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1. Introduction

In 1912 Victor F. Hess measured an increasing ionizing rate with altitude. He concluded
that this was due to radiation which had to hit the atmosphere from above [1]. Nowadays,
this finding is associated with the discovery of cosmic rays (CR), an energetic radiation
reaching the Earth from outer space.
During the last one hundred years great efforts have been made to investigate the charac-
teristics of this radiation including not only its particle composition and energy spectrum,
but also its origin and acceleration mechanisms. CR measurements are either performed by
balloon-borne or space-based experiments to avoid the disruptive influence of the Earth’s
atmosphere or by ground-based experiments for which the particles properties have to
be reconstructed from the secondary produced particles within the atmosphere. With a
share of 99%, the majority of CRs are nuclei, mainly hydrogen and helium nuclei and a
small fraction of heavier nuclei. About 1% are electrons and a very small fraction are
antimatter particles like positrons and antiprotons. The measured energy spectrum of
CRs covers several orders of magnitude in flux and energy. Its slope can be described by
a power-law in energy, however, with two conspicuous features known as the knee and the
ankle at which the spectral shape changes, respectively. The knee at ∼ 1016 eV is assumed
to mark the transition from the differently produced galactic to extragalactic CRs. The
ankle at ∼ 1018 eV indicates the existence of a new, extragalactic component that may
originate from Active Galactic Nuclei (AGN) [2]. The particles with the highest energies,
called Ultra-High-Energy Cosmic Rays (UHECRs), reach energies of up to ∼ 1021 eV and
are the particles with the highest energies ever detected. Such particle energies are far
above energies current particle accelerators can produce. Therefore, CRs form a unique
and important research field in high energy particle physics and resulted in many particle
discoveries in the first half of the last century like the positron [3], the muon [4], the pion
[5] and the kaon [6].
Speculations about a possible connection between the origin of galactic CRs and Super-
novae were already expressed in 1934 by Baade and Zwicky [7]. In fact, the CR luminosity
of about 3 · 1040 erg/s could be explained if galactic Supernovae with an average rate of 2
to 3 explosions per century transfered only about 10% of their initial kinetic energy into
CR energy. In 2013 gamma-ray observations with the FERMI-LAT experiment revealed
characteristic pion-decay signatures from proton-proton collisions in supernova remnants
(SNR) [8]. This detection gave direct evidence that, at least in part, CR protons are pro-
duced and accelerated by these objects. The particle acceleration is believed to occur via
diffusive shock acceleration induced by a shock front formed by the supersonic shells of
SNRs [9]. This process, known as first-order Fermi acceleration, is based on the reflection
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2 1. Introduction

of charged particles on irregularities in the magnetic field. The reflection results in mul-
tiple crossings of the shock front whereby the particles gain more energy each time they
cross the shock front. The energy spectrum of particles accelerated in this way follows a
power-law in energy and corresponds to the initial particle spectrum before it is modified
by propagation processes.
The propagation of charged, galactic CR particles is dominated by their scattering off ir-
regularities in the galactic magnetic field which leads to a random-walk-like movement and
a confinement in the Galaxy [10]. This process can be described by a diffusion equation.
On their way through the Galaxy the particles additionally lose energy by different energy
loss mechanisms, may be reaccelerated by the interaction with magnetohydrodynamical
Alfvén waves and may be transported by galactic winds which can blow the particles out
of the Galaxy. Furthermore, particle loss and production mechanisms by fragmentation
and spallation occur. CR propagation models aim to model these processes and to predict
the expected particle fluxes at Earth. These models use realistic distributions of the CR
sources, the interstellar gas and the interstellar radiation field.
In 2008 the PAMELA detector revealed an anomalous positron abundance in the cosmic
radiation [11] which attracted a lot of attention to the field of CR propagation. While
SNRs account for most of the CRs in the Galaxy, they do not produce essential amounts
of antimatter and the ratio of positrons to electrons produced in SNRs was found to be
only a few percent [12]. In the standard picture of CR propagation positrons are pure
secondary CRs, produced by interactions of hydrogen and helium nuclei in the gaseous
environment of the Galaxy. However, the expected amount of secondary positrons and
the energy spectrum are not adequate to explain the rise in the positron fraction, defined
as Ne+/(Ne+ + Ne−), with energy as measured by PAMELA and the existence of a new
source of primary positrons is demanded.
Many explanations for the unexpected positron abundance have been proposed in the lit-
erature. The most prominent ones are certainly nearby pulsars as astrophysical objects
and the annihilation of dark matter (DM) particles by which high energetic positrons and
electrons are expected to be produced. In 2013 first results of the AMS-02 experiment were
published, which showed that the positron fraction continued to rise with energy, but with
a decreasing slope [13]. In 2014 a new measurement by AMS-02 with higher statistics and
up to higher energies became available and revealed, that above ∼ 200 GeV the positron
fraction is no longer increasing with energy [14]. In addition, measurements of the separate
fluxes of electrons and positrons with unprecedented accuracy were published [15]. These
data call for a renewed discussion of possible source scenarios for the anomalous positron
abundance.
In order to search for new phenomena and to quantify a possible signal from the data a
reliable background model, i.e. a precise modeling of the involved transport processes,
is of crucial importance. This work focuses on the investigation of CR transport related
transport parameters and their implications with special regard to the secondary positron
production. Wide ranges of transport parameters are examined by a Markov chain Monte
Carlo method and constrained by experimental measurements.
This thesis is organized as follows:

• Chapter 2
A comprehensive review of CR physics is presented starting from the early discover-
ies in 1912. The detection techniques used nowadays in balloon-borne, space-based
and ground-based experiments are discussed. The present state of knowledge about
the properties of the cosmic radiation itself and about the sources and acceleration
mechanisms is reviewed. The connection between CRs and indirect DM searches by
the detection of DM annihilation products is discussed in chapter 2.5.
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• Chapter 3
This chapter introduces the basic concept of CR propagation and the relevant trans-
port processes. The diffusion equation used for modeling CR propagation is derived
and an extended, full transport equation in which energy losses, fragmentation, spal-
lation, radioactive decays and secondary particle production are considered is dis-
cussed [16]. The properties of our own galaxy which are relevant for CR propagation
include the SNR source distribution, the gas distribution, the interstellar radiation
field (ISRF) and the galactic magnetic field for which realistic models will be shown.
A numerical solution to the transport equation within the environment of the Milky
Way (MW) is available from the publicly available software packages GALPROP and
DRAGON. Both codes are quite successful in describing many of the observed CR en-
ergy spectra.
A subchapter is dedicated to important observables which are sensitive to the applied
transport processes, i.e. to the transport parameters which are partially only very
poorly known and not accessible by theoretical considerations. Of particular im-
portance are so-called secondary-to-primary ratios and ratios of radioactive isotopes
which allow to constrain the CR interaction rate and the CR escape time. CR inter-
actions also include photons as by-products which are not deflected by the magnetic
field and directly point back to their point of origin. Therefore, measurements of
the synchrotron and gamma-ray emission play an important role since they contain
information about the CR densities far away from the solar system.

• Chapter 4
For the investigation and constraining of CR transport parameters a Markov chain
Monte Carlo (MCMC) method is developed and used in combination with the DRAGON
package to efficiently sample a large amount of transport parameters with widely cho-
sen limits. The predictions of different sets of transport parameters are compared to
most up-to-date measurements of locally observed nuclei spectra and ratios. Com-
pared to leptons which suffer from large energy losses, nuclei have large propagation
lengths of the order of kpc and the parameters to be determined correspond to global
and averaged ones throughout the Galaxy. This analysis focuses on the preferred,
allowed and excluded parameter values, the correlations between the involved param-
eters and the implications of the resulting degenerated solution. Special importance
is given to the investigation of the role of the particular observables usually used for
constraining CR transport parameters.

• Chapter 5
The obtained models, as derived in the previous chapter, are used to predict the
expected secondary positron production and the transport related uncertainty. For
a correct estimation of synchrotron induced energy losses the parameters of the mag-
netic field parameterization are tuned to synchrotron foreground maps of the 9-year
data of the WMAP experiment. Furthermore, different cross sections for the positron
production as proposed in the literature are compared and the influence of the energy
densities of the ISRF and the magnetic field on the expected positron production is
discussed. The derived model and its uncertainty are used as a background model
for the determination of the demanded primary positron contribution for which new
AMS-02 lepton lepton data are used. Finally, the potential positron flux from nearby
pulsars and from DM annihilation are investigated and it is checked to which extent
these explanations can account for the made observations.

• Chapter 6
This chapter is dedicated to the diffuse, galactic gamma-ray emission which arises
from hadronic and leptonic interactions of CR particles with the interstellar gas and
the interstellar radiation field. Data collected during almost four years of observa-
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4 1. Introduction

tion by the FERMI-LAT experiment are compared to models derived in the previ-
ous chapters. Known discrepancies of the expected gamma-ray emission predicted
by models optimized to match locally measured observables are addressed. These
include the absolute normalization and the spectral shape of the mostly dominating
pion decay induced gamma-ray emission. In addition, the predicted underlying CR
density distribution shows a too soft radial gradient, commonly known as the soft
gamma-ray gradient problem [17], [18]. It is shown to which extend basic transport
models can solve these discrepancies.
In the very last chapter the influence of local structures on the proton density and the
gamma-ray emission is investigated. Our Sun resides in the so-called Local Bubble,
a low density region in which the density is approximately one tenth of the average
density of the interstellar material [19]. Its origin is believed to be related to mul-
tiple supernovae explosions within the past ten to twenty million years [20]. Such
a structure may have far reaching implications on the transport of CRs and basic
concepts are presented.
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2. Cosmic Rays

2.1. The History of Cosmic Rays - Discovery and Exploration

Around the year 1900 the observation of the ionization of gas contained in closed vessels
arose the question, whether the ionization could be fully explained by radioactive radiation
coming from the Earth, from the vessel itself and from emanations in the gas. To answer
this question the Austrian-American physicist Victor F. Hess undertook balloon flights
and found in 1912, that the ionizing rate increased with altitude and was several times
higher at altitudes of about 5 km than at sea level. He was able to exclude a possible
radiation from the Sun by balloon flights during a near-total eclipse in which the moon
blocked much of the Sun’s visible radiation. Hess concluded, that an ionizing radiation was
hitting the Earth from outer space [1]. This was the discovery of CRs and brought him the
Nobel Price in physics in 1936. It was shared with Carl Anderson for the discovery of the
positron. It took another 15 years until other explanations for the increase, like a signifi-
cant amount of radioactive radiation in the upper atmosphere, could be excluded: It was
proven, that the measured radiation experienced much less absorption than gamma-rays
from radioactive elements. During the following years every effort was made to investigate
what CRs actually are. In 1927 the latitude dependence of the CR induced ionization was
measured and a geomagnetic effect was discovered: The trajectories of incoming charged
particles are deflected by the Earth’s magnetosphere at different latitudes. As a result it
could be shown that primary CRs are charged particles and further investigations during
1930 to 1945 proved, that primary CRs are predominantly protons. In 1930 Bruno Rossi
noticed that once in a while his equipment was struck by extensive showers of particles.
Even if several apparatuses were placed at large distances to each other, the showers were
observed in coincidence in each of them [21]. It was Pierre Auger in 1937 who investi-
gated these extensive showers of particles and he concluded that high energetic primary
CR particles interact with air nuclei in the atmosphere, initiating a cascade of secondary
interactions that yield a large shower of electrons, photons and other particles [22]. By ob-
servations with nuclear emulsions carried by balloons to near the top of the atmosphere in
1948 it was found that the number of relativistic electrons does not exceed ∼ 1% and that
CRs contain nuclei of a whole series of elements with approximately 10% helium and 1%
heavier nuclei such as carbon and iron [23]. Around the year 1950 the synchrotron nature
of the cosmic radio emission was established and it became possible to obtain information
on the CR electron component in the Galaxy, far away from the Earth. This linked the
CR science to astrophysics and astronomy and the connection between radio astronomy
and CRs was no longer under dispute.
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6 2. Cosmic Rays

In 1949 Enrico Fermi considered CRs as a gas of relativistic particles moving in the dy-
namic interstellar magnetic fields. The particles may be reflected by the fields either
gaining or losing energy, depending on whether a magnetic irregularity (a magnetic mir-
ror) is approaching or departing [24]. This kind of acceleration process became known as
Fermi acceleration and its description was a milestone in understanding CR acceleration
mechanisms. Speculations about CR sources were already published in 1934 by Baade and
Zwicky [7], who related the appearance of supernovae to the generation of CRs. From then
on a variety of potential sources were discussed, including active galactic nuclei, quasars,
and gamma-ray bursts.
During the recent decades CR astrophysics could be additionally researched by the devel-
opment of gamma astronomy. More and more detailed information about the gamma-ray
sky could be obtained by the missions COS-B (1975), EGRET (1991-2000) and FERMI
(since 2008), that allow to trace CR interactions within the Galaxy. Sophisticated particle
detectors for investigating CRs at ground-level, in the atmosphere and space were built
to determine the properties of the cosmic radiation in greater detail. Beside Ultra-High-
Energy Cosmic Ray (UHECR), also the low energy region is quite interesting, since low
fluxes of secondary produced particles like antiprotons and positrons may reveal signals
of annihilating Dark Matter (DM) particles. In 2008 the PAMELA detector revealed an
anomalous positron abundance in the cosmic radiation [11] which attracted a lot of at-
tention to this field. In 2013 data from the Large-Area-Telescope (LAT) of the FERMI
satellite revealed by observations of neutral pion decays, that supernovae are CR sources
[8]. However, they may not produce all CRs and the question about CR sources is still
under investigation. Especially the sources and acceleration mechanisms of UHECRs with
energies above 1018 eV, whose majority is not produced within the Galaxy, are subject
of current scientific research. For this purpose sophisticated detector systems have been
developed and built. For the next couple of years the AMS-02 detector, the FERMI
Gamma-Ray Space Telescope and the Pierre-Auger-Observatory on ground will remain
the flagships for CR measurements.

2.2. Detection Techniques for Cosmic Rays

CRs can be detected and measured by interactions with matter, magnetic fields and radi-
ation. A direct measurement of primary CRs requires detectors in the upper atmosphere
or in space, since the atmosphere is shielding the primary CRs. However, balloon-borne
and space-based experiments are limited by their size, i.e. by their effective detection area
of the order of m2, and are therefore only suitable for measurements in the low energy
region with high fluxes of about 1 particle/m2/s. CRs with higher energies but low fluxes
of about 1 particle/m2/yr to even 1 particle/km2/century can only be measured indirectly
by ground-based experiments with large detection areas of the order of 1000 km2. The
Earth’s atmosphere is used as a natural calorimeter in which large cascades of secondary
particles are induced by primary CR particles. The properties of the primary CR particle
have to be reconstructed from the measured secondary particles. Table 2.1 shows different
energy ranges typically covered by ground-based, balloon-borne and space-based experi-
ments.
The following chapters will disclose more details on the different detection techniques and
will highlight the technological advances by means of current experiments.
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2.2. Detection Techniques for Cosmic Rays 7

Table 2.1.: Typical energy ranges covered by ground-based, balloon-borne and space-based ex-
periments.

Detection method Energy Range (GeV)

Space-based 10−1 - 103

Balloon-born 102 - 107

Ground-based 106 - 1012

2.2.1. Ground-based Experiments

Ground-based experiments measure secondary particles produced by interactions of pri-
mary CR particles with atoms in the atmosphere. If a high energetic particle strikes the
top of the Earth’s atmosphere billions of secondary particles including hadrons, electrons,
photons and muons are created. They spread and create a forward moving plane of parti-
cles, a so called air shower, whose intensity is the highest near the axis, see figure 2.1. The
atmospheric depth, where the number of particles reaches its maximum is called shower
maximum Xmax (g/cm2). Depending on the initial particle type electromagnetic cascades
by gamma-rays, electrons and positrons or hadronic cascades by nuclei and hadrons are
induced. In electromagnetic cascades each photon creates an electron-positron pair after a
typical length d, and each electron above a critical energy of about 85 MeV loses half of its
energy per length by radiating bremsstrahlung. Electrons below the critical energy will be
absorbed by the atmosphere. Nuclei and hadrons mainly produce mesons, like pions π0,±

and kaons K0,±. In each interaction about one third of the energy is allotted to neutral
pions, which immediately decay into photons and stimulate an electromagnetic cascade.
The other two third of the energy are alloted to charged pions, which decay into muons.
When passing through the atmosphere photons in the ultraviolet frequency band are cre-
ated by the fluorescence effect and can be detected in water tanks at ground level via
Cherenkov radiation. If several of these water Cherenkov detectors are penetrated, the di-
rection of the primary CR can be reconstructed by basic geometrics: The densities in the
affected detectors allow to determine the longitudinal axis point and the particle’s energy
and the time differences the angle of the axis. For a precise reconstruction of the proper-
ties of air showers Monte-Carlo based air shower simulations are used, e.g. CORSIKA [25].

The Pierre-Auger-Observatory, located in the Pampa Amarilla in Argentina, is the
largest UHECR detector in the world. It currently consists of 1600 such water Cherenkov
detectors creating a detection area of about 3000 km2. Each water detector uses three
large photomultiplier tubes to detect the Cherenkov radiation. They are arranged in
groups of four in different sized triangular ground patterns. In addition, 24 fluorescence
detectors (optical telescopes) are installed to measure the photons in the ultraviolet fre-
quency band. They use faceted observation, similar to a fly’s eye, to produce pixeled
pictures at high speed. In fact, the Pierre-Auger-Observatory is the first experiment that
combines ground detectors and fluorescence detectors allowing a cross-calibration and a
reduction of systematic effects. The work on several upgrades is ongoing and includes three
additional fluorescence detecting telescopes (HEAT - High Elevation Auger Telescopes),
two higher-density nested arrays of surface detectors combined with underground muon
counters (AMIGA - Auger Muons and Infill for the Ground Array) and a prototype radio
telescope array for detecting radio emission from the shower cascade in the frequency range
30-80 MHz (AERA - Auger Engineering Radio Array).
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8 2. Cosmic Rays

Figure 2.1.: Illustration of an air shower induced by a primary cosmic ray. Fluoresence light and
Cherenkov radiation are used by the Pierre-Auger-Observatory to reconstruct the
primary CR’s properties like its energy and its arrival direction. Figure taken from
[26].

2.2.2. Balloon-borne and Space-based Experiments

Balloon-borne and space-based experiments allow the direct measurement of CR parti-
cles without the disruptive influence of the atmosphere. However, their effective detection
area is limited in terms of financial and technical feasibilitiy. In addition, compared to
space-based experiments that have once brought in space relativley large exposure times of
several years to decades, balloon-borne experiments suffer from limited flying times of only
a few weeks and have to be repeated to collect a sufficient amount of data. These kind of
experiments are therefore only suitable for measurements of relatively low energetic CRs
with energies of 10−1 to 107 GeV with high fluxes. However, CRs with energies up to 103

GeV are believed to be almost exclusively of galactic origin and are therefore of special
interest for the investigation of propagation processes of galactic CRs.
In order to measure the particles properties like their mass, momentum, energy and charge,
sophisticated detector systems have been developed and built. Typical detector systems in-
clude calorimeters, emulsion chambers, scintillators, tracking devices, Cherenkov detectors
and transition radiation detectors.

In the following three currently operating detector systems, whose data are used in this
work, will be briefly discussed: The CREAM balloon experiment, the LAT of the FERMI
satellite and the AMS-02 detector installed on the International Space Station (ISS).

The CREAM (Cosmic Ray Energetics and Mass) experiment was designed to measure
CR elemental spectra during a series of ultra-long duration balloon flights. Up-to-date six
flights above 38 km altitude and of several weeks duration between 2004 and 2010 were
successfully undertaken. The three main components of the system are [27]

• a Timing Charge Detector, which measures the yield of light produced by the particle
in a plastic scintillator. The light yield is a function of the particle charge and
velocity;

• a Transition Radiation Detector, in which transition radiation is produced, when a
charged particle passes through the boundary of two different media. The signal is
a function of the charge and the Lorentz factor γ of the particle;
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2.2. Detection Techniques for Cosmic Rays 9

• a calorimeter, in which a particle initiates a shower and deposits its energy. From
the energy deposit the particle’s inital energy is determined.

The total weight of the detector system, an important quantity for any balloon payload, is
only 1143 kg. Its main scientific achievements include measurements of the energy spectra
and relative abundances of CR nuclei at high energies.

The FERMI-LAT was designed for measurements of gamma-rays. It was launched in
June 2008 and is from that time on measuring the gamma-ray sky with a formerly un-
precedented accuracy. Compared to its scientific achievements the detector system is ex-
traordinary simple. The detection principle is based on electron-positron pair conversion.
If a photon hits one of the thin tungsten foils at the top of the detector electron-positron
pair conversion can occur and the charged particles pass through interleaved layers of sil-
icon strip detectors. These alternate in the x and y direction and the induced signals in
different layers allow to track the direction of the inital photon. At the lower edge of the
detector the particles deposit their energy in a cesium iodide calorimeter and the initial
photon energy can be reconstructed. A discrimination of the relatively rare gamma-rays
from charged cosmic rays is accomplished by a plastic anticoincidence detector on top of
the instrument, in which charged particles entering the detector cause a flash of light.
Figure 2.2 shows a cutaway of the 2789 kg weighting detector. The instrument stands out
due to a wide field of view of 20% of the sky, an angular resolution of a few hundredth
of a degree for the highest-energy photons and about 3 degrees for 100 MeV photons. Its
effective detection area is about 7000 cm2 at 1 GeV, decreasing with lower and higher
energies.
Although the FERMI satellite has no onboard magnet, the collaboration was able to
measure the CR electron and positron spectra, as well as the positron fraction. They
distinguished the two oppositely charged particles by the shadow of the Earth, and its
offset direction for electrons and positrons due to the geomagnetic field. At energies below
∼ 10 GeV, a significant fraction of the incoming particles are deflected back to interplan-
etary space by the magnetic field, known as the geomagnetic cutoff. The value of the
geomagnetic cutoff rigidity depends on the detector position and viewing angle. In ad-
dition, the east-west effect caused by the Earth’s geomagnetic field results in a region of
particle directions from which positrons can arrive, while electrons are blocked and vice
versa. The measurements derived by using these naturally discriminating mechanisms are
not very precise, but the anomalous positron abundance that was previously measured by
PAMELA could be confirmed [28]. The scientific achievements of the FERMI-LAT cover
a wide range of fields, including the discovery of new radio and gamma-ray pulsars, the
discovery of the fermi bubbles and the assurance that SNR are sources and accelerator for
CRs, to mention only a few.
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10 2. Cosmic Rays

Figure 2.2.: Photon detection principle of the FERMI-LAT. Shown is a cutaway of the detector
by which the simple detection principle becomes apparent. After pair-conversion of
the photon the tracks and the energy of the electron-positron pair are measured and
the arrivial direction and the photon energy are reconstructed. The detector is only
0.72 m deep and 1.8 m x 1.8 m square. Figures taken from [29].

The AMS-02 (Alpha Magnetic Spectrometer) is a state-of-the-art, general purpose, high
energy particle detector mounted on the ISS. Its main purposes are the search for an-
timatter, DM and the extension of the knowledge of CR properties in general. It was
transported to the ISS in May 2011 by the last flight of the Endevaour Space Shuttle
and will be operated until the end of the ISS’s operating life time, currently confirmed
until 2024. Compared to current competitive detectors the AMS-02 detector outstands by
its redundant particle identification methods. By a combination of the measurements of
different types of subdetectors the CR properties up to TeV energies can be reconstructed
with an unprecedented accuracy. These include the sign and absolute value of the charge,
the energy, the mass and the momentum. In contrast to FERMI, the sign of the charge
can be directly measured by a permanent magnet mounted in the detector’s core. The
main subdetectors from top to bottom, as illustrated in figure 2.3, are

• a Transition Radiation Detector, which uses the effect of transition radiation for
separating particles according to their mass.

• A Time-of-Flight detector, composed by two scintillation planes above and below
the permanent magnet, allows the measurement of the velocity, the direction and
the charge of the particle and also acts as a trigger system for charged particles.

• A Tracker consisting of seven silicon planes inside the magnet volume and two planes
outside. By the measurement of the particle deflection its rigidity and the sign of
the charge can be reconstructed.

• An Anti-Coincidence-Counter, that vetoes particles entering the detector laterally.

• A Ring-Imaging-Cherenkov-Detector, which uses Cherenkov radiation for the mea-
surement of the velocity and the charge.

• An Electromagnetic Calorimeter measures the energy of electrons, positrons and
photons by an induced electromagnetic shower and the deposited energy. Energies
of nuclei have to be inferred from the rigidity measurement of the Tracker.

One of the main challenges for measurements of the low abundant positrons and antipro-
tons is the achievement of a sufficiently large rejection power to reduce the number of
misidentified particles. By exploiting the redundant measurements of the Transition Ra-
diation Detector and the Electromagnetic Calorimeter the AMS-02 detector is able to
efficiently supress misidentified protons in the positron sample with a resulting positron
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2.3. The Composition and Energy Spectrum of Cosmic Rays 11

purity above 99% [30].
The scientific achievements up-to-date include precision measurements of the positron frac-
tion in the energy range from 0.5 to 500 GeV [14], measurements of the lepton sum flux
(e+ + e−) up to 1 TeV [31] and separate electron and positron fluxes up to 700 GeV and
500 GeV, respectively [15]. The anomalouse rise, as previously measured by PAMELA
and confirmed by FERMI, was measured with unprecedented accuracy allowing a more
precise determination of the slope. It was found that it steadily increases from 10 GeV
on, however with a decreasing slope starting at ∼ 50 GeV. The most-up-to-date measure-
ments indicate a drop of the positron fraction at high energies. Measurements at higher
energies are so far limited by low statistics but the trend will be revealed by additional
measurements in the future. So far, only 15% of the total expected data are available. The
positron fraction revealed no fine structures and no anisotropies in the positron-to-electron
ratio were observed [13]. Preliminary results for the spectra of protons, helium and B/C
were presented at the International Cosmic Ray Conference (ICRC) in 2013. The analyses
are ongoing and are currently finalized for publication [32].

Figure 2.3.: Subdetector system for particle identification of the AMS-02 experiment. The parti-
cle’s properties are exploited when traversing from the top to the bottom of the 8.5
t weighting detector system. Figure taken from [30].

2.3. The Composition and Energy Spectrum of Cosmic Rays

This chapter is dedicated to the current knowledege of the CR composition and the energy
spectrum. CRs include essentially all elements in the periodic table, as well as electrons
and positrons. At low energies they mainly consist of protons and light elements with
only a small fraction of about 1% of electrons. The fraction of heavier elements like oxy-
gen, magnesium and iron increases significantly with higher energies. The overall nuclei
abundances are about 90% protons, 9% helium and 1% of other elements. At about 100
GeV/nucleon (1 PeV/nucleon) the abundances are approximately 56% (15%) protons,
24% (33%) helium and 20% (52%) other elements [33]. The differential energy spectra of
different CR species are shown in figure 2.4.
Figure 2.4 shows a compilation of data in a wide energy range complement by experi-
ments on the ground, in the upper atmosphere and in space. The typical and partially
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redundant energy ranges covered by theses different kinds of experiments are assigned.
The overall particle flux drops dramatically by several orders of magnitude with higher
energies and can be well described by power-law distributions. However, the overall spec-
trum shows two noticeable kinks (or breaks), at which the slope of the sprectum changes,
respectively. Their origin is assumed to arise from differently produced CR populations.
The first break at an energy of ∼ 107 GeV is called the knee and is commonly believed to
mark the beginning of the end of CRs with galactic production mechanisms. A transition
between galactic CRs produced in e.g. SNRs and extragalactic CRs produced in e.g.
Active Galactic Nuclei (AGN) is believed to occure, leading to the change of the slope.
Alternative explanations include different energy loss mechanisms below and above the
knee, new particle interactions characteristics above 1 TeV/nucleon, a change in the prop-
agation mechansisms or a significant change in the elemental composition [34]. The second
break at an energy of ∼ 109 GeV is called the ankle at which the spectrum flattens. Only
very little is known about the origin of CRs between the knee and the ankle. There seems
to be a gap between the top end of galactic and the lower end of extragalactic CRs [35].
Also not much is known about the sources of UHECRs above the ankle. Promising source
candidates will be discussed in the next chapter. At an energy of 5 ·1010 GeV, the so called
Greisen-Zatsepin-Kuzmin limit (GZK), the theoretical upper limit on the CR energy is
reached. By interactions of CRs with the Cosmic Microwave Background (CMB) over long
distances pions are produced via the ∆-resonance. Extragalactic CRs with energies larger
than the threshold energy, travelling over distances larger than 50 Mpc should never be
observed at the Earth and the visible horizon is limited to the GZK-horizon. Observations
of CRs above this limit were made by the AGASA experiment. Although not fully under-
stood possible explanations invoke an instrumental error, local sources within the GZK
horizon and a circumvention of the GZK limit by heavier nuclei [36].

The arrival direction of CR particles may reveal information about their origin and is
therefore closely investigated by almost every CR experiment. The charged particles are,
however, deflected by magnetic fields leading to a distorted propagation path and a cor-
responding loss of information about their origin. Only high energetic protons and nuclei
can arrive at Earth without a significant deflection by interplanetary magnetic fields. A
measure for the deflection of a particle is the ratio of its gyroradius in the field and the
scale of propagation. The gyroradius of a relativistic proton is given by

rg = 3 · 109γ(B/109T) m, (2.1)

with the Lorentz factor γ =
√

1− v2/c2 and the magnetic flux density B in Tesla. A
flux density of B = 109 T and protons with 1012 eV (γ = 103) give gyro-radii of 20
Astronomical Units (1 AU corresponds to the distance Sun-Earth). Particles with high
energies are therefore more likely revealing information about their arrival direction at the
solar system. In fact, the distribution of arrival directions of particles with energies of 1013

- 1014 eV was found to be remarkably uniform. Anisotropies, studied by Hillas in 1984,
have only been detected at a level of 0.1% [37] , see figure 2.5. Recently, the ICE-Cube
collaboration studied the large-scale anisotropy of TeV particles by the relative intensity
of the cosmic-ray-induced muon flux [38], [39]. They found the arrival direction to be
anisotropic with a first-harmonic amplitude of A1 = (6.4 ± 0.2 (stat.) ± 0.8 (sys)) · 10−4

[38]. However, the origin of the large-scale anisotropy remains unclear. The Compton-
Getting effect, by which an anisotropy is induced due to the relative motion of the solar
system around the Galactic Center, was found to be not the primary source for the observed
anisotropy. An ICE-Cube analysis of small-scale anisotropies, that could be associated to
CR sources, exhibits several localized regions, in which significant excesses and deficits
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2.3. The Composition and Energy Spectrum of Cosmic Rays 13

in the CR intensities with median energies of 20 TeV were found [40]. The scales of the
regions were found to lie between 15 degrees and 30 degrees and studies, in which the
excesses are tried to be associated with possible sources, are ongoing. One of the two most
significant excesses coincides with the location of the Vela pulsar at a distance of about
300 pc. However, the gyroradius of 10 TeV protons in a magnetic field of the order of µG is
approximately only 0.01 pc, many orders of magnitude smaller than the distance to Vela.
Therefore, charged particles from Vela will have lost all their directional information when
arriving at the Earth. Over the next few years a large amount of collected events with the
ICE-Cube detector will allow to study possible time dependencies of the anisotropy and
may reveal additional information on small-scale anisotropies.
In 2007, results from the Pierre-Auger-Observatory showed a strong correlation between
the directions of 27 events above 6 · 1019 eV and the locations of AGNs, lying at distances
to Earth within ∼ 75 Mpc [2]. The hypothesis of an isotropic distribution of these CRs
could be rejected with a confidence level of at least 99%.

Figure 2.4.: The energy spectrum and abundances of cosmic rays. Left: In the energy spectrum
two features at energies of ∼ 107 and ∼ 109 GeV are present, known as the knee
and the ankle. They are believed to originate from transitions between differently
produced CR populations. The GZK-Cutoff, a theoretical upper limit on the energy
CR particles can reach, is at 5 · 1010 GeV. Right: The abundancies of several CR
species shown as differential energy spectra. The scaling factors used to display the
spectra are shown in the figure. Figures taken from [35] (modified) and [41].
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14 2. Cosmic Rays

Figure 2.5.: Arrival directions of Cosmic Rays. Shown is the amplitude of the anisotropy in
the distribution of CR arrival directions as a function of energy. A best-fitting sine
wave has been fitted to the data and the percentage amplitude of the harmonic was
calculated. The solid line represents the shape of the differential CR spectrum as
used by Hillas in 1984. Figure taken from [37].

2.4. Sources and Acceleration of Cosmic Rays

The previous chapter already emblaced, that the arrival direction of CRs could reveal
information about their possible sources. In this chapter possible candidates for galactic
and extragalactic CRs sources and their theoretical and experimental motivations will
be reviewed. Also the CR acceleration mechanisms, that are strongly connected to the
sources, will be emphazised.

2.4.1. Galactic Cosmic Rays

CRs with energies of up to 103 GeV are believed to be almost exclusively of galactic
origin. The most promising candidates from the theoretical and experimental point of view
are SNRs. Speculations about a connection between Supernovae and CRs were already
remarked in 1934 by Baade and Zwicky [7]. In fact, the energy content of CRs of about
3 ·1040 erg/s could be explained if Supernovae with an average rate of 2 to 3 explosions per
century within the Galaxy would only transfer about 10% of their initial kinetic energy
of 3 · 1041 erg/s into CR energy. SNRs are the remainder of Supernovae explosions and
provide an efficient acceleration mechanisms by a supersonic expansion of a sphere of hot
gas into the Interstellar Medium (ISM).

The dynamical evolution can be divided into four stages [10]:

(i) The energy liberated in the Supernova is deposited in the envelope of the star which
is heated to high temperatures of millions of Kelvin and ejected with velocities of
(10−20) ·103 km/s. The expanding gas remains undecelerated as long as the mass of
the interstellar gas swept up in the expansion is much less than the mass of the ejected
gas. The temperature in the sphere decreases adiabatically since the sphere expands.
During the supersonic expansion a shock front is formed ahead the expanding sphere.

(ii) As soon as the swept-up mass becomes larger than the ejected mass a deceleration
occurs that significantly changes the temperature, density and pressure distributions
inside the sphere. The outer shells of the sphere are decelerated first so that the
material in the inner parts of the sphere can catch up and increase the matter density
at the boundary. This comes along with a reheating of the matter located at the outer
layer and the deceleration actually feeds the energy content of this layer by converting
kinetic energy.
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2.4. Sources and Acceleration of Cosmic Rays 15

(iii) After further expansion the temperature behind the shock front drops below 106

K and cooling by line emission of heavy ions becomes important. The resulting
compression to preserve pressure balance at the shock front increases and the shell
forms a dense snowplough.

(iv) The expansion velocity becomes subsonic and the SNR is either dispersed by random
motions in the ISM or, in case of a former massive star with more than eight solar
masses, collapses into a neutron star.

CR particles are acclerated in the shock front by a mechanism called diffusive shock ac-
celeration or first-order Fermi acceleration, named by Enrico Fermi who proposed the
mechanism in 1949. The more general case of acceleration of particles in the environment
of moving magnetized gas clouds without the presence of a shock front is called second-
order Fermi acceleration or diffusive reacceleration. Both Fermi acceleration mechanisms
are based on the reflection of charged particles on irregularities in a magnetic field. Mag-
netized clouds are assumed to move randomly with a velocity V and the particles can
stochastically gain energy in these reflections. It is more convenient to treat the basic
principle of second-order Fermi acceleration first, before shock front acceleration is dis-
cussed.

Second-order fermi acceleration (diffusive reacceleration)

The magnetized cloud is taken to be infinitely massive and its velocity remains unchanged
after collisions with particles. The momentum frame of reference is taken to be centered
at the moving cloud with velocity V. In this frame the energy of a particle is [10]

E′ = γV (E + V p cos(θ)), (2.2)

with the Lorentz factor of the moving mirror γV = (
√

1− V 2/c2)−1 and the angle θ^(~V , ~p)
. The x-component of the relativistic momentum is

p′x = p′cos(θ) = γV

(
p cos(θ) +

V E

c2

)
. (2.3)

In a collision with a particle the particle’s energy is conserved and its momentum in x-
direction is reversed: p′x → −p′x. A transformation to the observer’s frame gives

E′′ = γV (E′ + V p′x). (2.4)

The change of the particle’s energy can be derived by substituting equations 2.2 and 2.3
in 2.4 and exploiting that px/E = v cos(θ)/c2:

E′′ = γ2
V E

(
1 +

2V v cos(θ)

c2
+

(
V

c

)2
)
. (2.5)

An expanding to the second order in V/c gives

∆E = E′′ − E′ = E

(
2V v cos(θ)

c2
+ 2

(
V

c

)2
)
. (2.6)

Since the particles are randomly scattered the mean increase can be derived by averaging
over a random distribution of angles θ. However, there is a slightly larger probability for
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16 2. Cosmic Rays

head-on collisions in comparison with collisions from behind. For v ∼ c the probability is
proportional to γV (1 + (V/c) cos(θ)). Averaging over all angles between 0 to π gives the
average energy gain per collision:

〈
∆E

E

〉
=

8

3

(
V

c

)2

(2.7)

Equation 2.7 is the famous result derived by E. Fermi, in which the average increase in
energy is second-order in V/c. The most important characteristic of fermi-accelerated
particles is their energy spectrum following a power-law in energy.

First-order fermi acceleration (diffusive shock acceleration)

This acceleration mechanism involves shock waves like supersonic shells of SNRs. A high
flux of particles is assumed to be present in front and behind the shock front with velocities
much larger than the one of the shock front. Due to diffusive scattering by streaming
instabilities or turbulent motions on each side of the shock front, the particles pass through
the shock by which they gain small amounts of energy, independent on whether they pass
from behind the shock to the front or the other way around. A particle’s energy after it
passed through the shock is

E′ = γV (E + pxV ), (2.8)

where the x-coordinate is taken to be perpendicular to the propagation of the shock. In
case of a non-relativistic shock and a relativistic particle the gained energy is

∆E = p V cos(θ),

∆E

E
=
V

c
cos(θ).

(2.9)

The normalized probability distribution P (θ) of a particle crossing the shock front at angles
of θ = 0...π/2 is

P (θ) = 2 sin(θ) cos(θ) dθ. (2.10)

The average energy gain per shock front crossing is then given by

〈
∆E

E

〉
=
V

c

∫ π/2

0
2 cos2(θ)sin(θ)dθ

=
2

3

V

c
.

(2.11)

Equation 2.11 shows that the average increase in energy is first-order in V/c. CRs can
gain high energies by crossing the shock front many, many times, see figure 2.6. A feature
of this mechanism is an energy spectrum following a power-law in energy of the form
N(E) ∝ E−α with a spectral index of α . 2. Let β be the fractional change of the kinetic
energy at each shock front crossing. After n crossings a particle with an initial energy of E0

will have the energy E = E0 · βn. With the probability P for remaining in the shock front
crossing region after each crossing the initial number of particles N0 is after n crossings
reduced to N = N0 · Pn. This results in
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N

N0
=

(
E

E0

) log(P )
log(β)

(2.12)

and leads to a power-law in energy with

dN

dE
∝ E−1+

log(P )
log(β) (2.13)

and α = 1− log(P )
log(β) . It can be shown that log(P )

log(β) ≈ −1 and thus α ≈ 2. The spectral index

can also be associated to the Mach number M = vshock/vsound of the outflowing shock
with α = 2 + 4/M2 in case of a mono-atomic gas. Shocks with Mach numbers of the order
of M = 3− 6 can account for spectral indices of α ≈ 2.2 as typically found by modeling of
CR propagation processes.

Figure 2.6.: Illustration of diffuse shock acceleration. Each time a particle crosses the shock front
moving with V it gains a small fraction of energy proportional to V/c. Figure taken
from [42] (modified).

Experimental indications supporting the SNR source hypothesis

Radio and gamma-ray observations of SNRs provide convincing evidence that these are
indeed sources of galactic CRs. The energy spectrum of the radio emission was found to be
a power-law and was identified with the synchrotron radiation of ultra-relativistic electrons,
accelerated by shock waves [43]. Especially in young SNRs the intensity of the radio
emission was found to be so high that the energy density of electrons and magnetic fields
greatly exceeds values one would expect by compressing the electron flux and magnetic
fields in a shock. The conclusion was, that the particles and fields must originate within
the SNR itself. X-ray observations of SNRs by the ROSAT observatory revealed shell-like
morphologies, that have also been resolved by TeV gamma-ray observations with HESS
[44], see fig. 2.7. The observed gamma-ray spectrum up to 100 TeV by HESS gave
also direct evidence for the presence of large fluxes of particles with typical CR energies.
However, these particles could not be directly associated to electrons or protons. The
first evidence came in 2013 when gamma-ray observations with the FERMI-LAT revealed
characteristic pion-decay signatures from proton-proton collisions in SNRs [8], as shown in
figure 2.8. This detection gave direct evidence that CR protons are accelerated in SNRs,
although the expected 1/E2 spectrum was not observed and the fits with Bremsstrahlung
and a break in the electron spectrum differ not that much. The characteristic pion-decay
spectrum in combination with the hard 1/E2 spectrum was first observed in the FERMI-
LAT data more recently in the star-forming region in the disc [45]. In the star-forming
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18 2. Cosmic Rays

regions one expects a strong contribution from CRs trapped in sources, since in this case,
both the CR density and the gas density are enhanced by large factors.
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Figure 2.7.: HESS observation of TeV gamma-rays from the SNR RX J0852.0. The morphology
exhibits a thin shell similar to features observed in X-rays. Contours of the X-ray
emission from ROSAT are superimposed by the white lines. Figure taken from [44].
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Figure 2.8.: FERMI-LAT gamma-ray measurements of the SNR IC443. Solid lines denote the
best-fit pion-decay, dashed lines the best-fit bremsstrahlung and dash-dotted lines
the best-fit bremsstrahlung spectra if a low-energy break in the electron spectrum
is assumed. The spectral measurements allowed the identification of the π0 decay
features and gave direct evidence for the acceleration of protons in SNRs. Figure
taken from [8].
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High energy leptons from pulsars

Supernovae explosions of massive stars with more than eight solar masses can result in
collapses into neutron stars, so called pulsars. They were accidentially discovered in 1967
by J. Bell and A. Hewish by radio observations of the sky [10]. The most famous example
is the Crab Nebula, which originated from a supernova explosion of a massive star with an
estimated mass of eight to twelve solar masses 7260 years ago.
An evolving neutron star retains at first most of the angular momentum of the former
star. However, since its radius is much smaller it is rotating rapidly. The rotational
energy generates an electrical field from the movement of the strong magnetic field and
leads to the acceleration of protons and electrons on the surface and an emanating beam
of electromagnetic radiation from the poles of the magnetic field. The direction of the
beam is oriented along the magnetic axis, which does not necessarily coincide with the
rotational axis, see figure 2.9. Such a misalignment leads to the typical stable and sharp
pulsed emission with periods of milliseconds to seconds as observed in radio and gamma-
rays. As a results of the electromagnetic radiation which is extracted from the rotational
energy the rotation speed slows down until the mechanism stops after typically 105 to 108

years.
While conventional SNRs account for most of the CRs in the Galaxy, they do not produce
essential amounts of antimatter like positrons or antiprotons. In fact, the ratio of positrons
to electrons produced in SNRs was actually found to be only a few percent and the ratio
of antiprotons to protons to be only of the order of 10−5 [12]. The anomalous rise in the
positron fraction gave hints, that essential amounts of positrons and electrons are present,
which cannot be explained by conventional SNR sources and the secondary production
of positrons [46]. Pulsars are attractive primary source candidates [47]. Particles are
initially extracted from the surface by the intense rotation induced electric fields and
later transformed into electron-positron pairs through electromagnetic cascading. The
electron-positron pairs finally end up as part of the relativistic magnetized wind emanating
from the pulsar. However, since electrons and positrons suffer large energy losses due
to synchrotron radiation and bremsstrahlung their bigger part must originate at close
distances to the Earth of the order of less than 1 kpc. Therefore only nearby pulsars could
account for the additional contribution. Estimates for the expected flux exist (see e.g.
[47]), but the predictions crucially depend on pulsar parameters that are not well known
and only slightly constrained by experimental measurements and theoretical appraisals.
Some import properties are the age τ , the spectral index αp, the spin-down luminosity
Ė as a measure for the rate of loss of rotational kinetic energy and the efficiency η by
which the rotational energy is transformed to electron-positron pair production. Two
characteristic pulsar properties, the pulse period P and its temporal change, denoted as
Ṗ , can be measured directly by radio and gamma-ray observations and can be related to
some of the pulsar properties [10]:

τ =
P

(2 Ṗ )

Ė = 4πIṖP−3

Bs =

(
3µ0c

3M

80π3R4

)1/2√
PṖ .

(2.14)

µ0 is the constant of permeability, M and R are the pulsar’s mass and radius, I = 2
5MR2

is the momentum of intertia and Bs the strength of the magnetic field at the surface.
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20 2. Cosmic Rays

Figure 2.9.: Schematic model of a rotating pulsar in which the magnetic and rotation axes are
misaligned. Pulsed radio beams are emitted from the poles of the magnetic field.
Typical properties are masses of M ≈ 1.4M�, radii of r ≈ 10 km and magnetic flux
densities of 105 to 109 T. Figure taken from [48].

2.4.2. Extragalactic Cosmic Rays

Extragalactic CRs are high energy particles with energies of 1015 eV and more. Those
are not produced within the Galaxy, but can propagate into our solar system and can be
detected at Earth. However, due to the lack of statistics only very little is known about
the origin and composition of these CRs, especially about UHECRs with energies above
1018 eV. Their origin and acceleration mechanisms are so far not ascertained beyond doubt
and are subject to intense scientific investigations. Estimates, based on theoretical and
numerical models, predict that these CRs predominantly consist of light nuclei, mostly
protons [49]. In general, efficient acceleration mechanisms are diffusive shock acceleration
and acceleration in a very high electric field, generated by fast rotating compact magnetized
objects. However, diffusive shock acceleration was found to only account for particles of
up to about 1017 eV, but not much beyond [50]. Therefore, SNRs are unlikely to be
the sources of these CRs. Shocks on larger scales (extragalactic shocks) are therefore
invoked, including extragalactic objects like AGNs. In these compact regions in the center
of galaxies energetic particle production might take place. The inner cores of AGNs with
magnetic fields of the order of 103 G and sizes of a few 10−5 pc could theoretically account
for particles of a few tens of EeV [51]. However, under realistic conditions these energies
are unlikely to be achieved due to energy losses like synchrotron and Compton processes
and photon-pion production by interactions with the intense AGNs radiation field. Results
from the Pierre-Auger-Observatory published in 2007 showed a strong correlation between
the directions of 27 events above 6 · 1019 eV and the locations of AGNs, lying at distances
to Earth within ∼ 75 Mpc [2]. However, AGNs cannot be pinned down with certainty.
The actual sources could rather be located closely to the AGNs as a result of gravitational
clumping. Other source candidates typically considered are

• fast rotating, highly magnetized neutron stars. Young neutron stars with spin peri-
ods of < 10 ms and magnetic fields of 1013 G at the surface could accelerate particles
by magnetohydrodynamical forces rather than from stochastic processes as in astro-
physical shocks. In theory they should be able to accelerate iron nuclei up to 1020
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eV [52];

• Radio Galaxies, by which CRs are accelerated at the termination shocks of giant jets.
They should be efficient enough for acceleration of up to 1020 eV and no adiabatic
deceleration takes place, since the shocks are already inside the extragalactic space
[53];

• Gamma-Ray Bursts, which are flashes of gamma-rays by extremely energetic explo-
sions in distant galaxies [54];

• Colliding galaxies with numerous shocks and magnetic fields of the order of 20 µG
[55];

• Galaxy clusters, which could account for acceleration of up to 1020 eV. The majority
of the lower energy CRs will remain in the cluster and only particles with the highest
energies can escape [56].

This list is by far not complete and only the most promising source candiates are listed.
A review including further source candidates is given in [57].

2.5. Cosmic Rays and Dark Matter

One of the today’s most puzzling mysteries in astronomy and cosmology is the nature
of Dark Matter (DM). Hints on its existence were found by J. Oort in 1932 [58], who
investigated the orbital velocities of stars in the Milky Way (MW). According to the virial
theorem the kinetic energy of objects should, on average, be the half of their gravitational
binding energy. Oort found that the orbital velocities of stars cannot be explained by the
visible mass and that an additional matter component was needed. Similar results were
found in 1933 by F. Zwicky, who investigated the orbital velocities of the Coma galaxy
cluster by its mass-to-light ratio [59]. 80 years after its discovery many further independent
evidences were found. These include

• the observed rotation curves of different galaxies, including the one of the MW,

• obervations of gravitational lensing, by which light from a distant source is bent due
to a massive object or a large amount of mass,

• observations and analyses of angular fluctuations in the CMB,

• the fast structure formation in the Universe.

From the combination of the different observations, including precise CMB measurements
by PLANCK, it is generally accepted that about 84.5% of the total matter content in the
Universe consists of DM, while the visible, baryonic matter makes up only 15.5% [60]. The
total energy content of the Universe is, however, dominated by the so called Dark Energy
which makes up about 68.3%. Therefore the mass contributes with only 31.7% (26.8%
DM and 4.9% ordinary matter). The observations imply that DM underlies only the weak
and the gravitational forces and does not participate in interactions of the strong and the
electromagentic forces. Numerical simulations of structure formations were performed and
support the assumption that the major component of DM must be cold [61], i.e. non-
relativistic. The local DM density ρDMlocal could be determined by analyses of the rotation
curve of the Milky Way and was found to be between 0.2 and 0.4 GeV cm−3 [62]. The
DM distribution in galaxies is believed to consist of a giant DM halo, much larger than
the visible structures, and small gravitationally bound sub-structures called minihalos or
clumps.
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22 2. Cosmic Rays

The particle nature of DM is still unknown and the Standard Model of Particle Physics
(SM) does not provide a convenient candidate. A hypothetical DM particle candidate
is called WIMP (Weakly Interacting Massive Particle), denoted with χ, which was in
thermal equilibrium in the hot, early Universe. In the state of thermal equilibrium the
WIMPs were able to annihilate and were steadily produced by other particles. As the
Universe expanded and therefore cooled down the average thermal energy decreased and
the equilibrium abundance dropped exponentially according to the Boltzmann equation.
Once the expansion rate of the Universe exceeded the annihilation rate the WIMPs were
no longer be able to annihilate. This point in time marks the freeze-out of the WIMPs
(at T ≈ mχ/20) from which on their cosmological abundance was fixed and represents the
relic density, denoted with Ωχ h

2 with the Hubble constant h in units of 100 km/(s Mpc).
Thermodynamics and statistical mechanics can be used to describe the particle reactions
from which the relic density for WIMP particles in the 100 GeV/c2 mass range as a function
of the thermally averaged annihilation cross section 〈σv〉 can be derived [63]:

Ωχh
2 ' 3 · 10−27 cm3 s−1

〈σv〉
. (2.15)

Measurements of the anisotropy of the CMB and of the spatial distribution of galaxies
lead to a value of the relic density of Ωχh

2 = 0.112 ± 0.006 [41]. The measured value of
the relic density leads to annihilation cross sections typical for cross sections of the weak
scale which became known as the WIMP miracle. Since the particles were non-relativistic
at the time of the freeze-out WIMP particles are referred to cold DM.

Many attempts to identify DM particles with known or theoretically motivated particles
have been undertaken. A detailed review is for example given in [64]. For instance neu-
trinos that are assumed to be massless in the SM were found to have to be massive by
the confirmation of neutrino flavour changing oscillations [65]. However, neutrinos could
only account for a small fraction of the observed DM, due to experimental upper limits
on the sum of the masses of the three neutrino generations. Furthermore, neutrinos were
relativistic at the time of decoupling and would form hot DM, which is not supported by
numerical simulations of structure formations. Other candidates are hypothetical axions,
introduced to solve the strong CP-problem, i.e. the absence of CP-violation in strong in-
teractions compared to weak ones. From direct searches and the dynamic of the Supernova
1987a it is assumed that axions must be very light (mA ≤ 0.01 eV) [64] and that they
interact only very weakly and were therefore not in thermal equilibrium in the early Uni-
verse. In 1921 T. Kaluza tried to unify gravitation and electromagnetism by introducing
additional spatial dimensions. The theory provides a viable DM candidate in form of the
lightest Kaluza-Klein Particle (LKP). The LKP may account for the observed matter and
its mass should lie in the range between 400 and 1200 GeV. Another candidate is provided
by supersymmetrical extensions of the SM. The lightest of the additional hypothetical
particles is called LSP (lightest supersymmetrical particle) and is stable if the R-parity
is conserved. The R-parity is an additional multiplicative quantum number in supersym-
metric models and its conservation implies that supersymmetric particles can be created
and decay only in pairs, by which the stability of the LSP is assured. In many models
this particle is the neutralino which is, with masses of roughly 10 to 10000 GeV and cross
sections of the weak interaction, the leading WIMP candidate.
Most of the WIMP’s properties, like its mass and its cross section for interactions with
other particles, are unknown and sophisticated experiments are built to detect them. Three
principal detection methods can be applied (see also figure 2.10):

• The direct WIMP production at particle collider experiments like at the Large
Hadron Collider (LHC) at CERN. Although the direct production channel is sup-
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pressed they could be produced by the decay of formely produced heavier supersym-
metric particles and detected by missing transverse energy.

• The direct detection of WIMP scattering processes by cryogenic detectors (e.g.
EDELWEISS) or noble liquid detectors (e.g. XENON) located in underground lab-
oratories for CR background reduction. If a WIMP hits an atom of the absorber
a tiny amount of heat, scintillation light and/or ionization is produced. The detec-
tion principle for such WIMP scattering processes is based on the detection of these
signals. Mostly combined detection methods are used to determine or constrain the
mass of the WIMP and the cross section from potential interactions with the target
material.

• The indirect detection by the detection of SM particles originating from WIMP
annihilations, see figure 2.11.

What all these detection principles have in common are large background contributions
and consequently challenging background rejection and signal identification methods have
to be applied. Direct searches suffer from large background contributions from neutrons,
muons, photons and electrons originating from CRs or natural radioactive radiation.

In indirect searches the signal strength crucially depends on the DM density. While the
signal strength in case of decaying DM particles and direct DM searches is proportional
to the DM density, it is proportional to the squared density for annihilating DM particles.
Even though the large, diffuse DM halo contains most of its mass, the main annihilation
contributions therefore result from the bound and denser substructers, whose properties
are, however, not well known. The contributions of protons and electrons from WIMP
annihilations are exceeded by far by the contributions from primary CR sources. Therefore,
only less abundant antimatter particles which are produced in interactions of the primary
CRs with the ISM like antiprotons and positrons can be used. WIMP induced gamma-rays
which directly point back to their origin may also be detected in the diffuse component
of the gamma-ray sky, but are as well overlayed by large contributions originating from
pion decays, inverse Compton scattering and bremsstrahlung. Of crucial importance for
any indirect DM search is a precise understanding of the involved processes and a precise
modeling of the astrophysics of CRs.
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Figure 2.10.: Illustration of Dark Matter detection principles. The green arrows indicate the
direction of time and show, how the diagram can be interpreted in three different
ways: Direct production by two initial SM particles and two resulting WIMPs, di-
rect detection by the scattering of a WIMP and a SM particle and indirect detection
by an annihilaton of two WIMPs resulting in two particles of the SM.

Figure 2.11.: Illustration of Dark Matter Annihilation. In case of annihilating DM particles, e.g.
supersymmetric neutralinos, known particles of the SM are produced that may be
detected in indirect DM searches. Credit: Sky & Telescope, Gregg Dinderman.
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3. Cosmic Ray Propagation

In this chapter, the basic concept of CR propagation is presented. After an introduction
to the relevant transport processes, the mathematical framework for modeling CR propa-
gation in form of an extended diffusion equation is introduced and a detailed description
for each physical process is given. Subsequently, the environment of the MW in terms of
relevant properties for CR propagation within our Galaxy is addressed. In section 3.2.4
numerical and analytical solutions to the transport equation are discussed and the GAL-

PROP and the DRAGON software for modeling CR propagation are introduced. Finally, the
link to experimental observations, which directly allow to test the theoretical predictions,
is pointed out and important observables are discussed.

3.1. Introduction to Cosmic Ray Propagation

After being produced and accelerated by their sources, CR particles are injected into the
ISM and then propagate through the Galaxy. They underly several processes, modifying
the initial particle spectrum and the particle composition. The dominating process of
these propagation (or transport) processes is diffusion by the scattering of charged parti-
cles off magnetic turbulences in the galactic magnetic field, leading to a random walk like
dispersion. In addition, CR particles scatter on randomly moving magnetohydrodynamic
(MHD) waves, leading to a stochastic acceleration (diffusive reacceleration). During prop-
agation through the gaseous Galactic Disc, CRs interact with the ISM and consequently
lose or gain energy and produce secondary particles, gamma-rays and synchrotron radia-
tion. Furthermore energy losses and particle losses by fragmentation, radioactive decays
and escape from the Galaxy have to be taken into account. Convective transport due to
the common movement of the scattering centers away from the galactic plane, may also
play an important role, since convection not only transports CRs, but also produces adi-
abatic energy losses in case the wind speed increases in greater distance to the Galactic
Disc. Additionally, CR particles propagating through our solar system are affected by low
energetic charged particles coming from the Sun. This process, called solar modulation,
modifies the particles spectra in the low energy region up to about 30 GeV/nucleon and
strongly depends on the varying solar activity.
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3.2. Modelling of Cosmic Ray Propagation

3.2.1. Transport Processes

3.2.1.1. Diffusion and diffusive Reacceleration

The propagation of charged particles in the ISM is dominated by their interaction with
the magnetic and electric fields in the cosmic plasma. Therefore, the interactions of a
collection of relativistic charged particles with a magnetized plasma have to be analyzed.
For a given electric field ~E and magnetic field ~H, the momentum distribution f(~r, ~p, t) of
CR particles follows the kinetic equation [66]

∂f

∂t
+ (~V · ~∇)f + Ze( ~E +

~V

c
× ~H) · ∂f

∂~p
= 0, (3.1)

in case particle collisions are neglected. ~p is the momentum, Ze is the charge of the particle

and ~F = Ze( ~E +
~V
c × ~H) the Lorentz force. A well known approach is the quasilinear

approximation, in which the electric and magnetic fields are separated into their average
values and fluctuations, corresponding to an ensemble of waves with random phases:

~H = ~H0 + ~H1, 〈 ~H〉 = ~H0, 〈 ~H1〉 = 0, 〈 ~E〉 = 0 (3.2)

The distribution f is also composed by an average and a fluctuating part:

f = 〈f〉+ f1, with 〈f1〉 = 0. (3.3)

By averaging formula 3.1 over the ensemble of waves and the assumption of small ampli-
tudes (f1 � 〈f〉), one obtains

∂f1

∂t
+ (~V · ~∇)f1 +

Ze

c
(~V × ~H0) · ∂f1

∂~p
= −Ze( ~E +

~V

c
× ~H1) · ∂〈f〉

∂~p
. (3.4)

It is practical to make use of the Fourier transformed fields in space coordinates:

~E(t, ~r) =
∑
α

∫
d3ke−iω

~α(~k)t+i~k·~r ~Eα(~k),

~H1(t, ~r) =
∑
α

∫
d3ke−iω

~α(~k)t+i~k·~r ~H1
α
(~k),

(3.5)

in which the summation over various kinds of waves in the plasma with the dispersion
relation ω = ωα(~k) for each wave type is taken into account. By introducing cylindrical
coordinates p‖, p⊥ and φ, one can derive a scattering condition for which particles are
scattered by the waves:

ωα(~k)− k‖V‖ − sωH = 0, with s = 0,±1, ... (3.6)

The integer s corresponds to cyclotron resonances of different orders. This resonance
condition states that the frequency of the wave is an integer multiple of the frequency of
the cyclotron rotation of the particle in the regular magnetic field ~H0. Thus, scattering
between the particle and the wave occurs only if the wavelength is comparable to the
particle’s gyroradius. In case of wavelengths much shorter than the gyroradius the particle
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circles around the direction of the regular field ~H0. For comparable wavelengths the
interaction occurs at the harmonics s = 0,±1. Two types of oscillation modes are relevant
for scattering processes in the ISM: Alfvén waves with the dispersion relation ωα(~k) =
±|k‖|vA and fast magnetosonic waves with ωα(~k) = ±kvA. Both Alfvén and magnetosonic
waves propagate along the magnetic field with the Alfvén velocity, but with opposite
circular polarisation. In order to obtain a closed equation, the following assumptions
are made:

• The characteristic time scale to establish isotropy is larger than the scattering rate,

• the characteristic distances are larger than the relaxation length of the fluctuations,

• the distribution function has a small anisotropic component: f̄ = f0 + δf(µ), with
the cosine of the pitch angle µ and f0 = 1

2

∫ 1
−1 dµf̄ ,

• the energy densities of waves propagating along the field and in the opposite direction
are equal.

Following [66], the diffusion-reacceleration equation in one spatial dimension, including a
source term Q, reads

∂f0

∂t
=

∂

∂x
Dxx

∂f0

∂x
+

1

p2

∂

∂p
p2Dpp

∂

∂p
f0 +Q (3.7)

with the coefficients

Dxx =
v2

2

∫ 1

0
dµ

1− µ2

2νµ

Dpp = p2
(vA
v

)2
∫ 1

0
dµ(1− µ2)νµ

(3.8)

with the Alfvén velocity vA as a characteristic phase velocity of weak disturbances propa-
gating in a magnetic field and µ = cos(θ) with the pitch angle θ, i.e. the angle between ~p
and ~H. The scattering rate νµ can be expressed by

νµ ≈ 2π2|ωH |
kresW

α(kres)

H2
0

(3.9)

with the cyclotron angular frequency ωH , the resonant angular wavenumber kres and the
wave energy density Wα(kres) at resonance.

Equation (3.7) was derived by assuming that the particles move in a turbulent, magnetized
plasma. This leads to diffusion of the particles in space along the direction of the regular
magnetic field and to diffusive reaccleration, corresonding to diffusion in momentum space.
The concept of CR diffusion explains why energetic charged particles have highly isotropic
distributions and why they are well confined in the Galaxy.

If the spectrum of waves shows a power-law behaviour, corresponding to

W (k) ∝
(
k

k0

)−s
, (3.10)

and the regular and the random fields are taken to be equal, the diffusion coefficient of
particles along the field is given by
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Dxx = D0
v

c

(
ρ

ρ0

)δ
, (3.11)

D0 being the diffusion constant, ρ = p
Ze the particle rigidity, ρ0 a reference rigidity and δ

handling the rigidity dependence of the diffusion term (e.g. δ = 1
3 for a Kolmogorov and

δ = 1
2 for a Iroshnikov-Kraichnan MHD turbulence spectrum). Typical values found by

valuation and fitting to CR data for particle energies of several GeV are δ ≈ 0.2 to 0.8
and D0 ≈ 1028 − 1029cm2/s, depending on the model setup [67], [68].

In addition to diffusion and diffusive reacceleration there are other transport processes,
as well as energy losses and particle losses that have to be taken into account, thus the
diffusion equation (3.7) has to be extended. In the following, the convective transport
process is motivated and energy loss, particle loss and particle production processes are
discussed.

3.2.1.2. Convection

The existence of galactic winds in many galaxies proposes a large scale motion of the
interstellar gas with a ’frozen’ magnetic field, in which CRs may play an imortant role [69],
[70]. They may not only diffuse, but can be carried by a convective outflow with a certain
convection velocity ~Vc(~r, t). For a long time, this convective outflow from the Galaxy
was assumed to be insignificant, since pure diffusion models were in general successful in
describing most of the CR observations. However, following publications about the self-
confinement of CRs [71], the CR hydrodynamic equations and analyses of hydrodynamic
stability as well as the dynamics of the ISM showed that the convective velocity might be
small near the galactic plane, but the wind is accelerated by gaseous, CRs and MHD wave
pressures. As a result the wind velocity can reach several hundred km/s far away from
the Galactic plane, with an almost linearly increasing wind velocity with distance, as was
shown by numerical calculations [70]. Also, the interpretation of soft X-ray emission in
the galactic halo gave evidence for the existence of a galactic wind, since hot gas at high
galactic latitudes was found by ROSAT observations [72] which was not expected due to
the gravitational bound.

3.2.1.3. Energy Losses, Particle Losses and Secondary Production

During propagation through the ISM, CR particles are subject to a number of energy
loss mechanisms, causing a distortion of their initial energy spectra. These loss mecha-
nisms involve interactions with matter, magnetic fields and radiation and have to be well
understood in order to obtain information about the particles history. Whereas nuclei
predominantly suffer from energy losses by ionization and Coulomb scattering, leptons
additionally lose energy from bremsstrahlung and synchrotron processes, leading to faster
energy losses and therefore shorter propagation lengths.
Of great interest are energy loss processes including gamma-rays and synchrotron radiation
as by-products, since these photons can be used as tracer for the galactic CR distribution,
see chapter 3.3.2.
In this chapter the main energy loss mechanisms and particle number changing modes are
reviewed. A detailed description of the particular energy loss processes according to [73]
and [74] is summarized in Appendix A.

Any charged particle experiences an electrostatic interaction if passing through the Coulomb
field of another charged particle. In CR physics, this is typically an interaction between a
very fast particle and a slow, cold particle. The energetic particle is decelerated, it suffers
energy losses called Coulomb losses or ionization losses depending on the interaction
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partner. For protons and other nuclei these are the dominating energy loss processes. In
addition, collisions of nuclei with hydrogen, helium or heavier nuclei within the ISM can
cause inelastic scattering processes by which the parent nucleus gets destroyed and new
CR particles, so called secondary particles, are produced:

n1 + (p,He)→ n2 +X, (3.12)

in which n1 and n2 are the mother and the daughter nucleus. The destruction of an existing
CR particle according to the total cross section is called fragmentation and the production
of a new particle according to the branching fraction of the corresponding channel is called
spallation. The partial cross sections for the production of different elements and isotopes
as a function of energy are best determined from collider experiments in which beams
of high energy particles interact with target nuclei. Fragmentation is included in the
transport equation (3.19) by associating a fragmentation rate 1

τf
to the cross section.

For the computation of the source function for secondary CRs, the sum over all present
species j and the integral over the nucleon momentum is required:

q(p) =
c

4π

dn(p)

dt
=

c

4π

∑
i=H,He

ni
∑
j

∫
dp′βnj(p

′)
dσij(p, p

′)

dp
, (3.13)

with the gas density ni, the differential production cross section dσij(p, p
′)/dp of species j

with hydrogen (i=H ) and helium (i=He), the CR density nj(p
′) of species j and the total

momentum of the nucleus p′.

Radioactive isotopes can be produced directly in the CR sources (e.g. 26Al), as well as
by fragmentation of heavier nuclei (e.g.10Be). Instable isotopes are of special interest for
CR propagation models, since the known half life enters the model, allowing the determi-
nation of a characteristic time scale in which the isotopes propagate through the Galaxy
(see chapter 3.3.1). The number of instable, radioactive isotopes N(t) after a time t with
an inital population of N0 and a half life of τ1/2 is given by the exponential decay law:

N(t) = 2N0e
− t
τ1/2 . (3.14)

In case of relativistic speeds, τ1/2 has to be replaced by γτ1/2. Most of the decay modes
are β+ and β− decays, leading to an emission of a neutron or a proton, respectively.
Additionally, K-capture processes can occur, in which a proton-rich nuclues absorbs one of
the orbital electrons (usually from the K or L electron shell), therefore changing a proton
to a neutron and forming a new element. The missing orbital electron has to be caught in
the ISM, which, however, is not rich in electrons. Therefore, the lifetime of a K-capture
isotope can be significantly longer than the one measured in the laboratory. Some isotopes
(e.g. 26Al, 54Mn, 56Ni) underly both β-decay and K-capture with relativley short half
lifes. In this combined case, both half lifes have to be taken into account and the ’naked’
nucleus, i.e. the electron-free nucleus, can decay via β±. Radioactive decays are included
in the transport equation (3.19) by associating a decay rate τf . The source function for
the daughter isotopes can be calculated by

∂Ni

∂t
=
∑
i<j

Nj

τi,j
. (3.15)
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Here, τi,j is the probability that a nucleus of type j decays into a nucleus of type i. A
summary of the most important radioactive isotopes created in spallation processes is
shown in table 3.1.

Table 3.1.: Summary of important radioactive isotopes. Shown are the corresponding decay
mode(s) and half-lifes. Table taken from [10] and updated using [75].

Isotope Decay mode Half-life (yr)
10Be β− 1.387 · 106

14C β− 5700
26Al β+ 8.73 · 105

K-Capture 8.45 · 106

36Cl β− 3.01 · 105

K-Capture 1.59 · 107

54Mn β− (6.3± 1.7) · 106

K-Capture 312 days

Bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged
CR particle when deflected by another charged particle of the ISM. The loss of kinetic
energy of the moving particle is balanced by the emission of a photon (see Appendix A for
details):

e+ (e, p)→ e′ + (e′, p′) + γ (3.16)

Synchrotron radiation is produced when a charged, high energetic CR particle is forced
to propagate in a curved path by the galactic magnetic field. Since the particle’s mass
m determines the synchrotron induced energy loss term with δE ∝ m−4 electrons and
positrons lose their energy much faster compared to protons and other nuclei.

Inverse Compton scattering occurs if high energetic electrons or positrons scatter on
low energetic photons of the ISRF, mainly photons from the CMB, stars and dust. Energy
from the electron or positron can be transferred to the photon, increasing the photon
energy:

e± + γ → e±
′
+ γ′ (3.17)

For an illustrative comparison of the energy dependence and the hierarchy of the different
energy loss mechanisms, figure 3.1 shows the energy loss times for nuclei, electrons and
positrons. For electrons and positrons at low energies Coulomb and ionization losses dom-
inate, leading to total energy loss times between 4 · 106 and 3 · 108 years between 10−3 and
10−1 GeV. Above several hundred GeV inverse Compton and synchrotron losses become
dominant and the loss time decreases to about 106 years at 2 · 102 GeV. For even higher
energies above 10 GeV the loss times are comparable to the CR escape time of ∼ 107

years. For nuclei the energy loss time exceeds this escape time in the whole energy range.
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3.2. Modelling of Cosmic Ray Propagation 31

Figure 3.1.: Characteristic energy loss time scales. The energy loss times for electrons (left) and
nuclei (right) are calculated in the Thomson limit, i.e. the energy density of photons
and the magnetic field are identical (1 eV/cm3). The loss times refer to equal gas
densities of the neutral and ionized component of the ISM (nH = nHII

= 0.01 /cm3)
and a He to H ratio of 0 (no Helium). Figure taken from [76].

Energy Loss Length

Typical propagation lengths of protons and other nuclei are of the order of several kpc,
depending on the particle’s energy. In contrast, leptons have much shorter propagation
lengths due to the large energy losses. A quantity linking the energy losses and propagation
distance is the energy loss length. It is defined as the distance an electron propagates
until it loses about 50% of its energy. With a diffusion coefficient parameterized as D =
D0(E/E0)δ and an average energy loss rate of dE/dt ≡ b(E) = −βE2 the energy loss
length λ can be expressed by

λ2(E) =

∫ E

E/2

D(E)

b(E)
dE =

D0E
δ−1

(1− δ)Eδ0β
. (3.18)

In [77] the influence of the energy loss length to the solution of the diffusion-loss equation
in different parts of the energy spectrum was studied. Bulanov et al. found that in case
of low energetic particles with energy loss lengths much larger than the halo size energy
losses are negligible. The spectrum is steepend from the initial index (−α) to (−α − δ)
as in the hadronic case. In the intermediate region the energy losses lead to a spectrum
steepened to (−α − δ/2 − 1/2) and the volume the particles are located in is limited by
the loss length. At high energies the energy loss length drops drastically. The spectrum is
steepened to (−α− 1) and the particles are confined to a thin volume around the sources.
Figure 3.2 illustrates the spatial distribution of 100 MeV and 10 TeV CR electrons as a
function of r and z. The density distribution along z is broader at 100 MeV, because the
10 TeV electrons are confined to the sources due to the large energy losses. In the model
setup used in [78] typical propagation lengths are r < 1 kpc for 100 GeV electrons and
r < 0.2 kpc for 10 TeV electrons.
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32 3. Cosmic Ray Propagation

Figure 3.2.: Spatial density distribution of 100 MeV and 10 TeV CR electrons. While the 100
MeV electrons spread spatially, the 10 TeV electrons are confined to a small area due
to large energy losses. Figure taken from [78].

3.2.2. The Transport Equation

The diffusion equation for a particular particle species is given by equation (3.7). The full
transport equation, including a convective transport mode, energy losses, particle losses
and secondary particle production reads

∂ψ

∂t
= q(~r, p, t) + ~∇ · (Dxx

~∇ψ − ~Vcψ) +
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ

− ∂

∂p
[ṗψ − p

3
(~∇ · ~Vc)ψ]− 1

τf
ψ − 1

τr
ψ.

(3.19)

Here, ψ(~r, p, t) is the CR density per unit of total particle momentum p at the position ~r
with ψ(~r, p, t)dp = 4πp2f(~p)dp, q(~r, p, t) is the source term including the primary source, as
well as spallation and decay contributions, Dxx is the spatial diffusion coefficient (assumed
to be isotropic, i.e. the same in all directions), Dpp is the diffusion coefficient in momentum

space for diffusive reaccleration, ~Vc is the convection velocity, ṗ is the momentum gain/loss
rate, τf is the fragmentation time scale and τr the time scale for radioactive decay. Equa-
tion (3.19) is a partial differential equation with two spatial partial derivatives. It depends
on a multitude of parameters which determine the CR energy spectra and densities in the
Galaxy. These parameters are not or only slightly accessible by theory and can only be
constrained by a comparison of model predictions with experimental observations. The
most important parameters are

• α, the injection index, determines the initial CR energy spectrum with which the
particles are injected into the ISM,

• δ, which dictates the rigidity dependene of the diffusion coefficient and is related to
the spectrum of turbulences,

• D0, the diffusion constant, which is related to the turbulence level in the ISM,

• vA, the Alfvén velocity, which determines the efficiency of the stochastic reaccelea-
ration mechanism,

• Vc, the convection velocity, by which CR particles may be carried away from the
galactic plane,
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• L, the halo height, which limits the height of the diffusion halo and acts as a boundary.

Chapter 3.3 gives an overview of how different observations can be used to constrain the
particular transport parameters. Before solutions to the transport equation are presented,
the properties of our Galaxy relevant for CR propagation are summarized.

3.2.3. The Milky Way

At first, this chapter gives a short description of the geometrical structures of galax-
ies, including the Milky Way. Then the properties of the MW that are relevant for CR
propagation are discussed. These include the CR source distribution, the interstellar gas
distribution, the interstellar radiation field, the magnetic field and the solar modulation.

In general, galaxies are complex, gravitationally bound systems, typically consisting of
hundreds of millions or billions stars. Beside stars they contain interstellar gas and dust,
forming the ISM, and an important but only very poorly known component, the so called
DM (see chapter 2.5). Between large spaces with only a few or no galaxies, the voids,
compound systems from pairs, small groups to giant galaxy clusters containing over a
thousand of galaxies were observed. A wide variety of different galaxy morphologies exist,
categorized into three main types: elliptical, spiral, and irregular. Our own Galaxy is a
typical spiral galaxy in which the visible components form a spiraling pinwheel. It consists
of a rotating disc of stars and the ISM, along with a central bulge of in general older stars.
The disc itself is composed of curving arms, the so called spiral arms, in which most of
the visible matter is located, see figure 3.3. The radius of the disc, in which the spiral
arms are located, is about r ≈ 25 − 30 kpc with a thickness of only d ≈ 400 − 600 pc.
Our solar system is located at a distance of rSun = 8.33 ± 0.35 kpc [79] away from the
Galactic Center close to the inner rim of the Orion arm and dSun = 5 − 30 pc [80] away
from the central plane. The MW is moving with vMW ≈ 550 km/s through space with
respect to the photons of the CMB, whereas our solar system moves with an orbital speed
of vSun ≈ 220 km/s. This gives an orbital period of TSun ≈ 240 · 106 years [81].

Figure 3.3.: Artist’s view of the Milky Way’s spiral arm pattern. The Galaxy’s two major arms
(Scutum-Centaurus and Perseus) can be seen attached to the ends of a thick central
bar, while the two now-demoted minor arms (Norma and Sagittarius) are less distinct
and located between the major arms. Whereas the major arms consist of the highest
densities of both young and old stars, the minor arms are primarily filled with gas
and pockets of star-forming activity. Figure taken from [82].
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34 3. Cosmic Ray Propagation

3.2.3.1. Source Distribution for Cosmic Rays

As already discussed in detail in chapter 2.4.1, SNRs are the most promising primary
sources for galactic CRs. For modelling CR propagation a distribution of SNRs within
the MW has to be adopted. In the literature several source distributions, often based on
Pulsar (PSR) and SNR radio surveys, are proposed, see e.g. [83], [84]. A class of possible
distributions can be written as

q(r, z) = q0

(
r

rSun

)α
· e−β

(r−rSun)

rSun · e−
|z|
z0 , (3.20)

with the radial distance to the Galactic Center r, the vertical distance to the Galactic Disc
z and the model dependent factors q0, α, β and z0 (e.g. Lorimer et al. found : α = 1.9,
β = 5, z0 = 0.2 kpc [83]).

A selection of these distributions is shown in figure 3.4. For a better comparison between
the different source distributions the absolute abundance is normalized to the same value
at r = 8 kpc. It should be noted, that the absolute abundance is not essential, since the
modelled particle fluxes are usually normalized to the experimental data.

r (kpc)
0 2 4 6 8 10 12 14 16 18

s
o

u
rc

e
 a

b
u

n
d

a
n

c
e

 (
a

rb
. 

u
n

it
s
)

0

0.5

1

1.5

2

2.5

3

3.5

Yuan et al.
Case et al.
Ferriere
Lorimer et al.
FaucherGiguere et al.

Figure 3.4.: Proposed SNR distributions. Shown are the proposed models by Lorimer et al. [83],
Case et al. [84], Ferierre [85], Yuan et al. [86] and Faucher-Giguere et al.[87] within
the Galactic Disc (z = 0 kpc). Averaged over all directions, the maxima of all
distributions lie at distances between 2.5 and 4.5 kpc to the Galactic Center. Above
15 kpc the source abundance drops to zero or decreases exponentially.

3.2.3.2. Interstellar Gas Distribution

The mass of the interstellar gas contributes with only 5% to the visible mass in the MW.
It consists of about 89% hydrogen, 9% helium and 2% heavier elements such as carbon,
nitrogen, oxygen and iron (commonly summarized to ’metals’ in an astrophysical context).
Most of the gas is concentrated in the galactic plane, moving in circular orbits, with
an overall gas density of about 106 particles/m3. However, there are wide variations in
terms of density and temperature throughout the ISM due to dynamical heating processes
(e.g. supernova explosions, stellar winds, ultraviolet radiation) and cooling processes (e.g.
bremsstrahlung) [10].
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The gas content of the ISM is composed of multiple phases, distinguished by whether the
matter is ionic, atomic, or molecular. Hydrogen is present in form of atomic hydrogen (HI),
molecular hydrogen (H2) and ionized hydrogen (HII). For predictions about secondary
particle production and energy losses of CR particles, an appropriate knowledge of these
distributions is of crucial importance. Therefore primary trace methods and the deduced
density profiles for each hydrogen phase will be discussed.

Atomic hydrogen

Neutral, atomic hydrogen in the ISM has a temperature of 100 K to about 3000 K and
emits line radiation at a frequency of ν0 = 1420.41 MHz (λ0 = 21.1 cm). This radiation
occurs through an almost completely forbidden hyperfine transition in which the spins of
the electron and proton change from parallel to antiparallel. Although this transition is
very rare the so called 21-cm line radiation can be used as a tracer for the interstellar HI
distribution, since it is highly abundant and therefore radiating steadily. It also allows the
investigation of the dynamics of HI. Is the gas moving relative to the observer, Doppler
shifts of the 21-cm-line can be measured and conclusions about the relative motion can
be drawn. Recent measurements of the whole sky yield full 3-dimensional models of the
density as a function of the position in the Galaxy, showing that the HI distribution is
also following the spiral arm patter of the MW as stars do [88]. Its structure was found
to be very extensive with over- and underdensities. In particular an underdense region is
believed to enclose our solar system, known as the Local Bubble [89]. Its origin is most
likely connected to supernova explosions in the solar neighbourhood. This strucure might
also affect CR propagation in a not negligible way.

Molecular hydrogen

Molecules can emit line radiation corresponding to transitions between electronic, vibra-
tional and rotational excited states. These molecular line emissions yield information about
the denser regions of the interstellar gas than the 21-cm line, since molecules are fragile
and can be dissociated by optical and ultraviolet photons. For this reason, molecular line
emissions are predominantly found in dense molecular clouds with number densities of
about 109 to 1010 m−3.
H2 is difficult to detect by infrared and radio observation due to the absence of an elec-
tric dipole moment. However, carbon monoxide (CO) can be used as tracer for H2: CO
molecules are excited by collisions with hydrogen molecules. The presence of line radiation
of previously excited CO states implies the presence of H2 allowing the determination of
the H2 number density. CO is, next to H2, the second most abundant molecule and emits
strong line radiation at λ = 2.6 mm caused by the rotational transition J = 1 → J = 0,
J being the angular momentum quantum number. A full 3-dimensional mapping of the
galactic H2 distribution by using CO as a tracer was done by Pohl et al. in 2007 [90].

Ionized hydrogen

The mechanisms for ionization of hydrogen are photoexcitation and photoionization at
energies above the ionization energy EI = 13.6 eV of hydrogen. Due to the large cross
section of hydrogen atoms for ionization by high energy photons, photoionization is the
dominating ionization process. For tracing the HII distribution intensities of hydrogen
recombination lines can be used: Regions of ionized hydrogen can be observed in the
radio band due to bremsstrahlung processes and in the optical band due to recombination
of hydrogen and helium ions with free electrons. The dominant spectral line is the Hα
line with a wavelength of λ = 656.3 nm emitted by atomic hydrogen when the electron
falls into a lower atomic shell (n = 3 to n = 2) after recombination. Those radiative
transitions in which an electron from a higher excitation state (n > 1) cascasdes down the
ground state (n = 1) happen very frequently, leading to the assumption that HII regions
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are composed of a mix of electrons and ionized hydrogen, permanentely recombining into
hydrogen atoms.
Figure 3.5 shows the radially averaged gas number density distributions for HI, H2 and
HII as a function of the radial distance to the Galactic Center [91].

Figure 3.5.: The averaged gas number density distributions for HI (dashed), H2 (solid) and HII
(dots) for different heights of z = 0, 0.1, 0.2 kpc (decreasing density). Figure taken
from [91].

Helium and coronal gas

Helium is with 9% the second most common element in the ISM. Its distribution follows
that of hydrogen with a constant factorHe/H of about 0.11. So-called coronal gas accounts
for up to 70% of the fractional volume of the ISM. Tracing this hot, ionised, gaseous
component is done using absorption lines of highly ionized metals. With temperatures of
T ∼ 105 to 106 K and densities of 10−4 to 10−3 atoms/cm3 this extenuated component is
of minor importance for CR propagation, especially compared to the uncertainties of the
much more important hydrogen distribution.

3.2.3.3. Interstellar Radiation Field

In order to calculate photon induced energy losses an appropriate model for the galactic
ISRF as a function of (r, z, ν) is required. The components the ISRF consists of are mainly
photons from stars and from the CMB. These photons are scattered, absorbed and re-
emissioned in the infrared band by dust in the ISM. The most detailed calculation by
Strong et al. [92] includes a spatial and a wavelength dependence over the whole Galaxy.
It is steadily extended by new relevant astronomical information on stellar populations,
the galactic structure, and the interstellar dust [93], [94]. Figure 3.6 shows the energy
density of the three components of the ISRF as a function of r and z.
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Figure 3.6.: Energy density of the three components of the ISRF. Shown are the contributions of
stars (dashed), dust (dash-dot), the CMB (dash-3-dots) and the total contribution
(full line) as a function of r in the galactic plane at z = 0 kpc (left) and as function
of z at r = 4 kpc (right). Figures taken from [92].

3.2.3.4. Magnetic Field

Galactic magnetic fiels are a fundamental component of the ISM. They affect the gas flows
in spiral arms and the star formation by providing the transport of angular momentum
required for the collapse of gas clouds. Furthermore, they significantly contribute to the
total pressure of the ISM, preventing a gravitational collapse of the Galaxy. They play also
an important role for CR propagation, since they dictate the scattering rate in the context
of diffusion and are responsible for the large energy losses of electrons and positrons. If the
diffusion equation is used to model propagation, the properties of the magnetic field are
considered by the diffusion coefficient and the Alfvén velocity. However, for the calculation
of synchrotron losses a parameterization of the galactic magnetic field as a function of (r, z)
is required.

The structure of the galactic magnetic field consists of a regular and a random (or turbu-
lent) component [95]. The regular component is believed to be generated and maintained
by the dynamo mechanism: a weak seed field can be amplified to a large-scale field by a
transfer of mechanical energy to magnetic energy [96]. The small-scale fluctuations in the
magnetic field with coherence lengths of the order 100 pc, are produced by turbulences
of the large-scale field, thermal instabilities, compression of magnetic fields by SNR shock
fronts and stellar winds and self generated fields by the dynamo mechanism at small scales.

Tracing the MW’s magnetic field is a challenging task, since it is a three-dimensional
vector field that varies on multiple scales throughout the Galaxy. Furthermore, the related
observables are not only sensitive to the magnetic field itself, but also to other quantities
that are concealed by various effects. The total strength of the galactic magnetic field
can be determined from the intensity of the total synchrotron emission orthogonal to the
Line-of-Sight (LOS). However, this method is superimposed by the uncertainty of the CR
electron density in the Galaxy. Polarization of thermal emission of dust shows directly the
magnetic field projected in the sky plane, since dust particles are predominantly orientated
along the ambient magnetic field inducing a polarization. Within a few kpc to the Sun also
the polarization of starlight can be used, that is scattered by dust particles when traveling
from a star to the Earth. For measuring the parallel component the splitting of spectral
lines in an emission or absorption region can be used (Zeeman splitting). Another method
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uses Faraday Rotation Measures (RM). Faraday rotation occurs if polarized radio waves
travel through a magnetized medium. The Faraday effect causes a rotation of the plane of
polarization which is proportional to the component of the magnetic field in the direction
of propagation. The RM is the integrated line-of-sight component of the magnetic field,
weighted by the thermal electron density. The RM of pulsars and extragalactic radio
sources can therefore be used to probe the magnetic field in our Galaxy, see e.g. Pshirkov
et al. 2011 [97], Farrar et al. 2012 [98].

According to radio, synchrotron, optical polarization and Zeeman splitting data the av-
erage strength of the total magnetic field in the MW is about 6 µG near the Sun and
about 10 µG in the inner galaxy (see [99] and references therein). Radio filaments near
the Galactic Center and dense clouds of cold molecular gas yield fields with strengths of
up to several mG. Outside the central region, the large-scale field is mostly parallel to the
plane of the Galactic Disc. The overall field structure follows the spiral arms, but several
distortions near star-forming regions were discovered [100]. Figure 3.7 shows a model of
the MW’s large-scale magnetic field derived by RMs of known pulsars and extragalactic
sources.

Figure 3.7.: Model of the large-scale magnetic field in the MW within the Galactic Disk. The
positions of the solar system and interstellar clouds are indicated by white colours.
The overall magnetic field structure follows the optical spiral arms and is symmetric
with respect to the galactic plane. The strength of the field increases towards the
galactic centre region. The reversal of the field inside the solar circle is shown in red.
Credit: MPIfR, X.H. Sun and W. Reich [101].

For calculations of synchrotron losses in a cylinder-symmetrical setup Strong et al. pro-
posed a simple, effective parametrization of the total magnetic field [92]:

B(r, z) = B0 e
−(r−rSun)/r0 · e−|z|/z0 . (3.21)

The parameters B0, r0 and z0 can be adjusted to best reproduce measurements of the
synchrotron emission in the Galaxy. For a sufficiently well description of the synchrotron
emission at 408 MHz the values were found to be B0 = 6.1 µG, r0 = 10 kpc and z0 = 2
kpc [92]. However, new data of the synchrotron emission at higher frequencies by WMAP
make a renewed investigation of the sustainability of such a simplified model necessary.
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3.2.3.5. Solar Modulation

During the propagation of CRs within our solar system their energy spectra are modified
by interactions of the CR particles with the solar wind, a stream of charged particles
released from the upper atmosphere of the Sun. It mostly consists of electrons and protons
with low energies between 1.5 and 10 keV forming the heliosphere, a large bubble-like
volume surrounded by the ISM. The strength of the modulation depends highly on the
solar activity and modifies the low energy region of the particles spectra up to 20 - 30
GeV/nucleon. As a measure for the solar activity neutron monitors can be used. Such
ground-based detectors measure the number of high energetic charged particles pitching
on the Earth’s atmosphere. In times of strong solar activity fewer galactic CRs reach the
Earth and vice versa. Figure 3.8 shows the deviation to the averaged count rate during
the last 50 years, in which the 11-year cycle of the Sun’s activity becomes apparent.

The prediction for the Local Interstellar Spectrum (LIS) of each particle species has to be
corrected corresponding to the respective solar activity. In 1968, Gleeson and Axford [102]
derived the so-called force-field-approximation, in which the modulation of CRs is approx-
imated as a motion in an effective, radial electric field. The strength of the modulation
according to the solar activity can be described by a single parameter, the effective modu-
lation potential Φeff . However, this parameter is model dependent and does not represent
the solar potential itself. Nevertheless, reference values for the effective modulation poten-
tial for different experiments can be found in the literature, where a particular transport
model was used [103]. This directly allows to compare the influence of solar modulation
on datasets, recorded within periods of different solar activity.

For a given particle species with a mass m, a kinetic Energy of Ekin, a mass number A
and a charge number Z the flux at Earth Φ is derived from the interstellar flux ΦLIS by

Φ(Ekin, A, Z) =
(Ekin +m)2 −m2(

Ekin +m+ Z|e|
A Φeff

)2
−m2

ΦLIS(Ekin +
Z|e|
A

Φeff , A, Z). (3.22)

The force-field-approximation is quite successful in describing many of the existing observa-
tions. Figure 3.9 shows the proton spectrum at low energies as measured by the PAMELA
detector during the years between 2006 and 2009 [104]. The force-field-approximation with
different effective modulation potentials in combination with an unbroken proton injection
spectrum can explain the data sets reasonably well.

Equation 3.22 does not depend on the sign of the charge of the particle species. However,
recent measurements of the PAMELA experiment on electrons, positrons, protons and
antiprotons gave hints that a charge sign dependent modulation could be realized in nature
[105]. A more sophisticated treatment of the solar modulation is implemented in the not
yet publicly available HelioProp software, which solves the the transport equation in the
solar system accounting for charge-dependent drifts in the presence of a time-dependent
current sheet [106].
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40 3. Cosmic Ray Propagation

Figure 3.8.: The periodically varying solar activity. Shown is the deviation to the averaged count
rate of CRs between 1965 and 2014, in which the 11-year cycle of the Sun’s activity
becomes apparent. Note, that the shown CR count rate is proportional to the inverse
of the Sun’s activity. The figure was produced with data from the Oulu Neutron
Monitor [107].
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∼ 30 GeV the influence of the solar wind is negligible. Data taken from [104].
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3.2.4. Solving the Transport Equation

Solutions to the transport equation (3.19) can be found numerically. Analytical and semi-
analytical solutions require simplifying assumptions, e.g. an arbitrary gas distribution and
energy losses cannot be considered at once. The explicit analytical solution approach for
cylinder-symmetric 2D diffusion-convection models including secondary particle produc-
tion and a source distribution was derived in 1976 by Ginzburg and Ptuskin [108]. In
this approach many approximations and simplifications had to be made, e.g. energy losses
were not taken into account. Semi-analytical solutions in 2D, including energy losses and
reacceleration, can be expressed by a Green’s function that has to be integrated over the
sources [109]. The gas model, however, restricts to a simple, constant density within the
disk. An analytical solution for the time-dependent case and a generalized gas distribu-
tion, but without energy losses, was proposed in [110].
Despite of their restrictions, analytical and semi-analytical solutions are in general fast
to compute and can be useful to obtain insights into the relations between the involved
quantities and for rough estimations. However, with today’s computing power numerical
solutions are very attractive, since they provide the CR distribution over the whole Galaxy,
including an arbitrary gas distribution and energy losses, in a reasonable time.
In this work two solutions to the transport equation are used: An analytical solution
for electrons and positrons originating from point like pulsars and numerical solutions as
implemented in the GALPROP [111] and the DRAGON [112] code.

3.2.4.1. Analytical Solution for a Point like Source

For the computation of electron and positron densities of a point like source a simplified
transport equation, in which convection and diffusive reaccleration are neglected, is given
by [113]:

∂Ne(E, t, ~r)

∂t
= D(E)∇2Ne +

∂

∂E
(b(E)Ne) +Q(E, t, ~r). (3.23)

Here Ne is the electron density, D(R) = D0(R/R0)δ is the rigidity dependent diffusion
coefficient, b(E) = b0E

2 with the constant b0 = 1.4 · 10−16 GeV−1s−1 is an approximation
for the energy loss term, including the dominant synchrotron and inverse Compton loss
mechanisms [47] and Q(E, t, ~r) is the source term. For a source at a distance |~r| at a time
t > t0 the source term has the form

Q(E, t, ~r) = Q0

(
E

1GeV

)−Γ

· e−
E

Ecut δ(t− t0)δ(~r). (3.24)

Q0 is a normalization parameter, Γ the spectral index of the injected particle flux and Ecut
the cut-off energy. An analytical solution to equation (3.23) can be derived [113] and is
given by

Ne(E, t, ~r) =
Q0

π3/2R3
diff (E, t)

(
1− E

Emax(t)

)Γ−2( E

1GeV

)−Γ

·exp

[
− E

Ecut

1

1− E/Emax
−
(
|~r|

Rdiff

)2
] (3.25)

with
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Rdiff (E, t) ' 2

(
D(R)t

1− (1− E/Emax)1−δ

(1− δ)E/Emax

) 1
2

. (3.26)

Emax(t) = (b0t)
−1 is the maximal energy an electron, injected with an arbitrarily large

energy, has after a time t due to the already discussed energy loss mechanisms.

3.2.4.2. The GALPROP Code

A publicly available software package, which solves the transport equation numerically, is
the GALPROP code [111]. In their pioneering work starting in 1996 the authors A. Strong
and I. Moskalenko ’put all together’ allowing the computation of CR densities including
convection, diffusive reacceleration, energy losses, nuclear fragmentation and secondary
production. They used most up-to-date data on cross sections, source and gas distribu-
tions and the ISRF, for which a model was specially developed. In GALPROP the transport
equation (3.19) is solved for the steady-state case by the numerical Crank-Nicholson im-
plicit second-order scheme [114]. For the derivatives in r, z and p operator splitting is
adopted. For the cylinder-symmetrical 3 dimensional problem (r, z, p) or the cartesian 4
dimensional problem (x, y, z, p) the transport equation can be finite-differenced in the form

∂Ψi

∂t
=

Ψt+∆t
i −Ψt

i

∆t

=
α1Ψt+∆t

i−1 − α2Ψt+∆t
i + α3Ψt+∆t

i+1

∆t
+ qi.

(3.27)

The αi with i = 1, 2, 3 are called Crank-Nicholson-coefficients. The index i refers to the
discrete spatial grid and t and ∆t to the quantity at a time t and t+ ∆t, respectively.

For a time step of ∆t the updating scheme is given by

Ψt+∆t
i = Ψt

i + α1Ψt+∆t
i−1 − α2Ψt+∆t

i + α3Ψt+∆t
i+1 + qi∆t. (3.28)

This leads to a tridiagonal system of equations that has to be solved for Ψt+∆t
i :

− α1Ψt+∆t
i−1 + (1 + α2)Ψt+∆t

i − α3Ψt+∆t
i+1 = Ψt

i + qi∆t. (3.29)

At each iteration the spatial boundary conditions are applied, in which the particle density
is forced to zero at the boundaries. For the cylinder-symmetrical case they read

Ψ(Rmax, z, p) = 0,

Ψ(R,−zmax, p) = 0,

Ψ(R, zmax, p) = 0.

(3.30)

The solution is computed for each particle species, starting from the heaviest one in order to
take contributions from spallation processes and radioactive decays to the lighter species
into account. After the nuclear chain reached hydrogen, the lightest element, electron
and positron densities are calculated. The procedure for each species is repeated for all
timesteps ∆t. Usually the calculation starts with a large ∆t of the order of ∼ 103 Myr and
continues with ∆t/4 until a minimum timestep of the order of ∆tmin = 100 yr is reached.
For reasonable solutions for leptons the minimum timestep should be of the order of 1
yr [78]. The reason is that different physical processes have different intrinsic time scales
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that have to be accounted for. The runtime increases significantly with smaller time steps,
therefore a reasonable compromise between the computation time and the precision of
the calculation has to be made. The computation ends if the given maximum number of
timesteps is reached or a particular criterion of convergence is fulfilled. Usually, the time
scale is required to be large compared to the timescales of diffusion and energy losses.

3.2.4.3. The DRAGON Code

DRAGON (Diffusion of cosmic rays in galaxy modelization) is a publicly available software
package written by C. Evoli, D. Gaggero, D. Grasso and L. Maccione. It is based on the
GALPROP codes v.50p to v.54 and uses basically the same solving algorithm, the same nu-
clear cross sections and the same ISRF. However, it is written in pure C++ and uses the
advantages of this modern programming language in contrast to GALPROP. The computa-
tions are performed in a highly optimized way by using 34 classes. Large amounts of data
are passed as pointers to structured objects, leading to an efficient memory management
and thus fast computations. This makes the DRAGON code attractive for statistical analy-
ses of transport models. The code is also steadily extended in terms of performance (e.g.
OpenMPI parallelization) and physically motivated features. For instance a realistic 3D
distribution of the MW’s spiral arm pattern was adopted allowing the source distribution,
the gas distribution and the ISRF to follow the spiral arm pattern [106]. Anisotropic,
position dependent diffusion in three spatial dimensions granting the specification of an
arbitrary function of position and rigidity for the diffusion coefficient in the parallel and
perpendicular direction to the regular magnetic field was presented in [115].

The Cosmic Ray group at KIT under the supervision of Dr. I. Gebauer is in close contact
to the authors of DRAGON and is involved in upgrading and extending the code. Beside
smaller bug fixes and optimizations the main contributions of the KIT group, all of which
were adopted to the currently available official version, are

• the implementation of a non-equidistant spatial grid, which allows the investigation
of small scale structures,

• the implementation of local structures, in which deviations of the gas distribution or
transport parameters may be applied,

• an update of the electron capture implementation,

• an additional model for the MW’s spiral arm density.

Furthermore, sophisticated tests in terms of convergence of the obtained solutions were
performed and critial issues were indicated and handed down to the authors for further
improvements of the code.

3.3. Constraining Observations

This chapter gives an overview of how transport models, i.e. the particular transport pa-
rameters, can be constrained by experimental observations. First, the influence of the es-
tablished transport parameters on the energy spectrum of nuclei and leptons are discussed
and the special roles of secondary-to-primary ratios and ratios of radioactive isotopes are
emphasized. Afterwards, the diffuse galactic gamma-ray emission, the synchrotron emis-
sion and their constraining potential for transport models are highlighted.
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44 3. Cosmic Ray Propagation

3.3.1. Local Spectra of Nuclei and Leptons

Constraining of transport models is in many cases only of limited suitability due to degen-
eracies of the transport parameters. For instance, an increase of the diffusion constant D0

corresponds to less effective scattering which leads to a quicker escape of CRs. This can
be counterweighted by an increase of the halo height L, so that the escape time remains
the same.

The slope of the energy spectrum of a primary hadron at energies above ∼ 10 GeV depends
on the initial injection index α and the rigidity dependence of the diffusion coefficient,
dictated by δ. The effect of δ is a steepening of the initial slope of the spectrum. This can
be shown in a simplified leaky-box-model in which the loss of CRs propagating in a box
is treated by a non-zero probability of escape when encountering the boundary:

∂N

∂t
=

N

τesc(E)
+Q(E), (3.31)

with the particle density N(E) at an energy E and the time τesc cosmic rays spend in the
Galaxy. With τesc ∝ E−δ the steady-state solution, i.e. ∂N

∂t = 0, gives

N(E) ∝ E−α−δ. (3.32)

The energy region below ∼ 10 GeV is affected by vA, which reaccelerates low energy
particles and Vc, which decreases the particle flux at the solar position by a convective
transport. Primary particles are only partially suitable for constraining transport param-
eters. However, a matching shape and normalization to the locally measured spectra and
abundances are of crucial importance for an appropriate prediction of the expected sec-
ondary particle production. Measurements of secondary particles (e.g. antiprotons) allow
to examine these predictions.

Of fundamental importance for constraining transport parameters are measurements of
secondary-to-primary ratios (e.g. Boron/Carbon) and ratios of radioactive isotopes (e.g.
10Be/9Be). They allow to constrain the CR interaction rate and the CR escape time.

Secondary-to-primary ratios do not show the degeneracy of equation 3.32. For sec-
ondary particles one gets N(E) ∝ E−α−2δ and the slope of the ratio is proportional to
E−δ. At low and intermediate energies these ratios are also strongly affected by D0 and
vA: A larger value of D0 leads to a lower ratio because of the faster escape of the primary
nuclei from the Galaxy and consequently less secondary produced particles. However, an
increase of the halo height can increase these ratios again because the CR particles spend
more time in the Galaxy and more secondary particles are produced. A measure for the
averaged thickness of the matter CRs have to traverse on their way from their sources to
Earth, is the grammage χ, defined as the gas column density along the path of CRs:

χ =

∫
nHcτesc. (3.33)

High energy particles traverse typically about 10 g/cm2 of matter on their way through the
solar system [116] corresponding to a density of ≈ 0.2 atoms/cm3. In fact, the average gas
density seen by CRs was found to be substantially lower that the Galactic Disc average of 1
atom/cm3 [116]. This indicates that CRs are confined in the Galaxy and spend substantial
parts of their lifetime in regions with low densities, like in the halo of the Galaxy.
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The relative abundance of radioactive isotopes is sensitive to the halo height L. The
larger the halo is, the longer it takes for nuclei to reach the Earth. In case of radioactive
isotopes the relative abundance decreases with time. Ratios of radioactive instable to ra-
dioactive stable isotopes, called cosmic clocks, allow the determination of the local age of
CRs. Especially isotopes with lifetimes near the CR escape time (e.g.10Be) are of partic-
ular importance. Beryllium is a pure secondary element, produced by spallation processes
of Carbon (C), Nitrogen (N) and Oxygen (O). Wheareas the 9Be isotope is stable against
radioactive decay, the 10Be isotope decays via β−-decay with a half-life of τ10Be = 1.39
Myr [75]. Measurements of several cosmic ray isotopes are consistent with cosmic ray
escape times of τesc ≈ 107 yr at non-relativistic energies [116].

The most precise measurements up-to-date for the energy spectra of protons, antiprotons,
electrons and positrons in a wide energy range are published by the PAMELA collabora-
tion, see figure 3.10. Measurements of the ratios B/C and 10Be/9Be were accomplished
amongst others by the experiments HEAO [117],[118], ACE [119], CREAM [117] and
ISOMAX [120]. Figure 3.11 illustrates quantitavely the influcence of some of the most
important transport parameters on the expected particle spectra at Earth. For a fair com-
parison the proton spectrum of each prediction was normalized to the according data and
the LIS (no solar modulation) is shown. It becomes apparent that the different observables
are affected in different ways and with different strengths by the transport parameters.
For instance, while the diffusion constant D0 crucially affects the proton spectrum and
B/C the ratio 10Be/9Be is only marginally affected. In turn, 10Be/9Be and B/C show
a strong dependence on the halo height L: CR particles spend more or less time in the
Galaxy and more or less secondary particles are produced by interactions with the gas and
by radioactive decays. The slope at high energies of B/C is basically determined by δ,
as already reasoned before. Figure 3.12 shows additionally the influence of the transport
parameters on the proton density distributions in r and z direction. The proton density
is forced to zero by the boundary conditions at r = 20 kpc and z = L. While the radial
shape is significantly influenced by almost all transport parameters the shape in z direction
is basically determined by the halo height L.

For leptons fast energy losses by synchrotron radiation and inverse Compton scattering
result in shorter propagation lenghts than e.g. for protons (see chapter 3.2.1.3). Therefore
locally measured, high energetic leptons, coming from close sources, may have underlain
local propagation modes, that may be different from the global galactic ones. Especially
for analyses of positrons, it is important to use an appropriate model matching the pro-
ton, helium and B/C data to make sure that the total positron contribution is predicted
correctly and which is matching the locally electron data and synchrotron data to make
sure that the energy losses are estimated correctly and possible local transport modes are
considered.

The constraining power of locally measured particle spectra is limited to predictions at
Earth. CR densities far away from the Earth are only indirectly accessible via the detection
of CR interaction products, which will discussed in the following chapter.
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Figure 3.10.: PAMELA measurements of the spectra of protons [121], antiprotons [122], electrons
[123] and positrons [124].
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Figure 3.11.: Influence of transport parameters on the expected energy spectra at Earth. The
black dashed line corresonds to a benchmark model produced with the DRAGON

code, from which changes to the transport parameters have been applied to derive
the colored lines. Each color corresponds to the change of a different transport
parameter, either increased (solid lines) or decreased (dashed lines). For a fair
comparison the proton spectrum was normalized to the according data. See text
for interpretation.
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Figure 3.12.: Influence of transport parameters on the expected proton distribution. Shown is
the proton distribution at an energy of 91 GeV as a function of r at z = 0 kpc (a)
and as a function of z at r = 8.0 kpc (b). The proton density is forced to zero at
r = 20 kpc and z = L. While the radial shape is significantly influenced by almost
all transport parameters the shape in z direction is basically determined by the halo
height L.
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3.3.2. Gamma-Ray and Synchrotron Emission

The diffuse, galactic gamma-ray emission arises from interactions of CR particles with
the interstellar gas and the ISRF. The dominant contributions are produced by hadronic
and leptonic interactions of mainly protons, helium, electrons and positrons. The largest
contribution in the GeV energy range originates from decaying π0 mesons, which are pro-
duced in hadronic proton-proton collisions leading to the production of two high energetic
photons:

(p,He) + (p,He)→ π0 +X → γγ +X (3.34)

The emissivity, which is the number of particles emitted per unit of volume, time, energy
and interaction, can be caluclated for a hydrogen target by [125]

Qπ0(Eπ0) = cnH

∫ Emaxp

Eminp (Eπ0 )
dEpnp(Ep)

dσ(Ep, Eπ0)

dEπ0

, (3.35)

with the differential cross section of π0 production from proton-proton collisions
dσ(Ep,Eπ0 )

dEπ0
.

If the proton energy is much larger than its mass, the photon emissivity can be approxi-
mated by

Qγ(Eγ) ' 2

α
σ0cnHY (α)np(Eγ), (3.36)

where Y (α) is a function of the proton spectral index α, commonly called spectrum-weighted
moment or yield. It is a dimensionless quantity and corresponds to the averaged number of
photons produced in a volume of 1 cm3 per second and per interaction, e.g. Y (2.2) = 0.103
[126].

The dominant leptonic production mechanisms are the dominant energy loss mechanisms
for electrons and positron and were already discussed in chapter 3.2.1.3: Bremsstrahlung
(equation 3.16), inverse Compton scattering (equation 3.17) and synchrotron emission.
The contribution of leptonically produced gamma-rays from Bremsstrahlung and inverse
Compton scattering processes to the diffuse emission can be dominant in the sub-GeV
energy range. Synchrotron radiation is maximal in the MeV region, but gives only very
small contributions to the overall gamma-ray spectrum. A large contribution results from
photons of extragalactic origin. This photon flux is isotropic and dominates the diffuse
gamma-ray spectrum at low and high energies in directions with low CR proton, CR
electron and gas densities, e.g. at the galactic poles.
In contrast to charged CRs, which are deflected by the galactic magnetic field, gamma-
rays point directly back to their production position. Therefore, observations of diffuse
gamma-rays provide important information that can be used to trace the CR spectra and
densities even at distant locations. The proton density distribution in combination with
the gas distribution can be traced by diffuse gamma rays (as measured by e.g. FERMI)
and the electron density in combination with the magnetic field by sychrotron data (as
derived by e.g. WMAP data).

The expected gamma-ray emission for a given model, including the CR density distribution
computed in steady-state, the gas distribution and the ISRF, can be obtained by integrat-
ing the expected emissivity along the line-of-sight for an observer at the solar position.
The CR particle densities used for the expected gamma-ray flux are usually normalized to
locally measured particle densities. However, if the locally measured densities represent
a local over- or underdensity in the Galaxy the expected gamma-ray flux can be over- or

48



3.3. Constraining Observations 49

underestimated and a different normalization has to be applied.

The most up-to-date data of the gamma-ray sky is provided by the FERMI-LAT exper-
iment. Figure 3.13 shows a skymap of almost four years of observation of the diffuse,
galactic gamma-ray emission. The diffuse component was derived from the raw data by
subtracting energy and spatial templates of all known point sources1. The data were taken
from the Fermi Science Support Center (FSSC) and processed using the fermi-science-tools
software [29]. Details on the data taking period and the used event class can be found in
table 3.2.

Figure 3.13.: The diffuse component of the FERMI gamma-ray sky in the energy range 0.4 -
0.56 GeV. The flux shown on the z-axis is given in units of (GeV−1m−2s−1sr−1).
The largest contributions arise from the Galactic Disc and the Galactic Center, in
which the CR density and the gas density are expected to be maximal. Relicts
from insufficient point source models (e.g. the Blazar PKS 2326-502 at l = −28.0◦,
b = −62.3◦) can be excluded by spatial masking but are not significant if the total
flux in large regions is examined.

Table 3.2.: Specifications used for the processing of FERMI data.

Start date 2008-08-04 15:43:36.00

End date 2012-04-26 00:34:36.00

Max. zenith angle 100◦

Event class 2

IRF P7SOURCE V6

ROI-Based Zenith Angle Cut no

Relational Filter Expression DATA QUAL>0, LAT CONFIG==1

Energy Range 0.1 - 100 GeV

The synchrotron emission cannot be measured directly due to overlayed contributions from
the CMB, emission from dust and thermal bremsstrahlung from ionized hydrogen. The
latter is called free-free radiation which is produced by free electrons scattering off ions
without being captured.
A model for the synchrotron dominated emission at a frequency of 408 MHz was derived

1In collaboration with Dr. M. Weber
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in 1981 by Haslam et al. [127]. For the complete all-sky coverage four different radio con-
tinuum surveys from the Jodrell Bank Mk1A telescope, the Effelsberg 100 metre telescope
and the Parkes 64 metre telescope were composed. The original map as well as a a filtered
map, in which also strong point sources were removed, are publicly available [128]. The
filtered 408 MHz map in units of the antenna temperature is shown in figure 3.14. The
relation between the antenna temperature T (ν) and the intensity I(ν) is given by

T (ν) =
I(ν)c2

2ν2kB
, (3.37)

with the frequency ν and the Boltzmann’s constant kB.

Maps of the synchrotron emission in different, higher frequency bands were derived by fit-
ting templates of the foreground components (synchrotron, dust, free-free emission, CMB)
to WMAP data [129]. Figure 3.15 shows a sketch of the antenna temperatures of the
particular contributions in different frequency bands. Below 60 GHz the main contribu-
tions to the total emission are synchrotron radiation and free-free emission. Above 60 GHz
the synchrotron emission is much less contributing and the total emission is completely
dominated by thermal dust emission and free-free emission. Foreground maps derived
by PLANCK data in the high frequency bands centered at 100, 143, 217, 353, 545 and
857 GHz will allow a more precise determination of the particular contributions and are
expected to be published soon.

Figure 3.14.: The synchrotron dominated Haslam 408 MHz all-sky map in healpix format[130]. It
has been derived by composing several radio continuum surveys and contributions
from strong point sources have been mitigated. The temperature shown on the
logarithmic z-axis ranges from 10 to 250 K . Figure taken from [128].
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Figure 3.15.: Contributions to the photon emission in the frequency range between 20 and 200
GHz as derived by 9 year data of WMAP. The frequency bands in which WMAP is
measuring the photon emission are shown by the orange bands. Above frequencies
of ∼ 60 GHz the total emission is completely dominated by thermal dust emission
and free-free emission. Figure taken from [128].
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4.1. Motivation and Approach

Transport models for galactic CRs based on diffusion and reacceleration are in general
successful in describing most of the observations made nowadays. However, they depend
on a large number of transport parameters that are partially only very poorly known
and only accessible by experimental observations. In 2004, Strong et al. made every
effort to determine transport parameters of diffusion-reacceleration models by comparing
the models predictions computed with GALPROP with the most up-to-date data at that
time. They proposed a model which became known as the Conventional GALPROP
model and which is used to the present day as the basis of many analyses. However, even
if experimental observations are matched, large known and unknown correlations between
the transport parameters and subsequently degenerated solutions complicate a precise
modeling of the transport processes and call the models implications into question. For
the search for new phenomena in galactic CR physics a reliable background model, i.e. a
precise knowledge of the involved transport processes and the related transport parameters,
is of crucial importance in order to investigate, quantify and identify a possible signal.
Uncertainties of the related transport parameters resulting from the uncertainties of the
experimental data have to be taken into account. Current CR precision measurements by
PAMELA, FERMI and AMS-02 may give deeper insights into the transport processes and
make a revisiting of the potentials and limitations of current transport models necessary.
The aim of this study is to answer to following questions:

• How large is the degree of conformity of the predictions of current diffusion-reacceleration-
convection transport models to different current experimental measurements?

• How large are the correlations of the transport parameters and which implications
follow from the resulting degeneracies of the obtained solutions?

• How well can the transport parameters be constrained and are there conform, exotic
combinations of transport parameters which are not known and were not considered
so far?

Since the investigation of transport parameters is problem of high dimensionality with
typically 6 to 16 free parameters and the computation of the solution of the transport
equation is generally slow, simple minimization or scan algorithms are not feasible. There-
fore statistical sampling methods, like MCMC, are commonly adopted. Such analyses were
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already made in the past, however, either simplified models with semi-analytical solving
methods were used [131] or, in case fully numerical solutions have been applied, relatively
strong constrained models have been analyzed, e.g. [68].

In this work MCMC sampling methods are used to investigate extraordinary wide ranges
of transport parameters. The investigated model setup depends on 16 free parameters,
describing the particles injection spectrum, the properties of the diffusion and diffusive
reacceleration processes, a possible convective transport mode and the diffusion volume.
The solution to the full transport equation is obtained by using the DRAGON code, taking
into account energy losses, particle losses and secondary particle production for which
realistic distributions of the galactic gas and the galactic magnetic field are used. The
large computational effort is handled by a great number of modern computing nodes1.
The hardware in combination with a sophisticated MCMC algorithm allows an evaluation
of several models in parallel by which more information about the parameter space can
be obtained while the computation time is kept down. In addition, iterative steps with
different proposal algorithms are used in order to increase the sampling efficiency by taking
advantage of already collected information about the parameter space. The predictions of
each evaluated model are compared to the latest, most precise measurements of primary
nuclei, secondary nuclei, ratios of secondary-to-primary nuclei and ratios of radioactive
nuclei and the degree of conformity, i.e. the model’s goodness, is quantified.

4.2. A Markov Chain Monte Carlo Interface to DRAGON

In this section a MCMC interface to the DRAGON code is introduced. At first, the basic
principle of MCMC is highlighted. Afterwards, different decision algorithms and proposal
algorithms used in this work will be addressed and their realization through the usage of
different computing tools is described.

4.2.1. Principle of Markov Chain Monte Carlo

Especially for the investigation of high dimensional problems and time consuming com-
putations simple minimizing or scan algorithms reach their limits in terms of feasibility.
Bayesian methods have become increasingly popular in modern statistical analyses in a
broad spectrum of scientific fields. Especially MCMC methods enjoy great popularity
since they are in general easy to implement and to analyze. MCMC methods are based on
bayesian statistics and are a class of algorithms that allow the estimation of an unknown
Probability Density Function (PDF). For this purpose a Markov chain is constructed by
sampling the parameter space that has the unknown PDF as its equilibrium distribution.
Hence, the time a Markov chain spends in a particular region of the parameter space is
directly proportional to the unknown PDF leading to an efficient sampling of interesting
regions. The accuracy by which the equilibrium distribution is described by the sam-
pled distribution depends on the number of accepted states. Therefore, the Markov chain
should be as long as possible and ideally infinite.
Bayes theorem follows from the bayesian interpretation of the probability. The probability
quantifies the state of belief connected to a hypothesis and can have values different from
0 and 1, in opposition to the frequentist’s view. In a general form the Bayesian theorem
for two states A and B can be expressed by

P (A|B) =
P (B|A) · P (A)

P (B)
. (4.1)

1bwGRID - Computing Grid of Baden-Württemberg
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Herein P(A) and P(B) are the probabilities for A and B and P(A|B) and P(B|A) are the
probabilities of A given B and B given A, respectively. The theorem links the degree of
belief before and after accounting for evidence.

Assume a set of N parameters which represents a particular model:

θ = {θ1, θ2, ..., θN} (4.2)

The degree of belief in the model is obtained by comparing the model’s predictions with
experimental data. Applying Bayes theorem gives

P (θ|data) =
P (data|θ) · P (θ)

P (data)
. (4.3)

P (θ|data) corresponds to the desired PDF and P (data) is the data probability which does
not depend on the model’s parameters so that it can be taken as a normalization factor.
P (data|θ) is the likelihood L of the model describing the data. P (θ) is the prior proba-
bility, i.e. the degree of believe before observing the data. In order to obtain information
about the single parameters θi the posterior density is integrated over all other parameters,
called marginalization.
In practice, a Markov chain is generated by starting from a set of parameters with arbi-
trary values θ0 = {θ0

1, θ
0
2, ..., θ

0
N}. A MCMC proposal algorithm that for instance draws

numbers from a simple Gaussian distribution in each dimension centered at the current
value, proposes a new set of parameters θ1. Whether the proposed model is added to the
Markov chain or not is decided by a MCMC decision algorithm which takes the likelihoods
of both models θ0 and θ1 into account. An often used algorithm is the Metropolis-Hastings
algorithm [132] which uses the ratio of the likelihoods as a decision probability. Depending
on the decision a new model is proposed either from θ0 or from θ1 in case the proposed
model was added to the chain. The procedure is repeated until a sufficient amount of
samples is collected and the length of the chain is sufficient for a statistical analysis.
MCMC sampling algorithms are in general easy to implement, however a reasonable con-
figuration and a precise inspection and understanding of the behaviour of the algorithm
is of crucial importance. Of particular importance is to ensure that the whole parameter
space can be examined, e.g. if the step size of the proposal algorithm is chosen to be too
small the algorithm will stuck in a certain region of the parameter space and will never
explore regions that might be interesting as well. There is also the complicating fact that
each parameter influences the likelihood differently strong and a characteristic step size for
each parameter has to be found independently. The number of accepted models divided
by the number of rejected models, the so called acceptance rate, has to be examined with
due care. It strongly depends on the chosen step size and the acceptance criterion and
indicates the efficiency of the Markov chain. If it is too high by choosing too small step
sizes or a too slacky acceptance criterion the Markov chain has to be run very long until
it represents the equilibrium distribution. The same applies to too low acceptance rates
where only few models are added to the chain and the Markov chain has to be run very
long until a sufficient amount of samples is collected. As a rule of thumb the acceptance
rate should not fall below 10% and not exceed values of 50% for a reasonable efficiency. In
fact, in can be shown theoretically that the ideal acceptance rate for an one-dimensional
Gaussian distribution is about 50%, decreasing to approximately 23% for an N-dimensional
Gaussian target distribution [133]. The quoted numbers refer to local acceptance rates at
states where the Markov chain is believed to sample the equilibrium distribution. The
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global acceptance rate usually decreases first until it approaches constant values. The rea-
son is that randomly chosen starting points typically not yield large likelihoods and the
chain has first to rummage to interesting regions before a certain, characteristic level of
likelihoods is reached. This process is called burn-in and the models which were added to
the chain during this period should not be used for a statistical analysis since the sampled
distribution does not represent the desired equilibrium distribution.
In order to increase the efficiency of MCMC many sophisticated decision algorithms and
proposal algorithms were developed and can be found in the literature. The following
sections will highlight a selection of decision algorithms, namely the Metropolis-Hastings
and the Multiple-Try-Metropolis algorithm, and three proposal algorithms that build on
one another as used in [131].

4.2.2. Decision Algorithms

A widely used algorithm is the Metropolis-Hastings (MH) algorithm, which is, however,
only usable to a restricted extent for high dimensional applications. As will be shown,
the covered distance increases proportional to the square root of the number of dimen-
sions leading to either high rejection rates or only locally moving Markov chains. The
Multiple-Try-Metropolis (MTM) algorithm accounts for the dimensionality of the prob-
lem by utilizing multiple trials to bias the local sampling. In the following sections both
algorithms will be discussed in detail.

Metropolis-Hastings Algorithm

The MH algorithm was proposed in 1970 [132] and is due to its simplicity a widely used
algorithm in many MCMC applications. It dictates the acceptance probability from a
current state x0 to a proposed state x∗ by which the proposed state is added to the
Markov chain. Once in equilibrium the algorithm ensures, that the chain samples the
target distribution. The probability for proposing a particular state x∗ from the current
state x0 is given by π(x∗|x0). The acceptance probability α for an arbitrary, not necessarily
symmetrical, proposal function than reads

α = min

(
1,
P (x∗)

P (x0)

π(x∗|x0)

π(x0|x∗)

)
. (4.4)

In case a symmetrical proposal function like a Gaussian distribution is used, i.e. π(x∗|x0) =
π(x0|x∗), the acceptance probability simplifies to

α = min

(
1,
P (x∗)

P (x0)

)
. (4.5)

For the computation of the acceptance criterion only the likelihoods of the states x0 and
x∗ enter the formula and any information about the chain’s history is neglected. Since the
ratio of likelihoods is used, the absolute normalization cancels.
Although the algorithm converges to the state of equilibrium in the limit of infinite sam-
pling, the process can be very slow since a proposal function has to be assumed without
any knowledge about the desired target distribution. Especially in high dimensional ap-
plications the algorithm is only of limited suitability as will be discussed in more detail. If
in two dimensions x and y a Gaussian proposal function with a mean of 0 and a variance
of 1 is assumed, the mean displacement is ∆x = ∆y = 0. However, the average square of
the displacement is nonzero:

< ∆x2 > =
1√
2π

∫ ∞
−∞

x2e−∆x2/2 dx = 1. (4.6)
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The square of the total average distance is

< r2 > = < ∆x2 + ∆y2 > (4.7)

and increases with the number of dimensions. In case of N dimensions and identical
averaged displacements in each dimension, it can be written as

< r2 > = N r2
rms (4.8)

with the root-mean-squared step size r2
rms. Therefore, the distance, calculated by R =√

< r2 >, increases with the square root of N:

R =
√
N rrms. (4.9)

This implies that if appropriate parameter step sizes for each dimension are chosen the
resulting total distance R will lead to a high rejection rate. On the other hand, if the step
sizes are reduced for an appropriate value of R and a reasonable acceptance rate the speed
with which the chain moves through the parameter space is limited and a full exploration
is prohibited.

Multiple-Try-Metropolis Algorithm

The MTM algorithm was proposed in 2000 [134] and aims to prevent the insufficiencies
of the MH algorithm for high dimensional problems. It is based on utilizing multiple trial
proposals to bias the local sampling. From the current state of the chain x0 a whole set
of k states {x1, x2, ..., xk} is proposed and evaluated. According to the likelihoods one
state x∗ is chosen from which a second set of k-1 states {y1, y2, ..., yk−1} is proposed and
evaluated. The weight w between two states x and y is defined as

w(x, y) = P (x)π(x, y)λ(x, y). (4.10)

P(x) is the likelihood of state x, π(x, y) is probability for proposing state x from y and
λ(x, y) is an arbitrary, non-negative symmetric function in x and y. The simplest choice
is λ(x, y) = 1.

The acceptance probability α for adding state x∗ to the chain is given by

α = min

(
1,

∑k
i=0w(xi, x0)

w(x0, x∗) +
∑k−1

i=0 w(yi, x∗)

)
. (4.11)

In case a symmetrical proposal function is chosen, i.e. π(x, y) = π(y, x), it is convenient to
choose λ(x, y) = 1

π(x,y) and therefore w(x, y) = P (x). It can be shown that the algorithm

fulfills all necessary MCMC properties and converges to the state of equilibrium [134]. By
comparing whole sets of models much more information about the surrounding regions
in parameter space enter the acceptance criterion leading to a faster convergence. It
accounts for the dimensionality of the problem leading to relatively large step sizes while
the acceptance rate can be kept reasonably high. Figure 4.1 illustrates the principle of
both the MH and the MTM algorithm.
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Figure 4.1.: Illustration of the Metropolis-Hastings and the Multiple-Try-Metropolis algorithm
in three dimensions. The Multiple-Try-Metropolis algorithm stands out by utilizing
multiple trials to bias the local sampling. To account for the dimensionality of the
problem two sets of trail states (purple and yellow points) are proposed and for a
single decision much more information about the surrounding regions in parameter
space enters the acceptance criterion.

4.2.3. Proposal Algorithms

In the following, three different proposal algorithms as used in [131] and in this work will
be discussed. They allow to exploit information on the parameter space obtained with the
one(s) before leading to an increase of the efficiency of the Markov chains as necessary for
time consuming applications.

Gaussian Distribution
If no information about the desired target distribution is available a common choice is to
propose states according to a simple Gaussian distribution separately in each dimension,
further referred to as Proposal Function I (PFI). The means of the symmetric distributions
are chosen to the current state and the chosen variances correspond to the step sizes. The
mean step in each dimension is 0, independent of the chosen step size. Therefore the most
probable proposed state is always the current state.

Multivariate Normal Distribution
In case the N-dimensional covariance matrix is known or can be approximated, the pro-
posal of states can be performed by drawing numbers according to the multivariate normal
distribution, further referred to as Proposal Function II (PFII). Information about corre-
lations and appropriate, characteristic steps sizes of the parameters are contained in the
covariance matrix, allowing an efficient sampling of the parameter space. However, if a
single covariance matrix is used, the correlations and characteristic step sizes are averaged
and assumed to be identical in the whole parameter space, which is not the case in many
applications.

Binary-Space-Partitioning-based
If sufficient information about the parameter space is available the parameter space can be
partitioned in binary cells by which a binned map of the unknown PDF can be obtained.
Each state in the parameter space is than represented by a state for which the likelihood
is already known. The more information are used, the smaller are the bins and the better
is the resolution. Proposed states are directly drawn from the binned approximation of
the desired target distribution, further referred to as Proposal Function III (PFIII). While
PFI and PFII are symmetrical proposal functions, this holds not for the binary-space-
partitioning based and equations 4.4 and 4.10 have to be applied.
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4.2.4. The DMCMC software package

For the realization of a MCMC based sampling of transport parameters, a MCMC inter-
face to the DRAGON code was developed and named DMCMC. The class-based software pack-
age contains all decision and proposal algorithms mentioned above and allows a simple
configuration of those. Of particular advantage is the implemented openMP (Open Multi-
Processing) based parallelization by which the steady-state solution of several transport
models can be calculated in parallel. This is applied to the evaluation of the two sets
of transport models as used by the MTM algorithm. Information about the evolution of
the MCMC is stored after each decision process and includes the outcome of the decision,
the model’s parameters and its degree of conformity to the data sets of the considered
observables. Figure 4.2 shows a flow chart of the interface containing the most important
steps.

Figure 4.2.: A flow chart of the MCMC interface to DRAGON. After the predictions of an initial
transport model computed with DRAGON are given to DMCMC, the degree of conformity
with experimental data is determined and the decision algorithm decides whether
the model is added to the Markov chain or not. The proposal function proposes a
new model that is given to DRAGON for evaluation and the process repeats until the
Markov chain is sufficiently long.

χ2 Calculation

In order to quantify a model’s goodness for describing the data a χ2 calculation is per-
formed. A model’s total χ2 value is the sum of the individual χ2 values obtained for the
different observables. Since these are sensitive to different transport parameters each χ2

value is normalized to the corresponding number of data points for a fair weighting of the
observables. The quantity used to define a model’s goodness, denoted as χ̄2, is defined
accordingly and re-weighted by the number of data point and observables:

χ̄2 =
Nd

No

No∑
j

χ2
j

Nd
j

 with

χ2
j =

Nd
j∑

i=0

(
φDi,j − φMi,j

σDi,j

)2

.

(4.12)

The index j runs over all observables No and the index i over all data points Nd
j of observ-

able j. φMi,j is the model’s prediction and φMi,j the corresponding experimental measurement
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with uncertainty σDi,j . A descriptive quantity is the χ2 value reduced to the number of
degrees of freedom (Ndof). The latter are calculated by the total number of data points
minus the number of free parameters of the applied model. The value of χ2/Ndof rep-
resents the level of agreement between the measurements and the model and is used to
determine the goodness of a model. For a reasonable description of the data χ2 ≈ Ndof
is expected since the mean of the corresponding χ2 distribution is equal to Ndof. Values
of χ2/Ndof � 1 indicate a poor description of the data by the hypothesized model.

Technical Details

In the following, technical details about the generation of pseudo random numbers and
the realization and implementation of the proposal functions are given. Pseudo random
numbers for the Monte Carlo method are generated by the Mersenne-Twister pseudo ran-
dom number generator [135] as implemented in the class TRandom3 which is part of the
object oriented data analysis framework ROOT [136]. For the generation of random num-
bers according to a given multivariate normal distribution the upper triangular Cholesky
factor is calculated as follows. The multivariate normal distribution for a N-dimensional
covariance matrix A at ~x with a variance of ~µ has the form

f(~x, ~µ,A) =
1√

(2π)N |A|
exp

(
−1

2
(~x− ~µ)TA−1 (~x− ~µ)

)
. (4.13)

Herein |A| is the determinant of the covariance matrix A. In order to draw a random
vector ~x from the distribution a vector ~y is created whose elements are a sample of the
1-dimensional normal distribution with mean 0 and variance 1. The upper triangular
Cholesky factor R of A is determined so that A = RT · R. The random vector can be
calculated by ~x = ~µ+RT · ~y.
The binary-space-partitioning is performed by a data structure called kd-tree, which stands
out by allowing fast access to the data. The structure is built by the ROOT class TKDTree.
For the proposal of states according to the binned approximation of the PDF, now repre-
sented by the kd-tree, a Gibbs-sampler is used. A random state θrnd is produced and its
Next-Neighbour (NN) in parameter space θNN is identified. According to a probability
αNN the random state θrnd is either proposed for evaluation or discarded. αNN is given
by

αNN = min

(
1,
PNN
Pmax

)
. (4.14)

Herein PNN is the probability of the NN of the initial random state and Pmax is the max-
imal probability of all states contained in the kd-tree. The procedure is repeated until a
random state is proposed for evaluation.

4.2.5. Performance Optimization

The DMCMC package was tested and optimized on performance using a realistic transport
model setup. The applied configuration by which a good coverage and efficiency were
achieved will be discussed in the following.

Coverage

In order to propose models according to 1-dimensional Gaussian distributions appropriate
variances dictating the average step sizes have to be provided. The chain’s coverage of the
parameter space was analyzed for different step sizes by the inspection of so called trace
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plots showing the temporally evolution of transport parameters. It was found, that an
appropriate coverage is achieved if the variances of the parameters are set to 80% of the
parameter range as illustrated in figure 4.3.

Figure 4.3.: Trace plot of the halo height L. Shown is the evolution of the proposed values for L
with time. A reasonable coverage of the whole allowed range of 0.25 kpc < L < 30
kpc is achieved by using variances of 80% of the allowed range.

Sampled Distribution

The quantity usually maximized by a MCMC is the likelihood L or rather the log-
likelihood, connected to χ2 by

L ∝ e−χ2/2. (4.15)

However, Markov chains running on the likelihood derived with a realistic transport model
setup showed, that the likelihood distribution is highly non-uniform and changes dramat-
ically on small scales. The obtained χ2 values covered more than 20 orders of magnitude.
The consequences are either acceptance rates of 0, i.e. the chains immediately stuck in a
certain region of the parameter space, or insufficiently moving chains if the step sizes are
chosen to be exceedingly small. A possible way out is the artificial softening of the real
likelihood distribution. The transformation of the distribution, from now on called fitness
distribution, was determined empirically by demanding reasonable acceptance rates and a
sufficient coverage. The best performance was achieved by defining a model’s fitness F to

F ≡ 1

(χ̄2/Nd)n
and n ≈ 2.7. (4.16)

Sampling according to the fitness distribution instead to the likelihood distribution is a
strong intervention to the MCMC algorithm. The derived distributions do not represent a
PDF in the proper sense which prohibits a statistically correct interpretation of the states
associated to the Markov chain in terms of confidence.

By using the defined fitness and the chosen variances all demands in terms of performance
and efficiency could be matched. An illustration of the performance of the MH and MTM
algorithm can be found in Appendix B.1.
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4.3. Transport Model Setup

The solution to the transport equation is obtained for a cylindrical symmetry. In r-direction
the grid resolution is set to ∆r = 1 kpc and in z-direction to ∆z = 200 pc, independently
of the halo height L. Typical runtimes for the applied resolution vary from several min-
utes to several hours, depending on the chosen halo height. The model depends on 16
free parameters describing diffusion, diffusive reacceleration, convection, the halo height,
beyond which free escape of particles is assumed, and a twice broken injection spectrum.
In addition, 4 parameters accounting for the solar modulation of CR particles are included.

The applied SNR distribution is the one proposed by Yuan et al. [86] as it is a good
compromise to other, more extreme distributions proposed in the literature, see figure 3.4.
It should be noted that the choice of the SNR distribution only marginally affects the
modeled spectra at Earth, but highly influences the proton distribution and therefore the
expected gamma-ray flux in the Galaxy.
The nuclei injection spectrum is described by a power law in momentum dq(p)/dp ∝ p−α.
It is assumed to be equal for all nuclei species and is allowed to be broken twice at ρ0, ρ1

leading to three slopes α0, α1, α2.
The spatial diffusion coefficient is taken to be constant and isotropic in the Galaxy and is
parameterized by

Dxx(ρ) = D0β
η(
ρ

ρ0
)δ(ρ), (4.17)

with ρ = p/(Ze) being the rigidity of the particle of charge Z and momentum p. The
normalization is given by the diffusion constant D0. The rigidity dependence given by δ
is allowed to be different below and above the rigidity ρb, leading to δ(ρ ≤ ρb) = δl and
δ(ρ > ρb) = δh. The reference rigidity is fixed to the commonly used value ρ0 = 4 GV.
η dictates the low energy behaviour of D(R) and is phenomenologically motivated. It
can take low energy effects like the dissipation of Magnetohydrodynamics (MHD) waves
originating from their resonant interaction with CRs into account, which is not considered
in the derivation of the diffusion equation. The strength of diffusive reacceleration is given
by the Alfvén velocity vA according to equation 3.8.

Since the spatial dependence of a possible convection velocity Vc(r, z) is basically unknown,
4 parameters are dedicated for its description. The radial dependence of the convection
velocity is allowed to be proportional to the source strength of CRs, i.e. to the assumed
SNR distribution as first used in [76]. This takes care of the increased CR pressure close to
the maximum of the source distribution. The strength of the radial dependence is dictated
by αr:

Vc(r, z) ∝ Q(r)αr (4.18)

The z-dependence of Vc(r, z) is described by three parameters, namely v0, vb and dVc/dz,
which allow a parabolic shape and a smooth transition from the base velocity vb at z = 0
kpc to v0 at z = 0.1 kpc. The gradient by which Vc increases above z = 0.1 kpc is given
by dVc/dz, see figure 4.4.

The solar modulation is treated by the force-field approximation introduced in chapter
3.2.3.5. Since its strength is strongly model dependent the effective modulation potentials
are fitted to the corresponding data sets after the particles were propagated. They are
allowed to be different for data sets recorded during different epochs of the solar activity
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and oppositely charged particles. The potentials do not enter the MCMC process directly,
i.e. they are not part of the proposal process.

Table 4.1 lists the transport parameters and the selected limits for the MCMC sampling.
The parameter ranges were chosen exceedingly wide, especially for the diffusion constant,
the rigidity dependence, the Alfvén velocity and the halo hight. For handling several
orders of magnitude of the diffusion constant it is convenient to use log(D0) instead of D0

and many results are quoted dimensionless as log(D0). Also shown are the 4 modulation
potentials and the applied limits used for the optimization. The used observables and data
sets are listed in table 4.2. For a description of the sensitivity of the chosen observables
to the transport parameters and their constraining power the reader is referred to chapter
3.3.

A note on the transport model setup

Using a model setup with such a high number of degrees of freedom seems to be exag-
gerated, since successful models with much less degrees of freedom are already known
and usually preferred. However, known and unknown degeneracies of the obtained solu-
tions and the negligence of possible transport processes like convection call the models
implications into question. This study does primarily not aim to find a best-fit model as
this would only allow model dependent statements. Instead, a wide parameter space of
transport parameters is investigated in which many uncertainties are included in order to
draw reasonable conclusions about the preferred values and limits of the major transport
parameters. If the data prefer less complicated models like for instance models with an
unbroken injection spectrum, the MCMC will automatically concentrate on these kind of
models and the evaluated models will simplify in a very natural way. The same holds for
whole transport processes which are allowed to vanish by a respective choice or a natural
MCMC based preference of the corresponding transport parameters.

(a) (b)

Figure 4.4.: Illustration of the parametrization of the convection velocity. The z-dependence (a)
is fixed by v0, vb and dVc/dz describing a parabolic shape with a smooth transition
from vb at z=0 kpc to v0 at z=0.1 kpc. In (b) the r-dependence is coupled to the
SNR source distribution with strength αr = 1. The butterfly shaped increase in z is
caused by dVc/dz (vb = v0).
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64 4. Constraining Transport Parameters

Table 4.1.: The 16 transport parameters and their selected limits used for the MCMC sampling.
Extraordinary wide limits were chosen to investigate a large parameter space. The
lower panel shows the 4 modulation potentials used in the force-field-approximation
that are fitted for each model to the corresponding data and do not enter the MCMC
directly.

Parameter Unit Lower limit Upper limit

D0 1028cm2/s 10−3 104

δl/δh 1 0.0/0.0 1.2/1.2

ρδ GV 0.0 3500

L kpc 0.25 30.0

η 1 -2.0 2.0

vα km/s 0.0 70.0

v0 km/s 0.0 200.0

fb ≡ vb/v0 1 0.0 1.0

dVc/dz km/s/kpc 0.0 100.0

αr 1 0.0 1.0

ρ0 GV 0.0 100.0

ρ1 GV 100.0 1000.0

α0 1 0.0 3.0

α1 1 0.0 3.0

α2 1 0.0 3.0

Φp MV 0.0 1000.0

Φpb MV 0.0 1000.0

ΦB,C MV 0.0 1000.0

Φ10Be,9Be MV 0.0 1000.0

Table 4.2.: Considered observables and used experimental data sets.

Observable Experiments

Proton spectrum PAMELA [121]

Antiproton spectrum PAMELA [122]

Proton/Antiproton PAMELA [122]

Boron/Carbon ACE [119], CREAM[117], ISOMAX[120]
10Beryllium/9Beryllium HEAO [118], ISOMAX [120]

4.4. Results of the Markov Chain Monte Carlo

The transport parameters of the employed model were sampled with the MTM algorithm
in the framework of the DMCMC package using the entire constraining power of the observ-
ables listed in table 4.2. The three proposal functions were used one after another to collect
information about the parameter space that were used by the following one. For each of
them, several hundred Markov chains with identical configuration were run until a suffi-
cient number of accepted models was achieved and the sampled distributions didn’t change
essentially anymore. The collected information about the parameter space obtained up to
this point were additionally used to sample transport parameters for each individual ob-
servable separately, using directly the binary-space-partitioning-based proposal function.
Table 4.3 shows an overview of the executed Markov chains and the obtained number of
sampled and accepted models, respectively. In total, about 14 million transport models
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4.4. Results of the Markov Chain Monte Carlo 65

have been evaluated. These include beside the listed ones also models evaluated during
test-phases and phases of optimization. Details on the performance of the Markov chains,
especially in terms of the individual proposal functions, can be found in Appendix B.3.

In this chapter the large amount of data is analyzed whereat special importance is given to
the preferred, allowed and excluded parameter ranges as well as to trivial and non-trivial
correlations between the transport parameters. At first, the obtained density distributions
are analyzed for the different observables and the preferred parameter ranges are qualita-
tively illustrated. Subsequently, the parameter space and the sampled models are analyzed
quantitatively by their χ2 value. A selection of the most interesting, data-conform models
is presented and their implications are discussed. Finally, a reduced, minimal transport
model setup is constructed and its potential and implications are discussed. For reasons of
clarity and comprehensibility not all transport parameters will be discussed with the same
attention in this chapter. Some of the parameters were found to be of minor importance
and their discussion is shifted to the Appendix.

Table 4.3.: Summary of the executed Markov chains. Shown are the used observables, the applied
proposal functions and the number of sampled and accepted models for each case. The
proposal function III-A is based on a kd-tree containing all sampled models derived
with I and II. The kd-tree for III-B was built by using all sampled models from I,
II and III-A. Noticeable are the varying acceptance rates depending on the proposal
function and the target distribution, respectively.

Observables Proposal function Markov chains Sampled models Accepted models ∅ acceptance

all I 270 1,421,149 15,393 0.17

all II 520 1,072,938 30,521 0.43

all III-A 480 5,042,021 24,221 0.07

p III-B 100 1,174,626 6,304 0.08

p̄ III-B 100 1,001,171 16,433 0.25

p̄/p III-B 100 906,033 5,155 0.09

B/C III-B 100 706,047 2,205 0.05
10Be/9Be III-B 100 990,002 21,023 0.32

4.4.1. Density Distributions

The majority of the sampled models do not describe the experimental data sufficiently well
and the same holds for the accepted models. However, the latter have been accepted by
the decision algorithm and their statistical entirety represents a probability distribution
which can be used to assign values of transport parameters to a certain probability. Since
the sampling algorithm was based on the models fitness instead of their likelihood for
reasons of performance (see chapter 4.2.5) the sampled distribution does not correspond
to a PDF in the proper sense, but rather to a fitness-density-distribution. This prevents a
statistically correct interpretation of the obtained distribution in terms of probability and
a bayesian analysis is prohibited. Nevertheless, the maxima of the projected distribution
on the parameters axes yield a good approximation for their most probable value and
qualitative information about the probability of certain values of the individual transport
parameters can be obtained. The maxima of the projected distributions represent values
for which the largest potential is expected for describing the data, or in other words, values
for which it is easiest. However, these values do no necessarily coincide to values of well
data describing models, especially if correlations between the transport parameters exist.
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66 4. Constraining Transport Parameters

On the other hand, flat distributions point either to a lack of statistics, i.e. the Markov
chains have not been run long enough, to an insignificant influence of the particular pa-
rameter, but can also be caused by parameter correlations and the resulting degeneracy
of the solution.
Figures 4.5 to 4.12 show the distribution of the accepted models sampled by Markov chains
using all observables and individual observables for all considered parameters. The distri-
butions were derived by a projection on the corresponding, binned parameter axis. Models
accepted during the burn-in phase were not used and were subtracted before. For an esti-
mation of the burn-in length the Gelman-Rubin diagnostic was applied, see appendix B.2
for details. The distributions are based on 18,586 (all observables), 5,109 (p), 15,233 (p̄),
3,966 (p̄/p), 1,119 (B/C), 19,823 (10Be/9Be) models.

D0 and L

Figure 4.5 shows that whereas p and 10Be/9Be prefer rather high values of above log(D0) =
1.5 all other observables prefer lower values of the order of log(D0) = −0.5. It is not sur-
prising that the distribution obtained with Markov chains including all observables has its
maximum in an intermediate range of about log(D0) = 0.1 where the best compatibility
between the different experimental data sets is expected. The rather large values of D0

as preferred to describe the proton spectrum is affiliated to less needed fine tuning of the
other parameters. To which extent the models are conform with the data will be discussed
in the next chapter.
The preferred halo heights L of most of the single observables do not show a clear pref-
erence. Solely 10Be/9Be disfavours values below L = 14 kpc and shows a relatively flat
distribution above. The distribution derived by using all observables yields preferred values
of around L = 10 kpc, slightly decreasing for lower and larger values, whereas a constant
plateau above L = 20 kpc is present. This beaviour seems to be contradictory since obvi-
ously no single observable prefers values of L = 10 kpc as they do in common. This can be
ascribed to the correlation between D0 and L: The halo height is indirectly constrained by
the natural concentration of a much more narrow range of D0 as demanded for agreement
with the different observables.

vα, ρb, δl, δh and η

Figures 4.6 and 4.7 show the corresponding distributions for vα, ρb, δl and δh. While B/C
prefers values of the order of vα = 30 km/s, p and p̄ prefer much lower values of vα ≈ 4
km/s. The overall preferred range lies by trend in the lower allowed region, compatible
with vα = 0 km/s, and is steadily decreasing towards higher values. The preferred values
for δl are rather high at the order of δl = 0.9 which is basically forced by B/C, p̄ and
10Be/9Be that prefer even larger values. p prefers lower values below δl = 0.5 whereby the
distribution of p̄/p has its maximum consistently in the intermediate range 0.7 < δl < 0.9.
The distribution of δh is indeed maximal in the range 0.6 < δh < 1.0, but is also washed out
and much more flat due to the fact that the transition from δl to δh at ρb lies predominantly
at high rigidities of ρb > 2000 GeV at which no sensitivity to the data is achieved. Both the
high values of ρb and the similarity of δl and δh suggest that the rigidity dependence may be
sufficiently described by a single parameter δ = δl = δh and a break is redundant.The dis-
tribution of η shows a maximum in the range -1.8 < η < -1.2 and decreases towards higher
values with slightly, locally preferred region at around η = 0.7. This can not be affiliated
to the particular single observables all of which prefer larger values if considered separately.

Injection spectrum

The injection index α0 shows a clear preference to values of α0 ≈ 2.35 and α1 to slightly
higher values of α1 ≈ 2.45 which is forced by the proton and antiproton data. α2 is
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4.4. Results of the Markov Chain Monte Carlo 67

much less constrained and shows two preferred sectors around α2 ≈ 0.8 and α2 ≈ 2.75.
Important are the positions of the breaks ρ0 and ρ1 at which the transitions between the
injection indices occur. ρ0 shows a relatively flat distribution with only slightly preferred
values of 40 GeV < ρ0 < 55 GV as well as around ρ0 ≈ 94 GV. Values close to 0 make ρ0

and α0 redundant and can be neglected. ρ1 prefers the range 680 GeV < ρ1 < 780 GV.
This is affiliated to the non-power-law-like slope of the proton spectrum as measured by
PAMELA at kinetic energies above several hundred GeV.

Convection

The overall preferred convection velocity is found to be rather low. The distribution of v0

shows preferred values compatible with v0 = 0 km/s with decreasing probability towards
larger values. This is demanded by all observables except p which does not show a clear
preference. A similar behaviour is shown by dVc/dz whose probability is also decreasing
towards larger values but, however, prefers non-zero values in the range 2 < dVc/dz <
16 km/s/kpc. This is a consequence of the contradictive demands of B/C which prefers
much larger values of dVc/dz ≈ 90 km/s/kpc and 10Be/9Be demanding values compatible
with dVc/dz = 0 km/s/kpc. The base convection velocity vb at z = 0 kpc described
and sampled as the fraction of v0 with fb = vb/v0, shows two maxima above and below
fb = 0.4, whereat B/C demands rather low values of fb < 0.1. In opposition to 10Be/9Be
lower values are by trend also slightly preferred by the other observables. The strength by
which the radial convection velocity follows the SNR distribution, described by αr, shows
a quite flat distribution which can be affiliated to the low convection velocities in general
by which the parameter’s sensitivity is reduced. A slight concentration is found to be at
values below αr = 0.4 but a meaningful conclusion can not be drawn.
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Figure 4.5.: Density distributions for D0 (left) and L (right). The distributions represent the
normalized number of models accepted by the MCMC algorithm projected on the
binned parameter axis. Shown are distributions obtained by Markov chains in which
all observables were considered (top) and respective distributions obtained by con-
sidering particular observables exclusively (bottom).
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Figure 4.6.: Density distributions for vα (left) and ρb (right). The distributions represent the
normalized number of models accepted by the MCMC algorithm projected on the
binned parameter axis. Shown are distributions obtained by Markov chains in which
all observables were considered (top) and respective distributions obtained by con-
sidering particular observables exclusively (bottom).
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Figure 4.7.: Density distributions for δl (left) and δh (right). The distributions represent the
normalized number of models accepted by the MCMC algorithm projected on the
binned parameter axis. Shown are distributions obtained by Markov chains in which
all observables were considered (top) and respective distributions obtained by con-
sidering particular observables exclusively (bottom).
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Figure 4.8.: Density distributions for α0 (left) and α1 (right). The distributions represent the
normalized number of models accepted by the MCMC algorithm projected on the
binned parameter axis. Shown are distributions obtained by Markov chains in which
all observables were considered (top) and respective distributions obtained by con-
sidering particular observables exclusively (bottom).
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Figure 4.9.: Density distributions for α2 (left) and η (right). The distributions represent the
normalized number of models accepted by the MCMC algorithm projected on the
binned parameter axis. Shown are distributions obtained by Markov chains in which
all observables were considered (top) and respective distributions obtained by con-
sidering particular observables exclusively (bottom).
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Figure 4.10.: Density distributions for ρ0 (left) and ρ1 (right). The distributions represent
the normalized number of models accepted by the MCMC algorithm projected on
the binned parameter axis. Shown are distributions obtained by Markov chains in
which all observables were considered (top) and respective distributions obtained
by considering particular observables exclusively (bottom).
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Figure 4.11.: Density distributions for v0 (left) and dV/dz (right). The distributions represent
the normalized number of models accepted by the MCMC algorithm projected on
the binned parameter axis. Shown are distributions obtained by Markov chains in
which all observables were considered (top) and respective distributions obtained
by considering particular observables exclusively (bottom).
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Figure 4.12.: Density distributions for fb (left) and αr (right). The distributions represent
the normalized number of models accepted by the MCMC algorithm projected on
the binned parameter axis. Shown are distributions obtained by Markov chains in
which all observables were considered (top) and respective distributions obtained
by considering particular observables exclusively (bottom).
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4.4.2. χ2-Analysis

This analysis is not restricted to the accepted models and incorporates the whole data
set, consisting of 13,947,437 models. By using the MCMC technique different regions in
the parameter space were sampled with a different intensity by its nature. This results by
trend in lower averaged χ2 values in regions which were strongly biased by the MCMC,
i.e. in regions favoured by the entirety of the observables and the particular ones. The
parameter space is now analyzed by the obtained minimal χ2/Ndof values, illustrated by
a projection of the transport parameters in binned, 2-dimensional planes. For reasons of
clarity, only the representations in parameter planes yielding the most conspicuous be-
haviour are shown (see fig. 4.13). The remaining illustrations can be found in Appendix
C.2. For a direct affiliation of the observed behaviour to a particular observable the pro-
jections are also shown for the χ2 values of each observable separately in Appendix C.1.
In the following, the influence on the models predictions and the found correlations of the
dominating transport parameters are discussed.

Figure 4.13 shows the representation in the parameter planes (D0, L), (D0, vα), (D0,
dVc/dz), (D0, δl), (α1, δl) and (α0, vα). Overlayed are the top 97 models marked by stars.
Apparent are large areas containing a substantial amount of models with comparable values
of χ2/Ndof ≈ 1. Also smooth transitions to areas with much higher values exist, indicating
a sufficient degree of granularity. No appreciable local minima lying outside these areas
are visible and the closeness of the structures suggests, that local minima within the global
one are continuously connected. The correlations are non-trivial and are the result of the
complex interplay between the transport parameters at different scales. They strongly
depend on the absolute parameter values, e.g. the quadratic-like correlation between D0

and L as visible in fig. 4.13(a) is strongly apparent at rather low values of L < 5 kpc
but indistinguishable at higher values. Although the corresponding density distribution
of L emblazed preferred values of around L = 10 kpc, no concentration of a multitude of
powerful models within the enormously large parameter range is apparent. Instead, these
models are equally distributed in the whole range making it impossible to exclude any of
the tolerated halo heights. A discriminated examination of the χ2 values of the particular
observables emblazes how the constraining powers of the observables assemble, see fig C.8.
The correlation is visible for p̄, B/C and 10Be/9Be. While the absolute value of L is not
constrained by any observable, D0 is strongly bounded below by p and B/C and bounded
above by B/C.

Figure 4.13(b) shows the rejuvenescence of the range of D0 towards higher values of vα.
The fact that by increasing vα the range of D0 is more constrained explains why the
sampled density distribution of vα (fig. 4.6) is maximal at low values. However, also in
this case the found minimal χ2 values show in fact a worsening above vα = 45 km/s but
no clear preference for values below. The most constraining observables for vα are again
p and B/C: The proton spectrum strongly disfavours high vα for low D0. B/C disfavours
high vα for high D0, see fig. C.9. The observed behaviour is explained by a stronger CR
confinement and shorter propagation lengths for low D0. Diffusive reacceleration is more
efficient for short scattering lengths by which D0 is correspondingly more constrained the
higher vα is.

vα is also correlated with α0 and α1. While vα is allowed to be higher the lower α0 is,
the opposite behaviour is shown by α1 due to the different energy scale at which α0 and
α1 influence the spectrum. The observables most sensitive to this correlation are p̄/p and
B/C, see fig. C.13.

Figures 4.13 (a) - (c) show the remaining transport parameters for which the strongest
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correlations were found. The largest data-conform values for dVc/dz are found for low
values of D0, so an increase of dVc/dz can be counterweighted by a non-linearly lowering
of D0. The same holds for v0 for which the largest, data-conform values are found for
rather low values of D0. It is explained by the faster escape of CR particles due to high
convection velocities which is balanced by a stronger confinement resulting from lower D0.
Since both the convection velocity and vα are correlated with D0, high convection veloci-
ties also accompany by trend with low vα and vice versa. This is demanded by p̄ and B/C
as shown in fig. C.10.

The observed correlation between D0 and δl is caused by their influence on the diffusion
coefficient. An increased diffusion coefficient due to a higher normalization D0 can be
counterweighted by its rigidity dependence up to a certain extent. Surprisingly, many of
the observed data-conform models involve exceedingly large values of δl and δh which had
not been expected before. However, due to the transition from δl to δh none of the found
values can be expected to hold for the whole rigidity range. The most sensitive observable
and also the one holding the strongest contraining power on δl and δh is B/C.

The correlations between the injection indices and δl and vα illustrate that very similar
model prediction can be achieved by choosing different injection spectra and a correspond-
ing choice of the relevant strengths of the transport processes. By trend, harder injection
spectra, i.e. lower injection indices, require higher values for δl and vα. Due to the nor-
malization of the propagated spectra harder injection spectra accompany with a reduced
population of less energetic particles by which an enhanced diffusive reacceleration or a
correspondingly adjusted rigidity depended diffusion is required.

Some parameters of the model setup were found to play only a minor role. Especially αr
and fb were found to show no preference at all even in case of high convection velocities.
Since their influence is overlocked by those of the dominating parameters no reasonable
insights can be drawn from the chain point density distributions. Also the χ2 analysis did
not yield any useful information about preferred or excluded values.

It was shown that the constraining power of the used observables is strongly limited due to
the uncertainties of the experimental measurements and more important due to the large
parameter correlations and degeneracies. The strengths of the correlations differ strongly
depending on the position in the parameter space and are additionally washed out by the
great number of free parameters. A reasonable determination of the allowed regions implies
a full exploration of the boundaries of the regions in which the majority of the promising
models lie. However, to explicate this for the applied, high-dimensional transport model
setup requires an exceedingly large computational effort which cannot be performed within
a decent time. Instead, this was performed for a reasonably constrained, minimal model
setup for which the limits and correlations can be determined more precisely. The results
will be presented in chapter 4.5.
The implications of the unconstrained model setup are illustrated by a set of the top 97
models with strongly differing sets of transport parameters, as marked by the stars in fig.
4.13. These models are characterized by yielding a maximal average deviation to each
data set of 1σ and describe the data reasonably well. The parameter ranges covered by
the corresponding models as well as the parameter set of the best-fit model are listed in
table 4.4. Fig. 4.14 shows the predicted energy spectra and ratios. The LIS of each model
is shown as a gray line while modulated spectra are shown in blue. The dashed and solid
lines correspond to the LIS and the modulated spectrum of the best-fit model, respectively.
The derived spectra are in good agreement within the uncertainty of the experimental
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measurements. The predictions for the LIS of the proton spectrum are characterized by
a large spread at low energies all of which can be aligned with the data by applying a
corresponding modulation strength between 211 and 892 MV. At energies above a few
hundred GeV the PAMELA data show a non-power-law like slope which is accounted for
by the break in the injection spectrum at typically 650 - 800 GV (see fig. 4.10). The snappy
behaviour of the best-fit model and some other models in the ratios B/C and 10Be/9Be at
energies above ∼ 300 GeV/n is affiliated to the break in the rigidity dependence. The fact,
that the breaks lie predominantly above energies at which no or only a slight sensitivity
to the data is given suggest, that a break is redundant. Fig. 4.15 shows the profiles of the
predicted proton densities as a function of r and z. The densities throughout the Galaxy
differ strongly and are only constrained at the Sun’s position. Especially the gradient in
z-direction shows an exceedingly wide spread due to the large range of the halo height
of the models. This directly demonstrates the disability of constraining the shape of the
overall large scale particle densities by locally measured nuclei.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13.: Minimal χ2/Ndof values projected on 2-dimensional parameter planes. Overlayed
are the parameters of the top 97 models marked as stars all of which yield an average
deviation to the each data set of ≤ 1σ.
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Figure 4.14.: Energy spectra and ratios of the top 97 models all of which yield an average de-
viation to the each data set of ≤ 1σ. The best-fit model is shown in black while
the remaining models are shown in blue. The gray lines correspond to the local
interstellar spectrum (LIS) and represent the model predictions without accounting
for solar modulation.
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Figure 4.15.: Proton density distributions for E = 91 GeV protons as predicted by the top 97
models. In (a) the distribution is shown as a function of r at z = 0 kpc and in (b)
as a function of z at r = 8.0 kpc. The best-fit model is shown in red, respectively.

Table 4.4.: Parameter ranges of the top 97 models sampled by MCMC and the parameters of the
best-fit model. The models are characterized by an average deviation to the each data
set of ≤ 1σ

Parameter Unit Lower limit Upper limit best-fit

D0 1028cm2/s 0.40 6.96 3.28

δl 1 0.40 1.19 0.56

δh 1 0.01 1.20 0.24

ρδ GV 32.80 3488.00 1431.00

L kpc 1.05 30.00 5.19

η 1 -2.00 1.58 0.49

vα km/s 1.29 42.50 31.14

v0 km/s 0.14 16.85 2.14

fb ≡ vb/v0 1 0.02 1.00 0.97

dVc/dz km/s/kpc 0.13 43.18 12.85

αr 1 0.03 1.00 0.40

ρ0 GV 0.56 100.00 12.77

ρ1 GV 132.80 1000.00 155.87

α0 1 1.25 3.00 1.94

α1 1 1.98 2.49 2.31

α2 1 0.14 2.72 2.33

Φp MV 211 892 412

Φpb MV 359 1000 523

ΦB,C MV 16 336 216

Φ10Be,9Be MV 0 828 153
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4.5. Minimal Transport Model Setup

In the previous chapter a 16-dimensional transport model was analyzed and the roles of the
transport parameters and the used observables were highlighted. Including uncertainties
from less dominating parameters, large ranges of the dominating transport parameters
were found to be and found not to be suitable for describing experimental data. The
diffusion constant was found to be the dominant transport parameter. A clearly preferred
range of the order of (0.4 ≤ D0 . 7) 1028cm2/s outside of which no data-conformity was
achieved could be identified and excluded. However, the injection spectrum and the rigidity
dependence of the diffusion coefficient were allowed to be broken and hence no reasonable
conclusion about values holding for the whole energy range can be drawn. Even though
this could be realized in nature, from a physical point of view it is more convenient and
instructive to investigate the potential and limitations of elementary models and extend
those, if necessary. In this chapter the derived knowledge is used to construct a reasonably
constrained, minimal transport model setup, ignoring subordinate parameters as well as
redundant features. The main differences to the previously incorporated transport model
setup are

• an unbroken nuclei injection spectrum,

• an unbroken rigidity dependence of the diffusion coefficient,

• a complete negligence of the convective transport mode.

The 6 remaining parameters of the minimal model setup are D0, δ, L, η, vα and α. The
applied limits as well as the treatment of the solar modulation remain unchanged. For the
investigation of this relatively low-dimensional parameter space, a modified MCMC was
used incorporating exceedingly small step sizes as well as a restricted acceptance criterion.
This approach allows to explore the auspicious parameter ranges in more detail, especially
in terms of their boundaries. In total 840,610 models were sampled by Markov chains
starting at different, but well chosen positions in the parameter space. The chains were
found to move slowly but steadily by which connections between previously found local
minima were brought to light.
Although the minimal model setup incorporates much less degrees of freedom it was found
to be in no way inferior to the 16-dimensional setup in accounting for experimental ob-
servations. In fact, by sampling a much more reduced paramter space a large amount of
exceedingly well data describing models could be obtained.

Figure 4.16 shows the obtained minimal χ2/Ndof values, illustrated by a projection of
transport parameters in binned, 2-dimensional planes. Apparent are in general harder con-
strained regions and less washed out correlations compared to the 16-dimensional setup.
For the majority of the parameters also clear borders are visible over which the chains were
precluded to cross. Solely L deprives from a reasonable restriction upwards and merely
very low values of L < 0.4 kpc are disfavoured. The hardest constraints result from the
proton spectrum and the B/C ratio which are responsible for almost all parameter limita-
tions. The constraining power of 10Be/9Be could not be fully exploited due to the limited
amount of available data and its quality by which 10Be/9Be plays a minor part. Also the
data on p̄ and p̄/p are fraught with large uncertainties and their change in χ2 by parameter
deviations is subordinate compared to the ones by p and B/C. In fig. C.21 and C.22 the
minimal χ2 values are shown separately for p and B/C. Any observed parameter limitation
can be affiliated to p or B/C: χ2

B/C is strongly sensitive to D0 and L leading to the narrow

preferred band and sharp borders as shown in fig. 4.16(a). While χ2
p is only marginally

sensitive to D0 and L it crucially determines the allowed combinations of α and δ which
are highly correlated. However, the proton spectrum is not suitable for limiting the par-
ticular values of α and δ. A lower and upper limitation of δ is given by B/C whereby
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the limitation of α and δ as shown in fig. 4.16(b) is demanded by the combination of p
and B/C. The parameter vα is upper bounded by both p and B/C. However, the upper
limit strongly depends on the corresponding values of η, α and δ. The largest values of vα
can be realized by low δ and a corresponding choice of η and α. η is upper bounded by
B/C but the maximal allowed value again depends on the choice of vα and δ and can be
achieved for low vα and intermediate δ.

Figure 4.18 shows the energy spectra and ratios of the best-fit model as well as the spectra
and ratios of the top 13,400 models, all of which yield a maximal average deviation of
1σ to each data set. The spectra and ratios are reasonably well described by the models
with differing sets of transport parameters. The parameter limits of the model selection
and the parameter values of the best-fit model are listed in table 4.5. Also shown in fig.
4.17 are the correlation coefficients for the entirety of the 13,400 models. In the lower
left triangular of the correlation matrix the Pearson correlation coefficient is shown, quot-
ing the strength of the linear correlation or dependence between two parameters. In the
upper right triangular of the matrix the Spearman’s rank correlation coefficient is shown
which is a measure for the strength of a monotonic relationship between two parameters
and is also sensitive to quadratic correlations. In case a linear correlation is present the
two correlation coefficients are comparable. The quoted numbers quantify the degree of
the correlation as illustrated in fig. 4.16. Almost all transport parameters are strongly
correlated. The largest exists between D0 and L with a monotonic relationship of 99%. δ
and α are linearly correlated with −98%. Beside these obvious and expected correlations
also concealed correlations are brought to light illustrating the complex interplay of the
transport parameters. For instance the halo height shows a linear correlation to α of 0.21
and to δ of -0.21. This is a result of the link between L, α and δ via D0.
Shown in fig. 4.19 are the model predictions for further nuclei spectra and ratios which
were, however, not taken into account during the MCMC sampling and the model selection.
On the one hand, experimental measurements of heavy nuclei suffer from large uncertain-
ties and are often only available at rather low energies with the interfering influence of the
solar wind. On the other hand, precise predictions are prevented by large uncertainties of
the elemental abundances which have to be assumed. In principle these can be tuned to
available measurements to match the data, but the tuned values crucially depend on the
assumed transport model and consequently do not hold for arbitrary models. The applied
elemental abundances are those proposed by [137] which are commonly adopted in CR
propagation calculations.
Fig. 4.19(a) and 4.19(b) shows the spectra of 3He and 4He for the 13,400 models and the
best-fit model tuned to match p, p̄/p, B/C, 10Be/9Be only. A good agreement between the
data and the model at energies above E = 5 GeV/n is achieved. The deviations at lower
energies are a result of the insufficiency of the force-field-approximation for strong solar
modulations. The shown IMAX92 data were recorded in 1992 during a phase of high solar
activity, see fig. 3.8. Also shown is the ratio of 26Al/27Al, a ratio of an unstable to a stable
isotope. The ratio holds a strong constraining power since the degeneracy of the solution
is less distinctive. However, no experimental measurements at high energies are available
for constraining transport parameters. A measurement of the secondary-to-primary-ratio
54Fe/56Fe by CRISIS at around 753 GeV/n is compatible with the predictions within the
large data uncertainty. Also shown is O/C, a ratio of primary produced elements. The
high energy measurements are partially contradictory but the matching of the slope of the
HEAO3 data suggests, that the assumption of identical injection spectra for each element
species is justified. The secondary-to-primary-ratio SubFe/Fe is shown in fig. 4.19(f).
SubFe is an acronym for the sum of the elements Scandium (Sc), Titanium (Ti) and Vana-
dium (V) all of which are secondary produced nuclei by spallation processes of Fe. At
energies around 2 GeV/n the ratio is underestimated by the models, probably due to an

79



80 4. Constraining Transport Parameters

too imprecise modeling of the spallation processes. At high energies the model predictions
widen beyond the data uncertainty by which the transport parameters can be further con-
strained. Additional demands on the SubFe/Fe ratio were applied to the 13,400 models
resulting in 10,050 remaining models describing the ratio at high energies reasonably well,
as shown in fig. 4.20. The limits of these models are additionally listed in table 4.4. The
parameters which could additionally and perceptibly be constrained by SubFe/Fe are δ,
α and η. The best-fit model is not affected by the additional constraint and remains the
same.

80



4.5. Minimal Transport Model Setup 81

(a) (b)

(c) (d)

(e) (f)

Figure 4.16.: Minimal χ2/Ndof values projected on 2-dimensional parameter planes for the min-
imal model setup. Overlayed are the parameter values of the best-fit model marked
as star.
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Table 4.5.: Parameter ranges of the top 13,400 models of the minimal transport model setup
sampled by MCMC. The limits were derived by demanding an average deviation to
the each data set of ≤ 1σ. Also shown are the limits of a subset of 10,050 models∗

including additional constraints from SubFe/Fe.

Parameter Unit Lower limit Upper limit Lower limit∗ Upper limit∗ best-fit

D0 1028cm2/s 0.58 8.55 0.58 7.81 1.79

L kpc 0.85 29.98 0.85 29.88 2.15

D0/L 1028cm2/s/kpc 0.21 1.09 0.22 1.02 0.83

δ 1 0.39 0.71 0.49 0.68 0.57

vα km/s 0.00 19.90 0.00 18.65 10.42

η 1 -1.90 1.21 -1.74 1.07 0.00

α 1 2.11 2.47 2.14 2.36 2.27

Φp MV 437 927 453 832 639

Φpb MV 483 983 612 980 837

ΦB,C MV 52 302 52 288 138

Φ10Be,9Be MV 0 1000 0 1000 162

0.41 0.21 0.98 0.76 0.46 1
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Figure 4.17.: Correlation matrix for the 6 parameters of the minimal model setup. The lower
left triangular shows the Pearson correlation coefficients indicating the strength
of a linear correlation. The upper right triangular shows the Spearman’s rank
correlation coefficient indicating the strength of a monotonic relationship.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18.: Energy spectra and ratios of the top 13,400 models of the minimal transport model
setup. Those models yield an average deviation to each data set of ≤ 1σ. The best-
fit model is shown in black and the remaining models are shown in gray and blue.
The gray lines correspond to the local interstellar spectrum (LIS) and represent the
model predictions without accounting for solar modulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19.: Model predictions for various nuclei spectra and ratios of the best-fit model and
the top 13,400 models tuned to match experimental measurements of p, p̄/p, B/C,
10Be/9Be. The gray lines correspond to the local interstellar spectrum (LIS) and
represent the model predictions without accounting for solar modulation. Data
taken from [103].
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Figure 4.20.: The SubFe/Fe ratio of a subset of 10,050 models including constraints from
SubFe/Fe at high energies.

4.6. Summary and Comparison to other Studies

For the investigation and constraining of transport parameters a MCMC method was used
to sample transport models incorporating wide ranges of transport parameters. The suit-
ability of particular parameter values were compared to most up-to-date measurements of
p, p̄, p̄/p, B/C and 10Be/9Be and the parameters were constrained. Special importance
was given to the role of the particular observables. The constraining power and the pre-
ferred parameter values of each observable as well as of their entirety were highlighted.
A large number of around 10,000 transport models were derived which can explain the
experimental measurements and can be further used for studies of different aspects like
the secondary positron production (chapter 5) and the diffuse gamma-ray emission (chap-
ter 6). In the following, the main results of this study are summarized and compared to
similar studies.

The diffusion constant is one of the major transport parameters which crucially affects
the predictions for all observables. As shown in fig. 4.5 a clear prefered parameter range
could be identified. The data can be described within their experimental uncertainties
by adopting a common value of D0. The constraining power was found to be limited
due to uncertainties from experimental measurements and the large degree of degeneracy
resulting from strong parameter correlations. The halo height L was found to be highly
correlated with D0. Within the constrained range of D0 halo heights from L = 0.85 kpc up
to the maximal tolerated value of L = 30 kpc were found to be data-conform. Although
reasonable models including rather high convection velocities accompanied by low D0 were
sampled, a convective transport mode was found to be not preferred and not necessarily
demanded by any observable. The limits for the injection index, the rigidity dependence
of the diffusion coefficient and the Alfvén velocity as listed in table 4.4 were found to be
restricted strongest by p and B/C.
A simplified model setup characterized by an unbroken injection spectrum, an unbroken
rigidity dependence and the absence of a convective transport mode was found to be com-
pletely sufficient for describing the experimental observations of locally measured spectra
and ratios. In this low dimensional model setup tighter restrictions on the transport pa-
rameters could be achieved: The range of D0 could be constrained to (0.58 ≤ D0 ≤ 8.55)
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1028cm2/s. The MHD turbulence level described by δ was found to be data-compatible in
the range 0.39 ≤ δ ≤ 0.71 and in the range 0.49 ≤ δ ≤ 0.68 if constraints from SubFe/Fe
are taken into account. A Kolmogorov spectrum (δ = 1/3) can therefore be excluded
and the results point to an Iroshnikov-Kraichnan spectrum with δ = 1/2. Compatible
Alfvén velocities were found ranging from vα = 0 km/s up to vα ≤ 20 km/s and are upper
bounded by the proton spectrum and B/C. The best data-conformity was achieved for
vα ≈ 10 km/s. The range of the nuclei injection index is 2.11 ≤ α ≤ 2.47 and is stronger
constrained if SubFe/Fe is taken into account leading to 2.14 ≤ α ≤ 2.36. This result
is in agreement from what is expected from the first-order-fermi-acceleration shock-front
theory of SNRs with super- and hypersonic shock front Mach numbers of around M = 3
to 6.

Results of a study focusing on the constraining of transport parameters by B/C and an-
tiproton data were published in [138]. Therein, the DRAGON code was used to solve the
transport equation for diffusion-reacceleration models similar, but not identical, to the
ones used in this work. For instance the diffusion coefficient was assumed to decrease
exponentially with z and only halo heights between 2 and 6 kpc were considered. Due to
different model setups comparisons to other studies are often only possible to a limited
extend. Nevertheless, the limits on the major transport parameters found in [138] are
similar to the limits derived in this study. For the strength of diffusive reacceleration the
authors found 10 ≤ vα ≤ 20 km/s with a best-fit value of vα = 15 km/s. In opposition to
this work vα was found to be bounded below which is most likely a consequence of the dif-
ferent considered energy ranges and the allowed freedom of η. The quoted limits on δ are
0.3 ≤ δ ≤ 0.6 with a best-fit value of δ = 0.5 which point also to a Iroshnikov-Kraichnan
spectrum as found in this work. Limits on D0 and L are merely given for the ratio in
units of 1028cm2s−1kpc−1 and are 0.6 ≤ D0/L ≤ 1.0. The corresponding values found in
this work are 0.22 ≤ D0/L ≤ 1.02 whereby models with much lower values of 0.22 were
found to be suitable in the much larger parameter space. In agreement with the conclusion
drawn in the present work, a convective transport mode was also found to be not required
to interpret CR nuclei and antiproton data.

In [68] a Bayesian analysis of transport parameters by using MCMC and nested sampling
was performed with the GALPROP code. The employed diffusion-reacceleration model incor-
porated a broken nuclei injection spectrum for a better description of the low energy tail of
the proton spectrum. As already pointed out in [78] this results in much higher preferred
Alfvén velocities. The preferred models in [68] are characterized by high vα between 34.2
and 42.7 km/s and consequently low values for δ between 0.26 and 0.35. Also D0 assigns
to rather high values of (5.54 ≤ D0 ≤ 11.20) 1028cm2s−1 with halo heights between 3.2
and 8.6 kpc. The comparison of the results demonstrates the uncertainty of the major
transport parameters on the chosen model setup and explains the partially contradictory
results found by different groups.

Analyses using semi-analytical solutions to the transport equation were published in [109],
[131] and [67]. However, a reasonable comparison is aggravated due to the simplified gas
and source distributions as well as by the fact that diffusive reacceleration takes place only
in the thin Galactic Disk with height zd in these models. In [109] transport parameters of a
model setup with an unbroken nuclei injection spectrum were investigated and constrained
using B/C. In contradiction to the study presented here the authors exclude any model
without a convection velocity or without diffusive reacceleration. However, δ was found
to be restricted to the range 0.45 ≤ δ ≤ 0.85 with a best fit value of δ = 0.70 by which
a Kolmogorov-like turbulence spectrum is also excluded by this study. In [67] a MCMC
method was used to determine the preferred values of transport parameters taking into
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account B/C and the isotopic ratios 10Be/9Be, 26Al/27Al, 36Cl/Cl. The conclusion of this
study is that models including convection are more-likely than pure diffusion-reacceleration
models. The authors found that the former implies δ ≈ 0.8 and the latter δ ≈ 0.2, inde-
pendent on the halo height. The halo heights for which the data could be best matched
were found to be L ≈ 8 for convection models and L ≈ 4 for pure diffusion-reacceleration
models. These values are fraught with large uncertainties depending on the applied model
setup.

In this chapter it was shown to which extend current experimental measurements allow to
constrain transport models for galactic CRs. Even though the particular observables were
found to partially prefer different values of transport parameters (e.g. 10Be/9Be prefers
a higher diffusion constant than B/C), current transport models are able to consistently
describe the made observations within the experimental uncertainties. Parameter ranges
inside which an agreement of the transport model predictions with experimental measure-
ments could be obtained were given and a large amount of around 10,000 data-conform
transport models were presented. A more precise determination of transport parameters
requires more precise measurements of nuclei spectra and ratios which are eagerly-awaited
by the community. Results from the AMS-02 experiment which is currently measuring
the spectra of nuclei with a previously unachieved precision are awaited to be published
soon. By combining the high precision measurements of various observables sensitive to
different transport modes will allow to further disentangle the large observed degeneracies
of transport parameters. Of particular importance will be measurements of B/C up to
high energies which will allow to further constrain the rigidity dependence of the diffusion
coefficient and thus the nuclei injection spectrum. This observable holds also the strongest
constraing power on the diffusion constant and the halo hight.
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5. Propagation of Leptons

Recent experimental measurements of CR electrons and positrons by PAMELA gave hints
on new physics which drew great attention to field of CR propagation. Positrons which
are assumed to be produced purely secondary were found to be not sufficient to explain
the high measured positron fluxes and the rise in the positron fraction, defined as e+

e++e− .
A falling slope of the positron fraction is expected since the positron energy spectrum of
secondary produced positrons should fall more steeply than the electron energy spectrum.
Compared to nuclei, CR electrons and positrons suffer from large additional energy losses
due to synchrotron radiation, inverse Compton scattering and bremsstrahlung. A precise
modeling of lepton propagation is therefore a challenging task and requires the consider-
ation of uncertainties related to the imprecise knowledge of transport parameters, energy
losses and cross sections. For the the calculation of the secondary positron production by
interactions of nuclei with the ISM most up-to-date cross section models on p-p, p-He,
He-p and He-He are used as derived by Kamae et al. in 2006 [139]. These are compared
to commonly used cross section models as implemented in GALPROP which were derived by
Strong et al. in 1998 [140].
Energy losses by synchrotron radiation are estimated by a comparison to most-up-to date
foreground maps on synchrotron radiation from WMAP data. Uncertainties related to the
energy density of the magnetic field and the ISRF are inspected and compared to uncer-
tainties from global transport parameters. The implications of the derived uncertainties
on global transport parameters are used to predict and to constrain the expected positron
flux and to compare the predictions to current experimental measurements.
The predictions are used to characterize the additional positron contribution (further re-
ferred to as ’signal’) which is needed to explain the data. Finally, two of the most promising
signal candidates are put to the proof: high energetic electrons and positrons from nearby
pulsars and electrons and positrons originating from DM annihilation. Implications and
consequences of both explanations will be compared and discussed.

5.1. Uncertainties from Cross Sections, Energy Losses and
Transport Parameters

Secondary CR electrons and positrons are the final product of decays of charged pions and
kaons which are created in collisions of CR particles with the interstellar gas. Needed for
the computation of the expected positron production are therefore reliable cross section
models. Several models, mainly based on analyses of the galactic, diffuse gamma-ray
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emission, were proposed in the past (Stecker 1970 [141], Badhwar et al. 1977 [142], Dermer
1986 [143]) and a combined model was implemented in GALPROP by Strong et al. 1998 [140].
However, an analysis of the galactic, diffuse gamma-rays by Kamae et al. in 2006 emblaced
[139] that previous models had left out the diffractive interaction and the Feynman scaling
violation in the non-diffractive inelastic interaction. Additionally, it was found that most
previous calculations assumed an energy-independent p-p inelastic cross section, whereas
recent experimental data have established a logarithmic increase with the proton energy.
Fig. 5.1 shows a comparison of the expected local interstellar positron spectra from proton
interactions for the cross section models proposed by Kamae et al. and as implemented
in GALPROP v54. In agreement to what other groups found, the absolute positron flux
computed with the cross sections by Kamae et al. is lower than predictions with the
cross sections implemented in GALPROP. Also shown in the figure is the energy dependent
distinction illustrated by the ratio of the predicted positron fluxes. For lepton related
analyses in this work the cross section model by Kamae et al. is used exclusively, since it
is the most sophisticated and most convincing model available up to now.
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Figure 5.1.: Comparison of positron production cross sections. In (a) the local interstellar
positron spectrum from proton interactions is shown for cross section models pro-
posed by Strong et al. and Kamae et al.. In (b) the ratio of the positron predictions
is shown by which the energy dependent distinctions are illustrated.

For a correct estimation of synchrotron induced energy losses the parameters of the ap-
plied magnetic field (eq. 3.21) were tuned to best match the synchrotron foreground
maps of 9-year WMAP data and the Haslam synchrotron map. The positron and elec-
tron densities derived by solving the transport equation for a reasonable transport model
were extended by additional components to describe the electron and positron data mea-
sured by PAMELA and the high energy positron fraction measured by AMS-02. The
synchrotron emission in particular directions of the sky was calculated by the integration
of the emissivity along the LOS. Details on the calculation, the fitting procedure and
the results can be found in Appendix D. A previous tuning done in [92] incorporated the
Haslam synchrotron map only and the authors demonstrated a reasonable description of
the synchrotron radiation by applying the used magnetic field parameterization with the
values B0 = 6.1 µG, r0 = 10 kpc and z0 = 2 kpc. These values could be verified and were
found to describe the Haslam synchrotron profiles at 408 MHz along the galactic latitude
and longitude well. However, the WMAP maps predict a much higher synchrotron emis-
sion at high frequencies and the emission was found to be significantly underestimated for
Haslam-conform models in regions in or close to the Galactic Disk. It was found that the
parameters of the magnetic field could not be tuned to simultaneously match the overall
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observed spectral shape of the synchrotron emission in various sky directions, see fig. D.24.
More sophisticated models for the magnetic field proposed by Pshirkov et al. 2011 [97] and
Farrar et al. 2012 [98] were checked but were found to be not able to improve the situation
a priori. The values for which the best match of the Haslam and WMAP synchrotron
spectra in the considered sky regions could be achieved are B0 = 10.5 µG, r0 = 7.97 kpc
and z0 = 0.79 kpc. Beside a much stronger field strength at the solar position, the field is
characterized by a faster decrease with r and z from the Galactic center in case WMAP
foreground maps are taken into account. The synchrotron emission is by far not perfectly
described and the results call for a more extensive study. However, this study does not
aim to perfectly model the synchrotron emission but rather to estimate the synchrotron
induced energy losses during lepton propagation.

For an estimation of energy loss related influences and uncertainties on the expected
positron flux the energy densities of the magnetic field and the ISRF (dust and starlight)
were diversified by 30%. Fig. 5.2 shows the influence on the resulting positron predic-
tion. Also shown is the uncertainty related to CR transport by two models with the
minimal transport model configuration constrained by the global observables and yielding
the largest and lowest positron flux in the energy range 10 - 1000 GeV. The transport
related uncertainty is found to be the dominant uncertainty in a wide energy range. The
predicted absolute positron flux is strongly related to the transport parameters. Fig. 5.3
shows scatter plots of the predicted secondary positron flux at E = 30.5 GeV as a function
of the halo height and the diffusion constant for the 10,050 models constrained by global
observables. The large uncertainty on the positron flux is ascribed to the large uncer-
tainties of D0 and L whereby the largest contribution is predicted by models with low
D0 and low L and vice versa. The behaviour is explained by shorter propagation lengths
and thus less energy losses due to a stronger confinement induced by lower D0. The halo
height assigns to values according to D0 to match the CR interaction rate and the CR
escape time as dictated by B/C and 10Be/9Be. The positron predictions of models of the
16-dimensional model setup are shown in fig. 5.4 and compared to those of the minimal
setup. While in the energy range between 8 and 20 GeV the spread is comparable due
to very similar limits of D0, the high dimensional models show a wide spread at energies
below and above. This is related to the breaks in the nuclei injection spectrum and the
resulting highly non-power-law like proton spectrum which crucially determines the ex-
pected positron spectrum. In the minimal setup the propagated, local interstellar positron
spectra in the energy range between 4 and 40 GeV can be described by power-law-shaped
energy spectra with spectral indices between 3.53 and 3.68, as found by fits to the propa-
gated spectrum. Also shown in fig. 5.4(b) is the positron spectrum of an extended model
additionally tuned to gamma-ray measurements, see chap. 6.2. This model includes not
only a single broken nuclei injection spectrum, but also a convective transport mode both
leading to the digressive spectral shape. Even though a slightly harder positron spectrum
is predicted the model does not imply an exceptional positron production.
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Figure 5.2.: Illustration of the influence on the positron flux related to transport and energy loss
mechanisms. In (a) the expected positron flux is shown for the best-fit model on
global observables (solid black line) and two models yielding the minimal and max-
imal secondary positron contribution (dashed black lines). Uncertainties related to
energy losses by synchrotron radiation and inverse Compton scattering are estimated
by applying variations of 30% to the magnetic field, to the ISRF and to both. In (b)
the relative deviation to the initial model is shown.
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Figure 5.3.: The dependence of the positron flux prediction at E = 30.5 GeV on the diffusion
constant (a) and the halo height (b). The behaviour is explained by shorter prop-
agation lengths and thus less energy losses due to a stronger confinement induced
by lower D0. The halo height assigns to values according to D0 to match the CR
interaction rate and the CR escape time as dictated by B/C and 10Be/9Be.
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(a) (b)

Figure 5.4.: Positron predictions of models of the 16-dimensional (a) and the minimal transport
model setup (b). Each shown model is constrained by experimental measurements of
p, p̄, p̄/p, B/C, 10Be/9Be and SubFe/Fe. While in the energy range between 8 and 20
GeV the spread is comparable, the high dimensional models show additionally a wide
spread at energies below and above due to the breaks in the nuclei injection spectrum.
The resulting highly non-power-law like proton spectrum crucially determines the
expected positron spectrum. Also shown in (b) is the prediction of an extended
model additionally tuned to gamma-ray measurements. The model includes not only
a single broken nuclei injection spectrum, but also a convective transport mode both
leading to the digressive spectral shape.

5.2. The Anomalous Rise in the Positron Fraction

Measurements of the rise of the positron fraction at high energies were first published in
2009 by the PAMELA collaboration [11]. The rise could be confirmed by FERMI in 2012
[28] and further measurements of the fraction by AMS-02 with an unprecedented accuracy
were published in 2013 [13]. Recently, AMS-02 measurements of the positron fraction up
to higher energies [14] as well as precise measurements of the separate fluxes of electrons
and positrons were published [14]. A measurement of the lepton sum flux (e+ + e−) as
used in this work was accepted for publication [31]. The insufficient description of the data
by the assumption of purely secondary produced positrons is illustrated in fig. 5.5.
Numerous explanations for the rise of the positron fraction are proposed or disproved in
the literature. In [144] several hypotheses like an anomalous primary electron source spec-
trum, spectral features in the proton flux, an anomalous energy-dependent behaviour of
the diffusion coefficient and rising cross sections at high energies were put to the proof.
Those explanations were found to be at least strongly disfavored if not ruled out. In
[145] a possible acceleration of secondary positrons by nearby SNRs is discussed. The
authors found that no more than ∼ 25% of the observed rise in the positron fraction can
result from this secondary acceleration scenario since other secondary CR species like B
and p̄ would also be accelerated leading to a rise in B/C and p̄/p which is not observed.
There is the general presumption that the rise is caused by a flux of primary produced
positrons, most-likely injected in the form of electron-positrons pairs whether or not orig-
inating from astrophysical or exotic sources. From an astrophysical point of view several
primary sources come into question (see [146] for an early review). These include molecular
gas clouds which interact with hadronic CRs leading to e± production by the secondary
production of π± and K± and subsequent decays.
The most plausible and favoured astrophysical explanation is certainly the e± production
in the magnetosphere of nearby pulsars. Strong, rotation induced electric fields extract
particles from the surface and e± pairs are generated through electromagnetic cascading
which end up in the relativistic magnetized wind emanating from the pulsar. Especially
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94 5. Propagation of Leptons

at high energies above 50 GeV merely a few sources like Geminga or Monogem may con-
tribute dominantly to the observed positron flux. However, the complex astrophysics and
the not well known pulsar properties prohibit robust predictions.
Beside these astrophysical explanations also particle physics related explanations by the
annihilation or decay of DM particles are considered and studied excessively, see e.g. [147],
[148], [149] to mention only a few. If a new, DM like particle was found in direct produc-
tion experiments, an indirect evidence is in any case imperative in order to affiliate the
astronomical and cosmological observations to this particle. For certain annihilation/decay
channels the particle spectra can be calculated and limits on the DM mass and the anni-
hilation cross-section/lifetime can be obtained.
Each explanation has to be consistent with other CR constraints, for instance with mea-
surements of the antiproton flux. Standard DM annihilation/decay models with relatively
low DM masses below a few hundred GeV/c2 are contradictory to antiproton measure-
ments why ’leptophilic’ DM models [150] are often assumed. Those models incorporate
couplings to leptons but not to gauge bosons or quarks whereby no antiprotons are ex-
pected from these DM annihilation/decay models. Since the e± production by pulsars is
purely electromagnetic no antiprotons are expected from those sources and a tension to
antiproton measurements does not occur in a very natural way.

Figure 5.5.: The insufficient description of the positron fraction by purely secondary produced
positrons. Shown are the best-fit model (solid line) and the transport related uncer-
tainty derived from constraints on global observables in the minimal transport model
setup. For a comparison the data and the model are integrated over the energy bin
width. The electron injection spectrum and the charge-dependent modulation po-
tentials were optimized to the data.

5.3. Signal Characterization

In this chapter a general signal characterization is performed by a quantification of the
discrepancy to the data. It is assumed that electrons and positrons related to the signal
are exclusively produced in pairs.
In a first approach the e± energy spectra of the background contribution are assumed to
follow power-laws in energy. In addition, a common source Φs is modeled as a power-law
with a cut-off at the energy Ecut. The electron and positron fluxes at Earth are accordingly
given by the following parameterizations:
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Φe+ = Ce+E
−γe+ + Φs

Φe− = Ce−E
−γe− + Φs

Φs = CsE
−γse−E/Ecut .

(5.1)

The parameters Ce+ , Ce− and Cs are the normalizations for the electron and positron
power-laws and the common source. The respective spectral indices are γe+ , γe− and γs.
The parameter Ecut enters the minimization in the form of 1/Ecut in order to ensure that
the χ2 distribution around the minimum can be described by a second order polynomial.
For the fit the AMS-02 data sets of the lepton sum flux and the positron fraction were
used exclusively. Compared to separate fluxes those measurements can be done with re-
duced systematic uncertainties: Measurements of ratios, like the positron fraction, do not
require the knowledge of the effective detection area of the detector since it cancels in the
computation. A discrimination of the sign of the charge of the particles is redundant for
measurements of the flux of (e+ + e−) by which the measurement can be performed up to
higher energies.
The modulation potentials for solar modulation were assumed to be charge dependent and
the same potentials for each data set were used since both data sets were recorded during
periods of similar solar activity. It was checked that data set dependent potentials did not
significantly change the results.
It was found that a simple power-law parametrization of the electron background does not
lead to a reasonable description of the data why a break and an additional spectral index
were introduced1.

Fig. 5.6 illustrates the result of the fit where the lines correspond to the background and
signal contribution, respectively. The model predictions and the data for the separate
fluxes are shown for consistency reasons only. The corresponding parameter values and
their uncertainties as derived from the fit are listed in table 5.1 and are compatible with
an analysis in [151]. The best-fit cut-off energy is around Ecut = 1.2 TeV, but is afflicted
with the largest uncertainty of 87% upwards and 32% downwards. By the combination of
the spectral index of the electron background contribution and a rather high value of Ecut,
as demanded by the lepton sum flux, the positron fraction is overshot by the model at the
highest energies and does not follow the decreasing trend. This behaviour is affiliated to
the large uncertainty of the high energy measurements of the positron fraction and to the
fact, that the sum flux measurement up to higher energies has smaller relative errors, but
shows a rather smooth behaviour. Within the experimental uncertainties of the sum flux
measurement, no drop is observed and the fit is dominated by these data. At the lowest
energies an inconsistency between the first data point of the electron and positron flux to
the data of the positron fraction and the sum flux can be observed and was confirmed in
[151].

1In fact, the data are also impossible to describe with properly propagated electrons if an unbroken
electron injection spectrum is assumed. This points either to an anomalous transport mode above
E ≈ 30 GeV, at which a break is required, but could also be the result of an anomalous acceleration
mechanism or of a superimposition of sources with different acceleration mechanisms.
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Figure 5.6.: Power-law parameterized model fluxes optimized to recent AMS-02 measurements of
the lepton sum flux and the positron fraction. While the lepton sum flux and the
positron fraction (a,b) yield a combined χ2/Ndof of 74.78/129, the separate electron
(b) and positron (b) data yield 55.25/62 and 35.39/61, respectively. The change of
slope of the positron fraction is not described by the model due to the smaller relative
experimental uncertainties of the sum flux up to higher energies which dominate the
fit.

Table 5.1.: Best-fit parameter values for the positron fraction and the lepton sum flux with power-
law parameterizations of the fluxes. Especially the parameter Ecut is afflicted with
large uncertainties of around 87% upwards and 32% downwards.

Parameter Best-fit value

Ce+ 108.44± 18.06

γe+ 3.87± 0.08

Ce− 2436.30± 136.20

γ0
e− 3.73983± 0.02

γ1
e− 3.40056± 0.01

ρe− (GeV) 28.67± 0.96

Cs 2.30± 1.02

γs 2.56± 0.10

Ecut (GeV) 1185.53+1034.87
−376.89

φe+ (MV) 1027.65± 42.08

φe− (MV) 1316.98± 20.39

χ2/Ndof 74.78/129
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It was found that appropriate values for Ecut strongly depend on the electron spectral
index and thus on the break position. In fact, a better description of the high energy data
with still reasonable values for χ2/Ndof could be obtained by fixing the break position to
higher energies of around 40 GeV. However, this influences the preferred value of Ecut and
thus reasonable conclusions on this parameter cannot be drawn. Shifting the minimal en-
ergy for the fit to higher energies and neglecting the low energy data reduces the influence
of the solar modulation, but was found to be not constructive since the low energy data
are of crucial importance for constraining the positron background contribution (see also
[151]).
Fig. 5.7 shows the fit result where the break position was fixed to ρe− = 40 GeV and all
other parameters were left free. This break position was optimized in terms of χ2/Ndof
by demanding a description of the high energy data within the experimental uncertainties.
In this case, the best-fit model yields χ2/Ndof = 106/129 and the high energy data can
be matched. The colored bands correspond to the uncertainty of Ecut which was deter-
mined by a set of Ecut values while data conformity at the highest energies was demanded.
The minimal, best-fit and maximal value for Ecut are (500, 1276, 2000) GeV with corre-
sponding, overall χ2/Ndof values of (112.0, 105.8, 105.9)/129. Note, that the fits with
the medium and maximum value for Ecut lead to indistinguishable values for χ2/Ndof by
which the strong correlations and the magnitude of the large uncertainty of Ecut become
obvious. So far, only 15% of the total expected data from the AMS-02 are available and
the situation will improve with more collected statistics.
The analysis showed, that simple power-law assumptions of CR particle fluxes can in prin-
ciple account for the current available observations, but do a priori not lead to satisfying,
i.e. robust, conclusions. The shown model represents merely a parameterization of the
data without any predictive power. A more adequate examination implies the considera-
tion of transport processes and energy losses that modify the initial power-law like particle
spectra. A possible signal may also originate from several and different kind of sources so
that the assumption of a single power-law-like signal is obsolete. However, the simplistic
assumption of power-law modeled fluxes used up to now gives hints on the characteris-
tics of the demanded signal at low energies. In particular, in these models the additional
positron flux starts to dominate over the background contribution at rather low energies
of around 20 GeV.
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Figure 5.7.: Power-law parameterized model fluxes optimized to recent AMS-02 measurements of
the lepton sum flux and the positron fraction at high energies. The break position of
the electron background power-law was compared to the best-fit model increased to
E = 40 GeV, necessary to account for the high energy data. The resulting uncertainty
on Ecut is illustrated by the colored bands.

In a second approach constrained and well-motivated transport models as derived in the
previous chapter are used to predict the secondary positron contribution and to quantify
the discrepancy to the data, including transport related uncertainties. The background
positron contribution is fixed by interactions of nuclei in the ISM and can directly be
compared to the separate positron flux as measured by AMS-02. Even though the experi-
mental relative errors of the positron flux are larger compared to those of the sum flux and
the positron fraction, the small absolute errors allow to precisely determine the character-
istics of the signal without any knowledge on the electron spectrum. Fig. 5.8 shows the
positron predictions and the demanded positron contribution needed to account for the
observation. While the filled bands illustrate the transport model related uncertainty on
the background positron flux and on the demanded signal, the green dashed lines assign
to the additional data uncertainty transferred to the signal. The first data point is not
matched due to the already mentioned inconsistency of the data. However, it was checked
that the positron flux as derived by combining the data of the positron fraction and the
sum flux is desribed at low energies.
At 5 GeV the background contribution is comparable to the signal contribution and the
latter starts to dominate over the first at the latest at an energy of 15 GeV in case the
experimental uncertainties are taken into account. Above 200 GeV the background contri-
bution lies at least one order of magnitude below the signal contribution and is negligible.
The fact, that a significant signal contribution is already demanded at rather low energies,
as was also the case for the power-law modeled fluxes, will play a central role in analyses
of different source hypotheses as will be presented in the the following chapters.
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Figure 5.8.: Signal determination from the separate positron flux as measured by AMS-02. While
the filled bands illustrate the transport model related uncertainty on the background
positron flux and on the demanded signal, the green dashed lines assign to the data
uncertainty. The first data point is not in agreement with the positron fraction and
the sum flux and is not matched.

5.4. Pulsars as Sources of Electrons and Positrons

In order to investigate the potential electron and positron contributions from nearby pul-
sars a basic pulsar model is employed and the expected fluxes from 10 nearby pulsars are
examined. The overall model is quite basic and depends on a large amount of not well
known pulsar parameters which determine the expected fluxes at Earth. This study does
not aim to determine these pulsar parameters in a physical meaningful way. It rather dis-
closes the potential of pulsars and the resulting implications in case realistic assumptions
are made. The general questions addressed in this study are:

• Are nearby pulsars able to explain current positron measurements if realistic assump-
tions about the pulsar properties are made?

• How many pulsars are actually needed to explain the data? For instance, can a
strong single pulsar account for the observations?

• What are the features and implications of the pulsar explanation? Is the expected
dipole anisotropy in agreement with current upper limits?

For the propagation of electrons and positrons from pulsars an analytical solution to the
transport equation (eq. 3.25) is used, following closely the model presented in [47]. The
model was extended to 3 spatial dimensions for a subsequent, reasonable analyses of the
expected anisotropy. The pulsars are treated as point-like sources at (x,y,z) with a source
term characterized by a power-law spectrum ∝ E−Γ and a cut-off energy Ecut (eq. 3.24).
The normalization of the flux Q0 is fixed by the total spin-down energy W0 emitted by
the pulsar:

∫ ∞
me

E ·Q(E)dE = ηW0, with W0 '
Ėt2ch
τ

(5.2)
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Herein, me is the mass of the electron, Ė is the pulsar spin-down luminosity (i.e. the
energy loss rate), tch is the characteristic pulsar age (the time an ideal magnetic dipole
at infinite frequency needs to slow down to the observed frequency), τ ≈ 104 yr is the
characteristic luminosity decay time and η is the efficiency for the production of e± pairs
for which the commonly used value η = 0.4 is adopted.
Models of 10 nearby pulsars are investigated which are expected to contribute most to the
electron and positron flux. All other (known) pulsars were found to contribute less than
0.1% to the flux at energies of the peak emission [47]. The pulsars properties like their
age, their distance and their injection spectrum order the expected flux completely, but are
fraught with large uncertainties. Fig. 5.9 illustrates the influence of the pulsar age, distance
and Ė on the expected electron or positron flux at Earth by applying variations of 20%
to the corresponding parameters of a benchmark model. Especially the distance crucially
influences the absolute flux and deviations of about one order of magnitude are already
present for a 20% uncertainty, which is typically much lower than current experimental
uncertainties. Table 5.2 lists the considered pulsars and their parameters. Also shown are
the conservatively combined parameter limits on the distance taken from [47] and from
the second FERMI-LAT pulsar catalogue [152] which are used for the fit. The allowed
range of the injection indices is taken to be 1 ≤ Γ ≤ 2 and for the limits of the age and Ė
a general uncertainty of 20% is assumed.

For the calculation of the expected dipole anisotropy ∆ the following formula as derived
in Appendix E is used:

∆ =
3D

v

∣∣∣~∇N ∣∣∣
N

. (5.3)

Herein, D is the rigidity dependent diffusion coefficient, v is the particles velocity and N is
the electron (positron) number density at Earth. The dipole anisotropy is ever calculated
for the total flux, i.e. it includes the background electrons (positrons) as well as the
entirety of the considered pulsars. A dipole anisotropy of the background electrons is
expected due to the source distribution which is the largest between the Galactic Center
and the solar position. It drops in the direction to the anti center leading to an effective
flux from the direction of the center to the anticenter at Earth. An additional pulsar
does not necessarily increase the resulting anisotropy. Depending on the position of the
pulsar the total anisotropy can be increased or decreased or even vanish for specific models.
The same holds for several pulsars whose combined anisotropy is amplified or weakened
depending on their position. Therefore the largest anisotropy is expected in case of one
or several pulsars positioned on the connecting line between the Earth and the Galactic
Center.
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Figure 5.9.: Influence of pulsar parameters on the expected positron flux at Earth. The solid
black line corresponds to a benchmark model to which parameter variations of 20%
to the age, distance and spin-down luminosity Ė were applied.

Table 5.2.: Pulsar parameters of 10 nearby pulsars which are expected to contribute most to the
electron and positron flux at Earth. The limits on the distance were taken from [47]
and [152] and were conservatively combined.

Pulsar name l (◦) b (◦) Distance and limits (kpc) Age (kyr) Ė (1034 erg/s)

J0357-32 162.76 -16.00 0.82 (0.66 - 0.98) 585 0.6

J1732-31 -3.69 1.01 1.52 (1.21 - 1.83) 120 14.6

J1741-2054 6.43 4.91 1.11 (0.27 - 1.43) 392.1 0.9

J1809-2332 7.39 -1.99 1.45 (0.70 - 2.70) 67 43

J1836+5925 88.88 25.00 0.44 (0.04 - 0.84) 1800 1.1

J2021+4026 78.23 2.09 0.44 (0.38 - 1.95) 76.8 11.4

J0633+1746 -164.87 4.27 0.28 (0.18 - 0.47) 342 3.3

J0659+1414 -158.89 8.26 1.39 (0.25 - 1.56) 110 3.8

J1057-5226 -75.00 6.65 1.02 (0.10 - 1.22) 535 3

J2043+2740 70.61 -9.15 3.35 (1.26 - 4.12) 1200 5.5

5.4.1. Models with One, Two and Three Pulsars

In a first approach the potential from single pulsars for describing the positron fraction at
high energies is investigated. The transport parameters of the applied background model
were set in such a way to best describe measurements of global observables. The electron
injection spectrum of the background electrons was consistently determined using data of
the separate electron flux. However, above 43 GeV the injection spectrum is assumed to
be featureless, i.e. unbroken, corresponding to a more conservative approach with a less
steep slope of the positron fraction given by the background contribution. Within the
experimental uncertainties the existence of a break in the electron injection spectrum at
higher energies cannot be confirmed or disproved.
By a fit of pulsar parameters within the applied limits to the positron fraction above
100 GeV five pulsars yielding the largest potential positron and electron flux were iden-
tified, namely J0633+1746 (Geminga), J0659+1414 (Monogem), J1057-5226, J1809-2332
and J2021+4026. Fig. 5.10 shows the fit result for the Monogem pulsar exemplarily where
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the distance and the spin-down luminosity were set to the minimal distance and the max-
imal spin-down luminosity for a maximal electron and positron contribution, respectively.
Whereas the absolute positron flux is barely sufficient to explain the data above 100 GeV
an additional description of the slope above 30 GeV was found to be impossible to mimic
with a single pulsar. A model with two strong pulsars as shown in fig. 5.11 is able to
explain the data above 30 GeV but another pulsar is needed to account for the whole
energy range, as shown in fig. 5.12 for a model including three pulsars.
The expected dipole anisotropy in (e+ + e−) of the particular model including the three
pulsars is shown fig. 5.13 and compared to upper limits as published by the FERMI collab-
oration [153]. The anisotropy is shown for two cases: First, the three pulsars are assumed
to be located on the connecting line between the Sun and the Galactic Center. While the
total flux depends only on the distance and remains the same the anisotropy can be taken
as the maximal expected anisotropy since an amplification and no cancellation due to the
background electrons and positrons occurs. This allows for the fact that the additional
electron and positron contribution might not necessarily originate from the named pulsars.
Second, the experimentally measured directions of the three named pulsars and resulting
cancellation effects are considered. In both cases, the expected anisotropy is in agreement
with current experimental upper limits. The predicted dipole anisotropy in the ratio e+/e−

(see chap. E.2) was additionally compared to the current upper limit as measured by the
AMS-02 experiment in an energy range between 16 and 350 GeV, but was found to be
roughly one order of magnitude below the quoted value of 0.030 at a 95% confidence level
[14].
Although the anisotropy predictions are in agreement with current upper limits the anisotropy
from both the background and the pulsars depends on the applied diffusion coefficient, i.e.
on D0 and δ, and may be increased or decreased. Probing the pulsar origin of the addi-
tional, primary positrons by the detection of a dipole anisotropy should be handled with
due care. It is in principle possible, but at least up to a certain extend a not detected
dipole anisotropy should not be used as an exclusion criterion as long as uncertainties on
D0 and δ are not taken into account and the number and strengths of the contributing
pulsars are not known. The influence of the diffusion coefficient on the dipole anisotropy
will be emphasized in the next chapter by assuming a larger diffusion constant within the
framework of a model including possible contributions from ten pulsars.
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Figure 5.10.: Single pulsar model for the description of the positron fraction. Shown is the
potential contribution as can be expected from the Geminga pulsar. A rather steep
injection spectrum with a spectral index of ≈ 1 as well as maxed out parameters
for the distance and the spin-down luminosity are needed to match the data at high
energies.

E (GeV)
1 10 210 310

)
+

e
+

/(
e

+
e

0

0.05

0.1

0.15

0.2

0.25

AMS02 (2014)
background

J0633+1746 (Geminga)

J0659+1414 (Monogem)

combined

positron fraction

Figure 5.11.: Double pulsar model for the description of the positron fraction. Shown are the
potential contributions from the Geminga and the Monogem pulsar. In this model
the positron flux at high energies is dominated by Monogem and Geminga plays an
overall subordinate, but nevertheless important role at intermediate energies.
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Figure 5.12.: Triple pulsar model for the description of the positron fraction. Shown are the
potential contributions from three pulsars needed as a minimal number of pulsars
to explain the positron fraction in the whole energy range. The applied modulation
potentials are φe+ = 723.5 MV and φe− = 806.5 MV.
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Figure 5.13.: Expected dipole anisotropy of the triple pulsar model. The anisotropy is shown
as a function of the minimal energy in a cumulative energy binning up to 1 TeV
and beyond. In (a) the anisotropy was calculated assuming the three pulsars to be
located on the connecting line between the Sun and the Galactic Center. In (b)
the directions of the named pulsars and cancellation effects are taken into account
by which a reduction as well as a change of the direction of the dipole anisotropy
from the galactic anti-center to the center occurs. In both cases, the anisotropy is
in agreement with current upper limits from Fermi. Limits taken from [153].

5.4.2. Model with Ten Nearby Pulsars

The full potential of ten known nearby pulsars, which are expected to contribute most
to the local positron flux, is now investigated by a fit of the pulsar parameters to the
lepton sum flux and the positron fraction. In total, 50 pulsar parameters and two charge-
dependent modulation potentials enter the fit whereby the number of degrees of freedom
is exceedingly large. Due to the degeneracy of the solution (for instance, a commutation
of two similar pulsars by exchanging the corresponding parameters is possible) the de-
rived model is merely one of many possible scenarios. Fig. 5.14 shows the fit results with
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χ2/Ndof = 76.58/88. Noticeable are few dominating pulsars describing the high energy
data of the sum flux. The high energy data of the positron fraction are barely matched
due to the assumption of an unbroken background electron injection spectrum above 43
GeV, as already discussed in chapter 5.3. Between 1 and 500 GeV the remaining pulsars
contribute differently strong in various energy ranges and account for the needed positron
contribution in the GeV region. Also shown is the expected dipole anisotropy dominated at
high energies by the pulsar J1809-2332 which is located at a galactic latitude of l = 7.39◦.
At low energies the large amount of pulsars lowers the expected dipole anisotropy due to
efficient diffusion. The dipole anisotropy expected from this model, which includes rather
strong pulsar contributions at high energies as demanded by the lepton sum flux, is also
in agreement with current upper limits. However, the diffusion constant and the rigidity
dependence of the diffusion coefficient were fixed to D0 = 1.79 · 1028cm2/s and δ = 0.57
and their uncertainties were not considered. The expected dipole anisotropy of a re-fitted
model with the maximal allowed diffusion constant of D0 = 7.81 · 1028cm2/s and an ap-
propriate rigidity dependence of δ = 0.5 is shown in fig. 5.15. The assumed diffusion
coefficient crucially affects the dipole anisotropy and a slight tension to the upper limits
is present by which the particular model is disfavoured. This demonstrates that specific
models are already sensitive to current upper limits on the dipole anisotropy and that
current and future limits can put constraints on the particular models.

Summarized, it was shown that current AMS-02 measurements of the lepton sum flux and
the rise in the positron fraction can be explained by additional primary e± pairs originat-
ing from nearby pulsars. It was found that at least three pulsars are needed to explain
the shape of the positron fraction and the positron flux in the whole energy range. The
presented models proved that both a further rise and a drop of the positron fraction can
be modeled in case reasonable assumptions about the pulsar parameters are made. Future
measurements of the slope of the positron fraction up to higher energies will therefore not
disprove the pulsar explanation a priori in case a further drop is observed.
An effective dipole anisotropy is expected by all shown models, but its strength was found
to be crucially affected by the underlain diffusion coefficient. A model assuming an inter-
mediate, well-motivated diffusion coefficient was found to be in agreement with current
upper limits by FERMI and AMS-02, consistent with similar studies in [154] and [155].
Specific models including larger diffusion coefficients were found to exceed current up-
per limits. In a publication by the FERMI collaboration [153] larger anisotropies were
predicted due to a larger, but still reasonable diffusion constant of D0 = 5.8 · 1028cm2/s
as well as the incorporation of FERMI data of the lepton sum flux which show a rather
hard energy spectrum and hence higher pulsar fluxes are demanded. These data were
found to be not consistent with AMS-02 and at the highest energies [156]. Future exper-
imental upper limits or the detection of a dipole anisotropy will allow to constrain the
pulsar and transport models or even challenge the pulsar explanation. A pulsar induced
anisotropy is certainly the most auspicious feature to prove or disprove this explanation
and to distinguish between this and other, non-point-like source based explanations.
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Figure 5.14.: Fit results and expected anisotropy for the ten pulsar model. The pulsar param-
eters as well as the modulation potentials were fitted to the lepton sum flux and
the positron fraction as measured by AMS-02 (χ2/Ndof = 76.58/88). The sepa-
rate fluxes are shown for consistency reasons only. The resulting anisotropy is in
agreement with current upper limits as given by FERMI.
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Figure 5.15.: Expected anisotropy for a low diffusion, ten pulsar model. The pulsar parameters
were optimized for a rather high value of D0 = 7.81 · 1028cm2/s by which the role
of particular pulsars changed. In this case the anisotropy is slightly in tension with
current upper limits and the model is disfavoured.

5.5. Dark Matter Annihilation as a Source of Cosmic Rays

In this chapter the potential e± pair production by annihilating DM particles is examined
and compared to current lepton measurements by AMS-02 and antiproton measurements
by PAMELA. In a previous work by Cirelli et al. [157] a model-independent analysis
including experimental measurements by PAMELA, ATIC, HESS and FERMI was per-
formed. The authors disclosed in agreement to other studies that a sufficient amount of
positrons requires either

• leptophilic DM particles, i.e. an exclusive annihilation into lepton pairs for a sup-
pression of the antiproton production,

• a DM mass around 1 TeV/c2 and an annihilation into µ± for a reasonable description
of the positron fraction and a compatibility to antiproton measurements,

• large DM masses of 10 TeV/c2 and an annihilation into W± which leads to features
in the antiproton spectrum in an energy range not yet accessible. However, such a
model was found to be disfavoured by HESS data on the e+ + e− spectrum.

An update of this work was published in 2013 including precision measurements of the
positron fraction by AMS-02. The indicated flattening was found to favour DM masses
below about 1 TeV/c2 which is, however, not supported by FERMI measurements of the
e+ + e− spectrum. The already mentioned inconsistency of the FERMI data to AMS-02
data of the e+ +e− spectrum as well as the fact that in [157] the background contributions
were freely renormalized make a revisiting necessary.
The analysis in the present work gives special importance not only to the highest energies,
but also to the intermediate energy range in which already a relatively strong positron
contribution is required if no renormalization of the positron background is applied, see
fig. 5.8. The analysis is performed model-independent and data-driven, i.e. no particular
supersymmetric DM model is assumed. Depending on the DM mass the electron, positron
and antiproton spectra resulting from annihilations into different channels to particles of
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the SM are used to fit the data and to determine the required relative strengths of the
different channels, i.e. the branching fractions.
The differential particle yields defined as the number of particles per annihilation process
in a given energy range for certain DM masses, annihilation cross-sections, local DM
densities and DM halo profiles are calculated for different annihilation channels with the
DarkSusy software package version 5.1.1 [158]. DarkSusy is an advanced numerical package
for DM calculations including resonances, pair production thresholds and coannihilations
for supersymmetric neutralino models. External packages like FeynHiggs, ISASUGRA and
SUSPECT are incorporated for the computation of masses and mixings of the particles for
a variety of models defined by the user. The features of DarkSusy were widely broken
down and merely the differential particle yields for certain, pure DM channels are used.
For the computation of the differential electron and positron yield in case of a direct DM
annihilation into e± pairs the DM particles are assumed to be non-relativistic whereby the
particle yield in the energy range between E and E + dE can be written as

dNe+

dE
=
dNe−

dE
= δ(E −mχ). (5.4)

An annihilation into light fermion pairs is helicity suppressed by a factor of the fermion
mass squared ∝ (mf/mχ)2 whereby the annihilation into e± pairs is expected to be sup-
pressed the strongest compared to µ± and τ±. The employed DM halo mass profile is the
Navarro-Frenk-White profile (NFW), a model derived from N-body simulations of cold DM
halos [159] and one of the most commonly used profiles. A potential enhancement of the
signal by the clumpiness of DM is not considered in the halo parameterization. Instead, it
is absorbed in scaling factors of the spectral templates. Therefore, the distribution of DM
clumps follows directly the applied model of the diffuse component and the overall scaling
factor corresponds to a boost factor. The boost factor is defined as the required enhance-
ment due to the clumpiness relative to the diffuse component. Note, that disregarding
substructures not only affects the normalization of the e± flux but also the spectral shape
due to transport effects.
A local DM density of ρDMlocal = 0.3 GeV/cm3 and a thermally averaged and channel inde-
pendent annihilation cross section of 〈σv〉 = 3 ·10−26cm3s−1 are assumed, as derived from
the kinematics of stars [160] and the relic density, respectively. In order to keep the model
parameters at a minimum these values are kept constant whereby the quoted boost factors
are ever related to these values. After the initial particle spectra are calculated the parti-
cles are propagated by the numerical solution of the transport equation using DRAGON. The
propagation of particles originating from DM annihilation is hence consistently applied in
the same way as for conventional CRs, especially in terms of energy losses.
The fitting procedure is based on a multi-step-fitting-approach in which the free boost fac-
tors and modulation potentials are optimized by a χ2 minimization for certain, fixed DM
masses. The considered mass range is 0 < mχ ≤ 1 PeV/c2 within which logarithmically
equidistant mass values are examined. The following annihilation channels into leptons,
quarks and gauge bosons are investigated:
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χ+ χ→



e+ + e−

µ+ + µ−

τ+ + τ−

c+ c̄

t+ t̄

b+ b̄

g + g

W+ +W−

Z0 + Z0

Z0 + γ

Scans were performed for each channel separately as well as for a combination of all
channels for which an optimization of the branching fractions was adopted. The used
data for the χ2 calculation are the lepton sum flux and the positron fraction by AMS-02
as well as the antiproton flux measured by PAMELA. The results are illustrated by the
minimized χ2/Ndof value as a function of the DM particle mass for a standard and a
leptophilic DM annihilation scenario, see fig. 5.16. As indicated by the large χ2/Ndof
values of � 1, none of the models is able to describe the spectral shape of the lepton
data in the whole energy range without violating constraints from the antiproton flux.
This holds for particular exclusive channels as well as for a combination of all considered
channels. Selected models including the best leptophilic model, the best-fit model with
χ2/Ndof ≈ 50 and a lepton optimized model excluded by antiproton measurements are
shown in appendix F for illustration (figs. F.26, F.27, F.28).
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Figure 5.16.: χ2/Ndof values as a function of the DM mass for different annihilation channels
and an exclusive annihilation into charged leptons (leptophilic DM). Even though
the annihilation branching fractions were optimized for a best description of the
demanded spectral shape of the lepton data, none of the models is able to describe
the AMS-02 measurements in the whole energy range without violating constraints
from the antiproton flux. An illustration of selected models is given in appendix F.

Another scenario was studied in which DM annihilation is assumed to account only for
the positron contribution at the highest energies and lower energetic positrons originate
from other sources, like e.g. from nearby pulsars. Note, that the background positron
contribution at the highest energies is negligible and the influence from the background
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model is kept at a minimum. A fit was performed including the lepton data above E = 100
GeV and constraints from antiprotons. The results of the scan are shown in fig. 5.17. An
annihilation into the lepton pairs µ± or τ± favours DM particle masses of around 849 and
2078 GeV/c2, respectively, whereas the τ± channel is preferred by the resulting spectral
shape of the expected e± flux. An annihilation into both µ± and τ± favours a DM mass
of 1 TeV/c2 and implies an abrupt drop of the positron fraction, as shown in fig. 5.18.
Also shown is the predicted dipole anisotropy largely determined by the local gradient of
the applied DM halo profile. It is, compared to a point source induced anisotropy, rather
low due to the small local gradient of the DM density profile.
Annihilations into gauge boson pairs favour rather high masses of around 21 TeV/c2 leading
to an production of high energetic antiprotons in an energy range not accessible by the
PAMELA data. The particle spectra are shown in fig. 5.19 for a DM particle mass of 21
TeV/c2 and an exclusive annihilation into W±, exemplarily. Also shown are data of the
e+ + e− flux as measured by the HESS experiment which were not considered in the fit.
These data clearly show an enhanced flux compared to the AMS-02 data and a highly non-
power-law-like spectral shape in the very high energy range not covered by AMS-02. The
presented model can explain the high energy lepton data above E = 100 GeV and predicts
a further rise in the positron fraction. It is conform with antiproton measurements by
PAMELA and predicts a significant antiproton contribution above E = 100 GeV. Precision
measurements of the antiproton flux and the positron fraction up to higher energies by
AMS-02 will yield a strong constraining power and will allow to put these kind of models
to the proof.
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Figure 5.17.: χ2/Ndof values as a function of the DM mass for the lepton data above 100 GeV
and constraints from antiprotons. The most interesting models are shown in fig.
5.18 and 5.19.
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Figure 5.18.: Best-fit leptophilic DM annihilation model for the lepton data above E = 100 GeV
which predicts an abrupt drop of the positron fraction (a). In this model DM
particles with a mass of 1 TeV/c2 annihilate with a share of 30% into µ± and with
70% into τ±. The contribution was boosted with b = 1270. The expected dipole
anisotropy (b) is compared to a point source induced anisotropy rather low due to
the small local gradient of the applied DM halo profile.
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Figure 5.19.: Best-fit DM annihilation model for the lepton data above E = 100 GeV and with
constraints from antiprotons. By assuming a particle mass of mχ ≈ 21 TeV/c2,
an exclusive annihilation into W± and a boost factor of b=58,884, the model can
explain the lepton data above E = 100 GeV (a)(b) and predicts a further rise of
the positron fraction. The model does not violate constraints from antiprotons as
measured by PAMELA (c). The e+ + e− flux at the highest energies as measured
by HESS [161], [162] shows a highly non-power-law-like behaviour and cannot be
matched (a). Also in this model the expected dipole anisotropy (d) is rather low.
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6. Diffuse Gamma-Ray Emission in the
Galaxy

Diffuse, galactic gamma-rays arise from hadronic and leptonic interactions of CR parti-
cles with the interstellar gas and the ISRF. The largest contribution in the GeV energy
range originates from decaying π0 mesons, which are produced in hadronic collisions of CR
hydrogen and helium nuclei with the interstellar gas. Leptonically produced gamma-rays
arise mainly by interactions of electrons and positrons with the ISRF (inverse Compton
scattering) and with the interstellar gas (Bremsstrahlung). For details about the hadronic
and leptonic gamma-ray production mechanisms the reader is referred to chapter 3.3.2.
In this chapter the expected gamma-ray emission of models constrained by locally mea-
sured nuclei spectra and ratios is compared to gamma-ray measurements by FERMI. The
gamma-ray predictions of a large amount of transport models in a minimal transport setup
constrained by locally measured nuclei as well as a gamma-ray and nuclei optimized model
will be presented. For this purpose the steady-state solutions for the densities of protons,
helium, electrons and positrons, normalized to locally measured abundances, are used to-
gether with the ISRF and the gas column densities to calculate the emissivity, which is
the number of particles per unit of volume, time, energy and interaction. Skymaps for the
gamma-ray emission are obtained by the integration of the emissivities along the LOS in
a given direction (l,b) for an observer at Earth. The contribution from inverse Compton
scattering can be directly calculated using the ISRF and the electron and positron densi-
ties. Contributions from Bremsstrahlung and pion decays require models for the galactic
HI and CO (tracer of H2) distributions as a function of (r,z) for which combined astronom-
ical surveys are used [163], [164]. Those distributions are partitioned into galactocentric
rings based on the assumption that the gas obeys a uniform circular rotation curve. This
allows to indirectly consider galactic structures for the gas content like for instance the
spiral arm structure.

The gamma-ray gradient problem
The all-sky gamma-ray observations are by far not well understood and large discrepancies
in terms of the spectral shape of the gamma-ray energy spectrum, the absolute photon
flux and the gradient of the emissivity along the galactic longitude within the galactic
plane are observed. The latter is called gamma-ray gradient problem and implies that the
galactocentric radial distribution of CRs is much steeper than the distribution one would
expect from gamma-ray measurements which demand significant contributions originating
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114 6. Diffuse Gamma-Ray Emission in the Galaxy

at large radii [17], [18]. A solution to this problem using EGRET data could be found
by the assumption of a sharp rise of the conversion factor between the CO emissivity and
the H2 density with the galactocentric radius, called XCO factor or calibration ratio and
defined as XCO = N(H2)/WCO [165]. Herein, N(H2) is the molecular hydrogen column
density and WCO the integrated intensity of the 2.6 mm emission line of carbon monoxide.
A radial rise of XCO up to factors of five to ten leads to an increased gas density at large
radii which can balance the the decreasing CR density leading to a better description of
the gamma-ray profiles along the galactic longitude. The sharp rise of XCO as used in
[165] is illustrated in fig. G.29.
The existence of the gamma-ray gradient problem could be confirmed by the FERMI-LAT
collaboration [166]. However, an analysis of the gamma-ray emission in the third Galactic
quadrant as measured by FERMI-LAT revealed that the conversion factor XCO is flat over
several kpc with XCO ≈ 2 · 1020cm−2(K km s−1)−1 and that no significant differences are
present between the local spiral arm and the interarm region. The authors concluded that
a larger halo size, or more generally, a flatter CR source distribution than those usually
assumed are required. Other scenarios studied in [167] imply anisotropic and spatially
non-uniform diffusion and are quite successful without any changes of the source term, the
halo height or XCO.
In the present work the assumption of a homogeneous and isotropic diffusion coefficient
is retained and a constant value of XCO is assumed. The potential and limitations of
this kind of transport models are examined by variations of transport parameters and
comparisons to the measurements.

6.1. Predictions for the Diffuse Gamma Ray Emission in the
Galaxy

The diffuse gamma-ray emission was calculated for the CR steady-state densities of 10,050
well-motivated transport models of the minimal transport model setup whose transport
parameters were constrained by local observations of p, p̄, p̄/p, B/C, 10Be/9Be and
SubFe/Fe. The LOS integration was performed with a step resolution of 10 pc. The
skymaps were calculated in the HEALPix projection [168] with a resolution of 49,151
equal sized pixels covering the spherical sky. For the analyses, the modeled gamma-ray
emissions are compared to almost 4 years of FERMI data in various regions of the sky as
shown in fig. D.23. Since this study aims to review the predicted large-scale CR densities,
regions which are known to comprise anomalous gamma-ray contributions are excluded,
namely the Galactic Center, the galactic bar and the Fermi Bubbles.
Fig. 6.1 shows the predicted gamma-ray emission and its composition for the best-fit
model on local nuclei spectra and ratios as well as the envelopes of a selection of 10,050
models for an illustration of the transport related uncertainty in the minimal transport
model setup. Each model of the selection is characterized by an unbroken nuclei injection
spectrum which determines the characteristic, decreasing shape of the mostly dominating
contribution from pion decays. At the galactic poles (Region F) the gamma-ray emission is
dominated by the isotropic, extragalactic contribution for which a model1 provided by the
Fermi Science Support Center (FSCC) was incorporated. None of the gamma-ray spectral
shapes of the considered regions can be reasonably described by models of the minimal
transport model setup and a harder hadronic component is required in any direction of
the sky. Consequently, models with broken nuclei injection spectra have to be considered
and the data-conformity to both local nuclei spectra and ratios and gamma-rays will be
investigated.
Also shown in fig. 6.2 is the longitudinal profile of the gamma-ray emission within the

1iso p7v6source.txt. Isotropic spectral template from a fit to the all-sky emission for |b| > 30◦ [29].
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Galactic Disc with |b| < 5◦ in the energy range 0.9 < E < 1.3 GeV for the best-fit model
on local nuclei spectra and ratios. The normalizations of the particular contributions were
best possible optimized and the gamma-ray gradient problem is shown up due to the too
little CR density above around |l| = 100◦ as predicted by the model.
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Figure 6.1.: Gamma-ray predictions of transport models of the minimal transport setup in various
directions of the sky as defined in Appendix D (fig. D.23). The best-fit model on
locally measured spectra and ratios is shown as the black, solid line and the transport
related uncertainty is illustrated as the colored band. None of the models all of which
imply an unbroken nuclei injection spectrum can account for the spectral shape of
the gamma-ray data.
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Figure 6.2.: Illustration of the gamma-ray gradient problem. Shown is the longitudinal profile of
the gamma-ray emission within the Galactic Disc with |b| < 5◦ for the best-fit model
on local nuclei spectra and ratios. The predicted CR density above around |l| = 100◦

is not sufficient to explain the gamma-ray measurements.

6.2. Gamma-Ray and Nuclei Optimized Model and its Im-
plications

AMCMC based sampling method optimized for parameter determination was used in com-
bination with an extended model setup in order to examine the possible data-conformity
to both locally measured nuclei spectra and ratios as well as gamma-rays. The transport
parameters were optimized to the spectra of p, p̄, the ratios of p̄/p, B/C, 10Be/9Be and the
energy spectrum and the longitudinal and latitudinal profiles of the gamma-ray emission.
Compared to the minimal model setup the extended model setup implies a single broken
nuclei injection spectrum to account for the spectral shape of the gamma-ray spectrum as
well as a convective transport mode.
It was found that with such a model setup a data-conformity up to a certain extend can
be achieved, but only if the normalizations of the proton- and electron density used for the
gamma-ray computation are disentangled from the locally observed densities. This could
be realized in nature if the solar position represents a local over- or underdense region
in terms of the particle density, as will be discussed in chapter 6.3. The normalizations
of the gamma-ray contributions were fitted to the data by a template fit procedure. A
global scaling was applied for the pion decay contribution, the isotropic background and
the leptonic contributions. Since both leptonic contributions depend on the electron den-
sity a common scaling was applied absorbing the absolute scale of the electron density.
Fig. 6.3 shows the gamma-ray spectrum of the best-fit model found by the MCMC based
parameter sampling1. Table 6.1 lists the transport parameters of this optimized model and
the applied, global scaling factors for the different gamma-ray components. The overall
spectrum and the spectra in the considered regions as shown in fig. 6.3 are well described.
However, the overall proton density throughout the galaxy must be enhanced by a factor
of 1.98 compared to the locally measured density and the overall electron density must be
reduced by a factor of 0.58 for a reasonable description of the gamma-ray spectrum. The
enhancement of the isotropic background by 13% is justified by the gamma-ray flux at high
energies at the galactic poles (region F) where it completely determines the flux. This sug-
gests an underestimation of the implied model as published by the FERMI collaboration.
The simultaneous enhancement of the total flux at low energies by the increased isotropic

1The computation of gamma-ray skymaps is in general time consuming. The number of sampled models
is limited and was found to be not sufficient for a statistical analysis.
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component can be counterweighted by a reduction of the pion decay contribution through
an increase of the convection velocity with dVc/dz. Compared to the models derived in the
minimal transport model setup the optimized model sticks out by a flatter radial proton
density distribution, as shown in fig. 6.4. This is caused by a special combination of the
halo height L and the diffusion constant D0 which was found to be not favoured by the
nuclei measurements. The softer gradient has far reaching implications on the longitudinal
gamma-ray profile as shown in fig. 6.6. The profile is well described and merely in the
range 135◦ < |l| < 150◦ the emission is slightly underestimated. Close to the galactic anti-
center the model predicts a sufficient CR density and the gamma-ray gradient problem is
not apparent. The latitue profile of the model is shown in fig. G.30.

Fig. 6.7 shows the locally expected nuclei spectra and ratios of the gamma-ray and nuclei
optimized model, however, normalized to the local proton density for the inspection of the
spectral shape demanded by the gamma-ray data. The overall slope of the proton spec-
trum as measured by PAMELA (fig. 6.7(b)) is by far not perfectly described. In the high
energy range between E = 80 GeV and 550 GeV a softer proton spectrum is predicted
and the flux is overestimated. Merely above E = 550 GeV the prediction is in agreement
with the data. Note, that the PAMELA data show a non-power-law-like behaviour at high
energies and a compromise has always to be made in case a featureless proton injection
spectrum within this energy range is assumed.
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Figure 6.3.: Gamma-ray spectra in various regions of the sky for an optimized model. The model
implies a broken nuclei injection spectrum with a break at ρ = 4.62 GV and spectral
indices of α0 = 1.43 below and α1 = 2.16 above. The global scaling factors for the
particular contributions are Cpi = 1.98, Cic,br = 0.53 and Ciso = 1.13.
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Figure 6.4.: Proton density profiles for models optimized for nuclei only and additionally for
gamma-rays. The densities are normalized to locally measured values and an increase
by a factor of about two is needed to account for the gamma-ray observations. In
(a) the radial proton density is shown at z = 0 kpc as a function of r by which
the softer gradient of the gamma-ray and nuclei optimized model becomes apparent.
None of the selected models of the minimal transport model setup shows a flatter
gradient due to the special combination of L and D0 which is not favoured by nuclei
measurements. In (b) the profile is shown at r = 8 kpc as a function of z illustrating
the broader distribution due to the larger halo height of L = 7.37 kpc.
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Figure 6.5.: Longitudinal profile of the pion induced gamma-ray emission between 0.9 and 1.3
GeV and |b| < 5◦. In (a) an enhanced contribution above |l| = 40◦ is apparent
due to the flatter proton density distribution. The ratio shown in (b) illustrates
the different gradients of the gamma-ray profile leading to an enhanced emission by
around 25% in the galactic anti-center.
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Figure 6.6.: Longitudinal profile of the gamma-ray emission within the Galactic Disc with |b| < 5◦

for the gamma-ray and nuclei optimized model. The profile is well described and
merely in the range 135◦ < |l| < 150◦ the emission is slightly underestimated. Close
to the galactic anti-center the model predicts a sufficient CR density and the gamma-
ray gradient problem is not apparent.

Table 6.1.: Parameters of the gamma-ray and nuclei optimized transport model. The model is
characterized by a broken nuclei injection spectrum which results in a harder gamma-
ray spectrum from pion decays. While the convection velocity at the solar position
with 0.78 km/s is rather low the increase by dVc/dz = 1.29 km/s/kpc significantly
decreases the contribution from pion decays below E = 1 GeV at the galactic poles.

Parameter Unit Value

D0 1028cm2/s 4.24

δ 1 0.63

L kpc 7.37

η 1 -0.53

vα km/s 2.23

v0 km/s 3.71

fb ≡ vb/v0 1 0.21

dVc/dz km/s/kpc 1.29

αr 1 0.08

ρ0 GV 4.62

α0 1 1.43

α1 1 2.16

Cpi 1 1.98

Cic/br 1 0.58

Ciso 1 1.13
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Figure 6.7.: Local energy spectra and ratios as predicted by the gamma-ray and nuclei optimized
transport model. The dotted line corresponds to the local interstellar spectrum
(LIS) and the solid line to the solar modulated spectrum. The proton spectrum is
normalized to the locally observed value.

Fig. 6.8 shows the discrepancy of the optimized model to the data in the region of the
Fermi Bubbles which was excluded from the optimization. An additional, hard gamma-
ray component is needed which is believed to arise from a freshly accelerated proton
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population from star-forming regions, like the Galactic Disc, the galactic bar and the
spiral arms. This population interacts with the gas that may be pushed to high latitudes
by strong, pressure induced galactic winds in the inner Galaxy [45]. The harder gamma-
ray spectrum within the Fermi Bubbles with ∝ E−2.1 compared to the one originating
from the ’old’ proton population with ∝ E−2.7 is explained by the advective environment
in which the proton energy spectra are not modified by diffusion. The authors of the
cited publication incorporated the presented gamma-ray and nuclei optimized model as a
background model for studies of the properties of the Fermi Bubbles and the galactic bar.
Since gamma-rays are not absorbed by dust they can be used as tracers for star-forming
regions and allow precision determinations of the tilting of the galactic bar. Furthermore,
it was found that the bubbles are strongly correlated with the gas distribution, while the
spectral shape of the bubble showed that the hadronic CR component dominates over the
leptonic component.
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Figure 6.8.: Gamma-ray spectrum within the Fermi Bubbles. A parameterization of the structure
is shown on the left [169] while the measured gamma-ray spectrum in comparison to
the optimized model is shown on the right. The latitude profile of the gamma-ray
emission including the bubbles is shown in fig. G.30.

6.3. The Influence of Local Structures on the Proton Distri-
bution and Gamma-Ray Emission

In the previous chapter it was shown that the gamma-ray spectrum in the bigger part
of the sky can be described if the expected hadronic gamma-ray component from pion
decays is assumed to be roughly twice as big. However, the proton density needed for the
increased pion production is incompatible with local proton measurements. This discrep-
ancy is a known fact and was for instance already pointed out in [76].
It seems reasonable to suppose that the Sun’s position represents an extraordinary region
in which the proton density may be lower than as expected from CR transport models.
In fact, our Sun resides in the Local Bubble (LB), a low density region of gas with radii
between 65 to 150 pc into the Galactic plane and extending hundreds of parsecs perpendic-
ular to it [89]. The density inside the LB is about 0.05 atoms/cm3 which is approximately
one tenth of the average density of the ISM [19], [170]. The Sun entered the structure
more than five million years ago and is currently moving through the Local Fluff, a small
overdense region consisting of interstellar clouds. Fig. 6.9 shows a schematic sketch of
the LB in comparison to the Sun and various objects in the solar neighbourhood. Its
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origin and the observed shape are believed to be related to multiple supernovae explo-
sions within the past ten to twenty million years [20]. The LB is believed to be rather a
chimney-like than a bubble-like structure which extends much further into the halo than
into the Galactic Disc. This is related to the much lower external pressure from the ISM
in the galactic halo. It is compelling to study more realistic diffusion models in which the
diffusion coefficient in local structures can be different. A structure like the LB can have
far reaching implications on the transport of CRs and studies examining the impact of
different transport scenarios on the particle densities and anisotropies by local variations
of the gas density and transport parameters are ongoing and will be published soon [171].
The present analysis focuses on the potential influence of the LB on the proton density
and the gamma-ray emission. A three dimensional model for the LB was implemented
in DRAGON allowing local variations of transport parameters and the gas density. A less
efficient confinement of the particles inside the LB is investigated, thus an increased diffu-
sion constant within the local structure is applied. Two setups are examined in which the
diffusion constant D0 follows a spherically symmetric and a chimney-like bubble geometry.
The absolute bubble dimension as well as the shape at the borders are strongly restricted
by the resolution of the spatial grid. Necessary in terms of computation time and memory
requirement is the appropriation of a non-equidistant spatial grid allowing an exceedingly
high local resolution and a reduced, but nevertheless high enough, resolution in regions
far away from the Sun where a substantial amount of CR sources are located. Fig. 6.10
illustrates the applied spatial grid in the plane of the Cartesian x and y coordinates by
which a resolution of ∆x = ∆y = ∆z = 5 pc around the solar position at (x,y,z)=(8.3,0,0)
kpc became feasible.
In a generic approach a simple bubble setup with a bubble radius of r = 160 pc as shown in
fig. 6.10 was examined. Within the bubble the diffusion constant was increased by factors
of 10, 50 and 90 and due to numerical reasons forced to drop smoothly at the borders to
the average value assumed throughout the Galaxy. Fig. 6.11 shows the resulting proton
density profile for each case as well as for the no-bubble benchmark scenario. Although
the bubble’s influence is obvious by a flattening of the gradient of the proton density a
reduction at the solar position could not be achieved in this setup. A reduction of the
proton density requires a passage through which the protons can escape. In the chimney-
like setup the bubble border in z-direction was set aside by what an outflow of particles
in z-direction was realized. Such a scenario is physically motivated by the absence of the
pressure induced counterweight of the ISM above and below the Galactic Disc. Fig. 6.11
shows the profile obtained with this chimney-like structure leading to a significant and
sufficient density reduction at the solar position. The shape of the local proton spectrum
was found to be only marginally affected by the increased diffusion constant as shown in
fig. 6.12.
Although the bubble structure was chosen to be very small compared to the scale of the
Galaxy the smoothly increased diffusion constant crucially affects the proton distribution
in wide areas far away from the solar position. A significantly reduced proton density
is apparent even at large heliocentric distances of several kpc which crucially affects the
expected gamma-ray emission from pion decays. For the gamma-ray LOS integration an
increased step resolution of 2 pc was applied within and around the bubble structure in
order to resolve small-scale gradients of the proton distribution. The resulting all-sky
gamma-ray spectrum (region A) for a factor of the diffusion constant of 90 is shown in fig.
6.13 by which the large influence and the insufficient description of the data is illustrated.
Calculations incorporating smaller bubble dimension could not be performed due to ex-
ceedingly high memory requirements. However, for an estimation of the maximal bubble
size constrained by the gamma-ray data the proton density was manually modified. It was
found that maximal bubble radii up to around 20 pc which are far below the dimension of
the LB are requested in order to not modify the gamma-ray emission too much.
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The results reveal that by a local and closed bubble-like modification of the diffusion pro-
cess the local proton density cannot be reduced by a factor of two. An opened, chimney-like
structure with radii of 160 pc can account for the observed proton density, but also crucially
affects the proton density in wide regions around the solar position. The lowered proton
density also affects the expected gamma-ray emission which can then not be matched.
Therefore, a bubble induced modification of the diffusion process can a priori not explain
the discrepancy between the locally observed proton density and the one demanded by
gamma-ray measurements. However, due to the simplicity of the applied setup, expla-
nations based on local impacts cannot be excluded as a matter of principle and a more
extensive study is called. Especially models with strong convection velocities which blow
the particles away from the galactic disc are promising and will be extensively studied in
future analyses.

Figure 6.9.: Schematic sketch of the Local Bubble. The blue colored regions correspond to regions
with decreased gas density in contrast to the yellow regions. Credit: N. Henbest, H.
Couper.
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The local proton density is significantly reduced in case an open, chimney-like ge-
ometry is assumed.
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Figure 6.12.: Left: The ratio ’no bubble’/′D0 · 90′ of the proton density at E = 91 GeV in the
plane of x-z in which the chimney-like tube is apparent. Right: Local interstellar
proton spectrum for the chimney-like bubble structure and different factors applied
to the local diffusion coefficient. While the spectral shape is only marginally af-
fected, a reduction of the proton density by a factor of about two is realized by a
proton outflow towards the galactic poles.
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Whereas the LB locally reduces the proton density to match the locally measured
value it also strongly affects the overall gamma-ray spectrum leading to the obvious
data-mismatch.
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7. Summary, Conclusion and Outlook

Within the last couple of years the field of CR propagation attracted a lot of attention
triggered by the detection of an anomalous positron abundance in the cosmic radiation.
The predicted amount of positrons, which in the standard picture are assumed to be purely
produced by interactions of CR nuclei with the interstellar medium, cannot explain the
measured rise of the positron fraction. Consequently, new primary sources of high en-
ergetic positrons are required. Many possible astrophysical and exotic source scenarios
were proposed in the literature, but the question of the origin of the anomalous positron
abundance has still not been finally answered.
Recently, measurements of electrons and positrons with unprecedented accuracy were pub-
lished by the AMS-02 collaboration, which called for a renewed investigation of CR trans-
port models in order to discriminate and characterize the observed signal from the expected
background.
The major contributions of this thesis include an extensive analysis of current CR trans-
port models, a determination of the uncertainties on the expected secondary positron flux,
a characterization of the additional positron contribution as demanded by new AMS-02
data and an investigation of the possible positron contributions and the implications from
different source hypotheses.
Since the predicted positron distribution within the Galaxy depends on ill-known transport
parameters which describe the propagation processes and determine the underlying nuclei
densities, reasonable values and constraints have to be applied in order to make robust
predictions. For this purpose a sophisticated Markov chain Monte Carlo interface to the
CR propagation software DRAGON was developed and widely chosen ranges of 16 transport
parameters were investigated. Since the numerical solution of the transport equation is in
general slow, the sampling efficiency was increased by the incorporation of a modern, par-
allelizable decision algorithm which biases the local parameter space. Additionally, three
consecutively applied proposal functions were used to exploit already obtained information
on the parameter space.

In total, more than 15 million sets of parameters in transport models have been evaluated
by means of Markov chain Monte Carlo methods using high-performance computing clus-
ters. The transport parameters were constrained by demanding data-conformity to the
entirety of the most up-to-date measurements of sensitive observables, namely the locally
measured proton and antiproton energy spectra and the ratios B/C and 10Be/9Be which
constrain the CR interaction rate and the CR escape time. It was found that the con-
straining of transport parameters is restricted due to partially large uncertainties of the
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experimental measurements and strong correlations between almost all transport parame-
ters. The diffusion constant, which is a measure for the average scattering length, could be
determined to be within one order of magnitude. However, heights of the diffusion halo of
up to 30 kpc, beyond which free escape of the particles is assumed, could not be excluded.
The high correlation of these two major transport parameters leads to degenerated solu-
tions which are impossible to distinguish by local measurements. Despite the correlations
the fitted turbulence spectrum of the magnetohydrodynamical waves clearly points to an
Iroshnikov-Kraichnan spectrum (δ = 1/2) in agreement with comparable studies [138].
Although a moderate diffusive reaccleration with Alfvén velocities of up to 20 km/s can
lead to a better description of the data, it is not necessarily needed to account for the
nuclei measurements. Also a convective transport mode was found to be neither preferred
nor demanded.
Model extensions, like the radial dependence of the convection velocity, implemented for
this analysis are incorporated in the publicly available DRAGON software and are available
to scientific community for an easy reproduction of the obtained results. Interesting mod-
els found by the Markov chain Monte Carlo sampling built the basis for several analyses
performed within the KIT cosmic ray group.
In order to restrict the expected positron flux at Earth, a large amount of transport mod-
els, all of which were constrained by locally measured nuclei and are characterized by
strongly deviating sets of transport parameters, were used to account for the transport
related uncertainties. For a correct estimation of the strong synchrotron energy losses
the positrons and electrons suffer from, the parameters of the employed magnetic field
model were tuned to match the most up-to-date synchrotron foreground maps as derived
from the 9-year WMAP data. A study focusing on the influence of the energy densities
of the galactic magnetic field and the interstellar radiation field on the positron spectrum
revealed, that even in case those models are afflicted with errors of 30% the uncertainties
from the major transport parameters dominate. The parameters with the largest impact
on the absolute positron flux are the diffusion constant and the halo height which crucially
determine the proton and helium density distributions within the Galaxy and thus the
secondary positron production.
The obtained positron predictions were taken as uncertainty on the background in order to
quantify the additional positron contribution as required by new AMS-02 lepton data. For
the first time consistent and high precision lepton measurements allowed in combination
with robust background predictions to deduce spectral information on the required signal.
It was found that an additional and significant positron contribution comparable to the
background is already required at rather low energies of E = 10 GeV. At an energy of 15
GeV the signal contribution starts to dominate over the background. Above 200 GeV the
background contribution is negligible and the measured positron flux represents the signal
flux (fig. 5.8). This finding was also found to be predicted by power-law modeled fluxes
optimized to the data (fig. 5.6).

Nearby pulsars and DM annihilation processes are the most prominent source candidates
[113], [63]. It was investigated to which extent these source hypotheses can account for
the observations and which implications result from those. For this purpose a widely used
pulsar model including 10 known, nearby pulsars which are expected to contribute most
to the local positron flux was used. Due to large experimental uncertainties of the pulsar
properties, like for instance their distance, robust predictions are however prevented. By
an optimization of the pulsar parameters within their experimental limits the AMS-02
lepton data in the whole energy range can be described if at least three nearby pulsars
contribute to the positron flux (fig. 5.12). It was found that both, a drop and a further rise
of the positron fraction can be obtained if realistic assumptions about the pulsar properties
are made.
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All studied point source models predict an effective dipole anisotropy in the electron and
positron flux which was found to be in agreement with current experimental upper limits
(fig. 5.13), but may play a seminal role in future source identification analyses. How-
ever, such analyses require a better understanding of the strengths and the number of
the contributing pulsars and a more precise knowledge of the diffusion related transport
parameters in order to challenge the pulsar explanation with future limits if, further on,
no anisotropy will be detected.
Even though nearby pulsars provide a quite natural explanation for the positron excess,
DM annihilation models are still highly discussed. In case a new, DM like particle was
found in accelerator experiments, an indirect evidence is in any case imperative in order
to affiliate the astronomical and cosmological observations to this particle. Only this con-
nection ensures that the new particle is indeed what constitutes 85% of the mass of our
Universe.
For the study of the potential electron and positron flux from DM annihilation processes,
different annihilation channels into leptons, quarks and gauge bosons were considered for
a wide range of DM particle masses, respectively. The propagation of the particles from
DM annihilation was consistently applied using DRAGON. A spectral template fit of the
characteristic, propagated positron contributions from the particular annihilation chan-
nels to AMS-02 data was performed in order to allow for any possible combination of the
annihilation branching fractions.
A description of the lepton data in the entire energy range including constraints from
the antiproton flux could not be obtained by the assumption of a pure DM originating
signal. Another scenario, in which DM annihilation was assumed to be only the source
for the highest positron energies, revealed that either leptophilic models (DM couplings to
leptons, but not to gauge bosons or quarks) with DM particle masses of around 1 TeV/c2

or annihilations into W and Z gauge bosons with DM masses of around 21 TeV/c2 are
preferred (fig. 5.18). While the former predict an abrupt drop of the positron fraction the
latter predict a further rise as well as a significant amount of antiprotons, but in an energy
range not yet accessible by the available antiproton measurements (fig. 5.19). Precision
measurements of the antiproton flux and the positron fraction up to higher energies by
AMS-02 will yield a strong constraining power and will allow to put this class of models
to the proof.
The expected dipole anisotropy of DM induced electrons and positrons was found to be
remarkably small due to the small local gradient of the DM density profile. DM substruc-
tures in form of clumps may increase the expected dipole anisotropy, but only in case the
gradient of the local density distribution is substantially larger than the one of the diffuse
component. The feature of a much lower anisotropy fundamentally differs the DM inter-
pretation from point source based explanations and may, to emphasize once more, play a
key role in future source identification analyses.

In the last chapter of this thesis the predictions of the obtained transport models on
the diffuse gamma-ray emission were compared with four years of gamma-ray data col-
lected by the FERMI-LAT experiment. It was found that models with an unbroken nuclei
injection spectrum and tuned to the locally measured proton spectrum lead to pion decay
induced gamma-rays whose energy spectrum is too soft compared to the data. Therefore,
the transport parameters of an extended model setup including a broken nuclei injection
spectrum were simultaneously optimized to both the gamma-ray energy spectra in various
regions of the sky and the locally measured nuclei spectra and ratios.
An optimized model was presented which describes the considered observations to a satis-
factory degree, however, only if the proton and helium densities are disentangled from the
locally observed ones by an enhancement of roughly a factor of two. The combination of
the diffusion halo height and the correspondingly chosen relatively low diffusion constant
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was found to predict a small gradient of the radial proton density distribution (fig. 6.4).
It was demonstrated that the soft gamma-ray gradient problem can be naturally solved
by such an isotropic diffusion model without any changes of the source term and without
spatial variations of the conversion factor XCO which was earlier proposed.
It was tried to explain the increase of a factor of two of the interstellar CR density in
comparison with the locally observed one by a change in the diffusion coefficient in the
Local Bubble. A local and sufficient reduction of the proton density could be obtained by a
strongly increased diffusion constant within an upwards and downwards opened, chimney-
like bubble structure by which a proton outflow in the direction of the galactic poles could
be ensured (fig 6.11). However, the proton density distribution was also lowered by the
bubble even at large heliocentric radii of several kpc which also affected the predicted
gamma-ray emission. An overall, satisfactory explanation could not be obtained. An es-
timation of the maximal radius such a bubble must have pointed to 20 pc which is below
the dimension of the Local Bubble. Analyses including models with strong, local convective
winds are ongoing and will show if these can solve the observed discrepancy.

The coming months and years will be exciting times for galactic CR related physics. New,
high precision measurements of CR nuclei and leptons, all of which are self-consistently
and redundantly measured by the AMS-02 experiment, will improve the understanding of
the transport processes within the Galaxy.
Of particular importance are not only precise particle spectra up to higher energies, but
also upper limit determinations on the anisotropy of different particle species. While the
absence of an anisotropy in the lepton flux can constrain or even challenge the pulsar
explanation of the positron excess, upper limits on the proton anisotropy may open a new
window for constraining transport models.
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Appendix

A. Energy Losses for Cosmic Nuclei and Leptons

A.1. Ionization losses

Nuclei

Ionization losses in the ISM can be expresses by the general formula [73](
dE

dt

)
Ion

(β ≥ β0) = −2πr2
ecmec

2Z2 1

β

∑
s=H,He

ns[Bs +B′(αfZ/β)]. (7.1)

Herein, αs ist the fine structure constant, ns is the number density of the considered
particle species, β = v/c is the speed of the nucleus in units of c, β0 = 1.4e2/~c = 0.01 is
the characteristic velocity, determined by the orbital velocity of electrons in hydrogen and

Bs =

[
ln

(
2mec

2β2γ2Qmax

Ĩ2
s

)
− 2β2 − 2Cs

zs
− δs

]
, (7.2)

with the Lorentz factor of the ion γ. The largest possible energy transfer from the incident
particle to the atomic electrons is given by

Qmax ≈
2mec

2β2γ2

1 + [2γme/M ]
(7.3)

with the mass of the nucleon M � me and the geometric mean of all ionization and
excitation potentials of the atom Ĩs. The shell correction term Cs/zs, the density correction
term δs and the correction term β′ for large Z or small β can be neglected, leading to

(
dE

dt

)
Ion

(β ≥ β0) = −2πr2
ecmec

2Z2 1

β

∑
s=H,He

ns

[
ln

(
2mec

2β2γ2Qmax

Ĩ2
s

)
− 2β2

]
. (7.4)

Electrons

Ionization losses for electrons in neutral hydrogen and helium are given by the Bethe-Bloch
formula

(
dE

dt

)
Ion

= −2πr2
ecmec

2 1

β

∑
s=H,He

Zsns

[
ln

(
(γ − 1)β2E2

2I2
s

)
+

1

8

]
(7.5)

with the charge of the nucleus Zs, the gas number density ns, the ionization potential Is,
the total electron energy E, the Lorentz factor γ and the velocity of the electron β = v/c.
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A.2. Coulomb losses

Nuclei

In a completely ionized plasma, the Coulomb collisions are dominated by scattering off
thermal electrons:

(
dE

dt

)
Coul

≈ −4πr2
ecmec

2Z2ne lnΛ
β2

x3
m + β3

, (7.6)

with the electron radius re, the electron rest mass me, the nucleon charge of the projectile
Z, the electron number density in the plasma ne and the definition xm ≡ (3

√
π/4)(1/3) ·√

2kTe/mec2 with the electron temperature Te. The ’Coulomb logarithm’ in a cold plasma
limit reads

lnΛ ≈ 1

2
ln

(
m2
ec

4

πre~2c2ne
· Mγ2β4

M + 2γme

)
, (7.7)

with the nucleon mass M and the nucleon Lorentz factor γ.

Electrons

The Coulomb losses for electrons in a fully ionized medium are given by

(
dE

dt

)
Coul

≈ −2πr2
emec

2Zn
1

β

[
ln

(
Emec

2

4πre~2c2nZ

)
− 3

4

]
, (7.8)

where Zn = ne is the electron number density. For electron losses in a plasma of an
arbitrary temperature, see [172].

A.3. Compton losses

The Compton energy losses can be calculated by using the Klein-Nishina cross section:

dE

dt
=
πr2

emec
2c

2γ2β

∫ ∞
0

dωfγ(ω)(S(γ, ω, k+)− S(γ, ω, k−)), (7.9)

where the background photon distribution fγ(ω) is normalized on the photon number
density as nγ =

∫
dωω2fγ(ω). ω is the energy of the background photon taken in the

electron-rest-mass units, k± = ωγ(1± β) and

S(γ, ω, k) = ω

{(
k +

31

6
+

5

k
+

3

2k2

)
ln(2k + 1)−

11

6
k −

3

k
+

1

12(2k + 1)
+

1

12(2k + 1)2
+ Li2(−2k)

}
−γ

{(
k + 6 +

3

k

)
ln(2k + 1)−

11

6
k +

1

4(2k + 1)
−

1

12(2k + 1)2
+ 2Li2(−2k)

}
,

(7.10)

with the dilogarithm

li2(−2k) = −
∫ −2k

0
dx

1

x
ln(1− x). (7.11)
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A.4. Bremsstrahlung

Energy losses due to electron-proton bremsstrahlung in cold plasma are given the expres-
sions

(
dE

dt

)
Br,ep

= −
2

3
αf r

2
emec

2Z2n8γβ[1− 0.25(γ − 1) + 0.44935(γ − 1)2 − 0.16577(γ − 1)3], for γ ≤ 2,(
dE

dt

)
Br,ep

= −
2

3
αf r

2
emec

2Z2nβ−1[6γln(2γ)− 2γ − 0.2900], for γ ≥ 2.

(7.12)

The electron-electron bremsstrahlung is given by

(
dE

dt

)
Br,ee

= −1

2
αfr

2
emec

2Znβγ∗Qcm(γ∗), (7.13)

where

Qcm(γ∗) = 8
p∗2

γ∗

[
1− 4p∗

3γ∗
+

2

3

(
2 +

p∗2

γ∗2

)
ln(p∗ + γ∗)

]
. (7.14)

γ∗ =
√

(γ + 1)/2, (7.15)

p∗ =
√

(γ − 1)/2, (7.16)

The asterisk denotes the center of mass variable.

A good approximation for the total bremsstrahlung losses (Brtotal = Bree + Brep) in an
ionized gas is given by

(
dE

dt

)
Br,total

≈ −4αfr
2
emec

2Z(Z + 1)nE

(
ln(2γ − 1

3
)

)
. (7.17)

For a neutral gas one can obtain the energy losses by integration over the bremsstrahlung
luminosity

(
dE

dt

)
Br0

= −cβ
∑

s=H,He

ns

∫
dkk

dσs
dk

. (7.18)

A reasonable approximation with a maximal deviation of 10% near E ∼ 70 MeV is

(
dE

dt

)
Br0

= −4αfr
2
emec

2E

(
ln(2γ)− 1

3

) ∑
s=H,He

nsZs(Zs + 1), for γ . 100,(
dE

dt

)
Br0

= −cE
∑

s=H,He

nsMs

Ts
, for γ & 800,

(7.19)

with a linear connection in between. Ms is the atomic mass and Ts ist the radiation length
with TH ≈ 62.8 g/cm2 and THe ≈ 93.1 g/cm2 [74].
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A.5. Synchrotron losses

The energy losses by synchrotron radiation are given by

(
dE

dt

)
Synch

= −32

9
πr2

ecUBγ
2β2, (7.20)

where UB = H2

8π is the energy density of the random magnetic field.
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B. Performance of the Markov Chain Monte Carlo

B.1. Performance of the MH and MTM Algorithm

Figures B.1 and B.2 illustrate the performance as development with time of the MH and
MTM algorithm (k = 8 trials), respectively. Each point corresponds to an evaluated
model for which the transport equation was solved. While the MH algorithm first has
to rummage to interesting regions in parameter space until a characteristic scale of the
fitness is accommodated, the MTM algorithm converges much faster by biasing the local
parameter space.
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Figure B.1.: Performance of the Metropolis-Hastings algorithm. Shown is the Fitness versus the
number of decision illustrating the development of a Markov chain over time. Each
point corresponds to an evaluated model for which the transport equation was solved.
Depending on the decision a model is marked blue (red) if rejected (accepted).
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Figure B.2.: Performance of the Multiple-Try-Metropolis algorithm. Shown is the Fitness versus
the number of decision illustrating the development of a Markov chain over time.
Each point corresponds to an evaluated model for which the transport equation was
solved. The first set consisting of 8 models is marked as gray points. The model
chosen for decision is marked blue (red) if rejected (accepted). Note that the second
set of evaluated models is not shown and the y-scale was cut on the lower edge for
a better visualization.
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B.2. The Gelman-Rubin Diagnostic

For an estimation of the length of the burn-in period the Gelman-Rubin diagnostic is
used [173]. It requires m ≥ 2 Markov chains that are compared in terms of within-chain
and between-chain variances. Convergence is diagnosed as soon as the deviation between
these two variances is sufficiently small and the chains output is indistinguishable, i.e.
independent of the initial starting point.
The within-chain variance W of parameter θ of m Markov chains each with length n is
defined as

W =
1

m

m∑
j=1

s2
j (7.21)

with

s2
j =

1

n− 1

n∑
i=1

(θij − θ̄j)2. (7.22)

Herein θij is the value of parameter θ of the ith entry of Markov chain j and θ̄j the averaged
value of θ over all entries in Markov chain j.

The between-chain variance B reads

B =
n

m− 1

m∑
j=1

(θ̄j − ¯̄θ) (7.23)

with

¯̄θ =
1

m

m∑
j=1

θ̄j . (7.24)

The within-chain and between-chain variance are used to calculate the variance of the
stationary distribution V̂ (θ):

V̂ (θ) =

(
1− 1

n

)
W +

1

n
B. (7.25)

The potential scale reduction factor R̂ is

R̂(θ) =

√
V̂ (θ)

W
. (7.26)

If all chains have reached the target distribution the variance of the stationary distribution
V̂ (θ) should be very close to the within-chain variance W and therefore R̂(θ) ≈ 1 for each
parameter θ. If R̂ is substantially above 1 the chains have not converged and should be
run longer. The maximal recommended deviation of R̂ to 1 depends on the application,
but in general R̂ < 1.05 is used as a rule of thumb for which convergence can be assumed.
In order to estimate the typical burn-in period of the MTM algorithm in combination with
a 16 dimensional, realistic transport model as used in this work, R̂ was calculated for a
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number of 87 Markov chains. Figure B.3 shows R̂ for each of the used 16 parameters as
a function of the length of the Markov chains. The fast drop of R̂ indicates that after a
chain length of ∼ 10 the sampling is independent of the starting point and the Markov
chains sample the same distribution. The relatively fast burn-in process can be affiliated
to the largely chosen step sizes by which the Markov chains move fast away from their
initial starting point. A cross-check was performed by examining the local acceptance
rates which at first drop but approach to constant values after typical chain lengths of the
same order.
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Figure B.3.: Potential scale reduction factor R̂ of the Gelman-Rubin diagnostic. The quick drop
of R̂ indicates that the Markov chains are independent of their initial starting point
and sample the same distribution after a relatively short length. As a rule of thumb
R̂ < 1.05 is a typical value for which the sampled distributions of the particular
Markov chains can be taken to be equal.

B.3. Proposal Functions

The variances of the Gaussian distributed proposal function were set for each parameter to
80% of the corresponding allowed parameter range in order to obtain a sufficient coverage
of the allowed range. A total number of 1,421,149 models were evaluated by 270 Markov
chains of which 15,393 models were accepted by those. The accepted models were used
to calculate an approximation of the covariance matrix. The burn-in phase was taken
to be 12 accepted models according to the Gelman-Rubin diagnostic and was subtracted
before from each chain. The derived covariance matrix and the corresponding correlation
matrix based on 12,150 models are shown in absolute values in figure B.4, respectively.
520 Markov chains were used to sample additional 1,072,938 models according to the
multivariate normal distribution from which 30,521 were accepted. The kd-tree for the
last iteration was built on all models evaluated up to that point and contained 3,938,870
models. These include primarily the models obtained with PFI and PFII but also a large
number of models obtained during the test phase of the MCMC. Additional 480 Markov
chains were run to sample another 5,042,021 models from which 24,221 were accepted.
Table B.1 summarizes the quoted numbers.
In the following, the used proposal functions are compared in terms of their acceptance rate,
coverage and the quality of the sampled models in general. Figure B.5 shows exemplarily
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the number of evaluated and accepted models in the D0-α0 plane for each of the three
proposal functions. By using PFI the whole allowed range was covered whereby the Markov
chains show a preferred region in the parameter space indicated by the large number of
proposed models. The number of accepted models points accordingly to a more constrained
region but are washy distributed over a wide range. PFII takes correlations between the
transport parameters into account and yields characteristic step sizes for a more efficient
sampling of interesting regions of the parameter space. By the large amount of sampled
models the approximated target distribution became sufficiently precise and PFIII allowed
an exceedingly concentration on interesting regions.
Figure B.6 shows the sampled χ2 values per Ndof for each proposal function. As expected
from the concentrations on particular regions in parameter space the quality of the sampled
models increased by PFII and a further increase was obtained by PFIII.

Table B.1.: Summary of the number of sampled and accepted models by MCMC.

Proposal function Markov chains Sampled models Accepted models

Gaussian distribution 270 1,421,149 15,393

Multivariate normal distribution 520 1,072,938 30,521

Binary-space-partitioning-based 480 5,042,021 24,221
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Figure B.4.: The covariance matrix and the corresponding correlation matrix used for the MCMC
sampling. The largest correlations can be found between the diffusion constant D0

and the injection indices α0 and α1. Although it is known that a correlation exists
between D0 and L the approximated correlation was determined to be only 0.04 since
the correlation is of non-linear kind and the shown Pearson-correlation is merely
sensitive to linear correlations.
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Figure B.5.: The distribution of sampled and accepted models in the plane of D0-α0. The z-axis
corresponds to the number of sampled (left) and accepted models (right) for the
three proposal functions PFI (top), PFII (middle) and PFIII (bottom).

Figure B.6.: The distribution of the sampled χ2 values per Ndof. By using more information
about the parameter space obtained by sampling with the previous proposal func-
tion(s), the quality of the sampled models increased exceedingly.
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Figure B.7.: Acceptance rates of the proposal functions. While the acceptance rates of the Gaus-
sian proposal function can be influenced by the chosen steps sizes, the acceptances
rates of the other proposal functions are completely determined by the algorithm.
Sampling according to the multivariate normal distribution yielded the largest ac-
ceptance rates around 50% whereas the binary-space-partitioning-based proposal
function yielded rather low rates around 8%.
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C. Minimal χ2

C.1. Minimal χ2 separated by observable

Figure C.8.: Minimal χ2 values per Ndof in the plane of L − log(D0) for all observables and
separated by observable.
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Figure C.9.: Minimal χ2 values per Ndof in the plane of vα − log(D0) for all observables and
separated by observable.
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Figure C.10.: Minimal χ2 values per Ndof in the plane of dV/dz − log(D0) for all observables
and separated by observable.
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Figure C.11.: Minimal χ2 values per Ndof in the plane of δl − log(D0) for all observables and
separated by observable.
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Figure C.12.: Minimal χ2 values per Ndof in the plane of α1−δl for all observables and separated
by observable.
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Figure C.13.: Minimal χ2 values per Ndof in the plane of α0−vα for all observables and separated
by observable.
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C.2. Minimal χ2 for each parameter combination

Figure C.14.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.15.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.16.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.17.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.18.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.19.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup (continued on
next page).
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Figure C.20.: Shown is the combined, minimal χ2 value per degrees of freedom for selected pa-
rameter combinations of the 16 dimensional transport model setup.
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C.3. Minimal χ2 of the minimal transport setup separated by observable

Figure C.21.: Minimal χ2 per number of data points of the minimal transport setup separated
by the proton spectrum (left) and the ratio B/C (right)
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Figure C.22.: Minimal χ2 per number of data points of the minimal transport setup separated
by the proton spectrum (left) and the ratio B/C (right)
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D. Estimation of Synchrotron Energy Losses by Observations

For a correct estimation of synchrotron induced energy losses the parameters of the applied
magnetic field (eq. 3.21) were tuned to best match the synchrotron foreground maps of
9-year WMAP data and the Haslam synchrotron map. The positron and electron densi-
ties in steady-state derived by solving the transport equation for a reasonable transport
model were extended by additional components to describe the electron and positron data
measured by PAMELA and the high energy positron fraction measured by AMS-02. The
intensity I of the synchrotron emission in particular directions of the sky (l,b) was calcu-
lated by the integration of the emissivity ε(ν) along the LOS for an observer at the solar
position:

I =

∫
LOS

ε(ν)ds (7.27)

The emissivity ε(ν, γ) for a given synchrotron frequency ν and electron (positron) energy
of E = mc2γ is

ε(ν, γ) =
√

3
e3

mc2
BF (x), (7.28)

with the regular magnetic field B. F (x) is defined in terms of the modified Bessel function
K5/3:

F (x) = x

∫ ∞
x

K5/3(x′)dx′, (7.29)

with x defined as x = ν/νc with

νc =
3

4π

e

mc
Bγ2. (7.30)

The calculation is self-consistently performed by applying the same magnetic field strengths
for the calculation of the synchrotron emission and the synchrotron energy losses during
propagating.
The regions which were considered in the fit are illustrated in fig. D.23. Cutted out are
the Galactic Center, the galactic bar as well as the major part of the WMAP-haze: gi-
ant bubble shaped regions above and below the Galactic Disc from which an excess of
microwave emission with a slightly harder photon spectrum can be observed. These struc-
tures were also seen by FERMI in high energetic gamma-rays and became known as the
Fermi Bubbles. Their origin is ascribed to a fresh CR component which is not considered
in the models whereby the relevant sky regions have to be excluded. Although the size of
the bubbles may be larger at synchrotron frequencies a spatial template was used which
was derived by gamma-ray observations [169] and masks the major part of the bubbles. In
addition, a spatial masking of strong point sources was adopted using an exclusion mask1

provided by [128].
It was found that the parameters of the magnetic field could not be tuned to match the
overall observed spectral shape of the synchrotron emission. Variations of the assumed
electron and positron densities, still conform with locally measured spectra, were addi-
tionally checked but were found to affect the results only marginally compared to the
strong influence of the magnetic field. Fig. D.24 shows the results of the best-fit model

1wmap_temperature_source_mask_r9_7yr_v4.fits
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with B0 = 10.5 µG, r0 = 7.97 kpc and z0 = 0.79 kpc. Especially in regions including the
Galactic Disc (regions B and C) the demanded spectrum is found to be slightly harder
whereby the Haslam data are overestimated. Only at intermediate latitudes and at the
galactic poles (regions E and F) the spectral shape is matched reasonably well due to the
relatively fast drop of the magnetic field strength with z. Fig. D.25 shows skymaps of the
synchrotron emission at 408 MHz, 23 GHz, 41 GHz and 94 GHz for the data, the model
prediction and the absolute value of the normalized residual, defined as |data-model|/data.
The complexity of the synchrotron sky compared to the simple model becomes apparent.
Whereas at 408 MHz the emission in the whole Galactic Disc up to latitudes of 40◦ is
overestimated the emission in the same region is reasonably described at higher frequen-
cies. At those frequencies two structures are visible: the WMAP haze with an increased
emission and a large, butterfly-shaped structure at negative longitudes with a reduced
emission, overestimated by the model. The synchrotron emission is by far not perfectly
described and the results call for a more extensive study. However, this study does not
aim to perfectly model the synchrotron emission but rather to estimate the synchrotron
induced energy losses during lepton propagation.
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Figure D.23.: The 6 Considered sky regions A-F for the fit of the magnetic field parameters to
match the synchrotron data. The white areas are excluded from the fit, respec-
tively.
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Figure D.24.: Model predictions for the synchrotron spectrum in the 6 sky regions A-F. At low
frequencies the emission is overestimated in regions in or close to the Galactic
Disc. Above galactic latitudes of 20◦ the spectral shape is predicted reasonably
well. The parameters of the magnetic field for which the best match to the Haslam
and WMAP spectra could be achieved are B0 = 10.5 µG, r0 = 7.97 kpc and
z0 = 0.79 kpc.
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Figure D.25.: Skymaps of the synchrotron emission at 408 MHz, 23 GHz, 41 GHz and 94 GHz.
Shown are the data, the model prediction and the absolute value of the normalized
residual, defined as |data-model|/data.
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E. Anisotropy Computations

E.1. Sum flux of e+ and e−

An expression for the anisotropy ∆ of a single source in case of isotropic diffusion can be
derived by utilizing that the flux F is the first moment of the intensity I with respect to
the solid angle dΩ [174]:

F (0)− F (Θ) =

∫
I(Θ)cos(Θ)dΩ

= 2π

∫ π

0
I(Θ)cos(Θ)sin(Θ)dΘ,

(7.31)

where F (Θ) is the flux from the direction given by the angle Θ. For a dipole anisotropy
with I = Ī(1 + ∆cos(Θ)) with the mean intensity Ī = 〈I(Θ)〉 the expression reads

F (0)− F (Θ) = 2π

∫ π

0
Ī(1 + ∆cos(Θ))cos(Θ)sin(Θ)dΘ

=
4π

3
∆Ī .

(7.32)

The flux in case of isotropic diffusion with the rigidity dependent diffusion coefficient D is
given by

F (0)− F (Θ) = D
∣∣∣~∇N ∣∣∣ , (7.33)

with the particle number density N. By equalizing equations 7.32 and 7.33 and exploiting
the relation between N and Ī given by

N =
1

v

∫
IdΩ =

4πĪ

v
, (7.34)

the final expression reads

∆ =
3D

c

∣∣∣~∇N ∣∣∣
N

,
(7.35)

if the particles are assumed to be highly relativistic and the average particle velocity v is
approximated to v = c. The total anisotropy ∆tot of several sources i is accordingly

∆tot =
3D

c

∑
i

∣∣∣~∇Ni

∣∣∣∑
iNi

. (7.36)

E.2. Ratio of e+ and e−

For the calculation of the anisotropy of the ratio e+/e−, as for instance measured by
AMS-02, an approximation is used in which the background contribution is assumed to
be isotropic [175]. The fluxes of e+ and e−, denoted as F+ and F−, can be written as the
sum of an isotropic flux D± and a signal S with a dipole anisotropy ∆:
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F± = D± + S

= D± + S0(1 + ∆cos(Θ)).
(7.37)

The flux F+ can than be expressed as

F+ = (D+ + S0)(1 +
S0

D+ + S0
)∆cos(Θ). (7.38)

With the definitions

d+ =
S0

D+ + S0

r+ =
D+ + S0

D− + S0
,

(7.39)

the ratio of the fluxes F+/F− is

F+

F−
= r+

1 + d+∆cos(Θ)

1 + d+r+∆cos(Θ)
. (7.40)

With the approximation d+ � 1 the ratio can be expressed as

F+

F−
= r+ [1 + (1− r+)d+∆cos(θ)] (7.41)

and the effective dipole anisotropy for the ratio ∆e+/e− can be identified as

∆e+/e− = (1− r+)d+∆. (7.42)
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F. Illustration of Selected Dark Matter Annihilation Models

Scans of the DM particle mass between 0 and 1 PeV/c2 were performed and the scaling
of the resulting, characteristic electron, positron and antiproton spectra were optimized to
the data. The χ2 calculation includes the complete energy range of lepton sum flux and the
positron fraction as measured by AMS-02 and antiproton measurements by PAMELA. The
large χ2/Ndof values for various masses and optimized branching fractions are shown in
fig. 5.16 and point out, that none of the models is able to describe the spectral shape of the
lepton data in the whole energy range without violating constraints from the antiproton
flux.
Three models will be shown exemplarily: A leptophilic model including annihilations into
e± and τ± (fig. F.26), the best-fit model which includes additionally annihilations into bb̄
(fig. F.27) and a model including annihilations into gauge bosons and quarks optimized
to the lepton data (fig. F.28). The latter predicts a large amount of antiprotons by which
the PAMELA data are dramatically overshot and the model is strongly disfavoured.
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Figure F.26.: Leptophilic DM model with a particle mass of 80 GeV/c2 and its poor description
of the positron fraction. An additional annihilation into µ± as also allowed in lep-
tophilic models was found to not improve the fit. Leptophilic annihilation scenarios
with DM masses of the order of 100 GeV/c2 can therefore explain an increase in
the positron fraction but can not account for the made observations in the whole
energy range.
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Figure F.27.: Best-fit model optimized to the lepton data in the whole energy range and con-
straints from antiprotons. Compared to a the leptophilic model an additional anni-
hilation into bb̄ was found to improve the fit at energies of a few GeV. Even though
the low energy antiproton data can be matched by assuming an exceedingly high
modulation potential of 2000 MV, the intermediate data are overshot and constrain
the contribution from bb̄ annihilations.
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Figure F.28.: DM annihilation model into leptons, gauge bosons and quarks with a DM parti-
cle mass of 300 GeV/c2. While the positron fraction can be well reproduced up
to energies of around 100 GeV, the antiproton flux as measured by PAMELA is
dramatically overshot.
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G. XCO factor and Gamma-Ray Latitude Profiles

Figure G.29.: The calibration ratio XCO as a function of the galactocentric radius. In [165] a
radial rise of XCO (solid black line) was assumed to explain the gamma-ray data.
At around 10 kpc a sharp rise had to be adopted. In the present work a constant
value of XCO = 1.9 · 1020cm−2(K km s−1)−1 (dashed black line) is assumed. The
colored lines represent models used by other groups. Figure taken from [165].

(a)

(b)

Figure G.30.: Latitude profile of the gamma-ray and nuclei optimized model. In (a) the profile is
shown for |l| > 50◦ and the data are well described by the model. In (b) the profile
is shown for |l| < 30◦ where the profile is influenced by the Fermi Bubbles. While
for |b| > 55◦ the data can be matched, the flux is underestimated for |b| < 55◦

due to an increased gamma-ray emission originating from the bubbles. The height
of the bubbles determined by the FERMI-LAT collaboration is around |b| = 55◦

[176] in agreement with this analysis.
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