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X 

 

Die Expression von CD44 auf hämatopoetischen Stammzellen (HSZ) als auch auf Leukämie-

induzierenden Zellen (LIZ) ist für Homing in die osteogene Nische und Adhäsion, die für das 

Überleben von HSZ und LIZ erforderlich sind, notwendig. Dies konnte für LIZ mittels einer 

Therapie mit anti-CD44 gezeigt werden, die LIZ in die Differenzierung treiben. Es muss 

jedoch berücksichtigt werden, dass eine CD44-Blockade auch die Adhäsion von HSZ in der 

osteogenen Nische stören könnte. Um LIZ selektiv aus der Nische zu eliminieren ohne HSZ 

dabei zu beeinträchtigen, könnten möglicherweise variante Isoformen von CD44 als Target 

genutzt werden, die auf LIZ hoch, aber niedrig oder nicht auf HSZ exprimiert werden. Dazu 

zählen unter anderem die Isoformen CD44v6 und CD44v7, die in verschiedenen Leukämien 

hoch exprimiert werden. 

Um die Möglichkeit einer auf anti-CD44v6 oder anti-CD44v7 basierenden Therapie zu 

überprüfen, habe ich kontrolliert, in wieweit diese beiden Isoformen an der Hämatopoese 

beteiligt sind. Überprüft wurde insbesondere Adhäsion, Homing, Migration, Quieszenz und 

Apoptoseresistenz der HSZ im Kontext mit dem Knochenmarksstroma (KM-Str), sowie die 

Einflussnahme von Standard-CD44 (CD44s), CD44v6 und CD44v7 von KM-Str-Zellen auf 

HSZ. Wildtyp- (wt-) Mäuse, CD44v7-Knockout- (KO-) oder CD44v6/v7-KO-Mäuse  wurden 

als Modelsystem genutzt, um HSZ und KM-Str zu isolieren und die Interaktion zwischen 

HSZ und KM-Str zu untersuchen. 

HSZ adhärieren überwiegend mittels CD44s an Matrixproteine. CD44v6 trägt zur Adhäsion 

an Hyaluronsäure (HA), Fibronektin und Kollagen I bei. Die Adhäsion von CD44wt HSZ an 

CD44wt KM-Str wird durch CD44v6/v7 auf den HSZ gesteigert. Hingegen wird die 

Adhäsion von CD44v6/v7
-/-

 HSZ an CD44wt KM-Str stark reduziert und es erfolgt fast keine 

Adhäsion an CD44v6/v7
-/-

 KM-Str. Untersuchungen mit blockierenden Antikörpern belegen, 

dass der Expression von CD44v7 auf KM-Str bei der Einbettung der HSZ eine wesentliche 

Rolle zukommt. 



 

XI 

 

Migrationsstudien belegen, dass die Expression von CD44v6 auf HSZ eine wichtige Rolle bei 

deren Migration auf HA spielt. CD44v6/v7
-/-

 HSZ zeigen auch eine geringere Migration in 

Richtung  Interleukin 6, Osteopontin, Stem cell derived factor 1. Die Migration der HSZ auf 

KM-Str belegt darüber hinaus, dass die Migration auch durch CD44v6/v7 auf KM-Str 

gefördert wird. 

Die reduzierte Adhäsion von CD44v7
-/-

 und CD44v6/v7
-/-

 HSZ an Chemokine und KM-Str 

beeinflusst die Quieszenz der HSZ und die Resistenz gegenüber Zytostatika. CD44wt HSZ 

teilen sich weniger häufig als CD44v6/v7
-/-

 HSZ, die sich vermehrt in der Mitose befinden. 

CD44v6/v7-kompetentes KM-Str unterstützt den Ruhezustand der HSZ. Erste 

Untersuchungen unterstützen die Annahme, dass CD44v6/v7 über TGF-β an der Expression 

von CD117 und β-Catenin beteiligt ist. 

Die Apoptoseresistenz der HSZ gegenüber TNF-related apoptosis-inducing ligand (TRAIL) 

wird durch das KM-Str unterstützt, das die Expression von  Galektin3 fördert, wodurch eine 

verstärkte Aktivierung des PI3K/Akt-Signalweges in CD44wt HSZ initiiert wird. 

Zusammengenommen lässt sich sagen, dass die Expression von CD44 sowohl auf HSZ als 

auch auf KM-Str zur Adhäsion, Migration, Quieszenz und Apoptoseresistenz der HSZ 

beiträgt. Die HSZ Migration wird maßgeblich durch die Expression von CD44v7 auf KM-Str 

unterstützt. HSZ Quieszenz und Apoptoseresistenz wird durch die Expression von CD44v6 

auf HSZ und durch eine CD44v6-vermittelte Interaktion mit dem KM-Str begünstigt. 

Das Wissen um den Einfluss von CD44v6, CD44v7 und assoziierter Moleküle auf HSZ, wird 

helfen LIZ selektiv anzugreifen, ohne die Wechselwirkung der HSZ mit der osteogenen 

Nische zu beeinträchtigen. 
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1. Introduction 

1.1 Hematopoiesis and Hematopoietic stem cells 

Hematopoiesis is the step-wise generation of all cellular components of the blood from a 

single type of cell – the hematopoietic stem cell (HSC). HSC have the ability to undergo 

asymmetric cell division to maintain (give rise to a daughter cell) its stem cell pool and also 

generate lymphoid and myeloid progenitor cells (Illustration 1). The progenitor cells are 

committed and differentiate to other types of mature cells like erythrocytes, macrophages, T 

cells, B cells and natural killer cells.  

1.1.1 HSC characterization 

HSC are used in many medical applications/therapies. One of them is bone marrow 

transplantation in the treatment of hematological disorders. But the number of HSC available 

for therapies is a limiting factor. Initial efforts put into the isolation of HSC lead to the 

characterization of mouse HSC first performed in 1988 [1]. HSC was identified negative for 

lineage markers like TER119 for erythroid cells, Mac1/ CD11b for monocytes, Gr-1 for 

granulocytes, CD45R/B220 for B cells, CD3, CD4 for T cells, low expression of Thy-1, 

expressed on mouse thymocytes and positive for stem cell antigen (Sca-1) and c-kit, receptor 

for stem cell factor. It was reported [2] that mouse bone marrow (BM) cells which express c-

kit expression has hematopoietic progenitor activity. HSC having Lin
-
Sca-1c-kit

+
 (LSK) 

markers are heterogeneous and contain HSC along with lineage-committed progenitors. HSC 

also retain the fluorescent DNA-binding dye – Hoechst33342 and termed ‘Side population’ 

[3] according to flow cytometry analysis. Recently, HSC are characterized based on the 

expression of signaling lymphocyte activation molecule (SLAM) family receptor proteins [4]: 

CD150, CD244, and CD48. The differential expression of SLAM family receptors correlates 
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with stemness of cells. Multipotent hematopoietic progenitors (MPP) are non-self-renewing 

and express CD150
-
CD244

+
CD48

-
. Mouse HSC express CD150

+
CD244

-
CD48

- 
[4].  

 

Illustration 1: Hematopoiesis inside BM: The illustration shows the HSC differentiate to 

progenitor cells from which the lymphoid and myeloid lineage-committed progenitors arise to 

differentiate further to give rise to all mature cells of blood. Adopted from www. 

http://stemcells.nih.gov/info/scireport/pages/chapter4.aspx © 2001 Terese Winslow. 

1.2 Hematopoiesis 

1.2.1 Cytokines and chemokines involved in hematopoiesis 

The pluripotential HSC is characterized by complex processes like self-renewal, survival, 

proliferation, lineage commitment and differentiation. These processes are managed by 

intrinsic cellular programming and extracellular cues such as interactions between the HSC 

and the BM-Str and cytokines. Most cytokines act on HSC with redundant actions on 

hematopoietic lineages and also multiple cytokines act on each hematopoietic lineage [5]. 

Information on the cytokines that are involved in the stem cell survival, maintenance and 

expansion are obtained for stem cell factor (SCF) [6], Fms-like tyrosine kinase 3 (Flt3) ligand 

http://stemcells.nih.gov/info/scireport/pages/chapter4.aspx
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[7] and thrombopoietin (TPO) [8]. They act in association with interleukin (IL)-3 and 

granulocyte colony-stimulating factor (G-CSF) [9]. 

Stem cell factor (SCF) is encoded by steel locus which when mutated produces reduced HSC 

colonies in BM. The number of hematopoietic progenitor cells of many hematopoietic 

lineages is also reduced with SCF deficiency. Similarly, the mature cells of erythroid and 

mast cells are also dependent on SCF indicating the role of SCF on mature cells of these 

lineages [10]. The ability of HSC to regenerate hematopoiesis in transplanted myeloablated 

hosts and long-term maintenance of hematopoiesis is also influenced by SCF [11].  

Flt3 ligand is specific for Flt3 receptor tyrosine kinase 3. Flt3 expressing HSC have long-term 

reconstituting capacity [12]. Flt3 ligand contributes to the myeloid, T- and B-lymphoid 

lineages formation. Flt3 mutants were deficient in the B-lymphoid lineage with smaller pro-B 

and preB cells formed in the bone marrow. The formation of dendritic and natural killer cell 

populations is also dependent on Flt3 ligand [13]. 

Thrombopoietin (TPO) is involved in the production of platelets in the liver. TPO interacts 

with its receptor c-Mpl in the maturation and production of megakaryocyte progenitors and 

megakaryocytes to produce platelets [14]. There was not only a decrease in the number of 

platelets and megakaryocytes [15] found in TPO-deficient mice but also a reduction in the 

progenitors of erythroid and myeloid lineages [16]. TPO is also required for colony formation 

of HSC. 

The glycoprotein granulocyte colony-stimulating factor (GCSF) is secreted by activated 

macrophages, bone marrow stromal cells (BM-Str), fibroblasts and endothelial cells. It is 

important for the granulocyte colony formation in vitro and granulopoiesis in vivo. The blood 

neutrophil count in the blood is dependent on GCSF and it can be administered in vivo to 

increase the neutrophil count. GCSF receptor is expressed on neutrophils, monocytes, 
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multipotential and myeloid progenitor cells [17] indicating the importance of GCSF in 

hematopoiesis. In an experiment with irradiated mice where wild type and GCSF receptor 

deficient cells were transplanted to create hematopoietic chimeras, there was a multi-fold need 

in the number of mutant cells than wild type cells to ensure repopulation. Hence, GCSF 

signaling is important for the transplanted HSC to function in bone marrow. 

Interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) belong to the IL-6 family of 

cytokines. IL-6 deficiency causes a reduction in the number of colony formation by HSC as 

also seen in LIF deficiency. Lack of IL-6 on HSC contributes to a deficient reconstitution. 

Apart from these, erythropoietin (EPO) increases the level of erythrocyte progenitors and IL-3 

influences the growth of most lineages. 

Stromal cell-derived factor 1 (SDF-1) also known as C-X-C motif chemokine 12 (CXCL12) 

secreted by BM-Str is important in increasing the number of B cell and myeloid progenitors 

in bone marrow [18]. Also, SDF-1, SCF and IL-7 together enhance the proliferation and 

survival of B cell precursors [19] and myeloid progenitor [20] with SDF-1 independently 

enhancing the myeloid progenitor survival. 

1.2.2 Extracellular matrix, cells and associated signaling  

Bone marrow is composed of extracellular matrix (ECM) components such as proteoglycans 

[21], fibronectin (FN) [22], laminins (LN) [23] and collagens (coll) [24]. They are secreted by 

BM-Str and along with cytokines and chemokines in the bone marrow help HSC to localize in 

the bone marrow by forming adhesive interactions. The secretion of FN, LN and coll by BM-

Str coordinates with the hematopoiesis. The adhesive interactions with ECM help to form 

specific niches for HSC and to undergo erythroid and myeloid lineage-specific differentiation 

[25]. Apart from these, the HSC quiescence [26] and self survival [27] is achieved by their 

interactions with ECM components. 
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Proteoglycans such as hyaluronic acid (HA), heparan sulfate (HS), dermatan sulfate and 

chondroitin sulfate (CS) are distributed within the ECM. Long-term bone marrow cultures 

contain HA and CS which support HSC production [28]. The BM-Str-HSC interaction, HSC-

FN binding [29], cytokine presentation [30] and HSC differentiation [31] are mediated by HS 

which interacts with LN and coll IV [32]. HS recruits hepatocyte growth factor [33] and beta 

fibroblast growth factor (bFGF) [34] and remodels the BM-Str and ECM [35]. HS modulates 

hematopoiesis by inducing erythroid differentiation in HSC [36]. 

Fibronectin favors the attachment of HSC to BM-Str [22] in vitro. FN is found at sites where 

the granulocytes and monocytes develop [37]. FN attaches to early erythroid and myeloid 

progenitors [38] with integrin CD49d assisting the process [39]. Similarly, CD49d expressed 

by HSC attach to FN on BM-Str [40]. The adhesive interactions of FN are promoted by 

integrins CD49d and CD49e and CD44 [41, 42] with the binding affinity of progenitor cells to 

FN is altered by the cytokines IL-3, TPO and SCF [43, 44]. Also the adhesion of mast cells 

[45], megakaryocytes [46], eosinophils and neutrophils [47] is mediated by FN.  

Collagens (coll) are synthesized by the BM-Str and bone marrow-derived fibroblasts [48] and 

are localized in the endosteum of bone [49]. Coll I and coll IV are associated with endothelial 

cells. They help in reconstituting the bone marrow matrix and are a suitable environment for 

hematopoiesis. Adhesion of erythroid and granulocyte progenitors is seen with coll I [50]. 

The location of collagen within the bone and attachment to hematopoietic progenitors indicate 

that they are important for HSC homing [51]. 

Laminin is a major component of ECM [52]. It attaches to coll IV and proteoglycan and 

regulates leukocyte movement to chemokines [53]. HSC adhesiveness is mediated by laminin 

through the integrins [54]. The macrophage- colony stimulating factor mediated proliferation 

of macrophages is promoted by laminin [55]. 
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HSC reside primarily in the BM but can also be found in extra-medullary sites in liver and 

spleen. Hematopoietic stem and progenitor cells can be found in small numbers in continuous  

 

Illustration 2: BM composition: Cross-section of BM showing the different components like 

BM stroma, marrow sinuses, artery, osteoblasts, adipocytes and space for hematopoiesis 

where the different progenitors and precursors arise from hematopoietic stem cells. HSC is 

found associated with osteoblasts and BM-Str. Adopted from www. 

http://stemcells.nih.gov/info/scireport/pages/chapter4.aspx © 2001 Terese Winslow. 

circulation in blood.  

BM is composed of different cell populations (Illustration 2) like HSC and BM-Str 

differentiating to produce osteoblasts, osteoclasts, adipocytes and pericytes [56] and 

endothelial progenitor cells [57].  

The specialized BM microenvironment that lodges the HSC and decides their fate is termed 

“niche” [58]. Niche functions to regulate the HSC location, adhesiveness, retention, homing, 

mobilization, quiescence / activation, symmetric and asymmetric differentiation, proliferation 

http://stemcells.nih.gov/info/scireport/pages/chapter4.aspx
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and survival [58-61]. The existence of a niche was first proposed by Schofield for HSC [62]. 

The components of the niche are osteoblasts, osteoclasts, mesenchymal stem cells, reticular 

cells and endothelial cells [63]. The BM niche can be categorized into endosteal niche [64] 

and vascular niche. 

The endosteal niche (Illustration 3) is defined in the endosteum in trabeculae to which HSC 

localize and associate with N-cadherin+ osteoblasts [65]. The illustration shows the various 

interactions between HSC and the osteoblasts that help in homing, retention and engraftment. 

Angiopoietin-1 (Ang-1) expressed by osteoblasts interacts with Tie2 –receptor tyrosine kinase 

expressed on HSC and regulate stem cell quiescence [66]. Ang-1 induces adhesion of HSC to 

bone giving protection to HSC from myelosuppressive stress [66]. HSC binding to osteoblasts 

of the endosteal niche is further enhanced by CD49d expressed on HSC binding to FN in the 

ECM of bone [67]. N-Cadherin mediates homphilic interactions between N-Cadherin 

expressed on both HSC and osteoblast through the extracellular domain [68]. SDF-1 secreted 

by osteoblasts bind to its receptor C-X-C chemokine receptor type 4 (CXCR-4) which is 

highly expressed by HSC and help in the recruitment of HSC to the bone marrow. Bone 

marrow is rich in calcium that helps in retaining the HSC in the niche through calcium 

receptor on HSC. 

Osteoblasts secrete cytokines such as G-CSF, GM-CSF, IL-3 and leukemia inhibitory factor 

(LIF) to support HSC self-renewal [69, 70]. 
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Illustration 3: Association of HSC with the endosteal niche. HSC are found in association 

with bone marrow osteoblasts. The fate of HSC is controlled by niches. Functions of HSC 

like cell maintenance, cell quiescence are controlled by the various interactions of HSC with 

bone lining osteoblasts are shown in the Illustration. Adopted and modified from [71]. 

Jagged 1, a ligand of Notch, expressed on osteoblasts and BM stromal cells activate Notch 

signaling in HSC resulting in an increase of HSC numbers in the BM [72]. There is a direct 

correlation between HSC numbers and number of osteoblasts [72]. Stem cell factor (SCF) 

through its receptor, c-kit, on HSC activates the signaling towards the proliferation of HSC 

[73]. HSC self-renewal is also attributed to canonical Wnt signaling [74, 75]. 

Wnt is a family of lipid-modified glycoproteins which contains 19 members. In the canonical 

Wnt pathway, in the absence of the Wnt ligand, β-catenin remain phosphorylated by a 

complex containing Glycogen synthase kinase 3 beta (GSK3β), casein kinase 1 (CK1), 

adenomatous polyopsis coli (APC) and axin. Phosphorylated β-catenin is ubiquitinated and 

proteosomally degraded. When Wnt ligand binds to seven-pass transmembrane receptor 

Frizzled (Illustration 4) and low-density lipoprotein receptor-related protein (LRP5/6) 

complex, axin and APC are recruited to the membrane after GSK3β and CK1 binding sites are 

phosphorylated by LRP5/6 and axin gets degraded (and it is no longer attached with the 

cytoskeleton) [76, 77]. Activation of Disheveled protein by Wnt binding prevents the 
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phosphorylation of β-catenin. β-catenin accumulates in the cytoplasm and translocates to the 

nucleus and interact with transcription factors, T cell factor (TCF) and lymphocyte enhancer 

binding factor (LEF) targeting the gene expression of CD44 [78], cyclin D1 and c-Myc [77]. 

Recently, it is published that CD44 acts as a positive regulator of Wnt receptor complex and 

the signaling activity of Wnt/ β-catenin. Inactivation of canonical Wnt signaling causes loss of 

proliferation of progenitor cells affecting the stem cell maintenance [79]. 

A schematic representation of Wnt/ β-catenin signaling pathways in HSC is shown in 

Illustration 4. 

 

Illustration 4. Canonical Wnt pathway found in HSC: When Wnt is not in association with 

its receptor complex, Frizzled and LRP, β-catenin is continuously phosphorylated by a 

complex of GSK3β, CK1, axin and APC and later degraded. When Wnt binds to its receptor 

complex, β-catenin gets dephosphorylated and gets translocated to the nucleus to bind to 

TCF/LEF complex of transcription factors to turn on Wnt target genes like cyclin D1 and Myc 

and thereby the proliferation of HSC. Adopted and modified from [80]. 

The regulation of HSC maintenance is mediated by chemokines, growth factors and proteases. 

Transforming growth factor beta, (TGF-β) is a negative regulator of HSC by blocking the 

expression of receptors like c-kit, Flt3 and IL-6R [81]. Under hematopoietic stress, matrix 
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metalloproteinase, MMP-9 is activated. MMP-9 cleaves membrane bound SCF to release 

HSC from the endosteal niche. The chemokine osteopontin (OPN) secreted by osteoblasts 

mobilizes HSC from the endosteal niche to the vascular niche [82].  

1.2.3 Vascular niche 

Apart from BM, the extramedullary sites of hematopoiesis like spleen and liver contain 

vascular niches [83] which lie proximal to vascular endothelium and comprise endothelial 

cells which provide higher oxygen concentration gradient and higher fibroblast growth factor-

4 to support HSC [84]. The vasculature in this part of the niche contains arteries which pass 

through the bone and branch out into arterioles, and is supplied by arterioles and capillaries 

and they drain out into BM sinusoids [85]. The contents of BM sinusoids are finally drained 

into the BM central sinus [86]. HSC and endothelial cells arise from hemangioblast which is 

their common precursor cell and hence hematopoiesis and vascularization occur together 

during embryogenesis [87]. Contrary to the endosteal niche having more quiescent HSC, 

vascular niche contains more committed stem- and progenitor cells [88]. The molecules, SDF-

1, E-selectin and vascular cell adhesion molecule (VCAM) are necessary for homing, 

engraftment and mobilization of HSC are provided by BM vasculature. Myeloablation by 

irradiation in bone marrow transplantation treatment causes collapse of BM vasculature [86]. 

Blocking of Tie-2 showed that HSC recovery and hematopoiesis can be restored only after the 

regeneration of BM vasculature [89]. 

When the cells are injured or under stress, they generate signals that are released into the 

blood and received by the BM sinusoids. The HSC or progenitor cells at the BM sinusoids 

respond to these signals and mount an immediate response by inducing HSC division and 

differentiation to restore normal homeostasis. In order to maintain sufficient response, 

quiescent HSC at the endosteal niche are also signaled to pull-out of dormancy and enter into 

proliferation and differentiation to meet the demand. So, physically the endosteal niche and 
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vascular niche are in proximity and maintain communication to balance HSC quiescence and 

self-renewal capacity. 

1.3 CD44 and hematopoiesis 

1.3.1 CD44 

CD44 is a type I glycoprotein expressed on a variety of vertebrate cells. CD44 is involved in a 

variety of physiological processes like cell development, homing, adhesion, migration, 

proliferation and apoptosis. 

The CD44 gene 

CD44 is a single copy gene, with its genomic sequence highly conserved among the 

mammalian species of human and mouse between 85% to 87% in their N-terminal and C- and 

transmembrane regions respectively. The gene is 50 Kb, located on the short arm of 

chromosome 11 in humans and chromosome 2 in mouse. Of the 20 exons in CD44 gene [90], 

10 are known as “standard” exons and the other exons are referred as variant v1 to v10. The 

variant exons correspond to exons 6 to 15. The different products of the same gene arise due 

to the insertion of alternatively spliced exon products of the same gene in the extracellular 

region of the molecule. The products vary in size due to difference in the N and O-linked 

glycosylations.  

The CD44 molecule 

The smallest form is the standard (CD44s) or hematopoietic form which is expressed on most 

vertebrate cells. The mature protein of the standard molecule has 341 aminoacids with a 

molecular weight of 37-38 KDa, out of which 248 constitute the extracellular domain of the 

molecule, 72 aminoacids towards the cytoplasmic domain and the rest as the transmembrane 

region [91, 92]. The exons 1-5, 16 and 17 form the extracellular domain. Between exons 5 
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and 16, are ten variant exons which produce variant exon products by alternative splicing. The 

exon 18 forms the transmembrane region and either exon 19 or 20 forms the cytoplasmic 

domain. 

The extracellular domain 

The first five non-variable exons of CD44 code for the amino-terminal globular domain. It 

contains motifs and docking sites for the various components of the extracellular matrix like 

HA, fibronectin, laminin and collagen which support migration. [93, 94] 

The amino terminal region of the polypeptide has homology with cartilage link proteins. It 

comprises 90 aminoacids which contain the HA binding domain [91, 92] and also a 

glycosaminoglycan binding site [95]. The degree of binding of glycosaminoglycans to CD44 

depends on the post-translational modifications of the protein and also the cell-type and 

growth conditions [96].  Six cysteine residues in this region form three disulfide bonds give 

the polypeptide a globular structure. Six N-linked glycosylation sites are found on the 

extracellular region.  

The stem structure 

Between the N-terminal globular domain and the transmembrane domain a stretch of 46 

aminoacids forms the stalk-like structure. This stretch is heavily glycosylated and contains the 

putative proteolytic cleavage sites [97]. The stem is enlarged by sequences that are encoded 

by alternatively spliced variant exon products (v1-v10) (Illustration 5, 6). Serine-threonine 

residues close to the membrane proximal region constitute O-linked glycosylations sites [92, 

98]. Chondroitin sulphate and heparin sulphate (HS) binding to serine-glycine motifs along 

with the glycosylations in this region add up to give the molecule 85-90 kDa, the molecular 

mass predominantly found in hematopoietic cells [99-101]. Different cell types have varying 
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glycosylations in the variant exon products, which make them different in their molecular 

weights [102, 103]. 

 

Illustration 5.  The exon arrangement of CD44 gene: A, B: The CD44 gene has 20 exons 

of which 10 are variant exons which code for variant products of the CD44 molecule. The 

standard isoform is the shortest molecule with exons from 1-5 and 17-20 coding for it. Exons 

for the standard isoform if along with exons 14-16, code for the epithelial isoform and if 

along with exons 8-15, code for the keratinocyte isoform. Adopted from [104] 

 

 

Illustration 6. Structure of CD44 molecules: (A) The CD44 molecule is composed of an 

extracellular domain, a stalk like region near to the transmembrane region. This region has the 

variant exon products inserted in it. This is followed by the transmembrane region and the 

cytoplasmic tail. There are multiple glycosylations which are N-linked (grey circles) and O-



Introduction 

 

14 

 

linked (black circles) and two active GAG-binding sites (yellow circles). The link domain has 

the binding site for HA. The cytoplasmic tail contains the binding sites for cytoskeletal linker 

proteins ankyrin and ERM proteins. (B) The various domains of the CD44 standard and 

variant molecules shown in linear arrangement. Adopted from [104] 

 

The transmembrane domain and the cytoplasmic domain 

The transmembrane region of CD44 is made up of 23 amino acid residues. The lone cysteine 

residue is involved in the formation of CD44 oligomers. This domain is implicated in the 

recruitment of CD44 into lipid rafts. 

The exons 19 and 20 form the cytoplasmic domain of CD44. This domain is involved in the 

binding of various intracellular proteins which participate in signaling, cytoskeletal 

reorganization and growth regulation [105, 106]. The cytoskeletal protein ankyrin binds to 

CD44 and mediates contact with spectrin which is implicated in HA-mediated cell adhesion 

and motility [107]. Ezrin, radixin and moesin (ERM) proteins bind to the basic-amino acid-

motif of CD44, which is present between the transmembrane domain and the ankyrin-binding 

site with their N-terminal region while their C-terminal region binds to the filamentous actin 

(F actin) thus crosslinking CD44 with the actin cytoskeleton [108]. Another member of the 

ERM family of proteins, Merlin, a tumor suppressor protein, with its N-terminal domain also 

binds to the ERM-binding motif. Merlin is involved in the stabilization of the junctional-

cortical actin interface [109]. ERM proteins are either phosphorylated by growth factors or 

protein kinase C. Activated ERM proteins then link CD44 to F-actin and the actin skeleton 

[110]. Merlin, when phosphorylated [111] does not bind to CD44 and at high cell density or 

with high-molecular hyaluronan gets dephosphorylated. At the active state it binds to CD44 

and disrupts the link to the actin cytoskeleton and blocks Rac activation and signaling [112]. 

CD44 is involved in many functions and only those that are of interest with respect to CD44 

in hematopoiesis are discussed here: 
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1.3.2 CD44 in hematopoiesis 

CD44 is important in the interaction between HSC and bone marrow microenvironment for 

hematopoiesis. The development of hematopoietic cells can be mimicked in vitro in long-term 

bone marrow culture (LTBMC). They contain BM cellular constituents and promote the 

generation and differentiation of progenitor cells into mature cell lineages for several months 

[113]. Components of extracellular matrix like HA, HS, chondroitin sulfate and FN required 

by hematopoietic progenitors are produced during LTBMC culture by BM-Str [29, 41, 114, 

115].  

HSC and the interaction with the endosteal niche 

a) Cell adhesion 

 The major receptor for HA, CD44 [116-118], is expressed on HSC and progenitor cells [117, 

119] is essential for HSC binding [120]. Erythroid progenitors express high levels of CD44 

make it the adhesion molecule for the HSC [119]. CD44 is required in myelopoiesis [121]. In 

murine long-term bone marrow cultures anti-CD44 prevented the formation of ‘cobblestone 

areas’ which are groups of early hematopoietic progenitor cells [122, 123]. The antibody 

bound HA binding site on CD44 which shows the HA-dependent HSC attachment to stromal 

cells through CD44. The proliferation and differentiation of precursor cells are dependent on 

the signals transduced by CD44 associated molecules after CD44 activation by HA [124]. 

Also, formation of BM-Str requires CD44. An antibody against the variant isoform CD44v6 

delayed the stroma formation. Moreover, these variant specific antibodies cause the release of 

cytokines from macrophages and activate hematopoiesis [125]. 
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b) Crosstalk via associated molecules 

CD44-HA mediated adhesion of HSC 

The expression of adhesion molecules is important for cell-cell and cell-matrix interactions. 

Osteoblasts are prime components of the osteogenic niche and express CD44. HA which is 

the principal component of the ECM  and CD44 cross-linking on osteoblasts by HA induce 

the expression of CD54 and VCAM-1 and upregulates them [126]. CD54 expressed on 

hematopoietic progenitors of monocyte and macrophage lineage [127] and on endothelial 

cells for adhesion [128]. The expression of CD54 in bone marrow progenitors and its 

involvement in adhesion to stromal cells in the osteogenic niche indicates that it is an 

important molecule in hematopoiesis [127].  

CD44 and CD49d in the homing of stem cells to the BM 

CD49d, expressed on HSC, interacts with FN in the ECM and attaches HSC to the osteogenic 

niche [129]. CD44 cooperates with CD49d and mediates homing of HSC [41] to the 

osteogenic niche by adhering to matrix ligands such as HA, FN and coll [130]. Also, CD44 

participates along with CD49d in the adhesion of hematopoietic progenitor cells to FN [41]. 

The homing of colony-forming units of spleen (CFU-S) to bone marrow was disrupted when 

anti-CD49d and anti-CD44 were incubated with stem cells [131]. Hence CD44 and CD49d 

are essential for the homing of stem cells to BM. 

CD44 in TGF-β-mediated HSC quiescence 

Growth factors act as messengers in the communication between the cells. They provide 

information on cell status and surroundings. The signals help the cells to decide upon cell 

migration, or to undergo proliferation or differentiation. TGF-β is secreted as a complex of 

peptides which maintain TGF-β in an inactive state [132]. The latent TGF-β is linked to the 

ECM and is unavailable for cell activation. In CD44-MMP9-mediated TGF-β activation of 
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cell migration [133], MMP9 which is proteolytically active cleaves the latent TGF-β into an 

active and mature peptide. TGF-β along with cyclin-dependent kinase inhibitor p27 has a 

synergistic effect [134] in maintaining quiescence in HSC. 

HA-CD44 crosstalk in IQ motif containing GTPase activating protein 1-mediated cell 

migration 

HA and CD44 are upregulated in remodeling tissues with CD44 modulating the cell-cell, cell-

ECM interactions towards cell migration. HA activation of CD44 results in the association of 

ERM proteins with its cytoplasmic tail. The N-terminal region of ezrin binds to the 

cytoplasmic tail of CD44 while the c-terminal region binds to the F-actin thereby linking 

CD44 to the actin cytoskeleton [108]. HA-CD44 crosstalk is observed in the IQGAP1 

supported actin cytoskeleton rearrangements and cell migration [135]. Proteomic analysis of 

CD44-binding proteins demonstrated interaction between the cytoplasmic tail of CD44 and 

IQ motif containing GTPase activating protein (IQGAP)1 [136]. IQGAP1 is a multidomain 

protein and interacts with F-actin, Rac1/Cdc42 and microtubules. IQGAP1 is a regulator of 

RhoGTPases Rac1 and Cdc42 [137]. The number of active Cdc42 correlates with the increase 

in IQGAP1 expression and promoting cell migration [138]. Though the binding partners, 

actin, calmodulin and adenomatous polyopsis coli contribute to cell migration IQGAP1 

knockdown reduces cell migration [138]. Downstream of Rac1, IQGAP1 alters the balance 

between β-catenin-E-cadherin complex at the cell adherens junctions and weakens the 

adherens junction [139]. Then it cross-links actin filaments and localizes to the leading edge 

of migrating cells assisting in cell migration [140].  

Also, HA-mediated CD44 ligation serves as a matrix for assembling enzymes. HA-activated 

CD44 recruits MMP9 to the leading edge of the migrating cells [141] to cleave the ECM 

components and support directional cell migration.  
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CD44 and 14-3-3 proteins in the activation of PI3K/Akt pathway in apoptosis resistance 

Most stem cells are found in the G0 phase of the cell cycle [142]. BM-Str often provides 

support to HSC in protecting them against apoptosis [143, 144]. HA-CD44v6 interaction 

promotes the assembly of a signaling complex at the cytoplasmic tail of CD44 which results 

in the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling [145] accompanied by 

an increase in the expression of anti-apoptotic proteins such as Bcl2, Bcl-Xl and 

phosphorylation of BAD. The PI3K/Akt network plays an important role in hematopoiesis 

[146] by governing the important events of proliferation, differentiation and survival. PI3K is 

a lipid kinase. It catalyses the phosphorylation of phosphatidylinositol-3,4-bisphosphate, 

PI(3,4)P2, to phosphatidylinositol-3,4,5-triphosphate, PI(3,4,5)P3. PIP3 binds to pleckstrin 

homology domain-containing proteins such as Akt and phosphoinositide-dependent protein 

kinase1 (PDK1) and recruits them to the plasma membrane. At the membrane PDK1 

phosphorylates Akt and activates it. Flt3 ligand-activated Akt translocates into the nucleus 

and phosphorylates the Forkhead box protein FoxO3 (FOX3) transcription factor and 

inactivates it [147]. Entry of Akt into the nucleus leads to the expression of genes involved in 

oxidative phosphorylation and energy production, upregulation of chaperones and heat shock 

proteins, HSP70 [148] and HSP90 [149] and production of antioxidants. Akt also interacts 

with proapoptotic Bcl2-associated death promoter (BAD) protein, which is phosphorylated 

and bound by 14-3-3 proteins which inhibit the BAD-induced cell death [150]. 

c) CD44 in extravasation and homing 

The mobilization of HSC from the BM niche occurs with the administration of G-CSF or with 

cytotoxic drug treatment [151]. As we move from endosteal niche to vascular niche the 

concentration of oxygen and FGF increases which promotes HSC mobilization. Also changes 

in the levels of SDF-1 in the BM due to stress [152] cause the mobilization of HSC from the 

endosteal to vascular niche and then into blood circulation. Administration of G-CSF releases 
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proteases like MMP2, MMP9, cathepsin-G and neutrophil elastase from neutrophils 

(Illustration 7) which cleave the HSC niche-retention signals like membrane bound SCF 

(mSCF) / membrane bound kit ligand (mkitL), SDF-1 and VCAM-1 [153-155]. The cleavage 

of mkitL to soluble form of kitL (skitL) induces HSC proliferation, differentiation and 

mobilization [155, 156]. The stress-induced release of MMP9 cleaves the N-terminal end of 

SDF-1 and abolishes the interaction between SDF-1 and CXCR4 and release localized HSC 

from the niche [153]. These released HSC then travel to distant sites. The small number of 

HSC found in the circulation could be due to the release of HSC when the bone remodeling 

happens continuously. 

Migrating cells undergo extravasation in two steps of rolling and adhesion with CD44 used in 

adhesion/’tethering’ (Illustration 7) [157]. Inflammatory cytokines stimulate the expression of 

CD44 on endothelial cells and increase their binding to HA [158]. Endothelial cells capture 

the rolling HSC by the interaction between CD44 and CD62P (P-selectin) and stalling them 

with CD44-HA binding. HSC binding to HA is mediated by CD44s. The variant exon 

products of CD44 and / or their glycosylations can vary the binding affinity and their 

migration on HA [159].  HA activation of CD44 allows ankyrin and phosphorylated ERM 

proteins bind to the cytoplasmic tail of CD44 and linking it with the cytoskeleton thereby 

CD44 is steered to the front edge of the migrating cells [110] for extravasation and releases 

them to circulation. 
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Illustration 7: HSC mobilization from endosteal niche to vascular niche. In response to 

stress or with administration of GCF, HSC can migrate from the endosteal niche to vascular 

niche and thereafter to the peripheral blood to distant sites of injury. Stress-induced signals 

cause the neutrophils to secrete a variety of proteases which inactivate SDF-1 and release 

HSC from the endosteal niche for migration. Later, they undergo rolling and adhesion to 

extravasate into circulation. Adopted from [71]. 

HSC synthesize HA and HA expression correlates with migration of HSC to the endosteal 

niche [160]. HSC homing can be blocked by anti-CD44  or soluble HA or hyaluronidase 

treatment [161]. SDF-1 stimulates the adhesion of HSC via CD44 that displays the mediation 

of CD44 in CXCR4 signaling with HA and CD44 having a prominent role in the SDF-1-

dependent transendothelial migration of HSC and engrafting within endosteal niche [162]. 

Thus CD44 contributes to homing and engraftment of HSC in the osteogenic niche. 

1.4 CD44 variant isoforms in hematopoiesis 

The role of CD44v6 in homing, engraftment and maturation of HSC was analyzed in 

hematopoiesis of rat [163]. The functional activities of CD44v6 were assigned based on 

antibody inhibition studies. CD44 is widely expressed in many cell types but the expression 



Introduction 

 

21 

 

of CD44v6 is restricted. In LTBMC, the non-adherent cells containing large granulated cells 

of macrophages and dendritic cells have CD44v6 expression.  

A small subpopulation of HSC expresses CD44v6 [163, 164]. Pre-treated stromal culture or 

the LTBMC-derived cells with anti-CD44v6 did not prevent the production of non-adherent 

progenitor cells. This indicates that the inhibition of CD44v6 did not prevent the progenitor 

cells from settling on bone marrow stroma culture. 

LTBMC supports the maturation of hematopoietic progenitor cells. The influence of CD44v6 

in the formation of stroma and in the expansion of progenitors was found when anti-CD44v6 

was used on LTBMC of rat. It was found that the stroma formation does not require the 

support of CD44s but stroma formation was severely inhibited when anti-CD44v6 was used. 

This indicates the role played by CD44v6 in the formation of stroma. LTBMC cultures with 

anti-CD44v6 inhibition showed very late onset of stroma formation which was accompanied 

by lower numbers of cells with fibroblast morphology. Normal LTBMC supported stroma 

formation within the first week of seeding of BM cells and lasted till 4-6 weeks. Blocking of 

CD44v6 could not support the stroma formation which resulted in the death of most of the 

cells in the culture. 

CD44v6 is important in the prothymocyte maturation. T-cell maturation was inhibited by anti-

CD44v6 with the expression of CD4, CD8 and reduction in expression of Thy-1 specific for 

T-cells. It was hypothesized that the variant exon v6 could bind specific ligands which would 

trigger cytokine production as response and promoted stroma formation. When anti-CD44v6 

was used the binding between the CD44v6-ligand was disturbed and prevented stroma 

formation and T-cell lineage differentiation. 
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CD44v6 influences myeloid differentiation. In experiments with human myeloid progenitor 

cell lines, myeloid cells express CD44v6 on maturation or after commitment and activation 

[165]. 

Towards understanding the contribution of CD44 variants v6 and v7 in lymphopoiesis and 

myelopoiesis, antibodies directed against exon-v6 and v7 specific epitopes on murine 

LTBMC were used [125]. Antibody-treated LTBMC showed increased nonadherent 

progenitors when compared to untreated LTBMC. The increase in progenitor numbers was 

not due to detachment of adherent cells due to blocking of CD44v6. The number of 

cobblestone areas was not decreased. Macrophages in the adherent layer of LTBMC, positive 

for CD11b also express CD44v6 epitope. Antibodies against v6 epitope mimicked as ligands 

and activated these macrophages to secrete GM-CSF and IL-6. This resulted in the increase in 

the number of lymphoid and myeloid progenitor cells.  The use of exon v7-specific antibodies 

did not affect hematopoiesis. It is suggested that anti-CD44v6 acted as a stimulatory molecule 

or a ligand from the ECM towards binding and activating the macrophages to secrete lineage-

specific cytokines.  

In the treatment of hematological disorders after myeloablation and BM reconstitution, 

progenitor T cells must home into thymus and undergo T cell maturation. CD44s helps in 

thymocyte homing. CD44v6 has a role in the maturation of thymocytes to avoid graft-versus-

host reaction in allogenic transplantation. CD44v6 also promotes apoptosis resistance in 

thymocytes which is revealed when CD44v6 blocked-cells underwent apoptosis and affected 

the expansion of early thymocytes. The induction of apoptosis resistance by CD44v6 is 

through the activation of Akt [166]. 

Since expression of CD44v6 and CD44v7 were observed at particular stages of differentiation 

in embryo, they were expected to play significant role in hematopoiesis [167]. In CD44v7-

competent and CD44v7-deficient mice, experiments were conducted to understand the role of 
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CD44v7 in the homing of HSC where CD44v7 is expressed in 20% BMC and 40% of BM-

Str. Within the bone marrow 50% of CD117
+
 cells and 40% of SCA1

+
 cells express CD44v7. 

Except for the CD44v7 expression, BMC of CD44v7
-/-

 mice showed no difference in the 

expression of CD49d and CD44 as well as of CD44v6. Similarly, there was no difference in 

the adhesion molecule marker expression in LTBMC. Since CD44v7 is expressed on HSC 

and BM-Str, experiments with antibody blocking against CD44v7 were performed to mobilize 

the progenitor cells. After CD44v7 blocking, there was a decrease in the CD49d expression 

observed in BM and spleen and there were more spleen cells found with increased colony 

forming units of granulocyte, granulocyte-macrophage and macrophage. 

To check the BM repopulating ability, BM were transferred from CD44v7
+/+

 to CD44v7
-/-

 

mice and vice versa. BMC from CD44v7
+/+ 

mice did not home in CD44v7
-/-

 mice whereas 

BM from CD44v7
-/-

 mice homed better in CD44v7
+/+ 

host with better BM repopulating 

ability. This indicated that CD44v7 expression on stromal cells is important for HSC homing 

[168].   

Increase in mobilized progenitor cells obtained after CD44v7 blockade with anti-CD44v7 and 

sustained reconstitutive capacity of the same indicated that CD44v7-expressing stromal cells 

contribute to embedding of progenitor cells and homing. 
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Aim of the thesis 

CD44 was identified as a leukemia initiating cell (LIC) marker, where it supports adhesion, 

migration, quiescence and proliferation. One of the therapeutic approaches involved blocking 

CD44 with antibodies to drive LIC out of the niche and to induce differentiation. But, anti-

CD44 also affects HSC reconstitution even more severely than LIC embedding. CD44 is 

expressed on HSC and have the potential danger in targeting a common marker that is also 

expressed on LIC. Studies on variant forms of CD44 that are expressed on HSC but higher on 

LIC would be helpful to avoid HSC and improve LIC targeting. CD44v6/v7 are expressed in 

acute myeloid leukemia and CD44v6 is expressed in acute lymphocytic leukemia, chronic 

lymphocytic leukemia and multiple melanoma, suggesting alternative targets to the common 

marker CD44. A detailed understanding on the HSC crosstalk with BM-Str in the osteogenic 

niche could provide information on the contribution of CD44v6/v7. 

To achieve this I evaluated 

1. CD44v6 and CD44v7 expression and associating molecules on HSC and BM-Str. 

2. The relevance of CD44v6 and CD44v7 in the adhesion and migration of HSC to matrix 

proteins and cytokines. 

3. The role of HA and BM-Str in maintaining quiescence in HSC via CD44v6. 

4. The effects of BM-Str CD44v6 and CD44v7 on HSC proliferation and signaling in 

apoptosis resistance. 
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2. Materials and Methods  

2.1 Material  

2.1.1 Instruments 

Name of the instrument Company  

Bacterial shaker and incubator  Edmund Buehler GmbH, Hechingen  

Camera system Spot CCD  Diagnostic Instruments, Sterling Heights, USA  

Cell chamber Neubauer improved  Brand, Wertheim  

Centrifuge Sorvall RC5B Plus  Kendro, USA  

Centrifuge Sorvall  GSA Rotor 

Kendro, USA 

Centrifuge Sorvall  Ti 50 Rotor 

Kendro, USA 

Centrifuge Biofuge fresco  Heraeus, Hanau, Hanau  

DNA-agarose gel electrophoresis chamber  Bio-Rad, Munich  

Eagle eye (Mididoc)  Herolab, Wiesloch  

ELISA plate reader  Anthos labtec, Wals, Austria  

FACS Calibur  Becton-Dickinson, Heidelberg  

FPLC Merck Hitachi, Japan 

Hyper processor (for processing films)  Amersham, Freiburg  

Incubator for bacteria  Melag, Berlin  

Cell culture incubator  Labotec, Goettingen  

Invert microscope DM-IL  Leica, Bensheim  

LSM710 (laser scanning microscope)  Zeiss, Goettingen  

Master cycler (PCR cycler)  Eppendorf, Hamburg,  

Magnetic stirrer 3000  Heidolph, Keilheim  

Microscope DMBRE  Leica, Bensheim  



Materials and Methods 

 

26 

 

Microwave  Phillips, Wiesbaden  

Photocassette  Amersham, Freiburg  

pH-Meter-761 Calimatic  Knick, Berlin  

Photometer Ultraspec III  Amersham, Freiburg  

Pipettus-Akku  Hirschmann, Eberstadt  

Pipettes  Eppendorf, Hamburg  

Powersupply PS 9009  GIBCO, Darmstadt  

Rotor GSA  Kendro, USA  

Rotor SW34  Kendro, USA  

Rotor SW41 Ti  Beckman Coulter, Krefeld  

Sterile hood Heraeus, Hanau  

Tabletop centrifuge  Heraeus, Hanau  

Transfer apparatus Mini Trans-Blot®  Bio-Rad, Munich  

Thermo-mixer Eppendorf, Hamburg 

Ultrasound homogenizer Bandelin Electronik 

Video microscope Carl Zeiss, Goettingen 

Water-bath Julabo, Seelbach 

Weighing scale RC210 D Sartorius, Goettingen 

Whirlmixer Vortex Genie Si Inc., New York, USA 

2.1.2 Miscellaneous Material 

Cell culture flasks 25cm
2
, 75cm

2 
 Greiner Bio-one GmbH, Frickenhausen  

Cell culture 96-well, 24-well, 6-well plates  Greiner Bio-one GmbH, Frickenhausen  
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Centrifugal concentrators Vivaspin 6ml, 20ml  Vivascience, Hannover  

Centricon, 50,000 MWCO vivaspin 
TM

 

Cryovials  Greiner Bio-one GmbH, Frickenhausen  

Coverglass  R. Langenbrinck, Emmendingen  

ELISA plates Greiner Bio-one GmbH, Frickenhausen 

Falcon tubes 15ml, 50ml  Greiner Bio-one GmbH, Frickenhausen 

Glass slides  R. Langenbrinck, Emmendingen  

Hyperfilm ECL  Amersham, Freiburg  

Needles  BD Biosciences, Heidelberg,  

Nitrocellulose membrane Hybond ECL  Amersham, Freiburg  

Parafilm  

American Nat. Can., Greenwich, Great 

Britain  

Petriplates  Greiner Bio-one GmbH, Frickenhausen 

Pipette tips  Sarstedt, Numbrecht  

Sterile filter 0,2μm  Renner, Darmstadt  

Syringes  BD Biosciences, Heidelberg  

Trans-well migration (Boyden) chambers 48 

well  Neuroprobe, Gaithersburg, USA  

WhatmanTM 3MM paper  Schleicher & Schüll, Dassel  

2.1.3 Chemicals and Reagents 

Acetic acid Ridel-de Haen, Seelze 

Acetone Fluka, Buchs, Switzerland 

Agarose Sigma, Steinheim 

Ammonium persulphate (APS) GIBCO, Darmstadt 

Ampicillin sulphate Calbiochem, Darmstadt 
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Annexin FITC V Becton Dickinson, Heidelberg 

Bactoagar Fluka, Buchs, Switzerland 

Bradford reagent  Bio-Rad, Munich  

Biotin-X-NHS  Calbiochem, Darmstadt  

Bovine Serum Albumin (BSA)  PAA, Pasching, Austria  

Bromo phenol blue  Merck, Darmstadt  

Calcium chloride  Merck, Darmstadt  

Carboxyfluorescein succinimidyl ester (CFSE)  Invitrogen, Darmstadt  

Chloroform  Riedel-de Haen, Seelze  

Cisplatin (cis-Diamine platinum(II)dichloride)  Sigma, Seelze 

CNBr-Activated sepharose 4B GE Healthcare, Freiburg, Germany 

Coomassie R-250  Merck, Darmstadt  

Crystal violet  Sigma, Steinheim  

Dimethyl sulfoxide (DMSO)  Merck, Darmstadt  

Ethanol  Carl Roth, Karlsruhe  

Ethidium bromide  Merck, Darmstadt  

Ethylenediamine tetraacitic acid (EDTA)  Sigma, Steinheim  

Foetal Calf Serum (FCS)  Gibco/Thermo Scientific, Germany  

Formaldehyde (37%)  Merck, Darmstadt  

Glucose  Merck, Darmstadt  

L-Glutamine  AppliChem, Darmstadt  

Glycerine  Carl Roth, Karlsruhe  

Glycine  GERBU, Gaiberg  

HEPES  GERBU, Gaiberg  

HiPerfect-Reagent for transfection  Quiagen, Hilden  
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Hydrochloric acid (HCl)  Riedel-de Haen, Seelze  

Hydrocortisone Sigma, Seelze 

Immersion oil  Zeiss, Goettingen  

Isopropanol  Fluka, Buchs, Switzerland  

Lipofectamine
TM 

2000 Invitrogen, Darmstadt 

Lubrol MX (17A17) Serva, Heidelberg 

Magnesium carbonate  Merck, Darmstadt  

Magnesium chloride  Merck, Darmstadt  

Magnesium sulphate  Merck, Darmstadt  

Milk powder  Carl Roth, Karlsruhe  

Methanol  Carl Roth, Karlsruhe 

N,N,N’N’’-Tetramethylenediamine (TEMED)  Sigma, Steinheim  

Paraformaldehyde  Sigma, Steinheim  

Penicillin  Sigma, Steinheim  

Phenylmethylsulphonylfluoride (PMSF)  Sigma, Steinheim  

p-nitrophenyl phosphate, disodium salt Sigma, Steinheim 

Potassium carbonate  Carl Roth, Karlsruhe  

Potassium chloride  Merck, Darmstadt  

Potassium dihydrogenphosphate  Merck, Darmstadt  

Propidium iodide Immunotools, Friesoythe, Germany 

Protease Inhibitor Cocktail Tablets  Roche Diagnostics, Mannheim  

Protein G Sepharose 4 Fast Flow  Amersham Biosciences, Freiburg  

Rotiphorese Gel 30 (Acrylamide-mix)  Carl Roth, Karlsruhe  

Rhodamine DHPE  Invitrogen, Darmstadt  

RPMI 1640  GIBCO, Darmstadt  
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Sodium acetate  Merck, Darmstadt  

Sodium azide  AppliChem, Darmstadt  

Sodium carbonate  AppliChem, Darmstadt  

Sodium chloride  Fluka, Buchs, Switzerland  

Sodium hydrogen phosphate  Merck, Darmstadt  

Sodium dodecyl sulphate (SDS)  GERBU, Gaiberg  

Sodium hydrogen carbonate  AppliChem, Darmstadt  

Sodium hydroxide  Riedel-de Haen, Seelze  

Sodium pyruvate  Merck, Darmstadt  

Tris(hydroxymethyl)aminomethane  (Tris ) Carl Roth, Karlsruhe  

Triton-X-100 Sigma, Seelze 

Trypan bue  Serva, Heidelberg  

Trypsin  Sigma, Steinheim  

Trypton  AppliChem, Darmstadt  

Tween 20  Serva, Heidelberg  

Yeast Extract  GIBCO, Darmstadt  

β-Mercaptoethanol Sigma, Seelze 

2.1.4 Standard buffers and solutions  

Annexin FITC/PI binding 

buffer 

10mM HEPES pH 7.4. 140nM NaCl, 25mM CaCl2 

 

Bicarbonate buffer 15mM Na2CO3, 35mM NaHCO3, pH 9.6 

Blotting buffer 25mM Tris, 192mM Glycine, 0.1% SDS, 20% Methanol 

Diethanolamine buffer 97ml diethanolamine, 100mg MgCl2.6H2O, pH9.8 

Ethidium bromide 0.01% (w/v) in water. Stored in dark 
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Glycine buffer 0.2M glycine, pH2.7 

Lysis buffer 

25mM HEPES, 150mM NaCl, 5mM MgCl2, 1mM PMSF, protease 

inhibitors 

6x Laemmli-buffer 

350mM Tris, pH6.8, 10% (w/v) SDS, 36% (w/v) Glycerin,0.01% 

(w/v) Bromophenol blue 

LB medium 

10g peptone, 5g yeast extract, 10g NaCl. Volume made up to 1L. 

Add 15g bacterial agar for LB plates. 

Running buffer (10x) for SDS-

PAGE 

1% SDS (w/v), 144g Glycine, 30g Tris. Make volume to 1L with 

double distilled water 

PBS 

 

137mM NaCl, 8.1mM Na2HPO4, 2.7mM KCl, 1.5mM KH2PO4, 

pH 7.4 

Phosphate buffer (0.02M) 0.2M NaH2PO4, 0.2M Na2HPO4, pH 7.2 

Stripping buffer for western 

blots 

62.5 mM Tris-HCl (pH 6.8), 2% SDS. ,0.1 M 2-Mecaptoethanol 

 

Subcellular fractionation 

buffer 

250 mM Sucrose, 20 mM HEPES (7.4), 10 mM KCl,     

1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, PI 

Cocktail   

 

TAE buffer 

242g Tris base, 57.1ml Glacial acetic acid, 100ml 0.5M EDTA pH 

8.0. Make volume to 1l and adjust pH to 8.5 

2.1.5 Kits 

Qiaquik Midiprep kit  Hilden, Germany 
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ECL Western Blotting Detection  
GE Healthcare, Freiburg, Germany 

  2.1.6 Size markers 

PagerulerTM Prestained Protein Ladder MBI Fermentas, St. Leon-Rot 

2.1.7 Antibodies 

2.1.7.1 Primary Antibodies 

 

Antibody (anti-mouse) Company 

9E10 (anti-cMyc) ATCC CRL1729 

14-3-3 Cell Signalling, Frankfurt , Germany 

β-Catenin Becton Dickinson, Heidelberg, Germany 

Actin Becton Dickinson, Heidelberg, Germany 

ADAM10 Becton Dickinson, Heidelberg, Germany 

Akt Becton Dickinson, Heidelberg, Germany 

BAX Becton Dickinson, Heidelberg, Germany 

Bcl2 Becton Dickinson, Heidelberg, Germany 

Bcl-xl Cell Signalling, Frankfurt , Germany 

BMP4 Santa Cruz, Heidelberg, Germany 

act. Caspase 3 Becton Dickinson, Heidelberg, Germany 

Caspase 8 Becton Dickinson, Heidelberg, Germany 

Caspase 9 cleaved Becton Dickinson, Heidelberg, Germany 

CathepsinG Becton Dickinson, Heidelberg, Germany 

CD4 Becton Dickinson, Heidelberg, Germany 

CD8 Becton Dickinson, Heidelberg, Germany 

CD11a (M17/5.2) 

European Association of Animal Cell 

Cultures, Porton Down, UK 

CD11b/YBM 6.6.10 

European Association of Animal Cell 

Cultures, Porton Down, UK 

CD11c 

European Association of Animal Cell 

Cultures, Porton Down, UK 
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CD16 Immunotools, Friesoythe, Germany 

CD18 Becton Dickinson, Heidelberg, Germany 

CD19 Becton Dickinson, Heidelberg, Germany 

CD44 (IM7) 

American Type Culture Collection, Virginia, 

USA 

CD44v6 Bender Medsystems GmbH, Vienna, Austria 

CD44v7 (LN7.1) [169] 

CD45 

European Association of Animal Cell 

Cultures, Porton Down, UK 

CD45R 

European Association of Animal Cell 

Cultures, Porton Down, UK 

CD49d (PS2) [170] 

CD54 (YN1/1.7.4) 

European Association of Animal Cell 

Cultures, Porton Down, UK 

CD95 Becton Dickinson, Heidelberg, Germany 

CD95L Becton Dickinson, Heidelberg, Germany 

CD105 Abcam, Germany 

CD117 Becton Dickinson, Heidelberg, Germany 

CD126 Becton Dickinson, Heidelberg, Germany 

Cyclin D1 Becton Dickinson, Heidelberg, Germany 

Ezrin Becton Dickinson, Heidelberg, Germany 

Flt3 Santa Cruz, Heidelberg, Germany 

GM CSF Becton Dickinson, Heidelberg, Germany 

Gr1 Immunotools, Friesoythe, Germany 

HSP70 
Becton Dickinson, Heidelberg, Germany 

HSP90 
Becton Dickinson, Heidelberg, Germany 

IL-6 Becton Dickinson, Heidelberg, Germany 

Inhibin 
Santa Cruz, Heidelberg, Germany 

LEF1 
Becton Dickinson, Heidelberg, Germany 

LIF 
Becton Dickinson, Heidelberg, Germany 

Ly6 Becton Dickinson, Heidelberg, Germany 

MMP9 
Becton Dickinson, Heidelberg, Germany 

Moesin 
Becton Dickinson, Heidelberg, Germany 
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OPN 
Becton Dickinson, Heidelberg, Germany 

pAkt Becton Dickinson, Heidelberg, Germany 

pBAD Cell Signalling, Frankfurt , Germany 

PLCγ 
Cell Signalling, Frankfurt , Germany 

PGK1 Santa Cruz, Heidelberg, Germany 

Poly ADP Becton Dickinson, Heidelberg, Germany 

PP1a Cell Signalling, Frankfurt , Germany 

RhoGD1 Santa Cruz, Heidelberg, Germany 

SDF1 Becton Dickinson, Heidelberg, Germany 

SOD2 Santa Cruz, Heidelberg, Germany 

Talin Becton Dickinson, Heidelberg, Germany 

TGFβ Santa Cruz, Heidelberg, Germany 

Tubulin Becton Dickinson, Heidelberg, Germany 

Ter-119  Becton Dickinson, Heidelberg, Germany 

TNFRI Becton Dickinson, Heidelberg, Germany 

TNFRII Becton Dickinson, Heidelberg, Germany 

Trail Becton Dickinson, Heidelberg, Germany 

Tubulin Santa Cruz, Heidelberg, Germany 

Wnt Santa Cruz, Heidelberg, Germany 

 

2.1.7.2 Secondary Antibodies 

Name Company 

Anti-mouse IgG HRP Amersham, Freiburg, Germany 

Anti-rabbit IgG HRP Amersham, Freiburg, Germany 

Anti-rat IgG HRP Amersham, Freiburg, Germany 

Anti-mouse IgG PE Jackson Laboratories, Bar Harbor, USA 

Anti-hamster IgG FITC Jackson Laboratories, Bar Harbor, USA 

Anti-mouse IgG FITC Jackson Laboratories, Bar Harbor, USA 
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Anti-mouse IgG APC Jackson Laboratories, Bar Harbor, USA 

Anti-rat IgG FITC Jackson Laboratories, Bar Harbor, USA 

Anti-rat IgG PE Jackson Laboratories, Bar Harbor, USA 

Anti-rat IgG APC Becton Dickinson, Heidelberg, Germany 

Streptavidin FITC Jackson Laboratories, Bar Harbor, USA 

Streptavidin PE Jackson Laboratories, Bar Harbor, USA 

Streptavidin APC Jackson Laboratories, Bar Harbor, USA 

Streptavidin HRP Rockland, PA, USA 

 

2.1.8 Matrix proteins, Cytokines / Chemokines 

Substance Supplier Dose 

bFGF Immunotools, Friesoythe, Germany 1:1000 

BSA Sigma, Munich, Germany 100µg/ml 

Collagen I Sigma, Munich, Germany 10µg/ml 

Collagen IV Sigma, Munich, Germany 10µg/ml 

CXCL12 (SDF1) Immunotools, Friesoythe, Germany 50ng/ml 

FN Sigma, Munich, Germany 2µg/ml 

GCSF Immunotools, Friesoythe, Germany 100ng/ml 

GM CSF Immunotools, Friesoythe, Germany  100ng/ml 

Hyaluronic acid Sigma, Munich, Germany 100µg/ml 

IL-3 Sigma, Munich, Germany 100ng/ml 

IL-6 Immunotools, Friesoythe, Germany  100ng/ml 

IL-7 Immunotools, Friesoythe, Germany  100ng/ml 

LN111 Sigma, Munich, Germany 2μg/ml 
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LN332 K.Miyazaki, Yokohoma, Japan 50μg/ml 

OPN Biotrend Chemikalien GmbH, Köln 2µg/ml 

SCF Biotrend Chemikalien GmbH, Köln 100ng/ml 

 

2.1.9 Animals 

BALB/c (H-2
d
), SVEV (H-2

b
), CD44v7

-/-
 and CD44v6/7

-/-
 (back-crossed to SVEV) mice 

[171] [172], kindly provided by U. Günthert, Department of Microbiology, University of 

Basel, Basel, Switzerland, were bred at the central animal facilities of the University of 

Heidelberg. 8-10wk old mice were used for experiments. 

2.1.10 Cells and Cell lines 

BMC, bone marrow stroma, HSC were obtained from mice. The hybridoma cell lines used for 

producing monoclonal antibodies are IM7 (anti-CD44), PS2 (anti-CD49d), YN1 (anti-CD54), 

9E10 (anti-cMyc), LN7.1 (anti-CD44v7). HEK-293-Ebna1 is used for overexpression of 

recombinant proteins of CD44s, CD44v6 and CD44v7. 

Cells Origin 

HEK293-Ebna1 ATCC CRL-1573 derived; transfected with 

the EBNA1 viral gene. 

IM7.8.1, expressing anti-panCD44  ATCC TIB-235 
 

9E10, expressing anti-cMyc  ATCC CRL1729 

YN1/1.7.4, expressing anti-CD54 European Animal Cell Culture Collection, 

Porton Down, UK 

PS/2, expressing anti-CD49d [170] 
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LN 7.1, expressing anti-CD44v7 [169] 

 

2.1.11 Expression vector 

The recombinant proteins were expressed from constructs made from pCEP-Pu vector with 

puromycin resistance. The constructs were available. 

2.1.12 Bacterial strain 

E.coli DH5α 

Genotype: F-, Φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, 

endA1, hsdR17(rk-,mk+), phoA, supE44, thi-1, gyrA96, rel A1, λ- 

(Invitrogen, Darmstadt, Karlsruhe)  

 

 

2.2 Methods 

2.2.1 Protein Biochemistry 

2.2.1.1 Immunoprecipitation (IP) 

10x10
6
 cells or 1mg/ml of precleared cell lysate was precipitated with the indicated antibody 

against the antigen (2μg/ml) and allowed to bind overnight at 4˚C. After overnight incubation, 

5% of Protein G sepharose was added and allowed to bind for 1 hr at 4˚C. The beads are 

washed with lysis buffer three times and then boiled with laemmli buffer for 10 min at 95˚C 

and loaded to the gel. 

2.2.1.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Analysis of protein samples by western blot or coomassie blue are performed using “Mini 

Protean II” with discontinuous buffer system. The stacking gel was cast over the resolving gel 
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(10%) (with the constituents of them given) After complete polymerization of the gel, the 

protein samples boiled with laemmli buffer are loaded on to the gel and run at 110V with 1x 

running buffer. After the run is complete, the gel is either transferred in a wet-transfer system 

onto a nitrocellulose membrane or dyed with coomassie blue for further analysis. 

2.2.1.3 Coomassie blue staining of protein gels 

After the protein samples were separated on SDS-PAGE gels, the gels were washed once with 

bidest water and then incubated in fixing solution containing (50% methanol and 10% acetic 

acid) for 1hr with gentle agitation at room temperature. Then the gels were stained in 

coomassie blue staining solution containing (0.1% Coomassie Brilliant blue R-250, 50% 

methanol and 10% glacial acetic acid) for a period of 2-3 hr with gentle agitation. The stained 

gels were washed first with bidest water and then destained with destaining solution 

containing 40% methanol and 10% glacial acetic acid with gentle agitation and periodic 

exchange with fresh destainer. The destained gels were stored in bidest water for further 

analysis. 

2.2.1.4 Western blotting  

The SDS-PAGE protein gels, prepared for transfer, were laid on 3 layers of 3MM whatman 

paper equilibrated with transfer buffer. Over the gel the nitrocellulose membrane cut to the 

size of the gel was overlaid and then 2 layers of whatman paper were placed. The whole 

arrangement was kept in a cassette and wet transfer was carried out at 30V overnight at 4˚C. 

After the transfer is complete, the membrane was blocked in (5% w/v) fat-free milk in PBST 

(PBS, 0.1% (v/v) tween-20) at room temperature. Primary antibody incubation in PBST-milk 

was carried out at 2h at RT followed by washing thrice with PBST and later incubating with 

secondary antibody conjugated with horse radish peroxidase (HRP) (diluted 1:10000 in 

PBST) for 1h at RT and washing again thrice with PBST. The subsequent detection of 
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proteins was performed by chemiluminescence using the ‘ECL Western blotting detection 

reagents’ and ‘ECL radiography films’ from GE. 

2.2.1.5 Antibody purification 

The supernatants from hybridoma cell lines were centrifuged at 10,000 rpm for 20min and 

removed off their cell debris using the Sorvall centrifuge (rotor GSA). Antibodies from 

hybridoma supernatant and recombinant proteins were purified by affinity chromatography 

using either sepharose protein G-4B column or CNBr-coupled with IM7 or anti-cMyc 

antibody. Filtered supernatant were mixed with 0.01% of NaN3 and passed over column using 

gravity flow. The column was washed with 0.1M phosphate buffer, pH7.2 and eluted with 

0.2M glycine solution, pH2.7 and neutralized with 200μl of 1M Tris pH 8.0. The whole 

operation was performed using FPLC apparatus. The eluted fractions were pooled, 

concentrated and dialyzed against PBS using Vivaspin tubes (50kDa cut off). The 

concentration of the purified protein was measured using Biorad assay, filtered and stored at -

20˚C. 

2.2.1.6 CNBr-sepharose coupling  

5 mg of purified IM7 antibody or recombinant proteins were dialyzed against coupling buffer 

pH8.3 overnight at 4˚C. 0.286g of CNBr-sepharose was swollen in 1mM HCl solution for 

30min at 4˚C and slurry is prepared. It is then washed with 200ml of ice cold sterile filtered 

1mM HCl solution for 15min. The next two steps were performed faster to enhance the 

coupling. The slurry was washed once with 5ml of coupling buffer and removed. The 

dialyzed protein was then immediately added to the slurry and incubated in a rotating wheel at 

4˚C overnight. Next day, the beads were spun at 2000rpm for 1min and the supernatant was 

collected and the concentration was checked for efficiency of binding. If the concentration 

was 10 fold lower than the starting concentration coupling was proceeded to the next step. 
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The coupled beads were blocked off the vacant sites with 1M Tris pH 8.0 for overnight at 

4˚C. Finally, the beads were washed 2x alternatively with low pH buffer and coupling buffer. 

The first and the fourth washes were checked of its OD595nm. The processed beads was 

poured into a chromatography column and washed with 5 volumes of PBS-azide pH 7.4 and 

stored at 4˚C. 

2.2.1.7 Membrane protein preparation 

The cells were washed and lysed using fractionation buffer. The lysate is passed through a 

25G needle for 10 times using a 1 ml syringe. This is then left on ice for 20 min. The lysate is 

then centrifuged at 3000 rpm for 5 min. The supernatant is taken in a fresh tube and 

centrifuged at 8000 rpm for 15min using tabletop centrifuge. The supernatant thus obtained is 

the cytosolic and membrane fraction.  For the membrane fraction, the supernatant is 

centrifuged at 30000 rpm for 2 hrs. The pellet thus obtained is dissolved in fractionation 

buffer and used for pulldown assays. 

2.2.1.8 Pulldown assay 

Membrane protein preparations of bone marrow stroma and HSC were allowed to bind over 

the CNBr-Sepharose bound CD44s, v6 and v7 columns overnight at 4°C with gentle mixing. 

The bound supernatants were removed and the columns were washed with 30 volumes of 

0.02M Phosphate buffer, pH 7.2 and then eluted with 0.1M glycine buffer, pH 2.7. The eluted 

supernatants were neutralized using 1M tris, pH9.0, concentrated using viva spin columns 

(10,000 kDa cutoff) and then boiled with 6x laemmli buffer and loaded to SDS-PAGE gels 

for further analysis. 

2.2.1.9 Tryptic digestion and mass spectrometry 

The tryptic digestion and mass spectrometry of the 1D SDS-PAGE resolved proteins of IP 

and pulldown assays were kindly performed by Dr. Tore Kempf and Dr. Martina Schnölzer, 
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Head, Functional Proteome Analysis, DKFZ, Heidelberg, Germany. The protocols used for 

the tryptic digestion of the proteins to be analyzed and subsequent mass spectrometry analysis 

are as follows:  

2.2.1.9.1 Tryptic digestion 

After 1D SDS-PAGE gel electrophoresis and Coomassie staining of the IP and pulldown 

samples, the stained area was cut out of the gel. Each gel piece was further chopped up into 

smaller gel plugs. They were incubated with 150 µl water for 5 min at 37°C. After removing 

the solution from the gel plugs proteins were reduced with 150 µl 10 mM DTT in 40 mM 

NH4HCO3 for 1h at 56°C, alkylated with 150 µl 55 mM iodoacetamide in 40 mM NH4HCO3 

for 30 min at 25°C in the dark, followed by three alternating washing steps each with 150 µl 

of water and water/acetonitrile at 37°C. Gel pieces were dehydrated with 150 µl neat 

acetonitrile for 1 min at room temperature, dried for 15 min. They were subsequently 

rehydrated with porcine trypsin (sequencing grade, Promega, Mannheim, Germany) with a 

minimal volume sufficient to cover the gel pieces after rehydration (100 ng trypsin in 40 mM 

NH4HCO3). Digestion was carried out at 37°C overnight. 

After tryptic digestion of the proteins the supernatant containing the peptides was collected in 

PCR-tubes and the gel pieces were subjected to four further extraction steps. First, gel pieces 

were covered with acetonitrile/0.1% TFA (50:50, v/v) and sonicated for 5 min. After 

centrifugation the supernatant was collected and gel pieces were covered with neat 

acetonitrile and sonicated for 5 min. After collecting the supernatant gel pieces were sonicated 

for 5 min in 0.1% TFA followed by a final extraction with neat acetonitrile. The gel pieces 

were discarded and the combined solutions were evaporated to dryness in a speed-vac. 

Peptides were redissolved in 5-20 µl 0.1% TFA/2.5% hexafluoroisopropanol by sonication for 

5 min and subjected to ESI-MS/MS analysis. 
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2.2.1.9.2 Mass spectrometry 

Tryptic peptides were separated using a nanoAcquity UPLC system (Waters GmbH, 

Eschborn, Germany). Peptides were loaded on a C18 trap column (180 µm x 20 mm) with a 

particle size of 5 µm (Waters GmbH, Eschborn, Germany). Liquid chromatography separation 

was performed on a BEH130 C18 main- column (100 µm x 100 mm) with a particle size of 

1.7µm (Waters GmbH, Eschborn, Germany) at a flow rate of 0.4 µl / min. For protein 

identification the following 2h gradient was applied: from 0 to 4% B in 1 min, from 4% to 

30% B in 79 min, from 30 to 45% B in 10 min, from 45 to 90% B in 10 min followed by a 

washing step with 90% B for 10 min. After this step the concentration was stepped down to 

0% B and equilibration was continued at 100% A for 15 min. Solvent A contained 98.9% 

water, 1% acetonitrile and 0.1 % formic acid, solvent B contained 99.9% acetonitrile and 

0.1% formic acid. The nanoUPLC system was coupled online to an LTQ Orbitrap XL mass 

spectrometer (Thermo Scientific, Bremen, Germany). Data were acquired by scan cycles of 

one FTMS scan with a resolution of 60000 at m/z 400 and a range from 300 to 2000 m/z in 

parallel with six MS/MS scans in the ion trap of the most abundant precursor ions. Instrument 

control, data acquisition and peak integration were performed using the Xcalibur software 2.1 

(Thermo Scientific, Bremen, Germany). 

Database searches were performed against the NCBInr database with taxonomy mouse and 

mammals using the MASCOT search engine (Matrix Science, London, UK; version 2.4.0). 

Peptide mass tolerance for database searches was set to 5 or 10 ppm and fragment mass 

tolerance was set to 0.4 Da. Significance threshold was p<0.01. Carbamidomethylation of 

cysteine was set as fixed modification. Variable modifications included oxidation of 

methionine and deamidation of asparagine and glutamine. One missed cleavage site in case of 

incomplete trypsin hydrolysis was allowed. 
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2.2.2 Molecular biology 

2.2.2.1 Bacteria 

Transformation of plasmid DNA was carried out with DH5α using heat shock method. The 

competent cells stored at -80 ˚C were thawed on ice. 1ug of plasmid DNA was added to the 

DH5α competent cells, mixed and incubated on ice for 5min. The mixture was incubated at 

45˚C for 45s and the placed on ice for 2min. 1ml of LB media was added to the incubated 

mixture and incubated and agitated for 30 min at 37˚C. The agitated cells were then briefly 

centrifuged and the supernatant is removed. 200μl of fresh LB media was added and the cells 

were mixed and plated on LB-agar plates with ampicillin and incubated overnight to obtain 

transformed colonies. 

2.2.2.2 Plasmid-DNA- Preparation  

Plasmid DNA preparation were done with mini and midi-prep kits according to supplier’s 

instructions. 

2.2.3 Cell biology  

2.2.3.1 Cell culture 

The hybridoma cell lines were grown in RPMI 1640-medium with 10% heat inactivated fetal 

calf serum (FCS), 2mM glutamine, 100U/ml penicillin, 100μg/ml streptomycin, maintained at 

37˚C, 95% humidity and 5% CO2. The HEK-Ebna cell lines having the recombinant protein 

constructs were grown in Iscove’s minimal medium containing 10% heat inactivated fetal calf 

serum (FCS), 2mM glutamine, 100U/ml penicillin, 100μg/ml streptomycin and supplemented 

with 300ug/ml of neomycin and 2ug/ml of puromycin for selection. They were exchanged 

with new media every 3 days and HEK-Ebna cells were passaged every 3 days using 5mM 

EDTA.  
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2.2.3.2 Establishment of long-term bone marrow stroma cells (BM-Str) 

Bone marrow cells were collected from femura and tibiae of 6-10 week old mice by flushing 

off the bones with PBS and 1% FCS using a 16 gauge needle, dispersed and washed and 

seeded in a 50ml cell culture flask at a density of 2x10
6
 cells/ml Iscove’s minimal 

medium/20% horse serum (HS)/25µM 2-ME/2mM L-glutamine/10µM hydrocortisone. The 

medium from the culture was exchanged every week with 50% of new medium. The resulting 

monolayer of cells obtained after 6 weeks was used as adherent bone marrow stroma (BM-

Str). 

2.2.3.3 Magnetic Beads separation of HSC 

Bone marrow cells (BMC) from mice were stepwise depleted of CD4+, CD8+ and NK cells, 

CD19
+
, CD45

+
, CD11c

+
 and CD11b

+
, Ter119

+
 and Ly6C/G

+
 cells by magnetic beads coated 

with the respective antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany). The depleted 

cell population was incubated with anti-CD117-coated beads collecting the adherent fraction. 

The CD117
+
 cells mostly were further enriched for HSC by incubation with biotinylated anti-

SCA1 and anti-biotin coated beads, again collecting the adherent population.  

2.2.3.4 Cryopreservation of cells 

1x10
7 

cells were harvested, washed once with warm fresh medium and resuspended in 

cryotubes at 5 x10
6 

cells/ml in ice-cold FCS/10% DMSO. Cells were kept overnight at -80˚C 

and then transferred to liquid nitrogen. 

2.2.3.5 Transfection in mammalian cells 

6x10
5
 cells were seeded on each well of a 6-well plate and were allowed to grow till they 

were 80% confluent on the next day in the Iscove’s medium with 10% FCS. For each well of 

cells in the plate, 2μg of pDNA was diluted in 500μl of minimal medium and 10μl of 

Lipofectamine
TM

 was diluted in 500μl of minimal medium. The pDNA and Lipofectamine
TM
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was mixed and incubated at room temperature for 15 min. The old media from the 6-well 

plate was removed and supplemented with new medium. The incubated mixture was slowly 

added to the cells and the plate was gently rocked before incubating the cells at 37°C. After 

6h of transfection, the media with Lipofectamine
TM

 was removed and selection media was 

added. The supernatant from the transfected cells as well as the cells used as control for 

transfection was analyzed on western blot for the presence of recombinant protein. 

2.2.3.6 Cell-matrix Adhesion assay 

BMC, HSC and BM-Str from CD44wt, CD44v7
-/-

 and CD44v6/v7
-/-

 mice were seeded on 

BSA, HA, FN and Coll IV and in another setting HSC from CD44wt, CD44v7
-/-

 and 

CD44v6/v7
-/-

 mice were seeded on BSA, IL3, IL6, IL7, SDF1, OPN, bFGF, SCF, GMCSF. 

CD44wt BMC, HSC, BM-Str were pretreated with anti-panCD44, anti-CD44v6 and anti-

CD44v7 if indicated.  The experiments were performed on precoated 96 well plates. Cells 

were incubated for 4h at 37
o
C, washed vigorously and then the adherent cells were stained 

with crystal violet and the absorbance was measured at OD595nm after lyzing with methanol 

and acetic acid in a fluorescence ELISA reader. The percentage of adherent cells taking the 

total input of cells as 100% is shown. 

2.2.3.7 Stimulation of HSC 

HSC were stimulated for 2h or 24h by CD44 cross-linking via plastic-coated HA or by 

seeding on BM-Str.  

2.2.3.8 Migration assay 

Migration assay was performed using Boyden chamber. The lower part of the Boyden 

chamber contained 30μl of RPMI medium with 0, 10 and 20% FCS, HA (50μg/ml), 

fibronectin (10μg/ml), collagen I and collagen IV (10μg/ml). Over this laid the 8-µm pore size 

polycarbonate membrane and the cells in question were counted and seeded on to the upper 



Materials and Methods 

 

46 

 

chamber of the set up. The Boyden chamber was incubated for 16 hours at 37°C. The 

migration of the cells was evaluated after 16 hours by staining the lower membrane with 

crystal violet measured at OD595nm after lyzing with methanol and acetic acid. The assay was 

evaluated by the percentage cells that migrated into the lower chamber.  

2.2.3.9 Video microscopy 

BM-Str cells of CD44wt, CD44v7
-/-

 and CD44v6/v7
-/- 

were seeded on 24-well plates coated 

with or without HA for overnight to attain monolayer of cells. HSC cells were stained with 

CFSE and seeded on the top of the stroma layer. The cells were either blocked with IM7, anti-

v6 or anti-v7 antibodies or without blocking incubated in a chamber at 37°C, 5% CO2 for 24 

hrs using a Carl Zeiss LSM780 microscope with an Hg/Xe lamp. Two pictures (20-fold 

magnification) per chamber (2-millisecond exposure) were taken every 20 minutes for 12 

hours. Migration was quantified according to Manual tracking plugin (F.P. Cordeliére, Centre 

de Recherche de l'Institute Curie) running in the open-source software ImageJ. Path length of 

20 individual cells in each setting was calculated for every 20 minutes by customized 

programs. The mean pathway length per 20min is presented. 

2.2.3.10 Immunofluorescence  

3x10
5
 cells were grown on cover slips for 48hrs. Prior to staining, cells were fixed with 4% 

paraformaldehyde for 15min at RT, permeabilized with 0.2% tween in PBS-1%BSA, washed, 

blocked with 0.2% gelatin (freshwater goldfish) in PBS-1%BSA 15min and incubated with 

primary antibodies (2-10μg/ml, 60min, 4˚C). Cover slides were rinsed and incubated with a 

fluorochrome-conjugated secondary antibody (60min, 4˚C). After blocking, and incubation 

with a second, dye-labeled antibody (60min, 4˚C), cover slides were washed and mounted in 

elvanol. Digitized images were generated using a Leica DMRBE microscope or a Carl Zeiss 

LSM710 confocal microscope and software Carl Zeiss Axioview Rel. 4.6. 
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2.2.3.11 Flow cytometry  

Cells at 1x10
5
 cells per well were taken in a 96-well U-bottom plate. The cells were washed 

once with ice-cold PBS (pH 7.4, supplemented with 1% FCS) and then stained with primary 

antibody (1-5μg/ml) for 30min at 4˚C, washed twice with PBS (pH 7.4, supplemented with 

1% FCS) and thereafter incubated with secondary, fluorochrome-conjugated antibody (0.3-

0.5μg/ml) for 30min, 4˚C. After 3 washes, samples were acquired and analyzed with the 

FACS Calibur (BD, Heidelberg, Germany). For probing internalized markers, cells were fixed 

in 1% formalin (20min, 4˚C), washed and permeabilized with 0.2% tween in PBS (pH 7.4, 

supplemented with 1% FCS) before staining with the antibodies. 

2.2.3.12 Apoptosis Assay 

Apoptosis or programmed cell death in cells activated with or without cisplatin is evaluated 

by using Annexin-FITC/ PI double staining and flow cytometry. BMC and HSC cells were 

seeded on to BSA, HA or BM-Str in the presence of absence of 5 μg of cisplatin for 24h. 

1x10
5 

cells of these conditions were seeded in 96 well plates, washed once with 1xPBS with 

1% FCS, stained with Annexin-FITC/PI according to the manufacturer’s conditions, 

incubated in dark for 15min and evaluated by FL-1 for annexin-FITC and FL-3channel for PI 

on flow cytometry. 

2.2.3.13 Cell proliferation 

CFSE-labeled BMC and HSC from CD44wt and CD44v6/v7
-/- 

mice were grown on BSA, 

HA, CD44wt BM-Str and CD44v6/v7
-/- 

BM-Str. Cell division was evaluated by flow 

cytometry after 24-72h. Cell cycle progression was evaluated by PI staining after incubation 

for 15min in the dark. The cells were pretreated with anti-panCD44, anti-CD44v6 and anti-

CD44v7 if indicated. 

2.2.3.14 Statistical analysis  
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All assays, which were statistically evaluated, were repeated at least 3 times. P-values <0.05 

(two tailed Student’s t-test and Anova) were considered significant.
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3. Results 

3.1 BM-Str as surrogate for the osteogenic niche 

Hematopoiesis takes places in the bone marrow within the osteogenic niche. An in vitro 

surrogate is long-term bone marrow culture stroma (LTBMC) that contains endothelial cells, 

fibroblasts, adipocytes, macrophages and mesenchymal stem cells [173]. I used LTBMC 

stroma mostly for evaluating the crosstalk with freshly isolated HSC. 

3.2. HSC CD44 in the crosstalk with the surrounding 

3.2.1 Matrix proteins 

Matrix proteins in adhesion 

Bone marrow-matrix contains besides others HA, FN and coll IV, which are known to bind to 

CD44 [174].  Based on this, I studied the adhesion of BMC, HSC and BM-Str from CD44wt, 

CD44v7
-/-

 and CD44v6/7
-/-

 mice and evaluated the impact of CD44v on matrix adhesion. 

BMC from all three mice strains did not vary in binding to these matrix proteins. HSC from 

CD44wt showed strong affinity towards HA and HSC from CD44v6/7
-/-

 mice bound less to 

HA when compared to CD44wt and HSC from CD44v7
-/- 

showed less binding to HA 

(Fig.1A). BM-Str from CD44v6/7
-/-

 mice showed reduced binding to HA when compared to 

BM-Str from CD44wt and CD44v7
-/-

 mice. 
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Figure 1: Impact of CD44 in the adhesion of BMC, HSC and BM-Str to matrix proteins: 

(A) The percentage adherent BMC, HSC and BM-Str from CD44wt, CD44v7
-/-

 and 

CD44v6/v7
-/- 

mice strains were evaluated by seeding them on BSA, HA, FN, and coll IV. The 

cells were allowed to adhere at 37°C for 4h. The cells were then washed and stained using 

crystal violet in methanol and the absorbance is read on ELISA reader at 595nm. Significant 

differences were observed depending on CD44v6 and/or CD44v7 expression are indicated by 

“S”. (B) Antibody blocking studies using control IgG, anti-panCD44, anti-CD44v6 and anti-

CD44v7 to check the involvment of CD44 variants in the adhesion of BMC, HSC, BM-Str to 

matrix proteins. Percentage adhesion (mean of triplicates) in comparison to control IgG 

(=100%). Significant differences between anti-CD44s, anti-CD44v6 and anti-CD44v7 are 
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indicated by ‘*’. CD44 contributes to HA, FN and less pronounced, coll IV adhesion in HSC 

and CD44v6 is primarily engaged in HA adhesion. 

Variations observed in the binding of HSC and BM-Str from CD44v7
-/-

 and CD44v6/7
-/- 

mice 

were due to absence of CD44 variant exons v6 and/or v7. The contribution of individual 

variants of CD44v6 and CD44v7 in BMC, HSC and BM-Str adhesion to matrix proteins was 

found by blocking the cells with anti-panCD44, anti-CD44v6 and anti-CD44v7 and observing 

the reduction in adhesion to matrix proteins. It was observed that CD44s contributes to BMC 

adhesion to matrix proteins with low efficiency of blocking CD44v6 and CD44v7. The use of 

anti-CD44v6 and anti-CD44v7 on HSC blocked the binding of HSC to HA while anti-

CD44v6 blocked HSC adhesion to FN and coll IV. Similarly with anti-CD44v6 and anti-

CD44v7 the adhesion of BM-Str to HA and FN (Fig.1B) was blocked thus showing the 

contribution of CD44v6 and CD44v7, though to a minor degree, on HSC and BM-Str to 

matrix adhesion. If the variations observed in binding of cells to matrix proteins are due to the 

variant exons of v6 and v7 then the adhesion profile of rCD44v6 and rCD44v7 to matrix 

proteins must be similar. 

Recombinant proteins of CD44v6 and bind differentially to matrix proteins when compared to 

CD44s.  
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Figure 2: Binding of recombinant CD44s, CD44v6 and CD44v7 to matrix proteins: The 

binding of rCD44s, rCD44v6 and rCD44v7 to matrix proteins was evaluated by ELISA. The 

relative binding was evaluated by optical density with mean values of triplicates are shown. 

Significant differences between CD44s, CD44v6 and CD44v7 are indicated by ‘*’. 

Here, rCD44v6 showed pronounced binding to coll I and LN332 and rCD44v7 showed 

stronger binding to FN and VN (Fig.2). 

 Matrix proteins in migration 

Data from adhesion experiments indicated that HA-CD44 interaction was promoting HSC 

adhesion towards HSC migration [175]. CD44wt, CD44v7
-/- 

and CD44v6/7
-/- 

HSC migration 

was performed in Boyden chamber with matrix proteins like HA, FN and coll IV as stimulus. 

The migration of HSC from CD44v6/7
-/- 

mice towards HA was strongly reduced, when 

compared to CD44wt and CD44v7
-/- 

HSC, indicating that CD44v6 contributes to HSC 

migration towards HA. Migration towards FN was lesser in CD44v7
-/- 

and CD44v6/7
-/- 

HSC. 

CD44v6 and CD44v7 supported CD44wt HSC in migration to FN. The deletion of variant 

exon v7 did not influence the HSC migration towards coll IV (Fig.3A).  
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Figure 3: Migration of HSC towards matrix proteins: CD44wt, CD44v7
-/- 

and CD44v6/7
-/- 

HSC were seeded onto the top of the Boyden chamber which contains (A) HA, FN, coll 

IVand 20% FCS as stimuli at the bottom of the assembly. After 6h of migration, the cells at 

the bottom chamber are counted. The mean percentage +/- SD (triplicates) of migrating HSC 

with significant differences in the migration of cells between CD44wt, CD44v7
-/- 

and 

CD44v6/7
-/- 

HSC are indicated by ‘S’. (B) Antibody inhibition of migrating CD44wt HSC, 

towards these stimuli, against CD44s, v6 and v7 with IgG (=100%) as control indicates the 

importance of the variant isoforms of CD44v6 and v7 for migration. Significant antibody 

inhibtion is denoted by ‘*’. 

Migration of CD44wt HSC in the presence of anti-CD44s, CD44v6 and CD44v7 (Fig.3B) 

confirmed the contribution of CD44v6 in the migration of HSC towards HA and the support 

of CD44v6 and CD44v7 in the migration of HSC to FN. 

HSC respond to cellular cues and undergo directional migration [176] of homing in 

repopulating the bone marrow (in bone marrow transplant to sustain hematopoiesis) and also 

mobilize themselves in response to stress signals in tissue injury. Boyden chamber migration 

assay measures chemotaxis in vitro but this approach cannot measure individual cell 

migration parameters [177]. In order to monitor the cells under real time, time lapse video 

microscopy was employed to monitor the HSC movement on HA under physiological 

conditions of CO2 supply and temperature. HSC movement was tracked by capturing pictures 

at regular intervals and individual cell migration was calculated (data not shown) by the 

average displacement using ImageJ software [178]. 
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CFSE labeled CD44wt and CD44v6/7
-/-

 HSC were seeded on surface coated with HA, with 

and without anti-panCD44, IM7 and observed for migration. 

 

Figure 4: CD44 in the migration of HSC on HA: CFSE labeled CD44wt and CD44v6/7
-/- 

HSC were seeded on HA-coated plates. The real-time migration of HSC on HA with and 

without IM7 was monitored using video microscope under physiological conditions. CD44wt 

HSC migration on HA was reduced by IM7. Migration of CD44v6/7
-/- 

HSC was reduced 

when compared to uninhibited CD44wt HSC migration. The migration of CD44v6/7
-/- 

HSC 

was further retarded on antibody inhibition by IM7. The retarded movement of CD44v6/v7
-/- 

HSC on HA was due to the combined effect of antibody inhibition and absence of 

CD44v6/v7. Migration of HSC on HA was influenced by CD44v6 

 CD44wt HSC migrates freely on HA whereas CD44v6/v7
-/-

 HSC shows poor movement. The 

poor movement of CD44v6/v7
-/-

 HSC indicates that CD44v6 is important for HSC migration 

on HA (Fig.4). 
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CD44 in HSC migration on BM-Str 

CD44 on HSC interacts with HA and firm up their adhesion for engraftment into osteogenic 

niche. The variant exon products of CD44v6 and CD44v7 have different affinities to HA 

attachment and hence to the BM-Str. Having tested the HSC migration on HA, I was 

interested in testing the HSC migration on BM-Str. Towards this, and to determine the 

contribution of variant(s) on HSC in their migration on BM-Str, a monolayer of BM-Str 

coated onto plates which mimic osteogenic niche inside the bone and over them CFSE labeled 

CD44wt and CD44v6/7
-/- 

HSC were seeded and were observed under the video microscope to 

track the real-time movements of HSC on the stroma. Antibody- LN7.1, against the variant 

CD44v7 was used as a part of the setup to inhibit the movement of HSC on BM-Str. 
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Figure 5: Contribution of CD44 to migration of HSC on BM-Str: (A) CFSE-labeled 

CD44wt HSC were seeded on CD44wt BM-Str and CD44v6/v7
-/-

 BM-Str with and without 

anti-CD44v7 (LN7.1) incubation. In another setup CFSE-labeled CD44v6/v7
-/-

 HSC were 

seeded on CD44wt BM-Str and CD44v6/v7
-/-

 BM-Str. The figure shows the trajectory of the 

cells in the videomicroscopy setup and the retarded movement on CD44v6/7
-/- 

BM-Str that 

was more pronounced with the antibody inhibition and also the movement of CD44v6/7
-/-

  

HSC on CD44v6/7
-/- 

BM-Str. (B) CFSE-labeled cells from CD44wt and CD44v6/7
-/- 

HSC  

were seeded on CD44wt and CD44v6/7
-/- 

BM-Str in the presence of antibodies against CD44, 

v6 and v7 and the mean migration (in μm) of 20 individual cells/20 min are shown. 

Significant differences between CD44wt and CD44v6/v7
-/- 

HSC and BM-Str are indicated 

with significant inhibition by antibodies by ‘*’. Migration of HSC on BM-Str is influenced by 

CD44v7 on both HSC and BM-Str. 

Figure 5A shows the representative trajectories of HSC under different incubation conditions. 

Since the incubation conditions do not contain any chemoattractant gradient, I did not except 

any directional motion of the incubated HSC. CD44wt HSC explored the local environment 

on CD44wt BM-Str and displayed various coordinates of movements. The blocking antibody, 

LN7.1 efficiently curbed HSC movements on BM-Str. CD44wt HSC moved on CD44v6/7
-/- 

BM-Str but did not acquire relaxed motion due to deletion of CD44v6/v7 on BM-Str. The 

movement was further reduced to a limited area with antibody blocking of CD44v7 on HSC. 
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The movement of HSC from CD44v6/7
-/- 

mice was not restricted on CD44v7 expressing BM-

Str. The combined unavailability of CD44v7 on both HSC and BM-Str diminished the motion 

of HSC indicating the contribution of CD44v7 in the migration of HSC on BM-Str. 

The mean migration of CD44wt HSC on CD44v6/7
-/-

 BM-Str was lesser (Fig.5B) when 

compared to the migration on CD44wt BM-Str. The same observation was found with the 

migration of CD44v6/7
-/- 

HSC on CD44v6/7
-/-

 BM-Str. 

3.2.2 CD44 associating molecules and cellular ligands on HSC and BM-Str 

Variations in adhesion of HSC and BM-Str obtained from CD44wt, CD44v7
-/-

 and 

CD44v6/v7
-/- 

mice
 
to matrix proteins may be due to the CD44 variant exons v6 and v7. But 

similar experiment with rCD44v6 and rCD44v7 adhesion on matrix proteins has shown 

otherwise. It was hypothesized that the variations observed could be due to the different 

associating molecules on CD44v6 and CD44v7. Hence I proceeded towards finding the 

associating molecules of CD44s, CD44v6 and CD44v7. 

CD44 associating molecules 

The associating molecules of CD44s, CD44v6 and CD44v7 were found by 

immunoprecipitation of lysates of HSC and BM-Str using anti-panCD44, anti-CD44v6 and 

anti-CD44v7. The stringency of washes after immnoprecipitation removed the chances of 

false positives in the results. The resulting precipitates were resolved on SDS-PAGE gels and 

the co-immunoprecipitating molecules were analyzed using mass spectroscopy. Proteins that 

are abundant with at least 2 unique peptides are taken for further analysis.  The prominent 

partners are listed in Tables 1 and 2. The major molecules associated with HSC and BM-Str 

were similar and belong to glycolytic pathway/metabolism, proteins against oxidative damage 

and to alkylating agents, cytoskeleton-related proteins, peptidases and endoplasmic reticulum 

stress response proteins. Molecules such as 14-3-3 gamma, phosphogluconate dehydrogenase, 
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annexin A2, annexin III, ATP synthase, caspase3, moesin are found associated with both HSC 

CD44v6 and CD44v7 and annexin A5, calreticulin, complement C1q, galectin-3, gelsolin, 

radixin, thrombospondin, ras GTPase-activating-like protein IQGAP1 are found associated 

with HSC CD44v7. On BM-Str, annexin A2, calreticulin, cathepsin B, cathepsin D, cofilin-1 

are found associated with CD44v6 and annexin A5, CD16, CD63, radixin, are found 

associated with both CD44v6 and CD44v7. The results of the mass spectrometry analysis are 

tabulated below. 

Table 1: CD44, CD44v6 and CD44v7 associating molecules on HSC: HSC lysates of 1mg 

was precipitated with anti-panCD44, anti-CD44v6 and anti-CD44v7 and the 

immunoprecipitates were resolved on SDS-PAGE gels, coomassie blue stained, destained and 

analyzed by orbitrap mass spectrometry which gives the raw data searched on NCBInr 

database with taxonomy mouse and mammals using the MASCOT search engine. Only 

protein hits identified with at least 2 unique peptides are listed in the table. 

 HSC - coIP 

 IP: panCD44 IP: CD44v6 IP: CD44v7 

Protein Description Match Cov.[%] Match Cov.[%] Match Cov.[%] 

14-3-3 protein gamma   2 7.3 9 18.8 

6-phosphogluconate dehydrogenase  2 4.6 6 8.3 

78 kDa glucose-regulated protein 5 11 8 13.1 11 12.2 

actin, beta  59 67.3 17 47.6 11 16.6 

actin, gamma 62 67.1 16 48.4 33 43.2 

actin-related protein 2/3 complex subunit 3   4 7.3 

adenylyl cyclase-associated protein 1    3 3.6 

aldehyde dehydrogenase family 3 member 

A1 19 22.9 2 4.4 13 11.8 

alpha-2-macroglobulin-P 9 2.3 3 1.1 20 63.9 

alpha-actinin-1 8 5.8     

alpha-fetoprotein 9 6.2 19 4.5 2 6.2 

annexin A1 8 17.1 17 31.5 35 57.2 

annexin A2   3 9.1 6 18.3 

annexin A5     11 21.9 

annexin III   5 9 9 16.1 

ATP synthase subunit beta   2 2.4 7 8.7 

band 3 anion transport protein 6 4.1   3 2.3 

beta-arrestin-1     2 4.1 

beta-globin 35 76.9 27 87.8 32 83.7 

bone marrow proteoglycan 3 8.5 11 24.2 4 13.9 

calcium-binding and spermatid-specific protein 1 6 25.4 11 25.4 

calreticulin     4 9.4 

carbonic anhydrase 2 6 23.5 7 11.9 11 30.4 

casein kinase II subunit alpha'   2 8.4   

caspase 3   2 5.1 5 14.2 
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cathepsin D     3 6.8 

cathepsin G 11 26.1 46 50.2 21 33.3 

CD11b 8 5.5 9 5.3 6 2.7 

CD16 10 11.4   5 16.9 

CD177 8 6   10 8.4 

CD44 13 8   4 7.4 

chitinase-like protein 3 12 24.6 6 13.3   

coactosin-like protein     4 17.6 

complement C1q      4 7.7 

complement C3 5 1.6   10 2.7 

complement C4 3 1.8   5 3.7 

copine-3 2 1.6   3 3.4 

cyclophilinA 13 41.5 5 48.2 9 28.7 

delta-aminolevulinic acid dehydratase 2 4.9 5 9.1 13 26.7 

dihydrolipoamide S-acetyltransferase  2 5.9   

DJ-1 1 5.9 2 6.5 1 3.1 

endoplasmin 13 9.1   7 6.5 

eosinophil peroxidase 13 18.9 65 41.6 34 35.5 

ezrin 10 8.7 9 8.5 34 20.3 

ferritin 3 9.9 14 52.5 14 43.7 

fibrinogen   2 1.4   

filamin-A1 11 4.1 11 3.3 15 5 

fructose-bisphosphate aldolase A2    2 6.9 

Galectin-3     3 6.4 

GAPDH 10 28.5 8 33 5 11.7 

gelatinase 4 3.8   3 1.6 

gelsolin     5 3.3 

glucose-6-phosphate 1-dehydrogenase X 6 7.8 2 3.5 9 16.3 

hemoglobin alpha 31 76.8 15 43 4 15.6 

hemoglobin beta-2 16 43 25 76.8 27 66.9 

HSP70 8 13.9 18 16.7   

HSP84 31 18.6 7 5.4   

HSP90 24 16.9 7 5.9 23 16.4 

Continued 

 HSC - coIP 

 IP: panCD44 IP: CD44v6 IP: CD44v7 

Protein Description Match Cov.[%] Match Cov.[%] Match Cov.[%] 

hypoxanthine-guanine phosphoribosyltransferase  3 10.6 

inosine-5'-monophosphate dehydrogenase 2 7 14.8   

lactotransferrin 3 4 31 31.6 80 60.4 

leukotriene A-4 hydrolase 2 1.6   5 5.4 

L-lactate dehydrogenase 3 4.5 4 14.8 6 11.7 

lysozyme C-1 precursor   6 16.9 5 16.9 

lysozyme C-2 precursor   8 35.8 11 39.9 

M2-type pyruvate kinase 24 31.5 14 23 10 11.7 

moesin   13 13.3 48 33.4 

myeloperoxidase 30 20.3 83 49.3 53 36.2 

myosin heavy chain   5 3.6 9 2.4 



Results 

 

60 

 

nascent polypeptide-associated complex alpha 1 0.6 2 0.6 

neutrophil cytosol factor 4     2 2.9 

neutrophil elastase 8 11.7 10 35.5 8 13.2 

neutrophil gelatinase-associated lipocalin 8 25.5 7 25.5 

nucleoside diphosphate kinase A  6 43.4 7 29.6 

peptidoglycan recognition protein 1  5 32.4 2 6.6 

peroxiredoxin 1 10 31.8 11 31.8 15 33.3 

phosphoprotein associated with GEM 1 3.3 1 3.3 3 7.3 

profilin-1 12 38.6 9 25.7 14 50.7 

protease, serine, 1 9 12.2 16 12.2 12 12.2 

protein broad-minded     2 0.6 

protein CREG1     2 5 

protein disulfide-isomerase A6     3 6.5 

rab-10 5 16.5   5 16.5 

rab7     6 15 

rac 6 14.1 3 9.9 7 21.4 

radixin     29 17.2 

ras GTPase-activating-like protein IQGAP1   2 0.6 

rho GDP-dissociation inhibitor 2    6 30.5 

S100-A8 2 23.6 1 22.5 3 22.5 

S100-A9 12 31 12 23.9 22 23.9 

S-adenosyl-L-homocysteine hydrolase  2 2.3   

serotransferrin 2 6.1 2 6.1 12 15.8 

succinate dehydrogenase   4 8.5   

talin 3 0.8 2 0.4 9 2.1 

T-complex protein 1 subunit beta  4 7.3 3 3.8 

thrombospondin-1     3 1.5 

transaldolase     9 13.1 

tropomyosin-1     3 7.4 

tubulin 16 22.5 2 2.4 12 20.5 

tyrosine-protein kinase CSK   5 8.4   

voltage-dependent anion-selective channel 3.2 4 19.4   

 

Table 2: CD44, CD44v6 and CD44v7 associating molecules on BM-Str: BM-Str lysates of 

1mg was precipitated with anti-panCD44, anti-CD44v6 and anti-CD44v7 and the 

immunoprecipitates were resolved on SDS-PAGE gels, coomassie blue stained, destained and 

analyzed by orbitrap mass spectrometry which gives the raw data searched on NCBInr 

database with taxonomy mouse and mammals using the MASCOT search engine. Only 

protein hits identified with at least 2 unique peptides are listed in the table. 

 BM-Str - coIP 

 panCD44 CD44v6 CD44v7 

Protein Description Match Cov.[%] Match Cov.[%] Match. Cov.[%] 

78 kDa glucose-regulated protein  16 18.2   

actin, beta 20 41 16 47.3   

actin, gamma 33 43.2 20 48.1   

alcohol dehydrogenase 1   3 5.5   

alpha-2-macroglobulin-P 7 1.8   4 1 

alpha-fetoprotein 9 10.8 4 6.5 5 6.5 

alpha-N-acetylgalactosaminidase  2 2.7   
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annexin A1 8 17.1 6 21.1 2 8.7 

annexin A2   4 8.8   

annexin A5   14 17.6 2 3.3 

apolipoprotein E   5 15.4 4 18.8 

aquaporin-1   2 3.3   

ATP synthase subunit beta   6 7.6   

beta-globin 10 49 8 29.9 3 44.2 

bone marrow proteoglycan 2 5.4 1 5.3 2 8.5 

calcium-binding and spermatid-specific protein 1 7 25.4   

calreticulin   5 8.2   

cathepsin B   4 11.2   

cathepsin D   2 6.8   

cathepsin S 11 14.6 12 23.5 11 24.1 

cathepsin Z   10 15   

CD101     3 0.9 

CD11b 8 5.5     

CD16   3 6.9 16 53.8 

CD177 8 6     

CD18     6 8.4 

CD44 13 8   2 2.6 

CD63   2 8.8 2 8.8 

CD64     2 3.3 

cofilin-1   4 40.4   

complement C1q   2 11 4 15 

complement C3 2 0.5   7 2 

complement C4 2 1   6 4.4 

cyclophilinA   17 23.6 3 7.3 

cytoplasmic dynein 1 5 0.3   4 0.3 

dual specificity protein kinase TTK  21 27.1 4 7.1 

endoplasmin 13 9.1     

erythrocyte band 7 integral membrane 

protein 3 8.5 9 29.6 6 22.9 

ezrin 10 8.7 28 15.7 2 1.5 

fatty acid-binding protein, epidermal  4 21.5 2 6.7 

ferritin 7 23.1 19 44.8 16 53.8 

Galectin-3 10 20 10 13.6 4 6.4 

GAPDH 10 28.5 2 4.2   

gelatinase 4 3.8     

glucosylceramidase   7 5.4   

glycosylation-dependent cell adhesion molecule 1 4 4.7   

glypican-6     2 1.1 

granulins 6 12.2 11 16.6 6 7.1 

hemoglobin alpha 2 6.3 5 16.9 4 15.6 

heparanase precursor   4 5.8   

HSP70 2 1.9 5 5.6   

HSP84 31 18.6     

HSP90 24 16.9     

junction plakoglobin   2 3.5   

LAMP-1   8 9.6   
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L-lactate dehydrogenase 3 8.4 6 21.1   

lysozyme C-1 precursor   8 16.9 6 16.9 

lysozyme C-2 precursor   15 39.9 7 35.8 

M2-type pyruvate kinase 24 31.5 2 2.1   

macrophage-capping protein   6 11.1   

Continued 

 BM-Str - coIP 
 

 panCD44 CD44v6 CD44v7 

Protein Description Match Cov.[%] Match Cov.[%] Match. Cov.[%] 

macrosialin   3 5.5   

major vault protein   3 4.8   

multidrug resistance-associated protein 5   2 3.7 

nitric oxide-inducible gene protein  5 1.1   

peroxiredoxin-1 10 31.8 31 55.3 13 31.2 

phosphatase 2A 2 2.9 3 6.4 2 2.5 

phosphoglycerate mutase 1   2 4.3   

phospholipase D3 6 6.4 6 9.4 2 2.5 

profilin-1 12 38.5 6 24.3   

protease, serine, 1 9 12.2 18 16.3 13 12.2 

protein broad-minded     2 0.6 

protein CREG1   2 5 2 5 

protein disulfide-isomerase A3   6 8.9 2 2.5 

rab-14   2 12.1   

rab-1B   6 25.9   

rab7 5 16.5 7 28   

radixin   30 17.5 6 4.1 

ras-related protein Rab-5C   2 11.3   

rho GDP-dissociation inhibitor 2  5 22.1   

serotransferrin 2 6.1 9 13.8 12 13.5 

serpin B6  3 6.9 6 13 4 7.1 

spectrin 3 3.6   2 0.7 

talin 3 0.8     

titin 5 0.1   4 0.1 

tubulin 16 22.5 5 12.4   

 

Usual approach in mass spectrometry-based identification of proteins is to employ bottom-up 

strategy where the proteins are enzymatically digested and to make into smaller peptides 

which were then separated by liquid chromatography. But glycosylated peptides are difficult 

to cleave into peptides to give the sequence information [179]. Alternatively, I used confocal 

microscopy to obtain complementary information that were missed in the mass spectrometry 
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results. Some of the known proteins that were already known in the literature for interacting 

with CD44 have been probed on confocal microscopy. 

Confocal microscopy shows the co-localization of CD44s and CD44v6 with the adhesion 

molecules CD11a, CD11b, CD16, CD18, CD49d and CD54 on HSC as well as on BM-Str. 

(Fig.6A, B). The association of CD44s and CD44v6 with actin, ezrin, moesin, tubulin, talin 

and HSP70 was found in both HSC and BM-Str (Fig.7B) with talin and HSP70 co-localized 

with BM-Str (Fig. 7A). In HSC, CD44v6 associated less with cathepsin G, PGK1 and SOD2 

and more with PLCγ, and RhoGD1. In BM-Str, CD44v6 associates with cathepsin G, PGK1, 

PP1A, PolyADP and 14-3-3 (Fig.8).  
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Figure 6: CD44 associating adhesion molecules on HSC and BM-Str: (A) The HSC and 

BM-Str of CD44wt mice are permeabilized and stained first with anti-panCD44 (green)/anti-

CD44v6 (green), and then stained with anti-CD44v7 (red), anti-CD11a (red), anti-CD11b 

(red), anti-CD16 (red), anti-CD18 (red), anti-CD49d (red) and anti-CD54 (red) and then with 

secondary dye labeled antibody. Overlay of confocal microscopy are shown (scale bar: 10μm) 

with co-localized molecules shows are bright yellow color. (B) Lysates of HSC and BM-Str 

of CD44wt mice are immunoprecipitated with anti-panCD44, anti-CD44v6 and anti-CD44v7 

and blotted with anti-CD11b, anti-CD49d and anti-CD54 and lysates of HSC and BM-Str of 

CD44v6/v7
-/-

 and CD44v7
-/- 

mice are immunoprecipitated with anti-panCD44 and blotted 

with anti-CD54 and anti-CD49d. 
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Figure 7: Co-localization of CD44 with cytoskeleton molecules on HSC and BM-Str: (A) 

The HSC and BM-Str of CD44wt mice are permeabilized and stained first with anti-panCD44 

(green)/anti-CD44v6 (green), and then stained with anti-actin (red), anti-tubulin (red), anti-

ezrin (red), anti-moesin (red), anti-talin (red), anti-HSP70 (red) and anti-HSP90 (red) and then 

with secondary dye labeled antibody. Overlay of confocal microscopy are shown (scale bar: 

10μm) with co-localized molecules shows are bright yellow color. (B) Lysates of HSC and 

BM-Str of CD44wt mice are immunoprecipitated with anti-panCD44, anti-CD44v6 and anti-

CD44v7 and lysates of HSC and BM-Str from CD44v7
-/-

and CD44v6/v7
-/-

 are precipitated 

with anti-panCD44 and are resolved on SDS-PAGE gels, transferred to a nitrocellulose 

membrane, blotted with anti-actin, anti-tubulin, anti-ezrin, anti-moesin and anti-HSP70. 
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Figure 8: Signal transducing molecules in HSC and BM-Str. The HSC and BM-Str of 

CD44wt mice are permeabilized and stained first with anti-panCD44 (green)/anti-CD44v6 

(green), and then stained with anti-cathepsinG (red), anti-PLCg (red), anti-PGK1 (red), anti-

PP1A (red), anti-RhoGD1 (red), anti-SOD2 (red), anti-PolyADP (red), anti-14-3-3 (red) and 

then with secondary dye labeled antibody. Overlay of confocal microscopy are shown (scale 

bar: 10μm) with co-localized molecules shows are bright yellow color.  

Cellular ligands 

CD44 interacts with ECM proteins and growth factors to prepare a complex between CD44-

ligand and receptor tyrosine kinase and initiate signal transduction [180]. The signaling 

pathways that are initiated decide the fate of the HSC in the osteogenic niche such as cell 

migration, homing and mobilization/extravasation. The hypothesis was that, the variable 

regions of CD44v6 and CD44v7 might have specific ligands. In order to find the CD44v6 and 

CD44v7 cellular ligands, HSC and BM-Str membrane proteins were allowed to bind to 

recombinant proteins of CD44s, CD44v6 and CD44v7 coupled to CNBr-sepharose resins. 

The bound resins were washed extensively to remove non-specific binding, eluted and 

analyzed the eluates by mass spectrometry. A detailed list of proteins that were obtained from 

the mass spectrometry analysis (that have at least 2 unique peptides) is given in the table 

below.  

Table 3: Pulldown assay of HSC proteins on recombinant CD44s, CD44v6 and CD44v7. 
This table gives the detailed list of pulled down proteins that were obtained from passing the 

membrane proteins of HSC from CD44wt mice over CNBr-coupled CD44s, CD44v6 and 

CD44v7 columns. The columns were washed with phosphate buffer, pH7.2, eluted with 

glycine buffer, pH2.7, neutralized to pH8.0 and resolved on 10% SDS-PAGE gels, stained 

with coomassie blue and then destained. The individual proteins bands thus obtained were 

analyzed using mass spectrometry. Only protein hits identified with at least 2 unique peptides 

are listed in the table. 

CD44 binding proteins 
 

 wt HSC pulldown 

 rCD44s rCD44v6 rCD44v7 

Protein Description Match. Cov.[%] Match. Cov.[%] Match. Cov.[%] 

78 kDa glucose-regulated protein   9 12.4 7 8.1 

actin, gamma 36 35.9 18 26.1 18 31 
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AFP 101 8.1 19 6.5 27 9.6 

ALDH 2 4.6 3 12.4 4 6.4 

alpha-2-macroglobulin   2 1.1   

alpha-N-acetyl galactosaminidase   7 6.7   

ATP synthase alpha   2 1.8   

beta-galactosidase 2 1.4 4 5.1   

beta-globin 8 29.9 8 30.1 37 72.2 

bone marrow proteoglycan 4 8.5 5 61.5 2 5.4 

calcium binding and spermatid-specific 

protein 1 7 24.6 4 18.7 3 14.2 

calreticulin precursor     3 4.6 

carbonic anhydrase 2 23 46.5 5 7.3 23 48.1 

carbonic anhydrase I 21 26.8 6 10.7 21 35.6 

cathepsin B   11 20.4 6 12.1 

cathepsin G 40 37.9 33 37.9 9 22.6 

CD11b 3 1.9 9 5.3   

CD44 9 5.2 2 2.6 2 2.6 

charged multivesicular body protein 4b 6 15.6 5 15.6 4 15.6 

cofilin-2   4 19.7   

complement C1Q 4 11.8 37 41.4 7 17.2 

complement C3   5 13.6   

cyclophilin   6 19.5 5 19.5 

eosinophil cationic protein 2 4 13.5 6 25.6 3 13.5 

ezrin 3 3.2 2 3.1   

Ferritin L subunit 1 15 39.9 14 31.1 2 11.5 

flavin reductase   2 8.3 4 8.3 

fructose-bisphosphate aldolase A2 4 7.4 3 5.8 6 14.8 

Galectin-3 4 13.3 5 11.4 2 9.1 

GAPDH 18 32.1 12 30.9 15 30.9 

gelsolin   2 3.3 3 4.4 

glutathione peroxidase 1   4 14.6 4 14.6 

haemoglobin 54 79.5 19 71.2 46 83.6 

haemoglobin beta-2 chain 32 53.6 16 59.6 32 76.8 

HSP2   15 13.3 12 10.5 

HSP70 17 16.4 12 12.7 38 27.9 

HSP90 29 19.1 10 9.4 9 7.6 

LAMP-1 2 2.7 7 8.4 5 8.4 

L-lactate dehydrogenase A chain isoform 1 9 19.3 5 9.9 5 11.7 

lysosomal membrane glycoprotein B   2 7.8   

lysozyme C-1     2 12.2 

M2-type pyruvate kinase 13 19.4 10 13.9 14 21.1 

myeloperoxidase 42 23.3 33 19.4 41 26.5 

myosin II-A 25 10.2 3 1.6 9 3.2 

neutrophil elastase 5 11.7 4 11.7 9 16.6 

nitric oxide-inducible gene protein     3 1.1 

nucleoside diphosphate kinase A   2 2.5   

peroxiredoxin-1   7 20.1 7 20.1 

polyubiquitin C   2 12.7 2 19.8 
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protease, serine, 1 14 8.1 5 8.1 9 12.2 

protein SET     3 11.4 

radixin   3 2.9 5 4.6 

serpin B6   2 2.6 4 4.2 

superoxide dismutase   2 7.8 2 7.8 

testin   3 6.5   

tubulin, alpha 14 25.3 2 5.3 6 12 
 

Table 4: Pulldown assay of BM-Str proteins on recombinant CD44s, CD44v6 and 

CD44v7: This table gives the detailed list of proteins that were obtained from passing the 

membrane proteins of BM-Str from CD44wt mice over CNBr-coupled CD44s, CD44v6 and 

CD44v7 columns. The columns were washed with phosphate buffer, pH7.2, eluted with 

glycine buffer, pH2.7, neutralized to pH8.0 and resolved on SDS-PAGE gels, stained with 

coomassie blue and then destained. The individual proteins bands thus obtained were 

analyzed using mass spectrometry. Only protein hits identified with at least 2 unique peptides 

are listed in the table. 

 

 wt BMStr pulldown 

 rCD44s rCD44v6 rCD44v7 

Protein Description Match Cov.[%] Match Cov.[%] Match Cov.[%] 

78 kDa glucose-regulated protein   3 4 3 4 

actin gamma 36 35.9 21 25.5 29 40.8 

adenine nucleotide translocase-1   6 7.1 187 22.9 

AFP 2 3.1 8 3.1 7 6.5 

ALDH 14 19.1 4 7.3 6 10.6 

alpha-2-macroglobulin   6 1.6 4 1.1 

annexin A1   3 4 8 9 

annexin A2 18 23.3 26 38.6 27 35.4 

beta2-microglobulin   3 14.3 2 9.8 

beta-globin   8 42.9   

calcium-binding and spermatid-specific 

protein 1 3 14.2 2 2.4 14 25.4 

cathepsin G preproprotein 5 11.1 9 16.5 7 11.1 

CD44 9 5.2 4 4.5 3 4.5 

chaperonin   18 25.2 6 8.5 

cofilin-1   3 15.1 2 6.6 

cold shock domain protein A-b   24 49.7   

collagen I     5 5.8 

complement C3   5 2.2   

cyclophilin   9 33.2 11 28.8 

dual specificity protein kinase TTK   3 3.2 5 8 

E3 ubiquitin-protein ligase NEDD4   5 27.2 2 9.7 

eukaryotic translation initiation factor 3 

subunit H 3 7.1 11 25.8 9 20 

ezrin 2 2.9 6 4.6 3 3.2 

Ferritin light chain 1 3 11.5 9 32.8 4 11.5 

fibronectin 45 13.2 14 4.6 30 10.3 

filamin-A1   25 12.3   

flotillin-2 10 19 5 9 4 5.1 
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fructose-bisphosphate aldolase A2   2 3.8   

galectin-3 18 29.2 15 29.2 8 15.9 

GAPDH 18 32.1 25 30.9 21 33 

haemoglobin alpha 32 53.6 11 23.2 9 23.2 

HSP70 17 16.4 21 25.5 7 10.4 

HSP90 6 3.6 25 30.9 13 13.3 

inosine-5'-monophosphate dehydrogenase 2 11 16.3 11 14.8 

lactadherin   17 19.2 11 14.3 

LAMP-1   10 9.6 3 5.4 

L-lactate dehydrogenase A1 9 19.3 8 14.5 8 14.2 

lysozyme C-1   8 14.5 3 12.2 

M2 pyruvate kinase 13 19.4 19 25.4 11 20.2 

major vault protein   3 3 7 11.4 

MHC I Heavy Chain    4 4.5 4 7.6 

microtubule-associated protein 4 15 12 32 23.7 22 18 

moesin 33 6.2 22 21.3 30 24.6 

myeloperoxidase     11 9.6 

myosin 25 10.2 37 12.7 2 9.5 

myristoylated alanine-rich C-kinase 

substrate 7 11.3 5 12.5 8 13.3 

nascent polypeptide-associated complex ab 6 19.5 3 13.5 

nucleoside diphosphate kinase A   2 12.7 1 5.4 

peroxiredoxin-1   37 12.7 10 35.7 

phosphoglycerate kinase 1 20 8 11 15.3 11 16.5 

plectin 1   4 11.6 10 1.6 

profilin-1   4 11   

prohibitin   10 27   

proliferation-associated protein 2G4   6 11.8 10 17.6 

protease, serine, 1 5 8.1 6 24.3 7 

protein kinase C delta-binding protein  5 13.8 2 3.8 

protein TFG   6 12.9 4 6 

proteinase-activated receptor 2   6 7.6 9 16.1 

rab 4   18 24.9   

rab-10   5 16.5   

rab-1B   13 43.8   

S100-A11   5 6.6 4 13.2 

serum deprivation-response protein   7 10.3 3 8.1 

t complex polypeptide 1   13 25.5 6 7.9 

T-complex protein 1 subunit gamma   13 18.8 20 14 

T-complex protein 1 theta   18 22.3 11 13.7 

triosephosphate isomerase   5 16.5   

tropomodulin-3   2 3.1 14 5 

tropomyosin     17 4.6 

tubulin alpha-1C 16 16.7 5 10 7 12 

vimentin     24 34.8 

zinc finger C2HC domain-containing 

protein 1A 5 9.9 38 59 6 9.9 
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Cathepsin B, cyclophilin A, peroxiredoxin-1, polyubiquitin C, radixin, superoxide dismutase 

and complement C3 are found pulled down with HSC CD44v6 and CD44v7. ATP synthase 

alpha, nucleoside diphosphate kinase A and alpha-2-macroglobulin are found only with HSC 

CD44v6 (Table 3). 78 kDa glucose-regulated protein, alpha-2-macroglobulin, annexin A1, 

beta2-microglobulin, cheperonin, cofilin-1, cyclophilin, MHC I, nucleoside diphosphate 

kinase A and peroxiredoxin-1 are found pulled down with BM-Str CD44v6 and CD44v7. 

Beta globulin, complement C3, filamin-A1, fructose bisphosphate aldolase A2, profilin-1, 

prohibitin, rab4 and rab10 are found uniquely pulled down with CD44v6 (Table 4).  The 

repeated observation of cytosolic proteins is due to their abundance in the isolation of 

membrane proteins that are difficult to remove which is a tradeoff between membrane protein 

recovery and abundance in undesired cytosolic proteins. 

3.2.3 Cytokines that may influence motility, dormancy and differentiation 

Cytokines within the bone marrow are available to HSC for different actions of motility to 

and from the osteogenic niche, maintenance of dormancy within the niche and differentiation 

into progenitor and specialized cells. Among them, SDF1 [181], G-CSF [182] and GM-CSF 

[183] are observed to induce motility; SCF [184, 185] is responsible for maintenance of 

dormancy in the cells and OPN is a negative regulator of HSC proliferation [82] and IL-3 

[186], IL-6 [187-189], IL-7 [190] for the stem cells to differentiate into progenitor cells. 

                               The signals from growth factors and cytokines are sensed and transduced 

by CD44 to the interior of the cells and stimulate the cells to undergo cell division, motility 

and differentiation. To understand the relevance of each of CD44s and variant forms of 

CD44v6 and CD44v7 on HSC in the crosstalk with cytokines, I performed functional assays 

that are relevant for HSC motility, dormancy and differentiation. Adhesion of HSC CD44wt, 

CD44v7
-/-

 and CD44v6/v7
-/- 

on cytokines showed that they had different abilities in binding to 

the various molecules of cytokines and chemokines with HSC from CD44v7
-/-

 and 
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CD44v6/v7
-/-

 bound less efficiently to SDF1, OPN and SCF as well (Fig. 9A). They bound 

equally to the inflammatory cytokine IL6 and to bFGF and GMCSF. 

 

 

Figure 9: Adhesion of HSC to various cytokines and chemokines: (A) The evaluation of 

HSC from CD44wt, v7
-/-

 and v6/v7
-/- 

mice adhering to cytokines and chemokines are shown 

with mean percentage of adherent HSC +/- SD (triplicates).  The significant drop in adhesion 

among the knockout cells are indicated by ‘S’. (B) Antibody blocking experiments to evaluate 
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the contribution of variants towards HSC binding to cytokines/chemokines in the presence of 

control IgG (=100%), anti-panCD44, anti-CD44v6 and anti-CD44v7. Significant differences 

in binding between CD44s, CD44v6 and CD44v7 are indicated by ‘*’. CD44v6 and CD44v7 

contribute to SCF, OPN and SDF1 binding. 

The blocking of CD44v6 and CD44v7 by anti-CD44v6 and anti-CD44v7 affected the binding 

of HSC to SDF1 and OPN (Fig.9B) with strong decrease in the number of adherent cells 

whereas the adherence of HSC to SCF decreased on blocking with anti-CD44v7. 

CD44 binds equally, without any additional contribution of CD44v6 and CD44v7, to IL3, 

IL6, IL7 and GMCSF. CD44v6 and CD44v7 are important for the binding to SDF1, OPN and 

SCF. 

Migration assay of HSC with IL6, GMCSF, SCF, bFGF, SDF1, OPN and BSA (as negative 

control) as stimulus indicated that migration of HSC to GMCSF, bFGF and SCF is unaffected 

and is independent of the CD44 variant forms (Fig.10A). Migration of HSC from CD44v7
-/-  

to IL6 was unaffected but the migration was significantly reduced when HSC from 

CD44v6/7
-/-  

was seeded over IL6. This indicated a contribution of CD44v6 to migration of 

HSC towards IL6. CD44v6 and CD44v7 contributes to migration of HSC to OPN and SDF1 

which was evident from the reduction in the number of HSC from CD44v7
-/- 

and CD44v6/7
-/-

 

migrating towards them (Fig.10A).  
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Figure 10: Migration of HSC towards cytokines and growth factors: CD44wt, CD44v7
-/- 

and CD44v6/7
-/- 

HSC were seeded onto the top of the Boyden chamber which contains (A), 

(B) IL6, GMCSF, SCF, OPN, bFGF, SDF1 as stimulus are at the bottom of the assembly. 

After 6h of migration, the cells at the bottom chamber are counted. The mean percentage +/- 

SD (triplicates) of migrating HSC with significant differences in the migration of cells 

between CD44wt, CD44v7
-/- 

and CD44v6/7
-/- 

HSC are indicated by ‘S’. (B) Antibody 

inhibition of migrating HSC against CD44s, v6 and v7 and with IgG (=100%) as control 

indicates the importance of the variant isoforms of CD44v6 and v7 for migration. Significant 

antibody inhibition on cells is denoted by ‘*’. 
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Antibody inhibition of CD44 variants (Fig.10B) also indicated that there was no participation 

of CD44v6 and CD44v7 in the migration of HSC towards GMCSF and SCF. Migration was 

significantly reduced towards IL6, SDF1 and OPN when CD44v6 was blocked. 

3.3 CD44 and maintenance of HSC quiescence 

HSC mostly remain quiescent to maintain the supply of mature blood cells and to prevent 

HSC exhaustion during the lifetime of an individual. They maintain themselves mostly in the 

G0 phase of the cell cyle [191] with occassional cell division to replace aging cells. Also, 

critical are the mutations associated with replication, stem cells need to be quiescent [192]. 

HSC quiescence supported by the interactions between BM-Str and CD44 and/or its variants 

CD44v6 and CD44v7 will help in understanding and treatment of hematological disorders. 

The interactions of HSC with osteogenic niche across cell-cell, cell-ECM and receptor-ligand 

maintain the quiescence [193]. HSC quiescence is positively coordinated by extrinsic 

regulators such as BM-Str of osteogenic niche [194], secreted transforming growth factor-beta 

(TGF-β) [195, 196] and Wnt signaling pathway [197]. These factors in the regulation of HSC 

quiescence in the context of CD44 and CD44v6/v7 are presented in the following. 

BMC and HSC were seeded on BSA, HA or BM-Str and the contribution of CD44 towards 

proliferation of BMC and HSC in the presence or absence of anti-panCD44, anti-CD44v6 and 

anti-CD44v7 were evaluated for a period of 72h. Cell division was evaluated by CFSE 

dilution. 

HSC divided less frequently (Fig.11A) when compared to bulk BMC, where even after 48h 

only 10% of HSC, but more than 40% of BMC have divided. The HSC cells were more 

quiescent when they were seeded on HA and on CD44wt BM-Str whereas there was no role 

for CD44v6/v7
-/- 

BM-Str towards HSC proliferation. BMC division remained unaffected even 

after incubating with blocking antibodies against CD44, CD44v6 and CD44v7. HSC which 
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remained quiescent by rarely dividing entered into cell division with blocking CD44v6 and 

CD44v7 by neutralizing antibodies. This was significant with a predominant effect seen after 

72h. This indicated a contribution of CD44v6/CD44v7 to HSC quiescence (Fig.11A, 11B). 
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Figure 11: HSC-BM-Str crosstalk in maintaining HSC quiescence: (A,B) CFSE-labeled 

BMC and HSC were seeded on BSA, HA, CD44wt BM-Str and CD44v6/v7
-/- 

BM-Str, 

evaluating the number of cell division at 24h, 48h, 72h. Where indicated the cells were 

preincubated with anti-panCD44, anti-CD44v6 and anti-CD44v7. (A) Mean percentage of 

cells (triplicates) that did not divide or divided 1-time, 2-times or >2-times after 48h of 

culture. (B) Mean percent of cells (triplicates) that has divided 2 times. (C, D) The 

experimental setup described in (A, B) was repeated with CD44v6/v7
-/-

 BMC and HSC. (A) 

Significant differences in HSC proliferation depending on culture conditions (BSA, HA, BM-

Str) are indicated by ‘+’. (A, C) Significant differences in proliferation of CD44v6/v7
-/-

 and 

CD44wt HSC are indicated by ‘S’. (B, D) Significant differences between HSC and BMC are 

indicated by ‘S’ and significant differences by anti-CD44 by ‘*’. CD44wt HSC rarely 

proliferate on CD44wt BM-Str and CD44v6/v7
-/-

 HSC proliferation is not affected by BM-Str. 
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The influence of CD44v6/CD44v7 and BM-Str to HSC quiescence was confirmed by 

repeating the proliferation experiment with CD44v6/v7
-/- 

HSC. Although BMC from CD44wt 

and BMC from CD44v6/v7
-/- 

did not differ much in their proliferation profile, HSC from 

CD44v6/v7
-/-

 mice showed a higher proliferation compared to HSC from CD44wt (Fig.11C). 

The HSC proliferation did not differ between HSC cultured on CD44wt BM-Str and 

CD44v6/v7
-/-

 BM-Str. But HA and CD44wt BM-Str had some effect on proliferation 

(Fig.11D). Anti-panCD44 did not promote proliferation. 

Cell cycle progression of HSC 

Apart from proliferation, cell cycle progression is also influenced by HSC CD44v6/v7. In 

general, HSC remained mostly in the G0 phase of the cell cycle. When grown on HA or 

CD44wt BM-Str, the number of CD44wt HSC in G0 phase was increased with a 

complementary reduction in percentage of cells in G1/S and G2/M phase. Few cells of 

CD44wt HSC were in G2/M phase when cultured on HA or CD44wt BM-Str. The percentage 

of CD44v6/v7
-/- 

HSC in G2/M phase was not affected by HA or CD44wt BM-Str. Moreover, 

a minor increase in the percentage of CD44v6/v7
-/- 

HSC was observed in G2/M phase when 

compared with CD44wt HSC in G2/M phase (Fig.12A).  
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Figure 12: Cell cycle progression of HSC grown on HA, CD44wt BM-Str and 

CD44v6/v7
-/-

 BM-Str: Cell cycle progression by PI staining was evaluated in CD44wt and 

CD44v6/v7
-/- 

HSC grown on BSA, HA, CD44wt and CD44v6/v7
-/- 

BM-Str. (A) The 

percentage of cells in G0, G1/S and G2/M phase is shown, significant differences between 

CD44wt and CD44v6/v7
-/- 

HSC are denoted by ‘S’ and significant differences by culture 

condition by ‘+’.  (B) Significant differences by antibody blocking is denoted by ‘*’. 
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Anti-panCD44 had no effect on percentage of CD44v6/v7
-/-

 HSC in G2/M phase. Whereas, 

CD44wt HSC when grown on HA were driven into mitosis by anti-CD44v6 and when grown 

on BM-Str by anti-panCD44, anti-CD44v6 and anti-CD44v7 (Fig.12B). 

These observations show that CD44v6/v7 contribute to maintaining HSC in G0 phase when 

supported by CD44v6/v7-competent BM-Str. 

HSC proliferation is retarded by CD44wt and CD44v6/v7
-/-

 BM-Str. CD44v6/v7
-/-

 BM-Str did 

not affect the cell cycle progression and thus having opposing influences on HSC 

proliferation and cell cycle progression. Hence I looked for extrinsic regulators on BM-Str 

that might influence HSC quiescence. They included SDF1, OPN, bone morphogenetic 

protein 4 (BMP4), inflammatory cytokine IL-6, TGF-β and its family including CD105 and 

inhibin, Wnt and leukemia inhibitory factor (LIF).  

 

Figure 13: Expression of genes in CD44wt BM-Str and CD44v6/v7
-/-

 BM-Str that 

participate in the quiescence: Flow-cytometry analysis of the indicated markers in CD44wt 

and CD44v6/v7
-/-

 BM-Str; percent stained cells (mean±SD, triplicates); significant difference 

between CD44wt and CD44v6/v7
-/-

 BM-Str: S. 

Among them, CD44v6/v7
-/- 

BM-Str displayed a slightly higher level of TGF-β (Fig.13). 
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When HSC were cultured on CD44wt and CD44v6/v7
-/-

 BM-Str, I noted a decrease in the 

CD117 expression in CD44v6/v7
-/- 

HSC when cultured on CD44v6/v7
-/- 

BM-Str. The 

expression of Fms-like tyrosine kinase 3 (Flt3), known for HSC maintenance, was not 

affected. The expression of CD126 on CD44v6/v7
-/-

 HSC was not upregulated when 

compared to CD44wt HSC when cultured on BM-Str (Fig.14). 
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Figure 14: Wnt and TGF-β regulated genes on HSC quiescence: Flow cytometry of 

markers expressed on CD44wt and CD44v6/v7
-/- 

HSC cultured on BSA, HA, CD44wt and 

CD44v6/v7
-/- 

BM-Str. Percent stained HSC (mean +/- SD, triplicates) and significant 

differences in culture conditions are denoted by ‘+’ and significant differences between 

CD44wt and CD44v6/v7
-/- 

HSC are denoted by ‘S’. 

Wnt-regulated MMP9 and A Disintegrin and metalloproteinase domain-containing protein 10 

(ADAM10) expressions became stimulated only in CD44wt HSC cocultured with BM-Str. 

Major Wnt targets like β-catenin and cyclin D1 are upregulated on CD44wt HSC cocultured 

with BM-Str but not in CD44v6/v7
-/- 

HSC that displayed higher expression levels than 

CD44wt HSC. The expression of Lef1 remains unaffected by CD44v6/v7
-/-

 in HSC or BM-

Str. The expression of cyclin D1 and c-Myc expression became upregulated in cocultures with 

CD44v6/v7
-/- 

BM-Str (Fig.14). The base line cyclin D1 and β-catenin expression was higher 

in CD44v6/v7
-/- 

HSC. 

The expression of CD44v6/v7 in HSC contributes to maintaining HSC quiescence as more 

CD44v6/v7
-/- 

HSC than CD44wt HSC were cycling. This fits to the poorer recovery of HSC 

from CD44v6/v7
-/-

 mice (data not shown) and a reduced number of CD117
+
 cells when 

cultured on CD44v6/v7
-/-

 BM-Str. Also observed was an increase in expression of β-catenin 

and cyclin D1 in CD44v6/v7
-/- 

HSC. The impact of CD44v6/v7
-/- 

BM-Str on cyclin D1 and c-

Myc was less pronounced. The expression of markers belonging to Wnt pathway indicated 

that CD44wt BM-Str had a greater impact on quiescence of CD44v6/v7-competent HSC.   

3.4 CD44 and apoptosis resistance of HSC 

Apoptosis resistance of HSC grown on BM-Str 

HSC are characterized by their relatively high apoptosis resistance [198, 199]. The resistance 

to apoptosis is contributed by BM-Str [200]. HSC and BMC were grown on BSA, HA or BM-

Str for a time period of 24-72h either in the presence or absence of cisplatin and analyzed for 

apoptosis resistance by flow cytometry using Annexin/PI staining. 
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HSC in general displayed a lower apoptotic rate than BMC. This effect was more pronounced 

when HSC were grown on BM-Str. The presence of cisplatin (5μg/ml) increased the apoptotic 

rate of BMC significantly but only a small increase in the apoptotic rate was seen in HSC 

(Fig.15A) when cultured on HA and BM-Str.  

The resistance to apoptosis by CD44wt HSC was CD44v6 and CD44v7 dependent (Fig.15B). 

Apoptosis resistance was strongly reduced in CD44v7
-/-

 HSC and, more pronounced in 

CD44v6/v7
-/-

 HSC. HSC apoptosis resistance was supported by HA and CD44wt BM-Str, but 

less efficiently by CD44v6/v7
-/-

 BM-Str. 
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Figure 15: Apoptosis resistance of HSC supported by BM-Str: (A) CD44wt BMC and 

HSC and (B, C) HSC from CD44wt, CD44v7
-/-

 and CD44v6/v7
-/-

 were cultured for 48h in the 

absence or presence of 5μg/ml of cisplatin on BSA, HA and BM-Str and (C) cells were 

preincubated with anti-panCD44, anti-CD44v6 and anti-CD44v7. Mean percentage of 

AnnV/PI stained cells (+/-SD) of triplicates are shown. (A) Significant differences in the 

percentage of apoptotic cells between BMC and HSC are indicated by ‘+’. (B) Significant 

difference between CD44wt, CD44v7
-/-

 and CD44v6/v7
-/-

 HSC are indicated by ‘S’. (C) 

Significant differences due to antibody inhibition by ‘*’. 
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Antibody blocking studies show the role played by CD44 variants in the gain of apoptosis 

resistance. CD44wt, CD44v7
-/-

 and CD44v6/v7
-/-

 HSC were grown on HA, CD44wt BM-Str 

and CD44v6/v7
-/-

 BM-Str in the absence or presence of cisplatin and using antibodies against 

anti-panCD44, anti-CD44v6 and anti-CD44v7.  

HSC from CD44wt were rather resistant to apoptosis even in the presence of cisplatin when 

grown on HA and/CD44wt BM-Str. Apoptosis resistance was weakened in the presence of 

anti-panCD44 and anti-CD44v6. There was slight or no effect when anti-CD44v7 was used. 

The impact of anti-CD44 was weaker on CD44v6/v7
-/-

 HSC. To differentiate between the 

impact of CD44v6 and CD44v7 on HSC or on BM-Str, the antibody blocking experiment was 

repeated with CD44wt HSC cocultured with CD44v6/v7
-/-

 BM-Str. Anti-CD44v6 still 

promoted apoptosis. Use of anti-CD44v7 did not increase HSC apoptosis indicating that 

CD44v7 on HSC does not contribute to HSC apoptosis resistance in the osteogenic niche 

(Fig. 15C). 

Apoptosis can be initiated by pro-apoptotic death receptors. Cells under stress produce pro-

apoptotic ligands such as CD95L and TNF-related apoptosis-inducing ligand (TRAIL). The 

pro-apoptotic ligands and their receptors belong to tumor necrosis factor (TNF) family which 

includes death receptors such as CD95, TNFR1 and TNFR2. The ligands bind to the death 

receptors, recruit adapter proteins and form death-inducing signaling complex that catalyze 

the caspase cascade, caspase 8, caspase 3 and caspase 9. These trigger apoptosis causing DNA 

and proteolytic damage. So, the expression of death receptors and their corresponding ligands 

on CD44wt and CD44v6/v7
-/- 

HSC were analyzed by flow cytometry. 
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Analysis of death receptor expression in CD44wt and CD44v6/v7
-/- 

HSC 

CD44wt and CD44v6/v7
-/- 

HSC were grown on BSA, HA, CD44wt and CD44v6/v7
-/- 

BM-Str 

with cisplatin. From the flow cytometry results, it was observed that only CD95L was 

constantly upregulated in cisplatin-treated CD44v6/v7
-/- 

HSC. Coculturing CD44wt and 

CD44v6/v7
-/-

 HSC with BM-Str was accompanied by a slight downregulation in CD95, and a 

minor upregulation of TRAIL and TNFR1 which was independent of CD44v6/v7 expression 

(Fig.16). 

 

Figure 16: Analysis of pro-apoptotic molecule expression in HSC: Flow-cytometry 

analysis of pro-apoptotic receptor molecules in CD44wt and CD44v6/v7
-/- 

HSC grown on 

BSA, HA, CD44wt and CD44v6/v7
-/- 

BM-Str cultured for 48h with 5μg/ml of cisplatin. 

Expressed as mean percentage HSC +/- SD (in triplicates). Significant differences in culture 

condition is denoted as ‘+’ and significant differences between CD44wt and CD44v6/v7
-/- 

HSC is denoted as ‘S’. 

Caspases are proteolytic enzymes whose expressions get upregulated with the activation of 

death receptor-mediated apoptosis.  
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Analysis of caspase expression in CD44wt and CD44v6/v7
-/- 

HSC 

To differentiate between receptor or mitochondrial damage induced apoptosis, CD44wt and 

CD44v6/v7
-/- 

HSC grown on BSA, HA, CD44wt BM-Str and CD44v6/v7
-/- 

BM-Str with 

cisplatin were analyzed by flow cytometry for the expression of caspase8, activated caspase3 

and cleaved caspase9. The analysis of caspase activity confirmed the independence of death 

receptors as caspase activity was similar on CD44wt and CD44v6/v7
-/- 

HSC with lower 

expression in HSC cultured with HA or CD44wt BM-Str. Activated caspase3 and cleaved 

caspase9 did not increase in cisplatin-treated CD44wt HSC protected by HA or CD44wt BM-

Str. CD44v6/v7
-/- 

BM-Str exerted a weaker protective effect than CD44wt BM-Str (Fig.17). 

 

Figure 17: Analysis of caspase expression in HSC: Flow cytometry analysis of caspase 

expression on CD44wt and CD44v6/v7
-/- 

HSC grown on BSA, HA, CD44wt and CD44v6/v7
-

/- 
BM-Str cultured for 48h with 5μg/ml of cisplatin. Mean percentage of stained HSC +/- SD 

(in triplicates). Significant differences by culture condition is denoted as ‘+’ and significant 

differences between CD44wt and CD44v6/v7
-/- 

HSC is denoted as ‘S’. 
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Caspase3 activation and caspase9 cleavage did not strongly differ between CD44wt and 

CD44v6/v7
-/- 

HSC. HA and more pronounced CD44wt BM-Str protected HSC from caspase 

activation. 

These findings point towards the activation of PI3K/Akt pathway in HSC by HA or BM-Str. 

Activation of PI3K/Akt pathway in HSC by HA and BM-Str 

   To study the anti-apoptotic pathway that was activated in HSC, HSC from CD44wt, 

CD44v7
-/- 

 and CD44v6/v7
-/- 

grown on BSA, HA, CD44wt and CD44v6/v7
-/- 

BM-Str in the 

presence of cisplatin for a period of 48h were evaluated for the expression of anti-apoptotic 

molecules by flow cytometry. Phosphorylation of PI3K was strengthened, when HSC were 

cultured on HA or BM-Str (Fig.18A). An increase in pBAD and Bcl-xl was also seen when 

the cells were activated upon HA and BM-Str. Cells grown on HA and BM-Str showed 

upregulated expression of pAkt. The expression of Bcl2 was BM-Str dependent (Fig.18B). 

Lower expression of apoptosis regulator - BAX was observed on CD44wt HSC grown on HA 

and CD44wt BM-Str but not on CD44wt HSC grown on CD44v6/v7
-/-

 BM-Str. These 

observations were different from those in cisplatin-treated CD44v6/v7
-/- 

HSC, where pPI3K, 

pAkt and pBAD expression was less significantly promoted by HA or BM-Str and BAX 

expression increased more strongly. The CD44v6/v7
-/- 

BM-Str did not suffice to strengthen 

anti-apoptotic protein expression in CD44v7
-/- 

HSC (Fig.18). 
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Figure 18: Activation of PI3K/Akt pathway in the interaction between HA-BM-Str: 

Flow cytometry analysis of anti-apoptotic molecules in CD44wt, CD44v7
-/- 

and CD44v6/v7
-/-

 

HSC cultured for 48h on BSA, HA, CD44wt, CD44v7
-/- 

and CD44v6/v7
-/-

 BM-Str in the 

presence of cisplatin; (A,B) mean percent +/- SD (triplicates) of HSC stained for anti-

apoptotic proteins. Significant differences by culture conditions is indicated by ‘+’ and 

significant differences between CD44wt, CD44v7
-/- 

and CD44v6/v7
-/- 

HSC is indicated by ‘S’. 

CD44v6 is important in the apoptosis resistance of HSC. CD44v6 expressing HSC gain 

apoptosis resistance by the coculturing of HSC in HA and CD44/CD44v6-competent BM-Str.
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4. Discussion 

It can be summarized that mostly CD44s accounts for matrix binding. CD44v6 is engaged in 

the migration of HSC on HA and CD44v7 promotes homing. CD44v6 played a major role in 

the crosstalk of HSC with HA and BM-Str in supporting quiescence and apoptosis resistance. 

I want to discuss particularly the following points. 

4.1 HSC adhesion to matrix and engraftment 

HSC interact with cells and ECM components in the bone marrow. These selective 

interactions take place at specific sites or 'niches'. Adhesion provides 'contact-mediated cues' 

[67] by presenting GM-CSF, bFGF, associated with the ECM components, to HSC and 

regulates hematopoiesis. CD11a/CD54 as ligand-receptor help hematopoietic progenitors to 

attach to cytokine activated BM-Str. CD49d expressed on HSC mediate adhesion to ECM, 

CD44 attaches HSC to HA and FN. Attachment to FN is essential for differentiation of 

erythroid progenitors [201]. Interaction of B-cell progenitors with FN and IL6 through CD49d 

helps in differentiation into mature B-cells [202]. Antibodies against CD49d release 

progenitors from the bone marrow into the blood.  CD44 is important for binding of HSC to 

coll I, coll IV and HA [203]. The binding affinity of CD44 to HA varies by the insertion of 

the variant exon products and glycosylations.  Absence of CD44v6/v7 in HSC and in BM-Str 

is reflected in slightly reduced binding to HA. So, the observed differences among CD44 and 

its variants in binding to HA could alter the adhesion of HSC to BM-Str. Co-stimulatory 

signals arising from CD44 binding to SCF activate CD49d to bind to FN with strong affinity 

[204]. The coordinated interaction among adhesion receptors is helpful in maintaining the 

hematopoiesis. 
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4.2 HSC mobilization  

Role of GTPases in HSC mobilization 

CD44 expressed on both HSC and BM-Str is involved in HSC cell migration on BM-Str. This 

is a multistep process that is activated by cell-ECM interactions that activate signaling events 

towards changes in the cell cytoskeleton and migration. CD44 by interacting with ERM 

proteins mediates cell migration [63]. Intracellular signaling enzymes such as Rac and Rho 

are Rho guanosine triphosphatases (GTPases) that regulate actin cytoskeleton, adhesion, HSC 

migration and associated gene expression. SDF1 gradients controls the mobilization of HSC 

by effector protein Wiskott-Aldrich syndrome protein family verprolin-homologous protein 

(Wave) that acts as downstream effector of Rac and is required for the formation of 

lammellipodia [205, 206]. HA binding to CD44 activates Rac1 and the interaction with ezrin 

contributes to loosening of intercellular contacts and promotes cytoskeletal rearrangements 

[207]. HA-mediated Rac activation is possible only through the interaction between CD44 

and HA. Hence CD44v7
-/-

 HSC showed decreased chemotaxis towards SDF-1 in the 

migration experiment similar to migration of Rac-deficient HSC towards SDF-1 [208]. CD44 

interacts with IQGAP1 [136] and we found that HSC CD44v7 in particular associates with 

IQGAP1. F-actin interacts with N-terminus of IQGAP1 and Rac interacts with C-terminus of 

IQGAP1. IQGAP1 acts as effector downstream of RhoGTPase and alters the E-cadherin-β-

catenin equilibrium at the cell junctions [209]. Increase in F-actin filaments at the 

lamellopodia is possible by the HA-mediated IQGAP1 [135] providing the conducive 

environment for cell migration.  

OPN-mediated HSC egress 

The idea that OPN binding affect negatively the HSC retention in the niche can be correlated 

with the HSC migration towards OPN. CD44v6/v7 is important for HSC adhesion to OPN 
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and CD44v7 contributes to HSC migration towards OPN as CD44v7-deficient HSC cannot 

respond to OPN expressed by bone-lining osteoblasts and do not migrate towards it. The 

CD44v7-OPN interaction supports towards HSC mobilization. HSC from OPN
-/- 

mice get 

accumulated in BM and spleen [210]. 

Innate immunity in HSC mobilization 

Components of the innate immunity, in particular C1q of the complement system participate 

in cell mobilization [211]. The molecular association between HSC CD44v7 and C1q receptor 

is shown in coimmunoprecipitation experiment. C1q receptor forms a complex with CD44, 

β1-integrin, complement C1q [212], HA, FN and VN [213]. C1q receptor helps in 

lamellopodia formation which contains CD44 along with ERM proteins, actin and Rho 

GTPases [214, 215]. The concept that C1q receptor regulates lamellopodia formation and 

helps cell migration by coupling with receptor tyrosine kinase (RTK) signaling is shown by 

C1q-knockdown in lung adenocarcinoma cells. Also, in breast cancer cell line, 

immunoprecipitation experiment showed the molecular association between C1q receptor and 

CD44. Activation of RTK by ligand requires C1q receptor and CD44 association. C1q 

receptor mediates the crosstalk between migration and epidermal growth factor receptor 

(EGFR) signaling through its interaction partner CD44 which is known to regulate the EGFR, 

FGFR and c-Met in ligand-induced activation and subsequent migration [211].  

4.3 HSC quiescence regulated by extrinsic factors 

HSC maintain a balance between the mature blood cell supply and HSC population number 

by remaining quiescent mostly with only a small number participating in mature cell 

production. By remaining relatively quiescent HSC avoid replication-associated mutations. 

HSC respond to stress by exiting G0 phase and entering cell proliferation and differentiation. 
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HSC achieve this balance between stress response and population number by cell-cell, cell-

ECM and receptor-ligand interactions in the osteogenic niche [216]. 

SCF-CD117 interaction 

Adherence of HSC CD44v6/v7 to SCF is important for the SCF-CD117 signaling to maintain 

HSC dormancy and function [185] where a decrease in HSC correlates with mutations in 

CD117 and SCF [217]. Also, in coculture experiments of CD44v6/v7
-/-

 HSC with CD44wt 

BM-Str and CD44v6/v7
-/-

 BM-Str, there was a reduction in CD117
+
 cells in the CD44v6/v7

-/-
 

HSC cocultured with CD44v6/v7
-/-

 BM-Str. The decrease in the expression of CD117 

corresponds to an increase in the number of CD44v6/v7
-/-

 HSC in the G2/M phase when 

cultured on CD44v6/v7
-/-

 BM-Str. 

Hypoxic environment 

HSC reside inside the hypoxia environment of the endosteum of the bone. Inside the hypoxia 

environment HSC undergo non-oxidative glycolysis to derive their energy. Hypoxia prevents 

cells from undergoing oxidative metabolism of mitochondria and increases 'stemness' in HSC 

[218]. Cells in undifferentiated state produce lactate for their energy needs by opting 

anaerobic glucose metabolism. This is accompanied by a corresponding increase in the 

expression of glycolytic enzymes, the prominent among them is lactate dehydrogenase (LDH) 

[219] which is necessary for conversion of pyruvate to lactate. The measurement of lactate 

production has been a benchmark for the measurement of long-term repopulating ability in 

bone marrow transplantation or its success in engraftment in hypoxic niche [220]. The 

association of LDH found with CD44v6/v7 on HSC helps long-term survival by maintaining 

a dormant state and resisting differentiation.  
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TGF-β-mediated quiescence of HSC 

Stromal microenvironment produces TGF-β and inhibits proliferation of HSC [221]. Blocking 

TGF-β releases the progenitor cell from quiescence in the presence of cytokines [222]. 

Antibodies against TGF-β in human hematopoietic progenitors blocked the expression of the 

HSC marker CD117 [223]. Flt3-ligand [224] which push forward cell cycle to differentiate 

into lymphoid and myeloid progenitors and IL-6 [225] are some of the cytokines that release 

the cells from quiescence. In a study, it was demonstrated that the expression of Flt3, CD126 

(IL-6R) and CD117 get regulated by anti-TGF-β serum [226]. Autocrine secretion of TGF-β 

reduced in CD44wt BM-Str mice, and increased in CD44v6/v7
-/-

 BM-Str. HSC quiescence by 

BM-Str was studied by growing HSC on CD44wt BM-Str and CD44v6/v7
-/-

 BM-Str. The 

results showed the regulation of CD117, Flt3 and CD126 by BM-Str probably by autocrine 

secretion of TGF-β. The expression of IL6-R and Flt3 remain unchanged irrespective of the 

expression of CD44v6/v7 on BM-Str, whereas expression of CD117 was reduced in 

cocultures with CD44v6/v7
-/-

 BM-Str. Physiologically, the number of quiescent cells gets 

reduced with CD117 reduction and the recovery of HSC from BMC population in CD44v7
-/- 

and CD44v6/v7
-/-

 mice was less. 

β–Catenin is required for HSC quiescence 

Wnt signals are important in mediating HSC quiescence [197]. Bone vasculature and bones of 

the limbs which are derived from mesoderm germ layer are important for hematopoiesis. β–

Catenin is necessary for the development of mesoderm germ layer [227]. β–Catenin expressed 

on BM-Str support HSC and promote hematopoiesis [228]. β–Catenin is necessary for the 

osteoblasts generation and helps osteoblasts to secrete factors such as bFGF, SCF for 

hematopoiesis [228]. Also, β–Catenin interacts with E- or N- cadherins in stroma and form 

adherens junction complex [229] that help in maintaining Wnt signaling. Reduced β–Catenin 
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affects quiescent HSC and induces cell cycling. β–Catenin is the prime regulator of canonical 

Wnt signaling. Its expression gets upregulated when HSC are grown on CD44wt BM-Str. Our 

data are in line with CD44v6/v7 competent HSC to contribute to maintaining HSC quiescence 

in the BM microenvironment. 

4.4 Resistance to TRAIL-mediated apoptosis and induction of apoptosis resistance 

through PI3K/Akt signaling 

HSC and BM-Str reside in the hypoxic environment of the niche. CD44 associates with 

glycolytic enzymes, chaperones and proteins against oxidative damage to maintain them. 

Thus we see a great number of molecules belonging to glycolytic pathway, heat shock 

proteins and superoxide dismutase (SOD). 

HSC resistance to cytotoxic drugs and to apoptosis can be explained by Galectin-3 induction 

in the signal transduction. Galectin-3 is induced when HSC are cocultured with BM-Str [230]. 

In a similar setup of coculture between CML-cell line and HS-5, a human bone marrow 

stromal-derived cell line, induction of Galectin3 expression has been observed [230]. CD44v6 

is expressed in CML [231, 232]. CD44v6 and Galectin-3 are lectin-related molecules and 

their coexpression in malignant transformation and cell growth deregulation has been 

described [233].  

Galectin3 is normally expressed in BM microenvironment and overexpression of Galectin3 

promotes multidrug resistance [234]. Expression of CathepsinB and Annexin A2 along with 

CD44v6 is identified as another characteristic towards apoptosis resistance [235]. 

CD44wt HSC grown on CD44wt BM-Str acquires apoptosis resistance and reduced caspase 

expression [236] and an increase in the expression of anti-apoptotic protein, Bcl2 [237]. 

Galectin3 is an anti-apoptotic molecule inhibiting the Fas-induced and cisplatin-induced 

apoptosis in cells [238]. It regulates CD95-activated [239] and inhibits TRAIL-induced 
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apoptotic pathways [240]. TRAIL is proapoptotic and transmits signals through death-domain 

containing receptors. TRAIL induces the formation of a death-inducing signaling complex 

(DISC). DISC and caspase8 activate the executioner caspases and Bcl2 family proapoptotic 

member Bid, links this extrinsic apoptotic pathway with the intrinsic pathway by ensuring 

mitochondrial membrane permeabilization, activation of caspase9 and caspase3 and 

advancing cell death. Similarly other TNF family of death ligands such as TNF and CD95L 

induce apoptosis by the internalization of their death receptors. Galectin3 blocks the death 

receptor internalization and prevents apoptosis. 

Resistance to TRAIL is mediated internally by the serine/threonine protein kinase, Akt which 

inhibits apoptosis and stimulates cell survival. Activation of PI3K/Akt pathway results in 

phosphatidylinositol-3,4,5-triphosphate binding to Akt, recruiting it to the cell membrane, 

phosphorylating Akt and activating it. Galectin-3 mediated Akt-activity increase [240] 

confers TRAIL resistance in cells. Activated Akt enters into the nucleus and inactivates 

FOXO transcription factors and upregulates ATP synthase for energy production, HSP70 

chaperones and 14-3-3 proteins to integrate prosurvival signals mediated by Akt in HSC [241] 

by sequestering FOXO3a and BAD. 

Taken together I propose that Galectin-3 promotes PI3K/Akt pathways by conferring TRAIL 

resistance to CD44v6-competent CD44wt HSC cells grown on CD44wt BM-Str. 
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5. Summary and outlook 

Summary 

The importance of CD44v6 and CD44v7 in adhesion, migration, quiescence/proliferation and 

apoptosis resistance of HSC in the bone marrow microenvironment is elaborated. HSC 

crosstalk with BM-Str in these physiological processes mediated by CD44v6 and CD44v7 and 

their associated molecules is explained. CD44v6 is needed for the strong binding to HA, FN 

and Coll I, which helps in the interaction with the cytokines localized in the BM niches. 

Adhesion to cytokine, SDF1 needs coordinated effort from CD44v6 and CD44v7 on HSC that 

promote homing and CD44v6 for adhesion to SCF for hematopoiesis. CD44v6 contributes to 

migration of HSC on HA and expression of CD44v7 on both HSC and BM-Str supports 

migration on BM-Str. HSC CD44v7 associates with IQGAP1 and complement C1q assisting 

in migration. When HSC were cocultured with BM-Str, the interaction between CD44v6 on 

HSC and BM-Str contributes to the cell cycle of HSC supporting the HSC in the quiescent 

state. This is achieved by TGF-β-regulated expression of CD117, marker for multipotential 

stem cells, and Wnt-regulated expression of β–Catenin that promotes the expression of bFGF 

and SCF for hematopoiesis and formation of adherens junction complex in sustaining Wnt 

signaling. Also, CD44v6/v7 help HSC in switching the energy requirements of the cell from 

normal glycolytic pathway towards lactate production under hypoxic conditions by the 

expression of lactate dehydrogenase for pyruvate conversion. Lactate helps HSC survive 

long-term by maintaining themselves in undifferentiated state. HSC inside the niche interact 

with BM-Str and express molecules like HSP, SOD that protect from stress-related damage. 

CD44wt HSC cocultured with CD44wt BM-Str acquire resistance to TRAIL- and caspase- 

mediated apoptosis possibly by recruiting Galectin3. The resulting antiapoptotic pathway 

continues via Akt activation and expression of HSP and inactivation of proapoptotic BAD. 
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Outlook 

The contribution of CD44v6 to homing, quiescence maintenance and apoptosis resistance 

could be used in therapies against leukemia stem cells/leukemia initiating cells (LSC/LIC). 

Since HSC and LIC frequently express CD44s, which is important for HSC homing and 

adhesion, blocking CD44s could affect HSC reconstitution. This problem can be 

circumvented by targeting variants of CD44 that are expressed higher on LIC than on HSC. 

CD44 variants along with their associated molecules could interrupt the LIC quiescence and 

to disrupt LIC association with the osteogenic niche inside the bone marrow and to drive them 

to the peripheral blood towards differentiation. 

Cells survive with the energy produced by glycolysis. Pyruvate produced in the final step of 

glycolysis is converted either into lactate or to acetyl coenzyme A. Cells decide about 

pyruvate conversion by the enzymatic activity of pyruvate kinase M2 (PKM2). Low-activity 

PKM2 converts pyruvate to lactate.  

Galectin3 [242], EGFR and CD44v6 [243] expression are elevated in leukemia cells. 

Galectin3 binds to leukemia cell surface and binds to N-glycans on EGF, TGF-β [244].  These 

bound Galectin monomers come together and form multimerization and create crosslinking 

along with mucin1 [245]. Mucin1, another glycoprotein highly expressed in leukemia [246] 

when glycosylated, binds to Galectin3 and is crosslinked to EGFR [245]. TGF-β-activated 

EGFR phosphorylates mucin1. Phosphorylated mucin1 binds to PKM2 and suppresses its 

activity [247]. Thus Galectin3 plays a crucial role in bringing together the regulatory 

molecules of cell activation/proliferation to make the leukemic cell tolerant to apoptosis-

inducing drugs. Also mucin1-Galectin3 colocalizes into the nucleus and activates along with 

β-catenin/Tcf in gene transcription [248]. 
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CD44v6 and Galectin3 are expressed less on HSC and high on leukemia cells, a bi-specific 

antibody that recognizes the epitopes of CD44v6 and Galectin3 would help in formulating a 

formidable therapy against resistant LIC to force them into differentiation without affecting 

the HSC. 
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