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Abstract 

The percentage of energy consumption of buildings relative to the overall energy use has 

grown significantly due to the rising amount of electrical devices used. As one of the main 

energy consumers, the building sector has an unrealized potential for significant energy 

savings. The main objective of this work is to develop strategies to transform typical Brazilian 

office buildings, built in different climatic zones into zero energy buildings (ZEB). Special 

emphasis is placed on photovoltaic (PV) application, especially the new technology of semi-

transparent PV windows. PV modules play an important role in achieving a Brazilian zero 

energy building scenario, due to their energy generation characteristics, the large amount of 

incident solar radiation and their constantly decreasing price. These findings were based on 

parametric computer simulations using Daysim and EnergyPlus programs. The study had 

four key foci; firstly, semi-transparent PV windows were evaluated as an alternative 

technology for energy generation and conservation in office buildings. Secondly, the 

application of various strategies to transform Brazilian office buildings into ZEBs was 

evaluated. Thirdly, different office building types were investigated and evaluated in regards 

to their potential to become ZEBs. Finally, the influence of urban environments on a 

building`s energy generation and conservation was examined. The results reveal that a 

building envelope design that matches the building’s loads and resources is crucial for 

becoming a ZEB. The use of building integrated PV proved to be a promising option in the 

replacement of traditional materials. When considering semi-transparent PV windows, some 

caution should be taken due to the potential hazards caused by the high cell temperatures. An 

urban environment has a strong influence on a ZEB. Considering the environment, it is likely 

that the facade of the lower floors is inappropriate for the installation of PV modules. In these 

places they can be replaced by conventional construction materials. Though buildings with 

few stories have a better chance to become ZEB in general and especially in an urban context, 

high rise buildings can be ZEB as well. Altogether the type of urban layout as well as the 

relationship between net floor area and installed PV power have a big influence on the 

preferable ZEB type. 

 

Keywords: semi-transparent PV windows, zero energy buildings (ZEB), computer simulation, 

(sub)tropical climate, office building type 
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Zusammenfassung 

Im Verhältnis zum globalen Energieverbrauch, ist der Energieverbrauch von Gebäuden stark 

angestiegen. Dies liegt hauptsächlich an der immer größeren Anzahl elektrischer Geräte, die 

in Gebäuden eingesetzt werden. Als einer der größten Energieverbraucher bietet der 

Gebäudesektor daher ein großes Potential für Energiesparmaßnahmen. Das Hauptziel dieser 

Arbeit ist die Entwicklung von Strategien zur Umwandlung typischer brasilianischer 

Bürogebäude in verschiedenen klimatischen Zonen in Null-Energiegebäude. Speziell sollen 

dabei die Einsatzmöglichkeiten von Photovoltaik-Modulen (PV) im Allgemeinen und im 

Besonderen die seit kurzem verfügbaren halb-transparenten PV-Fenster berücksichtigt 

werden. Insgesamt ist die PV Technik ein wichtiger Baustein in einem Null-Energiekonzept 

für brasilianische Bürogebäude. Dies liegt an der hohen verfügbaren Solarstrahlung und an 

den stetig fallenden Investitionskosten. Die Ergebnisse der Arbeit basieren hauptsächlich auf 

Computer-Simulationen, die im Wesentlichen mit den Programmen Daysim und EnergyPlus 

durchgeführt wurden. Als erstes wurde der Einsatz von halb-transparenten PV-Fenstern zur 

Energiegewinnung in Bürogebäuden untersucht. Dann wurden verschiedene Strategien für 

die Umwandlung typischer Bürogebäude in Null-Energiegebäude an mehreren Gebäudetypen 

angewandt und evaluiert. Als drittes wurde die Eignung unterschiedlicher Gebäudetypen für 

die Umwandlung in Null-Energiegebäude untersucht und als letztes wurde der Einfluss der 

umgebenden Gebäude auf ein Null-Energiegebäude, insbesondere auf die erzeugte Energie, 

betrachtet. Die Ergebnisse zeigen, dass eine an die vorhandenen Gegebenheiten angepasste 

Gebäudestruktur elementar wichtig ist für Null-Energiegebäude. Außerdem hat sich gezeigt, 

dass gebäudeintegrierte PV Module eine intressante Alternative zu herkömmlichen 

Gebäudematerialien im Bereich der Null-Energiegebäude sind. Allerdings muss beim Einsatz 

von PV-Fenster auf die von den hohen Temperaturen der Fenster ausgehenden Gefahren 

geachtet werden. Desweiteren hat sich gezeigt, dass in einer städtischen Umgebung die 

Fassaden der unteren Stockwerke meist nicht für einen Einsatz von PV-Modulen geeignet 

sind. Dort sind herkömmliche Konstruktionsmaterialien meist besser geeignet. Ein weiteres 

Ergebnis ist, dass es meist einfacher ist niedrige Gebäude in Null-Energiegebäude 

umzuwandeln. Allerdings hat die umgebende Bebauung und das Verhältnis von Nutzfläche 

zur installierten PV-Fläche einen wesentlichen Einfluss auf die Machbarkeit. Es konnte zudem 

gezeigt werden, dass höhere Gebäude durchaus in Null-Energiegebäude transformiert 

werden können. 
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1 Introduction 

Nowadays renewable energies contribute 42 % to Brazil’s energy mix, which is a high value 

compared to the world's average of 13 % [118]. However, the main source of renewable 

electric energy is hydroelectricity (77 %). These centralized power plants have limited 

capabilities to grow and the long distances between the generation facilities and the 

consumption centers cause high investment costs and energy losses. Additionally, the 

construction of large scale hydroelectric power plants has serious environmental impacts and 

in the last years there are growing protest movements against these projects [20], [124].  

In times with high energy demand and low water reservoirs, as well, in cases of short-

circuits in transmission lines, large area blackouts occur affecting many major Brazilian cities, 

as happened in 2013 [133]. Solar energy can be used as a complementary power supply 

offering on-site production, helping to economize water and use less fossil fuel for 

thermoelectric power plants. The country receives 1,013 MWh of solar radiation, which is 

equivalent to 50,000 times the annual electricity consumption [117]. Nonetheless, 

investments in solar energy are still higher in Germany than in Brazil. Only 0.001 % of the 

Brazilian energy mix is delivered by solar energy [118]. In contrast, in Germany, the nation 

with the largest installed PV power, around 5 % are produced by solar energy [13], [182].  

One way to stimulate the use of solar energy in Brazil is to encourage building owners to 

install photovoltaic (PV) technology on buildings. In Brazil, the existing buildings account for 

over 47.6 % of the electricity consumption distributed among the residential (23.6 %), 

commercial (16 %) and public (8 %) buildings [118]. In the case of commercial and public 

buildings, air conditioning and artificial lighting are the main consuming systems [136]. A 

high growth of the energy demand is predicted due to the stable economy, combined with the 

growing middle-class, which increases the access of the population to new technologies. 

The buildings sector has high electricity consumption, but also a high potential for savings. 

Reduction in energy consumption in existing buildings can be achieved with the 

implementation of energy retrofit measures [34]. For new buildings, incorporating energy-
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efficient technologies from the initial conception of the project, the savings can exceed 50 %, 

compared to a building designed without the use of these technologies [98], [136]. 

A large number of office buildings in Brazil do not adequately use the available natural 

resources. A lot of these buildings were projected prioritizing their aesthetic value using 

characteristics of international architecture that are inappropriate for the local climate. 

Designing buildings with minimal energy consumption requires combining climate adapted 

construction strategies with renewable energy sources, such as photovoltaic (PV) modules. 

By this means buildings can save and generate energy and it is possible to reach an equalized 

energy balance. Such buildings are called zero energy buildings (ZEB). The concept of ZEB 

has already been proved for countries in Europe and the United States (U.S.) [69], [122]. 

Photovoltaic elements have numerous application possibilities in a ZEB scenario, due to 

their energy generation characteristics and constantly decreasing price. Their price 

development actually makes them competitive to other building materials [156] and they are 

technically seen a reasonable way to achieve an equalized, i.e. zero energy balance. PV panels 

can be applied / integrated into roofs, facades or replace elements such as shading devices. 

Currently, a wide variety of photovoltaic modules using different technologies are available 

on the market offering a broad range of options for architects. This offers the possibility to 

use them not primarily for energy generation but also for aesthetic reasons, whereas the 

generation of electricity is just a benefit.  

The energy generation period of PV panels is well suited for office buildings, whose 

occupation period and highest energy consumption are in the daytime, the same time when 

the PV modules produce electricity. Excess energy can be fed into the electric network. In 

multi-storey office buildings the available area for PV installation is limited. The building 

envelope might not be sufficient to fulfill the building’s energy needs, using conventional PV 

application. In this case, it is necessary to investigate other possibilities for their suitability 

and for aesthetics considerations.  

One possibility is the replacement of tinted glass or dark plastic film covered windows 

with semi-transparent PV windows, which are common beneath clear glass windows in 

cooling dominated multi-storey office buildings [31], [173]. Semi-transparent PV windows 

have a significant potential to reduce the annual electrical consumption for cooling and in 

addition generate energy. However, some care should be taken with buildings located in 

urban areas, since parts of the buildings envelope can be shaded which should be avoided in 

order to not reduce the PV module efficiency. In the case of net ZEB, PV installations also 
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might be used close to the building or building clusters ('on-site' or 'nearby' energy 

generation) in an urban context, or in a larger scale as Landscape Integrated PV (LIPV) ('at 

site' energy generation), which make the creation of self-sufficient cities possible.  

This thesis investigates possibilities for the transformation of typical Brazilian office 

buildings into zero energy buildings using established energy consumption reduction 

methods and photovoltaic technologies (on-site). The difficulty for transforming multi-storey 

buildings into ZEB arises from their number of storeys with a high specific electricity 

consumption compared to their relatively small envelope, offering few possibilities for PV 

application. One of the main contributions is the development of a required ratio between 

installed PV potential, the building energy balance and its surface. 

1.1 Research objectives 
The main objective of this research is to develop strategies to transform typical Brazilian 

office buildings in different climate zones into ZEB with special respect to PV application in 

general and especially the new technology of semi-transparent PV windows.  

To systematically evaluate influencing factors the research was split into several key 

aspects that were examined separately and then integrated into the main concept. These 

aspects are: 

• Definition of a methodology for the evaluation of semi-transparent PV windows in 

Brazilian office buildings using building simulation tools; 

• Evaluation of the influence of semi-transparent PV windows on the building energy 

consumption considering the use of daylight, power conversion efficiency (PCE) and 

transmittance; 

• Transformation of office buildings types into net zero energy buildings; 

•  Examination of different multi-storey office building types for the definition of 

appropriate zero energy building volumetries; 

• Analysis of the load matching and grid interaction of PV equipped office buildings; 

• Determination of the influence of the urban context on the solar irradiation and 

generated electricity. 
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1.2 Thesis structure 
This thesis is organized in six chapters. The current chapter presents a brief introduction to 

the investigated problem and states the pursued objectives of this thesis.  

Chapter 2 comprises a review of literature related to the subjects of this thesis. It starts 

with the energy conservation methods for Brazilian and German buildings. Then, the 

relationship between photovoltaic and architecture is presented with an emphasis on new 

applications and technologies for building integration. The chapter ends with an introduction 

of net zero energy buildings, their definition, energy balance, design limits and the role of PV 

technology in net ZEBs. 

Chapter 3 outlines basic parameters used within this research. The chapter focuses on the 

climatic characteristics of the selected simulation locations, i.e. cities; representative office 

building model with its fixed and variable parameters; and introduces the main tools used for 

building simulations. 

Chapter 4 describes the procedure used for the transformation of different building types 

into zero energy buildings. At first, a study analyzing the potential of semi-transparent PV 

windows for energy reduction and generation, including daylight performance and a 

sensitivity analysis between the transmittance and the efficiency of the PV is presented. 

Afterwards, strategies used for the transformation of a typical Brazilian office building into a 

ZEB are shown. This made it possible to analyze the potential of different building types to 

reach ZEB status. Finally, the influence of the urban context on the achievable energy 

generation is investigated. 

In chapter 5 the results of the computer simulations are presented and discussed. For the 

zero energy office buildings, also the optimal and zero energy building models developed by 

the application of defined strategy and the overall on the envelope applied PV modules for 

the different building types are shown. The last, chapter 6 is dedicated to the conclusions and 

recommendations for future work. 
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2 Background 

In this chapter the state of the art of zero energy buildings and the applied PV technologies 

prior to this thesis are presented. Firstly, energy conservation techniques in buildings 

focusing on Brazil and Germany and current regulations for energy efficiency in buildings are 

described. Secondly, an overview about photovoltaic technologies and their application in 

buildings are shown. Finally, definitions for net zero energy buildings and evaluation 

methods are presented. 

2.1 Energy conservation in buildings 
Buildings are today responsible for nearly 40 % of the globally used final energy [180] and 

the percentage of their energy consumption is growing due to poor design, inadequate 

technology and inappropriate behavior. However, opportunities exist to reduce the buildings' 

energy use at lower cost and with higher revenue than in other sectors 

To reduce excessive energy use in new buildings a variety of energy-efficient technologies 

and practices are being developed and implemented in many countries. This section gives a 

review about the Brazilian measures and regulations for raising the energy efficiency of 

buildings and draws a comparison to the developments of Germany, a country with extensive 

research in this field.  

2.1.1 Brazilian context 

A major step towards greater energy efficiency in Brazil was the approval of the law 

N° 10,295 on October 17, 2001 [23]. This act strengthened Brazil’s national electricity 

conservation program (PROCEL) which launched its energy efficiency action plan for 

buildings (PROCEL-Edifica) in 2003.  

One of the outcomes of this plan was the energy efficiency labeling system called Technical 

Quality Regulation on the Energy Efficiency of Commercial, Services and Public Buildings 

(Requisitos Técnicos da Qualidade para o Nível de Eficiência Energética em Edifícios 
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Comerciais, de Serviços e Públicos - RTQ-C), published in 2009 [24] and subsequently in 2010 

the Technical Quality Regulation on the Energy Efficiency of Residential Buildings 

(Regulamento Técnico da Qualidade para o Nível de Eficiência Energética em Edifícios 

Residenciais - RTQ-R) [25]. Both Regulations define a methodology for classifying the energy 

efficiency of buildings, with a distinguished process for non-residential and residential 

buildings.  

These regulations are complemented by the requirements for the assessment of the 

conformity of the energy efficiency of buildings (Requisitos de Avaliação da Conformidade 

para Eficiência Energética de Edificações - RAC) [26], which details the evaluation process of 

building and is used to grant the national energy conservation label (Etiqueta Nacional de 

Conservação de Energia -ENCE). 

The RTQ aims to qualify and quantify the electric energy consumption of buildings in 

Brazil. The proposal is to specify the technical requirements and methods for classifying 

buildings according to their energy efficiency. It is expected that the regulation helps 

reducing the energy consumption by defining a minimum energy efficiency level, which is 

evaluated through computer simulations or prescriptive methods. The levels vary from A 

(most efficient) to E (least efficient). 

For commercial, public and services buildings the regulation covers three aspects of the 

buildings: envelope, lighting and air conditioning, with different weights for each aspect: 

30 %, 30 % and 40 %, respectively. For residential buildings other factors are considered, 

these are the envelope, considering summer and winter periods, and the water heating 

system. In the common area of multi-family buildings, lighting, elevators and water pumps 

are evaluated. Both regulations also consider other strategies, for example, the use of natural 

resources (daylight and natural ventilation) and renewable energy sources.  

Besides these regulations, international certifications like Aqua1 and LEED2 were adapted 

to the Brazilian reality. The Selo Casa Azul Caixa is a voluntary certification promoting 

sustainable residential constructions supported by the Brazilian bank Caixa Economica 

Federal (CAIXA). It is the first Brazilian certification for sustainable house developments [29].  

In 2011 was the solar seal (Selo Solar) developed by the institute for the development of 

alternative energy in Latin America (Ideal) with support from the German cooperation for 
                                                            
1 Aqua certification (High Environmental Quality), launched by Carlos Alberto Vanzolini, the accreditation is 
based on the French system HQE with indicators adapted to the Brazilian reality. 
2 The LEED label (Leadership in Energy and Environmental Design) is a green building certificate from the 
United States developed by the USGBC (United States Green Building Council). It is a globally accepted 
classification system adapted and recognized by the Green Building Council Brazil. 
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sustainable development through the Deutsche Gesselschaft für Internationale Zusammenar-

beit (GIZ) GmbH and the German development bank (KfW). The seal has the aim to encourage 

the use of solar energy (PV) in Brazil [83]. 

The application of photovoltaic technology in Brazil began to be discussed at the beginning 

of the decade. However, the first system was installed in 1997 by the research group on 

strategies for the application of solar energy (Estratégica em Energia Solar / FV-UFSC) at the 

Federal University of Santa Catarina (UFSC) [146]. Other systems have been installed at the 

Universities of Sao Paulo (USP), Rio Grande do Sul (UFRGS) and Para (UFPA), as well as 

research institutes and utilities. The installed PV system helps to generate energy for the 

building, but the energy balance does not reach zero. Meanwhile, new projects have been 

developed such as the design of solar energy powered stadiums for the soccer World Cup 

2014 and solar energy powered airports.  

Another advance was the approval of the resolution N° 482 created by the national electric 

energy agency (ANEEL), in April 2012. The resolution regulates the micro and mini-

generation of electric energy by consumers, and aims to reduce the barriers for the 

installation of small distributed energy generation facilities, i.e. micro-generation plants up to 

100 kW and mini-generation plants from 100 kW to 1 MW [10]. This means anyone can 

generate electricity for his private use, and the excess energy can be exported to the 

electricity network to reduce the energy bill. Until the termination of this thesis in Brazil 

existed only 86 central solar PV electricity generation plants [11]. 

Until now, net ZEBs do not exist in Brazil. From an economic point of view on-site energy 

generation out of renewable resources such as solar and wind energy, still suffer from high 

investment costs. However, two ZEB buildings were developed within university projects: the 

CECAS, building that will be the center for the study of climate and sustainable environments 

at the University of Sao Paulo, and the EKO House. The latter one participated in 2012 at the 

Solar Decathlon in Europe [157]. This is an international university competition with the aim 

to design innovative energy-efficient houses that are supplied solely by sun energy.  

2.1.2 German context 

Germany first introduced thermal performance requirements in 1977 [70] and in 2002 

unified requirements for the energy performance of insulation and heating systems, for new 

and existing buildings and a compulsory energy certificate for new buildings and major 

renovations [151] were established.  
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The building codes have been strengthened six times over the past 35 years and an energy 

demand reduction for heating and hot water provision has been achieved, from 

300 kWh/(m²y) to almost 65 kWh/(m²y) [62]. The development of the energetic demands of 

buildings in Germany with minimal energetic requirements, high performance pilot projects 

and innovative buildings can be seen in Figure 2.1.  

 

 
Figure 2.1: Energetic development of buildings in Germany. Copyright Hans Erhorn, Fraunhofer IBP. 

Translated from [67].  

The Energy Conservation Ordinance "Energieeinsparverordnung" (EnEV) and its 

amendments (EnEV 2002, EnEV 2009, EnEV 2012 and EnEV 2014) are an important part of 

the energy and climate policy of the German Government [174]. The legislation prescribes 

minimal energetic requirements of buildings and building components for new buildings and 

for major renovations. Additionally framework conditions and mandatory certificates are 

defined in this regulation.  

The energy efficiency according to the EnEV standard is determined by measuring the 

annual primary energy requirements of a building as well as the thermal insulation of the 

building envelope. Compared with the last version of the EnEV, the primary energy 

requirements in the 2009 amendment were increased by approximately 30 % and the useful 

energy requirements, i.e. insulation, were increased on average by 15 %.  

The standard of requirements for saving energy has been constantly raised at shorter 

intervals over the recent years. The EnEV 2009 reduced the limits that were set out in EnEV 

2002 by approximately 30 % and the EnEV 2012 by another 20 %. Discussions about a 

further amendment (EnEV 2015) are currently taking place [54]. An example of the actual 
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energy certificate can be found in [48]. Except the EnEV another regulation dedicated to the 

use of renewable energy for heating has been released in 2009 and adapted in 2012 

(Erneuerbare-Energien-Wärmegesetz [27]).  

On 19th of May 2010, the European parliament and the council approved a reformation of 

the Energy Performance of Buildings Directive (EPBD), which was firstly released in 2002, 

and determined that by the end of 2020 EU member states must ensure that all newly-

constructed buildings consume ‘nearly zero’ energy and that their energy needs must be met, 

to a significant extent, by renewable energy sources, including on-site or nearby produced 

energy [64]. 

The public authorities are requested to set an example by owning or renting only these 

kinds of buildings by the end of 2018 and by promoting the conversion of existing buildings 

into the 'zero' or at least 'nearly-zero' energy buildings [65] – though the standard still has to 

be defined in detail on a European and a national level. Until 2015 the Member States must 

improve the energy performance of new buildings [64]. For the intermediate target the 

passive house standard has to be applied [153]. 

A passive house generally indicates a house in which passive systems are used as the main 

means to provide light, heat and ventilation [128]. In the extended definition of the passive 

house, not only the energy demand for heating is included, but also the demand for domestic 

hot water and energy for electric appliances. A high number of low energy buildings have 

already been built in Europe [21]. 

2.2 Photovoltaic and architecture 
Among the different renewable energy sources, photovoltaic exhibit certain features that 

make them particularly suitable for applications in urban environments. The silent and zero-

emissions PV modules can be installed directly on the building where the energy is needed. 

The PV components can be applied to buildings in different ways: as building-

added / attached PV (BAPV) and as building-integrated PV (BIPV). BAPV products require 

additional mounting systems and are typically used for retrofits, whilst BIPV products 

become an integral part of the building envelope and can substitute envelope components 

entirely. Both concepts must take into account constructional, energetic and architectural 

aspects to the same extent.  

In principle, it is possible to use photovoltaic modules on all building surfaces that are 

directly exposed to sunlight. PV modules can be used for the generation of electricity e.g. 
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on / in roofs as opaque or semi-transparent envelope surfaces or as a sun shading and have a 

structural function consequently reducing construction costs [66]. Figure 2.2 shows 

schematically the principal PV installation options for roofs, facades and sunshades and in 

Figure 2.3 some pictures of application examples are presented. 

 

 
Figure 2.2: PV installation options for roof, facade and sunshade, adapted from [181]. 

   
(a) (b) (c) 

Figure 2.3: Examples of PV application for roofs (a), facades (b) and sunshades (c). 

A building-mounted PV system has a relationship with the building on which it is mounted 

and with the urban or rural landscape surrounding. Therefore the visibility of the PV 

installation plays an important role, e.g. reflections from buildings can affect traffic safety and 

the pedestrians’ perspective should also be considered. Facade-integrated PV on dominant 

urban structures, e.g. high-rise buildings, must be contemplated with respect to their 

appearance within the city skyline. Additionally, designers must consider building 

regulations, which prescribe the approved types, sizes and orientations of structures, and 

roofs.  

Due to technological and aesthetical improvements of PV modules, and because of the 

increased interest in renewable energy, PVs are nowadays accepted by public and architects. 
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This change of attitude makes it possible to use PV technology in buildings according to 

architectural considerations, which generates new architectural and market demands [115]. 

2.2.1 State of the art and new applications 

The use of PV in buildings is investigated since more than 20 years now [82]. However, in the 

last five years, this technology has been the fastest growing segment of the electricity power 

generation market [142]. The possibility to install PV modules right where the energy is 

needed and the continuously decaying price makes them ideally suited for the installation in 

urban environments.  

From a technical point of view, the use of PVs in buildings is an interesting option, as they 

can be placed on existing surfaces or even replace them. Nevertheless, their application is not 

an easy task, due to their great influence on the building aesthetic. As a consequence of the 

animosity of the public towards PVs, a lot of research has been directed towards making PVs 

physically more appealing, and technologically easy to use. Thanks to the research carried out 

in the recent years, PVs have changed from an electricity generator stuck on top of buildings 

to an increasingly aesthetic element of buildings [115].  

The potential of different building types (i.e. residential and non-residential buildings) 

with PV integration, as well, remarks on the building design process to optimize the energetic 

performance and to maximize the PV contribution to the buildings' energy use, can be found 

in literature [78], [90], [148], [172], also the application of the new thin film PV technology 

and components using it, i.e. (semi-)transparent PV (STPV) glazing are reported. 

Thin film PV technologies offer various new options for PV application. A number of 

different module designs are available. Nonetheless they can be substantially divided into PV 

glasses, sheets and roof membranes. Glasses are produced with different dimensions and 

transparency, allowing the designer a good daylight and thermal control, whereas sheets and 

roof membranes can be fabricated with different dimensions and applied to numerous 

materials ensuring their compability with traditional roofing systems. The great flexibility of 

thin film PV modules, with the possibility to freely define their shape can be the tool to 

transform architectural objects into energy generators [115]. 

Practical and theoretical applications using (semi-)transparent PV modules on the facade 

employing different PV technologies have already been published [37], [68], [145], [163], 

[183], [184]. Semi-transparent PV modules are created by using transparent materials, e.g. 

glass, for the encapsulation of the cells and for the construction of the module. The module 
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itself can be constructed in many ways: single, double or triple glass panes, with the position 

of the PV cells at the rear of the front pane or in front of the back pane [22]. PV modules 

composed of tiles of conventional multicrystalline or monocrystalline silicon cells in a 

sandwich of glass panes are already available on the market. These modules can be applied 

on the facade with different spacings of the PV cells. The optimal cell spacing and its impact 

on the thermal and visual comfort, as well as the energy generation have already been 

investigated for crystalline cells [22], [68], [114], [145], [183] and for amorphous silicon thin-

film PV modules [37], [163], [184]. In addition a cost analysis of semi-transparent PV 

modules used in skylight and as facade elements for office buildings has been made [99], 

[100].  

Semi-transparent PV modules simplify the use of daylight in buildings as their 

transparency depends on the PV type used and can be influenced within certain constraints. 

Currently, STPVs are gaining their niche and are widely use for PV facades in non-residential 

buildings. Current research include energy savings by the use of semi-transparent PV 

windows [116], thermal and optical aspects [75], [179], energy performance of single-glazed 

[104], double-glass [76], [101] and ventilated PV windows [35], [36], as well as their use in 

cooling and heating dominated climates [38], [73]. 

The use of see-through solar cells is suitable for places where people spend shorter 

periods of time [167]. However, organic PV cells, such as dye-sensitized (DSSC) and organic 

PV (OPV) technologies are recognized for their possible uses in large-area, flexible, and low 

cost power generation applications. They can be integrated into window panes in houses, 

high-rise buildings and automobiles, enhancing the functionality of transparent surfaces. 

Prototypes of the newest STPV, the OPVs have been fabricated with a visible transmittance 

higher than 55 % which is sufficient for their use on architectural glass [17], [97], [105]. Thus 

window integrated PVs for automotive and building applications are a promising market 

segment for these organic PV modules though they currently have a quite low power 

conversion efficiency of only 3 %. Their big advantage is a remarkable transparency with an 

outstanding color transmission very close to neutral density filters, i.e. giving a very natural 

white light color perception. The transmittances of OPVs can be adjustable by variation of the 

active layer thickness [39]. 

A real world example for the application of OPV modules is the west facade of the École 

Polytechnique Fédéral de Lausanne (EPFL) Convention Center (Figure 2.4) [18] in 

Switzerland, which has a large semi-transparent PV facade, with translucent and colored 
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photovoltaic panels (dye-sensitized solar cells). The PV modules are at the same time 

decoration, shadowing device and generating energy. The building’s facade has 1,400 solar 

modules, each one with a size of 35 cm by 50 cm creating a total surface area of 300 m². Aside 

the fact that translucent solar cells have lower efficiency which is inherent to their design and 

purpose, the efficiency of the DSSC has dramatically increased from 4 % to 15 % [28]. 

 

  
(a) (b) 

Figure 2.4: Outside (a) and inside view (b) of the innovative facade of the SwissTech Convention 
Center at École Polytechnique Fédéral de Lausanne. Copyright: STCC - EPFL, 2014 [166]. 

From an architectural point of view this is an excellent example where BIPV have a great 

aesthetical value. In terms of energy generation, their contribution to the overall building 

demand is secondary. Summarized, the significantly falling module costs offer the possibility 

to use PV modules not primarily for energy generation but also for aesthetic reasons, 

whereas the generation of electricity is just a benefit. 

2.2.2 Technologies for building integration 

The currently available PV products used on buildings are normally based on prefabricated 

composite modules assembled of various materials. There are two fundamentally different 

approaches for the use of PV technology. One is the conscious exploitation of the modularity. 

The whole spectrum of design options for the modules with respect to form, color, light 

transmittance and cell arrangement can be used on the building envelope to generate, larger 

sized patterns.  

On the other hand, some building tasks demand small-scaled elements with a 

homogeneous texture and unobtrusive coloring. These requirements are best met with thin-

film technology elements. Organic PV cells which already exist in the laboratory can become 

an attractive opportunity in future. It might be possible to apply them to various substrates in 
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the form of paints, varnishes or inks - expanding the design options and the applications for 

building-mounted PVs [181]. 

The development of building integrated PV (BIPV) systems follows the general 

development of PV modules. The evaluation of BIPV products involves, among others, 

properties such as solar cell efficiency, open circuit voltage, short circuit current, maximum 

efficiency and fill factor. It is expected that BIPV systems will improve further as PV modules 

do in general. Rising efficiencies and decreasing prices can be expected. Information about a 

variety of BIPV products with a representative selection of the state-of-the-art, such as, foil 

products, tile products, module products and solar cell glazing products can be found in [66], 

[74], [130]. A future vision of painted PV applications can be found in [130]. 

2.3 Net zero energy buildings: a new perspective 
In recent years, the topic of Zero Energy Buildings (ZEB) has received increasing attention. In 

2010, the European Commission and Parliament adopted the recast of the Energy 

Performance of Buildings Directive (EPDB) which requires that by the end of 2020 all new 

buildings shall be "nearly zero energy buildings" [64]. The U.S. Department of Energy (DOE) 

has established to achieve "marketable zero energy homes in 2020 and commercial zero energy 

buildings in 2025" [53]. 

According to the EPDB [64] the term "nearly zero-energy building" describes a building 

that has a very high energy performance. The remaining required energy should be covered 

to a bigger part by energy from renewable sources, produced on-site or nearby. While, 

according to U.S. Department of Energy [53] a "net-zero energy building" is a residential or 

commercial building with greatly reduced needs for energy through efficiency gains, with the 

balance of energy needs supplied by renewable technologies.  

Until early 2011 no national energy code explicitly defined a net ZEB [176]. However, 

many authors have been discussing about the definition and different concepts on how to 

calculate the annual energy balance for net ZEBs [69], [80], [109], [110], [119], [127], [149], 

[150], [171], [176]. Four commonly used definitions for low-energy buildings are: net zero 

site energy, net zero source energy, net zero energy costs and net zero emissions [171]. For 

other authors a net zero energy building simply has a neutral energy or emission balance 

over the period of one year [149], [176].  

In the long term, the life-cycle energy balance of buildings, including their production, 

maintenance and demolition/disposal should be taken into account for the definitions [176]. 
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The concept of a net ZEB also includes different concepts of supplying renewable energy: on-

site renewable, nearby renewable, off-site renewable, purchased 'green' energy from contracts, 

off-site wind turbines or combined heat and power plants (CHPPs) [110], [111], [150].  

For a better understanding of net zero energy buildings several European countries plus 

U.S., Canada and New Zealand are participating in the project called ‘Towards Net Zero 

Energy Solar Buildings’ (IEA SHC Task 40/ECBCS Annex 52) [158]. The objectives of the 

project are to study current net zero, near net zero and very low energy buildings and to 

develop a common understanding of a harmonized international definitions framework, 

tools, innovative solutions and industry guidelines. 

A French national research project, named ENERPOS, has focused on the development of 

new methods and tools for the design of net zero energy buildings in hot climates. The 

proposed method was applied to the first net ZEB in the French overseas territories. The 

building was designed to operate as long as possible using passive techniques, such as cross 

natural ventilation and daylight. The goal of an energy index below 50 kWh/(m² year) (which 

is three times below the mean ratio of local standard buildings) was obtained by computer 

simulations. The actual energy index after one year of operation was around 

31 kWh/(m² year), which is even 38 % below the simulation results. The used PV modules 

supplied 78 kWh/(m² year). The efficiency of the design method was proved and has been 

used by other professionals [69], [98]. 

The worldwide number of zero energy buildings is growing continuously [122], [175]. 

With the increasingly available efficient technical solutions, bigger and more intensively used 

building typologies have been realized as net ZEB since 2009. Most net ZEB projects were 

realized in north-westerly situated countries and climates. Up to now, the only existing net 

ZEB of South America is located in Argentina [159].  

2.3.1 Energy balance calculation methods 

Regarding the various definitions of zero energy buildings it is evident that the definition of 

the temporal and spatial boundaries significantly influences the degree of sustainability of a 

building [109]. Anyway even for full life-cycle analysis the granularity of the captured data 

has to be examined critically. This means even buildings whose life-cycle balance is zero 

might be not auto sustainable in an hourly analysis.  

Therefore different building analysis methods were developed characterizing different 

aspects of net ZEBs. Examples of net ZEB balance types are load / generation balance and 
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import / export balance [177]. The load / generation balance can be used in the building 

planning phase. It focuses on the balance between on-site generation and the calculated 

energy demand. The import / export balance focuses on the annual balance between 

weighted demand and weighted supply. It is a high-resolution method used to calculate the 

balance when monitoring (or simulating) a building. The main difference between the two 

balance types is the energy consumed by the building. 

Inside import / export balance, options of analyses are load matching and grid interaction 

(LMGI) which were developed to describe the energy exchange between net ZEBs and the 

grid infrastructure. Load matching refers to the relationship between a buildings energy 

demand and the on-site energy generation and the grid interaction describes the relationship 

between the energy imported / exported to the grid and its course. The definition for both 

indicators and examples of their application for different buildings can be found in [147], 

[168], [178] [160]. 

2.3.2 Photovoltaic in zero energy buildings 

Net ZEBs are changing the way of thinking about energy use. Based on the appraisal that 

most net ZEBs should or will be located in urban areas, PV technology seems one of the most 

suitable forms of on-site energy generation. However, the application of PV technology in 

ZEBs is not discussed very detailed in literature up to now [155], [156]. The existing 

literature focuses on the location of the generated energy by PV modules in the buildings 

footprint or on-site and its relationship with the architectural form of the building. In general 

the situation for buildings with more than two storeys in urban environments is quite 

complex. The problem is that PVs are usually the only source of renewable energy, the 

buildings' surface area is limited, the energy demand is high in comparison to the available 

surface and the conversion efficiency of PV modules is bounded as well.  

In those cases, the 'nearby' supply is an option for nearly net ZEBs together with other 

renewable energy sources. This implies that the issue of PVs in ZEBs should be discussed on 

the level of the building as well as on the level of building clusters or at an urban scale [79], 

[88]. An example of a net ZEB cluster is the 'Solarsiedlung Freiburg' in Germany. The houses 

were designed as ultra low energy houses (passive houses), consuming very little energy 

which could be balanced by PV systems on the roofs [79]. 
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3 Building context and simulation tools 

This chapter presents basic parameters and computer simulation tools used throughout the 

thesis. Furthermore the simulation sites, their geographic location and climates are 

explained, as well as building parameters and simulation tools used for the building analyses. 

3.1 Climatic characteristics 
For the simulations three cities were chosen based on their geographic location and their 

climatic differences. In Brazil the cities Fortaleza and Florianopolis were selected and in 

Germany Frankfurt. Although the thesis focuses on Brazilian cities, the German city was 

chosen for some comparisons due to its moderate continental climate. 

Brazil is the fifth largest country in the world and the largest in South America. It has an 

area of 8,574.761 km² and is measuring 4,345 km from its northern most point to its 

southern tip, and 4,330 km from east to west [84]. The city of Fortaleza/CE is located on the 

north-east coast of Brazil (3°43'6'' S, 38°32'36'' W). It is one of the Brazilian cities with the 

highest solar irradiation. It has an average daily irradiation of 5.67 kWh/m² day and its 

climate is classified as tropical savanna (Köppen climate classification: As) [45]. The city of 

Florianopolis/SC is located in the southernmost part of Brazil (27°35'49'' S, 48°32'58'' W). It 

is one of the cities with the lowest solar irradiation in Brazil, with an average daily sum of 

4.77 kWh/m² day, and it has a humid subtropical climate (Köppen climate classification: Cfa) 

[46].  

Germany is located in west-central Europe and it is the seventh largest country on that 

continent with an area of 357,021 km². The country measures 886 km from north to south 

and 636 km from east to west [49]. The city of Frankfurt is located in central West Germany 

(50°7'0'' N, 8°40'60'' E). It has a solar irradiation of 3.02 kWh/m² day [137] and an oceanic 

climate (Köppen climate classification: Cfb) [47]. 
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In Figure 3.1 the locations of the cities and their global solar irradiation are presented. 

According to the data, Florianopolis gains around 20 % more sunlight than the sunniest 

region of Germany – the nation with the largest installed PV power [142].  

 

 

 

 

 
(a) (b) 

Figure 3.1: Average annual sum of global irradiation on horizontal surface for Brazil (a) and Germany 
(b). SolarGIS © 2014 GeoModel Solar [162]. 

The climatic characteristics of the three cities are compared below. The outside 

temperature and the solar radiation incident on the four facades facing the cardinal 

orientations (East, North, West and South) are presented in Figure 3.2.  

As the cities Fortaleza and Florianopolis are located on the southern hemisphere the 

winter months are between June and August. Fortaleza has the highest annual average 

temperature of around 25 °C. Florianopolis, on the southern coast of Brazil, presents 

temperatures along the year around 20 °C. In the winter months (June-August) the 

temperatures can be as low as 5 °C. In contrast, in Frankfurt, which is located on the northern 

hemisphere, the winter months are between December and February. It has the highest 

temperature range of the three cities, ranging from -9 °C in winter to 33 °C in summer. The 

maximum temperatures for the three cities are quite similar, they range between 30 °C and 

35 °C. 
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Figure 3.2: Annual behavior of temperature and solar irradiation for the three cities. 

The solar irradiation level changes according to the facade orientation. Florianopolis and 

Fortaleza show a similar behavior but with different levels for the same facade. Frankfurt 

presents considerably different irradiation intensities compared to the Brazilian cities. The 

West and East facades show similar levels for the three cities, though the annual change is 

highest in Frankfurt. In Fortaleza the highest irradiation values are attained for the West 

facade, in Florianopolis for the North facade and in Frankfurt for the South facade.  

The weather files for the three cities, used for the simulations, are available on the website 

of the U.S. Department of Energy [55]. The weather files provided on the site are TMY2 (Test 

Meteorological Year) files. These files, resulting from the SWERA project, are a compilation of 

months from different years without extreme temperatures, generating a climatic year that 

never existed [43]. 

3.2 Representative office buildings 
As it is not possible to investigate all existing building types, representative models for 

Brazilian office buildings had to be defined. The characteristics of the representative 
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buildings were determined using data from a literature review [30], [31], [94], [113], [173]. 

The main building characteristics are: geometry, number of floors, building area, building 

material, envelope components, number of occupants and internal gains. 

The building types are based on researches3 carried out by Eletrobrás/PROCEL4 and the 

Federal University of Santa Catarina (UFSC). The study developed datasets for residential, 

commercial and service building prototypes, which were used for the development of the 

Brazilian energy efficiency labeling of buildings [24]. 

The office buildings prototypes were based on the database for commercial buildings 

defined by an on-site survey of buildings in different cities and regions of Brazil. Around 1103 

buildings were evaluated to determine their constructive characteristics and electricity use 

[30] 35 commercial buildings were analyzed regarding their constructive characteristics and 

41 offices in relation to their occupancy and internal gains [173].  

The building models defined in these studies were used as prototypes and adapted for the 

definition of further models. The geometric properties of the buildings were adapted 

according to the specific studies in this thesis and are presented in the according sections. 

3.2.1 Fixed parameters  

The parameters presented in this subsection remained constant for all studies and models 

within this thesis.  

3.2.1.1 Occupation and metabolic heat gain 

The office rooms have a nominal occupation of 14.7 m²/person and the hallway is occupied 

by one person. The metabolic heat gain for office activity according to [16] is shown in 

Table 3.1. 

 

Zone Activity Heat generation  
in W/m² 

Heat generation for  
a skin surface area of 1.80 m²/W Met5 

Office  Typing 65 117 1.1 
Hallway  Walking about 100 180 1.7 

Table 3.1: Metabolic heat gain for typical office activities [16]. 

                                                            
3 These studies were used for the development of the Brazilian energy efficiency labeling for buildings (RTQ-C 
and RTQ-R) within the Brazilian labeling program - PBE [24], [25]. 
4 Eletrobrás is a major Brazilian electricity producer; PROCEL, Programa Nacional de Conservação de Energia 
(national electricity conservation program), is a program for the rational use of energy developed in 1985 [56]. 
5 1 Met = 58.1 W/m² [16]. 
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3.2.1.2 Schedule  

The occupation period for lighting, equipment and HVAC is from 8 a.m. to 6 p.m. (10 h 

duration) and for the users it is from 8 a.m. to 12 p.m. and from 2 p.m. to 6 p.m. The hallway is 

occupied from 7 am to 19 pm (12 h duration). In the Figures 3.3, 3.4, 3.5 and 3.6 are the 

according schedules shown. On weekends the building is unoccupied, however, some loads 

remain. In the office these loads are equipment (15 %) and lighting (5 %); and in the hallway 

lighting (5 %) and elevator (5 % traffic and 30 % standby). For the elevator schedule 

EnergyPlus' dataset for commercial buildings was used [58]. 

 

  
(a) (b) 

Figure 3.3: Occupation schedule of the office rooms (a) and hallway (b). 

  
(a) (b) 

Figure 3.4: Lighting schedule for office rooms (a) and hallway (b). 

  
(a) (b) 

Figure 3.5: Equipment schedule (a) and HVAC schedule (b). 
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(a) (b) 

Figure 3.6: Elevator traffic schedule (a) and standby schedule (b). 

3.2.2 Variable parameters 

The parameters presented in this section are used for the reference models only. The 

improved and adapted models are using partially modified parameters which are presented 

explicitly where they were used. 

3.2.2.1 Construction parameters  

Materials and dimensions used for walls, roof and floor correspond to the most commonly 

ones found in literature [30], [94], [173]. The exterior walls are made of ceramic bricks with 

plastering on both sides and the roof is made of fiber cement tiles and slab of concrete. The 

absorption of the external wall corresponds to gray color with an absorption coefficient of 

0.65, and the absorption of the roof is 0.70, corresponding to the color of the fiber cement 

tiles. The reflections of the internal surfaces are: 0.80 for ceilings, 0.50, for walls and 0.20 for 

floors. 

Table 3.2 shows the materials used for the models and their physical properties: thermal 

conductivity (λ), density (ρ), specific heat coefficient (cp), thermal mass (Cth), thermal 

transmittance (U) and absorption (α). 
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Material Thickness  
in m 

λ in 
W/(m K) 

ρ in 
Kg/m³ 

cp in 
J/(kg K) 

Cth in 
kJ/(m² K) 

U in 
W/(m² K) α 

Roof        Ceramic roof tile 0.007 0.95 1900 840    Air space resistance  R = 0.15   187 2.42 0.70 
Concrete slab 0.080 1.75 2200 1000    Ceiling        Ceramic floor tile 0.019 0.14 530 900    Concrete slab 0.150 1.75 2200 1000 59 2.21 0.80 
Plaster 0.025 1.15 2000 1000    Exterior wall        Plaster 0.025 1.15 2500 1000    Brick 0.014 0.90 2900 920    Air space resistance  R = 0.16   125 2.47 0.65 
Brick 0.014 0.90 2900 920    Plaster 0.025 1.15 2500 1000    Interior wall        Plaster 0.025 1.15 2000 1000    Brick 0.014 0.90 1232 920    Air space resistance  R = 0.16   100 2.47 0.50 
Brick 0.014 0.90 1232 920    Plaster 0.025 1.15 2000 1000    Floor        Concrete slab 0.150 1.75 2200 1000    Mortar 0.025 1.15 2000 1000 345 3.04 0.20 
Ceramic floor tile 0.01 0.9 1600 920    Window        Clear glass 0.006     5.82  

Table 3.2: Physical material properties [4], [121]. 

3.2.2.2 Internal gains 

The most common equipment present in offices are air conditioning, computers, printers, fax 

machines, coffee makers, refrigerators, fans, water filters, televisions and radios. The internal 

gain used for equipment is 9.7 W/m². The HVAC system is a split unit with a coefficient of 

performance (COP) of 2.8 and a set point for heating of 18 °C and of 24 °C for cooling [94], 

[173].  

3.3 Building simulation 
For the energetic building analyses mainly two computer simulation programs were used. 

The first one is the program Daysim, which was used for daylight simulations [141]. It is used 

to assess the dynamic daylight behavior and to obtain data for the lighting dimmer system. 

The second one is EnergyPlus, which is used for thermal energy simulations [42], [61]. It is 

used to obtain the final energy consumption of the models. 
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3.3.1 Daylight simulation 

The daylight simulations were carried out using the program Daysim, which is a Radiance-

based daylight analysis software. Radiance, originally developed at the Lawrence Berkeley 

National Laboratory (LBNL), is a validated ray tracing program that enables physical 

(day)lighting simulations. The simulation is based on the backward ray-tracing algorithm. As 

input the scene geometry, materials, light sources and sky conditions are used. Principally the 

direct component, specular indirect component and diffuse indirect radiation components 

are calculated. In addition spectral radiance, irradiance and glare indices are determined. The 

results may be displayed as color images, numerical values and countour plots [40].  

Daysim provides data for assessing daylight and delivers hourly data for the activation of 

artificial lighting through an automatic control. It uses annual climate data for the building 

site to calculate dynamic, climate-based daylight performance metrics based on sky 

conditions for a full year at a given building site [141]. 

In order to start the simulations it was necessary to prepare the computer models in a 

computer aided design (CAD) program. Daysim can import models from several applications 

provided that the file is in 3DS format [1]. The simulation results are provided as comma 

separated values (CSV) file containing the artificial lighting consumption data. This data is 

used for calculating electricity consumption using EnergyPlus.  

The lighting control system of Daysim contains a dimming control using a photoelectric 

sensor. It adjusts the intensity of the artificial lighting system according to the available 

daylight and keeps the lighting level in the environment constant. In order to determine the 

daylight present in the work plane, the internal environment was divided into small 

rectangular equally sized areas in which the averaged intensity is measured (Figure 3.7). The 

so formed grid of measurement points is located on a horizontal surface 0.75 m above the 

floor. To determine the incident lighting intensity, a photoelectric sensor was placed at all 

points of the measurement grid. 
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Figure 3.7: Measurement points for daylight determination. 

3.3.2 Thermal simulation 

Thermal energy simulations were made with the program EnergyPlus. EnergyPlus was 

developed as unifying successor of the two buildings simulation programs BLAST and DOE-2. 

It combines features from the both programs along with new capabilities. It was developed 

by using the heat balance based load calculation algorithm found in IBLAST6 [169]. The core 

of the simulation is a model of the building based on fundamental heat balance principles 

[164]. The required energy (i.e. for cooling and heating) using a variety of systems and energy 

sources can be simulated [59].  

For the models using an artificial lighting control system the data of Daysim is used as 

input for the thermal simulation. This is possible using the Daysim CSV file, which provides 

data for assessing daylight and thus delivers hourly data for the activation of the artificial 

lighting through an automatic control [50], [138].  

 

                                                            
6 The Building Loads Analysis and System Thermodynamics (BLAST) program uses heat balance methods and 
supports for various methods of integrating the building simulation. The three main parts of the program 
provide a complete simulation of a building, its fan systems and equipment. It is possible to simulate all heat 
transfer of each building zone due to conduction, convection and radiation, comprising infrared and visible 
components [169].  
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4 Approach towards net zero energy office 
buildings and its application on different 
building types 

One of the main topics of this research and also one of the biggest subjects in sustainable 

build construction currently are net zero energy buildings (net ZEB). To transform buildings 

into ZEBs a number of measures have to be taken. Except constructive measures the new 

promising technology of PV windows should be examined.  

As the properties of windows have a strong impact in several ways on the energy 

consumption of buildings, the first part of this chapter is dedicated to the influence and 

revenue of PV windows. Different PV window systems are tested for two Brazilian cities and 

compared to a city in Germany, which though the climatic conditions are not the most 

favorable ones for PV technology, is one of the leading countries for PV development and 

application. In the second part a strategy for the transformation of buildings into ZEB 

buildings using several constructive measures and PV technologies on the example of one 

representative Brazilian office model is developed. The strategy was then applied to different 

office building models to check on one hand the influence of the building type on the energy 

consumption and, on the other hand, test in general the applicability of the method. The 

building type analyses are shown in the third part of this chapter and in the last part the 

influence of a dense urban environment surrounding on the energy consumption of the 

building types is examined.  

4.1 Performance of different window systems 
Regarding the building envelope, windows are nowadays one of the main influence factors on 

the overall building energy consumption [14], [15], [19], [91]. However, there are many high 

performance fenestration products on the market today [87]. The importance of windows is 

based on their manifold impact on the energy consumption. Their visible transmittance 
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influences the electric energy used for artificial lighting and their thermal transmittance 

greatly affects the energy consumption for cooling or heating. Beneath these two always 

present factors PV windows also generate energy and therefore have a third influencing 

factor. 

As windows were identified as an important factor on the overall energetic performance of 

a building the behavior of different window systems was investigated. In Figure 4.1 a scheme 

of the process for the window performance analysis is shown. For normal window systems, 

i.e. not including a PV, only a daylight analysis and a thermal analysis were made. The 

analysis including PV windows is divided into two parts: determination of the energy 

consumption and calculation of the electricity generation.  

 

 
Figure 4.1: Flowchart for the determination of the building energy performance. 

These analyses were carried out for the Brazilian cities Fortaleza and Florianopolis and 

were compared to the Germany city Frankfurt. As already explained, these cities were chosen 

due to their climatic differences (section 3.1). The comparison with Frankfurt is done to 

determine the relevance of PV windows for the Brazilian climate, since the country has high 

solar irradiation levels and little investments in PV technologies.  
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A typical office building with different window sizes was defined for the analysis. Five 

window types were evaluated in the office building model. Afterwards, the process for the 

daylight analysis and the methodology for the calculation of the generated energy by PV 

windows are explained in detail. Finally the procedure for a sensitivity analysis of the PV 

window transmittance and efficiency on the energetic building performance is described. 

4.1.1 Definition of the building model 

An office room representing typical Brazilian office buildings is adapted from [30], [94], 

[173]. For the simulations a room with a base area of 8 m x 11 m and a height of 2.7 m was 

used. Two different window sizes were used for the office room with different window to 

wall ratios (WWR) of the main facade: model W1 with a WWR < 50 %, which represents the 

most common window size for Brazilian office buildings and model W2 with WWR > 50 %, 

which represents office buildings with large windows (Figure 4.2). 

 

  
(a) (b) 

Figure 4.2: Scheme of the model geometry W1 (a) with a WWR < 50 % (window area = 8 m²) and 
W2 (b) with a WWR > 50 % (window area = 16 m²). 

The building characteristics, materials and internal heat loads were obtained from 

previous studies as described in section 3.2. The internal gain from artificial lighting is 

8 W/m², which represents an artificial lighting system with highly efficient lamps and 

adapted housings as it is available on the market today. In addition, an optional automatic 

dimming system controlling the artificial lighting was used in some of the simulations. The 

system turned artificial lighting on or off when daylight reached 500 lux [6]. In Table 4.1 the 

fixed parameters for all simulations are given. 

For the reference model (base model) a single glass window was used. The artificial 

lighting system was switched on throughout the whole occupation period, no photoelectric 

sensor or dimming system and no PV window were used. 
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The models were evaluated for the four cardinal orientations: North (0°), East (90°), South 

(180°) and West (270°). The simulation regarded the building as detached and accordingly 

no surrounding was considered. 

 
Thermal transmittance  
in W/(m² K) 

Wall 2.47 
Roof 2.42 

Thermal capacity 
in kJ/(m² K) 

Wall 200 
Roof 187 

Absorptance Wall 0.65 
Roof 0.70 

Average occupancy in m²/person 14.7 
Internal gains 
in W/m² 

Lighting 8.0 
Equipment 9.7 

Occupation period 
in hour 

Occupancy 8 am - 6 pm 
Lighting 8 am - 6 pm 
Equipment 8 am - 6 pm 

HVAC 

Type Window unit 
Set point 18 °C - 24 °C 
Cooling capacity in BTU/h Autosize 
COP in W/W 2.8 

Table 4.1: Summary of fixed simulation parameters for the office room models. 

4.1.2 Window models 

For the both room models, W1 and W2, five different window systems were analyzed. The 

first one is a single glass window with 6 mm thickness that represents the most common 

window used in Brazilian office buildings [30], [94]. The other models use a double glazing 

insulated window (IGU) with different glazing properties (Table 4.2).  

 

Window Configuration U-Factor  in 
W/(m² K) VT SHGC 

[A] 
Single glass Clear 6 mm 5.82 0.88 0.82 

[B] 
Double glazing Clear 3 mm / Air 12 mm / Clear 3 mm 2.73 0.81 0.76 

[C] 
Low-E double glazing Low-E #2 3 mm / Air 12 mm / clear 3 mm 1.68 0.70 0.40 

[D] 
Organic PV 

Low iron 3 mm / Organic PV / Air 12 mm / Low-E 
#3 3 mm 1.67 0.23 0.22 

[E] 
ASI Thru PV 

Low iron 3 mm / A-SI Thru PV / Air 12 mm / Low-
E #3 3 mm 1.67 0.09 0.13 

Table 4.2: Windows’ properties [95], [96]. 

All windows have a vinyl frame with an U-value of 1.70 W/(m² K). The two used PV 

windows and their modeling process are described in the next subsection as several 

programs and processing steps were necessary to integrate them into the EnergyPlus 
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simulation. Table 4.3 describes the properties of each glass layer used for the simulations in 

EnergyPlus. 

 

Glass Thickness 
in m 

U in 
W/m² K SHCG VT 

Solar Visible 

Transmit. Front 
refl. 

Back 
refl. Transmit. Front 

refl. 
Back 
refl. 

Clear 3 mm 0.003 5.91 0.86 0.89 0.834 0.075 0.075 0.899 0.083 0.083 
Clear 6 mm 0.006 5.82 0.82 0.88 0.771 0.070 0.070 0.884 0.080 0.080 
Low Iron 0.003 5.91 0.84 0.99 0.843 0.134 0.134 0.993 0.003 0.003 
Low-E #2 0.003 3.28 0.45 0.77 0.412 0.335 0.422 0.779 0.045 0.037 
Low-E #3 0.003 5.77 0.47 0.77 0.412 0.422 0.335 0.779 0.037 0.045 

Table 4.3: Glass layers' properties [95], [96]. 

4.1.2.1 Semi-transparent PV window  

The used semi-transparent PV window consists of a double glazed window with an 

encapsulated solar cell layer between the glass panes. The window is composed of two glass 

layers with a thickness of 3 mm separated by an air filled 12 mm wide gap. The PV cell is 

placed at the inner side of the exterior glass. To increase the photovoltaic performance a low 

iron solar glass was used for the outside pane. For the interior glazing a low-E coated glass 

was used to prevent the heat generated by the PV from entering the building (Figure 4.3).  

 

 
Figure 4.3: Schematic of the PV window. 

Two windows with different PV solar cell types were evaluated. One organic solar cell with 

an efficiency of 3 % and a visible transmittance of 30 % [D] [39], [103] and a Schott ASI® 

thru solar cell with an efficiency of 5 % and a visible transmittance of 8 % [E] [154] (Table 

4.4). 
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Layer Thickness 
in mm 

Conductivity 
in W/(m K) 

Reflectance (β) 
in % 

Absorption (ε) 
in % 

Transmittance (τ) 
in % 

Efficiency 
in % 

Glass outside 3 1.114 8.1 1.2 90.7 - 
Air gap 12 0.024 - - - - 
Glass inside 3 1.114 42.2 16.6 41.2 - 
Organic  0.05 0.24 10.0 60.0 30.0 3.0 
ASI Thru  2 0.19 12.5 79.5 8.0 5.2 

Table 4.4: Semi-transparent PV windows layers properties [95], [96], [103], [154]. 

The encapsulated PV cell was modeled and applied to the outer glass pane as a thin film 

within the Optics 6 program. For this purpose the PV was modeled as an applied film. For the 

modeling of the film itself a file was generated with the spectral data of the PV containing the 

transmittance, front reflectance and back reflectance for different wavelengths. Then, the file 

was imported into Optics 6 where the thin film could be added to the low iron glass. Finally, 

the thin film covered glass was imported into the WINDOW 7 program where the window 

system could be modeled and simulated. Both programs are a publicly available computer 

programs for calculating optical and thermal performance indices of windows systems [95], 

[96]. 

4.1.3 Generated energy: semi-transparent PV window 

As it is not possible to directly model a semi-transparent PV window in EnergyPlus [60] it 

was necessary to calculate the electricity generation of the PV cells as well as the total energy 

consumption separately. Another drawback of EnergyPlus is that there is no possibility to 

obtain temperatures inside a window [60]. This is important, as for a correct calculation of 

the generated electricity the PV cell temperature must be known. Hence some external heat 

transfer calculations were necessary to determine the PV cell temperature.  

These calculations were done using the following simplifications: the window frame and 

temperature conduction through the window frame are not considered, neither is the heat 

stored inside. The glass temperature and the temperatures inside the window system are 

calculated for each time step of the building simulation assuming non-transient conditions for 

that instant of time.  

As in EnergyPlus the available daylight as well as the thermal balance should be calculated 

correctly the window model was adapted. A semi-transparent PV window transmits light, 

generates heat and electricity. But as it is not possible in EnergyPlus to consider energy 

generation within a window the amount of electricity generated from the incident light must 
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be either transformed into a heat gain, transmitted light or reflected light. Transforming it 

into transmitted light would cause an overestimation of the available daylight inside. 

Increasing the absorption by the amount of the generated electricity would cause an extra 

heating up of the window and thus lead to an overestimation of the required cooling energy.  

Therefore the generated electricity was considered as an additional reflectance of the front 

surface of the outside glass. Consequently, the reflection of the outside glass as it is used 

within EnergyPlus is calculated by equation (4.1): 

𝛽𝐸𝑃 =  𝛽 + ( 1 −  𝛽 −  𝜀 )𝜂𝑃𝑉  (4.1) 

With 𝛽𝐸𝑃 reflectance used in EnergyPlus; 𝜀 , glass absorption; 𝜂𝑃𝑉, solar cell efficiency and 

𝛽 glass reflection. The reason therefore is: (1 – 𝛽 – 𝜀) is the normalized fraction of light that 

reaches the PV and which is partly converted into electricity. The major part of the solar 

energy is transformed into heat, only about 3 % will generate electricity for an organic solar 

cell and 5.2 % for an A-SI Thru – and this fraction is added as additional reflection.  

As the EnergyPlus simulation fully integrates the heat gains caused by the PV window and 

gives as output variables the surface temperature of the window (see also section 4.1.2.1), the 

convective heat transfer to the outside and the radiation heat loss to the outside, the 

calculation of the PV temperature is uncomplicated. Only the heat fluxes and temperatures 

inside the window system have to be calculated and it is only necessary to calculate the heat 

fluxes from one direction to the PV as the surface temperature of the outside glass already 

includes absorptions and heat transfers inside the window.  

 

  
(a) (b) 

Figure 4.4: Detailed scheme for solar radiation balance (a) and heat transfer (b). 
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Figure 4.4(a) shows details of the model where the incident solar radiation on the external 

surface is partially reflected (𝛽), transmitted (𝜏) and absorbed (𝜀) by the outside glass pane 

and PV layer. In Figure 4.4(b) the locations where temperatures were calculated and the 

incoming and outgoing heat transfers used in the equations are shown. 

To calculate the temperature of the PV layer, the temperature inside the outer glass pane 

has to be calculated by solving the heat balance equations below, which were based on [179]. 

From the heat balance of the outside glass surface, given in equation (4.2), the heat transfer 

into the glass pane, 𝑞̇𝑐𝑜𝑛𝑑1 , can be calculated.  

𝑞̇𝑐𝑜𝑛𝑣0 +  𝑞̇𝑟𝑎𝑑0 +  𝑞̇𝑐𝑜𝑛𝑑1 = 0 (4.2) 

With the heat transfer out of equation (4.2) the core temperature of the outside glass pane, 

𝜗𝐺, is calculated using equation (4.3), readily rewritten in equation (4.4).  

𝑞̇𝑐𝑜𝑛𝑑1 =  
1

𝑅
�12�𝑔𝑙𝑎𝑠𝑠

 (𝜗𝐺 −  𝜗𝑆) (4.3) 

𝜗𝐺 =  𝑞̇𝑐𝑜𝑛𝑑1
 𝑅

�1
2�𝑔𝑙𝑎𝑠𝑠

+ 𝜗𝑆 (4.4) 

The heat transfer between the outside glass pane and the encapsulated PV, node 𝜗𝑃𝑉 , is 

determined from the heat balance of the outside glass pane, equation (4.5). To solve equation 

(4.5), for the temperature of the PV layer, the absorbed solar energy in the first glass pane 

must be calculated using equation (4.6). For the calculation of the absorbed energy the 

reflection and absorption coefficients of the glass are used. 

−𝑞̇𝑐𝑜𝑛𝑑1 +  𝑞̇𝑐𝑜𝑛𝑑2 +  𝑞̇𝑎𝑏𝑠1 = 0 (4.5) 

𝑞̇𝑎𝑏𝑠1 =  𝑞̇𝑠𝑜𝑙(1 − 𝛽)𝜀 (4.6) 

Finally, the searched PV temperature is calculated by equation (4.7) reformulated in 

equation (4.8). 

𝑞̇𝑐𝑜𝑛𝑑2 =  
1

𝑅
�12�𝑔𝑙𝑎𝑠𝑠,�12�𝑃𝑉

 (𝜗𝑃𝑉 −  𝜗𝐺) (4.7) 
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𝜗𝑃𝑉 =  𝑅
�12�𝑔𝑙𝑎𝑠𝑠,�12�𝑃𝑉

�𝑞̇𝑐𝑜𝑛𝑑1 −  𝑞̇𝑎𝑏𝑠1� +  𝜗𝐺  (4.8) 

With 𝑞̇conv convective heat flux in W/m²; 𝑞̇rad, radiative heat flux in W/m²; 𝑞̇cond, 

conductive heat flux in W/m²; 𝑞̇abs, absorbed heat in W/m²; 𝜗𝑆, outside glass surface 

temperature in °C; 𝜗𝐺 , outside glass temperature in °C; 𝜗𝑃𝑉 , solar cell temperature in °C and R 

is thermal resistance in W/(m²K).  

The generated electricity [161] can then be calculated by multiplying the result of (4.9) by 

the window area. The temperature coefficient of maximum power output, K, was obtained 

from the PV manufacturer. The value for organic PV is +0.05 %/°C and -0.2 %/°C for ASI-Thru 

[131], [154]: 

𝑞̇𝑒𝑙 =  𝑞̇𝑠𝑜𝑙 (1 −  𝜀)(1 −  𝛽)𝜂𝑃𝑉[1 + 𝐾(𝜗𝑃𝑉 −  25)] (4.9) 

With 𝑞̇𝑒𝑙 generated electricity in W/m²; 𝑞̇𝑠𝑜𝑙 , solar radiation in W/m²; 𝜗𝑃𝑉 , solar cell 

temperature in °C; 𝜂𝑃𝑉, solar cell efficiency; 𝛽, glass reflection; 𝜀, glass absorption and K 

temperature coefficient of maximum power output. 

4.1.4 Daylight analysis 

The dynamic daylight results were analyzed using the Daylight Autonomy (DA) and Useful 

Daylight Illuminance (UDI) parameters.  

4.1.4.1 Daylight Autonomy analysis 

Daylight Autonomy (DA) is defined as the percentage of occupancy hours per year, for which 

a minimum illuminance level is reached by daylight [140]. For the analysis an illuminance of 

500 lux is used [6]. A grid of equally spaced sensors was defined, which was located in a plane 

0.75 m above the floor (Figure 3.7 in section 3.3.1). 

4.1.4.2 Useful Daylight Illuminance analysis 

Useful Daylight Illuminance (UDI) is defined as the annual occurrence of illuminances (E) that 

are within a predetermined range considered useful by occupants [123]. The used ranges 

are:  

• E < 100 lux: UDI fell-short (UDI-f);  

• 100 < E < 300 lux: UDI supplementary (UDI-s);  
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• 300 < E < 3000 lux: UDI autonomous (UDI-a)  

• 3000 < E lux: UDI exceeded (UDI-e). 

 

For the UDI analysis, the office room was divided into nine areas and the hours which 

attend the illuminance intervals were determined, the total of 2500 hours in the legend 

corresponds to the sum of occupation hours in one year. Figure 4.5 shows an exemplary 

result of an UDI analysis. The number written in each area is the number of hours the 

specified illumination level has been reached for this area throughout a year. In addition the 

different colors give a visual impression of the attained hour distribution inside the room.  

 

 
Figure 4.5: Exemplary UDI analysis, adapted from [106]. 

4.1.5 Sensitivity analysis 

For an appropriate use of PV windows a good understanding of their two key parameters 

optical transmittance and efficiency is crucial. To deepen this knowledge a sensitivity analysis 

for the both parameters in different situations was carried out. For the sensitivity analysis 

different efficiencies and solar transmittances were chosen. The values are based on different 

semi-transparent PV technologies found in literature [32], [39], [81]. As efficiency values: 

3 %, 5 %, 7 % and 9 %; and as transmittances: 0.10, 0.20, 0.25 and 0.30 were selected. Thus a 

total of 4 window systems is formed and 16 combinations of transmittance and efficiency 

have to be simulated. For the analysis the office room model W1 with a WWR < 50 % was 

used. Table 4.5 shows the windows' properties for different transmittances.  

 
Semi-transparent 
PV window 

PV 
transmittance 

U-Factor 
in W/(m² K) VT SHGC 

[PVA] 0.10 1.67 0.08 0.13 
[PVB] 0.20 1.67 0.16 0.18 
[PVC] 0.25 1.67 0.20 0.20 
[PVD] 0.30 1.67 0.23 0.22 

Table 4.5: Windows' properties used for the sensitivity analysis. 
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4.2 Strategies towards zero energy office buildings  
To transform buildings into ZEBs generally a number of measures have to be taken. In this 

section, a strategy combining and systematizing some measures is developed. This is 

performed using one typical high rise building type. Afterwards the strategy is applied to 

other building models to check its applicability for different types. 

For the assessment of the building energy consumption computer simulations using the 

programs Daysim and EnergyPlus, as explained in section 3.3, were used. The transformation 

of the building was divided into three main steps: prototype case, optimal case and zero 

energy case (Figure 4.6). To determine the necessary measures to progress from the 

prototype case to the optimal case heat balance calculations and energetic performance 

analyses were made. For the transformation of the optimal case to a ZEB, PV elements were 

added to the building, their application and sizing is described in this topic. The simulations 

were carried out for the Brazilian cities Florianopolis and Fortaleza. 

 

 
Figure 4.6: Flowchart representing the steps to reach the zero energy case.  
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4.2.1 Definition of the building model 

A representative model for Brazilian office buildings was defined based on a literature review 

[30], [173]. The high rise building is composed of five office rooms and a hallway. It has 

25 m x 8 m and a total height of 29.7 m. The building has eleven floors with 200 m² per floor 

and a total area of 2200 m² (Figure 4.7). A single clear glass is used for the windows and the 

WWR is 20 % for North and South facades (largest facades). 

 

  
(a) (b) 

Figure 4.7: Perspective view (a) and floor plan (b) of representative office building. 

The building characteristics, materials and internal heat loads for the prototype case were 

obtained from previous studies (section 3.2). The internal gains from artificial lighting were 

adjusted to values proposed by ASHRAE [16]: 12 W/m² for office rooms and 5 W/m² for 

hallways. Elevators were considered in the simulations of the hallways to represent the 

conditions of vertical buildings as closely as possible. The number of required elevators was 

calculated according to the traffic (number of people) by [3] and the program Elevate v. 6.01 

[57]. The energy consumption of the elevator for standby and traffic was calculated using the 

KONE Quick Energy on line calculator [92]. Table 4.6 presents a summary with the 

parameters used for the prototype building. 
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Thermal transmittance  
in W/(m² K) 

Wall 2.47 
Roof 2.42 

Thermal capacity 
in kJ/(m² K) 

Wall 200 
Roof 187 

Absorptance Wall 0.65 
Roof 0.70 

Office average occupancy in m²/person 14.7 
Hallway occupancy in persons 1 

Internal gains 
in W/m² 

Lighting for office 12.0 
Lighting for hallway 5.0 
Equipment 9.7 
Elevator 367.5 

Occupation period 
in hours 

Occupancy 8 am - 6 pm 
Lighting 8 am - 6 pm 
Equipment 8 am - 6 pm 

HVAC 

Type Window unit 
Set point 18 °C - 24 °C 
Cooling capacity in BTU/h Autosize 
COP in W/W 2.8 

Table 4.6: Parameter summary of the prototype case. 

The building was oriented with the largest facades towards North and South and the 

hallway facing North. This arrangement was used, as it is favorable for a PV application. This 

is especially relevant, since the potential of PV windows should be evaluated. The building 

surrounding is not considered within the simulations. 

4.2.2 Building analysis 

For the transformation of the building the main sources for energy consumption were 

determined using the building’s heat balance and energy balance. The calculation of either 

one is described in this section.  

4.2.2.1 Heat balance 

A heat balance calculation was performed for the whole building using outputs from 

EnergyPlus. The program considers heat conduction, convection and radiation between inner 

surfaces and the outside environment with detailed outputs for the different surfaces of the 

building (roof, ceiling / floor, ground floor, walls and windows). Additionally, the internal 

gains from infiltration, cooling, heating, lighting, people and equipment were regarded as well 

for the calculation [112].  

The output of the thermal building simulation used for the heat balance is reported hourly. 

For the calculation of the heat flow through a wall EnergyPlus has a special output variable 



4 Approach towards net zero energy office buildings and its application on different building types 

 
40 

that gives the heat conduction on a surface. Using this variable has the advantage that 

internal gains due to radiation from other surfaces, as well as the heat flow through a wall are 

already considered. For windows it is possible not only to obtain the heat gain due to 

conduction but also the transmitted radiation [59], [60].  

The result of the heat balance is the heat entering or leaving the balanced volume for the 

calculation period. As the heat balance is calculated using the output of the different surfaces 

using a spreadsheet program it is possible to easily identify the largest heat sources for an 

environment and thus to take efficient measures to reduce the energy consumption. The heat 

balance calculation can be represented by equation (4.10); where, 𝑞̇ is the heat flux in Wh.  

 

𝑞̇𝐿𝑖𝑔ℎ𝑡𝑠 + 𝑞̇𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝑞̇𝑊𝑖𝑛𝑑𝑜𝑤+𝑞̇𝑊𝑎𝑙𝑙𝑠 + 𝑞̇𝐹𝑙𝑜𝑜𝑟  

+ 𝑞̇𝐶𝑒𝑖𝑙𝑖𝑛𝑔 + 𝑞̇𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑞̇𝐻𝑒𝑎𝑡𝑖𝑛𝑔 + 𝑞̇𝐶𝑜𝑜𝑙𝑖𝑛𝑔 = 0 
(4.10) 

 

4.2.2.2 Energy balance 

The energy balance evaluates the totally consumed and produced energy in the building. 

EnergyPlus provides information on the final energy used by equipment, lighting, cooling, 

heating and fans and the energy generated by the photovoltaic panels on the roof, facade and 

overhangs [59], [60]. The energy generated by PV windows was calculated separately 

according to section 4.1.3. Therewith the energy balance is calculated by equation (4.11), 

where 𝐸 is electric energy in kWh/mo. 

𝐸𝑟𝑒𝑠 =  𝐸𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝐸𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 + 𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 + 𝐸𝐹𝑎𝑛𝑠 + 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐸ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝐸𝑃𝑉 (4.11) 

4.2.3 BIPV and BAPV: applications and calculations 

The reduction of the energy consumption is a necessary step in the transformation of a 

building to a ZEB but it is not sufficient. The used electric energy must be generated. For the 

on-site generation especially in urban environments PV panels are an optimal solution. Below 

the usable PV technologies and types are explained. 
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4.2.3.1 Photovoltaic technologies 

Different photovoltaic technologies were chosen for the building envelope. The selected 

crystalline (m-Si) and thin film (CSI) solar cell technologies have the highest efficiency [41] 

available on the market today. The m-Si panels were placed on the roof and the CSI ones on 

the facade and on the overhangs. The organic (OPV) solar cell integrated into the window was 

selected due to its homogenous semi-transparent characteristics [39]. In addition, plastic 

encapsulated organic solar cells promise low production costs. However, until now this PV 

type is not available on the market (Table 4.7).  

 

Manufacturer data Calculated 

Application Technology Manufacturer Model 
Module 
area 
in m² 

Power 
in W 

EFFSTC  
in % 

ktemp  
in 
%/°C 

EFFNOCT 
in % 

Roof m-Si Sunpower SPR-435-
NE-WHT-D 2.16 435 20.1 -0.38 18.6 

Facade/ 
Overhang CIS Solar Frontier SF-160-S 1.2 160 13 -0.31 12.2 

Window Organic 
(OPV) Laboratory - - - 3 +0.05 - 

Table 4.7: Characteristics of the different PV panel technologies. 

4.2.3.2 Photovoltaic application 

For this study all area suitable for PV application on the roof was used. A PV module coverage 

of 90 % for the East and West facades and 100 % for the windows in North facade and the 

overhangs on South facade. On the roof an inclination of 27° was used for the PV modules in 

Florianopolis and 3° in Fortaleza. Many references can be found in literature discussing the 

optimal angle for PV modules with different recommendations [44]. In this work a PV module 

inclination equal to the angle of the local latitude was used. Some tests with others tilts and 

the calculation for the PV module spacing on the roof are presented in Appendix A.1. For both 

cities the modules on the roof were oriented to North. On the facade and windows the PV 

modules were applied with a tilt of 90°, i.e. flat on the facade. On the overhangs the PV panels 

were applied horizontally (tilt of 0°) equal to the solar protection position.  

4.2.3.3 Generated energy: estimation and simulation methods 

Commonly an estimation method is used for the calculation of the generated energy. As this 

method is a lot easier to apply compared to a building simulation with EnergyPlus it has a 

great practical importance [107], [185]. To determine the accuracy of the estimation method 
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a comparison between the two methods was carried out. One main difference between the 

methods is the used incident solar radiation. Thus a comparison between the solar radiation 

data obtained from the program Radiasol and EnergyPlus was made to better understand the 

differences between the energy generated using the estimation method and using the 

simulation with EnergyPlus. The calculation of the methods is explained below and the 

results of the comparison for both methods are available in Appendix A.2. 

Estimation method 

There are different methods to estimate the generated energy by photovoltaic modules in 

buildings. For this study the installed power method was used. The photovoltaic modules 

were distributed on the available area of the building (roof, facade and overhangs). Some 

space was left blank for access, cables, installation and maintenance. The number of modules 

was multiplied by the photovoltaic’s nominal powers using equation (4.12) and the generated 

energy was calculated using equation (4.13) [185].  

𝑃𝑖𝑛𝑠 = 𝑛 𝑃𝑛𝑜𝑚 (4.12) 

𝑊𝑒𝑙 =  𝐸𝑑𝑎𝑖𝑙𝑦/𝐸𝑆𝑇𝐶  𝑘𝑒𝑓𝑓𝑃𝑖𝑛𝑠𝑡 (4.13) 

Where 𝑃𝑖𝑛𝑠 is the installed power in kW, 𝑛 is the number of modules and 𝑃𝑛𝑜𝑚 is the 

nominal power of the module in kW (for standard test conditions); 𝑊𝑒𝑙 is the generated 

electricity in kWh/day, 𝐸𝑑𝑎𝑖𝑙𝑦 is the daily solar irradiation on the module in kWh/(m² day), 

𝐸𝑆𝑇𝐶  is the solar irradiation for standard test conditions (1 kW/m²) and 𝑘𝑒𝑓𝑓 is the system 

performance correction factor of the inverter and connections. For this study a performance 

of 0.85 was used as recommended in literature [185]. 

The daily solar irradiation for each month of the year was obtained from the program 

Radiasol 2 [71]. The program calculates the incident solar radiation on horizontal and 

inclined surfaces for all orientations, according to the provided latitude and inclination. The 

program generates hourly and daily radiation values. 

Most PV technologies have a decreasing power output with an increasing operation 

temperature. This is the case for crystalline (m-Si) and the thin film (CIS) cells. For these 

models the corrected efficiencies (𝐸𝐹𝐹𝑁𝑂𝐶𝑇) were calculated according to equation (4.14). 
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The calculated values used for this method are presented in Table 4.7. For the simulation 

method, EnergyPlus does this calculus. 

𝐸𝐹𝐹𝑁𝑂𝐶𝑇 =  𝐸𝐹𝐹𝑆𝑇𝐶 �
100 −  ��𝑘𝑡𝑒𝑚𝑝� ∆𝑇�

100 � (4.14) 

Where 𝐸𝐹𝐹𝑁𝑂𝐶𝑇 is the corrected efficiency for an operation temperature of 45 °C; 𝐸𝐹𝐹𝑆𝑇𝐶  is 

the normalized efficiency of the module, 𝑘𝑡𝑒𝑚𝑝 is the temperature coefficient and ΔT is the 

temperature difference between the standard test conditions (STC) and the NOCT operation 

temperature of the module. To account for an operating temperature higher than the 25 °C of 

the STC, a NOCT of 45 °C and thus a ΔT of 20 °C were used [126], [185].  

Simulation method 

EnergyPlus offers three different mathematical algorithms for the calculation of the 

electricity produced by a PV module. The three different algorithms are equivalent to the 

three objects: simple, equivalent one-diode and Sandia and differ in the prediction accuracy 

[60]. The simple model allows the user complete control over the PV performance, while the 

other two models calculate more accurately the prediction of PV operating performance [72]. 

For this study the simple object was used. This model is intended to be useful for design 

purposes to calculate the levels for annual production and peak power. EnergyPlus calculates 

the incident solar irradiation depending on the module inclination and orientation, 

considering shading and reflections.  

4.3 Potential of different office building types to reach an 
equalized energy balance 

In this section office building types with different volumetries are described to determine 

their potential to be zero energy, nearly zero energy or efficient buildings. Different building 

types were defined and converted into zero energy buildings using the methods presented in 

section 4.2. Figure 4.8 summarizes the steps taken. 

According to the flowchart after applying the strategies for zero energy two evaluations 

were performed. To show energetic improvements of the buildings and examine their 

interaction with the electricity grid and to prove the suitability of PV technology for their 

application under the Brazilian climatic conditions, load matching and grid interaction 

indicators [147], [178] were used. To lead the limits of the different types their number of 



4 Approach towards net zero energy office buildings and its application on different building types 

 
44 

storeys was increased or decreased until they reached an equilibrated annual energy balance. 

Figure 4.8 summarizes the steps taken. 

 

 
Figure 4.8: Flowchart to obtain the potential of different office building types to be ZEBs. 

4.3.1 Definition of the building models 

For the simulation eight representative office types were defined based on a literature review 

[30], [113]. To cover a wide range of the present Brazilian office buildings, types with a total 

built area ranging from 360 m² to 25,500 m² were considered. The types cover small, large 

and vertical office buildings. The models have different dimensions, heights, ceiling heights, 

number of floors and total area.  

The used simulation parameters, building materials, devices, window to wall ratios 

(WWR) and internal gains (i.e. for occupancy, lighting, equipment, HVAC) are the same as 

used for the optimal and zero energy buildings described in section 5.2.1.  

Though for an optimal use of the available solar radiation the buildings should be oriented 

with the largest facades to North / South in Brazil. Anyway the simulations were also made 

with the largest facades oriented towards East / West, as due to the buildings' environments 

it is not always possible to freely choose the orientation. However, for the simulations in this 

section, the surrounding was no considered. Table 4.8 presents the eight types, floor plans 

and characteristics. 
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Perspective view Floor plan Characteristics 
T1   

 
 

Dimensions in m 80 x 40 
Ceiling height in m 3 
Height in m 6 
Total area in m² 6400 
N° of floors 2 

 

T2   

  

Dimensions in m 10 x 9 
Ceiling height in m 2.7 
Height in m 10.8 
Total area in m² 360 
N° of floors 4 

 

T3   

 
 

Dimensions in m 50 x 45 
Ceiling height in m 3 
Height in m 15 
Total area in m² 11250 
N° of floors 5 

 

T4   

 
 

Dimensions in m 26.7 x 7.5 
Ceiling height in m 2.7 
Height in m 16.2 
Total area in m² 1201.5 
N° of floors  6 

 

T5   

 
 

Dimensions in m 30 x 30 
Ceiling height in m 3 
Height in m 30 
Total area in m² 9000 
N° of floors 10 

 

T6   

 
 

Dimensions in m 25 x 8 
Ceiling height in m 2.7 
Height in m 29.7 
Total area in m² 2200 
N° of floors 11 
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Continuing Table 4.8. 
Perspective view Floor plan Characteristics 
T7   

 

 

Dimensions in m 68 x 20 
Ceiling height in m 2.7 
Height in m 35.1 
Total area in m² 17680 
N° of floors 13 

 

T8   

  

Dimensions in m 50 x 30 
Ceiling height in m 3.5 
Height in m 59.5 
Total area in m² 25500 
N° of floors 17 

 

Table 4.8: Characteristics of the different building types. 

For the simulations the thermal zones were divided into office rooms and core. The core 

consists of hallways, stairs, elevators and bathrooms. This zone has no air-conditioning, 

except for the type one (T1). The elevators were dimensioned according to the buildings’ 

demands. Table 4.9 presents the data of the used elevators for each type.  

 

Type 
Building data Elevator data Input EnergyPlus  
Net area 
in m² 

Height 
in m 

N° of 
people 

N° of 
elevators 

Capacity 
in kg 

Traffic in 
kWh/y 

Standby 
in kWh/y 

Traffic in 
W/floor 

Standby  
in W/floor 

T1 5200 6.0 354 2 450 165 2597 135.1 296.5 
T2 360 10.8 24 1 450 260 2599 53.2 74.2 
T3 10575 15.0 719 4 450 324 2598 212.3 237.3 
T4 1067 16.2 73 1 450 348 2598 47.5 49.4 
T5 9000 30.0 612 4 600 782 2620 256.2 119.6 
T6 1788 29.7 122 2 450 574 2597 85.5 53.9 
T7 16089 35.1 1094 6 900 1590 2670 601.0 140.7 
T8 24225 59.5 1648 8 1650 4914 2953 1893.9 158.6 

Table 4.9: Data of the used elevators. 

4.3.1.1 Photovoltaic application 

The PV modules applied on the roof, facades, solar protections and windows are the same as 

described in section 4.2.3.1. The installed PV power was defined according to the building’s 

demands. Though all suitable surfaces were used, for some buildings the available surface 
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was not sufficient to supply the required energy demand. Table 4.10 presents the applied PVs 

for each city, type, orientation and surface (roof, facade, solar protection and window). As 

explained above, the buildings were evaluated with the largest facade oriented to North-

South (NS) and East-West (EW). Hence, for the same type there are different surfaces with PV 

application.  

 

City Type Roof Facade  Solar Protection Window 
N E S W N E S W  

Florianopolis 

T1_NS             
T2_NS             
T3_NS             
T4_NS             
T5_NS             
T6_NS             
T7_NS             
T8_NS             
T1_EW             
T2_EW             
T3_EW             
T4_EW             
T5_EW             
T6_EW             
T7_EW             
T8_EW             

Fortaleza 

T1_NS             
T2_NS             
T3_NS             
T4_NS             
T5_NS             
T6_NS             
T7_NS             
T8_NS             
T1_EW             
T2_EW             
T3_EW             
T4_EW             
T5_EW             
T6_EW             
T7_EW             
T8_EW             

Table 4.10: PV application for Fortaleza, different building types, orientations and surfaces. 
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4.3.2 Load matching and grid interaction analysis 

The energy import / export balance was analyzed using the load matching and grid 

interaction indices described by [147], [178]. The load matching index describes how the 

local energy generation coincides with the building load. It measures the degree of overlap 

between generation and demand profiles. In contrast, the grid interaction index specifies the 

energy exchange between the building and a power grid [147]. 

The energy exchange between net ZEBs and the grid infrastructure can be analyzed in 

hourly, daily, monthly and annual periods and the results for the periods may show large 

differences. The monthly net balance is a simplified approach for the design phase, when 

high-resolution profiles are not available. High-resolution simulation or monitoring is needed 

to describe daily and hourly fluctuations [147], [178]. 

Therefore, the quantitative load matching and the grid interaction indicators7 were used. 

As already described, all simulated buildings use only electricity as energy source and the on-

site generation is based on photovoltaic modules. The EnergyPlus output report was used to 

calculate the hourly, daily, monthly and annual load balance. To calculate the load match 

index the equation (4.15) was used [178]. Where, 𝑓𝑙𝑜𝑎𝑑,𝑇 is the index in % and T is the time 

interval in hours (h), days (d) or months (mo). All generated power exceeding the load is 

considered as part of the grid electricity, so that the maximum load match index becomes 1 or 

100 %.  

𝑓𝑙𝑜𝑎𝑑,𝑇 = 𝑚𝑖𝑛 �1,
𝑜𝑛 𝑠𝑖𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑙𝑜𝑎𝑑 �  100 (4.15) 

To calculate the grid interaction index the equation (4.16) was used [178]. Where, 𝑓𝑔𝑟𝑖𝑑,𝑇 is 

the index in %, T is the time interval in hours (h), days (d) or months (mo) and net grid is the 

energy obtained or supplied to the grid (net grid is positive for energy supplied to the grid 

and negative for energy obtained from the grid). Equation (4.17) shows how to calculate the 

standard deviation used as the annual grid interaction index. 

𝑓𝑔𝑟𝑖𝑑,𝑇 = 𝑛𝑒𝑡 𝑔𝑟𝑖𝑑
𝑚𝑎𝑥|𝑛𝑒𝑡 𝑔𝑟𝑖𝑑| 

100 (4.16) 

                                                            
7 There are different quantitative indicators to describe the aspects of the Net ZEBs performance [147], [178]: 
• Load matching: the temporal match of the energy generation on site with the building load; 
• Grid interaction: the temporal match of the energy transferred to or from a grid; 
• Fuel switching: the match between the types of energy imported and exported. 
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𝑓𝑔𝑟𝑖𝑑,𝑦𝑒𝑎𝑟 = 𝑆𝑇𝐷�𝑓𝑔𝑟𝑖𝑑,𝑇� (4.17) 

4.3.3 Development of standard ZEB type 

In this section volumetric modified versions of the office buildings described above were 

used to obtain a rule of thumb for standard ZEB type. The eight types described above were 

used as base models to derive new ones. Floors were added or subtracted from the base 

models until they reached zero energy buildings. PV modules were added on all available 

surfaces. The only surface with PV modules which remained the same is the roof. This made it 

possible to analyze the geometrical characteristics of ZEBs.  

4.3.3.1 Photovoltaic application 

For this step PV modules were applied on all available surfaces. As described in section 

4.3.1.1, in Florianopolis no solar protection was needed for the South side windows, so no PV 

modules were applied in this place.  

4.4 Influence of the urban context on the solar energy generation 
The urban environment has a significant influence on the energetic performance of buildings 

compared to unobstructed sites [8], [125], [139], [165], [170]. The available solar irradiation 

in an urban environment is influenced by different urban density parameters and it has 

already been demonstrated that this affects the energy use for the different storeys [165]. 

Studies about the effect of urban design parameters (i.e. street width, density, geometrical 

forms and orientation) on the solar irradiation on buildings can be found in literature [33], 

[63], [89], [143], [165]. Figure 4.9 presents a flowchart of the applied steps. 

In this section the influence of the surrounding on the PV module applicability is examined. 

Surroundings with different geometric properties are modeled and a method for the analysis 

of a building within its surrounding is presented using the computer program Diva-for-Rhino. 

Finally, with a detailed analysis of the available solar irradiation a strategy for the 

redistribution of the PV modules is developed.  
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Figure 4.9: Flowchart of the urban environment influence on solar energy generation. 

4.4.1 Definition of the urban layout 

The models used for simulations were defined to comprise different urban scenarios. The 

purpose is to model various urban layouts without needing to configure a real city, thus 

making it possible to evaluate the performance of a building and to test the influence of 

different parameters. 

The eight building types introduced in section 4.3.1 where analyzed in an urban context to 

evaluate the impact of the surrounding on the available solar irradiation. For all simulated 

building types a constant uniform urban plan was used. This means the urban plan and the 

spacing between buildings as it can be seen e.g. in Figure 4.10(a) remaind the same for all 

simulations of one buildings type. At the same time, two different elevation distributions 

were defined: a uniform one and a random one, as illustrated in Figure 4.10(b) and Figure 

4.10(c). Although randomness in the urban plan is recommended for the planning of high 

density solar cities [33] commonly a uniform plan is used in cities today. This study intents to 

estimate the impact on the solar energy generation rather than realistically model urban 

contexts. 
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(b) 

 
(a) (c) 

Figure 4.10: Urban layouts: uniform urban plan with (a) uniform elevation (b) and random 
elevation (c). 

The urban context is represented by 25 buildings, forming a 5 x 5 mesh of regularly 

distributed buildings. Only the building in the center of the mesh, marked in white, is 

analyzed (Figure 4.10(a)). For the urban plan density, a site coverage ratio of 40 % was used. 

The site coverage ratio is calculated by dividing the building's footprint by its site area. The 

used value of 40 % was chosen according to the city planning guidelines for Florianopolis and 

Fortaleza [134], [135]. The plot ratio, which is defined as the ratio of a building's total floor 

area to the site area, is fixed for the uniform elevation layout but varies for the random 

elevation layout, according to building height (number of floors). The building height is one of 

the parameters most influencing daylight availability and solar irradiation on the facades 

within urban contexts [102].  

Random cases 

As the distribution and height of the surrounding buildings has large impact on the building 

performance a number of 10 different random contexts were used for each building model. 

The random layouts were generated using the uniformly distributed random number 

function of the Excel program. The heights of the surrounding buildings were determined by 

heights of the eight prototype models as presented in Table 4.11.  
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Building 
model 

Height  
in m 

1 6.0 
2 13.7 
3 21.4 
4 29.1 
5 36.9 
6 44.6 
7 52.3 
8 60.0 

Table 4.11: Buildings’ heights used for the random urban contexts. 

Table 4.12 describes the 10 cases that were used for the simulation of the urban contexts 

for all building models, as well the heights used for the 24 surrounding buildings. The 

building number in column 1 of the table is equivalent to the building’s position according to 

the floor plan shown in Table 4.13 with the buildings' positions.  

 

Building Case 
1 2 3 4 5 6 7 8 9 10 

1 29.1 52.3 13.7 44.6 21.4 36.9 21.4 36.9 52.3 29.1 
2 44.6 6.0 44.6 60.0 29.1 6.0 21.4 52.3 6.0 13.7 
3 29.1 21.4 21.4 6.0 21.4 36.9 6.0 52.3 44.6 44.6 
4 21.4 29.1 6.0 36.9 44.6 44.6 52.3 13.7 44.6 29.1 
5 13.7 21.4 6.0 44.6 60.0 13.7 36.9 44.6 52.3 60.0 
6 60.0 52.3 36.9 44.6 6.0 29.1 21.4 44.6 52.3 44.6 
7 29.1 13.7 6.0 36.9 6.0 52.3 6.0 29.1 13.7 21.4 
8 29.1 44.6 21.4 21.4 29.1 44.6 36.9 13.7 44.6 6.0 
9 52.3 6.0 44.6 44.6 36.9 6.0 60.0 13.7 29.1 60.0 
10 60.0 60.0 21.4 6.0 36.9 60.0 13.7 44.6 6.0 60.0 
11 60.0 44.6 21.4 52.3 21.4 44.6 44.6 36.9 44.6 60.0 
12 13.7 13.7 6.0 21.4 52.3 13.7 44.6 29.1 44.6 52.3 
13 29.1 60.0 36.9 52.3 60.0 13.7 60.0 6.0 29.1 44.6 
14 13.7 21.4 52.3 6.0 21.4 44.6 29.1 60.0 44.6 21.4 
15 36.9 52.3 44.6 60.0 44.6 13.7 13.7 44.6 36.9 44.6 
16 6.0 29.1 6.0 36.9 60.0 36.9 60.0 29.1 60.0 29.1 
17 21.4 6.0 13.7 52.3 29.1 21.4 44.6 6.0 52.3 52.3 
18 21.4 21.4 21.4 6.0 60.0 36.9 52.3 36.9 60.0 29.1 
19 52.3 6.0 13.7 52.3 44.6 29.1 21.4 52.3 44.6 21.4 
20 21.4 6.0 6.0 60.0 52.3 21.4 44.6 13.7 52.3 52.3 
21 6.0 13.7 60.0 60.0 60.0 21.4 52.3 21.4 29.1 52.3 
22 21.4 29.1 44.6 21.4 36.9 21.4 36.9 21.4 60.0 60.0 
23 6.0 52.3 13.7 21.4 6.0 21.4 13.7 21.4 60.0 29.1 
24 21.4 21.4 36.9 36.9 44.6 60.0 44.6 52.3 52.3 60.0 

Table 4.12: Buildings' heights in m used for the random urban contexts. 
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1 2 3 4 5  

 
10 9 8 7 6  

 
11 12 Type 13 14  

 
19 18 17 16 15  

 
20 21 22 23 24  

Table 4.13: Building's positions in the urban layout. 

4.4.1.1 Prototypes for simulation 

Using the uniformly height distribution and the 10 random height distributions described 

above, results in 88 urban scenarios that were modeled. In addition all theses contexts were 

modeled for different orientations of the largest facades of the buildings, i.e. turned to North-

South and to East-West, and the two cities, Florianopolis and Fortaleza. This gives a total 

number of 352 simulations. Figure 4.11 presents the eight types and one example for their 

urban context.  

 

    

 
 

  
T1 T2 T3 T4 

    

    
T5 T6 T7 T8 

Figure 4.11: Building types in an example random height urban context. 

The dimensions of the building site and the urban layout for each building type were 

arranged and calculated using the methodology for urban energy planning developed by 
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[108]. It uses the building type and it is characteristics (i.e. ground floor area) to calculate the 

site plan for each type and consequently the city block. 

 

Type Building footprint area  
in m² 

Site area 
in m² 

Distance between buildings 
in m Plot ratio 

T1 3200 8000 32 0.8 
T2 90 225 6 1.6 
T3 2250 5625 28 2.0 
T4 200 500 7 2.4 
T5 900 2250 17 4.0 
T6 200 500 7 4.4 
T7 1360 3400 19 5.2 
T8 1500 3750 22 6.8 

Table 4.14: Urban contexts’ parameters for a site coverage of 40 %. 

Table 4.14 presents the sizes for the used site coverage of 40 %. It is noteworthy that, as 

the site area is fixed for each building type, the different types have different distances 

between buildings, which is one of the variables with the highest weight in the availability of 

solar radiation in urban contexts [63]. In this work, the distance between buildings is the 

same for all directions.  

4.4.2 Simulation of the solar irradiation on the envelope 

The solar irradiation on the buildings’ envelopes was obtained by computer simulations with 

Rhinoceros and Radiance programs using the Diva-for-Rhino plug-in [52]. Diva-for-Rhino is 

capable to calculate several environmental performance parameters for individual buildings 

and urban landscapes, such as radiation maps, which show the annual irradiation at 

preselected node locations [85].  

There are two metrics for the calculation of grid based radiation maps [52]. One is the 

cumulative sky method [144], which utilizes a Radiance module to create a continuous 

cumulative sky distribution that is then used in the radiance backward ray tracing. Another 

one is the daysim-based hourly metric, which was used in this work. This metric utilizes a 

climate-based metrics with climate data in form of *.epw files to simulate the sun and sky 

conditions. This annual calculation uses Radiance as calculation engine through Diva and 

takes the entire year into account [52]. 

For the simulation a three-dimensional (3D) model is necessary as input data. The 3D 

models were constructed by flat surfaces that represent the volumetry of the buildings and 
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the urban context. The mesh of points was distributed uniformly on all, i.e. vertical and 

horizontal, surfaces of the central building, as shown in Figure 4.12. The mesh points have a 

separation of approximately 0.50 m. The simulation results are expressed in kWh/(m² y). 

 

 
Figure 4.12: Distribution of the analysis points on the building's surfaces. 

For the simulations the reflectance of the outside walls and roofs was set to 0.75, in all 

cases (optimal and zero energy buildings). The surfaces of the surrounding buildings have a 

reflectance of 0.35 and the ground of 0.20. 

The simulations were carried out using the Daysim hourly based method, which runs a 

complete year simulation (from 01/01 to 31/12). For the Radiance parameters and 

geometric density the Diva default values were used. 

4.4.2.1 Required solar irradiation level for PV application  

To determine appropriate locations for PV panels on the envelope, a minimum solar 

irradiation level was defined based on economic considerations [86]. In general an 

amortisation period of half the life time can be considered a minimum requirement for an 

economic interesting investment [152].  

Using a very simplified economic calculus this demand leads to the consideration that after 

the whole lifetime the earned founds will roughly serve to replace the worn out modules with 

new ones. Though such an investment this is already considered as a good investment no real 

revenue is generated. Therefore the amortisation period has to be shorter than half the 

lifetime in which case the economic benefit would really be a motivation for the installation 

of a PV system. The lifespan of monocrystalline PV cells is about 30 years and for thin-film 

modules it ranges between 20 to 25 years. Taking into account the current and prospected 
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electricity costs and instalation costs for PV systems we can roughly estimate a meaningful 

minimal irradiation value for the installation of PV modules. 

In Brazil PV installations cost from approximately R$ 7000 per kWp in 2013 [9], [120]. The 

cost of electricity depends on city and building use, however, an average for commercial 

buildings is R$ 0.27 per kWh [12]. Using an inflation rate of 5.2 % (average value from 2003 

to 2013) [2], the energy price for the next years was calculated. Furthermore, a reduction of 

the PV installation costs of 60 % until 2020 was assumed for the calculations [132].  

Using the installation costs of 2013 the minimal required solar irradiation level on the 

envelope for a PV application is 1000 kWh/(m² y) for a simple payback of the investment 

costs over a period of 15 years (Table 4.15). However, considering the 60 % reduction of 

installation costs until 2020 (R$ 4200) a solar irradiation of approximately 800 kWh/(m² y) 

is sufficient for a payback within 10 years, which is the value that was used in this thesis as 

threshold for a PV application (Table 4.16). Anyway it must be pointed out that this calculus 

does not consider intersts, i.e. capital costs or maintance. So to determine the profability of a 

real system a calculus including these factors, mainly the capital costs, has to be made.  

 

Year / # of years Electricity price in 
R$/kWh 

Installation price kWp in R$/m² 
7000 
Required solar irradiation for a simple payback  
in kWh/m² y 

2021 / 8 0.41 2332 
2022 / 9 0.43 2042 
2023 / 10 0.45 1806 
2024 / 11 0.47 1610 
2025 / 12 0.50 1445 
2026 / 13 0.52 1305 
2027 / 14 0.55 1183 
2028 / 15 0.58 1078 
2029 / 16 0.61 986 
2030 / 17 0.64 905 
2031 / 18 0.67 832 
2032 / 19 0.71 768 

Table 4.15: Required number of years for a simple payback, with investment / PV installation in 2013. 
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Year / # of 
years 

Electricity price in 
R$/kWh 

Installation price kWp in R$/m² 
7000 4200 
Required solar irradiation for a simple payback  
in kWh/m² y 

2028 / 8 0.59 1614 969 
2029 / 9 0.62 1414 848 
2030 / 10 0.65 1250 750 
2031 / 11 0.68 1115 669 
2032 / 12 0.72 1000 600 
2033 / 13 0.75 903 542 
2034 / 14 0.79 819 492 
2035 / 15 0.83 746 448 
2036 / 16 0.88 683 410 
2037 / 17 0.92 626 376 
2038 / 18 0.97 576 346 
2040 / 19 1.02 531 319 

Table 4.16: Required number of years for a simple payback, with investment / PV installation in 2020. 

Additionally an extended lifespan of the PV panels, that can be greater than 30 years, could 

be considered as well – therefore a detailed economic evaluation has to be made for each case 

and depending on the objectives may lead to different results. Equation (4.18) can be used to 

determine a simple payback8 period for a specific solar system [77]. Where TP is the payback 

period; ICP is the total installed cost of the project; EAP is the estimate of annually produced 

electricity in kWh; and GP is the grid price per kWh. 

𝑇𝑃 =
𝐼𝐶𝑃

𝐸𝐴𝑃  𝐺𝑃 
 (4.18) 

Solar irradiation analysis 

The resulting solar irradiation levels on the envelope (roof and facades) from the DIVA 

simulation were imported into a spreadsheet program to evaluate the solar irradiation on 

each surface and storey separately.  

Table 4.17 shows an example on how the data was evaluated. The solar irradiation is given 

in kWh/(m² y). The columns (#0 to #10) present the urban contexts. The urban context #0 

has a uniform height distribution of the buildings and #1 to #10 have random height 

distributions; the lines of the table correspond to the building storeys for each orientation. 

The cells marked show the roof and facades (storeys) average9 solar irradiation which 

reached the required level of 800 kWh/(m² y). 

 
                                                            
8 A payback period is the length of time required to cover the cost of an investment [77]. 
9 The average solar irradiation for each surface is calculated by the annual average of all measurement points. 
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Orientation/ 
Storey 

Surface Case 
0 1 2 3 4 5 6 7 8 9 10 

Roof 1630 1568 1481 1581 1515 1439 1545 1415 1596 1496 1456 

North 

5 973 736 635 844 790 779 581 584 888 611 832 
4 948 708 575 823 769 750 524 571 879 551 821 
3 925 627 543 802 743 672 490 557 867 519 810 
2 904 566 537 776 713 613 482 528 853 507 793 
1 881 554 529 748 683 604 475 472 839 500 781 

East 

5 828 609 445 568 434 440 689 439 722 591 483 
4 798 568 427 545 421 423 668 421 707 551 454 
3 755 529 411 517 399 414 627 412 691 509 441 
2 700 500 383 490 374 387 596 385 665 483 426 
1 655 471 366 459 345 370 558 370 637 460 404 

South 

5 423 381 394 390 321 296 366 290 393 292 313 
4 407 369 385 381 313 288 353 282 384 286 304 
3 387 351 367 365 301 276 337 271 368 275 293 
2 363 331 345 344 285 261 317 255 347 261 278 
1 331 303 315 315 260 238 290 233 317 237 254 

West 

5 824 627 732 763 654 428 722 407 617 477 385 
4 796 605 714 745 623 416 708 376 581 444 373 
3 753 584 684 723 573 396 679 360 545 429 354 
2 702 556 663 698 528 371 658 345 518 410 337 
1 656 529 636 671 492 344 631 327 486 390 312 

 

Table 4.17: Average solar irradiation for each storey and surface in kWh/(m² y).  

4.4.3 Energy generation analysis 

To calculate the generated energy and the influence of shading on the energy consumption, 

the program EnergyPlus was used. The influence of the surrounding on the electric energy 

generation was evaluated for the eight types presented in section 4.3.1 using their original PV 

distribution. The results are used as a basis and for a comparison to the results obtained after 

the reapplication of the PV modules explained in the next section.  

4.4.4 New placement of PV modules 

The application of PV panels is restricted by technical and economical conditions. Regarding a 

building without any surrounding offers the full freedom to apply PV panels in any place that 

seems suitable according to the buildings site and orientation. In built environments this 

simple approach is no longer feasible as shadowing from others obstacles has to be 

considered. Using the results obtained in the solar irradiation analysis the places where PV 

panels could be applied were redefined.  
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Case 0 Case 1 Case 2 

  
 

Case 3 Case 4 Case 5 

   
Case 6 Case 7 Case 8 

   

Case 9 Case 10  

Figure 4.13: Example of selected contexts for PV re-application. 

For all models with the uniform height distribution, the placement of the PV panels was 

redefined only according to the solar irradiation level. For the random height contexts the 

urban context which offered most possibilities for an application of PV modules was chosen 

as a basis for the re-application. The distribution given by that context was used for the 

application for all contexts and a second simulation. Figure 4.13 shows as an example of the 

10 urban contexts for one building type. The uniform height context is market in blue and the 

random height urban context with the most surface (storeys) which reached the minimum 

level for PV application is marked in orange.  
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5 Results and Discussion 

This chapter presents and discusses the results of the computer simulations made following 

the methodological steps described in previous chapters. The chapter is divided into three 

parts. First, the results of the simulation of different window systems including semi-

transparent PV windows are analyzed. Second, the strategies and the possibilities to develop 

ZEB in Brazilian cities are presented. Finally, the influence of the urban surrounding on solar 

energy generation is shown. 

5.1 Influence of different window systems on the building energy 
consumption 

Five different window systems were evaluated related to their potential to reduce energy 

consumption for cooling and lighting, as well as generated electricity, in the case of semi-

transparent PV windows. This section starts with a study on the energy generation of semi-

transparent PV windows. Then the daylight analysis and a sensitivity analysis of the PV 

efficiency and the visual transmittance are shown. Afterwards a quantitative comparison of 

the building energy consumption for the five window systems is presented.  

5.1.1 Energy generation with semi-transparent PV windows 

To confirm the generated energy by the semi-transparent PV window the results obtained for 

the W2 office room model are presented in Figure 5.1. For all orientations the energy 

generation was higher for the Brazilian cities than for Frankfurt in Germany. As expected 

regarding the climatic data, Fortaleza achieves the highest energy generation values for both 

PV window types on the West facade: 798.6 kWh/y with the ASI-Thru PV and 493.6 kWh/y 

with organic PV. 

According to the higher cell efficiency of the ASI Thru PV the highest energy generation 

values for the other cities were also achieved with this PV window. In Florianopolis the North 

facade yields the highest energy generation with 750.3 kWh/y and in Frankfurt the South 

facade with 591.8 kWh/y. In all cases the generated electricity of the W1 office model 
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(window with an area of 8 m²) is almost the half as for the W2 office (window with an area of 

16 m²).  

 

 
Figure 5.1: Generated energy with different semi-transparent PV windows for the W2 office room 

model in Brazilian and German cities. 

5.1.1.1 PV temperature 

The temperature of the PV window is an important issue for the application of this 

technology in buildings, since high temperature values increases cooling loads and might be a 

hazard for occupants. Figure 5.2 shows the annual course of the maximum temperature of the 

PV window in comparison with a conventional Low-E window and the outside air 

temperature. The graphics is for the West facade in Fortaleza where the highest PV 

temperatures using an organic PV were obtained. 

 

 
Figure 5.2: Outside air, low-E glass and organic PV temperatures for the W2 office room model for 

West facade in Fortaleza. 
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The PV temperature reaches about 69 °C in summer months, which is 35 % higher than 

the temperature of the Low-E window and 54 % above the outside temperature of 32 °C. 

When using semi-transparent PV windows in office buildings the impact of their high 

temperature on the thermal comfort and occupant’s security have to be considered. 

5.1.2 Daylighting performance 

The results using the Daylight Autonomy (DA) metrics for an illuminance of 500 lux for 

different window systems and orientations are presented in the figures below. In 

Florianopolis, the illuminance near the window varies between 32 % and 98 % depending on 

the case. In contrast, for Fortaleza these values are between 53 % and 95 %. In Frankfurt the 

values are significantly lower, between 22 % and 91 %. This is caused by the latitudes of 

Florianopolis and Fortaleza where most daylight is available on the North facade. Using a PV 

window, it is possible to reach the required illuminance only near the window with 

WWR > 50 %: within a maximum depth of 3.5 m in Florianopolis and Fortaleza, in Frankfurt 

the maximum depth is 2.5 m. For a WWR < 50 % the distances decrease.  

 

  
(a) (b) 

  
(c) (d) 

 
Figure 5.3: DA (500 lux) for the North (a), South (b), East (c) and West (d) facades in Florianopolis for 

the different windows presented in section 4.1.2. 
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(a) (b) 

  
(c)  (d) 

 
Figure 5.4: DA (500 lux) for the North (a), South (b), East (c) and West (d) facades in Fortaleza for the 

different windows presented in section 4.1.2. 

  
(a) (b) 

  
(c) (d) 

 
Figure 5.5: DA (500 lux) for the North (a), South (b), East (c) and West (d) facades in Frankfurt for the 

different windows presented in section 4.1.2. 
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Tables 5.1, 5.2 and 5.3 show the Useful Daylight Illuminance (UDI) results for the North 

facade in Florianopolis, Fortaleza and Frankfurt, respectively. The results for East, South and 

West facade are shown in Appendix A.3.  

 
W1: WWR < 50% W2: WWR > 50% 
Window [A]  

  
Window [B]  

  
Window [C]  

  
Window [D]  

  
Window [E] 

  

 

Table 5.1: UDI for the North facade in Florianopolis.   
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W1: WWR < 50% W2: WWR > 50% 
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table 5.2: UDI for the North facade in Fortaleza.   
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W1: WWR < 50% W2: WWR > 50% 
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table 5.3: UDI for the North facade in Frankfurt.   
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The results show that the illuminance inside the rooms for models with a single glass [A], 

double glass [B] and low-E glass [C] have a similar behavior reaching the range of UDI-a 

(300 < E < 3000 lux) many hours per day, almost in the whole room for Florianopolis and 

Fortaleza and 2/3 of the room in Frankfurt. While for both PV windows (window [D] and 

window [E]) similar values are available only in a region close to the window (1/3 of the 

room).  

The UDI-e (3000 < E lux) represents the highest illuminance values and it is reached in the 

region near the window for the models with windows [A], [B] and [C] for the Brazilian cities; 

and it is practically nonexistent in Frankfurt. For the PV window models the UDI-e values are 

considerably lower and the region where they appear is smaller. Instead the values for the 

UDI-f (E < 100 lux) range are higher and their distribution reaches from the middle to the 

bottom of the room, as expected regarding the lower visible transmittance. 

5.1.3 Sensitivity analysis 

The influence of the transmittance and the efficiency of the PV on the final energy 

consumption for the office room model W1 with a WWR < 50 % can be seen in Figures 5.6, 

5.7 and 5.8 for all orientations (North, South, East and West) in Florianopolis, Fortaleza and 

Frankfurt. In the graphics the z-value equals the total energy consumption, the x-axis is the 

efficiency and the y-axis is the solar transmittance. For a better visualization and comparison 

the energy consumption values (z-values) were normalized with their respective maximum 

value. 
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(a) (b) 

  
(c) (d) 

Figure 5.6: Normalized energy consumption for the W1 office room model in Florianopolis for North 
(a), South (b), East (c) and West (d) orientations. 

  
(a) (b) 

  
(c) (d) 

Figure 5.7: Normalized energy consumption the W1 office room model in Fortaleza for North (a), 
South (b), East (c) and West (d) orientations. 
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(a) (b) 

  
(c) (d) 

Figure 5.8: Normalized energy consumption the W1 office room model in Frankfurt for North (a), 
South (b), East (c) and West (d) orientations. 

Table 5.4 presents the changes of the energy consumption for transmittances between 

10 % and 30 % and efficiencies between 3 % and 9 %, in relation to a transmittance of 30 % 

and an efficiency of 3 %. Negative values indicate an increase of the total energy 

consumption, while positive values denote a reduction. 

 

Orientation 

Florianopolis Fortaleza Frankfurt 
Change of annual energy consumption in % compared to reference system  
(transmittance 30 %, efficiency 3 %) 
T_10 %, 
E_3 % 

T_30 %, 
E_9 % 

T_10 %, 
E_3 % 

T_30 %,  
E_9 % 

T_10 %, 
E_3 % 

T_30 %,  
E_9 % 

North 3.2 5.9 0.2 4.1 -0.2 2.0 
East 0.8 5.3 1.7 4.8 -0.7 3.2 
South 1.5 2.9 2.8 3.4 -0.7 4.8 
West 4.0 5.1 3.2 5.1 0.7 3.5 

Table 5.4: Change of energy consumption depending on solar transmittance (T) and PV efficiency (E). 

For the Brazilian cities, a decreased transmittance reduces the energy consumption for all 

orientations. This means lower transmittances reduce the energy demand for cooling which 

is predominant for the overall energy consumption. The reduction of the total energy 

consumption due to higher cell efficiency is influenced by the available solar irradiation and 

accordingly different for each orientation and city. In Florianopolis the North orientation 
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presents the highest reductions of 5.9 %, while the South orientation achieves only 2.9 %. In 

Fortaleza the West facade obtained a reduction of 5.1%. Only in Frankfurt the energy 

consumption increased for windows with low transmittance and low PV efficiency. For all 

studied cases, the efficiency presented a higher influence than the transmittance on the final 

energy consumption. 

5.1.4 Building consumption  

The energy consumption and generation for all cases in Florianopolis and Fortaleza are 

presented in Figure 5.9 . The buildings with the five window models were compared with the 

[Base] model (section 4.1.1) in order to analyze their energetic performance. The difference 

is the percentage of annual energy consumption reduction in comparison to the [Base] model, 

which has no lighting dimming system. As the energy consumption is calculated using 

particularly Brazilian building characteristics no simulations for Frankfurt were made.  

The energy consumption of the installed electrical equipment is not presented in the 

graphics as it remained constant with a value of 3638.04 kWh/y for all cases. A heating 

system was integrated in the simulations but it remained unused. In Fortaleza the cooling 

system is required throughout the whole year and in Florianopolis the internal gains from the 

electrical equipment and occupants were sufficient to heat up the room in winter months. 

The use of photoelectric sensors and a dimming system controlling artificial lighting 

according to available daylight resulted in a decrease of the consumed electricity and 

consequently reduced the HVAC load in all cases compared to the base model without 

photoelectric sensor.  

The buildings have different total energy consumptions according to the facade orientation 

and city. In Florianopolis, a South oriented main facade has the lowest final energy 

consumption although the consumption caused by lighting was highest. This agrees with the 

expectations as it is the orientation that receives least sunlight due to its geographical 

location. In Fortaleza, the orientation with the lowest consumption values is North. In 

general, Fortaleza shows higher total energy consumption values than Florianopolis on the 

other side more electric energy is generated by the PV window as well. In summary 

Florianopolis showed a higher percental reduction of the final energy usage than Fortaleza.  

The window systems caused a different energy consumption behavior of the building. The 

use of a PV window can save up to 43 % of energy. In some cases, the use of a low-E window 

saves more energy than a PV window, as for the North facade in Fortaleza with an energy 
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saving of 37 % against 29 %. In others cases the low-E window achieved values similar to the 

organic PV window [D]. The single glass [A] and double glass [B] windows presented similar 

energy consumption values in most cases. 

 

 
(a) 

 
(b) 

Figure 5.9: Energy consumption and reduction for the W2 office room model with different window 
types [A-B-C-D-E] for different orientations in Florianopolis (a) and Fortaleza (b). The difference 

value is the percentage of energy consumption reduction in comparison to the [Base] model. 

The maximum energy reductions for HVAC achieved by the use of a semi-transparent PV 

window were 32 % for the East facade in Florianopolis and 30 % in Fortaleza using the ASI-

Thru window. Since the PV windows have a visible transmittance of only 23 % and 9 %, 

respectively for the [D] and [E] cases less solar radiation enters the building and less cooling 

energy is required. However, due to the reduced visible transmittance the consumption for 

lighting increases. This could be partly compensated using the lighting control system.  

Altogether, in Florianopolis the South oriented main facade has the lowest final energy 

consumption using a single glass window. The reasons to the low incident solar radiation 
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levels on the facade which cause low cooling loads, in combination with a good light supply 

using the highly transparent single glass window.  

Figure 5.10 shows that, comparing the PV windows [D] and [E] with the single glass 

window [A], the PV windows always require more artificial lighting to reach 500 lux in the 

work plane. Besides this for the building with the smaller window the energy consumption 

for artificial lighting increases more than for the building with the bigger window, due to the 

energy generated by PV modules. Comparing the single glass window with both PV windows 

the energy consumption increased between 18 % to 45 % for the organic PV window and 

12 % to 44 % for the ASI Thru window in Florianopolis and 15 % to 53 % and 14 % to 55 %, 

respectively in Fortaleza.  

 

 
(a) 

 
(b) 

 
Figure 5.10: Energy balance between artificial lighting energy use and PV window electricity 

generation for W1 and W2 office room models in Florianopolis (a) and Fortaleza (b). The difference 
value is the percentage of the annual electricity consumption in comparison to the model [A]. 
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Figure 5.11 shows the influence of the window size on the overall energy consumption for 

the W1 and W2 case for the North facade in Florianopolis. The window with a WWR < 50 % 

has a higher consumption for lighting since less daylight enters the building, compared to a 

WWR > 50 %. In contrast the building with the bigger window requires more cooling energy 

as more heat reaches the inside. For a WWR < 50 % the windows without PV have a lower 

total energy consumption than the PV windows. In contrast for a WWR > 50 % the PV 

windows use less energy, mainly due to two times higher energy generation. 

 

 
Figure 5.11: Energy consumption for W1 and W2 office room models with different window types for 

the North facade in Florianopolis. The total value is the final electricity consumption summing up 
energy consumption and generated energy. 

A summary of the windows' performance in relation to the total consumed energy is 

presented in Table 5.5. For the classification, the number 5 represents the best performance 

(low energy consumption) and number 1 the worst performance (high energy consumption). 

 

City Orientation 

Window 
[A] 
single 
glazing 
window 

[B] 
double 
glazing 
window 

[C] 
low-E 
window 

[D] 
organic PV 
window 

[E] 
ASI Thru 
window 

Florianopolis 

North 1-2 1-2 3 4 5 
East 2 1 3 4 5 
South 5 2 4 1 3 
West 2 1 3-4 3-4 5 

Fortaleza 

North 1 3 5 2 4 
East 1 2 3-4 3-4 5 
South 1 2 3-4 3-4 5 
West 1 2 3 4 5 

Table 5.5: Classification of the windows' performance by city and orientation.  
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5.1.5 Summary of the analysis 

The results show a considerable potential for solar energy generation in the two Brazilian 

cities Fortaleza and Florianopolis. In Fortaleza more energy was generated than in 

Florianopolis, however, the reduction of the total energy usage is higher in Florianopolis than 

in Fortaleza.  

There is no window type that performs best in all conditions. The single glass window, 

which is the most commonly used window type in Brazilian office buildings, showed similar 

values as the double glass window. The low-E window presented the best overall 

performance for the South facade in Florianopolis and the North facade in Fortaleza, which 

are the facades that receive least solar radiation. For the other facades the PV window 

presented the overall best energetic performance. 

The sensitivity analysis revealed that transmittance and PV efficiency are linear 

independent for the overall energy consumption thus the both factors can be examined 

independent of each. For all cases, the efficiency has a higher influence on the final energy 

consumption than the transmittance. The actual influence of the transmittance is depending 

on the climate and the orientation and cannot be predicted in a simple manner. For the 

determination of the optimal transmittance a simulation should be carried out. 

The PV window technology is an appropriate choice for environments with air 

conditioning or environments with low light demands. For example corridors and hotel 

rooms where since the use of the PV windows in conjunction with dimmer and light sensors 

that control artificial lighting efficiently, they can reduce the total electricity consumption.  

In conclusion, the PV window technology is not applicable for all orientations and cities 

(e.g. South facade in Florianopolis), the local climatic conditions, especially the available 

daylight and temperature have to be considered carefully. For the use of PV windows in 

environments that do not require artificial cooling, a study using different transmittances and 

efficiencies is recommended.  

Although semi-transparent PV windows with ASI thru cells result in a higher reduction of 

the required cooling energy due to their low visible transmittance, the window with organic 

cells is preferable because of their better daylight supply inside the room, as it also can be 

seen in the analyses. In addition, it is considered that a visible transmittance of 25 % is the 

benchmark for window application [32]. Therefore the latter one was chosen for further 

simulations.  
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5.2 Reaching zero energy office buildings 
This section focuses on the transformation of conventional office buildings into (net) zero 

energy buildings. It is divided into five main parts. The first part demonstrates the 

transformation of the prototype building initially into an energy-efficient building, which will 

be called optimal case and then into a zero energy building. For the others parts, eight office 

building types were examined with regard to their potential to be zero energy buildings. The 

buildings have different shapes and energy demands and were selected to define volumetric 

guidelines for zero energy buildings. A detailed energy balance analysis using energy demand 

and generation, as well, load matching and grid interaction indices for different time periods 

were used. In addition, alterations on the buildings' volumetries were made by changing the 

number of storeys to lead each volumetry’s limits. 

5.2.1 Developing optimal and zero energy models 

Some steps were necessary to reach a zero energy building from the prototype (inefficient) 

office building case. Initially, the prototype building was transformed into an optimal building 

(energy-efficient or low energy building) in order to minimize its electricity demand. Then, 

PV panels were applied / integrated on the envelope to generate the necessary electricity to 

achieve an equalized energy balance. The process and results obtained are described in the 

following two subsections. 

5.2.1.1 Optimal case 

First, the surfaces and internal gains of the prototype case were evaluated by calculating 

detailed heat balances. With the heat balance the biggest energy consumption sources of the 

air-conditioning, which in Brazil is the biggest energy consumption, can be identified. Figure 

5.12 shows the detailed heat balance with gains and losses for the prototype case for a period 

of one year. The analysis was performed for Florianopolis and Fortaleza separately for the 

occupation period (8 h-16 h), shown as gray bars and for a whole day (24 h), shown as black 

bars. 
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(a) (b) 

Figure 5.12: Heat balance of the building for the prototype case in Florianopolis (a) and Fortaleza (b). 

Artificial lighting, equipment, people and windows always cause a heat gain. The heat 

gains are mostly compensated by heat losses through the envelope, i.e. principally through 

the ground floor, by infiltration and by cooling. According to the Figure 5.12, the window is 

the surface causing highest heat gains in both cities. In Florianopolis much heat is lost 

through the surfaces (walls, ground floor and ceiling), cooling and air changes. In Fortaleza, 

cooling is the main source to remove heat from the environment. The annual energy 

consumption is presented in Figure 5.13. As expected in Fortaleza required the highest value 

energy demand for cooling, which is three times higher than in Florianopolis.  

 

 
Figure 5.13: Annual energy consumption for prototype case in Florianopolis and Fortaleza. 

The optimal case (energy-efficient building) was derived from the prototype case by 

modifying the office building to attain an energy efficiency of class 'A' for the envelope, 

lighting and cooling as specified by the Brazilian energy efficiency labeling system (RTQ-C) 
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[24]. Table 5.6 summarizes all requirements and actually achieved parameters. A detailed 

explanation is given below. 

 
Requirements for non-residential buildings  
Envelope (30 %) 
Prerequisites 
Bioclimatic zone Z3: Florianopolis Realized Z8: Fortaleza Realized  
Uroof  in W/(m² K) ≤ 1.0 0.25 ≤ 1.0 0.25 

Uwall in W/(m² K) ≤ 3.7 3.1 ≤ 2.5, for Cth < 80 kJ/(m² K)  0.39  
Cth = 246 ≤ 3.7, for Cth > 80 kJ/(m² K) 

αroof ≤ 0.50 0.25 ≤ 0.50 0.25 
αwall ≤ 0.50 0.25 ≤ 0.50 0.25 
Consumption indicator (Equation) 
Window area (WWR) 
Shading devices (AHS/AVS) 
Glass type (SHGC) 
Dimensions of the building (FA/FF) 
Brazilian bioclimatic zoning (Z1 to Z8) 
Artificial Lighting (30 %)  
For office buildings Realized 
Method 1 Building area (office) 9.7 W/m² 9.69 W/m² 
Method 2 Building activities (office) 11.9 W/m² 9.69 W/m² 
Cooling (40 %) 
Evaluated by PBE/INMETRO  
(Level A > COP 3.20 W/W) 

Realized 
COP 4.31 

Table 5.6: Summary of the parameters required by RTQ-C for a class 'A' energy efficient building. 

a) Envelope 

For the thermal transmittance of the external walls, 3.1 W/(m² K) was used in Florianopolis 

and 0.39 W/(m² K) was used in Fortaleza. For the roof a transmittance of 0.25 W/(m² K) was 

used for both cities, as well as an absorptance coefficient of 0.25 for the walls and the roof 

(Table 5.7). These values were defined based on the climatic characteristics of the cities 

located in different bioclimatic zones10 in Brazil and based on values from a literature review 

[173]. The choice of these values could also be confirmed by the simulation results for the 

heat balance (see chapter 3 for more information about the studied climates). 

 

 

 

 

 

                                                            
10 The Brazilian territory was divided into eight climatic zones. The annex A of ABNT NBR 15220 presents the 
results of 330 cities whose climates were classified [5]. 
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Material Thickness  
in m 

λ in 
W/(m K) 

ρ in 
Kg/m³ 

cp in 
J/(kg K) 

Cth in 
kJ/(m² K) 

U in 
W/(m² K) α 

Roof        Concrete slab (CCA) 0.2 0.17 400 1000 

102 0.25 0.25 Air space resistance  R = 0.18   Isolation (polyurethane) 0.07 0.03 30 1670 
Plaster 0.03 0.35 750 840 
Exterior wall - Florianopolis        Plaster 0.07 1.15 1300 1000 

208 3.10 0.25 Brick 0.014 0.90 1000 920 
Brick 0.014 0.90 1000 920 
Plaster 0.07 1.15 1300 1000 
Exterior wall - Fortaleza        Plaster 0.025 1.15 1300 1000 

116 0.39 0.25 Isolation (polyurethane) 0.05 0.03 30 1670 
Concrete slab (CCA) 0.12 0.17 400 1000 
Plaster 0.025 1.15 1300 1000 

Table 5.7: Physical material properties [4], [121]. 

The office window size was change from a WWR of 20 % to 30 %, to increase the available 

daylight (Figure 5.14). To further increase the available daylight in the office, especially in 

parts distant from the main window, an interior upper single clear glass window was added 

into the hallway wall for each room. The single clear glass of the windows in the exterior 

walls was replaced by a double low-E glazing.  

 

  
(a) (b) 

Figure 5.14: Window to wall ratio (WWR) for windows' office of the prototype case of 20 % (a) and 
for the optimal case of 30 % (b). 

Shading devices were added to protect the windows against direct solar radiation and heat 

gains according to their orientation and climatic demands. In Florianopolis only overhangs 

(0.50 m x 24 m) were used to protect the hallway window, whilst in Fortaleza overhangs (1 m 

x 24 m) and fins (1 m x 0.84 m) were added. For the South side office windows, fixed 

overhangs (1 m x 4 m) and mobile venetian blinds were applied in Fortaleza (Figure 5.15). To 

choose the best protection option for the office windows in Fortaleza, a parametric study 

with different combinations of shading devices was made. The chosen combination achieved 

a reduction of 2 % of the annual energy consumption, results are presented in Appendix A.4.  
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(a) 

 

(b) 

 

(c) 

Figure 5.15: Shading devices for North hallway windows in Florianopolis (a) and Fortaleza (b) and for 
South office windows in Fortaleza (c). 

b) Lighting 

The installed lighting power was reduced from 12 W/m² to 9.69 W/m², which is the 

maximum permitted value according to RTQ-C for a Level 'A' office building. In addition, an 

automatic dimming system controlling artificial lighting was used in order to ensure that 

artificial lighting was turned off when the available daylight reached 500 lux in the office 

room and 100 lux in the hallway [6]. 

c) Cooling 

An air conditioning system with a COP of 4.31 was chosen based on the PBE/INMETRO11 list 

to replace the air conditioning used in the prototype case with a COP of 2.8. 

d) Equipment 

The internal gains for equipment remained 9.7 W/m². However, the elevators used in the 

prototype case were replaced by 33 % more efficient ones.  

 

                                                            
11 The Brazilian labeling program (Programa Brasileiro de Etiquetagem - PBE), coordinated by INMETRO, 
provides information on the performance of products, considering attributes such as energy efficiency that can 
influence consumers' choice [129].  
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Except this, the infiltration rate was reduced from 1 ACH to 0.7 ACH for office rooms in 

Fortaleza and to 3 ACH for the corridor in both cities. The minimum air renovation of 

27 m³/hour/person as recommended by NBR 16401-1 [7] for air-conditioned environments 

was considered. 

Figure 5.16 presents the heat balance obtained with the transformation of the prototype 

case into optimal case. The heat gains from the roof in the prototype case could be eliminated 

by exchanging building materials. Regarding the development of the building along the 

different cases the reduction for lighting and cooling were biggest. The reduction of the 

cooling was mainly possible due to less heat entering through the windows. 

 

  

 
(a) (b) 

  

 
(c) (d) 

Figure 5.16: Heat balances of the building for the prototype case in Florianopolis (a) and Fortaleza (b) 
and optimal cases in Florianopolis (c) and Fortaleza (d). 

In Figure 5.17 the energy balance for the prototype and optimal case are presented. For 

both cities approximately a bisection of the annual energy consumption, from the prototype 
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case to the optimal case, was achieved. Effectively, the reduction is 50 % in Florianopolis and 

53 % in Fortaleza. 

 

 
Figure 5.17: Annual energy consumption for prototype and optimal cases in Florianopolis and 

Fortaleza. 

5.2.1.2 Zero energy case 

The zero energy case was derived from the optimal case by the application of solar energy 

technologies to the building’s envelope. Photovoltaic modules were applied, as BAPV on the 

roof and BIPV in East and West facades; semi-transparent PV windows were used in the 

North facade for the hallway windows; and in Fortaleza PV modules were also used on the 

overhangs on the South facade.  

In addition, the WWR of the hallway windows was increased from 20 % to 90 % (Figure 

5.18), where semi-transparent PV windows were used. The single clear glass of the internal 

windows was replaced by single low-E glass and insulation was added to the internal wall 

between the hallway and the offices (Table 5.8). These modifications were necessry due to 

the heat generated by the PV windows.  

 

Material Thickness  
in m 

λ in 
W/(m K) 

ρ in 
Kg/m³ 

cp in 
J/(kg K) 

Cth in 
kJ/(m² K) 

U in 
W/(m² K) α 

Interior wall - hallway        Plaster 0.07 1.15 1300 1000 

245 0.35 0.50 Isolation (polyurethane) 0.05 0.03 30 1670 
Concrete slab (CCA) 0.15 0.17 400 1000 
Plaster 0.07 1.15 1300 1000 
Interior window - hallway        Low-E 3# 0.003     5.77  

Table 5.8: Physical material properties [4], [121]. 
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(a) 

 
(b) 

Figure 5.18: Window to wall ratio (WWR) for hallway windows of the prototype case of 20 % (a) and 
for the optimal case of 90 % (b). 

The detailed characteristics of the building models that were modified from the optimal to 

the zero energy case are presented in Table 5.9. The other parameters remained constant.  

 

Parameters 
Cases 

Prototype case Optimal case Zero energy case 
City Florianopolis Fortaleza Florianopolis Fortaleza Florianopolis Fortaleza 
WWRHallway in % 20 20 20 20 90 90 
WWROffice in % 20 20 30 30 30 30 
UWindow-outside in W/m² K 5.82 5.82 1.68 1.68 1.68/1.67 1.68/1.67 
VTWindow-outside 0.88 0.88 0.70 0.70 0.70/0.23 0.70/0.23 
SHGCWindow-outside 0.82 0.82 0.40 0.40 0.40/0.22 0.40/0.22 
UWindow-inside in W/(m² K) - - 5.82 5.82 5.77 5.77 
VTWindow-inside - - 0.88 0.88 0.79 0.79 
SHGCWindow-inside - - 0.82 0.82 0.47 0.47 
Shading device no  no  yes  yes no  yes 
Venetians no no no  yes no  yes 
Uwall in W/(m² K) 2.47 2.47 3.1 0.39 3.1 0.39 
Uroof  in W/(m² K)  2.42 2.42 0.25 0.25 0.25 0.25 
Wall: Thermal capacity in 
kJ/(m² K) 200 200 208 116 208 116 

Roof: Thermal capacity in 
kJ/(m² K) 187 187 102 102 102 102 

αwall 0.65 0.65 0.25 0.25 0.25 0.25 
αroof 0.70 0.70 0.25 0.25 0.25 0.25 
Office light in W/m² 12 12 9.69 9.69 9.69 9.69 
Corridor light  in W/m² 5 5 5 5 5 5 
Lighting control office - - dimmer dimmer dimmer dimmer 
Illuminance office  
in lux - - 500 500 500 500 

Illuminance corridor in 
lux - - 100 100 100 100 

Elevator in W/m² 367.5 367.5 209.1 209.1 209.1 209.1 
Infiltration office 1 ACH 1 ACH 1 ACH 0.7 ACH 1 ACH 0.7 ACH 
Infiltration corridor 1 ACH 1 ACH 3 ACH 3 ACH 3 ACH 3 ACH 
Efficiency in COP in W/W 2.8 2.8 4.31 4.31 4.31 4.31 

Table 5.9: Modified parameters to reach the zero energy case. 
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Table 5.10 presents the installed PV area and its installed nominal power12 (INP) for the 

zero energy case in Florianopolis and Fortaleza. For this analysis, no surrounding or 

obstructions were considered. 

 
Surface Roof East facade West facade Window Overhangs 

City Area  
in m² 

INP  
in kWp 

Area  
in m² 

INP  
in kWp 

Area  
in m² 

INP  
in kWp 

Area  
in m² 

INP  
in kWp 

Area  
in m² 

INP  
in kWp 

Florianopolis 138.6 27.9 214 27.8 214 27.8 670 20.1 - - 
Fortaleza 161.7 32.5 214 27.8 214 27.8 670 20.1 275 35.7 

Table 5.10: Installed PV power per surface. 

The heat balance comparing the three cases (prototype, optimal and zero energy) is shown 

in Figure 5.19. For the zero energy case, the windows caused the largest heat gain, as it was in 

the prototype case. This happens due to the bigger windows in the corridor and the 

additional heat generated by PV windows and it must be seen in context with the reduced 

lighting energy and the generated electricity which overcompensate the additional heat gain. 

Anyway a further reduction of the heat gain by the PV windows would be desirable. 

The office building's annual energy consumption for the three cases (prototype case, 

optimal case, and zero energy case) and for the zero energy case the generated electric 

energy, for Florianopolis and Fortaleza are presented in Figure 5.20. As presented before, the 

reduction from prototype to optimal building was almost 50 %. For the zero energy case 1 % 

more energy was generated than consumed in Florianopolis and 13 % in Fortaleza which can 

be fed into the electric grid. In general, in Fortaleza the energy consumption is higher than in 

Florianopolis, but also more energy is generated by the PV modules. 

  

                                                            
12 The installed nominal power was calculated by the efficiency of the module (efficiency * solar radiation / area 
* area (STC)), provided by the manufacturer, multiplied by the installed PV area [51]. 
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(a) (b) 

  

 
(c) (d) 

  

 
(e) (f) 

Figure 5.19: Heat balance of the building for the prototype case in Florianopolis (a) and Fortaleza (b), 
optimal case in Florianopolis (c) and Fortaleza (d) and zero energy case in Florianopolis (e) and 

Fortaleza (f). 
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Figure 5.20: Annual energy consumption and generation for prototype, optimal and zero energy case 

in Florianopolis and Fortaleza. 

Generated energy 

The distribution of the generated energy according to the different PV installation surfaces 

can be seen in Figure 5.21. The photovoltaic modules on the roof produced 35 % and 38 % of 

the energy in Florianopolis and Fortaleza, respectively. Despite having less installed PV area 

than the other surfaces, this is expected as the modules have the best orientation relative to 

the sun and they have the highest efficiency.  

The sum of the energy generated by the facade modules (East and West) is 44 % and 33 % 

of the totally produced energy. In Fortaleza the modules on the overhangs of the South facade 

generated 18 %. Finally, the semi-transparent PV windows in the North facade generated 

21 % in Florianopolis and 11 % in Fortaleza. 

 

  
(a) (b) 

Figure 5.21: Generated energy from the different surfaces for Florianopolis (a) and Fortaleza (b). 
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It must be noted that for this analysis a large portion of the building envelope was covered 

by PV modules. Depending on the orientation the efficiency and the installation costs a 

payback analysis should be realized to determine the benefit of their application. However, as 

it is known, the price of PV modules is decreasing significantly which makes their application 

possible for aesthetic reasons where energy generation is just a benefit. 

Another important parameter for a PV application is the surrounding and its influence on 

the solar irradiation, e.g. by shading the modules. A detailed investigation of the shading 

influence is given in section 5.3. 

Energy balance 

The monthly energy balance for the zero energy case in Florianopolis and Fortaleza is shown 

in Figure 5.22. The positive columns represent the energy consumption by the building, and 

the negative columns represent the generated energy. The final balance between the 

consumed and generated energy for each month is plotted with black dots; negative values 

mean that energy can be fed into electricity grid, positive values mean a resulting energy 

consumption. 

According to the graphics, Florianopolis has less energy consumption and generation in 

winter months (Jun-Aug). For these months cooling is rarely used and heating was not 

necessary. Although it should not be considered as a heating strategy, the internal gains were 

sufficient to heat the building when necessary. Analyzing the final energy balance, only in July 

the energy consumption was higher than the generated energy. In Fortaleza, cooling is 

necessary during the whole year. The energy demand is higher in Fortaleza than in 

Florianopolis and the differences between summer and winter months are smaller. More 

energy was produced in Fortaleza, and more photovoltaic modules were necessary to satisfy 

the energy demand.  
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a) 

 
(b) 

Figure 5.22: Monthly energy balance for the zero energy case in Florianopolis (a) and Fortaleza (b). 

Regarding the results it is remarkable that for both cities the generated electricity from the 

different PV surfaces have different behaviors through the course of one year, or more 

precisely for summer and winter months. While the PV on the roof, facade and overhangs 

generate more energy in summer months, the PV window generates more in winter months. 

For the overhangs in Fortaleza the energy generation decrease significantly for the winter 

months; on the roof it remains almost constant. It is clear that different PV technologies and 

applications can complement each other to achieve a zero energy balance. 

5.2.2 Determining ZEB standard types 

For this analysis eight office building types with different dimensions were used. After 

transforming them into optimal buildings (section 5.2.1), PV modules were 
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applied / integrated to the envelope to achieve an equalized energy balance. The installed PV 

area and nominal power (INP) for each surface, as well as, the total PV area and total installed 

nominal power for each building type are shown in Tables 5.11 and 5.12 for both cities. The 

PV models were applied according to the buinding energy demand, anyway for some building 

types the surface area was not sufficient to generate the required energy. 

 

Type 
Roof Facade Solar protection Window 

Total PV Area 
in m² 

Total INP 
in kWp Area 

in m² 

INP 
in 
kWp 

Area 
in m² 

INP 
in 
kWp 

Area 
in m² 

INP 
in  
kWp 

Area 
in m² 

INP 
in 
kWp 

North- 
South 

T1 2633 529 
      

2633 529 
T2 65 13 

      
65 13 

T3 1787 359 1270 165 450 59 41 1 3548 584 
T4 164 33 

      
164 33 

T5 706 142 1620 211 300 39 
  

2626 391 
T6 139 28 428 56     670 20 1237 104 
T7 1075 216 1264 164 354 46 1291 39 3984 465 
T8 1235 248 3214 418 850 111 

  
5299 777 

East- 
West 

T1 2633 529 
      

2633 529 
T2 67 14 

      
67 14 

T3 1808 363 1270 165 225 29 81 2 3384 560 
T4 147 30 110 14 

    
257 44 

T5 706 142 1620 211 600 78 
  

2926 430 
T6 147 30 428 56 275 36 670 20 1520 141 
T7 1077 217 1264 164 1238 161 1291 39 4870 580 
T8 1205 242 3214 418 1700 221 

  
6119 881 

Table 5.11: Installed PV area and PV power for each surface in Florianopolis. 

Type 
Roof Facade Solar protection Window 

Total PV Area 
in m² 

Total INP 
in kWp Area 

in m² 

INP 
in 
kWp 

Area 
in m² 

INP 
in 
kWp 

Area 
in m² 

INP 
in  
kWp 

Area 
in m² 

INP 
in 
kWp 

North-
South 

T1 2873 577 
      

2873 577 
T2 76 15 

      
76 15 

T3 1932 388 1270 165 450 59 81 2 3733 614 
T4 164 33 

      
164 33 

T5 794 160 1620 211 600 39 
  

3014 409 
T6 162 33 428 56 

  
670 20 1260 108 

T7 1210 243 1264 164 1238 115 1291 39 5002 561 
T8 1338 269 3214 418 1700 111 

  
6252 797 

East-
West 

T1 2873 577 
      

2873 577 
T2 76 15 

      
76 15 

T3 1985 399 1270 165 450 59 81 2 3786 625 
T4 176 35 220 29 

    
396 64 

T5 794 160 1620 211 600 78 
  

3014 448 
T6 162 33 428 56 275 36 670 20 1535 144 
T7 1197 241 1264 164 1238 161 1291 39 4990 604 
T8 1323 266 3214 418 1700 221 

  
6237 905 

Table 5.12: Installed PV area and PV power for each surface in Fortaleza. 
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Figure 5.23 shows the relation between the total installed PV area and total installed PV 

power for each building type, orientation and city. Depending on the efficieny of the PV 

panels used, some buildings have more installed PV area and less installed power (e.g. T7) 

than others (e.g. T1). 

 

  
(a) (b) 

Figure 5.23: Relationship between total installed PV area and total installed PV power for North-South 
(NS) and East-West (EW) orientations in Florianopolis (a) and Fortaleza (b). 

5.2.3 Classifying the building types: ZEB or nearly ZEB 

The electricity demand and generation for the eight office building types, for the two 

orientations North-South and East-West for Florianopolis and Fortaleza is presented in 

Figure 5.24. The columns are the electricity demand and the generated energy. The dots are 

the differences between the both, which means the resulting energy consumption or 

generation. Models marked with a light green bar reached a zero energy balance with the 

actual PV application. 

Acoording to the Figure, the types T1, T2, T4 and T6 reached a zero energy balance for 

different orientations and climatic conditions. The orientation showed few alterations on 

energy consumption and generation; whilst the climatic conditions given by the city made a 

big difference. As expected, Fortaleza has a higher energy demand than Florianopolis, 

however more energy is produced there as well. The other types, T3, T5, T7 and T8 can be 

classificated as nearly zero energy buildings, since they produce almost 50 % of the energy 

they need.  

T1 generates much more electricity than it uses. This happens due to the amount of PV 

modules applied on the avaiable roof surface. This surplus of energy can be delivered to the 

electric network or be distributed among neighboring buildings. However, it is noteworthly 
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that no obstructions were considered for this analysis, which could reduce the genareted 

energy. In contrast, the T7 and T8 have much more installed PV area on the envelope than T1. 

However due to their volumetry and their relation between floor and net area, the installed 

PV power was not sufficient to satisfy the annual energy demand. For these buildings more 

efficient PV modules could be applied and / or other types of renawable energy must be used 

to complement the demand.  

 

 
(a) 

 
(b) 

Figure 5.24: Electricity demand and generation for the eight types (T1 to T8) with North-South (NS) 
and East-West (EW) orientation in Florianopolis (a) and Fortaleza (b). The difference is the 

subtraction between energy consumption and generated energy. 
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5.2.4 Load matching and grid interaction analysis 

This section presents the energy balance analysis for the eight types (T1-T8) in Florianopolis 

and Fortaleza. The models were analyzed using the import / export method, which considers 

the relationship (exchanges) between the building and the electric grid. Besides, the 

demand / generation method is also presented for a better insight on the remaining shortfall 

of on-site supply.  

For a detailed import / export energy balance evaluation, hourly, daily and monthly 

analyses for load matching and grid interaction were calculated. With the help of these 

methods, it is possible to know in detail when power is feed in or received from the electric 

grid and in which hours the building peak demand is. It is a way to analyze more precisely 

when the energy grid or an energy storage system, e.g. batteries have to be used or other 

types of renewable energy could complement to reach a zero balance.  

The results presented below are for North-South orientation, the ones for East-West 

orientation can be found in appendix A.5. Subfigures (b) and (c) show the building demand 

and generated energy analysis for each model, where the monthly analysis is presented in (b) 

and the daily analysis in (c). For the daily analysis the weekday with highest and lowest 

energy generation were chosen for the Figures. The layout of the Figures is based on [178]. 

Load matching and grid interaction analysis are presented in subfigures (d), (e) and (f), 

which are monthly, daily and hourly values, respectively. The annual results are presented at 

the end to summarize the analysis. The load matching index gives the percentage of the 

currently used energy that can be statisfied by the actual on-site generation. The grid 

interaction index represents the energy actually supplied by the grid, when the index is 

negative, or the energy fed into the grid, when the index is positive, in relation to the 

maximum magnitude of energy taken from the grid or fed into the grid within the regarded 

period. The annual grid index represents the standard deviation of the grid interaction, in 

other words, the fluctuation of the energy exchange of the building with the grid, higher 

values mean higher variation. 
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T1_Florianopolis_NS 

  
(a) (b) (c) 

Figure 5.25: Building demand and generated energy for T1 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.26: Load match (LM) and grid interaction (GI) for T1 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 

 

 

 
 

T2_Florianopolis_NS 

  
(a) (b) (c) 

Figure 5.27: Building demand and generated energy for T2 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.28: Load match (LM) and grid interaction (GI) for T2 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 
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T3_Florianopolis_NS 
  

(a) (b) (c) 

Figure 5.29: Building demand and generated energy for T3 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.30: Load match (LM) and grid interaction (GI) for T3 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 

 

 
 

T4_Florianopolis_NS 
  

(a) (b) (c) 

Figure 5.31: Building demand and generated energy for T4 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.32: Load match (LM) and grid interaction (GI) for T4 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 
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T5_Florianopolis_NS 
  

(a) (b) (c) 

Figure 5.33: Building demand and generated energy for T5 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.34: Load match (LM) and grid interaction (GI) for T5 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 
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(a) (b) (c) 

Figure 5.35: Building demand and generated energy for T6 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.36: Load match (LM) and grid interaction (GI) for T6 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 
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T7_Florianopolis_NS 
  

(a) (b) (c) 

Figure 5.37: Building demand and generated energy for T7 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.38: Load match (LM) and grid interaction (GI) for T7 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 

 

 
 

T8_Florianopolis_NS 
  

(a) (b) (c) 

Figure 5.39: Building demand and generated energy for T8 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Florianopolis. 

   
(d) (e) (f) 

Figure 5.40: Load match (LM) and grid interaction (GI) for T8 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Florianopolis. 
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The figures above show that different analysis periods result in different match indices. 

The hourly analysis shows much lower values than monthly and daily analysis for the load 

matching index. This happens as during the night no energy is produced but still some energy 

is needed, e.g. for equipment. The grid interaction analysis has low and medium fluctuations 

for all models, with the highest value of 54 % for T6 in the monthly analysis. A summary for 

all eight types in Florianopolis oriented North-South is presented in Figure 5.41.  

 

  
(a) (b) 

Figure 5.41: Comparison of the load match (a) and grid interaction (b) indices with different time 
resolutions for the eight types in Florianopolis, with North-South orientation. 

The load match / grid interaction analysis for North-South orientation in Fortaleza show 

similar values to the one of Florianopolis. The hourly analysis presented lower values than 

the monthly and daily analysis for the load matching index. The fluctuations in the grid 

interaction analysis were lower than in Florianopolis for some building types, with a peak 

value of 48 % for T3 in the daily analysis. A summary for the eight types in Florianopolis 

oriented North-South is presented in Figure 5.42, the detailed results can be seen in 

Appendix A.5.  

 

  
(a) (b) 

Figure 5.42: Comparison of the load match (a) and grid interaction (b) indices based on different time 
resolutions for the eight types in Fortaleza, with North-South orientation. 
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5.2.5 Preferable ZEB volumetries 

This topic evaluates which of the presented volumetries are most suitable for ZEBs. For this 

analysis the volumetries of the eight used types were changed by adding or removing storeys, 

Tables 5.13 and 5.14 present the installed PV area and PV power for each new configuration 

in Florianopolis and Fortaleza. For this analysis PV modules were applied on all usable 

surfaces. In the table all evaluated configurations with different numbers of floors are 

presented. In general two altered configurations were required for each 'base' building type 

to find the limit for a ZEB configuration. Exceptions are T6_NS in Florianopolis and in 

Fortaleza T3_NS and T3_EW, where only two configurations were necessary to determine the 

limits. 

 

 

Type Floor 

Roof Facade Solar protection Window Total PV 
Area in 
m² 

Total 
INP 
in kWp 

Area 
in  
m² 

INP 
in 
kWp 

Area 
in  
m² 

INP 
in 
kWp 

Area  
in  
m² 

INP 
in  
kWp 

Area  
in  
m² 

INP 
in 
kWp 

North-
South 

T1 
4 2633 529   640 83   3273 612 
3 2633 529   480 62   3113 592 
2 2633 529   320 42   2953 571 

T2 
7 65 13   196 25   261 39 
6 65 13   168 22   233 35 
4 65 13   112 15   177 28 

T3 
5 1787 359 1269 165 450 59 41 1 3547 584 
4 1787 359 1015 132 360 47 33 1 3195 539 
3 1787 359 761 99 270 35 25 1 2843 494 

T4 
29 164 33 1057 137 687 89 212 6 2120 266 
28 164 33 1021 133 664 86 205 6 2053 258 
6 164 33 219 28 142 18 44 1 569 81 

T5 
10 706 142 1620 211 300 39   2626 391 
4 706 142 648 84 120 16   1474 242 
3 706 142 486 63 90 12   1282 217 

T6 12 139 28 467 61   731 22 1336 110 
11 139 28 428 56   670 20 1236 104 

T7 
13 1075 216 1264 164 354 46 1291 39 3983 465 
4 1075 216 389 51 109 14 397 12 1970 293 
3 1075 216 292 38 82 11 298 9 1746 274 

T8 
17 1235 248 3213 418 850 111   5298 776 
5 1235 248 945 123 250 33   2430 404 
4 1235 248 756 98 200 26   2191 372 

East-
West 

T1 
4 2633 529   800 104   3433 633 
3 2633 529   600 78   3233 607 
2 2633 529   400 52   3033 581 

T2 
7 67 14   203 26   270 40 
6 67 14   174 23   241 36 
4 67 14   116 15   183 29 

T3 
5 1808 363 1269 165 225 29 82 2 3384 560 
4 1808 363 1015 132 180 23 66 2 3069 521 
3 1808 363 761 99 135 18 49 1 2754 481 
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Continuing Table 5.13. 

Type Floor 

Roof Facade Solar protection Window Total PV 
Area 
in m² 

Total 
INP 
in kWp 

Area 
in m² 

INP 
in 
kWp 

Area 
in m² 

INP 
in 
kWp 

Area  
in  
m² 

INP 
in  
kWp 

Area  
In 
m² 

INP 
in 
kWp 

East-
West 

T4 
35 147 30 1276 166 1659 216 512 15 3593 426 
34 147 30 1239 161 1612 210 497 15 3495 415 
6 147 30 219 28 284 37 88 3 738 98 

T5 
10 706 142 1620 211 600 78   2926 430 
4 706 142 648 84 240 31   1594 257 
3 706 142 486 63 180 23   1372 228 

T6 
16 147 30 622 81 400 52 975 29 2144 192 
15 147 30 583 76 375 49 914 27 2019 182 
11 147 30 428 56 275 36 670 20 1520 141 

T7 
10 1077 217 1264 164 1238 161 1291 39 4870 580 
4 1077 217 389 51 381 50 397 12 2244 329 
3 1077 217 292 38 286 37 298 9 1952 301 

T8 
17 1205 242 3213 418 1700 221   6118 881 
4 1205 242 756 98 400 52   2361 393 
3 1205 242 567 74 300 39   2072 355 

Table 5.13: Installed PV area and PV power for each surface in Florianopolis. 

Type Floor 

Roof Facade Solar protection Window 
Total PV Area 
in m² 

Total INP 
in kWp 

Area 
in 
m² 

INP 
in 
kWp 

Area 
in 
m² 

INP 
in 
kWp 

Area  
in  
m² 

INP 
in  
kWp 

Area 
in 
m² 

INP 
in 
kWp 

North- 
South 

T1 
5 2873 577   1200 156   4073 733 
4 2873 577   960 125   3833 702 
2 2873 577   480 62   3353 640 

T2 
7 76 15   266 35   342 50 
6 76 15   228 30   304 45 
4 76 15   152 20   228 35 

T3 5 1932 388 1269 165 450 59 82 2 3733 614 
4 1932 388 1015 132 360 47 66 2 3373 569 

T4 
20 164 33 729 95 948 123 292 9 2133 260 
19 164 33 693 90 901 117 278 8 2035 248 
6 164 33 219 28 284 37 88 3 755 101 

T5 
10 794 160 1620 211 600 78   3014 448 
6 794 160 972 126 360 47   2126 333 
5 794 160 810 105 300 39   1904 304 

T6 
16 162 33 622 81 400 52 975 29 2159 195 
15 162 33 583 76 375 49 914 27 2034 185 
11 162 33 428 56 275 36 670 20 1535 144 

T7 
13 1210 243 1264 164 1238 161 1291 39 5002 607 
6 1210 243 583 76 571 74 596 18 2960 411 
5 1210 243 486 63 476 62 497 15 2669 383 

T8 
17 1338 269 3213 418 1700 221   6251 908 
6 1338 269 1134 147 600 78   3072 494 
5 1338 269 945 123 500 65   2783 457 

East- 
West 

T1 
5 2873 577   1200 156   4073 733 
4 2873 577   960 125   3833 702 
2 2873 577   480 62   3353 640 

T2 
7 76 15   266 35   342 50 
6 76 15   228 30   304 45 
4 76 15   152 20   228 35 
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Continuing Table 5.14. 

Type Floor 

Roof Facade Solar protection Window 
Total PV Area 
in m² 

Total INP 
in kWp 

Area 
in 
m² 

INP 
in 
kWp 

Area 
in 
m² 

INP 
in 
kWp 

Area  
in  
m² 

INP 
in  
kWp 

Area 
in m² 

INP 
in 
kWp 

East-
West 

T3 5 1985 399 1269 165 450 59 82 2 3786 625 
4 1985 399 1015 132 360 47 66 2 3426 580 

T4 
14 176 35 510 66 664 86 205 6 1555 194 
13 176 35 474 62 616 80 190 6 1456 183 
6 176 35 219 28 284 37 88 3 767 103 

T5 
10 794 160 1620 211 600 78   3014 448 
5 794 160 810 105 300 39   1904 304 
4 794 160 648 84 240 31   1682 275 

T6 12 161 32 467 61 300 39 731 22 1658 154 
11 162 33 428 56 275 36 670 20 1535 144 

T7 
13 1197 241 1264 164 884 115 1291 39 4636 559 
5 1197 241 486 63 476 62 497 15 2656 381 
4 1197 241 389 51 381 50 397 12 2364 353 

T8 
17 1323 266 3213 418 1006 131   5542 814 
5 1323 266 945 123 500 65   2768 454 
4 1323 266 756 98 400 52   2479 416 

Table 5.14: Installed PV area and PV power for each surface in Fortaleza. 

Figure 5.43 summarizes the Tables above and shows the relation between total installed 

PV area and total installed PV power for each model, orientation and city.  
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(b) 

Figure 5.43: Relation between total installed PV area and total installed PV power (INP) for different 
building types in Florianopolis (a) and Fortaleza (b). 

Figure 5.44 shows the building types and the maximum and minimum storey number for 

each one to remain or be a ZEB. The dashed line shows the referential building type height 

(number of storeys), the gray color represents the efficient buildings and the green shows the 

zero energy buildings. The letters denote the location and orientation of the models. Letter 'A' 

is Florianopolis_NS, 'B' is Florianopolis_EW, 'C' is Fortaleza_NS and 'D' is Fortaleza_EW. 

 

 
Figure 5.44: Usable number of storeys for ZEB for different types in Florianopolis and Fortaleza. 
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One result of this analysis is the insight that the relationship between building energy 

consumption, generated energy and building height is linear. The more storeys are added 

with PV modules, the more energy is generated and used. Most of the building types can 

reach ZEB until three storeys in Florianopolis and four storeys in Fortaleza. T4 and T5 types, 

which have a similar volumetry, are the models that remain ZEB even with an extended 

number of storeys, showing their high potential as ZEB type and contradictioning the theory 

that only small buildings can reach ZE status.  

The ratio between installed power and total area (y-axis) of generated to consumed energy 

(x-axis) is presented in Figure 5.45. The green dots in the graphic stand for ZEB volumetries 

and the black dots for non ZEB volumetries. The correlation of the models give a R² of 0.66 

for Florianopolis and a R² of 0.73 for Fortaleza, which can be seen in Apendice A.6, as well as 

the equation and the energy demand and generation for all simulated models.  

This figure comprises all 94 combinations, resulting from the eight types (T1-T8), for two 

cities (Florianopolis and Fortaleza) and two orientations (North-South and East-West). A 

detailed description of the models is given in Table 5.13 and Table 5.14. 

 

  
(a) (b) 

Figure 5.45: Installed power to total area ratio and generation to consumed energy ratio for 
Florianopolis (a) and Fortaleza (b). 

The cities show different ranges for ZEBs type. In Florianopolis all evaluated buildings 

with an installed power to total area ratio higher than 0.06 are ZEB and there is no ZEB with a 

ratio below 0.04. While in Fortaleza all ZEBs have a ratio above 0.08 and there is no ZEB with 

a ratio below 0.05. For Fortaleza more installed power was necessary to reach ZEB. For both 

cities, it was easier to transform the compact volumetries such as T1 and T2, showing the 

highest ratios, into ZEB. In contrast, the large ZEB types (T5, T7, and T8), have the lowest 
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ratios. Regarding all models simulated within this work for Florianopolis a ratio of at least 

0.04 is necessary to achieve a ZEB and buildings with a ratio above 0.06 are most likely ZEBs. 

For Fortaleza the ratios are 0.05 and 0.08 respectively. 

5.2.6 Summary of the analysis 

In this section the transformation of standard Brazilian office buildings into a net zero energy 

buildings was presented. Therefore in a first step a methodology for energy reduction was 

developed using one representative office building type. Afterwards, PV modules were 

applied to reach an equalized energy balance. The concept was then applied to different 

building types. The transformation was made for two cities with different climate mainly 

focusing on solar technology application, considering the building heat gain, solar irradiation 

and daylighting availability. 

The two climates required different design concepts for the reduction of the energy 

consumption and for energy generation. In Fortaleza although more energy was generated, 

more photovoltaic modules were necessary for a zero energy building due to the higher total 

energy consumption, mainly caused by air-conditioning. The subtropical climate of 

Florianopolis requires less installed PV modules due to its lower total energy consumption in 

comparison to the tropical climate of Fortaleza. 

The semi-transparent PV windows turned out to be an interesting option as a replacement 

for traditional windows in hallways since they contributed with 21 % of the generated 

electricity – though the used modules have an efficiency of only 3 %.   

From the transformation of different office building types into ZEB it was possible to 

analyze the potential of different volumetries and the relationship between envelope area 

and net floor area on the energy balance. The study confirmed that compact building types 

are transformed more easily into ZEB than high-rise buildings, however exceptions exist and 

it is not only the height of the building that will define its potential to be a ZEB. 

The load matching and grid interaction analysis show different index values depending on 

the time period. It seems a good method for high resolution analysis considering on-site 

generation and grid interaction exchanges, which can be relevant in the future.   
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5.3 Influence of the urban context on the solar irradiation  
As the ZE buildings developed above strongly depend on electricity generation from solar 

energy it is crucial to consider the buildings' surroundings for a more realistic simulation. 

Accordingly, the influence of shading from the surrounding buildings on the PV energy 

generation was investigated and its results are discussed in this section. Within the 

simulations two main points were investigated. First, a study was made to define the 

minimum level of solar irradiation on the surface for application of PV modules. Second, the 

influence of shading on energy generation of the examined building types was determined. 

The building types with PV modules applied as in the section of the nZEB development were 

used as reference models and compared to the results obtained with the new application of 

PV models according to the solar irradiation results. 

5.3.1 Solar irradiation on the building envelope 

The average solar irradiation for each surface without surrounding for Florianopolis and 

Fortaleza are presented in Figure 5.46. Both cities have low geographic latitudes: 

Florianopolis 27° and Fortaleza 3°. Thus the solar elevation angle is big throughout the year 

which results in a large difference between the irradiation on the roof and the facade.  

 

 
Figure 5.46: Average13 solar irradiation levels on surfaces without surrounding (reference). 

As the results shown in the Figure 5.46 present the achievable maximum irradiation for 

each facade they can be used for a comparison with the results obtained with surrounding. 
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represent the minimal required solar irradiation for an application of PV modules on that 

surface. 

For both cities a minimum solar irradiation of 800 kWh/(m² y) was required for 

application of PV modules. The roof is the surface with the highest solar irradiation of the 

building. The facades receive considerably lower irradiation values, varying with the 

orientation. East and West oriented facades receive similar values in both cities with around 

50 % of the irradiation on the roof. The biggest differences appear for the North and South 

orientations. Florianopolis has around 25 % more solar irradiation than Fortaleza on the 

North facade.  

The results of the solar irradiation considering the surrounding for all surfaces, types and 

cities are presented in Appendix A.7. Using this data the storeys with PV application for each 

building type and city were defined. Table 5.15 and Table 5.16 show where PV modules can 

be used for uniform and random urban layout with the main facade oriented North-South and 

East-West, respectively. The storeys where PVs were applied are denoted by two numbers, 

for example, 4_3 means that PVs were applied on the facade from the 3rd to the 4th floor. 

 

City Florianopolis_North-South Fortaleza_North-South 

Type Urban 
context 

Roof Storey level Urban 
context 

Roof Storey level 
N E S W N E S W 

T1 
0 y 2 _1 2_1 - 2_1 0 y 2_1 2_1 - 2_1 
8 y 2_1 - - - 6 y - 2_1 - 2_1 

T2 
0 y 4 - - - 0 y - 4_3 - 4_3 
3 y - - - - 3 y - - - 4 

T3 
0 y 5_1 5 - 5 0 y 5 5_1 - 5_1 
8 y 5_1 - - - 6 y - 5_1 - 5_1 

T4 
0 y 6 - - - 0 y - 6_4 - 6_4 
3 y - - - - 3 y - - - 6_3 

T5 
0 y 10_8 - - - 0 y - 10_7 - 10_7 
8 y 10_5 - - - 3 y - 10_4 - 10_1 

T6 
0 y 11 - - - 0 y - 11_10 - 11_9 
3 y 11_9 - - - 3 y - - - 11_3 

T7 
0 y 13_11 - - - 0 y - 13_8 - 13_8 
3 y 13_6 13 - 13 6 y - 13_2 - 13_2 

T8 
0 y 17_15 - - - 0 y - 17_14 - 17_14 
3 y 17_5 17_11 - 17_10 3 y 17_11 17_6 - 17_1 

Table 5.15: Summary of PV application surfaces according to solar irradiation levels for buildings with 
main facades oriented to North-South. 
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City Florianopolis_East-West Fortaleza_East-West 

Type Urban 
context 

Roof Storey level Urban 
context 

Roof Storey level 
N L S O N L S O 

T1 
0 y 2 _1 2_1 - 2_1 0 y 2_1 2_1 - 2_1 
8 y 2_1 - - - 6 y - 2_1 - 2_1 

T2 
0 y 4 - - - 0 y - 4_3 - 4_3 
3 y - - - - 3 y - - - 4 

T3 
0 y 5_1 5 - 5 0 y 5 5_1 - 5_1 
8 y 5_1 - - - 6 y - 5_1 - 5_1 

T4 
0 y 6_5 - - - 0 y - 6_5 - 6_5 
3 y - - - - 3 y - - - 6_4 

T5 
0 y 10_8 - - - 0 y - 10_7 - 10_7 
8 y 10_5 - - - 3 y - 10_4 - 10_1 

T6 
0 y 11_10 - - - 0 y - 11_10 - 11_10 
3 y - - - - 3 y - - - 11_4 

T7 
0 y 13_10 - - - 0 y - 13_9 - 13_9 
3 y 13_7 - - 13_9 6 y - 13_4 - 13_4 

T8 
0 y 17_15 - - - 0 y - 17_14 - 17_14 
3 y 17_5 17_12 - 17_7 6 y 17_16 17_1 - 17_1 

Table 5.16: Summary of PV application surfaces according to solar irradiation levels for buildings with 
main facades oriented East-West. 

5.3.2 Influence of shading on building surfaces 

Shading influences the energy balance of a building in two ways. One is the energy 

consumption for cooling and lighting, which can increase or decrease with the heat gain / loss 

through the envelope. Another one is the energy generation by the PV panels, where shading 

on the modules reduces electricity production.  

Buildings with a surrounding consume up to 5 % less annual energy, compared to 

buildings without surrounding. The results for the eight types for North-South and East-West 

orientations in Florianopolis and Fortaleza are presented in Figure 5.47. Types T2, T4 and T6 

are the ones with the highest consumption reduction between 1.5 % and 5 %, depending on 

the orientation. The other types achieve a reduction of less than 1 % of the annual energy 

consumption. But considering the high electricity consumption value, 1 % is a significant 

amount of energy. The orientation that provides highest reductions is East-West for both 

cities the reduction is almost the same for all building types. 
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(a) (b) 

Figure 5.47: Average reduction of the energy consumption for all types with surrounding for North-
South (a) and East-West (b) oriented main facade. 

5.3.2.1 Influence of shading on electricity generation 

In this section the influence of shading on the generated energy is presented for each building 

type. In the figures below the columns show the generated energy, where: column 'T' in black 

is the electricity of the reference building type without surrounding; column 'Uni' in light 

gray is the electricity for the uniform height urban layout; and column ‘Avg’ in dark gray is 

the average generated electricity of all (#1-#10) random urban layouts. The column ‘Max’ is 

the maximum generated electricity of all (#1-#10) random urban layouts; and the column 

‘Min’ is the minimum generated electricity of all (#1-#10) random urban layouts. The black 

dots show the energy consumption of the referential building type (T). 

 

  

 
(a) (b) 

Figure 5.48: Generated energy for T1 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 
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(a) (b) 

Figure 5.49: Generated energy for T2 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 

  

 
(a) (b) 

Figure 5.50: Generated energy for T3 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 

  

 
(a) (b) 

Figure 5.51: Generated energy for T4 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 
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(a) (b) 

Figure 5.52: Generated energy for T5 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 

  

 
(a) (b) 

Figure 5.53: Generated energy for T6 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 

  

 
(a) (b) 

Figure 5.54: Generated energy for T7 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 
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(a) (b) 

Figure 5.55: Generated energy for T8 with surrounding for North-South (a) and East-West (b) 
orientations in Florianopolis and Fortaleza. 

According to the results showed above, 50 % of the building types generated more energy 

in the uniform urban layout, because the roof installed PVs were not shaded. These types are 

the lower ones with a maximum of six storeys and few PV installed on the envelope in 

comparison to the high-rise buildings types. They generated almost the same amount of 

electricity as the models without surrounding, with exception of T4. 

The high-rise building types with 10 to 17 storeys generated less electricity than the 

equivalent models without surrounding, however, the maximum ('Max') energy generation 

with random urban layout is higher than the uniform layout. Only type T8, with 17 storeys, 

has a higher average generated energy in random layout than the uniform. It seems that the 

uniform layout is better for buildings with few storeys, where most of PVs are applied on the 

roof, but for high-rise buildings with a high amount of PVs installed on the facade the random 

layout shows a better performance.  

In Figure 5.56 is possible to observe the reduction of the generated energy with shading on 

the PV windows. This reduction changes from 10 % to 60 % depending on the building type, 

city and orientation. In general, in Fortaleza higher reduction values can be observe than in 

Florianopolis and the East-West orientation shows the highest loss of generated energy due 

to shading for both cities. 
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(a) (b) 

Figure 5.56: Reduction of the PV window generated energy with surrounding for uniform (U) and 
average random (R) layouts in Florianopolis (a) and Fortaleza (b). 

5.3.2.2 New PV application on building envelope 

The new application of PV modules on the envelope according to the solar irradiation on the 

surfaces respecting the influence of the surrounding is presented in Table 5.17 for 

Florianopolis and in Table 5.18 for Fortaleza. The tables show the PV application for all 

building types, cities and orientation, as well as, for the uniform urban layout (#0) and 

selected random layouts (#1 to #10) for each building type. The gray color marks surfaces 

and orientations with PV application and the numbers are the storeys where PVs were 

applied, as in Tables 15 and 16. 
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Continuing Table 5.17. 

Type Urban 
Context Roof Facade Solar Protection Window N E S W N E S W 
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Table 5.17: PV re-application for each building type and case in Florianopolis for different urban 

contexts. 
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Table 5.18: PV re-application for each building type and case in Fortaleza for different urban contexts. 
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The results of generated energy without surrounding of the reference building type, which 

is the one where PV was applied without considering shading (in black), the new application 

for the uniform urban layout (in light gray) and for the best random urban layout (in dark 

gray) are presented in the figures below.  

 

  
 

(a) (b) 

Figure 5.57: Generated electricity for new PV application without surrounding for T1 (a) and T2 (b) 
types in Florianopolis and Fortaleza for North-South (NS) and East-West (EW) orientations. 

  
 

(a) (b) 

Figure 5.58: Generated electricity for new PV application without surrounding for T3 (a) and T4 (b) 
types in Florianopolis and Fortaleza for North-South (NS) and East-West (EW) orientations. 
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(a) (b) 

Figure 5.59: Generated electricity for new PV application without surrounding for T5 (a) and T6 (b) 
types in Florianopolis and Fortaleza for North-South (NS) and East-West (EW) orientations. 

  
 

(a) (b) 

Figure 5.60: Generated electricity for new PV application without surrounding for T7 (a) and T8 (b) 
types in Florianopolis and Fortaleza for North-South (NS) and East-West (EW) orientations. 

For most of the building types less PV modules were applied on the envelope in the 

random layout than were for the reference building type. This reduction of PV module is due 

to the low solar irradiation level on the surface. Despite energy can also be generated by low 

irradiation, the price of the modules is still high and the payback would not compensate an 

installation.  

For type T1 the PV application remained the same for the three cases, since PV modules 

are applied only on the roof. For the types T2, T3 and T4, the medium height building types, 

more PVs are applied on the roof than on the facade. The roof is the surface with the highest 

solar irradiation. This explains the highest values of generated energy for the uniform urban 

layout. For T2 in Fortaleza the uniform urban layout generates more electricity than the 

reference building type because the PV modules were applied on surfaces with high solar 
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irradiation values. For the high-rise building types with a high amount of PV installed on the 

vertical surfaces, random layout presents higher values as the uniform layout. 

5.3.2.3 Simulation results with new applied PVs in the urban context 

The influence of shading on the generated energy for the building types with newly applied 

PVs was evaluated and the results are presented and discussed in this subsection. The figures 

below present the results obtained for the uniform and random urban layouts for the models 

with original PV application (reference) and the models with new PV application (considering 

solar irradiation levels) for comparison. The generated energy is represented by the columns 

and the black dots show the reduction of the generated energy between original and new 

application. 

 

  
 

(a) (b) 

Figure 5.61: Generated energy of original and new PV application for T1 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy. 

  
 

(a) (b) 

Figure 5.62: Generated energy of original and new PV application for T2 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 
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(a) (b) 

Figure 5.63: Generated energy of original and new PV application for T3 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 

  
 

(a) (b) 

Figure 5.64: Generated energy of original and new PV application for T4 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 

  
 

(a) (b) 

Figure 5.65: Generated energy of original and new PV application for T5 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 
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(a) (b) 

Figure 5.66: Generated energy of original and new PV application for T6 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 

  
 

(a) (b) 

Figure 5.67: Generated energy of original and new PV application for T7 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 

  

 
(a) (b) 

Figure 5.68: Generated energy of original and new PV application for T8 North-South (a) and East-
West (b) orientations; the difference value is the percental reduction of the generated energy 
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As expected, all building types with newly applied PVs have generated less energy than the 

models with PV application without regarding the solar irradiation levels. The reduction 

varies between 12 % and 61 % in Florianopolis and 1 % to 42 % in Fortaleza. The exception 

is T2 in Fortaleza, where PV modules on the North oriented solar protection were placed on 

the East orientated ones, generating 4 % more electricity for the East-West oriented model 

and 0.4 % for the North-South oriented model. For T1 no differences occur, since the module 

has PV installed only on the roof for both cases. 

5.3.3 Summary of the analysis 

This section presented the influence of the shading caused by the urban context on the 

building envelope. The shading influences the energy consumption for cooling and lighting, 

since less solar irradiation reaches the building reducing the cooling load and increasing the 

required artificial lighting. However, regarding the annual energy balance, a reduction up to 

5 % of the building electricity demand can be obtained. The shading also reduces the 

generated energy by PV modules applied on the envelope.  

The influence is different for the uniform and random urban layouts. Building types with 

medium height (until 6 storeys) with more PV installed on the roof, generated more energy in 

an uniform urban layout, while for high-rise types with many PV modules installed on 

vertical surfaces, the random urban layout, where the surrounding buildings have at most the 

same height is favorable. The separation between buildings (width of the street) is also a 

significant factor for the assessment of solar irradiation on the building's surfaces.  

The defined minimal solar irradiation level for PV application, can change according to PV 

installation costs and technical limitations. Also different values for roof and facades can be 

meaningful [33], since BIPV applications can reduce costs by substituting other materials or 

as the PV modules are used for aesthetic reasons. Finally, only types T1 and T2 remain ZEB 

when inserted in an urban context with the original or new PV application. However, for T2 

model only in the uniform urban layout. 
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6 Conclusions 

The present work investigated possibilities for the transformation of typical Brazilian office 

buildings into zero energy buildings using established energy consumption reduction 

methods and photovoltaic technologies, especially the new technology of semi-transparent 

PV windows, which is an important contribution to ensure the energy supply in the country 

as the building sector is one of the main energy consumers. This gets even more important 

with the increasing middle-class, further raising the buildings’ energy demand, which will be 

hardly satisfiable by conventional energy sources. Therefore technologies for the reduction of 

the energy use in buildings, together with new energy sources must be used. Applying these 

technologies buildings’ envelopes can be enhanced to not only reduce the energy 

consumption but also generate energy.  

For the methodic transformation of typical Brazilian office buildings into zero energy 

buildings the approach was divided into two main tasks. At first the reduction of the energy 

consumption and second the application of renewable energy sources, in this case PV 

technology. For an optimal use of PV technology a detailed research on the new technology of 

semi-transparent PV windows was done. Additionally, a volumetric analysis of different 

building types, the interaction with the local energy grid and the influence of the urban 

environment were carried out. 

From a literature review a set of typical Brazilian office buildings with different 

volumetries were defined. The different volumetries made a broader evaluation of the 

developed strategies for the reduction of energy consumption, as well as the application of PV 

technology, considering the available surfaces on the envelope, possible. 

For the study mainly two computer programs were used: EnergyPlus and 

Daysim/Radiance. EnergyPlus is a useful tool for building energy performance analysis in 

combination with BIPV installations. The combination of EnergyPlus and Daysim allows an 

integrated simulation including daylight analyses by calculating the annual energy 

consumption with EnergyPlus, using the data created by Daysim. However, to evaluate semi-
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transparent PV windows some adaptations were necessary. Semi-transparent PV windows 

cannot be simulated directly with EnergyPlus, so the generated electrical energy has to be 

calculated using a spreadsheet program.  

The analysis of the semi-transparent PV window technology revealed that due to the low 

visible transmittance of the semi-transparent PV existing on the market today, their 

application is recommended only for places with low required illuminance levels and short 

permanency. Examining the relationship between transmittance and efficiency of the semi-

transparent PV cells, it was found that the efficiency has a higher influence on the energy 

balance. However, semi-transparent PVs can be an interesting element for high-rise buildings 

as they had a significant contribution to the generated energy in suitable cases. The heat 

balance analysis showed that the biggest disadvantage of the semi-transparent PV windows 

is the additional heat produced by the PV cells, which can reach values around 70 °C. This 

temperature level can be a serious hazard for users or cause other types of risks.  

The results obtained in the process of transforming typical Brazilian office buildings into 

ZEBs showed, that the actual recommendations of the Brazilian labeling program are quite 

effective but not sufficient. Further reductions are possible applying technologies commonly 

used in other climates, such as double glazing windows, low-E glasses, insulation of the 

exterior walls and interior windows to improve daylight availability. Further the evaluation 

of the results obtained for the two cities, showed, that the applied methods, e.g. the use of PV 

windows must be reviewed critically in the context of the local climate and building 

orientation.  

The investigation of the various building types revealed that the number of storeys does 

not limit a building to be a ZEB. The relationship between installed power and total area can 

within certain boundaries serve as an indicator to test the suitability of a building type for a 

ZEB. Some high-rise types showed a high potential to be ZEBs due to the available envelope 

surface for PV application. Anyway, buildings with few storeys, where the roof is the main 

surface for PV application, are more likely to serve as ZEB types. Another important result is 

the importance of high resolution load and grid matching analyses. They show which 

renewable energy sources are suitable for a building and what influence on the local energy 

grid has to be expected. Currently used longer period analyses only give a more general 

relationship between the used and generated energy, but the actual interaction with the 

energy grid cannot be examined. 
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The last part was the evaluation of the influence of the urban context on a building’s 

energy performance. Except the quite obvious result, that shading from the surrounding 

significantly reduces the generated energy, at the same time reduces the cooling load. 

Buildings with few storeys have more chance to be ZEB in an urban context, such as type T1 

and T2. Nevertheless the type of urban context has a big influence on the preferable ZEB type. 

For types relying mostly on roof mounted systems a uniform height context is better suited, 

in contrast when a random height context is present the use of facade applied / integrated 

systems can be of advantage. 

6.1 Recommendations for future works 
From the results obtained in this work, arise some aspects that seem interesting for a further 

investigation: 

• One main drawback of the PV windows is their generated heat. Further studies for an 

efficient way of suppressing the heat transfer to the inside should be examined, e.g. 

ventilated windows, triple glazing windows or different glass types;  

• The study was oriented on energetic simulations of the buildings, architectural 

investigations of the implementation of BIPV technology in the envelope and its 

aesthetic influence in urban areas should be elicit;  

• Only office buildings were simulated, the strategies and concepts should be tested and 

extended to other building typologies (e.g. multifamily residential buildings, hotels, 

schools);  

• Only two of eight bioclimatic zones in Brazil were evaluated, studies for other zones 

should be carried out; 

• Except PV modules other renewable energy sources can be included into the strategies.  
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A Appendix 

A.1 PV application on the roof 
Many references can be found in literature about the calculation of the optimal tilt for the 

application of PV modules. Different recommendation exist, to avoid losses due to orientation 

and tilt [44]. In this study, the PV modules on the roof were applied oriented North and 

inclined with the same angle as the local latitude, 27° in Florianopolis and 3° in Fortaleza. 

However, the energy yield with other module tilt angles were evaluated to confirm the best 

tilt for each city.  

According to the results presented in Figure A.1, in Florianopolis tilt angles between 24° 

and 29° give almost the same energy generation. For angles below 20° the energy generation 

slowly decreases. In contrast, in Fortaleza most energy is generated for angles between 5°and 

9°. For the latitude angle of 3° a small reduction of 1 kWh/y can be observed.  

 

  
(a) (b) 

Figure A.1: Generated energy for different PV tilt angles for North orientation in Florianopolis (a) and 
Fortaleza (b). 

To ensure an optimal energy output and to avoid shading on the PV modules the 

positioning of the modules and the optimal spacing between them was examined. The space 

between modules depends on the width of the modules, the tilt angle and the elevation of the 

sun for which shadowing should be avoided. The elevation of the sun was determined from 

the sun charts for the both cities. The charts are presented in Figure A.2. 
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(a) (b) 

Figure A.2: Sun charts for Florianopolis (a) and Fortaleza (b) [93]. 

In Germany the day with the lowest midday sun elevation (12 p.m. on 21st of December) is 

used to calculate the spacing [181]. As most cities in Brazil are located near the Equator with 

almost perpendicular sun during the whole year, the day of the lowest elevation and the 

angle are depending on the city. The sun charts were analyzed for different days and hours, 

considering solstices and equinoxes (21/03, 22/06, 23/09 and 22/12 at 9 a.m., 12 p.m. and 

15 p.m.). In Florianopolis the lowest midday elevation of the sun is 30° on 21st of March and 

23rd of September. In Fortaleza the lowest midday elevation is 20° on 22nd of December. The 

modules spacing was calculated in a way almost no shadowing between 9 a.m. and 5 p.m. 

occurs on those days. Figure A.3 shows a solar irradiation map with the average of the annual 

solar irradiation on the modules.  

 

  
(a) (b) 

Figure A.3: Solar irradiation map for Florianopolis (a) and Fortaleza (b). 
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A.2 Radiasol vs. EnergyPlus: solar irradiation values 
A comparison of the solar irradiation on the building calculated with the data from two 

different programs was made. One of the programs, Radiasol, just gives an average solar 

irradiation value that can be used for an estimative calculation for the generated energy, e.g 

for a quick pre-analysis or an initial PV application. With the second one, EnergyPlus, a full 

thermo-energetic analysis is carried out at the expense of a more complicated modeling 

process. 

The irradiation data obtained from Radiasol and from EnergyPlus were compared in detail 

to determine the differences between the estimative energy calculation method and the 

results from the EnergyPlus simulations. Figure A.4 shows the daily solar radiation obtained 

from Radiasol and EnergyPlus for Florianopolis and Fortaleza. According to the graphics, 

Radiasol almost always gives higher values than EnergyPlus. For Florianopolis the difference 

is quite high for the winter months (Jun-Aug). In contrast, for Fortaleza the values are similar 

for all months. 

 

  
(a) (b) 

Figure A.4: Daily solar irradiation calculated with Radiasol and EnergyPlus in Florianopolis (a) and 
Fortaleza (b) for the calculation of the generated energy using different methods. 

Figure A.5 shows the generated energy calculated with the estimation and the simulation 

method, and the difference between the both, which is marked as percent values with dots in 

the figure. The differences are higher for Florianopolis than for Fortaleza, as expected form 

the irradiation results. The maximum difference is 12 % for the energy generated by the 

facade installed PVs and 11 % for the totally generated energy. In Fortaleza the totally 

generated energy differs only 6 % and the energy generated by the PVs installed on the roof 

has a difference of only 1 %. 
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Figure A.5: Difference of the generated energy calculated with estimation and simulation methods for 

different surfaces in Florianopolis and Fortaleza. 
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A.3 Useful Daylighting Illuminance (UDI) 

South, East and West facade for Florianopolis 

 
W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.1: UDI for the South facade in Florianopolis.   
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W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.2: UDI for the East facade in Florianopolis.   
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W1: WWR < 50 % W2: WWR > 50 % 
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.3: UDI for the West facade in Florianopolis.   
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South, East and West facade for Fortaleza 

 
W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.4: UDI for the South facade in Fortaleza.   
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W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.5: UDI for the East facade in Fortaleza.   



Useful Daylighting Illuminance (UDI) 

 
132 

 
W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.6: UDI for the West facade in Fortaleza.   
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South, East and West facade for Frankfurt 

 
W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.7: UDI for the South facade in Frankfurt.   
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W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.8: UDI for the East facade in Frankfurt.   
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W1: WWR < 50 %  W2: WWR > 50 %  
Window [A] 

  
Window [B] 

  
Window [C] 

  
Window [D] 

  
Window [E] 

  

 

Table A.9: UDI for the West facade in Frankfurt.  
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A.4 A shading device study for office building windows 
A study to determine the ideal solar protection was carried out. Four different systems were 

selected for the analysis and a room without solar protection was used for comparison (Table 

A.10). The mobile venetian blinds models (M3, M4 and M5), were evaluated using the 

venetian blind inside and outside of the window.  

 
Model Shading device Configuration 

M1 

 

No shading  

M2 

 

Overhangs and fins 

Overhang: 4 m x 0.5 m 
Fins: 1 m x 0.5 m  
Separation: 0.5 m 
Reflectance: 50 % 

M3 

 

Venetian blind (horizontal 90°) 
a = inside 
b = outside 

Width: 0.025 m 
Slat separation: 0.018 m 
Reflectance: 80 % 

M4 

 

Venetian blind (vertical 90°) 
a = inside 
b = outside 

Width: 0.025 m 
Slat separation: 0.018 m 
Reflectance: 80 % 

M5 

 

Venetian blind (horizontal 45°) 
a = inside 
b = outside 

Width: 0.025 m 
Slat separation: 0.018 m 
Reflectance: 80 % 

Table A.10: Models with different solar protection systems. 

The simulations were carried out using Daysim and EnergyPlus as described in chapter 3. 

In addition, to evaluate mobile venetian blinds the dynamic shading device mode was 

activated in Daysim (Advanced), which considers opening and closing of the blinds during the 

simulation. In EnergyPlus a shading control object was selected to reduce the zone’s cooling 

demands. The object ‘OnIfHighSolarOnWindow’ was used with a setpoint of 50 W/m², as 

recommended in EnergyPlus manual [58]. That means, the venetian blinds are deployed 

when the solar radiation incident on the window exceeds 50 W/m².  
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The results below were obtained for the office room in Fortaleza (South facade). It helped 

to improve the strategy for the development of the optimal office building models used in this 

thesis. Figure A.6 shows the results of the simulations. The use of mobile horizontal venetian 

blinds with a tilt of 90° inside the room provided the highest reduction of the annual energy 

consumption (2 %) of the three different systems 

 

 
Figure A.6: Annual energy consumption with different solar protection systems in Fortaleza. 

Figure A.7 presents the final configuration of the solar protection for the South oriented 

office room, in Fortaleza. The overhang was used together with the horizontal mobile 

venetian blind to optimally reduce the energy consumption for cooling, since for regions near 

the Equator not only the direct solar radiation should be avoided, but also radiative heat 

gains.  

 

 
Figure A.7: Final configuration of solar protection system in Fortaleza oriented to South. 
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A.5 Load match and grid interaction results 
This subsection presents the results from the T1 to T8 types for East-West orientation in 

Florianopolis and North-South and East-West orientations in Fortaleza. 

 

 

 

 

East-West orientation for Florianopolis 

 

 
 

T1_Florianopolis_EW 

  
(a) (b) (c) 

Figure A.8: Building demand and generated energy for T1 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.9: Load match (LM) and grid interaction (GI) for T1 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 
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T2_Florianopolis_EW 

  
(a) (b) (c) 

Figure A.10: Building demand and generated energy for T2 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.11: Load match (LM) and grid interaction (GI) for T2 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 

 

 

 
 

T3_Florianopolis_EW 

  
(a) (b) (c) 

Figure A.12: Building demand and generated energy for T3 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.13: Load match (LM) and grid interaction (GI) for T3 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 
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T4_Florianopolis_EW 

  
(a) (b) (c) 

Figure A.14: Building demand and generated energy for T4 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.15: Load match (LM) and grid interaction (GI) for T4 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 

 

 

 
 

T5_Florianopolis_EW 
  

(a) (b) (c) 

Figure A.16: Building demand and generated energy for T5 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.17: Load match (LM) and grid interaction (GI) for T5 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 
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T6_Florianopolis_EW 
  

(a) (b) (c) 

Figure A.18: Building demand and generated energy for T6 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.19: Load match (LM) and grid interaction (GI) for T6 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 

 

 

 
 

T7_Florianopolis_EW 
  

(a) (b) (c) 

Figure A.20: Building demand and generated energy for T7 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.21: Load match (LM) and grid interaction (GI) for T7 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 
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T8_Florianopolis_EW   
(a) (b) (c) 

Figure A.22: Building demand and generated energy for T8 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Florianopolis. 

   
(d) (e) (f) 

Figure A.23: Load match (LM) and grid interaction (GI) for T8 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Florianopolis. 

 

  
(a) (b) 

Figure A.24: Comparison of the load matching (a) and grid interaction (b) indices based on different 
time resolutions for the eight types in Florianopolis, with East-West orientation. 
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North-South orientation for Fortaleza 

 

 
 

T1_ Fortaleza _NS 

  
(a) (b) (c) 

Figure A.25: Building demand and generated energy for T1 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.26: Load match (LM) and grid interaction (GI) for T1 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 

 
 

T2_ Fortaleza _NS 

  
(a) (b) (c) 

Figure A.27: Building demand and generated energy for T2 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.28: Load match (LM) and grid interaction (GI) for T2 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 
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T3_ Fortaleza _NS 
  

(a) (b) (c) 

Figure A.29: Building demand and generated energy for T3 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.30: Load match (LM) and grid interaction (GI) for T3 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 

 

 

 
 

T4_ Fortaleza _NS 
  

(a) (b) (c) 

Figure A.31: Building demand and generated energy for T4 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.32: Load match (LM) and grid interaction (GI) for T4 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 
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T5_ Fortaleza _NS 
  

(a) (b) (c) 

Figure A.33: Building demand and generated energy for T5 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.34: Load match (LM) and grid interaction (GI) for T5 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 

 

 

 
 

T6_ Fortaleza _NS 
  

(a) (b) (c) 

Figure A.35: Building demand and generated energy for T6 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.36: Load match (LM) and grid interaction (GI) for T6 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 
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T7_ Fortaleza _NS 
  

(a) (b) (c) 

Figure A.37: Building demand and generated energy for T7 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.38: Load match (LM) and grid interaction (GI) for T7 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 

 

 

 
 

T8_Fortaleza_NS 
  

(a) (b) (c) 

Figure A.39: Building demand and generated energy for T8 (a) in monthly (b) and daily (c) profiles for 
North-South facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.40: Load match (LM) and grid interaction (GI) for T8 in monthly (d), daily (e) and hourly (f) 
profiles for North-South facade in Fortaleza. 
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(a) (b) 

Figure A.41: Comparison of the load match (a) and grid interaction (b) indices based on different time 
resolutions for the eight types in Fortaleza, with North-South orientation. 
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East-West orientation for Fortaleza 

 

 
 

T1_ Fortaleza _EW 

  
(a) (b) (c) 

Figure A.42: Building demand and generated energy for T1 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.43: Load match (LM) and grid interaction (GI) for T1 in monthly (d), daily (e) and hourly (f) 
profiles for East-West facade in Fortaleza. 

 
 

T2_ Fortaleza _EW 

  
(a) (b) (c) 

Figure A.44: Building demand and generated energy for T2 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.45: Load match (LM) and grid interaction (GI) for T2 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 
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T3_ Fortaleza _EW 

  
(a) (b) (c) 

Figure A.46: Building demand and generated energy for T3 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.47: Load match (LM) and grid interaction (GI) for T3 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 

 

 
 

T4_ Fortaleza _EW 

  
(a) (b) (c) 

Figure A.48: Building demand and generated energy for T4 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

  
 

 

(d) (e) (f) 

Figure A.49: Load match (LM) and grid interaction (GI) for T4 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 
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T5_ Fortaleza _EW 
  

(a) (b) (c) 

Figure A.50: Building demand and generated energy for T5 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.51: Load match (LM) and grid interaction (GI) for T5 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 

 

 
 

T6_ Fortaleza _EW 
  

(a) (b) (c) 

Figure A.52: Building demand and generated energy for T6 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.53: Load match (LM) and grid interaction (GI) for T6 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 
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T7_ Fortaleza _EW 
  

(a) (b) (c) 

Figure A.54: Building demand and generated energy for T7 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.55: Load match (LM) and grid interaction (GI) for T7 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 

 

 
 

T8_Fortaleza_EW 
  

 
(a) (b) (c) 

Figure A.56: Building demand and generated energy for T8 (a) in monthly (b) and daily (c) profiles for 
East-West facade in Fortaleza. 

   
(d) (e) (f) 

Figure A.57: Load match (LM) and grid interaction (GI) for T8 in monthly (d), daily (e) and hourly (f) 
profiles for North-South-West facade in Fortaleza. 
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(a) (b) 

Figure A.58: Comparison of the load matching (a) and grid interaction (b) indices based on different 
time resolutions for the eight types in Fortaleza, with East-West orientation. 
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A.6 Electric energy balance - ZEB study 
Table A.11 presents the energy demand and generated energy for all types with different numbers of storeys. The gray color represents the 

models which reached zero energy balance.  

 

Tipology 
Florianopolis  - Electricity in kWh/(m² y) Fortaleza - Electricity in kWh/(m² y) 
North-South East-West North-South East-West 
Storey Load Generation  Plus  Storey Load Generation  Plus Storey Load Generation  Plus  Storey Load Generation  Plus 

T1 
4 52.49 43.05 0.00 4 52.89 45.38 0.00 5 71.13 61.55 0.00 5 71.45 63.29 0.00 
3 52.12 56.96 4.84 3 52.42 59.30 6.88 4 70.50 75.86 5.36 4 70.84 78.01 7.18 
2 50.31 82.73 32.41 2 50.63 86.76 36.13 2 65.66 146.29 80.62 2 65.82 149.89 84.08 

T2 
7 46.22 45.97 0.00 7 46.14 44.89 0.00 7 70.05 67.79 0.00 7 70.07 68.87 0.00 
6 46.18 53.05 6.86 6 46.04 51.89 5.85 6 69.74 78.20 8.46 6 69.76 79.48 9.73 
4 45.60 83.38 37.78 4 45.53 78.21 32.68 4 68.23 113.41 45.18 4 68.26 115.53 47.28 

T3 
5 62.67 44.80 0.00 5 62.71 45.42 0.00 5 78.86 69.33 0.00 5 78.99 71.56 0.00 
4 62.34 52.87 0.00 4 62.38 53.30 0.00 4 78.30 83.31 5.01 4 78.42 85.24 6.81 
3 61.74 66.31 4.57 3 61.78 66.50 4.72 

        
T4 

29 38.60 37.93 0.00 35 40.27 40.23 0.00 20 58.86 58.80 0.00 14 60.59 60.06 0.00 
28 38.59 38.61 0.01 34 40.26 40.39 0.12 19 58.83 59.60 0.77 13 60.51 61.64 1.12 
6 38.22 61.99 23.77 6 39.67 64.45 24.77 6 57.49 94.12 36.63 6 59.31 87.76 28.45 

T5 
10 63.59 37.09 0.00 10 63.96 35.60 0.00 10 80.93 54.04 0.00 10 83.70 48.46 0.00 
4 62.74 60.05 0.00 4 63.11 58.85 0.00 6 80.24 72.10 0.00 5 82.36 75.44 0.00 
3 62.22 72.81 10.59 3 62.86 73.15 10.29 5 79.85 81.14 1.29 4 81.61 88.93 7.31 

T6 
12 40.94 39.94 0.00 16 41.84 41.71 0.00 16 56.08 55.59 0.00 13 56.71 55.89 0.00 
11 40.90 41.14 0.25 15 41.82 42.36 0.54 15 56.02 56.75 0.73 12 56.62 57.64 1.02 

    
11 41.71 46.18 4.47 11 55.69 63.46 7.78 11 56.51 59.71 3.21 

T7 
13 54.8 23.3 0.00 13 54.50 25.27 0.00 13 70.18 37.72 0.00 13 70.66 35.27 0.00 
4 53.8 50.0 0.00 4 53.58 52.91 0.00 6 69.30 63.44 0.00 5 69.41 68.65 0.00 
3 53.4 62.9 9.5 3 53.09 66.22 13.13 5 68.93 73.00 4.07 4 68.85 82.21 13.37 

T8 
17 53.59 26.14 0.00 17 58.40 25.15 0.00 17 77.58 37.49 0.00 17 77.79 33.53 0.00 
5 53.13 49.34 0.00 4 57.63 55.87 0.00 6 76.45 68.08 0.00 5 76.32 73.15 0.00 
4 52.87 57.56 4.69 3 57.19 69.27 12.07 5 76.08 77.55 1.47 4 75.69 87.18 11.49 

Table A.11: Energy demand and generated energy for all building types in kWh/(m² y). 
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Figure A.59 presents the correlation between installed PV power to total area ratio and generated to consumed energy ratio for 

Florianopolis and Fortaleza. 

 

  
(a) (b) 

Figure A.59: Correlation considering all models described in Table A.11 for Florianopolis (a) and Fortaleza (b). 
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A.7 Average solar radiation for each storey and surface 

Type T1: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T1_NS Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1545 1464 1567 1508 1455 1498 1406 1585 1447 1471 
 

2398 2325 2222 2337 2218 2100 2331 2092 2338 2199 2168 
Number of storeys: North facade 

  2 1018 665 524 822 777 690 486 565 874 497 850 
 

847 658 656 718 683 666 635 621 746 634 715 
1 997 595 520 794 750 620 482 550 867 492 844 

 
821 641 646 697 663 652 623 609 729 627 698 

Number of storeys: East facade 
  2 857 568 476 576 450 459 636 461 722 547 490 
 

1230 900 584 772 590 561 1049 557 1114 846 620 
1 821 543 460 548 424 442 591 444 700 526 476 

 
1192 877 540 650 561 517 1009 513 1086 824 594 

Number of storeys: South facade 
  2 434 372 381 381 328 306 363 301 387 301 320 
 

789 688 724 713 588 573 670 549 716 534 583 
1 399 344 352 352 302 280 335 277 359 276 296 

 
761 663 702 695 568 554 650 531 696 522 569 

Number of storeys: West facade 
  2 853 618 738 711 581 447 738 390 585 471 396 
 

1304 1032 1121 1216 986 640 1094 625 870 654 641 
1 818 590 692 681 544 420 694 373 564 455 375 

 
1269 988 1053 1190 874 615 1027 602 848 633 615 

 

Table A.12: Type T1 for North-South orientation in Florianopolis and Fortaleza. 
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T1_EW Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1520 1427 1542 1451 1336 1538 1328 1553 1442 1372 
 

2398 2283 2079 2306 2101 1881 2314 1920 2292 2143 2002 
Number of storeys: North facade 

  2 1022 676 605 815 758 752 545 613 884 599 814 
 

852 652 669 718 675 686 645 639 748 662 699 
1 1000 610 602 800 739 682 539 611 870 588 804 

 
824 638 661 700 657 668 632 630 730 652 682 

Number of storeys: East facade 
  2 853 528 393 508 403 397 667 395 671 517 429 
 

1228 860 516 709 548 496 1064 499 1074 834 555 
1 817 506 371 477 375 377 637 376 648 497 406 

 
1190 837 464 581 522 448 1036 452 1038 813 530 

Number of storeys: South facade 
  2 435 368 375 380 320 297 347 297 375 301 316 
 

793 683 724 720 596 565 641 552 703 543 591 
1 401 340 349 349 295 275 320 277 348 280 294 

 
766 660 702 697 578 548 624 539 682 534 579 

Number of storeys: West facade 
  2 849 606 689 767 599 395 690 386 542 430 372 
 

1302 1016 1060 1247 986 580 1060 596 838 609 590 
1 814 584 662 743 557 368 666 365 516 409 347 

 
1267 964 1015 1223 863 558 1017 575 817 588 565 

 

Table A.13: Type T1 for East-West orientation in Florianopolis and Fortaleza. 
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Type T2: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T2_NS Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof 1630 714 803 1035 680 578 768 526 929 587 679 
 

2398 1284 1351 1647 1048 865 1392 797 1415 862 943 
Number of storeys: North facade 

  4 860 119 229 290 134 176 169 158 263 136 361 
 

688 182 263 321 189 235 218 207 309 178 325 
3 699 99 202 263 118 155 160 148 206 125 335 

 
602 157 242 296 173 212 199 185 268 163 298 

2 496 92 178 246 111 144 150 142 171 116 298 
 

540 145 222 280 167 199 187 176 242 152 269 
1 392 87 164 222 105 138 145 140 157 113 245 

 
487 144 215 274 169 196 189 180 222 156 244 

Number of storeys: East facade 
  4 707 149 185 286 103 155 239 153 267 106 125 
 

1062 269 260 353 167 210 546 213 439 169 184 
3 524 133 158 266 91 148 163 135 244 96 112 

 
844 230 234 319 150 200 273 192 395 144 167 

2 392 114 135 242 83 138 133 119 202 85 102 
 

562 202 210 281 136 188 223 176 335 127 153 
1 308 98 119 219 75 129 105 108 159 80 92 

 
425 182 187 252 122 174 173 166 278 119 143 

Number of storeys: South facade 
  4 358 153 203 197 114 96 132 90 192 84 104 
 

637 295 404 366 153 111 231 166 326 111 176 
3 295 138 181 172 103 88 120 84 170 77 95 

 
555 263 367 335 140 107 213 162 292 98 167 

2 250 126 155 153 95 82 109 80 145 73 87 
 

502 221 333 303 129 104 202 159 259 91 161 
1 211 113 132 135 86 75 98 75 125 69 79 

 
452 203 310 273 117 96 196 146 232 84 147 

Number of storeys: West facade 
  4 705 141 255 417 140 92 197 106 165 121 94 
 

1102 327 471 840 216 153 300 169 267 204 175 
3 526 112 219 367 124 82 175 97 140 113 89 

 
830 247 359 741 202 141 270 151 230 181 159 

2 395 99 200 303 113 74 157 88 115 104 84 
 

596 221 307 642 189 133 242 142 200 164 147 
1 308 91 180 245 107 69 148 78 103 98 79 

 
484 181 262 550 179 121 221 133 180 149 138 

 

Table A.14: Type T2 for North-South orientation in Florianopolis and Fortaleza. 
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T2_EW Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 698 782 1029 671 576 806 524 909 583 655 
 

2398 1239 1322 1640 1037 832 1405 784 1380 856 904 
Number of storeys: North facade 

  4 862 120 236 295 136 184 171 168 274 142 360 
 

689 180 253 318 192 248 216 222 313 183 325 
3 703 100 207 268 120 164 161 154 206 129 334 

 
603 157 235 292 177 229 202 200 272 170 298 

2 505 93 186 253 113 154 152 145 170 122 302 
 

541 149 222 279 173 220 191 185 243 165 273 
1 403 89 166 230 107 143 145 144 157 118 247 

 
492 147 212 271 173 211 190 191 224 162 247 

Number of storeys: East facade 
  4 705 143 182 271 102 160 201 149 261 106 122 
 

1060 256 248 339 164 201 371 204 423 165 173 
3 520 127 155 251 89 150 159 132 238 95 109 

 
839 219 222 303 147 190 247 184 378 140 157 

2 388 110 131 228 82 141 130 114 200 84 100 
 

556 192 199 269 133 180 213 171 329 123 146 
1 303 96 115 205 75 131 98 102 160 79 90 

 
418 174 178 236 121 168 169 157 275 117 137 

Number of storeys: South facade 
  4 359 155 204 201 115 96 139 92 192 85 101 
 

638 294 402 372 168 117 264 171 327 117 184 
3 296 140 182 176 106 89 126 86 169 80 94 

 
557 261 365 341 146 113 249 168 291 104 174 

2 252 128 157 158 97 83 116 82 147 76 86 
 

506 224 333 315 137 110 220 166 261 99 167 
1 215 116 135 138 89 76 105 77 127 72 79 

 
458 206 311 295 127 102 209 155 233 91 154 

Number of storeys: West facade 
  4 702 143 240 426 133 93 250 105 156 117 91 
 

1099 315 452 837 208 148 431 163 253 196 165 
3 522 113 205 373 123 83 210 96 134 109 84 

 
825 239 327 733 196 136 305 148 216 173 150 

2 390 101 184 307 114 76 180 86 114 101 80 
 

591 216 303 645 187 127 276 139 189 158 140 
1 303 92 163 248 107 70 157 78 101 96 75 

 
476 180 256 551 177 117 228 129 173 143 132 

 

Table A.15: Type T2 for East-West orientation in Florianopolis and Fortaleza.  



  

 
161 

Type T3: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T3_NS Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1568 1481 1581 1515 1439 1545 1415 1596 1496 1456 
 

2398 2336 2187 2350 2216 2048 2352 2068 2352 2232 2156 
Number of storeys: North facade 

  5 973 736 635 844 790 779 581 584 888 611 832 
 

805 639 636 720 678 668 615 608 736 621 712 
4 948 708 575 823 769 750 524 571 879 551 821 

 
790 627 631 708 667 659 607 600 727 616 699 

3 925 627 543 802 743 672 490 557 867 519 810 
 

774 617 627 694 649 646 601 593 716 613 684 
2 904 566 537 776 713 613 482 528 853 507 793 

 
754 606 617 673 629 631 591 585 704 604 669 

1 881 554 529 748 683 604 475 472 839 500 781 
 

725 585 602 644 603 613 573 568 681 589 644 
Number of storeys: East facade 

  5 828 609 445 568 434 440 689 439 722 591 483 
 

1193 973 582 891 572 559 1082 559 1106 924 592 
4 798 568 427 545 421 423 668 421 707 551 454 

 
1168 876 530 866 559 507 1066 507 1088 827 577 

3 755 529 411 517 399 414 627 412 691 509 441 
 

1116 855 505 638 541 485 1045 485 1068 808 559 
2 700 500 383 490 374 387 596 385 665 483 426 

 
1061 829 485 598 498 467 1000 466 1047 785 539 

1 655 471 366 459 345 370 558 370 637 460 404 
 

1032 735 459 569 438 441 974 441 1023 699 515 
Number of storeys: South facade 

  5 423 381 394 390 321 296 366 290 393 292 313 
 

748 684 736 708 562 546 649 517 719 500 576 
4 407 369 385 381 313 288 353 282 384 286 304 

 
732 665 726 700 551 538 638 512 704 498 566 

3 387 351 367 365 301 276 337 271 368 275 293 
 

716 639 706 692 534 528 626 506 676 494 550 
2 363 331 345 344 285 261 317 255 347 261 278 

 
699 625 688 680 527 513 613 497 659 482 543 

1 331 303 315 315 260 238 290 233 317 237 254 
 

672 602 653 644 511 480 592 482 632 459 527 
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Continuing Table A.16 

Number of storeys: West facade 
  5 824 627 732 763 654 428 722 407 617 477 385 
 

1267 1052 1134 1249 1023 615 1112 609 937 632 616 
4 796 605 714 745 623 416 708 376 581 444 373 

 
1243 1037 1119 1236 988 598 1101 595 846 613 604 

3 753 584 684 723 573 396 679 360 545 429 354 
 

1150 1017 1103 1216 961 584 1087 578 826 598 585 
2 702 556 663 698 528 371 658 345 518 410 337 

 
1046 961 1025 1196 853 541 1009 559 804 581 540 

1 656 529 636 671 492 344 631 327 486 390 312 
 

1018 935 991 1172 795 456 976 539 757 562 456 

 

Table A.16: Type T3 for North-South orientation in Florianopolis and Fortaleza. 

T3_EW Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 

 
0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1564 1473 1578 1506 1419 1550 1402 1593 1496 1442 
 

2398 2331 2169 2347 2198 2016 2351 2047 2347 2228 2135 
Number of storeys: North facade 

  5 974 734 647 842 789 784 587 592 889 629 826 
 

806 638 639 721 677 671 615 612 736 627 708 
4 949 706 592 822 766 757 534 579 879 573 816 

 
792 626 635 708 666 663 608 604 726 623 696 

3 927 628 557 800 740 681 501 566 868 536 804 
 

776 617 631 694 648 649 604 597 718 617 681 
2 907 567 550 775 711 623 492 540 854 522 786 

 
756 606 623 673 628 634 595 588 707 610 668 

1 885 554 543 749 683 613 485 485 841 515 772 
 

728 583 607 645 603 615 577 572 684 597 643 
Number of storeys: East facade 

  5 826 607 433 559 424 432 696 429 712 589 475 
 

1193 969 571 882 564 549 1082 551 1097 926 581 
4 797 564 410 535 412 415 665 410 702 544 444 

 
1167 871 519 860 552 497 1067 498 1083 828 567 

3 753 523 400 506 391 405 635 401 681 507 432 
 

1115 847 495 628 535 475 1047 475 1065 808 550 
2 698 493 371 478 367 378 603 373 656 480 414 

 
1060 818 474 587 491 457 1004 457 1043 785 530 

1 652 465 355 447 338 362 567 359 629 456 392 
 

1030 727 447 559 430 431 979 432 979 697 506 
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Continuing Table A.17 

Number of storeys: South facade 
  5 423 380 392 391 321 296 366 289 390 293 312 
 

748 682 734 711 564 544 651 516 718 502 579 
4 407 367 383 382 312 287 353 281 381 286 304 

 
733 662 723 702 552 537 639 511 703 499 568 

3 387 350 365 367 300 275 337 270 365 276 293 
 

718 640 704 696 537 528 627 506 674 495 551 
2 364 331 343 344 283 260 318 255 345 262 278 

 
701 628 689 681 532 511 615 498 659 483 547 

1 332 302 314 315 258 239 290 233 315 238 254 
 

674 604 652 644 516 479 593 482 633 459 530 
Number of storeys: West facade 

  5 823 622 728 773 655 419 719 408 615 471 382 
 

1266 1044 1123 1254 1017 603 1105 605 935 622 609 
4 795 604 703 754 625 408 697 376 576 438 369 

 
1241 1030 1108 1241 986 590 1093 592 842 608 597 

3 751 580 680 734 576 387 675 360 539 422 350 
 

1147 1014 1090 1221 962 576 1078 575 822 593 579 
2 700 557 660 709 532 364 654 343 509 403 333 

 
1042 957 1010 1201 855 531 998 556 801 575 533 

1 653 531 633 682 495 337 628 324 479 382 307 
 

1014 913 983 1178 797 446 972 537 753 556 448 

 

Table A.17: Type T3 for East-West orientation in Florianopolis and Fortaleza. 
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Type T4: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T4_NS Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1166 1014 1389 1178 996 1025 791 1235 875 1094 
 

2398 2017 1760 2064 1608 1509 1908 1299 2089 1408 1523 
Number of storeys: North facade 

  6 885 254 262 511 402 259 206 173 429 169 476 
 

701 341 311 492 366 327 278 232 488 230 474 
5 793 181 247 410 299 189 190 164 395 152 452 

 
634 267 301 460 331 258 265 219 448 215 464 

4 603 161 234 321 213 172 179 147 358 142 423 
 

566 245 287 420 297 234 252 200 403 197 441 
3 445 147 222 298 189 163 171 128 293 135 394 

 
503 228 274 371 259 223 240 171 347 189 411 

2 345 135 202 234 139 155 165 118 231 129 363 
 

455 215 260 311 208 215 233 166 314 179 385 
1 323 121 190 224 136 143 159 118 215 130 339 

 
401 201 253 300 206 206 229 169 300 176 374 

Number of storeys: East facade 
  6 756 317 335 462 189 226 378 217 450 227 284 
 

1109 474 415 552 266 298 716 326 690 300 345 
5 638 276 308 448 168 212 344 204 425 192 254 

 
988 439 392 532 240 286 675 313 656 280 316 

4 506 250 276 429 149 190 282 192 393 172 215 
 

804 402 362 503 219 270 593 283 617 245 292 
3 404 229 242 411 135 172 219 184 359 158 187 

 
533 371 323 471 191 255 511 262 570 227 269 

2 334 206 218 388 123 163 172 169 323 149 169 
 

482 340 295 440 172 243 275 246 528 212 251 
1 294 182 195 357 110 158 144 156 282 143 155 

 
410 313 266 403 153 228 248 230 469 201 224 

Number of storeys: South facade 
  6 371 258 278 293 184 169 204 130 296 135 173 
 

648 472 544 508 251 237 404 191 533 167 261 
5 322 230 264 266 167 153 181 119 279 123 157 

 
588 435 522 472 235 222 366 164 507 159 244 

4 270 202 244 230 146 134 159 107 255 110 137 
 

521 396 487 429 219 195 326 154 472 143 228 
3 231 175 213 195 128 116 143 96 224 100 120 

 
473 373 440 394 206 161 306 144 428 132 211 

2 200 155 186 171 114 102 132 89 193 92 107 
 

429 341 404 369 196 139 289 141 390 127 200 
1 167 138 160 152 101 90 115 81 166 83 95 

 
397 316 383 348 181 125 268 125 365 117 189 
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Continuing Table A.18 

Number of storeys: West facade 
  6 751 322 570 470 276 183 561 151 276 216 158 
 

1181 642 956 957 554 266 851 236 455 312 298 
5 640 293 536 451 239 165 531 140 239 198 147 

 
975 601 904 916 436 240 804 217 414 280 284 

4 511 246 481 424 199 146 483 125 222 173 136 
 

801 529 734 863 365 220 683 203 376 248 263 
3 406 202 427 395 178 128 430 117 209 159 126 

 
607 458 641 814 278 192 598 183 330 231 230 

2 334 167 376 362 145 116 371 112 188 143 121 
 

552 324 495 741 231 177 456 175 293 211 216 
1 293 145 338 296 131 106 334 105 169 129 113 

 
456 295 463 613 215 156 423 163 257 190 202 

 

Table A.18: Type T4 for North-South orientation in Florianopolis and Fortaleza. 

T4_EW Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1005 916 1258 946 772 1087 696 1176 915 752 
 

2398 1579 1403 1851 1326 958 1732 966 1616 1288 1038 
Number of storeys: North facade 

  6 897 222 301 483 348 413 229 346 527 286 458 
 

714 304 334 476 363 453 285 358 479 328 407 
5 817 181 281 407 286 376 213 327 484 254 446 

 
658 246 318 447 339 400 263 343 448 313 394 

4 681 167 266 340 224 353 201 300 438 227 403 
 

599 224 296 413 310 376 244 329 416 295 373 
3 536 154 251 323 207 340 193 284 382 213 371 

 
536 211 278 384 292 365 234 310 391 281 354 

2 443 145 240 284 167 321 168 249 308 199 346 
 

497 207 267 336 248 357 229 291 371 268 331 
1 398 136 226 272 160 299 167 237 258 192 328 

 
461 206 258 326 240 344 226 289 348 254 312 
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Continuing Table A.19 

Number of storeys: East facade 
  6 751 208 175 272 151 185 354 178 340 191 149 
 

1113 291 267 387 221 201 513 213 454 247 199 
5 606 176 162 249 135 177 320 166 315 160 135 

 
963 259 243 353 201 190 475 199 438 215 173 

4 451 159 146 219 119 168 271 153 294 145 119 
 

747 235 214 313 179 177 419 184 416 192 157 
3 342 143 132 193 105 160 227 142 263 133 110 

 
435 216 189 259 158 166 367 168 385 177 145 

2 271 126 121 168 94 151 190 132 227 123 105 
 

383 201 169 217 139 157 287 157 338 165 130 
1 229 113 113 148 84 143 156 123 192 114 98 

 
295 186 150 190 122 145 233 146 295 153 120 

Number of storeys: South facade 
  6 371 231 271 291 163 129 214 136 239 131 147 
 

660 462 552 558 304 261 399 255 472 228 327 
5 332 211 256 271 154 120 197 129 228 122 138 

 
610 434 531 526 290 250 368 241 450 219 296 

4 288 194 239 244 142 111 181 121 216 114 126 
 

553 409 500 485 278 239 345 232 429 212 278 
3 255 179 221 218 132 105 166 109 201 108 115 

 
506 387 473 457 270 225 333 228 404 210 266 

2 228 165 200 199 125 101 156 105 184 102 108 
 

470 370 436 420 265 213 325 223 381 207 257 
1 197 153 177 182 118 95 146 101 162 97 102 

 
455 355 411 408 254 209 323 227 350 205 256 

Number of storeys: West facade 
  6 749 257 327 635 259 129 328 132 235 179 116 
 

1187 438 546 1047 418 164 555 191 315 262 187 
5 607 223 298 587 228 114 300 119 198 165 107 

 
934 405 512 967 355 151 518 163 269 228 171 

4 453 186 257 527 189 100 262 102 180 143 98 
 

726 336 443 929 267 139 451 151 247 206 158 
3 343 156 222 468 159 90 227 93 164 126 90 

 
484 286 395 798 223 127 401 138 228 183 146 

2 270 133 198 402 135 83 200 84 150 111 84 
 

431 234 328 707 203 119 323 128 205 164 134 
1 229 121 184 344 126 76 184 76 136 99 77 

 
320 216 262 657 194 109 250 120 189 146 123 

 

Table A.19: Type T4 for East-West orientation in Florianopolis and Fortaleza.  
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Type T5: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T5 Florianopolis 
 

Fortaleza 

Surface Urban context 
 

Urban context 
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1586 1499 1615 1534 1446 1582 1435 1610 1552 1475 
 

2398 2353 2177 2385 2242 2047 2367 2083 2379 2272 2193 
Number of storeys: North facade 

  10 916 822 653 923 873 881 591 729 913 643 817 
 

729 662 617 770 723 707 590 604 762 609 697 
9 868 775 621 896 838 841 562 688 901 600 799 

 
696 627 602 739 686 673 570 580 745 592 683 

8 821 726 549 871 801 798 487 585 883 528 781 
 

665 595 587 719 657 645 554 557 719 575 668 
7 769 679 514 835 753 756 450 529 862 495 766 

 
627 564 570 692 627 618 535 537 696 558 653 

6 700 620 501 792 711 692 432 498 836 479 751 
 

602 537 555 659 595 588 518 519 673 540 641 
5 569 496 485 750 660 569 413 424 802 456 729 

 
580 508 531 629 564 564 494 503 652 521 622 

4 527 458 463 708 606 531 384 399 759 421 704 
 

550 488 490 607 535 540 452 487 635 475 596 
3 449 407 431 621 526 483 352 389 730 384 686 

 
531 474 460 588 515 529 422 473 618 442 573 

2 415 356 420 554 452 430 348 379 697 373 673 
 

512 461 452 574 498 518 415 453 601 433 557 
1 400 348 411 537 431 418 347 352 670 364 658 

 
490 440 442 555 481 507 401 403 577 418 533 

Number of storeys: East facade 
  10 778 745 428 767 436 418 713 418 726 699 505 
 

1136 1126 537 1139 559 507 1114 507 1093 1047 816 
9 721 699 406 747 410 400 685 401 701 662 464 

 
1070 1086 504 1115 535 474 1078 476 1076 1000 566 

8 643 642 380 725 386 377 654 378 683 611 424 
 

1000 996 486 1090 508 456 1058 460 1039 947 537 
7 571 577 364 700 356 366 626 366 667 547 407 

 
910 955 466 1057 436 441 1035 441 966 903 516 

6 510 523 349 658 320 352 607 353 635 490 379 
 

796 805 445 1023 410 424 1011 424 952 747 495 
5 451 459 333 617 291 336 571 340 611 433 354 

 
754 768 420 926 388 405 976 405 930 709 450 

4 398 410 320 550 272 320 528 327 577 390 326 
 

498 577 396 828 367 385 937 385 907 518 400 
3 353 364 308 503 257 311 493 316 546 353 303 

 
473 487 379 789 349 372 871 369 878 430 379 

2 329 336 298 467 242 301 438 309 516 330 292 
 

449 467 362 755 332 356 787 353 856 411 361 
1 305 313 283 430 229 290 400 294 486 309 278 

 
426 446 344 507 314 339 718 337 825 395 342 
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Continuing Table A.20 

Number of storeys: South facade 
  10 387 405 396 409 305 297 394 270 391 273 305 
 

673 726 730 730 528 543 712 482 717 457 542 
9 361 391 388 399 292 280 376 257 382 261 289 

 
642 694 720 720 503 513 684 459 699 436 528 

8 338 379 382 390 278 261 359 243 377 248 275 
 

613 662 712 706 478 484 645 442 680 418 514 
7 313 361 373 378 263 243 341 230 369 237 260 

 
588 642 704 692 467 460 620 428 671 407 501 

6 293 335 362 364 249 227 318 218 358 225 245 
 

554 614 693 671 457 424 593 408 657 382 483 
5 272 308 345 343 234 211 294 205 341 212 229 

 
526 585 678 644 445 397 559 396 634 365 459 

4 254 285 323 319 220 195 273 193 321 199 214 
 

511 559 657 626 434 381 529 385 610 352 449 
3 239 268 304 300 209 183 255 183 302 188 201 

 
502 541 619 599 424 372 514 377 591 343 442 

2 226 252 285 280 197 172 238 173 282 177 189 
 

484 530 599 587 411 367 505 372 569 335 426 
1 206 228 257 253 180 158 217 159 254 160 172 

 
451 513 573 570 372 358 475 362 542 311 393 

Number of storeys: West facade 
  10 775 620 745 794 698 430 740 417 749 499 368 
 

1208 1045 1211 1253 1079 599 1198 746 1160 776 592 
9 718 592 729 780 675 405 721 376 711 459 347 

 
1110 1023 1150 1243 1052 577 1131 572 1118 603 572 

8 645 566 710 762 641 383 695 339 654 420 327 
 

984 982 1107 1237 1025 547 1076 544 972 569 543 
7 570 538 684 743 600 353 667 318 587 399 300 

 
891 910 1084 1226 995 448 1054 522 925 549 446 

6 511 506 662 712 556 321 644 296 525 372 274 
 

787 884 1058 1209 947 425 1026 502 781 527 423 
5 454 482 629 688 502 290 614 267 467 344 248 

 
743 853 1023 1188 847 400 996 445 749 469 399 

4 400 440 578 661 443 268 568 241 427 312 234 
 

557 812 988 1160 736 378 959 373 599 395 380 
3 354 410 542 638 401 250 538 217 395 279 221 

 
530 749 899 1134 698 361 868 357 530 379 364 

2 330 381 506 610 363 236 506 201 372 264 204 
 

507 728 832 1102 663 344 804 342 511 361 348 
1 304 357 469 572 323 224 475 189 351 248 191 

 
485 678 761 996 502 325 737 323 492 343 330 

 

Table A.20: Type T5 for North-South and East-West orientation in Florianopolis and Fortaleza.  
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Type T6: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T6_NS Florianopolis 
 

Fortaleza 

Surface Urban context  Cases 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1517 1250 1551 1402 1374 1290 1233 1494 1230 1327 
 

2398 2278 2028 2320 2007 1820 2242 1754 2303 1976 1900 
Number of storeys: North facade 

  11 878 776 343 879 765 791 290 414 629 293 714 
 

688 599 403 720 642 613 368 427 607 360 534 
10 782 686 330 855 737 695 272 293 602 271 653 

 
617 532 383 701 612 543 346 395 598 336 517 

9 580 537 315 820 693 549 255 264 544 251 590 
 

542 464 361 657 562 478 320 342 586 312 502 
8 411 389 300 756 618 404 238 198 496 228 570 

 
471 410 342 593 494 423 301 263 568 291 492 

7 316 267 273 663 529 284 217 182 467 195 550 
 

411 358 319 520 410 372 280 242 526 265 480 
6 261 233 249 506 394 254 187 168 429 166 498 

 
331 297 286 469 353 312 247 227 476 229 466 

5 187 160 232 384 274 184 172 158 385 145 452 
 

259 226 270 429 309 243 230 210 426 207 448 
4 166 143 222 313 204 168 165 138 344 136 420 

 
238 207 256 392 275 221 219 185 379 188 423 

3 154 133 212 276 168 158 160 124 276 131 391 
 

215 194 245 333 229 210 211 158 328 176 392 
2 142 125 194 229 133 152 155 116 219 126 359 

 
201 184 236 288 189 201 209 156 291 168 368 

1 125 108 186 222 132 138 153 118 210 128 337 
 

184 179 234 281 190 199 209 161 281 168 361 
Number of storeys: East facade 

  11 746 706 423 549 335 331 511 317 642 546 389 
 

1095 1050 503 642 425 384 911 386 953 836 481 
10 620 626 396 510 293 294 484 291 611 483 362 

 
949 978 477 614 392 360 885 366 927 777 445 

9 485 514 374 485 252 264 453 265 569 385 332 
 

771 805 439 574 343 337 853 339 897 609 406 
8 374 420 350 453 220 240 431 245 521 289 307 

 
485 610 407 525 295 308 794 317 860 420 363 

7 301 338 327 441 189 223 399 222 475 241 285 
 

428 489 379 504 256 279 750 296 704 319 328 
6 246 292 304 427 164 209 373 202 437 210 261 

 
341 425 353 484 223 261 706 282 660 268 294 

5 205 246 277 413 141 188 324 187 401 169 222 
 

299 377 326 466 196 245 642 268 623 222 269 
4 179 222 245 398 125 171 259 178 371 150 189 

 
269 347 304 447 180 235 559 243 582 203 251 

3 154 204 216 384 115 155 194 167 334 138 167 
 

244 323 279 421 156 225 412 228 538 193 237 
2 137 185 196 357 106 148 152 154 299 134 152 

 
224 301 258 395 144 218 246 217 484 189 220 

1 127 166 180 334 98 144 135 148 268 132 142 
 

201 282 238 364 133 202 226 208 430 185 199 
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Number of storeys: South facade 
  11 363 385 348 347 237 253 365 194 349 208 231 
 

636 703 642 606 331 412 672 318 629 254 349 
10 312 373 334 338 214 222 350 173 338 185 208 

 
572 687 625 595 305 377 646 288 607 237 326 

9 255 355 317 324 185 180 321 148 330 158 179 
 

493 659 606 588 278 327 597 242 593 217 304 
8 212 310 302 314 158 146 273 125 320 134 152 

 
442 595 586 580 254 258 526 199 574 170 281 

7 174 243 283 292 133 119 212 104 300 113 128 
 

381 516 561 554 233 225 444 182 545 153 256 
6 141 195 264 258 114 100 170 89 277 97 105 

 
334 442 533 502 212 200 379 163 513 137 229 

5 120 164 246 217 99 85 143 78 254 83 92 
 

298 398 505 444 193 181 332 140 479 126 210 
4 105 143 221 179 88 74 124 70 228 74 81 

 
262 359 462 396 179 156 293 130 441 109 194 

3 96 127 191 150 81 68 113 66 197 68 75 
 

219 334 415 365 169 116 274 121 394 100 179 
2 90 117 164 135 77 64 104 63 168 65 72 

 
199 308 382 343 162 108 262 119 360 99 172 

1 85 108 142 123 72 60 95 60 145 61 68 
 

193 283 362 324 150 96 240 103 336 90 168 
Number of storeys: West facade 

  11 742 427 682 606 487 331 682 211 599 366 230 
 

1168 844 1107 1085 891 420 1045 333 986 432 381 
10 624 411 675 587 451 285 664 193 528 341 212 

 
950 813 1094 1064 837 384 1019 308 891 395 358 

9 488 388 663 566 422 246 630 174 427 308 191 
 

765 784 1077 1042 785 338 993 277 711 353 326 
8 377 362 629 537 381 214 608 157 344 253 170 

 
558 739 1042 1020 731 290 951 243 563 322 290 

7 301 334 591 500 327 183 574 142 291 216 149 
 

497 674 994 993 622 252 890 220 481 294 266 
6 246 305 554 471 265 157 542 131 251 195 133 

 
380 625 947 956 522 222 831 195 403 258 244 

5 205 261 505 445 207 138 501 117 210 172 121 
 

329 563 834 908 361 201 748 176 354 227 229 
4 177 218 446 419 181 122 451 107 197 154 113 

 
295 478 692 855 326 185 636 166 317 208 214 

3 153 175 393 384 154 109 389 103 181 140 108 
 

270 388 571 808 230 164 522 152 289 198 193 
2 135 147 347 346 131 100 338 100 164 129 104 

 
247 296 461 708 206 152 419 146 256 183 182 

1 126 133 323 280 122 95 317 96 153 121 99 
 

224 277 440 592 200 132 395 140 234 165 174 

 

Table A.21: Type T6 for North-South orientation in Florianopolis and Fortaleza.  
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T6_EW Florianopolis 
 

Fortaleza 

Surface Urban context  Cases 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1363 1164 1498 1225 1014 1389 1001 1469 1286 1051 
 

2398 2062 1726 2258 1704 1273 2215 1393 2064 1906 1438 
Number of storeys: North facade 

  11 886 581 426 779 668 780 340 503 768 496 595 
 

696 484 435 673 582 624 383 482 632 488 513 
10 800 527 409 748 596 707 322 436 734 468 560 

 
634 433 413 652 550 578 361 461 610 458 489 

9 648 439 386 709 539 614 296 420 697 421 522 
 

567 386 392 616 500 529 341 442 595 419 466 
8 502 340 356 650 472 508 271 375 657 357 505 

 
493 349 372 562 452 488 324 387 573 386 456 

7 400 258 326 578 417 434 247 350 576 312 483 
 

441 319 355 499 393 462 305 367 527 355 430 
6 332 225 303 475 338 413 228 337 526 284 467 

 
382 283 328 464 354 436 276 350 476 324 408 

5 259 178 283 390 270 359 209 311 471 247 435 
 

317 232 305 429 324 388 254 328 430 303 388 
4 231 159 269 332 218 339 197 287 427 225 392 

 
293 212 286 397 295 363 235 316 400 286 369 

3 209 150 256 306 190 325 181 263 352 210 369 
 

275 200 269 363 272 354 223 293 373 270 344 
2 191 141 237 275 155 305 171 242 290 191 347 

 
254 195 258 322 237 344 220 278 353 255 320 

1 183 131 227 268 152 282 169 228 258 190 332 
 

236 197 252 317 233 333 218 281 340 248 304 
Number of storeys: East facade 

  11 744 641 251 428 252 248 528 252 449 479 235 
 

1102 1037 338 537 334 272 839 301 582 762 314 
10 597 519 222 361 224 224 495 229 430 418 213 

 
932 918 306 485 305 252 822 278 565 713 288 

9 439 382 197 304 188 207 461 212 409 347 191 
 

730 696 269 404 259 230 799 252 548 643 260 
8 327 284 174 252 159 193 430 196 390 278 174 

 
409 468 234 323 203 210 648 226 524 427 231 

7 251 227 152 225 132 180 393 180 360 212 157 
 

356 336 205 287 173 191 530 202 464 304 208 
6 193 191 135 206 111 169 341 165 338 172 140 

 
250 259 180 259 147 176 485 181 440 223 171 

5 159 153 122 190 95 160 292 150 302 133 120 
 

213 213 159 235 130 162 428 164 420 176 144 
4 135 138 112 173 84 152 239 138 277 120 109 

 
192 193 141 219 117 154 368 151 394 155 133 

3 118 122 106 158 77 145 195 127 242 111 101 
 

176 180 131 184 107 146 312 139 361 144 126 
2 104 111 99 141 72 138 162 118 208 106 98 

 
161 171 124 166 99 140 248 133 317 138 116 

1 97 102 98 134 68 134 140 114 179 103 92 
 

151 165 119 157 94 135 209 131 281 134 110 
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Continuing Table A.22 

Number of storeys: South facade 
  11 361 356 335 348 211 198 327 181 297 186 231 
 

643 662 649 659 381 376 625 333 582 288 450 
10 318 343 325 339 195 176 311 166 284 170 209 

 
588 641 635 644 361 346 592 314 561 272 423 

9 269 319 315 333 177 151 287 152 270 149 184 
 

516 606 619 637 337 312 553 290 537 255 389 
8 230 284 302 327 162 131 256 137 257 131 162 

 
466 555 601 631 315 285 485 262 514 239 364 

7 196 239 283 303 147 117 219 125 246 116 141 
 

412 493 580 599 298 266 429 248 496 224 330 
6 165 209 265 277 136 105 188 116 231 105 125 

 
377 449 548 548 281 249 384 239 468 213 307 

5 145 186 245 247 126 97 168 107 217 96 112 
 

338 413 519 506 265 237 350 223 439 203 275 
4 130 168 227 217 118 91 154 101 202 90 104 

 
313 387 484 461 255 228 327 216 413 197 261 

3 121 155 208 194 113 89 144 93 186 87 95 
 

279 365 452 426 248 204 315 213 385 192 245 
2 116 148 186 178 109 86 138 93 167 86 94 

 
273 353 420 400 244 194 311 214 359 192 241 

1 109 138 164 165 104 84 129 89 148 84 89 
 

271 337 395 388 233 191 309 216 329 186 241 
Number of storeys: West facade 

  11 741 356 504 759 490 230 506 193 606 284 200 
 

1177 605 815 1206 716 278 819 281 943 368 335 
10 598 338 464 751 463 203 463 176 536 260 181 

 
915 588 804 1201 628 259 802 260 876 336 309 

9 441 321 436 738 412 175 428 157 425 231 154 
 

709 570 791 1200 592 223 782 239 676 297 265 
8 328 301 407 706 370 152 397 141 326 200 130 

 
457 547 707 1177 544 177 687 218 489 260 210 

7 251 272 375 669 309 126 363 125 256 171 106 
 

405 458 597 1147 466 157 570 201 391 227 179 
6 193 246 329 627 247 108 315 109 208 146 92 

 
273 409 559 1060 405 142 529 164 283 182 156 

5 159 192 286 568 206 90 277 92 165 125 82 
 

227 354 502 951 337 127 469 136 226 149 138 
4 135 153 242 506 169 81 236 82 150 111 74 

 
206 287 431 905 250 118 403 128 207 138 127 

3 117 125 208 440 142 74 202 76 138 98 69 
 

190 235 376 766 200 108 351 118 194 129 117 
2 103 110 189 380 121 70 181 70 128 89 66 

 
174 199 317 684 187 104 289 112 179 123 111 

1 95 105 179 328 117 68 172 67 120 84 64 
 

164 192 261 642 183 100 232 109 170 120 107 

 

Table A.22: Type T6 for East-West orientation in Florianopolis and Fortaleza.  
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Type T7: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T7_NS Florianopolis 
 

Fortaleza 

Surface Urban context  Urban context 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1620 1585 1626 1581 1571 1610 1562 1623 1595 1580 
 

2398 2391 2334 2394 2342 2287 2384 2302 2393 2340 2331 
Number of storeys: North facade 

  13 923 926 804 978 907 948 778 842 915 788 897 
 

731 746 657 798 743 756 643 669 766 639 740 
12 882 909 756 967 894 932 726 807 905 741 886 

 
702 727 639 788 731 739 622 642 758 622 732 

11 839 879 641 949 877 902 604 760 886 624 872 
 

670 698 620 771 711 711 598 612 748 602 720 
10 785 837 591 930 855 863 552 713 871 571 859 

 
638 666 603 753 687 676 580 584 737 584 708 

9 731 796 558 907 824 823 517 654 857 536 847 
 

606 633 579 728 661 644 553 559 723 560 696 
8 640 745 481 871 783 770 440 527 838 453 830 

 
582 604 561 702 634 614 539 539 702 538 686 

7 540 702 452 838 748 728 409 497 822 423 818 
 

566 578 551 678 606 593 529 518 683 527 670 
6 513 651 442 808 708 677 399 467 794 412 807 

 
548 559 528 654 580 572 506 501 666 504 657 

5 469 523 433 772 668 555 383 387 775 399 792 
 

519 540 520 632 556 551 497 488 652 495 638 
4 379 486 426 729 631 519 374 357 748 384 775 

 
504 516 492 610 536 533 465 473 639 465 619 

3 366 448 406 657 566 476 353 346 711 357 760 
 

480 499 460 593 518 514 431 456 624 429 602 
2 357 371 367 556 477 401 316 341 640 319 746 

 
462 488 431 574 499 505 397 435 608 398 585 

1 355 356 362 544 469 386 311 340 615 312 730 
 

443 476 419 551 481 500 385 410 593 389 566 
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Continuing Table A.23 

Number of storeys: East facade 
  13 788 823 544 804 556 507 749 504 805 756 654 
 

1140 1180 677 1170 865 630 1128 622 1171 1091 1021 
12 755 805 531 772 525 491 732 492 796 739 614 

 
1110 1158 664 1128 651 616 1116 608 1158 1070 897 

11 691 786 517 721 486 475 701 478 785 720 569 
 

1031 1136 648 1085 607 599 1101 592 1146 1042 874 
10 631 759 498 678 464 457 678 460 762 698 541 

 
996 1111 616 1016 583 565 1084 561 1135 1013 795 

9 572 713 483 631 446 443 647 445 743 642 507 
 

880 1058 575 923 562 522 1065 519 1124 956 612 
8 520 655 453 598 423 416 622 416 731 586 474 

 
818 1023 555 905 543 507 1042 503 1109 918 594 

7 486 612 442 581 397 408 604 407 717 550 465 
 

796 940 541 882 506 494 1016 492 1094 833 581 
6 456 560 429 558 375 398 587 399 700 510 455 

 
652 859 527 662 475 481 988 481 1076 758 564 

5 410 519 418 528 332 390 560 386 678 476 440 
 

541 836 511 642 458 468 961 467 1049 737 544 
4 370 483 410 517 315 383 519 370 657 448 424 

 
519 742 501 622 442 453 929 452 1029 643 502 

3 349 437 397 507 296 369 487 348 631 418 400 
 

498 581 486 605 424 437 877 437 1007 487 474 
2 332 396 385 490 283 355 445 335 594 391 370 

 
475 552 471 583 403 423 849 421 981 469 458 

1 318 376 371 467 269 339 410 325 566 381 353 
 

450 526 451 525 383 407 722 405 918 454 441 
Number of storeys: South facade 

  13 392 421 412 413 328 353 415 312 415 308 326 
 

676 752 740 726 557 627 740 547 748 509 554 
12 370 411 406 406 316 340 405 298 409 295 314 

 
647 739 734 718 543 604 728 523 742 489 540 

11 345 401 399 398 301 323 393 281 402 282 298 
 

617 727 726 709 528 569 717 499 733 463 525 
10 323 392 400 390 286 295 379 262 403 261 283 

 
590 715 730 702 511 545 701 478 740 445 508 

9 299 381 392 379 271 273 364 247 396 247 269 
 

567 701 723 691 495 516 676 457 725 428 496 
8 279 364 384 367 258 253 343 232 387 234 254 

 
531 676 715 676 480 487 642 435 713 413 485 

7 264 342 373 352 247 237 322 218 381 223 242 
 

514 649 705 659 457 468 617 420 705 404 474 
6 252 321 362 338 236 224 302 208 371 213 231 

 
500 626 693 644 444 451 592 410 687 394 459 

5 237 299 347 320 224 209 280 196 354 202 219 
 

488 601 677 626 429 429 567 398 665 376 441 
4 224 278 327 301 213 195 261 185 336 191 207 

 
475 581 656 613 420 411 541 390 637 365 432 

3 211 261 307 282 201 184 244 175 315 180 196 
 

460 552 627 596 413 402 520 380 611 358 428 
2 198 243 285 260 188 172 222 164 292 169 185 

 
441 538 608 583 396 394 504 371 593 341 411 

1 174 223 261 238 171 157 199 150 265 154 170 
 

426 517 580 562 383 380 487 361 567 329 392 
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Continuing Table A.23 

Number of storeys: West facade  
  13 786 713 824 801 670 559 826 527 790 627 469 
 

1214 1178 1260 1251 1160 839 1247 914 1226 949 824 
12 752 692 817 786 644 534 814 484 768 594 438 

 
1183 1158 1249 1240 1145 715 1235 795 1209 837 698 

11 694 659 811 767 620 498 802 438 749 553 403 
 

1032 1140 1240 1226 1124 662 1220 769 1191 812 647 
10 633 628 805 751 597 469 790 407 729 526 380 

 
992 1120 1230 1214 1096 640 1204 731 1169 775 630 

9 576 604 781 729 578 444 773 375 687 483 365 
 

880 1089 1214 1204 1047 614 1183 585 1042 631 613 
8 525 581 760 703 550 421 752 340 633 449 347 

 
821 1037 1195 1192 993 593 1156 562 964 609 594 

7 490 561 737 680 526 397 731 326 599 438 328 
 

793 1009 1170 1177 967 545 1127 542 882 592 545 
6 459 545 724 654 503 375 720 312 560 423 315 

 
709 979 1145 1160 878 501 1096 524 802 575 500 

5 411 527 702 634 469 330 700 296 522 402 286 
 

611 949 1123 1140 830 477 1072 504 782 552 476 
4 372 506 672 613 426 312 672 276 487 379 275 

 
589 920 1100 1117 746 450 1053 443 716 487 456 

3 349 470 641 592 385 295 629 259 439 348 260 
 

568 850 987 1091 687 426 951 411 609 445 441 
2 332 438 603 570 353 282 592 236 408 311 249 

 
543 821 944 1060 667 408 913 396 588 428 425 

1 316 406 570 538 320 268 560 225 391 293 236 
 

513 712 826 1028 590 391 799 380 570 411 408 

 

Table A.23: Type T7 for North-South orientation in Florianopolis and Fortaleza.  
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T7_EW Florianopolis 
 

Fortaleza 

Surface Urban context  Urban context 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1600 1506 1622 1555 1445 1614 1477 1612 1599 1531 
 

2398 2349 2206 2391 2309 2101 2388 2158 2378 2342 2267 
Number of storeys: North facade  

  13 929 854 828 959 923 954 779 821 959 850 851 
 

739 711 675 795 761 766 654 681 798 684 724 
12 893 829 803 943 910 936 750 794 952 827 839 

 
715 686 660 785 750 751 633 659 793 668 715 

11 859 793 716 919 878 913 655 764 939 739 824 
 

689 662 644 770 727 734 614 637 778 649 701 
10 812 759 675 894 840 879 606 736 919 694 805 

 
661 639 631 755 703 704 598 617 757 634 686 

9 775 723 656 865 803 848 583 708 894 673 785 
 

632 605 616 722 668 683 576 601 742 618 673 
8 706 681 600 834 765 810 524 608 874 616 758 

 
612 580 602 702 650 662 560 583 723 607 661 

7 613 649 571 804 734 783 490 578 855 588 741 
 

597 552 584 686 633 646 541 569 707 591 647 
6 586 619 557 773 701 752 475 566 834 575 725 

 
579 537 571 660 601 621 531 561 694 582 636 

5 550 517 538 743 664 658 452 519 812 550 710 
 

550 523 565 641 582 608 524 551 683 571 624 
4 477 488 523 716 632 628 438 491 793 525 696 

 
539 513 554 626 563 595 518 540 666 554 607 

3 455 470 506 665 580 610 422 483 767 497 680 
 

522 504 533 610 544 581 495 530 646 521 589 
2 436 416 479 585 488 556 397 476 736 466 660 

 
505 496 509 598 529 570 470 518 627 498 569 

1 427 398 471 577 476 539 392 470 718 455 648 
 

493 484 498 579 509 558 459 509 596 488 547 
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Continuing Table A.24 

Number of storeys: East facade  
  13 785 808 419 740 479 418 780 418 709 759 595 
 

1145 1177 555 1082 809 537 1153 545 1079 1119 973 
12 749 789 397 696 450 396 764 398 694 733 541 

 
1111 1157 538 1054 567 521 1142 528 1070 1096 825 

11 672 761 375 650 405 377 736 378 674 697 482 
 

1016 1130 518 1017 518 503 1106 509 1057 1046 793 
10 600 713 348 586 375 353 709 354 656 662 445 

 
972 1082 468 925 494 453 1069 460 1012 998 706 

9 531 641 330 521 352 336 680 337 633 623 406 
 

834 997 412 810 470 399 1051 406 919 964 496 
8 470 572 300 470 324 307 654 308 614 571 364 

 
765 950 393 780 448 382 1028 388 905 928 474 

7 429 526 289 443 298 298 629 297 603 522 346 
 

739 854 375 743 392 369 1009 372 893 826 456 
6 398 475 274 409 285 291 605 288 577 462 330 

 
576 760 359 495 351 356 987 359 880 732 441 

5 353 424 263 366 252 281 567 278 552 414 309 
 

448 732 342 473 332 341 958 343 861 705 421 
4 316 386 254 346 239 272 542 268 534 377 288 

 
427 620 328 453 315 327 870 329 838 595 355 

3 292 349 242 328 228 263 499 259 509 339 265 
 

409 443 313 433 301 312 792 313 816 418 321 
2 273 313 232 311 217 255 468 250 480 308 245 

 
393 424 299 406 287 299 770 300 793 401 307 

1 260 294 226 290 210 248 443 242 462 292 238 
 

363 407 289 336 276 289 741 291 762 389 295 
Number of storeys: South facade  

  13 388 418 401 421 329 322 407 302 397 298 338 
 

682 758 744 759 590 599 734 550 733 519 601 
12 371 410 396 415 318 309 398 291 391 288 326 

 
659 741 736 753 570 575 722 533 719 498 589 

11 351 402 389 407 308 295 389 276 382 276 312 
 

635 723 726 745 551 557 710 516 703 485 575 
10 332 390 389 401 294 281 373 266 376 266 301 

 
612 703 731 739 540 533 689 497 698 470 562 

9 314 374 382 393 283 265 360 255 369 254 288 
 

592 681 724 727 529 506 662 479 688 451 549 
8 296 362 375 384 271 250 345 244 359 244 276 

 
561 667 716 714 518 474 635 462 678 428 537 

7 284 344 366 373 260 240 329 235 349 236 266 
 

549 648 711 700 509 461 617 453 670 419 529 
6 272 327 357 363 253 231 317 229 341 228 256 

 
531 630 702 688 502 451 603 444 661 413 514 

5 261 311 343 347 244 218 302 220 328 219 243 
 

521 609 687 670 494 436 588 429 646 404 502 
4 250 298 327 328 234 204 288 213 312 209 229 

 
509 595 670 657 485 425 556 423 625 396 497 

3 237 283 311 310 225 194 275 203 298 201 216 
 

492 582 641 633 480 417 546 419 610 393 491 
2 225 265 293 290 213 184 261 194 280 187 204 

 
489 571 624 618 475 411 539 412 595 389 486 

1 199 242 268 265 196 169 239 179 254 170 190 
 

478 556 600 593 462 397 524 397 571 381 457 
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Continuing Table A.24 

Number of storeys: West facade  
  13 782 664 772 842 745 471 772 557 793 594 452 
 

1219 1042 1233 1286 1077 771 1229 917 1230 933 780 
12 746 646 758 836 719 443 756 502 775 542 421 

 
1184 1029 1223 1282 1059 616 1218 779 1207 795 623 

11 673 620 735 829 696 399 732 443 750 485 375 
 

1000 1013 1163 1276 1037 556 1155 751 1175 767 564 
10 600 600 715 824 666 371 710 407 717 448 347 

 
950 965 1066 1275 1015 531 1056 705 1146 716 538 

9 533 565 679 817 636 348 672 368 663 410 323 
 

811 873 1049 1271 990 510 1036 527 1001 537 516 
8 472 540 653 799 596 322 646 327 592 367 298 

 
746 846 1026 1260 961 490 1013 505 928 514 495 

7 431 522 628 776 573 297 618 310 539 348 274 
 

720 826 1006 1243 908 417 991 489 832 496 422 
6 399 492 602 761 536 285 592 293 489 330 262 

 
616 805 985 1229 799 360 970 473 736 480 363 

5 355 459 563 740 497 251 552 271 440 306 233 
 

497 782 958 1207 763 344 943 456 707 463 346 
4 318 439 541 717 470 237 533 245 401 284 217 

 
477 761 883 1183 722 329 865 368 616 375 330 

3 292 415 504 688 421 225 498 223 362 262 203 
 

460 721 787 1149 695 313 771 325 487 328 316 
2 273 386 479 657 388 215 473 202 331 238 192 

 
444 705 769 1051 677 297 754 311 471 315 302 

1 260 368 465 627 357 207 459 192 312 228 181 
 

413 654 731 994 575 286 717 297 461 305 286 

 

Table A.24: Type T7 for East-West orientation in Florianopolis and Fortaleza.  
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Type T8: results in kWh/(m² y) for North-South (NS) and East-West (EW) orientations in Florianopolis and Fortaleza 

T8_NS Florianopolis 
 

Fortaleza 

Surface Urban context  Urban context 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1630 1630 1630 1629 1630 1630 1630 1629 1630 1630 
 

2398 2398 2398 2398 2398 2398 2398 2398 2398 2398 2398 
Number of storeys: North facade  

  17 912 1009 1011 1008 989 1012 1005 997 992 1004 983 
 

717 822 819 819 801 826 815 807 811 816 796 
16 861 1007 997 1013 979 1013 993 992 992 995 975 

 
679 823 804 825 798 829 802 806 813 802 792 

15 810 1002 982 1015 969 1011 976 979 988 982 966 
 

645 819 786 828 793 830 778 796 812 785 788 
14 756 997 967 1016 961 1010 958 963 981 962 959 

 
607 815 770 831 786 826 763 777 809 763 781 

13 688 985 939 1013 947 998 928 940 974 931 947 
 

574 805 745 830 774 812 737 754 805 738 774 
12 556 967 901 1004 933 986 886 912 965 893 932 

 
548 787 714 824 770 798 704 731 801 707 771 

11 499 941 858 992 913 967 837 876 951 847 913 
 

513 758 682 815 751 773 667 698 792 672 759 
10 422 912 820 976 893 944 791 835 940 807 899 

 
484 727 654 798 733 750 636 665 783 644 749 

9 364 884 762 958 869 915 723 787 925 747 879 
 

460 703 632 778 713 724 611 632 772 621 737 
8 342 840 645 932 841 875 599 744 912 628 861 

 
429 666 611 756 684 692 586 598 758 600 722 

7 323 794 609 902 814 833 561 696 895 590 846 
 

410 633 592 731 655 657 567 571 741 581 709 
6 306 739 553 862 773 780 504 575 869 530 829 

 
375 595 573 697 623 620 544 546 711 559 689 

5 242 687 486 822 720 728 436 516 847 462 805 
 

325 567 562 670 594 595 533 526 684 543 669 
4 230 593 475 784 677 632 424 485 827 448 787 

 
306 545 541 642 561 570 516 507 667 521 644 

3 221 507 466 746 641 553 409 398 798 433 770 
 

297 530 533 617 541 552 505 494 654 513 622 
2 214 478 460 684 579 530 396 383 766 421 756 

 
292 506 508 598 520 533 476 478 637 482 604 

1 212 403 430 582 481 459 364 378 750 389 741 
 

287 491 463 577 499 523 428 470 617 436 584 
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Continuing Table A.25 
Number of storeys: East facade  

  17 774 860 807 874 843 797 846 795 854 858 864 
 

1124 1215 1168 1237 1199 1153 1201 1150 1212 1204 1223 
16 722 847 759 869 815 746 839 744 846 850 854 

 
1066 1207 1114 1232 1172 1094 1194 1091 1204 1196 1211 

15 650 844 698 866 786 683 835 682 844 845 842 
 

992 1203 1059 1228 1140 1035 1190 1032 1202 1190 1195 
14 575 841 641 854 741 628 826 625 840 829 828 

 
903 1199 964 1215 1091 942 1185 937 1198 1178 1176 

13 509 835 588 844 676 574 818 573 835 815 802 
 

789 1192 874 1201 1017 850 1178 847 1192 1163 1147 
12 456 827 547 830 615 529 801 530 822 795 752 

 
755 1181 850 1183 948 821 1165 819 1182 1140 1099 

11 404 813 512 804 553 493 780 492 803 774 680 
 

552 1155 615 1155 820 583 1149 580 1169 1114 1011 
10 354 793 472 773 506 454 760 453 793 753 617 

 
469 1133 581 1126 790 547 1136 545 1145 1087 968 

9 323 767 457 715 470 437 740 438 780 729 567 
 

445 1104 561 1052 604 527 1122 526 1133 1053 821 
8 298 731 441 652 427 420 711 423 756 703 510 

 
421 1064 541 1012 512 511 1105 508 1122 1018 794 

7 274 676 421 601 401 402 677 405 741 652 474 
 

390 1006 506 883 491 482 1082 476 1107 961 669 
6 251 599 401 544 374 383 642 386 721 576 435 

 
331 945 453 830 471 427 1042 423 1083 898 517 

5 220 539 373 517 352 357 618 357 695 519 412 
 

313 819 438 749 448 413 1004 409 1058 774 497 
4 209 479 358 485 322 350 579 348 674 460 398 

 
299 758 425 559 389 402 977 396 1036 716 481 

3 198 439 347 456 285 341 544 340 650 429 384 
 

287 726 412 539 370 388 946 383 1012 692 464 
2 188 402 338 443 269 334 504 331 615 401 357 

 
274 492 400 519 354 376 894 372 959 466 410 

1 179 353 324 422 255 310 451 321 565 366 322 
 

263 455 382 498 336 360 842 359 897 431 383 
Number of storeys: South facade  

  17 381 412 412 427 415 403 414 410 411 408 418 
 

661 749 743 750 723 732 750 737 744 709 722 
16 353 408 408 422 398 394 410 395 406 390 402 

 
626 745 739 745 700 722 746 716 739 684 700 

15 327 414 414 425 384 389 414 386 412 369 385 
 

592 754 749 750 676 718 754 700 748 652 676 
14 300 410 410 421 361 376 411 366 408 339 362 

 
563 751 745 746 647 706 750 675 745 622 649 

13 276 413 412 423 339 365 414 343 412 314 338 
 

529 754 749 752 620 686 754 643 751 582 620 
12 255 409 409 418 318 352 410 316 408 291 316 

 
496 751 745 748 594 661 749 610 747 545 593 

11 235 406 406 415 296 335 407 284 407 268 293 
 

470 748 746 744 571 636 746 565 749 514 567 
10 218 396 401 408 277 319 398 261 402 251 275 

 
453 735 742 737 551 613 733 530 745 494 547 

9 203 386 398 399 261 298 386 241 399 235 259 
 

429 722 742 729 534 578 718 501 743 468 530 
8 190 370 390 389 246 276 370 224 393 221 245 

 
407 703 735 719 516 546 697 478 738 447 514 



  

 
181 

Continuing Table A.25 
7 173 351 384 375 233 247 348 207 386 204 231 

 
382 676 729 703 500 516 669 456 730 431 501 

6 160 327 372 356 220 220 322 192 374 190 216 
 

363 635 715 680 476 483 623 435 705 413 488 
5 151 299 358 339 210 202 295 179 360 180 203 

 
345 595 699 658 455 454 590 417 680 396 479 

4 143 276 342 320 201 187 272 169 343 173 193 
 

338 567 680 637 446 434 566 407 656 388 456 
3 137 255 319 298 191 175 252 161 322 166 185 

 
335 546 657 621 431 411 544 395 628 369 442 

2 131 235 296 276 182 165 234 153 299 158 176 
 

319 528 626 599 424 396 524 390 600 359 436 
1 120 210 267 249 165 150 209 141 269 144 162 

 
309 504 593 572 414 382 503 380 574 349 429 

Number of storeys: West facade  
  17 771 834 852 850 833 835 855 839 861 849 826 
 

1199 1273 1290 1284 1269 1258 1285 1268 1296 1270 1257 
16 718 813 841 847 823 819 842 819 858 832 793 

 
1115 1260 1285 1280 1261 1238 1279 1247 1293 1250 1228 

15 651 805 840 846 813 787 839 800 856 817 765 
 

980 1253 1285 1280 1253 1206 1278 1225 1291 1232 1200 
14 576 794 838 844 791 739 838 776 851 801 715 

 
898 1241 1285 1278 1236 1138 1277 1201 1283 1212 1132 

13 510 782 835 840 770 677 835 737 843 775 646 
 

784 1230 1283 1276 1221 993 1273 1165 1274 1183 984 
12 460 766 828 832 749 617 828 678 828 728 578 

 
747 1218 1276 1273 1207 919 1267 1114 1259 1128 914 

11 407 739 822 825 724 561 820 605 806 660 510 
 

596 1192 1259 1267 1190 799 1248 939 1237 952 795 
10 355 713 809 814 694 512 804 525 783 596 451 

 
530 1137 1245 1263 1173 770 1230 884 1211 906 764 

9 325 687 797 799 661 476 790 470 758 550 409 
 

505 1109 1233 1251 1150 652 1215 741 1185 770 644 
8 299 649 786 785 632 436 777 411 729 497 367 

 
480 1091 1218 1244 1101 569 1198 709 1156 741 561 

7 275 621 767 766 607 406 753 371 685 461 339 
 

443 1041 1200 1235 1020 545 1176 630 1028 662 541 
6 250 584 725 735 561 381 713 330 615 417 321 

 
351 1006 1157 1217 977 521 1126 506 926 539 522 

5 221 555 701 698 534 358 693 304 561 389 304 
 

334 970 1101 1193 915 496 1066 485 799 519 499 
4 209 530 669 672 494 327 664 287 511 371 280 

 
319 939 1077 1172 850 410 1043 466 742 500 410 

3 198 502 639 646 430 290 636 269 476 352 250 
 

307 907 1035 1145 772 390 1006 449 717 483 388 
2 188 474 610 621 386 273 605 246 439 324 237 

 
294 827 931 1120 682 368 904 376 576 403 371 

1 178 428 570 594 349 256 562 221 397 288 221 
 

283 774 889 1090 662 349 867 345 534 367 357 

 

Table A.25: Type T8 for North-South orientation in Florianopolis and Fortaleza.  
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T8_EW Florianopolis 
 

Fortaleza 

Surface Urban context  Urban context 
0 1 2 3 4 5 6 7 8 9 10  0 1 2 3 4 5 6 7 8 9 10 

Roof  1630 1630 1630 1630 1630 1630 1630 1630 1630 1630 1630 
 

2398 2398 2398 2398 2398 2398 2398 2398 2398 2398 2398 
Number of storeys: North facade  

  17 913 1007 1011 1020 1008 1016 1006 1000 1007 1007 986 
 

719 825 826 833 825 834 821 817 827 820 802 
16 866 997 998 1018 1008 1015 990 989 1004 999 977 

 
684 822 814 834 825 833 806 808 827 808 796 

15 820 991 982 1024 1003 1014 971 978 1002 983 967 
 

652 816 795 841 819 833 786 801 827 787 792 
14 771 983 963 1018 1000 1008 950 954 999 960 955 

 
613 810 774 835 817 826 765 776 827 769 782 

13 711 967 938 1015 990 1003 925 933 994 942 942 
 

582 796 753 835 810 819 741 758 823 750 776 
12 587 947 907 1001 974 991 886 904 980 909 920 

 
559 773 726 826 797 803 709 735 815 723 769 

11 531 914 866 992 956 971 836 869 968 870 900 
 

524 742 693 819 784 781 672 702 807 692 753 
10 466 880 836 967 934 948 793 831 958 841 882 

 
490 709 667 799 764 757 645 673 798 668 738 

9 406 847 789 946 906 924 737 790 947 796 864 
 

469 685 645 781 739 735 619 645 788 645 727 
8 382 807 680 917 873 890 623 750 933 683 846 

 
447 654 624 757 714 708 597 615 772 621 712 

7 357 761 646 887 833 851 585 715 914 650 827 
 

431 624 609 736 684 675 581 593 752 604 699 
6 333 712 605 847 787 806 539 611 884 605 803 

 
401 590 595 701 649 646 561 572 719 588 678 

5 275 671 548 808 741 762 476 552 857 542 773 
 

353 567 583 674 622 623 547 551 693 571 660 
4 260 588 534 769 698 680 461 533 834 524 751 

 
337 543 570 646 591 598 533 537 680 563 639 

3 250 508 524 735 661 609 446 461 808 502 731 
 

326 524 559 627 570 581 522 525 668 556 617 
2 242 483 517 684 607 590 435 454 787 488 712 

 
318 506 536 610 550 566 501 517 648 528 599 

1 241 423 495 591 510 519 412 451 768 458 689 
 

311 489 492 589 529 554 456 509 625 485 578 
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Continuing Table A.26 

Number of storeys: East facade 
  17 774 855 795 873 847 791 844 789 847 861 860 
 

1129 1214 1158 1235 1199 1149 1196 1145 1204 1210 1217 
16 718 848 739 867 827 732 839 730 832 854 848 

 
1066 1209 1095 1228 1175 1082 1192 1078 1190 1203 1202 

15 640 845 669 861 790 660 836 659 826 848 836 
 

985 1207 1031 1222 1139 1015 1190 1013 1185 1197 1186 
14 560 841 603 837 734 597 833 596 820 837 823 

 
890 1202 926 1200 1081 911 1187 908 1179 1188 1168 

13 488 834 540 822 659 535 826 534 809 825 795 
 

772 1195 827 1181 999 812 1182 810 1171 1176 1138 
12 433 824 489 801 587 484 805 483 787 798 736 

 
736 1182 797 1153 921 783 1166 780 1143 1149 1083 

11 380 802 446 772 515 442 789 441 769 774 654 
 

520 1164 545 1121 783 530 1154 528 1111 1121 985 
10 330 784 401 732 463 397 775 396 745 749 581 

 
433 1142 503 1081 752 489 1144 488 1098 1088 934 

9 298 756 376 680 424 378 758 376 731 713 522 
 

409 1114 481 1005 559 470 1130 467 1086 1055 774 
8 271 710 357 606 378 360 728 359 712 675 461 

 
388 1071 461 963 460 451 1107 450 1073 1017 743 

7 247 652 335 546 347 340 700 340 687 633 420 
 

357 1001 426 820 437 415 1059 415 1056 952 609 
6 222 579 312 480 323 320 658 319 660 558 374 

 
291 930 365 760 416 354 1025 355 1028 897 450 

5 194 514 285 442 301 294 628 291 642 494 346 
 

273 796 351 672 389 341 998 341 931 762 432 
4 183 447 276 401 272 287 595 282 601 434 326 

 
258 730 337 473 322 330 972 328 898 695 416 

3 176 407 265 371 241 280 559 276 582 394 310 
 

247 700 323 455 307 319 942 318 879 666 400 
2 167 372 252 349 230 273 515 269 551 358 288 

 
238 462 310 438 297 309 904 308 859 429 340 

1 157 324 246 330 220 264 478 265 515 319 266 
 

231 427 299 423 284 299 833 297 835 397 311 
Number of storeys: South facade  

  17 379 428 419 428 419 401 422 411 420 406 418 
 

663 771 756 758 730 731 762 737 760 709 729 
16 353 425 415 425 403 392 417 397 415 389 405 

 
630 768 753 755 707 720 756 718 754 685 709 

15 329 428 420 428 391 384 422 386 421 369 393 
 

600 775 761 763 688 711 760 701 762 654 690 
14 303 424 415 425 373 370 417 367 416 343 375 

 
571 771 756 760 663 699 755 676 756 625 666 

13 282 427 414 428 350 357 417 346 416 321 355 
 

532 773 756 766 636 671 758 642 758 583 641 
12 262 424 409 424 332 344 411 321 410 301 336 

 
504 770 752 762 614 647 751 610 753 550 617 

11 243 420 406 419 313 328 409 294 405 282 316 
 

482 766 751 758 592 626 747 567 749 526 592 
10 227 410 399 413 297 313 399 272 397 266 299 

 
463 755 745 753 573 605 734 536 741 507 574 

9 213 399 397 409 282 294 388 254 391 251 286 
 

437 739 746 749 555 567 721 509 735 477 560 
8 200 386 390 399 270 276 372 240 382 238 270 

 
414 715 737 740 534 539 701 489 722 457 544 
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Continuing Table A.26 
7 188 372 383 387 258 254 351 227 372 226 256 

 
398 688 730 726 516 513 668 469 707 443 532 

6 174 350 372 372 244 232 329 214 362 214 242 
 

384 654 717 705 497 485 622 447 688 428 518 
5 163 325 360 358 232 217 308 203 350 206 229 

 
365 627 703 684 484 456 599 431 670 409 507 

4 155 303 341 338 221 204 288 195 333 198 219 
 

358 605 688 661 477 438 579 423 651 399 482 
3 149 283 319 316 212 192 270 186 315 191 208 

 
354 585 667 645 470 418 558 410 628 387 475 

2 143 265 299 293 201 179 254 178 293 180 195 
 

345 571 635 618 463 406 535 404 603 380 472 
1 131 240 269 262 183 162 230 164 262 163 178 

 
335 549 601 589 451 394 518 395 578 371 463 

Number of storeys: West facade  
  17 772 827 846 842 847 834 848 840 861 847 822 
 

1204 1264 1281 1270 1277 1259 1280 1273 1296 1274 1257 
16 715 807 838 841 842 819 840 825 857 833 788 

 
1114 1250 1278 1270 1272 1241 1275 1256 1291 1258 1224 

15 641 798 836 842 838 783 837 809 855 820 761 
 

966 1242 1277 1272 1268 1207 1273 1236 1289 1239 1196 
14 561 787 834 843 820 727 834 790 852 805 710 

 
879 1231 1276 1275 1254 1129 1271 1215 1283 1219 1126 

13 490 772 830 843 810 657 830 755 844 777 636 
 

758 1219 1273 1276 1243 971 1267 1182 1275 1189 966 
12 435 748 812 840 798 586 812 695 830 720 561 

 
723 1168 1256 1276 1231 895 1249 1124 1261 1131 887 

11 383 720 790 836 780 519 790 611 809 642 487 
 

558 1086 1243 1274 1215 765 1236 932 1237 941 756 
10 332 692 778 831 752 465 776 530 777 570 429 

 
485 1068 1232 1272 1181 733 1223 877 1205 888 724 

9 299 665 761 823 729 425 756 470 751 512 385 
 

462 1047 1221 1269 1070 603 1209 726 1167 738 594 
8 272 632 738 814 695 379 730 407 723 453 338 

 
441 1023 1198 1264 1037 514 1183 697 1127 709 507 

7 247 602 718 803 666 349 707 366 666 415 309 
 

408 998 1107 1256 1004 490 1088 610 1009 620 486 
6 221 567 686 778 617 324 673 318 586 369 284 

 
312 957 1052 1240 967 465 1032 477 901 484 463 

5 194 541 654 749 577 303 641 289 520 338 266 
 

293 875 1023 1219 923 437 1003 457 768 466 435 
4 184 496 610 724 524 276 598 269 459 316 243 

 
277 829 995 1197 872 343 977 441 710 451 340 

3 176 473 579 699 478 245 569 250 420 297 217 
 

266 804 966 1172 787 326 952 424 682 435 325 
2 167 442 546 673 422 230 537 226 388 273 205 

 
258 751 904 1151 697 316 884 342 524 353 314 

1 156 404 508 640 381 218 501 201 349 246 189 
 

252 732 854 1109 677 307 835 312 480 320 304 

 

Table A.26: Type T8 for East-West orientation in Florianopolis and Fortaleza. 
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