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Summary

Automatic speech recognition allows people an intuitive communication with
machines. Compared to the keyboard and mouse as input modalities, au-
tomatic speech recognition enables a more natural and efficient way where
hands and eyes are free for other activities. Applications, such as dicta-
tion systems, voice control, voice-driven telephone dialogue systems and the
translation of spoken language, are already present in daily life.

However, automatic speech recognition systems exist only for a small fraction
of the 7,100 languages in the world [LSF14] since the development of such
systems is usually expensive and time-consuming. Therefore, porting speech
technology rapidly to new languages with little effort and cost is an important
part of research and development.

Pronunciation dictionaries are a central component for both automatic speech
recognition and speech synthesis. They provide the mapping from the ortho-
graphic form of a word to its pronunciation, typically expressed as a sequence
of phonemes.

This dissertation will present innovative strategies and methods for the rapid
generation of pronunciation dictionaries for new domains and languages. De-
pending on various conditions, solutions are proposed and developed. – Start-
ing from the straightforward scenario in which the target language is present
in written form on the Internet and the mapping between speech and written
language is close up to the difficult scenario in which no written form for the
target language exists. We embedded many of the tools implemented in this
work in the Rapid Language Adaptation Toolkit. Its web interface is publicly
accessible and allows people to build initial speech recognition systems with
little technical background. Furthermore, we demonstrate the potential of
the developed methods in this thesis by many automatic speech recognition
results.



ii Summary

The main achievements of this thesis for languages with writing
system

The main achievements of this thesis providing solutions for languages with
writing system, can be summarized as follows:

Rapid Vocabulary Selection: Strategies for the collection of Web texts
(Crawling) help to define the vocabulary of the dictionary. It is important
to collect words that are time- and topic-relevant for the domain of the
automatic speech recognition system. This includes the use of information
from RSS Feeds and Twitter which is particularly helpful for the automatic
transcription of broadcast news.

Rapid Generation of Text Normalization Systems: Text Normaliza-
tion transfers writing variations of the same word into a canonical represen-
tation. For rapid development of text normalization systems at low cost we
present methods where Internet users generate training data for such systems
by simple text editing (Crowdsourcing).

Analyses of Grapheme-to-Phoneme Model Quality: Except for lang-
uages with logographic writing systems, data-driven grapheme-to-phoneme
(G2P) models trained from existing word-pronunciation pairs can be used
to directly provide pronunciations for words that do not appear in the dic-
tionary. In analyses with European languages we demonstrate that despite
varying grapheme-to-phoneme relationships word-pronunciations pairs whose
pronunciations contain 15k phoneme tokens are sufficient to obtain a high
consistency in the resulting pronunciations for most languages.

Automatic Error Recovery for Pronunciation Dictionaries: The man-
ual production of pronunciations, e.g. collecting training data for grapheme-
to-phoneme models, can lead to flawed or inadequate dictionary entries due to
subjective judgements, typographical errors, and ’convention drift’ by multi-
ple annotators. We propose completely automatic methods to detect, remove,
and substitute inconsistent or flawed entries (filter methods).

Web-based Tools and Methods for Rapid Pronunciation Creation:
Crowdsourcing-based approaches are particularly helpful for languages with a
complex grapheme-to-phoneme correspondence when data-driven approaches
decline in performance or when no initial word-pronunciation pairs exist.
Analyses of word-pronunciation pairs provided by Internet users on Wik-
tionary (Web-derived pronunciations), demonstrate that many pronuncia-
tions are available for languages of various language families – even for flex-
ions and proper names. Additionally, Wiktionary’s paragraphs about the
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word’s origin and language help us to automatically detect foreign words and
produce their pronunciations with separate grapheme-to-phoneme models. In
the second crowdsourcing approach a tool Keynounce was implemented and
analyzed. Keynounce is an online game where users can proactively produce
pronunciations. Finally, we present efficient methods for a rapid and low-cost
semi-automatic pronunciation dictionary development. These are especially
helpful to minimize potential errors and the editing effort in a human- or
crowdsourcing-based pronunciation generation process.

Cross-lingual G2P Model based Pronunciation Generation: For the
production of the pronunciations we investigate strategies using grapheme-
to-phoneme models derived from existing dictionaries of other languages,
thereby substantially reducing the necessary manual effort.

The main achievements of this thesis for languages without writing
system

The most difficult challenge is the construction of pronunciation dictionaries
for languages and dialects, which have no writing system. If only a recording
of spoken phrases is present, the corresponding phonetic transcription can
be obtained using a phoneme recognizer. However, the resulting phoneme
sequence does not contain any information about the word boundaries. This
thesis presents procedures where exploiting the written translation of the spo-
ken phrases helps the word discovery process (human translations guided lan-
guage discovery). The assumption is that a human translator produces utter-
ances in the (non-written) target language from prompts in a resource-rich
source language.

The main achievements of this thesis aimed at languages without writing
system, can be summarized as follows:

Word Segmentation from Phoneme Sequences through Cross-lingual
Word-to-Phoneme Alignment: We implicitly define word boundaries
from the alignment of words in the translation to phonemes. Furthermore,
our procedures contain an automatic error compensation.

Pronunciation Extraction from Phoneme Sequences through Cross-
lingual Word-to-Phoneme Alignment: We gain a pronunciation dictio-
nary whose words are represented by phoneme clusters and the corresponding
pronunciations by their phoneme sequence. This enables an automatic “in-
vention” of a writing system for the target language.
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Zero-resource Automatic Speech Recognition: Finally, we tackle the
task of bootstrapping automatic speech recognition systems without an a
priori given language model, pronunciation dictionary, or transcribed speech
data for the target language — available are only untranscribed speech and
translations to resource-rich source languages of what was said.



Zusammenfassung

Spracherkennung ermöglicht Menschen eine intuitive Kommunikation mit
Maschinen. Im Vergleich zur Eingabe mit Tastatur und Maus hat man mit-
hilfe der automatischen Spracherkennung eine natürlichere und effizientere
Eingabemöglichkeit, bei der man die Hände und Augen für andere Tätigkei-
ten frei hat. Anwendungen mit Spracherkennung wie Diktiersysteme, Sprach-
steuerung, natürlich-sprachliche Telefondialogsysteme und die Übersetzung
gesprochener Sprache begegnen uns bereits im täglichen Leben.

Jedoch existieren Spracherkennungssysteme nur für einen kleinen Bruchteil
der mehr als 7.100 Sprachen auf der Welt [LSF14], weil deren Entwicklung
normalerweise teuer und zeitaufwändig ist. Daher ist die schnelle Portierung
von Sprachtechnologie auf neue Sprachen mit geringem Aufwand und Kosten
ein wichtiger Bestandteil der Forschung und industriellen Entwicklung.

Aussprachewörterbücher sind dabei ein zentraler Bestandteil, sowohl für die
Spracherkennung als auch für die Sprachsynthese. Diese stellen die Zuord-
nung der orthographischen Form von Wörtern auf ihre Aussprachen dar, die
typischerweise in Phonemsequenzen repräsentiert sind.

Diese Dissertation stellt innovative Strategien und Methoden für den schnel-
len Aufbau von Aussprachewörterbüchern für neue Anwendungsdomänen und
Sprachen vor. Abhängig von verschiedenen Gegebenheiten werden Lösungs-
möglichkeiten erarbeitet und präsentiert – ausgehend von dem einfachen Sze-
nario, bei dem die Zielsprache in schriftlicher Form im Internet zu finden ist
und in der eine direkte Zuordnung zwischen der gesprochenen Sprache und
der Schriftsprache vorliegt, bis hin zum schwierigen Szenario, bei dem für
die Zielsprache keine schriftliche Form existiert. Viele der in dieser Arbeit
entwickelten Werkzeuge habe ich in das Rapid Language Adaptation Tool-
kit eingebettet, dessen Web-Interface öffentlich zugänglich ist und mit dem
sogar Menschen mit geringem technischen Hintergrundwissen initiale Spra-
cherkennungssysteme bauen können. Das Potential der in dieser Dissertation
erarbeiteten Verfahren bei der Spracherkennung wird durch viele Spracher-
kennungsergebnisse belegt.
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Hauptergebnisse dieser Dissertation, die auf Sprachen mit Schrift-
system abzielen

Die Hauptergebnisse der Arbeit, die auf Sprachen mit Schriftsystem abzielen,
lassen sich wie folgt zusammenfassen:

Schnelle und kostengünstige Vokabularselektion:Meine Strategien für
die Sammlung von Webtexten (Crawling) helfen das Vokabular des Wörter-
buchs zu definieren. Dabei ist es wichtig, Wörter zu sammeln, die zeitlich
für die zu erkennenden Aufnahmen des Gesprochenen und die Domäne des
späteren Spracherkenners relevant sind. Unter anderem werden dabei Infor-
mationen aus RSS Feeds und von Twitter verwendet, welche vor allem für
die automatische Transkription von Nachrichtensendungen hilfreich sind.

Schneller und kostengünstiger Aufbau von Textnormalisierungssys-
temen: Eine Textnormalisierung überführt Schreibvariationen für dasselbe
Wort in eine kanonische Repräsentation. Um mit möglichst geringem Auf-
wand sprachspezifische Textnormalisierungssysteme zu erstellen, präsentiere
ich Verfahren, mit denen Internet-Nutzer durch einfaches Texteditieren Trai-
ningsmaterial für solche Systeme generieren (Crowdsourcing).

Qualitätsanalyse datengetriebener Graphem-zu-Phonem Modelle:
Mit Ausnahme von Sprachen mit logographischem Schriftsystem können da-
tengetriebene Graphem-zu-Phonem (G2P)-Modelle aus existierenden Wort-
Aussprache-Paaren direkt trainiert werden. Mit diesen kann man dann auto-
matisch Aussprachen für weitere Wörter erzeugen. In Analysen mit europäi-
schen Sprachen zeige ich, dass trotz unterschiedlicher Graphem-zu-Phonem-
Zuordnung Trainingsmaterial mit 15.000 Phonemen und ihren zugehörigen
Graphemen gesammelt werden sollte. Diese Mengen reichen um für die meis-
ten Sprachen eine hohe Konsistenz bei den resultierenden Aussprachen zu
erhalten.

Automatische Detektion und Behebung von Fehlern und Inkon-
sistenzen in den Aussprachen: Das manuelle Erzeugen von Ausspra-
chen, z.B. beim Sammeln von Trainingsdaten für die Graphem-zu-Phonem-
Modelle, kann im Fall von mehreren Personen aufgrund subjektiver Mei-
nungen, typographischer Fehler und Abweichungen in der Vereinbarung zu
inkonsistenten und fehlerhaften Aussprachen führen. Um solche problemati-
schen Aussprachen aufzufinden und zu ersetzen, habe ich vollautomatische
datengetriebene Verfahren (Filtermethoden) entworfen.

Web-basierte Tools und Methoden für die Aussprachengenerie-
rung: Crowdsourcing-basierte Verfahren eigenen sich besonders für Spra-
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chen, deren Graphem-zu-Phonem-Zuordnung so komplex ist, dass datenge-
triebene Verfahren nicht gut funktionieren oder keine intitialen Wort-Aus-
sprache-Paare dafür existieren. Meine Analysen von Aussprachen, die Internet-
Nutzer mit Crowdsoucing auf Webseiten zur Verfügung stellen (Web-derived
pronunciations), zeigen, dass speziell in Wiktionary für Wörter und deren
Flexion viele Aussprachen in Sprachen verschiedener Sprachfamilien vorhan-
den sind. Zusätzlich nutze ich Information in den Abschnitten über die Her-
kunft und die Sprache der Wörter in Wiktionary zur automatischen Detek-
tion und Behandlung von Wörtern, die aus anderen Sprachen stammen und
deren Aussprachen nicht den Ausspracheregeln der Zielsprache folgen. Bei
dem zweiten Crowdsourcing-basierten Ansatz wurde Keynounce implemen-
tiert und analysiert, ein Online-Spiel, mit dem Spieler für gegebene Wör-
ter Aussprachen durch das Aneinanderreihen von Phonemen per Mausklick
erzeugen können. Schließlich habe ich ökonomische Verfahren für die semi-
automatische Generierung von Aussprachen entwickelt, mit denen man po-
tentielle Fehler und die Tipparbeit von Muttersprachlern, Crowdsourcern
oder Linguisten in der manuellen Eingabe von Aussprachen reduzieren kann.

Cross-linguale Graphem-zu-Phonem-Model-basierte Aussprachege-
nerierung: Weiterhin habe ich Strategien untersucht, um mithilfe von Gra-
phem-zu-Phonem-Modellen aus verwandten Sprachen den manuellen Auf-
wand zu reduzieren.

Hauptergebnisse dieser Dissertation, die auf Sprachen ohne Schrift-
system abzielen

Die schwierigste Herausforderung ist der Bau von Wörterbüchern für Spra-
chen und Dialekte, für die kein Schriftsystem existiert. Falls ausschließlich
eine Aufnahme des Gesprochenen vorhanden ist, kann mithilfe eines Phone-
merkenners die zugehörige Phonemsequenz erkannt werden, die jedoch keine
Wortgrenzen enthält. In dieser Dissertation wurden deshalb Verfahren erar-
beitet, bei denen man die geschriebene Übersetzung des Gesprochenen aus-
nutzt, um die Wortgrenzen zu definieren. Dazu wird vorausgesetzt, dass ein
Sprecher geschriebene Sätze aus der Quellsprache in eine schriftlose Zielspra-
che übersetzt und ausspricht.

Die Hauptergebnisse der Arbeit, die auf Sprachen ohne Schriftsystem abzie-
len, lassen sich wie folgt zusammenfassen:

Wortsegmentierung aus Phonemsequenzen mithilfe von Cross-Lin-
gual Word-to-Phoneme Alignment: Meine Verfahren ermöglichen die
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implizite Definition von Wortgrenzen aus der Zuordnung der Wörter in der
Übersetzung zu den Phonemen (Cross-lingual Word-to-Phoneme Alignment).
Außerdem kompensieren die Verfahren automatisch Fehler der Phonemerken-
nung.

Extraktion von Aussprachen aus Phonemsequenzen mithilfe von
Cross-Lingual Word-to-Phoneme Alignment: Am Ende gewinne ich
ein Aussprachewörterbuch, dessen Wörter durch Phonemcluster repräsentiert
sind und deren Aussprachen durch deren Phonemsequenz. Dies ermöglicht
das automatische “Erfinden” eines Schriftsystems für die Zielsprache.

“Zero-resource” Spracherkennung: Schließlich befasse ich mich noch mit
der Herausforderung, automatische Spracherkennungssysteme ohne gegebe-
nes Sprachmodell, Aussprachewörterbuch oder transkribierte Sprachdaten zu
erstellen. – Nur Audiodaten des Gesprochenen ohne Transkription und deren
Übersetzungen in andere Ressourcen-reiche Sprachen liegen vor.
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Chapter 1

Introduction and Motivation

1.1 Motivation

The performance of speech and language processing technologies has im-
proved dramatically over the past two decades with an increasing number of
systems being deployed in a large variety of applications. Those applications
are included in sectors such as automotive, healthcare, military, telephony,
education, and daily life.

Speech driven in-car systems like Ford’s Syn1 and GMC’s IntelliLink2 enable
to initiate phone calls, select radio stations or play music from compatible
smartphones, MP3 players and flash drives by using natural speech. Auto-
matic speech recognition leads to time and cost savings in clinical documenta-
tion by automatically turning clinician dictations into formatted documents,
e.g. with Dragon Medical3. Examples for military applications are pilot’s
associate systems, air traffic control training systems, battle management
command and control support systems, and spoken language translation
systems [Wei91]. With Interactive Voice Response (IVR) components, auto-
mated telephone information systems speak to a caller using a combination of
fixed voice menus and data extracted from databases in real time. The caller
responds by speaking words or short phrases or pressing digits on the keypad.

1http://www.ford.com/technology/sync
2http://www.gmc.com/intellilink-infotainment-system.html
3http://www.nuance.com/products/physician-speech-recognition-solutions/index.htm
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An example is the IBM WebSphere Voice Response4. Furthermore, speech
technology is used in computer-assisted language learning systems. For ex-
ample, many studies [HLMW08, HLQM09, HMA+99, TDK04] approached
the problem of mispronunciation detection by using the recognized phoneme
sequence information directly. In daily life, intelligent personal assistants
like Siri5, with natural language user interfaces, are used on smartphones
and tablet computers to answer questions, send requests to a set of Web
services, and make recommendations.

Speech technology potentially allows everyone to participate in today’s infor-
mation revolution. Moreover, it can bridge language barriers and facilitates
worldwide business activities, simplifies life in multilingual communities, and
alleviates humanitarian missions [Bre14]. For example, when a devastating
earthquake hit Haiti in 2010 there was a demand for speech technology since
many helpers neither spoke French, nor Haitian Creole; a lot of time and
human resources were unnecessarily spent on translation issues instead of
being used for more important issues like vetting the injured, searching miss-
ing people or rebuilding the infrastructure [Bre14].

With some 7,100 languages in the world, for decades data resources such as
text files, transcribed speech or pronunciation dictionaries have been only
available in the most economically viable languages and only in the last few
years efforts have been made to tackle more languages. Africa itself has more
than 2,000 languages [HN00] plus many different accents, e.g. there are more
than 280 languages in Cameroon [LSF14]. For only a few of Africa’s many
languages, speech processing technology has been analyzed and developed so
far [PGMSPL11, Ade09, SDV+12].

The biggest challenge today is still to rapidly port speech processing sys-
tems to new languages with low human effort and at reasonable cost. The
reasons are that nowadays the majority of state-of-the-art automatic speech
processing systems heavily rely on large amounts of data which are neces-
sary to train such systems. Transcribed speech resources, large amounts
of text for language modeling, and pronunciation dictionaries are of great
importance to create such systems [SSVS12]. However, collecting them is
usually not feasible. Authors in [SK06] estimate that transcription of one
hour conversational speech data can take up to 20 hours of effort. There-
fore, in recent years, automatic speech recognition research shifted its fo-
cus to low- and under-resourced settings [BBKS14]. Consequently, also
less prevalent languages are addressed, e.g. by exploring new ways to col-

4http://www-03.ibm.com/software/products/en/voice-response-aix
5http://www.apple.com/ios/siri/



1.2 ASR and the Role of the Pronunciation Dictionary 3

lect data [GJK+09, CCG+09, SOS14, GABP11], using grapheme-based ap-
proaches [KN02], or sharing information across languages [SW01].

Over the past years, the World Wide Web has been increasingly used as a text
data source for rapid adaptation of automatic speech recognition systems to
new languages and domains at low cost; e.g. websites are crawled to collect
texts to build language models. Moreover, prompts which can be read by
native speakers to receive transcribed audio data, are extracted from the
crawled text [SBB+07].

The creation of pronunciation dictionaries can be time-consuming and ex-
pensive if they are manually produced by language experts. The dictio-
naries provide the mapping from the orthographic form of a word to its
pronunciation, which is useful in both text-to-speech and automatic speech
recognition systems. They are used to train speech processing systems by
describing the pronunciation of words according to appropriate units, typi-
cally phonemes [MD07]. In this dissertation we present innovative strategies
and methods for the rapid generation of pronunciation dictionaries for new
domains and languages.

In the following sections, we give a short introduction to automatic speech
recognition and describe the role of the pronunciation dictionary in the train-
ing and the decoding procedures.

1.2 Automatic Speech Recognition and the
Role of the Pronunciation Dictionary

Automatic Speech Recognition

The fundamental problem of automatic speech recognition (ASR) is to find
the most likely word sequence given a speech recording [HAH01]. Factors
such as speaker variability, noisy environment and different properties of the
recording equipment have negative influence on the recognition performance.
The following equation (1.1) is transformed using Bayes’ rule and summa-
rizes the mathematical model commonly used for large vocabulary continuous
speech recognition (LVCSR):
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Ŵ = arg max
W

P (W |X) = arg max
W

P (X|W ) · P (W )
P (X) = arg max

W
P (X|W )·P (W )

(1.1)

As a result of digital signal processing, the acoustic signal is represented as
a sequence of feature vectors X = x1x2...xn which capture the most impor-
tant information of the speech signal for the classification task. The goal is
to estimate the most likely word sequence Ŵ = ŵ1ŵ2..ŵm depending on the
prior probability P (W ), provided by a language model, and the conditional
probability P (X|W ) given by an acoustic model. When computing the most
likely word sequence, the denominator from the Bayes’ rule P (X) is not con-
sidered as it does not play a role in the maximization of the function. Since
the language model usually works at the word level and the acoustic model
with acoustic units such as phonemes, a pronunciation dictionary is required
to bridge the gap between words and phonemes. The pronunciation dictio-
nary is a mapping between words and their pronunciations. To find the word
sequence with the highest probability, a search strategy has to be applied.
The most widespread search algorithm in automatic speech recognition is the
Viterbi search. Figure 1.1 illustrates a block diagram of a typical automatic
speech recognition system.

P(X|W)

Ŵ
(recognized word
sequence as text) 

acoustic
features

X

Language
Model

P(W)

Decoder (Search)

MaximizeŴ = argmax P(X|W)∙P(W)

W

Signal Pre-
processing

speech

Acoustic
Model

Dictionary

Figure 1.1 – Block diagram of automatic speech recognition.

Natural Language Structure

Language and speech are complex phenomena and can be analyzed at differ-
ent levels [JM00]. Figure 1.2 demonstrates the levels of language analysis.

Phonetics examines how language sounds are produced. Phonology studies
the rules of how a language sounds, and how and when certain sounds can
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Phonetics & Phonology: f əˈ n ɛ t ɪ k s æ n d f əˈ n ɒ l ə d ʒ i

Words & Morphology: words and morphology

Syntax: generative (ADJ) grammar (N)

Semantics: John (ARGUMENT) waves (PREDICATE)

Pragmatics: Give me a cookie (DEMANDING)

Figure 1.2 – The levels of the language analysis.

be combined. A phoneme is the smallest contrastive unit in the phonology of
a language, while a phone is the acoustic realization of a phoneme [O’S87].
The International Phonetic Alphabet (IPA) [IPA99] offers a standard way
of describing and categorizing the sounds produced when speaking. We will
introduce IPA in Section 1.4.1.

Spoken words are built from phonemes. Morphology studies the structure
of a given language’s morphemes and other linguistic units. Different lang-
uages have different morphological rules and therefore different degrees of
morphological complexity.

At the higher levels, the language analysis deals with syntax, semantics and
pragmatics. Syntax is the study of the principles and processes by which
sentences are constructed in particular languages. Semantics refers to the
meaning level of language. Pragmatics studies the ways in which context
contributes to meaning. Such a context includes for example structural and
linguistic knowledge of the speaker and listener, the context of the utterance,
any pre-existing knowledge about those involved, and the inferred intent of
the speaker. Although there is research on how syntactic, semantic and prag-
matic knowledge can improve the automatic speech recognition performance,
these areas are of greater interest in fields like natural language understand-
ing and many branches of linguistics. A way of including simple syntactic and
semantic knowledge in the process of automatic speech recognition is to use
the word context information as done with the application of the language
model.
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Signal Preprocessing

Goal of the signal preprocessing is to extract features from the speech signal
providing a compact representation of speech. The speech signal is converted
into a sequence of feature vectors. The feature vectors X = x1x2...xn from
equation 1.1 are calculated by dividing the speech signal into frames (typi-
cally 16ms). It is a common practice to let the blocks overlap (e.g. 10ms).

There are different ways of extracting features for automatic speech recog-
nition. In LVCSR, commonly used features are the Mel-Frequency Cepstral
Coefficients (MFCCs). MFCCs are the representation of the short-term cep-
strum of a sound wave, transferred on the Mel scale by using overlapping
triangular gitters.

Acoustic Modeling

In LVCSR, the acoustic is usually modeled by using phonemes as fundamental
speech units. The Hidden Markov Model (HMM) is currently the most widely
used representation of a phoneme. An HMM is a 5-tuple with the following
elements [Rab89]:

• Set of states S = {s1, s2, .., sN}.

• A continuous alphabet V = {v1, v2, .., vM} of possible emissions.

• State transition probability distributions A = {aij}, where aij is the
probability of moving from state si to sj.

• The emission probability distribution B = bj(k) which gives the prob-
ability of emitting symbol vk in state sj.

• The probability distribution π which assigns a probability to each state
Si to be the initial state.

In any discrete moment, the system is in one state si. In comparison to
a Markov Model, the current state in an HMM is unknown or “hidden”.
Observing the system leads to an indirect conclusion in which particular
state the system may be at a certain time.

The HMM representing a phoneme consists typically of three emitting states
for begin, middle and end of the phoneme. To form a word, the HMMs are
concatenated with the help of the pronunciation dictionary as illustrated in
Figure 1.3. The probability of moving to state se, given the current state
sm is ame. The output of the system depends on the emission probabilities.
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For example, the acoustic vector y3 is emitted from state sm with probabil-
ity bs−m(y3).

x1 x2 x3 x4 x5 x6 x7 x8 x9

/B/b /B/m /B/e /IH/b /IH/m /IH/e

bb(x1) bm(x2) bm(x3) be(x4) be(x5) bb(x6) bb(x7) bm(x8) be(x9)

abb amm aee abb amm aee

abm ame abm ame

/B/ /IH/

Figure 1.3 – Connected HMMs building the word ’be’.

If the emission probabilities b are probability density functions, the HMM is
called continuous. Gaussian mixture models (GMMs) are typically used to
represent the emission probability b, which makes this approach very accu-
rate. The problem is that it requires a large set of training data because there
are many parameters to be estimated. As pointed out in [You96], in English,
there are 45 phonemes used. Started with the motivation that phonemes
sound different depending on the preceding and the following phonemes due
to coarticulation effects, different acoustic models are trained for a phoneme
dependent on the context of this phoneme [Lee88]. If the left and right neigh-
bors of a phoneme are considered, i.e. using triphones or quintphones, much
more than 45 HMMs must be trained. This will lead to models not robust if
a small amount of speech data is used for training.

Semi-continuous HMMs take advantage of parameter tying. They still use
GMMs but share those models when possible. For example, phonemes with
different contexts share GMMs with different state weights. This approach
reduces the amount of parameters to be estimated and offers a compromise
between accuracy and trainability. However, to estimate which phones sound
similar in different context, a binary phonetic decision tree is used. As pro-
posed in [YOW94], binary phonetic decision trees are structures with a ques-
tion on each node that can be answered with “yes” or “no”. The questions
are related to the acoustic properties of the phoneme or its context. An ex-
ample for a binary phonetic decision tree is depicted in Figure 1.4. The end
of the phone ’t’ (tb in the Figure) surrounded by ’o’ from the left and ’uh’
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from the right (as in ’otter’), sounds the same as ’t’ surrounded by ’e’ and
’uh’ (as in ’better’). Therefore, both phones are contained in the same leaf.
The question splitting the clusters with lowest resulting entropy is placed on
the top. The algorithm terminates if either no leaf node can be split since
a split would result in not enough training data or the reduction in entropy
by splitting is lower than a given threshold. The leafs contain phones which
are acoustically similar despite their different context.

Is the left context a vowel?

Is the right context a retroflex?

te(e,uh) te(o,uh)
te(a,r) te(k,u)

te(e,uh) te(o,uh)
te(a,r)

te(e,uh) te(o,uh)te(a,r)

te(k,u)

Figure 1.4 – Binary phonetic decision tree of the phone ’t’ in different con-
texts.

Given the definition of an HMM, the following three basic problems have
to be addressed to apply HMMs to speech applications [Rab89]: Evaluation
problem, decoding problem and learning problem.

The evaluation problem of HMMs answers the question how likely is it for
a given observation to be the result from a given model. This problem is
solvable with the Forward algorithm [Rab89].

The decoding problem of HMMs needs to be solved in the decoding phase.
Given an acoustic observationX and an HMM, the hidden state sequence has
to be found. Computing the hidden state sequence is equivalent to finding
the spoken phoneme sequence. This problem can be solved by using the
Viterbi algorithm [Vit67, For73].



1.2 ASR and the Role of the Pronunciation Dictionary 9

The learning problem of HMMs relates to the training phase. The idea is
to adjust the parameters for a given HMM λ = (A,B, π), which maximize
the probability of observing an acoustic sequence X. Using the Forward-
Backward algorithm, the acoustic sequence X is used as an input to train
the model. The forward and backward variables needed for this algorithm
can be computed with the Baum-Welch method.

Language Modeling

The language model used in automatic speech recognition captures linguistic
knowledge about the language. A language model helps to direct the search
to find the most likely word sequence. Language and acoustic models are
computed separately and then connected as illustrated in equation 1.1 to
determine the most likely word sequence.

Statistical n-gram language models are common in LVCSR. An n-gram lan-
guage model can be computed from a text corpus. It is a process of counting
the occurrences of a given word W in some context called history H. The
history contains the previous n− 1 words from a text. Depending on n, the
language model can be unigram (no history considered), bigram (a context
of 2 words, i.e. history of one word considered), trigram, etc.

Given a trigram language model, the probability of a given sequence of k
words can be computed with the help of equation 1.2.

P (W1..Wk) = P (W1) ·P (W2|W1) ·P (W3|W1W2) · .. ·P (Wk|Wk−2Wk−1) (1.2)

Equation 1.3 show how to compute the probability P (Wk|Wk−2Wk−1) for the
trigramWk−2 Wk−1 Wk. In the numerator, all occurrences of the three words
in the defined order are counted and divided by the number of occurrences
of the two words in the history in the training text.

P (Wk|Wk−2Wk−1) = count(Wk−2Wk−1Wk)
count(Wk−2Wk−1) (1.3)

However, it is impossible to find training data for n-grams covering all pos-
sible word combinations of the language. To avoid the problem of assigning
a zero probability to a phrase that actually can occur as valid language con-
struct but does not appear in the training text, different language model
smoothing techniques are used [CG98].
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To measure the quality of a language model, the out-of-vocabulary rate and
perplexity can be computed on a test set text. The out-of-vocabulary rate
gives the number of tokens in a test set which are not covered by the vo-
cabulary of the language model. Depending on the LVCSR application, the
vocabulary can vary from a few thousand to millions of words. The perplexity
of a language model is derived from the entropy H of the test set W . The
entropy can be computed as follows:

H(W ) = −
∑

P (W )logP (W ) (1.4)

The perplexity is obtained as 2H(W ). For a fixed out-of-vocabulary rate,
language models with lower perplexity are usually preferred, although the
perplexity is only loosely correlated with the performance of automatic speech
recognition systems.

The quality of the n-gram language model in terms of out-of-vocabulary rate,
perplexity and final impact to automatic speech recognition performance
depends on the amount as well as the topic and time relevance of the text
data used for training the model [SGVS13].

Two or more language models can be combined by applying a linear inter-
polation to the probabilities of the two models. A linear interpolation of two
models is shown in equation 1.5.

P (word) = λ · PM1(word) + (1− λ) · PM2(word) (1.5)

PM1 denotes the probability provided by the first model and PM2 the prob-
ability from the second model. The weight λ is usually optimized on a test
set text.

To retrieve relevant texts from the Web for language modeling, search queries
are often used [BOS03, SGG05]. Usually, search queries are made by ex-
tracting characteristic words of domain-specific documents or Web pages by
calculating a Term-Frequency Inverse-Document-Frequency (TF-IDF) score
which reflects how important a word is to a document in a collection or
corpus [SGN, MK06, LGS08, LGP08]. To cover more context in the search
queries, bigrams or higher order n-grams are typically scored, and those with
the highest scores are used as search queries. A TF-IDF score for a bigram
is computed as shown in equation 1.6.
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scorei = tfi∑
j tfj

ln( N
dfj

), (1.6)

where tfi is the frequency and dfi is the document frequency of bigram i and
N is the total number of downloaded documents.

Pronunciation Dictionary

The pronunciation dictionary is a mapping between lexical units – usually
words – and their pronunciations. Different pronunciation dictionaries can
be used for training and decoding. Pronunciation dictionaries are referred
to as just “dictionary” or substituted with the term “lexicon”. There is
no standard dictionary format. Usually it is a list with words as keys and
pronunciation sequences as values.

As a word can have multiple pronunciations, the relationship between a word
and its pronunciation is not always a 1:1 relation but due to pronunciation
variations a 1:M relation.

The keys (words) of the dictionary are language-dependent and are words
in the surface form of the language to be recognized. The pronunciations
of the words is given as phonetic transcriptions defining how the words are
pronounced. There are standard phonetic transcriptions systems such as
IPA [IPA99] and ARPAbet [arp].

For example, dictionary entries of English words and their pronunciations in
ARPAbet look as follows [Mih11]:

efficient IH F IH SH AX N T
efficient(2) IX F IH SH AX N T
efficiently IH F IH SH AX N T L IY

In addition to the conventional use of phonemes in the pronunciations, gra-
phemes or syllables can be used as subword modeling units. Such dictionaries
are employed in automatic speech recognition systems of languages with a
rather close grapheme-to-phoneme relationsship and are cheap to set up, as
we describe in Section 1.4.6.

Furthermore, dictionaries with weighted pronunciation variants can help to
improve automatic speech recognition system performance in cases of large
numbers of pronunciation variants as reported in [AHHL+09].
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Search

The task of the automatic speech recognition is to find the most likely word
sequence Ŵ corresponding to a spoken speech utterance. Generally, decoding
is a search problem. A commonly employed algorithm is the Viterbi search.
The search space can be represented as a graph. As it is usually very large,
some techniques for accelerating the search performance are used. There are
two widely employed techniques for faster search algorithms: Sharing and
pruning. The key step in the construction of the search space is building a
complete determined and minimized graph from the dictionary as shown in
Figure 1.5. This graph is built from subword parts (phones) with the help of
the pronunciations defined in the dictionary. Words that contain the same
prefixes share arcs in the tree. The internal nodes represent phones, the leafs
contain words.

/T/ /UW/ /L/ tool

/TH/

/ZH/ tools

tooth

to

two

Figure 1.5 – Search graph.

The deficiency of this model is that language model probabilities can be used
after the word is known (once a word-node is reached). This issue can be
solved with the language mode probabilities distributed among the subword
parts rather than only on path ends.

If a unigram language model is used, the structure in Figure 1.5 works well.
However, for higher order language models, multiple copies of lexical trees
have to be traversed. To handle the higher complexity of the search space,
two possibilities are listed:
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• Static decoder with precomputed search network containing language
model, dictionary and acoustic model information (Finite State Trans-
ducer) [MPR01].

• Dynamic generation of the n-gram search space via graph search algo-
rithms (dynamic decoder) [SSK10, RHL+11].

In this work, we conducted our automatic speech recognition experiments
with the dynamic decoder of the Janus Recognition Toolkit (JRTk) [FGH+97,
SMFW01].

Measuring Automatic Speech Recognition Performance

The standard metric to evaluate an automatic speech recognition system
is the word error rate (WER) which is based on the Levenshtein edit dis-
tance [Lev66]. The output of the decoding process is a hypothesis for what
has been spoken. Comparing the hypothesis with the reference text which is
the true transcription of what is said, gives a score in terms of the percent-
age of errors made. The following errors can occur after the alignment of the
hypothesis and the reference text:

• Substitution: A word is misrecognized.

• Deletion: A word from the reference is missing in the hypothesis.

• Insertion: The recognizer inserts a word that is not actually spoken.

Figure 1.6 demonstrates the errors that an automatic speech recognition
system can make. On the vertical axis is the reference, and horizontally the
output sequence of the system.

To compute the word error rate after identifying these errors, the following
equation is used:

WER [%] = #substitutions+ #deletions+ #insertions
#words (reference) · 100 (1.7)

The equation above shows that the word error rate can exceed 100% in the
case when automatic speech recognition systems tend to insert words.

Often, the performance of an automatic speech recognition system is reported
as the word accuracy (WA):

WA [%] = (1−WER) · 100 (1.8)
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text

reference substitution

correct deletion

a

is insertion

this

this is the a hypothesis text

Hypothesis

R
ef
er
en

ce

Figure 1.6 – Possible errors of an automatic speech recognition system.

1.3 Rapid Adaptation of Automatic Speech
Recognition Systems to new Domains
and Languages

Efforts for Rapid Language Adaptation

With more than 7,100 languages in the world [LSF14] and the need to support
multiple languages, it is one of the most pressing challenges for the speech
and language community to develop and deploy speech processing systems
in yet unsupported languages rapidly and at reasonable costs [Sch04, SK06,
SVS13]. Major bottlenecks are the sparseness of speech and text data with
corresponding pronunciation dictionaries, the lack of language conventions,
and the gap between technology and language expertise.

Data sparseness is a critical issue due to the fact that today’s speech tech-
nologies heavily rely on statistically based modeling schemes, such as Hidden
Markov Models and n-gram language modeling. Although statistical model-
ing algorithms are mostly language independent and proved to work well for
a variety of languages, reliable parameter estimation requires vast amounts
of training data. Large-scale data resources for research are available for
less than 100 languages and the costs for these collections are prohibitive to
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all but the most widely spoken and economically viable languages [SVS13].
The lack of language conventions concerns a surprisingly large number of
languages and dialects. The lack of a standardized writing system for ex-
ample hinders Web harvesting of large text corpora and the construction of
pronunciation dictionaries.

Despite the well-defined process of system building, it is cost- and time-
consuming to deal with language-specific peculiarities, and requires substan-
tial language expertise. Unfortunately, it is extremely difficult to find system
developers who have both, the necessary technical background and the native
expertise of a language in question. As a result, one of the pivotal issues for
developing speech processing systems in multiple languages is the challenge
of bridging the gap between language and technology expertise [Sch04].

As stated in [SVS13], the standard way of building speech applications for an
unsupported language is to collect a sizable training corpus and to train sta-
tistical models for the new language from scratch. Considering the enormous
number of languages and dialects in the world this is clearly a suboptimal
strategy, which highlights the need for more sophisticated modeling tech-
niques. It would be desirable to develop models that can take advantage of
similarities between dialects and languages of similar type, and models which
can share data across different varieties. This would have two benefits, first
leading to truly multilingual speech processing which can handle common
phenomena such as code switching, and second providing models which are
likely to be more robust toward dialectal and cross-lingual accent variations.
These multilingual shared models can then be used as seed models to jump-
start a system in an unsupported language by efficiently adapting the seeds
using limited data from the language in question. We refer to this develop-
ment strategy as rapid language adaptation. Particularly, since the IARPA6

Babel program [GKRR14] develops technologies to enable rapid deployment
of spoken term detection systems for low-resource languages, rapid language
adaptation attracts more interest.

In the following sections, we introduce our Rapid Language Adaptation
Toolkit [SBB+07, VSKS10, SVS13], which we use to rapidly build speech
processing systems for unsupported languages and which we extended with
many of the tools implemented in this work.

6Intelligence Advanced Research Projects Activity
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Rapid Language Adaptation Toolkit

The project SPICE (Speech Processing - Interactive Creation and Evalua-
tion) (NSF, 2004-2008) performed at the Language Technologies Institute at
Carnegie Mellon University (CMU) [SBB+07] and the Rapid Language Adap-
tation project at the Cognitive Systems Lab (CSL) at Karlsruhe Institute of
Technology (KIT) [VSKS10, SVS13] aim at bridging the gap between the
language and technology expertise. For this purpose the Rapid Language
Adaptation Toolkit (RLAT7) provides innovative methods and interactive
Web-based tools to enable users to develop speech processing models, to
collect appropriate speech and text data to build these models, as well as
to evaluate the results allowing iterative improvements. The toolkit signif-
icantly reduces the amount of time and effort involved in building speech
processing systems for unsupported languages.

In particular, the toolkit allows the user to (1) design databases for new
languages at low cost by enabling users to record appropriate speech data
along with transcriptions, (2) to continuously harvest, normalize, and pro-
cess massive amounts of text data from the Web, (3) to select appropriate
phoneme sets for new languages efficiently, (4) to create vocabulary lists,
(5) to automatically generate pronunciation dictionaries, (6) to apply these
resources by developing acoustic and language models for automatic speech
recognition, (7) to develop models for text-to-speech synthesis, and (8) to
finally integrate the built components into an application and evaluate the
results using online speech recognition and synthesis in a talk-back function
[SBB+07].

RLAT and SPICE leverage the two projectsGlobalPhone [SVS13] and FestVox
[BL00] to implement bootstrapping techniques that are based on extensive
knowledge and data sharing across languages, as well as sharing across sys-
tem components [SBB+07]. Examples for data sharing techniques are the
training of multilingual acoustic models across languages based on the defi-
nition of global phone sets. Sharing across components happens on all levels
between recognition and synthesis, including phoneme sets, pronunciation
dictionaries, acoustic models, and text resources.

RLAT and SPICE are a freely available online service which provide an in-
terface to the Web-based tools and have been designed to accommodate all
potential users, ranging from experts to users with little background knowl-
edge in speech processing. Users with little background are able to read

7http://csl.ira.uka.de/rlat-dev
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easy-to-follow, step-by-step guidelines as they build a speech processing sys-
tem. Expert users can skip past these instructions. In addition, file-uploading
routines allow for feeding the bootstrapping algorithms with available data
and thus shortcut the process. As a result the tools collect information from
the broadest array of people: A general audience of Internet users who may
have little experience with speech tools, and a specific audience of speech and
language experts, who can use data they already have. By keeping the users
in the developmental loop, the RLAT and SPICE tools can learn from their
expertise to constantly adapt and improve the resulting models and systems.

The tools are regularly used for training and teaching purposes at two univer-
sities (KIT and CMU). There, students are asked to rely solely on the tools
when building speech processing systems and report back on problems and
limitations of the system. Results indicate that it is feasible to build end-to-
end speech processing systems in various languages (more than 15) for small
domains within the framework of a six-week hands-on lab course [SBB+07].

Within this work, we applied, implemented, enhanced and embedded sev-
eral tools of the Rapid Language Adaptation Toolkit: We used the Rapid
Language Adaptation Toolkit to bootstrap automatic speech recognition sys-
tems for Eastern European languages and to optimize the language model
qualities with large quantities of text material from the Internet crawled in
only 20 days [VSKS10]. Furthermore, we included a Web-interface where
native speakers can normalize crawled text, thereby providing a parallel cor-
pus of normalized and non-normalized text [SZGS10, SZLS13]. With this
corpus, statistical machine translation models are generated to translate
non-normalized into normalized text. Moreover, we implemented the Au-
tomatic Dictionary Extraction Tool which is a component to retrieve Web-
derived pronunciations [SOS14, SOS10]. Additionally, we implemented an
RSS parser into the Rapid Language Adaptation Toolkit. As described
in [SGVS13], it takes RSS Feeds, extracts the URLs with the publishing
date and collects the texts of the corresponding Web pages preserving the
time information. Recently, we developed RLAT light suited for entirely
novices with simplified functionalities, step-by-step guidelines for an efficient
task accomplishment and more precise feedback from the system [He14].

Figure 1.7 demonstrates the main page with a list of major components of
our Rapid Language Adaptation Toolkit.
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Figure 1.7 – Steps to build automatic speech recognition and synthesis sys-
tems with the Rapid Language Adaptation Toolkit.

GlobalPhone - AMultilingual Text and Speech Database

For most of our experiments described in this thesis we use the GlobalPhone
data. GlobalPhone [Sch02, SVS13] is a multilingual data corpus developed
in collaboration with the Karlsruhe Institute of Technology (KIT). The com-
plete data corpus comprises (1) audio/speech data, i.e. high-quality record-
ings of spoken utterances read by native speakers, (2) corresponding tran-
scriptions, (3) pronunciation dictionaries covering the vocabulary of the tran-
scripts, and (4) baseline n-gram language models.

The entire GlobalPhone corpus provides a multilingual database of word-
level transcribed high-quality speech for the development and evaluation of
large vocabulary speech processing systems in the most widespread languages
of the world [Sch02, SVS13]. GlobalPhone is designed to be uniform across
languages with respect to the amount of data per language, the audio quality
(microphone, noise, channel), the collection scenario (task, setup, speaking
style), as well as the transcription and phoneme set conventions (IPA-based
naming of phones in all pronunciation dictionaries). Thus, GlobalPhone sup-
plies an excellent basis for research in the areas of (1) multilingual speech
recognition, (2) rapid deployment of speech processing systems to yet unsup-
ported languages, (3) language identification tasks, (4) speaker recognition
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in multiple languages, (5) multilingual speech synthesis, as well as (6) mono-
lingual speech recognition in a large variety of languages.

As a part of this thesis, we have collected Hausa in Cameroon [SDV+12],
Ukrainian in Donezk [SVYS13], Vietnamese in Hanoi [VS09], Swahili in
Nairobi, and an accented speech database [Mih11] with native speakers of
Bulgarian, Chinese (Mandarin or Cantonese), German and some of the lang-
uages spoken in India (Hindi, Marathi, Bengali, Telugu, Tamil) speaking
English [SVS13, SS14].

1.4 Pronunciation Generation

For the automatic and semi-automatic pronunciation generation of written
languages, a correct mapping of a language’s graphemes to a sequence of
symbols representing its corresponding acoustic units – mostly in terms of
phonemes – is very important. An accurate mapping garantees a higher
recognition quality of an automatic speech recognition system [GN14]. Oth-
erwise an acoustic model trained with suboptimal data is used during the
decoding process for the calculation of scores. However, a grapheme-to-
phoneme mapping is not always straightforward due to the fact that there
is a variety of languages with differing types of writing systems and various
degrees of complexity in the relationship between graphemes and phonemes.

In the following sections we present the different types of writing systems
together with the correspondence between their graphemes and phonemes.
Afterwards, we give an impression of a manual pronunciation generation and
motivate the support of automatic methods. Finally, we present fully and
semi-automatic state-of-the-art approaches as well as the economic applica-
tion of graphemic pronunciation dictionaries.

1.4.1 The International Phonetic Alphabet

The International Phonetic Alphabet (IPA) [IPA99] offers a standard way of
describing and categorizing the sounds produced when speaking. The current
version of the IPA chart from 2005 contains 107 IPA symbols describing the
basic consonants and vowels. These can be extended with the help of 31
diacritics that mark the place of articulation and 19 additional symbols for
denoting sound properties such as length, tone, and stress.
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IPA is conceptualized to represent one symbol for each verbalizable sound
in all languages in the world. It reduces ambiguity in labeling phonemes
and is used in many dictionaries, e.g. Oxford, Cambridge, Collins, and Lan-
genscheidt. Several ASCII-based keyboard transliterations of IPA exist, e.g.
SAMPA [Wel97], X-SAMPA, and Arpabet [arp].

In the IPA charts the different sounds are also classified as consonants and
vowels. This mapping is shown in Figure 1.8 and Figure 1.9.

Figure 1.8 – IPA vowel chart [IPA99].

Figure 1.9 – IPA consonant chart [IPA99].
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1.4.2 Correspondence between Graphemes and Phonemes

The different types of writing systems with varying degree of complexity in
the relationship between graphemes and phonemes are usually categorized
as follows [omn14, GN14]:

• Alphabets

• Abjads

• Syllabic alphabets

• Semanto-phonetic writing systems

Alphabets

In general, alphabets represent sounds of a language and consist of a set
of letters, i.e. written or printed signs mainly each representing a sound in
speech. Languages using alphabetic scripts are characterized by mainly three
types of relationships between letters and sounds [GN14]: (1) a single letter
or a group of letters represent a single sound, (2) a letter or a group of letters
corresponds to many sounds depending on the context or specific rules and
(3) a variety of letters or combination of letters represent a single sound.

Some alphabetic scripts have a rather close grapheme-to-phoneme relation-
ship, e.g. Bulgarian, Czech, Polish, and Spanish. Others are characterized of
a weaker relationship, e.g. Portuguese, French, and German. English is an ex-
ample for a more ambiguous relationship: There one letter can represent a va-
riety of sounds conditioned by complex rules and many exceptions [WSS+00].
In [SS14] and [SOS12b], we investigated the grapheme-to-phoneme relation-
ships of ten languages with alphabetic scripts. Our analyses are described in
Section 4.1.

Abjads

The abjads, a subcategory of alphabets, consist of letters for consonants but
vowels are often not marked [GN14]. If they are marked, it is typically done
with diacritics below or above each letter. Abjads are usually written from
right to left. They are used for example in Arabic, Hebrew and Syriac. In
Arabic the letters even change their appearance depending on their position
in a word. The major problem for the production of pronunciation dictio-
naries for those languages is the absence of the diacritics in most texts which
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mark the vowelization. “shadda” is the only diacritic which appears in sev-
eral modern Arabic scripts [SNV08]. Native speakers distinguish the right
pronunciation and the correct meaning of a word without diacritic marks in
an automatic way by considering the context and the position of the word
in a sentence. Their knowledge of Arabic grammar and vocabulary enable
them to correctly vocalize words in written texts based on the context. A
full vowel indication is only used for some political and religious texts as well
as in textbooks for beginners of the Arabic language [ZSS06].

For Arabic there are on average 2.9 possible vowelizations for a given written
word. To generate pronunciations for Arabic words, it is essential to deal
with this ambiguity. There are several approaches to restore the missing
diacritics [SNV08]. However, the accuracy of the automatic diacritization
systems stays low, being in the range of 15-25% word error rate [GN14].
[ANX+05] report that a phoneme-based approach which requires the miss-
ing diacritics performs 14% better than a grapheme-based approach which
used the characters without diacritics as acoustic units. In 2009 [EGMA09]
reported that this accuracy gap can be neutralized by increasing the number
of Gaussian densities in context-dependent acoustic models or the amount
of transcribed audio data for training. However, the diacritization is still
important for speech synthesis and machine translation applications.

Syllabic Alphabets

Syllabic alphabets are also called alphasyllabaries and abugidas. Each graph-
eme in such alphabets represents one syllable. The syllables contain conso-
nants with a corresponding vowel which can be changed to another vowel or
muted with the help of diacritics [GN14, omn14]. In addition, diacritics are
used to separate vowel letters when they appear at the beginning of sylla-
bles or on their own. Syllabic alphabets are used by Thai, Tamil, Bengali,
Khmer, Lao, Lanna and other languages in South and South East Asia. Un-
fortunately, automatic speech recognition literature is not yet very advanced
for most of these languages.

More literature exists for Thai. [SCB+05] report a relatively poor grapheme-
to-phoneme relationship for this language. However, [CHS06] built a grapheme-
based system with an enhanced tree clustering which outperforms a phoneme-
based one with an automatically generated dictionary and reaches almost
the performance of a phoneme-based system with a handcrafted dictionary.
Moreover, [SSB+08] show a comparable performance between a phoneme-
and a grapheme-based Khmer system.
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Semanto-Phonetic Writing Systems

Semanto-phonetic writing systems are also called logophonetic, morphophone-
mic, logographic and logosyllabic. In such writing systems the symbols
may represent both sound and meaning [GN14]. The following types of
symbols are included: (1) Pictograms or pictographs, (2) logograms, (3)
ideograms or ideographs, and (4) compound characters. Pictograms or pic-
tographs resemble the what they represent. Logograms represent parts of
words or whole words. Ideograms or ideographs represent graphically abstract
ideas. Compound characters consist of a phonetic element and a semantic
element [omn14].

The Japanese Kanji and Chinese are two semanto-phonetic writing sys-
tems. The Chinese script comprises ideograms and mostly compound char-
acters [omn14]. Each character represents one syllable. However, multi-
ple characters correspond to one syllable, each one with different meaning.
Thus, semanto-phonetic scripts are a challenge for the pronunciation gener-
ation [SW01]. Existing tools which convert the semanto-phonetic characters
can be used for Chinese and Japanese [RSW99, SW01, SCT04]. Then the
pronunciation can be derived easier from the converted strings. In the case
of Chinese the characters are often converted to the Pinyin transcription, a
widely used transcription with the Latin alphabet. There the grapheme-to-
phoneme relationship is much more straightforward. However, the transcrip-
tion is a complex task since about 13% of the Chinese characters have more
than one pronunciation [RSW99].

1.4.3 Manual Pronunciation Generation

Generating pronunciations by hand, without any automatic support, can be
very time-consuming. For example, [DB04c] report that producing a pronun-
ciation for an Afrikaans word takes between 19.2 and 30 seconds on average.
The average times were computed on a set of 1,000 words. 19.2 seconds
was the fastest average time observed in their lab using a proficient pho-
netic transcriber, and represents an optimistic time estimate. Consequently,
with only one annotator it would take between 8.9 and 13.9 days to com-
pile a whole Afrikaans dictionary containing 40,000 words plus periods for
pauses. Note that Afrikaans is a Germanic language with a fairly regular
grapheme-to-phoneme relationship.

The annotation process can be done in parallel. However, multiple annotators
may produce inconsistent and flawed pronunciations due to different subjec-
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tive judgments, small typographical errors, and ’convention drift’ [SDV+12].
Therefore, the manual work is usually supported with automatic methods.

1.4.4 Automatic Pronunciation Generation

Rule-based Grapheme-to-Phoneme Conversion

In case of a close relationship between graphemes and phonemes, defining
rules by hand can be efficient. The best case is a 1:1 relationship where the
number of grapheme-to-phoneme conversion rules to be defined would corre-
spond to the number of letters. If no wide context information is necessary
for a good grapheme-to-phoneme conversion, it can be implemented by search
and replace rules. Knowledge-based approaches with rule-based conversion
systems can typically be expressed as finite-state automata [KK94, BLP98].
However, for languages with loose grapheme-to-phoneme relationships, these
methods often require specific linguistic skills and exception rules formulated
by human experts.

The advantage of a rule-based grapheme-to-phoneme conversion in contrast
to data-driven approaches is that no sample word-pronunciation pairs are
required to train the converters. However, if defining the rules for lang-
uages with a more complex grapheme-to-phoneme relationship becomes an
elaborate task, it is better to generate training data in terms of sample word-
pronunciation pairs and use data-driven approaches. For example, for the
creation of the Ukrainian GlobalPhone dictionary, we elaborated and ap-
plied 882 search-and-replace rules based on [BMR08] to produce phoneme
sequences for our Ukrainian words, as described in [SVYS13].

Data-driven Grapheme-to-Phoneme Conversion

In contrast to knowledge-based approaches, data-driven approaches are based
on the idea that, given enough examples, it should be possible to predict
the pronunciation of unseen words purely by analogy. The benefit of the
data-driven approach is that it trades the time- and cost-consuming task of
designing rules, which requires linguistic knowledge, for the much simpler
one of providing example pronunciations.

[Bes94] propose data-driven approaches with heuristic and statistical meth-
ods. In [Kne00], the alignment between graphemes and phonemes is gen-
erated using a variant of the Baum-Welch expectation maximization al-
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gorithm. [Che03, VALR03, JKS07, BN08] use a joint-sequence model to
the grapheme-to-phoneme conversion task. [Nov11] and [NMH12] utilize
weighted finite-state transducers for decoding as a representation of the
joint-sequence model. [GF09], [LDM09], and [KL10], apply statistical ma-
chine translation-based methods for the grapheme-to-phoneme conversion. A
good overview of state-of the art grapheme-to-phoneme conversion methods
is given in [HVB12]. Data-driven methods are applied commonly and cross-
checks of the generated pronunciations are often not performed [LCD+11]
because a manual check is time-consuming and expensive, especially if native
speakers or linguists need to be hired for this task. Following the literature,
we denote a statistical model for the grapheme-to-phoneme conversion as
grapheme-to-phoneme model.

As Sequitur G2P, which uses joint-sequence models for the grapheme-to-
phoneme conversion task, usually gives the best performance [BN08, HVB12,
SQS14], we used it for training and applying grapheme-to-phoneme models
for most of our experiments. Therefore, we introduce Sequitur G2P in the
following paragraph.

Sequitur G2P

Sequitur G2P is a data-driven grapheme-to-phoneme converter developed at
RWTH Aachen University [BN08]. It is open source software and in exper-
iments it has shown favorable results when compared to other grapheme-
to-phoneme tools. Sequitur G2P employs a probabilistic framework based
on joint-sequence models. Such models consist of units called multigrams
or graphones, which carry both input and output symbols (graphemes and
phonemes). The effective context range covered by a model is controlled
by the maximum length L of graphones and the n-gram order M of the
sequence model. A graphone of length L carries 0 to L graphemes and 0
to L phonemes, with the non-productive case of both 0 graphemes and 0
phonemes being excluded. The simplest case of L=1 is called a singular gra-
phone and corresponds to the conventional definition of a finite state trans-
ducer. Several previous experiments have shown that singular graphones in
combination with long-range M -grams yield the best performance [BN08].
Typically, M should be in the order of the average word length for maxi-
mum accuracy as described in [BN08]. This value naturally differs between
our project languages, so we settled on the lowest common average value for
the sake of comparability. Therefore, in most experiments we chose to train
models using the parameters L=1 and M=6.
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Figure 1.10 – Sequitur G2P model performance over n-gram order M .

Figure 1.10 also confirms that M=6 is a reasonable choice. We illustrate the
performance of grapheme-to-phoneme models of four languages with differ-
ing grade of grapheme-to-phoneme relationship and varying model sizes M
trained with 10k word-pronunciation pairs. The performance is expressed by
the edit distance between the hypotheses and the canonical reference pro-
nunciations at the phoneme level denoted as phoneme error rate (PER). We
regard pronunciations which are closer to our high-quality reference pronun-
ciations as better since they minimize the human editing effort in a semi-
automatic pronunciation dictionary development, as we show in Section 5.3.
For all four languages, we observe that M larger than 3 tend to asymptote
and give no much performance improvement. Consequently,M=6 is a choice
which is not too conservative.

During the iterative training process, Sequitur G2P uses an expectation max-
imization algorithm to estimate the model. To avoid the problem of over-
fitting, evidence trimming and discounting is performed. Since the discount
values need to be optimized on a data set that is separate from the data
that is used to compute the evidence values, we let Sequitur G2P select a
random 5% of our training data as held-out development set. The removal
of this data from the training set has a noticeable negative effect on model
performance. Because of this, Sequitur G2P does a ‘fold-back’ training: The
held-out data is added back to the training set after the training process
has converged. The training then continues with the previously calculated
discount parameters until further convergence.
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1.4.5 Semi-Automatic Pronunciation Generation

In semi-automatic dictionary generation processes like [MBT04], [DM09],
and [SBB+07] native speakers enter pronunciations as phoneme strings. To
reduce difficulty and effort of pronunciation generation, the learned rules are
iteratively updated and the user is provided with potential pronunciations.
Additionally, he or she can listen to a synthesized sound file of the entered
pronunciation.

[MBT04] and [DM09] display the words according to their occurrence fre-
quencies in a text corpus. By covering common words early, word error rates
in automatic speech recognition are minimized for an early training and de-
coding. [Kom06] and [KB06] order the words according to their n-gram
coverage to learn many grapheme-to-phoneme relations early. [DB04b] and
[DB04c] prefer short words over longer words to alleviate the correction ef-
fort for human editors. While [DM09] use a phoneme set defined by linguists,
[Kom06] infers a phoneme set in an automatic way: An initial phoneme rec-
ognizer is trained on a grapheme-based dictionary. Based on audio recordings
and transcriptions, acoustic model units are adapted based on Merge&Split.

Some approaches update the grapheme-to-phoneme model after each word
[DM09, SBB+07]; others combine incremental updates and periodic rebuild-
ing [Kom06, DB05]. In [MBT04] and [DFG+05], the user decides about the
creation of new grapheme-to-phoneme models. [DB05] introduce a data-
adaptive strategy, updating the grapheme-to-phoneme model after the pro-
nunciations of 50 words needed to be corrected. While [DM09] start with an
empty dictionary, [MBT04] manually generate pronunciations for the most
frequent 200–500 words in a text corpus. [SBB+07] initializes the pronuncia-
tion generation with a substitution of graphemes with the most commonly
associated phonemes (1:1 G2P mapping) entered by the user.

[Kom06] records 20 minutes of speech and builds an initial dictionary auto-
matically based on the grapheme-based phoneme set, acoustic information
and their transcriptions.

1.4.6 Graphemic Pronunciation Dictionaries

Whereas the phoneme-based techniques are based on pronunciation rules,
which are either manually created by linguists or native speakers or statis-
tically derived from available data sets [BD12], the grapheme-based (also
called “graphemic”) method uses graphemes as subword modeling units.
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Directly using graphemes as acoustic units is fully automatic and less costly.
Generally, the grapheme-based method does not perform as well as the phon-
eme-based methods. However, some studies have demonstrated that the
performance of grapheme-based automatic speech recognition systems de-
pends on the nature of the grapheme-to-phoneme relationship of the target
language [BD12, KSS03, KN02, SS04]. For example, [KN02] report a rel-
ative word error rate increase of 2% for Dutch, German and Italian using
graphemes as acoustic units instead of phonemes, while for English 20%.
[BD12] shows for Afrikaans that the performance of the grapheme-based
approach is dependent on word categories: For spelled out words, proper
names, spelling errors, partial words, and multi-category words, they observe
lower word error rates with graphemic pronunciations than with pronunci-
ations which have been generated automatically using Afrikaans grapheme-
to-phoneme rules. The overall word error rate of the grapheme-based system
converges to the performance of the phoneme-based system as the train-
ing data size in terms of transcribed audio data increases. Additionally,
a study with Russian demonstrated that the grapheme-based system per-
formed almost as well as the phoneme-based one [SS04]. Table 1.1 shows
our performances of phoneme-based and grapheme-based systems in Czech
(cs), German (de), English (en), Spanish (es), French (fr), Polish (pl) and
the African language Hausa (ha) together with the relative word error rate
(WER) increase of the grapheme-based systems compared to the phoneme-
based ones. Since Spanish has a close grapheme-to-phoneme relationship, we
expected a smaller word error rate difference between the grapheme- and the
phoneme-based systems. A possible reason may be local accents and incon-
sistent pronunciations in the audio data recorded in Costa Rica. For some
languages the grapheme-based approach even outperforms manually cross-
checked phoneme-based dictionaries. For example, in [SDV+12] we report a
slightly better grapheme-based GlobalPhone Hausa system even after several
cross-checks.

cs de en es fr pl ha
Phoneme-based WER 15.62 17.11 11.52 11.97 20.41 14.98 14.22
Grapheme-based WER 17.56 17.83 19.15 14.06 23.36 15.38 13.57
Rel. WER increase 12.42 4.21 66.23 17.46 14.45 2.67 -4.57

Table 1.1 – Word error rates (%) with phoneme-based and grapheme-based
dictionaries.

Furthermore, grapheme-based systems have proven to enhance automatic
speech recognition system performance in a confusion network combination
if the grapheme-based system is reasonable close in performance to the other
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systems of the combination and produces an output with errors that are
different to those of the other systems [LCD+11, SDV+12].

1.5 Structure of this Thesis

This thesis is structured as follows: In Chapter 1, we have introduced the
reader to the purpose of this thesis and the required background. In Chap-
ter 2, we will demonstrate the challenges to build pronunciation dictionaries
for new domains and languages. Chapter 3 presents our strategies for an effi-
cient vocabulary selection and text normalization. In Chapter 4, we propose
our methods to assure the quality of the pronunciations. Then we demon-
strate our solutions for the pronunciation generation in different scenarios
from Chapter 5 to Chapter 8. We conclude the thesis in Chapter 9.

Figure 1.11 – Structure of the experiments and results.

This thesis aims at investigating, analyzing, and improving all parts of the
pronunciation dictionary generation processing chain. In order to obtain a
structured description, the results are arranged in relation to this processing
chain.
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This concept is depicted in Figure 1.11. The top row shows the main build-
ing blocks of the dictionary development process, i.e. vocabulary definition,
pronunciation generation, and quality assurance. Our contributions for lang-
uages with writing system are depicted in the upper part, for non-written
languages in the lower part.

After introducing the challenges we tackle, we begin with the first building
block “Vocabulary definition” in Chapter 3, where we show how to define
the vocabulary for the pronunciation dictionary. For languages with writing
system, we describe our methods to define the vocabulary of the dictionary
with the help of Web texts and to rapidly develop text normalization sys-
tems at low cost with the help of crowdsourcing. For non-written languages
and dialects, we exhibit our algorithm using cross-lingual word-to-phoneme
alignment to segment phoneme sequences into word units and induce a vo-
cabulary.

The second building block “Pronunciation generation” is divided into four
chapters (Chapter 5, 6, 7, 8). We devote a lot of space to investigation since
this process usually takes most effort and can be the biggest challenge. In
Chapter 5 we demonstrate how dictionary entries from websites or derived on
crowdsourcing platforms can contribute to a rapid and cheap semi-automatic
pronunciation dictionary development. In Chapter 6 we present our ap-
proaches for a cross-lingual grapheme-to-phoneme modeling-based pronun-
ciation generation. We address the problem of detecting foreign words for a
separate handling and a lexical adaptation to speakers with accent in Chap-
ter 7. Chapter 8 demonstrates our methods to gain a pronunciation dictio-
nary for non-written languages which enables an automatic “invention” of a
writing system for the target language.

The error recovery methods belong to the third building block “Quality assur-
ance” and cover both languages with and without writing system. Before we
characterize our contributions for the rapid pronunciation generation, we first
introduce our methods to detect and revise faulty and inconsistent pronun-
ciations and improve quality beyond state-of-the-art methods in Chapter 4
since we deploy these methods in our solutions to assure qualified pronunci-
ations.

We conclude this thesis with a chapter of summary and future work.



Chapter 2
Challenges of Dictionary

Generation for new Domains and
Languages

In this chapter, we introduce the challenges to build pronunciation dictio-
naries for new domains and languages. For the pronunciation generation we
describe scenarios depending on the available resources for which we demon-
strate our solutions in this thesis.

2.1 Vocabulary Selection and Text Normal-
ization

2.1.1 Vocabulary

It is an important task to find an appropriate vocabulary to train and decode
automatic speech recognition systems due to the following reasons: In the
automatic forced alignment process, feature vectors are assigned to the HMM
states for training HMM-based systems. To avoid alignment errors in this
process, covering the whole vocabulary of the training transcriptions together
with corresponding pronunciations is essential. Furthermore, the decoding
vocabulary should fit the expected vocabulary in the audio to decode.
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How to select the search vocabulary for an unknown domain and an unseen
test set, respectively? It is important to collect words which are time- and
topic-relevant for the domain of the automatic speech recognition system. If
the vocabulary is too small, the system has a high out-of-vocabulary rate, i.e.
the missing words cannot be recognized which leads to errors and follow-up
errors. A decoding vocabulary that contains words not matching the target
domain may result in confusion errors. Researchers and developers have used
the World Wide Web as a source to find relevant words (Crawling) based on
word frequency and time relevance [SGVS13].

Appropriate vocabulary sizes are dependent on the language and on the task:
For example, Slavic languages are characterized by a rich morphology, caused
by a high inflection rate of nouns using various cases and genders. With 293k
words in our GlobalPhone Russian pronunciation dictionary, we report an
out-of-vocabulary rate of 3.9% in the domain of national and international
political and economic news, while for Spanish a vocabulary size of only
19k is sufficient to obtain an out-of-vocabulary rate of 0.1% in the same
domain [SVS13].

In Section 3.1.2, we present our strategies for the collection of Web texts to
define the vocabulary of the dictionary.

Vocabulary for Non-written Languages

A large number of languages in the world do not have an acknowledged
written form. [LSF14] report that approximately 50% of the 7,100 languages
have a writing system. It is known that 696 are unwritten languages. For
2,839 languages, [LSF14] have no information if they are written or unwritten.
These numbers show that if the goal is to provide speech technology for all
languages in the world one day, solutions to rapidly establish systems for
non-written languages are required.

If the target language does not have a written form, it is possible to de-
fine one. However, defining a writing system and training people to use it
consistently is in itself very hard and prone to inconsistencies (e.g. Iraqi Ara-
bic transcription techniques in the Transtac Speech to Speech Translation
Project, see [BZG06]).

In contrast to the arduous process of inventing a writing system for non-
written languages and dialects, we consider the following scenario to rapidly
and economically induce a vocabulary [SW08, SBW09, SSVS12, SSVS13,
SSVS14b]: Assuming a recording of spoken phrases is available, the corre-
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sponding phonetic transcription can be received using a phoneme recognizer.
However, the resulting phoneme sequence does not imply any information
about the word boundaries. Since exploiting the written translation of the
spoken phrases has proven to outperform monolingual approaches, we use
it to segment the phoneme sequence into word pseudo units. These word
units may be represented by their phoneme sequence or in an orthographic
representation after applying phoneme-to-grapheme rules of a related lan-
guage. The assumption is that a human translator produces utterances in
the (non-written) target language from prompts in a resource-rich source
language. We align source language words to target language phoneme se-
quences across languages, i.e. cross-lingually. Based on this alignment, we
induce phoneme sequences forming words of the target language.

Figure 2.1 – Basic scenario for English-Klingon (non-written).

Figure 2.1 demonstrates the scenario that we investigate1, and shows which
resources are assumed to be available [SSVS13]. English serves in this ex-
ample as the resource-rich source language. We have chosen the constructed
language Klingon [Okr08] spoken by the fictional Klingons in the Star Trek
universe to represent a completely unknown under-resourced target language.
We assume that we are able to peacefully convince a Klingon understanding
English to speak Klingon translations of English sentences – in this case “I
am sick” and “I am healthy”. These written English sentences may have been
generated by an English automatic speech recognition system. Based only
on this limited knowledge, an English speaker may hypothesize that /j//i/,
/p//i//v/ and /r//o//p/ are phoneme clusters corresponding to Klingon
words, although he or she has no knowledge of Klingon at all. We utilize this
idea to build the vocabulary of the target language.

1Worf’s head is taken from http://www.flickr.com/photos/datarknz/3442646145/
(Accessed on 15th November 2013)

http://www.flickr.com/photos/datarknz/3442646145/
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Figure 2.2 – Basic idea of how resources are proceeded.

As shown in Figure 2.2, we transfer this paradigm to machines as follows:
Starting with the written word sequence in the source language on one side
and the audio file of the spoken translation in the target language on the
other side, the first step is to run a phoneme recognizer and transform the
audio file into a phoneme sequence. However, this sequence does not contain
any clues of where a word ends and the next word starts. In order to find
such word boundaries, we have to consult other knowledge sources (such as
other occurrences of the source language words in the corpus) and find a
mapping between the words on the source language side and the phonemes
on the target language side. In other words, we have to find a word-to-
phoneme alignment. If we assume a 1:1 relationship between the words in
the source and the target language and such a word-to-phoneme alignment
is given, it is straightforward to extract word boundary markers: We insert a
word boundary maker into the phoneme sequence wherever two neighboring
phonemes are aligned to different source language words (i.e. wherever a
black alignment line in Figure 2.2 ends). To deal with many-to-one or one-to-
many relationships between the words in the source and the target language,
we developed methods to post-process the found phoneme clusters which
are applied in a later step of the whole pronunciation extraction algorithm
described in Chapter 8.

To retrieve the phoneme sequences, we can use a phoneme recognizer of
a language similar to the target language in terms of phonological char-
acteristics. However, training acoustic models without transcriptions and
recognizing phonemes in an unknown target language is by itself a com-
plex and unsolved research topic. It may be bootstrapped using recognizers
from other languages and adaptation techniques as presented in [VKS11]
or in [SPC+13]. Phonetic language discovery in zero-resource speech tech-
nologies [JDG+13] (i.e. identifying phoneme like subword units for acous-
tic modeling in an unknown target language) is addressed among others in
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[LG12, VKD08, CHR11]. In this work, we study the influence of phoneme
recognition errors to our methods, but do not focus on the phoneme recog-
nition itself.

At this point, we have fully described the available resources summarized
again in the following overview:

• Source language sentences in written form,

• Their spoken translations in the target language,

• Phoneme recognizer.

We developed methods that

• extract the vocabulary of the target language and

• reconstruct target language word sequences uttered by the speaker.

These methods are described in Section 3.3.

2.1.2 Text Normalization

Text Normalization transfers spelling variants of the same word in a canon-
ical representation. Such a processing of text helps to avoid that different
representations of the same word are included and blow up the dictionary
size and the search vocabulary. Furthermore, non-standard representations
in the text such as numbers, abbreviations, acronyms, special characters,
dates, etc. are typically normalized. A very nice example from [SK06] for
the reduction of the vocabulary size in an English dictionary with text nor-
malization is given in Table 2.3. They reduce the vocabulary of the four
example sentences by removing punctuation marks, splitting “’s” from the
corresponding word and converting all words to lowercase.

In addition to the reduction of the lexical variability, more robust language
models can be estimated after text normalization as probability distributions
of the same word are not distributed across several representations.

For language-specific text normalization, knowledge of the language in ques-
tion, which engineers of language and speech technology systems do not
necessarily possess, is usually helpful [SZGS10, SZLS13]. Without sufficient
language proficiency, engineers need to consult native speakers or language
experts. Hiring those people to normalize the text manually can be ex-
pensive, and they do not necessarily have the computer skills to implement
rule-based text normalization systems. In Section 3.2, we present methods
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Figure 2.3 – Reducing the vocabulary size with text normalization [SK06].

where Internet users generate training data for such systems by simple text
editing.

Spoken languages without established writing conventions, e.g. Amharic or
Luxembourgian before the second half of the 20th century, allow any writ-
ten form that reflects what is said. The question how to define a word for
those languages is traditionally a concern of linguistic research but can be
supported with automatic processing.

For some languages with high morphology, a word segmentation in subword
units such as morphemes allows to reach a better lexical coverage while keep-
ing the same size of the pronunciation dictionary or even reduce it. This is
especially helpful for agglutinative languages like Turkish or Korean or com-
pounding languages like German. Furthermore, there are scripts that com-
pletely lack word segmentation, e.g. Chinese and Thai, and segmentation
algorithms are required to define lexical units [TMWW00, HKD08].

2.2 Pronunciation Generation

Phoneme Set

The pronunciations of words in a dictionary are described according to man-
ageable units, typically phonemes. Information about the phoneme set of
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many languages can be derived from language-specific International Phonetic
Alphabet (IPA) charts or the chart of the full IPA [IPA99].

Many developers of automatic speech recognition or text-to-speech systems
in new languages use IPA charts to adopt the defined phoneme set of the
target language or a subset of it. In our Rapid Language Adaptation Toolkit,
the phoneme selection component provides the user with an interface for
phonemes in IPA notation, where the user can listen to the target phoneme
and select it [SBB+07]. Methods to identify and define phonetic units from
audio data are still a challenge. For example, [LG12] try to reconstruct the
48 phonetic units in the TIMIT corpus and report 76% F-score. Thus, our
phonetic unit selection for new languages is based on IPA and done by native
speakers. Only for the experiments where we tackle non-written languages,
we use phoneme recognizers of other languages and methods to discover the
phonetic units from audio data.

For automatic speech recognition it sometimes makes sense to combine sim-
ilar phonemes depending on the amount of samples of the phonemes in the
audio data in order to model them together in the acoustic model (pho-
neme sharing). For example, with almost 12 hours audio data for training
an Ukrainian automatic speech recognition system, we obtain lower word
error rates by representing semi-palatalized and non-palatalized phonemes
together in the dictionary, thereby modeling them together in the acoustic
model [SVYS13].

Pronunciation Generation

For the rapid generation of pronunciations there is no general solution. “Rapid”
means to save expenses and time which is usually coupled with an automatic
process for the pronunciation generation, since in a complete manual creation
native speakers or linguists need to spend more time on the task which can
be time-consuming and expensive. Depending on the situation, one is faced
with different challenges for the pronunciation generation. The questions are
how to obtain correct pronunciation entries with a certain degree of automa-
tion and where to get the linguistic knowledge for the automation from. In
the next sections, we demonstrate several scenarios – starting from the sim-
ple scenario where a target language dictionary is already present, we have a
simple mapping between speech and written language and a dictionary for a
new domain is required up to the difficult scenario in which no written form
for the target language exists.
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2.2.1 Lexical Resources on the Web

Except for languages with logographic writing systems, data-driven grapheme-
to-phoneme converters trained from existing sample dictionary entries can be
used to provide pronunciations for words which we have collected with a vo-
cabulary selection strategy. Those sample dictionary entries can directly be
taken from existing dictionaries. If not already available, it usually needs
time and money to manually generate word-pronunciation pairs as training
data for grapheme-to-phoneme converters. A lower bound for the grapheme-
to-phoneme converter training data size gives information how much training
data is sufficient to obtain a reliable consistency in the resulting pronuncia-
tions.

Crowdsourcing facilitates inexpensive collection of large amounts of data from
users around the world [CBD10]. A collection of pronunciations with crowd-
sourcing methods or from websites where Internet users have entered word-
pronunciation pairs supports the process of pronunciation generation. In
addition to a cheap way of gathering grapheme-to-phoneme converter train-
ing material, using pronunciations provided by Internet users is helpful for
languages with a complex grapheme-to-phoneme correspondence where data-
driven approaches decrease in performance.

Challenges of crowdsourcing-based approaches for the generation of training
data for grapheme-to-phoneme converters are: How to find websites where
Internet users have already entered word-pronunciation pairs? And if they
cannot be found or do not contain pronunciations in sufficient amount – how
to setup the task of pronunciation generation for crowdsourcers. Finally, it
is a challenge to assure quality of the crowdsourcing-derived pronunciations,
as we show in Chapter 5.

Sample dictionary entries from websites or derived on crowdsourcing plat-
forms can contribute to a rapid and economic semi-automatic pronunciation
dictionary development and particularly help to reduce the editing effort to
produce pronunciations. As shown in Section 5.3, an optimal strategy for the
word selection, the optimal period for the grapheme-to-phoneme converter
retraining as well as a phoneme-level combination of the output of multiple
grapheme-to-phoneme converters can further benefit the whole process.
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2.2.2 No Lexical Resources of the Target Language

In this scenario, we cannot obtain sample dictionary entries for grapheme-
to-phoneme modeling – maybe since no native speakers are available or it is
too expensive to hire them and we cannot find word-pronunciation pairs on
the Web.

Therefore, we elaborated a strategy to use grapheme-to-phoneme models
from other related languages to bootstrap a dictionary in a new language,
as demonstrated in Section 6. To cross-lingually retrieve qualified pronunci-
ations, selecting optimal related languages based on certain criteria such as
the language family or grapheme and phoneme coverage of both languages
is relevant. Furthermore, the question raises if the statistical rules of one
related language achieve success, would a mix of more than one related lan-
guage perform even better. Our techniques can reduce the effort to produce
pronunciations manually and thus to make the manual dictionary generation
faster by showing first pronunciations to the native speakers or linguists.

2.2.3 In-house Lexical Resources

The easiest scenario is to already possess target language word-pronunciation
pairs in a given dictionary and the grapheme-to-phoneme relationship of the
language is close. Then, a remaining challenge is to select a vocabulary, i.e.
words that are time- and topic-relevant for the new application domain of
the automatic speech recognition system [SGVS13, VSKS10].

For the pronunciation generation, we investigate the following two problems:

Due to the close grapheme-to-phoneme relationship, it is possible to train an
automatic grapheme-to-phoneme converter from the given word-pronuncia-
tion pairs and automatically generate with it the pronunciations for the words
of the new domain. Then, the new produced pronunciations may be manually
cross-checked subsequently and given enough training data for the grapheme-
to-phoneme converter only slight manual modifications are necessary. How-
ever, with the globalization more and more words from other languages come
into a language without assimilation to the phonetic system of the new lan-
guage [LB02]. To economically generate pronunciations with automatic or
semi-automatic methods, it is important to detect and treat foreign words
separately. Due to the strong increase of Anglicisms, especially from the
information technology (IT) domain, features for their automatic detection
are required.
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Pronunciations in existing dictionaries are traditionally those of native speak-
ers. Therefore, a challenge is the use of the pronunciation dictionary where
speech of speakers with accent is to be transcribed, e.g. at the airport, in radio
communication of aircrafts or where parliamentary speeches in multilingual
communities are transcribed, e.g. the cantonal parliament of Valais [IBC+12].

We address the problem of detecting foreign words for a separate handling
and a lexical adaptation to speakers with accent in Chapter 7.

2.2.4 Non-Written Languages

Given is our scenario which assumes a recording of spoken phrases available,
the corresponding phonetic transcription received using a phoneme recognizer
and the vocabulary derived by exploiting the written translation. To build
a pronunciation dictionary, we apply several steps to take phoneme clusters
derived with the help of the cross-lingual word-to-phoneme alignment and
gain word labels which may be wordIDs or orthographic representations after
applying phoneme-to-grapheme rules from a related language together with
corresponding pronunciations [SSVS13].

This procedure is visualized in Figure 2.4 with German as source language
and English as target language. In Chapter 8, we analyze several steps
which include clustering procedures to separate phoneme clusters from each
other, which do not represent the same target language word and reconstruct-
ing correct phoneme sequences from phoneme sequences with alignment and
phoneme recognition errors.

2.2.5 Erroneous Pronunciations

As pronunciation dictionaries are so fundamental to speech processing sys-
tems, much care has to be taken to select a dictionary that is as free of
errors as possible. For automatic speech recognition systems, faulty pronun-
ciations in the dictionary may lead to incorrect training of the system and
consequently to a system that does not function to its full potential.

Flawed or inadequate dictionary entries can originate from different subjec-
tive judgments, small typographical errors, and ’convention drift’ by multiple
annotators [SOS12a, Lem13]. One example is our initial GlobalPhone Hausa
pronunciation dictionary. It has been created in a rule-based fashion and
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Figure 2.4 – Dictionary generation for non-written languages on a German-
English example.

was then manually revised and cross-checked by native speakers but still
contained a few errors and inconsistencies [SDV+12].

As pronunciations from the World Wide Web often lack information about
the corresponding word or language, it may happen that inappropriate word-
pronunciation pairs are collected which is confirmed by our analyses in [SOS10,
SOS14].

Correct pronunciations that do not match the target domain or accent can
also lead to worse automatic speech recognition performance. For exam-
ple, our straightforward insertion of new valid pronunciation variants into
our existing Mandarin-English SEAME code-switch dictionary resulted in
automatic speech recognition performance degradations since the new pro-
nunciations did no match the target domain and accent [SOS12a].

For grapheme-to-phoneme extraction algorithms the correctness of the dic-
tionary is equally important as each erroneous entry can cause incorrect
grapheme-to-phoneme models to be generated, thereby compromising the
created dictionary as we show in [SOS12b, SOS14].
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To support a rapid but error-less dictionary development, we present methods
to detect and revise pronunciations completely without or without much
manual effort for written languages in Chapter 4. For our scenario with the
non-written languages, we demonstrate methods to compensate for alignment
and phoneme recognition errors in Chapter 8.



Chapter 3
Vocabulary Selection and Text

Normalization

To select the vocabulary for the pronunciation dictionary, the goal is to
collect words that are time- and topic-relevant for the application domain of
the automatic speech recognition system. If the vocabulary is too small, the
system’s out-of-vocabulary rate is high, i.e. the missing words are not able
to be recognized, which leads to errors and follow-up errors. In contrast, a
decoding vocabulary that contains words not fitting the target domain may
result in confusion errors. Researchers and developers have used the World
Wide Web as a source to find relevant words based on word frequency and
time relevance. In Section 3.1, we describe those methods and extend them
providing a supervised and an unsupervised vocabulary adaptation.

Moreover, text normalization steps are applied to prohibit that the same
words have different representations and increase the dictionary size and
with it the search space in the decoding. To define text normalization rules
without knowledge of a language and without much effort, we demonstrate
our system in Section 3.2, where Internet users or crowdsourcers who are able
to speak the target language deliver resources to build text normalization
systems.

Finally, we present our methods to tackle the challenge of defining a vocab-
ulary for non-written languages or dialects in Section 3.3.
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3.1 Vocabulary Selection

In our supervised language model and vocabulary adaptation strategy, we
combine innovative techniques to rapidly bootstrap and extend automatic
speech recognition systems in a few days. With our unsupervised language
model and vocabulary adaptation strategy [SGVS13], we present methods for
the automatic speech recognition of broadcast news as they mostly contain
the latest developments, new words emerge frequently and different topics
get into the focus of attention.

3.1.1 Traditional Methods

Principally, there has been much work to turn to the World Wide Web as
an additional source of training data for language modeling. The idea is to
collect text from websites (Crawling) in order to build statistical language
models and adapt existing ones to new topics, domains, or tasks for which
little or no training material is available [BOS03]. A vocabulary adaptation
is usually associated with a language model adaptation since new words in
the dictionary whose probability of occurrence and context is not modeled
in the language model, would receive the probability of the language model
class for unknown words [Sto02]. Since the language model probability for
this class is very low, the chance that the word is recognized is very small.
In some works the focus is rather on language model adaptation with the
existing vocabulary even if there is potential to reduce the out-of-vocabulary
rate with adding new words from the crawled text. However, the authors of
the related work report how to retrieve time- and topic-relevant texts, which
is relevant for our vocabulary adaptation methods.

For example, in [BOS03] the authors achieve significant word error rate reduc-
tions by supplementing training data with text from the Web and filtering it
to match the style and topic of a meeting recognition task. Although adding
in-domain data is an effective mean of improving language models [Ros95],
adding out-of-domain data is not always successful [IO99]. To retrieve rel-
evant texts from the Web, search queries are used [BOS03, SGG05]. Usu-
ally, bigram search queries are made by extracting characteristic words of
domain-specific documents or Web pages after calculating a Term-Frequency
Inverse-Document-Frequency (TF-IDF) score which we introduced in “Lan-
guage Modeling” in Section 1.2. This score reflects how important a query
is to a document in a collection or corpus [SGN, MK06, LGS08, LGP08].
[LDHM12], [Kem99] and [YTWW00] extract topic words from the 1st pass
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hypothesis of a show in question and then pass them as a query to a Web
search engine. From the retrieved documents, they extract a list of words to
adapt the vocabulary for a 2nd-pass decoding.

There has not been much work on vocabulary adaptation based on word fre-
quency and time relevance. Usually, an initial basic vocabulary is iteratively
enriched with the most frequent words from crawled online newspapers for
each broadcast news show to transcribe. [AGFF00] and [ON07] determine
an optimal period of crawling news websites and an optimal frequency-based
vocabulary for the broadcast news shows they transcribe in a supervised way,
regarding the automatic speech recognition system’s performance.

Twitter is an online social networking and microblogging service fromWeb 2.0
which enables its users to send and read text-based messages of up to 140
characters, known as “Tweets”. Tweets are usually updated faster than tra-
ditional websites and there is a large amount of data available. However, a
ristriction is that currently it not possible to get Tweets that are older than 6-
8 days with the Twitter REST API1. [FR12] adapts a general language model
by interpolating it with a language model trained on normalized TV Tweets
and improved automatic speech recognition accuracy for a voice-enabled so-
cial TV application.

Another paradigm from Web 2.0 are RSS Feeds. They are small automati-
cally generated XML files that contain time-stamped URLs of the published
updates. RSS Feeds can easily be found on almost all online news web-
sites. [ABP09] uses RSS Feeds to fetch the latest news texts from the Web.
[Mar08] subscribe the RSS news Feeds services of six Portuguese news chan-
nels for daily vocabulary and language model adaptation for a broadcast
news automatic speech recognition system.

3.1.2 Supervised and Unsupervised Vocabulary Adap-
tation

Compared to related approaches which investigated single techniques, we
combine innovative methods in our strategies with the goal to bootstrap and
adapt automatic speech recognition systems in rapid and cost-efficient ways.

In our supervised language model and vocabulary adaptation strategy [VSKS10],
we combine (1) the collection of massive amounts of text data from the Inter-
net, (2) frequency-based vocabulary selection to reduce the out-of-vocabulary

1https://dev.twitter.com/docs/api/1.1
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rate, (3) language-specific text normalization, (4) a daywise linear language
model interpolation, and (5) adding text data diversity. This technique is
particularly helpful to rapidly bootstrap and extend automatic speech recog-
nition systems in a few days. This work is described in Section “Supervised
Vocabulary Adaptation” below.

With our unsupervised language model and vocabulary adaptation strategy
[SGVS13], we elaborated a strategy with time- and topic-relevant text from
RSS Feed-related websites and Tweets thereby using (1) TF-IDF-based topic
word retrieval, (2) linear language model interpolation, (3) 2-pass decoding,
and (4) frequency-based vocabulary adaptation. Depending on the quality
of an underlying generic baseline language model on our test data, we opti-
mize the vocabulary adaptation technique. We advanced the modules in our
Rapid Language Adaptation Toolkit for the text normalization, the collection
of RSS Feeds together with the text on the related websites, a TF-IDF-based
topic words extraction, as well as the opportunity for language model inter-
polation. This technique is particularly helpful for an economic recurrent
automatic speech recognition of broadcast news because they mostly contain
the latest developments, new words emerge frequently and different topics
get into the focus of attention. Details are given in Section “Unsupervided
Vocabulary Adaptation” below.

Supervised Vocabulary Adaptation

For a supervised language model and vocabulary adaptation we propose the
following steps [VSKS10]:

1. Collection of massive amounts of text data in the target domain from
the Internet.

2. Daywise frequency-based vocabulary selection to reduce the out-of-
vocabulary rate.

3. Language-specific text normalization.

4. Daywise linear language model interpolation.

5. Adding of text data diversity.

This procedure was evaluated with experiments where we rapidly bootstrapped
baseline large vocabulary continuous speech recognition systems in Eastern
European languages from the GlobalPhone corpus, namely Bulgarian, Croa-
tian, Czech, Polish, and Russian [VSKS10]. A challenge for those languages
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is the rich morphology resulting in large vocabulary growth and high out-of-
vocabulary rates. The initial dictionary and language model vocabulary of
the baseline systems consisted of the words in all utterances of the training
transcriptions. The language models of the baseline systems were trained
from all utterances of the training data. The out-of-vocabulary rates on our
development set were 11.2% for Bulgarian, 12.1% for Croatian, 13.9% for
Czech, 16.9% for Polish, and 22.3% for Russian.

We applied the rapid bootstrapping and acoustic model training function in
the Rapid Language Adaptation Toolkit, which is based on a multilingual
acoustic model inventory [SBB+07]. This inventory was trained earlier from
seven GlobalPhone languages. The results were 63% word error rate for
Bulgarian, 60% for Croatian, 49% for Czech, 72% for Polish, and 61% for
Russian.

To build a large text corpus in the GlobalPhone domain for these languages,
we first triggered a crawling process with link depth of 20 for one online news-
paper website per language using our Rapid Language Adaptation Toolkit
as listed in Table 3.1 [VSKS10]. We applied a link depth of 20, i.e. we cap-
tured the content of the given webpage, then followed all links of this page
to crawl the content of the successor pages. The process was continued with
the respective successors of these pages until the specified link depth was
reached.

Languages Website # words tokens # words types
Bulgarian dariknews.bg 302M 560k
Croatian www.hrt.hr 124M 248k
Czech www.lidovky.cz 790M 1,250k
Polish wiadomosci.wp.pl 347M 815k
Russian www.rian.ru 565M 1,000k

Table 3.1 – Initial text corpus size for five Eastern European languages.

To adapt the vocabulary, we selected the 100K most frequent words derived
from the collected data and defined the frequency of the last occurring word
in the list as threshold. All words occurring more often than this threshold
were selected. Day by day we increased the threshold by one, but only
if the number of entries in the vocabulary increased. If not, we used the
previous threshold. After 20 days, the decoding vocabulary for Bulgarian was
140K, for Croatian 160K, for Czech 197K, for Polish 179K, and for Russian
196K words. This method works quite well in order to control the growth of
vocabulary and perplexity on one side and to decrease the out-of-vocabulary
rate on the other side as shown in Figure 3.1.
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We generated the pronunciations for all words with a grapheme-to-phoneme
model that was trained on the initial GlobalPhone word-pronunciation pairs
using Sequitur G2P [BN08], a data-driven grapheme-to-phoneme converter
developed at RWTH Aachen University, and complemented the baseline dic-
tionary. An introduction to grapheme-to-phoneme conversion methods is
given in Chapter 1.4.

Figure 3.1 – Out-of-vocabulary rate (%) over days of text crawling.

Furthermore, we improved our language-independent text normalization in
the Rapid Language Adaptation Toolkit which includes a removal of HTML
tags, code fragments, and empty lines with a language-specific text normal-
ization consisting of (1) special characters were deleted, (2) digits, cardinal
numbers, and dates were mapped into text form to match the dictionary,
(3) punctuation was deleted, (4) all text data were converted to lowercase.
Particularly, the second step involved some linguistic knowledge as in Slavic
languages the textual form of numbers changes with gender, numerus, and
case of the referring noun. To reduce the human effort, we later developed a
crowdsourcing-based text normalization, which we introduce in Section 3.2.2.
The four postprocessing steps gave significant relative word error rate reduc-
tions of 15% for Bulgarian, 7% for Croatian, 10% for Czech, 12% for Polish,
and 6% for Russian on the GlobalPhone development sets compared to the
systems with initial dictionary and language model.
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Websites (#days) OOV rate PPL #words Vocab
Bulgarian

24chasa.bg (2) 2.1 904 66M 153K
dnes.bg (2) 2.2 1,099 77M 169K
capital.bg (5) 1.7 808 262M 174K
Interpolated LM 1.2 543 405M 274K

Czech
halonoviniy.cz (5) 5.2 2,699 127M 166K
respek.ihned.cz (5) 6.6 3,468 118M 173K
hn.ihned.cz (5) 5.2 2,600 127M 63K
aktualne.centrum (5) 9.5 3,792 136M 102K
Interpolated LM 3.8 2,115 508M 277K

Croatian
index.hr (5) 4.5 1,006 71M 218K
ezadar.hz (5) 5.6 1,333 87M 187K
tportal.hr (5) 5.7 1,084 49M 143K
vecernji.hr (5) 6.3 1,884 124M 158K
Interpolated LM 3.6 813 331M 362K

Polish
fakt.pl (5) 8.2 3,383 79M 136K
nowosci.com.pl (5) 9.0 4,824 45M 90K
wyborcza.pl (5) 3.1 1,673 100M 225K
Interpolated LM 2.9 1,372 224M 243K

Russian
pravda.ru (3) 4.0 2,039 84M 216K
news.ru (4) 4.6 2,330 91M 222K
bbc.ru (4) 14.5 3,015 23M 34K
news.mail.ru (5) 7.2 3,098 136M 129K
Interpolated LM 3.4 1,675 334M 293K

Table 3.2 – Additional data from various websites for five Eastern European
languages.

We observed that in the crawled text there are parts which match better the
target domain represented by the development set text, while others match
worse. Consequently, we propose to build individual language models from
parts of the crawled text and combine them with weights in a language model
interpolation, as introduced in Section 1.2. To keep the computational effort
for the interpolations low and avoid data sparseness, we built the individual
language models from the text crawled on a day. For 20 days, every day
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one language model was built, based on the text data crawled on that day.
Based on a linear interpolation of the collection of 20 daily language models,
the final language model was created. The interpolation weights were com-
puted using the SRI Language Modeling Toolkit [Sto02], optimized on the
development set transcriptions.

So far we had started from one particular website per language to harvest text
data. However, this crawling process may be fragile, especially if the starting
page is poorly chosen not matching the target domain. In our experiments we
observed that for Croatian the crawling process prematurely finished after
10 days, retrieving only a relatively small amount of text data [VSKS10].
Furthermore, an increasing word error rate for Croatian after the third day of
crawling indicated that the crawled text data was suboptimal. Therefore, we
increased the text diversity by choosing additional websites as starting points
for our Rapid Language Adaptation Toolkit crawling process. The days of
crawling were limited to up to five days. Based on these additional data,
interpolated language models were built and the vocabulary was selected
in the same way as described above. Table 3.2 summarizes the URLs of
websites, days of crawling, and the performance of the resulting language
models on our development set transcriptions.

Languages baseline final rel. reduction
PPL OOV (%) PPL OOV (%) PPL OOV (%)

Bulgarian 11.2 543 1.2 89
Croatian 12.1 813 3.6 70
Czech 13.9 2,115 3.8 73
Polish 16.9 1,372 2.9 83
Russian 22.3 1,675 3.4 85

Table 3.3 – Out-of-vocabulary rate (OOV) and perplexity (PPL) reductions
for five Eastern European languages.

Table 3.3 shows the overall out-of-vocabulary rate and perplexity reductions
on the development set transcriptions. We achieve up to 89% relative out-
of-vocabulary rate reduction for our Eastern European GlobalPhone systems
after 20 days using our proposed steps.

The word error rate improvements on our GlobalPhone test set achieved with
the proposed 5-step procedure are summarized in Figure 3.2. Our results
indicate that initial automatic speech recognition systems can be built in
very short time and with moderate human effort. We observe that using the
texts from the Web has a huge impact on the word error rate. For Bulgarian
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and Polish, the word error rates even halve. The text normalization, the
interpolation of daily language models plus adding texts from additional
websites have less impact but still reduce the word error rate further by
approximately 30% relative.

Figure 3.2 – Word error rate reduction (%) for five Eastern European lang-
uages.

Unsupervised Vocabulary Adaptation

In the method described above for collecting large amounts of text data
for language model and vocabulary adaptation, we used recursive crawling
in our Rapid Language Adaptation Toolkit. This implementation is good
for crawling large amounts of text data. However, it has no functionality
to pick out exclusively text material that is relevant for up-to-date broad-
cast news shows [SGVS13, Gre11, Gre13]. We extended the Rapid Lan-
guage Adaptation Toolkit with RSS Feeds-based crawling methods and de-
veloped a strategy to improve the automatic speech recognition of broadcast
news using paradigms from Web 2.0 to obtain time- and topic-relevant text
data [SGVS13, Gre11, Gre13].

As shown in Figure 3.3, our strategy for time- and topic-relevance starts with
the collection of text which is in near temporal proximity to the date of the
news show in focus based on time-stamped URLs of the published updates
in RSS Feeds 1O. From this text (rss-text), we extract topic bigrams based
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Figure 3.3 – Unsupervised language model and vocabulary adaptation.

on a TF-IDF score after text normalization steps as follows 2O:

1. Remove stop words2 in rss-text.

2. Compute the frequency of the bigrams in all downloaded documents where the stop
words have been removed.

3. For each bigram, compute the number of documents in which the bigram occurs.

4. The bigrams are scored and sorted in decreasing order according to their TF-IDF
score.

5. Extract the bigrams with the highest TF-IDF scores4.

Then, we search appropriate Tweets with the resulting bigrams using the
Twitter API and normalize them (twitter-text) 3O. rss-text and twitter-text
are used to build language models which are interpolated with an initial
generic baseline language model (base-LM ). To determine optimal interpo-
lation weights, we decode a show in a 1st pass with base-LM. As a next step
the combination of weights is adopted which reduces most the perplexity on

2Stop words are words which are filtered out to optimize search engines. For our
test set of French radio broadcasts from Europe 1, 126 French stop words recommended
by ranks.nl, a Search Engine Optimization organization3, worked better that the most
frequent words from crawled text.

415 bigrams as search queries worked out to be optimal for out test set.
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the 1st pass hypothesis. Based on the most frequent words in rss-text and
twitter-text, the vocabulary of the final language model is adapted 4O. A
2nd pass decoding with our final language model results in our news show
transcription.

To elaborate and evaluate our strategy in terms of automatic speech recog-
nition performance, perplexity (PPL) and out-of-vocabulary (OOV) rate, we
downloaded radio broadcasts of the 7 a.m. news from Europe 15 in the period
from January 2011 to end of February 2012. Each show has a duration of
10-15 minutes. We evaluated our experiments where we included rss-text on
ten of these episodes. Validating the impact of twitter-text was done only on
the last five shows since we decided to include twitter-text in August 2011
and it is not possible to retrieve Tweets older than 6-8 days. Reference tran-
scriptions have been created by a French native speaker. In total, all ten
broadcast news shows contain 691 sentences with 22.5k running words, the
last five shows 328 sentences with 10.8k running words.

To investigate the impact of our strategy on baseline language models with
different quality, we adapted two different baseline 3-gram language models
(Base) that have been successfully applied in French large vocabulary con-
tinuous speech recognition but match the domain of our audio data with
varying degrees: The French language model from the GlobalPhone cor-
pus [SVS13] (GP-LM ) and a language model which we generated within
the Quaero Programme (Q-LM ) [LCD+11]. Their average perplexities and
out-of-vocabulary rates on the reference transcriptions of all ten news shows
as well as their vocabulary sizes are outlined in Table 3.4.

GlobalPhone (G-LM ) Quaero (Q-LM )
Ø PPL 734 205
Ø OOV (%) 14.18 1.65
Vocabulary size 22k 170k

Table 3.4 – Quality of baseline language models on the broadcast news task.

We collected text data using the information in the RSS Feeds of the four
French online news websites from Le Parisien, Le Point, Le Monde, and
France24. All articles, which were published up to five days before each
tested news show, were crawled with the Rapid Language Adaptation Toolkit
crawler. A total of on average 385k lines from the RSS Feeds-related websites
were collected for each show. Further we gathered Tweets containing 38k lines

5http://www.europe1.fr
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on average for each show. For our experiments we used the acoustic model of
our KIT 2010 French Speech-to-Text System, which we describe in [LCD+11].
Before the vocabulary adaptation we used the Quaero pronunciation dictio-
nary, which has 247k dictionary entries for 170k words. Figure 3.4 illustrates
the word error rates of each Europe 1 show with our base-LMs. Q-LM, which
better matches the domain of the shows in terms of perplexity and out-of-
vocabulary rate, also outperforms GP-LM in automatic speech recognition
performance.

Figure 3.4 – Word error rates (%) of the baseline systems on the broadcast
news task.

Our 2-pass decoding strategy works as follows: With the help of the SRI Lan-
guage Modeling Toolkit [Sto02], we train individual 3-gram language models
with rss-text and twitter-text for each show. By interpolating these two Web
2.0-based language models for the show in question with base-LM, we create
the language model we use for the final decoding of the corresponding show
(adapted-LM ). To determine the language model interpolation weights, the
following approach is used:

1. Decoding with base-LM (1st pass)

2. Tuning of the interpolation weights for rss-text-LM, twitter-text-LM
and base-LM on the 1st pass transcription by minimizing the perplexity
of the model.

3. Creation of adapted-LM from the interpolation of rss-text-LM, twitter-
text-LM and base-LM based on these weights.

4. Re-decoding with the adapted-LM (2nd-Pass).
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Figure 3.5 – Word error rates (%) with language models containing RSS
Feeds-based text data from different periods.

We implemented an RSS parser into the Rapid Language Adaptation Toolkit,
which takes RSS Feeds, extracts the URLs with the publishing date and
collects them preserving the time information. Then, only the pages corre-
sponding to the listed URLs are crawled. After crawling, HTML tags are
removed and the text data are normalized. Figure 3.5 demonstrates the av-
erage word error rates with interpolated language models consisting of RSS
Feeds-based text data from different periods of time before the shows. Our
analyses to find the optimal time period for the texts indicate that most rel-
evant texts are from 30 days to the date of the show with GP-LM and from
five days before to the date of the show with Q-LM. Using text data from less
than five days to the date of the show decreased the performance [SGVS13].
Not directly time-relevant text from longer time ago seems to have a positive
impact on weaker language models like our GP-LM since the text covers at
least parts of completely lacking relevant word sequences. In contrast, text
from longer time ago seems to harm already relevant word sequences in the
stronger language models. Although for GP-LM an rss-text collection from
30 days to the date of the show (baseLM+T30-T0 ) is better than gathering
from five days before the date of the show, we used only rss-text from five
days before for further experiments with GP-LM. The reason is that we had
to extract topic words from rss-text which are relevant for the search for
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Figure 3.6 – Word error rate (%) with language models containing RSS
Feeds-related text compared to random text data.

Tweets and it is not possible to get Tweets that are older than 6-8 days with
the Twitter API.

Figure 3.6 illustrates the average word error rates of all ten tested shows.
We see that on average 385k lines of rss-text for the adaptation of each
show improved automatic speech recognition performance compared to Q-
LM, while using the same number of lines of randomly selected texts from a
recursive crawl of a news website (+randomText) decreased the performance.
Even 20 million lines of randomly selected texts from traditional recursive
crawls did not outperform rss-text, which indicates its high relevance.

From rss-text, we extracted topic words based on TF-IDF to search relevant
French Tweets with the Twitter API in the period from five days before to
the date of the show. Then we applied the following text normalization steps
to the selected Tweets similar to [FR12]:

1. Remove URLs plus retweet (“RT:”) and mention markers (“@username”).

2. Remove very short Tweets.

3. Remove Tweets being only in uppercase.

4. Remove Tweets containing more than 50% unknown or misspelled words according
to French GNU aspell6.

5. Extend abbreviations.

6aspell.net
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Figure 3.7 shows that for the last five shows on average 1.5% relative word er-
ror rate reduction is achieved by incorporating the twitter-text-LM (Base+RSS
+Tweets) besides the rss-text-LM with both underlying base-LMs.

Figure 3.7 – Word error rates (%) for Q-LM and GP-LM.

To gain additional performance improvements, we adapt the vocabulary of
our language models (vocAdapt) and our decoding dictionary. We experi-
mented with different vocabulary adaptation strategies. The missing French
pronunciations were generated with the grapheme-to-phoneme converter Se-
quitur G2P, which was trained with the known word-pronunciation pairs
from the Quaero dictionary.

For GP-LM which has a high out-of-vocabulary rate, the following strategy
performs best:

1. Generate a list of words present in the concatenation of rss-text and twitter-text
with the corresponding number of occurrences.

2. From this list, remove all words present only once in our text data.

3. The remaining words still not present in the search vocabulary are added.

With this strategy on average 19k words are added to the vocabulary for each
show. Due to their considerably lower out-of-vocabulary rates, we worked
out another strategy for Q-LM :

1. Reduce words in the language model to improve the perplexity by removing the
words with the lowest probability.

2. Remove those words in the decoding dictionary as well.

3. Add the most frequent new words present in the concatenation of rss-text and
twitter-text.
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We experimented with different vocabulary sizes to find a good balance be-
tween an increased out-of-vocabulary rate and a lower perplexity. Optimal is
a new baseline vocabulary with 120k words plus the 1k most frequent words
from the concatenation of rss-text and twitter-text.

Figure 3.8 – Out-of-vocabulary rates (%) for Q-LM and GP-LM before and
after vocabulary adaptation.

Q-LM GP-LM
Adding rss-text 1.59 14.77
Adding twitter-text 1.53 1.51
Vocabulary adaptation based on
rss-text+twitter-text 0.08 18.41
Adding names of news anchors 0.66 0.39
Total WER rate improvement 3.81 31.78

Table 3.5 – Relative word error rate reduction (%) for the last five shows
with our text collection and decoding strategy.

Moreover, we manually added the names of the news anchors to the vo-
cabulary as their names were still not present in the adapted vocabulary
(+anchors). Listening to only one of the shows gives information about the
names since they occur in each show. The word error rate reduction with
the vocabulary adaptation is shown in Figure 3.7. The out-of-vocabulary
rate decrease is illustrated in Figure 3.8. We achieved up to 71% relative
out-of-vocabulary rate reduction using our vocabulary adaptation strategies.

As summarized in Table 3.5, the word error rate of the five tested French
broadcast news shows from Europe 1 are reduced by almost 32% relative
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with an underlying language model from the GlobalPhone project and by
almost 4% with an underlying language model from the Quaero project.

3.1.3 Summary

First, we have investigated a strategy for the crawling of massive amounts of
text data and investigated the impact of text normalization and text diversity
on the vocabulary, the language model and its influence on automatic speech
recognition performance. Our results indicate that initial automatic speech
recognition systems can be built in very short time and with moderate human
effort.

Second, we have presented an unsupervised strategy to automatically adapt
generic language models to the several topics that can be encountered during
a transcription, especially in broadcast news. We crawled appropriate texts
from RSS Feeds, complemented it with texts from Twitter, performed an
language model and vocabulary adaptation, as well as a 2-pass decoding. For
that, we advanced the modules in our Rapid Language Adaptation Toolkit
for the text normalization, the collection of RSS Feeds together with the
text on the related websites, a TF-IDF-based topic words extraction, as well
as the opportunity for language model interpolation. We have shown the
relevance of RSS Feeds-based text and Tweets. Future work may include
further paradigms from Web 2.0 such as social networks to obtain time- and
topic-relevant text data.

3.2 Text Normalization

In the previous sections we have shown that text normalization can give
significant improvements within our demonstrated language model and vo-
cabulary adaptation methods. For example, Table 3.2 shows that applying
language-specific text normalization steps in our supervised adaptation strat-
egy reduces the word error rate in the range of 3% to 18% relative. For rapid
development of text normalization systems at low cost, we propose methods
where Internet users generate training data for such systems by simple text
editing.
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3.2.1 Traditional Methods

A text normalization for French and its impact on automatic speech recog-
nition was investigated in [AADGL97]. The authors use 185 million words
of a French online newspaper and propose different steps such as processing
of ambiguous punctuation marks, processing of capitalized sentence starts as
well as number normalization.

[GJWW06] treat the text normalization in a similar way to machine trans-
lation with the normalized text being the target language. A transfer-based
machine translation approach is described which includes a language-specific
tokenization process to determine word forms.

A statistical machine translation approach for text normalization is proposed
in [HH09] where an English chat text was translated into syntactically correct
English. First, some preprocessing steps are applied containing an extrac-
tion of <body> tag content, removal of HTML characters, conversion into
lower case, line split after punctuation marks as well as language-specific
text normalization such as correction of some word forms and tokenization
of the text. From the remaining 400k sentences, 1,500 sentences are utilized
for tuning and another 1,500 for testing, while the other lines are used for
training. [HH09] report an edit distance of 0.3% on the News Commentary
corpus data and Web data.

[AZXS06] apply a phrase-based statistical machine translation for English
SMS text normalization. With a corpus of 3k parallel non-normalized and
normalized SMS messages, they achieve a BLEU score of 80.7%.

In addition to a statistical machine translation-based text normalization sys-
tem, [KYD08] present an “ASR-like” system that converts the graphemes
of non-normalized text to phonemes based on a dictionary and rules, cre-
ates a finite state transducer for transducing phoneme sequences into word
sequences with an inverted dictionary and finally searches the word lattice
for the most likely word sequence incorporating language model information.
The “ASR-like” approach is worse than the SMT approach and leads only
to slight improvement in a system combination scheme. Alternative “noisy
channel” approaches treat the text normalization problem as a spelling cor-
rection problem [CG91, BM00, TM02].

Since the statistical machine translation-based approach has comparable re-
sults to the other approaches and requires less memory and training time
than other “noisy channel” approaches such as Conditional Random Fields,
we decided to select this approach for our experiments. Another advantage is
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that the Moses Package [KHB+07], GIZA++ [ON03] and the SRI Language
Modeling Toolkit [Sto02] provide a framework to automatically create and
apply statistical machine translation systems. However, our crowdsourcing-
based approach is also applicable with other methods which require a parallel
corpus for training. For more information about statistical machine transla-
tion we recommend [Kni99].

3.2.2 SMT-based Text Normalization through Crowd-
sourcing

Our research interest was to output text in high quality for automatic speech
recognition and speech synthesis with statistical machine translation sys-
tems [SZGS10, SZLS13]. However, the statistical machine translation sys-
tems are supposed to be built with training material, which does not need
much human effort to create it. To keep the human effort low, we use rules for
the non-language-specific part of the text normalization and employ humans
only for parts which requires language proficiency.

For a rapid development of speech processing applications at low cost, we
propose text normalization systems constructed with the support of Inter-
net users. The users normalize sentences displayed in a Web interface. In
contrast to the grammatical definition, we use the term “sentence” for all
tokens (characters separated by blanks) located in one line of the crawled
text. Based on the normalized text generated by the user and the original
non-normalized text, statistical machine translation models [Kni99] such as
translation model, language model and distortion model can easily be cre-
ated. With these models, we treat the text normalization as a monotone
machine translation problem, similar to the way we have tackled the diacriti-
zation problem in [SNV08].

The main goal was to investigate if the development of normalization tools
can be performed by breaking down the problem into simple tasks which can
be performed in parallel by a number of language proficient users without
the need of substantial computer skills. Furthermore, the work examines the
performance of normalization as a function of the amount of data.

Crowdsourcing

The crowdsourcing platform Amazon Mechanical Turk facilitates an inexpen-
sive collection of large amounts of data from users around the world [CBD10].
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For the NAACL 2010 Workshop, the platform has been analyzed to collect
data for human language technologies. For example, it has been used to
judge machine translation adequacy as well as to build parallel corpora for
machine translation systems [DL10, AV10]. As our annotation work can be
parallelized to many users, we provided tasks to normalize English texts to
Turkers and checked the resulting quality [SZLS13].

Web Interface and Backend

The user is provided with a simple readme file that explains how to normalize
the sentences, i.e. remove punctuation, remove characters not occurring in
the target language, replace common abbreviations with their long forms,
apply a number normalization, etc. In our web-based interface, sentences
to normalize are displayed in two lines [SZGS10, SZLS13]: The upper line
shows the non-normalized sentence, the lower line is editable. Thus, the user
does not have to write all words of the normalized sentence. An excerpt of
the Web-based front-end is shown in Figure 3.9. After editing 25 sentences,
the user presses a save button and the next 25 sentences are displayed. We
present the sentences in random order to the user. For our French system,
we observed better performances by showing sentences with dates, ordinal,
cardinal and nominal numbers to the user first in order to enrich the phrase
table with normalized numbers early [SZGS10]. However, for our Bulgarian,
English, and German systems, displaying the sentences in random order,
thereby soon inserting normalization of numbers, casing and abbreviations
into the phrase table in equal measure, performed better [SZLS13]. Except
for our Amazon Mechanical Turk experiments, we take the user output for
granted and perform no quality cross-check for simplicity.

Figure 3.9 – Web-based user interface for text normalization.



3.2 Text Normalization 63

To generate phrase tables containing phrase translation probabilities and
lexical weights, the Moses Package [KHB+07] and GIZA++ [ON03] are used.
By default phrase tables containing up to 7-gram entries are created. The
3-gram language models are generated with the SRI Language Modeling
Toolkit [Sto02]. A minimum error rate training to find the optimal scaling
factors for the models based on maximizing BLEU scores as well as the
decoding are performed with the Moses Package.

Figure 3.10 – Text normalization systems.

Performance over Training Data

Figure 3.10 demonstrates the text normalization systems which we evaluated.
For the evaluation, we compared text normalized ...

• with a language-independent rule-based text normalization system (LI-rule)

• with a language-specific rule-based text normalization system (LS-rule)

• with a pure statistical machine translation-based text normalization system
(SMT ).

• with a language-specific rule-based text normalization system with statistical
phrase-based post-editing (hybrid)

• with a manual text normalization by native speakers (human) [SZGS10,
SZLS13].

We evaluated our systems for Bulgarian, English, French, and German with
different amounts of training data. For English, French, and German, the
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quality of 1k output sentences derived from the systems is compared to text
which was normalized by native speakers in our lab (human). With the Lev-
enshtein edit distance, we analyzed how similar both texts are. As we are
interested in using the processed text to build language models for automatic
speech recognition tasks, we created 3-gram language models from the sys-
tems’ hypotheses and evaluated their perplexities (PPLs) on 500 sentences
manually normalized by native speakers. For Bulgarian, the set of normal-
ized sentences was smaller: We computed the edit distance of 500 output
sentences to human and built a language model. Its perplexity was evalu-
ated on 100 sentences manually processed by native speakers. The sentences
were normalized with LI-rule in our Rapid Language Adaptation Toolkit.
Then LS-rule was applied to this text by the Internet users. LI-rule and
LS-rule are itemized in Table 3.6.

Language-independent Text Normalization (LI-rule)
1. Removal of HTML, Java script and non-text parts.
2. Removal of sentences containing more than 30% numbers.
3. Removal of empty lines.
4. Removal of sentences longer than 30 tokens.
5. Separation of punctuation marks which are not in context
with numbers and short strings (might be abbreviations).
6. Case normalization based on statistics.
Language-specific Text Normalization (LS-rule)
1. Removal of characters not occuring in the target language.
2. Replacement of abbreviations with their long forms.
3. Number normalization
(dates, times, ordinal and cardinal numbers, etc.).
4. Case norm. by revising statistically normalized forms.
5. Removal of remaining punctuation marks.

Table 3.6 – Language-independent and -specific text normalization.

As demonstrated in Figure 3.11, text quality improves with more text used to
train the statistical machine translation system for Bulgarian, English, and
German [SZLS13]. This reproduces our conclusions we reported for French
in [SZGS10]. Exceeding a certain amount of training sentences, we gained
lower perplexities with SMT than with LS-rule for Bulgarian, English and
German. This originates from the fact that human normalizers are better
in correcting typos and casing as well as detecting the correct forms in the
number normalization (especially the correct gender and number agreement)
due to their larger context knowledge which is more limited in our rule-based
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normalization systems. While for our French texts, a performance saturation
started at already 450 sentences used to train the statistical machine trans-
lation system, we observe a saturation at approximately 1k for Bulgarian, 2k
for English, and 2k for German sentences. Consequently, the amount of re-
quired training data to obtain a static quality varies depending on the input
text quality and the language. hybrid obtained a better performance than
SMT and converges to the quality of human for all languages. This shows
that with the statistical phrase-based post-editing in hybrid it is possible to
automatically correct systematic errors made by rule-based systems.

Performance with Amazon Mechanical Turk

The development of our normalization tools can be performed by breaking
down the problem into simple tasks which can be performed in parallel by a
number of language proficient users without the need of substantial computer
skills. Everybody who can speak and write the target language can build a
text normalization system due to the simple self-explanatory user interface
and the automatic generation of the statistical machine translation models.
Amazon’s Mechanical Turk service facilitates inexpensive collection of large
amounts of data from users around the world. However, Turkers are not
trained to provide reliable annotations for natural language processing tasks,
and some Turkers may attempt to cheat the system by submitting random
answers. Therefore, Amazon provides requesters with different mechanisms
to help ensure quality [CBD10]. With the goal to find a rapid solution at low
cost and to get over minor errors creating statistical rules for our statistical
machine translation systems, we did not check the Turker’s qualification. We
rejected tasks that were obviously spam to ensure quality with minimal effort.
Initially, the Turkers were provided with 200 English training sentences which
had been normalized with LI-rule together with the readme file and example
sentences. Each Human Intelligence Task (HIT) was to annotate eight of
these sentences with all requirements described in the readme file. While
the edit distance between LI-rule and our ground truth (human) is 34% for
these 200 sentences, it could be reduced to 14% with the language-specific
normalization of the Turkers (mT-all). The analysis of the confusion pairs
between human and mT-all indicates that most errors of mT-all occured due
to unrevised casing. As the focus of the annotators was rather on the number
normalization with mT-all, we decided to provide two kinds of HITs for each
set of eight sentences which contain numbers (mT-split): The task of the first
HIT was to normalize the numbers, the second one to correct wrong cases
in the output of the first HIT together with the other requirements. The
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Figure 3.11 – Edit distance (%) and perplexity over amount of training data.
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benefit of concentrating either on the numbers or on the other requirements
resulted in an edit distance of 11% between mT-split and human which is
21% relative lower than with mT-all.

Finally, all 8k English training sentences were normalized with mT-split and
used to build new statistical machine translation systems as well as to accu-
mulate more training sentences for our existing system built with 2k sentences
thoroughly normalized in our lab. As shown in Figure 3.11, the quality of
mT-split is worse with the same training sentences than those created with
our thoroughly normalized sentences (SMT ) in terms of edit distance and
perplexity. While the different normalizers in our lab came to an agreement
if diverse number representations were possible, the Turkers selected different
representations to some extend, e.g. “two hundred five”, “two hundred and
five” or “two oh five”, depending on their subjective interpretation of what
would be said most commonly. We explain the fluctuations in mT-split (hy-
brid) with such different representations plus incomplete normalizations in
the annotated training sentences. We recommend a thoroughly checked tun-
ing set for the minimum error rate training if available since we could build
better statistical machine translation systems with a tuning set created in
our lab (tune-lab) than with one created by the Turkers (tune-mT ). Revising
the sentences normalized by the Turkers, which requires less editing effort
than starting to normalize the sentences from scratch, would further improve
the systems.

More information about our Amazon Mechanical Turk experiment is sum-
marized in Table 3.7 and 3.8. For $17, the Turkers worked about 10 hours to
normalize 2k sentences. A statistical machine translation-based text normal-
ization system trained with these sentences outputs text which can be used
to generate language models with half the perplexity than those generated
with text normalized only in a language-independent way. More than 2k
edited training sentences resulted in only slight performance improvements.
The parallel processing led to a speedup of 1.5.

# training LI -PPL LS -PPL SMT -PPL hybrid-PPL
sentences (mT-split) (mT-split)
after 2k 1112.59 581.06 595.06 551.33
after 8k 1112.59 581.06 592.98 549.03

Table 3.7 – Amazon Mechanical Turk experiments: Perplexity results.
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# training hybrid-PPL Effective ∅ time 1 sent. Sequence time Speedup SmT
sentences worktime TmT by 1 Turker T1 Tseq (n*T1) (Tseq/TmT ) costs
after 2k 10.1 hrs. 27.3 sec. 14.7 hrs. 1.45 $17.01
after 8k 30.5 hrs. 19.7 sec. 45.0 hrs. 1.48 $48.62

Table 3.8 – Amazon Mechanical Turk experiments: Time and cost.

Figure 3.12 – Edit distance reduction with iterative-SMT/-hybrid.

User Effort Reduction

To reduce the effort of the Internet users who provide normalized text mate-
rial, we iteratively used the sentences normalized so far to build the statistical
machine translation system and applied it to the next sentences to be normal-
ized (iterative-SMT ) [SZLS13]. With this approach, we were able to reduce
the edit distance between the text to be normalized and the normalized text,
resulting in less tokens the user has to edit. If a language-specific rule-based
normalization system is available, the edit distance can also be reduced with
that system (LS-rule) or further with a language-specific rule-based text
normalization system with statistical phrase-based post-editing (iterative-
hybrid). As corrupted sentences may be displayed to the user due to short-
comings of statistical machine translation system and rule-based system, we
propose to display the original sentences to the user as well.

Figure 3.12 shows lower edit distances for the first 1k German sentences with
iterative-SMT and iterative-hybrid compared to the previous system where
text, exclusively normalized with LI-rule, was displayed to the user. After
each 100 sentences, the training material for the statistical machine transla-
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tion system was enriched and the statistical machine translation system was
applied to the next 100 sentences.

3.2.3 Summary

We have presented a crowdsourcing approach for statistical machine translation-
based language-specific text normalization which came close to our language-
specific rule-based text normalization (LS-rule) with French online newspa-
per texts and even outperformed LS-rule with the Bulgarian, English, and
German texts. The statistical machine translation system which translates
the output of the rule-based system (hybrid) performed better than SMT
and came close to the quality of text normalized manually by native speak-
ers (human) for all languages. The annotation process for English training
data could be realized fast and at low cost with Amazon Mechanical Turk.
The results with the same amounts of text thoroughly normalized in our
lab are slightly better which shows the need for methods to detect and reject
Turkers’ spam. Due to the high ethnic diversity in the U.S. where most Turk-
ers come from and Turkers from other countries [RIS+10], we believe that a
collection of training data for other languages is also possible. Finally, we
have proposed methods to reduce the editing effort in the annotation process
for training data with iterative-SMT and iterative-hybrid. Instead of statisti-
cal machine translation, other “noisy channel” approaches can be used in our
back-end system. Future work may include an evaluation of the systems’s
output in automatic speech recognition and text-to-speech systems.

3.3 Vocabulary Extraction for Non-Written
Languages

To extract the vocabulary for non-written languages, we assume a written
translation and a recording of spoken phrases beeing available. We can de-
rive the corresponding phonetic transcription using a phoneme recognizer.
However, the resulting phoneme sequence does not imply any information
about the word boundaries. We use the written translation of the spoken
phrases to segment the phoneme sequence into word units.
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3.3.1 Challenges

To be processed in language technology, spoken words need a written repre-
sentation. For non-written languages methods to extract the vocabulary from
text are not possible unless an artificial writing system is defined. Therefore,
we automatically extract phoneme sequences from audio data and define
word units, which build up the vocabulary.

The phoneme sequence which is obtained using a phoneme recognizer does
not contain any information about the word boundaries. Since exploiting the
written translation of the spoken phrases has proven to outperform mono-
lingual approaches where the segmentation is only estimated on the whole
phoneme sequence [SSVS12], we use the written translation to segment the
phoneme sequence into word units. These word units may be represented by
their phoneme sequence or in an orthographic representation after applying
phoneme-to-grapheme rules of a related language.

We align source language words to target language phoneme sequences cross-
lingually. Based on this alignment, we induce phoneme sequences forming
words of the target language. This word units are used for our methods to
build pronunciation dictionaries for non-written language, which we describe
in Chapter 8.

The approach has two major challenges [Sta11]:

• High phoneme error rates. One great advantage of our approach is
that no a priori knowledge about the target language is necessary. At
the same time, this is a severe drawback due to the fact that no acoustic
models and therefore no phoneme recognizer is available for the target
language – even the phoneme set might be unknown. Consequently, we
have to run a phoneme recognizer trained on speech data of one or more
languages to obtain the phoneme sequences in the target language. This
introduces high phoneme recognition errors.

• Inaccurate alignments. Another major challenge is to compen-
sate for frequent alignment errors. We use alignment models derived
from statistical machine translation to find word-to-phoneme map-
pings. However, as in general the solution space for word-to-phoneme
alignments is significantly larger than for word-to-word alignments,
finding such alignments automatically is even harder. Furthermore,
high phoneme error rates interfere with statistical alignment models.
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3.3.2 Related Work

If the target language does not have a written form, an option is to define
one. However, defining a writing system manually is very hard and expensive.
As we operate only at the phoneme level on the target side, we implicitly
introduce an artificial writing system, where the words are represented by
their pronunciations (word labels) [SSVS14b]. This enables to bypass the
written form for the purpose of speech-to-speech translation.

Unsupervised word or morphology segmentation in machine learning relies
primarily on statistical models [Gol10]. In addition to bilingual approaches
as ours, the following monolingual methods for word segmentation have been
used in the past: First, Minimal Description Length analysis [Kit00, Gol06]
approximates the optimal compression of a (phoneme-)string (corresponding
to its Kolmogorov complexity). Assuming that a word sequence of a lan-
guage is the optimal compression of the corresponding phoneme sequence,
the data segmentation induced by such compression methods is taken as the
word segmentation. The second approach uses adaptor grammars, which are
context free grammars that learn new rules from the training data [Joh08].
Since recent studies underline the feasibility of applying adaptor grammars
to the word segmentation problem [JG09], we use them in Section 3.3.4 rep-
resentatively for all monolingual word segmentation methods.

In our approach, we use information of a parallel corpus between word se-
quences in the source language and phoneme sequences in the target language
similar to [BZG06]. In an oracle experiment, they replace the words in the
target language with their pronunciations and remove word boundary mark-
ers. For segmenting these phoneme sequences into words, however, they run
a monolingual unsupervised algorithm in contrast to us using cross-lingual
word-to-phoneme alignment. After applying the monolingual segmentation
to an Iraqi phoneme sequence, they use the resulting word sequences in the
training process of a machine translation system that translates Iraqi pho-
neme segments to English words. Their results show that even with low
word accuracy of their word segmentation algorithm (55.2%), vocabulary
extraction efforts are applicable to machine translation.

The authors in [SW08] use the word-to-word aligner GIZA++ [ON00] to
align English word sequences to Spanish phoneme sequences from the BTEC
corpus [KSTY03] and extracted training data for language technology from
human simultaneously spoken translations. According to our approach, they
insert a word boundary maker into the phoneme sequence wherever two
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neighboring phonemes are aligned to different source language words for the
word segmentation.

In [SBW09] they combined the monolingual and the GIZA++-based ap-
proach by taking the most frequent word segments from the monolingual
segmentation output, replacing them and then using GIZA++ for segment-
ing the remaining phoneme sequences.

In [SSVS12] we show that even if the found word-to-phoneme alignments in
[SW08] have acceptable quality on perfect phonetic transcriptions, the word
segmentation precision is not significantly higher as a monolingual approach
when phoneme recognition errors are more common, only in F-score and ac-
curacy. Therefore, we proposed a new alignment model for word-to-phoneme
alignment (see Section 3.3.3) and achieve significantly higher word segmenta-
tion and alignment quality in F-score, precision, and accuracy. In [SSVS13]
and [SSVS14b], we conducted first experiments with parallel data from the
Christian Bible to extract pronunciations from the segmented phoneme se-
quences with English as target language.

We simulated phoneme recognition errors instead of using real phoneme rec-
ognizers because we intended to focus on the algorithms for the word seg-
mentation and the pronunciation extraction. Bootstrapping a phoneme rec-
ognizer without information of the target language is not a trivial task. It
may be bootstrapped using recognizers from other languages and adaptation
techniques as presented in [VKS11] or in [SPC+13].

3.3.3 Word Segmentation

Cross-lingual word-to-phoneme alignments introduced in [BZG06, SW08,
SBW09] and tackled by us with our alignment model Model 3P [SSVS12]
are the basis for our word segmentation and pronunciation extraction al-
gorithm. In the following sections, we describe our approach for finding
word-to-phoneme alignments automatically with English taking the role as
the resource-rich source language and Spanish as the “under-resourced” tar-
get language. Afterwards we demonstrate the performance of Model 3P on a
English-Spanish portion of the BTEC corpus [KSTY03] and written transla-
tions from the Christian Bible.
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IBM Model 3

As our approach is highly inspired by ideas originating from statistical ma-
chine translation, we briefly discuss those in this section. The central data
structure in statistical machine translation is the word alignment, which iden-
tifies word pairs in parallel corpora that are translations of each other. For
instance, the alignment in Figure 3.13 indicates that the Spanish word esto
is a possible translation of the English word this. Various statistical models
for estimating the probability of such alignments exist in literature, such as
the HMM Model [VNT96], the IBM Model hierarchy 1-5 [BPPM93], and
their variations [ON03, ON00]. They differ in the set of parameters, forms of
restrictions or deficiency. GIZA++ [ON00] is an implementation of the IBM
Models and the HMM Model widely used in statistical machine translation
for automatically finding word-to-word alignments.

Our proposed alignment model (Model 3P) is an extension of the IBM
Model 3 [BPPM93]. The parameters of the latter model are composed of
a set of fertility probabilities n(·|·), p0, p1, a set of translation probabilities
t(·|·), and a set of distortion probabilities d(·|·). According to IBM Model 3,
the following generative process produces the target language sentence f from
a source language e with length l [Kni99].

1. For each source word ei indexed by i = 1, 2, ..., l, choose the fertil-
ity (how many target words ei produces) φi with probability n(φi|ei)
(fertility step).

2. Choose the number φ0 of “spurious” target words to be generated from
e0 = NULL, using probability p1 and the sum of fertilities from step 1.

3. Let m = ∑l
i=0 φi.

4. For each i = 0, 1, 2, ..., l, and each k = 1, 2, ..., φi, choose a target word
τik with probability t(τik|ei) (lexical translation step).

Figure 3.13 – Word alignment between English and Spanish.
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Figure 3.14 – Generative process in IBM Model 3.

5. For each i = 1, 2, ..., l, and each k = 1, 2, ..., φi, choose target position
πik with probability d(πik|i, l,m) (distortion step).

6. For each k = 1, 2, ..., φ0, choose a position π0k from the φ0 − k + 1
remaining vacant positions in 1, 2, ...,m, for a total probability of 1/φ0!.

7. Output the target sentence with words τik in positions πik (0 ≤ i ≤
l, 1 ≤ k ≤ φi).

Figure 3.14 illustrates the generation of the Spanish sentence Para qué se
usa esto from the English sentence What’s this used for. Equation 3.1 states
the process as a general formula:

P (a, f |e) =
(
m− φ0

φ0

)
· p0

m−2φ0 · p1
φ0 ·

l∏
i=1

n(φi|ei)·

m∏
j=1

t(fj |eaj
) ·

m∏
j:aj 6=0

d(j|aj , l,m)
l∏
i=1

φi!
(3.1)

The alignment a is represented as a vector of integers, in which ai stores the
position of the source word connected to the target word fi. For instance,
a = (4, 1, 1, 3, 2) for the alignment in Figure 3.13.

Model 3P

Statistical alignment models for word-to-word alignment are well-studied in
statistical machine translation literature. However, for the word segmen-
tation, aligning words in the source language with phonemes in the target
language is required. One method for automatically obtaining such word-to-
phoneme alignments is to use word-to-word alignment models from statis-
tical machine translation. Authors in [SW08] use a perfect phoneme tran-
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scription on the target side, and run the word-to-word aligner GIZA++ to
align English words to Spanish phonemes. The alignment error rate of the
found alignments is comparable to similar experiments with words instead
of phonemes on the target side. Our experiments in Section 3.3.4 suggest
that significantly better results can be achieved by using our new alignment
model Model 3P7 for word-to-phoneme alignment, in particular with respect
to word segmentation quality. Model 3P extends the IBM Model 3 by ad-
ditional dependencies for the translation probabilities t(·|·) and a set of word
length probabilities o(·|·). The generative process upon which it is based can
be described as follows:

1. For each source word ei indexed by i = 1, 2, ..., l, choose the fertility φi
with probability n(φi|ei) (fertility step).

2. Choose the number φ0 of “spurious” target words to be generated from
e0 = NULL, using probability p1 and the sum of fertilities from step 1.

3. Let m = ∑l
i=0 φi.

4. For each i = 1, 2, ..., l, and each k = 1, 2, ..., φi, chose a target word
position πik with probability d(πik|i, l,m) (distortion step).

5. For each k = 1, 2, ..., φ0, choose a word position π0k from the φ0−k+ 1
remaining vacant positions in 1, 2, ...,m, for a total probability of 1/φ0!.

6. For each i = 0, 1, ..., l, and each k = 1, 2, ..., φi, choose the word length
ψik with probability o(ψik|ei) (word length step).

7. For each i = 0, 1, ..., l, and each k = 1, 2, ..., φi, and each j = 1, 2, ..., ψik,
choose a target phoneme τikj with probability t(τikj|ei, j) (lexical trans-
lation step).

8. Output the target phoneme sequence with phonemes τikj in positions
πik (0 ≤ i ≤ l, 1 ≤ k ≤ φi, 1 ≤ j ≤ ψik).

Besides the fact that Model 3P skips step 4 of IBM Model 3 (lexical transla-
tion), both models are identical until applying the distortion model (step 5
or step 6, respectively). At this point, we can regard the target sequence
in Model 3P as a sequence of anonymous tokens, each is a placeholder for
a target word. In step 6, we choose the number of phonemes in the final
phoneme sequence according to the word length probabilities o(·|·). The next
step fills in the phonemes itself, depending on the source word ei and their
phoneme position j in the target word. Figure 3.15 illustrates an instance of
the generative process of Model 3P.

7A multi-threaded implementation is available at http://pisa.googlecode.com/

http://pisa.googlecode.com/
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Figure 3.15 – Generative process in Model 3P.

In Model 3P, an alignment A ∈ {N ∪ {−}}4×m is a matrix rather than an
integer vector like in IBM Model 3. It captures additional model decisions
made in the fertility and word length step, which would be hidden in an
integer vector representation:

• A0j: English word position connected to the j-th target phoneme

• A1j: Position of the target word belonging to the j-th target phoneme

• A2j: Word length in phonemes of the target word A1j

• A3j: Phoneme position of the j-th target phoneme in the corresponding
target word

Figure 3.16 – English-Spanish alignment in Model 3P.
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An example of an alignment is shown in Figure 3.16. The word boundary
between the 6th and 7th phoneme could not be reconstructible in a simple
integer vector representation. Equation 3.2 expresses Model 3P as a general
formula:

P (A, f |e) =
(
k − φ0

φ0

)
· p0

k−2φ0 · p1
φ0

·
l∏
i=1

(n(φi|ei) · φi!) ·
m∏
j=1

t(fj |eA0j , A3j)

·
m∏

j:A0j 6=0,A1j 6=−
(d(A1j |A0j , l, k) · o(A2j |eA0j ))

(3.2)

3.3.4 Alignment andWord Segmentation Performance

We have shown in [SSVS12, SSVS14b] that unsupervised learning of word
segmentation is more accurate when information of another language is used
– for example by using Model 3P word-to-phoneme alignments. Given such
an alignment, we insert a word boundary marker into the phoneme sequence
wherever two neighbouring phonemes are aligned to different source language
words (i.e. wherever a black alignment line in Figure 2.2 ends).

We intersperse the perfect phoneme sequences with phoneme errors to inves-
tigate the performance of different word segmentation approaches depending
on the underlying phoneme error rate. In order to imitate recognition errors
realistically, we trained a phoneme recognizer on the Spanish GlobalPhone
corpus [SVS13] and used the NIST sclite scoring and evaluation tool [Fis07]
to create its confusion matrix R ∈ R36×36. Rso contains the probability
PR(o|s) that the phoneme recognizer confuses the stimulus phoneme s with
the observed phoneme o (substitution). An additional row and a column
model insertions and deletions, so that all elements in a row sum up to 1
and induce a probability distribution. The Spanish phoneme recognizer has
a phoneme error rate of 25.3%. We smooth R with λ ∈ [0, 1] to control the
phoneme error rate. We obtain a disturbed phoneme sequence by replacing
each phoneme s in the perfect phoneme transcription with a phoneme o with
the probability Pλ(o|s). Figure 3.17 shows that the resulting phoneme error
rate is linear in λ.
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Figure 3.17 – Phoneme error rate over λ for the Spanish phoneme recognizer.

Settings

We found that setting the following GIZA++ parameters enhances the align-
ment quality:

• maxfertility = 12 (default=10). This adjustment addresses the large
discrepancy between source and target sentence length in the word-to-
phoneme alignment scenario. However, larger values did not improve
alignment quality.

• deficientdistortionmodelforemptyword = 1 (default=0). As re-
ported in [ON03], the distortion model for NULL in IBM 3 and IBM 4
is not deficient. Since IBM 3 and IBM 4 are deficient, the EM training
can maximize probabilities by aligning more and more words to NULL.
Using a deficient distortion model for NULL turned out to increase the
alignment performance significantly.

• emprobforemptyword = 0.1 (default=0.4). This also slows down the
process of aligning more and more words to NULL.

Our PISA Alignment Tool implements our word-to-phoneme alignment model
Model 3P. PISA requires the initial alignments generated by GIZA++. As
described in [SSVS12], GIZA++ first calculates initial alignments with our
optimal settings which are then further refined by the PISA Alignment Tool
applying Model 3P. More information and practical advices for using the
PISA Alignment Tool are given in [Sta14].



3.3 Vocabulary Extraction for Non-Written Languages 79

  0 %

 10 %

 20 %

 30 %

 40 %

 50 %

  0 %   5 %  10 %  15 %  20 %  25 %

A
lig

n
m

e
n
t 
E

rr
o
r 

R
a
te

Phoneme Error Rate

Model 3P
GIZA++

Figure 3.18 – Alignment error rate over phoneme error rate on BTEC (source
language: English, target language: Spanish).

Performance

Figure 3.18 shows the alignment performance of both, GIZA++ andModel 3P
over the phoneme error rate for the alignment between English words and
Spanish phoneme sequences on the BTEC corpus. The reference alignments
were generated by running GIZA++ with default parameters at the word
level, and then replacing the Spanish words with their pronunciations after-
wards. The alignment error rate [ON03] of Model 3P alignments is up to
13.6% lower than for GIZA++’s word-to-phoneme alignments. The align-
ment error rate for both systems increase proportionally with the phoneme
error rate, GIZA++ slightly more rapidly than Model 3P.

The quality of the found word segmentations for both cross-lingual approaches
and a monolingual approach [Joh08] is summarized in Figure 3.19. Using
Model 3P for the alignment between English words and correct Spanish pho-
neme sequences resulted in 90.0% segmentation accuracy [VIM04] (76.5%
in F-score) and thus outperformed a state-of-the-art monolingual word seg-
mentation approach by 24.72% relative in accuracy (124.11% in F-score).
Furthermore, we still report 83.9% segmentation accuracy on a phoneme
sequence containing 25.3% errors produced by our simulated phoneme rec-
ognizer (see Table 3.9 and 3.10).

In a second experiment, we switched English and Spanish such that Span-
ish took the role as resource-rich source language that was aligned to the
“under-resourced” target language English to check if Model 3P also outper-
forms GIZA++ in another language combination and with higher phoneme



80 Vocabulary Selection and Text Normalization

  0 %

 20 %

 40 %

 60 %

 80 %

100 %

  0 %   5 %  10 %  15 %  20 %  25 %

F
-S

c
o

re

Phoneme Error Rate

Model 3P
GIZA++

Monolingual

Figure 3.19 – Word segmentation quality over phoneme error rate on BTEC
(source language: English, target language: Spanish).

Acccuracy (in %) Relative Model 3P
Improvement (in %)

Monoling. GIZA++ Model 3P Monoling. GIZA++

en-es 0% PER 72.21 80.45 90.06 24.72 11.95
25.3% PER 72.16 70.30 83.92 16.30 19.37

es-en 0% PER 69.18 86.36 88.60 28.07 2.59
45.5% PER 68.18 68.48 76.18 11.73 11.24

Table 3.9 – Accuracy improvement using Model 3P on the BTEC corpus.

F-score (in %) Relative Model 3P
Improvement (in %)

Monoling. GIZA++ Model 3P Monoling. GIZA++

en-es 0% PER 34.13 59.57 76.49 124.11 28.40
25.3% PER 33.47 48.11 63.57 89.93 32.13

es-en 0% PER 36.33 75.83 78.85 117.04 3.98
45.5% PER 34.18 52.26 57.17 67.26 9.40

Table 3.10 – F-score improvement using Model 3P on the BTEC corpus.

error rates error rates [SSVS14b]. Phoneme errors were simulated as before,
with a smoothed confusion matrix of an English phoneme recognizer with
45.5% phoneme error rate (39 phonemes). Figure 3.20 shows that the re-
sults are similar to the first experiment. However, the achieved gain by using
Model 3P instead of GIZA++ is smaller than before. Using Model 3P for
the alignment between Spanish words and correct English phoneme sequences
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resulted in 88.6% segmentation accuracy (78.9% in F-score) and thus per-
formed better than the monolingual word segmentation approach by 28.1%
relative in accuracy (117.0% in F-score). We report still 68.5% segmentation
accuracy on a phoneme sequence containing 45.5% errors produced by our
simulated phoneme recognizer.
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Figure 3.20 – Word segmentation quality over phoneme error rate on BTEC
(source language: Spanish, target language: English).

In addition to the experiments on the BTEC corpus, we applied both cross-
lingual word segmentation approaches GIZA++ and Model 3P to the Chris-
tian Bible corpus8, which we use in our pronunciation extraction experiments.
English (en), Spanish (es), and Portuguese (pt) served as target langua-
ges, whereas the remaining 14 translations represented the source langua-
ges [SSVS13, SSVS14b]. As demonstrated with the BTEC corpus, Model 3P
substantially improved the GIZA++ alignments for all investigated language
pairs. An overview of the used Bible translations is given in Table 8.1.

Table 3.11 gives an overview of the Model 3P improvements. On the Bible
corpus we report for each of the target languages both the biggest and small-
est relative gain over all available source languages. For example, selecting
Portuguese (pt) as target language we achieve between 20.07% with a Span-
ish translation (es3 ) and 76.95% relative gain with a Swedish translation
(sw). We observe that the lower the GIZA++ segmentation accuracy, the
larger the relative gain achieved with Model 3P.

8Extracted from http://www.biblegateway.com/ (Accessed on 15th November 2013)

http://www.biblegateway.com/
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Acccuracy (in %) Improvement (in %)
GIZA++ Model 3P Absolute Relative

BTEC en-es 0% PER 80.45 90.06 9.61 11.95
25.3% PER 70.30 83.92 13.62 19.37

BTEC es-en 0% PER 86.36 88.60 2.24 2.59
45.5% PER 68.48 76.18 7.70 11.24

Bible *-en Biggest gain (se-en) 47.74 74.72 26.98 56.52
Smallest gain (es3-en) 73.01 84.52 11.51 15.76

Bible *-es Biggest gain (se-es) 33.74 71.51 37.77 111.92
Smallest gain (pt2-es) 53.61 81.18 27.57 51.41

Bible *-pt Biggest gain (se-pt) 41.01 72.57 31.56 76.95
Smallest gain (es3-pt) 67.65 81.22 13.57 20.07

Table 3.11 – Accuracy improvement using Model 3P instead of GIZA++.

3.3.5 Summary

The word segmentation problem describes the task of segmenting phoneme
sequences into word units. We have investigated three different unsupervised
algorithms for automatically finding word boundaries in phonetic transcrip-
tions. We showed that using information from another language rather than
a pure monolingual approach helps to find better segmentations on perfect
phoneme sequences. A simple way to incorporate cross-lingual information
is to apply word-to-word alignment models from SMT to align words of the
other language to the phonemes of the target language. However, when pho-
neme recognition errors are common, the word segmentation precision is not
significantly higher than with the monolingual approach. Therefore we pro-
posed the new alignment model Model 3P for cross-lingual word-to-phoneme
alignment, which extends the generative process of IBM Model 3 by a word
length step and additional dependencies for the lexical translation probabili-
ties. With this new model, we obtain considerably better word segmentations
than with both previous methods.



Chapter 4

Pronunciation Quality Assurance

Due to the fact that high-quality pronunciation dictionaries are so impor-
tant to speech processing systems, much care has to be taken to produce
a dictionary as free of errors as possible [SOS12a]. For automatic speech
recognition systems, error-prone pronunciations in the training dictionary
may decrease the quality of the acoustic models and result in higher word
error rates. Therefore, we developed methods which aim to assure the quality
of pronunciations.

As mentioned in Section 1.4, data-driven methods are applied commonly if
reliable word-pronunciation pairs are available and a relationship between
graphemes and phonemes is given. However, cross-checks of the pronunci-
ations generated in a data-driven way are often not performed [LCD+11]
since manual checks are time-consuming and expensive, especially if na-
tive speakers or linguists need to be hired for this task. Particularly, if not
enough examples in terms of word-pronunciation pairs are given to train the
grapheme-to-phoneme converters, the quality of the produced pronunciations
is suboptimal. However, the manual production of examples is expensive.
In Section 4.1 we demonstrate lower bounds for the grapheme-to-phoneme
converter training data to allow a rapid pronunciation production with a
minimum of effort.

Due to different subjective judgments, small typographical errors, and ’con-
vention drift’ by multiple annotators, the manual production of pronunci-
ations can result in erroneous or inadequate dictionary entries. Browsing
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through all entries without any automatic support to find inappropriate en-
tries is not possible with little manual effort. Consequently, we propose com-
pletely automatic methods to detect, remove, and substitute inconsistent or
flawed entries in Section 4.2.

In Section 4.3 we show that grapheme-to-phoneme converters trained with
the same example word-pronunciation pairs are reasonably close in perfor-
mance but at the same time produce an output that differs in its errors. The
outputs provide complementary information which can lead in combination
to grapheme-to-phoneme converter performance improvements and thus to
better pronunciations.

4.1 Grapheme-to-Phoneme Model Quality

In the commonly used data-driven methods statistical grapheme-to-phoneme
models are trained, which are used to generate missing pronunciations or to
produce pronunciation variants. To achieve optimal pronunciation quality,
we need to ensure high-quality grapheme-to-phoneme models. For our qual-
ity analyses, we built grapheme-to-phoneme models for European languages
from ten GlobalPhone-based dictionaries (Bulgarian, Croatian, Czech, En-
glish1 [cmu], French, German, Spanish, Polish, and Russian). First, we check
the grapheme-to-phoneme accuracy as an indicator of dictionary consistency
similar to [WEH02] and [DB06]. For this purpose, we built grapheme-to-
phoneme models with increasing amounts of word-pronunciation pairs from
GlobalPhone as training material. We applied them to test sets from the re-
spective source and computed the phoneme error rate to the original canoni-
cal pronunciations. We report the phoneme error rate since it gives informa-
tion about the required edits to achieve qualified GlobalPhone quality. The
higher the phoneme error rate, the higher the necessary post-editing effort.

Then we selected grapheme-to-phoneme models which had all been trained
with a comparable number of training material. With these, we investi-
gate their relations among grapheme-to-phoneme consistency, complexity
and their usage for automatic speech recognition. For the automatic speech
recognition experiments, we replaced the pronunciations in the dictionaries
of six GlobalPhone automatic speech recognition systems (Czech, English,
French, Spanish, Polish, and German) and investigated the change in per-
formance by using exclusively pronunciations generated from GlobalPhone

1For English, we used the English CMU dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict).
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grapheme-to-phoneme models for training and decoding. Further analyses
including relations between grapheme-to-phoneme consistency, model com-
plexity, model confidence, grapheme n-gram coverage, and phoneme perplex-
ity are published in [SOS12b], [SOS14] and [SS14].

4.1.1 Consistency and Complexity

For training and applying grapheme-to-phoneme models, we use Sequitur G2P
[BN08] which was introduced in Section 1.4.4. To quantify the complexity of
a grapheme-to-phoneme model, we use the model size, which corresponds to
the amount of non-pruned M -grams.

bg cs de en es fr hr pl pt ru
#phones / pron. 8.6 7.8 9.0 6.6 8.4 7.0 8.5 8.2 7.4 9.0

Table 4.1 – Average number of phones in a pronunciation.

To verify the pronunciation quality with the consistency similar to [WEH02]
and [DB06], we performed a 6-fold cross validation as follows: For each
GlobalPhone-based dictionary, we randomly selected 30% of the total number
of word-pronunciation pairs for testing. From the remainder, we extracted
increasing amounts of entries based on their accumulated phoneme count and
used them for training the grapheme-to-phoneme models in each fold. Fig-
ure 4.1 demonstrates differences in grapheme-to-phoneme consistency among
the languages Bulgarian (bg), Croatian (hr), Czech (cs), English (en), French
(fr), German (de), Spanish (es), Polish (pl), Portuguese (pt) and Russian
(ru). To compare the languages, we expressed the amount of grapheme-to-
phoneme converter training data on the x-axis in terms of the total number of
phones in the dictionary entries. Table 4.1 illustrates the average number of
phones per word entry in the GlobalPhone pronunciations and in the English
CMU dictionary [cmu]. We observe a strong phoneme error rate decrease
for amounts of training data between 100 and 7k phonemes [SOS12b]. For
more than 7k phonemes, the phoneme error rates decrease less with more
training data. Creating pronunciations for languages with a close grapheme-
to-phoneme relationship like Bulgarian, Czech, Polish, and Spanish, 5k-10k
phonemes with corresponding graphemes are sufficient for training a well-
performing converter. For example, the phoneme error rate on Polish is lower
than 4% and drops to 3.2% with 30k phonemes for training [SS14]. How-
ever, as the relationship gets weaker (Portuguese, French, German), signifi-
cantly more training examples are required to achieve similar performances.
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For example, the German grapheme-to-phoneme converter requires six times
more training material (30k phones) than the Portuguese one (5k phones)
to achieve the same quality (10% phoneme error rate) on the generated pro-
nunciations. We learn that for the 10 languages word-pronunciation pairs
containing 15k phonemes were sufficient to have stable quality, as the curves
start to saturate at 15k phonemes for all 10 languages. However, we conclude
that grapheme-to-phoneme conversion for languages like Portuguese, French,
German, and in particular English, will not reach the performance level of
those with close grapheme-to-phoneme relationship [SOS12b, SOS14, SS14].

Figure 4.1 – Grapheme-to-phoneme consistency across 10 languages.

We investigated the complexity of the grapheme-to-phoneme models over
training data and among languages and compared the complexity change
to the consistency change. Figure 4.2 shows the increase in complexity of
the grapheme-to-phoneme models with the increase of training material be-
tween 100 and 30k phonemes with corresponding graphemes. A comparison
of Figure 4.1 with 4.2 indicates that although the consistency saturates at
15k phonemes, the model complexity keeps increasing for larger amounts
of training data. However, this has minor impact on quality in terms of
consistency as the model increases with the new M -grams which, however,
represent seldom rules and rather exceptions after 15k phonemes.
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Figure 4.2 – GlobalPhone grapheme-to-phoneme model complexity.

For the automatic speech recognition performance checks, we selected grapheme-
to-phoneme models which were trained with 30k phonemes and their cor-
responding graphemes since this number reflects a saturated grapheme-to-
phoneme model consistency, 30k phonemes are contained in all GlobalPhone-
based dictionaries and in many Wiktionary editions which are a good source
for pronunciations on the Web, as we show in Section 5.1.

4.1.2 Automatic Speech Recognition Performance

Finally, we analyzed if we can use the pronunciations generated with our
GlobalPhone grapheme-to-phoneme models in automatic speech recognition
[SOS12b]. Furthermore, we were interested if our information about the pron-
unciation quality correlates with their impact on automatic speech recogni-
tion performance. We replaced the pronunciations in the dictionaries of six
GlobalPhone-based automatic speech recognition systems with pronuncia-
tions generated with GlobalPhone grapheme-to-phoneme models which were
trained with 30k phonemes and the corresponding graphemes. Then, we
trained and decoded the systems completely with those pronunciation dic-
tionaries. We built and decoded automatic speech recognition systems with
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dictionaries where only the most likely (1-best) pronunciation for each Glob-
alPhone word was produced with our grapheme-to-phoneme models. We
compared these to GlobalPhone systems, which were also limited to the first
pronunciation (base form). The results of the automatic speech recognition
experiments together with the consistency results of the used grapheme-to-
phoneme models are listed in Table 4.2.

GlobalPhone GlobalPhone relative GlobalPhone (GP)
(base form) G2P (1-best) WER change (%) Consistency (PER) at 30k

cs 15.59 17.58 12.76 2.41
de 16.71 16.50 -1.26 10.21
en 14.92 18.15 21.65 12.83
es 12.25 12.59 2.78 1.99
fr 20.91 22.68 8.46 3.28
pl 15.51 15.78 1.74 0.36

Table 4.2 – Word error rates (%) of systems with dictionaries built completely
with grapheme-to-phoneme generated pronunciations.

Figure 4.3 – Correlation between consistency and word error rate decrease.

Using exclusively pronunciations generated from grapheme-to-phoneme mod-
els for automatic speech recognition training and decoding resulted in reason-
able performance degradations given the cost and time efficient generation
process. Figure 4.3 indicates that the severeness of degradation slightly cor-
relates with the grapheme-to-phoneme consistency in terms of phoneme error
rate with a Pearson’s correlation coefficients |r| [RN88] of 0.42.
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4.1.3 Summary

We have investigated the grapheme-to-phoneme model generation for Euro-
pean languages with pronunciations from 10 GlobalPhone dictionaries. We
analyzed and compared their quality with regard to consistency and complex-
ity and detected a saturation at 15k phonemes with corresponding graphemes
as training material. Using exclusively pronunciations generated from gra-
pheme-to-phoneme models for automatic speech recognition training and de-
coding resulted in reasonable performance degradations given the cost and
time efficient generation process. The severeness of degredation correlates
with the grapheme-to-phoneme consistency.

4.2 Detection and Recovery of Inconsisten-
cies and Errors

The manual production of pronunciations by multiple annotators can result
in erroneous or inadequate dictionary entries. Therefore, cross-checks and
post-editing are essential. However, browsing through all entries without
any automatic support to find inappropriate entries is not possible with little
manual effort.

4.2.1 Detection of Inconsistencies and Errors

Different approaches to automatically detect flawed entries have been de-
scribed in the past [SOS12a]. [VALR03] apply a stochastic grapheme-to-
phoneme model to the task of dictionary verification and detect spurious
entries, which can then be examined and corrected manually. [MD07] fo-
cus on mechanisms to identify incorrect entries which require limited hu-
man intervention. The techniques for verifying the correctness of a dictio-
nary include word-pronunciation length relationships, grapheme-to-phoneme
alignment, grapheme-to-phoneme rule extraction, variant modeling, dupli-
cate pronunciations, and variant analysis. The automated correction of
these entries is not investigated and erroneous entries are simply removed.
[DM09] propose a semi-automated development and verification process.
The extraction of grapheme-to-phoneme rules provides an immediate av-
enue for error detection: By cross-validating the dictionary, errors made by
the grapheme-to-phoneme predictor can be flagged for verification [DdW10].
Grapheme-to-phoneme rules themselves may also be able to identify highly
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irregular training instances [MD07] or provide an indication of the likeli-
hood of a specific pronunciation [BN08, VALR03] in order to flag possible
errors. In [WEH02] and [DB06], grapheme-to-phoneme accuracy is consid-
ered an indicator of dictionary consistency, especially where variants are con-
cerned. Inconsistencies lead to unnecessarily complex pronunciation models,
and consequently, suboptimal generalization. [DB06] generate pronuncia-
tions with rules and flag pronunciations with alternative generated pronunci-
ations. [DdW10] describe a technique that does not only flag specific words
for verification, but also presents verifiers with example words that produce
pronunciation patterns conflicting with the flagged instances.

The previous approaches show isolated methods to detect inconsistent dic-
tionary entries. To correct those entries, they substitute them manually in
separate processes. The annotation of flagged entries may be still costly
and time-consuming. Therefore, we investigated the performance of different
fully automatic data-driven methods to detect, remove and substitute such
entries. We determine the thresholds for removing word-pronunciation pairs
completely on the data in the dictionaries and restore removed pronunciations
with pronunciations generated with validated grapheme-to-phoneme models.
For better filtering, we experimented with single and 2-stage approaches.

Most approaches reported in related work have not been evaluated in au-
tomatic speech recognition experiments. We investigate the performance of
our methods on different tasks and check their impact on automatic speech
recognition: First, we analyze their impact on the GlobalPhone Hausa pron-
unciation dictionary, which had been manually cross-checked but still con-
tains a few errors [Djo11]. Then, we use our methods to select pronunci-
ations from an additional dictionary to enhance the SEAME code-switch
dictionary which contains entries of Mandarin and English with Singaporean
and Malayan accent to transcribe Mandarin-English code-switching conver-
sational speech [VLW+12].

Additionally, we apply our methods to pronunciations from the World Wide
Web. We present the results in Section 5.1, where we describe how we re-
trieve Web-derived pronunciations and analyze their quality. Since they often
lack information about the corresponding word or language, it may happen
that inappropriate word-pronunciation pairs are collected. Further results
are demonstrated in Section 5.3, where we show how to use the Web-derived
pronunciations in a rapid and economic semi-automatic pronunciation dic-
tionary development strategy.
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4.2.2 Recovery of Inconsistencies and Errors

Our investigated methods, which filter erroneous word-pronunciation pairs
and substitute the filtered pronunciations with more reliable ones, fall into
the following categories [SOS12a]:

1. Length Filtering (Len)

(a) Remove a pronunciation if the ratio of grapheme and phoneme tokens
exceeds a certain threshold.

2. Epsilon Filtering (Eps)

(a) Perform a 1-1 grapheme-to-phoneme alignment [MD07, BLP98] which
involves the insertion of graphemic and phonemic nulls (epsilons) into
the lexical entries of words.

(b) Remove a pronunciation if the proportion of graphemic and phonemic
nulls exceeds a threshold.

3. m-n Alignment Filtering (M2NAlign)

(a) Perform an M-N grapheme-to-phoneme alignment [MD07, BLP98].

(b) Remove a pronunciation if the alignment score exceeds a threshold.

4. Grapheme-to-phoneme Filtering (G2P )

(a) Train grapheme-to-phoneme models with “reliable” word-pronunciation
pairs.

(b) Apply the grapheme-to-phoneme models to convert a grapheme string
into a most likely phoneme string.

(c) Remove a pronunciation if the edit distance between the synthesized
phoneme string and the pronunciation in question exceeds a threshold.

The threshold for each filter method depends on the mean (µ) and the
standard deviation (σ) of the measure in focus (computed on all word-
pronunciation pairs), i.e. the ratio between the numbers of grapheme and
phoneme tokens in Len, the ratio between the numbers of graphemic and
phonemic nulls in Eps, the alignment scores in M2NAlign, and the edit
distance between the synthesized phoneme string and the pronunciation in
question in G2P . Those word-pronunciation pairs whose resulting number
is shorter than µ − σ or longer than µ + σ are rejected. Experiments with
more or less restrictive thresholds performed worse.

To provide “reliable” pronunciations for G2P , we propose to prefilter the
word-pronunciation pairs by applying Len, Eps or M2NAlign, as shown in
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Figure 4.4 – 2-stage filtering.

Figure 4.4 (1st stage). On the remaining word-pronunciation pairs, G2P is
applied (2nd stage). Those 2-stage filter methods are represented as G2PLen,
G2PEps, and G2PM2NAlign in the following sections. Experiments with two
stages in the prefiltering before G2P (3-stage filtering) were too restrictive
and did not leave enough training data for reliable grapheme-to-phoneme
models. If a validated dictionary already exists, µ and σ can be computed
on its entries. All our single and 2-stage data-driven methods expect more
good than bad pronunciations in the data to obtain good estimates for µ
and σ. With our pure statistical methods, no manual labor and linguistic
knowledge is required.

In this section we demonstrate the performance of our proposed methods by
addressing the following two possible tasks occurring in the development of
automatic speech recognition systems:

1. An LVCSR dictionary, which has been manually checked under super-
vision, can still have a few errors and inconsistencies. We apply our
methods on the GlobalPhone Hausa dictionary, which represents such
a dictionary.

2. The straightforward insertion of new pronunciation variants into an ex-
isting dictionary can lead to automatic speech recognition performance
degradations if the new pronunciations do no match the target domain
or accent. We filter English pronunciation variants from a new dictio-
nary which do not match the existing Singaporean/Malayan English
pronunciations in our English-Mandarin code-switch dictionary.
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For all experiments withM2NAlign, we report the error rates of the alignment
which performed best on the particular dictionary.

Correction Of Handcrafted Pronunciations

For the African language Hausa, we collected almost 9 hours of speech from
102 Hausa speakers reading newspaper articles as a part of our GlobalPhone
corpus [SDV+12].

We evaluate our filter methods on the initial GlobalPhone dictionary, which
has been created in a rule-based fashion and was then manually revised and
cross-checked by native speakers and causes a word error rate of 23.49% (base-
line) [SDV+12]. After filtering, we used the remaining word-pronunciation
pairs to build new grapheme-to-phoneme models and applied them to the
words with rejected pronunciations. Then we trained and decoded the Hausa
system with each processed dictionary. Table 4.3 shows that we reduce the
word error rate with all filtered dictionaries but G2P by 1.5% relative on
average. G2PLen performs best with 2.6% relative improvement.

baseline G2P Len G2PLen Eps G2PEps M2NAlign G2PM2NAlign
ha 23.49 23.68 23.20 22.88 23.30 23.15 23.17 23.11

Table 4.3 – Word error rates (%) for Hausa with and without filtered pron-
unciation dictionary.

Filtering New Pronunciaton Variants

SEAME [VLW+12, AKT+14] contains 157 speakers and approximately 52k
intra-sentential English-Mandarin code-switching utterances. The recorded
speakers speak Singaporean/Malayan English, which differs strongly from
American English. In addition to our previous pronunciation dictionary (prev),
our partners generated a new dictionary for Singaporean English (new) by
applying 160 rules to the pronunciations in the American CMU dictionary,
which they had derived in a data-driven way. With this dictionary a word er-
ror rate of 16.89% was achieved on texts from the English Aurora 4 [PPPH04,
AYS04] corpus which were read by Singaporean speakers. With the American
CMU dictionary the word error rate was 75.19% on the same test set.

As an evaluation measure, we use the mixed error rate [VLW+12]. It is a com-
bination of word error rates for English segments and character error rates for
Mandarin segments. Due to this, the performance can be compared across
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different segmentations of Mandarin. Our system with the existing dictionary
(prev) has a mixed error rate (MER) of 36.89% on SEAME [VLW+12]. To
improve prev, our goal was to enrich it with pronunciations from new. How-
ever, adding all almost 5k English pronunciations as pronunciation variants
which are not equal to the pronunciations in prev for decoding led to a per-
formance degradation of 0.23% absolute (prev+new). Therefore, we applied
our filter methods to select only those pronunciations from new which fit the
pronunciations which have been successfully used before. The mean (µ) and
the standard deviation (σ) of the measure in focus were computed based on
the word-pronunciation pairs of prev for Len, Eps, G2P , and M2NAlign1.
The alignments of M2NAlign2 were computed on those from new. Table 4.4
shows that we slightly reduce the mixed error rate compared to prev by 0.2%
relative on average with a decoding using the filtered new pronunciations.
M2NAlign1 and M2NAlign2 marginally outperform the other methods and
result in a mixed error rate reduction of 0.3% relative. Our 2-stage filtering
approaches were too restrictive and removed almost all pronunciations from
new.

prev prev+new Len Eps G2P M2NAlign1 M2NAlign2
MERs 36.89 37.12 36.89 36.89 36.84 36.79 36.79
prons./word 1.78 1.94 1.85 1.84 1.88 1.89 1.90

Table 4.4 – Mixed error rates (%) on the SEAME Mandarin-English Code-
Switch Corpus development set.

4.2.3 Summary

We have presented completely automatic error recovery methods for pronun-
ciation dictionaries. The methods are based on the means and deviations of
certain characteristics computed on the word-pronunciation pairs of the dic-
tionaries and on grapheme-to-phoneme model generation plus their applica-
tion. Our methods improved the automatic speech recognition performances
in each language and task slightly but not significantly.

More results with our filter methods are demonstrated in Section 5.1 and 5.3,
where we describe how we retrieve Web-derived pronunciations, analyze their
quality and investigate how to use them to reduce the manual effort in our
rapid and economic semi-automatic pronunciation dictionary development
strategy.

All experiments show that no particular filter methods outperforms the oth-
ers. Future work may include an analysis which method works how good
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on which kind of errors to find faster the best method for a dictionary in
question.

4.3 Phoneme-Level Combination

We investigated if a combination of grapheme-to-phoneme converter out-
puts outperforms the single converters [Qua13, SQS14]. This is particularly
important for the rapid bootstrapping of speech processing systems if not
many manual created example word-pronunciation pairs are available and
therefore a single grapheme-to-phoneme converter has a poor performance.
In the case of semi-automatic pronunciation generation, enhanced pronuncia-
tions derived from the combination would reduce the editing effort and speed
up the annotation process. We combine the grapheme-to-phoneme converter
outputs based on a voting scheme at the phoneme-level. Our motivation is
that the converters are reasonably close in performance but at the same time
produce an output that differs in its errors. This provides complementary
information which in combination leads to performance improvements.

We analyze five common grapheme-to-phoneme conversion approaches and
their combination:

• SMT-based with Moses Package [KHB+07, ON03] (Moses)

• Graphone-based with Sequitur G2P [BN08] (Sequitur)

• WFST-driven with Phonetisaurus [Nov11, NMH12] (Phonetisaurus)

• CART-based with t2p: Text-to-Phoneme Converter Builder [Len97,
BLP98] (Carttree)

• Simple grapheme-to-phoneme conversion based only on the most fre-
quently uttered phoneme for each grapheme2 (Rules).

To investigate our methods for languages with different grade of regularity
in grapheme-to-phoneme relationship, our experiments are conducted with
German (de), English (en), Spanish (es), and French (fr).

For evaluating our grapheme-to-phoneme conversion methods, we use Glob-
alPhone dictionaries for de and es as reference data [SS14]. For fr, we employ
our dictionary developed within the Quaero Programme. The en dictionary
is based on the CMU dictionary.

2It represents a knowledge-based approach.
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For each language, we randomly selected 10k word-pronunciation pairs from
the dictionary for testing. From the remainder, we extracted 200, 500, 1k,
and 5k word-pronunciation pairs for training to investigate how well our
methods perform on small amounts of data. To evaluate the quality of the
grapheme-to-phoneme converter outputs, we apply them to the words in
the test set and compute their phoneme error rate (PER) to the original
pronunciations.

As we find en, fr, de, and es word-pronunciation pairs in Wiktionary3 (see
also Section 5.1), we additionally built a grapheme-to-phoneme converter
with these data for each language. The quality of Web-derived pronun-
ciations is usually worse than handcrafted pronunciations as we show in
Section 5.1. However, the word-pronunciation pairs from the Web can in-
clude complementary information to our given training data and we can find
word-pronunciation pairs even for languages with no or very limited lexical
resources, as we have shown in [SOS14]. First, we naively extracted word-
pronunciation pairs without any filtering (5-30k phoneme tokens with corre-
sponding grapheme tokens to reflect a saturated grapheme-to-phoneme con-
sistency [SOS12b]). Second, we filtered them before we built the grapheme-
to-phoneme converter with the methods which we have described in Sec-
tion 4.2.

4.3.1 Single G2P Converter Output

For all grapheme-to-phoneme converters, we use context and tuning param-
eters resulting in lowest phoneme error rates on a development set with 1k
word-pronunciation pairs as training data. For Sequitur 6-grams gave best
performance, for Phonetisaurus 7-grams and for Moses 3-grams in phrase
table and language model. Figure 4.5 demonstrates the phoneme error rates
of the single grapheme-to-phoneme converter outputs. The converters with
lowest phoneme error rate serve as a baseline for us and we compute the
relative phoneme error rate change compared to their phoneme error rate
in Section 4.3.2 and 4.3.3. We observe lower phoneme error rates with in-
creasing amount of training data. Lowest phoneme error rates are achieved
with Sequitur and Phonetisaurus for all languages and data sizes. Sequitur
is slightly better than Phonetisaurus except for en with 5k training data and
es with 200. Carttree results in worse performance. Moses is always worse
than Sequitur and Phonetisaurus, even it is very close for de. Only for 200
en and fr word-pronunciation pairs, Rules outperforms Moses.

3http://www.wiktionary.org
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Figure 4.5 – Phoneme error rate (%) of single grapheme-to-phoneme con-
verter outputs over amount of training data.

To show that the grapheme-to-phoneme converters produce different outputs,
we present the edit distances at the phoneme-level between the grapheme-
to-phoneme converter outputs trained with 1k word-pronunciation pairs in
Figure 4.6. How much they differ depends on the similarity of the corre-
sponding technique. For example, the smallest distances are between the
graphone-based converters Sequitur and Phonetisaurus, while Rules has the
highest distances to the other approaches. It also depends on the grapheme-
to-phoneme relationship: While the en outputs differ most for all amounts of
training data, the es ones are closest. The distances of fr and de are located
in between.

Figure 4.6 – Edit distances at the phoneme level (%) between grapheme-to-
phoneme converter outputs (en / de / fr / es).
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Figure 4.7 – Phoneme error rate change (%) with Phoneme Level Combina-
tion using converters trained without and with Web-derived pronunciations.

4.3.2 Combination of G2P Converter Output

For the phoneme-level combination (PLC ), we apply nbest-lattice at the
phoneme-level, which is part of the SRI Language Modeling Toolkit [Sto02].
From each grapheme-to-phoneme converter we select the most likely output
phoneme sequence (1st-best hypothesis). Then, we use nbest-lattice to con-
struct a phoneme lattice from all converters’ 1st-best hypotheses and extract
the path with the lowest expected phoneme error rate. We detected that
in some cases the combination of subsets of grapheme-to-phoneme converter
outputs improved the phoneme error rate slightly. In other cases worse 1st-
best grapheme-to-phoneme converter outputs even helped to improve quality.
As the impact is usually not clear, we continued our experiments with the
combination of all 1st-best converter outputs.

The left blue bars in Figure 4.7 (PLC-w/oWDP) show the change in phoneme
error rate compared to the grapheme-to-phoneme converter output with the
highest quality. In 10 of 16 cases the combination performs equal or better
than the best single converter. For de, we observe improvements for all
training data sizes, for en slight improvements in four of five cases. Therefore,
we selected these languages for our automatic speech recognition experiments
(see Section 4.3.4). For es, the language with the most regular grapheme-to-
phoneme relationship, the combination never results in improvements. The
quality of the single es grapheme-to-phoneme converters seems already to
be of such a good quality that minor disagreements have a negative impact.
While for de the improvement is higher with less training data, the best fr
improvement can be found with 5k training data. Further approaches of
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weighting the 1st-best grapheme-to-phoneme converter outputs could only
reach the quality of the best single converter and not outperform it [SQS14].

4.3.3 Adding Web-driven G2P Converter Output

We used Sequitur to build additional grapheme-to-phoneme converters based
on pronunciations, which we found in Wiktionary together with correspond-
ing words (WDP) (see also Section 5.1) and analyzed their impact to the
combination quality. The single de Web-driven converter trained with unfil-
tered word-pronunciation pairs has a phoneme error rate of 16.74%, the en
one 33.18%, the fr one 14.96%, and the es one 10.25%. The de one trained
with filtered word-pronunciation pairs has a phoneme error rate of 14.17%,
the en one 26.13%, and the fr one 13.97%. However, the phoneme error rate
of the es one slightly increased to 10.90%. We assume that the es grapheme-
to-phoneme converter performs worse after filtering the training data from
the Web due to the following reason: Compared to the other three lang-
uages, we found only one-third of the amount of es grapheme-to-phoneme
model training data in Wiktionary. The filter method which removes further
15% of the amount of found data provides a small training corpus size which
is not enough to exceed the quality of the unfiltered data.

Figure 4.7 shows the changes without (PLC-w/oWDP) and with additional
converter outputs compared to the best single converter. A positive value
reflects the relative improvement compared to the the best single converter
output trained with the corresponding amount of training data. A negative
value shows relative degradations. First, we built grapheme-to-phoneme con-
verters after we extracted word-pronunciation pairs fromWiktionary without
any filtering (PLC-unfiltWDP) [SOS12a]. Second, we filtered them before we
built the grapheme-to-phoneme converters as described in Section 5.1 (PLC-
filtWDP). The en and de Web-driven grapheme-to-phoneme converters even
perform better than converters trained with our 200 and 500 qualified word-
pronunciations. For es, the Web-driven converters outperform our converter
trained with 200 qualified word-pronunciation pairs.

We observe that PLC-unfiltWDP outperforms the best single converter out-
put in 15 of 16 cases. In all cases it is better than w/oWDP. Like PLC-
unfiltWDP, PLC-filtWDP outperforms the best single method in 15 cases.
However, it is in all cases better than PLC-unfiltWDP and better than PLC-
w/oWDP. With 23.1% relative phoneme error rate improvement, we report
the largest improvement for fr where only 200 French word-pronunciation
pairs and Web data are given as training. We also observed the high quality
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of the pronunciations from the French Wiktionary edition in other experi-
ments described in Section 5.1.

Where our PLC method improves the phoneme error rate, a linguist or na-
tive speaker has to change less phonemes to meet a validated pronunciation
quality. Therefore, PLC has potentials to enhance the processes of semi-
automatic pronunciation dictionary creation described in [MBT04], [DM09],
[Kom06], [SBB+07], and [DFG+05]. In Section 5.3, we describe how we use
the PLC method in our semi-automatic pronunciation generation strategy.

4.3.4 Automatic Speech Recognition Experiments

For de and en, we have illustrated that we can approximate validated pronun-
ciations using PLC, which can be helpful for speech synthesis and lowers the
editing effort in the semi-automatic dictionary generation. In the following
sections we investigate if the impact of the phoneme-level combination has a
positive impact on automatic speech recognition performance as well. Fur-
thermore, we compare PLC (early fusion) to a combination at lattice-level
(late fusion) from the output of individual automatic speech recognition sys-
tems.

For the automatic speech recognition experiments, we replace all pronuncia-
tions in the dictionaries of our de and en GlobalPhone-based speech recogni-
tion systems with pronunciations generated with the grapheme-to-phoneme
converters. Thereby, we replace 39k pronunciations for de and 64k for
en. Then, we use them to build and decode LVCSR systems. The tran-
scribed audio data and language models for de come from the GlobalPhone
project [SVS13], those for en from the WSJ0 corpus [GGPP93]. Finally, we
decode their test sets with the resulting systems. For each amount of word-
pronunciation pairs, the best performing single system serves as baseline.
Then, we evaluated the combination approaches with the relative change
in word error rate (WER) compared to the best performing system that is
trained with a dictionary which has been built with a single converter. A
positive value reflects the relative improvement compared to the the best
single converter output trained with the corresponding amount of training
data. A negative value shows relative degradations.

Figure 4.8 depicts the word error rate over the amounts of training data. The
values for en are significantly higher than for de, while the automatic speech
recognition systems trained and decoded with handcrafted dictionaries are
closed in word error rate with 16.71% for de and 14.92% for en. This fact
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Figure 4.8 – Word error rate (%) with dictionaries from single grapheme-to-
phoneme converter outputs over amount of training data.

shows that the en dictionaries which were also worse in the phoneme error
rate evaluation still have negative impact on the word error rate performance.
For both languages, there is a small general decrease with more training
data using our data-driven grapheme-to-phoneme converters except for en
with Moses. Whereas in our phoneme error rate evaluation Sequitur and
Phonetisaurus outperform the other approaches, Rules results in lowest word
error rates for most scenarios with less than 5k training data. The reason is
that the pronunciations generated with less than 5k training data are more
inconsistent than pronunciations generated with Rules which has a negative
impact on the acoustic model training.

Automatic Speech Recognition Systems with Dictionaries from
Phoneme-Level Combination

Figure 4.9 shows that the word error rate changes compared to the best single
converter, using dictionaries generated from PLC without (PLC-w/oWDP)
and with (PLC-filtWDP) the additional Web-driven grapheme-to-phoneme
converter outputs. PLC-w/oWDP is only in one case better than the best
single method, whereas PLC-filtWDP outperforms the best single system in
four cases. This shows that the Web data can also have a positive impact on
automatic speech recognition performance.

Moreover, we learn that getting closer to the qualified reference pronuncia-
tions with PLC does not necessarily mean the word error rate of the auto-
matic speech recognition systems improves. Figure 4.10 indicates that the
correlation between the percentage of insertion and deletion errors (I+D) to
the reference pronunciations at the phoneme-level correlates stronger with
the word error rate than the phoneme error rate to the reference pronuncia-
tions. The automatic speech recognition systems usually deal better a little
better with substitution errors in the pronunciations than insertion and dele-
tion errors. Additionally, the fact that errors in the pronunciations of words
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occurring frequent in training and test set have a bigger impact on the word
error rate than less frequent ones blurs the correlation between word error
rate and phoneme error rate.

Figure 4.9 – Word error rate (%) change over training data size with and
without Web-derived data for early (PLC ) and late (CNC ) fusion.

Figure 4.10 – Correlation between phoneme error rate/I+D and word error
rate.

Confusion Network Combinations

Before we compared the PLC approach to the confusion network combina-
tion, we compared our combination approach to two approaches of build-
ing the training and decoding dictionary where the outputs of the single
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grapheme-to-phoneme converters are used as pronunciation variants: In the
first approach we used all pronunciations for the training and decoding dic-
tionary as in [JFI12]. Assuming that speakers in training and test set use
similar speaking styles and vocabulary, and that our training process au-
tomatically selects the most likely pronunciations. In the second approach
we removed all pronunciations in the dictionary that were not used in the
training for decoding. However, both methods did outperform neither the
corresponding best single converter nor the combination approaches in most
cases.

Combination methods are known to lower the word error rate of automatic
speech recognition systems [SFBW06]. They require systems which are rea-
sonably close in performance but benefit from the fact that the output dif-
fers in its errors. This provides complementary information leading to per-
formance improvements. As the individual automatic speech recognition
systems with the dictionaries from different grapheme-to-phoneme converter
outputs are close in performance, we combine them with a confusion network
combination (CNC) (late fusion) and compare it to the PLC performance.

Figure 4.9 illustrates that a late fusion with CNC outperforms the early fu-
sion approach with PLC. Including the systems with pronunciation dictio-
naries having been built with PLC in the CNC combination (CNC+PLC ),
outperformed CNC in six systems. While for de CNC gave improvement for
all amounts of grapheme-to-phoneme training material, it outperformed the
best single system in only half of the cases for en. With 8.8% relative word
error rate improvement, we report the largest improvement for de where only
200 German word-pronunciation pairs and Web data are given as training
data. We believe that the advantage of CNC is more context since the com-
bination is at the word level and that language model information benefits
the combination which is missing in the PLC approach.

Since the phoneme-level combination has potentials to generate a better pron-
unciation out of different pronunciations of the same word, we deploy it in
crowdsourcing-based approaches where multiple annotators create pronun-
ciations for the same word. In Section 5.2 we show how the PLC method
can help to improve pronunciations created with our online game Keynounce.
Moreover, we describe in Section 5.3 how we use the PLC method in our semi-
automatic pronunciation generation strategy. Additionally, we apply PLC to
obtain qualified word-pronunciation pairs as part of our whole pronunciation
extraction algorithm for non-written languages, as specified in Chapter 8.
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4.3.5 Summary

The automatic pronunciation generation can be improved through the com-
bination of grapheme-to-phoneme converter outputs, especially where low re-
sources are available to train the single converters. Our experiments showed
that in most cases the phoneme-level combination approaches validated ref-
erence pronunciations more than the single converters. We detected that the
output of grapheme-to-phoneme converters built with Web-derived word-
pronunciation pairs can further improve pronunciation quality.

Pronunciations which are closer to high-quality pronunciations minimize the
human editing effort in a semi-automatic pronunciation dictionary develop-
ment, as we show in Section 5.3. In additional automatic speech recognition
experiments we showed that the resulting dictionaries can lead to perfor-
mance improvements. In Section 5.2, we demonstrate that PLC can also
improve the quality of pronunciations which have been created by multiple
annotators.



Chapter 5
Crowdsourcing-based

Pronunciation Generation

As shown in [CBD10], crowdsourcing enables an inexpensive collection of
large amounts of data from users around the world. For example, in [DL10,
AV10] the crowdsourcing platform Amazon Mechanical Turk has been ana-
lyzed to collect data for human language technologies like judging machine
translation adequacy and building parallel corpora for machine translation
systems. In Section 3.2.2, we described how we assigned text normalization
tasks to Turkers.

A collection of pronunciations on websites where Internet users have entered
word-pronunciation pairs or with online games supports the process of pron-
unciation generation. In addition to a cheap way of gathering grapheme-
to-phoneme converter training material, using pronunciations provided by
Internet users is helpful for languages with a complex grapheme-to-phoneme
correspondence where data-driven approaches have shortcomings.

In Section 5.1 we describe Wiktionary, a crowdsoucing-based online encyclo-
pedia, where Internet users enter word-pronunciation pairs for several lang-
uages. We analyze the quality of the existing pronunciations and improve the
quality of Web-derived pronunciations with our methods for automatic de-
tection of inconsistencies and errors, which we have presented in Section 4.2.

In the second crowdsourcing approach, we let users proactively produce pro-
nunciations in an online game [Lem13]. For this, we implemented Keynounce.
The implementation and analyses are presented in Section 5.2.
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5.1 Pronunciations from the Web

Our intention was to research if Web-derived pronunciations can be used
to build pronunciation dictionaries from scratch or at least enhance exist-
ing ones. We extended our Rapid Language Adaptation Toolkit to extract
pronunciations from the World Wide Web and collected pronunciations from
Wiktionary [He09].

Initial investigations to leverage off pronunciations from the World Wide Web
have been described in [GJK+09, CCG+09]. [GJK+09] retrieve English pro-
nunciations in IPA and ad-hoc transcriptions from the World Wide Web and
compare the pronunciations to the Pronlex dictionary1 based on phoneme
error rates. To extract, validate and normalize the Web-derived pronunci-
ations, they apply English unigram grapheme-to-phoneme rules, grapheme-
to-grapheme rules and phoneme-to-phoneme rules learned from the Pronlex
dictionary. In [CCG+09], they apply their methods to English spoken term
detection.

Wiktionary2 is a community-driven free online lexical database providing rich
information about words, such as explanations of word meanings, etymolo-
gies, and their pronunciations. As of today Wiktionary lists more than 13
million word entries covering more than 150 languages. Each of these lang-
uages has a dedicated Wiktionary edition. Parts of the lexical entries in
an edition comprise pronunciations in the International Phonetic Alphabet
(IPA). While phonetic notations are given mostly in IPA, some editions may
also contain other notations such as SAMPA [Wel97]. An active community
continuously contributes modifications and additions to the database entries.
For the ten most popular languages in Wiktionary, Table 5.1 (June 2012)
summarizes the number of cross-checked “good” database entries, total en-
tries and entries with pronunciations, together with the number of admin-
istrators and active users. “Good entries” refer to content pages, excluding
talk pages, help, redirects, etc. As can be seen, the community support and
the number of available pronunciation entries vary greatly with language,
while the amount of available resources (“Good” Entries) neither correlates
with the amount of supporting people (Admins, Active Users) nor with the
amount of speakers of that language.

Overall, the Wiktionary database is growing rapidly, both in the coverage
of languages and in the amount of entries as Figure 5.1 indicates [SOS14].

1CALLHOME American English Lexicon, LDC97L20
2www.wiktionary.org
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No. Edition / “Good” Total Entries with Admins Active
Language Entries Entries Prons. Users

1 English 3,017k 3,180k 223k 98 1013
2 French 2,205k 2,320k 1,018k 23 353
3 Malagasy 1,516k 1,518k 591k 2 20
4 Chinese 826k 1,264k 4k 8 50
5 Lithuanian 608k 680k 1k 4 15
6 Russian 439k 621k 23k 7 143
7 Korean 342k 354k 35k 1 35
8 Turkish 308k 323k 4k 3 54
9 Greek 308k 333k 11k 7 44

10 Polish 287k 298k 80k 26 99

Table 5.1 – The ten largest Wiktionary language editions, based on [Wik12].

Figure 5.1 has been created by the Wiktionary community in 2010 and illus-
trates the article count over time for eight languages from January 2003 to
July 2010: English (en), French (fr), Lithuanian (lt), Turkish (tr), Chinese
(zh), Russian (ru), Vietnamese (vi), and Ido (io). For some languages (e.g.
French, English), the growth has almost been exponential, for others it is
slower (e.g. Chinese). In rare cases, slightly negative growth might also oc-
cur, caused by merging or deletion of articles (e.g. Vietnamese). Due to the
fast growth in language presence on Wiktionary, there is a future potential
of harvesting pronunciations even for under-resourced languages from this
source.

The Wiktionary online database is organized in a well structured format,
which is nearly identical across languages and editions. Figure 5.2 displays
an example page for the word “vitamin” in the English Wiktionary edition.
The red circles in the screen shot marks the position where the pronunciations
can be found. Pronunciations are given in terms of IPA symbols.

As shown in Figure 5.2 Wiktionary pages may contain more than one pron-
unciation per word. These additional pronunciations reflect alternative pro-
nunciations, dialects, or even different languages. To gain some insights into
this “language-mix” we performed a brief analysis on the English, French,
German, and Spanish Wiktionary editions. For German Wiktionary, for
example, we found that only 67% of the detected pronunciations are for Ger-
man words, the remainder is for the languages Polish (10%), French (9%),
English (3%), Czech (2%), Italian (2%), etc. Figure 5.3 (June 2012) shows
this “language-mix” in the English and the French editions.
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Figure 5.1 – Growth of Wiktionary entries over several years [wik14].

For some Wiktionary pages no information is given which language the pro-
nunciations belong to. However, per convention the first given pronunciation
on a Wiktionary page of a certain language edition usually refers to that
language. In the experiments described later, we therefore always retrieve
the first pronunciation, if multiple candidates exist.

As mentioned above, the number of data entries in Wiktionary varies widely
across languages. Thus, we selected those Wiktionary editions which provide
1,000 or more pronunciation pages. In total, we found 39 editions which qual-
ify. In Figure 5.4 we show the amount of pronunciations retrieved from those
39 editions, marked with their language families for illustration (June 2012).
So far, the Indo-European languages dominate. However, other language
families such as Basque, Altaic, Uralic, Sino-Tibetan, Japonic, Austronesian,
Korean, and Austro-Asiatic are covered as well. Given the rapid growth and
active community, other languages may catch up quickly.

Since we explore grapheme-to-phoneme based approaches in this study, it
is also worth examining the coverage of writing systems. With Roman
(e.g. English) and Cyrillic (e.g. Russian) the most prominent phonographic-
segmental scripts are covered, with Arabic the most prominent abjad is
covered, phonographic-syllabic scripts are represented (e.g. Japanese kana),
phonographic-featural scripts are covered (e.g. Korean) and logographic scripts
are covered by Hanzi (Chinese) and Japanese (Kanji). Therefore, it is rea-
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Figure 5.2 – English Wiktionary page for the word “vitamin”.
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Figure 5.3 – Pronunciation diversity in English and French Wiktionary.
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sonable to assume that Wiktionary covers most of the wide-spread writing
systems of the world.
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Figure 5.4 – Wiktionary editions with more than 1k pronunciations.

5.1.1 Automatic Pronunciation Extraction

We implemented an Automatic Dictionary Extraction Tool and integrated
this component into our Rapid Language Adaptation Toolkit [SOS10, SOS12b,
SOS14]. The new component allows to extract pronunciations given in IPA
from one or more online dictionaries that have separate pages for individual
words, such asWiktionary. The tool takes a vocabulary list as input and finds
matching pages in the online dictionaries. If no matching page can be found,
the tool tries the upper and lower case alternatives. We are aware that this
procedure may cause flaws since for some languages such as German, casing
can have an impact on the pronunciation (e.g. “Weg” is pronounced with a
long /e/, but “weg” with a short /ε/).

Each retrieved Web page is then parsed for IPA-based pronunciations by
searching for strings which contain at least one character in the IPA Ex-
tensions Unicode block (U+0250..U+02AF), surrounded by delimiters such
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as “/ /” and “[ ]”, similar to [GJK+09]. This procedure allows a website-
independent collection of pronunciations. As mentioned above, a Wiktionary
page may contain more than one pronunciation. The current implementation
picks the first variant if multiple exist. Finally, the tool outputs a pronun-
ciation dictionary in IPA notation for those words in the vocabulary lists
which were found in the online dictionary, and reports back for which words
no match could be found.

5.1.2 Evaluation of the Web-derived Pronunciations

For evaluating the quantity and quality of pronunciations in Wiktionary as
a seed resource for multilingual pronunciations, we use GlobalPhone-based
dictionaries as reference data as they have been successfully used in LVCSR in
the broadcast domain. Furthermore, we build automatic speech recognition
systems with GlobalPhone dictionaries, speech data and language models for
the evaluation.
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Figure 5.5 – Ratio of searched words (first bar) and retrieved Wiktionary
pronunciations (second bar).

Quantity

With the vocabulary of the English, German, Polish, Spanish, Czech, and
French GlobalPhone-based dictionaries as input to the Automatic Dictio-
nary Extraction, we analyzed the coverage of corresponding pronunciations
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Figure 5.6 – Ratio of searched Chinese characters (segments) (first bar) and
retrieved Wiktionary pronunciations (second bar).

found in Wiktionary. Figure 5.5 shows the outcome of this quantity check.
French Wiktionary outperforms the other languages with a 93.27% coverage
for the French broadcast-domain vocabulary list, while the coverage of the
Wiktionary editions for English, German, Polish, Spanish, and Czech were
surprisingly low. Possible explanations are the strong French internet com-
munity and there have been several imports of entries from freely licensed
dictionaries in the French Wiktionary edition3. Additionally, we analyzed
the coverage of pronunciations for Chinese. As depicted in Figure 5.6, we
found pronunciations for 52.49% of the 3k Chinese characters in our Man-
darin GlobalPhone dictionary. We also search for Chinese segments in the
GlobalPhone dictionary and detected a coverage of 12.67%.

Language Total # pages % pages
# pages with prons with prons

English (en) 3,180k 223k 7.0%
French (fr) 2,319k 1,018k 43.9%
Polish (es) 298k 80k 26.8%
German (de) 228k 70k 30.7%
Spanish (es) 90k 21k 23.3%
Czech (cs) 37k 17k 45.9%

Table 5.2 – Absolute and relative amount of Wiktionary pages containing
pronunciations.

3http://en.wikipedia.org/wiki/FrenchW iktionary
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Particularly, the English coverage was discouraging given the large amount
of Wiktionary pages for English. Therefore, we analyzed how many of the
English Wiktionary pages actually include pronunciations in IPA notation.
Table 5.2 shows that English is outnumbered by a factor of 4.5 compared to
French. Furthermore, as shown in Figure 5.3, only 15% of the pronunciations
in the English Wiktionary are tagged as belonging to English. To confirm
that the poor coverage was not solely caused by our English vocabulary, we
additionally computed the coverage with the vocabulary list of the English
Pronlex dictionary and obtained a similarly low result of 22.67%.
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Figure 5.7 – Coverage for international city and country names.

We also investigated the coverage of pronunciations for proper names using
a list of 241 country and 189 city names. Proper names are often of diverse
etymological origin and may surface in various languages without undergoing
the process of assimilation to the phonetic system of the new language [LB02].
Consequently, the pronunciations of proper names are difficult to generate
automatically by grapheme-to-phoneme rules. For the quantity check using
Wiktionary, the city and country names were translated into the respective
language prior to each check. For example, the German city name “München”
was translated into “Munich” for the analysis of the English Wiktionary.
The results of this quantity check are illustrated in Figure 5.5 and 5.7. The
coverage of country names is significantly higher than for city names in all
language editions but Polish. Polish Wiktionary outperforms the other lang-
uages with a 92.1% coverage for country names and 83.0% coverage for city
names. Compared to previously published data in [SOS10], the coverage of
country and city names increased significantly within two years, reflecting
the growth of pronunciations in Wiktionary.



114 Crowdsourcing-based Pronunciation Generation

Quality

We compared pronunciations from Wiktionary to pronunciations from our
dictionaries based on the GlobalPhone project. Table 5.3 shows that the
highest percentages of identical pronunciations can be found in the French
and Czech Wiktionary editions. For Spanish and Polish, half of the retrieved
pronunciations are identical, for German and English almost a third. In
[SOS10], we removed the identical pronunciations, filtered the remaining
ones, and used them successfully in automatic speech recognition as pronun-
ciation variants.

No. Language # prons. % equal # new
1 French 114k 74% 30k
2 Czech 3k 73% 1k
3 Polish 4k 52% 2k
4 Spanish 2k 50% 1k
5 German 7k 28% 5k
6 English 12k 26% 9k

Table 5.3 – Amount of compared pronunciations, percentage of identical ones
and amount of new pronunciation variants.

For our quality analysis, we built grapheme-to-phoneme models for Euro-
pean languages from six Wiktionary editions and compared them to the
grapheme-to-phoneme models from the ten GlobalPhone-based dictionaries
which we used in Section 4.1.1. To train the setup, we used the param-
eters with a maximum graphone length L of 1 and an n-gram order of 6,
as described in Section 1.4.4. To check the grapheme-to-phoneme model
consistency, we built grapheme-to-phoneme models with increasing amounts
of word-pronunciation pairs from GlobalPhone and Wiktionary as training
material. We applied them to test sets from the respective source and com-
puted the phoneme error rate to the original pronunciations. Furthermore,
we evaluated the Wiktionary grapheme-to-phoneme models on the Global-
Phone test sets to appraise if the Web-derived data meet the quality of val-
idated dictionaries. Then, we selected grapheme-to-phoneme models which
had all been trained with a comparable number of training material. We
investigated their grapheme-to-phoneme consistency, complexity and their
usage for automatic speech recognition. For the automatic speech recogni-
tion experiments, we replaced the pronunciations in the dictionaries of six
GlobalPhone automatic speech recognition systems (Czech, English, French,
Spanish, Polish, and German) and studied the change in performance by us-
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ing exclusively pronunciations generated from Wiktionary and GlobalPhone
grapheme-to-phoneme models for training and decoding.

Consistency Check

Our consistency check reflects the generalization ability of the grapheme-to-
phoneme models. Table 5.4 shows how we analyzed the consistency within
the GlobalPhone-based dictionaries (GP) and the Wiktionary editions (wikt)
as well as between Wiktionary and the validated GlobalPhone-based dictio-
naries (wiktOnGP). For GP and wikt, we built grapheme-to-phoneme mod-
els with increasing amounts of word-pronunciation pairs in the dictionar-
ies. Then we applied these to words from the same dictionary and compute
the phoneme error rate between the new and the original pronunciations.
For wiktOnGP, we evaluated the pronunciations generated with Wiktionary
grapheme-to-phoneme models on the original GlobalPhone pronunciations.
The resulting phoneme error rates tell us how close to validated pronuncia-
tions we can get with Wiktionary grapheme-to-phoneme models.

Train Test
GP GlobalPhone GlobalPhone
wikt Wiktionary Wiktionary
wiktOnGP Wiktionary GlobalPhone

Table 5.4 – Consistency check setup.

As in Section 4.1.1, we performed a 6-fold cross validation to verify the pron-
unciation quality: For each Wiktionary edition and each GlobalPhone dictio-
nary, we randomly selected 30% of the total number of word-pronunciation
pairs for testing. From the remainder, we extracted increasing amounts of en-
tries based on their accumulated phoneme count and used them for training
the grapheme-to-phoneme models in each fold.

Figure 5.8 and 5.9 demonstrate differences in grapheme-to-phoneme consis-
tency among the languages. As grapheme-to-phoneme accuracy is also a
measure of the regularity of the grapheme-to-phoneme relationship of a lan-
guage, we additionally see the grade of regularity of the ten languages in
Figure 5.9. Comparing Figure 5.8 and 5.9 shows that for all tested lang-
uages except for German, GP is more consistent internally than wikt. GP
comes closer to the validated GlobalPhone pronunciations than wiktOnGP
for all languages. Figure 5.10 reveals noticeable differences between the pho-
neme error rates of GP and wiktOnGP. For Czech, English, and Spanish, the
phoneme error rates of wiktOnGP are located between wikt and GP of the
same language. However, for German, French, and Polish, the dictionaries
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Figure 5.8 – Consistency of GP.
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Figure 5.9 – Consistency of wikt.
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Figure 5.10 – Consistency of WiktOnGP.

are consistent internally but do not match in the cross-dictionary evalua-
tion. Figure 5.8 and 5.9 show variations in phoneme error rates for amounts
of training data below 7k phonemes. Like in Section 4.1.1, for more than
7k phonemes, the phoneme error rates decrease with more training data.
As with the GlobalPhone pronunciations, we learn that Wiktionary word-
pronunciation pairs containing 15k phonemes are sufficient to have constant
quality as the curves start to saturate at 15k phonemes.

As demonstrated in Figure 5.11, the standard deviations in consistency for
wikt are rather small. ForGP, we detect even smaller deviations. Generally, a
trend to smaller deviations with more training material for the grapheme-to-
phoneme models can be observed. A deviation of less than 1% can be reached
with only 1k phonemes with corresponding graphemes for most languages
tested.

Complexity Check

For the second category, we investigated the complexity of the grapheme-to-
phoneme models over training data and among languages and compare the
complexity change to the consistency change. As described in Section 4.1.1,
we defined the grapheme-to-phoneme model sizes represented by the number
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Figure 5.11 – Wiktionary grapheme-to-phoneme model consistency vari-
ances.

of non-pruned 6-grams as the measure for complexity. Figure 5.12 and 5.13
show the increase in complexity of the grapheme-to-phoneme models with
the increase of training material between 100 and 30k phonemes with corre-
sponding graphemes. A comparison of Figure 5.8 and 5.9 with Figure 5.12
and 5.13 indicates that although the consistency saturates at 15k phonemes,
the model complexity keeps increasing for larger amounts of training data.
However, as also observed in Section 4.1.1, this has minor impact on quality
in terms of consistency as the model increases with the new M-grams which,
however, represent seldom rules and rather exceptions after 15k phonemes.

For further analyses of the automatic speech recognition performance, we se-
lected grapheme-to-phoneme models which were trained with 30k phonemes
and their corresponding graphemes to reflect a saturated grapheme-to-phoneme
model consistency. 30k phonemes are contained in all GlobalPhone-based
dictionaries and in most of the 6 Wiktionary editions. For the Czech and
SpanishWiktionary and GlobalPhone grapheme-to-phoneme models, we used
the maximum number of phonemes (5k and 10k) which we could find in Wik-
tionary.
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Figure 5.12 – Wiktionary grapheme-to-phoneme model complexity.

Figure 5.13 – GlobalPhone grapheme-to-phoneme model complexity.
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Evaluation by Automatic Speech Recognition

Finally, we analyzed how the pronunciations generated with our wikt and
GP grapheme-to-phoneme models perform in automatic speech recognition.
We replaced the pronunciations in the dictionaries of six GlobalPhone auto-
matic speech recognition systems with pronunciations generated with wikt
and GP grapheme-to-phoneme models. Then we trained and decoded the
systems with those pronunciation dictionaries and evaluated their word er-
ror rates. First, we built and decoded automatic speech recognition systems
with dictionaries consisting of only the most likely (1-best) pronunciation for
each GlobalPhone word as produced by our grapheme-to-phoneme models.
We compared these to GlobalPhone systems which were also limited to one
pronunciation per word (base form). Furthermore, we established systems
with dictionaries where pronunciation variants (n-best) were also produced.
For each word, we generated exactly as many pronunciations as occurred
in the GlobalPhone-based dictionaries. The results of the automatic speech
recognition experiments in terms of word error rates are listed in Table 5.5.

For all languages but Spanish and French, the systems built with the 1-best
grapheme-to-phoneme models performs better than those with pronuncia-
tion variants. With the Wiktionary grapheme-to-phoneme models, we come
close to the word error rates of the GlobalPhone systems for all languages
with on average a difference of 12% relative except for English. However,
the GlobalPhone grapheme-to-phoneme systems perform slightly better as
they did in our other evaluation categories. We explain the high word er-
ror rates in English with a difficult grapheme-to-phoneme correspondence
and corrupted training material from Wiktionary. European languages are
written in segmental phonographic scripts, which display a somewhat close
grapheme-to-phoneme relationship, with one grapheme roughly correspond-
ing to one phoneme. Therefore, we also trained and decoded automatic
speech recognition systems with pure graphemic dictionaries (Grapheme-
based) for comparison, an approach which gave encouraging results in for-
mer studies [KN02, KSS03, SS04] for large vocabulary speech recognition
on several European languages. For some languages the grapheme-based
approach even outperforms manually cross-checked phoneme-based dictio-
naries. Table 5.5 illustrates that for Czech, English, French, and Polish the
grapheme-based systems outperform the automatic speech recognition sys-
tems with pronunciations generated with wikt grapheme-to-phoneme models.
This shows the need for solutions to raise the quality of the data obtained
from the Web.
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cs de en es fr pl
GlobalPhone baseform 15.59 16.71 14.92 12.25 20.91 15.51
GP 1-best 17.58 16.50 18.15 12.59 22.68 15.78
wikt 1-best 18.72 16.81 28.86 12.82 25.79 17.21
GlobalPhone with variants 15.62 17.11 11.52 11.97 20.41 14.98
GP n-best 18.06 17.06 18.66 12.32 22.68 15.68
wikt n-best 19.32 17.40 37.82 12.81 25.17 17.34
Grapheme-based 17.56 17.83 19.15 14.06 23.36 15.38

Table 5.5 – Word error rates (%) with dictionaries built completely with
grapheme-to-phoneme model generated pronunciations (w/o filtering).

5.1.3 Recovery of Inconsistencies and Errors

To enhance the quality of the Web-driven grapheme-to-phoneme converters,
we applied the methods to filter erroneous word-pronunciation pairs from
Wiktionary and improve the resulting grapheme-to-phoneme models [SOS12a],
as presented in Section 4.2. First, we applied our filter methods to remove
faulty word-pronunciation pairs. Then, we took the remaining pairs to build
new grapheme-to-phoneme models, which in turn were used to generate new
pronunciations for the entire vocabulary.

For baseline, we used grapheme-to-phoneme models which originate from
randomly unfiltered word-pronunciation pairs of the same amount as the
filtered ones. Table 5.6 shows that we are able to reduce the word error
rate of all tested systems, while the success of each method differs among
the language editions. The best results are in bold. We believe that how
good a method is depends on the number and kind of errors. Future work
may include an analysis to find faster the best method for a dictionary in
question.

We see improvements with G2PLen, Eps, M2NAlign, and G2PM2NAlign. With
a relative word error rate reduction of 37.6% compared to the system with the
unfiltered dictionary (wikt 1-best), most improvement is achieved on the En-
glish Wiktionary word-pronunciation pairs with M2NAlign. Samples in the
original English data indicate a high number of pronunciations from other
languages, pronunciations for stem or ending instead of the whole word or
completely different pronunciations, which result in a bad initial dictionary.
Without this outlier, the average improvement is 2.5% relative. G2P , Len,
and G2PEps do not improve the systems. Table 5.6 illustrates that for Czech,
English, and Polish the grapheme-based systems still performed slightly
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cs de en es fr pl
GP 1-best 17.58 16.50 18.15 12.59 22.68 15.78
wikt 1-best 18.72 16.81 28.86 12.82 25.79 17.21
wikt G2P 17.86 17.18 30.00 13.14 25.62 17.00
wikt Len 18.24 17.13 23.68 13.50 25.48 17.38
wikt G2PLen 17.85 16.79 24.74 13.05 25.59 17.31
wikt Eps 17.74 17.12 22.85 12.99 23.19 16.98
wikt G2PEps 18.15 17.08 22.90 12.86 25.44 16.68
wikt M2NAlign 18.20 17.53 20.97 12.25 25.70 16.87
wikt G2PM2NAlign 17.93 17.18 23.73 13.64 25.03 16.57
Grapheme-based 17.56 17.83 19.15 14.06 23.36 15.38

Table 5.6 – Word error rates (%) with dictionaries built completely with
grapheme-to-phoneme generated pronunciations (with filtering).

better than the automatic speech recognition systems with pronunciations
generated with filtered Wiktionary grapheme-to-phoneme models. While
Czech and Polish follow the pattern of languages with a close grapheme-to-
phoneme relationship whereby grapheme-based systems can perform better
than phoneme-based ones, the English Wiktionary word-pronunciation pairs
are too poor for our data-driven methods that expect more good than bad
pronunciations in the data to obtain good estimates for µ and σ. However, it
is possible to enhance automatic speech recognition performance with a con-
fusion network combination of phoneme- and grapheme-based systems, even
if the grapheme-based system is slightly better than the phoneme-based sys-
tem. Both systems need to be reasonably close in performance but at the
same time produce an output with different errors. This provides comple-
mentary information which leads to performance improvements as we have
demonstrated with the African language Hausa in [SDV+12]. Furthermore,
we show in Section 5.3 that the filtered Web-derived pronunciations can sup-
port the semi-automatic pronunciation generation process.

5.1.4 Summary

We have demonstrated that pronunciations retrieved from the World Wide
Web are an economical data source which supports the rapid creation of
pronunciation dictionaries. With our Automatic Dictionary Extraction Tool,
part of the Rapid Language Adaptation Toolkit, we developed a system for
automatically extracting phonetic notations in IPA from any Web source
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which has separate pages for individual words. The tool takes a vocabulary
list as input and finds matching pages in the online dictionaries.

We analyzed the quantity and quality of pronunciations in Wiktionary, as
it is available in many languages. The quantity checks with lists of inter-
national cities and countries demonstrated that even proper names whose
pronunciations might not be found in the phonetic system of a language are
detectable together with their phonetic notations in Wiktionary. Due to the
fast growth in language presence on Wiktionary, there is a future potential
of harvesting pronunciations for under-resourced languages from this source.

Moreover, we have investigated the grapheme-to-phoneme model generation
for European languages with pronunciations from 6 Wiktionary editions. We
analyzed and compared their quality and detected the saturation at 15k
phonemes with corresponding graphemes as training material which we also
described in Section 4.1.

Designers of automatic speech recognition systems are supposed to ensure
that they use exclusively pronunciations of good quality for dictionary cre-
ation. Therfore, we applied our completely automatic error recovery methods
which we have introduced in Section 4.2. Our methods improved the auto-
matic speech recognition performances in each language.

5.2 An Online Game for Pronunciation Gen-
eration

With the online game Keynounce we analyzed, if it is possible to generate
pronunciations with the help of an unknown and possibly unskilled crowd
on the Internet [Lem13]. Providing a keyboard of sounds with a synthe-
sizer, users may have fun transcribing words into phoneme strings, which
significantly reduces the cost of creating pronunciations compared to paying
skilled linguists. In addition to reducing costs, creating pronunciations for
languages for which linguists are rare or not available, is possible. Thus, pron-
unciation generation simply depends on finding enough willing users with a
sufficient knowledge (fluent speakers) of the target language. The langua-
ges in our testing scenario are English and German. By providing a gaming
experience, users voluntarily create pronunciations. Consequently, the pron-
unciation creation is reduced to automatically filtering the given content to
get the best results.
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The main goal of our study was to analyze if anonymous Internet users
can create or enlarge pronunciation dictionaries with an online game. The
resulting dictionaries should have the following qualities [Lem13]:

• Good quality compared to dictionaries created by linguists.

• Low cost in creation.

• Little to no postprocessing.

To successfully accomplish this task, the main requirements are a stable In-
ternet connection and an application which prompts the user and records his
or her decisions. Other requirements for the system itself concern usability,
stability and performance of the user to achieve qualified pronunciations.

5.2.1 Related Approaches

To the best of our knowledge, no group analyzed crowdsourcing in the field
of pronunciation generation [Lem13]. However, three projects had an impact
on our work:

• Peekaboom [vALB06].

• Human Factors during Bootstrapping [DB04c].

• LexLearner [SBB+07, KB06].

Peekaboom

At Carnegie Mellon University researchers investigate how to harness the
computational power of human brains by letting people play online games.
They call them Games with a Purpose or GWAP [vA06]. Out of the different
games on their website there was one, Peekaboom [vALB06], which influenced
our work. This game focuses on collecting meta information for images by
trying to determine which area of the image a keyword refers to. They use
images from the Internet and associate keywords with them.

Two random players are paired up and are given a word-picture pair. One
player is in the role of Peek, while the other is Boom. Only Peek sees the
image and the associated word. Then, he or she reveals a part of the image
so that Boom can guess the correct word. This setup is demonstrated in
Figure 5.14.
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Figure 5.14 – Game PeekaBoom [vALB06].

Points are awarded for the size of the uncovered area, whereby smaller is
better. Moreover, the Peek gives several predefined hints, such as verb or
noun, for which bonus points are awarded. This seems counterintuitive; but
the purpose of the game is to collect meta information. Knowing if the
keyword is a noun or a verb, is useful for the purpose of the game. After the
word is guessed, their roles are reversed and a new image-word pair is given.
Players have four and a half minutes to complete as many pairs as possible.
Both players get the same amount of points at the end of one session, and
then get paired with other players if they want to continue.

Apart from the fun of playing the game, players get on high score lists and
can improve their standing there, which is a further incentive to keep play-
ing. The amount of data which was collected reflects the success: In about
11 months (August 2005 to June 2006) nearly 30,000 users generated over
two million pieces of data. On average, players spent about 72 minutes on
the game in a single session.

To prove that their collected data was accurate and to show what could be
done with it, the authors extracted the area in each image, referenced by the
keyword. After a couple of players have used the same image-word pair, it
was possible to make an accurate guess about the exact area the keyword
was referring to. This area was calculated from the several areas revealed by
different Boom players. The authors could then show that the collected data
from the game was as good or even better in pinpointing the desired object
than bounding boxes manually annotated by volunteers.
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Human Factors during Bootstrapping

[DB04c] evaluate the effect of the human factor in bootstrapping a pron-
unciation dictionary. It is analyzed if helpers with limited or no linguistic
background using an semi-automatic toolkit can produce high-quality pro-
nunciations in less time than it would take a trained expert to do using
conventional methods.

For this purpose a system was designed, which presents the user with a writ-
ten version of a word of the target language, a prediction for a pronunciation
made by the system and the ability to play a sound for each phoneme of the
prediction. These features speed up the process of creating a pronunciation
dictionary considerably, compared to conventional methods. It is even pos-
sible for unskilled users to produce high quality dictionaries, rivaling those
made by linguistic experts.

LexLearner

A similar method to [DB04c] is the Lexicon Learner (LexLearner). The
LexLearner is a part of our Rapid Language Adaption Toolkit, responsible
for generating word pronunciations with the aid of users. The users do not
have to be linguistic experts but need to be proficient in the target language.

In an initialization stage, rules to predict pronunciations are seeded by asking
the user to match phonemes with their most commonly associated grapheme.
These rules are used to present the user with a pronunciation prediction for
a word. As suggested by [DB04c], these predictions are accompanied by a
wavefile, which is generated through a phoneme-concatenation synthesizer.
The user corrects the pronunciation and the system updates the rules ac-
cordingly. Further details are described in [KB06].

5.2.2 Design and Backend Implementation of Key-
nounce

There should be little to no technological barriers imposed by the online
game Keynounce [Lem13]. Therefore, we defined the following requirements
to be fulfilled by Keynounce:

• Accessible on the World Wide Web.

• Usable for a majority of World Wide Web users.
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• No additional software for users to install on their hardware.

• Small demands on the user’s hardware.

• Graphical user interface (GUI).

• Ability to play sounds.

• Ability to quickly change interface depending on user input.

• Open source or freeware components to reduce costs.

• Reduced loading time during game-playing.

• Database interaction.

To meet the requirements of easy access for a majority of World Wide Web
users without additional software installation and making small demands on
the user’s hardware, we relied on Java [Jav] and Flash [Fla] which are mainly
used today to create small online games and graphical user interfaces, as well
as dynamic commercials on the Internet. Both are widely used and most
Internet users have everything required already installed on their machines.

Figure 5.15 – Keynounce user interface.
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We decided to use Flash and Actionscript as it is an almost perfect fit to our
needs. Flash was designed to bring moving pictures, sounds and interactivity
to Web pages. It supports bidirectional streaming of audio content and
supports user input by mouse and keyboard. The corresponding Flash Player
is already installed on many personal computers and smartphones as a lot of
motion picture content on the Internet is provided with Flash.

The chosen synthesizer was eSpeak [eSp] since it provides fast and easily
adapted text synthesis and moderate quality of speech. The slightly robotic
quality of speech should help the user to accept slight imperfections result-
ing from a lack of prosody and missing accentuation. As long as a correct
combination of sounds is there, a user should accept the word as fine. A high
quality synthesis would suggest to the user that the lack of prosody is his or
her fault and he or she might try to remedy that.

We built a specific user interface, which is shown in Figure 5.15. The most
important part of the user interface is the symbol keyboard. It is divided into
two groups. The division into vowels and consonants is chosen in light of our
premise of untrained users. As described in Section 1.4.1, in the IPA charts
the different sounds are also classified as consonants and vowels. Although
this is a good classification for the knowledgeable user, it would need special
explanations to convey the concept to an uninformed user.

For this reason we decided to arrange the symbols according to their corre-
sponding letters in the target languages [Lem13]. As a user without any
background in linguistics has no further clue what the symbols stand for, the
resemblance of the symbols to the letters of the Latin alphabet is helpful.
Since one of the prerequisites for our interface was to be intuitive, we decided
to use this resemblance as a clue how the symbols are arranged. We ordered
the vowels by A-E-I-O-U and for the consonants we chose the normal alpha-
betical order of their associated letters. The user probably tries the most
familiar symbols first. If the resulting audio does not meet the user’s expec-
tations, our explanation of how the symbols are arranged should lead him or
her to try the symbols close to the first guess. The symbols in close proximity
were arranged to represent variations of the same sound. The more distant
two symbols are, the less similar their sounds. This order was established at
a subjective level with a couple of students at our lab.

Preliminary testing showed that fine-tuning the pronunciation resulted in a
cumbersome repetition of add - listen - delete. This is due to the fact that
the users found an approximation quickly, but they were not satisfied with
it. To get it almost right, mostly one or two symbols had to be replaced.
However, to hit the appropriate nuances, a user sometimes has to listen to
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the sound of different versions repeatedly. To alleviate this procedure, the
SHIFT button was installed. This button can be toggled on screen or held on
the physical keyboard. Clicking on a symbol while having activated SHIFT,
results in the instant addition of that symbol to the string and playing of
the resulting audio. The symbol itself is temporarily added to the string
at the left side of the current cursor position. The symbols are not added
permanently. Consequently, different symbols can be tried with the current
string in rapid succession. As a bonus, the button also helps to get a feeling
for the sounds. The vowel sounds can be played by themselves. In case of
the consonants, a vowel has to be added first for the synthesizer to create a
recognizable sound.

Figure 5.16 – Welcome screen in Keynounce.

After performing usability tests in our lab, we added a QUIT button to the
interface. Some of the users intended to prematurely end a session and still
get the results for the finished words. Consequently, they repeatedly hit
either ACCEPT or SKIP. Below the option to quit the session, we installed
a countdown showing the user how many words he or she has already finished
and how many are still left in the session. This may incite a user to finish
one or two more words since they are the final ones.

In a user’s first interaction with the system a tutorial appears. For a returning
user the tutorial is automatically hidden. But he or she can turn it on and
refresh his or her memory about certain aspects. The tutorial gives hints on
how to use the interface and the discussed part of the interface is highlighted
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Figure 5.17 – Final screen in Keynounce.

with a red ring around it. To enlarge the potential userbase, we added
the Facebook LIKE button and Google’s 1+ button to connect with social
networks. With these, our initial users had an easy way of propagating our
experiment to their friends.

For a more complete feeling, we created a start and a final screen. As shown
in Figure 5.16, the start screen allows a choice between the two available
languages German and English and explains why this game was created. It
also features a ranking system showing the names of participants and how
many words they have submitted. This creates an incentive for the players
since they either want to see their name in that top 10 list or are reminded
of what effort other people put in. As demonstrated in Figure 5.17, the final
screen lists the submitted strings of the current player. It also shows the
reference pronunciation provided by the German GlobalPhone dictionary and
the English CMU dictionary together with the top 3 submissions by other
players. The top 3 are chosen by the simple way of counting the number
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of matching strings for one word. The string submitted most often by all
players is on the first position. All these strings can be listened to by the
player. This provides the player with feedback to learn from.

5.2.3 Performance with Amazon Mechanical Turk

First, we set up a reduced version of Keynounce with Amazon’s Mechanical
Turk (mTurk) platform [Lem13]. It is a quick way to reach a large userbase
at affordable prices. The experiment on Amazon’s Mechanical Turk was set
up on 10 May 2011. We used the rather limited requester website provided
by Amazon. This was due to the fact that the more advanced forms to create
Human Intelligent Tasks (HITs) were barely documented at that time. In a
short document on the requester website, we explain the Turkers that their
HIT is to transform two written words to their pronunciations. We also gave
some hints how to complete the task. Then, they were required to click on
a link opening another tab with the Keynounce website. This was necessary
as Amazon had made it impossible to use external Web pages through the
requesters’ website.

The Keynounce version used in this experiment lacked some of the gaming
qualities. More specifically the following parts had been removed from the
interface:

• Start Screen

• Tutorial

• Skip Button

• End Button

• Social Network Buttons

We removed these parts since HITs in mTurk are supposed to be short, clear
and to the point. We had given all hints on the starting page of the HIT itself,
which could be read by the Turkers before starting the task. The buttons to
prematurely end the session or skip a word were removed because this was
not an option we wanted to give the Turkers. Additionally, the final screen
was modified to show a short “Thank You” message and an authentication
code for later verification with mTurk. The Turkers were supposed to paste
this code into an input field on the starting form of the HIT. With this
authentication we were able to match the user in our database to the Turker
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and could thus grant or reject the work. This was necessary to verify that
the Turkers had actually done any work.

For evaluation we picked 100 random words from the English CMU dictio-
nary and used the corresponding pronunciations in the CMU dictionary as
reference. Our goal was to get 10 individual answers for each word and thus
1,000 phoneme strings in total. This number was chosen as it offered a good
first impression on the work of the Turkers. We created 50 HITs with 2 words
each. The Amazon services guaranteed that a single user could not work on
two assignments of an identical HIT. This means that the users could finish
any number of words between 2 and 100 without being able to work twice on
the same word. Since we did not use the more advanced but more expensive
API of the Mechanical Turk services, we had to manually approve the assign-
ments. We did not simply approve every finished HIT since a large number of
Turkers refused to do any work and just gave back the authentication code.
This meant we had to supervise the results more closely than expected.

We initiated the experiment on May 10th and stopped on May 23rd with 387
approved and 531 rejected assignments. These assignments generated 1,902
words in total but 1,062 of these where spam. Comparing the mTurk experi-
ment to the volunteer experiment, which we describe in the next Section 5.2.4,
shows that there is a difference in the average time spent on completing the
pronunciation for a word. The average time the Turkers spent on the Key-
nounce website was 53 seconds – not even half as long as the volunteers who
took 113 seconds. The main incentive for the Turkers was getting payed.
However, Keynounce was created in a way that people could use a trial and
error system to find a near perfect solution. The majority of Turkers had no
interest to spend a lot of time on it – at least not for the little amount of
money that we offered.

In summary, the following three points made this line of mTurk experiments
unsuitable for our purposes:

• Fast but sloppy (1,902 pronunciations within 5 days).

• High amount of spam (55% unusable input).

• No incentive to make an answer “the best answer”.

It would be possible to devise anti-spam procedures to clean the results.
However, from our test subjects we expect to search for the best solution
and not settle for a medium solution. In contrast, the Turkers try to finish
as many tasks as possible in as little time as possible. This is why we aban-
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doned the mTurk approach and concentrated on voluntary participants for
pronunciation generation.

5.2.4 Performance of the Keynounce Experiment

Since the mTurk experiment did not meet our expectations about the qual-
ity of the results, we decided to engage volunteers in our next experiment
[Lem13]. To engage the users’ interest, we used the full interface of Key-
nounce. Differing from the mTurk experiment, we decided to split the ex-
periment and provide the choice between German and English words. This
was motivated by the fact, that most of our users’ first language is German.
For the evaluation we picked 100 random words from the German Global-
Phone dictionary and used their pronunciations as reference. We also added
a choice of language to the starting screen. The language would then be
set for a batch of words and could be changed after each batch. The batch
size was five for the volunteers, in contrast to the two words in the mTurk
experiment. This way users would be implicitly finish at least five words. To
alleviate the task, we gave them the option to skip single words or abort a
batch prematurely.

We asked colleagues and students and friends to help with this experiment.
Additionally, we also encouraged everyone to tell other people about Key-
nounce. We let the experiment run generally unsupervised and interceded
only once, when someone tried to submit one-phoneme words.

Figure 5.18 – Phoneme error rate, time per word and number of users per
session with German and English words.

We collected pronunciations for 1,595 words from 10/25/2011 to 04/17/2012.
89% of these pronunciation were collected within the first month. The re-
trieved pronunciations were evaluated with the phoneme error rate to our
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reference pronunciations. As shown in the blue lineplot of Figure 5.18 of the
German language results, the users learned quickly. After the initial session
the phoneme error rate is 45.86%. For those users who looked at the re-
sults screen and then started a second session, the phoneme error rate drops
to 35.33%. Until session 8 the phoneme error rate declines to 25.80%. At
this point only the high incentive gamers are left. The phoneme error rate
then becomes more erratic as there are so few users left. The green lineplot
visualizes the median time it took all users to build a single word in the
German language results. It starts with 125.4 seconds per word, which is
almost 10.5 minutes for a session of five words. In the second session there
is already a reduction of 30 seconds per word (94.4 seconds/word, 7.9 min-
utes/session). Users staying with the game after two sessions apparently
became more familiar with the keyboard and what kind of sounds the sym-
bols stand for. The time needed to produce the lowest phoneme error rate
of 25.80% is 41.8 seconds per word, or just a little under 3.5 minutes per
session. The pronunciation quality also gets more erratic with only a few
more high incentive gamers playing, but in general keeps declining.

For the English users the same behavior can be observed in Figure 5.18
(blue lineplot). The phoneme error rate starts at 46.33% in the first session
and is reduced to 35.34% in the second session. Then it drops to about
27% in session 4 and 6 and becomes increasingly erratic afterwards. For the
English users the time per word also closely resembles the one for the German
users. They start with 84.4 seconds per word, which is 7 minutes per session.
The median time goes down to 57.5 seconds per word or 4.8 minutes per
five words in the second session. The lowest phoneme error rate of 27% in
sessions 4 and 6 are archived with less than 3 minutes or 33.4 seconds per
word. This duration is comparable to [DB04c] who report 30 seconds for a
manual generation of an Afrikaans word by developers with limited linguistic
experience. In session 5, the users completed five words in a median time of
2.6 minutes or 31 seconds per word, but the phoneme error rate decreased
slightly. With only the remaining high incentive gamers, it also turns erratic
and the time even starts to increase with just four players remaining.

We have used the median time in Figure 5.18 to avoid outliers which result
from some users who probably left the game open for a while and finished the
session later. One user needed 3 hours to finish a session, another a little less
than 2 hours. These outliers do not have an impact on the median, which
results in a more reliable plot. The reason for the initial rise and subsequent
decline of the phoneme error rate is probably a growing familiarity with the
keyboard. Initially, most users do not know what each symbol stands for.
After some trial and error they start to understand what they are supposed
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Figure 5.19 – Arithmetic mean and median time needed for single German
words in first session.

to do plus how to do that with the given keys. Better understanding leads
to faster results. This can be observed in the decline of time used per session
in general. Additionally, we observe this behavior in the duration for each
word in the first session, as illustrated in Figure 5.19. The figure shows the
arithmetic mean (blue lineplot) and the median time (red lineplot) for each
German word in first session of each user. On average 373 seconds (over
6 minutes) are needed to find the pronunciation for the first word, followed
by 114 and 120 seconds for the next two words. The last two words are then
found in 99 and 89 seconds. The median is lower: A user needs 255 seconds or
4.25 minutes to complete the first word. The following two words are found in
about 89 seconds. For the last two words, it takes only 73.5 and 64 seconds.
Unfortunately, the data for the first session do not include all participants
of the study. Some participants had their computers configured to delete
cookies which made it impossible to track, which words where generated in
which session. As mentioned above, the median time needed for the last
words in the first session is below the median for the second sessions. This
can be explained as follows: After the first session, the users can evaluate
their own solutions and compare them against the reference pronunciations
and the three most frequent solutions of all other users for this word. Those
users continuing with a second session afterwards, are, on the one hand, more
familiar with the keyboard. On the other hand, they might have seen on the
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result screen that better solutions are possible, which might lead to a little
more time spent on the fine-tuning.

5.2.5 Improving Pronunciation Quality

To further improve the pronunciation quality, we applied our phoneme-level
combination scheme (PLC ), which we have presented in Section 4.3. We
only evaluated the German results since we did not gather enough English
data to present valid information.

PER all PER nBest #users
34.7% 22.7% 122

Table 5.7 – Phoneme error rate (%) over all words from German players in
different word ranges.

As illustrated in Table 5.7, all gathered hypotheses have a phoneme error
rate of 34.7%, compared to our GlobalPhone reference pronunciations. After
applying PLC, hypotheses remain for each word which have a phoneme error
rate of only 22.7%, which is a relative improvement of 34.6%.

We have shown that it takes users a lot more time to complete the first
session than any other session. Table 5.8 shows the initial phoneme error
rate and the phoneme error rate (PER) after PLC for the 92 users who have
submitted five words or less. This group archives a phoneme error rate of
42.7% and a phoneme error rate of 37.6% after PLC. The second line shows
the 45 users having generated pronunciations for four words or less. They
have either abandoned the game or skipped words. The achieved phoneme
error rate for this group is 54.5% and about the same when calculated after
PLC. This already shows that those users not having enough incentive to
finish the first session properly, do generally not contribute valuable output.
The phoneme error rate significantly decreases for those users who have done
a second session or at least six but no more than ten words. These 15 users
produced a phoneme error rate of 34.3%. The result after PLC is 4.5%
absolute lower. This means, even though there are fewer hypotheses to work
with, there are more correct phonemes in common for PLC.

The last line in Table 5.8 shows the overall phoneme error rate for users who
did any amount of words within the first two session. The phoneme error
rate is 40.6% and the lowest phoneme error rate after PLC is 29.4%.
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PER all PER after PLC users, who processed #users
42.7% 37.6% 5 or less words 92
54.5% 54.6% 4 or less words 45
34.3% 29.8% 6 to 10 words 15
40.6% 29.4% 10 or less words 107

Table 5.8 – Phoneme error rate (%) over all words from German players who
worked on one or two sessions (5-10 words).

PER all PER after PLC users, who processed #users
31.6% 21.6% 10 or more words 25
31.2% 20.9% 15 or more words 14
31.0% 20.8% 20 or more words 12
32.6% 25.4% 100 or more words 4

Table 5.9 – Phoneme error rate (%) over all words from German players who
worked on more than two sessions (5-10 words).

After finishing the first two sessions the gamers slightly reduce the phoneme
error rate but show a significant decrease in the phoneme error rate after
PLC, as illustrated in Table 5.9. The pronunciations of those who did more
than two sessions have a phoneme error rate of 31.6%, which is 2.7% absolute
better than those of the users stopping after the second session. The phoneme
error rate after PLC drops to 21.6%. Users doing a fourth or fifth session
still have a slight decrease in both phoneme error rate and phoneme error
rate after PLC to a minimum of 31% and 20.8%.

The four high incentive gamers who did more than 100 words produced pro-
nunciations which slightly increase the phoneme error rate with 1.6% and
even increased it with 4.4% after PLC. The fact that the phoneme error rate
does not further drop with training might imply that just showing the final
screen with the results has its limits. Users looking often enough at the final
screen might not be as interested in the results anymore. In future work, it
might be a goal to find some further means to let users improve themselves,
even after they have gotten into some kind of routine.

5.2.6 Summary

Given the right kind of incentive in providing a game-like experience, anony-
mous users can help to generate pronunciations for free. We used the human
ability to compare synthesized speech with what the user knows to be a cor-
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rect articulation. As the human brain is able to decide relatively accurate, if
slight differences are based on the synthesizer or the chosen pronunciation,
most users can create good results.

Using the power of crowdsourcing for our benefit, we were able to produce
pronunciations out of the sum of user outputs which are as good or even bet-
ter than every single user output itself. Due to the fact that crowdsourcers’
answers tend to agree an a large percentage of the answer, the difficult parts
of the pronunciation can be identified. If there is enough input, it may even
be possible to calculate two or more pronunciation variants due to dialect or
regional differences.

Our project also showed that it may be easier to get people to help when
contacted via a micropayment system like Amazon’s Mechanical Turk. How-
ever, our experiment demostrated that micropayment workers in general are
not overly fond of investing a lot of time in fine-tuning answers. Our simple
approach of just posting the problem and getting the answers was by far
more effective without any monetary incentive.

5.3 Semi-Automatic Pronunciation Gener-
ation

Automatic methods to learn from seen data and to provide possible pro-
nunciations are helpful to minimize potential errors as well as the editing
effort in a human- or crowdsourcing-based pronunciation generation process.
Therefore, we developed efficient methods which contribute to a rapid and
economic semi-automatic pronunciation dictionary development [Mer14].

5.3.1 Traditional Methods

In semi-automatic dictionary generation processes like [MBT04], [DM09],
and [SBB+07] native speakers enter pronunciations as phoneme strings. To
reduce the difficulty of pronunciation generation, the user can listen to a syn-
thesized wavefile of the entered pronunciation. Like [SBB+07], we present a
list of available phonemes to the users, automatically reject pronunciations
containing invalid phoneme labels and enable the user to listen to a synthe-
sized wavefile of the pronunciation.
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[MBT04] and [DM09] display the words according to their occurrence fre-
quencies in a text corpus. By covering common words early, word error rates
in automatic speech recognition are minimized. [Kom06] and [KB06] order
the words according to their grapheme coverage to learn many grapheme-
to-phoneme relations early. [DB04c] and [DB04b] prefer short words over
longer words to alleviate the correction effort for human editors. We follow
the principles of [Kom06] and [KB06] and additionally prefer short words over
longer words like [DB04c] and [DB04b]. While [DM09] use a phoneme set
defined by linguists, [Kom06] infers a phoneme set in an automatic way: An
initial phoneme recognizer is trained on a grapheme-based dictionary. Based
on audio recordings and transcriptions, acoustic model units are adapted,
based on Merge&Split. In [SBB+07] as well as in our approach no additional
audio recordings are required because users manually specify the phonemes
from an International Phoneme Alphabet chart, guided by audio recordings
of each phone.

Some approaches update the grapheme-to-phoneme model after each word
[DM09, SBB+07]. Others combine incremental updates and periodic re-
building [Kom06, DB05]. In [MBT04] and [DFG+05], the user decides the
creation of new grapheme-to-phoneme models. [DB05] introduce a data-
adaptive strategy, updating the grapheme-to-phoneme model after the pro-
nunciations of 50 words needed to be corrected. While [DM09] start with an
empty dictionary, [MBT04] manually generate pronunciations for the most
frequent 200–500 words in a text corpus. [SBB+07] initializes the pronun-
ciation generation with a 1:1 G2P mapping entered by the user. [Kom06]
records 20 minutes of speech and builds an initial dictionary automatically
based on the grapheme-based phoneme set, acoustic information and their
transcriptions. Since Web-derived pronunciations proved to be helpful for
the dictionary generation process [GJK+09, SOS10], we used them to obtain
initial training data. While conventional approaches use only one grapheme-
to-phoneme converter, we use multiple grapheme-to-phoneme converters with
similar performances and combine their outputs [SQS14].

5.3.2 Semi-Automatic Pronunciation Generation Strat-
egy

Figure 5.20 illustrates our pronunciation generation strategy. The compo-
nents which deviate from state-of-the-art methods are highlighted. Starting
with an empty dictionary, our process consists of the following steps:
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initial 1

update G2P models 8

G2P models next word 2

generate hypotheses 3 PLC 4

hypothesis/-es to user 5

correct hypothesis 6

new verified dictionary entry 7

Figure 5.20 – Semi-automatic pronunciation generation.

1. Initial word-pronunciation pairs are used to train an initial grapheme-to-phoneme
model 1 .

2. A next word is determined to generate a pronunciation for 2 .

3. Each grapheme-to-phoneme converter generates a hypothesis for the pronunciation
of that word 3 .

4. The hypotheses are combined at phoneme level 4 , which produces one hypothesis
to be presented to the user.

5. Optionally, the 1st-best hypotheses of the each grapheme-to-phoneme converter are
additionally offered to the user 5 .

6. The user edits the best-matching hypothesis to the correct pronunciation for the
requested word 6 .

7. Word and corrected pronunciation are added to the dictionary 7 .

8. After a certain number of words 8 , the grapheme-to-phoneme converters update
their grapheme-to-phoneme models based on the word-pronunciation pairs in the
dictionary.

As it is expensive to assess real human editing times, we simulate the anno-
tation process assuming the editor changes the displayed phoneme sequence
to the phoneme sequence of the reference pronunciation. To measure the hu-
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man editing effort, we introduce the cumulated phoneme error rate (cPER)
as follows:

cPER(n) :=
∑n
i=1 sub(wi) + ins(wi) + del(wi)∑n

i=1 phonemes(wi)
(5.1)

We compute the cPER from the beginning of the editing process to a current
word wn as follows: We accumulate the number of edits (substitution (sub),
insertion (ins) or deletion (del) of single phonemes), a developer would have
done in each processed word wi, up to the current word wn to reach the
pronunciations of our reference dictionaries and set these edits in relation
to the total number of phonemes seen in the dictionary. This value is the
counterpart to the phoneme correctness in [DB08]. As the values contain the
initialization phase with bad hypotheses, reading these numbers as phoneme
error rate, which reflects only the editing effort for the current word wn
would be misleading. According to [DB04c], we assume a human dictionary
developer to take 3.9 seconds on average for an edit to a predicted hypothesis.

As our methods should work for languages with different grade of regularity
in grapheme-to-phoneme relationship, our experiments are conducted with
German (de), English (en), Spanish (es), Vietnamese [VS09] (vi), Swahili
(sw), and Haitian Creole (ht). For evaluating our methods, we use Global-
Phone dictionaries [SS14] for de, es and sw as reference. The en dictionary
is based on the CMU dictionary. For ht, we employ a dictionary also de-
veloped at Carnegie Mellon University. We created six random excerpts of
10k words from each dictionary to conduct all experiments in a 6-fold cross-
validation, except for vi, as the Vietnamese dictionary contains only 6.5k
word-pronunciation pairs.

5.3.3 Word Selection Strategy

Based on [Kom06] and [KB06], our word list is sorted by graphemic 3-
gram coverage and based on [DB04b] with a preference for short words
(ngram sorted) to speed up the annotation process.

Figure 5.21 shows that our proposed strategy outperforms a random order
in cPER for English dictionary extracts (evaluated on 10k English word-
pronunciation pairs with Phonetisaurus). Like [KB06], we plot an alpha-
betical selection for comparison. The impact of ngram sorted is higher in
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Figure 5.21 – Word selection strategies.

the beginning of the process when less training data for the grapheme-to-
phoneme models are given. In all three curves we updated the grapheme-
to-phoneme model according to logistic growing intervals, which we describe
in Section 5.3.4. ngram sorted outperforms random and alphabetical for the
other languages as well.

5.3.4 Iterative G2P Model Building

If the grapheme-to-phoneme model is updated after a new pronunciation
is created by the user, no knowledge about the grapheme-to-phoneme re-
lationship is skipped. In such a case, the model is always up-to-date and
produces a pronunciation of optimal quality for the next word which results
in lowest post-editing effort by the user to reach a qualified pronunciation.
However, frequent grapheme-to-phoneme model generation results in a no-
table increase in CPU time. For example, the slowest grapheme-to-phoneme
converters in our selection take approximately one hour for a grapheme-to-
phoneme model re-training pass of 10k en word-pronunciation pairs on a
computer equipped with a 2.6GHz AMD Opteron processor. Since paral-
lel or incremental grapheme-to-phoneme model training is not possible for
some of the methods, our goal is to train grapheme-to-phoneme models more
frequently in the beginning, when it does not take much time and grapheme-
to-phoneme model quality still increases rapidly with more training data.
Consequently, [DB05] propose a data-adaptive training interval (Adaptive).
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In a first phase they re-train their grapheme-to-phoneme model after each
added word. When the dictionary reaches a size of 1,500 words, they switch
to the second phase, where the grapheme-to-phoneme model is re-created
after 50 predicted pronunciations needed corrections.

We compared Adaptive to a re-training at a fixed number of new dictio-
nary entries (Fixed) and linearly growing intervals (Linear) with different
parameter values. 10% dictionary growth in terms of new dictionary entries
proved to be a sensible value for Linear with better results in less time than
Fixed. However, Linear exhibits the disadvantage of a boundless increase of
the training intervals for large dictionaries. To ensure a maximum size for
the interval, we propose a logistic growth function (Logistic). This function
starts with training interval 1 after word 1 and enables a smooth increase
from 0 to 10k words, where we observed a notable slowdown in grapheme-to-
phoneme model improvement even for the languages with a high complexity
in the grapheme-to-phoneme relation. In our case we limit the maximum
training interval to 3k words.

Interval # edits Editing time CPU time Total time
Logistic 22,983 89,634 s 2,055 s 91,689 s
Linear 22,657 88,362 s 3,282 s 91,644 s
Adaptive 22,530 87,867 s 28,928 s 116,795 s
Fixed 23,658 92,266 s 17,529 s 109,795 s

Table 5.10 – Strategies for grapheme-to-phoneme model retraining.

Table 5.10 shows the raw editing time it would take a human supported by
Phonetisaurus to generate the 10k dictionaries of all six languages (de, en, es,
vi, sw, ht) plus the CPU time consumed (average in the 6-fold cross-validation
without parallelization on a computer equipped with a 2.6GHz AMDOpteron
processor and 32GByte RAM). Since Phonetisaurus is by far the fastest of
our grapheme-to-phoneme converters, the training interval is more crucial
for the other converters. Even though Logistic only consumes 60% of the
CPU time of Linear and 7% of the CPU time of Adaptive, the editing effort
results are comparable to the best-performing Adaptive and Linear. Thus, we
decided to continue our experiments with Logistic. In a real human scenario,
the user can additionally start the grapheme-to-phoneme model generation
process manually before an extended break.
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5.3.5 Single G2P Converters

We use four grapheme-to-phoneme converters for our experiments: Sequitur
G2P [BN08], Phonetisaurus [Nov11, NMH12], Default&Refine [Dav05, DB04a,
DB08] and CART trees [Len97]. For all grapheme-to-phoneme converters, we
use context and tuning parameters resulting in an optimal tradeoff between
performance and CPU time for the grapheme-to-phoneme model training of
all six tested languages.

Sequitur G2P

We investigated the considered graphemic context width by varying the num-
ber of iterative “ramp-up” steps between 2 and 9. In contrast to Phoneti-
saurus, where the context widening from 1 to 10 increases computation time
by a factor of 4.4 for the English dictionary, the added model iteration steps
for Sequitur G2P have a greater CPU impact: The computation time in-
creases by a factor of 15 between model-2 and model-9.

Table 5.11 illustrates the human editing effort with varying “ramp-up itera-
tions”. The minimum number of human edits is reached for model-8.

Model en de es sw ht ∑
edits

2 12,719 13,853 1,925 935 240 258 29,930
3 10,114 10,728 1,806 926 225 231 24,030
4 9,678 10,150 1,803 920 227 238 23,016
5 9,664 10,053 1,805 922 227 236 22,905
6 9,676 10,023 1,786 920 228 242 22,874
7 9,667 10,013 1,784 919 226 237 22,845
8 9,667 10,004 1,779 920 229 240 22,839
9 9,667 10,011 1,780 919 229 238 22,843

Table 5.11 – Sequitur context width optimization: Total number of edits.

But comparing the cumulated PER and CPU time in Figure 5.22 and Ta-
ble 5.12 shows that CPU time dominates the total dictionary generation time
starting with model-6. Following the total estimated times, model-2 would
be an optimal choice. Since the number of edits stays nearly constant from
model-5 on, we decided to proceed with training model-5 for our evaluation
runs.
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Figure 5.22 – Cumulated phoneme error rate (%) over Sequitur n-gram order
M.

Model ∑
edits editing time (h) CPU time (h) total time (h)

2 29,930 33.3 3.8 37.1
3 24,030 26.7 6.2 32.9
4 23,016 25.6 10.3 35.8
5 22,905 25.5 16.5 41.9
6 22,874 25.4 25.0 50.4
7 22,845 25.4 35.8 61.2
8 22,839 25.4 48.6 74.0
9 22,843 25.4 62.6 88.0

Table 5.12 – Sequitur context width: Time estimations on 10k dictionaries.

Phonetisaurus

The implementation of Phonetisaurus [Nov11, NMH12] relies on the Open-
Fst library [ARS+07] to build a Weighted Finite-State Transducer (WFST)
based graphemeto-phoneme conversion framework. It makes use of a mod-
ified EM algorithm and joint-sequence language models. During training,
only one-to-many and many-to-one transformations are considered. Accord-
ing to [NMH12], this leads to small but consistent improvements in word
accuracy in grapheme-to-phoneme conversion tasks.

The pronunciation model is implemented as a joint n-gram model. The input
sequence of graphemes and phonemes is converted to aligned joint label pairs



146 Crowdsourcing-based Pronunciation Generation

using the MIT Language Modeling Toolkit [HG08]. From these aligned pairs,
an n-gram model is trained, which is then converted to a WFST.

For pronunciation generation, the input word is combined with the model.
Then a projection to the output symbols is done and the shortest path
through this lattice is extracted [NMH12]. In cases where multiple hypothe-
ses are requested via the nbest option, the hypotheses along the requested
number of shortest paths are extracted.

To tune the quality of the generated hypotheses, we experimented with the
context width in the n-gram estimation step and measured the resulting sum
of human edits required to reach the reference pronunciations. The total
number of edits across all languages reached an optimum, before the CPU
time changed notably, as shown in Figure 5.23 and Table 5.13. Thus, we
stayed with the minimum number of edits at a context width of 5 The other
parameters were kept at the default values recommended in the documenta-
tion.

Figure 5.23 – Cumulated phoneme error rate (%) over Phonetisaurus context
width.

Default&Refine

The Default&Refine algorithm [Dav05, DB04a, DB08] searches a default for
each grapheme: One phoneme which is the most common for that grapheme.
Based on this information, pronunciations diverging from the default rule are
modeled as additional rules in a rule chain. This approach is suited better,
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Context en de es sw ht ∑
edits

1 20,624 23,936 9,982 1,730 407 1,311 57,989
2 11,729 13,510 1,930 843 249 218 28,478
3 9,972 10,775 1,876 840 193 237 23,894
4 9,721 10,254 1,886 836 193 261 23,151
5 9,686 10,126 1,879 841 194 258 22,984
6 9,689 10,111 1,877 1,037 204 273 23,190
7 9,727 10,138 1,897 1,632 220 320 23,935
8 10,022 10,226 2,027 2,633 263 699 25,869
9 10,574 10,530 2,331 3,391 432 1,994 29,251
10 12,028 10,719 3,584 3,648 982 4,257 35,218

Table 5.13 – Phonetisaurus context width: Total number of edits on 10k
dictionaries

the more regular the grapheme-to-phoneme relationship of a language is. In
less regular languages, the number of exception-rules increases fast.

First a Viterbi grapheme-to-phoneme alignment [DB04b] is computed. Then
for each grapheme, a set of pronunciation rules is created based on left and
right grapheme context. Rules are added iteratively, building a chain of rules
with increasing specialization. The considered grapheme context is expanded
until a rule can be found which maps the pronunciation exactly.
When generating pronunciations, this chain is traversed backwards: First the
special rules with a large grapheme context are evaluated, resorting to more
general rules when no exact grapheme context match is found. In contrast to
statistical methods, the user can rely on correct recall of all pronunciations
from the training set since every special case is mapped to a specialized
rule [DM09].

The current implementation of the Default&Refine algorithm does not sup-
port the generation of multiple output hypotheses (n-best). Furthermore, it
supports only one-character phoneme names. To circumvent the latter lim-
itation for our existing dictionaries, we implemented a phoneme translation
layer in our module interface. All phonemes in the universal input are inter-
nally mapped to one-letter phonemes for Default&Refine. Each predicted
hypothesis is then mapped back to the original phoneme names before further
processing.
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CART trees

t2p: Text-to-Phoneme Converter Builder [Len97] implements a grapheme-to-
phoneme conversion approach based on Classification and Regression Trees
(CART) [BFOS84, BLP98]. The authors recommend to generate a set of
allowable pronunciations for each grapheme or multi-grapheme cluster man-
ually. Based on this table, an alignment of high quality between graphemes
and phonemes can be achieved. In our strategy, this is not possible in every
case since we do not require a-priori knowledge about the target language –
although we provide options to integrate such knowledge for our initial pro-
nunciations. In such cases, the authors use the so-called epsilon scattering
method, an application of the EM algorithm [DLR77]. In [BLP98], this leads
to a slightly larger phoneme error rate than the manually generated set.

From this alignment, a CART decision tree is trained for each grapheme given
its context. A fixed context size of 3 left and 3 right is used in this implemen-
tation. Each grapheme can predict epsilon or one or two phonemes. Building
separate trees is reported to be faster and allows parallelization without sig-
nificant difference in accuracy [BLP98]. The generation of multiple output
hypotheses (n-best) is currently not supported.

The current implementation does not support Unicode graphemes. How-
ever, we added Unicode support to the program code in a simple way. The
evaluations for all languages were done with this extended version.

5.3.6 Combination of G2P Converter Output

Table 5.14 lists the editing effort in terms of cPER to generate pronun-
ciations for 10k words with Logistic. Sequitur performs best in three of
six cases, closely followed by Phonetisaurus. Phonetisaurus, Default&Refine
(D&R) and CART tree perform best in one case each. While D&R and
CART tree seem to be better suited for languages with a regular grapheme-to-
phoneme relation, the statistical approach with smoothing seems to be better
for languages with less regular pronunciations. The best single grapheme-
to-phoneme converter for each language provides our baseline to which we
compare all improvements. As we observed for the phoneme-level combina-
tion (PLC ) [SQS14] that the order of pronunciations is of great importance
for the results, we ordered the 1st-best hypotheses according to the average
performance of the different grapheme-to-phoneme converters in our baseline
scenario: Sequitur, Phonetisaurus, D&R, CART tree. As demonstrated in Ta-
ble 5.14, PLC leads to a statistically significant reduction in cPERs (∆PLC)
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for all languages between 1.9% and 38.1% relative. The improvements are
considerably higher in terms of lower cPERs.

en de vi es ht sw
Sequitur 15.24 11.02 4.83 2.19 0.39 0.25
Phonetis. 15.28 11.10 4.42 2.28 0.43 0.21
D&R 16.80 12.85 5.12 2.23 0.42 0.21
CART 20.01 13.89 5.20 2.56 0.36 0.26
PLC 14.47 10.81 3.78 2.00 0.28 0.13
∆PLC 5.05 1.91 14.48 8.68 22.22 38.10

Table 5.14 – Cumulated phoneme error rates (cPERs) (%) for single
grapheme-to-phoneme converters.

5.3.7 Resources for Initial Pronunciations

In addition to the traditional substitution of graphemes with the most com-
monly associated phonemes (1:1 G2P Mapping), we show that grapheme-to-
phoneme models from Web data and from other languages can help to reduce
the initial human editing effort.

1:1 G2P Mapping

As in [SBB+07], we created initial pronunciations with 1:1 G2P Mapping.
This mapping can be compiled by a native speaker but also derived from
existing word-pronunciation pairs, e.g. from the Web. How close the pronun-
ciations with the 1:1 G2P Mapping come to our validated reference pronun-
ciations in terms of PER is illustrated in Table 5.15.

Web-driven G2P Converters’ Output

Since Web-derived pronunciations proved to support the dictionary genera-
tion process [GJK+09, SOS10, SQS14, SOS14], we investigated if they can be
used to obtain initial training data for our grapheme-to-phoneme converters
and outperform the conventional 1:1 G2P Mapping. For our analysis we used
Sequitur to build additional grapheme-to-phoneme converters for en, de and
es with word-pronunciation pairs from Wiktionary. How the Web-derived
pronunciations approach our reference pronunciations in terms of PER is il-
lustrated in Table 5.15. Including theWeb-derived pronunciations in the PLC
benefited for the first 210 en words, the first 230 es words, and even the first
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4,750 de words (Quality cross-over) since the word-pronunciation pairs from
Wiktionary reflect a very consistent quality as shown in Figure 5.9. Instead of
omitting them, we gained more cPER reduction by putting the Web-derived
pronunciations from the first to the last position in the PLC after the av-
erage cross-over of all tested languages at 500 words. As demonstrated in
Table 5.17, using the Web-driven grapheme-to-phoneme converters’ output
to reduce the initial effort performed better than the 1:1 G2P Mapping with
a relative improvement in cPER of 6% compared to the PLC. Applying our
automatic filter methods which had further improved the quality of Web-
driven grapheme-to-phoneme converters in [SOS12b] and [SOS12a] did not
lower the cPER. The reason is that the filtering skips irregular pronuncia-
tions from the output, which have supplied valuable additional information
to the PLC.

Cross-lingual Pronunciations

In Chapter 6 we will show that using grapheme-to-phoneme models derived
from existing dictionaries of other languages can severely reduce the nec-
essary manual effort in the dictionary production, even more than with
the 1:1 G2P Mapping. According to the cross-lingual dictionary genera-
tion strategy in [SVYS13], we (1) mapped the target language graphemes to
the graphemes of the related language, (2) applied a grapheme-to-phoneme
model of the related language to the mapped target language words, and
(3) mapped the resulting phonemes of the related language to the target
language phonemes. With this strategy, we generated en pronunciations
with a de grapheme-to-phoneme model and de pronunciations with an en
grapheme-to-phoneme model. How close the cross-lingual pronunciations
come to our reference pronunciations in terms of PER is illustrated in Ta-
ble 5.15. Including the cross-lingual pronunciations in the PLC with the
single grapheme-to-phoneme converter outputs helped slightly for the first
42 en words and the first 52 de words (Quality cross-over). Therefore, in our
strategy we use those pronunciations in the first place in the PLC up to the
average cross-over of all tested languages at 45 words and omit them after-
wards. While we observe a small relative cPER reduction of 0.34% on top of
the PLC for en, we obtain a relative increase of 0.56% for de as shown in Ta-
ble 5.17. However, Figure 5.24 demonstrates that cross-lingual outperforms
1:1 G2P Mapping in the beginning of the process, when less training data for
the grapheme-to-phoneme models are available. In Chapter 6 we will discuss
in more detail the challenge and potential of pronunciation generation across
languages.
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Figure 5.24 – Comparison of grapheme-to-phoneme converter strategies on
English.

en de es vi sw ht
PER 1:1 50.01 37.83 14.20 40.49 10.52 14.92
Quality cross-over 100 170 360 80 230 120
PER Wikt 32.55 13.47 11.40
Quality cross-over 210 4,750 230
PER x-lingual 50.42 46.64
Quality cross-over 42 52

Table 5.15 – Phoneme error rate (%) and optimal cross-over for initial pro-
nunciations.

Including the pronunciations generated with the 1:1 G2P Mapping in the
PLC with the single grapheme-to-phoneme converter outputs helps to reduce
the cPER for the first 100 en words, the first 170 de words, the first 360 es
words, the first 80 vi words, the first 230 sw words, and the first 120 ht words
(Quality cross-over). Using the pronunciations from the 1:1 G2P Mapping
after these cross-overs reduces the pronunciation quality in the PLC. There-
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en de es vi sw ht average
Best single G2P 9.7k 10.0k 1.8k 841 191 220
PLC 9.2k 9.9k 1.6k 718 118 168
Relative to single 5.05s 1.91s 8.68s 14.48s 38.10s 22.22s +15.07
1:1 G2P mapping + PLC 9.2k 9.9k 1.6k 710 106 155
Relative to PLC 0.14 0.00 1.50 1.32s 7.69s 7.14s +2.97
WDP + PLC 8.6k 9.3k 1.5k
Relative to PLC 5.74s 5.46s 6.50s +5.90
Cross-lingual + PLC 9.1k 9.9k
Relative to PLC 0.34 -0.56 -0.11

Table 5.16 – Reductions in total number of human edits.

en de es vi sw ht average
Best single G2P 15.24 11.02 2.19 4.42 0.21 0.36
PLC 14.47 10.81 2.00 3.78 0.13 0.28
Relative to single 5.05s 1.91s 8.68s 14.48s 38.10s 22.22s +15.07
1:1 G2P mapping + PLC 14.45 10.81 1.97 3.73 0.12 0.26
Relative to PLC 0.14 0.00 1.50 1.32s 7.69s 7.14s +2.97
WDP + PLC 13.64 10.22 1.87
Relative to PLC 5.74s 5.46s 6.50s +5.90
Cross-lingual + PLC 14.42 10.87
Relative to PLC 0.34 -0.56 -0.11

Table 5.17 – Reductions in cumulated phoneme error rate (cPER) (%).

fore, in our strategy we use the pronunciations from the 1:1 G2P Mapping in
the first place in the PLC up to the average cross-over of all tested langua-
ges at 180 words and omit them afterwards. Despite the high phoneme error
rates in the pronunciations from the 1:1 G2P Mapping, we obtain on average
a relative cPER reduction of 3% on top of the PLC as shown in Table 5.17.

5.3.8 Summary

Table 5.16 and 5.17 summarize the cPERs and the necessary edits for 10k
en, de, es, sw, and ht and 6.5k vi words. s marks results with statistical
significance. While for the languages with a strong grapheme-to-phoneme
relationship only a few hundred edits are required for all words, and for
Spanish between 1.5k and 1.8k, we observe almost 10k required edits for
de and en. In Figure 5.17 we have plotted the cPER reduction over the
number of processed pronunciations for en, the language with the highest
grapheme-to-phoneme complexity. Our word selection strategy ngram sorted
outperforms random. Updating the grapheme-to-phoneme model according
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to logistic growing intervals enables between 7% and 60% CPU time sav-
ings with performances comparable to other approaches. Our PLC of the
output of multiple grapheme-to-phoneme converters reduces the editing ef-
fort by on average 15% relative to the best single converter, even 38% for
sw. The traditional 1:1 G2P Mapping helps de and en with more complex
grapheme-to-phoneme relationships only slightly to reduce the editing ef-
fort. cross-lingual only outperforms 1:1 G2P Mapping in the beginning of
the process, when less training data for the grapheme-to-phoneme models
are available. However, we recommend to use Web-derived pronunciations
on top of PLC if available because they give us consistent improvements for
different vocabulary sizes in the whole process and on average 6% relative for
10k words. Our new Rapid Language Adaptation Toolkit function, which is
publicly available, allows to bootstrap a dictionary with the proposed meth-
ods supported with the possibility to listen to a synthesized wavefile of the
pronunciation.





Chapter 6
Cross-lingual G2P Model-based

Pronunciation Generation

Motivated by the fact that languages which are related to each other can
share some pronunciation rules, we developed a strategy to use grapheme-
to-phoneme models derived from existing dictionaries of other languages for
the production of pronunciations. This strategy can contribute to a rapid
and economic semi-automatic pronunciation dictionary development, thereby
reducing the necessary manual effort, as shown in Section 5.3. In particular, it
can be an alternative to the initialization with the substitution of graphemes
with the most commonly associated phonemes and can be applied if word-
pronunciation pairs cannot be found on the Web.

6.1 Cross-lingual Pronunciation Generation
Strategy

To cross-lingually generate pronunciations for a target language, we elabo-
rated the following strategy:

1. Grapheme Mapping: Mapping target language graphemes to the gra-
phemes of a related language (G2G Mapping)

2. Applying grapheme-to-phoneme model of the related language to the
mapped target language words (G2P Conversion)



156 Cross-lingual G2P Model-based Pronunciation Generation

3. Phoneme Mapping: Mapping resulting phonemes of the related lan-
guage to the target language phonemes (P2P Mapping)

4. Optional: Post-processing rules to revise shortcomings (Post-rules)

Output of Step ru bg de en
1 áèã áèã bih bih
2 ru_b ru_i ru_g bg_b bg_i bg_g de_b de_i en_b en_ih
3 ua_b ua_i ua_h ua_b ua_i ua_h ua_b ua_i ua_b ua_y
4 ua_bj ua_i ua_h ua_bj ua_i ua_h ua_bj ua_i ua_b ua_y

Table 6.1 – Cross-lingual pronunciation production for áiã.

Table 6.1 shows the output for the Ukrainian word áiã (running) after each
step of our cross-lingual dictionary generation strategy with Russian (ru),
Bulgarian (bg), German (de) and English (en) as related languages. The
correct pronunciation in our handcrafted GlobalPhone Ukrainian dictionary
is ua_bj ua_i ua_h.

Step 1 (Grapheme Mapping) of our strategy contains the mapping of the tar-
get language graphemes to the graphemes of the related language. If exist-
ing, for language pairs with different alphabets we use official transliteration
rules which define how letters should be mapped according to their similar
pronunciation (e.g. the Ukrainian-to-English official transliteration system,
defined by the Cabinet of Ministers of Ukraine [Rom11]). For our strategy
we select only language pairs, which mainly use the same alphabet or official
transliteration rules exist to map the graphemes of the target languages to
the ones of the related language. Graphemes existing in both languages are
kept in the target language. Graphemes with diacritic marks, which do not
exist in the related language, are mapped to the same graphemes without
diacritics (e.g. “ö” is mapped to “o”, if the related language is English) as we
assumed only common available information like an official transliteration to
be present in our experiments and no further linguistic in-house knowledge.
Assuming more linguistic knowledge, they can be mapped to the graphemes,
which usually have similar pronunciations. If some special characters (e.g.
“-”) are not in the vocabulary list of the related language’s dictionary or can
not be handled by the grapheme-to-phoneme model, we delete them.

After the Grapheme Mapping, the modified target language vocabulary list
consists exclusively of graphemes of the related language. In step 2, we apply
a grapheme-to-phoneme model to this list, which was trained on existing
word-pronunciation pairs of the related language. We receive pronunciations
consisting of phonemes of the related language.
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In step 3 (Phoneme Mapping) we map the phonemes of the pronunciations
which we receive from the previous step to the target language phonemes.
The mapping is based on the closest distance in the IPA chart [IPA99]. If
diphtongs and triphtongs are in the related language but not in the tar-
get language, they are mapped to two (or three) vowel phonemes which to-
gether represent their components. If a target language contains diphtongs
(or triphtongs) not existing in the related language, two (or three) phonemes
analogous to these vowels’ components, are mapped to one diphtong (or
triphtong). Such one-to-many mappings are also possible for consonants.
Following these rules, we intend to achieve an optimal mapping without any
in-house knowledge of the target language. However, we are aware that by
applying this procedure information, such as the the duration of the diph-
tongs and triphtongs, can get lost.

Step 4 (Post-rules) contains automatic phoneme mappings to revise short-
comings in the pronunciations obtained from step 3. To define Post-rules, the
help of native speakers or linguists is necessary. We stopped to include Post-
rules once obviously no further improvement was possible due to the quality
of the underlying grapheme-to-phoneme model of the related language.

Word enact balls moans
Reference EH N AE K T B AO L ZH M OW N ZH
Grapheme-based e n a c t b a l l s m o a n s
Grapheme-based (mapped) EH N AX K T B AX L L S M AW AX N S

Table 6.2 – Comparison of pronunciations from grapheme-based vs.
phoneme-based dictionary.

We used our cross-lingual pronunciation generation strategy to bootstrap a
dictionary for Ukrainian and checked how close we can get to our Global-
Phone reference pronunciations in terms of phoneme error rate. For compar-
ison, the phoneme error rate (PER) of the grapheme-based dictionary is also
computed. We evaluated the pronunciations of graheme-based dictionaries
after assigning the most likely phoneme to each grapheme, as the English
example illustrates in Table 6.2. Our goal is to have a reduced manual ef-
fort with our cross-lingual strategy. Since the substitution of each grapheme
based only on the most frequently uttered phoneme is cheap, we regard our
approach as successful if the resulting pronunciations have lower phoneme
error rates than the grapheme-based dictionaries. Furthermore, we evaluated
the impact on automatic speech recognition performance.

Table 6.3 indicates that we can generate qualified dictionaries using ru and bg
grapheme-to-phoneme models. Comparing the new pronunciations derived
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from the two languages to those of the handcrafted Ukrainian dictionary
results in lower phoneme error rates than grapheme-based.

# Rules # Rules PER WER # Post- PER WER
G2G Mapping P2P Mapping (%) (%) rules (%) (%)

ru 43 56 12.4 22.8 57 1.7 21.6
bg 40 79 10.3 23.7 65 2.8 22.1
de (68)* 66 32.7 27.1 39 28.6 26.4
en (68)* 63 46.8 34.9 21 36.6 34.0
grapheme 14.8 23.8
manual 22.4

Table 6.3 – Effort (#rules) and performance (in terms of PER, WER) for a
Ukrainian dictionary using cross-lingual rules.

Using the new dictionaries without Post-rules for training and decoding au-
tomatic speech recognition systems leads to word error rates (WERs) on
the Ukrainian development set which outperform a grapheme-based dictio-
nary (23.8% word error rate). Using the dictionary generated with the bg
grapheme-to-phoneme model even performed better than the handcrafted
one (22.4% word error rate). We need only 18% of the number of the
882 search-and-replace rules to generate a qualified Ukrainian dictionary us-
ing ru grapheme-to-phoneme models and 21% using bg grapheme-to-phoneme
models. For en and de, we used the existing official standardized Ukrainian
transliterations at the grapheme level (*) [Rom11]. de and en grapheme-to-
phoneme models did not outperform grapheme-based. The dictionaries gen-
erated with bg and ru grapheme-to-phoneme models outperform our hand-
crafted dictionary after applying Post-rules since due to the properties of bg
and ru some semi-palatalized phonemes get lost which are less important for
Ukrainian automatic speech recognition, as we show in [SVYS13].

In another set of experiments [Yur13], we investigated how close we approach
validated pronunciations of other languages with our strategy. For that, we
performed Step 1–3 with additional 40 different language pairs, as shown in
Table 6.5. For comparison the phoneme error rate (PER) of the grapheme-
based dictionaries is also given. The pronunciations of the grapheme-based
dictionaries of languages with a looser grapheme-to-phoneme relationship
(e.g. English (en), German (de)) have considerably higher phoneme error
rates to the pronunciations of the reference dictionaries than language with
a closer relationship (e.g. Bulgarian (bg), Spanish (es), Hausa (ha), Rus-
sian (ru)). We used grapheme-to-phoneme models trained with the Glob-
alPhone dictionaries of the eight languages namely, Bulgarian (bg), Ger-
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man (de), Spanish (es), Swedish (sv), Russian (ru), Hausa (ha), French (fr)
and Portuguese (pt) using Sequitur G2P [BN08]. For English (en) we em-
ployed the CMU dictionary. Pronunciations from the GlobalPhone and the
CMU dictionaries served as references.

The phoneme error rates of the resulting dictionaries, which are lower than
those of their grapheme-based dictionaries, are marked in bold. In Table 6.5
we observe that for only two out of nine target languages we could cross-
lingually create dictionaries which are closer to our reference pronunciations
than the grapheme-based dictionaries. For the other seven target languages
our cross-lingual dictionary generation strategy performed worse.

Languages Resulting dictionary Grapheme-based dictionary
Target Related PER (%) PER (%)

pt

es 56.00

42.89
fr 49.96
de 54.41
en 67.23
ha 56.08

sv

en 48.00

26.44de 46.43
es 55.36
fr 51.51

ha

en 35.15

7.69es 25.88
fr 32.35
pt 31.27

bg

ru 11.70

6.20de 15.78
en 32.07
ua 15.26

en

de 50.33

63.57

fr 50.75
sv 53.92
es 58.43
ua 73.77
pt 70.54
ha 63.58
bg 70.21

ru ua 32.18 9.83bg 17.47

de

ua 55.97

49.59
pt 61.50
sv 48.53
bg 55.02
en 47.65
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Languages Resulting dictionary Grapheme-based dictionary
Target Related PER (%) PER (%)

es

pt 37.04

13.71sv 28.37
ha 34.8
en 45.63

fr

pt 53.01

43.08sv 52.19
ha 63.63
en 60.94

Table 6.5 – Comparison of cross-lingual generated dictionaries and grapheme-
based dictionaries.

6.2 Which Languages are Appropriate?

To figure out which language is appropriate as related language for our cross-
lingual strategy, we investigated correspondences in the characteristics be-
tween source and target language and their impact on cross-lingual pronun-
ciation generation performance.

6.2.1 Language Characteristics

According to [KS12], who investigate the prediction of phoneme subsets for
a language’s graphemes based on several features, we analyzed the language
family information, text and phoneme level information plus their context
information as features for our cross-lingual pronunciation generation.

Language Family

From Table 6.5 we learn that the language family does not necessarily have
much influence on the similarity of the pronunciations. This was also reported
for the task in [KS12]. All languages which we have chosen, except for Hausa,
belong to the Indo-European family. Hausa belongs to the Afro-Asiatic fam-
ily. However, we generated dictionaries for Indo-European languages (Por-
tuguese, English and Spanish), using a Hausa grapheme-to-phoneme model.
The resulting pronunciations obtain lower phoneme error rates than some
other related languages belonging to the Indo-European family.
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Grapheme Information

We calculated grapheme coverages for each pair of target and related lang-
uages according to the following equation:

Grapheme Coverage [%] =
Number of same graphemes in related and target language

Number of target language graphemes · 100%

The grapheme coverage reflects which share of target language graphemes is
contained in the related language’s alphabet. If target and related languages
use different alphabets, e.g. Ukrainian (Cyrillic script) and English (Latin
alphabet), the grapheme coverage was computed after the target language’s
graphemes were mapped to the related language graphemes following official
transliteration rules. In all other cases it was evaluated before the grapheme
mapping. For example, for English as the target language and German as
the related one the grapheme coverage is 100%. However, for German as
the target language and English as the related one the grapheme coverage
is 89.66% (ä, ö, ü, ß is missing in English). Since the official Ukrainian-
to-English transliteration system maps all Ukrainian graphemes to English
ones, the grapheme coverage for this pair is 100%.

Additionally, we evaluated all digraph and trigraph coverages as follows:

Digraph (Trigraph) Coverage [%] =
Number of same digraphs (trigraphs) in related and target language

Number of target language digraphs (trigraphs) ∗ 100%

If target and related languages use different alphabets, the digraph and tri-
graph coverages were evaluated after the target language graphemes in the
vocabulary list were mapped to the related language graphemes.

Phoneme Information

First, we mapped the language-specific phonemes to IPA characters. Then,
we calculated phoneme coverages for each target and related languages ac-
cording to the following equation:

Phoneme Coverage [%] =
Number of same phonemes in related and target language

Number of target language phonemes · 100%
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The phoneme coverage describes which share of target language phonemes
is contained in the related language’s alphabet. For example, for Swedish as
the target language and Spanish as the related one, the phoneme coverage
is 39.58%. However, for Spanish as the target language and Swedish as the
related one, the phoneme coverage is 47.5%.

For most of the languages, which we have chosen, the phoneme sets mainly
differ in their vowels. Therefore, we calculated separate vowel and consonant
coverages:

Vowel Coverage [%] = Number of same vowels in related and target language
Number of target language vowels · 100%

Consonant Coverage [%] =
Number of same consonants in related and target language

Number of target language consonants · 100%

Since the pronunciations for the target language are not available if we boot-
strap a dictionary, it is impossible to evaluate diphone and triphone coverages
for target and related languages. However, we additionally evaluated diphone
and triphone coverages to investigate if these criteria help to predict the final
pronunciation quality more precisely.

6.2.2 Predicting the Accuracy

To analyze the impact of the characteristics between source and target lan-
guage on the quality of the pronunciations after step 3 of our cross-lingual
strategy, we computed linear regressions between the values of the charac-
teristics and the phoneme accuracy (1 - phoneme error rate) of the resulting
pronunciations compared to the reference pronunciations for all 44 language
pairs from Table 6.3 and 6.5, as illustrated in Figure 6.1 and 6.2.

Figure 6.1 illustrates the values (grapheme, digraph, trigraph, phoneme,
vowel, consonant coverage) together with the linear regression lines and Pear-
son’s correlation coefficients |r| [RN88]. We achieve the strongest correlation
with the vowel coverage as well as with the phoneme and digraph coverages,
while grapheme and trigraph coverages appear to play only a little role. The
consonant coverage has a negative correlation with the phoneme accuracy
(PAcc). We observe that for most of the languages the phoneme sets mainly
differ in vowels, while the consonants are usually similar. Therefore, the
consonant coverage seem not to be helpful for our prediction.
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|r|= 0.14

|r|= 0.64

|r|= 0.39

|r|= 0.40

|r|= 0.40

|r|= 0.17

Grapheme coverage (%) Phoneme coverage (%) 

Trigraph coverage (%) Vowel coverage (%) 

Digraph coverage (%) Consonant coverage (%) 

Figure 6.1 – Correlation between characteristics (grapheme, digraph, tri-
graph, phoneme, vowel, consonant coverage) and the phoneme accuracy.
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|r|= 0.56 |r|= 0.59

Figure 6.2 – Correlation between characteristics (diphone, triphone coverage)
and the phoneme accuracy.

If we assume to possess sample word-pronunciation pairs in the target lan-
guage, we can also use diphone and triphone coverage information. Figure 6.2
illustrates the values together with linear regression lines. The correlation
coefficients are 0.56 for the diphone and 0.59 for the triphone coverages.

With the help of all six criteria (phoneme, vowel, consonant, grapheme, di-
graph and trigraph coverages), we computed a predictor function for the
phoneme accuracy. In a cross-validation we skipped the real phoneme accu-
racies of the target language and predicted them with a function that was
computed using the information of the remaining language pairs.

Figure 6.3(a) demonstrates the predicted and the real phoneme accuracy. On
average the predicted values have an absolute standard deviation of 13.89%
to the real one. The coefficient of determination is 0.17.

Finally, we simulated a scenario where we possess enough sample word-
pronunciation pairs in the target language which give reliable information
about the diphone and triphone coverages and all language pairs as training
data for the predictor function. Using this function, we predicted the pho-
neme accuracy with an absolute standard deviation of 5.6%, as depicted in
Figure 6.3(b). The coefficient of determination is 0.91. This shows that in
addition to more training data, the phoneme coverages would include sup-
plementary information for our predictor function. [KS12] report a method
whereby “characters are noisily converted to phones using their IPA nota-
tion”. This methods may be used to roughly predict the diphone and triphone
coverages.
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(a) Phoneme, vowel, consonant, graph-
eme, digraph and trigraph information.

(b) Oracle.

Figure 6.3 – Correlation between predicted and the real phoneme accuracy.

6.3 Towards Universal Grapheme-to-Phoneme
Conversion

Finally, we investigated an approach to incorporate the rules of more than
one language. With the help of a universal grapheme-to-phoneme converter,
which was trained with word-pronunciation pairs from several languages,
we restrict the output using information of the characteristics of the target
language. Figure 6.4 illustrates this scenario.

Figure 6.4 – Strategy for universal grapheme-to-phoneme conversion.
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To train a universal grapheme-to-phoneme converter, we applied the follow-
ing steps:

1. Take equal number of word-pronunciation pairs from each source language
dictionary.

2. Map phonemes and graphemes to global phoneme/grapheme set (see Chap-
ter 6.1).

3. Train universal grapheme-to-phoneme converter.

Then, we generated multiple pronunciations and selected the most appropri-
ate pronunciation for each target language word:

1. Apply universal grapheme-to-phoneme converter to target language word
and generate multiple possible pronunciations (1000-best list output).

2. Rescore each pronunciation (new scores based on a multilingual language
model score, interpolation weights result from predictor function).

3. Output new 1st-best pronunciation after reordering.

For rescoring each pronunciation in the 1000-best list with a language model
score, we built a multilingual language model as follows: Since they out-
performed phoneme-based ones, we trained a 3-gram graphone-level lan-
guage model from each source dictionary using the SRI Language Modeling
Toolkit [Sto02]. The graphones were derived from a 1:1 alignment between
the graphemes and the phonemes of each word. We transferred the pronun-
ciations in our 1000-best lists to graphone-level the same way. The next step
was to generate an interpolated language model. We defined the interpola-
tion weight for each language model based on the similarity of source and
target language. To investigate if the strategy works with optimal weights,
we optimized the interpolation weights on the graphones from the target lan-
guage dictionary in an oracle experiment using the SRI Language Modeling
Toolkit. In a realistic scenario, the interpolation weights for each language
model can be determined based on the output of the predictor function after
computing the coverages as described in Section 6.2.

We trained our universal grapheme-to-phoneme converter with Russian (ru),
Bulgarian (bg), Polish (pl), Croatian (hr) and Czech (cs). 23k word-pron-
unciation pairs were randomly extracted from the GlobalPhone dictionaries
for each language. The target language was again Ukrainian. Table 6.6
demonstrates that despite optimal language model weights, the phoneme
error rate with the universal grapheme-to-phoneme converter is with 19.7%
(With rescoring and reordering) almost 25% relative worse than with our
grapheme-based dictionary.
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PER (%)
With rescoring and reordering 19.7
No rescoring and reordering 23.8
Best pronunciations in 1000-best lists 9.2
grapheme-based 14.8

Table 6.6 – Performance of universal grapheme-to-phoneme conversion with
Ukrainian as target language.

However, if we selected for all words always the pronunciation with the lowest
phoneme error rate from each 1000-best list, the pronunciations of our final
dictionary would have a phoneme error rate of 9.2%. This shows that there
is 53.3% relative room for improvement in the rescoring and reordering pro-
cess. To investigate the impact of our rescoring and reordering method, we
exclusively evaluated the 1-best pronunciation from the universal grapheme-
to-phoneme converter output and obtained a phoneme error rate of 23.8%
(No rescoring and reordering). This indicates that our language model rescor-
ing and reordering leads to a 17.2% relative lower phoneme error rate. The
fact, that it does not reach the 53.3% relative improvement, indicates that
the pure graphone-level language model perplexity is not the best choice.
Features which give better constraints for the selection of the optimal pron-
unciation from the n-best list need to be investigated.

6.4 Summary

We have elaborated a generic strategy for the rapid cross-lingual creation
of pronunciation dictionaries, using grapheme-to-phoneme models derived
from existing dictionaries of other languages. This strategy can support the
semi-automatic pronunciation generation, as we have shown in Section 5.3.7.

To select the most appropriate related languages for a given target language,
we investigated the relevance of grapheme, digraph, trigraph, phoneme, vow-
els phoneme and consonants phoneme coverages between related and target
language.

Finally, we studied a method to combine grapheme-to-phoneme models from
several languages. In our experiment our universal grapheme-to-phoneme
converter generated pronunciations in the 1000-best lists which ideally lead to
only 9.2% phoneme error rate. However, finding the correct pronunciation in
the 1000-best lists is still a challenge and even with limited oracle information
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the quality of the universal grapheme-to-phoneme converter’s 1st-best output
is still worse than the one of the grapheme-based dictionary. There is still
room for improvement in the rescoring and reordering process.



Chapter 7
Pronunciation Generation for

Foreign Words and Accents

In the previous chapters, we have presented methods to retrieve pronunci-
ations for a new language. In this chapter, we approach the two following
problems for the pronunciation generation: First, to economically build up
lexical resources with automatic or semi-automatic methods, it is important
to detect and treat words for foreign languages separately. Second, to im-
prove the automatic speech recognition performance of speech with accent,
we rapidly adapt the pronunciations in the dictionary.

With the globalization, more and more words from other languages come into
a language without assimilation to the phonetic system of the new language.
For example, due to the strong increase of Anglicisms, especially from the
IT domain, features for their automatic detection are helpful. If foreign
words are written in a writing system which differs from the target language,
treating them separately can be done without a special detection. However,
often the writing system is adapted.

Pronunciations in existing dictionaries are traditionally those of native speak-
ers. Therefore, the use of the pronunciation dictionary in domains where
speech of speakers with accent is to be transcribed, is a challenge. Ac-
cented speech occurs amplified where non-native speakers operate automatic
speech recognition systems, e.g. at the airport, in radio communication of
aircrafts or where parliamentary speeches in multilingual communities are
transcribed, e.g. the cantonal parliament of Valais [IBC+12]. In addition to
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acoustic model adaptation techniques such as MAP (Maximum A Posteriori)
or MLLR (Maximum Likelihood Linear Regression), lexical adaptation can
also give performance improvements [Mih11, VLW+12]. In Section 7.2, we
analyze a parallel corpus of phoneme sequences from phonetic transcriptions
of native US English and accented English in the speech accent archive of the
George Mason University (GMU) [Wei10] to rapidly and economically adapt
the pronunciation dictionary and improve the automatic speech recognition
performance of accented English.

7.1 Pronunciation Generation for Foreign
Words

Due to the globalization more and more words from other languages come
into a language without assimilation to the phonetic system of the new lan-
guage. As English is the prime tongue of international communication, En-
glish terms are widespread in many languages. This is particularly true for
the IT sector but not limited to that domain. For example, African and
Indian languages [GBP12, KC12], of which many are still under-resourced,
use a lot of borrowed English words. Anglicisms – i.e. words borrowed from
English into another language (the so called matrix language) – nowadays
come naturally to most people but this mix of languages poses a challenge
to speech communication systems.

Automatic speech recognition and speech synthesis systems need correct
pronunciations for these words of English origin. However, a grapheme-to-
phoneme model of the matrix language, which is usually employed to rapidly
and economically generate pronunciations, does often give inappropriate pro-
nunciations for these words. Nowadays many people are fluent in English and
pronounce Anglicisms according to their original pronunciation. An auto-
matic detection of Anglicisms enables us to use more adequate English pron-
unciation rules to generate pronunciations for them. Adding pronunciation
variants for foreign words to the dictionary can reduce the word error rate
of automatic speech recognition systems, as shown in [MK12]. Therefore, we
developed new methods to automatically detect Anglicisms from word lists
of different matrix languages and advance existing approaches. The term
matrix language designates the main language of a text from which we try
to distinguish the inclusions of English origin.
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Development and analysis of our features were first performed with German
as matrix language. Thus, in the following figures German reflects the ma-
trix language. Later we additionally evaluated our features on the matrix
language Afrikaans. However, our methods can easily be adapted to new
languages.

7.1.1 Traditional Methods

Specific treatment of foreign inclusions for the pronunciation dictionary gen-
eration improves text-to-speech system [Ahm05] and automatic speech recog-
nition system performance. [MK12] add pronunciation variants for automat-
ically detected foreign words and reduce the word error rate of a Finnish
automatic speech recognition system by up to 8.8% relative. [GBP12] lower
the word error rate of a Swahili automatic speech recognition system from
26.9% to 26.5% by adding English pronunciations variants. These English
words amount to almost 9% of the total words in their Swahili dictionary.
Moreover, a foreign word detection improves part-of-speech parsing, as re-
ported in [Ale08a]. A simple approach to detect foreign words in word lists
and generate different pronunciations for them has already been patented
in [AJSS11].

There have been many approaches for the detection of foreign words based
on grapheme-level methods, mostly based on grapheme n-gram likelihoods.
[MK12] focus on the effects of pronunciation variants on automatic speech
recognition and use a simple grapheme perplexity threshold, treating the 30%
of words with the highest perplexity as foreign word candidates. [JMLC99]
and [KC02] compare syllable probabilities between a Korean and a foreign
model and extracted the foreign word stem. [ACT05] developed a “Cumu-
lative Frequency Addition” which distinguishes between a number of differ-
ent languages. Thereby grapheme n-gram frequencies to classify a word.
While [BMSW97] work with word-based Hidden-Markov-Models (HMMs),
[KSNM03] switch to character-level HMMs thereby achieving high error re-
duction. We compare grapheme n-gram probabilities after converting them
to perplexities for our Grapheme Perplexity Feature.

Another common approach to foreign word detection is a dictionary lookup.
Even if grapheme n-grams performed better than dictionary lookup, their
combination gives the best results in [And05]. [Ale05] use a dictionary lookup
to reduce the number of English word candidates before applying more costly
features. [OWS08, Och09] use the open source spell-checker and morphologi-
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cal analyzer Hunspell1. Our Hunspell Lookup Feature uses a similar approach,
also basing its classification on Hunspell lookups.

An innovative method is the comparison of the number of search engine
results found for different languages [Ale05], which we reimplemented for our
Google Hit Count Feature.

[KC12] interpolated probabilities of grapheme and phoneme language models
for English and Bangla. Their classification is based on a comparison between
those probabilities. The phoneme sequences are generated with a grapheme-
to-phoneme converter producing the pronunciations for Bangla and English
transliterated words. Our G2P Confidence Feature uses a similar approach,
also basing its classification on a combination of phoneme- and grapheme-
level information. For our feature we compare probabilities of graphone-level
models.

For named entity recognition, often the local context or specific trigger words
are used. Part-of-speech tags, capitalization and punctuation are also com-
mon features as shown in [MLP03] and [WVD95]. The detection performance
is usually evaluated in terms of F-score with equal weight for precision and
recall [Pow11]. Results vary for the different methods and setups in related
work. [KC02] achieve 88.0% F-score detecting foreign transliterations in Ko-
rean. [ACT05] reach 79.9% distinguishing between several language pairs.
Detecting English inclusions in German text, [Ale05]’s experiments are very
similar to ours and give comparable results of up to 77.2% F-score.

7.1.2 Experimental Setup

For evaluation, we built two German test sets [LSS14]. One from the IT
domain and one from general news articles. Furthermore, we applied our
methods to words from the Afrikaans NCHLT corpus [HDB12].

German IT Corpus

Our German IT corpus Microsoft-de contains about 4.6k word types crawled
from the German website of Microsoft www. microsoft. de . To reduce the
effort of hand-annotating, this word list only contains frequent types that
occured more than once in the crawled text. Before extracting the types
for our word list, some normalization and cleanup was performed on the

1hunspell.sourceforge.net

www.microsoft.de
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crawled text. We removed all HTML tags, sentences containing more than
80% capital letters and replaced punctuations marks including hyphens with
spaces.

In our German word lists English words and some additional word categories
for further analyses were annotated. Like [Ale05], we base our annotation
on the agreement of the annotators. In case of disagreement we consulted
the well-known German dictionary Duden (www.duden.de) and checked the
context in which the word occured in the text. The annotation of the German
word lists follows the guidelines described in Table 7.1.

Category
English All English words were tagged as “English”. This comprises

all types of words including proper names and also pseudo-
Anglicisms. Words which could be German as well as English
(homomorph words) were not tagged as English (e.g. Admiral,
Evolution, . . . ). Words containing an English part (see Hybrid
foreign word) were tagged as English since a monolingual
German generate correct grapheme-to-phoneme model cannot
pronunciations for those words.

abbreviation Abbreviations were tagged as “abbreviation”. We did not
distinguish between English and German abbreviations as
our focus is to detect whole words with English part.
Therefore no abbreviations were tagged as English.

other foreign word Foreign words that are neither German nor English were tagged
as “foreign”. As we limit our algorithms to classify exclusively
between the categories English and non-English, these words
fall into the category non-English.

hybrid foreign word Words containing an English plus a German part were tagged
as “hybrid” in addition to “English”. This covers for example
compound words with a German and an English part
(e.g. “Schadsoftware”) and grammatically conjugated forms of
English verbs (e.g. “downloaden”).

Table 7.1 – Annotation guidelines for the German test sets.

We selected 824 sentences, containing 2,276 unique words (types) from the
Microsoft-de corpus. For this vocabulary we created a reference pronun-
ciation dictionary. The pronunciations for words annotated as English were
generated with an English grapheme-to-phoneme model which was built from
the CMU dictionary (CMUdict) [cmu]. The pronunciations for non-English
words were generated with a German grapheme-to-phoneme model which
was generated from the German GlobalPhone dictionary (GP-de) [SS14]. The
pronunciations for hybrid English words were created manually. To avoid am-
biguous pronunciations for abbreviations, we only selected sentences not con-
taining any abbreviation. For the whole dictionary we use the German pho-

www.duden.de
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neme set from GP-de. Pronunciations generated with the English grapheme-
to-phoneme model were mapped to this German phoneme set based on the
IPA scheme [IPA99].

Other Domains and Languages

To compare the detection performance on different domains and languages,
we use two more annotated word lists. The general news domain word list
Spiegel-de contains about 6.6k types from 35 articles covering the domain of
German political and business news. The texts were manually taken from
the website of the German news journal Spiegel www. spiegel. de . The
texts have not been crawled automatically to keep the word list clean of
advertisements, user comments and other unwanted content. The punctu-
ation marks were removed. The NCHLT-af word list contains about 9.4k
types taken from the Afrikaans part of the NCHLT corpus [HDB12], which
contains a collection in the eleven official languages of South Africa. In our
Afrikaans test set English, foreign words and abbreviations have been anno-
tated by [BD13]. The authors kindly provided this annotated word list for
our experiments2.

Distribution of the Word Categories

Figure 7.1 demonstrates the distribution of the word categories in our four
word lists. Especially, in the IT domain we find many foreign words and
abbreviations. Those are more than 21% of the Microsoft-de word list, where
15% of all words are English. In the general news domain (Spiegel-de) we
find only approximately 4% English words. About 10% of the English words
in our German word lists from each domain are hybrid words, consisting of
German and English parts (e.g. “Schadsoftware”). The Afrikaans NCHLT
corpus contains only 2% English words and 1% abbreviations.

7.1.3 Detection of Foreign Words

In our scenario we receive single words from texts in the matrix language
as input [Lei14, LSS14]. As output we produce a classification between the

2We would like to thank Willem D. Basson for useful comments and the other members
of the speech group from the North-West University, South Africa, for providing the
NCHLT corpus.

www.spiegel.de
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Figure 7.1 – Foreign words in different word lists

classes English and non-English. While some related work relies on infor-
mation about the word context (e. g. part-of-speech), we concentrate on
context-independent features of the examined word itself to classify it. This
flexibility is useful as dictionaries are often based on lists of most frequent
words [SVYS13]. Other features which use information about the word con-
text can still be integrated in future work. As shown in Figure 7.2, we
developed and evaluated a set of different features to detect English words
in word lists:

• Grapheme perplexity

• G2P confidence

• Hunspell spell-checker dictionary lookup

• Wiktionary lookup

• Google hit count

Those features were separately tuned and evaluated before we proceeded to
combine them. For the combination we experimented with different methods:

• Voting

• Decision Tree

• Support Vector Machine (SVM)

We leverage different sources of expert knowledge and unannotated training
text to create features that are mostly language-independent and cheap to set
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Figure 7.2 – Anglicism detection system.

up. By developing features based on commonly available training data like
unannotated word lists or spell-checker dictionaries, we avoid the expensive
step of hand-annotating Anglicisms directly in lots of training data. This also
enables to use available frameworks for the implementation of our approaches
(e.g. the SRI Language Modeling Toolkit [Sto02] for the Grapheme Perplex-
ity Feature or Phonetisaurus [Nov11, NMH12] for the G2P Confidence Fea-
ture). A more expensive resource which boosts our G2P Confidence Feature
may be a pronunciation dictionary of the matrix language. For English and
many other languages, dictionaries are available. To account for scenarios
where a pronunciation dictionary is not available or of poor quality, we also
evaluated our G2P Confidence Feature in simulated situations with pronun-
ciation dictionaries containing only a small number of entries.

To detect Anglicisms, we advanced existing methods and developed entirely
new features. In addition to the evaluation of new approaches, an impor-
tant goal was to develop features which are inexpensive and portable to new
languages. In contrast to standard supervised machine learning, our features
do not rely on training data that is annotated specifically for the task of
Anglicism detection. In contrast to other approaches which train and test
features on disjunctive sets from the same word list, our test sets are only
used for evaluation of our single features and never for their training. Instead
we use common independent resources such as word lists and pronunciation
or spell-checker dictionaries. Exceptions are only our feature combinations
which are trained in a cross-validation on the test sets. To avoid supervised
training of thresholds, for most features we base our classification on the dif-
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ference between results calculated on an English model and a model of the
matrix language.

Grapheme Perplexity Feature

The grapheme-level detection of foreign words is based on the assumption
that grapheme sequences depend on the language. For example, in our Ger-
man word list 25.8% of the words end with “en” while in the English word list
they only account for 1.7%. A grapheme (or character) n-gram is a sequence
of n graphemes. Grapheme-level language models are trained from lists of
training words. These models are a statistical representation of grapheme
n-grams over all training words. In addition to the graphemes, word bound-
ary symbols are included to specifically identify the grapheme n-grams at the
beginning and end of words. We used the SRI Language Modeling Toolkit
to build the n-gram grapheme models. The detection based on grapheme
n-gram models deals well with conjugations and small variations of words.
Unknown forms of a word can still be recognized because the overall graph-
eme sequences stay similar. Therefore, many works in the field of Named
Entity Recognition and Foreign Entity Recognition are based on grapheme
n-grams ([KSNM03], [MK12], [JMLC99], [KC02], [ACT05]).

Figure 7.3 – Classification with the Grapheme Perplexity Feature.

We experimented with different training word lists and parameters to build
grapheme n-gram models. The best Anglicism detection performance was
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achieved using case-insensitive 5-gram models built from lists of unique train-
ing words. To train the grapheme language models, we used 116k word types
from the CMU dictionary for English and 37k from the German GlobalPhone
dictionary for German. The Afrikaans model was trained with 27k word
types crawled on the Afrikaans news website www.rapport.co.za. To port
this feature to another language, an unannotated word list from that lan-
guage is sufficient as long as grapheme sequences of that language are more
likely in this word list than in the English one. Our approach of using the
perplexity difference between two models allows us to have an unsupervised
classification based on a direct comparison of perplexities for an English
model and a model of the matrix language. Figure 7.3 depicts the steps of
our Grapheme Perplexity Feature:

1. Preparation: Training of grapheme-level language models from training
word lists for English and the matrix language.

2. Calculation of the perplexity on the English model and the model of
the matrix language for a word from the test set.

3. Comparison of the two perplexities and classification towards the lan-
guage model whose perplexity is lower for the word.

The feature uses the difference of the English and matrix language perplexi-
ties. We calculate

d = pplmatrixlang.(w)− pplEnglish(w)

and classify a word w as English if the difference d is greater than zero. We
generically assume a threshold of zero, which leads to a simple comparison
of which perplexity is smaller.

Test set Threshold = 0 Optimal threshold
F-score F-score Threshold

Microsoft-de 67.17% 68.56% 0.5
Spiegel-de 36.00% 45.61% 6.5
NCHLT-af 25.75% 29.87% 2.5

Table 7.2 – Detection performance (F-score) with different thresholds for the
grapheme perplexity difference.

This is not an optimal choice as shown in Table 7.2 and Figure 7.4. We still
make this trade-off to refrain from supervised training of a better thresh-
old. The different optimal thresholds seem to be related to the portion of

www.rapport.co.za
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Figure 7.4 – Detection performance in relation to an absolute perplexity
threshold.

Anglicisms in the test set. Microsoft-de contains almost four times as many
Anglicisms as Spiegel-de. Further analyses of the performance gab between
the test sets are summarized in Section 7.1.3. A further normalization by
standard score (z-score) over the perplexities of all words of the test set led
to worse results.

The results of the final version of our Grapheme Perplexity Feature are shown
in Table 7.3 for the different test sets. We achieve a good recall, for which
the Grapheme Perplexity Feature is one of our best features. This means
most Anglicisms in the test sets are detected. Precision is considerably lower
indicating that the feature is wrongly detecting a lot of words which are not
Anglicisms.

Test set F-score Precision Recall
Microsoft-de 67.17% 55.85% 84.26%
Spiegel-de 36.00% 22.73% 86.54%
NCHLT-af 25.75% 15.22% 83.50%

Table 7.3 – Performance of the Grapheme Perplexity Feature.
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G2P Confidence Feature

We use Phonetisaurus [Nov11, NMH12] for our experiments. Phonetisaurus
takes the following steps to predict pronunciations:

1. Alignment of graphemes and phonemes in the training dictionary (cre-
ating graphones).

2. Training of a graphone-level language model.

3. Prediction of pronunciations for novel words.

In the alignment step, graphemes are combined with the phonemes from the
corresponding pronunciation. In literature, the resulting grapheme-phoneme
clusters are usually named graphones [BN08]. Then, a 7-gram graphone-
level language model is trained from all graphone sequences of the training
dictionary. To predict pronunciations, Phonetisaurus searches the shortest
path in the grapheme-to-phoneme model which corresponds to the input
grapheme sequence. As path costs, the graphones’ negative log probabilities
are summed up. This value can be interpreted as a confidence measure: It is
used to rank different pronunciation variants. In our experiments, we use this
grapheme-to-phoneme confidence to measure the “sureness” between a word’s
pronunciation variants generated from different grapheme-to-phoneme mod-
els. To train grapheme-to-phoneme models, we use 133k word-pronunciation
pairs from the CMU dictionary for English, 38k from the German Glob-
alPhone dictionary (GP-de) for German and the Afrikaans pronunciation
dictionary (dict-af ) created by [ES05] (42k word-pronunciation pairs). Our
G2P Confidence Feature is conceptually similar to our Grapheme Perplex-
ity Feature. The only difference is that we only compare scores for a word
at graphone-level instead of grapheme-level. The steps to detect Anglicisms
based on G2P confidence are like in Figure 7.3 for the Grapheme Perplex-
ity Feature, but replacing the grapheme-level model with a grapheme-to-
phoneme model and perplexity with the graphone log probability (Phoneti-
saurus G2P confidence):

1. Preparation: Training of grapheme-to-phoneme (graphone) models from
English and matrix language pronunciation dictionaries

2. Prediction of pronunciation for a word from the test set

3. Comparison of G2P confidence and classification of the class for which
the confidence is better



7.1 Pronunciation Generation for Foreign
Words 181

As described, we use Phonetisaurus for pronunciation prediction and rely
on its confidence measure, the negative log probability of the graphone se-
quence which represents the path costs. The G2P confidence of the first-best
pronunciation for a word is used, while the generated pronunciation itself is
discarded. The feature uses the difference of the G2P confidence for English
and the matrix language. We calculate

d = G2Pconfmatrixlang.(w)−G2PconfEnglish(w)

and classify a word w as English if the difference d is greater than zero
since the G2Pconf reflects path costs. We generically assume a threshold
of zero, which leads to a simple comparison of which grapheme-to-phoneme
confidence is smaller. Like for the grapheme perplexity difference, this is not
an optimal choice as shown in Table 7.4. Again we make this trade-off to
refrain from supervised training of a better threshold.

Test set Threshold = 0 Optimal threshold
F-score F-score Threshold

Microsoft-de 70.39% 71.40% 1.0
Spiegel-de 40.56% 45.00% 1.0
NCHLT-af 23.94% 40.23% 10.0

Table 7.4 – Detection performance (F-score) with different thresholds for the
grapheme-to-phoneme model confidence difference.

For both German test sets Microsoft-de and Spiegel-de, the optimal thresh-
old is 1. This value seems to be depending on the dictionary used for the
grapheme-to-phoneme model training as we only reach a good detection per-
formance from much higher thresholds for the Afrikaans test set. To account
for scenarios with low lexical resources in the matrix language, we also eval-
uated this feature in simulated situations with pronunciation dictionaries
containing only a small number of entries. Figure 7.5 illustrates the detec-
tion performance with different amounts of word-pronunciation pairs to train
the grapheme-to-phoneme model of the matrix language.

The results of our G2P Confidence Feature are shown in Table 7.5. They are
similar to the performance of our Grapheme Perplexity Feature with some im-
provements for the German test sets. An in-depth comparison of all features
is done in Section 7.1.3.
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Figure 7.5 – Detection performance (F-score) with different dictionary sizes
for default threshold of zero.

We achieve a good recall, for which the G2P Confidence Feature together
with the Grapheme Perplexity Feature is our best feature. This means most
Anglicisms in the test sets are indeed detected. The precision is considerably
lower indicating that the feature is wrongly detecting a lot of words which
are not Anglicisms.

Test set F-score Precision Recall
Microsoft-de 70.39% 59.44% 86.30%
Spiegel-de 40.56% 29.74% 83.91%
NCHLT-af 23.94% 14.21% 75.86%

Table 7.5 – Performance of the G2P Confidence Feature.

Hunspell Lookup Features

Hunspell is an open source spell-checker and morphological analyzer used
in software like OpenOffice. It supports complex compounding and mor-
phological analysis and stemming. The word forms are recognized based on
rules defined in the spell-checker dictionary of a language. Hunspell spell-
checker dictionaries are freely available for more than 60 languages, including
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English, German and Afrikaans. For our features we used those Hunspell re-
sources: The American English dictionary (en_US) with 62k basic entries,
the “frami” version of the German dictionary (de_DE-frami) with 220k basic
enties and the Afrikaans dictionary (af_ZA) with 125k basic entries. Our
Hunspell Lookup Features simply check whether a word is found in the dic-
tionary of the language. The lookup includes an automatic check if the word
in question can be derived by the morphological or compound rules in the
dictionary. We use two independent features with this concept:

• English Hunspell Lookup
If the word is found or derived from the English dictionary, it is classified
as English, otherwise as non-English. This feature is language independent
and can be used without modification for any matrix language.

• Matrix language Hunspell Lookup
The Matrix Language Hunspell Lookup Feature does a lookup in the spell-
checker dictionary of the matrix language. In the case that a word is found
or derived from the matrix language dictionary it is classified as non-English,
otherwise as English.

The Matrix Language and the English Hunspell Lookup Feature are indepen-
dently evaluated. Their classifications can disagree if a word is found in both
dictionaries or in neither dictionary. We also experimented with combina-
tions of both features: We only classified a word as non-English if it was in
the matrix language dictionary, while not being in the English dictionary. All
other words were classified as English. However, this did not lead to better
results.

Table 7.6 shows the performance of our English Hunspell Lookup and Matrix
Language Hunspell Lookup Features.

Test set English Hunspell Lookup Matrix Language Hunspell Lookup
F-score Precision Recall F-score Precision Recall

Microsoft-de 63.65% 57.13% 71.87% 61.29% 58.09% 64.87%
Spiegel-de 39.17% 26.41% 75.77% 41.65% 35.50% 50.38%
NCHLT-af 31.90% 19.27% 92.50% 12.48% 6.71% 89.50%

Table 7.6 – Detection performance of English and Matrix Language Hunspell
Lookup.

The Afrikaans spell-checker dictionary results in a weak detection perfor-
mance. More than 25% of Afrikaans words were not found in the dictionary,
as shown in Figure 7.6. On the other hand, the English Hunspell Lookup
Feature is our best feature for the NCHLT-af Afrikaans test set.
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In Figure 7.6 the portion of English and non-English words from the test
sets found in each dictionary are illustrated. A significant amount of English
words are already commonly used in German and included in the German
dictionary – these lead to false positives. In particular, non-English foreign
words and abbreviations, which are classified as non-English in our refer-
ence, make up the portion of “non-English” words not found in the German
dictionary (false negatives).

Figure 7.6 – Portion of words found in each dictionary.

In the English dictionary the false negatives (Anglicisms which were not
detected) are mainly hybrid words containing an English and a German part.
They are part of the English class in our reference annotation. There is also
a sizable amount of words that are spelled exactly the same in both English
and German. Together with names this makes up most of the false positives
of the English Hunspell Lookup Feature.

Wiktionary Lookup

Wiktionary (www.wiktionary.org) is a community-driven online dictionary.
Like Wikipedia, the content is written by volunteers. Wiktionary is avail-
able for over 150 languages but scope and quality in the different languages
vary [SOS14]. While the English and French Wiktionary each contain more
than a million entries, the German Wiktionary currently has approximately
355,000 entries and the Afrikaans Wiktionary less than 16,000. However, the

www.wiktionary.org
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Figure 7.7 – Entry of German Wiktionary containing a paragraph about the
word’s origin and language.

Wiktionary project is growing rapidly which is an advantage for our approach
because information about recently introduced words is likely to be added
in the future. Wiktionary provides a wide range of information. For exam-
ple, in Section 5.1 we show how we extract pronunciations from Wiktionary.
For most words, Wiktionary contains a paragraph about the word’s origin.
The Wiktionary edition of one language does not only contain words from
that language. Foreign words including the name of the source language are
also added. The snapshot in Figure 7.7 shows the Anglicism “downloaden”
as a German word (“Deutsch” meaning German) which is originating from
English (explained in the section “Herkunft” meaning origin). To detect An-
glicisms, we only use the information from the matrix language’s Wiktionary
version. A word is classified as English if:

• There is an entry for this word belonging to the matrix language and
the origin section contains a keyword indicating English origin.

• There is no entry belonging to the matrix language but an entry marked
as “English” in the matrix language’s Wiktionary.

Unfortunately, entries of the Wiktionary versions from different languages do
not have a common style and structure. Therefore, some language-dependent
fine-tuning is necessary. In the GermanWiktionary we check for the keywords
“englisch”, “engl.”, “Anglizismus” and specialWiktionary markups indicating
that the word is from the English language. To avoid false positives for
loan translations or ancient common origins, we exclude words containing
keywords like “Übersetzung” (translation) and “altenglisch” (Old English) in
the origin section. The German Wiktionary also contains many conjugations
and word forms that are linked to their principal form. We follow such links
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and classify a word based on the Wiktionary entry of its principal form. The
Afrikaans Wiktionary is not as comprehensive. A section about word origin
is not available. Thus, we can only rely on the Wiktionary markup indicating
that an entry describes an English word. Words which are not found at all
in Wiktionary are treated as non-English words in our evaluation. When we
combine all features, we give those words a neutral value.

To speed up the procedure and reduce the load on the Wiktionary servers,
we used a Wiktionary dump, which is available to download all content of
a language’s Wiktionary. First, we extracted the relevant parts about the
words’ language and origin from Wiktionary. From this smaller file the ac-
tual Wiktionary Lookup of the words from our test sets can be done faster.
Table 7.7 shows the portion of words found in Wiktionary. We found be-
tween 71% and 75% of all words from our German test sets in the German
Wiktionary edition. More than half of the Anglicisms annotated in our test
sets also have entries in the German Wiktionary edition indicating that the
words are from the English language. In contrast, the Afrikaans Wiktionary
edition has very few entries and we could find only 3.45% of the words from
our test set, most without indicating the word’s origin.

Test set Words found Anglicisms found
Microsoft-de 71.15% 57.58%
Spiegel-de 74.35% 59.23%
NCHLT-af 3.45% 0.09%

Table 7.7 – Percentage of words found in Wiktionary.

Test set F-score Precision Recall
Microsoft-de 52.44% 71.07% 41.55%
Spiegel-de 36.85% 36.78% 36.85%
NCHLT-af 9.02% 25.00% 5.50%

Table 7.8 – Performance of the Wiktionary Lookup Feature.

Table 7.8 shows the Anglicism detection performance of our Wiktionary
Lookup Feature. On the German test sets the Wiktionary Lookup Feature’s
f-scores are lower than the f-scores of most of our other features. Detect-
ing a much smaller portion of the Anglicism in the test sets, its recall is
at least 13% absolute lower than any other feature’s. However, in terms of
precision - indicating how many non-Anglicisms are wrongly detected - the
Wiktionary Lookup is one of our best features. Hence it contributes to a good
performance in the combination of our features as described in Chapter 7.1.3.
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Figure 7.8 – Classification with the Google Hits Count Feature.

Google Hits Count Feature

Our Google Hits Count Feature is an implementation of the Search Engine
Module developed by [Ale08a]. They use the method to detect English words
in a two step approach, first filtering potential English words with a dictio-
nary lookup. Many search engines offer the advanced option to exclusively
search on websites of a specific language. Given a correct language iden-
tification by the search engine, the assumption is that an English word is
more frequently used in English, while a German or Afrikaans word is more
frequently used in its language [Ale08a]. [Ale08b] notes that since current
information is dynamically added, this Web-based approach also deals well
with unknown words like recent borrowings which have not yet been entered
into dictionaries. Figure 7.8 illustrates the process of the Google Hits Count
Feature:

1. Search of a word from the test set with search results restricted to
English.

2. Search of a word from the test set with search results restricted to the
matrix language.

3. Normalization of the number of search results from (1.) and (2.) with
the estimated size of the Web in each language.

4. Comparison and classification towards the language for which the nor-
malized number of search results is higher.
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As there is much more English than German content on the Web – and for
Afrikaans it is just a fraction –, the raw number of search results has to be
normalized before comparison. The normalized number of hits of a word w
returned for the search in each language L is calculated as:

hitsnorm(w,L) = hitsabsolute(w,L)
Web-size(L)

hitsnorm(w, ’English’) and hitsnorm(w, ’matrix language’) are compared to clas-
sify the word w depending on which normalized score is higher. Follow-
ing [Ale08a], we need the estimated size of the Web corpus which is accessible
through the search engine in a specific language. This number, Web-size(L),
is used to normalize the search hits, as shown above. The estimation method
was developed by [GN00]:

1. The frequencies of the 20 most common words are calculated within a
large text corpus of the language.

2. The search engine limited to pages of the language is queried for each
of these most common words.

3. The number of search hits for each word is divided by its frequency
in the training text. The resulting number is an estimate of the total
number of search results in that language.

Like [GN00], we then remove the highest and the lowest estimates as potential
outliers. The average of the rest of the estimates is the final estimation of
the Web corpus size in the language. For English and German we used
the most common words and frequencies from [GN00] and calculated the
Web corpus sizes based on new Google hits counts for these words. While
[GN00] report an estimated number of 47 billion English words, we estimated
3 trillion words in 2013, as shown in Table 7.9. For Afrikaans information
of the most common words and frequencies was not provided by [GN00].
Thus, we calculated the 20 most common words and their frequencies from
the Afrikaans Bible. The normalization based on the Bible text resulted
in better detection performance than with a normalization on current news
articles from www.rapport.co.za. Table 7.9 shows our estimations of the
total number of accessible search results in each language.

Table 7.10 shows the Anglicism detection performance of our Google Hit
Counts Feature. On the Spiegel-de test set this is our best feature. The
Google Hit Counts Feature also has the highest precision among our features

www.rapport.co.za
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Language Estimated size of Web Ratio to English
English 3,121,434,523,810
German 184,085,953,431 1 : 17
Afrikaans 6,941,357,100 1 : 450

Table 7.9 – Estimated size of the Web in different languages.

Test set F-score Precision Recall
Microsoft-de 66.30% 71.31% 61.95%
Spiegel-de 49.03% 40.10% 63.08%
NCHLT-af 26.85% 16.48% 72.50%

Table 7.10 – Performance of the Google Hit Counts Feature.

on both German test sets. Among the false positives (non-English wrongly
detected) are a lot of abbreviations, proper names and homomorphs3. The
false negatives (non-English words which are not detected) consist of English
words very commonly used in German – like “Computer”, “online” or “Face-
book”. The normalization gives those words a higher score for the German
search than for the English search. Many hybrid words containing English
and German characteristics are also among the false negatives.

Results of the Single Features

Figure 7.9 gives an overview of the Anglicism performance for all features.
In particular, our G2P Confidence Feature performs well. For all of our
features, the Anglicism detection performance is consistently better on the
Microsoft-de test set than the Spiegel-de test set. This large difference in
case of different domains was also observed by [Ale05]. As both test sets
are German, our features use identical resources for their classification. The
vast F-score difference of up to 30% absolute for the same feature is therefore
somewhat surprising.

Figure 7.10 gives a more detailed view of the detection performance. It com-
pares all feature performances on Microsoft-de and Spiegel-de with respect
to precision and recall, which make up the F-score.

For most of our features, the recall is similar on both test sets. A comparable
portion of the Anglicisms contained in each test set is correctly detected.

3Words that are spelled the same in English and German.
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Figure 7.9 – Anglicism detection performance (F-score) of all features.

Figure 7.10 – Precision-recall chart of all features on the Microsoft-de and
Spiegel-de test sets.

A principle difference between the test sets is visible in terms of precision.
All our features consistently have lower precision on Spiegel-de with a gap of
up to 30% absolute for the same feature.

As presented in Table 7.11, the portion of false positives is very similar
between both test sets. This indicates that depending on the feature between
2.6% and 12.07% of non-English words are wrongly detected as Anglicisms.
The different test sets do not have a big influence on this false positive rate.
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Feature Microsoft-de Spiegel-de
G2P Confidence 10.43% 9.47%
Grapheme Perplexity 11.80% 12.07%
Hunspell (non-English) 8.29% 3.76%
Hunspell (English) 9.56% 8.66%
Wiktionary 3.00% 2.60%
Google Hit Counts 4.42% 3.87%

Table 7.11 – Portion false positives (Non-Anglicisms wrongly detected)

Precision is defined as
∑

true positive∑
tested positive . Consequently, on Microsoft-de, with al-

most four times as many Anglicisms, the portion of false positives is weighted
much less since the features detect a higher absolute number of Anglicisms
(true positives). Microsoft-de, from the IT domain, contains approximately
15% Anglicisms, Spiegel-de, from the general news domain, contains only 4%
Anglicisms.

The different F-scores between Microsoft-de and Spiegel-de are due to the
different portion of Anglicisms in the test sets. The domain of the test set
and the resulting amount of Anglicisms turn out to play a big role.

Combined Features

For the combination of the above described features we experimented with
Voting, Decision Tree and Support Vector Machine (SVM) methods.

To reach a classification based on all features, all Boolean detection hypothe-
ses of the separate features are summed up in a Voting:

1. Separate classification by all features of a word from test set.

2. Calculation of the sum of all separate classification results.

3. Final classification by comparing the vote count to a threshold.

We consider a feature classifying the word as English with +1 and a feature
classifying the word w as non-English as −1. An exception is the Wiktionary
Lookup Feature (see Section 7.1.3): Its contribution in the Voting can also
be 0 in case the word is not found in the native Wiktionary. The vote(w) for
a word w is calculated as:
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vote(w) = ClassifiedEnglish(w)− Classifiednon-English(w)

The final hypothesis of the Voting is based on a threshold T for this vote.
With T > 0 more than half the features need to vote for a word to be
English. The threshold was chosen through a 10-fold cross-validation on
each test set. Table 7.12 compares the optimal thresholds, which vary for
our different test sets. Particularly, the detection performance on NCHLT-
af is significantly improved if some features are not included in the vote.
For the final method for Afrikaans, we therefore use a Voting without the
Google Hit Counts Feature.

Test set Threshold = 0 Optimal threshold Best single
F-score F-score Threshold feature

Microsoft-de 75.44% 75.44% 0 70.39%
Spiegel-de 56.78% 61.54% 1 49.03%
NCHLT-af 35.33% 51.66% 4 31.90%

Table 7.12 – Detection performance of Voting with different thresholds.

We also experimented with Support Vector Machines (SVM) with a linear
kernel as a powerful state-of-the-art classification method [SC08] and Deci-
sion Trees as a common classification method [Qui86]. For those algorithms
we used the default parameters of Matlab and trained each test set sepa-
rately in a 10-fold cross-validation. The information from the single features
is given as Boolean input. Like for the Voting, the input from a feature clas-
sifying the word as English is +1 and from a feature classifying the word as
non-English is −1. The Wiktionary Lookup Feature can also be 0 if the word
is not found in the native Wiktionary. With Boolean features as input for
the decision tree, we discard some information. It may help the Anglicism
detection if the decision tree receives the “confidence” of each feature’s hy-
pothesis. Thus, we additionally experimented with continuous feature input.
This improves the detection performance on Microsoft-de but deteriorates it
on Spiegel-de. Consequently, we do not use continuous features in our final
combination method.

The performance of the different combination approaches are shown in Fig-
ure 7.11. For two out of our three test sets our simple Voting gives the best
overall results – although we only use training data to fine-tune the vote
threshold, whereas Decision Tree and SVM learned more complex relations
from the input features. As we did not spend much time on fine-tuning the
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Figure 7.11 – F-scores (%) of the feature combinations and the best single
features.

parameters of the SVM, some further improvements may be possible. The
improvements compared to the best single feature are striking, almost dou-
bling the F-score on the NCHLT-af test set. In particular, on the Afrikaans
test set, for which all our single features had poor detection performances,
the combination gives a massive relative improvement of 44.74%.

We further analyzed the contribution of the single features for our two Ger-
man tests. As shown in Figure 7.12, the Wiktionary Lookup provides im-
portant additional information and supports the detection in feature com-
binations. For Spiegel-de, the German Hunspell Lookup Feature gives most
improvement. On both German test sets the Wiktionary Lookup Features is
an important part of the Voting. Apart from the German Hunspell Lookup,
which gives a very minor improvement if left out, all features contribute to
good performance of the Voting.

Challenges: Abbreviations, Hybrid, Other Foreign Words

We have annotated hybrid English words, other foreign words and abbrevia-
tions in our German test sets. The classification of these words is somewhat
ambiguous because they are either both German and English (hybrid English
words) or not clearly any of the two (abbreviations, other foreign words). In
oracle experiments we removed these types of words from the test sets before
evaluating the F-score. The results show the performance of our features
only on the unambiguous test words. Figure 7.13 compares the results of
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Figure 7.12 – Relative F-score change (%) of Voting if one feature is left out.

our Voting when one or all of those word categories are removed from the
test set. After manually removing those words, we achieve a relative im-
provement of up to 47.70%. The varying contribution of the different word
categories depends on the composition of the test set. Spiegel-de has – rela-
tive to the whole test set – more other foreign words and less abbreviations
and hybrids. A lot of potential improvement remains in handling these spe-
cial word categories. We did not experiment with this, but word stemming
and compound splitting algorithms seem a good way to deal with hybrid En-
glish words. abbreviations might be filtered using regular expressions or an
absolute grapheme perplexity threshold.

Pronunciation Dictionary Generation

Based on our Anglicism detection, we produced pronunciations for the 2,276
words in our German IT corpus and compared their phoneme error rate to
the reference pronunciations. Then, we compared the resulting quality to the
quality of pronunciations which have been exclusively produced with our Ger-
man grapheme-to-phoneme model (German G2P Model) to reflect the case of
not dealing with Anglicisms at all. Furthermore, we compared it to the qual-
ity of pronunciations having been generated with mixed language grapheme-
to-phoneme models trained with different fractions of word-pronunciation
pairs from the English CMU dictionary and German GP-de dictionary. For
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Figure 7.13 – Performance (F-score) of Voting after removing difficult word
categories from the test sets.

that, all pronunciations were mapped to the German phoneme set of GP-de
before training the grapheme-to-phoneme model, based on the closest dis-
tance in the IPA chart. The Mixed Language 50:50 model was built with all
40k word-pronunciation pairs from GP-de and additional randomly selected
40k word-pronunciation pairs from the CMU dictionary. TheMixed Language
80:20 model was built from all 40k word-pronunciation pairs from GP-de and
additional randomly selected 10k word-pronunciation pairs from the CMU
dictionary. This ratio is close to the actual portion of Anglicisms contained
in the corpus. Finally, we applied English our grapheme-to-phoneme model
to all words in the test set for comparison (English G2P Model).

Our approach to generate pronunciations based on automatic Anglicism de-
tection selects the appropriate grapheme-to-phoneme model for each word:

• Pronunciations of words detected as English are generated by the En-
glish grapheme-to-phoneme model based on the dictionary.

• Pronunciations of words detected as not English are generated by the
German grapheme-to-phoneme model based on GP-de.

As shown in Table 7.13, our approach to use automatic Anglicism detection
prior to the pronunciation generation produces a far lower phoneme error
rate than generically using a German grapheme-to-phoneme model. The
phoneme error rate is reduced from 4.95% to 1.61%. The mixed language
grapheme-to-phoneme models produce a phoneme error rate even slightly
higher than the single German grapheme-to-phoneme model.
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PER
Automatic Anglicism Detection 1.61%
German grapheme-to-phoneme model 4.95%
Mixed Language 80:20 4.97%
Mixed Language 50:50 5.46%
English grapheme-to-phoneme model 39.66%

Table 7.13 – Phoneme error rate (%) of different approaches to generate
pronunciations for the German IT corpus.

7.1.4 Summary

To detect Anglicisms in text of a matrix language, we developed a set of fea-
tures and combined those to further improve the performance. Our features
are based on grapheme perplexity, G2P confidence, native Hunspell lookup,
English Hunspell lookup, Wiktionary lookup, and Google hits count. With
the G2P Confidence Feature we developed an approach which incorporates
information from a pronunciation dictionary. This was our most success-
ful single feature. The Wiktionary Lookup Feature, leveraging web-derived
information, is also a new approach that especially supported the perfor-
mance of feature combinations. None of our single features rely on text
with Anglicisms annotated for training. The features are instead based on
other resources like unannotated word lists or dictionaries and are portable
to other languages. The combination of the diverse set of features boosted
detection performance considerably, especially for the test sets on which the
separate features did not bring satisfactory results. A separate handling of
the detected Anglicisms from the matrix language words based on our results
enhanced our automatic pronunciation dictionary generation process.

7.2 Lexical Adaptation for Non-Native Speak-
ers

Recognizing low proficiency non-native speech is still a challenge with er-
ror rates two or three times higher than those for native speech [Tom00a].
The reasons for the high error rates are: In addition to the direct transla-
tions of grammar constructs from the first language, the non-native speakers
tend to pronounce the foreign language phonemes differently from the native
speakers. Neuroscience research shows that learning to discriminate between
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native and non-native sounds happens during the infant’s first year [CK10].
As a consequence, people acquiring their second language at the age of seven
and later cannot perfectly discriminate the non-native sounds.

Many obstacles contribute to the low performance when automatic speech
recognition is applied to foreign speech. Some of the speaker-related factors
having negative impact on automatic speech recognition performance for
non-native speech are [TW01, TB99]:

• High intra- and inter-speaker inconsistency of the phonetic realizations.

• Different second language acquisition methods and backgrounds, thus
different acoustic or grammatical realizations and proficiency levels.

• The speakers’ perception of the non-native phones.

• Higher cognitive load due to the non-nativeness.

• Reading errors in read speech.

• Slower reading with more pauses in read speech.

• Grammatically incorrect phrases in spontaneous speech.

Another general difficulty in building accent-specific automatic speech recog-
nition systems is the lack of accented speech data for training. There are few
databases with accented speech and often the speakers have different mother
tongues, which makes it difficult for the researchers to draw conclusions and
compare the methods they experiment with. A widely used approach is to
adapt native automatic speech recognition systems to the non-native condi-
tion as it does not require the amount of data which is usually necessary to
build automatic speech recognition systems from scratch.

English is the language with the highest amount and percentage of non-
native speakers in the world (approximately 500 million to 1 billion second
language compared to 340 million first language speakers [Mey09, Cry04]).
Due to this fact and the free availability of the speech accent archive of the
George Mason University (GMU) [Wei10] containing phonetic transcriptions
of native US English and accented English, we investigated if this database is
helpful to rapidly and economically adapt the pronunciation dictionary and
improve the automatic speech recognition performance of accented English.
With almost 2,000 speakers from approximately 341 accents to date, this
speech accent archive has a potential to generate pronunciation variants for
a variety of accents without any required linguistic knowledge. The archive
is continually growing. We observed an increase of more than 40 accents and
1,000 speakers since October 2010.
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To accommodate for non-native pronunciations, we follow two directions:
In addition to the modification of the dictionary to better reflect the non-
native pronunciations – often denoted as “lexical adaptation” in literature,
we investigated its impact to state-of-the-art techniques for acoustic model
adaptation.

To rapidly and economically adapt the dictionary, our proposed methods
for the dictionary modification are data-driven. Consequently, no language-
specific rules are necessary: The idea is to extract a parallel corpus of pho-
neme sequences from phonetic transcriptions of native US English and ac-
cented English from the speech accent archive of the George Mason Univer-
sity. With this corpus, statistical machine translation models are generated
to translate the US English pronunciations in the US English CMU dictionary
into accented pronunciations which are then used as new pronunciation vari-
ants. Compared to other approaches using phoneme recognizers to retrieve
the phonetic transcriptions of native US English containing phoneme errors,
we leverage a source for qualified phonetic transcriptions of more than 340
accents which have been carefully generated by experienced native English
transcribers [Wei10].

As described in the next section, pronunciation variants are usually generated
with linguistic rules or with the help of phoneme recognition. The manual
production of rules is precise but can be time-consuming and costly, while
phoneme recognition can be erroneous, especially for accented speech. To the
best of our knowledge, we are the first who use an online source of manual
transcribed transcriptions for the lexical adaptation.

7.2.1 Related Work

Lexical Modeling for Accented Speech

The task is to adapt the native target language’s pronunciations in a given
dictionary so that they reflect the pronunciations of non-native speech. Usu-
ally, the dictionary is enriched with pronunciation variants fitting to the
accented speech.

Information about the phonological structure of the speakers’ native language
and common mistakes made when speaking the target language can be used
to create a set of context-sensitive variant generation rules [Tom00b, GE03].
However, data-driven methods are suggested in literature since manual pron-
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unciation production and defining rules are time-consuming and mostly na-
tive speakers or linguists need to be hired for this task.

In related works, pronunciation variants are produced in a data-driven way
as follows: A phoneme recognizer is applied to the target speech data.
Then, the resulting phoneme sequence is aligned to native pronunciations
from existing dictionaries [HWP96b, HW98, AKS00, Tom00b]. This way
the generated alignment is used to extract rules further applied to convert
existing pronunciations into new ones. The challenge is to find systematic
phoneme modifications (substitutions, deletions, insertions) which originate
from the accent and abstain from additional alignment and phoneme er-
rors [GE03, RBF+99, HWP96a, AKS00, Fl99].

Acoustic Modeling for Accented Speech

Modifying the acoustic models results in greater word error rate improvement
compared to lexical modeling methods [Tom00b, GE03].

Several techniques to adapt an existing acoustic model have been analyzed,
e.g. polyphone decision tree specialization [WSW03, SW00, WS03], multilin-
gual weighted codebooks [RGN08], HMM modification [BFIH06]. However,
two adaptation techniques proved to be very successful for the recognition of
accented speech [BKKB98, VLG10] and are used by most research groups:
Maximum a Posteriori (MAP) [GL92] and Maximum Likelihood Linear Re-
gression (MLLR) [Gal98]. Experiments show that MAP adaptation outper-
forms MLLR when bigger amounts of adaptation data is available [TW01].
The reason is that MAP adaptation collects statistics and then adjusts only
parameters of the distributions corresponding to phonemes which are ob-
served in the calibration data. In contrast, the MLLR approach defines a gen-
eral model which shifts all distribution parameters mean and standard devia-
tion towards the observed data according to some pre-calculated model. Since
first adapting the acoustic model with MLLR and then on top with MAP
proved to outperform the single adaptations (MAP over MLLR) [GK99], we
applied both adaptation techniques in that order in our experiments.

Although experiments have shown significant improvements with modifica-
tions in the acoustic model, deletions and insertions and other perturbation of
the phonological structure are inappropriately modeled just by increasing the
complexity of the acoustic model and acoustic model adaptation [GE03]. To
reflect this, [GE03], [Woo99] and [HCZL00] recommend to extend the dictio-
nary to also account for such non-native pronunciations. This extended dic-
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tionary should then be combined with the adaptation of the acoustic model
to account for both – phonemes pronounced in a non-native way as well as
non-native phoneme sequences.

7.2.2 Pronunciation Variants Generation

As outlined in Figure 7.14, our method to adapt the pronunciation dictionary
in a low-cost and rapid way is to translate existing native pronunciations into
accented pronunciations. For that, we automatically modified pronunciations
of the native English CMU dictionary using statistical machine translation
(SMT) models derived from parallel human-made IPA-based transcriptions
from the online GMU speech accent archive [Wei10].

Native pronunciations Accented pronunciations
SMT

(Translation 
model, Language 

model, etc.)

Parallel corpus
CMU pronunciations – GMU pronunciations

SMT training

Figure 7.14 – Statistical machine translation based pronunciation variant
generation.

For our experiments, we collected the GlobalPhone accented speech database
comprising English with Bulgarian (bg), Chinese (Mandarin or Cantonese)
(zh), German (de) and Indian (in) accents [Mih11]. The Indian part was
spoken by native speakers of Hindi, Marathi, Bengali, Telugu, and Tamil. Al-
though English is an official language in India, our study described in [Mih11]
showed that the speakers from India have a specific accent. Bulgarian is
from the Slavic language family, Mandarin and Cantonese are members of
the Sino-Tibetan family, German is a Germanic language and all Indian lang-
uages descend from the Indo Iranian language family [Mey09]. In total, we
recorded 60 accented speakers reading between 30 and 40 sentences from the
Wall Street Journal (WSJ) [GGPP93] which are also available from native
English speakers. The majority of topics are economy related news. The
read sentences are the same across the accents. The speakers from India
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have spent on average two years as residents in the USA, the Chinese speak-
ers approximately 2.5 years. The German and the Bulgarian speakers spent
4.5 months and less than a month in the US. More information about our
accented speech corpus including an accent level analysis is given in [Mih11].

For each accent, the utterances of five speakers define the test set, five speak-
ers are in the development set (dev set) and additional five speakers are used
for the acoustic model adaptation experiments.

Our baseline system is trained with 15.9 hours from 103 native speakers of
American English reading WSJ articles [GGPP93]. No adaptation techniques
are used in the acoustic model training. The vocabulary size is approximately
60k. The pronunciations for the words are covered with 85k US English
pronunciations from the CMU dictionary [cmu] (baseline dictionary).

GMU Speech Accent Archive

The GMU speech accent archive [Wei10] uniformly presents a large set of
speech samples from a variety of language backgrounds. Native and non-
native speakers of English read the same paragraph and are carefully tran-
scribed. The archive is used by people who wish to compare and analyze
the accents of different English speakers. The archive is freely available on-
line. We used the phonetic transcriptions of the accented archive to build
the statistical machine translation system which translates the native to ac-
cented pronunciations [Mih11]. Each speaker in the database reads the same
phonetically rich paragraph:

Please call Stella. Ask her to bring these things with
her from the store: Six spoons of fresh snow peas, five
thick slabs of blue cheese, and maybe a snack for her
brother Bob. We also need a small plastic snake and a
big toy frog for the kids. She can scoop these things
into three red bags, and we will go meet her Wednesday
at the train station.

The read text contains 69 words, of which 55 are unique. To build individual
statistical machine translation systems for our accents, we used the phonetic
transcriptions of 30 speakers with the same Indian accents as in our audio
data, 43 speakers with Mandarin and Cantonese accent, 22 speakers with
German accent and 11 speakers with Bulgarian accent from the database.
The phonetic transcriptions were produced by two to four experienced native
English transcribers, following the 1996 version of the IPA chart.
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Statistical Machine Translation Based Pronunciation Variant Gen-
eration

The word error rates of the baseline system confronted with the accents (bg,
zh, de, in) and native English (en) are given in Table 7.14. The baseline
system which is trained with native English speech has 13.85% word error
rate on the native English development set and 14.52% on the corresponding
test set. Its word error rates on the accented test sets are relatively close to
each other and about 50% absolute worse than on native English. For de,
one speaker in the development set has a much lighter accent than the others
which results with 45.19% in a much lower word error rate.

en bg zh de in
dev set 13.85 62.98 76.63 45.19 74.13
test set 14.52 64.24 65.97 64.78 64.45

Table 7.14 – Word error rate (%) of the baseline system tested with accented
speech.

As outlined in Figure 7.15, the pronunciations in the GMU accent archive
and the native English pronunciations from the CMU dictionary are used to
build the parallel corpus.

CMU
dict

Figure 7.15 – Parallel corpus for the phoneme-level statistical machine
translation-based pronunciation variant generation.
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We applied the following steps to generate accented pronunciations for each
accent as follows [Mih11]:

1. For each word in the phonetic transcriptions of the GMU speech accent
archive, assign the accented pronunciation to the CMU dictionary pronun-
ciation.

2. Map the GMU accented pronunciations to the phoneme set of the CMU
dictionary based on the closest distance in the IPA chart.

3. Compute a 3-gram phoneme-level language model from the GMU accented
pronunciations (with the help of the SRI Language Modeling Toolkit [Sto02]).

4. Train further models for the statistical machine translation system with the
parallel corpus (using Moses Package [KHB+07] and GIZA++ [ON03]).

5. Translate all pronunciations from the baseline dictionary into their accented
version.

Since the complete dictionaries are generated from pronunciations of only
55 unique words, they contain “poorly estimated” variants, resulting from
the lack of information about all possible phoneme combinations. To remove
the inconsistent and faulty pronunciation variants, different filter methods,
described in [Mih11], were implemented and analyzed. The accented pro-
nunciations were filtered by using the Levenshtein distance metric, forced-
alignment information or a combination of both filter methods. The re-
maining new pronunciation variants were then included in the native English
dictionary. A simple filtering based on the Levenshtein distance as a simi-
larity measure between new and existing variants performed best. Finally,
from 45-55k initial variants, 31-33k were added to the baseline dictionary.

bg zh de in
baseline (test) 64.24 65.97 64.78 64.45
lexical adaptation 64.79 65.34 62.83 62.61
rel. change -0.86 +0.95 +3.01 +2.85

Table 7.15 – Word error rate (%) on test sets with lexical adaptation.

As demonstrated in Table 7.15, the lexical adaptation gives small but not
significant improvements for zh, de, and in except for bg, compared to the
baseline system. Additionally, we investigated if the modified dictionaries
have a positive impact in the combination of lexical and acoustic model
adaptation.
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7.2.3 Combination of Lexical and Acoustic Model Adap-
tation

The biggest word error rate reduction is expected to be the result of a com-
bined acoustic model and lexical accent adaptation. For this purpose, the
most successful methods were combined.

bg zh de in
baseline (dev) 62.98 76.63 45.19 74.13
MAP over MLLR 54.44 49.03 35.12 38.74
rel. change to baseline +13.56 +36.02 +22.28 +47.74
+lexical adaptation1 54.38 48.36 34.32 38.08
rel. change to baseline +13.66 +36.89 +24.05 +48.63
rel. change to MAP over MLLR +0.11 +1.37 +2.28 +1.70
+lexical+adaptation2 54.14 48.00 35.12 38.56
rel. change to baseline +14.04 +37.36 +22.28 +47.98
rel. change to MAP over MLLR +0.55 +1.91 +0.00 +0.46

Table 7.16 – Word error rate (%) on development sets with lexical and acous-
tic model adaptation.

Table 7.16 illustrates the word error rates on our development sets with
lexical and acoustic model adaptation. With the acoustic model adaptation,
the parameters originally trained with native English are shifted. Therefore,
phonemes which are substituted by accented speakers are covered by the
acoustic model adaptation and do not have to be additionally modeled in the
dictionary. Since it is even possible, that the lexical adaptation of substituted
phonemes can have a negative impact on the acoustic model adaptation, we
kept in the dictionary only new variants containing at least one insertion
or deletion compared to the original native English pronunciation (+Lexical
Adaptation2 ) [Mih11]. As indicated in Table 7.16, this leads to improvement
for de and in. Consequently, we used +Lexical Adaptation2 to decode the
test set for those two accents.

Table 7.17 demonstrates the results on our test sets. We note that the posi-
tive effect of our lexical adaptation can be weakened in combination with an
acoustic model adaptation. Apart from that, although the lexical adaptation
alone deteriorated the baseline system for bg, in combination with the acous-
tic model adaptation we observe slight improvements. With the combination
of the lexical and acoustic model approaches, relative improvements of 26.9%
for Bulgarian, 33.2% for Chinese, 30.9% for German, and 53.2% for Indian
accents are achieved.
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bg zh de in
baseline (test) 64.24 65.97 64.78 64.45
lexical adaptation 64.79 65.34 62.83 62.61
rel. change -0.86 +0.95 +3.01 +2.85
MAP over MLLR 47.33 44.79 44.89 30.77
rel. change to baseline +26.32 +32.11 +30.70 +52.26
+lexical adaptation 46.95 44.10 44.74 30.19
rel. change to baseline +26.91 +33.15 +30.94 +53.16
rel. change to MAP over MLLR +0.80 +1.54 +0.33 +1.88

Table 7.17 – Word error rate (%) on test sets with lexical and acoustic model
adaptation.

7.2.4 Summary

The analyses prove that the GMU speech accent archive can be a helpful
source for the rapid and low-cost generation of English automatic speech
recognition systems for non-native speakers. The pronunciation variants
which we generated based on information from the phonetic transcriptions
using our statistical machine translation approach give information not cov-
ered with acoustic model adaptation. However, the acoustic model adapta-
tion gives a lot more improvement than the lexical adaptation. With our
focus on lexical adaptation, we did not use the recordings available at the
GMU speech accent archive. Future work may include an acoustic model
adaptation with these recordings.





Chapter 8
Dictionary Generation for

Non-Written Languages

For non-written languages, our goal is to extract word pronunciations of a
target language with the help of cross-lingual word-to-phoneme alignments
between the target language phonemes and the words of a written transla-
tion in another source language. We present two different methods (source
word dependent and independent clustering) that extract word pronuncia-
tions from word-to-phoneme alignments and compare them. We show that
both methods compensate for phoneme recognition and alignment errors. Fi-
nally, we use the extracted pronunciations in an automatic speech recognition
system for the target language and report promising word error rates – given
that the pronunciation dictionary and language model is learned completely
unsupervised and no written form for the target language is required for our
approach.

8.1 Word Pronunciation Extraction Algo-
rithm

Let Vsrc be the vocabulary of the source language plus the NULL token and
PhonemeSettrgt the phoneme set of the target language. The data source
which we explore in our scenario is a set DB ⊂ Vsrc

+ × PhonemeSettrgt+ of
pairs containing a written sentence and its spoken translation. The sentence
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is represented as a sequence of source language words and the translation
is represented as a sequence of target language phonemes. As described in
Section 3.3.3, we use the PISA Alignment Tool to find word-to-phoneme
alignments for each sentence-phoneme sequence pair in DB. An alignment
As,t of a pair (s, t) ∈ DB consists of a mapping between tokens in s and
phoneme subsequences in t. We formalize As,t as a word over an alpha-
bet containing pairs of source language words and target language phoneme
sequences:

As,t ∈ (Vsrc × PhonemeSettrgt+)+

Each element in As,t contains a putative target language word represented
by its phonemes and the source language word aligned to it. We postulate
that the source language words are elements in s, and that concatenating all
phonemic representations of the target language words results in the complete
phoneme sequence t.

The difference between source word dependent and independent clustering is
discussed in the next sections. Our general algorithm for extracting word pro-
nunciations from word-to-phoneme alignments is illustrated in Figure 8.11.
It consists of five steps:

1. Word-to-phoneme Alignment: Use the PISA Alignment Tool to gener-
ate word-to-phoneme alignments As,t for each pair (s, t) ∈ DB.

2. Alignment Pair Collection: Collect all cross-lingual mappings in the
alignments in the set P :2

P ← {(ws, wt) ∈ Vsrc × PhonemeSettrgt+|∃(s, t) ∈ DB : (ws, wt) ∈ As,t}

3. Phoneme Sequence Clustering: Conceptually, P contains lexical trans-
lations and pronunciation variants of them. In reality, the set is affected by
phoneme recognition and alignment errors. Therefore, group elements in P
into clusters Ci:

C = {C1, C2, . . . , Cn} ⊂ 2P with P =
⊎

i∈[1,n]
Ci.

1“Sprache zu Sprache Übersetzung” → “Speech to speech translation”, “Sprache die
für dich dichtet und denkt” → “Language verses and thinks for you”, “Erkennung von
Sprache” → “Speech recognition”)

2For technical reasons, we define the ∈ sign for a symbol x ∈ Σ and a word w ∈ Σ+ as
x ∈ w :⇔ ∃i ∈ N : x = wi
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Figure 8.1 – Pronunciation extraction with German-English.

4. Phoneme-Level Combination: At this point, the clusters should con-
tain phoneme sequences representing the same target language word, but
differing due to alignment and phoneme recognition errors. Thus we try to
reconstruct the correct phoneme sequence for each cluster by merging its
elements with our PLC method, which we introduced in Section 4.3.2. PLC
can extract the correct pronunciation even if all elements in the cluster con-
tain errors. We obtain a set H ⊂ PhonemeSettrgt+ of n phoneme sequences
(|H| = n), which are now assumed to correspond to real target language
words.

5. Dictionary Generation: For each pronunciation h ∈ H, we choose a word
label idh ∈ N and add both to the pronunciation dictionary Dict.
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8.1.1 Source Word Dependent Clustering

Source word dependent and independent clustering differ in step 3 (phoneme
sequence clustering). Source word dependent clustering extracts pronuncia-
tions based on the assumption that phoneme sequences which are aligned to
the same source language word are likely to represent the same target lan-
guage word. They only differ in phoneme recognition and alignment errors.
Source word dependent clustering applies a two-level approach (Figure 8.2):
First, we form coarse-grained clusters by grouping all elements in P that
have the same source language word. However, this cannot separate differ-
ent translations of the same source language word from each other: In our
example from Figure 8.1, the German word Sprache has two different English
translations (Speech and Language). Therefore, a fine-grained clustering al-
gorithm post-processes the source word dependent clusters. We apply the
density-based clustering algorithm DBSCAN [EKSX96] (ε = 1, minPts = 3)
implemented in the ELKI [AGK+12] environment with the Levenshtein dis-
tance metric. Roughly speaking, DBSCAN finds clusters with mutually density-
reachable elements. An element is density-reachable if it is within ε-distance
and surrounded by sufficiently many other elements (minPts). We use
DBSCAN since it does not require the desired number of clusters as input
parameter.

Figure 8.2 – Source word dependent clustering.

8.1.2 Source Word Independent Clustering

Source word dependent clustering in the previous section assumes that pho-
neme sequences which are aligned to the same source language word are
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Figure 8.3 – German-English example with correct word boundaries but
incorrect alignment.

likely to represent the same target language word. Source word indepen-
dent clustering drops this assumption completely since we observed that the
alignments sometimes induce the correct word segmentation, but map the
wrong source language words to the segments. For example, the phoneme
sequence dh eh n (then) in Figure 8.3 (Job 19:1, “Then Job answered and
said”) is incorrectly aligned to “Hiob” (Job), but all the word boundaries
are set correctly. Therefore, when extracting pronunciations with the source
word “Hiob”, dh eh n pollutes the cluster containing Job pronunciations,
and it cannot be used to extract a pronunciation for then. Since there is no
equivalent for then in the German counterpart, it should be aligned to NULL.
However, the NULL cluster in source word dependent clustering is usually
very large and widespread: All kinds of words can be modeled as “spurious”
and aligned to NULL (see the generative story of Model 3P in Section 3.3.3).
Therefore, it is hard to extract correct pronunciations from the NULL cluster
with source word dependent clustering.

Figure 8.4 – Source word independent clustering.

Consequently, source word independent clustering [SSVS14a] groups pronun-
ciations in P not regarding the source language word. Therefore, it replaces
the two-level approach of source word dependent clustering by a single-level
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clustering solely based on the Levenshtein distance. Combining DBSCAN with
source word independent clustering performs poorly in our experiments, so
we use the k-means [Mac03] algorithm to provide additional hints for the
clustering process like the desired number of clusters. The means are initial-
ized with the k most frequent elements. However, k should be initialized close
to the actual vocabulary size of the target language which can be estimated
using the vocabulary sizes of the source languages. In the latter experiments
we assume to know the target language vocabulary size. Section 8.3 discusses
the performance degradations when k is set too low or too high in detail.

8.2 Evaluation Metrics

Let I be the set of all word labels in the extracted dictionary Dict : I →
PhonemeSettrgt

+. We measure the structural quality of Dict by the out-
of-vocabulary rate (OOV) on running words. The out-of-vocabulary rate
cannot be calculated directly since Dict contains word labels instead of writ-
ten words consisting of graphemes. Therefore, a mapping between the word
labels and the written words is required. Let Vtrgt be the target language
vocabulary (written words) and Dictref : Vtrgt → PhonemeSettrgt

+ the refer-
ence dictionary with the correct pronunciations. The mapping m : I → Vtrgt
assigns each word label to the written word with the most similar pronun-
ciation (illustrated in Figure 8.5):

m(n) = arg minv∈Vtrgt
dedit(Dict(n), Dictref (v)) (8.1)

where dedit denotes the edit distance. The set m(I) of matched vocabulary
entries in Dictref is then used to calculate the out-of-vocabulary rate on
running words (word tokens).

Figure 8.5 – Mapping between word labels and written words for evaluation.
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While the out-of-vocabulary rate indicates the coverage of Dict on a Bible
text, the dictionary phoneme error rate (dictPER) reflects the quality
of the extracted pronunciations at the phoneme level. It is defined as the
average edit distance between the entries in Dict and the closest entry in the
reference dictionary Dictref :

dictPER =
∑
n∈I dedit(Dict(n), Dictref (m(n)))

|I|
(8.2)

The dictPER can be greater than zero even when we operate on error-free
phonetic transcriptions since it does not capture only the remaining phoneme
recognition errors: The dictPER is also heavily affected by segmentation
errors (inserted or dropped blank between two words or morphemes). Finally,
the Hypo/Ref ratio indicates how many hypothesis entries in Dict are
mapped by m to a single reference entry in Dictref on average (|I| divided
by |m(I)|). Ideally, this ratio is 1 as we do not have pronunciation variants
in our corpus. The higher the Hypo/Ref ratio, the more pronunciations are
extracted unnecessarily.

8.3 Evaluation of Extracted Pronunciations

Corpus

We test our pronunciation extraction algorithms on parallel data from the
Christian Bible since it is available in many languages in written form3 and
in some languages also as audio recordings. A variety of linguistic approaches
to Bible translation (Dynamic equivalence, formal equivalence, and idiomatic
translation [Tho90]) enables us to compare different translations within the
same source language. In our experiments, English takes the role of the
under-resourced target language. English is by no means under-resourced
and comprehensive pronunciation dictionaries are readily available. How-
ever, we feel that understanding the target language gives a deeper insight
in the strengths and weaknesses of our algorithms. We select an English
Bible translation with predominant use of the formal equivalence transla-
tion method (i.e. syntactical equivalent and literal)[Bor03]: English Standard
Version (ESV) [Cro01]. Figure 8.6 shows that the words in the ESV Bible
are distributed approximately according to the Zipfian distribution [MS99]

3Extracted from http://www.biblegateway.com/ (Accessed on 15th May 2014)

http://www.biblegateway.com/
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Figure 8.6 – Log-log plot of the word distribution in the ESV Bible.

(s = 0.98, asymptotic standard error of 0.04%): The frequency of any word
is inversely proportional to its rank in the frequency table. A large portion of
the words has only one occurrence (30.5%), while only 26% occur ten times
or more in the text. Some of the function words (in, the, and) are repeated
very often, but also content words like lord, god, said, people, Israel occur
frequently. In the Spanish LBLA Bible and the Portuguese AA Bible, words
with a frequency of 1 and words with a frequency of 10 or more appear about
10% more than in the ESV Bible. High word frequencies are suitable for our
extraction algorithm as we merge more phoneme sequences leading to better
error correction as shown in Section 8.5.

Verses in the Christian Bible are identified by unique verse numbers (such
as Galatians 5:22), which are consistent with verse numbers across all in-
vestigated Bible translations. Based on these numbers, we extract a parallel
and verse-aligned corpus consisting of 30.6k verses in 15 different written
translations in 10 languages (Table 8.1). We refer to the English portion as
ENall.

In initial experiments, we replace the words with their canonical pronuncia-
tions and removed word boundary markers to generate the target language
phoneme sequences [SSVS13]. Thereby, we simulate a perfect phoneme rec-
ognizer (0% phoneme error rate). The pronunciations are taken directly
from the CMU pronunciation dictionary (39 phonemes) or generated with a
grapheme-to-phoneme model trained on it.
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ID Language Full Bible Version Name # running Vocab.
words Size

bg Bulgarian Bulgarian Bible 643k 38k
cs Czech Bible 21 547k 48k
da Danish Dette er Biblen på dansk 653k 24k
de1 German Schlachter 2000 729k 26k
de2 German Luther Bibel 698k 21k
en English English Standard Version 758k 14k
es1 Spanish Nueva Versión Internacional 704k 28k
es2 Spanish Reina-Valera 1960 706k 26k
es3 Spanish La Biblia de las Américas 723k 26k
fr1 French Segond 21 756k 26k
fr2 French Louis Segond 735k 23k
it Italian Nuova Riveduta 2006 714k 28k
pt1 Portuguese Nova Versão Internacional 683k 25k
pt2 Portuguese João Ferreira de Almeida Atualizada 702k 26k
se Swedish Levande Bibeln 595k 21k

Table 8.1 – Overview of the used Bible translations.

Word-to-phoneme alignments are the basis of our pronunciation extraction.
As described in [SSVS12], GIZA++ first calculates initial alignments that
are then further refined by the PISA Alignment Tool applying Model 3P.
However, GIZA++ has restrictions regarding the maximum number of target
tokens (100 in our GIZA++ version) or the maximum ratio between the
number of source language words and target language phonemes in a sentence
pair (maxfertility was set to 12 in our experiments). We remove all sentence
pairs which violate these restrictions and end up with 23k verses. We refer
to this subcorpus as ENfilt.

Phoneme Recognition

For English, Crossway (the publisher of the ESV Bible) provides high quality
verse-level audio recordings of a single male speaker for the entire Bible text4.
This enables us to test our methods using real phoneme recognizers instead
of merely error-free phonetic transcriptions. All recordings (ENall) have a
total length of 67:16h from which the filtered subcorpus ENfilt consists of
40:28h speech.

4Available for purchase at http://www.crossway.org/bibles/
esv-hear-the-word-audio-bible-610-dl/ (Accessed on 15th May 2014)

http://www.crossway.org/bibles/esv-hear-the-word-audio-bible-610-dl/
http://www.crossway.org/bibles/esv-hear-the-word-audio-bible-610-dl/
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Acoustic Train+Dev Training Set Dev Set PER PER
Model Set Size Size on Dev Set on ENfilt
AM13.1 ENall \ ENfilt 24:07h 02:41h 14.0% 13.1%
AM45.1 WSJ 15:28h 00:24h 35.9% 45.1%

Table 8.2 – Acoustic models AM13.1 and AM45.1 applied in a phoneme rec-
ognizer on ENfilt.

We trained context-dependent acoustic models for English on two different
training sets with different performances on ENfilt to investigate the influ-
ence of phoneme recognition errors to our methods. AM13.1 was trained on
ENall without ENfilt (ENall \ ENfilt) and represents a speaker-dependent
system without overlapping training and test set. AM45.1 was trained on
the Wall-Street-Journal (WSJ) corpus [PB92] and therefore contains speaker
independent, corpus mismatched acoustic models. All experiments use the
CMUdict phoneme set consisting of 39 phonemes. The preprocessing consists
of feature extraction applying a Hamming window of 16ms length with a win-
dow shift of 10ms. Each feature vector has 143 dimensions by stacking 11 ad-
jacent frames of 13 Melscale Frequency Ceptral Coefficients (MFCC) frames.
A Linear Discriminant Analysis (LDA) transformation is computed to reduce
the feature vector size to 42 dimensions. The acoustic model uses a fully-
continuous 3-state left-to-right HMM with emission probabilities modeled
by Gaussian Mixtures with diagonal covariances (64 Gaussians per state).
For our context-dependent acoustic models with different context sizes, we
stopped the decision tree splitting process at 2,500 triphones. After context
clustering, a merge-and-split training was applied, which selects the number
of Gaussians according to the amount of data (50 on average, 125k in total).

For phoneme recognition, a trigram phoneme-level language model was trained
on the phonetic transcriptions of the corresponding training sets. Table 8.2
summarizes the phoneme error rates on ENfilt of phoneme recognizers with
the acoustic models AM13.1 and AM45.1.

Both AM13.1 and AM45.1 represent oracle experiments since they were trained
using target language transcriptions that are not supposed to be available in
our scenario. Acoustic modeling in the target language is a research topic for
its own and not our present concern. The interested reader can consult the
literature for details, such as [JDG+13]. However, we feel that for some pos-
sible target languages a phoneme error rate in the magnitude of 45.1% (as we
obtain with AM45.1) is realistic even without or only little training transcrip-
tions. For example, [VKD08] achieve a phoneme error rate of under 25% for
Japanese speech from only one speaker by unsupervised learning of HMMs
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and only very light supervision for their HMM label-to-phone transducer (5
minutes of transcribed speech). Recent developments in using Deep Neural
Networks in zero acoustic model resource systems (as reported in [GKRR14]
in the context of the Babel program [Har14]) are also promising.

SOURCE WORD DEPENDENT CLUSTERING
Source dictPER Hypo/Ref OOV rate
Lang. (in %) Ratio (in %)

R0 R13.1 R45.1 R0 R13.1 R45.1 R0 R13.1 R45.1
es3 35.36 40.81 46.26 1.53 1.45 1.29 2.57 3.78 11.37
es2 37.07 41.72 46.59 1.50 1.42 1.28 2.96 4.52 12.44
pt2 37.34 42.06 46.15 1.53 1.43 1.30 2.75 4.07 12.40
fr2 37.09 41.14 45.83 1.45 1.41 1.25 3.59 4.99 13.00
de1 38.84 43.63 53.55 1.50 1.41 1.27 3.20 4.68 13.58
it 38.96 43.08 47.07 1.54 1.45 1.31 2.84 4.10 14.79
de2 36.70 41.09 51.25 1.44 1.37 1.21 4.37 5.81 15.64
fr1 40.93 44.13 47.74 1.48 1.40 1.27 3.64 5.24 13.53
da 38.97 42.69 51.96 1.46 1.40 1.24 3.74 5.85 16.72
pt1 40.11 42.83 46.26 1.50 1.41 1.27 3.79 5.42 13.03
bg 44.26 47.57 57.74 1.71 1.59 1.40 1.96 2.87 8.32
es1 42.25 45.55 48.43 1.53 1.42 1.28 3.75 5.15 13.18
cs 49.00 51.56 60.53 1.68 1.57 1.44 2.58 3.48 8.76
se 50.93 47.86 51.51 1.33 1.27 1.18 8.31 10.25 19.96

Table 8.3 – Dictionary evaluation with source word dependent clustering.

SOURCE WORD INDEPENDENT CLUSTERING
Source dictPER Hypo/Ref OOV rate
Lang. (in %) Ratio (in %)

R0 R13.1 R45.1 R0 R13.1 R45.1 R0 R13.1 R45.1
es3 29.63 30.57 32.55 1.58 1.77 1.81 2.49 4.04 6.94
es2 31.20 31.75 33.55 1.60 1.75 1.79 2.70 4.31 7.12
pt2 31.05 31.52 33.15 1.62 1.77 1.83 2.76 4.26 6.99
fr2 31.20 31.91 34.17 1.61 1.76 1.75 3.03 4.45 6.95
de1 30.98 31.82 34.44 1.64 1.77 1.72 2.98 4.50 6.87
it 31.60 32.02 33.33 1.61 1.77 1.82 2.89 4.53 7.26
de2 31.69 32.50 34.42 1.64 1.76 1.73 3.11 4.56 6.83
fr1 32.93 33.20 35.67 1.64 1.76 1.70 3.47 4.75 6.29
da 33.15 33.58 34.31 1.65 1.80 1.74 3.25 4.65 6.84
pt1 32.95 33.45 34.14 1.66 1.77 1.79 3.41 4.72 7.00
bg 33.99 34.21 34.01 1.67 1.80 1.82 3.39 4.83 7.27
es1 33.70 34.21 35.89 1.66 1.78 1.72 3.65 5.03 7.05
cs 36.92 36.33 36.53 1.74 1.83 1.79 4.53 5.66 7.72
se 37.57 39.27 44.23 1.69 1.66 1.50 4.34 4.98 5.78

Table 8.4 – Dictionary evaluation with source word independent clustering.
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In addition to experiments on error-free phonetic transcriptions (designated
as R0 in this section), we also use phoneme recognizers based on the acous-
tic models AM13.1 and AM45.1 to produce the target language phoneme se-
quences (designated as R13.1 and R45.1). Tables 8.3 and 8.4 show the perfor-
mance of both source word dependent and independent clustering using the
evaluation metrics for all investigated language pairs. The best results are
highlighted. The source languages are ordered descending by segmentation
accuracy.

There are often big differences between translations within the same source
language: For example, with source word dependent clustering, es3 has 16.3%
lower dictPER and 31.5% lower out-of-vocabulary rate than es1 (relative
improvement) since es3 La Biblia de las Américas is a very literal transla-
tion [Loc86]. Similar gains can be observed within other source languages
(Portuguese and French) and source word independent clustering. This sug-
gests that selecting a translation which is as literal as possible (e.g. following
the formal equivalence translation method) is a crucial factor for a high over-
all quality.

Source word independent clustering outperforms source word dependent clus-
tering in terms of dictPER: The values in the first three columns in Ta-
ble 8.4 are significantly lower than the corresponding values in Table 8.3.
On the other hand, the Hypo/Ref ratio is usually better when source word
dependent clustering is used. There is no such clear tendency regarding the
out-of-vocabulary rate. For example, using es3 (first row), source word de-
pendent clustering does better than source independent clustering with R0
(2.57 > 2.49), but worse with R13.1 (3.78 < 4.04). The opposite is true for bg
and R0 (1.96 < 3.39) or es2 and R13.1 (4.52 > 4.31). On very noisy phoneme
sequences (last column), source word independent clustering always leads to
significantly better out-of-vocabulary rates than source word dependent clus-
tering. Therefore, whether source word dependent or independent clustering
should be used depends on the application: If the dictionary is required
to contain a minimum of unnecessary entries (and thus needs to have a low
Hypo/Ref Ratio), source word dependent clustering is the right choice. If the
phonetic correctness of the pronunciations is more important (low dictPER)
or the input sequences are very noisy, source word independent clustering
should be used. In Section 8.6 we elaborate the case when the dictionary is
used in an automatic speech recognition system.
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Compensating for Recognition and Alignment Errors

For all source languages and both clustering methods, dictPERs and out-
of-vocabulary rates increase for noisy phoneme sequences: The R0 columns
contain lower values than the corresponding R13.1 and R45.1 columns in the
Tables 8.3 and 8.4 for both the dictPER and the out-of-vocabulary rate. This
performance drop is less severe with source word independent clustering: The
dictPER is usually only slightly affected by recognition errors. For example,
es3 achieves a dictPER of 32.55% on phoneme sequences with 45.1% er-
rors (R45.1) which is still better than most other source languages on perfect
phoneme sequences (R0). Consequently, the influence of the translation is
more important than the influence of phoneme recognition errors. This in-
dicates that we are able to compensate for phoneme recognition errors. The
increase of the out-of-vocabulary rates with noisier phoneme sequences is
usually larger (about factor 2 on average for source word independent clus-
tering) but stays on a surprisingly low level given that nearly every second
phoneme in the input sequences is wrong (R45.1). This again supports the
claim that both pronunciation extraction methods and the alignment model
Model 3P are robust against recognition errors. Table 8.5 illustrates the
effectiveness of both source word dependent and independent clustering to
compensate for alignment and phoneme recognition errors and reduce the
noise in the dictionaries. When no clustering is applied, the phoneme se-
quence segments induced by the word-to-phoneme alignments are directly
used as pronunciations. In this case, the dictionaries are huge and thus have
a low out-of-vocabulary rate – it is a matter of chance that the mapping m
hits a reference entry. Consequently, the out-of-vocabulary rate is only com-
parable when the dictPER is at the same level. The Hypo/Ref ratio gives
a better picture of the improvements due to clustering. Without clustering,
5 of 6 pronunciations are extracted unnecessarily (Hypo/Ref ratio ≥ 6) on
noisy phoneme sequences (R13.1 and R45.1). With clustering, the Hypo/Ref
ratio is 3.6 to 5.3 times lower. Furthermore, the dictPERs with both cluster-
ing methods are significantly lower than without clustering. This indicates
that we are able to compensate for errors even at the phoneme level.

Number Of Clusters In Source Word Independent Clus-
tering

Our source word independent clustering algorithm is based on the k-means
algorithm. The parameter k (number of desired clusters) should be initial-
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Clustering dictPER Hypo/Ref OOV (in %)
Method (in %) Ratio

R0 R13.1 R45.1 R0 R13.1 R45.1 R0 R13.1 R45.1
No 48.61 50.44 54.03 4.74 6.43 6.87 0.04 0.04 0.04Clustering
Source Word 35.36 40.81 46.26 1.53 1.45 1.29 2.57 3.78 11.37Dependent
Source Word 29.63 30.57 32.55 1.58 1.77 1.81 2.49 4.04 6.94Independent

Table 8.5 – Error recovery through source word dependent and independent
clustering (source language: Spanish (es3 )).

Figure 8.7 – Evaluation metrics over k for source word independent clustering
(source language: Spanish (es3)).

ized with a value as close to the target language vocabulary size as possible.
However, the vocabulary size of the target language is unknown in our sce-
nario. Therefore, we propose to derive it from the vocabulary size of a very
similar source language, as we did in [SSVS14a]. Figure 8.7 shows the impact
to our evaluation metrics when k is set too low or too high for the target lan-
guage English on error-free phoneme sequences. The out-of-vocabulary rate
decreases with k since the larger the extracted dictionary the more reference
entries can be mapped by m. This drop of the out-of-vocabulary rate comes
at the expense of the dictPER and the Hypo/Ref ratio – the dictionary be-
comes noisier. If k is initialized with the correct value (12k for our subcorpus
of the ESV Bible), the out-of-vocabulary rate and Hypo/Ref Ratio is at the
same level as source word dependent clustering, but the dictPER is lower.
Small variations of k around 12k cause only minor changes of the error rates
indicating that the estimated value for the target language vocabulary size
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Figure 8.8 – Layout for Table 8.6 and 8.7.

SOURCE WORD DEPENDENT CLUSTERING
|r| dictPER Hypo/Ref Ratio OOV

R0 R13.1 R45.1 R0 R13.1 R45.1 R0 R13.1 R45.1
Vocabulary .48 .75 .75 .88 .87 .94 .50 .57 .77
size .66 .90 .61
Avg. number of .52 .69 .80 .63 .64 .67 .24 .28 .46
words per verse .67 .65 .33
Avg. word .59 .81 .77 .82 .80 .88 .39 .44 .67
frequency .72 .83 .50
IBM-4 .76 .51 .21 .50 .54 .39 .91 .87 .66
perplexity .49 .48 .81

Table 8.6 – Absolute correlation coefficients between our evaluation metrics
and different influencing factors for source word dependent clustering.

does not have to be very accurate. In our other experiments we always set k
to the correct value.

8.4 Which Source Language Is Favourable?

We investigate the impact of four factors to our evaluation metrics:
• Vocabulary size. The vocabulary size of the source language.

• Average number of words per verse. The average verse length in the
source language.

• Average word frequency. The average number of word repetitions in the
source language (inverse of the lexical density [Ure71]).

• IBM-4 PPL. To measure the general correspondence of the translation
to IBM Model based alignment models, we train IBM Model 4 [BPPM93]
on the source and target language transcriptions (written word level) using
GIZA++ [ON03] with default configuration and measure its perplexity.
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SOURCE WORD INDEPENDENT CLUSTERING
|r| dictPER Hypo/Ref Ratio OOV

R0 R13.1 R45.1 R0 R13.1 R45.1 R0 R13.1 R45.1
Vocabulary .42 .25 .07 .60 .67 .37 .45 .64 .67
size .25 .55 .59
Avg. number of .56 .42 .07 .73 .57 .23 .56 .69 .58
words per verse .35 .51 .61
Avg. word .52 .38 .05 .65 .56 .27 .51 .66 .58
frequency .32 .49 .58
IBM-4 .79 .89 .96 .56 .68 .87 .73 .52 .61
perplexity .88 .70 .62

Table 8.7 – Absolute correlation coefficients between our evaluation metrics
and different influencing factors for source word independent clustering.

Tables 8.6 and 8.7 show Pearson’s correlation coefficients |r| [RN88] between
those four factors and our evaluation metrics from Section 8.2. Figure 8.8
describes the table layout. High correlations are highlighted.

As shown in Figure 8.8, each cell is subdivided into four cells. Three of these
cells (upper row) contain the correlation coefficients for error-free phoneme
sequences (R0) and noisy phoneme sequences (R13.1 and R45.1). The lower
row (bold font) contains the mean of these specific coefficients.

Regardless of how noisy the phoneme sequences are, the vocabulary size and
the average word frequency are good indicators to predict the Hypo/Ref Ra-
tio for source word dependent clustering (|r| ≥ .80 in Table 8.6). The IBM-4
PPL has a high linear correlation with the dictPER on error-free phoneme
sequences (|r| = .76), but is less correlated when the phoneme sequences are
noisy. For noisy phoneme sequences, the number of word repetitions in the
source language becomes more important for the dictPER (|r| ≥ .77): Our
error recovery methods work better when many realizations of the target lan-
guage word can be merged. In source word dependent clustering, the number
of occurrences of a source word is a rough upper bound for the number of
elements in its clusters. The verse length also becomes more important with
noisier phoneme sequences: With error-free phoneme sequences the align-
ment model is able to align even long verses. However, only short verses can
be aligned reliably when the phoneme sequence is noisy. The dominant fac-
tor for the out-of-vocabulary rate is the IBM-4 PPL on error-free phoneme
sequences, and the vocabulary size on noisy phoneme sequences. Generally,
the vocabulary size of the source language is highly correlated with all evalu-
ation metrics due to the dependency on the source word with this clustering
method.
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In contrast, the linear correlations of the vocabulary size are much smaller for
source word independent clustering (Table 8.7). For this clustering method,
the IBM-4 PPL is an important factor for the extraction quality. This sug-
gests that selecting a translation which is as literal as possible (e.g. following
the formal equivalence translation method) is crucial.

8.5 Which Words Are Extracted Correctly?

This section describes the characteristics of words which are likely to be
extracted correctly when the source language es3 and the target language
English is used and pronunciations are extracted with source word depen-
dent clustering. Experiments with other source languages and source word
independent clustering show similar results. Figure 8.9 indicates that fre-
quently occurring words tend to contain no or only minor errors at the pho-
neme level. The relation between the word length in terms of phonemes and
the phoneme level pronunciation quality is illustrated in Figure 8.10. One
phoneme words are often extracted incorrectly. This is due to Model 3P’s
problems with aligning one phoneme words: A single phoneme usually oc-
curs at different positions in the phoneme sequence, and it has to be inferred
by the rather weak distortion model and the neighboring alignments which
position is the correct one. For longer words, the learned translation proba-
bilities give stronger hints of where the target word is likely to start in the
phoneme sequence. Apart from that, very short and very long words are
generally extracted more accurately than words with average length.

A look at some extracted pronunciations reveals two major sources of errors
for words with only 1-2 phoneme errors:

Figure 8.9 – Mean word frequency over phoneme error rate (Spanish-
English).
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Figure 8.10 – Phoneme error rate over word length in phonemes (Spanish-
English).

1. Single phonemes are added or dropped in the beginning or end of a word:

• z f ih s t s instead of f ih s t s (fists)

• ih k s t instead of f ih k s t (fixed)

• ih z r ey l ah instead of ih z r ey l (israel)

2. Different words with the same stem are merged together:

• s ih d uw s ih t instead of s ih d uw s t (seduced) or s ih d uw
s ih ng (seducing)

• ih k n aa l ih jh m instead of ih k n aa l ih jh (acknowledge)
or ih k n aa l ih jh m ah n t (acknowledgement)

Entries with two phoneme errors or more, often contain two consecutive
words due to missing word boundaries between words often occurring in the
same context:

• w er ih n d ih g n ah n t (were indignant)

• f ih n ih sh t ih t (finished it)

We assume that this kind of errors would not be very critical when using
the dictionary in a speech-to-speech translation system since those words are
likely to be stuck together as a phrase later in the training process of the trans-
lation model anyway. Since this work is only concerned with the automatic
speech recognition part, proving this claim by training a full speech-to-speech
translation system remains future work.
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Figure 8.11 – Training set generation for language modeling.

8.6 Automatic Speech Recognition in the
Target Language

Our final goal is to integrate the extracted pronunciations in a word recog-
nizer for the target language. The three basic components of our automatic
speech recognition system are acoustic model, pronunciation dictionary, and
language model. We use the acoustic models AM13.1 and AM45.1 presented
in Section 8.3 in our experiments. The pronunciation dictionaries are ex-
tracted as described in the previous Section 8.1. To train a language model,
we replace the segments in the segmented phoneme sequences (Section 3.3.3)
with the closest word labels in the extracted dictionary. Thereby we obtain
sequences of word labels which serve as training data for trigram language
models. The process is illustrated in Figure 8.115. To reduce complexity,
we restrict our experimental settings to the best, middle, and worst source
language (es3, de2, and se).

5Example taken from 2 Corinthians 10:9 “I do not want to appear to be frightening
you with my letters.” with R13.1 and es3.

Reference We are not able to go up against the people,
Pronun. w ih er n aa t ey b ah l t ah g ow ah p ah g ey n s t dh ih p ih p ah l
WER w ih er n aa t ey b ah l t ah g ow ah p ah g ih n s t dh ih p ih p ah l
(33.3%) Sub Del Sub
multiWER w ih er n aa t ey b ah l t ah g ow ah p ah g ih n s t dh ih p ih p ah l
(11.1%) Sub

Table 8.8 – Word error rate and multiWER.
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The evaluation of the resulting automatic speech recognition systems is dif-
ficult as they output sequences of word labels that are to be compared with
the written reference sentences. One conservative way is to modify the stan-
dard word error rate (WER): We allow a word label to match with a
written word in the reference if its pronunciation is equal to one possible
pronunciation variant of the written reference word. However, this measure
is highly sensitive to segmentation errors (inserted or missing word bound-
aries). Which words are written together and which separately is often due
to conventions which are impossible to detect for our automatic algorithms.
For example, our algorithms often extract the pronunciation n ow h w ah
n (“no one”) in our experiments. The phrase “no one” is written separately,
but “nobody” is written together. As both are grammatically and seman-
tically interchangeable in English, our automatic methods are not able to
learn the difference – it would be just as reasonable to treat “no one” as sin-
gle pronoun and “no-body” as two separate words. To reduce the impact of
these artefacts we propose the multi-word error rate (multiWER). The
multiWER allows 1:n mappings from words in the reference to a sequence
of word labels and vice versa before calculating the word error rate. Map-
pings must be applied to all sentences consistently (not only to one sentence)
and the concatenated pronunciations on both sides must be equal. Table 8.8
compares both measures with the help of an example. The example is taken
from our experiments with es3 as source language using the acoustic model
AM13.1 (excerpt from Numbers 13:31). We feel that even the multiWER un-
derestimates the usefulness in a speech-to-speech translation scenario: Minor
spelling errors are not important as long as the word is always substituted
with the same misspelled word label. For example, “against” is misspelled in
Table 8.8, but since there are no similar entries in the dictionary, “against”
is always misspelled the same way. Therefore, it would not affect speech-to-
speech translation performance.

SPEAKER DEPENDENT ACOUSTIC MODEL (R13.1, AM13.1)
Extraction WER in % multiWER in %
Method es3 de2 se es3 de2 se

Source Word Dependent Clustering 34.5 37.9 54.5 26.6 29.8 40.7
Source Word Independent Clustering 33.4 36.3 46.3 25.3 27.8 33.8

Table 8.9 – Automatic speech recognition performance with a speaker depen-
dent acoustic model (R13.1, AM13.1).

Table 8.9 summarizes the results with the acoustic model AM13.1. In this set-
ting, the pronunciations are extracted from phoneme sequences with 13.1%
phoneme error rate (R13.1) and the automatic speech recognition system is
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based on a speaker-dependent acoustic model trained on ENall \ ENfilt.
The gold standard (correct pronunciation dictionary and a language model
trained on the AM13.1 training transcriptions ENall \ ENfilt) has a word
error rate of 3.6% and a multiWER of 3.6%: There are no segmentation
errors when the correct pronunciation dictionary is applied. In our experi-
ments, the multiWER is usually significantly lower than the word error rate.
This illustrates the effectiveness of the multiWER evaluation metrics to re-
duce artefacts due to segmentation errors. Source word independent cluster-
ing consistently outperforms source word dependent clustering for all three
source languages. We report a multiWER of 25.3% using the best source
language es3.

SPEAKER INDEPENDENT AND
CORPUS-MISMATCHED ACOUSTIC MODEL (R45.1, AM45.1)

Extraction WER in % multiWER in %
Method es3 de2 se es3 de2 se

Source Word Dependent Clustering 87.7 88.6 95.4 85.7 86.5 92.5
Source Word Independent Clustering 86.1 86.6 90.7 83.1 84.0 88.3

Table 8.10 – Automatic speech recognition performance with a speaker in-
dependent, corpus-mismatched acoustic model (R45.1, AM45.1).

Table 8.10 shows the results when a worse acoustic model (AM45.1) is used
in the automatic speech recognition system and the phoneme sequences for
the pronunciation extraction contain 45.1% errors (R45.1). The gold standard
based on AM45.1 has a word error rate and multiWER of 28.7% and thus is
significantly worse than with the AM13.1 acoustic model. This is reflected
by the general performance drop compared to Table 8.9. The differences
between the word error rate and multiWER is smaller than with AM13.1
because spelling errors are more common. The best system (source word
independent clustering, source language es3) achieves a multiWER of 83.1%.
This indicates that the effectiveness of our methods strongly depends on the
underlying acoustics.





Chapter 9

Conclusions and Future Directions

Over the last years, speech and language processing technology has become
more and more present in daily life. Speech technology is expected to work
for multiple languages. However, a challenge today is still to rapidly establish
speech processing systems for new domains and languages with low human
effort and at reasonable cost. Pronunciation dictionaries are a central com-
ponent for both, automatic speech recognition and speech synthesis. This
dissertation presents a wide range of research for the rapid generation of
pronunciation dictionaries for new application domains and languages. The
developed methods in this thesis are evaluated on many automatic speech
recognition results. In this chapter, we review the mayor contributions of
this thesis and suggest potential future research directions.

9.1 Contributions

The most important achievements of this thesis are structured in the fol-
lowing categories corresponding to the three challenges of the generation of
pronunciation dictionaries for new domains and languages:

• Rapid vocabulary selection.

• Rapid generation of pronunciations.

• Dictionary generation for non-written languages.
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Our contributions are published in 25 publications in two journals and on
international conferences. The citations demonstrate that other researchers
have already followed our ideas or algorithms. The tools, which we imbedded
in our Rapid Language Adaptation Toolkit within this work, are publicly
accessible and already used by another research group [MBDW13, MBdW14].

We believe that our research ideas presented in this thesis have the potential
to influence both, practical applications and future research. The following
sections summarize the most important results and show the importance of
the thesis in the context of the generation of pronunciation dictionaries.

9.1.1 Strategies For Rapid Vocabulary Selection and
Text Normalization

For written languages, our mayor contributions for vocabulary selection are:

Rapid Vocabulary Selection: We developed strategies for the collection of
words from Web texts which are time- and topic-relevant for the application
domain of the automatic speech recognition system. This includes the use
of information from RSS Feeds and Twitter which is particularly helpful for
the automatic transcription of broadcast news. Our methods, which are
published in [VSKS10] and [SGVS13], can be easily adapted to new domains
and languages existing on the World Wide Web.

Text Normalization through Crowdsourcing: For the rapid develop-
ment of text normalization systems at low cost, we developed methods where
Internet users generate training data for such systems by simple text editing.
Our methods and analyses are published in [SZGS10] and [SZLS13]. The
annotation process for English training data was realized fast and at low
cost with the crowdsourcing platform Amazon Mechanical Turk. Due to the
high ethnic diversity in the U.S. where most Turkers come from and Turkers
from other countries [RIS+10], we believe that a collection of training data
for other languages is also possible.

As no textual representation usually exists for non-written languages, we
developed methods to extract word-like units from the phoneme sequence
derived from audio data, which enables an automatic “invention” of a writing
system for the target language.

Since exploiting the written translation of the spoken phrases has proven
to outperform monolingual approaches, we use it to segment the phoneme
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sequence into word units. Thus, we tackled the problem of “human transla-
tions guided language discovery”. The assumption is that a human translator
produces utterances in the non-written target language from prompts in a
resource-rich source language. We align source language words to target
language phoneme sequences across languages, i.e. cross-lingually. Based on
this alignment, we induce phoneme sequences forming words of the target
language.

Our mayor contribution for the vocabulary selection given this scenario is:

Model 3P: We developed a new alignment model Model 3P especially for
cross-lingual word-to-phoneme alignments, which extends the generative pro-
cess of IBM Model 3 by a word length step and additional dependencies for
the lexical translation probabilities. Model 3P is more robust against pho-
neme errors and achieves significantly better results than traditional statisti-
cal alignment models for word-to-word alignment, in particular with respect
to word segmentation quality. A multi-threaded implementation of Model 3P
is available for download at http://pisa.googlecode.com/ and corresponding
analyses are published in [SSVS12], [SSVS13], [SSVS14a], and [SSVS14b].

We have shown that monolingual segmentation can also help to retrieve word
units from the phoneme sequence if no translation is available. However, the
performance is worse than with the information of the translation.

9.1.2 Techniques For Rapid Generation Of Pronunci-
ations

To decide which strategy for the pronunciation generation is optimal for a
given scenario, one can traverse the binary tree illustrated in Figure 9.1.

For written languages, our mayor contributions for the rapid and low-cost
generation of pronunciations are:

Web-based Tools For The Rapid Pronunciation Dictionary Cre-
ation: With our Automatic Dictionary Extraction Tool, part of the Rapid
Language Adaptation Toolkit, we developed a system for automatically ex-
tracting phonetic notations in IPA from any Web source that has separate
pages for individual words. We analyzed the quantity and quality of pronun-
ciations in Wiktionary as it is available in many languages. Our analyzes and
results are published in [SOS10], [SOS12a], [SOS12b], and [SOS14]. Due to
the fast growth in language presence onWiktionary, there is a future potential
of harvesting pronunciations for under-resourced languages from this source.
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Figure 9.1 – Pronunciation Generation.

Furthermore, we investigated evaluation criteria for the quality of the devel-
oped dictionaries and presented solutions to raise the quality. [KSN+13] refer
to our work employing pronunciations from the World Wide Web as training
data for grapheme-to-phoneme models without a cross-check of language ex-
perts as a motivation for their robust grapheme-to-phoneme conversion with
discriminative methods. Moreover, [Big13] reference our work to quickly and
economically create dictionaries for new languages and domains.

Additionally, we are the first who implemented with Keynounce an online
game for the pronunciation generation and analyzed an inexpensive collec-
tion with the crowdsourcing platform Amazon Mechanical Turk. While the
Amazon Mechanical Turk experiment showed that micropayment workers
in general are not overly fond of investing a lot of time in fine-tuning ans-
wers, we demonstrate that given the right kind of incentive in providing a
gamelike experience, anonymous users will help for free. The interface is
intuitive and simple so that there is no work involved in training new users
and we observe a learning effect. Keynounce is publicly accessible online at
http://i19pc7.ira.uka.de/keynounce. The quality of the results is high enough
to calculate a good quality of pronunciations with our filtering methods.

Cross-lingual Grapheme-to-Phoneme Model based Pronunciation
Generation: We developed a strategy to use grapheme-to-phoneme mod-
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els derived from existing dictionaries of other languages for the production
of pronunciations. This strategy can contribute to a rapid and economic
semi-automatic pronunciation dictionary development, thereby reducing the
necessary manual effort. Our strategy is published in [SVYS13].

Semi-Automatic Pronunciation Generation: We have proposed effi-
cient methods for rapid and economic semi-automatic dictionary develop-
ment. In addition to the traditional concatenation of single phonemes most
commonly associated with each grapheme, we show that Web-derived pro-
nunciations and cross-lingual grapheme-to-phoneme models can help to re-
duce the initial editing effort. Furthermore, we show that our phoneme-level
combination of the output of multiple grapheme-to-phoneme converters re-
duces the editing effort more than the best single converters. Our new Rapid
Language Adaptation Toolkit function which is publicly available allows to
bootstrap a dictionary with the proposed methods supported with the pos-
sibility to listen to a synthesized wavefile of the pronunciation. Our methods
are published in [SMS14].

Furthermore, we approached the two following problems for the pronuncia-
tion generation for new domains:

Pronunciation Generation for Foreign Words: We developed new
methods to automatically detect foreign words from a word list of a ma-
trix languages and advanced existing approaches to economically build up
lexical resources for domains with foreign words. Our methods for the detec-
tion of Anglicisms, which can be adapted to new languages, are published in
[LSS14].

Lexical Adaptation for Non-Native Speakers: Accented speech occurs
amplified where non-native speakers operate automatic speech recognition
systems. We analyze a parallel corpus of phoneme sequences from phonetic
transcriptions of native US English and accented English in the speech accent
archive of the George Mason University to rapidly and economically adapt
the pronunciation dictionary and improve the automatic speech recognition
performance of accented English.

For non-written languages, our mayor contributions for the rapid and eco-
nomic generation of pronunciations are:

Dictionary Generation for Non-Written Languages: We presented
two algorithms to deduce phonetic transcriptions of target language words
from Model 3P alignments (source word dependent [SSVS13] and indepen-
dent clustering [SSVS14a]). To the best of our knowledge, we are the first
who used the extracted pronunciations for producing a pronunciation dic-
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tionary and in an automatic speech recognition system. [SPC+13] report
our phonetic-like representation of the target speech and the changes to sta-
tistical machine translation modeling methods which we have proposed to
specifically deal with phoneme strings in the target language. Our methods
are highly relevant to bootstrap dictionaries from audio data for automatic
speech recognition and bypass the written form in speech-to-speech trans-
lation, particularly in the context of under-resourced languages, and those
which are not written at all.

Pronunciation Quality Assurance: Since our approaches for the pron-
unciation generation have to deal with limited, inconsistent or erroneous
resources, we developed and applied several methods for the pronunciation
quality assurance. For written languages, we analyzed languages with dif-
fering grade in grapheme-to-phoneme relationship. We demonstrated that
despite varying grapheme-to-phoneme correspondences 15k phonemes with
corresponding graphemes are sufficient to obtain a stable consistency in the
resulting pronunciations for most languages. Our analyses are published in
[SOS12b], [SOS14], and [SS14]. Several researchers already use our lessons
learned for their work [IBC+12, RMD13, Hof14, KSN+14]. Moreover, we
have presented methods to recover from errors and inconsistencies automati-
cally, which we published in [SOS12a] and [SDV+12]. The methods are based
on the means and deviations of certain characteristics computed on the word-
pronunciation pairs of the dictionaries. As our phoneme-level combination
has potential to generate a better pronunciation out of different pronuncia-
tions of the same word, it improves crowdsourcing-based approaches where
multiple annotators create pronunciations for the same word and is helpful in
the grapheme-to-phoneme conversion with very limited training data as well
as in our methods for the dictionary generation for non-written languages.
Our analyses are published in [SQS14], [SMS14] and [SSVS14b].

9.2 Potential Future Research Directions

This section suggests two research directions which we account as most im-
portant. They are related to the grapheme-to-phoneme converter perfor-
mance for written languages and the development of speech processing sys-
tems for non-written languages.
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9.2.1 More Robust Grapheme-to-Phoneme Conver-
sion

As we have shown in several experiments, grapheme-to-phoneme conversion
is essential to support the rapid generation of dictionaries for written langua-
ges. We have proposed several methods to improve the quality of grapheme-
to-phoneme converters and their training data which reduces the manual
effort. However, a direct use of the retrieved pronunciations degrades the
performance of the automatic speech recognition system in exchange for im-
provements of cost and time for dictionary construction.

[KSN+13] have already been motivated by our work with pronunciations from
the World Wide Web to investigate robust discriminative methods meth-
ods for the grapheme-to-phoneme conversion. Even though successful for
the signal processing, acoustic and language modeling, techniques with neu-
ral networks have not yet brought much improvement over graphone-based
methods [Nov11, NMH12]. Further investigations of neural network-based
approaches for the grapheme-to-phoneme conversion may change this.

9.2.2 Language Technology for Non-Written Langua-
ges

According to [LSF14], there are currently listed 7,105 living languages. 3,570
have a developed writing system. Data indicates that 696 languages are
unwritten. However, for the remaining 2,839 languages no information exists.
Despite such a high number of non-written languages in the world, methods
to produce speech processing systems for them have not yet received much
attention. By simplifying the task, we provided first ideas and approaches,
which serve as a good starting point for further research.

Future directions may be to enhance the pronunciation extraction from pho-
neme sequences. Enforcing a Zipfian cluster size distribution on source word
independent clustering may improve clustering accuracy. Errors due to single
phonemes dropped or added at the begin or end of a pronunciation may be
reduced by reinforcing the alignments with the extracted pronunciations after
each iteration of our algorithm. Monolingual word segmentation methods as
in [Joh08, Gol10] may give additional hints. Additionally, promising acous-
tic modeling and phonetic discovery methods as in [LG12, VKD08, CHR11]
should be investigated on the target language speech. The acoustic models
could be further improved by iteratively recognizing the speech to provide
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target language transcriptions, and then using the transcriptions to adapt the
models. We simulated non-written languages in our experiments due to the
limited financial resources. Interesting is to use the extracted dictionaries in
an automatic speech recognition system for truly under-resourced and non-
written languages. Moreover, it is interesting to build an speech-to-speech
translation system or a dialog system without any linguistic knowledge or
writing system of the target language.

Preserving non-written and under-resourced languages with speech tech-
nology would suspend the rapid endangerment and death of many under-
resourced languages across the world described by David Crystal in [Cry02].
Then, cultural identity can also be protected.
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