.1. Introduction

b0

t

1 − t

b1
t

1 − t
b2

t

1 − t

b3

b(t)

(a) A Bézier curve and DeCasteljau’s
algorithm to compute bbb(t).

b1

b2

c0

c1

c2

c3

c4

b0

b3

(b) Degree elevation increases the
polynomial degree of the curve.

∆b0

∆b1

∆b2

o

(c) Derivatives are obtained as new Bézier
curve by forward differences between

the control points.

Figure 3.2.: An example of a cubic Bézier curve and important algorithms for its manipulation.

and form the control polygon. For t = 0 and t = 1 the first and the last basis polynomials, Bn
0(0) and Bn

1(1)

respectively, equal one while all the others equal zero. This means that the first and the last control point

both lie on the curve (end-point interpolation property).

DeCasteljau’s algorithm (illustrated in Figure 3.2a) is a numerically stable method for the evaluation of

a Bézier curve. It offers an descriptive geometric perspective on the evaluation of a function value given

a parameter t. The n line segments connecting subsequent control points bbbi and bbbi+1 are subdivided by

the ratio t : (1− t) and the procedure is repeated recursively with the resulting n points until a single point

remains. The theory of Bézier curves is well developed and there are algorithms for degree elevation (raising

the polynomial degree of a curve, see Figure 3.2b), smooth extrusion, and the calculation of derivatives (see

Figure 3.2c) among others, many of which will be used in later sections. In order to represent multivariate

polynomials, there exist two possibilities to modify the Bézier form. First, the Bernstein polynomials can

be modified for multiple input variables. In the case of two inputs, this results in a triangular path with the

polynomial basis

Bn
i, j,k(u,v,w) =

n!
i! j!k!

uiv jwk, u,v,w ∈ R, i, j,k ≤ 0∧ i+ j+ k = n,

where u,v and w are called barycentric coordinates. This way, one can represent surfaces that are of the

same polynomial degree n in any direction ∆t. The second—and for this work more relevant approach—

works similar to the multivariate Lagrange polynomials used for the PSOM. It is called tensor-product

representation. It assumes that the resulting polynomial is necessarily of degree n only in its main directions,

that is when only one of the input parameters changes. The resulting form for a bi-quadratic surface is

bbb(s, t) =
n

∑
i

(
n

∑
j

bbbi, jBn
j(s)

)
︸ ︷︷ ︸

bbbi(s)

Bn
i (t).

One can observe that this equation can be decomposed into two univariate Bézier curves which determine

57

3. Representations for kinematic and dynamic models

each others control points. For more inputs we adapt the formalism

bbb(ttt = (t1, . . . , td)) = ∑
iii∈I n

din

bbbiii ·
din

∏
j

B j(ti j) = ∑
iii∈I n

din

bbbiii ·Biii(ttt), (3.6)

with the shorter notation

Biii(ttt) :=
din

∏
j

B j(ti j) (3.7)

where the index set I n
din

is defined as

I n
din

:=
{
(i1, . . . , idin) : i j ∈ {0, . . . ,n}∀ j ∈ {1, . . . ,din}

}
. (3.8)

The multivariate forms of the Bézier representation share many of the properties of the univariate case in-

cluding end-point interpolation, convex property, and also the algorithms for derivatives, degree elevation

and evaluation. The algorithms are numerically stable because of the exclusive application of convex oper-

ations.

3.1.2. Primer on projective Geometry

The search in this thesis for models that can represent sensorimotor maps and are linear in their parame-

ters led to rational polynomials. The derivation of these models requires a brief introduction to projective

geometry, projections and the projective space. Detailed information on this topic can be found in (Farin,

1999).

A projective space Pd is closely related to its affine space A d and the Euclidean space Rd . An affine

space is an extension of the Euclidean space that contains points and vectors expressed in extended or

homogeneous coordinates which will be indicated by hollow small letters

x=

(
xxx

h

)
, h ∈ {0,1}, (3.9)

such that

a=

(
aaa

1

)
if aaa is a point and

v =

(
vvv

0

)
if vvv represents a direction vector (the difference between two points).

That way, affine transformations can be defined such that linear transformations in the Euclidean space

(e.g., rotation, scaling and shear around the origin) can be combined with translations and be expressed in

58

3.1. Introduction

Figure 3.3.: Raffael, La scuola di Atene, 1509–1510, Stanza della Segnatura, Vatican city Paralell lines that point away
from the observer intersect in a vanishing point in the center of the painting. (Source: Wikipedia)

homogeneous coordinates

bbb = Axxx+ ttt

⇐⇒

b=

(
bbb

1

)
=

(
A ooo

oooT 1

)(
xxx

1

)
+

(
ttt

0

)
=

(
A ttt

oooT 1

)(
xxx

1

)
,

where ooo here denotes the null vector. This enables, for instance, to formulate rotations around arbitrary axis

in the affine space.

Homogeneous coordinates are also used to describe the d + 1-dimensional elements of a projective space

Pd . It is defined by its elements p which are the rays starting from the projective center o= (ooo,0)T (which

itself is not included in Pd). The default affine space A d itself is a subspace of Pd defined by intersection

with a hyperplane. If not stated otherwise this hyperplane is defined by the equation h = 1. If a ray p

intersects A d in the point ppp (when γ equals one),

p= γ ·
(

ppp

1

)
, γ ∈ R 6=0, (3.10)

ppp is called the affine image of p. If a ray f is parallel to the affine hyperplane (i.e., they intersect for γ =∞),

f = γ ·
(

fff

0

)
, γ ∈ R 6=0, (3.11)

it is called a far point or direction. The factor γ is called the (projective) weight of the point p or f.

The projective space does not only include the affine space but also all its possible images resulting from

perspective projections each lying on a different hyperplane in Pd that does not contain o. Analogously

to affine transformations, a projection π is expressed by a square matrix. It is defined by d + 1 projective

59

3. Representations for kinematic and dynamic models

Figure 3.4.: Example of a perspective projection that maps two parallel lines through ppp1 and ppp2 onto another affine
space A ′. After projections the two lines intersect in fff ′ (cf. the vanishing point in Figure 3.3) which is a
far point in the original A .

points pi and their images qi

π : x 7→ A ·x, A = (q1 . . .qd+1) · (p1 . . .pd+1)
−1

= (γ1qqq1 . . .γd+1qqqd+1) · (ρ1 ppp1 . . .ρd+1 pppd+1)
−1

However, the projective weights γi and ρi have to be well defined in order to obtain a unambiguous projec-

tion. Therefore, an additional point pd+1 and its image qd+2 are required such that

ρ1 ppp1 + . . .+ρd+1 pppd+1 = pppd+2, and γ1qqq1 + . . .+ γd+1qqqd+1 = qqqd+2.

Unlike affine transformations, such projections do not in general preserve ratios or parallel lines but—

and this is most interesting in the following—can map far points onto an affine hyperplane, for instance,

the intersection between parallel lines (see vanishing points in perspective drawing in Figure 3.3 and the

geometric construction of a vanishing point in Figure 3.4).

Under projection, properties of many geometric objects alter significantly. For this work, it is most important

how circles (and conics in general) behave as they represent the trigonometric functions encountered in

sensorimotor learning.

A circle in the affine plane A 2 can be illustrated in P2 as in Figure 3.5 without loss of generality. The

points that belong to circle are the affine images of projective rays that themselves lie on the lateral surface

of a double cone. A perspective projection defines a hyperplane that intersects the projective space and

the cone resulting in another conic (see Figure 3.5a). It directly becomes clear that a projection can map

the circle onto any other conic (see Figure 3.5b–3.5d) including the parabola where one point of the circle

becomes a far point. This holds the key to the representation of circular movement that has been searched

for in this thesis: Parabolas are low-degree polynomials and the examples shown that, given the projection

60

3.1. Introduction

(a) Circle to circle (affine transformation). (b) Circle to elipse

(c) Circle to hyperbola (d) Circle to parabola

Figure 3.5.: Illustration of a circle in a two-dimensional affine space. The projective pre-images of the affine points
that lie on the circle form a double cone. A projective projections is equivalent to the intersection of this
cone with a different hyperplane. That way the circle can be mapped to any type of conic.

61

3. Representations for kinematic and dynamic models

is known, it induces a quadratic parameterization c(t) onto the circle

c(t) = A ·

t2

t

1

 , (3.12)

where A denotes a projection and (t2, t,1)T the normal parabola. Later in this thesis, it will be show that,

under a fixed projection, parameters of a parabola can be learned that maps onto the circle and how to

combine subsequent rotations into a single multivariate rational polynomial.

3.1.3. Rational Bézier form

Figure 3.5d gives an impression on how the affine hyperplanes have to be defined in order to map the

parabola in Eq. (3.12) onto a conic, that is, to induce a rational parametrization to the circle (Farin, 1999).

Given the Bézier form in a projective space

b(t) =
2

∑
i=0

b ·B2
i (t) =

2

∑
i=0

γi ·bbbi ·B2
i (t) = γ(t) ·b(t),

the parabola is defined by its weights γi such that its affine image (i.e., its projection onto the default affine

space A : h = 1) lies on the conic. This projection has the form

b(t) =
∑

2
i=0 γi ·bbbi ·B2

i (t)

∑
2
i=0 γi ·B2

i (t)
.

The devision results in points on the curve b(t) in the default affine plane, that is with γ(t) = 1, and is the

reason for which the form is called rational. The shape of the control polygon and its weights determine

the relation between the hyperplanes and hence the appearance of the resulting curve. For instance, a bigger

weight γ1 decreases the distance of the control point bbb1 to the curve, hence the name weight in reference to

gravity. By the choice of the weights γi, the affine hyperplane the parabola resides in and its relation to the

default affine space A is defined.

The following rules apply for the rational parametrization of conics: Given a control polygon with the points

bbb0, bbb1 and bbb2 that form an isosceles triangle and the weights γ0 and γ2 equal one, then the resulting curve

is

• a hyperbola if γ1 > 1,

• an ellipse if 0 < γ1 ≤ 1 and

• a circle if γ1 = cos(α), when α is the isosceles common angle at bbb0 and bbb2.

62

3.2. Kinematic Bézier Maps

An outline for the proof of the last rule is given in Figure 3.6. The following section will show how these

observations lead to a model of kinematics that can be used for machine learning. For the representation

with polynomials that map onto circular arcs, the Bézier form has been chosen. This is, on the one hand,

due to its beneficial geometric properties, for instance, the convex property and its numeric stability. On the

other hand, it is possible to formulate the conditions necessary for an implicit perspective projection that

results in the transformation of the parabola into the desired circular arc.

3.2. Kinematic Bézier Maps: a rational parameterized model for kinematics

This section presents the Kinematic Bézier Maps (KBM) which are a class of parametric models that can be

used to exactly represent the kinematics of robots with revolute joints such as those applied on humanoid

robots. It can efficiently be learned due to the linearity in its model parameters. The KBM were previously

presented in (Ulbrich et al., 2009, 2012c) and are the main contribution of this thesis to the field of machine

learning and robotics. They are based on the observation that the kinematics can be described by a manifold

with circular arcs in its main directions as it is the product space of subsequent rotations.

3.2.1. Formulation

Parameter transformation

Previously, it has been demonstrated how and under which conditions a parabola can be projected onto a

circle, that is how a circular arc can be rationally parameterized. The input parameters of a parabola

p(·) : (−∞,∞)→ R2, (3.13)

however, do not coincide with the generating angles of a circle

c(·) : (−π,π)→ R2. (3.14)

For this reason, the joint angles have to be first transformed into the correct parameters required for the

rational parametrization. This can be achieved with the following parameter transformation

τα(θ) =
tan(θ/2)

2 · tan(α/2)
+ 1/2, (3.15)

where α is again the common angle of the isosceles control triangle (see Figure 3.6). The graph of this

transformation is shown in Figure 3.7. The transformation includes the ‘replacement of the range half-

angle’, a substation that is common in algebraic analysis of kinematics (Kovács and Hommel, 1993). For a

63

3. Representations for kinematic and dynamic models

x

z

y

xo

r

r

α

α

α

α

b(t = 0.5) = (r, 0)b(t = ±∞) = (−r, 0)

b0 = (r cos(α), r sin(α))

b2 = (r cos(α),−r sin(α))

b1 = (r/cos(α), 0)

b0,2 b1b(t = 0.5)b(t = ±∞) b0,2o

o

γ0,2b0,2

γ0,2 · cos(α) · b1

Figure 3.6.: Outline for the proof of the conditions required to represent a circular arc with a rational Bézier curve.
Above in the image, the affine plane is shown while a side view is depicted below where the affine plane
collapses to a straight line (the x-axis). Because of the circles symmetry, the triangle formed by bbb0 ,
bbb1 and bbb2 has to be an isosceles triangle. The parabola to be mapped onto the circle has to lie in an
affine space (another hyperplane in P2 (red)) that is parallel to the one of the cone’s enclosing rays (see
Figure 3.5d). From the intersection of b2 such an affine hyperplane follows the constraint that γ0 = γ2 and
γ1 = cos(α) · γ0.

64

3.2. Kinematic Bézier Maps

πα

τ (θ)

s

θ

-π
-1/2

-α 1/2

(a) Tangent half-angle substitution.

t = 1/2

θ

t = −1/2

t = ±∞

θ = −α

θ = α

θ = ±π

(b) Angles and their corresponding parabola parameters.

Figure 3.7.: Transformation between the parameters of the parabola and the circle. Source: (Ulbrich et al., 2012c)

proof, a rational Bézier parameterization of the unit circle will be solved for its parameter t without loss of

generality (
cosθ ,sinθ

)T
≡ b(t) =

(
b1(t),b2(t)

)T
=

(
4·t2·cosα−4·t2+cosα+1
−4·t2·cosα+4·t2+cosα+1

4·t sinα

−4·t2·cosα+4·t2+cosα+1

)
.

Insertion into the identity

tan(θ/2) =
sinθ

1+ cosθ
=

b2(t)
1+b1(t)

= 2t · sinα

cosα +1
= 2 · t · tan(

α

2
),

yields

t =
tan(θ/2)

2 · tan(α/2)

Tensor-product form

The previous paragraph showed how the movement of the end-effector caused by moving a single joint can

be described by a rational polynomial with known fixed weights. The next step towards the definition of

the KBM model is to include multiple joints in the equation. Possible candidates for the integration are

multivariate rational Bézier functions and the tensor product form. Quadratic multivariate Bézier curves

(see Section 3.1.1) consist of fewer model parameters, that is, control vertices in the parameter set

|Cmultivariate|=
(din +1) · (din +2)

2
∈ O(n2),

which can be proven by induction. At a first glance, this smaller number makes them appear more suitable

for learning the kinematic relations. However, the functions represented in such a Bézier form are quadrics,

that is, every linear joint movement ∆θθθ results in a movement of the end-effector along a quadratic curve. A

negative example demonstrating that this does not hold in general can be constructed easily. The workspace

of a robot with two orthogonal joint axes is shaped like a torus, and any linear movement in the configuration

space ∆θ results only then in a quadratic movement in Cartesian space, if and only if it is parallel to one of

65

3. Representations for kinematic and dynamic models

the unity vectors (i.e., only one joint moves at a time). In general, the TCP moves on a quartic curve which

is displayed in Figure 3.8. This forward kinematics consequently is bi-quadratic and only the tensor product

form can describe this kind of manifold.

The tensor product form consists of an amount of control vertices exponential in the number of active

degrees of freedom

|Ctensor|= 3din ∈ O(edin)

and each vertex belongs to din univariate curves related to a single degree of freedom. They can be identified

by an index vector iii out an index set I din
n defined as

I din
n =

{
iii = (i1, . . . , idin) : i j ≤ n ∀ j ∈ {1, . . . ,din}

}
, (3.16)

where the lower index n always equals two except for learning the inverse dynamics (see Section 3.2.2).

Additionally, two helper functions ι and ῑ are defined to map these indices to natural numbers, for instance,

to be able to arrange the control vertices in the parameter set C into the columns of a matrix C.

The invertible transformation ι assigns a natural number to each of the ndin indices in I din
n

ι
din
n (·) : I din

n →N+, iii 7→ i1 ·n0 + i2 ·n1 + . . .+ idin ·ndin−1 (3.17)

If unambiguous in the current context, the indices of this function will be omitted. A matrix C can then be

constructed out of the control points in C such that the control vertices are stored in its rows

C =

(
bι−1(j),i

)
j, j
∈ R3din×dout , bbbiii ∈ C . (3.18)

The second helper function, ῑ , maps every control vertex to the vertices of the triangle with respect to a

specified degree of freedom associated to θ j, that is, to its neighboring vertices and itself.

ῑ
din
n : I ×{1, . . . ,din}→N3

(iii, j) 7→


ιdin
n

(
(i1, . . . , i j−1,0, i j+1, . . . , idin)

)
ιdin
n

(
(i1, . . . , i j−1,1, i j+1, . . . , idin)

)
ιdin
n

(
(i1, . . . , i j−1,2, i j+1, . . . , idin)

)
 .

This helper function is useful for the analysis of the symmetry in the control net (see Section 4.4) and also

for the plotting of the control net (see Figure 3.9). Both ι−1 and ῑ are evaluated frequently such that it is

advisable to store their values in lookup tables for faster computation. Pseudo-code implementations for the

creation of the look up tables are given in Algorithm. 4 and Algorithm. 3 respectively.

Now, the tensor product of the rational Bézier form can be finally defined as

b(θθθ) :=
∑iii∈I din

2
bbbiii · γiii · (Biii ◦ τα)(θθθ)

∑iii∈I din
2

γiii · (Biii ◦ τα)(θθθ)
(3.19)

66

3.2. Kinematic Bézier Maps

Algorithm 3: Pseudo code for the creation of a lookup table for the reverse index function ι−1

Input: Index function ι
din
3 , ι

din
3 : N+→I di

Output: Lookup table I for ι−1 ∈ R3din×din

1 for i = 1 : 3din do // For all control vertives
2 r1 := i−1
3 for j = 1 : din do
4 Ii, j := r j mod 3 // store the index i j in the lookup table
5

6 r j+1 := r j− (r j mod 3)

Algorithm 4: Pseudo code for the creation of a lookup table for ῑ .

Input: Index function ι
din
3 , ι

din
3 : N+→I di

Output: Lookup table Ī for ῑ , Ī ∈ R3din×din

1 for i = 1 : 3di do // For all control vertives
2 for j = 1 : din do // For all degrees of freedom
3 for k = 1 : 3 do
4 iii = (i1, . . . , idin) := ι−1(j)

5 www := (w1, . . .wdin), wl =

{
il, l 6= j
k, l = j

// get the neighboring vertices

6

7 Īi, j,k = ι(www) // store the index in the lookup table

using the simplified notation

(Biii ◦ τα)(θθθ) =
din

∏
j

B2
i j
(τα(θ j))

where the bbbiii are the 3din control vertices and the γiii the respective weights which still have to be determined

for the multivariate case.

Analogously to the one-dimensional case, the weights γi can be determined using the a priori knowledge

of the circular conditions in Section 3.1.3. The derivation will be shown at the example of two degrees

of freedom for simplicity but can easily be applied to an arbitrary number din. Starting with modified

formulation of the tensor product

b
(
(θ1,θ2)

)
· γ̄ =

2

∑
i=0

(2

∑
j=0

bbb(i, j) ·ω1,(i, j) ·B2
j(τα(θ1))

)
︸ ︷︷ ︸

b̄i(θ1)

·ω2,(i) ·B2
i (τα(θ2)), (3.20)

where the denominator in Eq. (3.19) is abbreviated by γ̄ and the weights are defined as a product

γi, j = ω1,(i, j) ·ω2,(i).

If θ1 remains at a fixed position θ ?
1 , the end effector moves on a circular curve bθ ?

1
(θ2). Consequently, it

67

3. Representations for kinematic and dynamic models

Algorithm 5: Pseudo code the evaluation of a KBM model
Input: control vertices C
Output: Lookup table Ī for ῑ , Ī ∈ R3din×din

1 Function KBM(joint angles θθθ)

2 B =

(
0
)

i, j
∈ R3din ,1 // Initialize basis polynomials

3 C =

(
bbbι−1(i), j

)
i, j
∈ R3din ,1, bbbiii ∈ C // compose matrix with control vertices

4 for i = 1 : 3di do // For all control vertives
5 for j = 1 : din do // For all degrees of freedom
6 iii = (i1, . . . , idin) := ι−1(j)
7 bi := bi ·

(2
i j

)
· τα(θ j)

i j · (1− τα(θ j)
2−i j

8 if i j = 1 then
9 bi := bi · cosα

10 return C·bbb/∑i bi

must hold that

ω2,(0) = ω2,(2) and ω2,(1) = cosα ·ω2,(2),

for the chosen opening angle α . Reversely, the control points b̄i(θ1) have to represent circular arcs as

bθ ?
1
(θ2) is rotated around the first axis for different values of θ ?

1 . For the weights ω1,(i, j) this means that

w1,(i,0) = w1,(i,1) and w1,(i,1) = cosα ·w1,(i,1).

For the actual weights γ(i, j) this means that they can be defined as

γ(0,0) = 1, γ(0,1) = cosα, γ(0,2) = 1,

γ(1,0) = cosα, γ(1,1) = cos2
α, γ(1,2) = cosα,

γ(2,0) = 1, γ(2,1) = cosα, γ(2,2) = 1,

or, more generally, as

γiii =
(

cosα

)count(iii)
, (3.21)

where count(·) denotes a functions that returns the number of occurrences of the value one in an index vector.

This concludes the definition of the rational tensor-product Bézier form developed in this thesis which will

be called Kinematic Bézier Maps in this work from now on. Despite the complex mathematics described,

the model and its learning algorithms are very minimalistic approaches that can be implemented and verified

very easily as shown in Algorithm. 5 which describes the evaluation of a model in pseudo code.

Knowing the projective weights in advance saves the third step reducing the procedure to only linear opera-

tions which also opens the opportunity to find the least squares minimizers.

The fact that the projective weights are assigned to fixed values does not imply that every KBM model rep-

68

3.2. Kinematic Bézier Maps

Figure 3.8.: Quartic curve on the surface of the torus generated from a linear trajectory in the configuration space.

resents a valid kinematics. In order to be a combination of circles, the vertices of the control net need to be

aligned in a special way (see Section 3.1.3). This cannot always be enforced during learning and noisy data

may lead to degenerated models. The projective weights, however, do enforce that every KBM form is a

combination of ellipses.

Partial derivatives and Jacobian

The application of the Bézier form comes along with a set of useful theoretic tools for the manipulation of

the control net. This comes in handy for the creation of the partial derivatives of the KBM model which can

be represented by KBM models for themselves. The partial derivatives in the Jacobian matrix of a KBM

model b(θθθ)

Jb(θθθ) :=
(

∂

∂θ1
b(θθθ), . . . ,

∂

∂θdin

b(θθθ)
)
.

play an important role in the iterative numerical solution of the inverse kinematics. As it has to be frequently

constructed for many different joint configurations, a representation has to be found that can be as quickly

evaluated as the forward kinematics itself.

Affine derivative The partial derivatives of an affine quadratic Bézier tensor product is obtained by the
construction of new control vertices by computing the forward differences between neighboring control
vertices with respect to the respective joint angle θ j of the partial derivative

∆ jbbb(i1,...,i j−1,0,i j+1,...,idin)
= bbb(i1,...,i j−1,1,i j+1,...,idin)

−bbb(i1,...,i j−1,0,i j+1,...,idin)
(3.22)

∆ jbbb(i1,...,i j−1,1,i j+1,...,idin)
= bbb(i1,...,i j−1,2,i j+1,...,idin)

−bbb(i1,...,i j−1,1,i j+1,...,idin)
(3.23)

69

3. Representations for kinematic and dynamic models

(a) Control net and manifold for two degrees of freedom.

(b) Control net for three degrees of freedom. (c) Control net for five degrees of freedom (without
labels).

Figure 3.9.: Control nets of KBM models for kinematics with randomly created transformations between the axis. The
control nets for different numbers of degrees of freedom are shown. The manifold of the workspace can
only be plotted for two degrees of freedom.

resulting in a rational Bézier form with 2 ·3din−1 control vertices

C∆, j = {∆ jbbbiii : iii ∈I din , i j ≤ 1}

∆ jbbbiii = bbbiii+eee j −bbbiii, with eee j =
(

0, . . . ,0,1
j
,0, . . . ,0

)
where eee j is the j-th unity vector in I din used for greater compactness. This function is then linear with

respect to the j-th joint. In order to be able to use the same basis functions as for the regular evaluation, a

technique called degree elevation (Prautzsch et al., 2002) must therefore be applied to this control net first.

This artificially raises the polynomial degree in this direction and has no influence on the models output—

due to a property of the Bézier representation called linear precision. The definition of the set of control

vertices and forward differences is modified to

C̄∆, j = {∆ jbbbiii : iii ∈I din ,}

∆ jbbbiii =


bbbiii+eee j −bbbiii, i j = 0,

1/2(bbbiii+eee j −bbbiii−eee j), i j = 0,

bbbiii−bbbiii−eee j , i j = 2.

70

3.2. Kinematic Bézier Maps

Rational derivative The partial derivative of rational Bézier tensor product—and the KBM model in
particular—is decidedly more complex compared to the affine case as its derivatives are not linear func-
tions:

∂

∂θ j
b(θθθ) =

∂

∂θ j

∑
iii∈I din

2
bbbiii · γiii · (Biii ◦ τα)(θθθ)

∑
iii∈I din

2
γiii · (Biii ◦ τα)(θθθ)

=:
∂

∂θ j

a(τα(θθθ))

b(τα(θθθ))

=
∂/∂θ jτα(θ j) ·

(
∂/∂θ ja(τα(θθθ)) ·b(τα(θθθ))− ∂/∂θ jb(τα(θθθ)) ·a(τα(θθθ))

)
b2(τα(θθθ))

∂/∂θ jτα(θ j) =
1

tan α/2 · cos2 θ j/2
,

where a(·) and b(·) are affine Bézier tensor product helper functions that can be derived as described above.

Although the formula looks complex, its components can be computed quickly and some of them can be

reused for all partial derivatives and evaluation (namely a(τα(θθθ)) and b(τα(θθθ)) which are already created

when evaluating the KBM model at θθθ). This leads to an efficient way of obtaining the partial derivatives and

the Jacobian matrix that can be vectorized and therefore be computed very quickly on modern processors.

Simplified rational derivative The partial derivatives can also be constructed more comfortably by

further exploiting the a priori knowledge. Assuming, without loss of generality, that a univariate KBM b(θ)

perfectly represents a unit circle

b(θ)≡
(

cosθ ,sinθ

)T
,

then
∂

∂θ
b(θ) =

(
− sinθ ,cosθ

)T

holds for every θ . Figure 3.2c shows how the derivative can be constructed from the forward differences.

The intermediate control point has to be chosen such that the circular condition is met and the whole control

polygon has to be scaled. Applied to the multivariate case, this leads to the following definition of the

control net

C̃∆, j = {∆̃ jbbbiii : iii ∈I din}

∆̃ jbbbiii =
1

tanα
·


bbbiii+eee j −bbbiii, i j = 0,

1
2·cos2 α

(bbbiii+eee j −bbbiii−eee j), i j = 0,

bbbiii−bbbiii−eee j , i j = 2.

The KBM using this control vertices represents the partial derivative with respect to the j-th joint and no

additional calculus is required. However, this only holds if and only if the KBM perfectly represents a

kinematics and is only an approximation otherwise.

71

3. Representations for kinematic and dynamic models

Figure 3.10.: The subdivision operation applied to the KBM model of an exemplary robot with two orthogonal joint
axis. The original control net (green) is subdivided to represent a smaller region of the configuration
space (red). All outputs generated by the two models have to lie in the convex hull and their bounding
boxes.

Subdivision

So far, it has been demonstrated how the control net can be modified by degree elevation and computing

forward differences for the derivatives. Another useful algorithm that can be applied to the net is called

‘subdivision’. This operation subdivides the support Bézier curve (or manifold) into smaller segments to-

gether with the respective control nets. The example for two degrees of freedom in Figure 3.10 gives and

impression of this operation. In addition to the original control net (green) and the subdivided net (red), the

axes aligned bounding boxes (blue) are shown in this image. Note that both control nets represent the same

kinematics. The subdivision can be computed with a variant of DeCasteljau’s algorithm and a modification

of the polynomial basis.

The procedure will be shown for the univariate case but can be transferred analogously to multivariate KBM

models. Without loss of generality, a KBM is defined over the support [−α,+α]. All images of the angles

out of this interval lie in the convex hull of the control points (convexity property). A subdivision is defined

over new boundaries of the support interval [βl,βu] where

[βl,βu]⊂ [−α,α].

In order to determine the control points of the resulting segment, the formalism of the KBM is modified:

b̄(θ1,θ2) =
∑i γi ·bbbi · (B̄i ◦ τα)(θ1,θ2)

∑i γi · (B̄i ◦ τα)(θ1,θ2)

where

(B̄i ◦ τα)(θ1,θ2) :=
(

2
i

)
·
(
τα(θ1)

)i ·
(
1− τα(θ2)

)2−i
.

72

3.2. Kinematic Bézier Maps

The new function b̄(·, ·) is a symmetric rational polynomial, that is

b̄(θ1,θ2) = b̄(θ2,θ1),

that equals the original form when the three arguments are equal

b(θ) = b̄(θ ,θ).

This form that depends on twice as many input variables is called the blossom (Prautzsch et al., 2002) of the

KBM. The control points of b(θ) can be expressed by the blossom

bbb0 = b̄(−α,−α), bbb1 = b̄(−α,+α), bbb2 = b̄(+α,+α)

Now the segment s(·) over [βl,βu] can be constructed by new control points and an offset in the joint

angles

s(θ) =
∑i γ̃i · sssi · (B◦ τα̃)

(
θ − βl+β2

2

)
∑i γ̃i(B◦ τα̃)

(
θ − βl+β2

2

)
where

sss0 = b̄(βl,βl), sss1 = b̄(βl,βu), sss2 = b̄(βu,βu),

α̃ =
βu−βl

2
=⇒ γ̃1 = cos(α̃).

Note that the blossom can also be used to extrude the KBM model, that is, its definition over a bigger support

interval.

The subdivision is very useful because of the convex hull property of the KBM representation: All possible

function values in the support interval lie in the convex hull of the control net. If a function value lies

outside the convex hull, it cannot result from inputs within the support interval. By successively decreasing

the support interval, this can be exploited to find all (quantized) solutions to the inverse problem in an

interval analysis. Instead of the convex hull, the bounding box (see Figure 3.10) or an enlarged bounding

box (to account for sensor noise) can be used as an approximation. A bounding box can be computed much

faster, but it has to be constructed from the 3n control points such that this method becomes slow for many

degrees of freedom. Unlike interval arithmetics (Merlet, 2009), however, the volume convex hull strictly

decreases when subdividing.

Bézier-spline form

The definition of the KBM in Eq. (3.19) features a single user-defined hyper parameter α—the opening

angle of the control net. Ideally, this angle should be chosen differently for each degree of freedom and be

picked according to the distribution of the training data to propel the iterative numeric learning rule in Sec-

73

3. Representations for kinematic and dynamic models

b1(t) b2(t)

b0(t) b2

c1 =

c0 c2

b0

b1

θ

(a) Schematic of the spline form of the KBM for a single degree
of freedom.

(b) Control net and workspace manifold for two degrees of
freedom.

Figure 3.11.: The subdivision of a circle into the three segments of the Bézier spline representation. Source: (Ulbrich
et al., 2012c)

tion 4.3. From this hyper parameter arises a problem with the numerical stability when single joint angles

are close to ±π as the values of the parameter transformation τα(·) (Eq. (3.15)) reach too large values. In

addition, a model that is free of user-defined hyper parameters for tuning is more convenient to handle its

application.

For these reasons, an alternate variant of the KBM model, which is free of hyper parameters, will be pro-

posed in this paragraph. It is based on Bézier splines (not to be confused with b-splines). For each degree of

freedom, the model consists of the connection of several—in this case, three—Bézier curves2 that all rep-

resent the same circle and whose convex hulls formed by the control polygons cover the whole circle (see

Figure 3.11a). This leads to the definition of new rational basis functions but otherwise leaves the model and

its properties as shown before intact including modeling the inverse dynamics (Section 3.2.2) and learning

algorithms that do not explicitly exploit the geometry of the control net (Section 4.1).

Univariate form As mentioned before, the key to this form is the subdivision of a circle into three

congruent segments which are approximated by a univariate KBM model each such that the convex hulls of

the control points are congruent, disjoint and cover the whole circle. This restricts the hyper parameters of

the models to π/3. The three segments are defined by the open joint angle intervals

[−π,−π/3), [−π/3,π/3), and [π

3 ,π)

and for each a model with a linear parameter transformation is defined by

b1(θ + 2/3π), b2(θ), and b3(θ + 2/3π).

2Note that this is the minimal number of spline segments as the wideness parameter α is below 90◦ and all control points have
affine images.

74

3.2. Kinematic Bézier Maps

The resulting configuration has six control points as shown in Figure 3.11a. Because of the properties that
the end points of a Bézier polygon lie on the curve and that the connection between the control points are
tangent vectors, three points are collinear. This can be exploited to reduce the number of control points
back to three independent control points ccci which otherwise would have led to an increase in the demand of
training samples. The first model is then of the form

b1(θ + 2/3π)

=
ccc0 ·B0(τ2/3π(θ + 2/3π))+ cosα · ccc1 ·B1(τ2/3π(θ + 2/3π))+ ccc2 ·B2(τ2/3π(θ + 2/3π))

B0(τ2/3π(θ + 2/3π))+ cosα ·B1(τ2/3π(θ + 2/3π))+ ·B2(τ2/3π(θ + 2/3π))
, (3.24)

where, after applying the constraints,

bbb0 =
ccc0 + ccc1

2
, bbb1 = ccc1 and bbb2 =

ccc2 + ccc1

2
.

Now the polynomial basis is adjusted such that it reflects the new control points ccci:

C0
0(θ) := 1

2 ·B0(τ2/3π(θ + 2/3π)),

C0
1(θ) := 1

2 ·B0(τ2/3π(θ + 2/3π))+ cosα ·B1(τ2/3π(θ + 2/3π))+ 1
2 ·B2(τ2/3π(θ + 2/3π))

= 1
2 · τ2/3π(θ)

2 + cos π/3 ·2(1− τ2/3π(θ + 2/3π)) · τ2/3π(θ + 2/3π)

+ 1
2 (1− τ2/3π(θ + 2/3π))2

= 1
2 (τ2/3π(θ + 2/3π)+(1− τ2/3π(θ + 2/3π)))2

= 1
2 ,

C0
2(θ) := 1

2 ·B2(τ2/3π(θ + 2/3π)),

(3.25)

which leads to final equation of this spline segment

b1(θ + 2/3π) =
ccc0 ·C0

0(θ)+ ccc1 ·C0
0(θ)+ ccc2 ·C0

2(θ)

C0
0(θ)+C0

0(θ)+C0
2(θ)

The other spline segments b2(·) and b3(·) and basis C1
i (·) and C2

i (·) are analogously defined.

Now, the complete spline can be defined as

c(θ) =
ccc0 ·C0(θ)+ ccc1 ·C1(θ)+ ccc2 ·C0

2(θ)

C0(θ)+C1(θ)+C0
2(θ

,

75

3. Representations for kinematic and dynamic models

where the Ci are the new rational basis functions already combined with the parameter transformation τ2/3π(·)
which are defined for each segment individually as

C0(θ) =


1/2, θ ∈ [−π,−π

3)

1/2 ·B0(τ2/3π(θ)), θ ∈ [−π

3 ,
π

3)

1/2 ·B2(τ2/3π(θ− π
3)), θ ∈ [π

3 ,π)

C1(θ) =


1/2 ·B2(τ2/3π(θ+ π

3)), θ ∈ [−π,−π

3)

(τ2/3π(θ))1/2, θ ∈ [−π

3 ,
π

3)

1/2 ·B0(τ2/3π(θ− π
3)), θ ∈ [π

3 ,π)

C2(θ) =


1/2 ·B0(τ2/3π(θ+ π

3)), θ ∈ [−π,−π

3)

1/2 ·B2(τ2/3π(θ)), θ ∈ [−π

3 ,
π

3)

1/2, θ ∈ [π

3 ,π)

Multivariate form All techniques presented considering the KBM model so far still apply for the spline

form of the KBM by a simple replacement of the rational basis and former weights. This includes the tensor

product representation with the formula

b(θθθ) =
∑iii∈I din

2
ccciii ·Ciii(θθθ)

∑iii∈I din
2

Ciii(θθθ)
(3.26)

and the derivatives. An image of a multivariate workspace of the exemplary robot with two orthogonal axes

is shown in Figure 3.11b.

Representation of orientation

So far, both the control vertices and the return value of the KBM models were assumed to be spatial points

with output dimension dout. However its is possible and very often desired to extend this representation

to cover the complete spatial pose, that is, to also include the orientation of the end-effector. This para-

graph covers three different methods for the representation of the orientation: homogenous transformation

matrices, Euler angles and quaternions.

Homogenous transformation matrices The most simple way to achieve this is the transformation

of the end-effector poses (which of course have to be observable by the tracking system) into homogeneous

transformation matrices such that the set of training data is of the form

T =
{
(θθθ i,Xi) : θθθ i ∈Θ

din ,Xi ∈ R4×4, i ∈ {1, . . . ,m}
}
. (3.27)

76

3.2. Kinematic Bézier Maps

Switching to matrices rather than vectors has no impact on the KBM models which, in analogy to Eq. (3.19),

becomes

b(·) : Θ
din → R4×4,

θθθ 7→
∑iii∈I din

2
Tiii · γiii · (Biii ◦ τα)(θθθ)

∑iii∈I din
2

γiii · (Biii ◦ τα)(θθθ)
,

C =
{

Tiii : iii ∈ Idin
}
,

which indicates that the control vertices in the parameter set C are now homogeneous matrices. From this

representation, arise several problems though. First, the representation with homogenous transformation

matrices itself is redundant. The can admittedly be reduced to the number of 12 by discarding the last row

but six coordinates completely suffice to describe a spatial pose. Second, depending on how well the KBM

approximates its target function, the return value b(θθθ) is not necessarily a valid transformation matrix in

general (e.g., when learning from very noisy data). An orthonormalization (by a Gram-Schmidt process or

singular value decomposition for instance) is then highly advisable.

Euler angles Euler angles are a more efficient representation of spatial poses compared to homogenous

matrices. The orientation hereby is described by three rotation angles α , β and γ around predefined axis.

There are many conventions on how these axis are chosen. For instance,

Rx(α) ·Rz′(β) ·Rx′′(γ), (3.28)

which denotes a rotation around the global x-axis followed by a rotation around the new local z-axis z′ and

rotation by the then resulting new local x-axis x′′. Closely related is the Roll-Pitch-Yaw convention with

rotates around the global coordinate system’s axes. The Euler angles are not unambiguous. In Eq. (3.28)

for instance, there are infinitely many pairs of α and γ representing the same orientation if β equals zero.

This is the so called gimbal lock. More severe, however, is that the manifold of the Euler angles over the

generating joint angles is not continuous (see Figure 3.12) which immediately means that they cannot be

represented by the KBM models.

Quaternions Another compact representation for orientations are quaternions. They represent a orienta-

tion with four coordinates which makes them slightly more redundant as the Euler angles but, unlike them,

the representation is unique with exception of

q≡−q

which can be resolved by choosing only the quaternions of the upper hemisphere of the unit sphere. Their

exact definition and those of the operations that can be applied to them is out of the scope of this work.

But, again unlike the Euler angles, their components form continuous manifolds over the generating joint

angles which is depicted in Figure 3.13 for two degrees of freedom. Because of this property, the quaternion

representation can exactly be expressed by the KBM model without modification.

77

3. Representations for kinematic and dynamic models

(a) The α angle. (b) The β angle.

(c) The γ angle.

Figure 3.12.: Exemplary manifolds spanned by each Euler angle over the two joint angles of a kinematics with two
degrees of freedom using the z,y′,z′′-convention. The manifolds are not continuous and therefore, cannot
be expressed by a KBM.

Reconstruction of the orientation For learning the orientation of the end-effector, it is of course

necessary that it can be observed by the robot’s tracking system. However, even if this is not the case, the

orientation can be reconstructed from an existing three-dimensional KBM model. Therefore, a coordinate

system is created that directly lies in the output of the model and that is represented by a homogenous

transformation matrix. The method that reconstructs the orientation requires two non-parallel vectors vvv1

and vvv2 that depend on all joint angles of the kinematics and are rotated around all joint axis.The first vector

vvv1 given a joint configuration θθθ can be expressed as a function describing the partial derivatives of the

model

v1(θθθ) =
∂

∂θdin

b(θθθ)

where θdin has to be the last rotation axis, that is, the joint angles have to be sorted by their lateral distance—

the number of joints separating them from the origin of the kinematics, see Chapter 5 and Eq. (3.29)). The

second angle vvv2 must lie in the plane spanned by all v1(θθθ) when all joint angles but the last are fixed.

Eq. (3.20) shows how a tensor product can be formed into a univariate curve for din−1 fixed joint positions

for two degrees of freedom. The vector v2 can be then, for instance, obtained by the difference between two

control vertices. Another, easier possibly is to add an offset θ? to θdin and assign the partial derivative to vvv2.

78

3.2. Kinematic Bézier Maps

(a) (b)

(c) (d)

Figure 3.13.: The manifold of the quaternion components over two joint angles. The quaternions generate a continuous
manifold and are suitable for learning with the KBM model.

In dependence of the current joint configuration θθθ , vvv2 can be expressed by the function

v2(θθθ) =
∂

∂θdin

b(θ̄θθ), where θ̄θθ =
(

θ1, . . . ,θdin−1,θdin +θ?

)
.

Once vvv1 and vvv2 are determined the coordinate system can be constructed as

eee1(θθθ) =
v1(θθθ)

‖v1(θθθ)‖
,

eee3(θθθ) =
v1(θθθ)× v2(θθθ)

‖v1(θθθ)× v2(θθθ)‖
,

eee2(θθθ) = eee1(θθθ)× eee3(θθθ),

T (θθθ) =

(
eee1(θθθ) eee1(θθθ) eee1(θθθ) b(θθθ)

0 0 0 1

)
.

This resulting matrix T depends on the joint configuration θθθ and represents an orthogonal coordinate system

associated to the end-effector such that there exists a constant transformation matrix C for which holds

T (θθθ) ·C = k(θθθ),

79

3. Representations for kinematic and dynamic models

Figure 3.14.: Reconstructed frames of the surface of a learned manifold for a kinematics with two orthogonal joints.

where k(θθθ) denotes the latent coordinate system of the end-effector

k(θθθ) = M0,1(θ1) · . . . ·Mdin−1,din(θdin), M� ∈ SE3. (3.29)

3.2.2. Modeling the inverse dynamics

For safe and efficient control of robots and planning, an accurate model of the robot’s dynamic behavior is as

crucial as knowing forward kinematics. Compared to the forward kinematics, the dynamics has additional

great number of model parameters that are difficult to determine such as the inertial tensor, center of mass

and the weight of each arm element, which change more easily if additional objects are attached to the arm.

As a consequence, this makes the dynamic a useful target for machine learning.

The KBM presented so far can be only applied to kinematics but the dynamic properties depend at any time

on the kinematic configuration of the robot. In this section, it will be shown how the principles of the KBM

can be transferred to inverse robot dynamics starting with an introduction on the Lagrangian equations of

motion.

Robot Dynamics

The inverse dynamics of a robot arm describes the relation between a robot’s joint configuration and motion

encoded in its joint positions θθθ , and its first and second order derivatives, the joint velocity θ̇θθ and accel-

eration θ̈θθ respectively. Subsumed in the tuple
(

θθθ , θ̇θθ , θ̈θθ
)

they are called generalized coordinates and their

80

3.2. Kinematic Bézier Maps

Figure 3.15.: Plot of the Coriolis component depending on two joint values when their derivatives equal zero.

relation to the generalized forces qqq = (q1, . . . ,qdin), that is, the torques and forces responsible for the current

dynamic state, is expressed in the Lagrangian equation (Hollerbach, 1980)

Qi =
d
dt

(
∂L(θθθ , θ̇θθ , θ̈θθ)

∂ θ̇i

)
− ∂L(θθθ , θ̇θθ , θ̈θθ)

∂θi
, with L(θθθ , θ̇θθ , θ̈θθ) = T (θθθ) − V (θθθ , θ̇θθ , θ̈θθ)

where T and V are the kinetic and potential every in the system respectively which are both functions of the

n generalized coordinates. This equation leads to the Lagrangian equations of motion which serve as the

starting point for the creation of the dynamic model

qqq = M(θθθ) · θ̈θθ︸ ︷︷ ︸
Inertia qqqM

+ C(θθθ , θ̇θθ) · θ̇θθ︸ ︷︷ ︸
Coriolis qqqC

+ hhh(θθθ)︸ ︷︷ ︸
Gravity qqqg

+ εεε(θθθ , θ̇θθ , θ̈θθ)︸ ︷︷ ︸
Friction

, M(θθθ), C(θθθ , θ̇θθ) ∈ Rdin×din , (3.30)

where

M(θθθ) is a symmetrical and positive definite matrix that describes the robot’s current inertial state,

C(θθθ , θ̇θθ) denotes the centripetal and Coriolis forces coupling matrix, and

hhh(θθθ) denotes din-dimensional vector that describes the gravity force acting on the system.

Additional nonlinear influences acting the of the dynamics such as backlash or friction, which are not all

well understood, are subsumed in the error vector εεε(θθθ , θ̇θθ , θ̈θθ) and are neglected for the creation sensorimotor

model (i.e., have to be modeled separately). More detailed introduction on this topic is given in various

literature, in Hollerbach (1980) for instance.

81

3. Representations for kinematic and dynamic models

Learning the components of the Equations of Motion

In order to derive the extensions to the KBM necessary for learning the inverse dynamics, the equations of
motions have to be analyzed in more detail. The following form, presented by (Hollerbach, 1980), yields
how the equations are connected to the forward kinematics which will eventually lead to the transformation
into a linear form based on the KBM that can be used for learning

qi =
n

∑
j=1

(
j

∑
k=1

(
tr

(
∂Wj

∂θi
J j

∂Wj

∂θk

T
)

θ̈k

)
︸ ︷︷ ︸

qqqM

+
j

∑
k=1

j

∑
l=1

(
tr

(
∂Wj

∂θi
J j

∂ 2Wj

∂θk∂θl

T
)

θ̇kθ̇l

)
︸ ︷︷ ︸

qqqC

− m jgggT ∂Wj

∂θi
ccc j︸ ︷︷ ︸

qqqg

)
(3.31)

For each rigid body, the coordinate system Wj describing its pose with respect to the origin. Its center

lies in the predecessing joint and is given as a a product of homogeneous matrices (e.g., following the

Denavit-Hartenberg conventions) describing the coordinate transformations between succeeding links (par-

tial forward kinematics)

Wj(θ1, . . . ,θ j) = M0,1(θ1) ·M1,2(θ2) · . . . ·M j−1, j(θ j), M� ∈ SO3.

The following parameters are defined with respect to this coordinate frame

J j ∈ R4×4 the inertia tensor of the j-th link,

m j its mass and

ccc j the (homogeneous) coordinates of the center of mass.

The force vector of the gravity is denoted with ggg. This equation already reveals the close interconnection to

the forward kinematics but it should be noted that it appears in its squared form in the inertia and Coriolis

components qqqM and qqqC. Starting from this equation, the dynamics will be first decomposed into its inertial,

Coriolis and gravity terms qqqM, qqqC and qqqg. For each term, it will be shown how they, for themselves, can

be transformed into a learnable form linear in the generalized coordinates. Afterwards, the model for the

complete inverse dynamics that learns all components simultaneously is assembled into a single model.

Gravity The gravity component qqqg has the closest relation to the KBM model. It is one of the most

dominant terms in the equations of motion and is also present if the robot is not in motion and all other

terms are zero. Consequently it find an useful application, for instance, in learning gravity compensation

and can be learned easy form truing samples collected at moments where the robot is not moving. From its

definition

qg
i =−

n

∑
j=1

m jgggT
∂ Wj

∂θi
ccc j

 (3.32)

it can be seen that it consists of the summed partial derivatives of the partial forward kinematics of the

respective joint’c centers of mass multiplied with its weight m j projected along the gravity vector ggg. These

82

3.2. Kinematic Bézier Maps

are all affine transformation which not interfere with the KBM modeling. The sum of multiple KBM models

or their derivates is also a KBM due to its linearity

bbb(θθθ)+ ccc(θθθ) =
∑iii∈I din γiii ·bbbiii ·Biii(θθθ)

∑iii∈I din γiii ·Biii(θθθ)
+

∑iii∈I din γiii · ccciii ·Biii(θθθ)

∑iii∈I din γiii ·Biii(θθθ)

=
∑iii∈I din γiii · (bbbiii + ccciii) ·Biii(θθθ)

∑iii∈I din γiii ·Biii(θθθ)

Thus, modeling the gravity component does not require any special modifications to the KBM form. As

such, it can be learned with the same minimal amount of training data 3din . For the reason of distinction,

the upper index of the basis functions B2
iii (θθθ i) indicating their polynomial degree will not be omitted in the

following paragraphs

The Intertia Matrix The inertial component qqqM cannot be measured separately of qqqg or qqqC and conse-

quently not be learned outside simulation. Its definition in Eq. (3.31)

qM
i =

n

∑
j=1


j

∑
k=1

tr

∂ Wj

∂θi
J j

∂ W T
j

∂θk

 θ̈k

︸ ︷︷ ︸
=:µi, j,k


can be transformed in the following way

qqqM =



µ1,1,1 + (µ1,2,1 +µ1,2,2) + (µ1,3,1 +µ1,3,2 +µ1,3,3) + . . .

0 (µ2,2,1 +µ2,2,2) + (µ2,3,1 +µ2,3,2 +µ2,3,3) + . . .
... 0 (µ3,3,1 +µ3,3,2 +µ3,3,3) + . . .

... 0
...



=


∑

n
i=1 µ1,i,1 + ∑

n
i=2 µ1,i,2 + ∑

n
i=3 µ1,i,3 + . . .

∑
n
i=2 µ2,i,1 + ∑

n
i=2 µ2,i,2 + ∑

n
i=3 µ2,i,3 + . . .

∑
n
i=3 µ3,i,1 + ∑

n
i=3 µ3,i,2 + ∑

n
i=3 µ3,i,3 + . . .

...



to get to this final form

qqqM =

(
n

∑
j=1

θ̈ j ·
n

∑
k=max(j,i)

tr
(

∂Wk

∂θi
Jk

∂W T
k

∂θ j

))
i

. (3.33)

83

3. Representations for kinematic and dynamic models

For the µi, j,k holds

µi, j,k = tr
(

∂Wk

∂θi
Jk

∂W T
k

∂θ j

)
· θ̈θθ k = tr

(
∂Wk

∂θi
Jk

∂W T
k

∂θ j

)T

· θ̈θθ k

= tr
(

∂WJ

∂θi
JT

k
∂W T

k
∂θk

)
· θ̈θθ k

= µk, j,i

which shows that µi, j,k = µk, j,i as the inertial tensor Jk is a symmetric matrix. Because of this symmetry, the

symmetric inertia matrix M(θθθ) can be obtained by:

M(θθθ) =

(
n

∑
k=max(j,i)

tr
(

∂Wk

∂θi
Jk

∂W T
k

∂θ j

))
i, j

(3.34)

The partial derivatives of the partial forward kinematics Wj appear double in Eq. (3.34) and Eq. (3.31) in

both qqqM and qqqC such that these terms cannot be natively modeled in the KBM form unlike the gravity

component. As a consequence, the elements of the matrix M (and C which are very similar) are not combi-

nations of trigonometric function like the kinematics but also contain their squared values. The square of a

trigonometric functions basically means increasing its frequency to its double, for instance,

cos2 x = 1/2

(
1+ cos(2x)

)
(3.35)

This can be observed in Figure 3.15 that displays the first component of the Coriolis matrix C for two

degrees of freedom where the overlapping of the two frequencies becomes visible. Squared trigonometric

functions cannot be expressed by means of a rational quadratic function. This problem can, however, be

solved by raising the polynomial degree up to four. The main difficulty lies in obtaining the weights of the

now five control vertices. Further, the index set has to be redefined for the increased number of 5din control

vertices.

Now assume that we have a rational Bézier curve bbb(τ(θ)) with

b(τ(θ))≡ sin(θ)

with the associated weight vector γγγ = (1, γ̄ = cos(α),1) for a chosen opening angle α . Then the squared

values are obtained by

b2(τ(θ)︸︷︷︸
=:t

)2 = sin2(θ) =
(
t2 +2γ̄ · t · (1− t)+(1− t)2)2

= t4 + γ̄ ·4 · t3(1− t)+
1+2 · γ̄2

3
·6 · t2(1− t)2

=:
5

∑
i=1

γi ·B4
i (t), γγγ = (1, γ̄, 1/3(1+2γ̄

2), γ̄,1),

84

3.2. Kinematic Bézier Maps

The inertia term

qqqM = M(θθθ) · θ̈θθ

has a linear dependence on the joint accelerations in θ̇θθ . The matrix cannot be separated from the the accel-

erations during learning such that they have to be combined with the rational basis function for learning

θ̈θθ i ·B4
iii (θθθ j), iii ∈I din

4 .

This further increases the number of linear equations and related unknown parameters to

din ·5din−1.

With these modifications, it is possible to represent the elements of the inertia matrix M. This comes at high

costs, however, as the minimal number of observations during training is increased drastically to 5din . The

number can be slightly reduced, however, as it can be concluded that the generalized force in the first joint

is not influenced by its joint position. The holds also for other joints and the total number of of training

observations required can be reduced again to 5din−1.

Coriolis and centripetal coupling effects In analogy to the inertial terms, the Coriolis and cen-

tripetal coupling effects cannot be learned separated from the other components—the appropriate data can

only be generated in simulation, or if the gravity component has already been identified and joints accel-

erations are set to zero. Their effects can be disassembled and prepared for the representation with KBM

models in a way very similar to the inertia terms from Eq. (3.31)

qC
i =

n

∑
j=i

j

∑
k=1

j

∑
l=1

tr

∂ Wj

∂θi
J j

∂ 2 W T
j

∂θk∂θl

 θ̇kθ̇l


︸ ︷︷ ︸

γi, j,k,l

and brought into this final form

qqqC =


γ1,1,1,1 + γ1,2,1,1 + γ1,2,1,2 + γ1,2,2,1 + γ1,2,2,2 . . .

γ2,2,1,1 + γ2,2,1,2 + γ2,2,2,1 + γ2,2,2,2 . . .
...


=

(
n

∑
j=1

n

∑
k=1

θ̇ jθ̇k ·
n

∑
l=max(i, j,k)

tr
(

∂Wl

∂θi
Jl

∂ 2W T
l

∂θ j∂k

))
i

=: C ·
(

θ̇1θ̇1, θ̇1θ̇2, . . . , θ̇1θ̇din , θ̇2θ̇1, θ̇2θ̇2, . . . , θ̇din θ̇din

)T
,

In this formula, the matrix C greatly resembles the matrix M of the inertia term qqqM in the previous section.

Again, the partial derivatives (but this time also second order derivatives) appear twice in the equation so

that it can not be modeled with KBM but using the same rational form as the inertia matrix M. Another

analogy is the additional linear dependence of the generalized coordinates. This time, however, the linear

85

3. Representations for kinematic and dynamic models

Degrees of freedom
1 2 3 4 5 6 7 8

Parameters 5 34 252 1,831 12,743 85,104 549,062 3,444,061

Table 3.1.: The number of model parameters of the KBM model when applied to the inverse dynamics in dependence
of the number of degrees of freedom.

basis are the n2 possible combinations of the joint velocities(
θ̇1θ̇1, θ̇1θ̇2, . . . , θ̇1θ̇din , θ̇2θ̇1, θ̇2θ̇2, . . . , θ̇din θ̇din

)T
. (3.36)

This vector contains redundancy as several combinations appear twice in its components (i.e., θ̇iθ̇ j equals

θ̇ jθ̇i if i 6= j) and there remain only din·(din+1)
2 unique combinations. After their elimination the rational form

is completed with
din · (din +1)

2
·5din−1 (3.37)

linear equations and unknown parameters.

Assembly of the components Every component of the equations of motion qqqM, qqqC and qqqg contributes

a different number of linear equations and unknown parameters to the final assembled form. All equations

are combined such that, if learned from examples generated by random movements, a total of

din
din +3

2
·5din−1 +3din (3.38)

The number can be lowered by an offline exploration process where the training is separated into samples

with zero acceleration and velocity for learning qqqg and zero acceleration for qqqC. The inertia component qqqM

can be learned by subtracting the outputs of qqqg and qqqC.

Altogether, this leads to a model of the inverse dynamics that is completely linear in its input variables.

Analogously to the kinematics, such a model can be learned very efficiently and even exactly in simula-

tion.

3.3. Summary

This chapter introduced the Kinematic Bézier Maps (KBM) a novel formalism to describe models of forward

kinematics and inverse dynamics. Therefore, the reader first has been introduced to polynomial function ap-

proximation, Bézier techniques and projective geometry. The KBM have been developed on this foundation

and provide a novel view on the representation of sensorimotor maps. In the following, the properties of

the KBM were presented. The most intriguing of them is the linearization of the physical processes, that

is, a formulation that is linear in model parameters. This opens the opportunity of the development of very

efficient and exact learning algorithms which is presented in the following chapter.

86

4. Learning kinematic and dynamic models

In the chapter three, novel methods for the representation of kinematic and dynamic models have been

presented. Their most prominent property is that they are linear in their model parameter because of their

rational polynomial basis. This enables the design of very efficient learning algorithms. In this chapter,

multiple algorithms related to the KBM representation will be presented that efficiently determine the pa-

rameters of the models.

The first section presents algorithms that find the solution that minimize the least mean square error over

the training data. These methods perform batch learning that determines the model using a collection of

training samples at a time. The next section introduces a learning rule for incremental learning with low

computational complexity such that it can be used for online learning. Afterwards, a more sophisticated

batch learning algorithm is presented that accounts for the (nonlinear) symmetry in the KBM representation

in order to be less prone to overfitting to the training data. The last section demonstrates how the KBM mod-

els can be integrated into stochastic learning which allows modeling of additional nonlinear perturbations

such as friction in the inverse dynamics.

4.1. Linear least mean squares

4.1.1. Normal equations

The search for the linear least mean squares solution (LLMS) is the most direct approach to learning forward

models with the KBM. It minimizes the squared error over a set of training samples T with

T =
{
(θθθ i,xxxi) : i ∈ {1, . . . ,m}, θθθ i ∈Θ

din , xxx ∈ Rdout
}

for m observed training samples. The LLMS solution determines the model parameters of the KBM, that is,

the set C that contains its (3din) control vertices

C = {bbbiii : iii ∈I din},

such that the sum of the squared prediction errors over the training data, the so called residues ri, becomes

minimal. The standard linear least squares regression algorithm finds this solution with purely linear op-

erations. Consequently, each output dimension d is treated separately as nonlinear operations such as the

87

4. Learning kinematic and dynamic models

inclusion of the Euclidean norm (which is quadratic) are not available. This leads to the following quadratic

error function

ed(C ,T) := ∑
(θθθ ,xxx)∈T

(
∑

iii∈I din

(biii,1 · (Biii ◦ τα)(θθθ))− xd

)2
(4.1)

= rrrT
d · rrrd (4.2)

which can be written as the product of the residues vector rrr. The partial derivatives with respect to each

coordinate of the control vertices are then

∂ed(C ,T)

∂biii,d
= 2 · ((Biii ◦ τα)(θθθ 1), . . . ,(Biii ◦ τα)(θθθ m)) · rrrd . (4.3)

The global minimizer C ? can then be determined by solving the error function in matrix notation

C ? = argmin
C

dout

∑
d=1

ed(C ,T) = argmin
C
‖C(C) ·B(T)−X(T)‖F

with

C(C) =
(

bbbι−1(i)

)
i j

B(T) =
(
(Bι−1(i) ◦ τα)(θθθ j)

)
i, j

X(T) =
(

x j,i

)
i, j
, (θθθ i,xxxi) ∈T

where C(C) is the matrix containing the control points in its columns as defined in Eq. (3.18), the ma-

trix B(T) contains the basis functions, and X(T) has the cartesian coordinates of the training data in its

columns. This minimization problem can be solved using the partial derivatives in Eq. (4.3) leading to a

system of linear equations—the so called normal equations:

C(C) ·B(T) ·B(T)T −X(T) ·B(T)T = 0.

Its unique solution is a minimizer of the error function as B(T) ·B(T)T is positive definite. The LLMS

solution is then given by

C(C ?) = X(T) ·B(T)T ·
(
B(T) ·B(T)T)−1

(4.4)

where the minimizing control vertices bbb?iii are contained in the matrix’s columns. Here, the matrix

B(T)+ = B(T)T ·
(
B(T) ·B(T)T)−1

(4.5)

is called the Moore-Penrose pseudo inverse of B(T). As the inverted matrix is always positive definite,

the inversion can be facilitated by the Cholesky decomposition. If Eq. (4.1) is overdetermined, that is,

there exist more training samples than model parameters for each dimension (i.e., m� 3din), learning is

capable of compensating a certain degree of sensor noise. If the noise is severe, however, the model still

generalizes well in between data in the explored regions but differs greatly from the correct representation

and produces very large prediction errors for completely unknown joint configurations. Furthermore, the

88

4.2. Partial least squares

LLMS solution cannot natively perform incremental learning that is fast enough for online application as

the complete training set has to be processed. While incremental learning can be emulated by increasing the

sample pool T with new observations, the determination of the new model parameters is too expensive for

higher degrees of freedom (usually for din ≥ 6) and a ‘forgetting’ strategy has to be applied to control the

number of elements in T . Forgetting of older observations, for instance, is only desired if the kinematic

structure changes but not for the refinement of the already learned model.

The following paragraphs will present a number of numeric solutions that overcome the limitation of the

LLMS solution mainly with respect to incremental and online learning, and improved extrapolation. Yet,

the LLMS solution is the first choice when learning from simulated data free of sensor noise as it has

zero prediction errors over the whole configuration space of the robot. Such a model can be used as a

starting point for the following numerical methods if an approximated forward model of the kinematics is

available—which can be assumed to be the case in most applications.

4.2. Partial least squares

In the previous section, the standard linear least mean squares used for parameter detection has been pre-

sented. For a high number of degrees of freedom, this approach becomes intractable. This is because of

inversion of the matrix containing the rational polynomial basis whose number of columns increases expo-

nentially with the number of degrees of freedom—and with it the required memory for the inversion. There

exist many numerical methods that address this problem such as factorizations or recursive least squares.

In this thesis, the one-dimensional partial least squares (PLS-1) method has been studied. It is also applied

in the locally weighted projection regression (LWPR) (see Section 2.3.4). This is, on the one hand, for the

avoidance of matrix inversions and, on the other hand, for the ability to detect irrelevant and correlated

inputs.

4.2.1. The algorithm

This paragraph describes the partial least squares algorithm for a single output dimension (PLS-1). Note

that this algorithm learns each output dimension separately similar to the naive LLMS. For this reason,

an univariate output is considered in this section (for instance, only the x-coordinate of the end-effector).

The PLS-1 algorithm transforms the linear regression problem into a sequence of parallel projections that

transform the input space into one-dimensional subspaces where the regression can be solved easily. The

maximal number of projections equals the number of input variables in the system of linear equations. In

case of the KBM, this means 3din—the number of rational basis polynomials. In each step k≤ 3din , the input

data is projected along a vector uuuk that reflects the linear correlation between the input and output data. It is

proportional to the covariance:

uuuk ∝

(
COV((Bι−1(i) ◦ τα)(θθθ j),x j)

)
i, j
∈ R3din×n,

89

4. Learning kinematic and dynamic models

Algorithm 6: Pseudo code for learning the KBM with partial least squares (PLS-1)
Input: n samples in T =

{
(θθθ i,xi) : i ∈ {1, . . . ,n}

}
, number of projections m

Output: Parameters of the partial least squares pppk,qk,uk : ∀k ∈ {1, . . . ,m}

1 W0 :=
(

Bτ(i) ◦ τ)(θθθ j)
)

i, j
∈ R3din×n, xxx ∈ Rn×1

2 for k = 1 : m≤ 3din do
3 uuuk ∈ R3din :=Wk−1 · xxxk−1
4 bbbk :=W T

k−1 ·uuuk ∈ Rn×1

5 qk := xxxT ·bbbk
‖bbbk‖2

6 xxxk := xxxk−1−qk ·bbbk

7 pppk := Bk−1·bbbk
‖bbbk‖2 ∈ R3din

8 Wk :=Wk−1− pppk ·bbbT
k

9 print ek := ∑
n
i ‖xk,i‖/n

for a given training set

T =
{
(θθθ i,xi) : i ∈ {1, . . . ,n}

}
.

This distinguishes the algorithm from the principal component regression (PCR) which projects the input

on the one-dimensional subspaces defined by the eigenvectors of the covariance matrix of the inputs. While

this procedure finds redundancies in the input, it completely neglects the influence on the output values.

Consequently, the importance of the input variables—or their irrelevance—cannot be identified.

In the first step of the PLS-1, the input and output data W0 and xxx0 are defined as

W0 :=
(

Bι−1(i) ◦ τα)(θθθ j)
)

i, j
∈ R3din×n, xxx0 =

(
x1, . . . ,xn

)T ∈ Rn. (4.6)

The first projection vector is then defined as

uuu1 :=W0 · xxx0, (4.7)

and reflects the correlation between the input data W0 and output data xxx0. Note that it is not necessary to

subtract the mean values from the data as this is performed implicitly by the algorithm,.

Then the input data is projected along uuu1

bbb1 :=W T
0 ·uuu1,

where the vector bbb1 is the one-dimensional image of W0. Now a linear regression can be performed over the

one-dimensional bbb1 resulting in the first regression factor q1:

q1 = argmin
q

(xxx0−q ·bbb1)
2 =

xxxT
0 ·bbb1

‖bbb1‖2 . (4.8)

Then, the residue in the output value after the regression is given by

xxx1 := xxx0−q1 ·bbb1,

90

4.2. Partial least squares

resulting in the error

e1 =
∑

n
i |xi,1|

n
.

The residues of the input values are calculated by another univariate linear regression to determine the

projection vector ppp1:

ppp1 = argmin
ppp

(
W0− ppp ·bbbT

1
)2

=
W0 ·bbb1

‖bbb1‖2 ∈ R
3din

leading to

W1 :=W0− ppp1 ·bbbT
1

Now, the algorithms repeats these steps starting with Eq. (4.7) until either the error ek falls below a threshold

or k surpasses a maximal number of kmax steps or the number of input dimensions (that is, kmax = 3din). The

complete algorithm is shown in Algorithm. 6.

4.2.2. Learning KBM models with partial least squares

In this paragraph, it is shown how the partial least squares algorithm can be applied together with the KBM

models.

Reconstruction of the control net

Once the parameters of the partial least squares regression pppk,qk,uuuk and kmax have been determined where

1≤ k ≤ kmax ≤ 3din , the control net ccc of the KBM can be reconstructed. Therefore, the weight matrix W0 is

initialized as the identity matrix and the starting value ccc0 for the control net as the zero vector

W0 :=


1 0

. . .

0 1

 ∈ R3din×3din , ccc0 := (0, . . . ,0)T ∈ Rn×1.

The reconstruction is similar to the original algorithm. In the first step, the projection bbb1 of W0 is computed

bbb1 =W T
0 ·uuu1,

and the regressions in Eq. (4.8) and Eq. (4.8) are reverted

ccc1 = ccc0 +q1 ·bbb1 and W1 =W0− ppp1 ·bbbT
1 .

These calculations are repeated kmax ≤ 3din times resulting in the final net stored in ccckmax . The complete

algorithm is depicted in Algorithm. 7. Once all dimensions of the control net are reconstructed, the net can

be used for prediction and incremental learning (see Section 4.3).

91

4. Learning kinematic and dynamic models

Algorithm 7: Pseudo code for the reconstruction of the control net.
Input: Parameters of the partial least squares: pppk,qk,uk : k ∈ {1, . . . ,m}n, and the number of steps kmax
Output: Control net in cccm ∈ R3din

1 W0← identity matrix ∈ R3din×3din

2 ccc0← (0, . . . ,0)T ∈ Rn×1

3 for k = 1 : kmax ≤ 3din do
4 bbbk =W T ·uuuk
5 ccck = ccck−1 +qk ·bbbk

6 Wk =Wk−1− pppk ·bbbT
k

(a) Exact model. (b) Adaptation to wielding a tool.

Figure 4.1.: Kinematic Bézier map model for a robot with two orthogonal axes.

Properties of the learned model

Learning with the partial least squares algorithm is an enormous improvement compared to learning with

the naive LLMS (see Section 4.1). First, this is because the algorithm does not invert the weight matrix

W0 in Eq. (4.6) opposed to the normal equations in Eq. (4.5). For many input dimensions (which grow

exponentially with the number of controllable degrees of freedom), this matrix inversion requires a large

amount of working memory (O(3din·3)) rendering the method intractable for higher numbers of degrees of

freedom. While other numerical approaches such as matrix decompositions and recursive least squares are

faster, the PLS-1 regression offers another interesting property: When applied to LWPR for instance, it is

able to detect redundant and less significant input dimensions. While this cannot be exploited with the KBM

model (as each rational basis polynomial depends on all joint angles), the algorithm can terminate after a

mean prediction error reaches a threshold. If this threshold equals the (a priori known) sensor noise on a real

system or in simulation, the algorithm effectively prevents overfitting to the noisy data. That way, the model

can be learned from a significantly lower amount of training data while maintaining a higher prediction

accuracy.

92

4.3. The δ -Rule

(a) 5 samples (b) 10 samples (c) 20 samples (d) 40 samples

Figure 4.2.: Sequence showing the online learning process of a KBM at different numbers of learned samples. Unlike
in the previous experiments, these samples are uniformly distributed over the whole parameter space.
Source: (Ulbrich et al., 2012c)

Figure 4.3.: The humanoid robot ARMAR-III grasping an object. During training with incremental learning, the robot
grasped the object using visual servoing. The KBM has been initialized to the inbuilt forward kinematics.
Afterwards, the marker for the detection of the hand had been covered. The robot then had to predict the
correct position of the hand to repeat the grasp without being able to recognize its hand in the image. In
the picture on the left, the robot relied only on the inbuilt, inaccurate forward kinematics. The right picture
shows the reproduction of the grasp using the incrementally learned model.

4.3. The δ -Rule

The δ -rule is probably the most interesting and useful algorithm for learning a KBM model. This is, on the

one hand, because of the generation of models with good extrapolation and, on the other hand, because of the

simplicity of the algorithm and its very low computational costs that make online application possible even

for long kinematic chains. The δ -rule is also known as Hoff-Widrow-rule named after its inventors (Widrow

and Hoff, 1960) or (normalized) least mean squares (NLMS). Originally, it is a steepest descent-based train-

ing methods that allows incremental adaptation of the model parameters and is usually applied to learning

single layer preceptrons (Widrow and Hoff, 1960). From its incremental nature, results the main advantage

of this rule: A robot using this learning rule can perform online and life-long adaptation to its kinematic

structure and dynamics. Last but not least, it is neurologically inspired and effective despite keeping its

93

4. Learning kinematic and dynamic models

simplicity which allows it to be easily integrated and applied on humanoid robots. Figure 4.2 show the

learning the surface of a torus with the δ -rule and Figure 4.3 shows the application on a the humanoid robot

ARMAR-III.

4.3.1. The algorithm

The algorithm adapts the model parameters (i.e., control vertices) incrementally for each observed training

sample (θθθ i,xxxi) from a data set

T = {(θθθ i,xxxi) : i ∈N}.

As it processes only one single sample during an increment, the data set can be of infinite size, that is, the

robot can perform life-long learning. The method can coexist with visual servoing, continuously learning

when the end-effector is visible and predicting configurations similar to those experienced before (see Fig-

ure 4.3). Similar to the analytic linear least mean squares solution, the control net is trained for each output

dimension separately. Therefore, an error function e j(·) with respect to each component of each output

dimension j is created in each step in each step i:

e j(C ,(θθθ i,xxxi)) =

((
∑

iii∈I din

biii, j · (Biii ◦ τα)(θθθ i)

)
− xxxi

)2

=: rrrT
i · rrri, j = 1, . . . ,dout

Its partial derivatives are given by

∂e j(C ,(θθθ i,xxxi))

∂biii, j
= (Biii ◦ τα)(θθθ i) · ri, j.

The direction of the steepest descent is then

∇e j(C ,(θθθ i,xxxi)) =

(
∂e j(C ,(θθθ i,xxxi))

∂bι(i), j
, . . . ,

∂e j(C ,(θθθ i,xxxi))

∂bι(i), j

)
i

and the control net is updated by the rule(
b(i+1)

ι(i), j

)
i∈{1,...,3din}

=

(
b(i)

ι(i), j

)
i∈{1,...,3din}

−ν ·∇e j(C ,(θθθ i,xxxi)),ν ∈ R

such that each component of the control vertices is decremented by its partial derivative of the error function

multiplied by the learning rate ν . Instead of determining ν manually (e.g., by line search), the following

form, which is known as normalized least mean squares (NLMS), can be used(
b(i+1)

ι(i), j

)
i∈{1,...,3din}

:=
(

b(i)
ι(i), j

)
i∈{1,...,3din}

− ν̃ · ∇e j(C ,(θθθ i,xxxi)) · e j(C ,(θθθ i,xxxi))

∇e j(C ,(θθθ i,xxxi))T ·∇e j(C ,(θθθ i,xxxi))
, 0 < ν̃ ≤ 1 (4.9)

where the learning rate can be chosen in a simpler way. A learning rate with ν = 1 means that the model

predicts exactly the observed cartesian coordinate xxxi after the increment. The computational costs for the

94

4.3. The δ -Rule

Figure 4.4.: The impact of learning a single sample with the incremental learning after a kinematic change. A perfect
approximation of an exemplary workspace of a robot with two degrees of freedom (learned with batch
learning in simulation) adapts to a change where the size of the last link has been doubled. The new
workspace is rendered transparently. When learning from a single example with the incremental learning
algorithm, the manifolds directly interpolates the new data point but does not influence the rest of the
representation significantly, especially at the far end of the configuration space.

adaptation to a single observation are consequently only marginally higher than the costs for the prediction

of the output value. This is why the algorithm can be applied online on robots with many independent

degrees of freedom and enable continuous, that is, life-long, learning. The same training samples can be

processed multiple times. Later in the evaluation (Section 6.3), this is referred to as micro batch learning, a

fixed number of samples is then repeatedly processed.

Compared to the LLMS solution presented in the previous section, the δ -rule requires significantly more

training data and converges slower to the desired solution when learning from scratch. With sensor noise,

this is, however, an advantage and learning can be stopped when the predictions over a representative data

set reach the expected accuracy.

4.3.2. Initialization

Incremental methods such as the δ -rule and the nonlinear optimization presented afterwards benefit from

a good start value which drastically speeds up the learning procedure (i.e., reduces the number of training

samples). Ideally, an approximative forward model of the dynamics or kinematics of a robot is available or

can be generated easily (see Figure 4.3).

From Eq. (4.9) it can be seen that the control vertices are updated into direction of the prediction error

b(θθθ i)− xxxi weighted by their polynomial basis. As a consequence, adaptation to a single sample has mainly

a local impact on the model (see Figure 4.4). The prediction for joint configurations that lie far apart—

including exteroception—are not significantly influenced. The model hence does not “forget” the approxi-

mate model it has been initialized with such that the prediction errors for the extrapolation remains close to

95

4. Learning kinematic and dynamic models

those of the approximate model. A model generated with the LLMS algorithm suffers from a significantly

higher extrapolation errors due to overfitting when the data is noisy and not enough redundant data can be

learned from.

However, if no a priori model is available at all, the KBM model can be initialized by a linearized model

obtained by batch learning. Therefore, the kinematics is approximated by a linear model. This requires the

training samples to be generated with small joint angles around zero (for instance, |θ j,i| < 15◦). Then, a

linear approximation

l(·) : Rdin → Rdout , θθθ 7→ L ·
(

θ1, . . . ,θdin ,1
)T

,L ∈ Rdout×din

can be obtained by solving

L ·
(

θ j,i

1 . . . 1

)
j,i

=

(
x j,i

1 . . . 1

)
i, j

(4.10)

for the matrix L. The control vertices of the initial net for a given spread angle α are set according to their

index vector iii as

bbbiii = L ·ρρρ iii

ρρρ iii =

(
ρ1, . . . ,ρdin ,1

)T

, where

ρ j =


−α, i j = 0

0, i j = 1

α, i j = 2

, iii =
(

i1, . . . , idin

)
∈ Idin .

The pseudocode for this linear initialization is given in Algorithm. 8 and a picture of the initialization for

three degrees of freedom is shown in Figure 4.5. Although the model is obtained by batch-learning, only

din +1 angles are at least required due to the linearity of the model. This initialization can greatly speed up

learning albeit not being by far as effective as starting with an approximate model as described above.

Algorithm 8: Optimal starting value for numeric approaches.
Input: Training data set D = {(θθθ i,xxxi) : i = 1, . . . ,m}, Opening angle δ

Requirements : Angles |θθθ i|. δ

Output: Initial control net C0

// Convert training data to matrices. Data is stored in the matrices’ columns.
1 P ∈ Rdin×m // Proprioception
2 S ∈ Rdout×m // Exteroception
3 P := ((θθθ i) j) ji and S := ((xxxi) j) ji

4 Solve L ·
(

P
1

)
=

(
S
1

)
for linear model L ∈ Rm×din

5 C0 = {ccc1, . . . ,ccc3din} // Define initial control net
6 for i = 1 : 3din do // initialize control vertices
7 ccci = L · (ιdin(i)− (1, din. . .,1)) ·δ

96

4.4. Approximation with nonlinear symmetry constraints

Figure 4.5.: Initialization of a KBM’s control net by linearization of the training data.

4.4. Approximation with nonlinear symmetry constraints

The linear optimization techniques presented in the previous two sections are not capable of taking the

symmetric and regular structure of a well-formed control net of the KBM representation into account (see

Figure 3.9). While such a structure emerges spontaneously in most cases this does not occur under aggra-

vated conditions. Especially if the joint angles generating the training data lie close together and are subject

to sensor noise, not enough information can be generalized from the data and the control net degenerates

(overfitting). As a consequence, the KBM model loses its ability of extrapolation, that is, to reliably predict

the location of its limbs for joint configurations not observed during training. This can be explained by the

fact that the extrapolation consists of non-convex operations which means that smaller errors in interpolation

lead to large errors in extrapolation.

One way to address this problem is the consideration of the desired symmetric structure to constrain the

solution found by the parameter determination. Although this leads to a more reasonable representation,

these constraints include nonlinear error terms which greatly complicate learning and increase computa-

tion time. On the other hand, it offers very interesting insights on the regular and symmetric structures in

this sensorimotor representation. The early ideas underlying this research were presented in (Ulbrich and

Asfour, 2013).

4.4.1. Symmetry and regularity in the control net

Before regularity and symmetry constraints can be formulated, a closer look at the geometric nature of a

well-formed control net has to be taken. It comprises a very regular structure where many connected ver-

tices form isosceles triangles with a predefined common angle (see Eq. (3.19)). This does not hold for every

triangle though, so that they have to be identified and counted by induction.

Given a kinematics k(θθθ) with din identified rotation axes and given that θθθ = (θ1, . . . ,θdin) is a joint con-

97

4. Learning kinematic and dynamic models

Figure 4.6.: Symmetry in an arbitrary kinematics with three degrees of freedom. Green lines belong to isosceles
triangles with the common angle α . Blue lines indicate asymmetric triangles.

figuration where the angles are sorted by their lateral distance to the kinematics origin, the position of the

end-effector is defined by a function

k(·) : Θ
din → R3, θθθ 7→M1(θ1) ·M2(θ2) · . . . ·Mdin(θdin) ·mmm,

where the Mi ∈ SE3 are rigid body transformations depending on a single joint angle θi each and mmm is the

final transformation from the last axis to the end-effector. The matrix M1 represents the most proximal and

Mdin the most lateral degree of freedom.

The control net can then be constructed manually in the following way: An initial control net C0 is defined

as the set containing a single point

C0 = {k(θθθ)}

Let rrr1 be the last (i.e., most lateral) rotation axis for a configuration θθθ . For this degree of freedom, a control

net Ci can be constructed by a scaling Srrr1 orthogonal to rrr1 and two rotations Rrrr1(α) and Rrrr1(−α) around rrr1

where α is the chosen opening angle of the net. This procedure is repeated for all the other axes approaching

the kinematics’ origin resulting in the inductive rule

Ci+1 = Rrrri(α) ·Ci∩Srrri ·Ci∩Rrrri(−α) ·Ci, (4.11)

where the product of a transformation and a set here means that every single element is transformed. In

each step, every control vertex becomes connected to a new neighbor which is reflected in the indices in

Eq. (3.19). These neighbors form symmetric triangles. The scalings Srrri , however, do not preserve this

symmetry in general such that the number of isosceles triangles Eq. (3.19) can be derived inductively by

mi+1 = 2 ·mi + |Ci|, where |Ci|= 3i. (4.12)

This results in a total of mdin = 3din−2din which can be proven by induction:

m1 = 31−21 = 1,

mi+1 = 2 · (3i−2i)+3i = 3i+1−2i+1

A triangle related to the d-th degree of freedom is consequently isosceles if and only if for the indices of all

98

4.4. Approximation with nonlinear symmetry constraints

its control vertices bbbiii holds

iii = (i1, . . . , id , . . . i3din)⇒ i j 6= 1,∀ j < d.

In the two-dimensional case, for instance, the only non-isosceles triangle is

bbb(1,0)bbb(1,1)bbb(1,2).

Figure 4.6 shows this regular structure of a three-dimensional KBM model and highlights the non-symmetry

(eight triangles) in blue color. In order to access the (not necessarily isosceles) triangles that belong to a

control point, the index function ῑ defined in Section 3.2.1 is required.

Algorithm 9: Pseudo code for the creation of a lookup table reverse index function ι̃−1 that is used for
the creation of the Jacobian matrix and the residues vector.
Input: Index function ι(·) : N+→I din

Output: Lookup table I for ι̃−1 ∈N3nDoF×nDoF

1 for i = 1 : 3din do
2 for j = 1 : din do
3 iii = (i1, . . . , idin) := ι(j)
4 ĩii := (i1, . . . , ��i j, . . . , idin)
5 Ii,k = (j−1) ·3nDoF−1 +∑k

(
3k · ĩk

)
+1

4.4.2. Formulation of the error terms

The nonlinear optimization requires an error function to be minimized. The real-valued error function that

minimizes the prediction error over the training data and constrains the symmetry is a combination of three

error functions—one for the isosceles property e∆, one for the opening angle eα and one for the prediction

Algorithm 10: Optimization of the leg length in the isosceles triangles.

Input: index iii ∈ R3nDoF×nDoF

Output: J∆,r∆

1 for i = 1 : 3nDoF do /* no comment */
2 for j = 1 : nDoF do
3 aaa =CPrIndexi, j,1

4 bbb =CPrIndexi, j,2

5 ccc =CPrIndexi, j,3

6 v = indexi,?

7 (J∆)ι̃−1(i,k),i =


2 · (aaa−bbb), v j = 1
2 · (ccc−aaa), v j = 2
2 · (bbb− ccc), v j = 3

8 (r∆)ι̃−1(i,k) = ‖a−b‖2−‖b− c‖2

99

4. Learning kinematic and dynamic models

Algorithm 11: Optimization of the common angle in the isosceles triangles.

Input: index ∈ R3nDoF×nDoF

Output: Jα ,rα

1 for i = 1 : 3nDoF do
2 for j = 1 : nDoF do
3 aaa =CPrIndexi, j,1

4 bbb =CPrIndexi, j,2

5 ccc =CPrIndexi, j,3

6 v = indexi,?

7 (Jα)ρ(i,k),i =


aaa+ ccc−2 ·bbb− tan(δ)2/2 · (aaa− ccc), v j = 1
2 ·bbb− (aaa+ ccc), v j = 2
aaa+ ccc−2 ·bbb− tan(δ)2/2 · (aaa− ccc), v j = 3

8 (rα)ρ(i,k) = ‖1/2(aaa+ ccc)−bbb‖2− 1/4 tan2(α) · ‖1/2(aaa− ccc)‖2

error eT over the training data T = {(θθθ i,xxxi)} respectively which all depend on the model parameters, that

is, the set of control vertices C

e(C ,T) = ω1 · e∆(C)+ω2 · eα(C)+ω3 · eT (C ,T) (4.13)

= ω1 · rrr∆(C)T · rrr∆(C)+ω2 · rrrα(C)T · rrrα(C) (4.14)

+ω3 · rrrT (C ,T)T · rrrT (C ,T).

Each error function itself is a squared sum of residues pooled in the residue vectors rrr�(C). The optimization

process finds an optimal control net C ? for which holds

C ? = argmin
C

e(C ,T) (4.15)

Prediction error over the training data

There are two ways of defining the error function eT (C ,T). The first is very similar to the nonlinear

optimization with the only difference that it includes the errors in every output dimension dout whereas those

were previously treated separately. This results in a (dout ·n)-sized vector for n training samples. Let eeei be

the prediction error for the training sample (θθθ i,xxxi) and ei, j its j-th component then

rT (C ,T) = (e1,1, . . . ,e1,n,e2,1, . . . ,e2,n, . . . ,edo,n).

The Jacobian of eT has (dout · n) rows, one for each component of the residue vector rT , and (3din · dout)

columns for each component of the control vertices in C .

The second variant does not minimize the components of the error vector eeei separately but its squared

length

ēi = eeeT
i · eeei, i = 1, . . . ,n.

100

4.4. Approximation with nonlinear symmetry constraints

The resulting residue vector r̄training therefore has only n components.

Symmetry terms

For every control vertex, its neighboring vertices with respect to the i-th degree of freedom are obtained by

ῑ as presented in Eq. (3.17). Let

aaa := bbb(...,0
i
,...), bbb := bbb(...,1

i
,...), ccc := bbb(...,2

i
,...)

be such a symmetric triangle. Its isosceles property is expressed by an error term r∆ called residue. One

possibility to define r∆ is the difference between the squared length of the triangle’s legs

rrr∆ = ‖aaa−bbb‖2−‖bbb− ccc‖2.

This residue is, however, not invariant to the scaling of the triangle such that the choice of the ratio between

the legs is more suitable for the residue:

rrr∆ =
‖aaa−bbb‖2

‖ccc−bbb‖2 −1.

The associated partial derivatives with respect to the triangle’s vertices are then given by

∂ rrr∆

∂�
=


·2qqq·0·rrr2−qqq2·2·rrr·1

rrr4 ,�= aaa,

·2qqq·1·rrr2−qqq2·2·rrr·(−1)
rrr4 ,�= bbb,

·2qqq·(−1)·rrr2−qqq2·2·rrr·0
rrr4 ,�= ccc.

For the regulation of the common angle α , another residue rrrα has to be defined. Again, its definition

by the ratio of the involved squared distances xxx (the base of the isosceles triangle) and yyy (its height, see

Figure 4.6)

xxx = 1/2 · (aaa− ccc)

yyy = bbb− 1/2(aaa+ ccc)

rrrα =
‖yyy‖2

‖xxx‖2 − tan2
α

is to be preferred over a non-scale-invariant

rrrα = ‖yyy‖2− tan2(α) · ‖xxx‖2.

101

4. Learning kinematic and dynamic models

The partial derivatives for each vertex of the triangle are given by

∂ rrrα

∂�
:=


2yyy·(−1/2)·xxx2−yyy2·2·xxx·1/2

xxx4 ,�= aaa,
2yyy·1·xxx2−yyy2·2·xxx·0

xxx4 ,�= bbb,
2yyy·(−1/2)·xxx2−yyy2·2·xxx·(−1/2)

xxx4 ,�= ccc.

Algorithm 12: The skeleton algorithm for the steepest descent and the Gauss-Newton methods.

Input: Training data set D = {(θθθ i,xxxi) : i = 1, . . . ,m}, Initial control net C 0, maximal number of
iterations n, desired accuracy ε > 0

Output: Final control net C ?

1 x̃xxi← xxxi−x̄xx
maxxxxi, j−minxxxi, j

// Normalization

2 θ̃θθ i← θθθ i− θ̄θθ // Normalization
3 i← 0
4 while ‖eee(C i, x̃xx, θ̃θθ)‖> ε and i < n do // Optimization loop
5 Calculate J(C i) and eee(C i, x̃xx, θ̃θθ)

6 C←
{

J(C i)T · eee(C i, x̃xx, θ̃θθ), // steepest descent

(J(C i)T · J(C i))−1 · J(C i)T · eee(C i, x̃xx, θ̃θθ), // Gauss-Newton
7 ∆bbbiii←

(
ι−1(iii)

)
-th column of C

8 C i+1←{bbbiii +ν ·∆bbbiii : iii ∈I } // Actualization of the control net
9 if ‖eee(C i+1, x̃xx, θ̃θθ)‖< ‖eee(C i, x̃xx, θ̃θθ)‖ then // Line search

10 ν ← ν ·2 // increase stepsize

11 else
12 ν ← ν · 1/16 // reduce step size

13 i← i+1

Algorithm. 11 and Algorithm. 10 show how the partial derivatives for the symmetry terms are computed.

Nonlinear Optimization

The symmetry constraints are formalized by the following nonlinear optimization problem:

C ? = argmin
C

(e(C ,T)) = argmin
C

(
rrr(C ,T)T · rrr(C ,T)

)
(4.16)

Two numeric optimization techniques were investigated in this work. The first, the Gauss-Newton method

with line-search for the optimal step size, provides an optimization process that converges quickly to a

minimum of the error function. The second is the simpler steepest descent that—despite its much slower

convergence—is better suited for kinematics with higher numbers of degrees of freedom as it does not rely

on memory expensive inversions of the Jacobi matrix. The common structure of the algorithms is shown in

Algorithm. 12. They both start with an approximated control net C 0 (preferably the linear approximation

computed by Algorithm. 8) which is then refined in every iteration until either a maximal number of itera-

102

4.4. Approximation with nonlinear symmetry constraints

tions (i.e., convergence) is exceeded or a desired accuracy has been reached. The main difference between

steepest descent and Gauss-Newton is how the direction, that is, the increment ∆bbbiii to the control vertices in

C i is determined. In the steepest descent variant, the direction is computed from the product of the Jacobian

and the residues vector

C = J(C i)T · eee(C i, x̃xx, θ̃θθ), (4.17)

where ∆bbbiii is the
(
ι−1(iii)

)
-th column of the resulting matrix C. That way, it has a high resemblance to the

δ -rule presented in Section 4.3 which offers the most basic incremental learning of the KBM model. As

both are steepest descents, Eq. (4.17) can be considered the batch learning extension of the δ -rule when

omitting the nonlinear error terms.

Gauss-Newton, however, creates the first taylor expansion of the error function in each step and determines

its root. It then moves the control parameters into the direction of this root:

C = (J(C i)T · J(C i))−1 · J(C i)T · eee(C i,T) (4.18)

Again, the increment ∆bbbiii lies in the
(
ι−1(iii)

)
-th column of C. Then, control net is updated according to

C i+1←{bbbiii +ν ·∆bbbiii : iii ∈I } (4.19)

which features a step size factor ν that has to be chosen in each step by a line search. This means that ν has

to be increased every time the error reduces (the norm of the residue vector) and decreased again if the error

increases. In the experiments later, ν is doubled or divided by the value 16 which led to good results.

Both algorithms share the same basic structure and while Gauss-Newton converges in fewer iterations,

steepest descent is the better choice for six degrees of freedom or more because it avoids the inversion of

possibly huge matrices that become too expensive to compute.

A problem common to both algorithms is that the errors of the approximation depend on the magnitude of

the Cartesian positions xxxi while the symmetry constraints are invariant. If the arm is ten times longer (e.g.,

when using different units), for instance, the squared error of the approximation becomes bigger and the

nonlinear terms are likely to be neglected. Therefore, the Cartesian coordinates of the training data should

be normalized such that every coordinate lies in between ±1:

x̃xxi =
xxxi− x̄xx

maxxxxi, j−minxxxi, j
, ∀xxxi. (4.20)

Similarly, the input variables should be subtracted by their mean values:

θ̃θθ i = θθθ i− θ̄θθ , ∀θθθ i (4.21)

Further, the error function is a weighted sum and the weights play an important role in the optimization. An

initial good guess for tuning these parameters, is the inverse value of the number of residues in the residue

vector, that is,

ω1 =
1

3din−2din
= ω2, and ω3 =

1
dout ·n

, (4.22)

103

4. Learning kinematic and dynamic models

where n is the number of training samples. Depending on the expected noise in the data, ω3 should be

adjusted differently.

4.4.3. Summary

The nonlinear optimization presented in this section is by far more complex than the linear optimizations

presented earlier. Further, the computational complexity is greater and determination of the model slower.

On the other hand, the maintenance of the symmetry makes the learning less prone to overfitting and its

construction offers an interesting insight into the structure of the learned model. Its field of application

therefore is especially recommended if the configuration space of the robot cannot sufficiently be explored

and no a-priori model of the robot is available for initialization.

104

5. Dimensionality reduction for sensorimotor learning

5.1. Introduction

The application of machine learning for creating sensorimotor maps provides a reliable and versatile method

to foster robot control and planning. Especially the previously presented KBM offer a suitable model spe-

cialized to represent the nonlinear relations between the input and output data while remaining a sufficient

degree of generality. The linearization of the problem unveils a problem inherent to sensorimotor learning

in general. The more independent and sequential degrees of freedom a kinematics consists of, the more

training samples are required to deduce a valid model. As this number grows exponentially, this problem is

often referred to as ‘the curse of dimensionality’ (Bellman, 1960). Local non-parametric learning such as

LWPR and XSCF (see Section 2.3.4) avoid this problem by modeling the maps by a growing composition

of linear models. While this leads to quick results when learning models that are valid in a vicinity of the

observed samples, covering a large workspace requires a larger amount of samples compared to the KBM.

This chapter covers a novel method that directly addresses the curse of dimensionality—at least so in the

case of learning forward kinematics models. It is based on the decomposition techniques shown in Sec-

tion 2.3.6 but provides significant improvements. The fundamental idea underlying the decomposition is

the division of the complex learning problem into a set of smaller problems that can be handled with ease.

A kinematics is divided into smaller chains with respect to the number of active degrees of freedom which

significantly reduces the number of required samples due to the exponentiality of the problem. For instance,

the decomposition of a kinematics with an even number of sequential degrees of freedom requires O(e2·din)

training samples to be learned. A decomposition into two evenly long sub-chains (also called partial kine-

matics in the following paragraphs) requires a number of only O(edin) which effectively means a reduction

to its square root.

Decompositions exploit the structure of the forward kinematics which can be expressed as a series of rigid

body transformations. Consequently, they are limited to this type of functions only and reduce the generality

of the machine learning. In addition, there rises a number of drawbacks: i.) The input variables have to be

sorted according to their lateral distance—the number of active joints that separate the respective joint from

the robot’s base. This order is required to divide the input data into medial close to the robot’s base and

lateral joint angles close to the end-effector. ii.) The output must be rigid transformations out of the special

Eucledean group SO3, homogenous transformation matrices for instance, and the sensors must be able to

track the end-effector in spatial 6D coordinates. iii.) A more complicated sensor setup may be required

(Ruiz de Angulo and Torras, 2008) to track multiple markers on the robot’s body. Especially when learning

from self-observation on a humanoid robot, this constraint is a hindrance as it limits the robot’s movability

105

5. Dimensionality reduction for sensorimotor learning

when all markers have to be in the field of vision at the same time. iv.) The strong limitation to special

types of robots (Ruiz de Angulo and Torras, 2005b), e.g., when the last three joint axes intersect in a single

joint.

In the following, a new decomposition scheme is presented that resolves the last two problems at the expense

of a more constrained exploration strategy. It is well suited for learning from self-observation and, despite

the complexity of the underlying affine geometric calculus, it is a very intuitive and minimalistic approach

that can be implemented with minimal effort on a robot. It has been presented in (Ulbrich et al., 2012b).

5.2. Kinematics Decomposition

The basic idea behind this decomposition is the reduction of the learning problem by decomposing the kine-

matics into subchains that can be learned more easily. Therefore, the joint angles, on which the kinematics

depends

θθθ =
(

θ1, . . . ,θdin

)
,

are partitioned into two sets of adjacent joint angles, for instance,

ξξξ =
(

ξ1, . . . ,ξk

)
, ξi = θi, i≤ k

and

µµµ =
(

µ1, . . . ,µdin−k

)
, µi = θi+k, i≤ din− k.

The medial joint angles are then contained in the vector ξξξ and the lateral in µµµ . The kinematics can be

separated into more parts depending on even fewer input variables. It is beneficial to create parts that

depend on an equal number of inputs, such that k equals din/2 as the effect of the decomposition is then

maximal. The forward kinematics

k : Rdin → SO3 (5.1)

can then be written as the product of two shorter kinematic functions kµ(µµµ) and kξ (ξξξ) which will be used

as helper functions

k(θθθ) = M0,1(θ1) · . . . ·Mdin−1,din(θdin),

= M0,1(ξ1) · . . . ·Mk−1,k(ξk)︸ ︷︷ ︸
kξ

·Mk,k+1(µ1) · . . . ·Mdin−1,di(µn−k)︸ ︷︷ ︸
kµ

,

= kξ (ξξξ) · kµ(µµµ)

(5.2)

where the M� ∈ SO3 are rigid transformations (e.g., homogeneous matrices) between adjacent joints. There-

fore, the joint angles in θθθ have sorted by their lateral distance (the number of joints separating the from the

kinematic’s base). For convenience, k(θθθ) = k(ξξξ ,µµµ) is written to enforce the distinction of the two sets of

joint angles.

106

5.2. Kinematics Decomposition

Now that the definitions necessary to describe the decompositions are available, the first function in the

decompositions can be defined as

k1(ξξξ) := k(ξξξ , µ̃µµ) = kξ (ξξξ) · kµ(µ̃µµ) = kξ (ξξξ) ·Cµ̃µµ (5.3)

for an arbitrary but fixed medial joint configuration µ̃µµ where Cµ̃µµ = kµ(µ̃µµ) is a constant transformation asso-

ciated to the fixed joint values µ̃µµ . The second function in the decomposition which depends on the lateral

angles µµµ is defined by the relation between k and k1 such that

k(ξξξ ,µµµ) = k1(ξξξ) · k2(µµµ) (5.4)

holds. Solving this equation for k2 leads to

k2(µµµ) := (kξξξ (ξξξ) · kµµµ(µ̃µµ))
−1 · kξξξ (ξξξ) · kµµµ(µµµ)

= kµµµ(µ̃µµ)
−1 · kξξξ (ξξξ)

−1 · kξξξ (ξξξ) · kµµµ(µµµ)

=C−1
µ̃µµ
· kµµµ(µµµ). (5.5)

which shows that k2 also represents a valid kinematic function that depends only on the n− k lateral joint

angles in µµµ . The product of this two functions k1 and k2 that depend on two disjoint sub sets of joint angles

is equivalent to the real forward kinematics.

Note that, alternatively, the decomposition can reversely be defined by using a fixed set of medial angles ξ̃ξξ

and the kinematic functions

k̄1(µµµ) = k(ξ̃ξξ ,µµµ) and k̄2(ξξξ) = k(ξξξ ,µµµ) · k̄1(µµµ)
−1.

The kinematics composition is analogously obtained from the definition of k̄2,

k(ξξξ ,µµµ) = k̄2(ξξξ) · k̄1(µµµ)

If a decomposition into more than two sub chains is required, then the same procedure as described above

can be applied to either k1 or k2 which is possible as both represent valid kinematics. That way any number

of subchains can be produced recursively for a desired length of din/d for each chain. The recursion starts

with one single subdivision into two chains of length din/d and (din− din/d). In the following recursions,

the larger chain is divided into two additional chains such that one subchain is again of length din/d. The

algorithm terminates when all chains are of length din/d or smaller. Algorithm. 13 shows the pseudocode for

the algorithm. For the remainder of this chapter, however, we assume a single decomposition without loss

of generalization.

107

5. Dimensionality reduction for sensorimotor learning

Algorithm 13: Algorithm for the recursive definition of the decomposition.
Input: Forward kinematics k = M0,1(θ1) · . . . ·Mdin−1,din(θdin) ∈ SO3, length of partial kinematics

l = din/n, reference configuration θ̃

Output: Decomposition k1, . . . ,kn

1 Function RecursiveDecomposition(k(θθθ)),l,θ̃θθ)
// Obtain the first decomposition

2 ξξξ :=
(

θ1, . . . ,θl

)T

3 µµµ :=
(

θl+1, . . . ,θdin

)T

4 µ̃µµ :=
(

θ̃l+1, . . . , θ̃din

)T

5 k1(ξξξ) := kξ (ξξξ) · kµ(µ̃µµ) = kξ (ξξξ) ·Cµ̃µµ

6 if din ≤ 2 · l then
7 k2 :=C−1

µ̃µµ
· kµ(µµµ)

8 return list(k1,k2)

9 else
10 return list(k1, RecursiveDecomposition(Ml,l+1(θ1) · . . . ·Mdin−1,din , l,(θ̃l+1, . . . , θ̃din)

T)

(a) k1(ξξξ) = kξ (ξξξ) ·Cµ̃µµ (b) k2(µµµ) =C−1
µ̃µµ
· kµ (µµµ) (c) k(ξξξ ,µµµ) = k1(ξξξ) · k2(µµµ)

Figure 5.1.: Illustration of the kinematic decomposition without intermediate markers. The decomposition of the for-
ward kinematics k into the two chains k1 (a) and k2 (b)is explained on the example of fictive robot with
four revolute joints. The partial kinematics k1 is the transformation from the robot base to the end-effector
while the most lateral joints are fixed. In (a) the stationary part of the robot is rendered transparently. The
second partial kinematics k2 in (a) combines the stationary part from the previous image with the kinemat-
ics of the lateral joints. Consequently, it is the transformation from the tail of k1 to the real end-effector
pose of k. When k1 and k2 the resulting kinematics equal the real kinematics k. Source: (Ulbrich et al.,
2012b)

108

5.3. Kinematics Composition

5.3. Kinematics Composition

The forward kinematics can be assembled as shown in Eq. (5.2). For learning the whole kinematics, learning

systems (this could be neural networks or the KBM presented earlier) are applied to learn each of the of the

decomposition such that

n(ξξξ ,µµµ) = n1(ξξξ) ·n2(µµµ). (5.6)

This provides the justification that k—the number of joints in each chain—should be chosen close to din/2 as,

in general, the number of samples required for training the systems n1(ξξξ) and n2(µµµ) depends on the number

of joints in the partitioned joint vector ξξξ and µµµ . The total number required for learning is then minimal if k

equals din/2 and exponentially grows with the distance to this value.

For the inverse kinematics, the joint coordinates θθθ form a solution to the inverse kinematics if and only if,

given a target pose X ∈ SE3 holds

k(ξξξ ,µµµ) = k1(ξξξ) · k2(µµµ) = X , (5.7)

which can be approximated with the learning systems by

n(ξξξ ,µµµ) = n1(ξξξ) ·n2(µµµ) = X . (5.8)

using Eq. (5.3) and Eq. (5.5), this can be transformed to

kξξξ (ξξξ) ·Cµ̃µµ ·C−1
µ̃µµ
· kµµµ(µµµ) = X

⇔ kξξξ (ξξξ) · kµµµ(µµµ) = X

⇔ kξξξ (ξξξ) = X · kµµµ(µµµ)
−1.

(5.9)

This equality is very similar to the decomposition proposed in (Ruiz de Angulo and Torras, 2008). As

a reminder, this decomposition can be better described by kinematic functions kξ and kµ in Eq. (5.2) and

requires at least two (6D) markers on the arm for learning—on the end-effector and on the elbow for instance.

The decomposition presented in this section requires only the marker on the end-effector. This important

property will be highlighted in the following paragraph.

Most numerical methods for solving the inverse kinematics are based on the relation between the differences

in the joint angles and the resulting motion of the end-effector

J(θθθ) ·∆θθθ ≈ ∆xxx ⇐⇒ ∆θθθ = J(θθθ)+ ·∆xxx,

where J(θθθ) denotes the Jacobian matrix given a joint configuration θθθ and J(θθθ)+ its Moore-Penrose or

pseudo inverse (Whitney, 1969; Liegeois, 1977; Li et al., 2001; Xia et al., 2005). This relation is then used

to iteratively find a solution for a given target position or pose xxx. The decomposition k1 and k2 allows the

approximation of the Jacobian by means of the involved learning systems n1 and n2 after learning. The

partial derivatives which are in the columns of this matrix are easily obtained by combining the networks’

109

5. Dimensionality reduction for sensorimotor learning

outputs and their partial derivatives

∂n(ξξξ ,µµµ)
∂ξi

=
∂n1(ξξξ)

∂ξi
·n2(µµµ) and

∂n(ξξξ ,µµµ)
∂ µ j

= n1(ξξξ) ·
∂n2(µµµ)

∂ µ j
. (5.10)

If the partial derivatives cannot be accessed through the learning systems, the difference quotient can be

used as an approximation, for instance,

∂n(ξξξ ,µµµ)
∂ξi

=
n1(ξξξ)−n1(ξξξ +∆ξξξ)

‖∆ξξξ‖ ·n2(µµµ)

for small values of ∆µµµ .

5.4. Learning

The decomposition of a kinematics k(ξξξ ,µµµ) into k1(ξξξ) and k2(µµµ) results in a significant reduction of required

training samples. On the downside, the learning procedure is generally more complex. This paragraph

suggests two different algorithms that describe how training samples (θθθ i,Xi) have to be processed to enable

the learning of partial kinematics with two learning systems n1 and n2 that can be any general function

approximation method or a specialized model like the KBM presented earlier. The data acquisition requires

the end-effector to be localizable in 6D coordinates, that is, that Xi ∈ SO3 encoded as homogenous matrices

for instance. The localization of additional body parts (e.g., the elbow link) is not required in this approach

which facilitates the application on a humanoid robot that learns from pure self-observation with stereo

cameras build into the robot’s head.

5.4.1. Independent learning

Learning each partial kinematics k1(ξξξ) and k2(µµµ) independently is the genuine approach that can directly

be deduced from Eq. (5.3) and Eq. (5.5). The approach is separated into two steps shown inAlgorithm. 14

and Algorithm. 15 which have to be executed in sequential order. In the first step, training data has to be

generated such that the medial joints in the first training set ξξξ i vary

ξξξ i 6= ξξξ j,

(e.g., are generated from random movements) and the lateral joint positions µµµ i remain at a reference config-

uration µ̃µµ . Then the training data for n1 has the form (ξξξ i,Xi). The second step can theoretically operate on

completely arbitrary joint configurations (θθθ i,Xi)

θθθ i 6= θθθ j, i 6= j

Xi = K(ξξξ i, µ̃µµ)
−1 ·K(ξξξ i,µµµ i),

110

5.4. Learning

Algorithm 14: Learning of k1(ξξξ).
Input: Training data T = {(ξξξ i, µ̃µµ,Xi), i = 1, . . . ,n}
Output: Learning system n1(ξξξ) that approximates k1(ξξξ)

1 foreach (ξξξ i, µ̃µµ,Xi) ∈T do
2 Move to (ξξξ i, µ̃µµ) and observe Xi = k(ξξξ i, µ̃µµ)
3 Learn n1 with ξξξ i as input and Xi as output.

Algorithm 15: Learning of k2(µµµ).

Input: Training data T = {(ξ̃ξξ ,µµµ i,Xi), i = 1, . . . ,n}
Output: Learning system n2(µµµ) that approximates k2(µµµ)

1 Move to (ξ̃ξξ , µ̃µµ) and observe Cµ̃µµ = K(ξ̃ξξ , µ̃µµ)−1

2 foreach (ξ̃ξξ ,µµµ i,Xi) ∈T do
3 Move to (ξ̃ξξ ,µµµ i) and observe Xi = k(ζ̂ζζ ,µµµ i)
4 Learn n2 with µµµ i as input and Cµ̃µµ ·Xi as output.

still resulting in training data (µµµ i,Xi). However, if ξξξ i remains at fixed reference position ξ̃ξξ , the transforma-

tion K(ζζζ i, µ̃µµ)
−1 is constant and can be obtained already prior to the second step thus saving one movement

in each iteration. In summary, both steps boil down to basically varying one of the partial kinematics while

the other remains constant.

Especially Algorithm. 15 can be modified to match local conditions. For instance, it can be executed with

different values for ξ̃ξξ if µµµ is constrained for some values of ξξξ (e.g., to keep the end-effector in the field of

view). Even if it is required to use a different ξξξ i for each µµµ i, training n2 with only one movement per itera-

tion is possible. This requires the inclusion of the first learning system’s output n1(ξξξ i) for the generation of

the training data

Xi = n1(ξξξ i)
−1 ·K(ξξξ i,µµµ i),

derived from Eq. (5.8). On the downside, the data depends on an approximation of k1 which is an additional

source of error. Therefore, k1 should have a low input dimension and sufficiently training be provided such

that the error becomes negligible.

5.4.2. Concurrent learning

Independent learning as presented above requires pure offline learning due to its sequential processing and

restrictive joint movements. In order to integrate learning into the normal working operation (i.e., online

learning), a concurrent learning of the learning systems n1(ξξξ) and n2(µµµ) must be achieved. The strategy

presented in the following is a parallelization of the learning of the partial kinematics presented in Algo-

rithm. 16. Interestingly, it permits refinement of decompositions previously learned by independent learning

from arbitrary joint configurations and joint movements.

The key to concurrent learning lies in Eq. (5.8). The partial kinematics can be expressed in dependence of

111

5. Dimensionality reduction for sensorimotor learning

each other

k1(ξξξ i) = k(ξξξ i,µµµ i) · k−1
2 (µµµ i) (5.11)

k2(ξξξ i) = k−1(ξξξ i) · k(ξξξ i,µµµ i) (5.12)

which means that the output values for n1 and n2 are given implicitly by

n1(ξξξ i) = Xi ·n2(µµµ i)
−1, (5.13)

n2(µµµ i) = n1(ξξξ i)
−1 ·Xi (5.14)

The learned partial kinematics

Note that the reference joint configuration µ̃µµ is completely missing in this definition and, in fact, learning as

presented in Algorithm. 16 tends to converge to functions that do satisfy

k(ξξξ i,µµµ i) = n1(ξξξ i) ·n2(µµµ i),

but do not directly approximate k1 and k2 anymore. The functions they represent, however, are of the

following form

n1(ξξξ) = k1(ξξξ) ·C−1 n2(µµµ) =C · k2(µµµ), (5.15)

which implies that

n1(ξξξ) ·n2(µµµ) = k(ξξξ ,µµµ)

for a constant transformation C. Because of

n2(µ̃µµ) =C · k−1
µ (µ̃µµ) · kµ(µ̃µµ)

(see Eq. (5.5)), C can be identified as n2(µ̃µµ). To prove that these functions approximated by n1 and n2 are

unique, first two functions ε1 and ε2 are defined such that

ε1(ξξξ) = k1(ξξξ)
−1 ·n1(ξξξ) (5.16)

ε2(µµµ) = n2(µµµ) · k2(µµµ)
−1. (5.17)

The product of both functions

ε1(ξξξ) · ε2(µµµ) = k1(ξξξ)
−1 ·n1(ξξξ) ·n2(µµµ)︸ ︷︷ ︸

k(ξξξ ,µµµ)

·k2(µµµ)
−1, (5.18)

= k1(ξξξ)
−1 · k(ξξξ ,µµµ) · k2(µµµ)

−1︸ ︷︷ ︸
k1(ξξξ)

= I (5.19)

112

5.4. Learning

is the identity matrix I. Because ε1 and ε2 depend on two disjoint sets of variables, their dependencies on

their input variables cannot be canceled out by multiplication. The only possible solution for the product to

be the identity matrix consequently is that ε1 and ε2 suffice

ε1(ξξξ) = C̄−1, ε2(µµµ) = C̄,

that is, are constant transformations. The substitution of these values into Eq. (5.16) and applying Eq. (5.15)

yields

n−1
2 (µ̃µµ) = k1(ξξξ)

−1 ·n1(ξξξ)

n2(µ̃µµ) = n2(µµµ) · k2(µµµ)
−1,

C̄ =C = n2(µ̃µµ)

which shows that Eq. (5.15) is the only possible form of the equations represented by n1 and n2.

The learned partial kinematics n1 and n2 consequently approximate a valid decomposition, but it should be

noted that they may change significantly as soon as switching from independent to concurrent learning.

Deformations learnable with only one function

From the multitude of functions that are valid decompositions rises another potential advantage. Applying

online refinement to only one learning system n1 or n2 at a time may be sufficient to adapt to certain kine-

matics changes which is significantly faster than refining both systems at the same time. The most prominent

case is holding a tool such that the kinematics is modified to

k̄(ξξξ ,µµµ) = k(ξξξ ,µµµ) ·T,

where T ∈ SO3 is the rigid transformation to the tool tip. The quickest way to react to this modification is

to refine only n2.

In general, when only n1 actively learns in online application, it can adapt to a modified kinematics k̄ with

partial kinematics k̄1 and k̄2 if there exists a constant transformation C that satisfies the equation

k̄(ξξξ ,µµµ) ·n2(µµµ)
−1 = k̄1(ξξξ) ·C. (5.20)

On the left-hand side, is the function learned by n1 (see Eq. (5.11)) and, on the right-hand side, the form all

possible functions that n1 can encode must suffice (see Eq. (5.15)). A simpler condition can be found if n2

can be assumed have already been learned before, that is, there exists a constant transformation D with

n2(µµµ) = D · k2(µµµ).

113

5. Dimensionality reduction for sensorimotor learning

Then, the kinematics is learnable if and only if there exists the same constant transformation C with

k̄2(µµµ) =C · k2(µµµ). (5.21)

This relation implies Eq. (5.20)

k̄(ξξξ ,µµµ) ·n2(µµµ)
−1 = k̄(ξξξ ,µµµ) · (D · k2(µµµ))

−1

= k̄(ξξξ ,µµµ) · k2(µµµ)
−1 ·D−1

= k̄(ξξξ ,µµµ) · (C−1 · k̄2(µµµ))
−1 ·D−1

= k̄(ξξξ ,µµµ) · k̄2(µµµ)
−1 ·C ·D−1

= k̄1(ξξξ) ·C ·D−1.

The deformations that can be absorbed by learning only the refinement of n2 can be analogously identified

if there exists a constant transformation C such that

k̄1(ξξξ) = k1(ξξξ) ·C. (5.22)

which covers the case of tool use described in Eq. (5.4.2) but also erroneous calibrations of the camera

leading to a scaling of the sensor data. Learning only n1 online is not possible because the condition

Eq. (5.21)

k̄2(µµµ) = k̄(ξξξ ,µµµ)−1 · k′(ξξξ , µ̃µµ)
= (k(ξξξ , µ̃µµ) ·C)−1 ·K(ξξξ ,µµµ) ·C
=C−1 · k(ξξξ , µ̃µµ)−1 · k(ξξξ ,µµµ) ·C
=C−1 · k2(µµµ) ·C

holds for C = I only.

Distribution of the error

Learning n1 and n2 is highly interdependent. In each iteration, the corrections to their internal representation

aims at the reduction of the same residue

rrri = ‖n1(ξξξ i) ·n2(µµµ i)−Xi‖

which has to be computed before any of the system is modified. The most crucial part of concurrent learning

is how much of the error in the residue is to be absorbed by each n1 and n2. If both systems try to absorb the

same complete error at the same time, the prediction error n1(ξξξ i) ·n2(µµµ i)−Xi will just have the opposite sign

and learning has no effect. Consequently, a learn ratio ν ∈ (0,1) has to be defined such that two different

114

5.4. Learning

Algorithm 16: Simultaneous learning of K1(ξξξ) and K2(µµµ).
Input: Training data T = {(ξξξ i, µ̃µµ,Xi), i = 1, . . . ,n}, initialized learning systens n1 and n2, learn rate ν

Output: Refined learning systems n1 and n2

1 foreach (ξξξ i,µµµ i,Xi) ∈T do
2 Move to (ξξξ i,µµµ i) and observe Xi = k(ξξξ i,µµµ i)
3 Set Xi,1 := Xi ·n2(µµµ i)

−1 and Xi,2 := n1(ξξξ i)
−1 ·Ti

4 Learn n1 with ξξξ i as input and error signal ν · (n1(ξξξ i)−Xi,1) as output.
5 Learn n2 with µµµ i as input and error signal (1−ν) · (n2(µµµ i)−Xi,2) as output

residues are available for n1 and n2

r1,i = ν‖n1(ξξξ i) ·n2(µµµ i)−Xi‖
r2,i = (1−ν)‖n1(ξξξ i) ·n2(µµµ i)−Xi‖.

Only then, the concurrent learning will converge towards the real kinematics k(ξξξ ,µµµ).

115

6. Evaluation in simulation

This chapter documents the evaluation of learning sensorimotor maps with the previously presented novel

model representation and associated learning algorithms as well as the new decomposition without interme-

diate markers. All experiments in this chapter are performed in simulation in order to confirm the theoretical

properties of the applied methods. The chapter is structured into three parts. The first section evaluates the

learning of kinematics models with the kinematic Bézier maps (KBM). In the following section, these algo-

rithms are applied to learning the dynamics of a robot. Section 6.3 covers the improved learning with the

decomposition of kinematic functions.

6.1. Evaluation of learning kinematic models

At first, the learning of kinematic functions with the KBM representation will be evaluated in combination

with the associated learning algorithms. These are the standard linear least mean squares regression (LLMS),

the incremental learning with the δ -rule, the nonlinear optimization of symmetry constraints and the partial

least squares regression (PLS-1).

6.1.1. Setup

For the experiments, a generic simulated robot with six rotational degrees of freedom (din = 6) is defined by

its parameters in the Denavit-Hartenberg formalism (see Figure 6.1):

ai = 200 mm, di = 0 mm, and αi = 90◦ ∀i ∈ {1, . . . ,din}. (6.1)

The resulting robot has an overall length of 1.2 m when the robot is in its rest position, that is, all joint angles

θi equal zero. Note that all possible joint configurations are valid in the simulations, that is, self-collisions

are not considered.

For the training of the model and the evaluation of the interpolation, a restricted subspace of the configuration

space Θdin is defined in dependence of a wideness parameter δ

Θ
din
intra(δ) =

{
(θ1, . . . ,θdin) : ∀ j |θ j| ≤ δ

}
(6.2)

117

6. Evaluation in simulation

ai = 200 mm
αi = 90◦

θi+1

θi

Figure 6.1.: Schematic of the simulated kinematics in this section. The image displays the rigid body transformation
between adjacent joint axes by means of the Denavit-Hartenberg parameters. Source: (Ulbrich et al.,
2012c)

(a) Uniformly distributed joint angles used for evaluating
the exteroception for kinematics with three rotational

degrees of freedom. The cube in the center is not
sampled. From this region the data for the test sets is

sampled.

(b) For a 2R-kinematics. The sets of possible training data points for
training (Θ2

intra(45◦), blue) and evaluation (Θ2
extra(45◦), red) on the

manifold describing the reachable workspace of a robot with two
orthogonal joint axes. Source: (Ulbrich et al., 2012c)

Figure 6.2.: Selection of training and test data in the experiments.

118

6.1. Evaluation of learning kinematic models

such that the absolute values of the generated joint angles lie in an interval of size 2 · δ . The associated

training set with m samples is then defined as

T =
{
(θθθ i,xxxi) : θθθ i ∈Θ

din
intra, xxxi ∈ R3, i ∈ {1, . . . ,m}

}
(6.3)

where the θθθ i are randomly generated by a uniform distribution

θθθ ∼U (Θdin
intra).

The end-effector positions xxxi are generated by the simulated forward kinematics f (·). Artificial sensor noise

in the joint encoders is simulated by adding a normally distributed error to all joint angles

xxxi = f (θθθ i + eeei), e ji ∼N (0,σ)), j ∈ {1, . . . ,din} (6.4)

Test data is generated analogously but without artificial sensor noise. That way, it can be evaluated if the

learning can compensate the noise and produce more reliable predictions than the sensors can observe. This

is possible because of the inductive bias when learning with KBM. The test data is therefore to be considered

as ground-truth data which cannot be obtained without external high-precision sensors in an experiment with

a real robot (see Chapter 7).

The experiments in this section also include the evaluation of the prediction of robot configurations in

unexplored regions of the configuration space Θ6 (that is, extrapolation). Therefore, the prediction errors in

the neighboring regions of the configuration space used for training are considered. The neighboring regions

are defined by the sub-space

Θ
din
extra(δ) =

din⋃
i

{
(θ1, . . . ,θdin) : |θ j| ≤ δ ∀ j 6= i∧|θi| ≤ 3 ·δ

}
\Θ

din
intra(δ)

=
din⋃
i

{
(θ1, . . . ,θdin) : |θ j| ≤ δ ∀ j 6= i∧|θi±2 ·δ | ≤ δ

}
. (6.5)

This space is shown for three degrees of freedom in Figure 6.2a. The region is depicted as the composition

of six areas indicated by their bounding boxes in the configuration space. This shows that the configuration

space for the evaluation of the extrapolation is (2 · din) times larger than the configuration space used for

training. For two degrees of freedom, the reachable workspace of a robot with two rotational degrees of

freedom is a torus. This allows an exemplary display of the respective configurations in the Cartesian space

(see Figure 6.2b). In this image, the blue region indicates the set of possible training data while the red areas

mark the set of possible samples used for evaluating the exteroception.

Again, the data generated for the evaluation of the exteroception has no artificial noise added to the joint

angles.

119

6. Evaluation in simulation

0 729 1458 2187 2916
#samples

0

5×103

1×104

1, 5×104

2×104

2, 5×104

E
rr

or
[m

m
]

LLMS

(a) Learning with LLMS has a maximal prediction error for 3din samples when overfitting is most severe. An
artificial noise with standard deviation σ = 3◦ is added to the joint angles.

ν

0

250

500

E
rr

or
[m

m
]

2·36 3·36 4·36 5·36 6·36 7·36 8·36 9·36 10·36

samples

63, 81

Median interpolation error

Mean interpolation error

Median extrapolation error

Mean extrapolation error

(b) Close up of learning the errors when learning kinematics with fixed artificial noise (σ = 2◦) and variable
numbers of training samples. The bright and dark tinted regions indicate the standard deviation (std) and

inter quartile ranges (iqr) respectively.

Figure 6.3.: Experiments with the standard LLMS learning with variable numbers of training samples and fixed noise.

120

6.1. Evaluation of learning kinematic models

6.1.2. Learning with linear least mean squares

The standard linear least mean squares regression (LLMS, see Section 4.1) is the most straight forward

and most simplistic method for batch learning with KBM models. However, it is also the method that is

most prone to overfitting (when there is sensor noise involved) unless enough training samples are given to

compensate sensor noise, that is,

|T |= m� 3din .

Although it is possible to learn from less than 3din samples resulting in the minimum norm solution, the

prediction error of the learned model reaches its maximum for exactly 3din samples, and reaches acceptable

values for m > 3 ·3din observations.

The first experiment demonstrates this by learning from samples generated with configurations out of a

training set with a wideness parameter δ = 45◦ and a normally distributed noise added to each joint angle:

T =
{
(θθθ i, f (θθθ i + eeei)) : θθθ i ∈Θ

din
intra(45◦), e ji ∼N (0,3◦), xxxi ∈ R3, i ∈ {1, . . . ,m}

}
,

over a varying number m of training samples. The model is evaluated with data out of Θ
din
intra(45◦) and

Θ
din
extra(45◦) for interpolation and extrapolation respectively without artificial noise and 500 samples each.

The results are shown in Figure 6.3a and confirm the assumed characteristics of the learning curve. At

m = 729 = 36, the maximal prediction error due to overfitting can clearly be seen. For higher number values

of m the interpolation and extrapolation error drops quickly and continuously.

The focus of the second experiment lies on the observation of statistical characteristics of learning with

redundant data (that is, m ≥ 36). The setup resembles the first experiment with the exception that the

artificial noise with standard deviation of σ = 2◦ is less severe. Again, the model is evaluated for varying

values of m and the test data for interpolation and extrapolation (3,000 samples each) is generated without

artificial noise. The resulting curves are shown in Figure 6.3b. The artificial noise in the joint angles results

in a position error ν of 63.8 mm which is indicated in the image.

It can be observed that already with 3 ·36 samples, the mean prediction error for the interpolation drops below

the position error ν . Consequently, this means that the model now compensates the noise and predicts the

position with a higher precision than the sensors are able to perceive.

The plot also shows that the mean and median of the prediction error do not coincide. This means that the

error is not normally distributed. Furthermore only few outliers with high prediction errors occur.

The third series of experiments investigates the required quantities of samples necessary to compensate

for different noise levels. Therefore, a variable standard deviation σi are inserted into Eq. (6.4) and the

prediction error is evaluated for several KBM models learned from different numbers of training samples

and two different pairs of restricted configuration spaces. The first configuration spaces used are

Θ
6
intra(90◦) and Θ

6
extra(90◦).

Although the value for δ is big, this means that only a small portion of 1/64 of the complete configuration

121

6. Evaluation in simulation

space is used for the training and evaluation of the interpolation and a portion of 3/32 for the extrapolation.

The results of the mean prediction errors for extrapolation and interpolation in dependence of a variable

noise

σi ∈ {0◦,0.5◦,1◦, . . . ,5.5◦}

added to the joint angles are shown in Figure 6.4a. The first observation is that the position error due to the

sensor noise in the joint angles is linear in the noise added to the joint angles. Second, the interpolation error

again falls below the position error once a sufficient number 3 · 36 of training samples has been learned.

It is important to note that this number remains constant for all tested degrees of angular noise. As a

consequence, this means that any (reasonable) sensor noise can be compensated with this number of training

samples under the evaluated conditions. However, the training samples used are randomly generated. Later

experiments in Chapter 7 show that this does not hold if the training samples are too similar, for instance, if

they are sampled along trajectories.

Figure 6.4b shows the same experiment repeated with different restricted configuration spaces

Θ
6
intra(45◦) and Θ

6
extra(45◦)

used for training and evaluation. The plot shows that the noise gains more influence such that less informa-

tion can be extracted by learning. As a consequence, the quality of the extrapolation greatly degrades. The

quality of the interpolation, however, remains mainly unaffected.

For the last experiment in this section, the previous experiment is repeated but this time, PSOM+ models

(see Section 2.3.3) are learned instead of KBM models. PSOM+ models are an improvement of continuous

Kohonen maps that take the global smoothness of the learned manifold into account which can be regulated

by a hyper parameter λ . That way, learning with PSOM+ is a global learning method where each sample

affects the outcome of the complete model. In this experiment, the models are defined over a neural lattice

with 36 knots such that they have the same polynomial degree and computational complexity as the KBM

used before. The models are learned with different smoothing factors and again with the same numbers of

training samples and conditions as before. Results are shown in Figure 6.5. Unlike with KBM models, it

is not possible to create an exact or even accurate model under these conditions. On the other hand, the

impact of the noise is less significant on the prediction error because of the constant global curvature of

the interpolation manifold. Compared to the classical PSOM, the extrapolation error is smaller by several

magnitudes.

The prediction cannot be further improved for a lattice of this size, and the only way to resolve this problem

is to resort to increasing the number of knots in the lattice. However, this leads to higher computational costs

and increases the minimal number of training samples necessary to obtain a sufficient accuracy. In addition

to this, the determination of the important smoothing factor λ is not trivial and has to be adjusted manually

which complicates the application on a real system.

122

6.1. Evaluation of learning kinematic models

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

500

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187

4 · 3n = 2916

5 · 3n = 3645

Position noise

(a) The mean prediction errors for inter- and extrapolation are sufficiently low for well distributed samples
(Θ6
�(90◦).

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

500

750

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187

4 · 3n = 2916

5 · 3n = 3645

Position noise

(b) If the configuration space is further restricted (Θ6
�(45◦)) the quality of the extrapolation greatly declines.

Figure 6.4.: Experiments investigating the extrapolation capabilities of the standard LLMS. Continuous lines indicate
the mean errors of the interpolation and dashed line those of the extrapolation.

6.1.3. Nonlinear optimization of symmetry constraints

Now, the nonlinear optimization that also considers the symmetry of the control net of the KBM models is

evaluated (see Section 4.4). Therefore, three experiments very similar to the experiments of the previous

section are carried out and only the learning algorithm is replaced. The optimization is an iterative method.

The maximal number of iterations is an additional hyper parameter and is set to a relative small limit of 150

iterations to speed up the evaluation.

First, training samples and test data are generated over

Θ
6
intra(90◦) and Θ

6
extra(90◦).

and the model is initialized with the solution of the standard LLMS before the optimization (see Figure 6.6a).

As the initialization already has a good quality, the optimization is able to greatly improve the prediction. It

is now even possible that the extrapolation error falls below the position noise. In opposition to the standard

123

6. Evaluation in simulation

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

500

750

1000

E
rr

or
[m

m
]

λ = 0.5, 2 · 36 = 1458

λ = 0.5, 3 · 36 = 2187

λ = 0.5, 4 · 36 = 2916

λ = 0.5, 5 · 36 = 3645

λ = 0.1, 2 · 36 = 1458

λ = 0.1, 3 · 36 = 2187

λ = 0.1, 4 · 36 = 2916

λ = 0.1, 5 · 36 = 3645

Position noise

Figure 6.5.: Experiment evaluating the extrapolation of the PSOM+ under conditions similar to those used in Fig-
ure 6.4. Continuous lines indicate the mean errors of the interpolation and dashed line those of the extrap-
olation.Source: (Ulbrich et al., 2012c)

LLMS, the nonlinear optimization has a hyper parameter ν that balances the symmetry optimization and

the adaptation to the training data. In this experiment, ν has was set to a value of 1.0 (that is, that both

optimizations are equally weighted) and has no critical influence on the result.

The second experiment uses data generated from the smaller configuration spaces

Θ
6
intra(45◦) and Θ

6
extra(45◦).

Again, the model is initialized with the standard LLMS solution. This time, however, the model is degen-

erated because of the higher influence of the sensor noise and the algorithm does not converge to a valid

solution within the maximal number of iterations as shown in Figure 6.6b. Further, the weighting factor ν

had to be reduced to 0.5 (giving more influence to the optimization of the prediction error) to achieve the

best results. This behavior can be explained by the deformation of the control net that results from the least

mean squares solution where the circles in the main directions of the manifold become ellipses. If the net is

too strongly deformed, the optimization gets caught in a local minima. The necessity to decrease the influ-

ence of the symmetry constraints results from the joint configuration that lie closer together and therefore

provide less information about the shape of the manifold. As a consequence, the influence on the adaptation

to the training data has to be increased to achieve the best results under these conditions.

In the last experiment, the model uses the same data but is initialized by a linear approximation to the

training data (see Section 4.3.2) and the learn rate has been further decreased to 0.1. The results are shown

124

6.1. Evaluation of learning kinematic models

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

500

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187

4 · 3n = 2916

5 · 3n = 3645

Position noise

(a) Optimization of a model learned with the standard LLMS when training data is well distributed Θ6
�(90◦)

and the weighting factor is ν = 1.0.

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

500

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187

4 · 3n = 2916

5 · 3n = 3645

Position noise

(b) Same as above when the data lies closer together (Θ6
�(45◦)). The weighting factor has to be reduced to

ν = 0.5 to achieve the better results.

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187
4 · 3n = 2916

5 · 3n = 3645

Position noise

(c) Starting with a linear initialization leads to much better results for Θ6
�(45◦). The weighting factor is

ν = 0.1.

Figure 6.6.: Experiments with the nonlinear optimization of symmetry constraints. Continuous lines indicate the mean
errors of the interpolation and dashed line those of the extrapolation.

125

6. Evaluation in simulation

in Figure 6.6c. This experiment gives the best results in this setup. For zero noise, the prediction error is

not zero as in the previous experiments with the KBM as the linear initialization differs greatly from the

perfect model created with zero noise and learning has to converge to the LLMS solution. Remember that

the optimization is configured to stop after 150 steps and the final convergence is slow close to the target.

On the other hand, the learning proved to be very tolerant to sensor noise and the prediction error grows

so slowly that it quickly falls significantly below the position noise (even for the extrapolation). This is a

property of the maintained symmetry and is a characteristics shared with the PSOM+.

Altogether, these are remarkable results. However, it has to be noted that finding the optimal combination

of hyper parameters and initialization is not trivial and requires manual adjustment and experience. Further,

the nonlinear optimization requires by far the most complex implementation of the algorithms presented in

this thesis and has also the slowest execution. These aspects limit its application on real system.

6.1.4. Learning with partial least squares regression

The one-dimensional partial least squares regression (PLS-1, see Section 4.2) is an improvement of the stan-

dard LLMS. It can either be configured to find the absolute minimum least squares solution or to stop once

the prediction error over the training data falls below a threshold emax. Although emax is an additional hyper

parameter that has to be manually adjusted according to the training data, the value directly corresponds to

an observable statistics of the training data. In simulation or with external sensors, this value can be directly

measured from the position error due to the sensor noise.

The first experiment in this section is a reproduction the first experiments of the last section. The perfor-

mance of the standard LLMS is compared to the PLS-1. Learning with PLS-1 is repeated twice—first with

a value of zero for emax (that is, the algorithm terminates after the complete 36 steps) and then using the

threshold emax = 38mm. This value is the observed prediction error for the individual coordinates of the

end-effector and causes the algorithm to terminate after fewer steps preventing overfitting. The results are

displayed in Figure 6.7a. As expected, the curves of the standard LLMS and the PLS-1 with emax = 0 unite

at 729 training samples. Both algorithms then compute the unique least mean squares solution and are sub-

ject to the same degree of overfitting. However, this does not happen to the second PLS-1 with a non-zero

threshold. The algorithm efficiently models the noise and the prediction error decreases the more training

data is processed. This reduces the lower bound of training data required to reach a good accuracy.

This phenomenon can be explained by the redundancy that is contained in a well-formed control net which

is implicitly detected by the algorithm.

The second experiment uses the restricted configuration spaces

Θ
6
intra(45◦) and Θ

6
extra(45◦)

to evaluate the impact of different degrees of angular noise on the prediction in analogy to previous experi-

ments. In addition to the calculation of the position noise, the mean prediction error for each coordinate of

126

6.1. Evaluation of learning kinematic models

0 729 1458 2187 2916
#samples

0

1000

2000

3000

4000

5000

6000

7000

E
rr

or
[m

m
]

LLMS

PLS 36 Projections

PLS ek ≤ 38.0mm

(a) Comparison of learning kinematics with standard LLMS and PLS-1 with emax = 0 and emax = 38mm. A
constant artificial noise of σ = 3◦ is added to the joint angles. The curves of the LLMS and PLS-1 with

emax = 0 unite at 36 = 729 samples.

0◦ 1◦ 2◦ 3◦ 4◦ 5◦
σ

0

250

E
rr

or
[m

m
]

2 · 36 = 1458
3 · 3n = 2187

4 · 3n = 2916

5 · 3n = 3645

Position noise

(b) Analysis of extrapolation and interpolation of models learned with PLS-1 and a dynamic emax extracted
from the data. Continuous lines indicate the mean errors of the interpolation and dashed line those of the

extrapolation.

Figure 6.7.: Experiments with partial least squares. The data is distributed in Θ6
�(45◦).

the end-effector is computed for each degree of noise. This value is then set used as emax in the respective

computation. The plot of the results presented in Figure 6.7b unveils remarkably good results. It can be

seen that the difference between the prediction errors of models learned with different numbers of training

samples is very little. This shows that the PLS requires significantly less samples compared to the standard

LLMS and proves its robustness to sensor noise.

Although, the symmetry optimization yields slightly better results for Θ6
intra(45◦), learning with PLS-1

proved to be the most stable and efficient regression algorithm for learning the KBM representation. It

only depends on a single hyper parameter with an meaningful relation to the training data. Reversely, when

fine tuning of this parameter becomes necessary the determined value can be used to assess the sensors of

the system.

127

6. Evaluation in simulation

0 729 1458 2187
t

0

50

100

150

200

E
rr

or
[m

m
]

δ = 10◦

δ = 10◦

δ = 15◦

δ = 15◦

δ = 25◦

δ = 25◦

δ = 45◦

δ = 45◦

δ = 45◦

δ = 45◦

Mean interpolation error

Mean extrapolation error

Mini-Batch learning

Figure 6.8.: Experiments with incremental learning of the KBM model. the adaptation to a tool of 200 mm length is
simulated. Multiple models are learned and evaluated over differently restricted configuration spaces.

6.1.5. Incremental learning with the δ -Rule

The δ -rule (see Section 4.3) is a minimalistic approach to incrementally learn a KBM model. Therefore, it

is very well-suited to quickly adapt to rapid changes of the kinematics although the changes mostly affect

the model locally. This experiment simulates the case of the robot holding a tool. The last arm element of

the robot is therefore elongated by 200 mm simulating a stick-like object held by the end-effector to increase

its range. The Denavit-Hartenberg parameters of Eq. (6.1) are adjusted accordingly

a6 = 400 mm, d6 = 0 mm, and α6 = 90◦. (6.6)

Normally distributed artificial noise with a standard deviation σ of 2◦ is added to the joint angles as in

previous experiments. Learning with the incremental method is significantly slower compared to batch

learning. For this reason, the model is initialized with an ‘ideal’ model of the original kinematics learned

with the standard LLMS regression from data with zero noise. In these experiments the wideness parameter

δ for the partial configuration spaces

Θ
6
intra(δ) and Θ

6
extra(δ)

128

6.2. Evaluation of learning dynamic models

is varied to confirm the hypothesis that incremental learning quickly improves the local prediction.

Figure 6.8 shows the results of this experiment. For small values of δ , the prediction error drops in fact very

fast and quickly reaches the position noise of 15 mm. Bigger values of δ lead to a much slower convergence

and stagnate at a lower precision. On the other hand, the bigger the value of δ the stronger is the positive

effect of the incremental learning on the extrapolation error. These observations confirm the hypothesis of

the local influence.

The curve labeled with ‘mini-batch learning’ represents a variant of the algorithm where a small number of

training samples (27 in this experiment) is collected and repeatedly processed by the incremental learning.

By this repetition, the data samples gain a stronger influence on the model. This compromise between batch

and incremental learning results in faster convergence. The higher the number of samples used for the mini

batches is, the stronger is this effect.

6.2. Evaluation of learning dynamic models

This section presents the evaluation of the extension of the KBM to learn the inverse dynamics of a robot

with serial joints.

6.2.1. Setup

The experiments in this section are carried out with the Robotics Toolbox for MATLAB (Corke, 2011) which

features a dynamic simulation for rigid body dynamics. Therefore, a dynamic model of the industrial

PUMA-560 (Programmable Universal Machine for Assembly) robot manipulator is applied. Recall that

learning the inverse dynamics with the KBM variant requires significantly more training data compared to

learning the kinematics. For this reason, the simulated robot has a reduced set of four controllable degrees

of freedom (that is, the most distal joints are ignored), in order to be able to work with a reasonable amount

of training samples. In addition, the effects of friction are not simulated and neglected as they cannot be

directly included in the model. On a real platform, the friction has to be individually modeled for each joint

and included directly into the control module.

6.2.2. Batch learning

In the first experiments, it is investigated if the inverse dynamics represented by the modified KBM represen-

tation presented in Section 3.2.2 and learned with the standard LLMS regression expose the same properties

with respect to tolerance to sensor noise as in the case of learning the kinematics. The experiments are

therefore conducted under similar conditions as described in the previous section.

At first, the number of training samples required to absorb a constant noise is examined. Compared to

learning the kinematics, more data is required for learning subsumed in the generalized coordinates. The

129

6. Evaluation in simulation

generalized input values to learn the inverse dynamics are the current joint configuration θθθ i, joint velocities

θ̇θθ i and joint accelerations θ̈θθ i. The generalized outputs are the joint torques qqqi. Unlike in previous experi-

ments, the artificial noise is now added to the output values in form of a normally distributed noise with zero

mean a standard deviation of 5% of the expected value ranges of the individual joint torques. Altogether,

the training set for this experiment is defined as

T (m) :=
{
(θθθ i, θ̇θθ i, θ̈θθ i,qqqi), θθθ i ∈Θ

4
intra(45◦),

θ̇θθ i ∈ [−0.25,0.25]4, θ̈θθ i ∈ [−1,1]4, qqqi ∈ R4, i ∈ {1, . . . ,m}
}
,

over a variable number m of traing samples. The artificial noise is introduced in

qqqi = f (θθθ i, θ̇θθ i, θ̈θθ i)+N (0,σσσ)

given the simulation of the inverse dynamics as a function f (·).
Multiple models are trained with an increasing size m of the training set. After learning, the data is evaluated

against equally created test data (2,000 samples) with the exception that no artificial sensor noise is added.

Again, this experiment shows whether the model can absorb the noise and how many training observations

are required therefore.

The results can be examined in Figure 6.9a. They confirm that the noise is successfully absorbed when m

exceeds three to four times the number of the model parameters (1,831, see Table. 3.1). For more redundant

data, the prediction error falls below the sensor error induced by the artificial noise.

The second experiment demonstrates how models learned with fixed-sized training sets absorb a variable

degree of noise. The artificial noise added to the joint torques is constantly increased from 0% to 5% of

the expected value ranges of the respective joint torques. In addition, the extrapolation error over joint

configurations not observed during training is examined. The restricted configuration space used to evaluate

the extrapolation is Θ4
extra(90◦). The angles of the test data are equally distributed. For the velocities and

accelerations extrapolation sets are defined analogously to Eq. (6.5):

Θ̇
4
extra(0.25) =

4⋃
i

{
(θ̇1, . . . , θ̇4) : |θ̇ j| ≤ 0.25 ∀ j 6= i∧|θ̇i±2 ·0.25| ≤ 0.25

}
.

Θ̈
4
extra(1.0) =

4⋃
i

{
(θ̈1, . . . , θ̈4) : |θ̈ j| ≤ 1.0 ∀ j 6= i∧|θ̈i±2 ·1.0| ≤ 1.0

}
.

The results displayed in Figure 6.9b illustrate that the KBM can absorb any reasonable degree of sensor

noise given enough training data similar to the case of learning the kinematics. The prediction error caused

by the noise itself is again depicted and it can be seen that for more than three times of the number of

parameters the prediction of the model is more accurate than the sensors. Further, the extrapolation of the

models allows then predictions for unexplored configurations with an acceptable error.

130

6.2. Evaluation of learning dynamic models

0 5000
#samples

0

5

10

15

M
ea

n
er

ro
r

[N
m

]

q1

q2

q3

q4

(a) A constant artificial sensor noise added to the joint torques with a standard deviation of σ = 5% of the
expected value range can be absorbed after three times the number model parameters.

0 1 2 3 4 5
% noise

0

5

10

15

E
rr

or
[M

m
]

2 · 1, 831

3 · 1, 831

4 · 1, 831

5 · 1, 831

Position noise

(b) For different degrees of artificial sensor noise in the joint torques, the prediction error for interpolation and
extrapolation are shown for models learned with fixed numbers of training samples. Continuous lines

indicate the mean errors of the interpolation and dashed line those of the extrapolation.

Figure 6.9.: Experiments for batch learning of the inverse dynamics with the standard LLMS.

131

6. Evaluation in simulation

(a) The ‘figure eight‘ trajectory the robot executes during the
experiment.

(b) The recorded data is alternatingly divided into test
(blue) and training samples (red).

0 50
#samples

0

5

10

15

M
ea

n
er

ro
r

[N
m

]

µ = 0.3

µ = 0.6

µ = 0.9

µ = 0.1

(c) The robot adapts to holding a heavy tool. Four KBM models were initialized with an ‘ideal’ of the inverse
dynamics model pior to tool use. Then they were trained to absorb the tool. Four different learn rates are

examined.

Figure 6.10.: Experiment for incrementally learning the inverse dynamics.

132

6.3. Decomposition

6.2.3. Incremental learning with the δ -Rule

This paragraph describes the evaluation of incrementally learning the inverse dynamics with the KBM mod-

els and the δ -rule (see Section 4.3). One of the most useful applications of incremental learning is when

an inaccurate or outdated model is available a priori and can be refined by the algorithm. The experiment

simulates that the robot holds a heavy tool, like a hammer for instance. No artificial noise is used in this

experiment and a perfect model of the dynamics prior to holding the tool is created by batch learning. Then

a heavy object with a length of 20 centimeters and a weight of 25 kilograms is attached to the end-effector.

The center of mass is located in the tip of the simulated tool. This object influences greatly the dynamics of

the robot.

This time, the data for this experiment is not generated from uniformly distributed samples. Instead, the

observations are made while the end-effector constantly moves along a periodic trajectory. The trajectory is

called ‘figure eight’ and is described by the function

g(·) : [−2 ·π,2 ·π]→ R3, α 7→ (0.4 · sinα,−0.5,0.4 · cos α/2+0.2)T ,

where the parameter α varies between (−2 ·π) and (2 ·π) within ten seconds. This motion generates the

joint positions, velocities and accelerations as well as the torques required for refining the model. The trajec-

tory is shown in Figure 6.10a together with the visualization of the simulated robot. When the robot executes

the motion, 42 value pairs of generalized coordinates are recorded during a single period. The values are

alternatingly divided into training and test samples as shown in Figure 6.10b. The experiments terminates

after three repetitions of the periodic movement. Multiple models were refined. Each was equally initialized

but learning was performed with different learn rates. That way, the best value for this hyper parameter can

be determined.

The results in Figure 6.10c reveal that the prediction error reduces surprisingly quickly in this scenario—

already during the first repetition. Further, it shows that lower adaptation rates initially lead to better adap-

tation while these decrease in the long term. These observations can be explained by the distribution of

the training samples. In the previous experiments with incremental learning, the training and test data was

randomly distributed over a wide range of the configuration space. Here the samples are very similar to

each other which is beneficial for the incremental learning that has a strong local effect. The similarity of

the training samples also explains why a lower adaptation rate initially leads to better results while higher

rates show a mild effect of overfitting.

This experiment demonstrates how rapidly the KBM can be incrementally adapted in a realistic scenario.

That way, it is possible to quickly adapt to holding a tool for a well-defined action without the need of

exploring a big portion of the configuration space as it were necessary for batch learning.

6.3. General decomposition without intermediate markers

In this section, the novel general decomposition without intermediate markers is evaluated. The experiments

use simulated robot kinematics as defined in Eq. (6.1) with either eight or twelve controllable rotational

133

6. Evaluation in simulation

0 500 1000 1500
samples

0

500

1000
P
re
ci
si
o
n
[m

m
]

22
21

, 2
11
1

22
22

, 2
22
2

33
32

, 3
22
2

33
33

, 3
33
3

44
43

, 4
33
3

44
44

, 4
44
4

22
22
22
22

32
22
22
22

33
22
22
22

33
32
22
22

33
33
22
22

Decomposition

Single PSOM

(a) Comparison of learning the decomposition and learning a
single network. The labels of the data points indicate the

number of neurons per dimension in the neural layer.

500 1000
samples

0

10

20

30

40

50

P
re
ci
si
o
n
[m

m
]

44
33

, 3
33
3

44
43

, 4
33
3

44
44

, 4
33
3

44
44

, 4
43
3

44
44

, 4
44
3

44
44

, 4
44
4

54
44

, 4
44
4

55
44

, 4
44
4

55
54

, 4
44
4

55
54

, 5
44
4

55
55

, 5
44
4

55
55

, 5
54
4

55
55

, 5
55
4

Decomposition

(b) Closeup of the results of the decomposition.

Figure 6.11.: Experiments for learning the decomposition with PSOM and batch learning.

0 50 100 150 200
Precision [mm]

101

102

103

104

105

106

#
sa
m
p
le
s

Q95% Decomposition

Q95% Single PSOM

Figure 6.12.: The same experiment as shown in Figure 6.11. The axes are swapped and the number of samples is
shown on a logarithmic scale.

degrees of freedom. Training samples used for training and evaluation are generated by joint configurations

out of

Θ
din
intra(45◦),

and only the prediction error for the interpolation is determined in the experiments and no artificial noise is

applied in the experiments.

134

6.3. Decomposition

6.3.1. Offline learning

For the experiments evaluating the decomposition with offline learning, two general function regression

methods—namely the parameterized self-organizing maps (PSOM) and Gaussian mixture regression (GMR)—

are applied. This is because the decomposition decomposes the forward kinematics into partial functions

that are valid kinematic functions for themselves. It is obvious that the partial kinematics can be represented

and learned with zero prediction error by KBM models as noise is neglected in these experiments. For this

reason, the KBM are only applied in the context of online learning of the partial kinematics.

In the first experiment, a simulated robot with eight independent degrees of freedom is used. The partial

kinematics are learned by PSOM models. The weights of the neurons are arranged in an eight-dimensional

neural lattice. The coordinates in the lattice directly correspond to joint angles, and the weights of the

neurons are directly assigned to the respective output of the forward kinematics (that is, the workspace of

the robot is regularly sampled, see Section 2.3.3). During the experiment, the networks are learned with

different numbers of neurons n and the prediction error is observed:

n = n1 · . . . ·n8,

where the ni are the numbers of neurons per dimension in the neural layer.

That way, it becomes possible to compare the numbers of training samples (that directly corresponds with

the number of neurons) required to reach the same accuracy for networks learned with and without the

decomposition. The results are shown in Figure 6.11a and Figure 6.11b. As expected, the mean prediction

error of the estimate using the decomposition decreases much quicker compared to the estimate of the single

network. Now the magnitude of the reduction is investigated. Therefore, Figure 6.12 shows a different view

on the results. In this plot, it can be seen how many samples are required for learning to reach a given

precision. The number of samples is shown on a logarithmic scale.

Given that a single network requires

ns = qdin ,q ∈ R

samples to reach a given precision, a decomposition into m partial kinematics should require

nd = m ·qdin/m

samples to reach the same precision in theory. The experiment confirms this hypothesis. Given the numbers

ns and nd to learn the single network and the decomposition respectively, the ratio between their logarithms

has to be
logns

lognd
≈ logns

log
√

ns
= 2.

In fact, this relation can be observed in Figure 6.12. The curve for the single network approximately equals

the curve of the decomposition scaled along the ordinate by the factor of two. The high accuracy of this

relation is shown in Table. 6.1 directly on the collected data providing the strong evidence for the correctness

of the hypothesis.

135

6. Evaluation in simulation

Precision [mm] ns nd
ln(ns)

ln(nd/2)

1,100 1 2
760 16 10 1.72
520 576 32 2.29
390 864 40 2.26
270 1,296 52 2.2
140 2,916 105 2.01
40 8,748 162 2.07
30 11,664 225 1.98
20 20,736 300 1.98
10 36,864 400 1.98
4.2 65,536 512 2.00
1.3 200,000 945 1.98
0.3 390,625 1,250 2.00

Table 6.1.: Tabular view on the data shown in Figure 6.11. The ratio of the logarithms of the respective numbers of
samples is shown in the last column.

100 101 102 103 104 105

samples

0

1500P
re
ci
si
o
n
[m

m
]

22
22

, 2
22
2,
22
22

33
33

, 2
22
2,
22
22

33
33

, 3
33
3,
22
22

33
33

, 3
33
3,
33
33

44
44

, 4
43
3,
33
33

32
22
22
22
22
22

33
22
22
22
22
22

33
32
22
22
22
22

33
33
22
22
22
22

33
33
32
22
22
22

33
33
33
22
22
22

Triple Decomposition

Single PSOM

Figure 6.13.: Experiment with a hyper redundant robot with twelve degrees of freedom. The error bars indicate the
standard deviation of the prediction error.

136

6.3. Decomposition

0 1000 2000 3000 4000 5000
samples

0

500P
re
ci
si
o
n
[m

m
]

33
32

, 3
22
2

44
44

, 4
44
4

55
54

, 5
44
4

55
55

, 5
55
5

66
66

, 6
66
6

77
77

, 7
77
7

32
22
22
22

33
32
22
22

33
33
22
22

33
33
32
22

33
33
33
22

33
33
33
32

Figure 6.14.: An Experiment comparable to Figure 6.11 but using an GMM as an alternative learner. As the same
number of samples are generated as for the PSOM, the same labels of the data points are used.

The next experiments aims at demonstrating the scalability of the decomposition approach. Therefore, a hy-

per redundant robot with twelve independent degrees of freedom is learned with a recursive decomposition.

The decomposition is applied such that three partial kinematics of equal length can be learned efficiently and

renders learning affordable. The results are shown in Figure 6.13. The same precision obtained by a single

network after learning 1 · 106 samples is reached with the triple decomposition already after 110 examples

proving the efficiency of the approach.

In the last experiment, an alternative learner—the Gaussian mixture regression (GMR)—is applied instead

of the PSOM. Learning with PSOM has been very fast because of the direct interpolation of the observed

output of the forward kinematics. GMR requires significantly higher numbers of training samples to train

the local models. On the other hand, it can be trained with randomly distributed samples whereas the PSOM

required the workspace to be regularly sampled. In addition, the GMR is more robust to sensor noise and

stores its acquired knowledge in a very compact form (instead of storing all samples). To make the results

of this experiment comparable to previous results, the length of each arm element has to be reduced to its

half (100 mm) and the configuration space is further restricted and training data is generated randomly with

configurations out of

Θ
6
intra(22.5◦).

The only hyper parameter required to be adjusted for the GMR is the number of mixture models. It turned

out that this parameter is approximately proportional to the number of samples. It is set to its optimum in

the experiment determined manually in multiple trials. The results shown in Figure 6.14 suggest that the

speedup provided by the decomposition is similarly obtained with the GMR.

137

6. Evaluation in simulation

0 500 1000 1500
samples

0

100

200

300

400
P
re
ci
si
o
n
[m

m
]

Decomposition

Single PSOM

(a) Learning both networks simultaneously.

0 500 1000 1500
samples

0

100

200

300

400

P
re
ci
si
o
n
[m

m
]

Learning N2

Learning N1

Decomposition

(b) Learning only one of the networks. The result of (a) is shown
in gray for comparison.

Figure 6.15.: Experiments with simulated tool use. The error bars indicate the standard deviation of the prediction
error.

6.3.2. Online learning

Now, it is evaluated how a previously learned decomposition can adapt to structural changes of the kine-

matics by incremental learning. Therefore, two scenarios of common deformations are examined. The first

represents tool use. To simulate that the robot holds a tool, the length of the last arm element is elongated

to its double of 400 mm. The second scenario occurs, for instance, if a robot is equipped with incremental

encoders only. Such a robot has to be initialized by moving to its joint limits before application. As a

consequence, the encoder values are often inaccurate which can be modeled by a fixed offset ααα to the joint

angles

θ̄θθ i = θθθ i +ααα.

Such a ‘shift’ in the joint angles is also likely to happen in tendon-driven robots after repair. For the experi-

ments, a constant offset of

ααα = (10◦, . . . ,10◦)T

has been chosen.

At first the two scenarios are evaluated again with the PSOM representation. To implement an incremental

learning scheme, the δ -rule (see Section 4.3) is applied. This adaptation rule can be applied to any global

representation with an underlying polynomial basis such as the KBM and the PSOM and it converges to

the least mean squares solution. Such incremental learning reacts instantly to deformations but converges

slowly and requires more training samples as compared to batch learning. For the PSOM, the length of the

kinematic chain is therefore reduced to five arm elements and independent degrees of freedom.

The results of the experiment covering simulated tool use are shown in Figure 6.15. For the experiment in

Figure 6.15a, the adaptation rule was applied to both network simultaneously with an adaptation rate of 0.5

(see Chapter 5). The prediction error of the decomposition drops much quicker but also does the standard

deviation (marked by the error bars) which nearly does not decrease at all for the single network. Tool use

138

6.3. Decomposition

is a deformation that only affects the last arm element. For this reason, it has been investigated how the

adaptation to the deformation behaves when applying the incremental learning to one network only. On the

one hand, when adapting the network that depends on the proximal joints, it is expected that the deformation

cannot be compensated at all. On the other hand, the adaptation should be much faster when adapting the

remaining network only. These hypothesis could be confirmed in an experiment. The results can be seen in

Figure 6.15b.

0 500 1000 1500
samples

0

50

100

P
re
ci
si
o
n
[m

m
]

Decomposition

Single PSOM

Figure 6.16.: Simulated shift in the joint angles absorbed with both networks learning simultaneously.

The last experiment with the PSOM simulates a shift in the joint angles. As this deformation affects the

complete kinematics, both networks have to be trained simultaneously in analogy to the experiment above.

Again, the results (see Figure 6.16) show that the decomposition absorbs the error much more quickly than

a single network.

For the final experiments in this section, the incremental learning is applied to a decomposition learned with

KBM models. As no noise is simulated, the models perfectly represent the kinematics before the deforma-

tion. Learning KBM models significantly requires less training samples compared to the incremental PSOM

learning. For that reason, the simulated robot consists again of eight arm elements with independent degrees

of freedom. The learn rate used for the individual KBM models is set to one and no mini-batch learning is

applied in this experiment. The results displayed in Figure 6.17 confirm that the incremental learning of the

KBM can equally be applied in a decomposition for both scenarios of tool use and shift in the joint angles.

139

6. Evaluation in simulation

0 500 1000 1500
samples

0

50

100

150

P
re
ci
si
o
n
[m

m
]

Decomposition

Single KBM

(a) Simulated shift of 10◦ in each angle.

0 500 1000 1500
samples

0

100

200

300

P
re
ci
si
o
n
[m

m
]

Decomposition

Single KBM

(b) Simulated tool use with an 400mm offset to end-effector.

Figure 6.17.: Experiments applying incremental learning to a decomposition with two KBM models on a simulated
robot with eight degrees of freedom. Both models are trained simultaneously in both experiments.

140

7. Evaluation on a humanoid robot

In this chapter, the evaluation on a humanoid robot—the ARMAR-IIIb (Asfour et al., 2006)—is presented.

For the experiments, three different data have been collected that were collected under different conditions.

In addition to the data collected by the sensors available to the robot, the movements of the robot have been

recorded with an external marker-based motion capture system providing high-precision observations which

serve as ground truth data in the experiments (see Figure 7.2). For this setup, an additional software tool

chain had to be developed to record and process the additional data. The components of this software are

briefly presented in the Appendix B.1 and B.2.

Based on the experience gained from the previous section, two learning algorithms—learning with partial

least squares and incremental learning—which are best suited for the application under realistic conditions

were chosen for the evaluation with real data. In addition, the performance of the algorithm are compared to

another state-of-the-art method for sensorimotor learning—namely the locally weighted projection regres-

sion (LWPR, see Section 2.3.4).

The first algorithm is the partial least squares regression (PLS-1, see Section 4.2) for offline learning be-

cause of its high robustness to sensor noise and the reduced tendency to overfitting even when learning from

reduced training sets. The existence of few hyper parameters are also an important criterion for the appli-

cation on a real system. The single hyper parameter of the PLS-1, however, directly reflects the statistics of

the observed data and can be easily estimated especially when ground truth data is available.

The second algorithm that was applied is the incremental learning with the δ -rule (see Section 4.3). This

learning has many advantages. First, it is very easy to implement and has a comparatively low computa-

tional demand which qualifies it for online learning. More importantly, it can be applied to refine previously

learned models. If a kinematic model of the robot is available (which is the case for the ARMAR-III), it can

be learned with zero prediction error in simulation and later be adapted to the real robot by the incremental

learning.

The results of the experiments on the humanoid robot are presented in tabular form in the respective sections

of this chapter. They are subsumed in the diagram in Figure 7.1 for an overview.

The following section describes how the data for the experiments was collected and how the data from

the robot’s sensors compare to the ground truth. After that, the experiments with the PLS-1 are presented.

The third section presents the performance of the incremental learning that has been initialized with the

kinematic model of the ARMAR-III.

141

7. Evaluation on a humanoid robot

0	

50	

100	

150	

200	

250	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	

Analy+c	
 forward	
 kinema+cs	
 	

Batch	
 KBM	
 (PLS-­‐1)	

Incremental	
 KBM	

Incremental	
 KBM	
 (permuted)	

Incremental	
 LWPR	

Incremental	
 LWPR	
 (ini+alized)	

T 1
L

T 3
L \ T 3

ET 2
L \ T 2

ET 1
E

T 1
L \ T 1

E

T 2
L

T 3
L \ T 3

ET 2
E T 1

L \ T 1
E T 2

L \ T 2
E

T 3
L

T 3
E Evalua+on	

Training	

mean errors (mm)

Figure 7.1.: Summary of the results of the experiments on the humanoid robot presented in this chapter.

Figure 7.2.: The humanoid robot ARMAR-IIIb with optical markers attached to its left arm and head for motion
capture.

7.1. Data acquisition

7.1.1. Setup

The robot platform used in the experiments in this chapter is the humanoid ARMAR-IIIb (Asfour et al.,

2006) and is shown in Figure 7.2. It has an anthropomorphic upper body mounted on a mobile platform. Its

arms has seven independent rotational degrees of freedom and pneumatic hands are attached to its wrists.

The joints are either driven by V-belts (the shoulder joints) or tendons (elbow and wrist joints). The joint

142

7.1. Data acquisition

positions are detected by incremental joint encoders only.

The head has four degrees of freedom in the neck and the eyes can be moved around individual pitch axes

and a common tilt axis. In each eye, there are two cameras for foveal and peripheral vision. A spherical

marker is attached to the wrist such that the spatial position of the hand can be detected by stereo vision.

For the experiments, additional markers were attached that reflect the infrared light that is actively emitted

by the cameras of a high-precision motion capture system. They are placed on each rigid body of the left

arm as well as on the head, neck and torso.

The sensorimotor maps applied in the experiments learn the relation between the joint angles of the left

arm and the position of the hand in the coordinate system of the torso. During data acquisition, the head

was programmed to always look directly at the hand. For this reason, the joint angles of the head are not

independent from the arm configuration and had to be excluded in the learning process. As the joints of

the neck are not included in the kinematic chain to be learned, the inbuilt kinematics model of the head is

used to transform the detected coordinates of the wrist into the coordinate frame of the torso. Although the

utilization of a static kinematic model further increases the error of the stereo vision, the succeeding analysis

reveals that the accuracy of the vision is in fact acceptable. On the one hand, this is because the robot always

looks directly at the hand supporting the stereo reconstruction and, on the other hand, because the joints in

the head are not tendon-driven. The joints in the elbow and wrist require repair more frequently causing a

shift in the detected joint angles. In addition, the colored marker mounted on the wrist cannot not be exactly

positioned in the kinematic model.

The ground truth data is generated by recording the exact positions of a marker attached to the wrist and at

least three markers on the torso. Wrist positions are transformed into a coordinate frame in the torso defined

by its three marker positions. Then the optimal rigid body transformation between the coordinate frames

of the ground truth data and the vision is determined globally over the collected data following a method

proposed by Besl and McKay (1992).

7.1.2. Data sets

The data used in the experiments was recorded during three different trials under different conditions.

Recording a sufficiently representative data set on robot with seven degrees of freedom is a difficult task.

While the previous experiments conducted in simulation used uniformly distributed data, the high number

of required movements rendered this intractable on the real robot. The data had to be recorded from random

trajectories instead and has consequently a higher degree of redundancy which is less beneficial for learning.

Even with a very high number of training samples, the algorithms run the risk of overfitting if the data is too

similar. Figure 7.3 shows plots of the complete recorded data of the joint angles of the left arm.

In total, 66,944 samples were collected in the three trials leading to the complete data set

T =
{
(θθθ i,xxxi) : θθθ i ∈Θ

7,xxx ∈ R3, i ∈ {1, . . . ,66944}
}
. (7.1)

143

7. Evaluation on a humanoid robot

0 1×104 2×104 3×104 4×104 5×104 6×104

frames

−80

−60

−40

−20

0

20

40

60

80

100

120
A

n
gl

es
[◦

]

Shoulder1

Shoulder2

Shoulder3

Elbow
Wrist1

Wrist2

Wrist3

(a) Recorded joint angles of all trials plotted after another.

(b) 3D plot of the trajectories of the end-effector. The colors indicate the different data sets recorded during
each trial (no separation into sets for learning and evaluation is shown). Additionally, the bounding boxes

are plotted to show the spatial expansion in the workspace.

Figure 7.3.: The data that has been collected on ARMAR-IIIb for the experiments.

144

7.1. Data acquisition

For the experiments, it had been divided into the data sets of the individual trials which were then again

divided into data sets for learning and evaluation. Therefore, always the first 5,000 samples were assigned

for learning and the remaining samples for evaluation.

The first trial with 9,907 samples is the smallest contribution to the volume of the data set. However, the

trajectories of this trial cover a big part of the configuration space and the relatively small number of samples

is the result of a low sampling rate. The recorded data of this trial is split into two data sets T 1
L and T 1

E for

learning and evaluation respectively:

T 1
L =

{
(θθθ i,xxxi) ∈T : i ∈ {1, . . . ,5000}

}
, |T 1

L |= 5000

T 1
E =

{
(θθθ i,xxxi) ∈T : i ∈ {5001, . . . ,9907}

}
, |T 1

E |= 4907

T 1 = T 1
L ∩T 1

E

(7.2)

The second trial created the biggest data sets with 31,684 samples. The trajectories were performed in a

different area of the Cartesian space. Again the data is split up into data for learning and for evaluation:

T 2
L =

{
(θθθ i,xxxi) ∈T : i ∈ {9908, . . . ,14007}

}
, |T 2

L |= 5000

T 2
E =

{
(θθθ i,xxxi) ∈T : i ∈ {14008, . . . ,41591}

}
, |T 2

E |= 26684

T 2 = T 1
L ∩T 2

E

(7.3)

The 22,353 samples observed during the last trial were recorded with a lower frame rate in a region close to

that of the second trial. The resulting data sets are

T 3
L =

{
(θθθ i,xxxi) ∈T : i ∈ {41592, . . . ,46591}

}
, |T 3

L |= 5000

T 3
E =

{
(θθθ i,xxxi) ∈T : i ∈ {46592, . . . ,66944}

}
, |T 3

E |= 20353.

T 3 = T 1
L ∩T 3

E

(7.4)

7.1.3. Analysis of the data

This paragraph compares the data recorded by the robot’s sensors to the ground truth data acquired by

motion capture. Figure 7.4 displays a representative extract of the data showing the cartesian coordinates

of the end-effector as recorded by the internal sensors (labeled as ‘vision’) and the motion capture (labeled

as ‘vicon’) as well as the prediction of the inbuilt kinematic model of the robot (labeled as ‘FK’). The

inaccuracy of the prediction of the kinematic model can be observed directly. However, the differences

between the data of the motion capture data and the internal vision are surprisingly small. The highest

error is in the x-coordinate. The errors introduced by stereo reconstruction is highest along the depth axis

of the camera. By the transformation in the coordinate system of the torso the main part of this error is

mapped onto the x-axis. Table. 7.1 shows the relative errors of the internal sensors and the kinematic model

compared to the ground truth including the mean and median error, standard deviation (‘std’), interquartile

range (‘iqr’) and the max error (‘max’)—all errors are given in millimeters. For the vision, the errors are

145

7. Evaluation on a humanoid robot

8000 8500 9000
#samples

−600

−400

−200

0

200

400

600

800

E
rr

or
[m

m
]

x-Vision

z-Vision

y-Vision

x-Vicon

z-Vicon

y-Vicon

x-FK

z-FK

y-FK

Figure 7.4.: Representative excerpt of the recorded spatial data. Three positions were recorded in each frame of the
trajectories: The position detected by stereo vision (‘vision’), recorded by the motion capture (‘vicon’)
and the prediction by the inbuilt forward kinematics (‘FK’).

calculated for each coordinate individually as these statistics help to set the hyper parameter of the PLS-1

algorithm.

Data source mean median std iqr max

Vision 14.7 12.1 9.8 10.3 163.5
x-coordinate 9.9 7.7 8.3 10.3 141.8
y-coordinate 5.8 4.3 5.4 5.7 136.0
z-coordinate 6.1 4.6 6.7 5.9 160.4

Kinematic model 190.7 191.1 32.7 51.4 270.4

Table 7.1.

The software developed to capture the motion of the robot (see Appendix B.2) uses the kinematic model of

the ARMAR-IIIb to facilitate finding the correspondence of the observed marker positions and the virtual

markers included in the model. Then the robot is moved to fit the observed marker positions to the virtual

ones using the numerical inverse kinematics. Consequently, the software can also be used to estimate the

146

7.1. Data acquisition

real joint configurations. It is however not its main purpose and the position of the markers in the model

do not precisely coincide the real positions. For this reason, the estimated joint angles are not very precise

and allow only a rough analysis of the recorded data. Especially the estimation for the lateral joints (for

instance, the joints in the wrist) are very inaccurate. Still some conclusion can be drawn when comparing

the values. Figure 7.5 shows the recorded data and the estimates (labeled with the suffix ‘-IK’). It can be

seen that the more lateral the joint axis is, the higher the difference there is between the curves. The most

interesting observation is that the values of the elbow joint are shifted by a constant offset of approximately

seven degrees. This error is not unlikely as the tendons that drive the elbow joint are the most strained in

the whole system. Every time the tendons have to be replaced, a shift in the encoder values is likely. As the

elbow joint still has a strong influence on the end-effector position, this error can be held responsible for the

majority of the errors of the prediction of the forward kinematics in Figure 7.4 and Table. 7.1.

7.1.4. Evaluation of partial least squares

Evaluation Learning
Test data Errors T 1 T 2 T 3

T 1
L ∩T 1

E mean 41.1∗) 129.1 158.7
median 28.9∗) 129.1 154.2
iqr 27.3 ∗) 131.3 142.6
std 43.8 ∗) 82.3 95.7
max 342.0 ∗) 394.1 9 439.7 0

T 2
L ∩T 2

E mean 49.5 37.6∗) 61.6
median 35.1 24.9∗) 47.3
iqr 43.2 30.5∗) 55.8
std 44.3 36.1∗) 48.6
max 378.0 238.6∗) 290.8 0

T 3
L ∩T 3

E mean 37.2 28.7 42.6∗)

median 33.1 25.5 36.5∗)

iqr 25.2 21.2 30.8∗)

std 20.4 16.7 29.3 ∗)

max 127.6 149.0 167.5 ∗)

∗) Models trained with T i
L are evaluated only over T i

E
to avoid mixing training and test data.

Table 7.2.: Experiment with PLS-1 and the recorded data on the ARMAR-IIIb.

This paragraph describes the experiments performed with the real data collected during the experiments as

described in the provious section. The experiments conducted follow the same pattern. At first, a training

data set T i
L is chosen and the KBM model is trained on its contained data. Then the model is evaluated over

the respective evaluation set T i
E . Afterwards, the model is evaluated over the remaining data

T j
L ∩T j

E , j 6= i.

That way, it is guaranteed that the data sets for learning and evaluation remain separated in each experiment.

The experiment is repeated for the remaining training sets T j
L .

147

7. Evaluation on a humanoid robot

8000 8500 9000
frames

−60

−40

−20

0

A
n
gl

es
[◦

]

(a) The first shoulder joint.

8000 8500 9000
frames

−40

−20

0

20

A
n
gl

es
[◦

]

(b) The second shoulder joint.

8000 8500 9000
frames

−80

−60

−40

−20

0

20

A
n
gl

es
[◦

]

(c) The third shoulder joint (upper arm
rotation).

8000 8500 9000
frames

−40

−20

0

20

40

A
n
gl

es
[◦

]

(d) The elbow joint.

8000 8500 9000
frames

−20

0

20

40

60

80

100

120

A
n
gl

es
[◦

]

(e) The first wrist joint (lower arm rotation).

8000 8500 9000
frames

−40

−20

0

20

40

A
n
gl

es
[◦

]

(f) The second wrist joint.

8000 8500 9000
frames

−40

−20

0

20

40

60

80

A
n
gl

es
[◦

]

(g) The third wrist joint.

Figure 7.5.: Validation of the joint encoders of the ARMAR-IIIb in the left arm. Continuous lines indicate the recorded
joint values while dotted lines indicate reconstructed joint angles from the tracking software.

148

7.2. Evaluation of the initialized incremental learning

For the evaluation several statistics of the prediction errors over all sets used for evaluation are separately

examined and presented in a tabular form: The mean and median errors (labeled as ‘mean‘ and ‘median’),

the standard deviation (labeled as ‘std’), the interquartile range (the width of the interval that covers 50% of

the values, labeled as ‘iqr’) and the maximal error (labeled as ‘max’). All errors are given in millimeters.

The median and interquartile range are measures that are more tolerant to outliers and more meaningful as

the prediction errors are not normally distributed. The results are shown in Table. 7.2.

The errors reflect how representative the data sets for learning are . When learning from T 1
L , the errors over

the evaluation sets are approximately equal with an acceptable mean precision of 4–5 cm and only a small

number of outliers (see the values for standard deviation and interquartile range). The second data set is

weaker. The errors over the first trial are significantly higher. However, the greater similarity of the third set

is observable and manifests in low errors over this data set. The least representative data set was recorded

in the third trial T 3
L . The error over the evaluation data of the same trial T 3

E is larger compared to previous

results and and the prediction is inaccurate especially over the first data set.

This analysis reveals that batch learning with KBM relies heavily on the data that is learned from. The pure

number of training samples is therefore less important as their distribution. However, even under unfortunate

conditions, the prediction error is not significantly worse than the prediction of the inbuilt kinematic model

(see Tab. 7.1).

The same experiment was repeated using the LWPR for learning. Therefore, the freely available reference

implementation has been used and the numerous hyper parameters were adjusted as suggested in the doc-

umentation. The results of this experiment are shown in Table. 7.3. In addition to the previous results, the

number of receptive fields (labeled as ‘RF’) shown as well as the number of joint configurations that were

not covered by any linear model and no prediction could be made for (labelled as ‘Misses’). It can be seen

that independently of the training set T i
L , the number of misses over the evaluation set of the same trial

T i
E is very high with about 20–25%. When learning with the data of the second and third trial, it is nearly

impossible to make any predictions for the joint configurations of the first trial (a miss rate up to 78%). This

can be explained by the observation that the first trial covers a completely different part of the work and

configuration space and the learned model needs to extrapolate (see Fig. 7.3) where local learning methods

do not excel at extrapolation by nature.

Even when a prediction is possible, the errors are significantly higher compared to the results of learning

with the KBM.

7.2. Evaluation of the initialized incremental learning

The second series of experiments applies the incremental learning with the δ -rule. Incremental learning

is capable of refining previously learned models that were created from an inaccurate forward model for

instance. In these experiments, the inbuilt forward kinematics model of the ARMAR-IIIb is transformed

into a KBM model by batch learning with the standard LLMS. Therefore, the same joint configurations θi

out of the training set T i
L are used and only the xxxi are replaced by the predictions of the forward kinematics

at the given joint configurations. The model then is an exact representation of the forward kinematics and

149

7. Evaluation on a humanoid robot

Evaluation Learning
T 1

L T 2
L T 3

L

RFs ∼ 329 ∼ 138 ∼ 44

Test data Errors

T 1
L ∩T 1

E Misses 26.40%∗) 68.63% 78.1%
mean 89.7∗) 90.6 82.9
std 77.1∗) 78.1 63.6
iqr 81.7∗) 91.8 76.9
median 61.7∗) 61.7 54.8
max 359.9∗) 322.2 270.4

T 2
L ∩T 2

E Misses 27.80% 23.23%∗) 36.6%
mean 64.9 60.4∗) 74.2
std 55 52.4 ∗) 63.5
iqr 52.2 55.5∗) 62.8
median 42.2 40.2∗) 46.0
max 281.3 231.5∗) 258.8

T 3
L ∩T 3

E Misses 19.01% 13.94% 21.1%∗)

mean 60 62.5 61.0∗)

std 53.1 56.1 57.3∗)

iqr 40.6 46.4 40.1∗)

median 34.8 34.2 29.7∗)

max 237.4 198.9 200.8∗)

∗) Models trained with T i
L are evaluated only over T i

E
to avoid mixing training and test data.

Table 7.3.: Experiment with LWPR and the recorded data on the ARMAR-IIIb.

can be adapted to the real hardware with incremental learning. Apart from the replacement of the learning

algorithm, the experiments are conducted under the same conditions as in the previous experiments with

batch learning.

In the first experiment, the data is processed by the algorithm in sequential order (that is, in the order they

were recorded). This simulates online during the application of the robot where the samples can only be

processed in this order. As a consequence, there is little difference between succeeding samples. To speed up

learning, the training data is repeatedly presented to the algorithm. The results are shown in Table. 7.4 and

the errors of the forward model over the individual data sets prior to refinement is given in the last column of

the table. These outcomes confirm that the inclusion of a previously obtained approximative model greatly

facilitates learning. Compared to Table. 7.2, the initialized incremental learning clearly outperforms the

batch learning due to its greater embedded prior knowledge.

In the next experiment, it is investigated how much the order the training data is processed influences the

quality of the prediction. The order of the data, in which it is processed, is therefore permuted. That way

150

7.2. Evaluation of the initialized incremental learning

Evaluation Learning
Test Data Errors T 1

L T 2
L T 3

L FK

T 1
L ∩T 1

E mean 44.1∗) 94.9 83.3 179.6
median 33.7∗) 89.4 77.1 178.1
iqr 38.1∗) 77.9 58.5 55.7
std 36.3∗) 54.1 43.5 37.6
max 216.2∗) 380.5 219.5 280.5

T 2
L ∩T 2

E mean 26.6 46.8∗) 65.1 191.5
median 22.0 39.6∗) 53.1 190.2
iqr 16.0 35.8∗) 53.0 47.3
std 20.8 29.6∗) 41.9 31.2
max 178.1 202.9∗) 203.3 265.8

T 3
L ∩T 3

E mean 20.0 47.0 55.5∗) 200.4
median 17.9 40.0 46.7∗) 201.6
iqr 14.2 32.9 47.9∗) 57.3
std 10.6 29.6 36.7∗) 33.9
max 74.0 220.6 180.2∗) 269.5

∗) Models trained with T i
L are evaluated only over T i

E to avoid
mixing training and test data.

Table 7.4.: Incremental learning initialized by the outdated, manually crafted kinematic model of the ARMAR-III.

successive observations differ significantly which has a positive effect on the adaptation. Table. 7.5 reveals

the remarkable results of the experiment. When learning from the first (the most representative) data set

T 1
L , the mean prediction errors are close to or even below. The values are already very close to the error

of the ground truth data shown in Table. 7.1. Even when learned from the data set T 3
L (which is to be

considered the least representative), the mean prediction errors remain below seven centimeters over all

evaluation sets.

The approach of improving the learning by using an initialized model was also applied to the LWPR ap-

proach. Being a local learner, building a mapping that is valid for the whole configuration space is not

feasible. For this experiment, the end effector positions to the joint configurations encountered in all data

sets are calculated by the inbuilt forward kinematics of the ARMAR-IIIb. The LWPR learn then the posi-

tions at the joint configurations.

After the initialization, the experiment of the previous section is repeated. The final results are displayed in

Table. 7.6. Now the miss rate over the evaluation data is below 1%. This time, the error over the data used

for learning is shown as well in the first rows. The prediction errors over the training data is of comparable

quality as the prediction errors of the learned KBM models over the evaluation data of the same trial. This

suggests that the KBM and the LWPR produce comparable results for joint configurations similar to those

during training.

The quality of the prediction of the learned LWPR model over the evaluation data is worse. This is due to

the fact that each time the model could not make a prediction without the initialization, it now predicts a

position close to the prediction of the inbuilt forward kinematics. For that reason, the errors are closer to the

151

7. Evaluation on a humanoid robot

Evaluation Learning
Test Data Errors T 1

L T 2
L T 3

L

T 1
L ∩T 1

E mean 21.0 62.5 67.7
median 15.9∗) 51.5 58.0
iqr 15.5∗) 66.6 70.9
std 20.8∗) 46.9 52.0
max 162.4∗) 245.7 267.2

T 2
L ∩T 2

E mean 21.6∗) 17.1 20.2
median 16.0 12.0∗) 15.1
iqr 14.0 14.1∗) 15.9
std 20.5 15.6∗) 17.5
max 191.3 184.4∗) 162.7

T 3
L ∩T 3

E mean 14.5 14.9 13.7∗)

median 12.0 12.9 11.9∗)

iqr 10.4 11.3 9.8∗)

std 9.5 9.3 8.4∗)

max 62.8 64.2 58.1∗)

∗) Models trained with T i
L are evaluated only over

T i
E to avoid mixing training and test data.

Table 7.5.: Repetition of the experiment in Table. 7.4 with shuffled training data.

values in the lower row of Table. 7.1.

7.3. Conclusion

This chapter evaluated the batch learning of KBM models based on the partial least squares algorithm (PLS-

1) and incremental learning after initialization by an inbuilt kinematics model.

The experiments showed that batch learning with PLS-1 is very robust to sensor noise and overfitting, and

learns from sparse data. It is able to create fairly accurate models from scratch that allow prediction for un-

explored regions of the configuration space. The initialized incremental learning, however, is more efficient

and leads to better results. On most robot platforms, such an inbuilt, manually crafted model is available.

Otherwise or if enough representative data can be collected, learning with PLS-1 is preferable.

Further, the two methods were compared to the LWPR algorithm. They both clearly outperform learning

with LWPR under the evaluated conditions. This is not surprising as LWPR is a local learning method that

shows its strength when learning lower-dimensional subspaces of the configuration space such as trajecto-

ries.

152

7.3. Conclusion

Evaluation Learning
Test data T 1

L T 2
L T 3

L

RFs ∼ 2306 ∼2239 ∼2143

Training data Misses 0.3% 0.7% 0.3%
mean 33.9 15.2 23.7
std 22.4 10.0 15.6
iqr 39.2 12.7 19.7
median 30.7 16.8 26.0
max 169.9 131.6 190.8

T 1
L ∩T 1

E Misses 0.1%∗) 0.1% 0.1%
mean 147∗) 168.7 168.5
std 149.9∗) 170.0 168.0
iqr 68∗) 65.6 64.7
median 54.7∗) 55.2 53.6
max 307.9∗) 373.0 373.0

T 2
L ∩T 2

E Misses 0.4% 0.2%∗) 0.3%
mean 148.3 147.7∗) 150.7
std 152.9 153.9∗) 159.1
iqr 75.5 80.9∗) 78.4
median 56.5 58.3∗) 56.9
max 381.4 309.6∗) 325.0

T 3
L ∩T 3

E Misses 0.3% 0.1% 0.2%∗)

mean 145.4 140.5 139.1∗)

std 147.4 144.2 142.5∗)

iqr 85.6 85.5 103.4∗)

median 62.3 62.3 64.6∗)

max 379.0 382.5 329.3∗)

∗) Models trained with T i
L are evaluated only over T i

E
to avoid mixing training and test data.

Table 7.6.: Experiment with LWPR and the recorded data on the ARMAR-IIIb embedding prior knowledge.

153

8. Conclusion

The objective of this thesis was the development of novel methods that allow the implementation of arti-

ficial body schemas on humanoid robots inspired by the human model and that overcome the limitations

of current approaches. For this purpose, the focus of this work lied on the development of novel model

representations for sensorimotor maps and associated machine learning algorithms as well as on concepts

for optimization by reducing the dimensionality of the problem. In this chapter, the contributions of this

work are summarized, and ideas for extension and future work are discussed.

8.1. Contributions

An artificial body schema has to integrate signals from multiple sensor sources and motor signals androgen

reflect their causal relationships. Such sensorimotor relations are of a complex and nonlinear nature and

the high number of input dimensions impedes the construction of mappings between related sensor spaces.

Learning in high-dimensional sensor spaces consequently is expensive. To learn accurate mappings, a large

number of training examples has to be generated by sampling the possible combinations of signals. The

number of samples required to form a precise mapping increases exponentially with the number of input

dimensions. A common approach to overcome this problem is to create locally valid linear models that

represent all configurations necessary to execute a limited set of expected actions with the robot. While

linear models can be created rapidly and from few observations the resulting sensorimotor maps are limited

to configurations similar to those explored during training, that is, they cannot extrapolate. Current ap-

proaches with global models represent sensorimotor relations over the complete configuration space. On the

one hand, they require by far more data for their construction and are therefore not applicable on humanoid

robots where the input dimensionality is usually very high. On the other hand, global models are required

to control the robot also at joint configurations not previously sampled.

Global models that can efficiently be constructed from reasonable numbers of observations are therefore

a prerequisite for the implementation of an artificial body schema on humanoid robots. For this reason,

the focus of this thesis lied on the development of novel model representations for kinematic and dynamic

sensorimotor maps, and techniques for dimensionality reduction that decrease the number of observations

required for learning the kinematics. The methods have extensively been evaluated in simulation and on a

real humanoid robot.

The key contributions of this work are listed below:

• Models for sensorimotor maps

155

8. Conclusion

The novel models of sensorimotor maps developed in this thesis are called kinematic Bézier maps

(KBM) (Ulbrich et al., 2009, 2012c). While the state-of-the-art exclusively relies on models for general

function regression, the KBM impose a more selective bias to learning. Being derived from projective

geometry, they are specialized to the representation of combinations of trigonometric functions. Conse-

quently, the models are restricted to represent direct kinematic and inverse dynamic functions (Ulbrich

et al., 2012a). The reduced generality implies that the models can be derived from significantly lower

numbers of observations compared to their more general counterparts. Another important property of

the KBM is that each wmodel is linear in its parameters. This enables the application of very efficient

machine learning algorithms and the construction of exact models in the absence of sensor noise. Unlike

most models for general function approximation, the KBM depend only on a single hyper parameter that

has only little effect on the learning of the model.

The mathematical background and the derivation of the models were presented in Chapter 3 and evaluated

together with the associated learning algorithms both in simulation and experiments on a real humanoid

platform and compared to state-of-the-art learning approaches.

• Learning the sensorimotor models
The linearity of the model parameters in the KBM representation allowed for the adaptation and develop-

ment of very efficient learning algorithms:

i.) Linear least squares methods were the first to be investigated in this work. In the absence of sensor

noise, the calculated models are an exact representation of the respective sensorimotor map. With

noise, however, the standard approach is prone to overfitting and requires additional observation for

compensation. For this reason, the partial least squares regression has been adapted for learning the

KBM. By modeling the sensor noise, it becomes largely robust to overfitting and learns from sparse

and noisy data. Experiments on a real humanoid platform revealed that this approach is the best

choice when no additional prior knowledge on the robot is available (an approximative model for

instance).

ii.) Incremental learning based on the δ -rule allows the construction and refinement by successively

processing single observations. The experiments on the real platform revealed that it is the most

effective approach when prior knowledge in form of an iinbuilt model of the kinematics is available

that can be updated.

iii.) nonlinear symmetry optimization was the last learning algorithm that has been developed and eval-

uated in this work. It creates and maintains a symmetry in the model parameters of the KBM while

minimizing the mean squared error over the training data. While the experimental results showed

that it creates the most accurate models under all evaluated conditions, its slow computation, the

sensibility to initialization, and the additional hyper parameter impede its application on real sys-

tems.

• Dimensionality reduction through decomposition
Although the KBM representation greatly accelerates learning of sensorimotor maps, learning still re-

156

8.2. Outlook

quires a number of training observations that is exponential in the number of input dimensions. In the

case of learning kinematics, the decomposition proposed in this thesis (Ulbrich et al., 2012b) is able to sig-

nificantly reduce this number independent of the machine learning method applied. The decomposition

induces an exploration strategy that allows learning partial kinematic chains depending on fewer input

variables. Unlike previous approaches, the proposed decomposition neither is limited to robots fulfilling

structural constraints nor requires additional external sensors. Comparative experiments in simulation

with different state-of-the-art learning methods and the KBM confirmed the efficiency of the proposed

method.

8.2. Outlook

In this work, new methods for the representation and learning algorithms for sensorimotor maps have been

presented that enable the efficient implementation of an artificial body schema on complex humanoid robots.

This section proposes several ideas on how this representation can contribute to future research.

The KBM can model sensorimotor maps for the direct kinematics and inverse dynamics of a humanoid robot.

As such, they either map joint angles to the position and/or orientation of the end-effector or a different body

part, or map generalized coordinates (that is, joint positions, velocities and accelerations) to joint torques.

While this is sufficient on the platforms used for evaluation, this approach cannot directly be applied to

control a robot with alternative actuators such artificial pneumatic muscles for instance. Directly learning

the relation between their complex motor signals and the outputs can be considered a valuable extension of

the KBM-based approach towards more biologically inspired robots. Analogously, such an extension would

open the opportunity to include the friction into the learning of the inverse dynamics which is currently not

possible.

Learning KBM models is supervised which means that the algorithms process pairs of input and output

values during training. In order to mimic the mirror neuron system of the human brain, it is necessary to

convert learning with the KBM into pure unsupervised learning by simultaneously processing the position

of several body parts to resolve redundancy.

Finally, the decomposition as a method for dimensionality reduction works only for the direct kinematics in

its current state. Dynamic models have significantly more model parameters compared to kinematic models.

As learning the inverse dynamics consequently is slower, the development of a decomposition pattern that

can be applied to exploit redundancies in the inverse dynamics would be beneficial for learning.

157

A. Naming conventions

The following list provides the nomenclature used in the equations that appear in this chapter.

aaa,xxx small bold letters: Cartesian vectors / spatial coordinates,

a,x small hollow letters: Cartesian homogenous coordinates,

θ ,α small greek letters: joint vectors,

θθθ ,ααα small bold greek letters: vector of joint angles,

A,B capital letters: matrices

X ,Y and random variable,

((θθθ ,xxx) tuples,)

k(·),b(·),n(·) small letters with (at least one) argument: general functions (kinematics, and models)

with spatial output,

ι(·),π(·) small greek letters with argument: transformations and projections,

B(·),P(·),L(·) are exceptions to this rule. They denote polynomial basis functions.

A ,P,I ,T calligraphic capital letters: spaces and sets

R,N with the exception of the real and natural numbers

N ,G P and random distributions.

Θ3 ⊂ R3 capital greek letters with natural exponent: Joint angle spaces.

Given a set of vectors X = {xxxi : i = 1, . . . ,n} the j-th component of the i-th vector is

accessed by xi, j

i, j,n,m small latin letters: mostly natural index variables,

din,dout : reserved for the input and output dimensions.

159

B. Software

Alongside with the algorithms developed in this thesis, software has been developed partially in the context

of the OpenGRASP project (Leon et al., 2010). OpenGRASP aims at the the creation of a simulation

environment that especially targets grasping and dexterous object manipulation. While this is not the central

topic of this work, two applications have been created that enrich the simulation environment but—more

importantly—also foster the data acquisition for the experiments to come later. OpenGRASP, rather than

creating an own dynamics simulator and visualization from scratch, builds around OpenRAVE an open-

source project that features real-time robot dynamic simulation and a concise framework for the display

and manipulation of virtual robot models and environmental objects created by Rosen Diankov (2010). The

two projects this thesis contributes to this environment, on the one hand, is a software for the 3D design of

robot models with a scientific focus on robotics and, on the other hand, a model-based tracking application

that interfaces an optical high-precision and marker-based tracking application that interfaces an optical

marker-based high-precision motion capture system that uses the facilities provided by OpenRAVE and the

models created in the robot design software. The software provides the complete tool chain required in the

experiments. Starting with the creation of approximative geometric robot models and recording of high-

precision ground truth data from the motion capture together with the sensor readings of the robot. This

leads to experiments in a caroled environment where uncertainty such as noise and decalibrations can be

quantized and the learning can be evaluated objectively.

B.1. The robot modeling tool

The tool developed in this work for the robot model creation is called the OpenGRASP Robot Editor and was

developed as a part of the OpenGRASP project in the context of the GRASP project founded as an FP7 project

by the European union. Following the philosophy of OpenGRASP, it relies on established and expandable

open-source software rather than designing such a complex project from scratch. The 3D modeling software

Blender1 has been chosen for the reason of being open-source, very versatile and expandable through a

scripting interface and with the support of a very large and active community. The Robot Editor exploits the

scripting interface to transform the software into a full-fledged modeling tool for real-life robots allowing

the design of kinematics and dynamics models following the conventions used in robotics. Every parameter

can be specified by the developer in a designated interface (see Figure B.1). Sensors and visual markers

can be attached to the virtual robots’ bodies which facilitated the development of a tracking software for

model-based motion capture. In addition, the Robot Editor implements a novel and industry approved file

1www.blender.org

161

B. Software

Figure B.1.: The designated user interface of the OpenGRASP Robot Editor for Blender.

(a) Assortment of robot hands (ARMAR-III,
Schunk SAH, and the DaVinci prothesis

by Otto Bocka).

awww.ottobock.com

(b) A Schunk SHD hand mounted on a
KUKA manipulator.

(c) The humanoid ARMAR-III with
attached optical marker positions.

Figure B.2.: Models of manipulator, robots and hand models created with the robot editor.

162

B.2. The Tracking Studio

format—COLLADA in version 1.5 (Barnes, 2006)—with a strong focus on kinematics and dynamics which

is not natively supported by Blender and had been integrated into OpenRAVE during the development of

the Robot Editor. It is largely backed by leading companies of the automotive and entertainment industries.

Altogether, this makes the Robot Editor a a very useful tool completing a tool chain of robot simulation

offered by OpenGRASP. This drastically reduces the effort for experimenting with virtual robots and robot

hands in simulation.

Despite having been designed for modeling robot hands, it is not limited to that only and allows the creation

of models of complete and complex models of humanoid robots and even of parametric models of humans

for motion capture. On top of this, Blender enables the creation photo-realistic illustrations by ray tracing. A

selection of hand models that were available in the GRASP consortium as well as a model of the humanoid

robot ARMAR-III used in later experiments are displayed in Figure B.2 all created with the robot Editor.

B.2. The Tracking Studio

(a) The partial derivative of the forward
kinematics with respect to the shoulder

joint. Thin black lines indicate the
distance to the joint axis and the thicker
lines show the directions of the partial

derivates.

(b) Discrepancy between the real recorded
data and the joint angles received by the
robot. This shows the inaccuracy when
applying an engineered model of the

forward kinematics.

(c) The respective configuration of the real
robot. The reflective optical markers and
the green visual marker for the tracking
of the end effector with the color-based
stereo tracking system in the robot head.

Figure B.3.: Images of the TrackingStudio software developed in this work.

The evaluation of the learning algorithms is accompanied by many uncertainties mainly resulting from noise

in joint decoders and the stereo vision system that is the most common technique which is also coherent

with the paradigm of biological inspiration that excludes active sensors such as laser-scanner and pattern-

projection. Of course, this uncertainty is the most important justification for the application of machine

learning, apart from the difficulties of creating accurate robot models.

An objective and fair evaluation, however, requires quantization of these uncertainties. Motion capture

equipment offers tracking of visual markers with an accuracy that qualifies it as ground truth data. However,

163

B. Software

(a) Reflective markers attached to the head
of the humanoid ARMAR-IIIb

(b) Active infrared camera and
closeup of reflective markers.

(c) Snapshot of the TrackingStudio
software for real-time human motion

capture.

Figure B.4.: The components of the motion capture system.

motion capture in general and especially tracking of robots is not a trivial task that requires a lot of manual

intervention. The software supplied with the motion capture system supports modeling joints and rigid

bodies but one cannot benefit of the CAD model that is usually available or can be created with little effort

with the software presented in the previous section. This is the reason why many markers have to be placed

on each rigid body. In case of a human subject, this means on the upper body, head, upper and lower arms

for instance. On a robot , rigid bodies between joints are very small such that many markers will lie in very

close proximity which makes them difficult to track and distinguish, especially as the material of the robot

is responsible for many reflections that further aggregates the situations.

Having a functional model greatly simplifies motion caputer as less markers are required (it is not even

required to have on each rigid body) and the model restricts the possible motion and which simplifies the

identification of markers and the tracking in general.

The simulation environment OpenRAVE features a scripting interface comparable to that available with

Blender. In developing extensions to the simulator, it grants access to many useful tools such as visualization

with annotation, mathematical tools and kinematics simulation. The motion capture system comes with a

library for the integration into other applications such it can directly be accessed by the tracking extension.

All together, this resulted in the development of the Tracking Studio, a project that uses the OpenRAVE

simulator as the foundation, interfaces the motion capture system and also communicate with the robot for

collecting all sensor readings (see Figure B.4). The tracking algorithms that are applied are described in the

following paragraphs.

Model-based tracking includes solving the inverse kinematics for all visible markers simultaneously once

the correspondence between virtual markers and real positions found by the motion capture if initially found.

The inverse kinematics moves the robot according to the recorded data. When markers are lost, for instance,

due to overlapping, the model helps to find the matching marker becomes visible again. The inverse kinemat-

164

B.2. The Tracking Studio

ics with so many model markers is overdetermined (see Figure B.3a) and, as there is only limited variation

in between two subsequent frames, the kinematics can be linearly approximated. The Jacobian matrix, the

matrix containing the partial derivatives given a joint configuration θθθ ,

J(θθθ) =


∂xxx1
∂θ1

· · · ∂xxx1
∂θm

...
...

∂xxxn
∂θ1

· · · ∂xxxn
∂θm

 (B.1)

where n is the number of markers xxxi that are visible at the time and m the number of joints of the robot

model. In each frame, the linear approximation to the inverse kinematics

J(θθθ) ·∆ = ∆xxx (B.2)

is solved for ∆θθθ which is used to update the virtual robot model, and xxx contains the differences between the

virtual model markers and the received real observed positions.

The virtual markers placed on the surface of the robot model cannot easily be positioned equally on the vir-

tual robot model and the real robot. Further, the model itself is only an approximation to the robot kinematics

(which is why learning is required in the first place). To lessen the effects resulting from this differences, the

positions of virtual markers can be adjusted to the recorded positions online stabilizing the tracking enor-

mously. In addition to the model-based tracking the TrackingStudio implements a nearest neighbor search

in between subsequent frames and allows to assign the actual joint configuration received from the robot to

the virtual model to find the initial starting position by the iterative closes points method.

165

Bibliography

K. C. Armel and V. S. Ramachandran. Projecting sensations to external objects: evidence from skin con-

ductance response. Proc. of the Royal Society of London. Series B: Biological Sciences, 270(1523):

1499–1506, 2003.

M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi. Cognitive developmental robotics as a new

paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 37(2):185–193, 2001.

T. Asfour and R. Dillmann. Human-like motion of a humanoid robot arm based on closed-form solution of

the inverse kinematics problem. In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), pages 407–1412,

2003.

T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and R. Dillmann. ARMAR-III: an integrated

humanoid platform for sensory-motor control. In IEEE/RAS Intl. Conf. Humanoid Robots, page 169–175,

Genova, Italy, Dec. 2006.

T. Asfour, J. Schill, H. Peters, C. Klas, J. Bücker, C. Sander, S. Schulz, A. Kargov, T. Werner, and V. Barten-

bach. Armar-4: A 63 dof torque controlled humanoid robot. In IEEE/RAS Intl. Conf. Humanoid Robots,

2013.

M. Barnes. COLLADA. In SIGGRAPH Courses. ACM, 2006.

G. d. A. Barreto, A. F. R. Araújo, and H. J. Ritter. Self-organizing feature maps for modeling and control of

robotic manipulators. Journal of Intelligent and Robotic Systems, 36(4):407–450, Apr. 2003.

L. Behera, M. Gopal, and S. Chaudhury. Self-organizing neural networks for learning inverse dynamics of

robot manipulator. In IEEE/IAS Intl. Conf. Industrial Automation and Control, pages 457–460, 1995.

R. Bellman. Directions of mathematical research in nonlinear circuit theory. IEEE Trans. Circuit Theory, 7

(4):542–553, 1960.

D. J. Bennett, D. Geiger, and J. M. Hollerbach. Autonomous robot calibration for hand-eye coordination.

Intl. Journal of Robotics Research, 10(5):550–559, Oct. 1991.

A. L. Benton. Right-left discrimination and finger localization: development and pathology. Hoeber-Harper,

1959.

G. Berlucchi and S. M. Aglioti. The body in the brain revisited. Experimental Brain Research, 200(1):

25–35, Aug. 2009.

N. A. Bernstein. The co-ordination and regulation of movements. Pergamon Press, 1967.

167

P. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell.,

14(2):239–256, 1992.

C. M. Bishop. Pattern recognition and machine learning. springer New York, 2006.

M. Botvinick and J. Cohen. Rubber hands’ feel’touch that eyes see. Nature, 391(6669):756–756, 1998.

V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, 1986.

S. Brown and C. Sammut. An architecture for tool use and learning in robots. In Australasian Conf. Robotics

and Automation, 2007.

S. Brown and C. Sammut. Tool use and learning in robots. In N. Seel, editor, Encyclopedia of the Sciences

of Learning, pages 3327–3330. Springer US, 2012.

M. V. Butz and O. Herbort. Context-dependent predictions and cognitive arm control with XCSF. In Annual

Conf. Genetic and evolutionary computation, GECCO ’08, page 1357–1364, New York, NY, USA, 2008.

ACM.

M. V. Butz, G. K. Pedersen, and P. O. Stalph. Learning sensorimotor control structures with XCSF: redun-

dancy exploitation and dynamic control. In Proc. Annual Conf. on Genetic and evolutionary computation,

GECCO ’09, page 1171–1178, New York, NY, USA, 2009. ACM.

M. Cabido-Lopes and J. Santos-Victor. Visual transformations in gesture imitation: What you see is what

you do. In IEEE Intl. Conf. Robot. Autom. (ICRA), volume 2, page 2375–2381, 2003.

S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing a task in a humanoid

robot. IEEE Trans. Syst., Man, Cybern. B, 37(2):286–298, Apr. 2007.

E. Canzoneri, S. Ubaldi, V. Rastelli, A. Finisguerra, M. Bassolino, and A. Serino. Tool-use reshapes the

boundaries of body and peripersonal space representations. Experimental Brain Research, 228(1):25–42,

May 2013.

L. Cardinali, S. Jacobs, C. Brozzoli, F. Frassinetti, A. C. Roy, and A. Farnè. Grab an object with a tool and

change your body: tool-use-dependent changes of body representation for action. Experimental Brain

Research, 218(2):259–271, Feb. 2012.

S. Caselli, E. Faldella, B. Fringuelli, and L. Rosi. A neural approach to robotic haptic recognition of 3-d

objects based on a kohonen self-organizing feature map. In Intl. Conf. Industrial Electronics, Control and

Instrumentation (IECON), volume 2, pages 835–840 vol.2, Sept. 1994.

S. P. Chatzis, D. Korkinof, and Y. Demiris. A nonparametric bayesian approach toward robot learning by

demonstration. Robot. Auton. Syst., 60(6):789–802, June 2012.

E. Chinellato, M. Antonelli, B. Grzyb, and A. del Pobil. Implicit sensorimotor mapping of the peripersonal

space by gazing and reaching. IEEE Trans. Autonomous Mental Development, 3(1):43–53, Mar. 2011.

Y. Coiton, J. C. Gilhodes, J. L. Velay, and J. P. Roll. A neural network model for the intersensory coordina-

tion involved in goal-directed movements. Biological cybernetics, 66(2):167–176, 1991.

P. Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, Nov. 2011.

J. J. Craig. Introduction to robotics: mechanics and control. Pearson/Prentice Hall, Upper Saddle River,

N.J., 2005.

H. Cruse, E. Wischmeyer, M. Brüwer, P. Brockfeld, and A. Dress. On the cost functions for the control of

the human arm movement. Biological cybernetics, 62(6):519–528, 1990.

L. Csató and M. Opper. Sparse on-line gaussian processes. Neural Computation, 14(3):641–668, 2002.

B. Damas and M. Lopes. Robot manifolds for direct and inverse kinematics solutions. In ROBOMAT 07,

2007.

J. S. de la Cruz, W. Owen, and D. Kulic. Online learning of inverse dynamics via gaussian process regres-

sion. In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), pages 3583–3590, Oct. 2012.

D. De Santis, V. Mohan, P. Morasso, and J. Zenzeri. Do humanoid robots need a body schema? In A. Chella,

R. Pirrone, R. Sorbello, and K. R. Jóhannsdóttir, editors, Biologically Inspired Cognitive Architectures

2012, number 196 in Advances in Intelligent Systems and Computing, pages 109–115. Springer Berlin

Heidelberg, Jan. 2013.

F. de Vignemont. Body schema and body image—Pros and cons. Neuropsychologia, 48(3):669–680, Feb.

2010.

D. Demers and K. Kreutz-Delgado. Canonical parameterization of excess motor degrees of freedom with

self-organizing maps. IEEE Trans. Neural Netw., 7(1):43–55, Jan. 1996.

R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon

University, Robotics Institute, August 2010.

N. Doidge. The brain that changes itself: stories of personal triumph from the frontiers of brain science.

Viking, New York, 2007.

A. Droniou, S. Ivaldi, P. Stalph, M. Butz, and O. Sigaud. Learning velocity kinematics: Experimental

comparison of on-line regression algorithms. Proceedings robotica, page 15–20, 2012.

A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse kinematics. In IEEE/RSJ Intl. Conf. Intell.

Robots, Syst. (IROS), volume 1, page 298–303, 2001.

G. E. Farin. NURBS: from projective geometry to practical use. A.K. Peters, 1999.

A. G. Feldman. Functional tuning of the nervous system with control of movement or maintenance of a

steady posture. Biophysics, 11:565–578, 1966.

M. Fiala. ARTag, a fiducial marker system using digital techniques. In IEEE Computer Society Conf.

Computer Vision, Pattern Recognition (CVPR), volume 2, pages 590–596 vol. 2, 2005.

P. Fitzpatrick and C. Metta. Grounding vision through experimental manipulation. The Philosophical

Transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences, 361:2165–2185,

2003.

F. Flentge. Locally weighted interpolating growing neural gas. IEEE Trans. Neural Netw., 17(6):1382–1393,

Nov. 2006.

l. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression tools. Technometrics,

35(2):109–135, 1993.

S. Fuke, M. Ogino, and M. Asada. Body image constructed from motor and tactile images with visual

information. Intl. Journal of Humanoid Robotics, 04(02):347–364, June 2007.

M. Fumagalli, A. Gijsberts, S. Ivaldi, L. Jamone, G. Metta, L. Natale, F. Nori, and G. Sandini. Learning to

exploit proximal force sensing: A comparison approach. In O. Sigaud and J. Peters, editors, From Motor

Learning to Interaction Learning in Robots, number 264 in Studies in Computational Intelligence, pages

149–167. Springer Berlin Heidelberg, Jan. 2010.

S. Gallagher and J. Cole. Body schema and body image in a deafferented subject. Journal of Mind and

Behavior, 16(4):369–390, 1995.

C. Gaskett and G. Cheng. Online learning of a motor map for humanoid robot reaching. In Intl. Conf.

Computational Intelligence, Robotics and Autonomous Syst. (CIRAS), 2003.

J. Gerstmann. Problem of imperception of disease and of impaired body territories with organic lesions.

Archive of Neurology and Psychiatry, 48:890–913, 1942.

Z. Ghahramani. Solving inverse problems using an EM approach to density estimation. In Proc. Connec-

tionist Models Summer School, page 316–323, 1993.

A. Gijsberts and G. Metta. Incremental learning of robot dynamics using random features. In IEEE Intl.

Conf. Robot. Autom. (ICRA), page 951–956, 2011.

M. S. Graziano and C. G. Gross. A bimodal map of space: somatosensory receptive fields in the macaque

putamen with corresponding visual receptive fields. Experimental brain research. Experimentelle Hirn-

forschung. Expérimentation cérébrale, 97(1):96–109, 1993.

P. Haggard and D. M. Wolpert. Disorders of body scheme. In In Higher-Order Motor Disorders. University

Press, 2005.

C. Hartmann, J. Boedecker, O. Obst, S. Ikemoto, and M. Asada. Real-time inverse dynamics learning for

musculoskeletal robots based on echo state gaussian process regression. In Proc. of Robotics: Science

and Systems, Sydney, Australia, 2012.

H. Head and G. Holmes. Sensory disturbances from cerebral lesions. Brain, 34(2-3):102–254, Nov. 1911.

D. Hebb. The organization of behavior. Wiley, New York, 1949.

T. Heed and B. Röder. The body in a multisensory world. In M. M. Murray and M. T. Wallace, editors, The

Neural Bases of Multisensory Processes, Frontiers in Neuroscience. CRC Press, Boca Raton (FL), 2012.

M. Hersch, E. Sauser, and A. Billard. Online learning of the body schema. Intl. Journal of Humanoid

Robotics, 05(02):161–181, June 2008.

M. Hersch, A. Billard, and S. Bergmann. Iterative estimation of rigid-body transformations: Application

to robust object tracking and iterative closest point. Journal of Mathematical Imaging and Vision, 43(1):

1–9, Apr. 2011.

T. Hesselroth, K. Sarkar, P. Van Der Smagt, and K. Schulten. Neural network control of a pneumatic robot

arm. IEEE Trans. Syst., Man, Cybern., 24(1):28–38, Jan. 1994.

M. Hikita, S. Fuke, M. Ogino, and M. Asada. Cross-modal body representation based on visual attention by

saliency. In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), pages 2041–2046, Sept. 2008.

H. Hoffmann, S. Schaal, and S. Vijayakumar. Local dimensionality reduction for non-parametric regression.

Neural processing letters, 29(2):109–131, 2009.

M. Hoffmann, H. G. Marques, A. H. Arieta, H. Sumioka, M. Lungarella, and R. Pfeifer. Body schema in

robotics: A review. IEEE T. Autonomous Mental Development, 2(4):304–324, 2010.

J. M. Hollerbach. A recursive lagrangian formulation of manipulator dynamics and a comparative study of

dynamics formulation complexity. IEEE Trans. Syst., Man, Cybern. B, 10(11):730–736, Nov. 1980.

J. M. Hollerbach and C. W. Wampler. The calibration index and taxonomy for robot kinematic calibration

methods. The Intl. Journal of robotics research, 15(6):573–591, 1996.

N. P. Holmes. Does tool use extend peripersonal space? a review and re-analysis. Experimental Brain

Research, 218(2):273–282, Mar. 2012.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.

Neural Netw., 2(5):359–366, July 1989.

A. Iriki, M. Tanaka, and Y. Iwamura. Coding of modified body schema during tool use by macaque post-

central neurones. Neuroreport, 7(14):2325–2330, Oct. 1996.

A. Iriki, M. Tanaka, S. Obayashi, and Y. Iwamura. Self-images in the video monitor coded by monkey

intraparietal neurons. Neuroscience research, 40(2):163–173, June 2001.

J. Jockusch and H. Ritter. An instantaneous topological mapping model for correlated stimuli. In Intl. Joint

Conf. Neural Networks (IJCNN), volume 1, pages 529–534, 1999.

M. Jones and D. Vernon. Using neural networks to learn hand-eye co-ordination. Neural Computing &

Applications, 2(1):2–12, 1994.

M. I. Jordan and D. E. Rumelhart. Forward models: Supervised learning with a distal teacher. Cognitive

Science, 16(3):307–354, 1992.

K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita. Cybernetic human HRP-4C.

In IEEE/RAS Intl. Conf. Humanoid Robots, pages 7–14, 2009.

D. Katz, Y. Pyuro, and O. Brock. Learning to manipulate articulated objects in unstructured environments

using a grounded relational representation. In Proc. Robotics: Science and Systems IV, pages 254–261,

Zurich, Switzerland, June 2008.

H. Kihl, J. P. Urban, J. Gresser, and S. Hagmann. Neural network based hand-eye positioning with a

transputer-based system. In B. Hertzberger and G. Serazzi, editors, High-Performance Computing and

Networking, pages 281–286. Springer Berlin Heidelberg, Jan. 1995.

K. Kilteni, J.-M. Normand, M. V. Sanchez-Vives, and M. Slater. Extending body space in immersive virtual

reality: A very long arm illusion. PLoS ONE, 7(7):e40867, July 2012.

S.-Y. King and J.-N. Hwang. Neural network architectures for robotic applications. IEEE Trans. Robot.

Autom., 5(5):641–657, 1989.

S. Klanke and H. Ritter. PSOM+: parametrized self-organizing maps for noisy and incomplete data. In

Proc. Workshop Self-Organizing Maps (WSOM), 2005.

Y. Kobayashi and S. Hosoe. Planning-space shift motion generation: Variable-space motion planning toward

flexible extension of body schema. Journal of Intelligent & Robotic Systems, 62(3-4):467–500, Sept.

2010.

T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):

59–69, Jan. 1982.

P. Kovács and G. Hommel. On the tangent-half-angle substitution. In J. Angeles, G. Hommel, and P. Kovács,

editors, Computational Kinematics, number 28 in Solid Mechanics and Its Applications, pages 27–39.

Springer Netherlands, Jan. 1993.

J. R. Lackner. Some proprioceptive influences on the perceptual representation of body shape and orienta-

tion. Brain, 111(2):281–297, Apr. 1988.

A. Lammert, L. Goldstein, S. Narayanan, and K. Iskarous. Statistical methods for estimation of direct and

differential kinematics of the vocal tract. Speech Communication, 55(1):147–161, Jan. 2013.

B. Leon, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales, T. Asfour, S. Moisio, J. Bohg,

J. Kuffner, and R. Dillmann. OpenGRASP: a toolkit for robot grasping simulation. In Intl. Conf. Simula-

tion, Modeling, and Programming for Autonomous Robots (SIMPAR), Darmstadt, Germany, Nov. 2010.

J. W. Lewis. Cortical networks related to human use of tools. The Neuroscientist, 12(3):211–231, June

2006.

L. Li, W. A. Gruver, Q. Zhang, and Z. Yang. Kinematic control of redundant robots and the motion opti-

mizability measure. IEEE Trans. Syst., Man, Cybern. B, 31(1):155–160, 2001. PMID: 18244778.

A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms.

IEEE Trans. Syst., Man, Cybern., 7(12):868–871, Dec. 1977.

L. Ljung. System identification: theory for the user. Prentice-Hall, Upper Saddle River, NJ, 2009.

L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT Press series in signal

processing, optimization, and control. MIT Press, 1985.

M. R. Longo, M. P. M. Kammers, H. Gomi, M. Tsakiris, and P. Haggard. Contraction of body representation

induced by proprioceptive conflict. Current biology: CB, 19(17):R727–R728, Sept. 2009.

M. Lopes and B. Damas. A learning framework for generic sensory-motor maps. In IEEE/RSJ Intl. Conf.

Intell. Robots, Syst. (IROS), pages 1533–1538, Nov. 2007.

M. Lopes and J. Santos-Victor. Visual learning by imitation with motor representations. IEEE Trans. Syst.,

Man, Cybern. B, 35(3):438–449, 2005.

M. Lopes and J. Santos-Victor. Learning sensory-motor maps for redundant robots. In IEEE/RSJ Intl. Conf.

Intell. Robots, Syst. (IROS), page 2670–2676, 2006.

B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision.

In Proc. Imaging Understanding Workshop, pages 121–130, 1981.

D. Ma and J. Hollerbach. Identifying mass parameters for gravity compensation and automatic torque sensor

calibration. In IEEE Intl. Conf. Robot. Autom. (ICRA), volume 1, pages 661–666, Apr. 1996.

A. Maravita and A. Iriki. Tools for the body (schema). Trends in cognitive sciences, 8(2):79–86, Feb. 2004.

A. Maravita, C. Spence, and J. Driver. Multisensory integration and the body schema: close to hand and

within reach. Current Biology, 13(13):R531–R539, July 2003.

T. Martinetz and K. Schulten. A "Neural-Gas" network learns topologies. Artificial Neural Networks, I:

397–402, 1991.

T. Martinetz and K. Schulten. A neural network for robot control: Cooperation between neural units as a

requirement for learning. CEE, 19(4):315–332, 1993.

R. Martinez-Cantin, M. Lopes, and L. Montesano. Body schema acquisition through active learning. In

IEEE Intl. Conf. Robot. Autom. (ICRA), pages 1860–1866, 2010.

L. Massone. Sensorimotor learning. In The Handbook of Brain Theory and Neural Networks. MIT Press,

1994.

J.-P. Merlet. Interval analysis for certified numerical solution of problems in robotics. Intl. Journal of

Applied Mathematics and Computer Science, 19(3):399–412, 2009.

G. Metta, G. Sandini, and J. Konczak. A developmental approach to visually-guided reaching in artificial

systems. Neural networks, 12(10):1413–1427, 1999.

G. Metta, R. Manzotti, F. Panerai, and G. Sandini. Development: is it the right way towards humanoid

robotics. In Intl. Conf. Intell. Auton. Syst. (IAS), 2000.

G. Metta, G. Sandini, and L. Natale. Sensorimotor interaction in a developing robot. In 1st intl. Workshop

on epigenetic robotics: Modeling cognitive development in robotic systems, page 18–19. Lund University

Press, 2001.

G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The icub humanoid robot: an open platform

for research in embodied cognition. In Proc. the 8th Workshop on Performance Metrics for Intelligent

Systems, PerMIS ’08, pages 50–56, New York, NY, USA, 2008. ACM.

V. Mohan and P. Morasso. Towards reasoning and coordinating action in the mental space. Intl. Journal of

Neural Systems, 17(04):329–341, 2007.

V. Mohan and P. Morasso. How past experience, imitation and practice can be combined to swiftly learn

to use novel “tools”: Insights from skill learning experiments with baby humanoids. In Biomimetic and

Biohybrid Systems, page 180–191. Springer, 2012.

V. Mohan, P. Morasso, G. Metta, and G. Sandini. A biomimetic, force-field based computational model

for motion planning and bimanual coordination in humanoid robots. Autonomous robots, 27(3):291–307,

2009.

V. Mohan, P. Morasso, G. Metta, and S. Kasderidis. Actions and imagined actions in cognitive robots. In

Perception-Action Cycle, page 539–572. Springer, 2011a.

V. Mohan, P. Morasso, J. Zenzeri, G. Metta, V. S. Chakravarthy, and G. Sandini. Teaching a humanoid robot

to draw ‘Shapes’. Autonomous Robots, 31(1):21–53, 2011b.

V. Mohan, P. Morasso, and G. Sandini. A neural frame work for organization and flexible utilization of

episodic memory in ‘cumulatively’ learning baby humanoids. Neural Comput, 2013.

P. Morasso. What is the use of the body schema for humanoid robots? Intl. Journal of Machine Conscious-

ness, 05(01):75–94, June 2013.

P. Morasso and V. Sanguineti. Self-organizing body schema for motor planning. Journal of Motor Behavior,

27(1):52–66, 1995.

A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti. Object representation in the ventral

premotor cortex (area f5) of the monkey. Journal of neurophysiology, 78(4):2226–2230, 1997.

F. A. Mussa Ivaldi, P. Morasso, and R. Zaccaria. Kinematic networks. Biological Cybernetics, 60(1):1–16,

Nov. 1988.

C. Nabeshima and Y. Kuniyoshi. A method for sustaining consistent sensory-motor coordination under body

property changes including tool Grasp/Release. Advanced Robotics, pages 687–717, 2010.

C. Nabeshima, Y. Kuniyoshi, and M. Lungarella. Adaptive body schema for robotic tool-use. Advanced

Robotics, 20(10):1105–1126, 2006.

C. Nabeshima, Y. Kuniyoshi, and M. Lungarella. Towards a model for tool-body assimilation and adaptive

tool-use. In IEEE Intl. Conf. Development and Learning (ICDL), pages 288–293, July 2007.

L. Natale. A developmental approach to grasping. In In Developmental Robotics AAAI Spring Symposium,

2005.

L. Natale, F. Nori, G. Sandini, and G. Metta. Learning precise 3D reaching in a humanoid robot. In IEEE

Intl. Conf. Development and Learning (ICDL), pages 324–329, July 2007.

D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey. Cognitive Processing, page

1–22, 2011.

D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf. Learning inverse dynamics: a comparison. In

16th European Symposium on Artificial Neural Networks, pages 13–18, Bruges, Belgium, 2008.

D. Nguyen-Tuong, B. Scholkopf, and J. Peters. Sparse online model learning for robot control with support

vector regression. In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), pages 3121–3126, Oct. 2009.

C. Nolker and H. Ritter. Visual recognition of continuous hand postures. IEEE Trans. Neural Netw., 13(4):

983–994, 2002.

F. Nori, L. Natale, G. Sandini, and G. Metta. Autonomous learning of 3d reaching in a humanoid robot. In

IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), page 1142–1147, 2007.

E. Oztop, L.-H. Lin, M. Kawato, and G. Cheng. Dexterous skills transfer by extending human body schema

to a robotic hand. In IEEE/RAS Intl. Conf. Humanoid Robots, pages 82–87, Dec. 2006.

J. Paillard. Body schema and body image – a double dissociation in deafferented patients. In G. Gantchev,

S. Mori, and M. J., editors, Motor Control: Today and Tomorrow, pages 197–214. Academic Publishing

House: Sofia, Bulgaria, 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-

mann, 1988.

H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques. Springer, Oct. 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, Nov.

2005.

C. L. Reed and M. J. Farah. The psychological reality of the body schema: a test with normal participants.

Journal of experimental psychology. Human perception and performance, 21(2):334–343, Apr. 1995.

J. B. Ritchie and T. A. Carlson. Tool integration and dynamic touch. Psychological Science, 24(6):1066–

1068, June 2013.

H. Ritter. Parameterized self-organizing maps. In Proc. Intl. Conf. on Artificial Neural Networks, pages

568–575, 1993.

H. Ritter, T. Martinetz, and K. Schulten. Neural computation and self-organizing maps: an introduction.

Addison-Wesley, 1992.

H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Topology-conserving maps for learning visuo-motor-

coordination. Neural Networks, 2(3):159–168, 1989.

M. Rolf, J. Steil, and M. Gienger. Bootstrapping inverse kinematics with goal babbling. In IEEE Intl. Conf.

Development and Learning (ICDL), pages 147–154, Aug. 2010a.

M. Rolf, J. Steil, and M. Gienger. Goal babbling permits direct learning of inverse kinematics. IEEE Trans.

Autonomous Mental Development, 2(3):216–229, Sept. 2010b.

M. Rolf, J. Steil, and M. Gienger. Learning flexible full body kinematics for humanoid tool use. In Intl.

Conf. Emerging Security Technologies (EST), pages 171–176, Sept. 2010c.

C. Rorden, J. Heutink, E. Greenfield, and I. H. Robertson. When a rubber hand’feels’ what the real hand

cannot. Neuroreport, 10(1):135–138, 1999.

V. Ruiz de Angulo and C. Torras. Self-calibration of a space robot. IEEE Trans. Neural Netw., 8(4):951–963,

1997.

V. Ruiz de Angulo and C. Torras. Using PSOMs to learn inverse kinematics through virtual decomposition of

the robot. In J. Cabestany, A. Prieto, and F. Sandoval, editors, Computational Intelligence and Bioinspired

Systems, number 3512, pages 701–708. Springer Berlin Heidelberg, Jan. 2005a.

V. Ruiz de Angulo and C. Torras. Speeding up the learning of robot kinematics through function decompo-

sition. IEEE Trans. Neural Netw., 16(6):1504–1512, 2005b.

V. Ruiz de Angulo and C. Torras. Learning inverse kinematics: Reduced sampling through decomposition

into virtual robots. IEEE Trans. Syst., Man, Cybern. B, 38(6):1571–1577, 2008.

C. Salaün, V. Padois, and O. Sigaud. Control of redundant robots using learned models: An operational

space control approach. In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), pages 878–885, Piscataway,

NJ, USA, Oct. 2009.

S. Schaal and C. G. Atkeson. Memory-based robot learning. In IEEE Intl. Conf. Robot. Autom. (ICRA),

pages 2928–2933, 1994a.

S. Schaal and C. G. Atkeson. Robot juggling: implementation of memory-based learning. Control Systems

IEEE, 14(1):57–71, 1994b.

S. Schaal and C. G. Atkeson. Constructive incremental learning from only local information. Neural

Computation, 10:2047–2084, 1997.

S. Schaal, S. Vijayakumar, and C. G. Atkeson. Local dimensionality reduction. Advances in neural infor-

mation processing systems, pages 633–639, 1998.

S. Schaal, C. G. Atkeson, and S. Vijayakumar. Real-time robot learning with locally weighted statistical

learning. In IEEE Intl. Conf. Robot. Autom. (ICRA), page 288–293, 2000.

S. Schaal, C. G. Atkeson, and S. Vijayakumar. Scalable techniques from nonparametric statistics for real

time robot learning. Applied Intelligence, 17(1):49–60, June 2002.

L. Sciavicco and B. Siciliano. Modelling and control of robot manipulators: with 190 figures. Springer,

Apr. 2000.

R. W. Shumaker, K. R. Walkup, and B. B. Beck. Animal Tool Behavior: The Use and Manufacture of Tools

by Animals. The Johns Hopkins University Press, revised and updated edition, Apr. 2011.

G. Sicard, C. Salaün, S. Ivaldi, V. Padois, , and O. Sigaud. Learning the velocity kinematics of ICUB for

model-based control: XCSF versus LWPR. In IEEE/RAS Intl. Conf. Humanoid Robots, pages 570–575,

Oct. 2011.

O. Sigaud, C. Salaün, and V. Padois. On-line regression algorithms for learning mechanical models of

robots: a survey. Robotics and Autonomous Systems, 59:1115–1129, 2011.

J. Sinapov and A. Stoytchev. Toward autonomous learning of an ontology of tool affordances by a robot. In

AAAI Conf. Artificial Intelligence, pages 1828–1829, 2008.

J. F. Soechting and M. Flanders. Errors in pointing are due to approximations in sensorimotor transforma-

tions. Journal of Neurophysiology, 62(2):595–608, 1989.

P. O. Stalph, M. V. Butz, and G. K. Pedersen. Controlling a four degree of freedom arm in 3D using the

XCSF learning classifier system. In Advances in Artificial Intelligence KI, page 193–200. Springer, 2009.

P. O. Stalph, J. Rubinsztajn, O. Sigaud, and M. V. Butz. A comparative study: function approximation with

LWPR and XCSF. In Annual Conf. Genetic and evolutionary computation, GECCO ’10, page 1863–1870,

New York, NY, USA, 2010. ACM.

M. Stamenov. Body schema, body image, and mirror neurons. In H. De Preester and V. Knockaert, editors,

Body Image and Body Schema, pages 21–43. Amsterdam and Philadelphia: John Benjamins, 2005.

A. Stoytchev. Computational model for an extendable robot body schema, 2003.

A. Stoytchev. Robot tool behavior: A developmental approach to autonomous tool use. PhD thesis, College

of Computing, Georgia Institute of Technology, 2007.

A. Stoytchev. Learning the affordances of tools using a behavior-grounded approach. In E. Rome,

J. Hertzberg, and G. Dorffner, editors, Towards Affordance-Based Robot Control, number 4760 in Lecture

Notes in Computer Science, pages 140–158. Springer Berlin Heidelberg, Jan. 2008.

J. Sturm, C. Plagemann, and W. Burgard. Body schema learning for robotic manipulators from visual

self-perception. Journal of Physiology-Paris, 103(3–5):220–231, 2009.

J. Sturm, C. Plagemann, and W. Burgard. Body schema learning. In E. Prassler, M. Zöllner, R. Bischoff,

W. Burgard, R. Haschke, M. Hägele, G. Lawitzky, B. Nebel, P. Plöger, and U. Reiser, editors, Towards

Service Robots for Everyday Environments, number 76 in Springer Tracts in Advanced Robotics, pages

131–161. Springer Berlin Heidelberg, Jan. 2012.

J. Sun de la Cruz, D. Kulic, and W. Owen. Learning inverse dynamics for redundant manipulator control.

In Intl. Conf. Autonomous and Intell. Syst. (AIS), page 1–6, 2010.

J. Sun de la Cruz, D. Kulic, and W. Owen. Online incremental learning of inverse dynamics incorporat-

ing prior knowledge. In M. Kamel, F. Karray, W. Gueaieb, and A. Khamis, editors, Autonomous and

Intelligent Systems, number 6752, pages 167–176. Springer Berlin Heidelberg, Jan. 2011.

A. Tessari and R. I. Rumiati. Motor distal component and pragmatic representation of objects. Brain

research. Cognitive brain research, 14(2):218–227, Aug. 2002.

S. Ulbrich and T. Asfour. Improving body schema learning with Kinematic Bézier Maps by symmetry con-

straints. In Workshop Autonom. Learning, IEEE Intl. Conf. Robot. Autom. (ICRA), Karlruhe, Germany,

May 2013.

S. Ulbrich, V. Ruiz, T. Asfour, C. Torras, and R. Dillmann. Rapid learning of humanoid body schemas with

Kinematic Bézier Maps. In IEEE/RAS Intl. Conf. Humanoid Robots, pages 431–438, Dec. 2009.

S. Ulbrich, M. Bechtel, T. Asfour, and R. Dillmann. Learning robot dynamics with Kinematic Bézier Maps.

In IEEE/RSJ Intl. Conf. Intell. Robots, Syst. (IROS), Vilamoura, Portugal, Oct. 2012a.

S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras, and R. Dillmann. General robot kinematics decom-

position without intermediate markers. IEEE Trans. Neural Netw., Learning Syst., 23(4):620–630, Apr.

2012b.

S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras, and R. Dillmann. Kinematic Bézier Maps. IEEE Trans.

Syst., Man, Cybern., 42(4):1215–1230, Aug. 2012c.

R. J. van Beers, D. M. Wolpert, and P. Haggard. When feeling is more important than seeing in sensorimotor

adaptation. Current biology: CB, 12(10):834–837, May 2002.

D. Vasquez, T. Fraichard, and C. Laugier. Growing hidden markov models: An incremental tool for learning

and predicting human and vehicle motion. The Intl. Journal of Robotics Research, 28(11-12):1486–1506,

Nov. 2009.

S. Vijayakumar and S. Schaal. Locally weighted projection regression: An o (n) algorithm for incremental

real time learning in high dimensional space. In Intl. Conf. on Machine Learning (ICML), volume 1, page

288–293, 2000.

J. Walter. Rapid Learning in Robotics. PhD thesis, University of Bielefeld, Bielefeld, 1996.

J. Walter. PSOM network: learning with few examples. In IEEE Intl. Conf. Robot. Autom. (ICRA), volume 3,

pages 2054–2059, 1998.

J. Walter and H. Ritter. Rapid learning with parametrized self-organizing maps. Neurocomputing, 12:

131–153, 1995.

D. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-

Machine Syst., 10(2):47–53, June 1969.

B. Widrow and M. E. Hoff. Adaptive switching circuits. IRE WESCON Convention Record, 4, 1960.

H. Wold. Soft modeling by latent variables; the nonlinear iterative partial least squares approach. Perspec-

tives in Probability and Statistics. Papers in Honour of M. S. Bartlett, 1975.

D. M. Wolpert, R. C. Miall, and M. Kawato. Internal models in the cerebellum. Trends in cognitive sciences,

2(9):338–347, 1998.

Y. S. Xia, G. Feng, and J. Wang. A primal-dual neural network for online resolving constrained kinematic

redundancy in robot motion control. IEEE Trans. Syst., Man, Cybern. B, 35(1):54–64, Feb. 2005. PMID:

15719933.

Y. Yoshikawa, H. Kawanishi, M. Asada, and K. Hosoda. Body scheme acquisition by cross modal map

learning among tactile, visual, and proprioceptive spaces. In Proc. Intl. Workshop on Epigenetic Robotics,

pages 181–184, 2002.

Y. Yoshikawa, Y. Tsuji, K. Hosoda, and M. Asada. Is it my body? body extraction from uninterpreted

sensory data based on the invariance of multiple sensory attributes. In IEEE/RSJ Intl. Conf. Intell. Robots,

Syst. (IROS), volume 3, pages 2325–2330, Oct. 2004.

Y. Yoshikawa, K. Hosoda, and M. Asada. Unique association between self-occlusion and double-touching

towards binding vision and touch. Neurocomputing, 70(13–15):2234–2244, Aug. 2007.

M. Zeller, R. Sharma, and K. Schulten. Motion planning of a pneumatic robot using a neural network. IEEE

Control Systems, 17(3):89–98, June 1997.

	Introduction
	Motivation
	Problem statement
	Contributions
	Outline

	Related Work
	The body schema in neuroscience
	The body schema in robotics
	Sensorimotor learning in robotics
	Fundamentals
	Taxonomy
	Artificial neural networks
	Statistical learning
	Probabilistic learning
	Decomposition
	Discussion

	Representations for kinematic and dynamic models
	Introduction
	Polynomial function approximation
	Primer on projective Geometry
	Rational Bézier form

	Kinematic Bézier Maps
	Formulation
	Modeling the inverse dynamics

	Summary

	Learning kinematic and dynamic models
	Linear least mean squares
	Normal equations

	Partial least squares
	The algorithm
	Learning KBM models with partial least squares

	The -Rule
	The algorithm
	Initialization

	Approximation with nonlinear symmetry constraints
	Symmetry and regularity in the control net
	Formulation of the error terms
	Summary

	Dimensionality reduction for sensorimotor learning
	Introduction
	Kinematics Decomposition
	Kinematics Composition
	Learning
	Independent learning
	Concurrent learning

	Evaluation in simulation
	Evaluation of learning kinematic models
	Setup
	Linear least mean squares
	Symmetry constraints
	Partial least squares
	Incremental learning

	Evaluation of learning dynamic models
	Setup
	Batch learning
	Incremental learning

	Decomposition
	Offline learning
	Online learning

	Evaluation on a humanoid robot
	Data acquisition
	Setup
	Data sets
	Analysis of the data
	Evaluation of partial least squares

	Evaluation of the initialized incremental learning
	Conclusion

	Conclusion
	Contributions
	Outlook

	Naming conventions
	Software
	The robot modeling tool
	The Tracking Studio

