
From Context to Content: Designing
Sensor Support for Reflective Learning

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Lars Müller
geb. in Crivitz

Hauptreferent: Prof. Dr. Wilhelm Stork
Korreferentin: Prof. Dr. Monica Divitini

Tag der mündlichen Prüfung: 21. November 2014





Abstract
Reflection can help professionals to learn more effectively during
their on-the-job training. This thesis examines how wearable
sensor systems can support reflective learning by monitoring
work experiences. A design space is defined that guides de-
signers to build systems that can provide content for reflection
by selecting the relevant context, the appropriate capturing
method, and visualizations that trigger reflection and can lead
to new insights on work practices. Wearable sensors and ap-
plications have been developed and evaluated to capture the
affective and social context in workplace settings. Healthcare
professionals have been selected as target group because reflec-
tive practice is an important part of their hands-on training.
An ethnographic study explored the use of wearable ECG

sensors in a stroke unit. As a reaction to the dynamic require-
ments at the workplace, a rapid-prototyping-framework was
created to facilitate the development of mobile applications
that process psychophysiological data.

In addition, a system based on wearable low-power proximity
sensors was developed to capture social contacts in care homes.
The system enables a quantitative analysis of care practices
and demonstrated in four studies that it supports reflective
learning in care homes. Carers reflected on their work practices
and gained new insights during the analysis of the sensor data.

This thesis explores a new application domain for wearable
sensor systems. It is a first step towards the generation of
learning content from sensor data.
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Zusammenfassung
Durch die Reflexion von Erfahrungen kann das arbeitsbeglei-
tende Lernen effektiver werden. Diese Arbeit untersucht, wie
tragbare Sensoren dieses Lernen unterstützen können, indem
sie den Arbeitsalltag erfassen und die resultierenden Daten
visualisiert werden. Zu diesem Zweck wurde ein Entwurfs-
raum definiert, der den Entwicklungsprozess in die Auswahl
der Daten, der Erfassungsmethode und der geeigneten Visu-
alisierung strukturiert. Darauf aufbauend wurden tragbare
Sensoren und Anwendungen entwickelt und evaluiert, die den
affektiven und sozialen Kontext im Arbeitsumfeld erfassen.
Das Gesundheitswesen dient als Anwendungsfall, da in diesem
Bereich die Reflexion ein elementarer Teil der praktischen Aus-
bildung ist.

Eine ethnographische Studie evaluierte den Einsatz von trag-
baren EKG Systemen zur Erregungserkennung in einer Schla-
ganfalleinheit. Um agiler auf die Anforderungen in der Praxis
reagieren zu können, wurde ein Rapid-Prototyping-Framework
für mobile Anwendungen entwickelt, die physiologische Daten
verarbeiten.

Darüber hinaus wurde ein System zur Messung der sozialen
Kontakte in der Altenpflege entwickelt, das auf tragbaren
Näherungssensoren aufbaut. Damit wird eine quantitative
Erfassung der Pflege möglich. Vier Studien zeigten, dass das
System das reflexive Lernen unterstützt. Die teilnehmenden
Pfleger reflektierten über ihren Arbeitsalltag und gewannen
neue Einsichten durch die Analyse der aufgezeichneten Daten.

Diese Arbeit ist ein erster Schritt, um Sensordaten als Lern-
inhalte zu verwenden. Sie eröffnet damit ein neues Anwen-
dungsfeld für tragbare Sensorsysteme.
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1 Introduction
Learning is mainly associated with formal education at schools or uni-
versities, but learning is a lifelong activity, which is largely informal and
work-specific. The studies by Eraut [1] demonstrated that “most workplace
learning occurs on the job rather than off the job.” Hence, work and learn-
ing are intertwined; experiences at work are the source of new insights.
However, these insights are often not attributed to learning because the
gained knowledge is tacit or assumed to be part of a person’s existing
capability. Furthermore, the learning process is not confined to a specific
place. Learning is not facilitated by a teacher and there is no syllabus for
instruction. The content that provides new knowledge comes not from a
book or other formal learning content but from practical experiences. The
learner drives the experiential learning process by creating new experiences
and aims to bring them into continuity with her existing knowledge [2].

1.1 Motivation
In hospitals and care homes, on-the-job training and reflective practice are
important activities for improving the quality of care and support personal
and organizational competence development [3]. Nurses, physicians, and
care staff are working in a challenging environment in which quick decisions
are often vital. In care homes, reflective practice helps to identify one’s
own shortcomings and tailor custom solutions for individual patients and
residents. Reflecting on work can facilitate learning from experience by
drawing additional insights from a situation. Reflective learning refers to
“those intellectual and affective activities in which individuals engage to
explore their experiences in order to lead to new understandings and ap-
preciations” [4]. The individual carefully re-evaluates experiences to come
to new outcomes. The outcomes of reflection range from new knowledge
to the decision to react differently in future similar situations. While a
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1 Introduction

number of reflective learning theories [5, 4, 6] describe reflection and the
underlying mechanisms, the technical support is so far very limited.
From the beginning, diary writing has been a key activity in reflective

practice. Recently, handwritten diaries have been replaced by mobile
applications [7] and automatic image capturing systems like the Sense-
Cam [8] or Google Glass [9]. Mobile diary applications require users to
key in data manually and can only record what is already known to the
user. These applications act either in the form of a memory aid or help to
identify long term trends using visualizations. Nevertheless, many users
still prefer writing to typing or flinch at the thought of manually tracking
data. Image-capturing systems produce an overwhelming amount of data
that is difficult to aggregate. Moreover, these systems cannot be used in
many work environments without violating the privacy of third parties that
do not agree with their images being used or cannot be asked beforehand.

A growing number of sensors are finding their way into our daily lives to
record activity and allow applications to adapt to the current context [10].
Current smartphones include sensors to measure the acceleration, the
magnetic field, and many more. Moreover, the microphone [11] and the
radio interfaces [12] can be used as sensors as well. In addition, wearable
sensors count steps [13] or measure the heart rate [14]. Until now, the
usage of these sensors was focused on well-being and fitness by encouraging
reflection in our private lives. If sensors could support reflection at work
in a similar manner, professionals would be able to learn more effectively
on the job.

Ubiquitous computing has created a wide variety of sensors that can be
applied in the work process [15, 16]. These sensors often aim at enabling
the system to assist according to the user’s state rather than empowering
the user with additional knowledge. However, sensors can record data at a
much more flexible level of detail than diaries and can provide completely
new perspectives on one’s own work practices. Sensors do not need user
interaction and, therefore, can record data in the background without
interfering with the primary work processes.
Sensor based approaches have been used in persuasive technology (see

Section 3.3.2), but a persuasive system automatically interprets sensor
data to guide behavior. The user does not have to understand the data, but
only to believe that the systems analysis is correct. Hence, the outcomes
are fixed and do not account for the variety of insights that are required

2



1.2 Research Questions

at the particular workplace. In addition, the predetermined outcomes may
not be relevant to an professional because the relevancy of outcomes for
an individual depends on the personality and existing work practices. For
instance, problems might be unknown or fuzzy until the right data are
inspected. In conclusion, persuasive technology has shown how sensors can
change behavior in a predetermined manner. They provide useful tools
and methods to design technology that facilitates behavior change but
selecting the right sensors to support reflective learning and introducing
them into the work process is an open challenge.

1.2 Research Questions
This thesis examines how wearable sensors can support professionals to
reflect on their work by providing additional content. In each work domain,
professionals face unique requirements and challenges. Reflecting on the
right experience can help workers to overcome these challenges. This thesis
aims at developing an approach to design wearable, sensor-based reflection
support in a manner that can be generalized to other domains. Towards
this end, the following three research questions (RQ) are addressed:

1. RQ1: How can we design reflection support using captured data?

2. RQ2: Can sensors capture relevant data for reflection in workplace
settings?

3. RQ3: What is the impact of the captured data on reflection and
learning in a particular workplace setting?

In general, sensor-based reflection support has to be tailored to the
particular workplace to capture relevant data for professionals. Never-
theless, the desired design approach should aim at sensor systems that
have the potential to be used in other work environments with minimal
changes. Sensor systems should be developed and tested in the workplace
to evaluate the design approach, gain insights about the acceptance of the
systems in practice, and finally measure the desired impact on learning.

3



1 Introduction

1.3 Research Approach
Reflection and the possible support depend on the particular experience
that is reflected upon. Therefore, we followed an user centered design [17]
to build sensor based computer supported reflective learning (CSRL)
applications. We used an iterative approach based on a strong collabora-
tion with end-users. The development and evaluation of new capturing
approaches helped to understand the requirements when designing sensor-
based reflection support, as addressed by RQ1. Multiple CSRL applications
are required to generalize findings beyond the individual, the particular
challenges found in one use case and one technology.
The healthcare domain was selected as the target context because

(a) reflective practice is seen as promising in this field [3], and (b) it is
one of many non- or little computerized work environments. Healthcare
professionals increasingly use computers for their documentation, but they
are not looking at a computer screen during most of the time. Two design
studies adapted wearable sensors and developed applications according to
the needs of a stroke unit (see Chapter 5) and care staff in care homes
(see Chapter 6).

The developed systems have been evaluated in the respective target
context. Sensor technology and feasibility studies can and must be explored
in lab or research environments, but the real impact of a developed system
must be studied in the target context. Rogers et al. [18] emphasize that
most insights for context-sensitive systems are possible only if they are
evaluated in the respective target context. These in situ studies must
account for the unpredictable factors that are present only in the field
by using broad evaluation approaches. Deliberate broad questionnaires,
observations, and semi-structured interviews can capture those effects. In
situ studies are prone to result in noisy data because of undesired effects
induced by uncontrolled variables. Nevertheless, these results provide the
most realistic perspective on the actual impact of a system regarding its
original design goal, which is, as stated in RQ3, the support of reflective
learning at the workplace.

4



1.4 Contribution

1.4 Contribution
The core contributions of the thesis are: (a) a design space to structure
the conception and implementation of sensor based reflection support, (b)
two design studies that build and evaluate CSRL applications to capture
affective and social context at work, and (c) insights on the impact of
data captured with these applications on the reflective learning process.
All studies within this thesis have been conducted during the normal
operation in the workplace setting. Therefore, the results provide a realistic
impression of the acceptance and impact of the developed application and
sensor concepts.

The thesis is inspired by the design methods for persuasive technology [19,
20], which also aims to influence behavior by data capturing. However, the
design methods for persuasive technology are of limited use for reflective
learning because they assume a predetermined target behavior, whereas
reflective learning aims at identifying problem specific alternatives. A
designer of sensor supported CSRL applications has to develop a technology
that accounts for workplace-specific requirements and provides insights
that can be only estimated at design time. The developed design space
structures the resulting complexity and provides guidance on options and
pitfalls.
Existing approaches that facilitate reflection with data capturing use

camera images [8] or self-reporting applications [7], which are not applicable
in most workplace-settings. In contrast, the conducted design studies use
wearable sensors to facilitate reflective learning. The design studies adapt
and evaluate sensor technology from affective computing and ubiquitous
computing to capture data on the affective and social context in workplace
settings. The design studies resulted in a new wearable sensor system for
low-computerized environments that improves learning and reflection at
work.

Until now, sensors have been used in technology enhanced learning
(TEL) either to select content [21], to adapt content [22], or to train
specific skills such as emotion regulation [23]. The impact of sensor data
on reflection and learning has not been studied before.

5



1 Introduction

1.5 Structure of the Thesis
Chapter 2 introduces the theory behind reflective learning, provides an
introduction into ubiquitous computing, and explains the relevant aspects
of affective computing. Building on these fundamentals, Chapter 3 presents
the related work in form of existing systems, relevant sensor technologies,
and design methods. Figure 1.1 depicts the structure of the following
main chapters 4-6 and their relation to the research questions defined in
Section 1.2. The first research question is addressed in Chapter 4, which
analyzes the requirements, describes the developed design space, and how
the design space was used to design the prototypes that are described in
the following chapters. The design study in Chapter 5 explores options to
capture affective context at work. It presents an ethnographically inspired
study with wearable heart rate sensors in a stroke unit and a mobile
framework to rapidly prototype such applications. Chapter 6 sheds light
on the role of social contacts for reflection. A new proximity sensor is
iteratively developed and improved in multiple care home studies. The
final studies evaluate the impact on learning. In Chapter 7, we discuss
the insights, and the conclusion in Chapter 8 summarizes the results and
outlines how future work can built on these results.

RQ1:xDesign
Support

RQ2:xCapturing
Prototypes

RQ3:xImpactxonx
Reflective Learning

AffectivexContext
MChapterx5b MChapterx6b

Proximity
Sensors

CaReflectx
System

Ethnographic
SensorxStudy

Mobile
xAffect

MChapterx4b
DesignxSpaceConcept

SocialxContext

Figure 1.1: Structure of the thesis in relation to research questions
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2 Background and Theory
This thesis can be placed within the overlapping context of three fields of
research: reflective learning, ubiquitous computing, and affective comput-
ing. This chapter provides the background and theory from these fields as
related to this thesis. The following sections build a general understanding
of the tools and research approaches used in the remainder of the thesis.
Reflective learning provides the theoretical underpinning for this thesis.
The reflective learning theories that are briefly presented below have devel-
oped over several decades. While focusing on the pedagogical aspects the
potential role of technology has been mainly ignored. Conversely, ubiq-
uitous computing was driven by the technological vision of Mark Weiser
[24]. Affective computing as defined by Picard [25] strives to improve the
human computer interaction by including affective aspects. Ubiquitous
and affective computing have developed the sensors and algorithms that
are the basis of our design studies.

There is a significant overlap between affective and ubiquitous computing
in the sense that ubiquitous computing has provided technology that can
be used within affective computing. Conversely, there are so far few
connections between reflective learning theories and the two technology
driven research fields. This thesis aims to close this gap. The theoretical
considerations from reflective learning theory can be put to use by building
on the technical advances in the domain of ubiquitous computing and
affective computing.

2.1 Reflective Learning
When referring to learning in this thesis, I refer to a process that Kolb [5]
defines as follows:

“Learning is the process whereby knowledge is created through
transformation of experience.”

7



2 Background and Theory

Reflective learning or learning by reflection refers to a set of learning
theories that have evolved over several decades resulting in a variety of
definitions [2, 5, 4, 6]. Hence, it is difficult to define a shared understanding
of reflection. In the following sections, the most important approaches
are briefly summarized. A detailed description and discussion of reflective
learning theories can be found in [26]. The presented theories focus on
the concept of learning from experience and refer to a cyclic or iterative
approach to such learning.

2.1.1 Experiential Learning
The origins of reflective learning refer back to the idea of experiential
education presented by Dewey [2]. In 1938, Dewey summarized his thoughts
on the connection of experience and education. He argued that learning
should be tailored to the existing knowledge and experience of a learner by
taking the individual experiences into account to build on them. According
to Dewey, a continuity of experiences that build on one another leads to
the most effective learning. Existing knowledge is confronted with new
experiences that in the best case leads to learning. Dewey writes

“Continuity and interaction in their active union with each
other provide the measure to educative significance and value
of the experience.”

Dewey’s work was mainly focused on formal learning scenarios and aimed to
advise the educator. He argued that teachers should use a less authoritarian
style and encourage reflective thinking. His work was a starting point
to introduce reflection into formal training and helped to conceptualize
experience as an important entity in education.
Kolb [27] was inspired by the work of Dewey and defined experiential

learning as a cyclic process, as depicted in Figure 2.1. Therefore, he
emphasized the learning process instead of the outcomes. According to the
defined four-stage cycle, concrete experiences are turned into observations
and reflections that serve as the basis for the following formation of
abstract concepts and generalizations. The cycle is closed by testing these
implications in new situations which leads to new experiences.
Kolb’s model [5] targets not only formal learning, but also refers to

organization development as well as training. Drawing from Dewey, Kolb

8



2.1 Reflective Learning

Concrete experience

Testing implications
of concepts in new 
situations

Observations and
reflections

Formation of abstract
concepts and generalizations

Figure 2.1: The experiential learning model, according to Kolb [27]

defines reflection as a process that spans education, work and personal
development. This broader scope made it attractive for a number of
domains that deal with knowledge that is difficult to formalize. For
instance project management can be only partially learned from books.
Hence, business schools and the industry employ business simulation
games to create this experience artificially [28]. Similar models are used
in case-based learning in hospitals [29].
Professional training programs in a wide range of disciplines strive to

teach employees to reflect in action (while doing something) and on action
(after doing it) [6]. Daudelin [30] presents one approach of introducing
reflective practice. Her work resulted in the following definition of reflection:
“the process of stepping back from an experience to ponder, carefully and
persistently, its meaning to the self through the development of inferences;
learning is the creation of meaning from past or current events that serves
as a guide for future behavior".

2.1.2 Reflective Learning and Emotion
Emotions and the motivation to reflect are critical aspects of the reflective
process. They can trigger reflection but can also be a barrier to reflec-
tion. Experiences might be skewed because they are tightly connected
to emotions that prevent an objective analysis. While Kolb[27] said that
experiential learning has to integrate “the cognitive and socio-emotional
perspectives on learning”, these components are not an explicit part of his
model.

Boud et al.[4] consider the complete cognitive process including affective

9



2 Background and Theory

aspects. According to their model, reflective learning refers to “those
intellectual and affective activities in which individuals engage to explore
their experiences in order to lead to new understandings and appreciations”.
Figure 2.2 shows the reflective process in relation to experiences and
outcomes. The reflective process is based on the experiences of the learner,
which are “the total response of a person to a situation, including behavior,
ideas and feelings.” The goal of the three-stage reflective process is to re-
evaluate experiences to create outcomes. Outcomes can come in cognitive,
affective or behavioral form.
The reflective process itself consists of three steps that have to be

repeated for each experience. In the first step, the learner returns to an
experience by recalling details about an event or incident. Experiences are
often blurred or skewed by the learner’s own emotions. The learner should
become aware of emotions without judging them or the experience. In the
second step, feelings are evaluated and analyzed. Positive feeling are used
to support the reflective process. Articulation of the negative feelings can
help to remove them and continue the process. The third and final step,
is the re-examination of experiences (i.e., the analysis of the experience
in the light of one’s knowledge). These three steps may repeat several
times before the learner achieves a clear perspective of an experience and
generate outcomes.
The described outcomes are mainly intangible, like the experiences

and the reflection process itself. For instance, a new perspective only
becomes apparent by articulating it or by changing behavior. There might
be outcomes that lack the commitment to action and therefore do not

ReturningCtoCexperience
AttendingCtoCfeelings
-CCUtilizingCpositiveC
CCCfeelings
-CCRemovingCobstructingC
feelings
Re-evaluatingCexperiences

BehaviourC
Ideas

Feelings

NewCperspectivesConC
experience

ChangeCinCbehaviour
ReadinessCforCapplication

CommitmentCtoCaction

Experience(s) ReflectiveCprocess Outcomes

Figure 2.2: Reflection process in context, according to Boud [4]
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2.1 Reflective Learning

result in an observable change. However, these changes in the cognitive
framework of a learner will influence the behavior in the long term.

The start of the reflection process is a critical point for tool support that
initiates the return to experiences. Boud et al. do not explicitly define the
beginning of the reflection process because “most events which precipitate
reflection arise out of normal occurrences of one’s life.” However, the
provided examples can be easily linked to cognitive dissonance theory [31].
Cognitive dissonance theory describes how a mismatch between attitudes
and behavior could lead to rethinking of attitudes and experiences. The
mismatch is perceived as psychological discomfort (dissonance), motivates
a reconsideration of existing attitudes and can trigger the reflective process.
The environment can trigger a reflective process by creating an awareness
of a discrepancy that leads to a dissonance in the cognitive system of the
learner. Examples for such discrepancies are knowledge gaps, unfulfilled
expectations or positive surprises such as improvements in productivity or
well-being.

2.1.3 Computer Supported Reflective Learning
The previously mentioned theories developed at a time when data capturing
meant note-taking with a pen and paper. Reflection was mainly based
on cognitive artifacts that had to be reviewed and sorted. Note-taking
is possible in only a limited number of work contexts. In the important
situations employees are most likely too busy to take notes. For instance
a nurse in a hospital has little time to review her tasks at work and even
less time to take notes on important events during her shift. Technology
can play an important role in capturing event data, structuring that data
and sharing it with others. Hence, computer support should become a
factor in the theoretical considerations.
The MIRROR project [32] picked up on reflective learning theories to

integrate these theories and the current technology. The resulting model
for computer supported reflective learning (CSRL) [33] is depicted in
Figure 2.3. The CSRL model represents reflective learning as a cyclic
four-stage process, similar to the Kolb cycle [27]. The “Plan and Do Work”
stage is the source of new experiences and accompanying data. Trigger
“Initiate Reflection” and lead to the start of a “Reflection Session,” which
in turn leads to outcomes that can result in a change of behavior.
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Figure 2.3: Model of computer supported reflective learning (CSRL) by
Krogstie et al. [33]

The reflection session can be conducted as an individual, in a group, or
on behalf of the organization. This setting, the location, and the more-or-
less defined objective form the frame of the reflection session. In the other
four stages, new reflection sessions might be triggered that differ in their
frame. For instance, a group reflection may trigger an individual reflection
by one employee on a related topic. Prilla et al. [34] discuss the transitions
between the three levels (individual, collaborative, and organizational) in
depth.

The model describes how computers can support reflection at the work-
place. The four stages outline the main points in the process, in which
technology can facilitate reflection. Data can be captured by technology
and become part of the reflection frame. The planning or setup of a
reflection session can be supported. The reflection session itself benefits
from visualizations and further tools to analyze the experience in depth.
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The outcomes of a reflection session can again be stored and turned into
tasks to support an actual behavior change. Triggers are the elements that
connect different reflection cycles. Data that contrast the learner’s percep-
tion can act as such a reflection trigger. A more comprehensive overview
and discussion of the possible options to support reflective learning by
computers can be found in [35].

2.2 Ubiquitous Computing
Ubiquitous computing describes a vision by Marc Weiser [24] of computers
that become smaller and embedded in everyday objects. As a result, the
computer vanishes from the desk and instead becomes part of it. The user’s
intentions are inferred directly from the user’s actions instead of using the
mouse and keyboard, thus enabling users to interact more naturally with
computers.
The following sections introduce concepts and research directions in

ubiquitous computing that are the technological basis of the sensor systems
in our design studies. Context-aware computing involves a plethora of
sensor technologies to capture context. Moreover, it defines the technical
term context as it is used in this thesis. The proximity sensors in Chapter 6
can be seen as an application of wireless indoor localization technologies.
Furthermore, the proximity sensors form a dynamic sensor network that has
to optimize media access and duty cycles to minimize power consumption.
This is a classic research topic in sensor networks. In addition, the proximity
sensors and the ECG sensors used in the first design study are wearable
devices. The section 2.2.4 introduces the origins of wearable computing,
the role of smartwatches, and the Chronos hardware, which is the basis
for the proximity sensors.
Weiser [36] called ubiquitous computing the third wave of computing.

In the first wave, big mainframes dominated that were operated from
terminals. Computing was centralized and only used by experts. In the
second stage, the main frames were replaced by much smaller personal
computers. The computational power was no longer confined in computer
centers. A much wider range of users could afford and use a computer.
Instead of central main frames, computers were standing on a growing
number of desks. Ubiquitous computing, as the third wave, follows this
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trend. Computing capabilities become even smaller and more distributed.
The computer itself is distributed in a network of small computational
units. These small computational units can cooperate and be combined as
needed by the user.
Many of the predictions of ubiquitous computing have come true. For

instance, Weiser [24] predicted that there will be three classes of ubiquitous
devices, categorized by the size of their display:

• inch scale devices, such as a post it notes
• foot scale devices, such as tablets that mimic the properties of a

sheet of paper
• yard scale devices, such as public display that can act as digital

blackboards

Today, large public displays are becoming more common. For example,
they are found as dynamic banners for advertisements or as information
sources in airports and train stations. Tablets such as the Apple iPad are
becoming the accessible alternative to PCs. While the variety of mobile
phones and smart watches is coming close to the inch scale, new fitness
tracking device come in this format.

Size is only one attribute of ubiquitous computing. Devices of different
size should be connected and embedded in the environment. The property
that is most important for to the user is the interface. The user interface
should no longer depend on explicit input but understand a natural
interaction and actively support the user without being explicitly asked to
do so. This kind of interaction requires that devices are able to sense the
current situation by using sensor technology.

2.2.1 Context-Aware Computing
The term context-aware computing was introduced by Ben Schilit [37]
in 1994 to describe mobile computing systems that can adapt to their
current location, users, and other available devices. When mobile devices
move between locations the available resources surrounding them change
as well. For instance, a mobile device may use an existing large screen
or automatically select a printer based on it’s current location. Further-
more, network connectivity itself depends on the available resources. In
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summary, Schilit’s notion of context revolves mainly around location and
its implications.

Abowd et al. [38] provide a more comprehensive definition of context:

“Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a
user and an application, including the user and applications
themselves.”

Abowd et al. list four types of context that are especially important:
location, identity, activity and time. Consequently, more sensors are
required to measure these different types of context. Furthermore, each
context requires its own interpretation of the resulting sensor data. The
context toolkit provides one approach to manage this complexity, which
structures context-aware systems into reusable components [39].

The TECO lab in Karlsruhe developed a variety of sensor technologies
to show that context is more than location [40]. The used sensors included:
optical/vision, audio, motion, location, bio-sensors, and further, specialized
sensors. Their work showed how to combine different sensors and implement
the fusion of incoming sensor data. Examples include technologies that
have become standard in today’s mobile phones and tablets, such as
orientation and light-sensitive displays.
The wearIT@work project developed one example for workers in a car

factory [15]. The system combines a variety of sensors to recognize work
activities. The system recognizes the task currently being conducted and
alerts the worker if a critical check was missed.
Context-aware computing has resulted in a wide range of sensors and

frameworks for integrating this sensor data in software systems. While the
number of sensor technologies is rather stagnating, the implementation
of sensors in new application areas is an ongoing challenge. According
to Abowd and Mynatt [41] the conceptualization and evaluation of these
systems requires not only a sound technological understanding but an
in-depth knowledge of the actual usage in real-life scenarios.
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2.2.2 Wireless Indoor Localization
Ubiquitous computing developed a plethora of technologies to determine
the location of a device, because location was initially seen as the most
important context information. While GPS provides low-cost, precise
localization outdoors, the development of indoor localization systems has
been an on-going research topic in the ubiquitous computing research com-
munity. Although, there have been attempts to use ultrasonic sound [42]
or inertial sensors [43], the majority of indoor localization systems rely on
radio signals [44].
There are two main methods to estimate location using radio signals:

trilateration and triangulation. In both methods, reference locations have
to be known and equipped with sensor nodes, known as the reference nodes.
Moreover, the object to be located has to be equipped with a sensor, the
mobile node. Reference nodes and mobile nodes communicate via radio
signals. In trilateration, the reference sensors nodes measure the distance
to the mobile node. In triangulation, the reference sensors measure the
angle of the incoming signal. Both methods are depicted in Figure 2.4 in
a two-dimensional space. Triangulation is used only by few systems such
as seen in [45], because measuring angles requires multiple antennas or
moving directional antennas for sensor nodes. Hence, most systems use
trilateration [46].
The two most used methods to measure distances by radio signals are

the received signal strength indicator (RSSI) and variants of the time-of-
flight (TOF). This section explains only the underlying fundamentals and
their implications for sensor design. Comprehensive summaries of indoor
localization technologies can be found in [44] and [46].

The RSSI depends on the distance between the sender and the receiver.
The received energy decreases with distance from the sender. The actual
decrease depends on the distance from the sender, the frequency of the radio
signal the medium, and the properties of both antennas. The following
formula by T. Friis [47] approximates the received signal strength Pr by
assuming that the radio signal is sent in all directions and that there is no
significant attenuation due to the medium.

Pr

Pt
= GtGr

(
λ

4πr

)2
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(a) Triangulation (b) Trilateration

Figure 2.4: Triangulation and trilateration can both be used to calcu-
late the location of a mobile node M. Triangulation requires two points
and measures angles. Trilateration requires three points and measures
distances.

This formula extends the free-space pass loss formula with antenna
properties. A smaller wavelength λ reduces the attenuation, and a sufficient
signal strength can be received in a larger distance r from the sender. For
a given hardware such as the Chronos eZ430 [48] the frequency and the
properties of both antennas Gt and Gr are fixed. In practice, however,
antennas do not transmit equally in all directions. Hence, the orientation
of the antennas to each other influences this parameter.
The TOF measures the time between the signal is send and received.

The method is based on the constant transmission speed of radio waves
that can be approximated with the speed of light c. Therefore, a precise
measurement of the time the signal is send ts and received tr can be used
to measure the traveled distance r of the signal:

r = c(tr − ts)

Variations in the received signal strength do not influence the measurement
as long as the signal can be received. However, the precise measurement
of the time difference is the main challenge in TOF measurement because
of the high speed of the transmission. For example, a distance of 50m
results in a time difference of 0.16 µs. Hence, a pico-seconds precise time
synchronization between sending and receiving device would be required
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to measure shorter distances. A common work-around is to instead use
round-trip times. The signal is sent to the receiver and immediately sent
back. To increase precision, several rounds can be used to effectively
multiply the distance the signal has to travel. An implementation of this
method has to account for the time to process a packet and send it out
again, because this value will multiply as well with each round trip.
In real environments, radio communication deals with reflection and

shadowing effects. A human body consists mainly of water and blocks
the direct path of a radio signal. The signal may not be received directly,
but may be received by reflection from a wall. Furthermore, the same
signal can be received from multiple path and multiple reflections. The
resulting signal arrives at the receiver several times with varying RSSI
values. The electronics used to send the signal may lead to a directionality
of the antenna. For instance, if the antenna is placed at the front of the
device and a battery is located at the back of the device, the antenna can
only send signals forward. This directionality is often intended by design
but must be considered when measuring the distance to this electronic
device from different reference locations.
Both TOF and RSS measurements are affected and mechanisms are

required to deal with these effects. Some system use filters and multiple
measurements are used to minimize these effects. Other localization
systems do not explicitly calculate distances to reference points, instead
using the measured TOF or RSSI values as a finger print for identifying
locations. A database of fingerprints for all relevant locations is required
to implement this kind of localization. An example of this finger printing
is the WiFi-based location mechanism of mobile phones. The location is
determined by finding the best matching finger print.

2.2.3 Communication in Sensor Networks
The smallest components in ubiquitous computing are sensor nodes that
are distributed in the environment and measure various parameters. A
typical sensor node is equipped with a small battery, a microprocessor, a
number of sensors and a radio module. Sensor nodes provide the captured
data to other ubiquitous devices over the radio module. The resulting
network is set up dynamically according to the devices present. The
developed protocols are designed for managing the dynamic changes and
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minimizing the required communication effort to save battery life.
The radio module is the biggest energy consumer on most sensor nodes.

Minimizing usage of the radio module is the paramount goal of the proto-
col design. Communication is limited to few short messages. No lasting
connection is established between peers. Ye et al. [49] outlines the main
requirements to minimize energy efficient media access in sensor networks.
Critical points that must be optimized are: collisions, idle listening, over-
hearing, and packet overhead.
Protocol implementations will result in a tradeoff between these four

points. Collision avoidance is the primary reason to introduce a protocol.
If two nodes are sending at the same time on the same channel, communica-
tion will be jammed. Resending packets requires more energy and packets
can be lost without even noticing. Listening for communication requires
an active radio module and requires a comparable amount of energy to
sending packets. Listening while nobody is sending wastes energy but is
often unavoidable. Similarly, staying awake longer to receive a packet that
is addressed for a different receiver can strain the battery. Finally, the sent
messages should be as small as possible to minimize the time required for
sending the packet. There are three main design ideas to realize low-power
media access control (MAC) protocols.
The first approach sends packets with a long preamble. The long

preamble signals that the medium will be used to send a packet. Hence,
listening nodes must check for packets at an interval that matches the
preamble length. As a result, the listening node will always notice that a
package is sent without missing any part of the payload. The long preamble
reduces the idle listening and saves energy. The main example for this
approach is the B-MAC protocol [50]. The drawback of this method is
that the preamble is actually a large protocol overhead. The preamble
has to be sent with each packet and each receiver will have to receive at
least a part of the preamble. Consequently, the sender and the receiver
will stay active for a longer time and consume more power than desired.

The alternative and second method are low-power-listening (LPL) pro-
tocols. LPL protocols do not use long preambles but repeat the packet
or an advertising packet. X-MAC [51] for instance, breaks the preamble
down into short advertising packets. Therefore, less data must be received
and sent.

Synchronized protocols schedule channels between peers. Each node has
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receive and send slots that do not overlap with nodes in their proximity.
In the best case, peers wake up only when their peers are sending or
are ready to receive signals. However, the scheduling requires additional
packets, especially if the network structure is changing because of mobile
nodes. These changes must be transmitted to all relevant nodes. Hence, a
significant part of the communication is spent organizing and reorganizing
slots. Furthermore, the clocks on all nodes must be synchronized. This
synchronization is necessary in regular intervals because clocks on embed-
ded systems often have a significant clock drift. As a result, receive and
send slots may slowly drift until they do not overlap any more.

The time synchronization in distributed networks with a dynamic topol-
ogy is not a trivial problem. The following formula summarizes the problem
by assuming that the clock drift on each sensor node is constant:

Ci(t) = ait+ bi

Therefore, the clock Ci on node i at time t differs from the original
time by an offset bi and a time dependent drift ai. If the difference
between nodes becomes too large, scheduled communication protocols
will fail. A variety of time synchronization protocols exists [52] that vary
in achievable precision and required overhead. In most protocols, nodes
exchange their current time and adjust to each other. This sensor-sensor
synchronization can spread the current time through the network but must
prevent a constant switching between different times. Another approach
is to broadcast synchronization packets that are used by several receivers
simultaneously to compare the receive times.

Whichever method is used, the short time to transmit the synchroniza-
tion message must not be ignored because it is exactly this time difference
that TOF measurements have to compare (see Section 2.2.2). The solution
is to exchange multiple packets to estimate the difference in clock drift.
As a result, the overhead is growing.

In summary, the optimal solution for low-power communication in sensor
networks depends on the use case and used hardware. Until now, no general
solution has been proposed that is superior across domains and can be
applied to highly dynamic network topologies.
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2.2.4 Wearable Computing
Ubiquitous computing resulted in smaller devices that can be distributed
in the environment to support the user. Steve Mann [53] objected that
the technology should empower not the environment, but the user. Hence,
technology should be personal and connected to the user in the form of a
wearable support system. He described the benefits of wearable computing
as follows:

“Miniaturization of components has enabled systems that are
wearable and nearly invisible, so that individuals can move about
and interact freely, supported by their personal information
domain.” [54]

One of the first application domains of wearable computing was life-logging
by using wearable cameras [54, 8]. Mann used a wearable camera and
display to record situations and augment them with digital information [54].
Today, Google Glass [9] is using an approach similar to Mann’s, but with
a smaller form factor.
Wearable sensors for physiological signals have become available in a

wide variety [55]. Electronics can be integrated into textiles to measure
motion, temperature, ECG, and respiration. However, the form factors
of wearable devices are changing rapidly. Sensors come in new forms to
be less intrusive and provide better results than previous devices. Among
other options, sensors can be worn as a chest strap [56, 14], on the arm [57],
or as a smart wristwatch [58]. A more comprehensive overview of wearable
and mobile sensor technologies can be found in reference [10].
The term “smartwatch” refers to wristwatches that are equipped with

computer technology to offer functionality beyond time-keeping. The
number of models [48, 58] and their capabilities are growing rapidly.
Programmable smartwatches allow a user to customize the operation and
reuse the form factor for their own applications.
The Chronos eZ430 is a programmable wristwatch offered by Texas

Instruments as a development system. The Chronos is sold with a warning
that the quality is not up to product standards. The wristwatch uses a
CC430 system-on-a-chip (SoC) with an integrated 16-bit MSP430-based
low-power microcontroller (MCU) by Texas Instruments and integrates
a proprietary low-power sub 1 GHz radio module (CC430). The MCU
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provides 32 KB flash and 4 KB RAM memory for applications. The
hardware platform consists of low-power components and, therefore, a
small 3V CR2032 coin cell is enough to power all components. The radio
module is configured to transmit with a data rate of 78 kBaud and a radio
frequency of the 868 MHz short-range-devices (SRD) band.

2.3 Affect Detection in Affective Computing
The affective state of humans is important information in our daily inter-
actions. If computers were able to sense and react to these affective states
the interaction could be more natural and less error prone. Picard [25]
defines affective computing as follows:

“Affective Computing is computing that relates to, arises
from, or deliberately influences emotion or other affective phe-
nomena.”

There is no common understanding in research of what emotions are and
how emotions can be measured. Research is based on a variety of models
of emotion that have proven to be useful in the past. The circumplex
model of affect by Russell [59] is one of the most frequently used models
in affective computing because it views emotions by distinguishing only
two dimensions. The horizontal axis orders emotions from displeasure to
pleasure. Valence has become the common name for this axis. The vertical
axis shows the arousal connected to an emotion. Arousal refers to the
activation-deactivation level or in other words the energy of a user. Russell
refers to the combination of arousal and valance as “core affect”. Using
the circumplex model all emotions can be understood as a combination
of arousal and valence. Therefore, many affective computing systems
involve measuring one or both dimensions by analyzing human behavior
and physiological states.
In the remainder of the thesis, we will refer to emotions and moods

using the broader terms affective aspects or affective context.
Calvo et al. [60] distinguish six different types of signals that are used

in affective computing to detect affective aspects. Computers can react to
affective phenomena by analyzing:

• facial expressions
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• voice (paralinguistic features of speech)
• body language and posture
• physiology
• brain imaging and EEG
• text

Sensor systems and algorithms have been developed and evaluated for
each of these signals. In particular, the activity of the heart, muscle
activity, and the reaction of the sweat glands indicate the arousal level
of a person [61]. Sensors can measure the corresponding physiological
signal and algorithms attempt to infer the arousal level. This research
direction in affective computing builds on several decades of research in
psychophysiology [61]. Today, wearable devices have become available
to measure these signals [57, 56, 62, 63]. In the following section, the
psychophysiological signals and their analysis will be described, as they
have been used in this thesis. A broader overview of current detection and
analysis approaches can be found in [60].

The following two sections introduce the background for the first design
study in Chapter 5. The ethnographic study used wearable sensors to
record the heart rate. The next section explains the general reaction of the
activity of the heart to arousal and introduces common methods to analyze
this reaction. The prototype in Section 5.3.4 builds on the analysis of the
body language. The underlying concepts and features are introduced in
Section 2.3.2.

2.3.1 Activity of the Heart
Emotional arousal controls heart rate by influencing the balance between
the sympathetic and parasympathetic nervous systems [64, 61]. Both parts
of the nervous system control the activity of the heart. Higher activity of
the sympathetic nervous system is connected to higher arousal. Conversely,
higher activity of the parasympathetic nervous system is connected to a
lower arousal. Both systems are always active, but vary in their activation
levels over time.
During physical activities, such as sports, the sympathetic nervous

system is dominant, resulting in a higher heart rate. The blood moves
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faster and can transport more oxygen to the muscle cells than during
rest. The muscle cells can generate more energy to conduct the required
movements. Physical activity is not the only factor influencing heart rate.
The human brain attempts to anticipate physical activity and mediates this
need by means of the sympathetic and parasympathetic nervous system to
the heart. As a result, the heart rate is constantly adapting to the most
current situation. Physical effects due to activity and emotional reactions
overlap and result in a heart rate that is dependent on the physiological
condition of the person.
The heart’s activity can be measured by an electrocardiogram (ECG).

The electrical signals controlling the heart rate can be measured by elec-
trodes placed on the skin. While Ag/AgCl electrodes with conductive
gel are still dominant for medical applications, new dry and noncontact
electrodes become available are nonmedical appliances [65]. The gel-based
electrodes require careful gel application in the correct amount to guaran-
tee good signal quality. Furthermore, long-term contact between the gel
and the skin may cause skin irritations. New dry-electrode devices (e.g.
[56]) can be worn as simple chest straps. Alternative methods measure
the heart rate by measuring the pulse waves that spread through the body
after each heartbeat. Using regular cameras, an MIT team has developed
a method to visualize and measure how the pulse wave spreads through
the body. Eulerian video magnification [66] is used. The heart rate can
also be measured by observing small body movements induced by the
pulse waves [67]. Different camera-based methods are used in research and
mobile applications to measure the pulse at the finger [68].
The measured heart rate varies because there are changes in the inter-

beat intervals due to physical activity and physiological, cognitive, and
emotional processes. The resulting variability of the heart rate can be
analyzed to discern the effects. The following paragraphs explain the
most commonly used features to analyze heart rate variability (HRV).
The features can be split into statistic, geometric, and frequency-domain
methods [69]. The most commonly used methods for automatic analysis
calculate statistic features or use features from the frequency-domain.

Hear rate related features are usually analyzed for specified window size.
Malik [69] recommends a window size of 5 minutes. An analysis of smaller
window sizes can be found in [70]. The analysis in the time domain is
based on the time between two normal beats (N = normal beat) of the
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heart, which is measured in the ECG signal by the NN interval. Typical
features in the time domain are:

• SDNN [ms]: Standard deviation of NN intervals in a given interval.
• RMSSD [ms]: The square root of the mean of the sum of the squares

of differences between adjacent NN
• pNNx: Count of NN below x divided by the total number of all NN

intervals (most common x = 50) intervals.

The spectral analysis distinguishes four types of frequency bands shown
in Table 2.1. The HF and LF frequency bands have been used for further
analysis. The HF power is usually attributed to cardiac parasympathetic
nerve activity. The LF power is associated with a dominant sympathetic
component [69, 64, 71]. Therefore, the LF/HF ratio is seen as a measure
to identify the currently dominant nerve [72, 73]. However, this clear
assignment of frequency bands to the activation of the nervous system and
the value of the LF/HF ratio for affect recognition are still debated [74].

The methods presented above are affected by physical activity. If users
are moving, changes in heart activity are a combination of heart rate
increases, which are due to arousal, and changes that result from a change
of the physical activity. Therefore, HRV features cannot be interpreted
during physical activity. Small changes that are due to movement can be
mistaken for arousal reactions.

Myrtek [75] has presented an approach to overcome this challenge. The
additional heart rate algorithm aims at isolating affect-related heart rate
changes from changes that are induced by physical activity. The algorithm
has been deduced from empirical data and uses only the heart rate value
for each minute HRi and acceleration data. In an arousal reaction, the

Abbreviation Name Range in Hz
ULF Power in the ultra low frequency range <0.003
VLF Power in the very low frequency range 0.003 - 0.04
LF Power in the low frequency range 0.04 - 0.15
HF Power in the high frequency range 0.15 - 0.4

Table 2.1: HRV frequency bands according to [69]
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heart rate rises:
HRi > HRi−1

In the algorithm, the heart rate is compared to a sliding mean average
HRi of the last 3 minutes.

HRi = 1
3

i<4∑
i=1

HRi

The data from the acceleration sensors have to be transformed into the
expected increase in heart rate. The acceleration values are filtered and
added and transformed into a value ACTi by using a logarithmic function.
The resulting values of ACTi range between 0 and 200. If these activity
values are too high in comparison to a 3-minute average, the calculation
is stopped for this minute because the algorithm cannot analyze such
sudden changes. The expected activity-related heart rate increase ∆HRi

is calculated by using the variable CDIVi.

∆HRi = 90 +ACTi

CDIVi

CDIVi is adjusted according to the number of arousal reactions that have
been found in the last 20 minutes. If less than five reactions have been
found, CDIV will be decremented. If more than 10 reactions have been
found, CDIV will be incremented. CDIV can vary between 0 and 30 and
CDIV0 = 23.

The increase in heart rate has to be higher than the increase that can be
attributed to movement. The relation between the actual change in heart
rate and the expected change due to physical activity is the additional
heart rate ADH at minute i.

ADHi = HRi −HR

∆HRi

This algorithm is limited to small changes in physical activity. Explicitly
excluded are posture changes, such as sitting down or getting up from a
chair. The algorithms adapts to the current type of activity by changing
the CDIV value. After rapid changes, the algorithm will need time to
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adjust to the new type of activity.
Kusserow [76] aimed at overcoming this challenge in his thesis and

developed a number of prototypes for specific use cases. The selected use
cases (ski jumping and cello concert) are well defined in their physical
activity. For example, ski jumpers perform the same movement again
and again. A cello player repeats similar movements of the arm during a
concert. In these cases, multiple instances of an activity can be compared at
different stress levels. The results confirm that “stress-arousal” influences
the heart rate beyond the physical activity. The application to free-living
daily activities showed only an overlap with reported arousal events of 7.8
percent. This result is attributed to the low salience of smaller arousal
events.

2.3.2 Posture and Body Language
Already Charles Darwin researched the relation between body language and
emotions in humans and animals [77]. Emotional body language (EBL) is a
promising venue for further research in affective computing because “When
we see a bodily expression of emotion, we immediately know what specific
action is associated with a particular emotion” [78]. Further research has
highlighted the role of EBL in social interaction. Pentland showed how we
mimic the body language of each other in communication [79] and how
sensors can measure this behavior.
Posture and body language can be measured by either cameras and

optical motion-tracking systems [80, 81] or sensors that are worn [82] or
embedded in furniture [83, 84]. The sensors used are either accelerometers
or pressure mats. Posture while working at a desk has received special
attention, because this is a person’s typical interaction with a computer.
Sensor-augmented chairs [83, 84] provide an unobtrusive means to capture
this data. Attention, engagement, and boredom are typical states that can
be inferred from body posture [83]. Furthermore, recent research strives
to infer information about stress level from posture data [84].
The analysis methods can be split into two broad categories. The

first type employs a two-step process. In the first step postures are
recognized. In the second step, these postures are translated into affective
phenomena. For instance, leaning back could be interpreted as a sign of
lower engagement with the task at hand. The second category strives to
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infer affective aspects directly from the sensor data.
Typical features for the analysis of posture and body language are kinetic

energy, consistency, and orientation of sensor or body part. The kinetic
energy measured by an acceleration sensor is calculated by summing up
all acceleration components and subtracting acceleration due to gravity g:

E =
√
a2

x + a2
y + a2

z − g2

The consistency C quantifies the variability of the energy E over time. It
is defined as 1 − α where α is the standard deviation of the kinetic energy
over time:

C = 1 −

√√√√ 1
N

N∑
t=0

(Et − µ)2

These and further features that are specific to the used sensor are
used in combination with machine learning methods to link them to
emotions [85, 84] and analyze human behavior [86]. A more comprehensive
survey of affect-related body language and their recognition can be found
in [87].
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This chapter provides an overview of the available reflection support, rele-
vant sensor technologies, and approaches to design such systems. Learning
can and is already supported by technology. Technology can help to
create, organize, and present learning content. Furthermore, technology
can facilitate collaborative learning despite physical distance. Goodyear
et al. [88] define technology enhanced learning (TEL) as follows:

“Many different types of technology can be used to support
and enhance learning. ’Technology’ in its broadest sense can
include both hardware – such as interactive whiteboards, smart
tables, handheld technologies, tangible objects – and software –
e.g. computer-supported collaborative learning systems, learn-
ing management systems, simulation modeling tools, online
repositories of learning content and scientific data, educational
games, web 2.0 social applications, 3D virtual reality, etc.”

The following three research fields have developed first approaches to
support reflection with technology or technologies that could be applied to
this challenge. Sensors increasingly play a role in TEL to adapt and select
context. However, there are many more sensor technologies that can be
applied to support reflection. Finally, existing research on design methods
and models completes the related work.

3.1 Reflection Support
The idea to reflect on captured data is not new. Technologies to support
reflection have been developed in TEL, ubiquitous computing, and human
computer interaction. The approaches vary according to the key aspect
of the corresponding research field. Sensors play a growing role in TEL.
However, the main focus in TEL is still formal learning in the classroom.
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The MIRROR project is one of the few projects that target informal
learning at the workplace. Ubiquitous computing has mainly focused on
data acquisition by means of sensors and the management of the data to
realize life-logging. Life-logging involves broad capturing of daily activities
to create multi-media diaries and memory support. Both are topics that
are closely related to reflection support. Recently, reflection has regained
popularity as a topic in human computer interaction, but this work mainly
addresses how reflection can be facilitated by user interface design and
prompting mechanisms.

3.1.1 The MIRROR Project
The work presented in this thesis was conducted as part of the MIRROR
project [32], which involved creating a set of applications that facilitate
reflection of employees on their work practices. The work on CaReflect
(see Chapter 6) and psychophysiological sensing (see Chapter 5) represents
only a small subset of the developed applications, which span a wide range
of approaches to support reflection and have been developed according
to the CSRL model (see Section 2.1.3). This section briefly describes the
alternative approaches that have been taken in the MIRROR project.
The work that most closely relates to this thesis is the development

of WATCHiT [89, 90] but addresses a different domain. WATCHiT is
a modular wearable sensor system for volunteers in crisis preparation.
Volunteers must be prepared to react in the event of a disaster, such as
an earthquake. In these scenarios, volunteers must cope with challenging,
dynamic situations. Therefore, volunteers gain experience during large-
scale simulations of such events. Efforts to conduct such an event are
large. Therefore, volunteers must learn as much as possible during these
events. WATCHiT facilitates reflection by capturing data on tasks. It
combines sensors and simple gesture interaction. Figure 3.1 shows the
components of the WATCHiT system. Sensor modules can measure
heart rate, temperature, noise, and location. The sensor modules can be
combined as needed. The gesture interaction is implemented based on
near-field communication (NFC). Volunteers can move NFC readers at
their wrists to touch NFC tokens at their arms (shown in Figure 3.1-c).
The work on WATCHiT complements the work described in this thesis as
described in [198]. The modular architecture is beneficial for the dynamic
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Figure 3.1: WATCHiT prototype: (a) sensors modules and components,
(b) WATCHiT sensors worn at the wrist, (c) gesture interaction, (d)
sensors and NFC tags worn by volunteer, and (e) mobile application for
data analysis

requirements in crisis preparedness, but is not a requirement in care homes
and hospitals.
MIRROR developed a wide variety of mobile applications that enable

employees to collect data manually [91, 92, 93]. However, each app em-
phasized a different aspect of reflection. The Live Interest Meter (LIM)
app [91] collects data from observers. It is designed for lectures and other
public speaking engagements. Listeners can directly provide feedback
during the presentation with their mobile phones. The TalkReflection [93]
app allows employees to take notes on difficult talks and supports collabo-
rative reflection with sharing and annotation features. The Carer app [92]
integrates creativity techniques to help care staff find new alternative
reactions to challenging behavior of residents. Care staff can speak or
type in case descriptions, and the system finds similar cases and related
solutions from different domains. For instance, if a carer is confronted
with an aggressive resident, the system may offer solutions, such as a
description of how a teacher reacted to an aggressive student.
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3.1.2 Life-Logging
Life-logging is one of the initial applications discussed in ubiquitous com-
puting [94, 95]. MyLifeBits [94] is probably the most well-known research
project in life-logging. Gordon Bell digitized and recorded all parts of his
daily life for several year, including articles, books, cards, CDs, letters,
memos, papers, photos, presentations, home movies, videotaped lectures,
and voice recordings. A number of tools helped to capture and review
these data.
One of the tools used was the SenseCam [8], a wearable camera that

automatically takes pictures. A microphone and a passive infrared sensor
are used to register changes in audio or light level. In this case, a picture
is automatically taken and stored on the SD card. If no event is registered
within 30 seconds, a picture will be taken automatically. Hence, the
minimal time resolution for a SenseCam picture is 30 seconds. The
resulting number of images for a single hour is at least 120. A specialized
image browser allows a quick review of a large amount of pictures.

Fleck et al. [96] evaluated the SenseCam in the classroom. Tutors wore
the SenseCam during class and reviewed the lessons afterward with their
mentors. The triggered discussions indicate that the captured pictures
facilitate reflection. The pictures support the returning to experience as
described by Boud [4] and triggered discussions of related thoughts and
activities.
SenseCam and additional sensors as used in MyLifeBits produce large

amounts of data. Blum et al. [95] showed how the data can be filtered. The
developed system used audio data and location information to recognize
time spans of interest. For instance, if laughter was detected, the related
time span would have been marked as “very interesting”. It was assumed
that as much data as possible is captured in a first step, and filtered in
the second step according to yet unknown requirements.

After reviewing the state of the art, Sellen and Whittaker conclude that
life-logging should target specific goals, including reflection and reminis-
cence [97]. They identified four main challenges for future life-logging
applications to be applicable for these specific goals:

1. Selectivity, not total capture

2. Cues, not capture
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3. Memory refers to a complex, multi-faceted set of concepts

4. Synergy, not substitution

Hence, the selection of the relevant data that can act as cues is a pending
challenge for research. Reflection support has to capture cues and adapt
to the specific challenge. Reflection requires a synergistic integration of
one’s own perception and captured digital artifacts.

3.1.3 Encouraging Reflection
Reflection requires time and effort to review past experiences. The results
are often beneficial and can lead to learning. However, especially at work,
time pressures and other challenging tasks limit the time that can be
used for self-reflection. Human computer interaction research has used
three basic methods to encourage reflection: making data on past events
available, explicitly prompting the user to reflect, and social facilitation.

Data on past events are the basis of nearly all approaches that have been
explored. For instance, most MIRROR apps (see Section 3.1.1) involve
capturing data. Visualizations and aggregation can add value to the
collected data. Li et al. [98] conducted a survey of available self-tracking
tools and their users. Reflection is one of the activities related to tracking
tools. Li et al. distinguish short- and long-term reflection. Short-term
reflection takes often place directly after or even during recording. Users
check their current state and gain awareness. Long-term reflection helps
one gain deeper insights. Here, aggregation and visualizations are crucial
to provide new perspectives.

Prompting builds on such existing data and actively encourages reflection.
Applications that use prompting either simply remind a user or point
to relevant data for reflection. Pensieve [99] evaluated prompts with
varying content. The results showed: “Shorter, more general triggers draw
more responses, as do triggers containing people’s own photos – although
responses to photos tended to contain more meta data elements than
storytelling elements.” The Echo system [7] uses a self-tracking approach
by reassembling an easy-to-use mobile journal. Users can take pictures or
videos and annotate them with comments and ratings of their emotional
state. Reflection is explicitly facilitated by prompting. Users are explicitly
asked to reflect on existing notes. The corresponding reflection screen
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invites them to review their emotional state and provide the current
perspective on the recorded event. Similarly, they can add additional text
and pictures. The same event can be reviewed several times, thus resulting
in content with multiple reflections. Hence, users can track how their
perspectives changed over time. In general, the reflection had a positive
effect on the participants’ perceived well-being. For instance, there was a
tendency to rate experiences with less emotional ratings when reviewing
them.
Social facilitation has been one of the main methods to encourage

reflection [100], even without technology support. The exchange of ideas
and perspectives and the necessity to articulate one’s own perceptions
in conversations can facilitate reflection. Technology can help to form
groups without requiring co-location. Furthermore, technology can capture
the current state of a reflection session in a digital manner and allow
participants to reflect together, but in an asynchronous manner [101, 93].
For example, care staff that work on different shifts can reflect on incidents
using an online forum or a mobile tool. Therefore, the organizational effort
to set up meetings is reduced. In MIRROR, Prilla et al. [93] researched
technology support for collaborative reflection in public administration,
care homes, and a hospital. The insights confirm the potential of this
approach in real work settings.

3.2 Measuring Behavior
Besides technology that explicitly targets reflection, research in ubiquitous
computing has resulted in a rich variety of sensors that could be applied
to reflective learning. In the following, two sensor technologies will be
described that are relevant for this thesis. xAffect has been used to process
psychophysiological signals in the first design study. Proximity sensors are
the basis of the second design study.

3.2.1 Psychophysiological Sensing with xAffect
Emotions play a decisive role in reflective learning, as outlined in Sec-
tion 2.1.2. One of the first targets of affective computing (see Section 2.3)
has been the usage in TEL [22, 102]. This section will relate this thesis to
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the prior work by Schaaff [102]. Schaaff evaluated the usage of psychophy-
siological signals such as heart rate and electrodermal activity, to support
learning applications. The developed algorithms and tools were available
as a basis for this thesis.
The work of Schaaff built on two learning applications. Various stud-

ies were conducted to measure arousal and adjust the learning process
accordingly. The first application [23] targets financial decision-makers
who should learn to regulate their emotions to come to better decisions.
A trading game was evaluated that reacts to the arousal of a player by
increasing the difficulty of the game with higher arousal levels. The arousal
level was inferred by analyzing the heart rate (see Section 2.3.1). Hence,
the goal of using the arousal values was to adapt the system. The difficulty
of the game increased with the arousal level of the player. Furthermore,
feedback on the arousal level was provided to allow the player to react.
The second application [103] supports the training of the working memory.
Arousal is again deduced by using the heart rate. In this case, however,
the design aims at adapting the difficulty of the game to the player. In
summary, a number of algorithms has been developed and evaluated to
adapt system behavior according to detected arousal levels.
The underlying architecture, xAffect, has been used and developed

in collaboration with the author [206]. Schaaff focused on the usage of
xAffect for the rapid prototyping of algorithms and their integration in
TEL applications. This thesis reused this infrastructure to evaluate the
algorithms in a mobile setting and extended it accordingly (see Section 5.3).
The high-level architecture of xAffect is depicted in Figure 3.2. The

system is built in a modular way to allow a simple configuration of the data
flow. The functionality is split into components that differ according to
their roles in the system. DataSources are the entry point of data into the
system. These could be sensors or network interfaces that receive data from
outside of the system. DataProcessors are components that modify data.
Filters and algorithms are typical examples of DataProcessors. DataSinks
are components that receive data out of the system. In the simplest case,
this can be a logfile, a database, or a link to another application. The data
flow between the components is managed by the DataDispatcher. Each
component comes with a description of its capabilities. The DataDispatcher
connects the components according to this description. The setup defines
which components are available and the LifeCycleManager loads and stops
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Figure 3.2: xAffect architecture, according to [102]

components. Each component implements a common life cycle, a specified
sequence of functional steps starting with the components’ creation and
ending with its destruction. For instance, one part of the sequence is the
training phase during which components already fill their buffers to be
ready to process data. The LifeCycleManager coordinates the life cycle of
all components in a central manner to avoid inconsistencies (e.g., if one
component starts to process data while the component that should deliver
the data is not yet ready to do so). The overall state of the system can be
controlled by a graphical user interface or over the network.
A number of standard components are part of xAffect. A DataViewer

visualizes incoming data live on the desktop. The UnisensReader is a
source that can read from an Unisens file. The corresponding sink, the
UnisensWriter, can write to an Unisens file. Further components include a
signal generator to test configurations and a sliding mean filter. Moreover,
xAffect comes with a graphical user interface to manage studies and
configure the pre-defined combinations of components.
In summary, a number of algorithms for the analysis of heart rate and

electrodermal activity (EDA) data have been developed and tested in
various studies. In these studies, the psychophysiological context was used
to adapt the interactive presentation of existing content. xAffect was
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used to connect algorithms and games. Furthermore, it is important to
note that while the work of Schaaff [102] targeted real work contexts, all
conducted studies took place in controlled lab environments according
to carefully crafted study designs. Arousal was induced in a controlled
manner to compare measurements to the expected state. While the work
of Schaaff is the basis for the psychophysiological analysis in this thesis,
the focus was on the data analysis and not on the design process.

3.2.2 Proximity Measurement
Recognizing co-location between mobile nodes is an application of lo-
calization technologies (see Section 2.2.2) to mobile nodes in a sensor
network (see Section 2.2.3). Consequently, co-location was initially seen
and measured as a by-product of localization [104, 105]. The NearMe
Wireless proximity server [104] computed proximity between mobile users
by analyzing the exact location of each mobile node. However, as precise
indoor location is still a challenge, a variety of technologies were developed
to measure proximity directly without knowledge of the location of both
nodes [16, 106, 107, 108, 109, 12]. Because they do not need reference
nodes, these systems can operate without the localization infrastructure.
Therefore, they can operate independently of the environment and loca-
tion. The developed systems can be split into systems that use dedicated
hardware [16, 106, 107] and those that reuse the interfaces of the mobile
phone [108, 109, 12].

Systems that directly measure proximity calculate the distance by using
the TOF or the RSSI and, based on these values, decide if a node is within
proximity. The decision is often based on a threshold value that defines
the proximity range. However, RSSI values vary because of reflections and
interference of multiple or reflected signals. The multipath propagation of
the signal can also distort TOF measurements. Repeated measures can
minimize these problems, but will increase the required communication
overhead. In summary, a higher precision requires more power and reduces
the run time of a sensor. Hence, the determined proximity is only a
probability that depends on the trade-off between the precision and power
consumption that guided the system design.

The mobile phone as a wearable device provides the required capabilities
to act as a proximity sensor and has been used as such [108, 110, 12]. The
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mobile phone provides a variety of radio interfaces that can be used for TOF
or RSSI measurements. Today, nearly everyone carries a smartphone on
their bodies. The Virtual Compass system [108] uses WiFi and Bluetooth
signals to estimate the distance between mobile phones and laptops. The
Bluetooth interface was also used by Eagle and Pentland [109] to measure
contacts between students. They built a dataset to analyze student
behavior by their contacts. Matic et al. [12] used the WiFi radio to
estimate proximity. The benefits of the mobile phone approach are that
they are available in large quantities and that they come with rather large
batteries. The main problem is that the solutions depend on the actual
phone. For example, the used radio chip and the orientation and type of
the antenna influence the measurements. Hence, two phones with WiFi
may measure different values and the proximity estimation must be device
dependent [111]. Furthermore, the implementations are not energy efficient
because, the hardware is not designed for proximity measurement and is
also used for other purposes. For instance, Matic et al. [12] periodically
switch the phone’s WiFi module between client and access point mode.

Dedicated devices can deliver more precise results and can be developed
with a smaller form factor. An overview of available devices for proximity
measurement is shown in Figure 3.3.

The Sociometric badge [115] combines a number of sensors to measure
social contact. A Bluetooth module and a 2.4 GHz receiver are combined

(a) Sociometric
Badge [112]

(b) OpenBea-
con [113]

(c) Wren Mote [114]

Figure 3.3: Available proximity sensors in chronological order of devel-
opment from left to right
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to measure proximity. In addition, an infrared sensor recognizes when two
persons face each other and voice detection recognizes conversations. The
Sociometric badge was successfully used in a variety of domains [112, 115].
The badge is worn around the neck so that the direction of the infrared
sensor conforms to the line of sight. The system captures rich data on
social interaction, but the additional sensors (e.g. the microphone) may
compromise the privacy of third parties. Furthermore, the system’s size is
similar to that of a mobile phone.
The OpenBeacon system [113] is an open source initiative to create

low-cost proximity sensors for social network research. The system is based
on active radio-frequency identification (RFID) and uses a single coin cell
to operate over several months. If proximity is recognized, the event is
directly transmitted to an access point. Hence, OpenBeacon differs from
other dedicated proximity sensors because it requires an infrastructure.
The system was used in various settings, including a large conference with
more than 500 users [106]. In the conference venue, several access points
had to be deployed to measure contacts. Moreover, the access points
allow a rough location estimation. While the OpenBeacon system allows
large-scale deployments at low costs, infrastructure has to be deployed
and managed. OpenBeacon combines mobile devices and stationary access
points in a similar fashion as classic localization systems. The access points
are powered by cable, whereas mobile devices have to rely on their batteries.
Hence, the architecture aims to reduce the load for wearable devices by
implementing functionality that consumes more power into the access
point. Power-relevant functionality involves, for instance data storage and
management of media access (e.g. by synchronizing communication into
time slots).

The WREN mote [114] was designed for rapid deployments in large-scale
studies. The system uses an 802.15.4-compliant radio to measure proximity
and has a rechargeable lithium-polymer battery. The rapid deployment
is supported by management racks that can charge and download data
from 100 motes at the same time. The system was used with school-age
children to research how diseases spread through the social networks [107].
The system should be able to operate for five days at a sampling rate of
20 Hz.

The application domains of proximity sensing are manifold. Envisioned
applications include dating services [104], community applications [116],
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and location-based services [105]. The majority of these sensor systems
target human contact research to analyze businesses [112, 115], social
contacts on conferences [106], the impact of social interaction on psychol-
ogy [12], and epidemiology research [117, 107]. In all of these cases, the
correctness of a single contact is not decisive because a huge amount of
data is analyzed and minor errors do not have an observable impact on
the results. The data are anonymized and abstracted from the specific
situation. Social network analysis (SNA) algorithms [118] have been used
to analyze the social network automatically and deduce the underlying
patterns. This research, until now, underestimated the value of the detailed
data to measure and understand work processes.

3.3 Designing Reflection Support
The design of CSRL systems has to integrate technical, cognitive, and social
processes. Three different research fields have elaborated on providing
assistance in the design process. The following chapters provide an overview
of the main research direction relevant to the design of CSRL applications.

3.3.1 Design Landscape
Fleck and Fitzpatrick [119] frame a design landscape for reflection support
systems. Fleck defines five levels of reflection and suggests how tools can
support each of these levels. The work is strongly influenced by the prior
work of Fleck using the SenseCam [96].

The first level of the presented model describes the revisiting of expe-
rience. The nontechnology support method would be writing a journal.
Technology such as life-logging applications (see Section 3.1.2) can help to
record experiences. The recorded data are easier to browse, search, and
analyze. Moreover, events are often recorded automatically as a side effect
of using technology. Sensors provide further means to record information
about an event. On the second level, reflection starts with analyzing the
data. Originally, this step was mainly supported with reflective questions
meant to provoke a deeper understanding of the recorded event. These
questions can be integrated as prompts or by using tags. Users are asked
to tag experiences according to a reflective question (e.g. “What emotions
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(positive or negative) do looking at this image provoke?”). At this point,
data sharing can force the reflecting person to articulate new aspects of
the event. Further insights can be gained from a full discussion regarding
any of the questions.
The third level involves gaining a new perspective on the recorded

event. Additional data or visualization can provide new perspectives
(e.g., by visualizing a trend. Hence, sensors are strongly advocated. This
includes biosensors to gain insights regarding the user’s own reaction
as well as environmental sensors to understand the event from a more
objective perspective. Another person can also offer a different perspective.
Furthermore, technology can help to reorganize the knowledge by using
adaptive visualizations.
On the fourth and fifth levels, new insights are gained in the form of

fundamental questions, challenging personal assumptions and leading to
changes in behavior. The distinguishing factor of the fifth level is that it
explores the wider implications of such insights, which may then lead to
new insights. These processes are largely cognitive and difficult to support.
According to Fleck and Fitzpatrick [119] the role of technology in reflective
learning is mainly to provide material for the reflection and support its
exploration.

3.3.2 Persuasive Technology
Persuasive technology is a term coined by B.J. Fogg [120] that describes
“computing systems, devices, or applications intentionally designed to
change a person’s attitudes or behavior in a predetermined way.” Com-
puters can persuade users in a variety of ways, among which the mon-
itoring of behavior has become the most prominent. Persuasive tech-
nology offers a variety of examples regarding how to design for behav-
ior change [121, 20, 122, 101]. Furthermore, a number of design meth-
ods [19, 123, 20] have been proposed to guide a successful design.
Fish’n’Steps [121] is one of the first and most-cited examples of per-

suasive technology that uses self-monitoring to trigger behavioral change.
Fish’n’Steps motivates users to live more actively by taking more steps.
A pedometer measures the user’s steps, then this information is provided
as feedback on a public display. A virtual character, a fish, reacts to
the number of recorded steps. If the goal was reached the fish grows or
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additional fishes are added. The system was realized using some “Wizard-
of-Oz” components (e.g., the pedometer value was read by a camera that
was interpreted by a staff member).

Consolvo et al. [124] recognized that the feedback on the public display
is available only once the user stands in front of it. Furthermore, users may
not want to share their goals and progress with everyone who can see the
public display. Hence, they developed UbiFit Garden, a mobile application
that visualizes the step count, adapting the background image of the
phone to provide unobtrusive feedback. Figure 3.4 shows the background
image. A garden is shown that grows if enough steps are taken. UbiFit
integrated a mobile sensor platform to recognize walking, cycling, running,
and training machine uses.

Persuasive technology is not limited to step counters and physical activity.
UbiGreen [122] applies a technology similar to UbiFit to encourage eco-
friendly behavior. A wearable sensor captures the movement pattern
and a mobile application allows the user to enter or modify recognized
transportation methods. The transport mode is used to calculate the
resulting carbon dioxide emissions. The feedback is again visualized on a
phone screen. Mobile access to health information (MAHI) [101] supports
newly diagnosed diabetes patients to adjust their behaviors to their illness.
A mobile application receives glucose data from a blood glucose meter and

Figure 3.4: UbiFit Garden [124]
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visualizes the feedback to the patient.
Several design methods and guidelines have been proposed to guide the

design of persuasive technology applications such as the ones presented
above. Fogg [19] proposes an eight-step iterative design process, because
“many projects are too ambitious, and thus are set up for failure.” Hence,
each step is meant to increase the likelihood of success. In each step, Fogg
suggests selecting the most simple and promising solution, even if the
resulting change in behavior becomes smaller. If a step fails, the designer
must go one step back and further simplify the approach. According to
Fogg, designers should “test and iterate quickly.” Fogg emphasizes the
practical obstacles and advocates to learn from successful examples rather
than underlying theories.
In contrast to Fogg, other researchers start from existing theories to

support the design process. Consolvo et al. [20] present a set of guidelines
that are inferred from theory. One of the underlying theories is the cognitive
dissonance theory [31]. According to this theory, we experience discomfort
if our behavior does not match our mental model. Hence, humans either
feel urges to change their behavior or cling to internal images of their
behaviors that impair their perceptions. Among other guidelines, the
systems should be unobtrusive, and controllable. The visualizations of
data should be abstract and reflective. In addition, positive reinforcement
is suggested as the persuasive strategy.
Oinas-Kukkonen and Harjumaa [123] present a more comprehensive

three-step design process called Persuasive Systems Design (PSD). A
visualization of the PSD process is depicted in Figure 3.5. The process
starts with the understanding of seven postulates behind the design of
persuasive technology. The first statement emphasizes that technology is
always influencing behavior (e.g., by simplifying a task, it encourages users
to perform this task). Persuasive systems are designed to use this influence
in a goal-oriented manner. The second point refers to cognitive dissonance
theory. Here and in point 6. the model is similar to Consolvo [20]. Point 4
is especially relevant; because it highlights that most persuasion strategies
work towards an incremental change of behavior. This links nicely to the
minimal changes in behavior that Fogg [19] recommends. Designers of
persuasive systems have to understand these postulates to recognize the
possibilities and limitations of persuasive technology.

The second step of the PSD process puts the focus on the context of the
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target audience. Similar to Fogg and Consolvo, the PSD advocates that
the goal of the persuasion has to be as clear as possible. The situation
of usage has to be considered which includes a careful analysis of the
problem domain. In this analysis, the designer must understand the goals
of the user and the user’s current progress. Obstacles have to be identified
and the definition of intermediate goals can be helpful. Furthermore, the
available technology has to be taken into account. This information helps
to define the persuasion message and how it can be delivered.

After these two steps, the actual development of the system begins. At
this point, designers can select from a variety of persuasion approaches.
Self-monitoring is one of the available approaches, but can be combined
with other methods, such as reminders, personalization, or rewards. The
PSD provides examples for each approach. For instance, the system
can gain credibility by referring to people in the role of authority or by
providing endorsement from respected sources.

In summary, persuasive technology is designed to achieve and support a
predetermined behavior change, whereas reflection is rather exploratory in
its nature. Additionally, both approaches differ in their underlying theories.
Many of the persuasion strategies that involve the recording and visualiza-
tion of data are based on Skinner’s work on reinforcement learning [125].
A behavioral goal is defined and the current behavior is compared to this
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3.3 Designing Reflection Support

goal. Behavior that matches the desired behavior is rewarded with positive
reinforcement, but different behavior results in negative reinforcement.
This approach involves automation of the new behavior, while reflective
learning (see Section 2.1) aims at carefully reviewing experiences. Hence,
persuasive technology often aims at minimizing cognitive effort; reflective
learning requires cognitive effort to analyze experiences – and deliberately
encourages it. Nevertheless, persuasive technology provides approaches to
successfully design for behavior change. One could even consider reflection
as the target behavior in reflective learning, a behavior that is far more
complex than increasing the number of steps per day.

3.3.3 Quantified Self and Reflection
The Quantified Self (QS) community is a group of self-trackers and tool
builders that track a wide variety of personal data. They conduct experi-
ments about their lives using mobile applications and sensors. Q-selfers
have developed a variety of tools. They are extreme users that invest
significant effort into the development and usage of tools, but this extreme
usage highlights the limits of such self-tracking tools. An overview of used
tools and practices within the community has been presented by Choe et
al. [126]. According to Choe, the underlying motivation of self-trackers
is not to collect large amounts of data, but to gain insights by reflecting
on them. While the effort spent on tracking data and developing tools
cannot be directly transferred to reflective learning at the workplace, the
encountered barriers and used methods are an inspiration for the design
of reflection support for a more diverse user group.
Li conducted two studies [98, 127] to collect requirements from active

self-trackers. The results show that the data are reviewed in two ways. In
the discovery stage, users explore the data to gain new insights regarding
how they could improve their behavior. In the maintenance stage, users
have already decided on goals (e.g., to change their behaviors) and are
monitoring their progress. The maintenance stage is very similar to the goal-
oriented interpretation of data in persuasive technology (see Section 3.3.2).
The application should alert users if they do not achieve their goals and
help to identify reasons for not achieving them. The discovery phase can
be linked to the reflective learning theories presented in Section 2.1. The
required features in this phase are similar to the support suggested by
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Figure 3.6: Role of the three QS potentials in reflection [204]

Fleck and Fitzpatrick [119]. A wide variety of data should be captured
“anytime, anywhere, and often” while reducing the effort for the individual.
The presentation of data should allow a comparison of data from different
sources.

Rivera-Pelayo et al. [204] present a model to integrate reflective learning
theory and QS tools. The model, depicted in Figure 3.6, shows how
QS-tools augment the model by Boud [4] with support mechanisms.

QS tools can be used to track data related to experiences and outcomes.
These data are processed and enriched to generate visualizations and share
the data with others. The process of “recalling and revisiting” can be
supported by the resulting artifacts. Furthermore, the data can be used to
trigger the reflective process. Each support dimension is further dissected
to a level that can be supported with QS technology. For example, tracking
can be realized by self-reporting applications or sensors.

3.4 Summary
The support for reflective learning by data capturing is currently limited to
applications that use self-reporting approaches or camera images, with the
exception of the WATCHiT system. WATCHiT complements the work in
this thesis, but the focus of WATCHiT is on its modular hardware design.
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3.4 Summary

Although, sensors have been used in life-logging applications, the reflection
on sensor data has not been studied. The Quantified Self community is
currently reviving these approaches, but the developed tools are targeting
the private life. Sensor based CSRL application have proposed in different
forms, but we lack implementations that can evaluate their potential to
support learning.
This work builds on sensor technologies to capture affective aspects

and social contacts that have been developed for different use cases in
affective und ubiquitous computing. These promising technologies have to
be adapted and evaluated in work environments. For example, xAffect has
been originally used to recognize arousal from psychophysiological data in
a series of lab studies, but it has not been used in a mobile setting. The
available proximity sensing approaches were focused on creating large scale
datasets to analyze the resulting social networks. In summary, the sensors
were used in experiments and studies but not as tools for employees.

The existing methods for designing sensor based CSRL applications
have not been adapted to the current progress in sensor technology. More
elaborated design methods have been suggested in persuasive technology.
These methods are a starting point for this thesis, but they do not account
for the explorative nature of reflection. The work by Rivera-Pelayo is
similar in its goals to this thesis and was also part of the MIRROR
project [32]. Similar to this thesis, reflective learning should be supported
by data capturing. However, the further publications on the Live Interest
Meter App [91] and the MoodMap App [191] show that Rivera-Pelayo
targets mobile and web-based applications. On the contrary, this thesis
researches the usage of hardware sensors to achieve the same goal. Several
publications have been written in collaboration to discuss the two different
approaches.
The lack of applications and established design methods indicate that

the design of sensor based CSRL applications is an open challenge.
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4 Designing Sensor Support for
Reflective Learning

Sensors can support reflective learning by capturing more data about
experiences and ultimately offering new perspectives on these experiences.
This chapter analyzes the requirements for such support systems by drawing
from reflective learning theory and practical experiences in persuasive
technology, CSRL, and the QS community. Building on this background
and knowledge about currently available sensor technology, a design space
is outlined. The chapter concludes by describing the used design method
in the healthcare domain by drawing from the presented design space.
Parts of this chapter have been published in other forms [198, 199, 200].

4.1 Requirements Analysis and Approach
While work has been performed using sensors in persuasive technology,
this research was limited to few kinds of relatively simple sensors, such as
activity sensors and pedometers (see Section 3.3.2). Existing reflection sup-
port is limited to self-reporting via mobile applications or image-capturing
tools (see Section 3.1). Sensor data have been proposed as additional
support, but there are few applications [96, 97].
Reflective learning requires a thorough understanding of the recorded

data so they can be used as content for reflection. Self-reporting can
achieve this understanding in an easier manner because the reviewed data
have been produced by the users themselves. The successful use of pictures
as reflection support has been shown using self-reporting [7] and automatic
approaches [96]. Pictures are similar to our own visual perception of an
experience. Sensor data per se do not have this inherent connection to an
experience. Therefore, it can be more difficult to understand and to relate
the data to one’s own experiences. The design of sensor-based reflection
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4 Designing Sensor Support for Reflective Learning

support requires both a user centered-process and a deeper understanding
of the role of sensor data in reflection.

Starting with a discussion of the common and scientific understanding of
reflection, the next sections will outline the similarities between reflection
support and persuasive technology analyzing the underlying feedback loops.
The chapter concludes by analyzing the requirements to sensor data as
content for reflection in the healthcare domain and discussing the ethical
implications of such support systems.

4.1.1 Understanding Reflection
When talking about reflection, the notion of the term reflection varies,
not only between scientists (see Section 2.1), but also between employees
coming from different domains. If we want to design for reflection we will
have to make sure that end-users and developers agree on the defined
goals and know the different notions of the core concepts. To this end,
we interviewed employees from three different domains about their notion
of “reflection” [178]. Three teachers, two business consultants, and four
managers were interviewed to research a possible mapping between the
common understanding of reflection with the established theories.

Teaching at schools and universities has been the original target domain
of reflective learning research. Hence, it is not surprising that teachers
highlighted aspects of reflection that are central elements of the theories.
For instance, affective aspects were mentioned as a major topic by all
teachers. The experience with students is often connected to strong
emotions. Teachers try to judge objectively how their actions influenced a
conflict and discussion. These are often rather fundamental considerations
of a teacher’s own teaching method and perspectives on a student.
Managers and business consultants reacted similarly and understood

reflection as a method to carefully analyze concepts and their own activities.
While being objective is recognized as one goal of reflection, they mainly
understood reflection as a method of carefully analyzing not only their own
behavior, but also business processes. The outcomes were often new ideas
about concepts rather than the re-evaluation of experiences. Managers
and business consultants strongly connected reflection to outcomes and to
consideration of how these outcomes can be put into practice.

This small study showed the different notions of reflection in the three
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4.1 Requirements Analysis and Approach

domains. Even within one domain, the understanding of reflection varied.
In summary, designers who work on supporting reflection have first to
establish a common notion of reflection. Within this thesis, the term
reflection is understood as defined by Boud et al. [4]:

“those intellectual and affective activities in which individuals
engage to explore their experiences in order to lead to new
understandings and appreciations.”

4.1.2 Sensor Data as Learning Content
According to Fleck (see section 3.3.1) and the CSRL model (see sec-
tion 2.1.3), captured data can support reflection. The data become the
learning content that provides new insights to a user. However, in contrast
to traditional learning content (e.g., from a text book), the captured data
about an experience do not provide insights or new concepts on its own.
The data can be understood only in light of the experience in which the
data were captured. Sellen and Whittaker [97] speak of “Synergy not
substitution” to emphasize that the capturing of data cannot replace the
memory and the analysis by a user. The captured data have to relate to
the experience of the user to lead to insights. As a consequence, the two
main requirements for reflection content are (a) that learners can relate
their own experiences to these data and (b) that this process can lead to
new insights. Insights can range from an unobservable change in attitude
to a change in behavior [4].

CSRL should not be confused with technology that involves only behav-
ior change, such as persuasive technology (see Section 3.3.2). Although,
CSRL and persuasive technology both involve supporting and influencing
cognitive processes by technology, outcomes of reflection only rarely re-
sult in direct observable changes, but rather change the mindset of the
reflecting person. Examples are the initial awareness of a problem, changes
in attitude, or simply the insight that there is no real problem. This
section analyzes the similarities and identifies how CSRL can benefit from
the advances in ubiquitous computing and in particular from persuasive
technology.

Many applications from persuasive technology (see Section 3.3.2), such
as [122, 124], create a feedback loop to influence behavior. The user is

51



4 Designing Sensor Support for Reflective Learning

constantly provided with feedback regarding current or past behavior to
influence future behavior in the desired direction. Such feedback loops
are also the basis of many reflective learning theories (e.g., the Kolb
cycle [5] or the model by Schön [6]). The model by Boud et al. [4] is not
explicitly designed as a loop, but the process of re-evaluating experiences
can and probably has to be repeated to learn continuously. As described
in Section 2.1, these reflective learning processes target an incremental
improvement and learning from new experiences. Similarly, the CSRL
model, which serves as the background for this approach, forms a cycle.
Figure 4.1 depicts how sensors and visualizations of sensor data can

support reflection and behavior change. The model, similar to the Kolb
cycle [5] and the model by Schön [6], is structured in a feedback loop. The
naming of three of the four phases is based on the model of Boud et al. [4]
because the CSRL model [33] itself is based on this model: Experience,
Reflective Process and, Outcomes. The fourth phase, Behavior, is not an
explicit part of Boud’s model, but the required source of experiences to
close the feedback loop, similar to the models by Kolb and Schön. In the
cycle, behavior results in experiences. During the reflective process these
experiences are revisited and analyzed to come to new outcomes. Some of
these outcomes will translate into an actual change in behavior that can
be analyzed in subsequent cycles.

Reflective 
Process

Outcome

Behavior

Feedback

Measurement

Content for Reflection

Figure 4.1: Double feedback loop of computer supported reflection
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Each transition between phases may fail. Behavior or the impact of own
behavior might not be perceived at all and, therefore, does not become
part of the experience. An important and relevant experience might go
unnoticed because of the amount of experiences that we make every day.
As a result, this experience never becomes an item of the reflective process.
A reflective process might not be fruitful if it is not creating outcomes
and may then turn into rumination. Finally, an outcome that could lead
to a change in behavior might be prevented by the circumstances. For
instance, an employee who decided to stop working late might suddenly
be confronted with a large number of urgent tasks.
Technology can help at various points to minimize error and facilitate

successful reflection, influencing attitudes and potentially changing be-
havior. This thesis focuses on the support of the reflective process by
facilitating the transitions from the behavior to the reflective process stage.
Further technologies can support the other parts of the cycle. For instance,
a system can guide reflection with reflective questions or help to document
and communicate outcomes.
The envisioned sensor support creates a second loop with two new

components that support the cycle. Behavior is not only perceived by the
individual but measured by sensors. In addition, the captured data or a
summary has to be provided as feedback to enrich the perceived experience
with additional data [203]. The combination of experience and feedback
will influence the reflective process, the resulting outcomes, and finally
the behavior. The change in behavior is experienced and sensed to create
a comprehensive feedback to influence the reflective process. According
to Boud et al. [4], the reflective process involves a “stepping back from
experience.” This step to obtain a more objective perspective on behavior
can be supported by additional data that provide a different and often
more objective perspective.

In summary, a system that is intended to support the reflective process
has to close a second feedback loop by (a) capturing data linked to relevant
behavior and (b) providing these data as feedback that can enrich the
experience itself. The reflective loop and the feedback loop have to be as
closely intertwined as possible. This design task is challenging because the
internal reflective process can be observed only by its visible or articulated
outcomes.

The captured data can facilitate new insights in different ways during a
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reflection session (see Section 2.1.3).

• Data that provide a different perspective on experience can actually
trigger a reflective process by inducing a cognitive dissonance [31].

• In some cases, the data might act as markers to indicate a particular
point in time, a particular location or process upon which it is worth
reflecting. Although these data do not lead to insights in themselves,
they can point to relevant data or experiences.

• Finally, additional data may be required during the reflection session
for an in-depth analysis of an event.

The impact of the collected data can be increased by aggregating the data
or sharing it with others. The aggregation over time, multiple employees,
or events can provide new perspectives on experiences. The resulting
high-level perspective can be useful to abstract from the specific event and
generalize insights for an individual (e.g. reviewing trends in bio-signals)
or collaborative level (e.g. reviewing team performance over one month).
Sharing of data enables all forms of social facilitation of reflection (see
Section 3.1.3). Users can benchmark their own results in relation to those
of their colleagues, or reflect in collaboration with them. For instance,
employees could compare performance measures of a specific task to those
of a more experienced colleague or to the average performance of all
employees. The benefits of collaborative reflection are described in more
detail in [93]. However, sharing of data is not always possible, or desired,
at the workplace. Especially at the workplace, privacy considerations
must be taken into account. Furthermore, colleagues have to be able to
understand and interpret the data from their own perspectives.

4.1.3 Requirements Analysis
A hospital and a care home were visited in order to understand the specific
requirements in both domains. In local workshops, management and
employees presented their perspectives on reflection and how they expect
technology to support their work. Developers presented existing technology
approaches and discussed them with employees. Building on this rough
understanding, ideas for technology support were drafted. A second round
of workshops was conducted with employees and developers to discuss and
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extend these ideas. These discussions provided deeper insights about the
requirements. The results of the requirements analysis for each testbed
can be found in the corresponding chapters.
The healthcare domain is a particularly promising field for reflective

learning applications. Large parts of physician, nurse and care staff
education occur in the form of on-the-job training. The procedures during
an emergency situation can be explained in a book, but must be experienced
firsthand for one to act confident and competent in similar situations. The
time to reflect on such important experiences is scarce.

During a workshop in a hospital, a lead physician confirmed that reflec-
tive learning is encouraged, but is not sufficiently supported. Technology
support is seen as presenting an opportunity to reflect in a more effective
manner by providing alternative perspectives on experience. Moreover,
the management hoped that the new tools encourage an overall more
reflective attitude towards work. Adherence to organization standards and
privacy requirements of employees are major non-functional requirements
to these tools. Employees are concerned that captured data will be used
to assess their work performance. Moreover, the privacy of customers and
patients is even more critical in the healthcare domain. These special
requirements limit the applicability of well-known sensors, such as the
SenseCam [8]. Alternative options are self-reporting approaches, but they
are often interfering with daily work or have to be highly customized to
integrate with existing tools and applications.
The design of tools to generate the desired content in an appropriate

manner must balance the effort to capture these data and the expected
benefit. At the workplace, the available time and budget are generally
already allocated by the primary work tasks that constitute the business
of the employer. Therefore, additional tasks and cost must result in a
measurable outcome on the business side. As described previously in
Section 2.1, there can be a wide variety of outcomes of reflective learning,
ranging from unobservable changes in attitude to an unexpected and
sudden change in behavior. The impact is hard to predict and estimated
benefits are difficult to prove. For example, if an employee in the sales
department decides to act more empathically towards a customer, the
impact may be improved sales, but there is no direct predictable link.
Hence, the balancing of benefits and barriers for reflective learning at the
workplace mainly involves reducing barriers. In some cases, benefits that
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are side effects of reflection are important as well.

4.2 Design Space
This section organizes the main design decisions and options to support
reflective learning by data capturing into a design space. According to
Shaw [128], design spaces help to meet requirements by identifying core
questions. They provide guidance as well as a framework to compare and
analyze existing solutions. Hence, Shaw defines:

“The design space for a problem is the set of decisions to be
made about the designed artifact together with the alternative
choices for these decisions.”

This section is not limited to sensor technology, but describes the choice
between sensors and self-reporting applications as one decision among
others because this is one of the choices developers face. Sensors are
promising tools, but can be complemented and combined with self-reporting
approaches [90].

A wide variety of workplaces can be supported with different capturing
solutions. Designers have to understand the specifics of the workplace
to identify major requirements and limitations. In terms of the CSRL
model, the capturing of relevant data during the work process augments an
experience and becomes part of the reflection session frame. Furthermore,
the captured data and their visualizations can be triggers for a new
reflection session. The following three questions must be answered in an
iterative process:

• What should be measured? What is the relevant context?
• How can the relevant context be measured at the specific workplace?

Which capturing method is appropriate?
• How can the measured data be turned into feedback? How can they

be turned into content for reflection?

The following sections will discuss each decision and describe options and
related examples. Figure 4.2 shows these decisions as dimensions in the
context of the CSRL model. These three questions are interdependent.
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Figure 4.2: Design decisions to turn context into content, in relation to
the CSRL model.

The selection of certain context limits the opportunities to capture it.
Moreover, there is often a wide variety of context information that cannot
be captured at all. The feedback builds on the captured data and the
possible feedback method determines which context is optimal. Therefore,
the optimal answer to all three questions in a given workplace must be
found.

4.2.1 Relevant Context
Workplaces offer a plethora of data that can be captured or is already
available in digital form. The selection of data is driven by the considera-
tions explained in Section 4.1.2: learners must be able to relate their own
experiences to the data and come to new insights. Furthermore, the design
challenges described in Section 4.1.3 highlighted that the goal should be a
small subset of data to minimize interference with ongoing work processes.
The decision of which data are relevant is a typical example of the relevance
paradox [129]. While a designer has all data at hand, it is difficult to
decide which subset will be relevant in a reflection session because of (a)
the unpredictability of context relevance and (b) the subjectivity and need
for interpretation of context.
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• Unpredictability of relevance: Since the outcome of reflection cannot
be clearly predicted, (i) it is unclear which context is useful and
(ii) more context information has to be captured than will probably
be used afterward. Developers can only estimate which data might
be useful and, thereby, they have to balance required effort and
estimated impact. Which data are useful to reflect on an experience?
Which experiences are worth reflecting?

• Subjectivity and need for interpretation: It is inherently difficult to
identify data that relate to a concrete experience. While hardware
sensors and IT systems can capture a growing part of the context, the
perception of this context and its interpretation is hard to estimate.
The perception by a user depends on existing experiences and biases.
Only the user can provide the necessary feedback to select the relevant
subset of data for later reflection and, in many cases, this selection
is already part of a reflective learning process. Hence, designers
cannot solely rely on fully automated ways of capturing (such as
hardware sensors or mining of existing data). A combination of
multiple sensors may provide additional hints on the relevance of the
data, but applications can involve the user into this process.

During the workshops reported in Section 4.1.3, participants repeatedly
referenced three types of context in stories on reflection: task context,
affective context, and social context. They are promising candidates to
support reflection at the workplace with data. This is not an exhaustive
list, but can help to identify alternative options. For instance, the location
is relevant in many professions, but is mainly interpreted in the sense of
social or task context (i.e., “what did I do there?” or “who was I with?”)
The different roles of these three context types in the reflective process
are described below. In addition, example tools and related challenges for
measuring this context are provided.

• Task context describes activities that are directly related to work
tasks. The data are easy to understand and seen as relevant by
employees and management. The required data are often already
present in existing documentation of work (e.g., as treatment records
in a hospital), but might not be available for technical or legal
reasons. Activities at a PC can be captured with commercial tools like
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RescueTime [130]. Sensors can augment tools and the environment
with sensing capabilities that capture task context. For instance,
wearIT@work [15] supported workers in a car factory by augmenting
tools with RFID tags. All interaction with tools was captured by
an RFID reader at the glove. However, capturing task context can
be perceived as an undesired performance-monitoring by employees.
The resulting resistance of employees can lead to manipulation of
data or the corresponding tool may not be used at all.
In summary, task context is relevant in nearly all workplaces. The
developed solutions are often tailored to the specific tools or applica-
tions, but help to provide better understanding of the selected work
processes.

• Affective context describes all context information that is related
to emotions and moods. Emotions and moods are indicators for
relevant time spans during the work day. Important events are often
experienced with a higher level of arousal. Furthermore, continuously
high arousal may indicate an overburdening of employees. Therefore,
affective context can act as a marker for relevant time spans as well as
additional data to analyze the impact of emotions on an experience.
Moreover, awareness of mood and emotions is important for all
employees that directly interact with customers or patients. This
kind of work is also called emotional labor [131]. Affective computing
(see Section 2.3) has developed a large variety of sensors [57, 62, 56]
and self-reporting approaches [191] to record affective context.
Affective context is useful in a variety of roles and has been a central
point in reflective learning (see Section 2.1.2). The available sensors
and tools are designed to be used across work contexts. However,
data about our emotions are highly privacy relevant.

• Social context records the interactions with colleagues, customers,
and patients. In interviews, employees often begin explaining an
experience by mentioning the people that were present. Persons
and their names act as a memory cue for experiences that were
made together. Moreover, in many professions, the social contacts
structure the day. Physicians, for example, treat one patient after
the other and talk with relatives and colleagues. In this case, the
social contacts correspond to the task context. Social contacts can
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be face-to-face or mediated by technology. Technology-mediated
contacts can be analyzed using the corresponding communication
tool and social network analysis (SNA) [118]. A variety of sensors
and mobile phone applications can record face-to-face contacts (see
Section 3.2.2).
Social context is relevant for many professions, is privacy critical,
and can be captured by sensors and applications across contexts.

All three types of context can provide a rather objective or subjective
view on a situation, depending on the capturing method that will be
discussed in Section 4.2.2. The comparison of these possibly conflicting
views can induce a cognitive dissonance, reveal new insights, and eventually
lead to a change in behavior. A subjective and personal experience is the
result of the individual’s interpretation of the situation. The return to
experience and re-evaluation of an experience in the model of Boud et
al. [4] targets this subjective and personal experience. In being subjective,
it might not always reflect an actual situation, but is interwoven with
personal beliefs and expectations. Subjective and personal experiences
are accessible only for tools and others when the learner articulates this
knowledge. This articulation might be complicated by the tacit nature
of a part of the knowledge at work. If knowledge is articulated, it will
generally be subjective because it reassembles the mindset of the learner.
This view can be further distorted by the method of recording (e.g., notes
might be misinterpreted after reading them at a later time).

Objective perspectives differ from experiential data in their underlying
perception of the situation as well as their interpretation of the gathered
data. For instance, sensors have only a limited view of a situation as they
capture a small subset of an experience in great detail. A learner generally
has a broader perspective, but might interpret the perception or even the
experience incorrectly. As Moon points out, “If learners do not learn from
experience but from their perception of experiences, there are implications
for the nature of guidance required by learners in order to make sense of
experience” [26].
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4.2.2 Capturing Method
There are often several methods to capture the same or similar data
at a workplace. For instance, affective aspects can be monitored by
sensors [57, 56] or self-reporting apps [191]. The best method depends on
the requirements of the workplace, because the selection of the capturing
method defines the qualities of the resulting data and the effort to capture
these data.

• Quality of resulting data includes, among other factors, sampling
frequency, precision, and accuracy. A higher sampling frequency and
precision are beneficial to the point at which no new information is
contained. Conversely, the accuracy can be lowered by a systematic
bias that does not have to be negative as long as users are aware
of this bias. For instance, self-reporting of data introduces the bias
of the user into the system. The bias itself makes it easier for a
user to reflect on the data. Moreover, the bias may become the
topic of reflection as in Echo [7]. An unknown bias, however, may
lead to incorrect conclusions in the reflection session. Sensors can
introduce a bias as well (e.g. by being positioned in only one of
several rooms). The sampling rate may be inappropriate to measure
particular events, or the selected sensors may exhibit a general lack
in accuracy.

• Efforts and costs to capture the data are the main reasons why a
system is not accepted by employees or a decision is made against
installing the system in the first place. The efforts and costs include:
costs to the employer, effort for the employee, and legal constraints.
All three can come in varying and unexpected forms. For exam-
ple, developers are often not aware of the required effort to train
employes to use the system. These barriers exist and should be
carefully analyzed in collaboration with the end users. Efforts that
are accepted in one place may not be accepted in another.

Designers will often encounter a tradeoff between effort and quality of
the data. A diary application can be used once per week or every day.
The amount of data and the possible insights will differ. Likewise, more
complex and expensive sensors can often deliver a higher accuracy. The
methods to capture data fall into one of the following three categories:
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• Self-reporting of data relies on the active effort of a user to report
events and the user’s own impressions. Mobile applications and blogs
have largely replaced the classic handwritten journal. Because of user
involvement, the resulting data will be biased by the reporting person.
Some QS applications attempt to minimize this bias by restricting the
input to a specified structure that can later be analyzed automatically.
For instance, the MoodMap App [191] restricts the input to a single
click in a two-dimensional space. However, as in the case of the
MoodMap App, the collected information is often directly related to
the personal subjective experience.
Self-reporting can be used in a wide variety of scenarios, but requires
the cooperation and acceptance of users. The motivation of users
will determine the amount and quality of captured data. The user
interface plays a crucial role in guiding and motivating the user.

• Observer-reporting in its properties to self-reporting, except that the
effort to capture the data is moved to an observer. The observer
can be a single mentor, for instance an experienced nurse in a care
home, or a large group of observers. The feedback from groups is
especially valuable because, although the bias from each observer
influences the final result, the overall result will contain only an
average bias. The aggregation of this feedback can provide an
objective external perspective on an event. Customer surveys build
on this principle. However, as observers have to capture data by
themselves, their motivation is crucial for success. The Live Interest
Meter app [91] supports presenters by feedback from their audience,
which is motivated to provide such feedback by leveraging on their
interest to listen to an engaging talk.
Observer-reporting can be applied when observers are available and
if they can be motivated to share their views on an experience.
Observer data can become more objective by aggregating feedback
from multiple observers.

• Automatic capturing of data is realized by either sensors or monitor-
ing applications. Automatic approaches can capture one detail (e.g.
the room temperature) at a high sampling frequency and precision.
The user acceptance depends on two conflicting arguments. Sen-
sors and applications remove the reporting burden by automatically
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recording data, but the monitored person is no longer directly in
control of the recorded data. This can lead to feeling monitored by
the management and lower the acceptance of such systems among
employees. Automatic capturing systems must include a means that
enables employees to reclaim ownership of the data. Sensor data are
often judged as more objective, but can be biased by the technology
or the usage of this technology. These biases are not often obvious
to a user and must be communicated clearly.
Automatic capturing methods can deliver a higher sampling frequency
and precision. They often provide a very limited perspective, but
a maximum granularity on an experience. The costs to design
and introduce a sensor system are related to required hardware
and software, so they tend to be higher than reporting approaches.
Furthermore, hardware and software often limit existing sensors and
tools to very specific domains. For instance, the gloves and tools in
the wearIT@work prototype [15] are tied to car manufacturing in
one factory.

The type of physical tasks conducted by the users will guide the type of
capturing method. For example, if users need freedom of movement and
cannot use their hands to input any data, self-reporting can be done only
with custom input methods [90]. If, however, users can embed the manual
capturing of the data in their current working tasks (e.g. because they
work at a desk or these data have to be recorded anyway), self-reporting
can be the better option.
Although sensors are expected to provide an objective perspective,

planned or involuntary interpretation, done by the learner or the capturing
method, might skew the view of the perceived situation. Hence, the differ-
ence between objective and subjective data are only relative. Conversely,
an objective perspective provided by automatic means (e.g., a video or a
picture) already includes subjective bias. The person taking a picture with
the camera is focusing on a selected aspect and cuts out other relevant ele-
ments. Sensors can capture with high precision, but they lack the broader
view of a human observer. Additionally, by selecting the monitored detail,
a subjective bias is already introduced. However, data that are biased by
subjective impressions can become more objective through aggregation
across several incidents. For instance, the different perspectives provided
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by observers are subjective and biased, but by quantifying and summa-
rizing the feedback of multiple observers, a more objective feedback is
possible.

4.2.3 Visualizing Captured Data as Content for Reflection
Developers of CSRL applications must visualize context in a form that
optimally complements the experience of the user to trigger reflection and
lead to new insights. Raw data must be transformed into an accessible
form to become content that supports reflection. The resulting feedback is
the main part of a capturing system that is visible to the user. Therefore,
its quality determines how users will perceive the value of the system. The
design of the required visualizations must include three design goals, which
in some cases can be conflicting:

• Simple and aesthetic visualizations are appealing to users and easy to
understand [20]. The cognitive effort to analyze the data is reduced.
The visualizations have to trigger and sustain interest in the data.
Optimally, a simple message is conveyed that guides the user to an
outcome.

• Surprising and inquisitive interfaces lead to new insights. They
provide new perspectives, spur interest, and foster the analysis of
the data. Unusual and surprising data points are emphasized and
can result in cognitive dissonance [31].

• Comprehensive visualizations allow data analysis in all details. A user
can drill down to specific situations and analyze different relations
between the data. The visualizations do not artificially reduce the
options to analyze and understand the data.

There is a tradeoff between data being simple to understand and the
possible depth and impact of insights. Large multifaceted data may promise
major insights, but if users cannot understand and relate to these data,
a simpler solution should be preferred. This is in line with the design
guidelines for persuasive technology by Consolvo et al. [20] and Fogg [19].

Research on information visualization [132] has developed a rich variety
of visualization methods. Rivera et al. [203] discuss the different perspec-
tives that are relevant for CSRL. In the following, three of them and their
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role in reflection are explained:

• Status charts provide a quick overview of the data. They relate data
to goals or average values. Examples would be the average mood
during a day, the number of tasks that have been completed, or the
average feedback from customers. Deviations can be a trigger for
reflection and lead to an analysis of the underlying reasons.

• Timeline charts offer a historical perspective on data. Situations
can be analyzed along the timeline and durations can be compared.
Timelines can span a few minutes, days, or several years. Long-term
timelines can help to identify trends. Shorter timelines can be used
to reconstruct specific situations.

• Comparison charts help to compare data between several instances
of an event. This can be a comparison between different users, trends
during different timespans, or between different groups.

In an application, a selection of these charts and further visualizations
must be combined to cater to the specific needs in a workplace. For
instance, a status or a comparison chart can act as a starting point for the
analysis. Further charts can be used to follow up if interesting deviations
or differences are found.
The optimal visualization depends on the background of the learner

as well as its knowledge of the data. A user-centered design process is
required to collect requirements from the end users in an iterative fashion.
Feedback on early prototypes guides the selection and arrangement of
charts.

4.3 Design Studies in the Healthcare Domain
Two design studies have been conducted with wearable sensors to explore
two of the three main categories of context presented in Section 4.2:
affective context and social context. From the presented technologies,
wearable and mobile systems best matched the requirements of employees
in most healthcare professions because their work is not bound to a desk.
Carers, nurses, and physicians are moving between patients, relatives, and
colleagues. They often share desks (e.g., at the stroke unit two desks are
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shared by all nurses). Sensors that should be used in this environment
must be unobtrusive so as not to interfere with daily work. Wearable
sensors (see Section 2.2.4) can measure relevant data in an unobtrusive
manner and accompany their users wherever they are. Therefore, they
were selected in both studies as the preferred capturing method.

The following sections introduce the selected use cases and describe the
common approach that was used in both domains to design prototypes
according to the design space presented in this chapter.

4.3.1 Use Cases
Two examples in the healthcare domain in which reflective practices are
particularly promising are stress-coping strategies and dementia care. Both
require individual solutions that have been tailored for the individual and
the situation at hand. Hence, only the individual can identify these
solutions because the required knowledge is tacit and very specific. While
these insights, such as an identified lack of a particular skill, can be painful
in the long-term, the overall well-being will increase. The overestimation
of one’s own abilities might be motivating and beneficial in the short term,
but has negative effects in the long term [133].
Chapter 5 explores the recording of affective aspects within a stroke

unit by equipping nurses and physicians with wearable heart-rate monitors.
Nurses and physicians, especially in emergency care, work under stressful
conditions. The Health and Safety Executive [134] in the UK summarizes
that stress has been the second most commonly reported type of work-
related illness in the UK for several years. Health and social workers
have the highest rate of illnesses across all occupations and industries.
Stress coping strategies in the hospital range from breathing exercises to
suppression. However, the optimal situation would be to remove the causes
for stress. As these causes are specific to the individual, only reflection
by the individual can identify them. Although coaching could help, these
forms of support are too expensive to be used for all employees.
Chapter 6 describes the development and evaluation of a wearable

sensor system to record social contacts in a care home. One reason for
the increasing workload in care homes is the growing number of residents
with dementia. Caring for dementia patients requires quick reaction to
the often unpredictable behavior of elderly residents who suffer from this
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disease. Dementia is an age-related illness that will become more prevalent
with the growing number of elderly citizens. Current projections [135]
estimate the total number of people with dementia in the UK at more than
1 million by 2025 and more than 2 million by 2050. Care work in the UK is
mainly conducted by care staff without formal training. During their work
carers, acquire the skills to achieve National Vocational Qualifications. As
a result, care staff members without formal training must deal with the
complex behavior of dementia patients. Carers must learn person-centered
care, viewing residents as individuals and striving to look at the world from
the perspective of the resident with dementia [136]. Many carers struggle
in this challenging environment and eventually quit their jobs. As a result,
an annual staff turnover of 20 percent to 25 percent is common [137].

4.3.2 Iterative Design Process
Development was conducted using an iterative user-centered approach,
as shown in Figure 4.3. Users were included throughout development
process, starting with collaborative requirements discussion, testing of
early prototypes, and iterative development of requested features. The
process consists of three major steps that are aligned to the dimensions of
the design space presented in Section 4.2.

In an initial step, the type of context that should be captured is selected.
The selection depends on the workspace and underlying goals of employees.
Task context helps to improve and compare performance. Affective context
is relevant for well-being as well as social interaction with customers
and colleagues. Social context supports the analysis of social contacts.
Depending on the workplace and the specific type of data, each of the

Select 
Context

Capturing
Prototype

Feedback
Design

Prototype 
evaluation

System 
Evaluation

Figure 4.3: Iterative design process
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context types may be used for a different purpose. For example, social
context of care staff can help to analyze task performance because the time
spent with each patient is directly related to the work task. In summary,
the selection of context that should be captured requires discussion and
interaction with the end users (i.e., the employees).
Based on this decision, prototypes to capture this context are built

and tested. A prototype may use off-the-shelf tools and visualizations of
the data can rely on the raw data. The evaluation has to take place in
the target context to test whether sufficient data can be captured and
how much effort is required. The first test at the workplace should take
place as early as possible to identify unexpected challenges. For instance,
in the care home, several staff members had problems writing or typing.
Therefore, self-reporting approaches in the care home should not contain
any text entries. Even showing raw data to employees in a very simple
form can provide feedback whether the quality and amount of data are
useful for reflection. These first reflection sessions were facilitated by a
researcher and evaluated with semi-structured interviews. If the developed
prototype does not deliver the required quality (e.g., an insufficient amount
of data or an unexpected bias) or if the efforts and costs are too high, the
prototype must be adapted and tested again.

The discussions in the first step and feedback during the prototype evalu-
ations provide many insights regarding the possible design of the feedback.
However, during these tests, employees imagine what the final feedback
will look like and which new and deeper insights will become possible with
more-advanced visualizations. The first visualization prototypes will most
likely not fulfill these expectations completely. Consequently, another cycle
of iterations is required. In many cases, the captured data must be filtered
and aggregated to minimize the effort to analyze the data.
In the two design studies, the focus is on the second step – the evalu-

ation and improvement of capturing prototypes. In both design studies,
prototypes for capturing context have been developed and evaluated.
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This chapter explores the support of reflection by capturing affective aspects
following the design process defined in Section 4.3. The first step in this
process is the decision regarding the relevant context according to the design
space defined in Section 4.2. The affective context was chosen because
tracking of affective context during the work day can help to identify
the experiences that trigger an emotional response. These experiences
most likely indicate critical events that are worth reflecting. There are
three additional benefits to capturing affective context. First, emotionally
arousing experiences are better recalled in the long-term [138]. Hence,
tracking of affective context during the work day could help to identify
remembered experiences and timespans. Reflective learning support could
refer to these episodes and also point to events that might have been
forgotten. Secondly, the affective context is relevant in nearly all workplaces.
A developed solution has the potential of being generalizable to other
work domains. Finally, wearable sensors have been developed in affective
computing (see Section 2.3) that do not interfere with work tasks [56, 57,
62].

The conducted design process consisted of three major steps, as depicted
in Figure 5.1. The structure of this chapter follows these three steps.
As explained above, the decision to capture affective context was the
starting point. In a first step, a prototype to capture affective context
was developed. To this end, a requirements analysis was conducted, as
described in Section 4.1.3. After comparing self-reporting and sensors-
based approaches in relation to the hospital setting, an available sensor
system was chosen as first prototype. This system was evaluated in an
initial ethnographically inspired study to deepen the understanding of
affective aspects in a hospital. The study is reported in Section 5.2. The
results indicated that a different, more flexible system is required. The
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Mobile 
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Figure 5.1: Design process affective context capturing

deduced requirements informed the development of mobile extensions of
the xAffect system [206] that are presented in Section 5.3. The final section
summarizes the main findings on capturing affective context.

5.1 Tracking Affect on a Stroke Unit
The healthcare environment challenges employees with dynamic tasks
that must be conducted in a limited time. Each of these tasks might
literally be vital for a patient. As a result, employees in social care have
the highest rate of stress-related illnesses in the UK [134]. The personal
reasons behind this number vary according to the particular workplace and
individual mindsets of the staff. Therefore, there is no general solution,
so the underlying reasons must be identified. Reflection by the individual
staff members is one option to identify the appropriate reaction. Reflective
practice is seen as a particularly promising approach in care professions [3].
In addition, research has shown the impact of collaborative reflection on
work in healthcare professions [34, 139].

The following section compares automated approaches to self-reporting
approaches for capturing affective aspects on a stroke unit. It describes
the selection of the used sensor and the evaluation of an alternative self-
reporting approach.

5.1.1 Affective Context on a Stroke Unit
A stroke unit is an emergency unit that specializes in treating patients
with acute strokes. During a stroke, parts of the brain are cut off from the
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oxygen supply. If these parts of the brain do not receive enough oxygen,
the damage will increase with every minute going by. One of two stroke
treatment options must be chosen as quickly as possible. The two options
depend on the actual type of the stroke: the blood vessels are either
clogged or suffer from internal bleeding. The treatment for one stroke type
will worsen the other. Therefore, all activity in the stroke unit focuses
on identifying the type of stroke as quickly as possible. One physician
summarized this task as “time is brain.”
Physicians and nurses treat patients with life-threatening conditions

and must make decisions as quickly as possible. Moreover, they must
communicate the patient’s status to relatives. For instance, they must
inform relatives of the death of a loved one or about lifelong impairments.
The staff members have to cope with the resulting stress and emotional
pressure. According to [140], the tracking and reflection of affective aspects
could help individuals to raise self-awareness about their well-being and
prevent related illnesses. For instance, nurses and physicians could compare
the impact of night shifts and stressful events during the day. Trends could
be recognized and employees could act earlier on them. The collected
data have the potential to identify stressors in the workplace. Moreover,
counter measures could be checked regarding their effectiveness. Thus,
we hoped to support staff by tracking their arousal levels and supporting
reflection on coping strategies.
There are three major challenges when developing and introducing a

stress monitoring in hospitals. First, physicians and nurses are not bound
to a desk. They move between patients, relatives and their desks. Secondly,
the introduction of additional hardware has to overcome several hurdles.
Hospitals are careful regarding new devices that require wireless connec-
tions, because radio technologies might interfere with medical devices
and ongoing measurements. Furthermore, new devices, especially when
shared among staff, are seen as possible carriers that can spread infec-
tions. Disinfection of devices is a must, because patients are vulnerable
to these infections. Finally, data collection of any kind is critical because
staff members in hospitals fear legal implications of the captured data.
Although they want to protect the privacy of patients, they also are aware
that these data could be used against them if they are sued for a mistake.
For instance, if a physician recorded and noticed high stress levels before a
mistake, she might be held liable because she did not react to these data.

71



5 Design Study I: Capturing Affective Context

The captured data from a sensor or an application could be a used as
evidence against the physician in court.

5.1.2 Self-Tracking Applications
There is a wide range of self-reporting apps that track moods or emo-
tions [140]. Mood-capturing applications are frequently used in the Quan-
tified Self community. Moods and emotions are very personal and differ
in their interpretation between individuals. Hence, a self-reporting appli-
cation can collect data that are correct and easy to understand. Mobile
or web-based applications are nearly ubiquitously available. Nevertheless,
even a single choice requires a short change of focus to the self-capturing
app. Therefore, the number of mood entries will be low compared to a
sensor; and in time-critical situations, the application will not be used at
all.
To further the understanding of such applications, a simple mood self-

tracking app was evaluated in a project meeting [195]. Figure 5.2 shows
the interface used to minimize the effort to indicate mood. The MoodMap
app is based on the dimensional model of affect by Russel (see Section 2.3).
The horizontal axis depicts the valence. The vertical axis shows the arousal.
Users can state their mood by clicking at any point in the map. Resulting
mood values are represented as a pair consisting of an arousal and a valence
value. In this way, mood can be collected with a single click. The arousal
and valence values can be easily aggregated and visualized in different
forms.
Mood self-reporting is not applicable on a stroke unit. In the hospital,

nurses and physicians have no time to indicate their moods and such an
application will most likely interfere with their work. Moreover, nurses
and physicians do not typically use smartphones and spend only a small
amount of time per day at a PC. However, more advanced versions of the
MoodMap app have been used in different settings (e.g. call centers, where
agents sit at a PC).

5.1.3 Psychophysiological Sensors
Sensors can continuously record psychophysiological signals, not only
during routine work, but also during emergencies when there is no time
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Figure 5.2: Moodmap application prototype [195]

for self-reporting. Wearable sensors can be worn unobtrusively and do
not interfere with existing work practices. They can record physiological
signals that indicate the affective state of the wearer (see Section 2.3). The
individual review of the recorded data can facilitate individual reflection,
as explained in Section 4.2.2.

Employees are rather skeptical regarding the use of wearable sensors, ac-
cording to an initial questionnaire distributed to employees from hospitals,
care homes, and IT enterprises [191]. We were interested in events that
may contribute to stress-related illnesses. Towards this end, our goal was
to measure arousal during the work day. Wearable psychophysiological
sensors that are used to measure arousal can be categorized into two main
groups according to the recorded signal:

• Sensors that measure the electrodermal activity (EDA)
• Sensors that measure activity of the heart (see Section 2.3.1)

Both signals have been shown to correlate with the arousal state in lab
studies [205]. The wearable devices transfer these methods to the field. In
this thesis, only heart rate sensors, such as [56, 14], have been used.
First studies with the Q Sensor [57] from MIT and a similar system

developed by Philips [62] have indicated the opportunities of measuring
EDA with wearable sensors at the workplace. For decades, researchers
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assumed that affect-related EDA signals can be measured only at inconve-
nient positions of the body (i.e., at the palms of the hands or under the
feet [141]). The two groups have developed wearable sensors that measure
affect-related EDA signals at the wrist. Although the initial results are
encouraging, the company that was founded to produce and sell the Q
Sensor stopped its development and distribution. There are no critical
publications available, but the license agreement of the Q Sensor required
consent from the sensors’ producer to publish research using the sensor.
Similarly, the prototype from Philips has been only accessible to a small
group of researchers. Therefore, a validation of the reported findings was
not possible.
ECG signals can be used to analyze heart rate variability (HRV) to

infer the arousal level of a user, as described in Section 2.3. A number
of commercial devices from the fitness domain are available, but these
standard heart rate monitors for sports [14] often interpolate the heart
rate to improve the user experience. The resulting data cannot be used to
calculate the HRV. The ekgMove [56] comes in the form of a belt, as shown
in Figure 5.3. The ekgMove contains a 3-axis accelerometer and uses dry
electrodes to continuously measure the heart rates of staff members. Dry
electrodes can be used without prior preparation, offer comparable signal
quality [65], and can be removed without traces. After the sensor is started,
participants can put on the sensor belt without further introduction.

Figure 5.3: ekgMove sensor: belt with dry electrodes on the left, worn
around the chest on the right.
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5.2 Ethnographically Informed ECG Sensor Study
The ekgMove was evaluated to test if it can create awareness of one’s
own arousal level and persuade medical staff to reflect on their own
behavior and coping strategies. This first study aimed at evaluating the
capturing method and gaining first insights about the possible impact
of the collected data. To this end, the existing Movisens hardware and
available visualization tools, such as the UnisenViewer [142] were used to
record and show ECG and activity data. Observations, questionnaires,
and interviews provided reference data and insights about usage and the
perceived benefit of capturing these data. The insights gained in this study
should help to refine the capturing prototype and collect requirements for
visualizations that would have been included in a second prototype. The
study reported herein was published in other form in [201].
The remainder of this section describes the method of the study and

discusses the results from the analysis of the sensor data, the observation,
and the concluding interviews with respect to the captured data, usability
aspects, and the subjective potential to learn from these data.

5.2.1 Method
The challenge in evaluating such a system in the field is the lack of
reference data. Post-study interviews about stressful phases during a day
can yield only a few examples of arousal-related reactions. Furthermore,
the interview will be biased by the staff’s own perceptions. Therefore,
sensor usage was combined with an ethnographically informed study. An
adapted rapid ethnographic method [143] was used to collect requirements
and opportunities of psychophysiological sensors in healthcare professions.
Ethnography is based on the idea that researchers are embedded in the
social settings to understand why things happen [144, 145]. In contrast
to field observation, which describes what happens, ethnography focuses
also on why and how things happen. While traditional ethnography is
based on long-term studies, the adapted method compensates the much
shorter time frames with (a) a more focused observation scheme and (b)
an interview at the end of the study that is used to clarify issues that arise
from a preliminary analysis of the data.
Eight nurses and physicians from a stroke unit were equipped with
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wearable electrocardiography (ECG) and acceleration sensors during their
work day to (a) make them aware of arousal by looking at their data and
(b) support the recalling of experiences to identify stressors. The ekgMove
was worn by nurses and physicians during at least two consecutive shifts.
The shift length varied between 8 and 24 hours. The ekgMove recorded
movement at the chest and the ECG signal. After each shift, participants
recorded their experienced stress levels on a 5-point Likert scale to collect
further reference data. They were asked to assign a rating to each hour of
their shifts.
Observers followed a selection of participants (three nurses and two

physicians, one male and four female) and acted as ethnographers collecting
data about: (a) situations that could be conceived as stressful, (b) physical
activity that could interfere with the measurements, (c) articulations by
participants, and (d) interaction with other staff, residents, and relatives.
Each of the three ethnographers was given a doctor’s overall to blend into
the setting and followed a participant during at least one entire shift. The
annotations were made in a traditional notebook, which facilitated the
skill to take notes anywhere at anytime, and had a level of detail of about
1 minute.

The recorded data were shown to participants 1 week after the study in
semi-structured interviews with their ethnographer. The interviews were
planned for 1 hour. Participants first reviewed their ECGs and activity
data using the UnisensViewer [142]. The heart rate, activity level, and
calculated features, such as step counts, were shown in a timeline view of
each shift. The visualized data were only a subset of the recorded data,
which were selected to stimulate discussions. For instance, one day with
many emergencies was shown and then a very quiet day. Participants were
asked to reflect on the visualized days and talk about specific events that
came to mind when reviewing the data. Visible changes in the heart rate
or activity especially should be explained. A printed report was distributed
to participants to support the analysis. The report contained a heart rate
histogram, Poincaré plot of HRV, average heart rate per hour, and activity
in steps per hour. The interview concluded with a discussion of general
questions, such as convenience of sensor usage and the expected benefit
from using such a system.

The eight participants from the stroke (four nurses and four physicians)
came from all age groups (22-44), including men and women (3:5) who

76



5.2 Ethnographically Informed ECG Sensor Study

had different levels of experience (1.5-25 years).

5.2.2 The ECG and Activity Data
The sensors recorded 152 hours of ECG and acceleration data. Ethno-
graphers observed 49 hours and annotated with physical activity and
important events.
Activity energy and step count were calculated from the activity data.

The results show continuous high activity. According to observations,
nurses and physicians walked between patients and offices. Figure 5.4
shows the average step count for nurses and physicians during the early
and late shifts. Nurses were nearly constantly walking from bed to bed,
while physicians spent more time at their desks documenting. However,
the observed potentially stressful situations took place while with a patient
or on the main corridor. Observations indicate that many more activities
cannot be recorded by the used sensor. For instance, nurses lifted patients
out of bed or moved a patient’s bed while walking.
An analysis of the data using standard HRV features such as SDNN,

RMSSD, and SDSD (see Section 2.3.1) were noisy because of the con-
stant physical activity of nurses and physicians. The rare times that
participants were not physically active were during documentation tasks
or breaks. In these timespans, arousal events were neither registered by
the ethnographers nor described in the interviews. An attempt to use
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Figure 5.4: Step count of employees: High activity levels hide the cog-
nitive effort. Nurses are walking more than physicians and have fewer
breaks for documentation. The figure shows the number of steps for a
physician and a nurse during each hour of (a) first and (b) second shift.
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the existing additional heart rate algorithm by [75] was stopped. The
constant walking at varying speeds, carrying equipment, or lifting patients
out of bed resulted in unpredictable rises in heart rate that hid potential
arousal-related reactions of the heart rate. As a result, the activity levels
were often higher than allowed by the algorithm and no arousal event
could be recognized.
Therefore, unprocessed heart rate data of whole shifts were shown in

the interviews. Nurses and physicians on a stroke unit are used to seeing
these kinds of data. They interpret ECG data every day and can spot
significant changes even in noisy signals.

5.2.3 Relevance of Data
According to the observation protocol, the monitored days were rather
quiet because there were few emergencies. The average rating in the
daily stress questionnaire was 2.38 on a 5-point Likert scale (from 1 being
not very stressful to 5 being very stressful). A single participant marked
3 hours as stressful (4), but was the only one to report stress. In the
interviews, participants confirmed that the days we monitored were rather
quiet with only a few emergencies:

D1: “It would have been more interesting for me if it hadn’t
been so quiet. I was waiting for an emergency to come, but
nothing happened.”

Strong reactions, however, can be recognized despite physical activity.
The heart rate data contained 15 events that showed an increase in heart
rate that could not be explained by the movement data. Seven of these
events correlate with observations of potentially stressful situations. These
15 events represent only a small subset of the reactions that were observed.
Furthermore, these strong reactions often trigger physical activity (e.g.,
jumping back or running to help in an emergency).

Figure 5.5 shows an 8-hour shift of a nurse that contains a peak in heart
rate and activity 3 hours and 20 minutes after the start of the recording.
When these data were shown to the nurse, she immediately remembered
this event and requested to see more details, which are shown in Figure 5.6.
The detailed view provides an analysis of the event. A patient’s heavy
muscle spasms surprised the nurse, who was working for a second week on
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Figure 5.5: Screenshot of the ECG and acceleration data as displayed
in the UnisensViewer. The first row shows the number of steps, the sec-
ond row the heart rate, and the bottom row the general activity. Clearly
visible is a sudden peak of the heart rate after 3 hours and 20 minutes.

this station. She sprinted to alarm a physician and returned immediately
to the bed. As a nurse, she is not allowed to medicate patients without a
physician’s permission. Nevertheless, she was about to inject the required
medication to help the patient without waiting for the physician. Other
more experienced nurses came to calm her down and told her to wait.
The overall event is visible at first glance at the data. However, these

extreme events are rare and a stress reaction is normal, although heart
rate changes that are caused by the arousal reaction and the physical
activity overlap in this example. The recorded data can help physicians
and nurses to remember such events and to later reflect on their behavior.
Minor stressful events (e.g., a heated discussion while walking) are difficult
to capture by using the heart rate of a physically active person.
Two different visualizations were offered in the concluding interview:

a printed summary of their day and a zoomable timeline view in the
UnisensViewer. The report depicted heart rate and activity data aggre-
gated on an hourly basis. The UnisensViewer is designed for researchers
and allows them to explore psychophysiological data along the time dimen-
sions. Users can zoom in and out to inspect data and compare multiple
signals at a selected time span. All but one participant preferred the
UnisensViewer because they could inspect details and discern the impact
of specific events.

D4: “Amazing, it is easy to understand.”
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Figure 5.6: Details of the reaction to a sudden emergency: the heart
rate shown in the first row rises from 90 beats per minute to 155. This
is mainly caused by the intense physical activity shown in the lower
three rows. Close examination of the three activity curves shows the two
sprints and a very short stop in between.

N2: “I like the UnisensViewer more than the graphics. I can
see everything that happened there and make a guess.”
N1: “Maybe UnisensViewer, then I can exactly see when, what
time, something happened. .. With the graphics I can’t see,
when a seizure occurs, for example.”

However, nurses and physicians are used to reading heart rate diagrams.
Different user groups might struggle to understand the amount of data.

5.2.4 Reflection Support
In the interview, participants confirmed that dealing with stress is an
important reason to use sensors. Measuring their own physiological data
at work was interesting for all of them and the participants expressed
their interest in recalling what happened during their work days. Most of
them stated that this interest is much higher with respect to their stressful
days and that they would like to compare what the measures look like on
different days.
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N1: “Yes, it would interest me, especially when I had stress or
emergencies.”
D1: “How often I would use it I can’t tell you ... If I had a 24
hours shift with 10 admissions with reanimations”

The review of the data led to surprising insights because the majority
of employees stated that the monitored time span was rather quiet. For
instance one nurse said:

N2: “I thought I was calm but now I see it wasn’t like that ...“

In general, the timeline graphs of heart rate and activity data acted as
memory aids. The structure of the day became especially clear to partici-
pants. They re-interpreted the data according to their own experiences as
defined in the model by Boud [4]. They came up with narrations of the
past day and articulated insights and narratives.

N4: “Yes! I can remember the two patients. They annoyed
me”
N1: “Yes [it helps me to remember]. I can say approximately
when some things happened.”
D1: “Yes, it was interesting [the support of the sensors to
remember]. It was interesting to see it graphically.”

However, participants did not feel they were able to act on their aware-
ness. They see stress and stressful situations as part of their job.

D1: “We have to hurry up. On duty you can’t do anything
against it. What could I do better? You don’t think. You are
there, and you have to do it.”

Moreover, the reflection of challenging situations is seen critically be-
cause it conflicts with existing coping strategies. Nurses are told during
their training to strictly separate their private lives from the stress they
experience at work. They are told to leave these experiences behind in the
locker room with their work clothes when they go home after their shifts
because they should not ruminate on their patients problems. Asking
them to reflect on their shift and the emotionally challenging situations
conflicts with this trained coping strategy. One nurse explicitly argued
against reflection to stay focused on the task at hand.
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Participants with more work experiences had more developed coping
strategies. They also committed to the ideal of “professional’ distance,”
but had developed their own strategies to achieve it. Although some nurses
tried to avoid and suppress emotions and emotional reactions during work,
others elaborated on concepts of emotion regulation to find the right
balance between “cold” and “over engaged.”

5.2.5 Potential for Long-Term Usage
Nurses and physician confirmed that the collected data support reflection
and can lead to new insights. They liked reviewing their data to get a
different perspective on their daily work. They knew this perspective from
monitoring their patients, but it was their first time measuring their own
heart rate and activity. Activity was seen as more interesting because their
heart rates were noisy from the high activity levels. As one participant
said:

D4: “I don’t like staying in hospitals and going to the doctor.
I am not the type of person keen on trying new things out but
it was actually interesting for me. I would mainly like to know
about activity and movement.”

However, participants did not see a potential for long-term usage because
the usability of sensors is still insufficient and reflection on stress contradicts
with their current coping strategies and training. The sensor belt was
used without complaints during the study. However, during the interviews,
participants complained that the belt was itchy after some time or that
electrodes would stick to their skin and hurt when they got disconnected
because of body movement. One participant described the belt as

D3: “a badly fitting bra that is a little bit inconvenient but still
wearable.”

The insights they gained were limited. They understood that they
could know that they were stressed, but could not identify clear reasons.
Furthermore, if reasons like an emergency could be identified, participants
saw no option to react in a different manner. As a result, they did not know
how to act on the insight they gained by reviewing the data. Reflection
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has to provide clear benefits to ignoring stress at work. These benefits are
not clear to participants and each participant expected different benefits
that should be considered in the design.

5.2.6 Implications for Design
The ethnographic study led to three major insights: (1) psychophysiological
data can facilitate reflection in healthcare professions, (2) sensors and
algorithms have to be adapted to the high activity levels, and (3) learners
need more context to identify the reasons and patterns behind an emotional
reaction.
Nurses and physicians were interested in the data and liked reviewing

the data. They remembered their day and found surprising psychophy-
siological reactions that triggered reflection. Nonetheless, participants
did not come to an observable outcome, such as a change in behavior.
They did not know how to act on their insights because these insights
remained at an abstract level. The levels of acceptance and reflection
varied among participants. The most obvious difference was observed
between participants with different amounts of work experience.
Similar to Sanches et al. [146], we came to the conclusion that “it

is difficult, sometimes impossible, to make a robust analysis of stress
symptoms based on biosensors worn outside the laboratory environment.”
The used sensors delivered data at a sufficient quality, but the high activity
levels diminished the insights that could be drawn from the data. The
HRV algorithms that have been designed for lab settings could not be used.
Moreover, the changes in activity types were too rapid for the additional
heart rate algorithms. Within the 3 minutes of the sliding window, a nurse
had often visited a patient, picked something up, and carried it back. In
addition, a variety of heart rate relevant activity could not be recorded
at all by the system. For instance, there is a significant difference in the
exertion needed to bend over a bed to lift somebody out of the bed or to
just check the blood pressure.

The design of algorithms and bio-sensors for work settings must account
for the specific challenges at each workplace. An iterative design process
using multiple sensors and frequent testing in the target domain is a promis-
ing approach to deal with the unpredictability of the workplace setting.
xAffect [206] can be a possible base for developing such a framework.
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5.3 Mobile xAffect
The following section describes the design and implementation of a rapid
prototyping framework for psychophysiological applications under Android.
The system is based on xAffect (see Section 3.2.1). The required changes
to port xAffect to the Android platform are described. The mobile version
of xAffect was used in two supervised theses to create two apps: the Telco
App [182] and the Posture App [190]. Both apps record psychophysiological
data in telephone conferences which was seen as a promising use case.
Participants of telephone conferences often experience arousal, whereas
their physical activity is low. These attributes simplify measurements
and reduce error sources. The section concludes by describing insights
regarding the framework and required changes.

5.3.1 Mobile Psychophysiological Sensing Framework
xAffect is unusual among the available middlewares to analyze psycho-
physiological data because it is based on Java. Other middlewares [147]
are implemented in C++, Matlab, or Python which are programming
languages that promise a higher performance to process the recorded data.
Java, on the contrary, focuses on a clear, reusable structure of code that
can be used across platforms. An especially interesting platform is Android,
a operating system for mobile devices. Mobile phones and tablets have
become ubiquitous and their processors have reached a performance that
is already sufficient for speech recognition. Hence, they are a promising
platform for psychophysiological recording and data analysis. In addition,
Android currently has the largest market share among smartphones [148].

As explained in Section 3.2.1, xAffect is a modular system that connects
three types of components: sources, processors, and sinks. The xAffect core
library could be used under Android with minimal changes. For example,
available Android versions at the time of development supported only Java
1.6, whereas xAffect was written and compiled with Java 1.7. Only a
few code modifications were necessary, which did not affect functionality
on Android or Windows. Consequently, the Android and the desktop
version can share a common core library. Furthermore, many of the
desktop components can be reused under Android, such as signal generators.
Components like the UnisensReader and UnisensWriter had to be adapted
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to the different file system.
Sources that connect to hardware sensors could not be reused because

they communicated over a serial interface that is not available on a phone.
Hardware that was connected over wireless technologies, such as Bluetooth,
could be adapted with minor modification. The MovisensSource that con-
nects to the Movisens ekgMove [56] was adapted to the Android Bluetooth
stack. However, while Android phones ship with the same Bluetooth API,
the actual Bluetooth implementation differs between manufacturers. An
alternative to Bluetooth is described in Section 5.3.2.
Current mobile phones already integrate a number of sensors. In the

context of a term paper [189], the available sensors were integrated as
sources into xAffect. Figure 5.7 shows the developed example setup that
integrates the new available sources. Acceleration and gyroscope can be
used to estimate the current physical activity. The magnetic field sensor
and the GPS provide information about the current location and direction.
The proximity sensor should not be confused with the proximity sensors
in Chapter 6. Proximity sensors in a phone are infrared sensors that
measure if the phone is currently next to the head (i.e., if the phone is
used to make a call). These five sensors and the temperature sensor can
be found in nearly all Android phones and can be conveniently accessed

Sensors

Accelerometer

GPS

MicrophoneFeatures

ProximitySensor

Gyroscope

VoiceAcitivity
Detector

LocationDecoder

SoundPressureLevel

Logger

GUI

MagneticFieldSensor

SinksProcessorsSources

Figure 5.7: Example setup xAffect mobile
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by APIs. In addition, these sensors can be used and combined in different
ways. For example, if the location of the phone on the body is known, the
acceleration sensor can indicate the body posture.
The microphone can be used as a sensor in a variety of applications.

For privacy reasons and because of the constrained memory, the recorded
audio data are not stored, but are directly processed into a set of features
that can be further analyzed. Chang et al. [11] have presented a library
that can detect emotions and stress from voice data on mobile phones.
Despite an announcement, this library is not available as open source.
Inspired by this work, an alternative processor was developed to detect
speech activity among other noise.

Moreover, xAffect mobile can be used to implement further sources that
do not require an additional sensor, but reuse built-in functionality of
the phone. The approach explored with this app is also referred to as
sensor-less sensing [149]. In fact, sensors are still needed, but no additional
sensors have to be worn. Existing sensors are reused or input devices are
used as sensors. For instance, the mouse movements [150] or keyboard
presses [151] have been analyzed and found to correlate with the arousal
level. The upcoming smart watches add more sensors and can help to
recognize even more behavior. For example, the Android Wear [152]
smartwatch comes with an integrated optical heart rate sensor.

5.3.2 Connecting External Sensors via the Audio Jack
Android already provides a limited number of sensors. A much wider variety
of sensors comes as separate devices. For instance, psychophysiological
sensors are often separate devices that must be connected to the Android
system. A growing number of these sensors implement Bluetooth interfaces,
which is integrated on current Android phones as well. The Movisens
ekgMove [56] can be connected to the mobile xAffect using Bluetooth.
However, there are many more protocols that are used by wearable devices,
but are not supported by Android. Proprietary protocols, such as the
WearLink protocol from Polar [14], require dedicated radio hardware. If
xAffect could connect to such interfaces by a simple hardware extension, a
whole range of commercial low-cost sensors could be used. Commercial
sensors like the Polar heart rate monitor do not deliver the same data
quality as scientific or medical devices, but are much cheaper and are
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available in large quantities. Simple prototyping applications, such as a
heart rate monitor that uses the additional heart rate algorithm, could be
quickly implemented.
The standard hardware interfaces of Android phones were analyzed to

connect additional hardware modules. The USB interface is present on all
phones and has been used. However, it requires a custom firmware and an
external power supply. Finally, the audio interface was selected because
(a) it is available on all Android phones, (b) access to the audio interface
is directly possible from the Android API, and (c) no custom firmware
images have to be installed. A hardware system that can communicate
over the audio interface can be simply plugged in and can communicate
with any app. The audio interface consists of four connections that
can be used: microphone, left speaker, right speaker, and ground. The
HiJack project [153] had already demonstrated on the iPhone that these
four connections can be used to establish a communication and power an
external device. Two connections are used as a bidirectional communication
channel. The remaining two connections power the hardware.
In a supervised Bachelor thesis [179], a first prototype was developed

that is shown in Figure 5.8. A MSP430F5438 was used as the basis of
the prototype. The connection to the Polar heart rate chest belt [14] was
realized using the RMCM01 chip that implements the Wearlink protocol.

Smartphone RadioNmodule PolarNheartNrateNsensor

externalNpower
supply

MSPNEvaljBoard

HRMI WEARLINK3

RMCM58
HTC

DesireNHD
Android
VNc4343

.4java

MSPN435
F5438

NNN.4c

(a) Architecture (b) Prototype

Figure 5.8: Connecting sensors via the audio jack
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Two of the four audio jack connections are used for serial data transmission
based on the UART protocol. The audio channel transmits an AC signal
that is interpreted by the hardware extension. The data are transmitted
using Manchester coding. The developed prototype supports bit rates up
to 9600 bits/s. Alternative line code could further increase the available
bandwidth.
The prototype is operated by an external power supply. First tests

were conducted to estimate the feasibility of powering the hardware over
the audio jack under Android, as done for an iPhone in [153]. The test
showed that the HTC Desire HD can deliver a maximum of 25mW with a
connected resistor of 3W. However, a test with a different Android device,
the Motorola Milestone 2, resulted in completely different values. The
maximum of 10.43mW was reached with 15W. These differences indicate
that a more complex setup is required to power the hardware with different
Android phones.

5.3.3 Telco App
The Telco app is a tablet application that measures the ECG signal and
shares the calculated arousal during telephone conferences. The system
is based on the ekgMove and existing HRV algorithms to calculate the
arousal of the user. The resulting arousal value is displayed in relation to
the arousal of all participants. Hence, the calculated arousal values have
to be transmitted over the Internet.
Figure 5.9 shows the resulting xAffect setup. ECG data are recorded

using the ekgMove from Movisens [56] and by using the corresponding
xAffect source. The open source OSEA algorithm [154] detects R-Peaks in
the ECG signal, which are the basis to calculate the heart rate. The OSEA
algorithm was available as C-Code. After recompiling the code under
Android, it could be embedded in xAffect using JNI. The resulting list
of R-Peaks serves as input for the HRV calculation. The HRV processor
transforms 5-minute windows of the data into the spectral domain using
the Fast Fourier Transform (FFT). The output of the processor is the
ratio between low frequency (LF) and high frequency (HF) components in
the spectrum (see Section 2.3.1). The calculated ratio is displayed in the
graphical user interface, logged into the Unisens format for later analysis,
and shared over the Internet using the MIRROR spaces sink [155]. The

88



5.3 Mobile xAffect
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Figure 5.9: xAffect setup for the Telco app

corresponding MIRROR spaces source receives the LF/HF ratio of other
participants and displays an average in the GUI.

5.3.4 Posture App
The posture app analyzes the posture of participants during telephone
conferences by using two acceleration sensors: one sensor is worn on
the chest and the second is the smartphone sensor. The smartphone
was assumed to be carried in the trouser pocket at the hip. The goal
of the app was to not only recognize the posture, but to also affect
related signals. Figure 5.10 shows the resulting xAffect setup and the
developed components. Two independent sources gather data from the
acceleration sensors. Both sensors deliver signals with a variable sample
rate and have to be resampled to a common constant sample rate by
the resampling processor. The resampled signal was analyzed by a self-
organizing map [156] and the results of the analysis were visualized in the
GUI and stored in a file.
The required resampling was a challenge for xAffect in this use case

because xAffect assumes a fixed sample rate for high bandwidth data.
In this particular use case, the acceleration signal from the ekgMove is
received with a varying delay because of the Bluetooth radio transmission.
Moreover, Bluetooth packets and the contained data might be lost. The
sample rate of the Android sensor was configured to 25 Hz, but on a
Samsung tablet, the resulting sampling rate was 25.5 Hz. The same
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Figure 5.10: xAffect setup for Posture app

configuration on a smartphone resulted in exactly the desired 25Hz. The
ekgMove was configured to send acceleration values at 64Hz. The resulting
sampling rate of the data stream varied between 64 and 65Hz. A processor
was developed that resamples and synchronizes the two incoming data
streams. A buffer and an additional look-ahead buffer are used to collect
data and inspect whether the current sample rate is too high or too low.
Accordingly, samples are deleted or interpolated. To minimize the impact
on the data, interpolated or deleted samples are evenly distributed across
the buffer (e.g., if only one sample is missing, it is added in the middle
of the buffer). A 10-second buffer and 2-second look-ahead buffer have
been used. Hence, the processor will result in a 12-second delay of data
processing.
The self-organizing map used 11 features that are listed in Table 5.1.

The features are sorted by the corresponding physiological signal and have
been selected by literature review and exploratory data analysis. The
posture features use mainly the data from the chest strap. They try to
identify if a person is leaning forward, backward, or sideways. The angle
between the two sensors is a good indicator of the current posture. Energy
and consistency measures have been good features in the sociometric
badge [86]. They should, for example, recognize if a user is nervous and is
constantly moving. Finally, the breathing rate was estimated by analyzing
the movement of the chest sensor. This feature cannot be calculated during
general body movement and is held constant in these moments.

The self-organizing map (SOM) [156] was the first artificial intelligence
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Physiological
Signal

Feature Sensor

posture

posture angle both sensors
mean x acceleration chest
mean y acceleration chest
correlation between x and y acceleration chest
correlation between x and z acceleration chest
correlation between y and z acceleration chest
mean x acceleration chest

activity

movement energy chest
movement energy smartphone
consistency of energy chest
consistency of energy smartphone

breathing rate filtered chest movement chest

Table 5.1: Analyzed features in the Posture app

algorithm that was implemented in xAffect. The implementation had
to overcome three main challenges. First, clustering and classification
algorithms usually work on features instead of a raw data signal. However,
xAffect is engineered around the concept of time-oriented data, as defined
by the Unisens standard [142]. Multidimensional data, as required for
clustering and classification algorithms, could only be implemented as
Unisens data signals with multiple channels. Each frequency of a calcu-
lated spectrum would be treated as a channel. This possibility was not
obvious and, therefore, was not used. As a result, the feature calculation
was integrated into the SOM implementation. The implementation was
validated against the Matlab SOM implementation.

The second challenge was the required training data. Until now, the
train method was used to calibrate thresholds and fill buffers. This method
is called directly before the classification starts and is designed to calibrate
algorithms to the incoming data (e.g., to fill a buffer with ECG data to
start an FFT directly at the beginning of the data recording). However,
clustering and classification algorithms need large amounts of training data.
While these data could be streamed from a file using the UnisensReader
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(a) (b) (c)

Figure 5.11: xAffect setup for Posture app

Figure 5.12: Implemented visualizations of SOM: (a) distance matrix,
(b) energy distribution of movement data in SOM, and (c) distribution of
posture angles in SOM

component, the data would be streamed at the normal processing speed
(e.g., loading two hours of acceleration data would take two hours). Instead,
the training data are read directly from a file.

The last challenge was the visualization of the clustering data due to the
architecture of Android and the specifics of the desired graphic depicted in
Figure 5.12. The resulting multi-dimensional output of the SOM was again
too complex for the xAffect data structures. Therefore, the visualization
was part of the SOM processor. The visualizations could not reuse existing
charting libraries because of the underlying data structures. Moreover,
Android prevents background threads from directly accessing, and thereby
blocking, the user interface thread. A so-called handler has to be used to
modify the user interface.

5.3.5 xAffect Redesign
The first prototypes revealed the limitations and some misleading concepts
of xAffect 1.0. The developed components and especially processors were
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not reusable as intended. Processors became highly complex and special-
ized. For instance, the developed SOM processor [190] integrated feature
extraction, SOM algorithm and visualization. Each of the calculated fea-
tures would have been useful as a separate processor, but the supported
data formats were not fully understood. Reusable small components were
the key design goal of xAffect. Developers should be enabled to rapidly
build prototype by selecting from a growing amount of components. In-
stead both prototypes reimplemented a Fast Fourier Transformation and
struggled to implement a data viewer.

A redesign was required to make xAffect easier to use and the prototype
faster on Android. The redesign intended to guarantee backward compati-
bility by making only minor changes to the xAffect core and developing
optional components that show how standard problems on Android can be
solved. The DataDescription was extended by an optional ID field. The
DataDescription is normally used to match outputs and inputs of compo-
nents automatically. In the PostureApp, two sources deliver acceleration
data of different types. To distinguish between them, the developers mis-
used the content class field (e.g., by using SMARTPHONE_ACC instead
of ACC). This leads to components that accept only these custom content
classes and, hence, cannot be reused. The ID field allows differentiation
between data streams of the same content class from multiple sources. The
same problem would also occur with network sources that receive data
streams from multiple clients.

The new optional components that come with the mobile version include
filter processors, a data viewer sink, and sources for the Android sensors.
While the Android desktop version comes with a data viewer, Android
developers had to build their own data viewer components. However,
desired visualizations can be fairly complex and specific to the use case.
Therefore, the developed AndroidDataViewer offers a number of interfaces
that can be extended and a small set of default visualizations that can be
used for early prototypes. These default visualizations include a graph
viewer based on the GraphView library [157]. The underlying interfaces
and sink implementation realize the communication between xAffect and
the user interface. In addition, a set of filters was developed because
filtering noise or analyzing specific spectral parts of a signal are common
tasks. The filters include a Butterworth and a Wavelet filter that can be
parameterized to the desired frequencies. These components are not part
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of the xAffect core, but are available as options. The developed filters
are platform independent and can be used in Android as well as on the
desktop.

5.4 Summary
Table 5.2 provides an overview about the developed candidates and evalu-
ations that explored the design space for the capturing of affective context.
A first test showed that self-reporting approaches require too much effort
to be used in the healthcare domain. Therefore, the majority of the appli-
cations are based on sensor technologies. The ethnographic study created
a broad understanding of the challenges of sensor-based approaches in
a stroke unit. As a consequence, xAffect was extended to support the
rapid prototyping of mobile capturing apps. Two prototypes, Telco app
and Posture app, evaluated the developed system and triggered a redesign
of the mobile xAffect. Although the developed prototypes have not be
evaluated in the field, they provide a number of insights for the capturing
of affective context in challenging environments.
At this point, no sensor solution could be identified that can directly

measure arousal in environments with highly variable activity levels. Al-
though specific situations and settings with lower activity levels can be

Candidate Data Technology Evaluation
MoodMap moods self-reporting

web application
project meeting

Movisens ekgMove ECG and
activity

existing sensor ethnographic
study on stroke
unit

Telco App ECG prototype based
on xAffect

formative

Posture App posture
and body
movement

prototype based
on xAffect

formative

Table 5.2: Capturing prototypes for affective context

94



5.4 Summary

targeted, multi-sensor systems may help to overcome the observed chal-
lenges. Multiple sensors and algorithms must be evaluated. The first
captured data and early feedback are crucial to adapt quickly to domain-
specific requirements. xAffect mobile reduces the time to a first prototype
that can be used to gather the required data. Algorithms and sensors
can be quickly exchanged. The component-based architecture facilitates
the reuse of existing components. Moreover, xAffect already integrates all
Android sensors and a growing number of external sensors are available.
In addition, an approach to connect proprietary hardware via the audio
jack has been implemented.
Furthermore, general insights regarding the usage of affective context

have emerged. The ethnographic study involves measuring arousal as
a negative element that should be avoided. However, the knowledge
about one’s own arousal levels is useful for reflection only if stressors
and reoccurring patterns can be identified. Otherwise, employees are not
able to act on this knowledge. In this case, knowledge about stress is
experienced as an additional burden. The data must be analyzed in light
of the conducted tasks and situations that led to an emotional reaction.

In the interviews, nurses and physicians referred to patients, colleagues,
and residents. Their narratives were structured by these social contacts and
the contacts mirrored their daily work. The observation protocols confirm
that the daily work of physicians and nurses can be summed up as series of
social contacts with patients, colleagues, and patients’ relatives. Data on
these contacts would allow reflection on work patterns and, therefore, may
provide the needed clues to identify stressors. An approach to capture
these contacts is outlined in Chapter 6.
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Social contacts are an essential part of daily work. Especially in health
professions (e.g., carers in a care home), social contacts with patients,
colleagues, and relatives define the workday. Capturing these contacts
could help to quantify daily practices and provide an objective perspective
on work processes in a care home. How much time is needed to care for
a resident? Is this effort increasing over time? These types of questions
can be answered by reflecting on quantitative data about the interaction
between residents and carers in a care home. Hence, this design study
focuses on capturing social contacts in care homes by means of sensors.
The work described within this chapter has been published previously in
different forms in [194, 202, 198].

Dementia is currently a pressing issue in care homes [158]. Therefore, we
analyzed the options to capture the social contacts in dementia care. The
selected solution builds on new wearable proximity sensors that record the
co-location of carers and care home residents. We developed two types of
prototypes, which have been iteratively refined according to evaluations in
the target domain, as shown in Figure 6.1. The proximity sensor prototype
described in Section 6.2 was used to measure acceptance and assess the
feasibility of the selected capturing approach. Building on the successful

Social
Context

Proximity
Sensors

CaReflect
Design

Proximity
Study

CaReflect
Evaluation

Figure 6.1: Design process social context capturing
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evaluation in Section 6.3, we developed CaReflect–an application that
visualizes the collected data and manages the study process as described in
Section 6.4. After two iterations, the developed application was successfully
evaluated in a care home, as described in Section 6.6.

6.1 Measuring Dementia Care
Dementia is an age-related illness that affects the cognitive abilities of
mainly elderly patients. People with dementia lose temporal and spatial
orientation and, therefore, experience reality differently. In many cases, a
dementia patient’s different realities are hard to understand and do not
match our reality. Hence, people with dementia react in unexpected ways,
including challenging behavior, depression, or apathy [159]. Carers who
want to react properly must learn the resident’s biography and see the
world from their perspective. Reflective practice is seen as a promising
approach to acquire this knowledge.

Observational frameworks, such as dementia care mapping [160] and the
short observational framework for inspection 2 (SOFI 2) [161], are used
to ensure care quality. Both approaches are based on trained observers
who visit a care home for 2 to 5 days. SOFI 2 is currently used by
the Commission for Social Care Inspection in the UK to “capture, in a
systematic way, the experience of care for people who use services who
would otherwise be unable to communicate this to an inspector” [162].
The observers confirmed that care staff will try to improve their behavior
during this period. However, they also notice that care staff will quickly
default to their normal care practices [160].
The data collected by the observational frameworks provides detailed

feedback and opportunities for improvement. However, the costs are high
and the quality of the feedback depends on the observer. Automatic
capturing approaches, such as sensors, could deliver quantitative feedback
on care quality at lower costs. Hence, they could be used more often to
induce and facilitate a continuous improvement of care practices. Moreover,
a continuous monitoring is possible as well as monitoring on the weekend
when staff levels are often lower. However, to be applicable, such a system
has to be easy to deploy and use in a care home.
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6.1.1 Dementia Care in the UK
Caring for people with dementia is challenging. Care staff have to deal with
unexpected reactions and behavior (e.g., residents that become suddenly
aggressive or try to leave the care home). Social contact and engaging
activities are important to maintain cognitive skills as long as possible.
However, care funding is limited. Therefore, new care approaches like the
“Butterfly method” are recommended to provide many short social contacts
to people with dementia instead of only a few prolonged interactions [163].
Furthermore, care has to be personalized. To react correctly to challenging
behavior, carers must know the details of the biography of the person
suffering from dementia (e.g., who the person is that the resident is talking
about). This knowledge can help to stimulate them or calm them down,
depending on the situation.
The majority of care staff have received no formal training, but learn

the profession during care. They are supervised by experienced carers
and registered nurses who take up medical tasks. In most homes, carers
and nurses work a three-shift system. The numbers of carers and nurses
vary according to the shift and care home size. A common pattern is
that there are only a few nurses, but one nurse has to be on each shift in
the care home. The low-education level of care staff and the challenging
requirements lead to a wide variety in the quality of the provided care.
In addition, these challenges are the reason for a staff turnover of more
than 17.3 percent in 2013 [137], which again affects care quality. Hence, it
is likely that inexperienced carers will have to deal with the unexpected
behavior of dementia patients. To provide high-quality care, these carers
must learn about dementia care and about the residents as quickly as
possible.

Care homes in the UK are often not purpose-built, but converted from
former usage. The floor layout in the three visited care homes is complex
because existing houses have been connected and integrated with new
buildings. The IT infrastructure is often limited to a few computers and
laptops that are used for documentation. The computers are either in the
office or used in the common rooms to document during care. WiFi is not
available and would be expensive because of the architecture of the care
homes. Furthermore, care homes are skeptical regarding technology and
want to focus on their work with residents. The value of IT infrastructure
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to support care is often doubted, although this is currently about to
change [194].
The deployment of IT infrastructure in care homes is a challenge that

should be avoided, if possible. In general, IT usage and expertise are low.
Staff in care homes want to focus on care and do not want to spend much
time with technology or perform maintenance tasks. In fact, we observed
that carers delegated documentation tasks to younger colleagues to avoid
using the computer. In summary, the requirements are:

• The system should neither make assumptions on IT infrastructure
nor require the prior installation of such.

• The system should be easy to embed in the care process and minimize
the time spent with technology.

• Maintenance tasks, such as changing batteries and configuring de-
vices, should be simplified and, if possible, avoided.

These high-level requirements translate into challenging technical re-
quirements for the final solution.

6.1.2 Sensor-Based Care Measurement
Sensors can measure the co-location of care staff and residents, which can
be interpreted as care activities. In initial discussions, carers suggested
that care should be registered, if the distance between carer and resident
is less than arm’s length. However, observations showed that carers rarely
have time to sit down for a longer time with residents. Instead they move
between residents and, even when caring for a resident, frequently leave the
immediate proximity to pick up materials. As a consequence, all contacts
within an approximate 2-meter distance have been defined as care activity.

The distance between two actors can be calculated either by localizing
all carers and residents in the care home or by measuring the distance
between two actors directly. Both approaches rely on radio technologies
to estimate the distance between actors or locations. A full localization
requires beacons or access points that cover the relevant locations and
wearable or mobile devices for all relevant actors. Measuring distances
directly, however, requires no beacons or access points, just wearable
or mobile devices for all relevant actors. In the resulting point-to-point
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network, co-location can be calculated without additional access points.
Therefore, the sensors are the only infrastructure. They are mobile and
can be rapidly deployed in any care home.

Several systems have been developed to measure co-location and analyze
contacts (see Section 3.2.2). Most approaches examined the resulting struc-
ture of the social network graph with social network analysis (SNA) [118].
Fully distributed systems that measure co-location are made up of small,
wearable, battery-powered devices. To be used in a care home, the wearable
devices must:

• Be as small as possible to minimize interference with care routines.
Carers should be able to wear the sensors in an unobtrusive manner.
Residents should be equipped with a small device because dementia
patients may become nervous or confused, if they notice an unknown
item on them.

• Be as energy efficient as possible, because (a) changing batteries may
put an extra challenge on care staff, which may result in nonfunc-
tioning sensors and (b) smaller sensors require smaller batteries (i.e.,
coin cells). The optimal system would run on a single coin cell for at
least 5 days, which is the maximum time span of SOFI observations.

• Use an existing hardware because multiple sensors with stable hard-
ware are required. In a research context, it would be challenging to
produce large quantities of sensors in consistent quality.

• Measure all contacts that last longer than 10 seconds. This value
was agreed upon by care staff to minimize contacts that are recorded
when carers pass by residents; this increases the battery life of a
sensor.

• Be sufficiently affordable because a sensor for each carer and resident
is required. Moreover, it is very likely that sensors will be lost,
washed, or require replacement for other reasons. Care staff should
not be concerned about losing sensors, but should use them as
available tools.

As described in Section 3.2.2, none of the developed systems is applicable
or has been applied in this scenario. Therefore, a new solution was
developed.
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6.2 Proximity Sensor Prototype
The proximity sensors are based on a programmable wristwatch with a radio
module. A custom firmware was developed and installed on all watches
to turn them into proximity sensors. The design and implementation of
the sensor firmware was intended to maximize the battery life. Towards
this end, a low-power mechanism to detect proximity was developed. An
asynchronous low-power listening protocol reduces the required radio
communication and increases the time a sensor can sleep. The initial
firmware version was developed in a Bachelor’s thesis [185]. The developed
firmware maximizes the lifetime of the system by (a) minimizing energy
consumption according to the particular platform and (b) minimizing the
required memory to store as many contacts as possible.

6.2.1 Hardware
The programmable Chronos eZ430 wristwatch (see Section 2.2.4) was
chosen as the hardware platform because it is small, includes a low-power
radio module, and can be programmed. The sensors must be small and
lightweight to be wearable during daily work. The battery will make up
the main share to the overall weight, because the sensor consists of only a
few components. A smaller battery reduces weight, but also reduces the
battery life. This balance poses a challenge to the power consumption of
the sensor. The proximity detection must be implemented by the firmware
in a way that minimizes power consumption.
We developed alternative badge formats that evolved as shown in Fig-

ure 6.2. The initial watch format did not comply with the regulations in
the care home. Carers are not allowed to wear jewelry because it could
hurt a resident’s skin, which is fragile and heals slowly. The third and
final format of the sensor prevents access to all buttons because residents
should not be able to stop the recording by accident. Furthermore, the
system is splash-proof. In one of the studies, a sensor was washed by
accident, but continued to work. Consequently, all management of the
sensor (e.g., starting and stopping recording) must be implemented over
the radio module, which is also used for proximity detection. Control and
data signals have to share the same communication channel.
The watch is powered by a single coin cell. However, coin cells are
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(a) (b) (c)

Figure 6.2: CaReflect hardware iterations: (a) original Chronos eZ430
watch, (b) prototype of the wearable badge used during the first study,
and (c) final robust badge case

not designed to provide a high current, which would be necessary for
continuous active radio operation, even with low-power modules like the
CC430. Consequently, coin cells are easily overloaded, although a coin cell
can theoretically provide enough power for several hours of active radio
operation. This well-known problem [164] results in a significantly lower
capacity and finally a sudden drop in voltage. This brownout would lead
to a crash and reboot that would repeat until the battery is empty or,
depending on the firmware, has time to recover. Texas Instruments added
three capacitors in a parallel circuit with a total capacity of 141 µF to
reduce the problems of the coin cells [48]. The capacitors can provide the
high current for short transmissions instead of the battery. The capacitors
are slowly loaded by the battery when the SoC does not need much power.
Tests showed that it is a matter of a few seconds until the voltage will

drop suddenly, if the radio module of the Chronos watch is in a continuous
transmitting or receiving state. At this point the capacitors are completely
discharged and the above-described problem occurs. Hence, we had to
optimize power consumption not only regarding the maximum time of
operation of the system but also to avoid a brownout due to longer time
spans with higher power consumption. The power consumption of the

103



6 Design Study II: Capturing Social Context

sensor depends mainly on the usage of the radio module and the MCU.
Table 6.1 shows the power consumption of the radio module and MCU
in the states that are relevant for our firmware. The values have been
confirmed by our own measurements.

The MCU provides various low-power modes to reduce energy consump-
tion. The final system uses the lower power mode LPM0. In this mode,
the CPU is off, but all clocks (e.g. the CPU clock) are still running.
Therefore, the energy consumption of LPM0 is heavily dependent on the
frequency of the CPU. In consequence, we reduced the frequency from
20MHz to 8MHz. One of the earlier implementations used the low-power
mode, LPM3, of the MCU during the sleep phases. While this version was
stable on approximately 50 percent of the sensors, a brownout occurred
on the other 50 percent of sensors between 10 minutes and 3 hours after
the start. The mode LPM0 resulted in a stable version for all sensors, but
the MCU consumes approximately 300 times more power during the sleep
phases than in LPM0. This reduces the battery life by 40 percent.

6.2.2 Low-Power Distance Estimation
The selected solution is based on a decentralized approach that needs no
local installations of additional power supplies, coordinating access points,
or a central server. Figure 6.3 depicts an example setup of four sensors
worn by three residents and one carer. Resident 1 and carer A are in

Component State Current consumption
(mA) at VDD = 3.0V

Radio module

TX (-8.2 dBm) 15.8
RX (active transmission) 17.24
IDLE 1.7
SLEEP/WOR 0.0002

Microcontroller
Active (8 MHz) 1.55
Low-Power Mode LPM0 0.64
Low-Power Mode LPM3 0.0021

Table 6.1: Power consumption of the Chronos eZ430 hardware accord-
ing to [165, 166]
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proximity. Hence, we assume that carer A is providing care to resident
1. Although resident 2 is very close, she, unlike resident 2, is not within
proximity. However, if carer A starts to walk, there will probably be a
short period of proximity between resident 2 and carer A. The resulting
patterns of co-location and assumed care activities can be captured without
a localization of each participant. This distributed sensing approach is
similar to [106, 12, 115].
There are two main options to estimate the distance between sensors

and to decide whether or not a sensor is in proximity: TOF and RSSI.
Both mechanisms have been discussed in the context of indoor localization
technologies in Section 2.2.2. The TOF is not applicable for our case
because the distances are too short and the clocks of the Chronos eZ430
are not precise enough. The firmware would have to send a high number
of packets back and forth to accumulate a significant time difference that
can be measured by the Chronos. Moreover, frequent synchronization
packets would be needed. In contrast, RSSI-based methods can be realized
with only a few sent packets. However, RSSI signals tend to vary across
several packets and multipath propagation may result in a large variation.
Therefore, filter mechanisms are used that require additional processing,
therefore increasing power consumption.
In our system, proximity between two sensors is detected based on

the practical limited range of a radio module. According to Friis (see
Section 2.2.2), the free-space path loss of the signal rises with the square
of the distance until the signal-to-noise ratio (SNR) makes it impossible to

Resident 1
Carer A

Resident 3

Resident 2

Figure 6.3: Schematic example of the proximity between three residents
and one carer
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receive a sent packet. The underlying assumption of this approach is that
the noise will be relatively constant for distance measurements. Moreover,
the orientation of the sensors will influence the distance. Finally, the
body will shield the signal. We assume that the effects due to orientation
and shielding will dominate because the Chronos has only one antenna.
Therefore, the presented approach allows only a raw estimation, but any
further effort to be more precise will be obsolete because of movement and
shielding effects.

The signal strength of the Chronos radio module can be reduced to limit
the range to the desired proximity distance (3m in our case). This has
three advantages:

• Data transmissions with a smaller signal strength require less energy.
• Sensor nodes that are not within range do not have to keep their

radio modules activated to receive packets that are later filtered.
• Furthermore, the radio module is already detecting signals from

background noise in the RX state by monitoring the signal strength.
In our approach, we reuse this process instead of implementing an
additional filter at a later stage, which would require additional
processing power.

In summary, this proximity-detection method is similar to RSSI-based
methods. It requires less computing power, but is also less precise. More-
over, the reduced range decreases the noise induced by other sensors that
are not in the desired proximity distance or are received by reflection.
However, first tests showed that the range of a radio module fluctuates,
so further filtering is necessary. A sensor can receive a packet from a
sending sensor that is clearly outside of the proximity area (false-positive
detection), but single packets are lost, even though a sensor is clearly
within the proximity area (false-negative detection). The reduced signal
strength reduces the number of false positives.
The false-negative detection was tackled by reducing the send power

of the radio module only so far that it was able to send slightly past the
proximity range. Furthermore, multiple packets are sent and received so
that single missing packets can be filtered. This increases the false positive
rate (i.e., more out-of-range sensors are detected). The system uses a
simple filter to detect sensors that are not in the desired proximity area by
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analyzing the packet loss over several packets. Sensors in the system send
several packets in a row and an amount of nrecv packets must be received
to detect that the sender is within proximity range (e.g., if four out of five
packets have to be received, a packet loss of 20 percent will be used to
discriminate between sensors within proximity against sensors that are
too far away). The mechanism can be understood as a simple low-pass
filter. An energy-efficient filter will require a minimal number of packets
to reduce the time sensors have to send and receive packets. The required
number of packets and the required power can be minimized by choosing a
filter that allows only one missing packet. The filter counts the number of
packets and the contained sequence numbers and rejects a signal if more
than one packet is missing before nrecv are received.
A high value of nrecv would reliably filter packets of sensors outside

of the proximity range, but each sensor would have to send and receive
more packets. A lower value would decrease the power consumption that
is necessary to detect proximity, but would also increase the error. This
tradeoff was evaluated in a pre-test. Figure 6.4 shows the proximity
detection for different filter parameter values for a maximum radio range
of approximately 4 meters. Even if one packet of the nrecv packets is not
received, the sensor will still be detected as being in proximity. The filter
significantly increases the robustness of the detection algorithm.
A value of 10 packets decreases the error to approximately 10 percent

in the range of 3.5-4 meters. The number of packets must be doubled
to decrease the error to almost 0 percent. Sensors within 3 meters are

2 Packets, 1 necessary for proximity
10 Packets, 9 necessary for proximity
20 Packets, 19 necessary for proximity
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Figure 6.4: Proximity detection for different filter parameter values
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reliably detected as being in proximity range. Based on these results, we
decided that 10 packets decrease the error to an acceptable level, but 20
packets require too much energy in the longer send/receive states for only
slightly decreased error rates.

6.2.3 Asynchronous Low-Power Listening
Based on the existing research on sensor networks (see Section 2.2.3),
an asynchronous low-power listening protocol was defined to minimize
the required communication between sensors. The times when sensors
are sending and listening must be coordinated. Without staying in the
receive state for too long, sensors must detect if another sensor is sending
proximity packets. The design of the protocol was guided by reports of care
staff and care home managers on their daily work practices. Drawing from
their experience, we assume that in a worst-case-scenario, 10 people are
within the range of a sensor. These rare situations could be, for example,
a crowded meeting or a group activity in a common room. Most of the
time, however, there is only one or no other sensor within range, because
carers work with one resident, fetch material, or walk between residents.
Consequently, we assume that, on average, one other sensor will be within
range. The resulting requirements to the protocol are:

• low-power
• few contacts
• limited amount of continuous radio module activity (listening and

sending) to prevent battery damage
• scalability (30 or more sensors)
• unlikelihood of more than 10 sensors in communication range

The Chronos default firmware already implements the SimpliciTI proto-
col [167] that can be configured to support star-topologies and peer-to-peer
networks. The protocol is simple and efficient, and the corresponding code
is available as open source. In our implementation, sensors take turns in
broadcasting their addresses. They act as beacons so all sensors in the
range of the radio module can receive the same packets. All sensors can
determine if they are in proximity at the same time, because they can all
process the same packets. Receiving sensors do not respond so as to reduce
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the communication overhead and avoid collisions with broadcasting sensors.
Furthermore, the distance between sensors may have changed again. In
summary, the communication is based on unidirectional broadcasts; the
sending sensor does not know who receives a broadcast or if packets are
received at all.
After first experiments with SimpliciTI, a simplified communication

was developed based on the hardware layer of SimpliciTI. Figure 6.5
shows the original packet format and the shorter simplified format used.
SimpliciTI packets contain several fields that are not needed for the
above-described method, such as the destination address or the port. By
removing unnecessary fields, the packet overhead can be significantly
reduced. The send proximity packages contain only the ID of the sender
and the broadcast ID, a simple counter to indicate the sequence of packages.
This sequence number can be used to filter packages that arrive late or
even twice because of reflections. If a packet is received by another sensor,
this will indicate that the watch is in the proximity area.

Figure 6.6 shows the three different phases of the proximity protocol for
two sensors. These phases are designed in a manner that allows all sensors
to receive broadcasted proximity packets within the specified 10-second
interval. No prior synchronization of sender and receiver is required.

Most of the time, sensors are in the WOR phase. In this phase, sensors
are mainly sleeping to save energy, but check regularly if another sensor is
broadcasting. To this end, the radio module stays in RX for trxT imeout. If
the radio module receives at least one packet in tpacket, the sensor switches
into the RX Phase and waits for trx to receive 10 packets. Sensors in
the RX Phase put their radio module in the receive state long enough to
receive at least 10 packets.

PREAMBLE SYNC LENGTH MISC DSTADDR SRCADDR PORT DEVICEINFO TRACID PAYLOAD FCS
RDv RDv 1 RDv 4 4 1 1 1 n RDv

PREAMBLE SYNC LENGTH MISC TRACID SRCADDR FCS
RDv RDv 1 RDv 4 4 RDv

vRD:tRadiotdependenttpopulatedtbytlowertstacktlevelstorthandledtbytthetradiotitself

Figure 6.5: Packet structure of SimpliciTI [167](top) and simplified
proximity protocol (bottom): unnecessary fields have been removed to
reduce the packet size
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Figure 6.6: Asynchronous low-power listening: the system is sleep-
ing for specified intervals tsleep but periodically checks for a short time
trxT imeout if another radio module is active. If it is, the sensor attempts
to receive 10 packets in trx to estimate proximity. Every 10 seconds, the
sensor broadcasts its own ID for a longer period ttx.

The proximity is evaluated afterward, based on the packet loss within
these 10 packets, which can be deduced by analyzing the transaction IDs.
The transaction IDs increase for each send packet. Hence, missing packets
can be identified. The TX phase is reached once during the 10 seconds
sampling interval. Sensors continuously send proximity broadcasts for the
entire duration tsleep between two WOR checks.

ttx > tsleep + 10 · tpacket

Consequently, other sensors in the WOR phase can detect the transmission
of this sensor and start to receive the packets in the RX phase.
The radio module of the eZ430 Chronos includes a Wake-on-Radio

(WOR) feature that puts the radio module in regular intervals into the
receive mode to detect if another radio module is sending [168]. The
WOR reduces the power consumption significantly. If a packet is currently
transmitted, the radio module will stay in the receive state to receive the
whole packet; otherwise it returns immediately to the sleep state. The
implementation of the WOR phase was realized using the WOR feature
of the hardware. If a packet is detected, the sensor will switch to the RX
phase to stay in the receive state until at least 10 packets are received or
a timeout occurs.
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The key to optimize the power consumption using the above-presented
communication lies in the correct timing of the different phases, which
depend on the specifics of the used platform. Furthermore, collisions (i.e.,
multiple sensors sending at the same time) should be avoided or solved as
fast as possible. The timing or duty cycle has to optimize the duration of
listening phases trxT imeout, sleep phases tsleep, and the send interval ttx.
The longer the sensors broadcast, the longer they can sleep. An optimal
value tsleep and ttx had to be found to minimize the power consumption and
to balance the power consumption for sending and receiving. The length
of these times implicitly defines the number sensors that can broadcast in
the 10-second sampling interval without a collision.

Using our implementation on the Chronos eZ430, the radio module needs
about 2.7 ms to check if the channel is clear and one packet is transmitted.
A delay of 0.7 ms was introduced to fix stability problems with the power
source, which would otherwise occur during this phase. During the 0.7 ms,
the MCU waits in a low-power state before it transmits the next packet.
Consequently, the sensor needs a total time of tpacket = 3.4 ms to send a
packet.
The Chronos platform limits the possible values for trxT imeout for the

WOR feature to a divisor of powers of 2 of tsleep.

trxT imeout = tsleep

2n

The divisor 64 results in the lowest possible trxT imeout = 3.9 ms, during
which one packet can always be successfully received. The sync word of
a packet has to be received during this time to detect a transmission of
another sensor.
Figure 6.7 shows the different currents that are required depending on

the value of tsleep. The calculation is based on the current consumption
values listed in 6.1and the following formula:

Iinterval = ttx · itx + n(tsleep · isleep + trxT imeout · irx)

with
n = 10s− ttx

tsleep + trxT imeout
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Figure 6.7: Current during proximity measurement for different values
of tsleep

In RX phase, the radio module has to stay in RX for at least to receive
10 packets. However, it is very likely that the radio module enters RX in
the middle of the transmission of one packet, which cannot be received
then. To avoid this problem, the value was adapted:

trx = 11 · tpacket = 37.4ms

As a result, we set tsleep = 250 ms and trx had to be doubled to 7.8
ms. During the TX phase, sensors transmit broadcasts for ttx = 290 ms.
The additional 40 ms are sufficient to broadcast 11 additional packets,
because sensors in the RX detection phase check every 250 ms (tsleep)
if another sensor is broadcasting by using the WOR feature. If such a
receiver detects the broadcast at the end of the 250 ms interval, it will
still receive 10 packets to calculate the packet loss and can decide if the
sensor is in the desired proximity area.
As sensors act asynchronous, two sensors may attempt to broadcast

their proximity packets at the same time. Therefore, sensors check before
the transmission of every packet if another sensor is currently broadcasting
to avoid collisions and overlapping send intervals of two sensors. If a sensor
attempts to enter TX phase and detects the transmission of another sensor,
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it will stay in sleep mode for a random amount of wait intervals twait

before trying again. The seed of the random generator is the measured
signal-strength value of the background noise when the proximity firmware
is started.
The duration of a single wait interval twait after a collision is set to

400ms, because 400ms is the lowest integer divisor of 10s that is bigger
than t_send. The time twait has to be bigger than ttx because otherwise
the sensor might restart broadcasting before the other sensor has finished
sending. In summary, the sensors use 250ms WOR intervals, but 400ms
intervals for sending after a collision, which results in 25 possible send
intervals during the 10s proximity interval after a collision. A further
advanced CSMA algorithm is not necessary because there are 25 slots for
up to 10 devices. Furthermore, in most situations, only one or two devices
are in range, lowering the collision probability.
In general, a synchronized protocol implementation would have been

preferred, because synchronized protocols can nearly eliminate packet
collisions and, therefore, reduce the required packets. However, the Chronos
watches have a significant clock drift. The most precise of the available
clocks has a frequency error of 0.002 percent, which would lead to a drift of
1.5 seconds per day. Moreover, the low-power optimized clocks have a much
higher error [169]. During one day, the clocks on two sensors differed already
by more than a minute. Therefore, frequent synchronization of clocks
would be needed. However, the wearable sensors form a highly dynamic
network. Moreover, most sensors have only contact to one sensor at a time.
In the worst case, one sensor would be disconnected long enough to fall out
of the assigned time slot. Asynchronous protocols provide an alternative
because they do not require synchronized clocks. Therefore, communication
partners can start to exchange packets without synchronizing. Furthermore,
they are particularly suitable for small, broadcast-based networks.

6.2.4 Data Logging
The detected proximity contacts must be logged in the limited memory of
the eZ430 Chronos, which has a flash memory of only 32kB. Approximately
8000 bytes are available in the flash memory for data logging because
the firmware code is stored in the flash memory as well. If one or more
sensor contacts must be stored every 10 seconds, the memory requirements
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Figure 6.8: Memory structure of stored contacts

will grow rapidly. Therefore, a compact data structure was necessary to
store a large number of entries. The chosen data structure is based on the
original data-logging project for the wristwatch by Texas Instruments and
is depicted in Figure 6.8.
The sensors assume a fixed sampling rate of 10 seconds. As a result,

the current time for a contact can be calculated by knowing the start
date of the recording and the number of scans since the start time. The
start date and time are stored at the beginning of the recording in a short
header. The current scan number is stored in a 14-bit counter. This
allows recording a contact up to 1.8 days after starting. After 1.8 days,
the counter is reset and a marker is placed in the stored data to indicate
this reset. If proximity of the same sensor is recognized repeatedly in
consecutive scan intervals, the proximity contacts are stored as a single
event by indicating the length of a contact.
As a result, a single proximity entry comprises the counter indicating

the start time, the duration of the contact, and the unique ID of the sensor.
The whole data structure of a contact requires 4 bytes of space for each
contact. The duration of a contact can be as long as 2.8 hours, but longer
contacts will be concatenated when the data are read. One byte is reserved
to save the ID of the detected watch. The current implementation utilizes
only 5 bits to store up to 32 different proximity sensors in a study. The
remaining 3 bits are reserved to either support more sensors or to allow
larger time stamps.

6.2.5 Accuracy and Battery Life
The accuracy of the proximity detection was tested using three sensors.
All sensors were placed in a distance of approximately 50 cm of each other
on a flat surface and not moved until the end of the test. The results
show that the proximity detection is stable. In only 2 percent of the
complete tests, proximity cannot be detected, although the sensors remain
in proximity range all the time (false-negative detection). In the study,
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however, the recognition rate will be lower because bodies shield the signal
and movement will lead to asymmetries in the recognition. Nevertheless,
each proximity contact is logged by at least the two sensors that are in
proximity. The probability that both sensors do not recognize each other
at the same time because of time drift is approximately 0.04 percent. Our
test showed that the false negatives of two sensors are independent of each
other. Hence, the logged data are redundant and errors can be filtered.
Under extreme conditions, 10 sensors might be within close proximity.

This rare setting results in increased battery consumption because each
sensor has to receive broadcast from 9 other sensors. Furthermore, the
continuous drift of the TX intervals and the increased amount of sensors
result in a higher number of collisions and each collision will result in
a false negative. We conducted a stress test to evaluate the effects on
the sensors. The error rate increased until reaching 20 percent. However,
because of the redundancy of the capturing, up to 8 other watches captured
the correct data. Furthermore, the high load strains the battery and can
induce a voltage collapse after 2 hours and reduces the lifetime of the
battery overall.

The limited range of radio communication may increase the appearance
of a problem known as hidden nodes. This problem will occur if two
sensors are in proximity of a third sensor, but not in proximity of each
other. Both sensors may send at the same time because they do not notice
each other, but effectively jam the proximity signals to the third node.
While this situation can occur, the frequent movement of participants will
resolve the situation. Furthermore, both sensors can receive the proximity
signal of the third sensor. Therefore, the redundant capturing of proximity
can solve this issue.

The sensors were tested using a new coin cell with a capacity of 230 mAh.
Two sensors were placed 1.5 meters apart to ensure a constant exchange
of packets. We measured a maximum lifetime of 180 hours. All data were
stored on the sensor and was analyzed after the data had been downloaded.
In 98 percent of the 10-second intervals, both sensors triggered a proximity
event. This error rate remained constant during the test.

The system is intended to be used for a week, or even shorter time spans,
in care homes, similar to such observation frameworks as SOFI 2 [161].
The maximum battery life of a sensor depends on the average number of
sensors within range. If sensors notice an active broadcast, the 10 packets
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containing the ID must be received every 10 seconds. After talking to
experienced carers, we decided that, on average, one sensor is within range
during a shift because carers spend a significant share of the shift on their
own (e.g., preparing medication or walking between residents). Therefore,
the battery life was measured by two sensors. Both sensors had new coin
cells with capacities of 230 mAh. They were placed on a flat surface at a
distance of approximately 50 cm. One sensor acted as a reference. The
sensor’s battery was changed at regular intervals and the captured data
were analyzed. The tested sensors lasted for more than 6 days, or 140
hours, using one coin cell. In practice, the 140 hours must be reduced to
135 hours to retain enough energy to download the sensor data with the
sensor manager. If the battery is empty, the data can still be recovered.
However, the entire memory has to be downloaded and analyzed. We
developed a tool to simplify this process, but if the sensors crash during a
write operation, there can be invalid contacts that have to be filtered.

6.3 Proximity Sensor Evaluation
The study reported in [202] used the initial version of the sensors as a
probe in a UK care home that is specialized in dementia care. The goal
was to learn about the acceptance of the system and practical application
barriers. Privacy considerations especially were expected to be a potential
barrier. The study collected a first set of data from the carers in their
daily work and mirrored it back to them after the shift. The underlying
hypothesis was that carers are able to understand and interpret the data.
Hence, visualizations of the data can trigger reflection about critical events.

6.3.1 Method
All carers and residents on a small ward were equipped with proximity
sensors during three morning shifts. Observers were not permitted during
the study. The focus of this study was to measure the acceptance and
usefulness of the proposed system for carers. Both can be deduced from the
captured data and concluding interviews, which focused on such questions
as: Are carers willing to distribute and wear sensors for a limited time
span? Can the data provide sufficient insights for carers? Which insights
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can be gained by further analyzing the data?
After discussion with experienced carers, the minimal distance to trigger

a proximity event was set to 1.5-2 m. However, this is the maximum
distance if two sensors face each other. If carers or residents are side by
side, the range drops to 1 m. An additional sensor was placed at the
laptop computer that was used for documentation tasks. The sensors were
disguised with soft and colorful material in the form of a brooch. Carers
expected that residents would cooperate more easily if everybody on the
ward wore the same kind of colorful badge. Residents remained on the
ward during the study. All carers, except for one, worked only on this
ward. Hence, the captured data provide a complete picture of the daily
work activities of carers and the care received by the residents.

All participants were required to sign consent forms to take part in
the study. The carers distributed the sensors to residents and among
each other on three consecutive mornings. The morning shift started at
7:00 and ended at 14:00. After the shift, the data were read from the
sensors using the management software that ships with the Chronos eZ430.
This software can connect to one watch at a time to set parameters and
download recorded data. Researchers had to manually stop every sensor
and start the synchronization. The mapping between sensors and carers
was documented in several lists. Small changes to the software allowed
data storage directly in the Unisens format [142]. Each available sensor was
stored as a separate event entry type. The events contained the start and
end of a contact as well as the ID of the contacted sensor. The unprocessed
data were visualized directly using the UnisensViewer. Figure 6.9 depicts a
screen shot of example data that were shown to carers. In short interviews,
carers were asked to explain their own raw data (e.g., long periods of
documentation or providing care to multiple residents at the same time).
This interview was the only possibility to verify the recorded data because
observation of care staff was not permitted.

6.3.2 Results
During the 3 days, 15 sensors were used. Two sensors failed on the first
day and one on the second day because of residents pulling at them. The
sensors were initially attached at residents’ and carers’ chests. However,
residents were confused by this new item and grabbed for them. Therefore,
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Figure 6.9: Example of raw data of one carer as shown in the
UnisensViewer [142] to carers after the shift. Each row shows a resident
and each colored bar in a row indicates proximity to this resident.

the carers decided to place the sensors at the hip or under a shirt. A total
of 41 successful measurements and 290 hours of data were recorded.
In average 44 percent of a carer’s shift could be matched to a specific

resident or a documentation task. The detailed results for the carers are
listed in Table 6.2.

Carer 4 has a lower time share because this carer worked only part time
on the monitored ward. The remaining 56 percent of the carer’s time was
spent walking between residents or caring from a distance. Moreover, the
10-second sampling interval may miss short contacts. When the results
were visualized to carers after the shift, carers could recognize behavior
from the raw data and started to discuss care practices. The added value
was more important to carers than their privacy concerns.

The time spent on documentation was lower than expected. Initially,
documentation effort was seen as the most tedious and time-consuming
task by all carers. When asked before the study, the carers and the care
home manager estimated that 30 minutes of care will result in 10 minutes of
documentation. However, the proximity sensors showed that, on average,
only 12 percent of the proximity events for a carer are related to the
documentation laptop. This percentage varies across carers. A new carer
spent only 4 percent on documentation, while an experienced carer spent
21 percent on documentation. Carers confirmed in the interviews that
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Carer Day Shift
duration
in hours

Covered by
sensor events
in % of shift

Measured
documentation

time in % of
shift

Carer 1 1 8 35% n/a
Carer 2 1 3.5 42% n/a
Carer 3 1 8 45% n/a
Carer 1 2 8 48% 17%
Carer 4 2 8 25% 16%
Carer 5 2 8 43% 2%
Carer 6 2 8 59% 8%
Carer 1 3 8 48% 21%
Carer 7 3 8 48% 13%
Carer 8 3 8 48% 10%

Table 6.2: Recognized proximity of a carer to at least one resident or
the laptop during the shift

experienced carers support novices in documentation tasks. Documentation
times are the most reliable values because the distance between carer and
laptop is small and there are few movements. Carers attributed this
differences to the experienced burden of documentation. Furthermore, if a
day was busy, carers had to stay longer to finish the documentation. As a
result, documentation is often the last impression of a busy day.

The time one carer provided to a single resident varies significantly. The
differences between residents are visible in the raw data illustrated in Fig-
ure 6.9. Some residents had only a few short contacts (e.g., the data shown
in the first row). Other rows show unusually long and frequent contacts
(e.g., the fourth row). Interview partners confirmed the correctness of
the recorded data, but had expected more contacts. They felt that they
were busy with residents all day. Although the data were shown in an
anonymized manner, carers immediately recognized individual residents
by their data: “This must be [name of a resident]”(pointing at a row).
Carers explained that one resident with few contacts stayed in bed

during the majority of the shift. Unusually long resident contacts were
caused by residents sitting next to a carer who worked on documentation
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tasks. These reactions prove that the data reflect the actual workday
and the raw data can be understood by carers. However, this raises new
concerns regarding the anonymization of recorded data.
As mentioned above, nearly half of the overall shift was not registered

by a sensor. Three residents (R5, R7, R8) and the laptop account for
the majority of the time connected to proximity events. This is a typical
pattern among all carers; two or three residents demand the majority of
the carer’s attention. Although some of these differences between residents
are due to the shift organization, few residents keep all carers busy each
day. During the 3 days of evaluation, there were only slight variations in
the residents requiring more care. These emerging patterns have to be
analyzed in a longer study.
Figure 6.10 shows an example of the captured data. The break taken

by the carer between 10:30 and 10:50 is clearly visible and could trigger
privacy concerns. All participants said that the benefits of the system
outweigh their privacy concerns. Carers even suggested more critical
approaches (e.g. long-term monitoring using the sensors or finding ways
to present these data to relatives). Only one carer voiced privacy concerns
when asked. After a detailed description of the system, these concerns
were resolved.

After the last interview, a short group discussion between three carers
took place. The carers discussed, for example, whether attendance to
a resident will be influenced if the resident stays in bed all day. This
might lead to insufficient attention to residents in the sleeping rooms,
because most residents are in common rooms. The captured data were
seen as beneficial to understanding care practices and discussing possible
improvements. Carers could identify time spent with residents and when
contacts took place. This allows the identification of typical patterns and
reflecting on reasons for resulting time shares.
The recorded data were analyzed to generate a report for each carer,

which contained an overview and a timeline for each day. The timeline
shown in Figure 6.10 visualizes one shift of a carer during the study.
The carers meet in the morning in the common room to plan the day.
Afterwards, residents are washed, dressed, and brought into the common
room, if possible. From 10:00 to 13:00, the majority of residents are in the
two common rooms. Multiple contacts between carers and residents are
now likely (e.g., when two residents are sitting at the same table). After
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lunch, most residents return to their rooms. This timeline is similar to the
data presented in the study, as show in Figure 6.9 but the aggregation in
5 minute intervals provides a quick overview.
The data were further analyzed regarding the symmetry of recorded

contacts. If sensor A is within proximity of sensor B, both sensors should
record a proximity event. Small differences have been expected, because
of the asynchronous recording and constantly changing proximity. In
this study, the recorded proximity between two sensors differed up to 20
percent. This is due to the different maximum communication distance
between sensors because of sensor orientation and body shielding.

The carers brought up several challenges that need to be addressed. The
sensors need a more stable, waterproof casing to survive the challenges in a
care home. All buttons should be removed or deactivated. Therefore, the
data transfer from sensors has to be fully automatic. The analysis of the
data can be improved to shed light on specific care practices. A connection
to the official documentation system would be beneficial, because task and
non-task-related proximity events cannot be distinguished.
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Figure 6.10: Timeline of a carer’s shift showing the time spent in the
proximity of a resident within 5-minute intervals.
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6.4 CaReflect Prototype
CaReflect, a visualization and management software, was created in re-
sponse to the requests in the first study. The developed CaReflect sensor-
management software can configure, start, and stop sensors. When a
sensor is stopped, recorded data are downloaded automatically and stored
in a database. A variety of visualizations facilitate the inspection of the
data according to requests from end-users. Figure 6.11 depicts the final
system as it was used in the studies that are reported in Section 6.5. The

USB

SimpliciTI

C1101

Proximity
sensors

CaReflect

Figure 6.11: CaReflect suitcase with sensors and management laptop

suitcase contains all required components to conduct a study. The laptop
starts with the CaReflect software that uses the CC1101 USB access point
to communicate with the sensors. The system could be used without
additional equipment. The used USB access point comes with the Chronos
watch. A custom firmware has been installed to communicate with multiple
sensors simultaneously using the SimpliciTI protocol [167] that was part
of the pre-installed Chronos and access point firmware.

6.4.1 Architecture
The CaReflect manager is a Java-based software that consists of five major
components that work together to realize the required functionality. The
components and their interaction are depicted in Figure 6.12. The Study
GUI is the visible part of the application. It is a full screen application
that starts automatically when the study laptop is started. Users can
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Sensor Interface Proximity Library

Study GUI Visualizations

Study Management

Figure 6.12: CaReflect architecture

create accounts, take sensors at the beginning of the shift, and return
them after the shift. All activities can be performed with two or three
clicks. However, users must sign in to take a sensor and again later to
review their data.
The Study Manager monitors which sensors are available and their

status (e.g., if they are already assigned to a carer or resident). It is
controlled by the Study GUI and communicates with the sensors using
the Sensor Interface to check and change the status of sensors as well
as reading proximity data. Data are stored using the Proximity Library,
with special attention to the arising privacy aspects of working with such
sensitive data. Finally, the analysis and visualization component provides
the tools to draw charts and browse through the collected data.

6.4.2 Sensor Interface
The Sensor Interface communicates with the sensors by using the Java
Native Interface (JNI). The interface to the proximity sensors is based
on the CC1101 USB wireless interface. The CC1101 acts as SimpliciTI
access point. Sensors request a connection and receive a channel ID to be
addressed later on. After sensors are assigned a channel ID, they will start
polling for new commands in 500ms intervals. Supported commands are
reconfiguration commands or a request to read the current configuration
of the sensor. The original firmware supported only one connection to a
single sensor at a time. The access point firmware was extended to support
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up to 10 sensors at the same time. More sensors and corresponding
channel IDs could not be stored because of memory limitations. Sensors
still connect in regular intervals, but an independent command queue is
maintained for each sensor. The command protocol of the USB interface
was analyzed and re-implemented as a new C++ driver to communicate
with the access point based on a serial interface. The main difference
from the original driver is the possibility to specify the sensor that should
receive the send command. The driver was packaged as a dynamic-link
library (DLL) and made available to the Java application by using the
JNI. The communication between sensor and access points follows strict
timing rules. The access point has to react within milliseconds to prevent
a timeout. If other sensors attempt to connect at the same time, the
connection is reset and a send command is ignored. As stated above,
the transmission of commands to the sensors is error prone. A growing
number of sensors in the receiving distance of the access point increase
the likelihood of a packet collision and a transmission error. Therefore,
every command that does not result in an immediate response, such as
a reconfiguration command, is wrapped into read commands to ensure
that the new values are correctly set. Furthermore, connected sensors
were extended with a new sleep command that increases the poll interval
to 10 seconds. As a result, sensors in sleep state are slower to react to
commands, but collisions can be reduced.
Reading of data does not follow the poll-command pattern described

above. The download state is started by a dedicated download command.
The sensor starts to send packets in shorts bursts and does not expect
a reply. The sensor DLL has to read the receive buffer continuously to
prevent data loss. Transmissions of other sensors may lead to lost packages
as well. If more than 80 percent of the packets within a burst are missing,
the burst is completely restarted. If fewer packets are missing, these
packets are requested by requesting only the missing packets. However,
these single packets are not transmitted in burst mode.

6.4.3 Data Storage and Visualization
Data storage was implemented in a separate library, Proximity Library, to
hide implementation details. The library contains not only functionality
to read and write data, but optimized methods for often-used queries. For
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example, the question of which users have been in contact with a specified
sensor at a specified time can be implemented in a more efficient manner
if the specified time and sensor can be used directly to filter the data.
Otherwise, a large number of objects has to be created in memory to filter
them in code later on. Supported storage formats include MySQL, HSQL,
and a file-oriented format based on Unisens [142].
The analysis component shown in Figure 6.13 builds on the supported

queries of the Proximity Library to show visualizations that aim at trigger-
ing and facilitating reflection. Three types of visualizations are supported:
timelines, pie charts, and bar graphs. Timelines aim at reconstructing
the work process in chronological order to facilitate recollection of specific
timespans. Pie charts were requested by care staff because carers can
see how they spent their time at a glance. Bar charts are available for
in-depth comparison (e.g., how much attention was overall provided to
each resident). Although carers can use the visualization component to
create all three kinds of graphs for different kinds of data, the system uses
a small subset of the graphs by default. Carers requested that a pie chart

Figure 6.13: CaReflect user interface: visualizations of all care activi-
ties during one day
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provide a brief overview of their day before any other graphs are shown.
Carers can analyze the data in detail by showing a timeline of the day.
Bar charts are used only to compare documentation effort or the overall
time spent with residents by all carers.

6.5 CaReflect Evaluation Method
CaReflect was tested in UK care homes to evaluate the acceptance of
sensors and the underlying concept by care staff. Furthermore, the impact
on learning and reflection should be measured. Evaluation tools can only
measure articulated insights and ask for feedback, because reflection is a
cognitive process. A desired behavior change requires long-term monitoring,
which is neither the intention of the developed system nor accepted by
care staff. Hence, researchers have to stick to questionnaires and anecdotal
evidence (see Section 1.3).

Three studies were conducted in three different care homes with a varying
number of participants and sensors. The following sections describe the
used method and results.

6.5.1 Procedure and Tools
All three studies listed in Table 6.3 followed a similar procedure. On the
first morning, the care home staff received information about the study
and the used system. After collecting signed consent forms from all carers
and the relatives of selected residents, care staff distributed the sensors to
residents. Each carer was asked to create an account and take a sensor.

Care Home CaReflect Duration Workshop Measured
version in days contacts

Mansfield 0.5 3 yes 47532
Risby 0.8 3 canceled 51255
Wren Hall 1.0 4 no 45749

Table 6.3: Conducted studies with CaReflect in care homes.
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Directly after the shift, care staff were asked to return the sensor and
review the data during an interview. Providing this time was difficult for
carers because residents were more demanding on some days. Furthermore,
carers wanted to go home on time (e.g., to pick up their children from
school). Carers were asked about their expectations and their knowledge
of the last shift, before using CaReflect Carers had to estimate the amount
of documentation and the residents they spent the most time with. A
short questionnaire was used to quantify the findings.
Observations took place during the usage of the CaReflect application

and especially during the review of recorded data. Carers were encouraged
to think aloud during the review of the data. Considering the early stage of
the app, the researcher provided guidance for using the app. Observations
during the shift were not possible.
Questionnaires used a 5-point Likert scale (1 strongly disagree, 2 dis-

agree, 3 neutral, 4 agree, 5 strongly agree) and a few free text questions.
Questionnaires had to be succinct because carers had only limited time to
fill them out and were often confused by more complex questions. Ques-
tionnaires in the first two studies were intended to evaluate acceptance and
uncover possible flaws; the questionnaires in the final study additionally
measured the impact on learning and reflection.

Interviews after each shift focused on collecting feedback regarding the
impact of the data, the used visualizations, and the willingness to share the
captured data. The quality of the data and the impact of the visualizations
were evaluated by interviewing carers before and after using CaReflect.

In concluding interviews, carers were questioned regarding their im-
pression of the App, their willingness to share the data, and possible
applications of the app. These semistructured interviews provided more
insight from care staff. Care staff were asked to explain why and how they
used the system. Managers reported on the perceived value of the system
for the care home.
The Net Promoter Score (NPS) [170] was used to measure whether

participants would not only use the system, but actively recommend the
system. The score is used by many companies to measure the impact of
their products. Participants score the likelihood of recommending the used
product on a scale of 0 to 10. All ratings below 7 are counted as detractors
(D). All ratings over 8 are counted as attractors (A). Ratings between
7 and 8 are neutral and, therefore, ignored. The NPS is the difference
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between attractors and detractors divided by the number n of participants.

NPS = A−D

n

This is a very strict measurement, but the results measure the possibility
of using the CaReflect prototype as a product.
In addition, we planned to conduct workshops at the end of the study

to stimulate the articulation of insights between care staff without the
influence of a researcher. However, in most care homes, only one or two
carers can leave a shift to take part in a workshop. Therefore, workshops
have to take place after work and conflict with carers’ daily practices. As a
consequence, only one workshop was conducted in the Mansfield care home.
If a workshop was not possible, concluding interviews were conducted with
carers and management.

The first study was a feasibility test. In subsequent tests, we improved
the application and aimed at increasing the number of participants and
covered shifts. The final experiment was again conducted in the Wren
Hall care home, the home where the initial test of the proximity sensors
took place. In the final study, reports for each carer and the overall care
home have been created using CaReflect. We collected overall feedback in
short interviews and questionnaires 1 week later. For each of the available
carers, approximately 20 minutes were spent to feedback their own data,
show some of the aggregated data slides, and administer the end-of-trial
questionnaire. Carers were asked about the usefulness of CaReflect for
triggering reflection, the usability of actual physical sensors, and privacy
concerns. In a concluding interview with the manager, the organizational-
defined objectives were reviewed and the possible impact of the CaReflect
system regarding the planned objectives was discussed.

6.5.2 Participants
The selection of residents and locations that should be equipped with
sensors was left to care staff. However, the number of sensors was limited.
Research advised care staff about successful patterns, such as equipping
only one ward or lounge, but in the end the carers decided. Care staff
selected nine residents to compare typical care patterns across residents.
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For example, carers selected some residents requiring intense care and
other residents they felt might be neglected. Additional sensors were
placed in the office where care staff work on the documentation, on the
medical trolley, and in selected locations. The distribution of sensors in
all studies is summarized in Table 6.4. The number of staff members with
sensors increased with each study because the number of available sensors
increased from 20 to 30 and the time needed to download the data and
configure a sensor was optimized. The number of contacts grows with the
number of participants and the length of the study. In the final study, all
carers were equipped with sensors. Hence, all care activities related to the
selected residents were captured.

In the study in the Mansfield care home, 19 proximity sensors captured
630 hours of data. During the 3 three days, 21 carers conducted their
work as usual while wearing sensors. Fifteen interviews were conducted
with staff members (10 male, 5 female), all of whom were working full
time. Researchers interviewed one nurse, seven care assistants and seven
senior carers (a total of 15 interviews) with a varying degree of professional
experience ranging from 6 month to 19 years. The impact of these data on
collaborative reflection and the organization was researched by arranging
a workshop comprised of three carers, one manager, and the assistant
manager. The management view of the data was shown as an introduction.
Insights gathered from the interviews were discussed.
The studies in the Risby and Wren Hall care homes were conducted

in collaboration with Tracoin, a project partner in MIRROR. In the

Care Care Staff Residents Locations equipped
home № % № % with sensors
Mansfield 21 65% 9 30% nurses’ office
Risby 30 50% 9 20% nurses’ office and 2 medical

trolleys
Wren Hall 45 100% 9 17% nurses’ office and 4 medicine

cabinet areas

Table 6.4: Participants and sensor coverage in conducted CaReflect
studies.
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Risby study, staff pointed to the importance of the medical trolley as an
indicator of a typical care task. The study resulted in many contacts and
observations showed the reaction of carers. Carers wanted to evaluate
whether they stick to the desired “butterfly care” mode. Data indeed
showed many short contacts. However, questionnaires and interviews
were not accepted because there was not enough time. Consequently, no
demographic data are available and a planned workshop was canceled.

In the final study in the Wren Hall care home, 28 sensors were allocated
to nine residents, five locations (four medicine cabinet areas and the nurses’
office), and to 44 carers over a 4-day period. The carers were monitored
for one shift or a number of shifts, depending on the roster, with between
3 and 12 carers being monitored at any one time.

6.6 CaReflect Evaluation Results
The results of the three experimental studies are presented as a whole
because they shared a common method and produced similar results.
The studies led to insights on the achieved quality of the data, which
is crucial for acceptance by carers. However, a high data quality can
lead to privacy concerns if the sensors are understood as a monitoring
tool. The impact on learning and the resulting insights are significant
results that can be appreciated only if the data quality is sufficient and
privacy concerns are not a barrier to using CaReflect. The support of the
care home management is essential for successful usage. Moreover, the
feedback of managers is directly linked to the commercial potential of such
a solution.

6.6.1 Data Quality and Relevance
Overall, more than 45,000 contacts were captured during the four days of
the final study in Wren Hall. The distribution of recorded sensor events
over time is shown in Figure 6.14. No sensors were distributed to carers
during the first two night shifts. Documentation is only a small share of
the contacts that have been measured. The four days do not provide a
consistent pattern. Moreover, there were large differences in the recorded
contacts between residents and carers each day.
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Figure 6.14: Timeline of all contacts and time in the office in the Wren
Hall study.

Carers in all care homes could recognize their shift from the CaReflect
visualizations and confirmed the correctness of the data as shown in
Table 6.5. Differences between received care across residents were explained
by care staff. The data shown on a day-by-day view often stimulated the
carer to provide a narrative of this specific day (e.g. “this was the day
Allan died” or “this was the day Doris didn’t want to get up” or “this
was the day I spent ages in the office talking to John’s daughter,” etc.).
Carers did not only recognize their timelines, but started to reflect and
discuss their behavior with each other during their shifts. Moreover, they
developed their own ideas on how to use the system.

Questionnaire item
(5-point Likert scale)

Study Number of
participants

Mean and
standard
deviation

CaReflect helped me to
collect information
relevant to reconstruct
work experiences

Mansfield 16 3.87 (SD=1.26)

The graph showed my
work properly.

Wren Hall 40 3.77 (SD=0.92)

Table 6.5: Perceived data quality in Mansfield and Wren Hall studies
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The correctness of the data also showed if there were errors in the data.
For example, on the last day in Mansfield, one sensor was accidentally
given to a carer instead of a resident. The two carers that first reviewed
their data on this day immediately recognized the mistake. They could
even name the carer, who took the sensor, and reconstruct what had
happened. Similarly, in Wren Hall, carers immediately identified a resident
whose sensor was not working properly.

In summary, CaReflect helped participants to capture data during the
shift to later reconstruct work experiences.

6.6.2 CaReflect Usage and Usability
Carers and senior staff had only a few minutes to analyze the data. The
general pie chart was often of more interest to them than the timeline.
However, the inspection of the timeline visualization triggered more de-
scriptions of particular events. Observed carers were interested in seeing
the absolute and relative time given to residents, spent with other staff,
and at various locations, particularly “the office.” A number of carers
said it was difficult to remember all their contacts over an 8-hour shift,
particularly when encouraged to work in the “butterfly” mode (i.e., a large
number of small contacts, rather than large blocks of a single contact).
Carers used the CaReflect visualizations to explore the following questions:

• How was their time was spent differentially with specific residents?
• How much time was spent with another (specific) carer?
• How much time was spent with a specific resident?
• How much time was spent in the office or on documentation?
• How many different contacts were made over a shift?
• How much time was “undocumented”?

Observed team leaders and senior carers were especially interested in the
overview graphs, showing the aggregated time given to individual residents
from all carers. This aggregated level of data was seen as useful to reflect
on performance, equity, volumes of service, frequency of contact, need, and
amount of “doubling up” given for heavy, difficult, or highly dependent
residents.
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In Risby, carers quickly glanced at the data and were satisfied that they
had as many short contacts as prescribed by the “butterfly care” method.
CaReflect was used as a check and not as a reflection tool.
Participants suggested in the interviews that wearing a sensor, and

knowing others are wearing one, could affect a worker’s behavior–in this
case giving residents with sensors more attention. This effect may have
influenced the result of the study, but can be a starting point for a long-term
coaching approach based on self-tracking.

When asked for possible improvements, 90 percent of comments related
to the number of sensors. More sensors would allow the capture of more
data. In particular, all residents should be equipped with sensors. Fur-
thermore, the user interface should include more flexible filter mechanisms.
The mechanisms are already available, but have been removed from the
carer interface to simplify the operation. One carer suggested reducing the
range of the sensors to 1.5m to improve precision. Another carer would
have preferred a self-reporting approach because the data are “too vague,
you might pick somebody up who is standing next to you. Carers should
rather press a button to document their work.”

6.6.3 Learning and Overall Acceptance
The impact on learning can be inferred from the quantitative results
in the questionnaires (see Table 6.6) and the variety of gained insights.
Furthermore, learning something new is the main benefit of CaReflect
for staff members and, therefore, essential for overall acceptance. During
this short time, carers did not have enough time to change their behavior.
There is only a slight indication that changes are planned in Wren Hall,
whereas the carers in Mansfield slightly disagreed with this statement. It
should be noted that we simplified statements like “I made a conscious
decision about how to behave in the future” into more direct statements
like “I now have an idea what I could change” for the study in Wren Hall
because 5 out of 16 participants in Mansfield said they did not understand
this statement.
Figure 6.15 shows the perceived impact on reflection measured by two

questions in the Mansfield study. The majority saw a benefit in looking
at the data. It helped carers to reconstruct work experiences and made
them reflect: “It makes you think how much time you spent with whom.”
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Questionnaire item
(5-point Likert scale)

Study Responses
from

participants

Mean and
standard
deviation

CaReflect helped me to
reflect on experiences
from work.

Mansfield 16/16 3.87
(SD=1.20)

I gained a deeper
understanding of my
work life.

Mansfield 11/16 2.90
(SD=1.70)

I made a conscious
decision about how to
behave in the future.

Mansfield 11/16 2.30
(SD=1.55)

I learned something by
looking at this data

Wren Hall 40/40 4.03
(SD=0.55)

I have now an idea what
I could change.

Wren Hall 40/40 3.61
(SD=0.82)

Table 6.6: Perceived impact on learning in Mansfield and Wren Hall
studies
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Figure 6.15: Reported impact on reflection
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Furthermore, carers wanted to “compare with others to see how much time
they are spending.”

When asked for examples of insights, carers talked about the time spent
on documentation or the differences between residents. The latter was the
main insight that was common across all care homes. Carers already knew
that some residents need more attention. The data, however, quantified
this impression and showed that the differences are bigger than expected.
Difficult residents required not the expected 50 percent more effort than
other residents but rather 4 to 5 times as much. For example, several carers
found out that “I have spent a lot of time with resident A.” This resident A
required the main share of the attention from three different carers. Care
staff explained that it is definitely not their intention to give everyone the
same amount of attention – on the contrary, the individual needs of each
resident will be different, and judged accordingly. These needs vary from
person to person and from day to day. When a resident was dying, they
received almost constant attention, whereas others were happy on their
own for periods of time. The knowledge of these individual needs is used
to evaluate the CaReflect data – this is where reflective learning occurs
most clearly. For example, one carer noted that a particular resident with
a sensor seemed to get more attention than usual and responded by being
more alert and brighter. In addition, low numbers were seen as a warning:
“I makes you think that people don’t get enough attention.”

The time spent on documentation was often overestimated. In Wren
Hall, one carer said “I thought I spent more time in the office.” Nurses,
however, have to do the main share of the documentation. One nurse was
surprised how much time she spent in the office: “one hour [16 percent of
time] spent in office!” This amount of documentation was disappointing
for a care coordinator: “too much time spent at computer during morning
shift”

Several articulated insights are specific to the care home or the carer.
For example, one carer was surprised how much time she needed to assist
a resident with meals and wanted to discuss with colleagues about their
experiences. In another example, one carer became aware of how the
current care organization in teams is more dynamic than planned: “We
don’t only work in teams but mix and match more than we think. I think
that is good.” Other participants could not estimate how much time they
spent with a resident before using CaReflect, but said afterward that it is
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useful to know.
The results of the questionnaires of the final evaluation in Wren Hall

are shown in Table 6.7. If the feedback is split into experienced carers
with at least 5 years of experience (12 out of 41) it becomes apparent
that experienced carers see more benefit in using CaReflect. They believe
that they learned more by analyzing the data and more of them had an
idea how to change their behavior. The concluding interviews emphasized
these differences (see Table 6.8). This result was surprising because we
expected young carers to be more attracted to new technology. However,
the existing knowledge and the wider perspective of more-experienced staff
appears to be decisive. This would explain why the biggest difference
between both groups can be seen in the question that asks for insights
the team level. One member of the group that could not see the benefit
of the app argued that they know their work and do remember what has
happened: “I already knew that.”

Figure 6.16 shows the overall feedback summarized by the loyalty metric
NPS in the Mansfield and Wren Hall care home. A value above 7 is seen
as positive. The majority of Mansfield users are distributed around the
border between neutral and a positive view. Most carers used the sensors
only once or twice because of the shift system. The short usage of the tool
was one reason for this feedback (e.g., a critical carer said, “I don’t know
enough about the tool to recommend it.”) The overall net promoter score
in Wren Hall was negative (NPS -29 percent). This result is due to the

Questionnaire item
(5-point Likert scale)

All staff
members
(n=40)

Experience
≥ 5 years
(n=12)

Experience
<5 years
(n=28)

I learned something by
looking at this data

4.03
(SD=0.55)

4.18
(SD=0.39)

3.96
(SD=0.60)

I have now an idea what
I could change.

3.66
(SD=0.85)

3.77
(SD=0.91)

3.61
(SD=0.82)

Did you see anything
surprising in the data?

2.00
(SD=0.7)

2.1
(SD=0.83)

1.90
(SD=0.62)

Table 6.7: Responses from the daily end-of-shift questionnaire in Wren
Hall split by experience
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Questionnaire item
(5-point Likert scale)

All staff
members
(n=17)

Experience
≥ 5 years

(n=7)

Experience
<5 years
(n=10)

I am satisfied with
CaReflect.

3.82
(SD=0.62)

3.71
(SD=0.92)

3.9
(SD=0.54)

I have an idea now, how
we can improve our work
as team.

3.36
(SD=0.68)

3.57
(SD=0.50)

2.20
(SD=0.75)

I would like to use the
app again.

3.71
(SD=0.75)

3.86
(SD=0.64)

3.60
(SD=0.80)

NPS -29% 0% -50%

Table 6.8: Concluding questionnaire responses in Wren Hall split by
experience

many young detractors (5) among inexperienced carers (10 of 17) who did
not yet see a value in the collected data. Experienced staff members (7
of 17) were neutral (NPS= 0 percent). These experienced staff members
were comprised of all nurses and care coordinators.

Participants from Wren Hall stated in the concluding questionnaire that
they were satisfied with CaReflect. Eighty-two percent said they would
like to use CaReflect again with their team. Only 24 percent would also
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Figure 6.16: Feedback for Net Promoter Score (NPS) [170] in the
CaReflect studies in Mansfield and Wren Hall
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use it individually. The interviews showed that carers are eager to compare
their data to others and improve together.

6.6.4 Privacy
The results of the initial study with proximity sensors, reported in Sec-
tion 6.3.2, indicated that carers had surprisingly few privacy concerns. In
the CaReflect studies, we aimed to verify this impression in other care
homes.

According to a survey conducted in Mansfield, privacy concerns among
carers were very rare. Figure 6.17 shows that 12 out of 15 interviewed
carers would share the data with everybody. The researcher deliberately
pushed for more critical responses (e.g., by suggesting that these data be
made available to all relatives of a resident or even put it on the Internet.
Finally, carers were reassured that any privacy concerns would be taken
seriously and would lead to changes in the system. Carers responded by
saying “I have nothing to hide” or “this is good proof . . . when talking
to relatives.” One of the carers who wanted to share the data only with
management said “I don’t mind sharing it internally, but not external. It
is private,” but was actually more concerned about the privacy of residents.
She feared that residents will be embarrassed if their relatives knew how
much care they receive. Furthermore, carers asked for an option to share
and compare their shift data to other carers. They expected that such a
comparison would yield more insights.

0 2 4 6 8 10 12 14

not share any data

share data only with my team

share with everybody in the care home
including the manager

 share with everybody including
residents' relatives

Number of participants

Would you share the data with others?

Figure 6.17: Sharing preferences by carers in the Mansfield study
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The vast majority of carers of the final evaluation stated in the concluding
interviews that they had no concerns about privacy and expected their
data to be seen by the senior carers. Certainly this was seen as important
information by the seniors to monitor individual and team performance–
amounts of time given to residents, amounts of time spent with other carers,
or at “locations” (e.g., the office, amount of time “unaccounted.”) Whether
this positive attitude towards the system is specific to the particular setting
in the UK must be tested further.

6.6.5 Management Perspective
Both the owner of the Mansfield care home and the assistant manager saw
huge potential in the CaReflect technology to improve care and collect
evidence to discuss increased funding. However, because only a minority
of residents and only some carers were equipped, these insights were not
yet possible. The management was eager to test the system again with all
carers and participants to gain a complete picture. Furthermore, the test
period should be a full week of 5 to 7 days and the focus group should be
part of the regular training days at the care home.
The concluding workshop in Mansfield was dominated by the care

home manager, who attempted to derive direct insights from the gathered
data. Only one experienced carer actively participated in the discussions.
This carer saw a potential for CaReflect and spoke about the recorded
collaboration across the team. In addition, this carer asked to use the
sensor for a longer time period. The manager highlighted interesting
aspects from an organizational perspective:

• Time spent on documentation across carers
• Overall effort by resident (including required time to double up)

Furthermore, care staff used the questionnaire to suggest an introduction
of CaReflect to use “for reflective practice and planning of care,” and hope
that they “might get additional funding” using the data. The data could
also complement handovers by enabling “communication with colleagues
without having to meet face to face.”

In the concluding discussion with the manager of the Wren Hall care
home after the final evaluation, the approach was seen as very positive
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and several ideas emerged:

• The aggregate of all individual and team reflections are seen as
beneficial to the organization as a whole, for improved performance,
better overview perspectives on service contacts, volumes, timings,
and for coordination purposes. Access to the level and detail provided
by the sensor database addresses many organizational issues.

• The question of how often staff are “doubling up” was seen as
particularly important, because the government provides a higher
level of subsidy for residents who require 1:1 care, or who regularly
require two carers to provide proper care. Estimates are given, but
they change over time, and no exact data are currently collected
on a routine basis. Management wanted to know whether there
are residents who are funded for 1:1, but do not get that level of
care. The idea has been considered further to provide data to allow
differentiated levels of funding/charging according to the levels of
basic support required.

• CaReflect can be used to provide reassurance to relatives and evidence
of good service. It is often said that residents will not remember
staff carer visits over the previous hours, and will claim they have
been alone “all day.” It is also the case that for care home inspectors,
“if it’s not documented, it hasn’t been done.” Both scenarios are
a source of concern for busy carers who do not have time to write
everything down. The data provided by CaReflect provides this
reassurance to relatives and evidence to inspectors, showing the
details of the provided care–who, when, and for how long. This is
seen as a major source of evidence of performance for management
and individual carers–all without manual input.

• The data could also provide a perspective on care as seen by residents.
The data could help carers understand how their care could be
interpreted as neglect. For example, a tool could ask a questions
like, “Imagine you are alone all day and see care staff only for 15
minutes per day. How would you react if your carer has no time to
talk to you?”

Finally, all managers in all four care homes showed interest in a product
based on the used technology. The issue of how to market this “product”
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was raised by the manager in Wren Hall. He wanted to know, if CaReflect
is it going to be sold, rented, or part of a consultation exercise? Is it for
monitoring care levels for relatives, or reflective learning for staff, or is it
used as evidence for differential payments to government?

6.7 Summary
A system to measure social contacts in a care home has been developed
and evaluated. We have presented an approach to turn the eZ430 Chronos
hardware into a proximity sensor that captures proximity for up to 180
hours, powered by a single coin cell. The proximity sensor technology has
shown potential to support reflective learning by carers in four studies,
listed in Table 6.9. The sensor application and the corresponding study
platform were refined in several iterations and tested in three different
care homes.
The strength of CaReflect is the simplicity of the concept. Therefore,

it allowed the carers, without technical background or training, to adapt
the system by placing sensors not only on residents, but at places that
are relevant to their work. Hence, they were able to capture data not
only about their interaction with residents, but also about time spent on
documentation. In this study, the number of available sensors was limited

Sensor
firmware
version

Visualization and
management

Evaluation in care
home

0.8 UnisensViewer and
Chronos Management
Software

3 morning shifts in
Wren Hall

0.9 (increased
stability)

CaReflect 0.5 3 days in Mansfield

1.0 (automatic
data download)

CaReflect 0.8 3 days in Risby

1.0 CaReflect 1.0 4 days in Wren Hall

Table 6.9: Capturing prototypes for affective context

141



6 Design Study II: Capturing Social Context

and not all ideas could be realized. Carers strongly requested more sensors
to equip every resident and more places. This behavior provides insights
for the design of capturing solutions. They should be easy to use and
adapt. If users can adapt a solution to the needs of a workplace, they can
build their own custom solution and are more engaged.
The care staff in the selected care homes gained new insights from

analyzing the data. They learned about the different care needs of residents,
were able to better understand the time spent on documentation, and
also gained personal insights. They requested more options to compare
their data with their colleagues’ data, to take even more from the data
analysis. Moreover, they used the data to talk to their managers about
care planning and processes. Managers saw many options to use CaReflect
in their homes and asked for an available product. In summary, carers and
managers confirmed the positive impact of CaReflect. However, the three
care homes volunteered for these studies and were convinced of their high
standards. Other care homes that have more potential for improvement
are most likely hesitant to quantify their problems because they fear the
initial negative reaction of relatives and future customers.
CaReflect has been built for and successfully evaluated in care homes

that specialize in dementia care, but the chosen approach can be applied
to care homes in general.
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7 Discussion
We have presented an approach to the structured design of sensor support
for reflective learning. Based on the presented design space, we created
and evaluated prototypes that capture affective and social context at work.
This chapter critically reviews the conducted work and its implications for
the design of sensor support for reflective learning.

7.1 Designing Reflection Support
The developed design space (see Chapter 4.2) provides guidance for the
design of CSRL applications that capture data. The design space outlines
key questions and common challenges. The current design space was used to
classify the existing applications in MIRROR (see Section 3.1.1). However,
the majority of the developed applications rely on self-reporting. The single
other sensor-based approach in MIRROR, WATCHiT [90], complements
the conducted design studies. While WATCHiT was developed for a
different domain, the design space can be used without modifications as
reported in [198]. However, a solution for a different domain may reveal
additional aspects.

However, the design space can help only to structure the design process,
designers still face challenging requirements. The optimal solution is
tailored to an existing work process and provides data on topics that
have been continuously debated. Designing such a solution requires an in-
depth understanding of the work processes and open issues. The following
aspects can prevent acceptance in the target domain in relation to a specific
reflection support system:

• Costs to the employer
• Effort for the employee
• Legal constraints
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Costs for the employer include the costs to implement the system, the
costs to maintain it, and the costs for employees to operate it. Implementa-
tion costs include the investments to buy the required system components
and install them in the workplace. In addition, employees will require
training to understand, accept, and use the system. Maintenance costs
include the use of external services and additional employee effort (e.g.
changing batteries, backup services, or user management). The costs to
operate the system include mainly the time employees must spend on the
system.
Minimizing the effort for employees is crucial to gain acceptance. Re-

flection is not the employees’ main task. There is a widespread fear of
neglecting important work-related tasks if data capturing requires too
much time or effort. Complex user interfaces discourage usage. Moreover,
some employers advise employees to use these tools during their breaks
and spare time. In these cases, few data will be recorded. In the worst case,
additional management pressure will result in the generation of data. In
practice, there is often a tradeoff between implementation and maintenance
costs. More sophisticated systems require less interaction by employees,
but a simple note-taking approach places a high effort on employees, which
might prevent them from doing their original work tasks. In the best-case
scenario, the desired data are already collected in existing information
systems and can be made accessible for reflection. For instance, developers
add new visualizations into the system or implement functions to export
the data into an analysis framework.
Legal constraints limit the usage of sensors and the resulting data in

many work domains. In most workplaces, recording data about a customer
requires the customer’s consent. Tools like the SenseCam [8] automatically
take pictures of everyone in the user’s vicinity, including served customers
or patients. Asking for consent is at best difficult. Therefore, the law in
most European countries would not allow such systems in the workplace.
In the healthcare domain, patient data are protected by similar laws. It is
difficult to argue why reflection tools have to access these data, because
according to the law, such access must be tightly connected to the patient’s
well-being.
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7.2 Data Quality and Risk of Misinterpretation
The quality of the recorded data is the basis for the reflection session. The
developed sensing solutions deliver only a limited perspective on the expe-
rience and will always contain a small number of erroneous measurements.
The design of sensor systems should filter such errors or minimize them
in the first place, but it is inherently difficult to distinguish unusual data
from erroneous measurements. The person that knows most about the
underlying event and can distinguish errors from significant changes is the
reflecting learner.
The initial ethnographic study has highlighted the challenges of mea-

suring arousal in healthcare environments. Existing arousal algorithms
that are solely based on heart rate cannot be applied in environments with
high and volatile activity levels. The arousal-related components of the
heart rate cannot be distinguished from the frequent changes that are due
to movement. In addition, critical situations such as the emergency shown
in Figure 5.6 triggered physical reactions. The fight-or-flight system is
activated, but can be translated into activity. Hence, it can be debated how
much arousal in these active environments matches the common notion of
stress (i.e., an activation of the fight-or-flight system that is undesired).
Therefore, raw heart rate data was shown to nurses and physicians, who
attempted to interpret the data on their own. A subset of the participants
came to insights about their stress that could not be confirmed by looking
at the data. The data acted as a trigger to review own experiences during
the day. However, there is a risk that the data was misinterpreted. For
instance, the data may convince participants to assume they were stressed
during the day. Consequently, they re-evaluate their experience and the
outcome is a wrong negative perception of the day.
The proximity sensors can recognize proximity between care staff and

residents. However, the data is only an indication of social contacts. The
proximity range of sensors varies according to body shielding and the
properties of the antenna itself. Hence, contacts might not be measured
(e.g., when standing behind a resident). As a result, the proximity range
was increased to 3m. Therefore, the number of false-positives increases (i.e.,
residents that are 3 m away are still counted as contacts). Furthermore,
the constant movement of carers will continuously change the distance and
the transmission range of the sensors. If the range is reduced during the
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one moment in the 10-second sampling interval when sensors broadcast
their ID (e.g., because there is an arm in front of the sensors), no proximity
will be detected. These limitations apply to all measurements and do not
systematically affect particular residents. Moreover, the captured data
were still understood by care staff and stimulated reflection. The sensors
provide a raw picture of the processes in a care home, but it is more than
was available before.

The correct introduction of the developed applications is crucial to
prevent these problems. Users should be aware that errors are possible
and how they occur. CaReflect benefited from its simple concept. Carers
did not only learned to operate the system, but they also understood why
it may not work. If users know about these errors, they will become more
critical regarding the collected data and the system. However, it is the
best option to prevent misinterpretation.

7.3 Impact on Learning
Reflective learning is a cognitive process that can be observed only by
its outcomes or if the thoughts in the reflection process are articulated.
As stated in Section 2.1, outcomes can vary from unobservable changes
in attitude to a change in behavior. Questionnaires and interviews can
inquire about attitude changes. Observations and sensor data can measure
behavior changes.

Our questionnaires and the reported insights indicate that participants
learned by analyzing their data. However, many participants may rate
systems more positively in questionnaires and interviews, to please the
researcher. The reported insights and the narratives during the review of
the data provide more evidence. Moreover, the care homes in our studies
volunteered to use sensors. According to local partners, the visited care
homes deliver a high standard in their care. Care homes that struggle
more to care for all their residents might provide more interesting findings
but would not volunteer to reveal them. Therefore, the visited care homes
are most likely particularly motivated to prove their care quality and learn
about further improvement options.

During the short time of the studies no actual change in care practices
was expected or measured. A second study in the same care home could
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have revealed such changes. However, an observable change in behavior
is only one of the possible outcomes of reflection. Furthermore, the
majority of the few planned changes are difficult to measure because the
underlying values (e.g, on the time spent on documentation) vary from
day to day depending on the behavior of residents. Moreover, measuring
behavior change is difficult. Klasnja et al. [171] explain that “demonstrating
behavior change is often infeasible as well as unnecessary for a meaningful
contribution to HCI research.’ ’ According to their argument, behavior
change is a long-term process, which would require studies of several
months or years. A time frame of multiple years does not account for the
rapid pace of development in this area. This also applies to the broader
field of technical-support systems that do not focus on a medical impact,
but rather on the applicability of a new technology itself.

7.4 Ethical Aspects
The capturing of data at the workplace inevitably triggers ethical concerns
regarding privacy and the danger of manipulating behavior against the
will of employees. Designers have to be sensitive to these issues because
the system is either not accepted at all or is used in an undesired manner.
It is not enough to aim for a beneficial impact. Designers have to clearly
see and discuss the risks as well.
Privacy is the most prominent concern, even before the introduction

of a data-capturing solution. Sensors and self-reports can be abused by
the management as a compulsive monitoring tool beyond legal boundaries.
Even a system recognized and accepted by employees as being beneficial
can turn into monitoring tool. Designers must be aware of how their tool
can be used in an undesired manner. These threats have to be clearly
communicated to employees and management. Therefore, it is required
that employees are able to delete and manipulate data to react to pressure
from the management. If the only option is to not use the system at all,
employees who do not comply can easily be identified by the management.
Privacy concerns vary across domains and countries. For instance, in

MIRROR [32], employees in a German hospital objected to a questionnaire
that asked for their gender, while carers in a UK care home suggested
placing cameras in all rooms. In general, the attempt to preserve the
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privacy of employees is appreciated in all workplaces. However, designers
should be prepared for a wide variety of attitudes. If the opinions on
privacy vary, the opinion with the strongest request for privacy should
guide the implementation, because the awareness of data-capturing can
and will influence the behavior of employees, especially if employees do
not accept the use of such data for reflection purposes.

The ethical aspects of persuasive technology have been discussed since its
inception [172, 120]. Two major guidelines for ethical persuasion systems
are (a) to clearly communicate persuasion goals and (b) to select these
goals carefully (i.e., to avoid persuasion that may lead to unethical goals).
Berdichevsky and Neuenschwander [172] refer to this second guideline as
the golden rule for the ethical design of persuasive technology, phrased as
follows:

“The creators of a persuasive technology should never seek
to persuade anyone of something they themselves would not
consent to be persuaded of.”

In CSRL, there is no persuasion goal. One might assume that, as a result,
the ethical challenges in persuasive technology do not apply to CSRL.
However, CSRL applications use a similar (and sometimes the same) tech-
nology as persuasive technology. Furthermore, it is clear that technology is
never neutral [123]. Therefore, CSRL apps may have persuasive properties
that have not been explicitly designed. In this case, the ethical problems
of manipulating behavior become relevant and the proposed solutions,
such as clearly selecting and communicating persuasion goals, cannot be
applied. This is an inherent risk that can be explored only by testing the
system in the field. For instance, during a test of CaReflect, staff noted
that carers devoted more time to residents that were equipped with a
sensor. The carers proposed to give a sensor to all residents. This reaction
outlines that sensors will direct attention towards the monitored aspects.
As a result, other aspects might be neglected.
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8 Conclusion
Reflective learning provides the theoretical basis to support professionals
to learn from the growing amount of sensor data that are recorded in our
daily life. Mobile applications and wearable sensors have been developed
for nurses and physicians on a stroke unit and care staff in care homes to
facilitate reflection. The systems have been evaluated with end users in
their workplace setting. The lessons learned have been condensed into a
design space that guides the creation of sensor based reflection support.
The conducted studies have shown that the design approach creates sensor
systems that support learning and reflection in workplace settings.

8.1 Summary
The goal of this thesis has been the development and evaluation of sensor-
based reflection support for professionals. If professionals can combine
data collected from their work with their own experiences, they can learn
more quickly and effectively on the job. Computer supported reflective
learning (CSRL) is a new field that so far has been based on self-reporting
applications and social facilitation.

A design space has been devised to guide the conception and incremental
implementation of sensor based CSRL applications. Developers of CSRL
applications face the challenge to select, capture, and visualize context
in a form that optimally complements the experience of professionals in
order to support reflection and learning. The developed solutions have
to match the requirements and constraints of the particular workplace
setting. We propose an iterative development approach that structures
the design process according to three decisions: the identification of the
relevant context, the selection of the appropriate capturing method, and a
choice of visualizations that trigger reflection and can lead to new insights
on work practices. While the design space helps to identify challenges and

149



8 Conclusion

alternative implementations for specific scenarios, developers still have to
analyze carefully the specific requirements of the workplace setting.
Two design studies developed and evaluated CSRL applications that

capture the affective and social context in healthcare environments. The
healthcare domain has been chosen as an example because (a) reflective
practice is seen as promising in this field [3] and (b) it is one of many non-
or little computerized work environments. Wearable sensors have been
used and adapted in a user-centered design process to the requirements of
the particular workplace. The developed systems have been tested in a
stroke unit and care homes to evaluate the impact in a realistic setting.

The first design study explored the capturing of the affective context of
nurses and physicians on a stroke unit. An ethnographic study examined
the use of wearable ECG sensors to support reflection on arousal and
stress. The results outlined the challenges to capture and process affect-
related data in workplace settings. A more flexible approach to collect and
analyze data from multiple sensors was required. Consequently, a rapid
prototyping framework for mobile systems that capture and analyze sensor
signals has been developed and used to rapidly prototype two new mobile
applications.
The second design study investigated the capturing of social context

in care homes. A wearable proximity sensor was developed and refined
in a series of studies. In comparison to existing systems, the proximity
sensors are optimized for low-power consumption, the system is completely
distributed, and does not require an additional infrastructure. The system
estimates proximity using an adapted communication protocol that mini-
mizes communication overhead and power consumption. CaReflect is an
application that builds on this technology and is the first application that
uses proximity sensors to analyze care practices. It provides quantitative
data about the time spent with each resident. The system was refined and
evaluated in four studies in care homes. Care staff and residents have been
equipped with proximity sensors to infer the time they spent together.
While the sensors cannot measure all contacts during a shift, participants
confirmed the correctness of the data and discussed the findings with
each other. Moreover, carers and management appreciated the sensors as
versatile tools to analyze their care practices as well as measuring other
practices in the care home (e.g., the amount of documentation or the time
needed for medical rounds with the medical trolley).
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8.2 Outlook

Our evaluation results show that employees can directly understand
simple visualizations of the raw recorded data. Social and affective data act
as memory cues and trigger participants to narrate experiences that relate
to the data. However, users must feel able to react to the gained awareness
to appreciate the system. For example, the visualization of arousal and its
interpretation as stress in the ECG study was perceived as a burden, but
social contacts recorded by CaReflect were regarded as a new method to
learn more about one’s work practices. Care staff reconstructed specific
situations and discussed alternative behaviors and organizational changes,
such as bringing residents to the common rooms as often as possible. The
outcomes have been diverse, as predicted by reflective learning theory. The
insights and feedback collected during evaluation of CaReflect provides
initial evidence that carers can learn from sensor data. CaReflect indeed
provides content for reflection and thus turns context into content.
The evaluation of the developed sensor systems and applications has

shown that sensors can support reflective learning. The recorded context
can become the content of new personalized and workplace-specific learn-
ing applications. The successful implementation of such applications is
challenging but the elaborated design space can guide developers to build
similar systems for more use cases and more sensors.

8.2 Outlook
The number of sensors used in daily life is increasing. For example, mobile
phones are equipped with more sensors to differentiate themselves from
the competition. Reflective learning and learning from sensor data can
build on this development to create learning support for the wide range
of domains and skills, augmenting traditional learning content. Sensor-
generated content is, by definition, highly specific to the domain in which
it was recorded and is personalized because it is interpreted in relation to
the personal experience of a learner. Further applications can be developed
to leverage on this potential. Applications that require online processing
of psychophysiological data on mobile devices can built on xAffect and the
growing number of available xAffect components.

The CaReflect platform has shown the potential of proximity sensors in
care analysis. However, the hardware of the system is still a development
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platform. Therefore, new platforms are being considered that are available
in large quantities and include the latest low-power technology. The
Bluetooth 4.0 standard is a promising candidate because of its low-energy
options. An initial analysis of the power consumption of Bluetooth 4.0 and
its proprietary competitor protocols [173] states that Bluetooth low-energy
still needs more energy to scan for other devices. However, Bluetooth 4.0
adoption and the number of available modules are growing rapidly and
the energy consumption of hardware modules are sinking. The upcoming
Bluetooth 4.1 specification [174] will facilitate the implementation by
introducing a dual mode topology that no longer requires a host device.
Hence, Bluetooth low-energy based sensors are evaluated as an alternative
technological basis for the proximity sensors.
The developed applications cover only the first step in the reflective

process. Further applications could help to record the outcomes of reflection
and help to sustain lessons learned by reflection. The presented approaches
use a single sensor, whereas future multi-sensor approaches could lead to
richer insights. Automatic data analysis methods could help to identify
relevant patterns from the resulting richer set of data.

This thesis is a first step to explore how sensor data can become learning
content. Capturing context can create learning content for specialized
domains and situations that either cannot be addressed by traditional
forms of learning or are not profitable for professional content developers.
The creation of learning content from captured data is a promising new
application domain for sensor technology.
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