
Effective Instance Matching for
Heterogeneous Structured Data

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte Dissertation von

Yongtao Ma

Tag der mündlichen Prüfung: 05. Juni 2014
Referent: Prof. Dr. Rudi Studer, Karlsruhe Institute of Technology

Korreferent: Prof. Dr. Christian Bizer, Universität Mannheim





Abstract

Structured data is abundantly available in enterprises and also largely increasing in
the Web setting. Generally speaking, it can be conceived as structured descriptions of
real-world entities. One main problem towards the effective usage of structured data
is instance matching, where the goal is to find instance representations referring to the
same real-world thing. However, the structured data on the Web is heterogeneous,
e.g. type information of instances is missing or too general to be useful. Besides,
the challenges that lie ahead for typical instance matching approaches also include
dealing with the low-quality data and high computation complexity.

In this thesis, we tackle these challenges in different steps of the instance match-
ing process. The first step is typification, in which the type semantics is derived by
an unsupervised approach. The second step, blocking, aims to reduce the quadratic
complexity of the instance matching process through the efficient and effective gener-
ation of match candidates. We propose an unsupervised approach to learn the most
representative attributes of instances called keys, based on which two instances are
considered as a match candidate if they share the same value of the key. The third
step classification, aims to deal with the low quality of data, for which we propose
an almost-parameter-free approach for learning instance matching rules to classify
candidate instance pairs into matches and non-matches. In the last filtering step, we
propose a parameter-free solution that leverage only simple Boolean functions and
exploits fine-grained word-level dissimilarity evidences to further filter out the non-
matches. We evaluate our approaches against the latest baselines. The results show
advances beyond the state-of-the-art.

v





Acknowledgements

Without the support and advices from so many people, this thesis would not have
been possible. First, I would like to thank my supervisor Prof. Dr. Rudi Studer for
providing me the opportunity to work at institute AIFB and in particular the support
and guidance to complete this dissertation. I thank Dr. Duc Thanh Tran, my co-
advisor, for his advices, motivation, enthusiasm, and patience during the work on
this thesis. I also thank Prof. Dr. Christian Bizer for taking the Korreferat of my
dissertation and for providing me numerous important advices to improve it.

In particular, I would like to gratefully acknowledge the funding that I received
towards my PhD from Siemens and Germany Academic Exchange Service (DAAD)
PhD fellowship. I also thank Dr. Steffen Lamparter, my supervisor in Siemens, for
his supervisory role and encouragement.

Furthermore, I would like to thank my colleagues at AIFB, who are professional,
conscientious and warm-hearted, taken together, make it a great team. Especially,
I am thankful to Dr. Andreas Wager and Dr. Günter Ladwig for suggestions and
technical assistance, to Dr. Daniel M. Herzig for usually sharing delicious food, and
to Lei Zhang for many discussions and Brainstorming.

Also, I would like to thank my friends and family for their support and encour-
agement. Especially, I thank my parents, Jiazhong Ma and Wenzhen Deng, for their
unconditional love and care. Without them I cannot be where I am today.

Most of all, I want to thank my beloved Talatuoni for her tremendous encourage-
ment, support and patience during the days spent for this dissertation. I cannot forget
the many late evenings that she accompanied me in front of the computer.

vii





Contents

1 Introduction 1
1.1 Structured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Instance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Foundations 9
2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Attribute Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Typical Preprocessing Tasks . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Typification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Candidate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Supervised Learning of Instance Matching Schema . . . . . . . 21
2.5.2 Efficient Execution of Instance Matching Schema . . . . . . . . . 22
2.5.3 Attribute-threshold Instance Matching Rule . . . . . . . . . . . 24
2.5.4 Mapping-threshold Instance Matching Rule . . . . . . . . . . . 24
2.5.5 Collective Instance Matching . . . . . . . . . . . . . . . . . . . . 25

2.6 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Typification: Inferring the Type Semantics of Structured Data 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Research Question and Contributions . . . . . . . . . . . . . . . . . . . 30
3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Clustering Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Features and Similarities . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Value-level schema Features . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 TYPifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Clusters and Cluster Relations . . . . . . . . . . . . . . . . . . . 38
3.6.2 Relation-based Hierarchical Clustering . . . . . . . . . . . . . . 40

3.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.2 Efficiency of Typification . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Contents

3.7.3 Effectiveness of Typification . . . . . . . . . . . . . . . . . . . . . 47
3.7.4 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Blocking: Learning Type-specific Blocking Key and Key Value 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Research Question and Contributions . . . . . . . . . . . . . . . . . . . 56
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Learning Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Learning Keys and Values . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Blocking Key Selection . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Key Value Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.1 Datasets and Matching Tasks . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3 Efficiency of Blocking . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.4 Effectiveness of Blocking . . . . . . . . . . . . . . . . . . . . . . 67
4.6.5 Efficiency of Instance Matching . . . . . . . . . . . . . . . . . . . 68
4.6.6 Effectiveness of Instance Matching . . . . . . . . . . . . . . . . . 70

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Classification: Learning Rules for Effective Almost-parameter-free Instance
Matching 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Research Question and Contribution . . . . . . . . . . . . . . . . . . . . 77
5.3 Instance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Algorithm for Learning mIR . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Certainty for Instance Matching . . . . . . . . . . . . . . . . . . 81
5.4.2 Estimate (Non-)Matching Certainty . . . . . . . . . . . . . . . . 83
5.4.3 Learn Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.4 Evaluate mIR Candidate . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.5 Learn Single mIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.6 Learn a Set of mIRs . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Algorithm for Executing mIR . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.1 Dataset and Matching Task . . . . . . . . . . . . . . . . . . . . . 93
5.6.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.4 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.5 Parameter Sensitiveness . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



Contents

6 Filtering: Effective Parameter-free Boolean Instance Matching 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Research Question and Contribution . . . . . . . . . . . . . . . . . . . . 102
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Thresholded Instance Matching . . . . . . . . . . . . . . . . . . . 104
6.3.2 Boolean Instance Matching. . . . . . . . . . . . . . . . . . . . . . 105

6.4 Learning Word-Level Dissimilarity Evidences . . . . . . . . . . . . . . . 106
6.4.1 Word Co-occurrence Based Evidences . . . . . . . . . . . . . . . 106
6.4.2 Learning CDE from Positive Examples . . . . . . . . . . . . . . 107
6.4.3 Using Self-Matches as Examples . . . . . . . . . . . . . . . . . . 110
6.4.4 Enriching Examples with Self-learning . . . . . . . . . . . . . . 112
6.4.5 On the Combination of Thresholded and Boolean Matching . . 114
6.4.6 Multiple Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.1 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6.2 Efficiency of Instance Matching . . . . . . . . . . . . . . . . . . . 122
6.6.3 Effectiveness of Instance Matching . . . . . . . . . . . . . . . . . 123
6.6.4 Labeling Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusion 129
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

List of Figures 145

List of Tables 147

A Algorithm Analysis 149
A.1 Number of aIR candidates . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Number of mIR candidates . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.4 Set-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xi





Chapter 1

Introduction

In this first chapter, this thesis motivates the topic of instance matching on heteroge-
neous structured data. Section 1.1 and 1.2 briefly introduce the structured data and
instance matching problem, respectively. Section 1.3 motivates the main topic of the
thesis with the challenges including heterogeneity, complexity and the low quality of
the data. Resulting from research questions in Section 1.4, we present the main con-
tributions of this thesis in Section 1.5. Finally, Section 1.6 presents the organization of
this thesis.

1.1 Structured Data

Structured data is abundantly available in enterprises and also largely increasing in
the Web setting. Generally speaking, it can be conceived as structured descriptions
of real-world entities. A popular standard for making such descriptions available
on the Web is RDF [65, 80]. It is a graph-structured data model that can be flexi-
bly used to compose entity descriptions as sets of 〈subject, predicate,object〉 triples,
or in other words, edges of an RDF data graph. Every triple captures either (1) an
entity’s attribute value, (2) its type, (3) or a relation between an entity and another.
In the last few years, large number of structured data (formerly stored in relational
and XML databases) have been converted to RDF and OWL [53], and published on
the Web. Prominent examples include DBpedia1 (the structured data counterpart of
Wikipedia), as well as entity descriptions embedded in Web pages in the form of mi-
croformats2 and RDFa3. The semantics captured by this data have been exploited in
various tasks such as Web search: RDFa and mircoformats are used by Google and
Yahoo! to provide rich snippets 4 for Web search results, which are based on struc-
tured descriptions of the entities embedded in the results.

1http://dbpedia.org
2http://microformats.org/
3http://www.w3.org/TR/xhtml-rdfa-primer/
4http://www.google.com/webmasters/tools/richsnippets

1

http://dbpedia.org
http://microformats.org/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.google.com/webmasters/tools/richsnippets


Chapter 1 Introduction

1.2 Instance Matching

Given the increasing amount of structured data, one main problem towards the ef-
fective usage of them is integration. Besides schema matching, the other main prob-
lem in this regard is instance matching (also known as merge/purge [54], dedupli-
cation [112], reference reconciliation [39], or record linkage [89]), which is to re-
solve differences in the data representation for finding the same real-world object
(matches) [23, 33, 39, 42, 45, 54, 62, 82].

Instance matching is an important part for a variety of applications. Most com-
monly, the data to be matched across two or more datasets, or to be deduplicated in a
single data source (named self-match) may correspond to different domains, such as
people, businesses, productions, and publications. For example, with the increasing
number of online shopping sites, instance matching has become the essential technol-
ogy to allow accurate and comprehensive price comparisons for a certain product. A
comparison shopping site should be able to accurately identify the products that are
actually the same. For applications such as Web search, it is important that the du-
plicate results being removed from the search results. Besides, instance matching
technologies are also widely applied to applications such as national census, national
security, bibliographic databases to enable the data being prepared for statistical anal-
ysis and data mining to discover new and potentially knowledge.

1.3 Challenges

Instance matching is a difficult task for several reasons. We highlight some of the
major challenges that will be further discussed in the relevant chapters later in this
thesis.

Challenge 1: Heterogeneity. Instance matching solutions may not perform well,
when type information is either missing or too general to be useful. The proliferation
of RDF data on the Web is mainly due to the flexibility of the RDF model. With-
out imposing constraints on the schema and data integrity, it makes it easy for data
providers to assert, to publish, and to link triples to other datasets. While it seems
to be well suited for dealing with the dynamics on the Web, the downside is that
many structured descriptions available on the Web today do not contain type triples.
Besides, in enterprises, entity types mostly correspond to tables in which tuples rep-
resenting entity descriptions are stored. However, big data tables are often used to
store a variety of entity descriptions. The type captured by a table is often too general
to be useful.

Challenge 2: Complexity. Intuitively, when matching instances between two data
sources, each instance in one data source need to be compared with all the instances
in the other data source to determine if a pair of instances refers to the same entity.

2



1.4 Research Question

The cost of instance matching is therefore very expensive because the computation
complexity grow quadratically as the data sources to be matched get larger.

Challenge 3: Low data quality. The quality of the structured data exhibited on
the Web is generally low. On the one hand, the data sources to be matched lack of
unique identifiers, e.g. ISBN of publications or social security numbers of people.
Otherwise, if the identifiers are available, the instance matching task can be simply
implemented by comparing the values of the identifiers. On the other hand, even
if identifiers are contained in the data sources, it is unlikely that the contents of the
identifiers are consistent and accurate, in particular on the Web where datasets may
change frequently and contain various errors such as spelling mistakes and missing
values.

1.4 Research Question

The principal research question of this thesis is:

How to match instances effectively and efficiently for heterogeneous structured
data?

This broad research question entails the three main challenges as stated above. To-
wards tackling these challenges, there are four corresponding research questions re-
lated to different steps of the instance matching process:

Research Question 1. How to derive type semantics of instances?

In the pre-processing step, the question is how can we derive type semantics of
instances. The existing instance matching approaches are designed to treat instances
as belonging to one single type, i.e. instances of the same or similar types. When
the two data sources to be matched contain instances of different types, the state-of-
the-art approaches solve the problem by cross-fertilizing instance matching results
with schema matching results [43, 102], such that only instances of the same type
are matched. However, these solutions do not perform well, when type information
is missing on the schema level or too general to be useful, as stated in Challenge 1.
Therefore, to restore type information is important for instance matching problem.
In Chapter 3, we formulate this problem of inferring type semantics as a clustering
problem, where the goal is to identify a particular kind of clusters that represents the
type of entities. We also discuss the features that are used for structured and semi-
structured data.

Research Question 2. How can match candidates be efficiently and effectively generated?

3



Chapter 1 Introduction

In the second step, the question is how can match candidates be generated to re-
duce the quadratic complexity of the instance matching process, as stated in Chal-
lenge 2. Blocking is a typical approach to boost efficiency, which is designed to effi-
ciently filter out non-matches and generate instance pairs that are most likely to be
matches. The blocking approaches split the original data sources into small blocks
according to some criteria called blocking key, e.g. the title of two products data
sources. Only the instances that are in the same block, i.e. the instances that have the
same value of the blocking key, will be further compared in detail. In Chapter 4, we
investigate how to learn the type-specific blocking keys and key values that enable
the efficient and effective generation of match candidates.

Research Question 3. How can the match candidates be effectively classified to matches and
non-matches?

In the classification step, we need to answer the question that how can the match
candidates be effectively classified to matches and non-matches. Due to the low qual-
ity of data, as stated in Challenge 3, the calculated match candidates may include a
large number of incorrect results, i.e. false positives. Existing approaches employ
instance-matching rules to find the real matches. For example, "two products are
considered as the same if they have similar Title and Manufacturer". However,
the question is actually to determine how to calculate similarities and how similar is
similar. To address the question, different combinations of attributes and similarity
functions are considered to calculate similarities. Thresholds are also incorporated
into the rules so that instances are considered similar if their similarity is higher than
a threshold. For example, the rule above can be specified as "two products are the
same, if the Jaccard similarity of Title is greater than 0.8 and the Cosine simi-
larity of Manufacturer is greater than 0.4". In Chapter 5 we discuss how to learn
instance-matching rules for effective instance matching.

Research Question 4. How to identify non-matching instance pairs by simple Boolean func-
tions?

In the last step, filtering, we will answer the question whether we can further filter
out the non-matches by simply using Boolean functions? This research question is
also derived from the Challenge 3 Low quality of data. The approaches based on the
use of thresholds are designed to obtain more "sophisticated" similarity evidences
because they compare instances at the more coarse-grained level of attribute values.
However, the use of thresholds is sensitive to training data and always requires some
manual efforts in parameter tuning to be applicable in practice. Therefore, the in-
stance matching results that are output based on the use of thresholds may still con-
tain a large number of non-matches. We will investigate this research question in
Chapter 6.

4



1.5 Contribution of this Thesis

1.5 Contribution of this Thesis

In general, this thesis is concerned with the efficient and effective instance matching
solutions for heterogeneous structured data. It comprises four main contributions,
each of which results from the investigation of one research question stated above
and is detailed in its own chapter:

• Contribution 1. Inferring the Type Semantics of Structured Data

We tackle the problem of deriving missing type information in structured data.
We propose to deal with this novel problem of inferring the type semantics of
structured data, named typification. We formulate this as a clustering problem,
where the goal is to identify a particular kind of clusters that represent the types
of entities. We discuss the main requirements, quality metrics and how exist-
ing clustering techniques can be applied. We present the experimental results
using data from domain-specific product data in the enterprise to cross-domain
encyclopedic data in DBpedia up to heterogeneous Linked Data on the Web.
We discuss why for this particular clustering problem, schema-level features,
i.e. labels of attributes and relations, are most effective in obtaining high qual-
ity results. The main intuition here is while entities of the same type are of-
ten associated with the same attributes and relations, their concrete values are
quite different. However, the amount of these features is often limited, espe-
cially in the one large table setting (e.g. entities in a product table are associated
with only few attributes). To deal with this, we also propose a solution for au-
tomatically computing value-level schema features from data. Optimized for
the use of (value-level)schema features, we propose TYPifier, a novel cluster-
ing algorithm for the typification problem. Compared to the baselines based
on existing clustering techniques that use the same (schema) features, this al-
gorithm is comparable to the best baseline in terms of efficiency, but produces
higher quality results than the baseline that performed best in terms of effec-
tiveness. Moreover, it is able to determine the number of types (clusters) auto-
matically. We have discussed this contribution in previous published paper [76]
and present a revised version of them in Chapter 3.

• Contribution 2. Type-specific Unsupervised Learning of Keys and Key Values for
Heterogeneous Web Data Integration

For the problem of blocking, we provide a solution to solve the subtasks of
selecting discriminative attributes (blocking keys) and representing their values
(key values). This solution is derived for every type learned from the data. We
show in experiments that our approach of using type-specific keys and values
improves both blocking and instance matching. In experiments, we show how
this approach can be used for blocking and instance matching. Compared to

5



Chapter 1 Introduction

state-of-the-art instance matching approaches, our solution greatly improves
result quality (up to 201.56% improvement in terms of F-measure). Results are
also promising when considering the blocking task only. Our approach yields
up to 32.62% improvement in terms of reduction ratio over existing solutions
for blocking [108]. It is also time efficient when compared against approaches
that achieve similar result quality. Compared to the approach that yields second
best result quality, our approach is up to several times faster w.r.t. blocking, and
achieves similar performance w.r.t. instance matching. We have discussed this
contribution in previous published paper [75] and present a revised version of
them in Chapter 4.

• Contribution 3. Learning Rules for Effective Almost-parameter-free Instance match-
ing

We propose an efficient approach to learn attributes, similarity functions and
thresholds, called instance-matching rules, for finding matches. For example,
we learn that "two products are the same, if the average of the Jaccard sim-
ilarity of Title and the Cosine similarity of Manufacturer is greater than
0.6". We observe that the average similarities of matches (and non-matches),
that are calculated according to different attributes and similarity functions,
are subjected to different probability distributions. We propose to calculate
the matching and non-matching certainties, as the certainties to assign an in-
stance pair to either a match or a non-match, from the cumulative probability
of (dis)similarities of (non-)matches. Then a pair of instances will be considered
as the same if its certainty to be a match is greater than that to be a non-match.
Then the decision boundary can be calculated as the only one threshold, such
that when a pair of instances has similarity that is greater than the threshold,
its matching certainty is always greater than the non-matching certainty. Based
on this observation, we further propose an efficient algorithm that searches the
best rule from all rule candidates, and an efficient algorithm to execute the rule.
Compared to the state-of-the-art rule learning approaches, our solution greatly
improves the effectiveness as well as efficiency by up to 87% reduction of learn-
ing time. Moreover, the approach is also effective in the way that it can achieve
stable results when the parameters are set with a large range of different values.

• Contribution 4. Effective Parameter-free Boolean Instance Matching

We propose an effective parameter-free instance matching approach that relies
only on relatively simple Boolean functions to filter out non-matches. Being
different from existing approaches that compare instances at the more coarse-
grained level of attribute values, our Boolean approach extracts evidences at the
more fine-grained level of words (tokens in general) found in attribute values.
Our approach learns what we call word-level dissimilarity evidences, such as

6



1.6 Organization of this Thesis

"Apple and ASUS are dissimilar words, one is in the Title of ni and the other
is in the Title of nj". It is a dissimilarity evidence because it leads to the infer-
ence that ni and nj are not the same (are non-matches). We show that using this
type of evidences has the following merits: (1) due to their Boolean nature, the
learning of these evidences is more simple, i.e. does not require parameters and
is not sensitive to training data. (2) At the word level, a large number of these
evidences can be learned to identify non-matches (high recall). (3) Also due to
the use of fine-grained words, the learned evidences are more discriminative
in identifying non-matches (high precision). Using benchmark matching tasks,
we show our Boolean solution greatly outperforms state-of-the-art approaches
in terms of result quality and is superior in terms of sensitivity to training data
and parameters. While our focus is to explore the direction of Boolean match-
ing, we also discuss in the thesis how our Boolean approach can be combined
with existing works that use thresholds. In the experiment, we show that when
used as a Boolean filtering mechanism, our approach consistently improves the
results of the underlying matching approach.

1.6 Organization of this Thesis

This thesis comprises seven chapters. Besides Chapter 2, which provides the foun-
dations and the definitions of the main concepts used through the thesis, all the fol-
lowing chapters discuss one of the contributions of this thesis stated above. Each
chapter starts with an introduction of the problem, restates the investigated research
question, thereof derived hypotheses, and the contribution elaborated in this chap-
ter. Then an overview of the proposed approach is presented before it is discussed
in detail and investigated in experiments. Related work and existing approaches are
discussed in each chapter. The thesis is structured as follows:

• Chapter 2. In this chapter, we introduce the areas of instance matching and
the basic concepts. After an introduction of the data model, we describe the
attribute matching, which is the basis of instance matching. We then show that
the instance matching process in this thesis can be achieved in four sequential
steps: typification, blocking, classification, and filtering. We provide the formal
definition of each step before discussing the evaluation metrics that are used in
the experiments throughout the thesis.

• Chapter 3. In this chapter, we propose to deal the novel problem of inferring
the type semantics of structured data, called typification. We formulate it as a
clustering problem and discuss the features needed to obtain based on existing
clustering solutions. Because schema features perform best, but are not abun-
dantly available, we propose an approach to automatically derive them from

7



Chapter 1 Introduction

data. Optimized for the use of schema features, we present TYPifier, a novel
clustering algorithm that in experiments, yields better typification results than
the baseline clustering solutions.

• Chapter 4. In this chapter, we discuss the method to learn type-specific block-
ing keys and key values for match candidates generation. We show that for the
problem of learning blocking keys and key values, both generic techniques that
do not exploit type information and supervised learning techniques optimized
for one single predefined type of instances do not perform well on heteroge-
neous Web data capturing instances for which the predefined type is too general.
That is, they actually belong to some types that are not explicitly specified in the
data. We propose an unsupervised approach for learning the type-specific blocking
keys and key values. Compared to state-of-the-art supervised and unsupervised
learning approaches that are optimized for one general type, our approach im-
proves efficiency as well as result quality.

• Chapter 5. In this chapter, we describe the approach to classify the match candi-
dates to the classes of match and non-match. we propose an efficient approach
to learn attributes, similarity functions, and thresholds, called instance match-
ing rules, for finding matches. We show that our solution greatly improves the
effectiveness as well as the efficiency on both real and synthetic datasets.

• Chapter 6. In this chapter, we propose an approach to filter out non-matches
from the calculated results, which uses simpler boolean similarity functions
rather than thresholds. We show that the simple boolean nature of the em-
ployed rules allows for a parameter-free learning approach. For high effective-
ness, we propose to incorporate fine-grained word-level dissimilarity evidences
into rule learning. That is, instead of capturing the similarity of entire attribute
values in the rules, our approach employes words extracted from attribute val-
ues to capture the dissimilarity. Using benchmark matching tasks, we show the
proposed solution greatly outperforms state-of-the-art approaches in terms of
result quality and most importantly, is not sensitive to the choice of training
data and parameters.

• Chapter 7. This chapter summarizes the thesis, concludes with a discussion
on the results with respect to the addressed research questions and gives an
outlook on future research directions.

The cited references are given at the end of the thesis in the bibliography followed
by the lists of Figures, and Tables. The appendix contains the additional analysis
presented in the main part of the thesis.

8



Chapter 2

Foundations

In this chapter we introduce the areas of instance matching and the basic concepts,
clarify how certain terms are used in this thesis. Definitions that are only used within
one chapter and specific to the chapter’s topic are given in the corresponding chapter.
After introducing the data model for the structured data in Section 2.1, we describe
the techniques for attribute matching in Section 2.2. Then we show that the matching
of two datasets in this thesis can be achieved in four sequential steps: preprocess-
ing, candidate calculation, classification and filtering, as shown in Fig. 2.1. First, we
preprocess each dataset that is to be matched, such as removing the stop words to
make the attribute value more discriminative and segmenting the attributes to make
them comparable. Second, we quick calculate the matching candidates that exclude
most non-matches so that we can improve the efficiency by only comparing the can-
didates in details. Then we further compare the candidates to classified them to the
class of match and non-match. Finally, the matching instance pairs are filtered using
dissimilarity evidences to further remove the non-matches that are not identified in
the classification step. The formal definitions of each step are given in Sections 2.3 -
2.6, respectively. Finally we discuss the metrics used in the experiments throughout
the thesis.

2.1 Data Model

We consider general Web data, which includes different types such as relational, XML
and RDF data. In literatures, this data is often conceived as a graph:

Definition 2.1. The data graph G is a tuple (U, E, L) where

• U is a finite set of nodes. Thereby, U is conceived as the disjoint union UN ]UC ]UV
with UN representing instances, UC stands for classes, and UV stands for attribute
values.

• L is a finite set of labels, subdivided by L = LU ] LE ] type, where LU are node labels
and LE ] type are edge labels.

9



Chapter 2 Foundations

preprocessing Candidate	  
Calcula1on 

Classifica1on 

dataset	  1 dataset	  2 

matches non-‐matches 

preprocessing 

Filtering 

Result 

Figure 2.1: The Instance Matching Process Applied in This thesis.

• E is a finite set of edges e(u1,u2) with u1,u2 ∈ U and e ∈ L. In particular, we distin-
guish attribute edges EA ⊂ E, with e(u1,u2) ∈ EA iff u1 ∈ UN and u2 ∈ UV from
type edges, type(u1,u2) ∈ E, u1 ∈UN and u2 ∈UC.

This graph-structured model resembles the RDF model, (omitting special features
such as RDF blank nodes), where classes correspond to RDF classes, instances are
RDF resources, and attribute values are RDF literals. A record in a relational database
captures an instance and its attribute values. For clarity, we omit relationships, e.g.
relations between RDF resources and foreign key relationships between records, be-
cause they are not used for instance matching here. The graph for our data example
is shown in Fig. 2.2 according to the data in Tab. 2.1.

Example 2.1. As a running example, Tab. 2.1 shows real product data. Using four attributes,
the original product table captures electronic products, which actually belong to sub-
types such as Computer, TV and software (e.g. n8). The data graph in Fig. 2.2 captures
the same products, albeit using a more complex schema with many more attributes. The dotted
edges in Fig. 2.2 and the lack of a type column in Tab. 2.1, indicate missing type information.

For the ease of presentation of the thesis, we simply use N and A to denote all
the instances and attributes in the data source respectively. Each instance n ∈ N is
represented by a set {a1, a2, · · · am}, ai ∈ A of attributes. The value of an attribute ai

10



2.1 Data Model

Table 2.1: Product table; some words later used as features for illustration purposes,
are highlighted.

ID Title Price Manufacturer Description

n1
Sony KDL-
60R550A

1252 Sony Standby Mode 0.1 W. Full HD 1080p gives high
picture quality over standard HDTV via Sony
LED... Sony’s 60-inch Smart TV is a revolution-
ary...

n2
Sony KDL-
40R450A

849 Sony Sony 40-inch Slim LED HDTV. Never miss a
moment with Sony Smart TV...This LED HDTV
allows you to immerse yourself in a 1080p full
high-definition viewing experience

n3
Sony KDL-
60R550A

1179 Sony 65 W total power. The LED series provides a
fantastic Smart TV experience and features a
3D LED panel, 1080p Full HD resolution, and
a new narrow metal frame.

n4

Sony Fit Se-
ries VAIO
SVF14214CXW
laptop

665 Sony Sony SVF14214CXW laptop... Intel Core i5-
3337U CPU, 6GB RAM, 750 GB 5400 rpm HDD,
14-Inch Screen, 65 W 3.3A Power Supply

n5
Sony VAIO
SVF14212CXW

586 Sony the stylish Sony VAIO Fit laptop is built with
Intel Core i3 CPU, 4GB RAM, 500GB Hard
Drive... with power supply of 65 W

n6

Sony VAIO
SVF14214CXW
Laptop

680 Sony Inc. Sony VAIO Fit Series 14-inch laptop; AC 65 W
adapter, 1.8 GHz Intel Core i5-3337U ultra-low
voltage CPU, 6 GB of installed DDR3 RAM...

n7
MacBook Pro
ME664LL

999 Apple Inc. Apple MacBook Pro ME664LL Laptop with
Retina Display (Intel Core i7, 2.4GHz, 8GB
RAM, 256G hard disk, NVIDIA GeForce GT
650M)

n8
MadMaps
Pacific

8 SpotItOut Windows Vista / 7 / XP. Media: DVD. It’s a
snap to load Pacific Coast GPS Travel Directory
by MAD Maps into your GPS device.

n9 Garmin nüMaps 99 Garmin Windows Vista / 7 / XP. Media: DVD. Com-
patible with GPS Garmin Colorado, Dakota,
eTrex...Coverage includes detailed maps for
traveling in Australia.

n10 Rosetta Spanish 399 Rosetta Stone Windows Vista / 7 / XP. Media: DVD. Build
your vocabulary and language abilities... Dis-
cover how to speak, read, write, and under-
stand...

n11 Learn German 10 Innovative Windows Vista / 7 / XP. Media: DVD. Learn
level 9 German vocabulary with the audio
playback tool, Listen to the lesson dialog and
master the language...

11



Chapter 2 Foundations

Memory

TV

n5

Title
Sony VAIO SVF14212CXW

Price

586

CPU

Intel i3 

4GB

Type

Power65W

n3

Type

Title

Sony KDL-60R550A

Price
1179

Power 65

HD

1080p LED

LED Tech

Computer

Electronic Product Software

Language
Learning

Maps

Coverage
n8

Title

MadMaps Pacific

Price
8

Platform

Windows Vista/7/XP

Pacific States 
Type

SpotitOut

n11

Type

Title

Learn German

Price10

Innovative

Language
German level 9

LevelSony
Manufacturer

Sony DVD
Media

DVDMedia

Platform
Windows Vista/7/XP

Manufacturer

Manufacturer

Manufacturer

Figure 2.2: A data graph. The solid and dotted line denote the attribute edges and
type edges respectively.

of the instance n (or a set of values of instances in N) is denoted by n[ai] (N[ai]). For
example, the Title of the instance n1 is denoted as n1(Title).

2.2 Attribute Matching

Attribute matching is the basis of instance matching, because comparing two in-
stances comes down to comparing each attribute of both instances. However, the data
to be matched can usually be of low quality with errors and typographical variations
of attribute values. The nosies in attributes raise two questions. The first question is
that instead of identical comparing two attributes, how to develop string comparison
techniques, called similarity functions, to calculate the value that indicate how similar
two attribute values are. And the second question is how to select the best similarity
function for a specific type of attribute. We discuss the approaches that solve these
questions in the following part of this section and section 2.5,respectively.

A similarity function maps two strings to a similarity value between 0 and 1. The
larger the value, the similar the two strings. We consider two types of similarity

12



2.2 Attribute Matching

functions in this thesis, which are formally defined as follows:

Definition 2.2 (Similarity Function). A Boolean function same : N[a]× N[a]→ {0,1}
maps a pair of attribute values to the score 0 or 1. A thresholded similarity function
sim : N[a] × N[a]→ [0,1] maps a pair of attribute values to a score in the range [0,1]. A
larger similarity score indicates a higher similarity between two attribute values.

A boolean function only outputs binary values, in which 1 indicates two string
are matching and 0 indicates they are not. Boolean functions typically depend on
identical comparison. For example, let the prefix of a string s be the first x characters
that is denoted with s[1..x], we can define a boolean function that outputs 1 for two
strings if they have the same prefix:

same(s1, s2) =

{
1 i f s1[1..x] = s2[1..x]
0 otherwse (2.1)

The use of identical comparisons in boolean functions allows computing matching
candidates efficiently. For example, we can build inverted index using the prefix
of attribute Title of each product, so that every two products who have the same
inverted index will have the similarity 1 according to the equation 2.1.

The other type of similarity functions compare two strings and output normalized
similarity values between 0 and 1 if the two strings are somewhat similar to each
other. The similarity of 1 corresponds to an exact match between two attribute val-
ues, while 0 corresponds to a total non-match. A value between 0 and 1 indicate
some degrees of similarity between two attribute values. We name these functions
with threshold similarity function, because we still need a threshold value to deter-
mine whether two strings are matching. We will discuss several typical strategies of
designing threshold similarity functions in the following part of this section.

Overlap-based similarity function. Because there are errors and typographical
variations, comparing two matching attribute values as a whole would result in very
low similarity. One strategy to solve the problem is splitting the whole string into a set
of substrings, and then compute the similarity value based on the overlap of the two
substring sets. The higher the overlap, the higher the similarity. Effective overlap-
based similarity functions involve determining 1) computing substring set, 2) the
weight indicating the importance of each substring, and 3) calculating the similarity.
The substring set are usually generate with each words in the string or the n-grams
that are contiguous sequence of n character (or words) [51, 68, 110, 114, 115] (task 1).
And tf-idf are most commonly used in evaluating the importance of each substring
(task2). Finally, given two sets of substring, the similarity is calculated using set-
based approaches such as Jaccard [111] and Cosine [111]. Current approaches differ
in the way to implement each of these three tasks. For example, WHIRL [15] splits

13



Chapter 2 Foundations

each string into words. And then every word is assigned with a weight using tf-idf.
Then it calculates the similarity using cosine function. An extension of WHIRL is to
use n-gram instead of words to generate the substring set [32].

Another type of thresholded similarity functions are designed based on mea-
suring the cost of converting one string to another. An typical example is
edit distance [69, 70, 85, 86, 98] that count the smallest number of edit opera-
tions in the conversion, including character insertions, deletions and substitutions.
Smith-Waterman distance is an extension of edit distance which allows for
gaps as well as character-specific match scores and costs [15].

Besides these general-purpose similarity functions, there are also similarity func-
tions that are designed for specific types of data. For example, Soundex [87] is a
phonetic similarity function, which is used for comparing names to find attribute
values that are phonetically similar even if they are not similar in character or token
level. Jaro and Winkler are mainly used for comparison of last and first names.
There are also functions for dates, numbers and locations to compare attributes that
contain such data. The readers who are interested in similarity functions can find
the more detailed introduction from the surveys [28, 34, 40, 67]. There are also open-
source projects that implement these similarity functions, such as SecondString1 and
SimMetrics2.

2.3 Preprocessing

In this section, we first introduce the typical preprocessing tasks that are used in in-
stance matching. Then we give the definition of Typification, a new preprocess-
ing task that groups instances according to their types when the types of instances
are unknown or too general to be useful.

2.3.1 Typical Preprocessing Tasks

Due to the variations and errors in the data, the attributes are usually not directly
comparable. For example, we cannot directly compare two attributes, if one of them
contains the whole name of a person and the other one contains only the family name.
Moreover, note we always want the values being representative for instances in in-
stance matching tasks. It is also necessary to preprocess the data to remove unwanted
words. Finally, before matching two datasets, we should also guarantee that the at-
tributes are all consistent to each other. For example, to ensure the gender does not
conflict with the name, if the name is obviously uniquely for male or female. In sum,
the preprocessing task refers to modifying the raw data for the purpose of efficient

1http://secondstring.sourceforge.net/
2http://sourceforge.net/projects/simmetrics/

14



2.3 Preprocessing

and effective instance matching. Tab. 2.2 provides a summary of the preprocessing
methods according to their purpose, each of which is discussed in details below:

Table 2.2: Preprocessing methods. The methods that start with asterisks are proposed
in this thesis.

Purpose Method

Attributes values being comparable

1. Word segmentation
2. Stemming and lemmatization
3. Standardization
4. Processing missing value
5. Attribute segmentation
*6. Typification

Attribute values being discriminative
1. Removing stop words
*2. Removing type-specific words

Attribute values being consistent 1. Attribute verification

• Attributes values being comparable:

– Word segmentation: most similarity functions, e.g. Jaccard and Cosine
functions, assume that the attribute values are segmented, i.e. values that
are separated by word delimiter like whitespace character. However the
word delimiter is not found in all data, such as data in the language of
Chinese and Japanese, where sentences but not words are delimited. In
practice, we can take use of nature language processing (NLP) technology
to segment the text into words [79].

– Stemming and lemmatization: even the same words can have different
forms, e.g. the words "stemmer", "stemming" and "stemmed" are all based
on the same root "stem". Note instance matching algorithms are mostly de-
signed based on comparing the attribute values. The different forms of the
same word provide false dissimilarity evidences, i.e. indicate incorrectly
that two attributes are non-matching. To solve the problem, stemming is to
reduce inflected words to their word stem. For instance, it will replace the
tokens "stemmer", "stemming" and "stemmed" with the base form "stem".
Lemmatization is more complex than stemming, which first determines
the part of speech of a word, and then apply different normalization rules
for each part of speech. For example, it will replace the word "better" and
"best" with their lemma "good".

– Standardization: for the same reason as stemming and lemmatization,
standardization is to convert the tokens in attributes value to their stan-

15



Chapter 2 Foundations

dard forms, such as expanding the abbreviations and correcting the ty-
pographical errors or variations. For example, replacing the city name
"CA" with the full name "California", or replacing the nicknames of people
with their standard names. Standardization can be achieved by looking
up dictionaries that contain the standard forms of tokens and their known
typographical errors and variations. Standardization ensures that all the
datasets to be matched using the same vocabulary, so that the attributes
are comparable.

– Processing missing value: we can simply remove the attributes that con-
tain missing values but are rarely used by instance matching. However,
if the attributes are important for the instance matching, we should keep
them and fill the missing values using domain knowledge. For example,
filling the missing values in attribute "brand" with the words that refer to
brands in attribute "title" by looking up the brand dictionary. The domain
knowledge can be obtained either from domain experts or with the help
of machine learning technologies. For instance, we can train a classifier to
infer the gender of people using the values of the attributes such as "first
name" and "hobby".

– Attribute segmentation: the attributes, such as address, name, date and
telephone number, are usually a combination of some more fine-grained
attributes. For example, a name can be further split into first name and
last name. And an address can be split into stress, house number, post-
code, city and country. Instances from two different datasets to be matched
can be incomparable if one of them uses single attribute "full name" and
the other one use two attributes "first name" and "last name". To solve the
problme, we can segment the coarse-grained attribute into multiple fine-
grained attributes, which can be achieved with rule-based approaches,
statistical approaches and hidden Markov model based approaches [28].
Attribute segmentation can also improve the efficiency of comparing two
instances. For example, rather than comparing the full name, we can ter-
minate the name comparisons earlier without comparing first names if two
last names are non-matching.

– Typification: when the types of instances are unknown or too general to
be useful, we proposed a new preprocessing task called Typification,
which will automatically group instances according to their types. The
definition of Typification is provided in Sec. 2.3.2.

• Attribute values being representative for instance:

– Removing stop words: while stop words such as short function words like
"a" and "the" are useless in discriminating instances, they provide false

16



2.3 Preprocessing

similarity evidences when compute the attribute similarity, i.e. indicate
incorrectly that two attributes are matching. Therefore, stop words should
usually be removed before attribute matching.

– Removing type-specific words: we distinguish the instance-specific
and type-specific words when compute attribute similarity. For ex-
ample, given two strings like "Sony VAIO SVF13213CXW laptop"
and "Sony VAIO SVF14212CXW laptop", it is easy for human to in-
fer that they are titles of two different products because the words
"SVF13213CXW" and "SVF14212CXW" indicate two different models. We
treat the words like "SVF13213CXW" as instance-specific words since they
are representative for instances. However, machines may identify the two
stings as a match because of the overlap of the words that representative
for types rather than instances, such as "Sony" and "laptop", that result in
high similarity. We treat these words as type-specific words, and remove
them from attribute values when compare attributes of the same-type in-
stances. We will discuss removing type-specific words in Sec. 4.5.2

• Attribute values being consistent:

– Attribute verification: before applying instance matching, one optional
preprocessing step is to verify the existence or correctness of the attribute
values. For example, ensuring the birthday is a valid date or ensuring the
existence of an address. Again, domain knowledge, such as a database of
address, is usually required in this step to verify the attribute values.

2.3.2 Typification

Currently, most instance matching approaches assume the data to be matched is ho-
mogeneous, i.e. the type and the schema of the data are known. However, these
approaches do not perform well, when the type information is missing or too general
to be useful. Therefore, in this thesis we propose another preprocessing step, called
typification, whose purpose is to restore the type information of data. Typification
can be formulated as a clustering problem:

Definition 2.3 (Typification). Given a set of instances N = {n1, . . . ,nj, . . . ,n|N|}, typifica-
tion attempts to seek a K-partition of N (K≤ |N|) into clusters C = {C1, . . . ,CK}, such that
(1) Ci 6= ∅, i = 1, . . . , K, (2)

⋃K
i=1 Ci = N and (3) Ci ∩Cj = ∅, i, j = 1, . . . , K and i 6= j. More-

over, when missing subtype edges are also considered, it seeks hierarchical clusters, i.e., a
tree-like nested structure partition of N (called hierarchy tree), H = {H1, . . . , HQ} (Q≤ N),
s.t. Ci ∈ Hm, Cj ∈ Hl and m > l imply Ci ⊆ Cj or Ci ∩ Cj = ∅ for all i, j 6= i,m, l = 1, . . . , Q.

Related to the purpose of typification is the work on deriving schema information from
semi-structured data, such as DataGuide [50]. Applied to this setting, a DataGuide is

17



Chapter 2 Foundations

basically a summary that groups entities together, which exhibit the same structure
(as captured by incoming and outgoing paths). For instance, the entities x of the
type Product in the data, 〈x, type, Product〉, are represented by one single node corre-
sponding to Product in the summary. Instead of computing a summary based on the
given structure in the data, the problem here is to infer elements in the data that are
missing. More related is recent work on recovering the semantics of Web tables [73, 116].
For this, a database of type (and attribute) labels is used. A type (attribute) label is
associated with the column of a table if values in that column can be matched to that
label. Instead of assigning a column to a particular type label, the problem here is to
assign entities (tuples in a table) to possibly different types. In other words, the prob-
lem here is not the one of recovering the particular type (and attribute) semantics of
a table but the different type semantics of entries in tables.

2.4 Candidate Generation

A brutal force algorithm for instance matching is to compare all the possible instance
pairs. Such an algorithm is very inefficient, because for two dataset A and B, there
are at most |A| · |B| instance pairs to be compared. There are generally two strategies
to improve the efficiency: 1). reducing the cost of single instance comparison, and
2). reducing the number of instance pairs to be compared. Note one single instance
comparison actually requires multiple attribute comparisons, i.e. calculate attribute
similarity using certain similarity functions. So the first strategy actually refers to
either comparing less attributes or using cheap similarity functions. We will discuss
the technologies that can lead to less attribute comparisons in section 2.5.2. And the
use of cheap similarity functions is applied in the canopies approaches [33, 81, 84]
that adopt the second strategy to generate matching candidates. In the following
part of this section, we will further introduce the approaches that focus on the second
strategy to reduce the number of instance comparisons.

Generally, to reduce the number of instance comparisons, the approaches that are
designed for the second strategy will generate matching candidates by assigning the
instances that are similar to each other to the same group. Then, only the instances
in the each group need to be further compared to find the true matches. Typical can-
didates generation approaches are sorted neighborhood approach, Canopy, and blocking.
These approaches differ in how to generate the instance group.

The sorted neighborhood approach consists of three steps [127]. First, a key value
for each instance is extracted from certain attributes. Then all the instances are sorted
according to the key value. Finally a fixed size window is slide through the sorted in-
stances, so that the instances inside the window form a group and only the instances
inside the group are compared.

There are two main drawbacks of the sorted neighborhood approach. The first

18



2.4 Candidate Generation

drawback is that the method is sensitive to the selection of key values. When there
are noises in the data, it is possible that two matching instances are not close enough
to each other to be included in the window after instance being sorted. This problem
can be solved by multiple iterations of the method using different key values in each
of the iterations [54]. The other drawback is that the fixed-size window may not
cover all the matches if there are a large number of matches or the matches are not
close enough in the sorted instances. This problem can be solved by using dynamic
window size [127].

Canopies approach [33, 81, 84] forms a cluster by random selecting a instance and
assign into its cluster with all the other instances whose similarity that calculated
with a cheap similarity function is above a certain threshold. After the grouping
step, the instances in each cluster are compared pairwise using a more expensive
similarity function. For example, if the length difference of two strings is 4, then their
edit distance is at least 4. However, the cost to calculate the length difference of two
strings is much cheaper than that of the edit distance. In this way, the string length
difference can be used as a cheaper version of edit distance. A canopy cluster can be
formed by randomly select an instance and put in its cluster with instances that have
attribute value length difference below 4. Then the instance in the same cluster can
be further compared using edit distance [52].

In this thesis, we focus on the technique named blocking, which subdivide the orig-
inal data into a set of mutually exclusive subsets, named blocks, assuming that there
are no matches across different blocks [54, 71, 104, 123]. As the result, only the in-
stances in the same block will be further compared in detail. Blocking is typically lim-
ited to finding attributes also called blocking keys and their value representation to calcu-
late the so called blocking key values (BKV) [16, 83, 93, 123]. Previous works [93, 108]
use the best-ranked attribute [46, 56, 58, 108] as key and all features from its values
as key values (schema-based), or the values of attributes combined [93] (omitting at-
tribute information, hence called schema-agnostic). The value representation is the
set of tokens that can be extracted from the key value. Then instances are consid-
ered as matching candidate and placed into one block when there is an overlap in
their BKV. In practice, there are different value representation methods to generate
BKV, such as using the prefix [124], the suffix [35] or the q-gram [52] of the blocking
key. Resembling the blocking problem, we focus on finding attributes and their value
representation in this blocking context:

Definition 2.4 (Find Blocking Keys and Key Values). Given the data graph G(U, E, L),
we find a conjunction of Boolean function predicates (called blocking scheme)

∧
e∈L∗ ∼e

V
where∼e

V : Ue
V ×Ue

V→{true, f alse}, Ue
V ⊆UV ⊂U denotes the values of some keys e∈ L∗,

and L∗ ⊂ L is the set of blocking keys. Blocking maps every instance ni ∈ N to a subset
NBi ⊆ N, an equivalence class of instances (instances, that according to the blocking scheme,
are equivalent to ni) called block: NBi = [ni] = {nj ∈ N : ni,nj ∈ N,

∧
e∈L∗ ∼e

V (ni,nj) =

19



Chapter 2 Foundations

Table 2.3: Example blocks for different subtypes using attribute Title as blocking key
and the words Sony and VAIO as key values.

Block ID Title Subtype

block1

n1 Sony KDL-60R550A TV
n2 Sony KDL-40R450A TV
n3 Sony KDL-60R550A TV

block2

n4 Sony VAIO SVF14214CXW Computer
n5 Sony VIVO SVF14212CXW Computer
n6 Sony VAIO SVF14214CXW Laptop Computer

true}.

Example 2.2. Tab. 2.3 shows two blocks obtained using Title as key and words in Title
as key values. Note instances in the same block overlap on the word Sony and VAIO. In
addition, based on the result of typification, it recognizes that instances belong to the two
types TV and Computer.

Additionally, an additional matching predicate (Jaccard similarity) has been ap-
plied on top to filter those candidates that do not exceed the predefined threshold
θ [108]. Thus, candidates that remain in one block overlap on some key tokens and
their key value similarity exceeds θ.

There are multi-pass approaches for blocking, where at every pass, a conjunction of
keys is used to generate candidates (e.g. match the last two letters of Manufacturer
and first 3 tokens of Title). The union of all results is used because different passes
cover different matches. Accordingly, blocking can be seen as a disjunction of con-
junctions.

2.5 Classification

In the classification step, matching candidates are further compared to be classified
to the class of match or non-match. The classification task can be solved by a general
binary classifier with the help of machine learning. Let G = {g1, g2, ...} be a set of sim-
ilarity functions and A = {a1, a2, ...} be a set of comparable attributes of two datasets
to be matched, we can present a matching candidate as a vector x = {x1, x2, ..., xm},
where m = |G| · |A|. Each xi in the vector shows a similarity calculated by applying
a certain similarity function on a certain attribute. Many approaches also use binary
values for the xi in the vector and set xi = 1 if the corresponding attribute is match-
ing and set xi = 0 if the attribute is non-matching. Then provided a set of matching
and non-matching instance pairs as positive and negative examples, we can solve the

20



2.5 Classification

classification task by converting the training examples to feature vectors, and use the
feature vectors to train classifiers such as Bayes classifier [44] or SVM [14].

The main drawback of using general binary classifiers for instance matching is that
it is inefficient to calculate the feature vector of the length |G| · |A| since similarity
calculation is expensive. Although feature selection can reduce the dimension of the
feature vector, it is not guarantee that the number of similarity computations is min-
imized. Note not all attributes are important for instance matching task, and not all
similarity functions should be used for each attribute. It is possible to select a subset
A′ ⊆ A of all attributes for instance matching, and for each attribute the best similar-
ity function. In this way, each instance pair comparison requires only |A′| similarity
computations, which is far less than that need for a general binary classifiers. In
practice, the combination of attribute and similarity functions can either be assigned
manually by experts or learned using training examples. In general, the instance
matching approaches in the classification step need to answer two questions: 1). how
to learn instance matching schema, i.e. the combination of attributes and similarity
functions, as well as the thresholds and weight for each attribute, and 2). how to
efficiently execute the instance matching schema.

2.5.1 Supervised Learning of Instance Matching Schema

The instance matching schema can be characterized through the tuple (∼N ,σ), where
∼N : N × N → R+ maps a pair of instances to a similarity value, and they are con-
sidered as being the same when that similarity value is higher than the threshold
θ [23, 42, 49, 72]. The instance matching schema learning usually involve determin-
ing (1) (combinations of) attributes (Title, Price etc.) and for each of them (2)
the similarity measures (e.g. edit distance and Jaccard similarity), (3) the similarity
thresholds [14, 24, 83, 112, 113], and (4) the weights [55, 61, 88].

Let G be a set of similarity functions, A be a set of attributes, and M be a set of
training examples. We should consider all the possible combinations of attributes and
similarity functions to learn the instance matching schema. For example, let {a1, a2}
be attributes and {g1, g2} be similarity functions to use, and gi(aj) be an association
of similarity function gi with attribute aj, then there are overall eight combinations
including: g1(a1), g2(a1), g1(a2), g2(a2), g1(a1)g1(a2), g1(a1)g2(a2), g2(a1)g1(a2), and
g2(a1)g2(a2). Then, for each instance pair in the training data, if we use the similari-
ties that are calculated by these combinations of attributes and similarity functions as
threshold, we can get eight candidates of instance matching schema. Finally, the in-
stance matching schema learning problem is converted to finding the candidate that
can maximize a quality function from all the candidates that are converted from all
the training examples. The quality function can usually be F-measure or any others
that are used to evaluate instance matching. The overall number of instance match-
ing schema candidates is about |G||A| · |M|. However, since we may consider more

21



Chapter 2 Foundations

than twenty similarity functions in practice, even a small set of training examples can
result in a huge set of schema candidates. Actually, research showed that this prob-
lem is NP hard [24]. The problem can be solved by detecting and avoiding process-
ing invalid candidates. Chaudhuri et al. [24] proposed a Hyper Rectangle algorithm
to learn the combination of attributes, similarity functions and thresholds. Wang
et al. [119] further improve the efficiency by eliminating candidates that are com-
posed of redundant similarity functions and thresholds. Robert et al. [61] proposed
an approach that can also learn the weight of attributes using genetic programming.
Thomas et al. [55] learn the weight of an attribute by considering the probability that
matches and non-matches having the same value on the attribute. The frequencies
of attribute values are also considered when computing the weight for a specific in-
stance pair [88].

2.5.2 Efficient Execution of Instance Matching Schema

Similar as that discussed in blocking, the efficiency of executing instance match-
ing schema can also be improved by either improving efficiency of single instance
pair comparison or reduce the number of matching candidates. In this section, we
first show that the so-called rule-based instance matching and threshold-based in-
stance matching can compare two instances efficiently by using less attribute com-
parisons [40]. Then we discussed how to generate less matching candidates with the
help of instance matching schema.

The rule-based instance matching approaches [24, 61] can be efficiently executed
because they need less attribute comparisons. These approaches employ rules that
are written as a conjunction of attribute matching. For example, for the product
dataset, it can be written as Equation. 2.2.

Jaccard(title) ≥ 0.9∧ Cosine(brand) ≥ 0.8 (2.2)

This type of rules have the very similar form as the output of decision tree learning.
For example, Equation. 2.2 can be converted to a decision tree as shown in Fig. 2.3.
Because only the instance pairs that satisfy each attribute matching in the rule can be
classified as matches, we call it attribute-threshold instance matching rule in this thesis,
whose formal definition is given in Sec. 2.5.3. Since an input instance pair will be
classified to non-match when it cannot satisfy any one of the attribute matching in
the rule, we are able to early terminate comparing attributes if an attribute matching
returns false. This ability that allows the program to stop comparing attribute earlier
results in less attribute comparisons.

Another type of classification approach is the so-called threshold-based instance
matching, which uses a single threshold for the sum of attribute similarities instead
of assigning different thresholds for every attribute. In this thesis we call it mapping-

22



2.5 Classification

Jaccard(Title)>=0.9 

Cosine(Brand)>=0.8 Non-‐match 

Non-‐match Match 

Yes 

Yes 

No 

No 

Figure 2.3: The Instance Matching Progress Applied in This thesis.

threshold instance matching rule, whose formal definition is given in Sec. 2.5.4. Consider
the rule in Equation 2.3 as an example. Although it seems that executing rule 2.3
needs iterating all the attribute similarities to calculate the sum, in Sec. 5.5 we will
show that it is also possible to early terminate calculating attribute similarities by
checking whether the maximum values of the similarities that are not calculated can
satisfy the threshold. For example, if we already calculate Jaccard(Title) = 0.5 for a
pair of instances and we know 0≤ Cosine(Brand)≤ 1, then we can predicate that the
instance pair cannot satisfy the rule even if Cosine(Brand) reach the maximum value.

Jaccard(title) + Cosine(brand) ≥ 1.7 (2.3)

Currently, we have introduced how instance matching schema are used to effi-
ciently classify the matching candidates. The instance matching schema can also feed
back into the candidate generation step to output less candidates. No matter the
Canopy or the blocking approach, the candidates are usually generated using an in-
verted index. The key of the index can be all the tokens extracted from the a certain
attribute, and the value of the index is the instances that share the token. Then the
matching candidates are generated as pairs of instances that indexed by the same to-
ken. Therefore, the less the token that are used as keys in the inverted index, the less
matching candidates generated. Once the instance matching schema, i.e. the combi-
nation of attributes, similarity functions and thresholds, is determined, we can use
the schema as a constraint to restrict the number of tokens to be used in the index.
Take Jaccard similarity function as an example. We have a constraint Jaccard(a) ≥ t,
where a is an attribute and t is a threshold. Let the tokens in attribute value x be
sorted, and the p-prefix of x be the first p tokens of x. It can be shown that we only
need to index a prefix of length |x| − dt · xe+ 1 for every instances to ensure that the
candidate generation task does not miss any pair of instances that satisfy the con-
straint Jaccard(a) ≥ t [124]. For Cosine constraint Cosine(a) ≥ t, the length of the

23



Chapter 2 Foundations

tokens to be indexed can also be optimized to |x| − dt · xe+ 1 [124]. The edit distance
constraint EditDistance(a) ≤ t can be converted to the constraint on the overlap be-
tween the q-gram sets of the two strings. Then the length of the tokens to be indexed
can be optimized to qt + 1 [124].

2.5.3 Attribute-threshold Instance Matching Rule

We explicitly distinguish two type of instance matching rules: attribute-threshold
instance matching rule (aIR) and mapping-threshold instance matching rule (mIR). Let
{g1, g2, · · · } be a set of similarity functions such that 0 ≤ g(n[a],n′[a]) ≤ 1. A higher
score indicates a higher similarity between n[a] and n′[a]. For the convenience of
expression, we loosely use g(a) to denote an association of a similarity function g
with an attribute a. For example, we use Jaccard(Title) to denote the similarity
of attribute Title that is calculated by Jaccard similarity function. Then aIR can be
defined as follows:

Definition 2.5 (Attr.-thresh. Inst. Match. Rule). Given a set {a1, a2, · · · , ad} of attributes,
and a set {g1, g2, · · · , gd} of similarity functions, let gi(ai)≥ θi denote a similarity function
predicate where 0 ≤ θi ≤ 1. For any two instances n and n′, the similarity function predi-
cate returns true if gi(n[ai],n′[ai]) ≥ θi. An attribute-threshold instance matching rule is a
conjunction of similarity function predicates as

∧d
i=1 gi(ai)≥ θi. A pair of instances n and n′

are considered as a match if they satisfy all the similarity function predicates in the rule.

Example 2.3. Suppose an aIR Jaccard(Title)≥ 0.80∧Cosine(Manufacturer)≥ 0.70
that is designed for the data in Tbl. 2.1. Because Jaccard(n4[Title],n6[Title]) = 0.82 >
0.80 and Cosine(n4[Manufacturer],n6[Manufaccture]) = 0.71 > 0.70, the instance
pair (n4,n6) is identified as a match.

Existing aIR-based approaches are designed according to attribute monotonicity,
which requires that "any pair of matching records have a higher similarity value than
a non-matching pair on at least one attribute" [24]. If an instance matching problem
is attribute monotonic, these approaches are able to learn aIR to correctly identify all
the matching instances. Comparing to the general machine learning techniques (e.g.
SVM and decision tree [24, 119]), aIR can be executed more efficiently because of less
calculations of similarity function predicates. Especially, it is executed efficiently in
the way that, when any one of the similarity function predicates in a rule return false,
all the rest predicates need not to be tested any more.

2.5.4 Mapping-threshold Instance Matching Rule

However, the attribute monotonicity may not always exist in real-world data due to
various errors in a single attribute. Therefore, instead of exploiting attribute mono-
tonicity, we consider a more general property for the instance matching problem,

24



2.5 Classification

called mapping monotonicity. We say an instance matching problem is monotonic if, for
any matches (n1,n′1) and non-matches (n2,n′2), there exists a set of attributes such that
the average similarity of these attributes of (n1,n′1) is greater than the average sim-
ilarity of (n2,n′2). We observe that the mapping monotonicity exists more generally,
because even though errors might occasionally occur in one attribute, it is unlikely
that they happen in all attributes of a match. Based on the mapping monotonicity, we
formally define the mapping-threshold instance matching rule (mIR) as follows:

Definition 2.6 (Map.-thresh. Inst. Match. Rule). Given a set {a1, a2, · · · , ad} of at-
tributes and correspondingly a set {g1, g2, · · · , gd} of similarity functions, a rule function
f : N× N→ [0,1] calculates the similarity between two instances as the average of every at-

tribute similarity, i.e. f (n,n′) = ∑d
i=1 gi(n[ai ],n′[ai ])

d ,n,n′ ∈ N. Given a threshold θ, a mapping-
threshold instance matching rule (mIR) is defined as a tuple λ( f ,θ), such that two instance
n ∈ N and n′ ∈ N are considered as a match if f (n,n′) ≥ θ, where 0≤ θ ≤ 1.

Example 2.4. Assuming a mIR that is designed for the data in Tbl. 2.1 as
Jaccard(Title)+Cosine(Manufacturer)

2 ≥ 0.70. The instance pair (n4,n6) is identified as a match,
because Jaccard(n4[Title],n6[Title])+Cosine(n4[Manufacturer],n6[Manufacturer])

2 = 0.76 > 0.70.

2.5.5 Collective Instance Matching

p1,p2 

Title 

“Effective data matching: a survey” 
“Effective data matching: survey “ 

a1,a2 

a3,a4 

“ Jack Oliver“ 
“Jack S. Oliver” 

Author 

“ Chen Yang“ 
“C. Yang” 

name 

name 

p3,p4 

Author 

“Collective data matching” 
“Collective data matching_paper“ 

Title 

v1,v2 
Venue 

“ WSDM“ 
“ACM WSDM” 

name 

Figure 2.4: A Relationship Graph for Collective Instance Matching.

Currently we have introduced the techniques that are used to compare two in-
stances locally based on attribute comparisons. Different from the local approaches,
collective approaches make match decisions holistically by also considering the
matching of related instances [12, 39, 82, 96]. In other words, not only attributes
but also relations are utilized in instance matching based on the assumption that the
similar instances should also have similar related instances. One example is to match
two bibliographic datasets collectively. Typically, a relationship graph is usually built
first, which is as shown in Fig. 2.4 where nodes "p1,p2" and "p3,p4" are pairs of pa-
pers, "a1,a2" and "a3,a4" are pairs of authors and "v1,v2" is a venue pair. The initial

25



Chapter 2 Foundations

similarity of each nodes is from the aggregation of their attribute similarities. Then
the approach propagate the similarities through the edges of the graph. As a result, a
pair of instances can gain more similarity if it has more neighbors with higher simi-
larities in the graph.

2.6 Filtering

As discussed, because the use of thresholds are sensitive to training data and param-
eter tuning, the instance matching results may still include a large number of non-
matches. Comparing to the thresholded similarity functions that computes a similarity
score based on boolean evidences for matching, i.e. similarity evidences, we apply an-
other type of boolean functions to filter out those that are non-matches. Since they are
based on evidences for non-matching, i.e. dissimilarity evidences, we refer to this type
as dissimilarity function. As an example, the fact that two given products are produced
by different manufacturer can be taken as a dissimilarity evidence to infer that they
are non-matches. Applying this type of functions to the results is referred to as the
filtering step:

Definition 2.7 (Filtering). Given a matching candidate set M, filtering returns a subset
M+ = M \M−, where M− represents non-matching candidates computed by the dissimilar-
ity function ¬same, i.e. M− = {(n,n′) ∈ M|¬same(n[ai],n′[ai]) = 1}.

There are several works related to the problem of filtering [10, 37, 38, 122]. Doan et
al. [37, 38] discussed constraints to apply sanity checks for instance matching. Bhat-
tacharya [10] exploited negative relational evidences to improve the accuracy of the
results. Whang et al. [122] introduced binary negative rules, which require a global
view of records for detecting inconsistencies. Being different from these works that
need experts to manually design the constraints for non-matches, the problem here is
to automatically learn the dissimilarity functions for filtering.

2.7 Metrics

We use standard metrics proposed for evaluating blocking and instance matching
results. Let S be the result generated by blocking or instance matching approaches,
M be the matching pairs, i.e. the ground truth GT, and D the non-matching pairs
in the dataset, i.e. all possible pairs of instances but the ones in GT. To evaluate
the blocking approaches, pair-wise completness (PC, which is the same to the metric
recall R that is used for evaluating instance matching approaches) captures the ratio
between correct matches as captured in the blocks and all matches in the ground
truth, i.e. PC = |S∩M|

|M| . Reduction ratio (RR) measures the relative reduction in the

26



2.7 Metrics

size of the comparison space accomplished by blocking, i.e. RR = 1 − |S|
|M∪D| . To

evaluate the instance matching approaches, precision (P) captures the ratio between
correct matches and all generated matches, i.e. P = |S∩M|

|S| . F-measure (F) considers

both P and R, calculated as F = 2PR
P+R .

27





Chapter 3

Typification: Inferring the Type Semantics of
Structured Data

Structured data representing instance descriptions often lacks precise type informa-
tion. That is, it is not known to which type an instance belongs to, or the type is too
general to be useful. In this work, we propose to deal with this novel problem of in-
ferring the type semantics of structured data, called typification. We formulate it as a
clustering problem and discuss the features needed to obtain several solutions based
on existing clustering solutions. Because schema features perform best, but are not
abundantly available, we propose an approach to automatically derive them from
data. Optimized for the use of schema features, we present TYPifier, a novel cluster-
ing algorithm that in experiments, yields better typification results than the baseline
clustering solutions.

Outline. The introduction and the contributions are presented in Sec. 3.1 and
Sec. 3.2. In Sec. 3.3, we introduce typification as a clustering problem. In Sec. 3.4,
we discuss how techniques proposed for that can be applied. Then, we continue
with the discussion of how value-level schema features can be computed from data
in Sec. 3.5. Sec. 3.6 reports our algorithm for typification. Experimental results are
presented in Sec. 3.7 before related work in Sec. 3.8, and conclusion in Sec. 3.9.

3.1 Introduction

The semantics captured by structured data have been exploited in various tasks such
as Web search: RDFa and mircoformats are used by Google and Yahoo! to provide
rich snippets 1 for Web search results, which are based on structured descriptions
of the instances embedded in the results. Especially the semantics of instance types
provide valuable information here as they enable Web designers to construct presen-
tation templates for specific types of instances (e.g. customized snippet templates).
Type information is also useful for machine learning algorithms. One concrete prob-
lem, which is used as a representative use case in this thesis, is the one of finding

1http://www.google.com/webmasters/tools/richsnippets

29

http://www.google.com/webmasters/tools/richsnippets


Chapter 3 Typification: Inferring the Type Semantics of Structured Data

structured descriptions that refer to the same real-world entity, also known as in-
stance resolution. State-of-the-art solutions learn a combination of matching predi-
cates, which are used to compute the similarity between instance descriptions. They
work well when applied to instances from a single table, i.e. instances of the same or
similar type. These type-specific solutions however do not perform well, when type
information is difficult to be inferred. We have identified two main scenarios where this
is the case:

Dynamic Web Data. The proliferation of RDF data on the Web is mainly due to the
flexibility of the RDF model. Without imposing constraints on the schema and data
integrity, it makes it easy for data providers to assert, to publish, and to link triples to
other datasets. While it seems to be well suited for dealing with the dynamics on the
Web, the downside is that many structured descriptions available on the Web today
do not contain type triples. Based on a 3 million sample of instance descriptions
extracted from several Linked Data datasets crawled from the Web, we found that
393,503 of them lack type information, i.e. the type of these instances are not known.

Heterogeneous Enterprise Data. In enterprises, instance types mostly correspond
to tables in which tuples representing instance descriptions are stored. However, big
data tables are often used to store a variety of instance descriptions. The type cap-
tured by a table is often too general to be useful. For instance, in a data integration
project with a product management company2, we face the situation where 7M de-
scriptions acquired from different sources are stored in one single product table. The
products captured by this data actually belong to many different subtypes.

3.2 Research Question and Contributions

Given the need to tackle the heterogeneity of Structured data on the Web, the main
research question of this chapter is:

Research Question 1. How to derive type semantics of instances?

To address this research question, we propose an clustering algorithm, named Typ-
ifier, in this chapter and examine it with respect to the following hypothesis:

Hypothesis 1.1. Although the concrete values are quite different, instances of the same type
are often associated with the same labels of attributes and relations. The type semantics of
structured data can be inferred by clustering instances that have same or similar labels of
attributes and relations.

We address the above research question and hypotheses and perform the study
towards a principled solution, providing three main contributions in this chapter:

2http://www.reposito.com/

30

http://www.reposito.com/


3.3 Overview

• Clustering Solutions for Typification. Firstly, we formulate Typification as a
clustering problem, where the goal is to identify a particular kind of clusters
that represent the types of instances. We discuss the main requirements, qual-
ity metrics and how existing clustering techniques can be applied. We present
the experimental results using data from domain-specific product data in the
enterprise to cross-domain encyclopedic data in DBpedia up to heterogeneous
Linked Data on the Web.

• Computing value-level Schema Features. We discuss why for this particular
clustering problem, schema-level features, i.e. labels of attributes and relations,
are most effective in obtaining high quality results. The main intuition here is
while instances of the same type are often associated with the same attributes
and relations, their concrete values are quite different. However, the amount
of these features is often limited, especially in the one large table setting (e.g.
instances in a product table are associated with only few attributes). To deal
with this, we also propose a solution for automatically computing value-level
schema features from data.

• Schema-based Typification. Optimized for the use of (value-level)schema fea-
tures, we propose TYPifier, a novel clustering algorithm for the typification
problem. Compared to the baselines based on existing clustering techniques
that use the same (schema) features, this algorithm is comparable to the best
baseline in terms of efficiency, but produces higher quality results than the
baseline that performed best in terms of effectiveness. Moreover, it is able to
determine the number of types (clusters) automatically.

3.3 Overview

In this chapter, we use the definitions of data and its example that was first given in
Section 2.1. For ease of reading, we repeat the definition of Typification here.

Definition 2.3 (Typification). Given a set of instances N = {n1, . . . ,nj, . . . ,n|N|}, typifica-
tion attempts to seek a K-partition of N (K≤ |N|) into clusters C = {C1, . . . ,CK}, such that
(1) Ci 6= ∅, i = 1, . . . , K, (2)

⋃K
i=1 Ci = N and (3) Ci ∩Cj = ∅, i, j = 1, . . . , K and i 6= j. More-

over, when missing subtype edges are also considered, it seeks hierarchical clusters, i.e., a
tree-like nested structure partition of N (called hierarchy tree), H = {H1, . . . , HQ} (Q≤ N),
s.t. Ci ∈ Hm, Cj ∈ Hl and m > l imply Ci ⊆ Cj or Ci ∩ Cj = ∅ for all i, j 6= i,m, l = 1, . . . , Q.

Quality of Computed Types. The goal here is to obtain clusters that correspond
to missing classes in the data. Just like in the classification setting, class labels are
assumed to exist for all instances in the evaluation dataset. However, the results
obtained from typification are not class labels but clusters. Thus, we need to adopt

31



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

existing metrics to compare the given class extensions with the computed clusters,
instead of using the given and predicted class labels. For assessing the quality of
typification results, we employ the method used for the evaluation of hierarchical
clustering algorithms [129]:

Let the computed clusters be C = {C1, . . . ,Ci, . . . ,CK}, and type labels be given for
all instances in N such that for every class uc ∈UC, we know its extension, E(uc) = {n :
type(n,uc) ∈ E}, as the set of all instances that have type of uc. Further, let µ : C→UC
be the function which maps a cluster to a corresponding class. Then, for a cluster C
and the extension of its corresponding class E(µ(C)),

• true positives (tp) = |C ∩ E(µ(C))|,

• false positives (fp) = |C| − |C ∩ E(µ(C))|,

• false negatives (fn) = |E(µ(C))| − |C ∩ E(µ(C))|.

Based on these metrics, precision and recall for every cluster C can then be computed
as usual, namely Precision = tp

tp+ f p and Recall = tp
tp+ f n . The overall score, i.e., preci-

sion or recall, of the entire clustering solution is the sum of the individual clusters
scores weighted according to the cluster size. The corresponding class µ(C) of a clus-
ter C is chosen to be the one that maximizes the score of C. Given a cluster, this best
matching class is found through an exhaustive search over the set NC.

Quality of Type Hierarchy. While these metrics capture the quality of individual
clusters, they do not consider the quality of the computed hierarchy. To do that, we
compute the distance between the computed cluster hierarchy tree H and the given
class hierarchy UC. In particular, we use the unordered tree edit distance [17] as a metric,
which is a generalization of the string edit distance: H and UC are treated as node-
labeled trees and the quality of H w.r.t. UC is defined as the number of edit operations
to transform H to UC.

Main Requirements. Besides quality aspects, performance is another criteria for de-
signing a solution for typification. It is desirable to compute not only the missing
types but also the type hierarchy. Furthermore, a solution shall be parameter-free in
the sense that K, the number of types, can be automatically determined to match
exactly the number of classes in the data.

3.4 Clustering Solutions

A clustering solution aims to maximize intra-cluster homogeneity and inter-cluster
separation such that elements in the same cluster are similar, while those in differ-
ent clusters are not. We refer to the survey from Xu and Wunsch for an overview
of the different types of clustering techniques and similarity measures that have been
proposed [126].

32



3.4 Clustering Solutions

3.4.1 Features and Similarities

Applied to this problem, the elements to be clustered are the instances n ∈ N, which
are represented by the feature function F(n). Instances in the same cluster should
belong to the same type and those in different clusters should not.

Naturally, attribute values of instances can be used as features to group them ac-
cording to a similarity metric in this feature space. We observe that when instances
have similar values, they mostly do belong to the same type (or even denote the same
real-word object). However, instances may also belong to the same type when they
have very different values. More reliable for this problem are schema features: in-
stances that have the same edge labels (attributes or relations) belong to the same
type and those, which have no or only few such labels in common, do not.

Thus, for every instance ni, labels of associated nodes and edges are extracted to
obtain two types of features:

• data feature FD(ni) = {l(n) : 〈ni, l,n〉 ∈ EA}, where l(n) denotes the label of n,
and

• schema feature FS(ni) = {l : 〈ni, l,n〉 ∈ E}

While more customized similarity functions can be used for different types of val-
ues, in the experiments, we only use cosine similarity as the similarity function, be-
cause the schema and value-level schema features are derived from the data that is
mainly composed of text. Let V be the vocabulary of all possible features that can
be extracted from data and schema labels. An instance ni is represented as a vec-
tor F(ni) = { f1, . . . , fi, . . . , f|V|} over the features in V. The similarity between two
instances ni and nj is the cosine of the angle between F(ni) and F(nj).

Example 3.1. Taking the instance n5 in the data graph that is shown in Fig. 2.2 as example.
The schema features of n5 are the labels of its attributes, such as Title, CPU, Memory and
Power. Therefore, n5 is represented as a vector of all the tokens in the schema features, e.g.
F(n5) = {Title,CPU,Memory,Power · · · }. On the other hand, the data features of n5 are
the values of its attributes, such as Sony, Intel i3 and 65 W. Then n5 can be represented
as a vector of all the tokens in the data features, e.g. F(n5) = {Sony,Intel,i3,W,65 · · · }.

3.4.2 Techniques

One main distinction that can be made is hierarchical and partitional clustering.
Hierarchical. This type fits our problem well because it yields a tree of clusters,

where the root contains all instances, while the leaves represent single instances. Hi-
erarchical agglomerative methods start from single instance clusters and iteratively
merge them. Divisive methods proceed in a top-down fashion, splitting the root

33



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

cluster and continue until all clusters contain only one instance. For the merge and
split operations, a similarity metric for clusters is needed. Typically, cluster similar-
ity is defined based on the similarity between particular elements in the clusters, e.g.
single-linkage (minimum similarity between elements), complete-linkage (maximum
similarity), average-linkage clustering (average similarity). The main problem of ap-
plying hierarchical clustering to typification is the identification of clusters representing
the types. The evaluation method proposed previously searches through the classes
and selects the class that maximize the score. The resulting score does not reflect the
problem that in practice, this has to be done manually. The other shortcoming is per-
formance. The computational complexity of most algorithms is at least O(M2), where
M is the number of input instances. Aiming at this and other problems such as sensi-
tivity to noise and outliers, a state-of-the-art approach called BIRCH [128], utilizes a
summary of the data called clustering feature tree, with each node storing clustering
information of the data such as the number or linear sum of some sets of data points.
Complexity of clustering, when applied to the summary, is reduced to O(M).

Partitional. Instead of splitting or merging to form a hierarchy, this type only con-
siders the problem of finding the optimal assignment of data points to K clusters,
where the optimality criterion is often the sum of squared error. A popular algorithm
is K-means, which starts from a random choice of K centers, then iteratively assigns
data points to the nearest cluster, updates the centers, and terminates when the cri-
terion converges. The time complexity of K-means is O(MKI) where I is number of
iterations. Since K and I are usually much smaller than N, K-means is fast and widely
used in practice for dealing with large datasets. Based on a strategy for choosing the
starting centers, K-means++ is an improved algorithm that exhibits both high run-
time performance and accuracy [5]. While this type of algorithms is fast and easy to
implement, the obvious problem is the choice of K, which has to be done manually.

Kernel-based. Using kernels, nonlinearly separable instances can be transformed
into a high-dimensional feature space, where linear separation is possible. This idea
has been combined with K-means to obtain kernel K-means algorithms that compute
similarities between data points in the high-dimensional space. A different type of
kernel-based algorithms, which is K- parameter-free in the sense discussed before, is
Support Vector Clustering (SVC) [9]. In the high-dimensional space obtained via a
Gaussian kernel, it searches for the minimal enclosing sphere. When mapped back to
the data space, this sphere reveals contours corresponding to clusters of points. The
drawback of this algorithm is high complexity, which is at least O(M2).

Density-based. This is another type that also does not directly require the manual
tuning of K. It considers clusters as regions in the data space in which the objects
are dense and separated by sparse regions treated as cluster borders or noises. One
typical approach is DBSCAN, which requires that, for a point to be part of a cluster,
the neighborhood of a given radius has to contain at least a minimum number of
points. OPTICS extends DBSCAN by removing the need for an assigned density

34



3.5 Value-level schema Features

value and is able to generate hierarchical clusters [1]. The main problems here are
complexity, which is O(M3), and recall, because relevant instances and classes might
be hidden in the sparse regions.

TYPifier. We perform experimental studies with BIRCH, K-means++, SVC and OP-
TICS using both data and (value-level)schema features automatically derived from
real-world datasets. Based on the same features, we compare them with TYPifer, an
approach we propose to exploit the characteristics of schema features. It can be seen
as a divisive hierarchical clustering algorithm, which proceeds top-down starting from
the root node. However, schema features are used not only to compute similarities
between instances and clusters to perform a split, but also to obtain an ordering over
atomic clusters so that several other operations are possible, namely to merge clusters
and to add clusters as child or sibling nodes. TYPifier is a K-parameter-free approach,
which provides similar performance but superior result quality compared to the best
results achieved by the baseline clustering approaches.

3.5 Value-level schema Features

Features characterize the membership of instances to a type well when they are (1)
shared by most instances of that type and (2) not in the feature sets of other instances
that belong to other types. In this sense, schema features are better type indicators
than data values. As an example, for instances captured by Linked Data that actually
belong to the type maps, the information that is missing, we find attributes such as
coverage with values such as USA. For typification, coverage is more specific to
instances of the type maps, while USA appears also as values of attributes of many
other types. While in the experiments, these schema features work well for Linked
Data, whereas their availability and abundance cannot be assumed in the general
case. We discuss how to derive value-level schema features, i.e. those that behave
like schema features, from the data.

TF-IDF. This is a popular way to measure the importance of a term t for a document
d relative to other documents in the corpus D. TF measures whether the term is
frequent in d while IDF indicates whether t is common or rare in D. Let F(n) be the
bag of all features that can be extracted from attribute values of an instance n (note
we overload notation here and use bag instead of set to consider counts). Adopted to
this case,

TF− IDF( f ,n) = |{ f ∈ F(n)}| × log
|N|

|{ni ∈ N : f ∈ F(ni)}|

where |{ f ∈ F(n)}| is the term frequency that is calculated by the raw frequency of a
feature, i.e. the number of times that feature f occurs in F(n), and log |N|

|{ni∈N: f∈F(ni)}|

35



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

is the inverse document frequency, in which |N| is the total number of instances, and
|{ni ∈ N : f ∈ F(ni)}| is the number of instaces where the feature f appears.

Feature Co-Occurrence Graph. The feature with high TF-IDF score characterizes
an instance but not necessarily the type it belongs to. We propose a way to con-
sider the importance of features across instances using a feature co-occurrence graph
(FCG). A feature co-occurs with another when there is an instance feature set that con-
tains both. Based on the feature co-occurrence count, we then define the conditional
co-occurrence probability (CCP):

Definition 3.1 (Conditional Co-Occ. Probability). The probability that fi and f j co-occur,
given f j is

p( fi| f j) = p( fi, f j)/p( f j) = count( fi, f j)/|N f j |,

where N f j = {n ∈ N : f j ∈ F(n)} denotes all instances having f j as feature, and

count( fi, f j) = |N fi ∩ N f j |,

the co-occurrence count of the two features fi and f j.

These co-occurrence relations between features are finally used to construct a
graph:

Definition 3.2 (Feature Co-Occurrence Graph). Given the vocabulary of features V, the
feature co-occurrence graph is a labeled directed graph G′ = (U′, E′, L′), with nodes u∈U′

stand for features in V and edges w(ui,uj) ∈ E′ capture the co-occurrence between the two
features fi and f j, where edge labels stand for the conditional co-occurrence probabilities,
w = p( fi| f j).

Example 3.2. The FCG according to the example in Tab. 2.1 is shown in Fig. 3.1. For exam-
ple, because the features CPU and W co-occur, there are corresponding edges w(CPU,W)
and w(W,CPU) in the graph. Note count(CPU,w) = |{n4,n5,n6}| = 3 and there are
six instances that have W as feature. Thus, we have 0.5(CPU,W) because p(CPU|W) =
count(CPU,W)/|NW | = 0.5. In the same way, we obtain 1.00(W,CPU) (and other edge
weights not shown in the figure).

RAM

CPU

Laptop

1080P

LED

HD

TV

w

0.50
1.00

Figure 3.1: FCG for data in Tab. 2.1.

36



3.5 Value-level schema Features

Algorithm 1: Computing Value-level Schema Features
Input: G(U, E, L),V.
Data: Undirected FCG G′(U′, E′, L′).
Result: F∗S.

1 foreach fi ∈ V do
2 foreach f j ∈ V do
3 p( fi| f j) := count( fi, f j)/|N f j |;
4 //Construct undirected edges.
5 if p( fi| f j) ≥ θ ∧ p( f j| fi) ≥ θ then
6 G′ := G′ ∪ θ( fi, f j);

7 //Extract features from maximal cliques.
8 F∗S :=Features (MaxCliques (G’));
9 return F∗S;

Note that compared to TF-IDF, CCP is a frequency-based metric for importance
that is computed across instances. We propose to identify features that are important
for groups of instances by searching for maximal cliques in the FCG, i.e. clusters
of features that pairwise, highly co-occur as measured in terms of CCP. We found
out in the experiments that while these clusters do not directly correspond to types
of instances, because a number of overlaped clusters usually refer to the same type.
However, these clusters capture discriminative features that yield better results than
the TF-IDF method.

Algorithm. Computing value-level schema features can be performed in two steps,
namely computing G′ from G (FCG step) and extracting maximal cliques from G′

(MaxCliques step) as shown in Alg. 1. For computing G′, it firstly calculates the
probabilities p( fi| f j), which requires a maximum of |N| × |N| steps (simple counting)
for computing co-occurrence of fi and f j (because |N| is the maximum number of
instances that can have fi or f j). This has to be performed for all possible feature
pairs, a number bounded by |V| × |V|. An undirected edge θ( fi, f j) is created for G′

only when both p( fi| f j) and p( f j| fi) are greater then the given parameter θ. Note that
this is not the same as using the joint probability p( fi, f j), which is often high when
either p( fi) or p( f j) is high. This two-ways conditional probability gives a smoother
estimate of co-occurrence.

Then, an existing maximal cliques algorithm [91] is applied to this undirected ver-
sion of the FCG. While MaxCliques is known to be NP-hard, optimized algorithms
such as this one can provide fast runtime performance. The amount of edges in the
FCG is bounded by |V|2. The size of V is reduced through text processing techniques
such as stop words elimination. Further, a large amount of feature pairs is pruned

37



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

during the construction of the FCG, especially when θ is high.
Finally, only features corresponding to nodes captured by the resulting maximal

cliques are kept.

3.6 TYPifier

Existing clustering solutions represent instances as sets of features, e.g. those remain-
ing in V considered as value-level schema features. Then, clusters are treated as sets
of instances. Accordingly, cluster similarity (hence cluster operations such as merge) is
determined based on the similarity between the instance feature sets. We depart from
this view to model clusters directly as sets of (value-level)schema features, and compare
these feature sets to determine hierarchical relations (including similarity) between
clusters.

Definition 3.3 (Cluster). A cluster is a tuple C(F, N,S), with F = { f1, . . . , fi} being the
set of features ( fi is an element in the given set of all (value-level)schema features V, note we
overload notation here to use V as either value-level schema or schema features), N the set of
all instances that have an element in F as feature, i.e. N = {n : f ∈ F(n), f ∈ F}, and S the
set of clusters that are either child or descendant nodes of C (representing subtypes of the type
captured by C) in the hierarchy tree.

Example 3.3. Taking the data in Tab. 2.1 as an example. Assuming the schema features
set is F = {Platform,Media}, then we have N = {n8,n9,n10,n11}. Obviously, the
cluster corresponds to F and N refers to the type of Software that have two subtypes
Language Learning and Maps. Therefore, we can construct a cluster C(F, N,S), where
S includes two child nodes as the clusters corresponding to the types Language Learning
and Maps.

We firstly discuss how to compute relations, and then show how to obtain the
(value-level)schema feature representation of clusters in the presentation of the al-
gorithm.

3.6.1 Clusters and Cluster Relations

Relations between clusters are introduced to infer the type hierarchy. Given two clus-
ters Ci and Cj, Ci is either

• a parent (ancestor) of Cj, denoted as Ci > Cj (Ci� Cj), or

• a child (descendant) of Cj, Ci < Cj (Ci� Cj), or

• Ci and Cj represent the same cluster, Ci = Cj, or

38



3.6 TYPifier

Table 3.1: Cluster relations based on distance.
Relation Distance

Ci > (�)Cj d(Ci,Cj) > ε and d(Cj,Ci) < ε
Ci < (�)Cj d(Ci,Cj) < ε and d(Cj,Ci) > ε

Ci = Cj d(Ci,Cj) > ε and d(Cj,Ci) > ε
Ci 6= Cj d(Ci,Cj) < ε and d(Cj,Ci) < ε

• there is no relation between Ci and Cj, Ci 6= Cj.

Previously, we discussed how to use feature co-occurrence to determine the ones
that are characteristic for type clusters. To compute cluster relations from the data,
we leverage a similar intuition: we use pairwise cluster co-occurrence, i.e. feature sets
co-occurrence, to determine the distance between clusters, and based on that, their
relations.

Definition 3.4 (Cluster Distance). Let count( fi, f j) be the co-occurrence count of fi and
f j and |N f

E | be the count of instances having f as feature, the distance d(Ci,Cj) between the
clusters Ci and Cj is the conditional probability of co-occurrence of its feature sets Fi and Fj,

d(Ci,Cj) = p(Fi|Fj) =
∑ fi∈Fi , f j∈Fj

count( fi, f j)

∑ f∈Fj
|N f |

=
|Ni ∩ Nj|
|Nj|

, (3.1)

where Ni (Nj) is the instance set associated with Ci (Cj).

Two clusters are considered related when their feature sets Fi and Fj co-occur. Co-
occurrence here intuitively means that there are some instances, which have at least
one element in both Fi and Fj as feature. Equivalently, this means there exist some
instances that are in the intersection set of Ni and Nj. Thus, in other words, clusters
are related when their instance sets Ni and Nj overlap. Further, the conditional co-
occurrence probability p(Fi|Fj) captures the likelihood some instances to have also
some features in Fi when they have some features in Fj. Because a subtype inherits
the features of its parent and ancestors, a high value for p(Fi|Fj) (p(Fj|Fi)) can be
seen as an evidence that the corresponding cluster Ci is a parent or ancestor (child or
descendant) of Cj. Likewise, a low value for p(Fi|Fj) (p(Fj|Fi)) can be interpreted as a
counter-evidence for that parent or ancestor (child or descendant) relation.

Given the evidences that Ci is (1) a parent or ancestor and (2) not a child or descen-
dant of Cj, the relations Ci > (�)Cj is derived. Along the same line, other relations
are determined from this probability-based distance metric as shown in Tab. 3.1 (ε is
a given threshold parameter).

39



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

Example 3.4. Taking the data in Tab. 2.1 as an example. Assuming two clusters C1
and C2 that correspond to the schema feature sets F1 = {Platform,Media} and F2 =
{Language}, and the instance sets N1 = {n8,n9,n10,n11} and N2 = {N10, N11}, respec-
tively. According to Def. 3.4, we can calculate distances d(C1,C2) = 1.0 and d(C2,C1) = 0.5.
Then if we set ε = 0.6, we can get the relation C1 > (�)C2 (or C2 < (�)C1) according to
Tab. 3.1.

3.6.2 Relation-based Hierarchical Clustering

The relations between clusters decide their positions in the hierarchy tree. Exploiting
this, we propose a top-down hierarchical clustering procedure that in a depth-first
search (DFS) manner, constructs the tree starting from the root node. The root node
represents a virtual cluster that is associated with all features and comprises all in-
stances. In every iteration, a node from a fixed set of atomic clusters are merged with
or added as a child to the current node. An atomic cluster is constructed for every
feature f ∈V such that the number of all atomic clusters is |V|. The procedure simply
terminates when all atomic clusters have been assigned their positions in the tree. In
this way, clusters and the hierarchy tree naturally form without relying on the pa-
rameter K.

Algorithm Overview. The algorithm implementing this DFS procedure is shown
in Alg. 2. Firstly, the root node and atomic clusters C are initialized. Then, from every
child node of root, it performs DFS using the recursive formTree subprocedure. It
constructs a branch by merging and adding atomic nodes until no further child and
descendant nodes can be found for that branch. The set of input nodes C is pruned
to keep only those that are child or descendant of, or represent the same type as the
current root, denoted as S∗root. In every iteration, (1) a cluster C is removed from S∗root
and merged with or added as a child to the current root. The following additional steps
are needed in the case of addition: (2) splitting the clusters into those that are relevant
for branching from root, S∗root, and those that are relevant for its siblings, C \ S∗root, and
(3) splitting the instances into those that can be associated with C and those that belong
to its siblings.

Add or Merge. In every iteration, we use the following relations to focus on those
atomic nodes that are relevant for the current root:

Corollary 3.1. Let root be a node in the cluster hierarchy. A node C is a child or a descendant
of, or a node that represents the same type as root if C ≤ root.

Corollary 3.2. Given S∗root, the set of all possible child and descendant nodes of root, C ∈ S∗root
is a child of root if C < root and C ≥ Ci for all Ci ∈ S∗root.

Because all elements C ≤ root are included, Corollary 3.1 guarantees that S∗root cap-
tures all candidates needed to be considered for branching from root. Further, be-
cause S∗root is sorted, it can be derived from Corollary 3.2 that the top element must

40



3.6 TYPifier

Algorithm 2: Typify
Input: NE,V,maxDepth.
Result: root

1 //Initialize root node.
2 root := (V, N,∅);
3 C := ∅;
4 foreach f ∈ V do
5 //Construct a cluster for every feature.

6 C f := ( f , N f ,∅);
7 C := C ∪ C f ;

8 formTree (root, C, 1 maxDepth);
9 return root;

represent the same type or a child of C because there are no other elements in S∗root
that is a parent of C:

Theorem 3.1. If S∗root is sorted according to the distance to root, i.e. for the top element
C ∈ S∗root it must hold that d(C,root) ≥ d(Ci,root) for all Ci ∈ S∗root, then C ≥ Ci for all
Ci ∈ S∗root.

Proof. We have to show there is no element in S∗root that is a parent of C, i.e. there is
no Ci ∈ S∗root, where d(Ci,C) > ε and d(C,Ci) < ε.

Since S∗root is sorted, we have |C| ≥ |Ci|. Hence, we obtain count(C,Ci)/|Ci| ≥
count(C,Ci)/|C| and d(C,Ci) ≥ d(Ci,C), respectively. From this follows that when
d(Ci,C) > ε, then it must hold that d(C,Ci) ≥ d(Ci,C) > ε. Thus when d(Ci,C) > ε,
d(C,Ci) < ε does not hold.

Theorem 3.1 indicates that the top element C of S∗root is either of the same type as
the root or the direct child of the root. This result enables the reconstruction of the
hierarchy tree based on two operations, namely to add C as child to root or to merge
the two clusters. To perform the merge, i.e. C = root, the feature and instance sets of C
are combined with the corresponding feature and instance sets of root. The subtypes
of the resulting cluster, Sroot, do not change because C is an atomic cluster. When
C < root, C is a child and thus, can be added to Sroot (which as opposed to S∗root, does
not contain elements representing the same type as root).

Splitting Instances. When performing this addition, elements from C, NC, are re-
moved from Nroot, and later, added back to Nroot. Finally, the instance set of a cluster
root is computed as the union of the instance sets of all its children and descendants
in Sroot. Note that in the while clause, formTree keeps trying to add siblings of C
to root. The removal of NC from Nroot is necessary to ensure that instances already

41



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

Algorithm 3: FormTree
Input: root, C, d, maxDepth
Result: C.

1 //Initialize the subtypes of root.
2 S∗root := ∅;
3 foreach C ∈ C do
4 if C ≤ root then
5 //Keep only candidate subtypes.
6 S∗root := S∗root ∪ C;
7 C := C \ {C};

8 //If the recursion depth exceeds the maxDepth, the recursion
is terminated

9 if d > maxDepth then
10 return C

11 //While more children can be added to root.
12 while S∗root 6= ∅ ∧ Nroot 6= ∅ do
13 //Make sure next element is either same as or is CHILD of

root.
14 sort C ∈ S∗root by d(C,root);
15 C :=pop (S∗root);
16 //Merge.
17 if C = root then
18 Froot := Froot ∪ FC;
19 Nroot := Nroot ∪ NC;

20 //Add as child.
21 if C < root then
22 //Construct tree for every child of C.
23 S∗root :=formTree (C,S∗root,d + 1,maxDepth);
24 Sroot := Sroot ∪ C;
25 //Make sure siblings of C capture only instances not

already covered by C.
26 Nroot := Nroot \ NC;

27 foreach C ∈ Sroot do
28 //Construct instance set of C as union of instance sets

of its children/descendants.
29 Nroot := Nroot ∪ NC;

30 //Return clusters that are no subtype of root.
31 return C;

42



3.6 TYPifier

covered by C no longer have an effect on the construction of siblings of C. In partic-
ular, when sorting candidate siblings according to distance to root, only the instances
Nroot = Nroot \ NC are employed for the distance computation.

Splitting Clusters. S∗root serves as input for subsequent branching from C, which
becomes the root in the next iteration. Again, S∗root will be further refined to keep only
candidates for the new root C. On the other hand, C \ S∗root (the result of formTree)
serves as input for branching from siblings of C, i.e. S∗root :=formTree(C,S∗root). The
formTree procedure keeps trying to find siblings of C and add them as children to
root while the candidate set of clusters S∗root (and instances Nroot) are not empty.

Root
(Title, Price, Brand)

           Power                
Memory

CPU

1. Add & Split Clusters

3. Merge
4. Split  Instances

Power
Platform
Media

Memory
CPU
LED
HD

Coverage
Level

Language

S*root C
Empty

Platform
Media

Coverage
Level

Language

C
Memory

CPU
LED
HD

S*Power
LED
HD

C
CPU

S*Memory
Platform
Media

Coverage
Level

Language

C
LED
HD

S*Power
LED
HD

C
Empty

S*Memory1 2 3 4

0

2. Add & Split Clusters

Figure 3.2: Algorithm.

Example 3.5. Fig. 3.2 illustrates four representative steps of the algorithm. Assume Title,
Price and Brand have already been merged to form the cluster Product as Root. Since
all the other atomic clusters are children or descendants of this type, they are removed from C
and stored in S∗root (step 0). Then we have the following steps:

1. Add and split clusters. Power is at the top of S∗root, thus it is processed first. Because
Power<Root, it is added as a child to Root. Then, the algorithm continues to construct the
hierarchy for Power through a new recursion of FormTree with S∗root as input. Children
and descendants of Power are removed from C to form S∗Power. Now, C only contains children
or descendants of the siblings of Power.

2. Add and split clusters. Now, Memory is child of Power, which is added and split
once again. FormTree goes into a new recursion to form the hierarchy for Memory, where
S∗Memory only contains CPU as child and C contains LED and HD as siblings of Memory.

43



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

3. Merge. CPU and Memory are merged. This does not result in a new recursion.
4. Splitting instances. When S∗Memory is empty, the recursive construction of the hier-

archy for Memory ends. The algorithm goes back to the hierarchy construction of Power.
NMemory ∪ NCPU has to be removed from NPower to ensure that other children of Power have
no instance overlap with CPU and Memory. Memory and CPU have already been removed
from S∗Power, so it now contains only LED and HD. Then, the algorithm proceed to form hier-
archies for another child in S∗Power.

Termination. Clustering terminates when (1) S∗root or (2) Nroot is empty, i.e. there are
no further clusters or instances in clusters to be processed. Further, (3) it stops when
the top cluster C has no relation with the root, i.e. C 6= root (this relation implies that
neither merging, C = root, nor adding it as a child, C < root, is possible). When this
top cluster has no relation with the root, then it follows (because S∗root is sorted by the
distance to the root) that all the other clusters in S∗root must also have no relation with
the root (i.e. Ci 6= root,∀Ci ∈ S∗root). In other words, no elements in S∗root require further
processing (thus, this has the same effect as the first termination condition, S∗root =
∅). While it is not necessary for termination (which is ensured by the conditions
discussed before), a parameter maxDepth can be optionally employed to control the
depth of the hierarchy. (4) The algorithm also terminates when d > maxDepth.

Complexity. The time complexity of this procedure depends on the number of
operations needed for addition, merge, and splitting clusters as well as for splitting
instances. For every atomic cluster, every such operation is applied at most once.
Since an atomic cluster is generated for every feature, there is a total of |V| atomic
clusters. With addition or merge, elements in S∗root have to be sorted, which has as
complexity O(|V| log |V|) (because S∗root = V in worst case). For splitting clusters, we
iterate through all clusters in C (C = V in worst case) to find the children or descen-
dants of root, hence we have O(|V|). For splitting instances, all instances in Sroot are
added back and then removed from Nroot. Because Sroot = V in worst case, complexity
of this operation is the same as splitting clusters, O(|V|). Because all these operations
add or merge, splitting clusters and splitting instances may have to be performed
for every atomic cluster, total complexity is O(|V|2 log |V|+ |V|2 + |V|2). Note that
while the complexity of the proposed algorithm is dependent on |V|, the amount of
(value-level)schema features, the complexity of existing clustering solutions is based
on |NE|, the amount of instances. The problem of typifying structured data involves
a large amount of instances and especially in the Linked Data case, a much smaller
amount of (value-level )schema features.

3.7 Experimental Evaluation

Based on real-world datasets representing different scenarios, we present a system-
atic evaluation of the clustering techniques and compare them with TYPifier. In this

44



3.7 Experimental Evaluation

work, we focus on assessing the quality of the type semantics inferred and if applica-
ble, also the type hierarchy learned by the studied systems.

3.7.1 Datasets

We choose three datasets to capture the settings of (1) multiple-source heterogeneous
Linked Data on the Web, (2) single-source hierarchical and (3) schema-less data in
the enterprise (see Tab. 3.2 for overview). We keep only the instances for which type
information is known. This type information is then used as the ground truth for
evaluation.

Linked Data (BTC). The data used for this experiment is drawn from the
datasets prepared for the Billion Triple Challenge3. The data sample we
use for the experiment contains 334,661 instances from 5 datasets in the first
5 BTC chunks, namely www.uniprot.org, my.opera.com, www4.wiwiss.
fu-berlin.de, www.ebusiness-unibw.org and www.fao.org.

DBpedia (DBP). This dataset contains structured information extracted from
Wikipedia. It describes millions of things categorized in a hierarchy of types such
as person and its subtypes Scientist and Philosopher. We use a sample of
3,600 instances of 16 types, including 49,751 triples from DBpedia Infobox.

Product Data (P). This is a product dataset from Reposito, which crawls from dif-
ferent product Web sites and acquires from different data providers. It is made avail-
able to us via a company called Reposito. The sample we use includes 22,331 in-
stances of 6 types, which includes the types printer, mobile, vacuum cleaner,
speaker, monitor, and notebook. Although these instances are represented in
111,647 triples, instances of these types are associated with the same set of five at-
tributes. These schema features are not sufficient, hence we generate value-level
schema as well as TF-IDF features from a total of 18,917 words. In Tab. 3.2, we can
see that three corresponding versions of this dataset are used, PPS, PTFIDF and PD that
contain value-level schema and TF-IDF features, as well as all words, respectively
(the PS column in Tab. 3.2 denotes the number of these features).

Parameters. For all systems, we sweep over parameter configurations to obtain
the optimal parameters for every system as shown in Tab. 3.3. For K-Means++, the
number of clusters is set to the number of types as given in the ground truth. OPTICS
requires the two parameters minPts and γ to control the density that determines the
clusters. SVC relies on q, the kernel parameter. For BIRCH, we use different settings
for the diameter threshold T (with branching factor set to 10). With ε = 0.8, TYPifier
produces the best results. For DBP, for which a hierarchy of types is produced, the
maxDepth of TYPifier was set to 2. For generating value-level schema features, which
are used by all systems (the PPS dataset), the optimal parameter is θ = 0.35.

3http://challenge.semanticweb.org/

45

www.uniprot.org
my.opera.com
www4.wiwiss.fu-berlin.de
www4.wiwiss.fu-berlin.de
www.ebusiness-unibw.org
www.fao.org


Chapter 3 Typification: Inferring the Type Semantics of Structured Data

Table 3.2: Number of instances, triples, schema features (S), value-level schema fea-
tures (PS) and types and the depth of the hierarchy tree for each dataset.

Dataset Instance Triple S Type Hierarchy PS
BTC 334,661 2,991,411 537 163 0 -
DBP 3,600 49,751 146 16 5 -
PPS 22,331 111,647 5 6 0 136

PTFIDF 22,331 111,647 5 6 0 7,211
PD 22,331 111,647 5 6 0 18,917

Table 3.3: Optimal parameter settings.
Dataset TYPifier K-Means++ BIRCH OPTICS SVC

BTC ε = 0.8 k=18 T = 1.5 γ = 0.2 minPts = 12 q = 0.7
DBP ε = 0.8 k=10 T = 2.9 γ = 0.1 minPts = 48 q = 0.5
PPS ε = 0.8 k=6 T=0.73 γ = 0.1 minPts = 24 q = 0.45

PTFIDF ε = 0.8 k=6 T=4.5 γ = 0.1 minPts = 36 q = 0.3
PD ε = 0.8 k=6 T=5.3 γ = 0.1 minPts = 42 q = 0.2

3.7.2 Efficiency of Typification

As shown in Tab. 3.4, BIRCH, K-Means++ and TYPifier are the systems with the best
performance. Because the number of instances in BTC is more than ten times the
number of instances in the second largest dataset, the time needed for BTC is higher
than for DBP and PPS. While BIRCH is slightly faster than K-Means++ for DBP, BTC
and PPS, it is much slower for the other two datasets. The same observation can be
made for TYPifier, which is also slow in these two cases. Because these two datasets
contain much more features than the others, these results suggest that K-Means++ is
the most suitable one for dealing with high dimensionality. However, we will show
that schema and value-level schema features yield much better results than data-
level features. Since the number of features at the schema level is relatively small, the
ability to cope with high dimensionality is not crucial for this problem.

While BIRCH, K-Means++ and TYPifier provide performance in the range of min-
utes, OPTICS and particularly SVC belong to a different performance class, requiring
several days for computing results. In particular, while BIRCH, K-Means++ and TYP-
ifier scale linearly with the number of instances, the performance of OPTICS and SVC
drastically worsen as this number increases. This scalability is important because
datasets for which type information is needed may contain a very large number of
instances (e.g. Linked Data).

In summary, TYPifier is slower than K-Means++ especially when the number of

46



3.7 Experimental Evaluation

features is high. However, for low-dimensionality datasets, it performs relatively
well and most importantly, scales linearly with the number of instances just like K-
Means++ and BIRCH. Compared to this class of fast and scalable algorithms, TYPifier
has the benefit of producing better results as discussed in the following.

Table 3.4: Efficiency of typification in ms.
TYPifier K-Means++ BIRCH OPTICS SVC

DBP 3,992 3,756 3,395 88,825 7,405,503
BTC 190,542 126,983 97,763 >1day >1day
PPS 21,125 19,560 14,169 >1day >1day

PTFIDF 212,632 17,378 134,952 >1day >1day
PD 253,943 21,141 213,207 >1day >1day

3.7.3 Effectiveness of Typification

As shown in Tab. 3.5, TYPifier consistently outperforms other systems. Comparing
to the second best system in every dataset setting, we have the following improve-
ments in terms of precision, recall and F-measure respectively: +11.59%, +16.60% and
+20.02% increase for BTC, -4.32%, +45.47% and +43.94% for PPS, and -2.56%, +27.00%
and +37.81% for DBP. On overage, this translates to +1.57%, +26.10% and +33.92%
increase in precision, recall and F-measure, respectively. There are two exceptions
where the precision of TYPifier is slightly lower than SVC and OPTICS. However,
the poor recall levels exhibited by these systems for the other datasets suggest that
the achieved performance is not stable. We observe that the high precision in these
two cases (for DBP and PPS) results from the general tendency of these two solutions
to prefer fine-grained clusters. This strategy however, does not work for BTC.

It is important to note that the high quality results obtained by TYPifier (and
other systems) are due to the use of (value-level)schema features as proposed.
This is apparent in the differences between results obtained for PPS, PTFIDF and
PD. Clearly, PPS yields the best performance. This suggests the computed value-
level schema features are better indicators for types. For instance, for the types PC
and mobile phone, the corresponding sets of computed value-level schema fea-
tures are {WXGA, Windows, DVD, ethernet, ram, GB, wlan,...} and {GSM, WCDMA,
mobiltelefon, umts, nokia,...}, respectively. While these features correctly cap-
ture the types, PTFIDF contains features that have high importance for only some par-
ticular instances. For instance, the features T400 have high TF-IDF scores for some
instances, but do not characterize the type PC that these instances belong to well. PD
contains all features, hence also type indicators as well as non-type indicators.

The quality of the hierarchy tree obtained for DBpedia is indicated in Tab. 3.6. Mea-
sured in terms of tree edit distance, the hierarchy produced by TYPifier is closest to

47



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

Table 3.5: Effectiveness in terms of precision (P), recall (R) and F-measure (F). * in-
dicates the statistically significant improvements of TYPifier over the best
result achieved by the baselines (based on paired t-test with significance at
p < 0.05)

TYPifier K-Means++ BIRCH
P R F P R F P R F

DBP 95.02 80.11 86.93 62.68 63.08 62.88 90.69 33.25 48.66
BTC 77.22 79.41 78.30 44.47 68.10 53.80 47.92 22.69 30.80
PPS 95.56 71.95 82.09 52.38 49.46 50.88 77.02 17.31 28.27

PTFIDF 99.83 0.99 1.96 30.45 30.83 30.64 77.52 26.93 39.97
PD 99.79 1.32 2.61 43.20 43.33 43.26 42.78 45.50 44.10

OPTICS SVC chg% over second best
P R F P R F P R F

DBP 93.43 39.82 55.84 97.52 29.90 45.77 -2.56* +27.00* +37.81*
BTC 53.80 75.04 62.67 69.20 61.70 65.24 +11.59* +16.60* +20.02*
PPS 99.88 39.91 57.03 86.77 24.10 37.72 -4.32* +45.47* +43.94*

PTFIDF 96.70 9.16 16.73 95.56 13.58 23.78 +3.23* -96.79* -95.09*
PD 1.00 24.43 39.27 93.43 12.91 22.69 -0.21* -97.09* -94.08*

Table 3.6: Quality (tree edit distance) of hierarchy tree for DBpedia.
Typification OPTICS BIRCH

12 14 24

the ground truth. Fig. 3.3, 3.4, 3.5 and 3.6 show the given hierarchy tree as well as the
trees computed by TYPifier, OPTICS and BIRCH, respectively. Note that these algo-
rithms actually output clusters without labels. As discussed, for every cluster node,
the best matching class from the given class hierarchy is determined. In these figures,
the labels of these corresponding classes are used as cluster labels. Since a class might
be the best match for several clusters, it may appear several times in the computed
hierarchy tree. Clearly, there are qualitative differences that could not be captured by
the tree edit distance: while the quality difference in terms of this metric is only 2, the
result produced by TYPifier seems to be a much better match to the given hierarchy
tree than BIRCH’s result.

3.7.4 Parameter Sensitivity

Fig. 3.7 and Fig. 3.8 show the effect of θ. Higher θ means that the computed value-
level schema features more frequently co-occur with each other. Thus with higher θ,
value-level schema features become more representative. The counter effect is that
a lesser amount of features is used as value-level schema features. Benefiting from
more representative features, precision improves as θ increases. However, while re-

48



3.7 Experimental Evaluation

Eukaryot

Thing

Person

Animal Plant

Conifer Flowering
Plant

Grape

ScientistMonarch PhilosopherOfficeHolder

Work

Movie Television
Show

Written
Work

Book

Figure 3.3: Given Hierarchy (Ground Truth).

Eukaryote

Thing

Person

Animal Plant

Grape

Scientist

Monarch

PhilosopherOfficeHolder

Work

Movie Television
Show

Book

BookGrape Monarch

Figure 3.4: Hierarchy Generated by TYPifier.

Eukaryote

Thing

Animal Conifer

Philosopher

Monarch

Movie Book Eukaryote

Philosopher EukaryoteScientist Scientist

Figure 3.5: Hierarchy Generated by OPTICS.

Eukaryote

Thing

Person

Television
Show

MovieEukaryoteOfficeHolder Television
Show

10 clusters of 6 clusters of

Figure 3.6: Hierarchy Generated by BIRCH

49



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

call improves at low levels of θ, it evidently drops as θ becomes large and larger. The
number of features becomes too small to cover all the instances. When θ is larger than
0.5, there are no maximal cliques, hence also no value-level schema features. The best
results for all systems could be obtained with θ = 0.35.

0	  

20	  

40	  

60	  

80	  

100	  

0.1	   0.2	   0.3	   0.4	   0.5	  

Pr
ec
isi
on

	  

theta	  

TYPifier	  
KMeans++	  
BIRCH	  

Figure 3.7: The effect of theta on precision.

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  

0.1	   0.2	   0.3	   0.4	   0.5	  

Re
ca
ll	  

theta	  

TYPifier	  
KMeans++	  
BIRCH	  

Figure 3.8: The effect of theta on recall.

Fig. 3.9 and Fig. 3.10 show results for different values of ε. BTC and PTFIDF are not
sensitive to changes in ε. This is mainly because features in these two datasets are
less correlated. Then, changes in ε have less influence on the decision whether one
cluster should be added as child or merged with another. Otherwise, as ε increases,
TYPifier more aggressively adds clusters as children rather than merging them with
the current one. This strategy seems to work well for DBP and PPS because recall
consistently increases with higher ε, and precision is also high at a high value for ε.
However, this strategy has a negative effect on the quality of the hierarchy, which is
not captured by Figs. 3.9+3.10 . The larger ε, the less likely clusters are merged. Using
ε = 0.9 in particular yields a hierarchy containing many parent and child nodes that
actually represent the same type. The quality of the hierarchy is much higher at
ε = 0.8, which is one reason why it is the optimal parameter for TYPifier.

50	  

60	  

70	  

80	  

90	  

100	  

0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	  

Pr
ec
isi
on

	  

epsilon	  

DBP	  
BTC	  
P_PS	  
P_TFIDF	  

Figure 3.9: The effect of epsilon on preci-
sion.

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  

0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	  

Re
ca
ll	  

epsilon	  

DBP	  
BTC	  
P_PS	  
P_TFIDF	  

Figure 3.10: The effect of epsilon on recall.

50



3.8 Related Work

3.8 Related Work

DataGuide [50] and structure indexes [20, 63] in general, are derived through the pro-
cess of summarizing labeled paths in the data. A DataGuide is established by group-
ing together nodes sharing edge label sequences of incoming paths starting from the
root nodes. The size of this summary can get exponentially larger than that of the
original data graph. The structure index proposed in [20] can avoid this worst-case
exponential blow-up. Further size reduction can be obtained by considering only
paths up to a maximum predefined length k [63]. In principle, computing structure
summaries from data and inferring the types of instances in the data are two different
problems. Yet, grouping elements together based on schema features is actually simi-
lar to using edges (k = 1) for constructing structure indexes. However, the latter relies
on strict equivalences between edges while for typification, different distance mea-
sures for the similarity between schema features may apply. Further, schema features
are often too limited, hence might have to be derived from the data.

Conceptual clustering approaches are capable of generating hierarchical category
structures that group instances according to their class. One best-known approach
of conceptual clustering is COBWEB [47] which use category utility to evaluate the
quality of the hierarchy. The algorithm supports four operations which are merg-
ing two cluster, splitting a cluster, inserting a new cluster and passing an instance
down the hierarchy. It choses the operation for each instances by evaluating which
operation can maximize the category utility. The main differences between Typifier
and conceptual clustering is that Typifier process the (value-level) schema features
rather than instances. And in practice, the number of (value-level) schema features is
expected to be much less than the instances to be clustered.

For recovering the semantics of Web tables [73, 116], values in columns have to be
matched against a database of possible column labels. While the “column semantics”
is inferred from column values, type semantics are derived for entire tuples. When
there is a database of type labels, classification techniques are more appropriate. In
this work, we address the setting where type labels are unknown, hence clustering
techniques are more relevant.

The Quartet method [31] is a hierarchical clustering method, which uses a distance
matrix to generate a binary tree of minimum quartet tree cost. Further, a parameter-
free divisive hierarchical clustering approach has been proposed recently [125], which
is able to cluster categorical data and has the capability of subspace clustering.
Schema features can be seen as categorical information and hence, this approach can
also be used for typification. The drawback of this and the Quartet method is that the
output is a binary tree. Thus, they cannot generate the correct hierarchy when there
are more than two types that appear as siblings in the tree. Also, partitional and hi-
erarchical clustering have been combined [74]. This method partitions the input into
small subclusters and then merges the subclusters in a hierarchical way. It is tolerant

51



Chapter 3 Typification: Inferring the Type Semantics of Structured Data

to outliers but still requires the number of clusters as a core parameter. Also, arbi-
trary shaped clusters can be found through single-link based clustering [94]. There
is a recent method that improves the efficiency of DBSCAN [117]: first, it applies
clustering to derive prototype clusters called leaders and then it speeds up DBSCAN
by using these leaders to derive the density-based clusters. As discussed in the sur-
vey [126], other kinds of approaches including those based on graph theory, neural
networks and heuristic search-based optimization exist. For typification, we show
that good candidates include BIRCH because of its ability to find hierarchal clusters
and SVC since it is able to deal with high-dimensional data. Although SVC cannot
form hierarchies, it is able to automatically detect the number of types.

Another interesting direction is graph clustering. While the approaches studied
in this work use a flat vectorial representation of features, this type considers rich
structures in the graph. In this work, we focus on recovering types in the single table
setting and regard the use of information captured by foreign key relationships be-
tween tables, or the combination of attribute and structure similarity [130], as future
work.

Further, there are also clustering techniques proposed to detect overlapping clus-
ters. The mathematical formulation of determining clusters that may possibly be
overlapping was introduced in [6], which defines a cluster as a locally optimal sub-
graph with respect to a given metric. For instance, a cluster is locally optimal if the
its density cannot be improved with the removal or addition of elements. Connected
Iterative Scan is proposed [6] to find clusters with this local optimality. Clique Perco-
lation is proposed in [92], which attempts to discover clusters by identifying cliques
of size k. Two cliques are adjacent if they share k− 1 instances. Overlapping clusters
have also been detected by using the Gaussian Mixture Model [77], where elements
are assigned to multiple clusters with different probabilities. These techniques can
be used to support typification where instances may belong to different types. In this
work, we focus on the case where instances are associated with exactly one type (the
most probable type). Especially for use cases such as instance matching, we consider
this type information as most important. The fact that some instances may also be-
long to other types could also be useful in some applications, which we will study as
future work.

For learning value-level schema features, we use maximal clique algorithm to find
the words that co-occur together to describe a certain type of instances. The other
option to do this is using frequent itemsets mining [90]. Let the support of an itemset
(a set of words) be the proportion of instances in the dataset that contain the itemset
in the attribute values. We can learn the value-level schema features by finding all
the frequent itemsets with a certain minimum support. The main drawback of using
frequent itemsets mining is that it is difficult to find the correct value of the minimum
support. In practice we should set the minimum support to bellow the smallest pro-
portion of the size of every type. Otherwise, we cannot learn the value-level schema

52



3.9 Conclusion

features for the smallest type. However, since it is difficult to estimate the number of
types and the size of each type in the dataset, it is difficult to find the correct value
of the minimum support. Further, even if we know the value of minimum support,
we can still not learn the correct words for a type that contains much more instances
than the smallest type. For example, if 90% of instances are of type A and the rest
are of type B, we should set the minimum support to be below 10%, so that we will
not miss any features for B. However, using 10% as the minimum support to learn
the value-level schema features for type A can result in the problem that a number of
words that are not representative for A are also included in the result. Note in this
thesis we construct FCG using CCP that is not depended on the size of types. There-
fore we can avoid the drawback of frequent itemsets mining by applying maximal
clique algorithm on FCG to learn value-level schema features.

3.9 Conclusion

For the typification problem, we present solutions based on existing clustering al-
gorithms and TYPifier. In experiments, we show they perform best when using
schema and especially, automatically generated value-level schema features. TYPi-
fier is slightly slower but much closer to the class of the fastest clustering algorithms
than some other types of clustering algorithms that do not scale to large number of
instances. The benefit of TYPifier is that it provide superior results for the typification
problem: it yields better types as well as a higher quality hierarchy tree.

53





Chapter 4

Blocking: Learning Type-specific Blocking
Key and Key Value

Instance matching and blocking, a preprocessing step used for selecting candidate
matches, require determining the most representative attributes of instances called
keys, based on which similarities between instances are computed. We show that for
the problem of learning blocking keys and key values, both generic techniques that
do not exploit type information and supervised learning techniques optimized for
one single predefined type of instances do not perform well on heterogeneous Web
data capturing instances for which the predefined type is too general. That is, they actu-
ally belong to some types that are not explicitly specified in the data. We propose an
unsupervised approach for learning the type-specific blocking keys and key values. Com-
pared to state-of-the-art supervised and unsupervised learning approaches that are
optimized for one general type, our approach improves efficiency as well as result
quality. In particular, we show that the proposed strategy of learning type-specific
blocking keys and key values improves both blocking and instance matching results.

Outline. We provide the introduction and contribution in Sec. 4.1 and Sec. 4.2.
Then we give an overview of the problem and solutions in Sec. 4.3. The discussion
of how Typifier is applied for blocking is shown in Sec. 4.4. The learning of keys and
key values specific to these types is discussed in Sec. 4.5. We present experiments in
Sec. 4.6, related work in Sec. 4.7, and conclusions in Sec. 4.8.

4.1 Introduction

To deal with the high computation complexity of instance matching, blocking ap-
proaches are designed to efficiently filter out non-matches, while generate instance
pairs that are most likely to be matches. One main challenge behind the blocking is
to find a few representative attributes (e.g. title), based on which the similarity
between instances can be computed. These attributes and their values (so-called keys
and key values) are not only needed for blocking, which uses a few simple blocking keys
to quickly determine candidates and group them together in blocks, but also for the

55



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

instance matching task in general. Blocking is usually performed as a quick candi-
date selection step that involves boolean matching, while instance matching employs
fuzzy similarity matching with fine-tuned similarity thresholds to further refine the
candidates in the blocks.

State-of-the-art approaches for finding blocking keys assume a given schema,
which describes the types and attributes associated with instances of these types.
Given a particular type, its attributes, and training data for that type, existing ap-
proaches derive keys or more complex similarity matching function predicates that
capture the keys as well as the similarity metrics and thresholds [14, 24, 83, 112, 113].
Not relying on training data, an unsupervised approach has been proposed recently
to select attributes as keys based on their discriminability and coverage [108]. Ba-
sically, the discriminability of an attribute is measured by the diversity of its values
such that low-discriminability means that many instances have the same values on
that attribute. The coverage of an attribute refers to the number of instances that have
that attribute. Intuitively, attributes shall be selected and used as keys when they are
covered by many instances and also, discriminate them well. Finding keys in this su-
pervised or unsupervised fashion is however problematic when the given instances
actually belong to multiple unknown types.

The type information in the structured data maybe either not specified or too gen-
eral to be useful. The current supervised solution [14, 24, 83, 112, 113] to that problem
is to treat instances as belonging to one single type and learn blocking keys that are
applicable to all of them, e.g. keys for all Product instances. Intuitively, when deal-
ing with instances of the type Computer (n4, n5, n6, and n7 in Tab. 2.1), keys specific
to Computer might be more useful (e.g. Model) than keys learned for Product (e.g.
Title). However, when learned for a single big Product table, such computer-
specific keys might not be selected because they are not applicable to many table
records.

As an alternative to these schema-based supervised learning solutions, a schema-
and type-agnostic approach has been recently proposed to deal with heterogeneous
Web data. This approach does not exploit attributes (of specific types) for building
keys, but instead, uses unstructured bags of features that can be extracted from the
attribute values as key values [93]. They are simply composed of features that do
not come with attribute information. Instances are considered similar when their key
values overlap, i.e. they have some features in common.

4.2 Research Question and Contributions

In this chapter, we study the problem of the generation of match candidates and
address the following research question:

Research Question 2. How can match candidates be efficiently and effectively generated?

56



4.3 Overview

On of the typical approaches to generate match candidates is blocking, which splits
the original data sources into small blocks according to some criteria called blocking
key, e.g. the title of two products data sources. Only the instances that are in the
same block, i.e. the instances that have the same value of the blocking key, will be
further compared in detail. We propose an unsupervised approach to learn the type-
specific blocking keys and key values in this chapter and examine it with respect to
the following hypothesis:

Hypothesis 2.1. Match candidates can be efficiently and effectively generated by a blocking
approach that uses discriminative type-specific attributes and values as blocking keys and key
values.

In this chapter, we show that considering the type of instances and the attributes
the type captures significantly improves the quality of the results achievable with the
schema-agnostic approach [93]. In particular, the quality improves when instead of
using the general type [24, 108, 109], blocking keys are learned for specific types of
instances in the data. To this end, we propose an unsupervised approach that relies
entirely on the data for learning keys and key values specific to these types:

• Learning type-specific keys. We propose to leverage the dependencies among at-
tributes at the level of values. We infer that an attribute a provides more similarity
evidences than attribute b, when the value of b are more depended on the value
of a, i.e. more instances have the same value of b, given they all have the same
value of a.

• Learning type-specific key values. We propose an approach to select words
which are discriminative for instances as key values. Those key values are able
to lead to high quality blocking result.

In experiments, we show how this approach can be used for blocking and instance
matching. Compared to state-of-the-art instance matching approaches, our solution
greatly improves result quality (up to 201.56% improvement in terms of F-measure).
Results are also promising when considering the blocking task only. Our approach
yields up to 32.62% improvement in terms of reduction ratio over existing solutions
for blocking [108]. It is also time efficient when compared against approaches that
achieve similar result quality. Compared to the approach that yields second best
result quality, our approach is up to several times faster w.r.t. blocking, and achieves
similar performance w.r.t. instance matching.

4.3 Overview

In this chapter, we use the definitions of data and its example that was first given in
Section 2.1. For ease of reading, we repeat some important definitions here.

57



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

Definition 3.1 (Conditional Co-Occ. Probability). The probability that fi and f j co-occur,
given f j is

p( fi| f j) = p( fi, f j)/p( f j) = count( fi, f j)/|N f j |,

where N f j = {n ∈ N : f j ∈ F(n)} denotes all instances having f j as feature, and

count( fi, f j) = |N fi ∩ N f j |,

the co-occurrence count of the two features fi and f j.

Definition 3.2 (Feature Co-Occurrence Graph). Given the vocabulary of features V, the
feature co-occurrence graph is a labeled directed graph G′ = (U′, E′, L′), with nodes u∈U′

stand for features in V and edges w(ui,uj) ∈ E′ capture the co-occurrence between the two
features fi and f j, where edge labels stand for the conditional co-occurrence probabilities,
w = p( fi| f j).

Definition 3.3 (Cluster). A cluster is a tuple C(F, N,S), with F = { f1, . . . , fi} being the
set of features ( fi is an element in the given set of all (value-level)schema features V, note we
overload notation here to use V as either value-level schema or schema features), N the set of
all instances that have an element in F as feature, i.e. N = {n : f ∈ F(n), f ∈ F}, and S the
set of clusters that are either child or descendant nodes of C (representing subtypes of the type
captured by C) in the hierarchy tree.

Definition 3.4 (Cluster Distance). Let count( fi, f j) be the co-occurrence count of fi and
f j and |N f

E | be the count of instances having f as feature, the distance d(Ci,Cj) between the
clusters Ci and Cj is the conditional probability of co-occurrence of its feature sets Fi and Fj,

d(Ci,Cj) = p(Fi|Fj) =
∑ fi∈Fi , f j∈Fj

count( fi, f j)

∑ f∈Fj
|N f |

=
|Ni ∩ Nj|
|Nj|

, (3.1)

where Ni (Nj) is the instance set associated with Ci (Cj).

Definition 2.4 (Find Blocking Keys and Key Values). Given the data graph G(U, E, L),
we find a conjunction of Boolean function predicates (called blocking scheme)

∧
e∈L∗ ∼e

V
where∼e

V : Ue
V ×Ue

V→{true, f alse}, Ue
V ⊆UV ⊂U denotes the values of some keys e∈ L∗,

and L∗ ⊂ L is the set of blocking keys. Blocking maps every instance ni ∈ N to a subset
NBi ⊆ N, an equivalence class of instances (instances, that according to the blocking scheme,
are equivalent to ni) called block: NBi = [ni] = {nj ∈ N : ni,nj ∈ N,

∧
e∈L∗ ∼e

V (ni,nj) =
true}.

In this chapter, we focus on finding blocking keys and their value representation
in the blocking context. We consider the case where the data might contain instances
belonging to multiple unknown types. Our solution is that only the best ranked at-
tribute determined for every type is used as key and non-value-level schema features

58



4.4 Learning Types

are extracted from its value as key values. As value-level schema features character-
ize a set instead of individual instances, they are considered less useful for finding
similar instances and thus, are excluded from the value representation.

For finding blocks, there are two strategies: one is to iterate through the instances,
as proposed recently [108]; using the features in the key value of a given instance,
candidates are retrieved for that instance (instance-based). The alternative is to iterate
through all features that appear in the instances’ key values, and to retrieve all the
candidates for a given feature (feature-based). For our approach, we use the feature-
based strategy and apply value overlap as similarity measure.

Example 4.1. Take the data in Tab. 2.1 as an example. Consider the attribute Title as the
blocking key and the attribute value as the key value. Instance-based approaches iterate all the
instances to find blocks. For example, for instance n5, there are three features Sony, VAIO
and SVF14212CXW in the key value. Then we find n1 - n6 are in the same block because
they all have at least one of these features in their key values. On the other hand, feature-
based approaches iterate all the words that appear in the values of Title to find blocks. For
example, for the feature VAIO, it find n4, n5 and n6 are in the same block because they all have
the feature in Title.

Additionally, we show that the type-specific attributes and key values are also use-
ful for instance matching. Similar to blocking, different attributes values are used for
different types. We use Jaccard similarity as measure where the threshold is learned
using an existing technique [119].

4.4 Learning Types

We note that the hierarchy of types introduced in Chapter 3 may not be suitable for
blocking. Not only does the learning of hierarchy require more computational ef-
fort, it also yields types too fine-grained that have only low coverage of the instances.
Here, we introduce the technique used in this chapter to learn a set of types, as op-
posed to a hierarchy of types.

Note the value-level schema features are identified by searching for maximal
cliques in the feature co-occurrence graph, i.e. clusters of features that pairwise,
highly co-occur as measured in terms of conditional co-occurrence probability. Every
maximal clique represents a cluster of features (i.e. a set of features) that are specific
to a particular set of instances. We observe that these clusters are too fine-grained,
hence do not directly correspond to the types given in the data. Hence we merge
them to form larger clusters capturing types.

Two clusters Fi and Fj are merged when they highly co-occur, i.e. are close to each
other in terms of cluster distance. Equivalently, this co-occurrence means there is a

59



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

strong overlap between the instances Ni that have some element in Fi and the in-
stances Nj that have some element in Fj as features. Using this distance metric, we
merge two clusters Fi and Fj when the d(Fi, Fj) > ε and d(Fj, Fi) > ε, where ε is a pa-
rameter used to control the granularity respectively the number of clusters. Clusters
resulting from this merging are used as types. In particular, given the resulting clus-
ter Fi, the set of instances that belong to the type captured by Fi is simply Ni, i.e.
instances that have some elements in Fi as features.

We note that just like the types that are learned in Chapter 3, the learning of types
above also makes use of value-level schema features. However, in Chapter 3 it re-
quires complex hierarchical relations between and operators on clusters to perform
hierarchical clustering. The method above only uses the distance metric and applies
cluster merging as the only operator. When doing hierarchical clustering, not only
the features but also the instances representing the clusters have to be processed. For
this, features and instances not only have to be merged but also might be added or
spitted during the hierarchy construction process. Here, we only need to compute a
set of clusters, where the computation stops after merging the clusters represented
by the features. Only then, instances have to be considered, i.e. we simply group
instances together that are associated with value-level schema features representing
the same cluster.

We will now introduce the method to learn keys for a specific cluster and use them
for blocking instances that belong to that cluster.

4.5 Learning Keys and Values

The keys are selected based on their ability to discriminate instances, measured in
terms of a notion we call instance similarity, while the value representation excludes
the value-level schema features computed before because they characterize a set (the
type of) instances rather than individual instances.

4.5.1 Blocking Key Selection

Intuitively, attributes that are more useful in discriminating instances shall be selected
as keys. Because keys capture similarity (thus are called similarity attributes), we in-
troduce a notion of instance similarity that distinguishes attributes by their ability to
discriminate instances, measured by the number of similarity evidences they provide:

Definition 4.1 (Attr.-specific Instance Similarity). Given G(U, E, L) and the similarity
relations ∼N and ∼V that indicate any two instances in N and any two attribute values in
UV ⊆U are similar, respectively, the instance similarity of an attribute e is measured as the
number of instances in N that are similar, given they all have a similar value for attribute a,

60



4.5 Learning Keys and Values

i.e. s(a) = |{n : n,m ∈ N,m ∼N n,v(a,m)∼V v(a,n)}|, where v(a, x) refers to the value of
the attribute a of the instance x.

Note that this notion reflects the intuition behind existing learning-based ap-
proaches [14, 24, 83, 112, 113], which aim to learn keys that maximally separate pos-
itive examples from negative ones, i.e. keys that lead to a large amount of correct
matches (high s(a)) when applied against training data. However, obtaining repre-
sentative examples (for unknown types) is difficult. Thus, we propose to estimate in-
stance similarity based on the dependencies among attribute values that can be observed
in the data:

Definition 4.2 (Dependency). The strength of dependency of an attribute ai from an
attribute aj, denoted d(ai, aj), is inverse to the amount of information carried by values
of ai, given the values of aj are known. Given G = (U, E, L), d(ai, aj) is measured as
the entropy of the values of ai, Uai

V = {uy|ai(ux,uy) ∈ E}, conditional on values of aj,
U

aj
V = {uy|aj(ux,uy) ∈ E}:

d(ai, aj) = (1 + H(Uai
V |U

aj
V ))

−1 (4.1)

=

1 + ∑
uj∈N

aj
V

p(uj)H(Uai
V |U

aj
V = uj)


−1

=

1 + ∑
ui∈U

ai
V ,uj∈U

aj
V

p(ui,uj)log
p(ui)

p(ui,uj)


−1

(4.2)

Example 4.2. For the attributes of the type TV given in Tab. 2.1, we obtain
d(Manufacturer,Title) = 1 and d(Title,Manufacturer) = 0.73. It can be easily
observed in the data that given Title, it is easier to predict the value for Manufacturer,
while given Manufacturer there are many products with different values for Title.

When an attribute aj is strongly dependent on an attribute ai (d(aj, ai) is high),
it means that if instances have the same value for ai then the probability they also
have the same value for aj is high. In particular, the conditional entropy used
above implies that for any two instances ni and nj, d(ax, ai) > d(ax, aj) means the
probability ni and nj have the same value for ax when they have the same value
for ai, is higher than the probability ni and nj have the same value for ax when
they have the same value for aj, i.e. p

(
v(ni, ax) = v(nj, ax)|v(ni, ai) = v(nj, ai)

)
>

p
(
v(ni, ax) = (nj, ax)|v(ni, aj) = v(nj, aj)

)
.

We note this notion of dependency correlates with instance similarity: namely, the
more other attributes are dependent on a, the higher the amount of evidences a can

61



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

provide (higher s(a)) and hence, the less the amount of additional evidences the other
attributes can contribute. We exploit this correlation to estimate s(a) as follows:

Proposition 4.1. Let Agg : 2R+→R+ be a monotonic aggregation function and LF
E be the set

of attributes associated with the type F. For two attributes ai, aj ∈ LF
E, if Agga∈LF

E
(d(a, ai))≥

Agga∈LF
E

(
d(a, aj)

)
then we have s(ai) ≥ s(aj).

Proposition 4.1 enable us to rank the instance similarity of an attribute a via the
rank of the aggregation strength of the dependencies of all the other attributes from
a. Alg. 4 computes the instance similarity for every attribute in LF

E that is associated
with a given type F, and stores it in S. Selecting the set of blocking keys L∗ is simply
done by sorting S and keeping the top ones with highest instance similarity. In the
experiments, we find that we can achieve high quality blocking result by only using
the top-1 attribute as the blocking key, i.e. L∗ consists of exactly one attribute.

First, Alg. 4 computes d(ai, aj) for every pair of attributes to construct the matrix
M. Every combination of values for ai and aj has to be considered to derive the
probabilities p(ui) and p(ui,uj). At most, these steps of probability computation have
to be performed |Namax

V | × |Namax
V | times (amax denotes the attribute in the data that is

associated with the largest number of values). We choose the sum of dependencies as
an aggregation function for selecting similarity attributes. Then, instance similarities
stored in S can be derived from the sums of row values in M. Since probabilities as
well as the sums of dependency values in M can be computed in time linear to the
size of G, we have this as overall complexity:

Theorem 4.1. Given G = (U, E, L), S can be computed in O((|Uamax
V | × |Uamax

V |)|LF
E|×|LF

E|).

Thus, the selection of blocking key can be performed in polynomial time, bounded
by the maximum number of instances and values associated with an attribute, and
the amount of attributes. In practice, these bounds can be reduced substantially: not
all attributes are relevant for blocking. For instance, strategies for ranking and filter-
ing attributes (e.g. attributes too general or too type-specific to be useful for blocking)
can be applied. Further, we note that just like other learning algorithms, a smaller
amount of representative samples may be chosen instead of using all instances and
values. Even without these strategies, the proposed algorithms scale well to large
datasets in our experiment.

4.5.2 Key Value Selection

The idea behind selecting keys also applies for the selection of key values: they
should help to discriminate instances. Value-level schema features characterize a set
of instances well but are less useful in discriminating individual instances. As a re-
sult, while they help to identify types, they are less useful in identifying blocks of
similar instances, as illustrated by the following example:

62



4.5 Learning Keys and Values

Algorithm 4: Computing instance similarities
Input: G(G, E, L).
Data: H(Uai

V ,U
aj
V ),|LF

E| × |LF
E|matrix M.

Result: S.
1 foreach ai ∈ LF

E ⊂ L do
2 foreach aj ∈ LF

E ⊂ L do
3 foreach ui ∈Uai

V = {uy|ai(ux,uy) ∈ E} do
4 foreach uj ∈U

aj
V = {uy|aj(ux,uy) ∈ E} do

5 H(Uai
V ,U

aj
V ) = H(Uai

V ,U
aj
V ) + p(ui,uj)log p(ui)

p(ui ,uj)
;

6 Mij = (1 + H(i, j))−1;

7 foreach a ∈ LF
E ⊂ L do

8 Sa = s(a) = ∑1≤i≤|LF
E|

Mai ;

9 return S;

Example 4.3. There are two Product instances with the Title “Sony Fit Series VAIO
SVF14214CXW laptop” and “Sony VAIO SVF14212CXW”. When using all the words in
Title as key values, these two instances exhibit an overlap and thus, would be placed in
one block. However, after excluding value-level schema features such as Sony and VAIO,
features that remain such as SVF14214CXW and SVF14212CXW are more specific to these
two instances (rather than the class they belong to).

Thus, value-level schema features associated with a type are excluded from the
value representation of keys that have been selected for that type.

In summary, the output of the two steps discussed before is a blocking scheme for
every type F, which consists of the attribute as key that has highest instance similarity.
The key value representation contains all features from its value except those that are
in the set of value-level schema features.

Example 4.4. Take the data in Tab. 2.1 as an example. We can find the instances n4, n5, n6
and n7 are of the same type Computer. Then among all the four attributes, we use Title as
the blocking key, sincie it is the best in term of instance similairity. Further, we can calculate
that the words Sony and VAIO are value-level schema features, so they are excluded from the
key values. Finally, we find instances N4 and n6 are in the same block because they share the
same key value SVF14214CXW.

63



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

4.6 Experimental Evaluation

Our work mainly addresses scenarios where type information is missing. To study
the proposed solution, we employ a recent instance matching benchmark [66] that
captures data from enterprise databases. We show that recognizing subtypes and
learning type-specific attributes and values improve both efficiency and the quality
of results. Compared against the best blocking baseline, our approach is up to
several times faster and improves result quality measured in terms of reduction ratio
(RR) by up to 32.62%, while maintaining similar results for pair completeness (PC).
Considering the instance matching task, our solution, when used in combination
with standard solutions for other tasks, improves F-measure result by up to 201.56%.

4.6.1 Datasets and Matching Tasks

We now briefly describe the datasets and matching tasks in the benchmark [66] that
are used here. They cover the bibliographic and e-commerce domains. Tab. 4.1 pro-
vides an overview of these datasets.

Table 4.1: For each dataset pair: number of instances, words that appear in attribute
values, value-level schema features (PS), and mappings indicating two in-
stances are same (ground truth, GT).

Task
Instances

Words PS GT
Dataset1 Dataset2

AB 1,081 1,092 7,040 163 1,097
DS 2,616 64,263 89,189 386 5,347

DBLP-Scholar (DS). These datasets include data from DBLP (2,616 instances) and
Google Scholar (64,263 instances). The attributes and values in Google Scholar are
automatically extracted from full-text documents, hence contain a number of mis-
spellings and heterogeneous representations of authors and venues. Because one
instance in DBLP can be mapped to multiple instances in Google Scholar, the number
of grount truth is larger than the number of instances in DBLP.

Abt-Buy (AB). This matching task is performed between instances of the prod-
uct dataset from http://abt.com (1,081 instances) and http://buy.com (1,092
instances). Although all the products are stored in the same tables, they actu-
ally represent different types of products, including computer, cell phone, and
wash machine. Compared to the other matching tasks featured by this benchmark,
the one captured by this pair of datasets is in fact most representative for our scenario
of heterogeneous data with multiple unknown types.

64

http://abt.com
http://buy.com


4.6 Experimental Evaluation

4.6.2 Experimental Setting

In the experiments, we select the four approaches [24, 93, 108, 109] as discussed before
as baselines.

Systems. The first two approaches are recent approaches proposed for blocking,
while the other twos are state-of-the-art solutions targeting the instance matching
task. The first one is the type- and schema-agnostic approach (Agnostic), which
treats instances as unstructured bags of words extracted from attribute values [93].
The second approach is the unsupervised solution for learning keys based on ranking
attributes by discriminability and coverage [108] (Unsupervised). It requires setting
two parameters: α is used to control the discriminability of a key and β determines if
a key should be removed. We swept over parameters and used the optimal configu-
rations with α = 0.9 and β = 0.5. For instance matching, we use a supervised learning
approach, which infers the attributes, similarity thresholds etc. from positive and
negative examples [24] (Supervised). We use 10% of the matching instance pairs as
positive examples, and negative examples are given by randomly generating pair of
instances that apper in positive examples [60]. Finally, we use a recent approach,
which iteratively cross-fertilizes instance matching results with schema matching re-
sults [109] until convergence (PARIS). The maxinum number of iterations is set to
5, while PARIS always terminated in less than four iterations in the experiments.
PARIS’s implementation is available for download. We use that PARIS Java imple-
mentation for the experiment, while the other systems were implemented in Java 5.

40	  
45	  
50	  
55	  
60	  
65	  
70	  
75	  

0.07	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	  

Pe
rc
en

ta
ge
	  (%

)	  

theta	  

Precision	  
Recall	  
F-‐measure	  

Figure 4.1: The Effect of θ on Effectiveness.

40	  
45	  
50	  
55	  
60	  
65	  
70	  
75	  

0.
07
	  

0.
1	  

0.
2	  

0.
3	  

0.
4	  

0.
5	  

0.
6	  

0.
7	  

0.
8	  

0.
9	  

Pe
rc
en

ta
ge
	  (%

)	  

epsilon	  

Precision	  
Recall	  
F-‐measure	  

Figure 4.2: The Effect of ε on Effectiveness.

We compare these approaches against our solution, called TYPiMatch. To solve the
task of finding similarity threshold, TYPiMatch applies an existing mechanism that
exploits redundancy between thresholds [119]. Also for TYPiMatch, we swept over
parameters to find the optimal configuration such that the results presented in these
experiments, represent best performances of the studied approaches. As parameters,
TYPiMatch uses θ and ε to control the amount of value-level schema features and
clusters, respectively. The effect of these parameters are shown in Figs. 4.1 and 4.2.
Higher θ results in less value-level schema features. We observed that as θ increases,
precision decreases and while recall decreases in the beginning (for small values of

65



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

θ), it also increases with larger values for θ. With less value-level schema features
available for pruning key values, instance representations contain more features for
classes. Using them to find similarity yields more matches (high recall) including
incorrect ones (low precision). High ε prevents clusters from being merged. Thus, as
ε increases, the number of clusters increases. To accommodate the increasing number
of clusters that are also more fine-grained, TYPiMatch employs a large number of
schemes. As a result of this, precision increases while recall decreases. Thus, these
two parameters can be used to control the tradeoff between precision and recall. The
results presented in the following are for the configuration ε = 0.07 and θ = 0.1.

All experiments were run on a server with two Intel Xeon 2.8GHz Dual-Core CPUs,
using 8GB of main memory, running Linux with kernel version 2.6.18.

4.6.3 Efficiency of Blocking

Table 4.2: Performance of learning blocking keys in ms.
TYPiMatch-Type TYPiMatch-Key Unsupervised

Abt
4,572

1,041 1,069
Buy 895 1,192

DBLP
42,262

1,679 1,952
Scholar 10,639 9,661

Tab. 4.2 shows learning times only for TYPiMatch and Supervised because Agnos-
tic simply uses all attributes as keys. Both approaches yield good and fairly compa-
rable performances, requiring only a few seconds to output the keys. We can see that
TYPiMatch was slightly faster in learning keys (TYPiMatch-Key), which excludes the
times needed to infer the types in the data (TYPiMatch-Type). Unsupervised iterates
through the data graph and considers all instances to calculate the discriminability
and coverage for each property. Thus, learning time for Unsupervised increases with
the size of the dataset. This is also the case with TYPiMatch. It uses dependencies
for key selection. Given an attribute, it inspects values associated with instances to
calculate dependencies. However, only values owned by more than one instance
are relevant. Thus, processing was faster for datasets that contain less duplicate val-
ues. Also, we can see that inferring types could be done efficiently. As shown in the
TYPiMatch-Type column, this could be done in 4,572 ms for AB, and 42,262 ms for
DS.

Tab. 4.3 shows blocking times for all three approaches. Note that blocking perfor-
mance depends on two tasks: (1) retrieving candidates from the index and (2) per-
forming pair-wise similarity computation to filter these candidates. As discussed, an
instance-based [108] or a feature-based strategy can be used for candidate retrieval.
While Unsupervised uses the former, the other two approaches employ the latter.

66



4.6 Experimental Evaluation

Table 4.3: Performance of blocking in ms.
TYPiMatch Agnostic Unsupervised

AB 9,635 27,208 18,243
DS 95,254 882,626 491,569

TYPiMatch yields best performance while Agnostic is clearly worst. The latter is
slow because it employs all words extracted from all attribute values, whereas the
other two approaches only use words extracted from the keys. Compared to the
baselines, TYPiMatch benefits from decomposing the dataset into n types. Because
blocking is performed separately for every type, the number of retrieval operations
needed equals the number of distinct features associated with every type. The total
number of features for all types combined is higher than the number of distinct
features for the single general type. Accordingly, the total number of retrieval oper-
ations is higher for TYPiMatch. However, the total number of candidates retrieved
for all type features was lower than the total number of candidates retrieved for the
general type features. Therefore in total, TYPiMatch spends less time in computing
matches. In fact, this can be seen as a “blocking within blocking” strategy, where the
data is partitioned into blocks corresponding to types, and subsequently, is further
decomposed into more fine-grained blocks. However, we already pointed out in
Section 2 that types and blocks resulting from standard blocking are different in
many aspects.

4.6.4 Effectiveness of Blocking

Table 4.4: Effectiveness of blocking in terms of PC and RR, * indicates statistically sig-
nificant improvements of TYPiMatch over the best baseline, Unsupervised
(paired t-test, p<0.05).

TYPiMatch Agnostic Unsupervised chg% over second best
PC RR PC RR PC RR PC RR

AB 86.14 94.17 85.96 26.45 87.05 71.01 -1.04* +32.62*
DS 98.33 99.64 98.43 93.16 99.93 96.20 -1.60* +3.58*

Tab. 4.4 presents total results for blocking effectiveness for the comparison between
our solution and the other two unsupervised approaches. TYPiMatch largely outper-
forms these two in terms of RR and achieves comparable results for PC. Compared
to the second best approach in every setting, TYPiMatch results in -1.32% decrease
in PC and and +18.10% increase in RR on average. Intuitively, instances which re-

67



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

fer to the same real-world object should belong to the same type. Thus, learning the
blocking scheme for every type should be possible without losing PC. However, the
scheme obtained for every type is more specific and thus, can improve RR. The re-
sults show this is indeed true for the matching tasks in the benchmark, as TYPiMatch
yields high quality types that can be used to preserve PC and improve RR. In partic-
ular, we note it produces the largest improvement for the AB task. This is because
for products captured by these datasets, there exist many different types that exhibit
different vocabularies of features. TYPiMatch is able to infer these types and to adopt
distinguished words for matching instances with these types. For the DS task, which
involves datasets that are well maintained and fairly homogeneous (contain only in-
stances of type Publication), TYPiMatch achieves a small improvement.

4.6.5 Efficiency of Instance Matching

Table 4.5: Performance of learning instance matching schemes and executing them in
ms.

Learning Instance Matching
TYPiMatch Supervised TYPiMatch Supervised PARIS

AB 2,369 2,784 24,527 66,856 18,373
DS 6,281 5,726 101,070 229,833 70,479

For instance matching, this version of TYPiMatch also includes the mechanism for
learning thresholds [119]. The overall time needed by TYPiMatch and Supervised
include the time for learning learning keys, key values and thresholds. Additionally,
the time need by Supervised also includes that for capturing the weights, are shown
in Tab. 4.5. These two approaches achieve similar performance. However, Super-
vised’s learning process is non-deterministic. In our experiments, it often did not
finish after several hours. This problem has been discussed before [119], which oc-
curs especially when there is a large numbers of attributes that are considered to form
the schema. The results presented for Supervised is an average over five successful
runs.

Tab. 4.5 also shows the performance for instance matching. The process imple-
mented by TYPiMatch for this is similar to the one used for blocking: it consists of
feature-based retrieval of candidates and then, for matching them, Jaccard similar-
ity as well as the learned thresholds are employed. As discussed, due to the use
of types, this processing resembles a “blocking within instance matching” strategy.
TYPiMatch retrieves candidates for type features and matches these type candidates.
We can see this strategy yields better performance when analyzing the differences
between TYPiMatch and Supervised. While the learning techniques they employ are

68



4.6 Experimental Evaluation

different, the resulting scheme employed by both these approaches for matching are
of the same type, i.e. keys, values and thresholds (and weights). For example, both
approaches can output a schema in the form like "two instances in DB are the same
if the Jaccard similarity of Title is greater than 0.95". Just like TYPiMatch, Super-
vised applies feature-based candidate retrieval and uses such a scheme for matching.
However, TYPiMatch needs only half of the time taken by Supervised. For exam-
ple, it only cost TYPiMatch 24,527 ms to match the instances in AB, while Supervised
spends 66,856 ms for instance matching. This is because TYPiMatch retrieves and
matches instances belonging to types (using different schemes), Supervised applies
its scheme to all candidates. Even though TYPiMatch requires a higher number of
retrieval operations, it yields better overall performance because it reduces the num-
ber of pairwise similarity computation. PARIS is the fastest. We observed that this
is mainly because PARIS is very aggressive in pruning candidates. Often, candidates
are only kept when they have identical attribute values. While this largely increases
performance, it leads to low recall when the data contains more noises, as discussed
in the following.

Table 4.6: Number of matching candidates and RR.
Full input mappings
(Cartesian product)

TYPiMatch Benchmark
Blocking result RR(%) Blocking result RR(%)

AB 1.2 million 70,000 94.17 164,000 86.67
DS 16.8 million 605,000 99.64 607,000 96,39

We further compare the efficiency of instance matching based on blocking against
the benchmark [66]. Because we only take use one attribute in the experiment, we
compare our method with the non-learning approaches that also use one attribute
in the benchmark. For the task AB, the instance matching time in the benchmark is
between 600 ms and 53,500 ms that are achieved by PPJoin+ using Jaccard similarity
function and FellegiSunter [45] using Winkler similarity function, respectively. And
for the task DS, the instance matching time is between 3,400 ms and 164,000 ms that
are achieved by PPJoin+ [124] using Cosine similarity function and FellegiSunter us-
ing Winkler similarity function. We can see that TYPimatch needs more time than
PPJoin+ in the benchmark. As discussed in Sec. 2.5, the instance matching time is
mainly determined by the number of instance comparisons and the cost of single in-
stance pair comparison. Tab. 4.6 shows the number of candidates that are used for
TYPiMatch and benchmark. Since both TYPiMatch and PPJoin+ compare only one
attribute for every candidate using similar similarity function, the cost of singe in-
stance comparison is similar. However, because TYPiMatch only compare instances
that belong to the same type, it compares less than half of candidates that are pro-
cessed by the benchmark for AB. Therefore, TYPiMatch should have achieved similar

69



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

(or better) efficiency compared to PPJoin+.
Besides the difference of machines that execute the instance matching, we observe

another two reasons that explain the difference. First, the difference of time may re-
sults from the difference of the index that are used by two approaches. As discussed,
TYPiMatch applies feature-based candidate retrieval, while PPJoin+ applies instance-
based strategy. So TYPiMatch requires a higher number of retrieval operations. Es-
pecially, since TYPiMatch visits hard disk to retrieve the matching candidates and
attribute values, the time difference of retrieval can be even bigger if the benchmark
load all the data into the memory before instance matching. However, it is unknown
that how the benchmark build and use the inverted index in practice.

Second, PPJoin+ use thresholsd as a restrictions to reduce the number of blocking
key values; hence the less number of matching candidates. Besides, it can take use the
positions of blocking key values in the attribute to further reduce the cost of single
instance pair comparisons. Note TYPiMatch is compatible with PPJoin+. Thus we can
combine the both technologies to achieve the performance that is better than using
each of them along.

4.6.6 Effectiveness of Instance Matching

Table 4.7: Effectiveness of instance matching in terms R, P and F; * indicates statisti-
cally significant improvements of TYPiMatch over the best baseline, Super-
vised for AB, and PARIS for DS (paired t-test, p<0.05).

TYPiMatch Supervised PARIS chg% over second best
R P F R P F R P F R P F

AB 56.70 72.49 63.63 55.79 13.01 21.10 2.55 12.44 4.24 +1.63* +457.19* +201.56*
DS 75.28 76.49 75.88 79.66 5.76 10.74 41.18 89.08 56.32 +82.81* -14.13* +34.73*

Tab. 4.7 presents results for instance matching effectiveness. TYPiMatch largely
outperforms the other two approaches in terms of F-measure. We can see from the
results that the product matching task AB is more difficult, where F-measures values
obtained by all approaches are lower than for the other task. This is because the
product descriptions contain a large amount of noisy text, while the bibliographic
data employed in that benchmark is more structured.

Because Supervised randomly picks positive examples, the schemes it learns vary
in different runs. We calculate the average for five runs. We observed that Super-
vised’s strategy of learning the threshold from the skyline of negative examples tends
to produce low values. As the result, Supervised covers most positive matches and
thus, leads to high recall. However, this comes at the cost of very low precision.

The poor performance on the AB matching task suggests that PARIS is not
successful with dealing with noises in textual descriptions. PARIS can propagate

70



4.7 Related Work

evidences when the same values at the data or schema level can be found. However,
this task involves many products, which refer to the same object, but due to noises in
the data, these matching instances greatly vary in their values for name and price.
PARIS’s performance was better for the DS task. As a general observation, PARIS
tends to be more aggressive in pruning results compared to the other approaches.
This leads to high precision but low recall.

We further compare the effectiveness with the approaches in the benchmark [66].
COSY achieves the best result. However, because COSY is an commercial system,
and it is unknown about the details like how similarity functions and thresholds are
applied, it is difficult to compare TYPiMatch that focus on improving instance match-
ing using type-specific blocking with such an full-fledge system. For the task AB,
TYPiMatch outperforms all the other systems including non-learning approach and
complex learning-based approaches that take use only one attribute for matching,
where the best one achieves F-measures 54.8. For the task DS, TYPiMatch achieves
similar result as the non-learning approaches, but performs worse than the learning-
based approach. We observe two reasons that explains the performance difference
for the DS. First, while the task AB refers to the datasets that contain products be-
longing to many different types, the DS task involves datasets that are fairly homo-
geneous. Therefore, TYPiMatch that are designed for heterogeneous data matching
cannot improve the matching quality on DS as well as on AB. Second, while TYPi-
Match only learns the threshold of one attribute in the experiment, the learning-based
approaches in the benchmark take use SVM and decision tree to learn a more com-
plex instance matching schema involving combinations of similarity functions and
thresholds. This also explains why the learning-based approaches in the benchmark
outperform TYPiMatch when two attributes are used.

4.7 Related Work

Throughout the paper, we have discussed the most related approaches applicable
to the problem of learning blocking keys and key values [93, 108] as well as more
complex instance matching schemes that also include similarity functions and thresh-
olds [14, 24, 83, 119]. We pointed out that as opposed to existing solutions, we learn
keys and key values that are specific for types derived from the data. Here, we pro-
vide a broader overview of solutions for the candidate generation problem.

Blocking approaches aim to reduce the number of similarity comparisons [16, 83,
93, 123]. These approaches typically associate each instance with blocking keys val-
ues, such that instances with the same key values are assigned to the same block.
Examples, such as q-gram blocking [52], PPJoin+ [124] and suffix arrays based block-
ing [35], derive two instances as a match candidate if they share at least one q-gram,

71



Chapter 4 Blocking: Learning Type-specific Blocking Key and Key Value

prefix, and suffix respectively. The blocking keys and key values are either manually
designed or learned from training examples with the help of machine learning. For
example, [16, 83] model this problem as learning disjunctive sets of blocking predi-
cate conjunctions that consist of blocking keys and key values.

Blocking as performed by our approach is different in terms of the procedure,
which is applied only to every type of instances. The only technique specifically
designed for dealing with heterogeneous Web data that may belong to multiple un-
known types is the schema-agnostic approach [93] discussed throughout the paper.
We show in the experiment that our approach of learning specific keys yields better
results than that, which uses all attribute value tokens.

For the purpose of candidate calculations, there are also methods such as Sorted
Neighborhood approach and Canopy clustering. The Sorted Neighborhood ap-
proach [54] first sorts the instances according to certain attributes, and then slide
a fixed window through the sorted list of instances in order to limit the num-
ber of comparisons by only matching instances in the window. Canopy cluster-
ing [7, 22, 33, 52, 81] employs a cheap string similarity metric to group similar in-
stances into the same clusters.

There are also several similarity join algorithms for efficient similarity compari-
son [2, 2, 23, 78, 101, 107]. They can be used to compute candidate matches based
on the blocking scheme learned by our approach, where the conjunction of similarity
function predicates acts as the join predicate.

Besides the conditional entropy that we use to evaluate the ability of an attribute
to determine the values of other attributes, functional dependency approaches [41]
can also be used fur the similar purpose. A set of attributes X is said to function-
ally determine another set of attributes Y, if and only if each value of X is associ-
ated with precisely one value of Y. A typical approach of functional dependency is
GORDIAN[106], which can efficiently discover composite keys of a data schema. The
main difference between the approach applied in this thesis and functional depen-
dency approaches is that we do not restrict to the one-to-one mapping of attribute val-
ues, which is important for blocking. Consider a dataset with attributes firat name
and last name for an example. Because one value of first name can be mapped
to multiple values of last name, functional dependency approaches learn the only
key of the dataset that consists of both firat name and last name. However,
because of the errors and variations of attributes, we should not assume that two
instances of the same person have exactly the same values of firat name and
last name. Using the vlaue of firat name and last name together as block-
ing key value can result in missing true matches in the blocking result. Therefore, we
choose a more flexible solution in this thesis, which is to sort the attributes according
to their performance of blocking and use every top-rank attributes as blocking keys
in multiple iterations.

72



4.8 Conclusion

4.8 Conclusion

For the problem of matching instances, we provide a solution to solve the subtasks
of selecting discriminative attributes and representing their values. This solution
is derived for every type learned from the data to recognize that in some datasets,
instances cannot be assumed to be of one particular type but may actually belong
to multiple unknown types. We showed in experiments that our approach of us-
ing type-specific keys and values improved both blocking and instance matching.
In experiments, we show how this approach can be used for blocking and instance
matching. Compared to state-of-the-art instance matching approaches, our solution
greatly improves result quality (up to 201.56% improvement in terms of F-measure).
Considering the blocking task, our approach yields 32.62% improvement in terms
of reduction ratio. It is also time efficient when compared against approaches that
achieve similar result quality. Currently, we focus on selecting keys and their values.
One direction for future work is to apply this type-specific strategy to other tasks in
instance matching such as learning similarity metrics and thresholds.

73





Chapter 5

Classification: Learning Rules for Effective
Almost-parameter-free Instance Matching

In this chapter, we propose an efficient approach to learn attributes, similarity func-
tions, and thresholds, called instance-matching rules, for finding matches. Existing
rule-based approaches calculate similarity of each attribute separately, and identify
an instance pair as a match if each of the similarities is high enough. They may fail
to identify matching instance pairs if any one of the attributes fails to be matched.
Besides, these approach cannot effectively learn the rules without the fine-tuning of
parameters. These approaches are also expensive in learning, because they learn the
best rule from a large number of candidates whose number depends on the number
of attributes, similarity functions, and especially training examples. In this chapter,
we address these three problems. We measure two instances as a whole by calculat-
ing the average similarity of a set of attributes to balance the errors in a single one.
The approach we propose is almost free of parameters. The parameters need not
fine-tuning and can be directly estimated from the training data. We then propose an
efficient algorithm to learn the instance-matching rules from a significantly smaller
set of candidates whose size only depends on the number of attributes and similarity
functions. The experiments on both real and synthetic datasets show that our solu-
tion greatly improves the effectiveness and efficiency. Moreover, the approach is also
effective in the way that it can achieve stable results when the parameters are set with
a large range of different values.

Outline We organize the chapter as follows. The introduction and the contribu-
tions are presented in Sec. 5.1 and Sec. 5.2. We formally define the problem of learn-
ing mapping-threshold instance matching rules in Sec. 5.3. The methods for rule
learning and execution are provided in Sec. 5.4 and Sec. 5.5 respectively. We present
experiments in Sec. 5.6, related works in Sec. 5.7, and conclusions in Sec. 5.8.

5.1 Introduction

Because a number of calculated match candidates are actually incorrect, they need be
further compared in detail to be classified to the class of matches and non-matches.

75



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

For this purpose, state-of-the-art approaches employ instance-matching rules to find
instances that are the same. For example, n1 and n2 in Tab. 5.1 may form a match, if
we consider a instance-matching rule "two product are identified as the same if they
have similar Title and similar Manufacturer". Typical approaches for learning
instance-matching rules involve selecting a set of attributes, and for each attribute
determining the best similarity function (e.g. Jaccard, Cosine, QGram etc. [40]) and
threshold. For example, the rule above can be specified as "two products are the
same, if the Jaccard similarity of Title is greater than 0.4 and the QGram similarity
of Manufacturer is equal to 1.0". We call this type of rules attribute-threshold instance
matching rule (aIR), because it is satisfied only when the similarity of each attribute is
higher than the threshold.

However there are three problems of aIR-based approaches. First, aIR-based ap-
proaches may fail to identify matching instance pairs if there are errors that occur in
a single attribute leading to the similarity being incorrectly low. Secondly, the learn-
ing cost is expensive because these methods are designed to search a large number
of candidates for the best rule. The number of the candidates is decided by the num-
ber of attributes, similarity functions, and especially training examples. While more
training data may lead to higher effectiveness of the learned rules, it also results in
much more learning time. And finally, these approaches cannot effectively learn the
correct rules without fine-tuning of various parameters.

We propose an approach to learn instance-matching rules, which can solve these
three problems. Firstly, we observe that although there may be errors in a single
attribute, it is unlikely that the errors happens on every attribute. Therefore, we con-
sider the similarity of two instances as the average similarity of a set of attributes. The
two instances are considered as the same only when the average similarity is greater
than the threshold. For example, instances n1 and n2 in Tab. 5.1 are identified as a
match, if we consider a instance-matching rule "two products are the same, if the av-
erage of the Jaccard similarity of Title and the QGram similarity of Manufacturer
is greater than 0.7". We call this type of instance-matching rule mapping-threshold in-
stance matching rule (mIR).

Secondly, the approach we propose is efficient in the way that the number of rule
candidates is irrelevant to the number of training examples. We observe that the aver-
age similarities of matches (and non-matches), that are calculated according to differ-
ent attributes and similarity functions, follow different probability distributions. We
propose to calculate the matching and non-matching certainties, as the certainties to
assign an instance pair to either a match or a non-match, from the cumulative proba-
bility of (dis)similarities of (non-)matches. Then a pair of instances will be considered
as the same if its certainty to be a match is greater than that to be a non-match. The
decision boundary can be calculated as the only one threshold, such that when a pair
of instances has similarity that is greater than the threshold, its matching certainty
is always greater than the non-matching certainty. Since there is only one mIR can-

76



5.2 Research Question and Contribution

didate for a specific combination of attributes and similarity functions (because we
calculate only one threshold for the candidate), the number of mIR candidates is only
relevant to the number of attributes and similarity functions.

Finally, the parameters required by the approach can be easily estimated from the
training data. Without fine-tuning of the parameters, the approach can result in stable
and high-quality results.

5.2 Research Question and Contribution

In this chapter we address the following research question:

Research Question 3. How can the match candidates be effectively classified to matches and
non-matches?

This question is derived from the challenge of low quality data, in which there are
various errors of attribute values. We observe that to deal with the errors in a single
attribute, the similarity evidences that are obtained based on a set of attributes are
more reliable. This observation leads to the following hypothesis:

Hypothesis 3.1. The instance matching problem is monotonic, if all the matches have
higher average similarities than all the non-matches for a set of attributes. And if the in-
stance matching problem is monotonic, then there exists an instance-matching rule which can
correctly identify all the matching instance pairs.

Based the above research question and hypothesis, we propose an approach for ef-
fective almost-parameter-free instance matching, providing three main contributions
as follows:

• Almost-parameter-free Instance Matching. The approach we propose in this
chapter is almost free of parameters. The parameters need not fine-tuning and
can be directly estimated from the training data.

• Efficient Algorithm to Learn Instance-matching Rule. We propose an efficient
algorithm to learn instance matching rules, which search the best mIR from a
significantly smaller set of candidates compared to existing aIR learning ap-
proaches. The number of candidates depends only on the number of attributes
and similarity functions, while it is irrelevant to the number of training exam-
ples.

• Efficient algorithm to Execute Instance-matching Rule. We propose an effi-
cient algorithm to execute the mIR, which is able to make a decision only based
on a part of similarities in the rule.

77



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

Comparing to the state-of-the-art aIR learning approaches, our solution greatly im-
proves the effectiveness as well as efficiency by up to 87% reduction of learning time.
Moreover, the approach is also effective in the way that it can achieve stable results
when the parameters are set within a large range of different values.

5.3 Instance Matching

The problem tackled in this chapter is to classify the match candidates to the classes of
matches M+ and non-matches M−. The class M+ contains all the mappings that refer
to the same real-world entities (matches), and the class M− contains all the mappings
that refer to different entities (non-matches).

We reuse the definitions of data that was first given in Section 2.1. For the ease
of explaining the approaches, we assume the data has already been processed in the
typication step so that all the instances are of the same type. The examples instances
of the type Computer are shown in Tab. 5.1

Table 5.1: A sample of product instances taken from a real E-commerce database;
matching instance pairs are (n1,n2), (n3,n4), (n5,n6), (n5,n7), (n6,n7).

ID Title Manufacturer Description
n1 MacBook Air MD231D Apple Apple MacBook Air 33,8 cm (13,3 inches) Notebook

(Intel Core i5, 1,8GHz, 4GB RAM, 128GB hdd, Intel
HD 4000)

n2 Apple MacBook Air MD231D
13 inch laptop (newest ver-
sion)

Apple MacBook Air MD231D laptop Core i5-13,3 inches

n3 Apple MacBook Pro
ME664LL Notebook

Apple Inc. MacBook Pro with Retina Display 33.8 cm (13.3
inches) laptop Intel Core i7, 2.4GHz, 8GB RAM, 256G
SSD, NVIDIA GeForce GT 650M, Mac OS

n4 Apple MacBook Pro
ME664LL

Apple Apple MacBook Pro ME664LL Notebook with Retina
Display (Intel Core i7, 2.4GHz, 8GB RAM, 256G hard
disk, NVIDIA GeForce GT 650M)

n5 ASUS UX31A-R4003V Note-
book

ASUS Com-
puter Inc.

Asus Prime Laptop UX31A-R4003V 33.8 cm (13.3
inches) Ultrabook (Intel Core i7-3517U, 1.9 GHz, 4GB
RAM, 256GB HDD, Intel HD 4000)

n6 ASUS UX31A-R4003V Note-
book

ASUS ASUS UX31A R4003V Notebook - Core i7 1.9 GHz -
13.3 inch - 4 GB RAM - 256 GB HDD

n7 Asus prime Laptop UX31A-
R4003V 13.3 inch laptop

ASUS ASUS Laptop Core i7 1.9 GHz, 13.3 inch, 4 GB RAM,
256 GB HDD

n8 ASUS N550JV-DB72T Note-
book

ASUS Inc. ASUS Core i7 notebook, with 15 inch, 4 GB RAM, 256
GB SSD

For the ease of reading, we repeat the definition of attribute-threshold instance
matching rule and mapping-threshold instance matching rule here.

78



5.3 Instance Matching

Definition 2.5 (Attr.-thresh. Inst. Match. Rule). Given a set {a1, a2, · · · , ad} of attributes,
and a set {g1, g2, · · · , gd} of similarity functions, let gi(ai)≥ θi denote a similarity function
predicate where 0 ≤ θi ≤ 1. For any two instances n and n′, the similarity function predi-
cate returns true if gi(n[ai],n′[ai]) ≥ θi. An attribute-threshold instance matching rule is a
conjunction of similarity function predicates as

∧d
i=1 gi(ai)≥ θi. A pair of instances n and n′

are considered as a match if they satisfy all the similarity function predicates in the rule.

Definition 2.6 (Map.-thresh. Inst. Match. Rule). Given a set {a1, a2, · · · , ad} of at-
tributes and correspondingly a set {g1, g2, · · · , gd} of similarity functions, a rule function
f : N× N→ [0,1] calculates the similarity between two instances as the average of every at-

tribute similarity, i.e. f (n,n′) = ∑d
i=1 gi(n[ai ],n′[ai ])

d ,n,n′ ∈ N. Given a threshold θ, a mapping-
threshold instance matching rule (mIR) is defined as a tuple λ( f ,θ), such that two instance
n ∈ N and n′ ∈ N are considered as a match if f (n,n′) ≥ θ, where 0≤ θ ≤ 1.

Table 5.2: Similarities calculated according to the similarity function
Jaccard(Title) and QGram(Manufacturer), and the rule function
f = Jaccard(Title)+QGram(Manufacturer)

2 for the data in Tbl.2.1.

Mapping (Non-)Matching Jaccard(Title) QGram(Manufacturer) f 1− f
(n1,n2) M+ 0.42 1.00 0.71 0.29
(n5,n6) M+ 1.00 0.32 0.66 0.34
(n5,n8) M− 0.50 0.62 0.56 0.44
(n3,n8) M− 0.14 0.48 0.31 0.69

Comparing to the general machine learning techniques (e.g. SVM and decision
tree [24, 119]), aIR can be more efficiently executed resulting from less calculation of
similarity function predicates. Especially, it does not have to test all the similarity
function predicates, if any one of the predicates in the rule returns false. However,
there are also drawbacks of aIR-based approaches:

• aIR approach is sensitive to errors in attributes. Even if most attributes are
the same, an aIR might still fails to identify a matching instance pair, due to a
variety of errors (e.g. spelling errors, missing values etc.) that occur in a single
attribute. An attribute may fail to be matched due to such errors.

• aIR approach depends on fine-tuning of parameters. Existing approach re-
quires fine-tuning of various parameters. For example, the method proposed
by Chaudhuri et al. [24] needs the number of similarity function predicates and
the number of rules to learn as parameters. And the approach proposed by
Wang et al. [119] requires experts to manually select attributes, and for some of

79



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

the attributes the similarity functions and thresholds, so that it can learn simi-
larity functions and thresholds for the other attributes. Without the fine-tuning
of such parameters, these approaches cannot learn effective rules.

• The cost for learning aIR is expensive: Existing approaches [24, 119] are de-
signed to search a large number of candidates for the best rule. The number
of the candidates is decided by the number of attributes, similarity functions,
and especially training examples (see details in Appendix A.1). While more
training data results in higher quality of the learned rules, it also leads to much
more time for learning. Even though various methods being proposed to boost
efficiency (e.g. greedy algorithm [24] or removing candidates composed of re-
dundant thresholds and similarity functions [119] etc.), the cost for learning is
still expensive.

Example 5.1. Consider an aIR Jaccard(Title) ≥ θ1 ∧ QGram(Manufacturer) ≥ θ2
for the data in Tab. 5.1. As the similarities that are shown in Tab. 5.2, θ1 and θ2 must
be set with small values that are not greater than 0.42 and 0.32 respectively, if the aIR
can identify both matches (n1,n2) and (n5,n6) that are with spelling errors in Title and
Manufacturer respectively. However, the aIR designed in this way is incorrect, because it
is unavoidable to assign the non-matching instance pair (n5,n8) to the class of match. In this
circumstance, it is impossible to define an aIR that can correctly distinguish all matches and
non-matches.

Due to these drawbacks, aIR learning may not yield to good results in terms of
both effectiveness and efficiency. We adopt a different form of mapping-threshold
instance-matching rule that performs better when there are errors in attributes, and
can be efficiently learned by an approach that is almost free of parameters.

Example 5.2. Consider the average similarities that are calculated according to the rule
function f = Jaccard(Title)+QGram(Manufacturer)

2 in Tbl. 5.2. Since both matching in-
stance pairs (n1,n2) and (n5,n6) have greater similarities than the non-matching instance
pairs (n5,n8) and (n3,n8), we can now correctly identify all matches using the mIR
Jaccard(Title)+Cosine(Manufacturer)

2 ≥ 0.60.

Consider a set of mappings M as training examples, which are composed of pos-
itive examples M+ ⊆M+, i.e. instance pairs that are known to be correct, and neg-
ative examples M− ⊆ M−, i.e. instance pairs that are known to be incorrect. Ob-
viously there is M = M+ ∪ M−. Let Ψ be a set of mIRs that are learned from M,
and let MΨ ⊆ M be the instance pairs in M that satisfies any of the mIR in Ψ. Ide-
ally we hope MΨ is exactly equal to M+. However, in reality, MΨ may not only
contain non-matching instance pairs, but also miss matching instance pairs that fail
to be identified by Ψ. To evaluate the quality of Ψ, we consider a general objective

80



5.4 Algorithm for Learning mIR

function Q(Ψ, M+, M−). The less false positives, i.e. the less non-matching instance
pairs that are included in MΨ, the higher Q(Ψ, M+, M−); the less false negatives,
i.e. the less matching instance pairs that are failed to be identified by Ψ, the higher
Q(Ψ, M+, M−). For example, F-measure is used as an general objective function 2pr

p+r ,

where p = |MΨ∩M+|
|MΨ| is precision and r = |MΨ∩M+|

M+ is recall.
Now we formalize the problem of learning mIR for effective instance matching

problem as follows:

Definition 5.1 (mIR-learning problem). Given a set of positive examples M+ and a set of
negative examples M−, the goal in the mIR learning problem is to learn Ψ, a set of mIRs, to
maximize a pre-defined objective function Q(Ψ, M+, M−).

5.4 Algorithm for Learning mIR

In this section, we describe an efficient algorithm for learning a set of mIR. We first
introduce an approach for the restricted version of the problem in which only one
mIR is learned. For a given rule function, we propose to calculate the matching and
non-matching certainties, as the certainties to assign an instance pair to either a match
or a non-match, from the cumulative probability of (dis)similarities of (non-)matches
(Section 5.4.1). A pair of instances would be classified to matches when its match-
ing certainty is greater than the non-matching certainty. Based on the estimation of
(non-)matching certainty (Section 5.4.2), we learn the only threshold as the decision
boundary, that if the similarity of an instance pair is greater than the threshold, its
matching certainty is always greater than the non-matching certainty (Section 5.4.3).
We then introduce the method for fast evaluation of the quality of a mIR candidate
(Section 5.4.4), based on which an hill-climbing algorithm is proposed to learn the
best mIR from a significantly smaller set of candidates compared to the number of
candidates in existing aIR-based approaches (Section 5.4.5). Finally we describe an
approximation algorithm to learn a set of mIRs which maximize the pre-defined ob-
jective function (Section 5.4.6). The algorithm for the restricted version that learns the
best mIR is one of our main contributions in this chapter.

5.4.1 Certainty for Instance Matching

Let f be a rule function, henceforth, we refer to the similarity of a pair of in-
stances (n,n′) as the value of the rule function x = f (n,n′), and the dissimilarity as
y = 1− f (n,n′). Obviously, there is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and x + y = 1. For a pair
of instances, the higher the similarity x, the more likely it is assigned to M+; and
the higher the dissimilarity y, the more likely it is assigned to M−. However, even

81



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

though the similarity (or dissimilarity) serves as evidences of how similar (or dissim-
ilar) two instances are, we are still not certain to make a decision that whether they
are similar enough to be a match. For examples, given a dataset with seldom errors,
most matches may have very high similarity around 1. Therefore, when there are two
instances with similarity 0.7, we may have low certainty to infer them as a match. On
the other hand, given a dataset with various errors, we can have every high certainty
to classify the instance pair as a match, because we know most matches in the dataset
have similarity that are less than 0.7.

We exploit positive and negative examples to calculate the certainty of assigning a
pair of instances to either M+ or M−. Intuitively, for an unlabeled instance pair with
similarity value x (or dissimilarity value y), the more positive (or negative) examples
we have observed that have similarities (or dissimilarities) less than x (or y), the more
certainty we have to assign it to M+ (or M−). For example, when two instances have
similarity value 0, there should be the lowest certainty to assign them to M+, because
no (or few) positive examples have similarities that are less than or equal to 0. On
the other hand, when they have similarity 1, the certainty of assigning it to M+ is the
highest because all positive examples have similarities that are not greater than 1.

Definition 5.2 (Matching Certainty). Let X = {x|0≤ x≤ 1} be a random variable of sim-
ilarities calculated by a rule function f . The matching certainty is the certainty of assigning
an instance pair with similarity x to M+, which is calculated from the cumulative distribu-
tion function (CDF) of X as F(x,M+) = Pr(X ≤ x,M+), i.e. the cumulative probability of
a pair of instances that belongs to M+, and has similarity that is less than or equal to x.

Obviously, the higher the value of x, the higher F(x,M+), and hence the higher
matching certainty. The value of F(x,M+) can also be viewed as the probability of a
match that has similarity not exceeding x. Then if the similarity of an instance pair
exceeds x, we can derive that the matching certainty of the instance pair should be
also greater than F(x,M+).

Similarly, we can define the non-matching certainty as follows:

Definition 5.3 (Non-matching Certainty). Let Y = {y|0 ≤ y ≤ 1} be a random variable
of dissimilarities calculated by 1− f . The non-matching certainty is the certainty of assign-
ing an instance pair with dissimilarity y to M−, which is calculated from the CDF of Y as
F(y,M−) = Pr(Y≤ y,M−), i.e. the cumulative probability of a pair of instances that belongs
to M−, and has similarity that is less than or equal to y.

We can classify a pair of instances into either M+ or M− by comparing the
(non-)matching certainties. The pair is classified to M+ if the matching certainty is
greater than the non-matching certainty, otherwise it is classified to M−.

Example 5.3. We calculate the matching and non-matching certainty for an instance pair
with similarity 0.70 (and dissimilarity 0.30), according to training examples that are listed in

82



5.4 Algorithm for Learning mIR

Tab. 5.2. Because only the positive example (n5,n6) among all four examples has similarity
lower than 0.70, the matching certainty is 0.25. Similarly, because none of negative examples
has dissimilarity lower than 0.30, the non-matching certainty is 0. As a result, we classify
the instance pair to M+ because the matching certainty is greater than the non-matching
certainty.

5.4.2 Estimate (Non-)Matching Certainty

In this section, we describe the approach to estimate matching certainty F(x,M+) and
non-matching certainty F(y,M−). Since these two types of certainty can be estimated
in the very similar way, we focus on introducing the estimation of matching certainty.

Let q(x,M+) be the density distribution function of F(x,M+) and q(M+) be the
prior probability of the class M+, we can rewrite F(x,M+) as follows:

F(x ∩M+) =
∫ x

0
q(t,M+)dt

=
∫ x

0
q(t|M+)q(M+)dt

= q(M+)
∫ x

0
q(t|M+)dt

= q(M+)F(x|M+)

(5.1)

where F(x|M+) is the class-conditional cumulative probability function (CCF) over
similarity. Note that the class prior q(M+) can often be estimated simply from the
fraction of positive examples in the training data. Eq. 5.1 converts the matching
certainty estimation problem to estimate the CCF F(x|M+). Obviously there are
F(0|M+) = 0 and F(1|M+) = 1

Observation 5.1. Suppose X = {x|0≤ x ≤ 1} be the random variable of similarities calcu-
lated from matches, X follows different CCF if the observed data of X is calculated according
to different rule functions.

Example 5.4. We sampled positive and negative examples from a real bibliographic database
provided by the benchmark [66]. The database has the same schema as the data in Tab. 5.1.
As illustrated in Fig 5.1, consider the dissimilarities of negative examples, that are calcu-
lated according to two different rule functions f1 =

Jaccard(Title)+QGram(Manufacturer)
2 and

f2 =
Jaccard(Title)+Cosine(Description)

2 , as an example. Different rule functions refer to dif-
ferent distributions. Compared to the dissimilarities calculated according f2, those calculated
according to f1 distribute more widely in the interval [0.2, 1], as shown in Fig. 5.1(b) and
Fig. 5.1(d) respectively.

Given a rule function f , we can obtain a set of observed similarities {x1, x2, · · · xk}
on the variable X, which are calculated from positive examples. Then the value of

83



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

0	  

20	  

40	  

60	  

80	  

100	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

N
um

be
r	  o

f	  M
ap
pi
ng
s	  

Similarity	  

(a)

0	  

20	  

40	  

60	  

80	  

100	  

0	   0,2	   0,4	   0,6	   0,8	   1	  

N
um

be
r	  o

f	  M
ap
pi
ng
s	  

Dissimilarity	  

(b)

0	  

20	  

40	  

60	  

80	  

100	  

0	   0,2	   0,4	   0,6	   0,8	   1	  

N
um

be
r	  o

f	  M
ap
pi
ng
s	  

Similarity	  

(c)

0	  

20	  

40	  

60	  

80	  

100	  

0	   0,2	   0,4	   0,6	   0,8	   1	  

N
um

be
r	  o

f	  M
ap
pi
ng
s	  

Dissimilarity	  

(d)

Figure 5.1: Consider two rule functions f1 = Jaccard(Title)+QGram(Manufacturer)
2 and

f2 =
Jaccard(Title)+Cosine(Description)

2 . Figure (a) and (c) show the his-
tograms for similarities of positive examples calculated according to f1
and f2 respectively. And Fig. (b) and (d) show the histograms for dissimi-
larities of negative examples calculated according to f1 and f2 respectively.

.

F(xi|M+) at the point xi can be simply estimated as follows:

F(xi|M+) =
|{x|x ≤ xi}|

k
, for x ∈ {x1, x2, · · · xk} (5.2)

where |{x|x ≤ xi}| is the amount of the observed data that is less than or equal to xi.

The Eq. 5.2 can be calculated more efficiently by ranking the observed similarities.
When the observed similarities from X are sorted in an ascending order, and let Oi be

84



5.4 Algorithm for Learning mIR

the rank number of xi, the value of F(xi|M+) is estimated as follows:

F(xi|M+) =
Oi

k
(5.3)

We are then able to estimate F(x|M+) for any unobserved similarity x in [0,1] by
using Eq. 5.3. Let xi and xi+1 be two adjacent observed similarities, for any unob-
served similarity xu ∈ [xi, xi+1], F(xu|M+) can be estimated via linear interpolation
as follows:

F(xu|M+) = F(xi|M+) +
(F(xi+1|M+)− F(xi|M+))(xu − xi)

xi+1 − xi
(5.4)

We call the CCF estimation by Eq. 5.4 as interCCF. The time complexity of inter-
CCF is O(logk), where k is the number of training examples (see analysis in Ap-
pendix A.3). We observe that when there are a number of training examples avail-
able, the interCCF can reach high accuracy. Otherwise, because the real CCF usually
does not simply follow a linear function, this estimation by the linear interpolation
may largely deviate from the true value.

As a solution, we can also fit F(x|M+) to the known cumulative probability dis-
tribution functions. Because the range of similarity is [0,1], we only consider the
cumulative distributions that are defined on the same interval, such as Beta distribu-
tion, power-law distribution. Among all these distributions, we find that power-law
distribution is the most suitable for the instance matching problem in experiments,
which is generally defined as follows:

F(x|M+) = axb, x ∈ [0,1] (5.5)

where a and b are two parameters that need to be estimated from the training data.
Since there is F(1|M+) = 1, we can directly figure out a = 1 by substituting x = 1
into Eq. (5.5). Then provided with the observed similarity set {x1, x2, · · · , xk}, we can

estimate b = ∑k
1 xi F(xi |M+)

∑k
1 x2

i
via the least square method, where F(xi|M+) is calculated

by Eq. (5.3). We call the CCF estimation by Eq. 5.5 as powerCCF. The time complexity
of powerCCF is O(k), where k is the number of training examples (see analysis in
Appendix A.3).

5.4.3 Learn Threshold

Given a rule function f and an unlabeled instance pair (n,n′) with similarity x and
dissimilarity y = 1− x, we can now classify (n,n′) using a instance-matching decision
rule that is defined based on the comparison of the matching certainty F(x,M+) and

85



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

the non-matching certainty F(1− x,M−), as follows:

(n,n′) ∈
{

M+ if F(x,M+) ≥ F(1− x,M−)

M− else
(5.6)

This decision rule indicates that, if the matching certainty is greater than the non-
matching certainty, (n,n′) is assigned to M+, and vice versa. By substituting Eq. (5.1)
into formula (5.6), the previous decision rule can finally be stated via CCF as follows:

(n,n′) ∈
{

M+ if F(x|M+)
F(1−x|M−) ≥

q(M−)
q(M+)

M− else
(5.7)

where the ratio F(x|M+)
F(1−x|M−) can be calculated by either interCCF or powerCCF, and

the prior ratio q(M−)
q(M+)

is required as a parameter, which can be simply estimated from
the fractions of the training examples in each of the classes. In experiments, we will
show that our technique can achieve high quality of the result without fine-tuning of
this parameter, even if the prior ratio is set with a large range of different values.

However, the cost of executing the decision rule in Eq. 5.7 is still expensive, since
the ratio F(x|M+)

F(1−x|M−) has to be repeatedly calculated for every unlabeled instance pair.
A simpler manner to make a decision according to Eq. 5.7 is to figure out the decision
boundary θ, i.e. the threshold, so that any instance pair that has similarity greater
than θ must be assigned to M+. In the example of Fig. 5.2, it corresponds to finding
the value of x shown by the vertical dotted line.

Proposition 5.1. The threshold θ is calculated as the solution of the equation as follows:

F(x|M+)

F(1− x|M−)
=

q(M−)

q(M+)
(5.8)

Proof. The ratio F(x|M+)
F(1−x|M−) is a monotonically increasing function, since F(x|M+) and

F(1 − x|M−) are monotonically increasing and monotonically decreasing respec-
tively. Therefore, as the solution of Eq.5.8, θ must be the decision boundary for Eq. 5.7,
since for any similarity value x ≥ θ there must be F(x|M+)

F(1−x|M−) ≥
q(M−)
q(M+)

, and vice versa.

Alg. 5 shows the algorithm to find the threshold. Since it is difficult to directly
calculate the solution of Eq. (5.8), Alg. 5 searches for an approximate solution θ̄ that
satisfies |θ− θ̄|< ε, where θ is supposed to be the exact solution of Eq. (5.8) and ε is the
difference restriction that restricts the difference between the exact and the approximate
solutions. In reality, we can set a relative small value of the difference restriction to

86



5.4 Algorithm for Learning mIR

guarantee that instance matching result will not be affected by it. For example, when
the difference restriction is set to 0.001, an approximate threshold θ̄ = θ ± 0.001 may
result in the same instance-matching result as the exact threshold θ.

We apply a recursive binary search algorithm to find the approximate threshold θ̄.
The algorithm returns if the approximate threshold equals to the exact threshold, or
the difference between them is less than the pre-defined difference restriction ε (line
2). The complexity of Alg. 5 is O(log 1

ε logk) for interCCF and O(log 1
ε ) for powerCCF,

where k is the number of training examples (see analysis in Appendix A.3).

Algorithm 5: Learn Threshold
Input: lower bound xl , upper bound xu, difference ε, estimated distribution

F(x|M+) and F(1− x|M−)
Result: Estimated threshold θ̄

1 θ̄ := (xl+xu)
2 ;

2 if F(θ̄|M+)
F(1−θ̄|M−) =

q(M−)
q(M+)

or xu − xl < ε then
3 return θ̄ ;

4 else if F(θ̄|M+)
F(1−θ̄|M−) >

q(M−)
q(M+)

then
5 xu := θ̄;

6 else
7 xl := θ̄;

8 return LearnThreshold(xl , xu,ε, F(x|M+), F(1− x|M−));

5.4.4 Evaluate mIR Candidate

For a given rule function f , we can now generate a mIR candidate λ( f ,θ) by com-
bining f with the learned threshold θ. As discussed, mIR candidates can be directly
evaluated by a pre-defined objective function, e.g. the F-measure. Then the best-
evaluated mIR can be selected as the result. However, since it is required to enu-
merate all the training examples to calculate the matches, the cost of executing the
objective function is expensive. In this section, we introduce the method for a fast
evaluation of mIR candidates.

From the view of probability, the calculated mIR candidate can be evaluated by the
probability of identifying the true positives. The higher this probability is, the better
the mIR candidate is evaluated.

Since all the instance pairs with similarities in the interval [θ,1] are considered as
matches, the probability of identifying the true positives is the joint probability of a
instance pair (n,n′) being a match and the similarity x of (n,n′) is in the interval [θ,1],
as follows:

87



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

Cu
m
ul
a.

ve
	  P
ro
ba
bi
lit
y	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  θ	  	  
Similarity	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

_	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Q(λ)=0.1221	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(a)

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

0	   0.2	   0.4	   0.6	   0.8	   1	  

Cu
m
ul
a.

ve
	  P
ro
ba
bi
lit
y	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  θ	  
Similarity	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

_	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Q(λ)=0.5412	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(b)

Figure 5.2: PowerCCF estimation for matching certainty F(x|M+) (solid line) and
non-matching certainty F(1 − x|M−) (dotted line), where x is similar-
ity. Fig.(a) and (b) illustrate the certainty distributions that refer to f1 =
Jaccard(Title)+QGram(Manufacturer)

2 and f2 =
Jaccard(Title)+Cosine(Description)

2
respectively.

Pr(θ ≤ x ≤ 1,M+) = F(1,M+)− F(θ,M+) (5.9)

Then substitute Eq. 5.1 into Eq. 5.9, the probability to identify true positives can be
expressed as:

Pr(θ ≤ x ≤ 1,M+) = q(M+)(1− F(θ|M+)) (5.10)

Considering the prior q(M+) is the same for all mIRs, a mIR is evaluated as follows:

Proposition 5.2. The quality of a given mIR λ( f ,θ) is evaluated by Q̄(λ) = 1− F(θ|M+).
The higher Q̄(λ), the higher quality of λ( f ,θ).

The time complexity of mIR evaluation is O(lnk) for the interCCF and is O(1)
for the powerCCF, where k is the number of training examples (see analysis in
Appendix A.3).

Example 5.5. Taking rule function f1 =
Jaccard(Title)+QGram(Manufacturer)

2 for a example.
Suppose we have already estimated F1(x|M+) = x3.39 and F1(y|M−) = y2.33 by power-
CCF, where x is the value of similarity and y is the value of dissimilarity. Note y = 1− x,
we can rewrite F1(y|M−) as F1(1 − x|M−) = (1 − x)2.33. The curves of F1(x|M+) and
F1(1 − x|M−) are illustrated in Fig. 5.2(a). Then suppose the prior ratio q(M−)

q(M+)
= 600,

we can calculate the threshold θ = 0.9623 ± 0.0001 by Alg. 5 with a difference restric-
tion ε = 0.0001. Finally we get a mIR λ1( f1,0.9623), whose quality is evaluated as
Q̄(λ1) = 1− F1(0.9623|M+) = 1− 0.96233.39 = 0.1221.

88



5.4 Algorithm for Learning mIR

Similarly, for the rule function f2 = Jaccard(Title)+Cosine(Description)
2 , we have

F2(x|M+) = x1.78 and F2(1 − x|M−) = (1 − x)6.93, which are plotted in Fig. 5.2(b).
Then we can learn the corresponding mIR as λ2( f2,0.6455), whose quality is evaluated as
Q̄(λ2) = 1− F2(0.6455|M+) = 1− 0.64551.78 = 0.5412.

By comparing Q̄(λ1) and Q̄(λ2), λ2 is selected as the mIR with better quality.

5.4.5 Learn Single mIR

In this section, we introduce the algorithm to learn only one mIR, which searches the
best one from a significantly smaller set of mIR candidates compared with existing
aIR-based approaches. More specifically, let l, m and k be the number of attributes,
similarity functions, and training examples respectively, the total number of mIR can-
didates is ml in our work, while the total number of aIR candidates is (m · k)l in
state-of-the-art aIR-based approaches [24, 119](see details in Appendix A.1 and Ap-
pendix A.2). For example, assuming an instance-matching problem with 4 attributes,
20 similarity, and 200 training examples, there would be 204 mIR candidates in our
method, but 4,0004 aIR candidates in current aIR-based approaches.

A brute-effort algorithm is to enumerate all candidates and then select the one that
maximizes the evaluation score. However even for the relative small size of candi-
dates, this approach is still expensive. As shown in algorithm 6 we propose a hill-
climbing algorithm to search the best mIR candidate, which mainly consists of two
steps: mIR initialization and mIR optimization.

Step 1-mIR initialization: The algorithm starts from the mIR with the rule function
that is composed of all attributes and for each attribute, the best-performed similarity
function. Given two rule functions fi = gi(a) and f j = gj(a), if Q̄(λ( fi,θi)) is greater
than Q̄(λ( f j,θj)), then the similarity function gi is said to perform better than gj on
attribute a. For each attribute ai, Alg. 6 (line 1-13) sort all similarity functions, that are
stored in Gi, in the descending order, the best one at first and the worst one at last.
The array I is used as an index to record the current selection of similarity function for
each attribute. For example, when I[2] = 3, we bind attribute a2 with the third sim-
ilarity function in G2

1. Then the function ConstructRulefunction can construct
a rule function by combining the attributes with the selected similarity function ac-
cording to I(Alg. 7). At beginning, all the values in I are initialized with 1, so that we
can select the best-performed similarity function for each attribute to initialize mIR.
Considering a mIR may not include all attributes, we add a null to the end of Gi to
allow the attribute ai being ignored when it is combined with similarity function null.

Example 5.6. Considering two similarity functions g1 = Jaccard and g2 = QGram, and
two attributes a1 = Title and a2 = Manufacturer. After sorting similarity functions for
each attribute, we have G1 = {Jaccard, QGram,null} and G2 = {QGram, Jaccard,null},

1Note we use 1 as the index of the first element in an arraly.

89



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

which means Jaccard performs the best on Title, and QGram performs the best on
Manufacturer. In the mIR initialization step, we have I = {1,1} such that the top sim-
ilarity functions in G1 and G2 are combined with attributes a1 and a2 respectively. In this
way, we get the initial rule function f = Jaccard(Title)+QGram(Manufacturer)

2 .
Moreover, attribute a2 is ignored if we set I = {2,3}, since a2 is combined with null, the

third similarity function in G2. In this way, we get a rule function f ′ = QGram(Title) by
combining the second similarity function in G1 with a1.

step 2-mIR optimization: We adopt a hill-climbing algorithm to search the best
mIR. Intuitively, starting from the initial mIR, we adjust the similarity function for
each attribute for achieving a higher evaluation score Q̄. We chose one attribute ai in
each iteration (iteration in line 15-27), and construct different rule functions by asso-
ciating ai with each of the similarity functions in Gi (iteration in line 18-27 of Alg. 6).
We then evaluate the mIR candidate that is created according to each rule function
(line 19-23 of Alg. 6), and finally record the one that achieves better evaluation score
Q̄ (line 24-27 of Alg. 6). The iteration (iteration in line 15-27 of Alg. 6) terminates if
the evaluation score cannot be improved any more.

Example 5.7. Assuming in Step 1, we have I = {1,1}, G1 = {Jaccard, QGram,null}
and G2 = {QGram, Jaccard,null} for attribute a1 = Title and a2 = Manufacturer
respectively. In the first iteration we choose the attribute a1 and change the value of the
first element in index I to I = {2,1} and I = {3,1} to construct two rule functions
f = QGram(Title)+QGram(Manufacturer)

2 and f ′ = QGram(Manufacturer). We then cre-
ate the mIR candidates according to f and f ′, and select the one that is better evaluated. In
the next iteration, we will select the other attribute a2, and repeat above process again. This
process will continue until the evaluation score cannot be improved any more.

The time complexity of Alg. 6 is O(tlm log 1
ε logk) for interCCF, and O(tlmk) for

powerCCF, where t, l, m, and k are the number of iteration, attributes, similarity
functions, and training examples respectively, and ε is the difference restriction for
threshold learning (see analysis in Appendix A.3).

5.4.6 Learn a Set of mIRs

Since one mIR may not cover all the positive examples, more mIR have to be used
to maximize the objective function score. As discussed in previous research[24],
the problem to learn a set of mIRs which maximize the objective function is NP-
hard. To deal with this problem, we apply the similar greedy algorithm as previous
solution[24]. The algorithm greedily selects the best mIR each time, removes the pos-
itive and negative examples that are identified by the learned mIR, and then repeats
this procedure on the remained examples until the objective function score cannot be
improved anymore.

90



5.5 Algorithm for Executing mIR

Algorithm 6: Learn single mIR
Input: difference ε, a set A of attributes, a set G of similarity functions
Result: best mIR λbest

1 G = {∅,∅, · · · };
2 for i := 1 to |A| do
3 Gi := ∅;
4 Gi := Gi ∪ G;
5 Sort(Gi);
6 Gi := Gi ∪ {null};
7 G[i] := Gi;

8 I := {1,1, · · · };
9 f := ConstructRuleFunction(A,G, I);

10 Estimate F(x|M+) and F(1− x|M−);
11 θ := LearnThreshold(0,1,ε, F(x|M+), F(1− x|M−));
12 Qbest := 1− F(θ|M+);
13 λbest := λ( f ,θ);
14 improved := true;
15 while improved = true do
16 improved := f alse;
17 for i := 1 to |A| do
18 for j := 1 to |G|+ 1 do
19 I[i] := I[i] + 1;
20 f := ConstructRuleFunction(A,G, I);
21 Estimate F(x|M+) and F(1− x|M−);
22 θ := LearnThreshold(0,1,ε, F(x|M+) , F(1− x|M−));
23 Q̄ := 1− F(θ|M+);
24 if Q̄ > Qbest then
25 λbest := λ( f ,θ);
26 Qbest := Q̄;
27 improved := true;

28 return λbest;

5.5 Algorithm for Executing mIR

As discussed before, aIR can be efficiently executed mainly because it involves less
similarity calculations. It does not have to test all the similarity function predicates, if
any one of the predicates in the rule returns false. Compared to aIR, since we calculate
the similarity of two instances in a mIR as the average similarity of a set of attributes,

91



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

Algorithm 7: Construct Rule Function
Input: difference ε, a set A of attributes, a set G of similarity functions, Index I
Result: best mIR λbest

1 N := 0;
2 for i := 1 to |A| do
3 ai := A[i];
4 Gi := G[i];
5 gi := Gi[I[i]];
6 if gi 6= null then
7 N := N + 1;

8 return f := ∑|A|i:=0 gi(ai)
N ;

the mIR may not be efficiently executed if all the corresponding similarities have
to be calculated. However, we observe that some similarity calculations in mIR are
unnecessary, since it is possible to make a decision only based on a part of similarities.

Let λ : ∑d
i=1 gi(ai)

d ≥ θ be a mIR that involves d similarity functions, and assume we
have already finished computing j (j < d) similarity functions for a pair of instances
(n,n′). The original mIR can be rewritten as follows:

λ :
j

∑
i=1

gi(ai) +
d

∑
i=j+1

gi(ai) ≥ dθ (5.11)

where sumc = ∑
j
i=1 gi(ai) is the sum of similarities that have already been computed,

sumu = ∑d
i=j+1 gi(ai) is the sum of similarities that have not been calculated, and dθ is

the threshold for the sum of all similarities. We observed that it is possible to make a
decision only based on sumc in two circumstances:

1. If sumc ≥ dθ, (n,n′) is classified to M+. Obviously, if we know the mIR has
already been satisfied, it is not necessary to calculated sumu any more (line 4-5 of
Alg.8).

2. If sumc + d− j < dθ, (n,n′) is classified to M−. Assuming each of the similarity
functions in sumu can achieve the highest value of 1, the maximal value of sumu is d−
j. We can then estimate that the maximal sum of similarities for (n,n′) is sumc + d− j.
Based on this estimation, we can directly classify (n,n′) to M− when sumc + d− j is
less than the threshold dθ (line 6-7 of Alg.8).

92



5.6 Experimental Evaluation

Algorithm 8: Executing mIR

Input: mIR λ = ∑d
i=1 gi(ai)

d ≥ θ, instance pairs (n,n′)
Result: whether (n,n′) satisfies the mIR

1 sum := 0;
2 for j:=1 to d do
3 sum+ = gj(n[ai],n′[aj]);
4 if sum ≥ dθ then
5 return true;

6 if sum + d− j < dθ then
7 return false;

8 return sum ≥ dθ;

5.6 Experimental Evaluation

To study the proposed solution, we employ a recent instance matching bench-
mark [66] that captures data from enterprise databases as well as synthetic data
Restaurant. Compared against the state-of-the-art approaches SiFi [119] and
SVM [21], our approach greatly improves the result quality and efficiency.

5.6.1 Dataset and Matching Task

We now briefly describe the datasets which cover the restaurant, bibliography and
products domains. Tabel 5.3 provides an overview of the datasets.

Table 5.3: For each dataset pair: number of instances, all matches M+, and all non-
matches M−.

Task
Datasets Mapping Candidates

Dataset1 Dataset2 M+ M−

Rest 864 112 5,270
AB 1,081 1,092 1,097 7,040
AD 2,616 2,294 2,224 3,140

Restaurant(Rest). The restaurant dataset is available at OAEI 20102. We manually
removed the attribute telephone from the dataset because the dataset with it is too
easy for instance matching task to be useful for comparing algorithms.

2http://oaei.ontologymatching.org/2010

93

http://oaei.ontologymatching.org/2010


Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

ACM-DBLP (AD). These datasets in the benchmark [66] include well-structured
bibliographic data from DBLP and the ACM digital library. This one is manually
created and thus, is of higher quality among all datasets. As a result, the matching
task represented by this is of low difficulty.

Abt-Buy (AB). This matching task in the benchmark [66] is performed between in-
stances of the product dataset from http://abt.com and http://buy.com. This
dataset contains the most noises in the attribute values. Therefore, the matching task
for this is the most difficult.

We adopt a preprocessing step, named blocking [40], to select candidate instance
pairs that are most likely to be the same, as shown in Tbl 5.3. In the experiments,
we classify these candidates to either M+ of M−, and compare the efficiency and
effectiveness among different approaches.

5.6.2 Experimental Setting

System. In the experiments, we select two baseline methods, SiFi [119] and SVM
(using LIBSVM libarary [21]). Sifi is a recent aIR learning approach that learns sim-
ilarity functions and thresholds from positive and negative examples. It requires at-
tributes to be manually set for each rule. Also, it requires the similarity functions and
thresholds to be manually set for some attributes so that they can be learned for other
attributes. SVM requires features as similarities of all attributes calculated by all simi-
larity functions. We compare these approaches against our solutions using interCCF
and powerCCF, called interMIR and powerMIR respectively.

Similarity. We selected 20 similarity functions in the experiments provided by an
open-source Java package SimMetrics3. In case there is null value when comparing
two values, we suppose the similarity is 0.

All experiments were run on a computer with one 2.4GHz Intel Core 2 Duo CPU,
using 4GB of main memory, running Linux with kernel version 2.6.18.

5.6.3 Efficiency

We first compare against baseline approaches in term of efficiency. Table 5.4 shows
the training and testing time for all four approaches, which use all the mapping can-
didates as training and testing data. We can see that powerMIR and interMIR run
the fastest in the training process. For example, on dataset AB, powerMIR requires
only 59 seconds for training, which is only 13% of the time of SiFi and half of the
time of SVM. interMIR slightly outperforms powerMIR because it is more efficient
in CCF estimation (see time complexity analysis in Appendix A.3). The cost of SiFi
is the most expensive in training because of the large number of aIR candidates. Even

3http://www.dcs.shef.ac.uk/~sam/simmetrics.html

94

http://abt.com
http://buy.com
http://www.dcs.shef.ac.uk/~sam/simmetrics.html


5.6 Experimental Evaluation

though SiFi proposed to eliminate candidates with redundant similarity functions
and thresholds, the process of removing redundancy itself is still expensive in reality.

In the testing process, SVM is clearly the worst comparing to other methods. For
example, powerMIR only spends 5 seconds on the task of AD, while SVM costs 78 sec-
onds. As a general model, SVM spends most of the time on similarity calculations,
since it require similarities of all attributes that are calculated by all similarity func-
tions as features. Especially, because we avoid unnecessary similarity calculations in
mIR execution, our approach achieves very similar testing time as the aIR approach
SiFi.

Compared to the approaches in the benchmark [66], powerMIR and interMIR are
more efficient than the learning-based approaches, but cost more matching time than
the non-learning approaches that compare only one or two attributes. This is because
powerMIR and interMIR usually compare more than one attribute on executing one
instance matching rule. And they also match instances in a multi-iteration manner,
where multiple rules are executed to ensure not missing any true matches. There-
fore, powerMIR and interMIR need more attribute comparisons than non-learning
approaches in the benchmark.

Table 5.4: Performance of training and testing in seconds.
Rest AD AB

train test train test train test
powerMIR 37 3 55 4 59 8
interMIR 36 3 50 4 57 8

SiFi 54 4 342 4 518 9
SVM 59 60 85 78 109 103

We further vary the proportion of training data and plot the total running time
of different methods in Fig. 5.3. The running time of our techniques is the stablest
when the size of the training data increases, mainly resulting from the number of
mIR candidates is irrelevant to the number of training examples. However, since the
number of candidates in SiFi increases fast with the increase of training examples,
the time of SiFi increases the fastest.

5.6.4 Effectiveness

Table 5.5 shows the results of effectiveness based on the average of F-measure in 10
runs. For each run, we randomly select 30% of the mapping candidates as training
data and use the rest as testing data. Our techniques achieve the best result on Rest.
and AD. Note because we remove the attribute Telephone from Rest, this task be-
comes more difficult resulting in the worse result of SiFi compared to the result
reported in the original paper. We also compare our solutions with SiFi(auto),

95



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

0	  

20	  

40	  

60	  

80	  

100	  

10	   20	   30	   40	   50	   60	   70	   80	   90	  100	  

Ti
m
e	  
(s
)	  

Sample	  of	  Training	  Data	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(a) Rest

0	  

100	  

200	  

300	  

400	  

10	   20	   30	   40	   50	   60	   70	   80	   90	  100	  

Ti
m
e	  
(s
)	  

Sample	  of	  Training	  Data	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(b) AD

0	  
100	  
200	  
300	  
400	  
500	  
600	  

10	   20	   30	   40	   50	   60	   70	   80	   90	  100	  

Ti
m
e	  
(s
)	  

Sample	  of	  Training	  Data	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(c) AB

Figure 5.3: Comparison for the total running time with different proportion of train-
ing data.

in which SiFi automatically learn the rules without manual tuning of parameters,
such as the pre-defined attributes and similarity functions. We can see that its re-
sults becomes much worse than our approaches as well as SiFi with fine-tuning of
parameters.

Because of the noisy data, AB is the most difficult task and a non-linear classifica-
tion problem. So SVM performs the best on AB comparing to other approaches that
compare only one or two attributes. We also observe the similar result in the bench-
mark [66] where FEBRL-SVM [27] is the best system with F-measure 71.3. In sum,
instance matching is a very data-specific problem. In other words, there are not best
approach for all types of data. For example, the task AD is very much easier than AB
because it involves the datasets that are well maintained. Therefore, both powerMIR
and the FEBRL-SVM can achieve high F-measure that is above 97.0. However, be-
cause powerMIR costs only 4 seconds which is much more efficient than FEBRL-SVM
that spends 20 seconds, powerMIR should be more suitable for the task AD.

Table 5.5: Effectiveness of instance matching in terms of F-measure.
Rest AD AB

powerMIR 93.16 97.47 41.69
interMIR 90.33 97.21 40.87

SiFi 88.92 96.20 37.52
SiFi(auto) 70.55 95.32 33.49

SVM 90.28 97.30 51.20

We further compare the F-measure against the baselines provided with different
labeling effort, as shown in Fig. 5.4. The proportion of labeling effort varies between
10% and 50% in Rest, and between 1% and 25% in AD and AB. For AD, all the ap-
proaches can soon achieve stable results for a small size (2%) of training data. And
in Rest and AB, powerMIR is managed to maintain high quality of results for all
different labeling efforts, while SVM performs the worst given small size of training

96



5.6 Experimental Evaluation

data. We also observe that, interMIR is worse than powerMIR when it is provided
with less training data. As discussed before, it is because interCCF leverages lin-
ear interpolation, which may deviate form the true values if the real CCF does not
follow a linear function. However, when there are more training data available, this
estimation becomes more accurate leading to interMIR achieving almost the same
result as powerMIR. Therefore, we can directly apply interMIR when we are not
clear about the data distribution, but have large amount of training data available.

50	  

60	  

70	  

80	  

90	  

100	  

10	   20	   30	   40	   50	  

F-‐
m
ea
su
re
	  

Labeling	  Effort	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(a) Rest

50	  

60	  

70	  

80	  

90	  

100	  

1	   2	   5	   10	   25	  

F-‐
m
ea
su
re
	  

Labeling	  Effort	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(b) AD

0	  

10	  

20	  

30	  

40	  

50	  

1	   2	   5	   10	   25	  

F-‐
m
ea
su
re
	  

Labeling	  Effort	  (%)	  

powerMIR	  
interMIR	  
SiFi	  
SVM	  

(c) AB

Figure 5.4: Evaluation result for different labeling effort

5.6.5 Parameter Sensitiveness

50	  

60	  

70	  

80	  

90	  

100	  

47
	  
50
0	  

2,0
00
	  

4,0
00
	  

8,0
00
	  

16
,00
0	  

24
,00
0	  

32
,00
0	  

F-‐
m
ea
su
re
	  

Prior	  Ra9o	  

powerMIR	  

(a) Rest

50	  

60	  

70	  

80	  

90	  

100	  

1	   2	   4	   8	   16	   32	   64	   128	  

F-‐
m
ea
su
re
	  

Prior	  Ra8o	  

powerMIR	  

(b) AD

0	  

10	  

20	  

30	  

40	  

50	  

6	   10	   20	   40	   80	   160	   320	   640	  

F-‐
m
ea
su
re
	  

Prior	  Ra6o	  

powerMIR	  

(c) AB

Figure 5.5: Influence of prior ratio

We now analyze the parameters. Throughout the paper, we have two parameters:
the prior ratio q(M−)

q(M+)
for threshold learning according to Eq. (5.8); and ε as the differ-

ence restriction between the approximate and the real threshold in Alg. 5. We show
that our approach can achieve stable result without fine-tuning of these parameters.

Figure 5.5 shows the result for different values of prior ratio. The results are stable
when the prior ratio is set between 47 and 24,000 for Rest (the real prior ratio is
47), between 1 and 64 for AD (the real prior ratio is 1.4), and between 6 and 160 for
AB (the real prior ratio is 6.4). Basically, a higher prior ratio determines a higher

97



Chapter 5 Classification: Learning Rules for Effective Almost-parameter-free
Instance Matching

50	  

60	  

70	  

80	  

90	  

100	  

0.1	   0.01	   0.001	   0.0001	  

F-‐
m
ea
su
re
	  

epsilon	  

powerMIR	  

(a) Rest

50	  

60	  

70	  

80	  

90	  

100	  

0.1	   0.01	   0.001	   0.0001	  

F-‐
m
ea
su
re
	  

epsilon	  

powerMIR	  

(b) AD

0	  

10	  

20	  

30	  

40	  

50	  

0.1	   0.01	   0.001	   0.0001	  

F-‐
m
ea
su
re
	  

epsilon	  

powerMIR	  

(c) AB

Figure 5.6: Influence of ε

threshold. Therefore, a mIR with higher threshold may result in higher precision but
less identified matches. However, since we keep adding the best evaluated mIR into
the rules until the objective score cannot be improved, a higher prior ratio may result
in a larger set of higher-precision mIRs. In this way, a matching instance pair that
fails to be identified by one mIR can be identified by another instead. On the other
hand, since a lower prior ratio may result in lower thresholds, the prior ratio that is
lower than the real value may leads to lower precision but higher recall. Therefore, an
applicable strategy is to set the prior ratio with the value higher than that estimated
from the training data, so that we can achieve stable results.

Figure 5.6 shows the results for different values of ε. Intuitively, the smaller ε, the
higher accuracy. However, in reality it makes no differences if ε is set less than 0.01
for all the matching tasks.

5.7 Related Work

Instance matching (also known as entity resolution, entity co-reference, or record
linkage), is about finding instances that refer to the same object. A high quality
of instance matching result require the fine tunning of parameters selection, which
are usually achieved with the help of machine learning techniques [100, 113]. Here,
we provide a broader overview of machine-learning-based solutions for the instance
matching problem.

Instance matching problem can be solved with the help of standard machine learn-
ing techniques. Common to all approaches is the observation that instance matching
can be formulated as a standard classification task, where instances are classified as
matching or non-matching [44]. There are supervised machine learning approaches,
which use decision trees [112, 113], Bayes decision rule [44] or SVM [14] to train clas-
sifier from the provided training examples. Among these techniques, SVM is known
as the most effective approach.

Probabilistic graphical models were also used for unsupervised instance matching.

98



5.8 Conclusion

For instance, latent binary variables in a hierarchical graphical model were used to
model whether attributes match or not [97]. Using the Latent Dirichlet Allocation
model, both instances and groups of instances were captured through latent vari-
ables [11]. Similar to that, the Dirichlet Process was also employed to model the
number of clusters and instances [59].

In contrast to those general machine learning techniques, rule-based approaches
are designed for specific instance matching problems [3]. The instance-matching
rules have advantages that they are explainable, and can be efficiently executed be-
cause of less similarity calculations. Existing rule-based approaches usually involve
four subtasks to determine (1) (combinations of) attributes [16, 24, 57, 75, 83, 119, 120],
and for each of them, (2) the value representation function [16, 24, 57, 75, 83, 113], (3)
the similarity functions [24, 119] and (4) the similarity thresholds [24, 112, 113, 119].
Recently Chaudhuri et al. [24] propose an algorithm for these four tasks based on a
given set of positive and negative examples. Wang et al. [119] further improve the
learning efficiency by eliminating rule candidates that are composed of redundant
similarity functions and redundant thresholds. In this chapter, we focus on task (1)
(2) and (4). We compared our work with SiFi, an advanced aIR learning approach,
and SVM, which adopts a linear combination of similarity functions and attributes
that is similar to the form of mIR used in this chapter. We show that our approach,
when be compared to SiFi, can learn the rules much faster and require less parameter
tuning, and can be executed much faster than SVM.

5.8 Conclusion

For the problem of instance matching, we proposed an efficient approach to learn
instance-matching rules by estimating matching and non-matching certainties. Com-
paring to state-of-the-art instance matching approaches, our solution greatly im-
proves the efficiency. At the same time, it is also effective, that when compared
against SVM, that is currently known as the most effective approach for instance
matching, we gain comparable or even better quality results in term of F-measure.
Moreover, the approach can also achieve stable results when the parameters are set
with a large range of different values. As future work, we aim to learn the weights of
attributes, and the value representation functions for instance-matching rules.

99





Chapter 6

Filtering: Effective Parameter-free Boolean
Instance Matching

State-of-the-art instance matching methods use training data to learn combinations
of attributes, similarity functions and thresholds, called instance matching rules, for
finding matches. The learning of complex rules with thresholds is however com-
plex and sensitive to training data. In this chapter, we explore a different avenue,
proposing an approach that does not use thresholds but more simple boolean sim-
ilarity functions. We show that the simple boolean nature of the employed rules
allows for a parameter-free learning approach. For high effectiveness, we propose to
incorporate fine-grained word-level evidences into rule learning. That is, instead of
capturing the similarity of entire attribute values in the rules, our approach employes
words extracted from attribute values. Using benchmark matching tasks, we show
the proposed solution greatly outperforms state-of-the-art approaches in terms of re-
sult quality and most importantly, is not sensitive to the choice of training data and
parameters.

Outline The introduction and contribution are provided in Sec. 6.1 and Sec. 6.2. We
provide an overview in Sec. 6.3. The learning of dissimilarity evidences is presented
in Sec. 6.4. An implementation of our approach is discussed in Sec. 6.5. We present
experiments in Sec. 6.6, related works in Sec. 6.7 and conclusions in Sec. 6.8.

6.1 Introduction

As discussed in previous chapter, state-of-the-art approaches employ instance-
matching rules to solve the instance matching problem [24, 119]. For instance, with
the rule “two product instances are the same if they have similar values for Title
and Manufacturer” for the data in Tab. 5.1, the instances n1 and n2 can be con-
sidered as the same. However, a big challenge is actually to determine how similar
is similar [119]. To address this, existing approaches incorporate thresholds into the
rules so that instances and their attribute values are only considered similar if their
similarity is higher than a threshold. Using different thresholds for different combi-
nations of attributes and similarity functions greatly improves the quality of instance

101



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

matching. However, the search space for learning these parameters is very complex
and is sensitive to the training data.

In this chapter, we explore a different avenue, proposing an instance matching ap-
proach that relies only on relatively simple Boolean similarity functions. Existing ap-
proaches use thresholds to obtain more “sophisticated” evidences because they com-
pare instances at the more coarse-grained level of attribute values. As an example,
one evidence might be “the similarity on Title for the two instances ni and nj is
greater than 0.9”. Our Boolean approach extracts evidences at the more fine-grained
level of words (tokens in general) found in attribute values. From the words 13.3,
Apple, ASUS etc. found in the Title values, our approach learns what we call word-
level dissimilarity evidences, such as “Apple and ASUS are dissimilar words, one is in
the Title of ni and the other is in the Title of nj”. It is a dissimilarity evidence
because it leads to the inference that ni and nj are not the same (are non-matches).
We show that using this type of evidences has the following merits: (1) due to their
Boolean nature, the learning of these evidences is more simple, i.e. does not require
parameters and is not sensitive to training data. (2) At the word level, a large number
of these evidences can be learned to identify non-matches (high recall). (3) Also due
to the use of fine-grained words, the learned evidences are more discriminative in
identifying non-matches (high precision).

While our focus is Boolean matching, we also discuss in the chapter how our
Boolean approach can be combined with existing works that use thresholds. We
show that when used as a Boolean filtering mechanism, our approach consistently
improves the results of the underlying matching approach.

6.2 Research Question and Contribution

In this chapter, we address the following research question:

Research Question 4. How to identify non-matching instance pairs by simple Boolean func-
tions?

This question is derived from the use of thresholds that may sensitive to the train-
ing data and parameters. Therefore, the instance matching results that are output
based on the use of threshold, may still contain a large number of non-matches. We
assume the simpler Boolean matching algorithm can solve this problem and hence
state the following hypothesis:

Hypothesis 4.1. Due to the Boolean nature of the word-level dissimilarity evidence, the
learning of these evidences is more simple, i.e. does not require parameters and is not sensitive
to training data. At the word level, the large-number evidences are more discriminative in
identifying non-matches, which lead to effective Boolean instance matching.

102



6.3 Overview

Regarding the above research question and hypothesis, we propose an effective
parameter-free instance matching approach that relies on Boolean functions, provid-
ing three main contributions:

• Boolean instance matching. The approach we propose in this chapter is based
on only simple Boolean similarity functions. The Boolean similarity function
explores word co-occurrence based dissimilarity evidences (CDE) in the form
of word co-occurrences, namely those pairs of words that when observed in an
instance pair, render it as a non-match.

• Parameter-free instance matching. The approach we propose in this chapter is
also less sensitive to training data. Provided with different samples of training
data, the approach can achieve stable results.

• Filtering based on thresholded instance matching. We also discuss how the
approach can be combined with existing thresholded instance matching meth-
ods. We show that our approach can further improve the results of thresholded
instance matching methods by filtering out non-matching instance pairs.

Using benchmark matching tasks, we show our Boolean solution greatly outper-
forms state-of-the-art approaches in terms of result quality (up to 206.34% improve-
ment in terms of F-measure), is comparable in terms of time performance and is su-
perior in terms of sensitivity to training data and parameters.

6.3 Overview

We reuse the definition of data that is first given in Section 2.1. We reuse the data
example that are provided in Chapter 5, assuming the data are of the same type as
the result of typification, as shown in Tab. 5.1. A summary of the main notations used
in this chapter is shown in Tab. 6.1

Table 6.1: A summary of notations used in this chapter.
Notation Description

N a set of instances
a an attribute

M+, M+, M′+, M+
i all matches, examples, self-matches, matches in Mi

C, C, C′, Ci Cart. product of words in M+, M+, M′+, M+
i

C+, C+, C′+, C+
i word co-occurrences in M+, M+, M′+, M+

i
C−, C−, C′−, C−i CDEs for M+, M+, M′+, M+

i
WN[a] (Wn[a]) words in a value of all instances (of instance n)

103



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

6.3.1 Thresholded Instance Matching

Existing approaches utilize similarity functions for instance matching, which map a
pair of attribute values (n[a],n′[a]) to a similarity score in [0,1]. We explicitly distin-
guish between these two types of similarity functions:

Definition 2.2 (Similarity Function). A Boolean function same : N[a]× N[a]→ {0,1}
maps a pair of attribute values to the score 0 or 1. A thresholded similarity function
sim : N[a] × N[a]→ [0,1] maps a pair of attribute values to a score in the range [0,1]. A
larger similarity score indicates a higher similarity between two attribute values.

Based on that, we further distinguish two types of instance-matching rules accord-
ing to the types of similarity functions that are used:

Definition 6.1 (Instance-matching Rule). An instance-matching rule Λ is a conjunction
of boolean predicates, i.e. Λ =

∧
λi, where λi : [0,1]→ {true, f alse}. Each λi is either based

on

• a thresholded similarity function simj such that λi(simj(n[ai],n′[ai]),θi,j) returns true
iff simj(n[ai],n′[ai]) ≥ θi,j and f alse otherwise,

• or a boolean function samej such that λi(samej(n[ai],n′[ai])) returns true iff
same(n[ai],n′[ai]) = 1 and f alse otherwise.

A pair of instances are considered as the same, called a match, if it satisfies all the boolean
predicates in the rule.

State-of-the-art approaches employ thresholded similarity functions [24, 57, 119,
124]. Compared to the boolean outputs {0,1}, scores in the [0,1] range produced
by these approaches are more fine-grained and thus, help to further distinguish the
quality of the matching candidates. However, we observe the following drawbacks:

Sensitivity to Training Data. Threshold candidates are generated from the simi-
larities observed in the examples. Intuitively, the goal is to find a threshold that is
higher than all similarity scores computed for negative examples and smaller than all
scores computed for positive examples. The threshold learned this way is not only
sensitive to differences in the training data sample provided as input but also the
mix of positive and negative examples. Besides, existing approaches require at least
some of the other parameters, i.e. the number of rules, the attributes and the simi-
larity functions, to be selected and tuned manually. The learned thresholds are also
sensitive to differences in the choice of these parameters.

Unstable Performance. Often, there is no optimal threshold that can perfectly sep-
arates positive from negative examples. Using Jaccard similarity and the data shown
in Tab. 5.1 for instance, we obtain for Description the similarity scores 0.19 and

104



6.3 Overview

0.42 for (n1,n2) and (n1,n5), respectively. However, (n1,n2), which has a lower score,
is actually correct while the other is incorrect. A threshold that identifies all candi-
dates with a score higher than 0.19 as matches can deal with this case. However, it
is too low for many other cases, i.e. would return many non-matches. In fact, many
thresholds may exist that largely vary but are equally optimal w.r.t. the objective
function used for learning. Each of them can provide good results for some cases but
does not generalize over all cases. In other words, it is hard to find a threshold that
provides stable performance.

6.3.2 Boolean Instance Matching.

We explore the use of simple boolean functions that are more easy in that learning
does not require or is less sensitive to training data. In order to address the second
drawback, i.e. to achieve good and stable performance, we employ two strategies.
(1) Leveraging the more fine-grained level of words that are contained in attribute
values, a large quantity of evidences can be learned. (2) Further, not only the initial set
of training examples is used. We propose methods for training data enrichment such
that in the end, the entire dataset is employed to derive evidences. In fact, we show
that with these methods, our approach also performs well when only automatically
computed pseudo-examples are used.

Two types of boolean functions are used in our approach. The first computes a sim-
ilarity score based on boolean evidences for matching, i.e. similarity evidences. Exam-
ples for boolean similarity evidences used in literature are value overlap or substring
match. We use this type to quickly find match candidates, a commonly employed
pre-processing step as discussed in Chapter 4.

We then apply another type of boolean functions to the resulting candidates to filter
out those that are non-matches. Since they are based on evidences for non-matching,
i.e. dissimilarity evidences, we refer to this type as dissimilarity function. As an example,
the fact that two given products are produced by different manufacturers can be taken
as a dissimilarity evidence to infer that they are non-matches. Applying this type of
functions to the candidate set is referred to as the filtering step:

Definition 2.7 (Filtering). Given a matching candidate set M, filtering returns a subset
M+ = M \M−, where M− represents non-matching candidates computed by the dissimilar-
ity function ¬same, i.e. M− = {(n,n′) ∈ M|¬same(n[ai],n′[ai]) = 1}.

The focus of this chapter lies in filtering these candidates based on fine-grained
dissimilarity evidences captured at the level of words. Considering attribute values
as a whole, few or no dissimilarity evidences can be derived. As an example, while
it makes intuitive sense, values for Manufacturer actually cannot be used as dis-
similarity evidences. The dissimilarity function based on that would miss the correct
match (n3,n4) in Tab. 5.1 because n3 and n4 have different values for Manufacturer.

105



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

However, specific words in the values can serve as evidences. For instance, we define
that Apple and ASUS form a dissimilarity evidence, while Apple and Inc. do not.
Thus, given two instances with values for Manufacturer that contain Apple and
ASUS as words, they will be correctly filtered as a non-match, while the match (n3,n4)
is preserved because Apple and Inc. do not represent a dissimilarity evidence.

6.4 Learning Word-Level Dissimilarity Evidences

In this section, we first introduce evidences that are based on word-level co-
occurrences. Then, we discuss the problems of learning them from (the possible lack
of) training data and finally, our solution for these learning problems.

6.4.1 Word Co-occurrence Based Evidences

We find dissimilarity evidences in the form of word co-occurrences, namely those
pairs of words that when observed in a instance pair, render it as a non-match. We
capture this notion of word co-occurrences as follow:

Definition 6.2 (Word Co-occurrence). Given an attribute value pair (n[a],n′[a]) and
their bags of words Wn[a] and Wn′[a], a word pair (wi,wj) ∈ Wn[a] ×Wn′[a] co-occurs in
(n[a],n′[a]), denoted by (wi,wj) ∈ (n[a],n′[a]), if wi ∈Wn[a] and wj ∈Wn′[a], or wi ∈Wn′[a]
and wj ∈Wn[a]. Let M be a set of instance pairs. For a given attribute a, the word pair (wi,wj)
is said to co-occur in M, (wi,wj) ∈ M, if there exists an instance pair (n,n′) ∈ M such that
(wi,wj) ∈ (n[a],n′[a]). We also use (wi,wj) /∈ (n[a],n′[a]) ((wi,wj) /∈ M) to denote that
(wi,wj) does not co-occur in (n[a],n′[a]) (in M).

Now we introduce the dissimilarity function that uses word pairs as dissimilarity
evidences to filter non-matches:

Definition 6.3 (Diss. Evidence/Function). Let C = {(wi,wj) ∈WN[a]×WN[a]|wi 6= wj}
be all possible word pairs in the values of the attribute a, i.e. values of a for all instances N
(denoted by N[a]). C− ∈ C is a set of word pairs representing dissimilarity evidences, called
co-occurrence based dissimilarity evidences (CDE), such that given C−, the function
¬same : N[a]× N[a]→ {0,1}, called CDE-based dissimilarity function, maps a pair of
attribute value (n[a],n′[a]) to 1, if there exists a word pair (wi,wj) ∈ C− that co-occurs in
(n[a],n′[a]), i.e. (wi,wj) ∈ (n[a],n′[a]), and 0 otherwise.

Intuitively, this dissimilarity function determines a pair of values (n[a],n′[a]) to be
a non-match when they contain a dissimilarity evidence (a word pair (wi,wj) ∈ C−).

106



6.4 Learning Word-Level Dissimilarity Evidences

6.4.2 Learning CDE from Positive Examples

The CDE and functions introduced above are more easy to learn because they require
only positive examples. This is because by Def. 6.3, positive examples representing
matches must not contain any CDEs. In other words, CDEs cannot co-occur in posi-
tive examples. Further, we can even show that all words pairs that do not co-occur in
positive examples must be CDEs such that for computing them, we only need to (1)
find all word pairs co-occurring in positive examples, then (2) derive its complement
set containing all those word pairs that do not co-occur in positive examples. That
complement set must contain all CDEs. We establish the following theorem to enable
the learning of CDEs:

Theorem 6.1. Let M+ be the set of all matches, C+ be all word pairs that co-occur in
M+ and C− the set of all CDEs. If a word pair (wi,wj) is not in C+, it is a CDE, i.e.
(wi,wj) /∈ C+⇒ (wi,wj) ∈ C−.

Proof. Given the word pair (wi,wj) /∈ C+, we firstly show that all instance pairs con-
taining (wi,wj) must be non-matches. Let M = {(n,n′)|(wi,wj) ∈ (n[a],n′[a])} be all
the pairs of instances in which (wi,wj) co-occur. We prove M∩M+ = ∅ by contradic-
tion: assuming M contains some matches, i.e. M ∩M+ 6= ∅. Then, because C+ con-
tains all the word pairs that co-occur in M+, (wi,wj) ∈ (n,n′) for all (n,n′) ∈M∩M+,
then C+ must contain (wi,wj), i.e. (wi,wj) ∈ C+. This however, cannot be satisfied
because as given, (wi,wj) /∈ C+.

Because all the instance pairs containing (wi,wj) are non-matches, i.e. M∩M+ = ∅,
(wi,wj) is a CDE and thus (wi,wj) ∈ C−.

Previously, we use M+ to denote the set of all matches. It is used to define the con-
cept of CDE and shall be computed through instance matching. When training exam-
ples are given, we have a subset of all matches. To facilitate the following discussion,
we introduce M+ to refer to such a subset of matches (M+ ⊂ M+). Further, WM+

denotes the bag of words model of the values of instances in M+, C = WM+ ×WM+

is the Cartesian product representing all possible pairs of words in WM+ , C+ ∈ C de-
notes all word pairs that co-occur in M+ and C− ∈ C are word pairs not co-occurring
in M+.

We employ a word pair graph (WPG) as an intuitive way to capture word pairs in
positive examples and its complement set. Intuitively, two words co-occur in positive
examples if they are connected by an edge in the WPG, and they do not if there are
no edges connecting them. Then, a WPG can be defined as:

Definition 6.4 (Word Pair Graph). The word pair graph is an undirected graph G =
(V, E). Every node v ∈ V stands for a word in WM+ , and every edge e(vi,vj) ∈ E captures
the co-occurrence between two words wi and wj such that there is an edge e(vi,vj) ∈ E iff
there is a word pair (wi,wj) ∈ C+.

107



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

Clearly, when the set M+ of all matches is given, we can then compute a complete
WCG that captures the set C+ of all word pairs that co-occur in M+, and finally,
derive the set C− of all and correct CDEs from “missing edges” in that complete
WCG according to Theorem 6.1. However, we only have a subset M+ of positive
examples for CDE learning. Based on Theorem 6.1, we compute CDEs as

C− = C \ C+ (6.1)

The solution C− derived from an incomplete set M+ (incomplete C and C+) might
be incorrect and incomplete.

Incorrect CDE. When M+ does not contain all matches, then some word pairs in
C+ might not be contained in C+. Because CDEs are derived as the complement set of
C+, these word pairs would be included in the solution C−. However, they actually
co-occur in matches (i.e. they co-occur in C+) and thus shall not be used as CDEs.

Incomplete CDE. The solution is incomplete when there are word pairs in C that
are not in C, i.e. the values in M+ contain more unique words than the values in M+.
CDEs that belongs to C \ C cannot be derived.

Example 6.1. Consider the WCG in Fig. 6.1(a) that is computed based on the attribute
Description of instances in M+ = {(n1,n2), (n6,n7)}. The solid lines indicate word
pairs co-occurring in M+, such as (asus,laptop) and (laptop,notebook). All the
missing edges are then derived as CDEs, such as (apple,asus) and (macbook,asus).
M+ is incomplete because it does not include the matches (n3,n4), (n5,n6) and (n5,n7). As
a result, (macbook,notebook) and (asus,intel) for instance (indicated by the dotted
lines), are derived as CDEs because they do not co-occur in M+. However, they co-occur in
(n3,n4) and (n5,n6), which are matches not included in M+. Further, correct CDEs such
as (ME664LL,Ultrabook) and (asus,retina) for instance, cannot be derived because
retina, ME664LL and Ultrabook are not in M+.

The goal of this work is to derive a solution C− that contains all and only correct
CDEs from positive examples.

Definition 6.5 (Completeness and Soundness). Let C− be the ground truth that contains
all CDEs and C− the learned solution, the learning goals are to minimize C− \ C− (C− \
C− = ∅ means the solution is complete) and to minimize C− \ C− (C− \ C− = ∅ means
all CDEs in the solution are sound).

Note that C− \C− and C− \C− stand for false negatives and false positives, respec-
tively. Using false positives (incorrect CDEs) for filtering, instance pairs are pruned
that are actually correct. This would result in a decrease in recall. On the other hand,
when filtering is based on a solution with false negatives (an incomplete set of CDEs),
some non-matches cannot be pruned, resulting in a decrease in precision. By maximiz-
ing the completeness and soundness of CDE learning, we aim to maximize the recall
and precision of instance matching.

108



6.4 Learning Word-Level Dissimilarity Evidences

asus

laptop notebook

apple

intelmacbook
ME664LL

retina

incorrect CDE
co-occurrences of words

Ultrabook

(a) WCG derived from positive exam-
ples.

asus

laptop notebook

apple

intelmacbook

ME664LL

retina

incorrect CDE
co-occurrences of words

Ultrabook

(b) WCG derived from self-matches.

Figure 6.1: WCG in Fig. 6.1(a) that is computed based on the attribute Description
of instances in M+ = {(n1,n2), (n6,n7)} according to data in Tab. 5.1. Solid
lines indicate word pairs co-occurring in examples. Missing lines between
any two nodes capture correct CDEs and dotted lines represent incorrect
CDEs. Dotted squares indicate words that are not in the examples.

We provide the following theorems to reduce the false positives and the false neg-
atives:

Theorem 6.2. The set of false positives C− \ C− equals (C+ ∩ C) \ C+.

Proof. Because C− ⊆ C, we have C− \ (C− \ C) = C−. Then,

C− \ C− = C− \ ((C− ∩ C) ∪ (C− \ C)) (6.2)
= C− \ (C− \ C) \ (C− ∩ C)
= C− \ (C− ∩ C).

Because C− ∩ C+ = ∅, we can write C− ∩ C = (C− ∩ C) \ C+. Then,

C− = C \ C+

= ((C+ ∩ C) ∪ (C− ∩ C)) \ C+ (6.3)
= ((C+ ∩ C) \ C+) ∪ (C− ∩ C).

Finally, replacing C− in Eq. 6.2 with the final rewrite obtained for C− in Eq. 6.3
yields C− \ C− = (C+ ∩ C) \ C+.

Theorem 6.3. The set of false negatives C− \ C− equals C− \ C.

Proof. Because C+ ∩ C− = ∅, we can obtain the rewrite

C− \ C− = C− \ (C− ∪ C+)

= C− \ C

109



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

These two theorems are useful for CDE learning because they reveal the relation-
ships between false positives and the set of word pairs co-occurring in positive exam-
ples C+ and between false negatives and the set of word pairs C. In particular, they
imply that false positives and false negatives can be reduced by enlarging C+ and C,
respectively.

Intuitively, Theorem 6.2 captures that when using the set C to derive CDEs, the set
of incorrect CDEs comprises elements in the intersection of C+ and C. That is, ele-
ments in C are considered as CDEs even though they actually co-occur in C+. How-
ever, this set is further reduced using elements in C+. Namely, those CDEs found
to co-occur in C+ are discarded because they are incorrect. In other words, C+ is
used to filter incorrect CDEs. The larger this set, the larger is the number of incorrect
CDEs (false positives) that can be filtered. Likewise, Theorem 6.3 can be interpreted
as follows: CDEs are derived from C. Elements, whether correct or not, cannot be
recognized as CDEs when they are not in C. Thus, enlarging C reduces the number
of correct CDEs that cannot be derived (false negatives).

To achieve the learning goals, we now discusss the use of self-matches and self-
training to enlarge C+ and C, respectively.

6.4.3 Using Self-Matches as Examples

We enlarge C+ by taking into account the following observation: every pair of in-
stances formed by one instance and itself, i.e. instance pairs of the form (n,n) called
self-matches, is correct.

Based on this observation, the given set of positive examples M+, is augmented
with self-matches, denoted as M′+ = {(ni,ni)|ni ∈ N}. Word pairs co-occurring in
M′+, referred to as C′+, help to complement the word pairs C+ extracted from M+

because M′+ and M+ represent complementary sources. Intuitively, attribute values
of the same instance contain related words whereas two different instances referring
to the same thing, might used similar words (e.g. synonyms). That is, C+ is a source
of word pairs representing similar words that might be not available in C′+, and C′+

contains related words not captured by C+.

Example 6.2. Figure 6.1(a) and Fig. 6.1(b) show two WCGs that are con-
structed from the positive examples M+ = {(n1,n2), (n6,n7)} and the self-matches
M′+{(n1,n1), · · · , (n8,n8)}, respectively. They capture different sets of word pairs co-
occurring in M+ and M′+ (solid lines) and different false positives (dotted lines). For
example, note the pair of related words (apple,intel) and the pair of similar words
(laptop,notebook) only co-occur in M′+ and M+, respectively. These word pairs will
be incorrectly derived as CDEs (false positives) if only M+ or M′+ is used.

110



6.4 Learning Word-Level Dissimilarity Evidences

Instead of using C− = C \ C+ (Eq. 6.1), we thus compute CDEs by considering the
union of C+ and C′+ as

C− = C \ (C+ ∪ C′+), (6.4)

where as defined before, C is the Cartesian product representing all possible pairs
of words in WM+ , and C+ and C′+ are all word pairs co-occurring in M+ and M′+,
respectively.

In this way, the set of false positives is reduced from C− \ C− = (C+ ∩ C) \ C+ to

C− \ C− = (C+ ∩ C) \ (C+ ∪ C′+). (6.5)

Note that according to Theorem 6.3, false negatives can be reduced if we change C
in Eq. 6.4. Instead of using all the words contained in the values of instances in M+,
we could replace C by C′ to calculate the CDEs as

C− = C′ \ (C+ ∪ C′+), (6.6)

where C′ is the Cartesian product of words in WM′+ (words in M′+). Note that M′+

captures all instances, which include the sets of instances covered by M+ (and M+).
Thus, the set of all word pairs derived from M′+, C′, must be a superset of C (and C).
In other words, C′ is larger than C, thus computing CDEs via Eq. 6.6 helps to reduce
the number of false negatives.

However, Eq. 6.6 can also result in a larger set of false positives, which can be
calculated according to Theorem 6.2 as:

C− \ C− = (C+ ∩ C′) \ (C+ ∪ C′+) = C+ \ (C+ ∪ C′+) (6.7)

In fact, computing the difference between Eq. 6.5 and Eq. 6.7, we obtain
(C+ \ C) \ C′+, which represents the additional set of false positives produced by
Eq. 6.6.

Intuitively, Eq. 6.1 uses all possible pairs of words contained in the values of pos-
itive examples as candidate CDEs (C). Then, word pairs that actually co-occur in
positive examples (C+) are used to discard incorrect CDEs. Eq. 6.4 goes one step
further to also discard those related word pairs that co-occur in the same instance
(C′+). In Eq. 6.6, we also enlarge the set of candidates (C′ instead of C). This set is
however too large, including all word pairs that co-occur in positive examples C (in
all matches C) as well as those that do not. Hence, a larger number of correct CDEs
can be learned, but the result also includes more incorrect CDEs. Since the effect of
using Eq. 6.6 is not unambiguously positive, we only use self-matches to reduce false
negatives, i.e. Eq. 6.4.

111



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

6.4.4 Enriching Examples with Self-learning

The previous discussion suggests that in order to reduce false positives as well as
false negatives, candidate word pairs cannot be chosen randomly but shall co-occur
in matches. Self-learning is employed to enrich the given set of positive examples
with more matches, so that C is “selectively” enlarged to reduce the number of false
negatives.

For this purpose, we assume a black-box matcher for candidate selection. It could
be based on boolean matching, which given the instances N, produces the candi-
date set Mi at iteration i. The only property we assume is that this matcher can be
parametrized to produce different sets of matches {M1, . . . , Mm} that vary in size. In
particular, we assume a list in which these sets are sorted:

Definition 6.6 (Sorted Candidate Sets). Let Ci be the Cartesian product of words in Mi.
There is a list of candidate sets {M1, . . . , Mm}, where Mi ⊆ Mi+1 such that Ci ⊆ Ci+1, ∀1≤
i < m.

With this list, we can guarantee that by using a larger set of candidates (Mi+1 in-
stead of Mi), more words can be taken into account (Ci+1 ⊇ Ci). Clearly, the com-
putation of the sorted candidate sets can be naturally supported by a thresholded
similarity function. It is typically monotonic w.r.t. the threshold such that a smaller
threshold always yields a larger set of candidates. In our boolean matching approach,
we use a boolean similarity function that is based on the word overlaps between val-
ues, same(n[a],n′[a]) = 1 iff ∃w.w ∈Wn[a] ∧w ∈Wn′[a]. Since the number of word over-
laps is monotonic w.r.t. the size of the resulting candidate sets, we vary this measure
to obtain the sorted list.

Self-learning is an iterative process, where the following components are computed
in every iteration i:

C−i = Ci \ (C+
i ∪ C′+) (6.8)

M+
i+1 = Filtering(Mi+1,C−i ) (6.9)

where 0 ≤ i < m, Ci is the Cartesian product of words contained in values of in-
stances in M+

i , C+
i is the set of word pairs co-occurring in M+

i , and C′+ is the set
of word pairs co-occurring in self-matches. The result of every iteration i comprises
the set of CDEs, C−i , the candidate set Mi+1 and the positive examples M+

i+1. The
positive example M+

i+1 captures the set of results obtained by filtering the candidate
set Mi+1 using the CDEs obtained from the previous iteration, C−i . That is, we em-
ploy two boolean functions. Whereas similarity evidences are used for candidate
selection in the first step to obtain Mi+1, CDEs are used as dissimilarity evidences
to perform a subsequent candidate filtering step to compute M+

i+1. In particular,
Filtering(Mi+1,C−i ) is based on our CDE-based dissimilarity function: for a given

112



6.4 Learning Word-Level Dissimilarity Evidences

attribute a, an instance pair (n[a],n′[a]) ∈Mi+1 is considered a non-match when there
exists a CDE (wi,wj) ∈ C−i that co-occurs in (n[a],n′[a]). Take the CDE (Apple,ASUS)
and the attribute Title of the data in Tab. 5.1 for an example. Because Apple and
ASUS appear in the Title of n4 and n5 respectively, the instance pair (n4,n5) is con-
sidered as a non-match.

In the beginning, the initial set of CDEs, C−0 , is derived directly from the provided
positive examples M+

0 and self-matches M′+ using Eq. 6.4. Then, we perform candi-
date selection to produce the candidate set M1. Filtering this set using C−0 , we obtain
the refined set of examples M+

1 . These steps of CDE learning, candidate selection and
candidate filtering are iteratively performed until we reach the last iteration m, which
yields the final set of instance pairs M+

m .
We provide the following theorem to show that this self-learning reduces the num-

ber of false negatives, i.e. the number of correct CDEs learned in iteration i + 1 is a
superset of the correct CDEs learned in iteration i:

Theorem 6.4. For any two sets of CDEs C−i and C−i+1 learned from M+
i and M+

i+1, respec-
tively, we have

M+
i = M+

i+1 ∩Mi (6.10)

C−i+1 = C−i ∪ (C−i+1 \ Ci). (6.11)

Proof. Firstly, note all instance pairs that are filtered from Mi must contain at least
one CDE in C−i and all instance pairs in M+

i must contain no CDEs in C−i such that
the result of filtering on Mi using CDEs in C−i is M+

i . Given Mi is a subset of Mi+1
(Mi ⊆ Mi+1), we can write Mi+1 = Mi ∪ (Mi+1 \Mi). Thus, the result of filtering on
Mi+1 using C−i can be calculated as M+

i+1 = M+
i ∪ (Mi+1 \Mi)

+, where (Mi+1 \Mi)
+

captures the result of filtering on (Mi+1 \Mi). As a result, we have M+
i = M+

i+1 ∩Mi

and C+
i ⊆ C+

i+1 such that

C+
i+1 ∩ C+

i = C+
i . (6.12)

Secondly, since no CDEs in C−i can co-occur in M+
i+1, the intersection of C−i and

C+
i+1 is empty:

C+
i+1 ∩ C−i = ∅ (6.13)

Then, we can rewrite C−i+1 as the union of two terms:

C−i+1 = (C−i+1 ∩ Ci) ∪ (C−i+1 \ Ci) (6.14)

where C−i+1 ∩ Ci are CDEs in Ci and C−i+1 \ Ci are CDEs not in Ci. Next, C−i+1 ∩ Ci can

113



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

be calculated as the complement set of word pairs that co-occur in C+
i+1 and C′+ as:

C−i+1 ∩ Ci = Ci \ ((C+
i+1 ∩ Ci) ∪ C′+) (6.15)

Note Ci = C+
i ∪ C−i , then Eq. 6.15 can be further rewritten as

C−i+1 ∩ Ci = Ci \ ((C+
i+1 ∩ C+

i ) ∪ (C+
i+1 ∩ C−i ) ∪ C′+). (6.16)

Substituting Eq. 6.12 and Eq. 6.13 into Eq. 6.16, we can rewrite Eq. 6.16 according
to Eq. 6.8 as follows:

C−i+1 ∩ Ci = Ci \ ((C+
i+1 ∩ C+

i ) ∪ (C+
i+1 ∩ C−i ) ∪ C′+)

= Ci \ (C+
i ∪ C′+)

= C−i (6.17)

Finally, substituting Eq. 6.17 into Eq. 6.14, we prove that C−i+1 = C−i ∪ (C−i+1 \ Ci)

Intuitively, Theorem 6.4 captures that the CDEs and filtering results that are de-
rived from a larger candidate set Mi+1 are composed of two parts: all the CDEs and
filtering result that could already learned with Mi and some new CDEs and result
that are possible with the new words and instance pairs in Mi+1.

For a better understanding of the effects of using self-matches and self-learning,
we refer to our set-theoretic analysis in the Appendix A.4.

6.4.5 On the Combination of Thresholded and Boolean Matching

We completely rely on boolean functions to obtain a simple, threshold-free approach
that does not require fine-tuning. However, there are two natural ways to combine
this boolean approach with thresholded instance matching.

A threshold similarity function can be used to generate the sorted list of candidate
sets as previously discussed. Candidate sets are computed for and sorted according
to the given threshold. In this case, thresholded matching is used for the candidate
selection step, which is then followed by a boolean candidate filtering step based on
CDEs. As a whole, this combination represents a matching solution that implements
our iterative embedded process of CDE learning, thresholded candidate selection and
boolean candidate filtering.

This whole solution can also be treated as a black box for boolean filtering. Given
candidates computed by a thresholded approach, it can be used to identify and filter
dissimilar matching candidates.

114



6.5 Implementation

6.4.6 Multiple Attributes

So far, we have discussed CDE learning and instance matching always for a given
attribute a. That is, when some word pairs are said to co-occur in values of some in-
stances, it actually means they co-occur in the values of a specific attribute a of some
instances. Because CDEs learned from different attributes capture dissimilarity evi-
dences from different aspects, a non-matching instance pair that cannot be identified
by CDEs learned from one attribute could be identified by CDEs learned from other
attributes. In the multiple attributes setting, we apply the self-learning procedure
to every attribute. That is, CDEs are learned for any attribute. A candidate match
is considered correct only if it cannot be filtered by CDEs that are learned from ev-
ery attribute. Let {a1, a2, · · · , ak} be a set attributes and M+

ij be the result obtained by
applying the filtering step on the candidate set Mi using CDEs learned from aj, we
calculate the result as the intersection of the results obtained for every attribute, i.e.
M+

i =
⋂k

j=0 M+
ij .

6.5 Implementation

We previously focused on the main ideas behind CDE learning. Here, we also con-
sider the aspect of efficiency, presenting a solution that aims to address the following
two problems:

Duplicate Instance Pairs: Self-learning is an iterative procedure in which the steps
of CDE learning, candidate selection and filtering are iteratively executed. Clearly,
candidate sets processed in different iterations largely overlap in the instance pairs
they contain. It is thus not efficient to repeatedly process the same instance pairs over
several iterations. We can leverage Theorem 6.4 to solve this problem: for any two
adjacent sorted candidates sets Mi and Mi+1, we know that the CDEs and filtering
result computed for the same set of instance pairs in Mi and Mi+1 ∩Mi are the same,
i.e. M+

i = M+
i+1 ∩Mi, C−i = C−i+1 ∩ Ci. Since the computed results for instance pairs

in Mi in each iteration are the same, we can simply remove the instance pairs in Mi
from Mi+1, i.e. only process the instance pairs in the set Mi+1 \Mi.

Expensive WCG Calculation: To learn CDEs according to Eq. 6.8, the Cartesian
product of all words in the candidate set, C, is taken into account. Then, we consider
C+ to derive the CDEs as the complement set C−. While using these different sets
help to explain the idea, we observe that for CDE-based filtering, only C+ is actually
needed. According to Theorem 6.1, a word pair is a CDE if it is not in C+. Thus, an
instance pair can be considered a non-match if one of its word pairs is not in C+ (i.e.
that word is a CDE). In this way, we can check for CDEs and perform filtering simply
by looking at word pairs that co-occur in a given instance pair and word pairs in C+.
To capture this idea, we can redefine the CDE-based dissimilarity function as follows:

115



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

Definition 6.7 (C-Based Diss. Function). Let M+ be a set of positive examples and C+ be
the set of word pairs that co-occur in M+, the CDE-based dissimilarity function ¬same :
N[a]× N[a]→ {0,1} maps a pair of attribute value (n[a],n′[a]) to 1, if there exists a word
pair (wi,wj) that co-occurs in (n[a],n′[a]) and (wi,wj) /∈ C+, and 0 otherwise.

Since the number of matches is usually much smaller than the number of non-
matches, we can expect that most word pairs do not co-occur in matches, i.e. the size
of C+ is much smaller than C− and C. Thus, focusing on C+ could largely improve
efficiency.

Algorithm 9: Self-learning based instance matching

Input: M+
0 , the initial examples; M′+, self-matches; {M1, M2, · · · , Mm}, sorted

candidates sets; and the attributes {ai, a2, · · · , ak}.
Data: C+

i,aj
, word pairs co-occurring in the values of aj of instances in M+

i

Result: M+.
1 //“Learn CDEs” with self-matches + examples;
2 for j = 1 to k do
3 C+

0,aj
:= LearnCDE(aj, M+

0 ∪M′+);

4 //Self-training;
5 for i = 1 to m do
6 M+

i = Mi \Mi−1;
7 for j = 1 to k do
8 M+

i := Filtering(aj, M+
i ,C+

i−1,aj
);

9 for j = 1 to k do
10 C+

i,aj
:= C+

i−1,aj
∪ LearnCDE(aj, M+

i );

11 M+ := M+ ∪M+
i ;

12 return M+;

The procedure for instance matching, which assumes a sorted list of candidate sets
obtained via candidate selection and iteratively performs CDE learning and candi-
date filtering, is shown in Alg. 9. Due to the change discussed above, CDE learning
and candidate filtering now involves the use of C+ instead of C−. That is, Alg. 11
actually does not learn CDE but C+, which is then used to identify CDE in instance
pairs and to filter them.

First, C+ is constructed using self-matches and the given training examples (line 1-
3). Then filtering (Alg. 10) and CDE learning (Alg. 11) are applied iteratively on each
of the sorted candidates sets (line 5-11). As discussed, in Alg. 9, in each iteration, the
instance pairs in Mi−1 can be removed from Mi first to avoid duplicate processing.
The resulting set of candidates is used to initiate M+

i (line 6). Then, non-matches from

116



6.5 Implementation

Algorithm 10: Filtering

Input: Attribute aj; and candidates set Mi, word pairs C+
i−1,aj

.

Result: A set of instance pairs M+
i .

1 foreach (n,n′) ∈ Mi do
2 foreach w ∈Wn[aj] do
3 foreach w′ ∈Wn′[aj] do
4 //if (w,w′) is a CDE;
5 if (w,w′) /∈ C+

i−1,aj
then

6 Mi := Mi \ {(n,n′)} ;

7 return M+
i := Mi;

Algorithm 11: Learning CDEs

Input: attribute aj; instance pairs M+
i .

Result: C+
i,aj

, word pairs co-occurring in the values of aj of instances in M+
i .

1 //Find word pairs co-occurring in M+
i ;

2 foreach (n,n′) ∈ M+
i do

3 foreach w ∈Wn[aj] do
4 foreach w′ ∈Wn′[aj] do
5 C+

i,aj
:= C+

i,aj
∪ {(w,w′)} ;

6 return C+
i,aj

;

this candidate set are filtered according to Def. 6.7 (line 8). After filtering using all
attributes, enrichment is performed to collect more words and C+

i from the filtering
result M+

i (line 10). Finally, the filtering result for every iteration is added to the result
set (line 11).

Example 6.3. Fig. 6.2 illustrates the use of Description for the data in Tab. 5.1. Lets have
a look at iteration 1: we have already collected the word pairs C+

0 and C′+ that co-occur in the
examples M+

0 and the self-matches M′+ respectively. Now the algorithm applies filtering to
the larger candidate set M1, and then learns CDE from M+

1 , as follows:
1. Removing duplicate instance pairs: The pairs in M0 are removed from M1 to avoid

duplicate processing.
2. Filtering: Filtering is applied to the remaining instance pairs in M1. For example,

(n1,n3) is derived as a non-match according to Def. 6.7 because the word pair (i5,i7) co-
occurs in (n1,n3) but not in C+

0 and C′+. Finally, we can infer (n3,n4) as a match, which is

117



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

then used as a positive example for CDE learning in the next step.
3. Learning CDEs: In Iteration 2, enrichment is performed with the pairs of new words

taken from M+
1 such as (apple,retina) and (ME664LL,pro) that co-occur in (n3,n4).

As a result, C+
1 contains all the word pairs that co-occur in M+

0 , M′+ and M+
1 .

M1 −M0

M2 −M1

(n1,n3), (n1,n4 ),

(n3,n7), (n4,n5),

M0
+

(n1,n2 ), (n6,n7)

M1
+

M2
+

(n3,n4 )

(n5,n6 ), (n5,n7)

M '+ (n1,n1), (n2,n2 ),
(n3,n3),.., (n7,n7)

C0
+ C0

−

C1
+ C1

−

(prime,	  macbook),…,	  
(ultrabook,	  apple)	  

C2
+

(laptop, notebook) 
…,(asus, laptop) 

(apple, Retina ), 
…,(ME664LL, pro) 

C2
−

(asus, ultrabook), 
…, (prime, asus) 

(air, pro), (ssd, hdd), 
 …, (asus, Retina) 

C '+

(asus, intel), 
…, (apple, macbook)  Learning CDEs 

 Removing Duplicate Instance Pairs  

(n4,n6 ), (n5,n6 ), (n5,n7)

(n1,n5), (n3,n4 ), (n3,n5)

(apple, asus), 
…, (i5, i7) 

Mi \ Mi−1
… 

Mi
+

Ci
+ Ci

−

LearnCDE(Title,M0
+∪M '+)

LearnCDE(Title,M1
++)

LearnCDE(Title,M2
++)

Filtering(Title,M1,C0,Title
+ )

Filtering(Title,M2,C1,Title
+ )

M1 \ M0

M2 \ M1

M3 \ M2

Filtering 

Iteration 1 

Iteration 3 

Iteration 2 

Iteration 1 

Iteration 2 

Iteration 2 

Iteration 3 

Iteration 1 

Figure 6.2: An example of the algorithm

The time complexity for every iteration in Alg. 9 depends on the number of word
pairs that are compared. The algorithm needs to check all the instance pairs in
M+

0 , M′+ and Mm, where M+
0 denotes the initial set of positive examples, M′+ is

the set of self-matches, and Mm denotes the largest one among all the sorted candi-
date sets (note that Mm contains all the examples added to the initial set as part of
the iterative enrichment). For each instance pair, let k be the number of attributes
and w2 be the maximum number of word pairs that co-occur in the value of an
attribute. In worst case, the number of word pairs that the algorithm processes is
(|M+

0 ∪M′+ ∪Mm|)kw2. With m as the number of iterations, the total time complex-
ity is O((|M+

0 ∪M′+ ∪Mm|)kw2m).

118



6.6 Experimental Evaluation

6.6 Experimental Evaluation

To study the proposed solution, we employ a recent instance matching bench-
mark [66] that captures data from enterprise databases as well as synthetic data.
Tab. 6.2 provides an overview of the datasets.

Table 6.2: Instances and ground truth (GT).

Task
Instances

GT
Dataset1 Dataset2

AD 2,616 2,294 2,224
AB 1,081 1,092 1,097

Rest 864 112

ACM-DBLP (AD). These datasets in the benchmark [66] include well-structured
bibliographic data from DBLP and ACM digital library. This one is manually created
and thus, is of higher quality among all datasets. Therefore, the task represented by
this is of low difficulty.

Abt-Buy (AB). This matching task in the benchmark [66] is performed between in-
stances collected from http://abt.com and http://buy.com. There are many
errors and noises that cannot be avoided during automatic data collection. This
matching task is in fact the most difficult one in this experiment.

Restaurant(Rest). This dataset is made available through the OAEI 20101 bench-
mark. We removed the telephone attribute because with it, previous results pub-
lished by the benchmark show that it is too easy of an matching task (all systems
perform well).

Systems. We compare our techniques with three recent approaches [57, 109, 119]
proposed for instance matching. Two of them are thresholded instance matching ap-
proaches, denoted as SiFi [119] and ST [57]. SiFi learns similarity functions and
thresholds from positive and negative examples. ST learns the most discriminative
attributes and values to be used for matching. It uses a given similarity function
ISub and thresholds manually set by experts. The third, named Paris, is a boolean
instance matching approach that outputs true for two instances, if they have the same
attribute values. The idea here is to iteratively cross-fertilize instance matching re-
sults with schema matching results until convergence is reached [109].

Quality Metrics. We use the standard metrics for comparing instance matching
results: Precision (P) and Recall (R) and F-measure (F).

Setting. All experiments were run on a server with two Intel Xeon 2.8GHz Dual-
Core CPUs, using 8GB of main memory, running Linux with kernel version 2.6.18.
The presented results are computed as an average over five runs.

1http://oaei.ontologymatching.org/2010

119

http://abt.com
http://buy.com
http://oaei.ontologymatching.org/2010


Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

6.6.1 Parameter Analysis

Compared to thresholded instance matching approaches, our solution is parameter-
free in this sense: we simply use all the attributes, m = 10 as the number of iterations,
and the overlap of values as the boolean function for candidate selection, i.e. in-
stances that have the same value are considered as a match candidate. As illustrated
in Fig 6.3(d) (average F-measure for all tasks), our approach achieves fairly stable re-
sults for different values of m. The only exception is when m is set to 1, which means
the CDEs are learned only based on the provided examples and self-matches. Self-
learning improves the results (changing m = 1 to any value great than 1). However,
the results suggest improvements converge quickly after m > 4.

Now, we study the sensitivity of existing approaches (SiFi and ST) with respect
to training data and parameters. We will focus our discussion on the task Rest.

76	  

78	  

80	  

82	  

84	  

86	  

88	  

90	  

PE1	   PE2	   PE3	   PE4	   PE5	  

F-‐
m
ea
su
re
(%

)	  

Posi;ve	  Example	  

(a) SiFi: training examples

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  

12	   13	   14	   23	   24	   34	   123	   134	   234	  1234	  

F-‐
m
ea
su
re
(%

)	  

Instance-‐matching	  rules	  

(b) SiFi: rules

70	  

75	  

80	  

85	  

90	  

95	  

0.9	   0.8	   0.7	   0.6	   0.5	  

F-‐
m
ea
su
re
(%

)	  

Threshold	  	  

Cosine	  
Jaccard	  

(c) SiFi: similarity functions and thresh-
olds

40	  

50	  

60	  

70	  

80	  

90	  

10	   9	   8	   7	   6	   5	   4	   3	   2	   1	  

F-‐
m
ea
su
re
(%

)	  

m	  

effiCDE	  

(d) effiCDE: m

Figure 6.3: Parameter analysis for SiFi and effiCDE.

SiFi. In the experiments, we adopt the four instance-matching rules as reported by
the authors in their original paper [119]. SIFI requires attributes to be manually set
for each rule. Also, it requires the similarity functions and thresholds to be manually
set for some attributes so that they can be learned for other attributes. Besides this

120



6.6 Experimental Evaluation

problem of manual tuning, the sensitivity of the approach w.r.t. parameters and
training data is as follows.

Firstly, different sets of positive examples of the same size (30% of the ground truth)
were randomly selected to analyze the sensitivity of training data. As illustrated in
Fig 6.3(a), we can see results achieved by SiFi were not stable. Depending on the set
of training examples, results vary between 81% and 9% in term of F-measure.

Secondly, different combinations of the four original instance-matching rules were
used. For example, in Fig. 6.3(b), we use 13 to denote the usage of the first and the
third rules. We can see that also with respect to parameters, the results are not stable
(vary between 78% and 90%, not counting outlier 34). Considering 34, F-measure
result might be as low as 10%. We note the results are the same for the settings 12
and 1234, indicating that the third and the fourth rules are actually not necessary for
the task at hand. However, it is difficult for experts to determine and select the rules
(especially when not only result quality but also efficiency is a relevant factor).

Finally, we analyze the effect of using different thresholds and similarity functions
that we manually set for the attribute name. As illustrated in Fig. 6.3(c), results greatly
vary when either the similarity function or the threshold changes. Note in practice,
experts have to chose the best setting for multiple attributes, selecting from more than
tens of relevant similarity functions and all candidate thresholds in the [0,1] interval.

40	  
50	  
60	  
70	  
80	  
90	  

1	   2	   3	   4	  F-‐
m
ea
su
re
(%

)	  

Number	  of	  A<ributes	  	  

ST	  

(a) Different no. of attributes

50	  
55	  
60	  
65	  
70	  
75	  
80	  
85	  

0.99	   0.97	   0.95	   0.93	   0.91	   0.89	   0.87	  F-‐
m
ea
su
re
(%

)	  

Similarity	  	  

ST	  

(b) Different thresholds

Figure 6.4: Parameter analysis for ST

ST. With this approach, experts have to select the attributes used for instance
matching so that instance pairs, whose similarity on any attribute is higher than the
threshold can be considered as matches. Intuitively, more matching instance pairs can
be found when we consider more attributes (high recall). However, a high number
of attributes may also result in too many non-matches (low precision). In Fig. 6.4(a),
we see this for the data in our experiment. F-measure result initially improves as the
number of attributes increases (the effect of improved recall) and then drops sharply
as many more attributes are added (the effect of reduced precision).

We also analyze the results computed using different thresholds that are between
0.87 and 0.99. As shown in Fig. 6.4(b), ST is extremely sensitive to the chosen thresh-

121



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

old. For example, F-measure decreases sharply from 81% to 68% when the threshold
is slightly changed from 0.97 to 0.99.

In summary, these experiments show that while good results can be achieved using
thresholded approaches (approaches that require fine tuning, often much more than
just the thresholds), they are very sensitive to the choice of parameters and data. Re-
sult quality depends not only on the underlying approach but also the effectiveness
of the experts applying it. In what follows, we now compare these thresholded ap-
proaches with boolean approaches, including our approach and Paris, which aim
to reduce the efforts needed for manual tuning.

6.6.2 Efficiency of Instance Matching

In this section, we compare the efficiency of our solution with existing approaches.
As discussed in Sec.6.4.5, it can be combined with the use of thresholds in two dif-
ferent ways. When not explicitly mentioned, experimental results presented for our
solution here are entirely based on boolean matching as presented in the chapter.

Because it is sometime difficult to separate the training and matching processes in
instance matching approaches (they are often intertwined as results from matching
are used to improve learning), we evaluate the efficiency of all methods w.r.t. total
running time as shown in Tab. 6.3.

Table 6.3: Performance of learning and instance matching in ms.
effiCDE CDE SiFi ST PARIS

AD 42,552 2,139,949 502,450 48,362 25,955
AB 14,068 699,031 33,418 12,202 7,180

Rest 4,508 52,798 58,491 5,471 10,517

CDE and effiCDE represent our solutions with and without efficiency improve-
ments as proposed in Sec. 4. Clearly, effiCDE achieved much better performance:
it needs only 2% of the time taken by CDE. Especially, because the size of C+ (used
by effiCDE) is only 1% - 2% of the size of C−(used by CDE) in the experiments,
effiCDE is also much more efficient in terms of memory usage.

Comparing to the thresholded instance matching approaches SiFi (ST), effiCDE
exhibits better (similar) overall performance. In the learning step, effiCDE is effi-
cient because it avoids the learning of complex instance matching rules: it only has to
focus on word pairs that co-occur in a relatively small-amount of matches. It is also
efficient in the matching step because instead of possibly complex similarity calcula-
tions (depending on the similarity functions), it only requires boolean matching on
words. For the dataset AD as an example, effiCDE requires only 42,552 ms, which is
only 10% of the time required by SiFi. SiFi exhibits worst performance because it
has to search the best rules from a large search space of rule candidates. Even though
SiFi implements a strategy for eliminating candidates with redundant similarity

122



6.6 Experimental Evaluation

functions and thresholds, we observe that the operations needed for determining and
removing redundancy itself is still too costly. ST is fast because compared to SiFi, it
pursues a more easy learning task, which does not require the learning of similarity
functions and thresholds (hence, much smaller search space).
Paris is the fastest among all approaches. This is because just like our approach,

PARIS only employes boolean matching. It is faster than our solution mainly because
it is much more aggressive in pruning candidates. In our approach, candidates are
recognized whenever they match on some words contained in their values. Further,
before filtering, some are actually “re-examined” in several rounds of our iterative
process. Paris keeps only candidates that match on their values and filters them
more aggressively throughout the iterations. While this strategy largely increases
performance, it also leads to lower recall when the data contains more noises, as
discussed in the following.

Compared to the benchmark for the task AD, effiCDE costs more time than the
learning-based approaches including SVM and decision tree, which use three sim-
ilarity functions and two attributes for matching. SVM and decision tree spend 20
seconds and 12 seconds, respectively. However, because we count both learning and
testing time, and process all the four attributes for matching, it is difficult to compare
with the benchmark in details. On the other hand, for the task AB, effiCDE that
use only 14 seconds for execution is much more efficient than SVM and decision tree,
which cost at least 232 seconds and 551 seconds, respectively.

6.6.3 Effectiveness of Instance Matching

Tab. 6.4 presents results for our three quality metrics. Overall, we can see that
effiCDE outperforms all the other approaches in terms of F-measure. Compared
to the second best result achieved by any of the studied approaches, it improves F-
measure by +3.66%, +206.47% and +1.34% for AD, AB and Rest, respectively. Espe-
cially, we note effiCDE is most effective in filtering non-matching instance pairs.
This is reflected in the higher precision results: the improvements over the second
best are +6.51%, 181.64% and 1.56% for AD, AB and Rest, respectively. We note that in
fact, our filtering approach primarily aims at precision. Regarding recall, the boolean
matching as implemented for the candidate selection step in our approach is too strict
as it only selects exact matches. This however, can be remedied by using thresholded
matching for candidate selection as discussed in Sec. 6.4.5 and in what follows.

Regarding specific tasks, we observe effiCDE is particularly effective in dealing
with the most difficult task, i.e. finding product pair matches on the relatively noisy
AB dataset. The results achieved for this task are much worse than for other tasks.
This is because the automatically extracted product descriptions largely vary, while
the bibliographic data AD and restaurant data Rest are more structured and uni-
form. As a result, when entire attribute values are considered, matches are hard to

123



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

Table 6.4: Effectiveness of instance matching in terms of P, R and F
effiCDE SiFi ST PARIS

P R F P R F P R F P R F
AD 96.58 97.84 97.21 90.68 97.10 93.78 85.19 96.99 90.71 93.20 93.62 93.41
AB 74.24 60.43 66.63 26.36 18.51 21.75 20.77 18.69 19.67 12.01 2.55 4.21

Rest 88.33 94.64 91.37 86.77 93.75 90.13 87.83 90.17 88.98 5.90 45.53 10.45

find on AB. In fact, at this attribute-level, AB cannot provide sufficient similarity ev-
idences such that the thresholded instance matching approaches SiFi and ST fail
to find the thresholds that cover the given example matches. At this level, there
are also not sufficient evidences for a boolean approach: PARIS incorrectly prunes
candidates because only few product pairs entirely match on their attribute values.
More evidences can however be collected at the word level. Products that have low
similarities on entire attribute values, often share very distinctive word pairs. Our
CDE-based solution leverages this, providing a better solution for noisy data by ex-
ploiting more fine-grained dissimilarity evidences. The F-measure improvement for
AB is +206.34%.

Compared to the benchmark, effiCDE achieves the very similar result as the best
system SVM. Especially for the task AB, we can observe that effiCDE outperforms
all the other systems. This is because the data in the AB is so noisy that AB is not a
linear classification problem. While SVM can solve the non-linear classification prob-
lem by mapping the inputs into high-dimensional feature spaces, effiCDE solves
this problem in another direction by using dissimilarity features in the word level.

Combining Boolean and Thresholded Matching. Instead of using a pure boolean
approach, we also experiment with the combination of effiCDE and thresholded
matching. It is applied for filtering results computed by other approaches. Fig. 6.5(a)
shows results obtained by applying effiCDE as a filter on SiFi results. Compared
to SiFi, F-measures consistently increase for all tasks after applying effiCDE as
a filter. We can see in Fig. 6.5(b) that recall does not change. Thus, this F-measure
improvement is entirely due to the positive effect of filtering on precision. As a filter,
effiCDE helps to reduce non-matches while preserving all matches produced by the
underlying approach.

However, this combination is not always better than effiCDE. SiFi could not find
many candidates for the noisy AB datasets. Using effiCDE as a filter could not solve
this problem of recall.

6.6.4 Labeling Effort

Because SiFi is the only approach that requires training examples (other approaches
used “pseudo-examples”, i.e. matches computed in the first run), we use it as a com-

124



6.6 Experimental Evaluation

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

AD	   AB	   Rest	  

F-‐
m
ea
su
re
	  (%

)	  

Dataset	  

effiCDE	  
SiFi	  
SiFi+effiCDE	  

(a) F-measure

10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  

100	  

AD	   AB	   Rest	  

Re
ca
ll	  
(%

)	  

Dataset	  

effiCDE	  
SiFi	  
SiFi+effiCDE	  

(b) Recall

Figure 6.5: effiCDE as Filters

parison to study the labeling efforts needed to obtain examples. As example, we use
different sets of matches (between 10% and 50%) taken from the ground truth. To
consider sensitivity w.r.t. noises in the training data, we also use the set of instance
pairs whose Jaccard similarity is greater than 0.9 as pseudo-examples, denoted as
Jaccard0.9. For Jaccard0.9, precision, recall, and F-measure are 89.89%, 79.46%
and 84.36%, respectively.

Figure. 6.6(a) shows the F-measures results. Clearly, effiCDE manages to main-
tain high quality results for varying amount of labeling efforts, including for
Jaccard0.9 that requires no efforts. This is because training examples are largely
enriched by self-matches as well as matching obtained via self-training. Thus, the
initial set of seeds is not critical for our approach. Note that effiCDE performs well
for Jaccard0.9, while SiFi provides very low quality results. The non-matches
in these pseudo-examples represent false similarity evidences, which have a large
negative impact on the thresholds learned by SiFi. With effiCDE, word pairs that
should be CDEs are incorrectly recognized as word pairs co-occurring in matches,
due to the existence of non-matches in the examples. This only results in a smaller set
of initial CDEs that can be learned. Even with this lack of CDEs, a non-match can still
be filtered for two reasons: 1) there are multiple CDEs existing in various attributes
of a non-match and any attribute can be used for filtering; 2) most importantly, many
more CDEs can be derived later through the enrichment via self-matches and self-
training.

As shown in Fig. 6.6(b), effiCDE achieves stable running time given varying
amount of labeling efforts while SiFi takes more time when the number of train-
ing examples increases. As discussed, the time complexity of effiCDE depends on
the number of instance pairs in the initial set of examples, self-matches and sorted
candidates sets. The running time of our solution is less sensitive to the initial train-
ing examples because its size is relatively small compared to the other two factors.
SiFi however directly depends on it. An increase in size leads to a much larger
search space that has to be considered for rule learning.

125



Chapter 6 Filtering: Effective Parameter-free Boolean Instance Matching

60	  

70	  

80	  

90	  

Jac
ca
rd0
.9	   0.1

	  
0.2
	  

0.3
	  

0.4
	  

0.5
	  

F-‐
m
ea
su
re
(%

)	  

Similarity	  	  

effiCDE	  
SiFi	  

(a) Effectiveness

0.00	  
100.00	  
200.00	  
300.00	  
400.00	  
500.00	  
600.00	  
700.00	  

Jac
ca
rd0 0.1

	  
0.2
	  

0.3
	  

0.4
	  

0.5
	  

Ti
m
e	  
(s
)	  

Posi9ve	  Examples	  

effiCDE	  
SiFi	  

(b) Efficiency

Figure 6.6: Evaluation result for different labeling efforts.

6.7 Related Work

For fine-grained matching and filtering based on thresholds, different similarity func-
tions have been incorporated into matching rules, including character-based met-
rics (e.g. edit distance) and token-based metrics that consider the rearrangements of
words [40]. Paris [109] measures the degrees of matching based on probability esti-
mates (and cross-fertilizes them through evidence propagation between the data and
schema level).

For learning the rules, there are supervised techniques based on existing machine
learning methods (such as SVM [14]) or specific ones designed for instance matching
(e.g. learning similarity function predicates from training data can be reduced to
the maximum rectangle problem [24]). As shown for SiFi [119], highest quality
can be achieved when combinations of attributes, similarity functions and thresholds
are considered for rule learning. Further, self-learning, which incorporates previous
learning results into the loop can yield improvements. Recent approaches for this
include Paris that employes evidence propagation [109] and ST [57].

There are also semi-supervised techniques based on probabilistic graphical models.
It has been shown that many existing instance matching (and blocking) approaches
can be captured as Markov Logic formulas and reformulated as a Markov Logic
learning problem [105]. However, this involves learning both the structure (formulas)
and their weights. Existing works focus on weight learning such that the formulas
have to be specified manually.

Our idea of using dissimilarity evidences for filtering is most related to the use
of constraints also called negative rules. It has been shown that using manually de-
signed constraints can help to effectively filter non-matches [4, 10, 37, 38, 103, 122].
The main differences to our work are: (1) these constraints (just like instance match-
ing rules) capture evidences at the level of attributes, i.e. they are based on comparing
the whole attribute values. (2) Constraints (which are relative small in number) shall

126



6.8 Conclusion

capture the domain knowledge of experts while our dissimilarity functions (a large
number of them) are driven by the data. They are manually designed by experts
while our functions are learned from the data.

6.8 Conclusion

For the problem of instance matching, we provide a solution that instead of thresh-
old functions that capture attribute-level evidences, employs more simpler boolean
functions but also more fine-grained word-level evidences. We show that with this
boolean approach, a parameter-free procedure can be designed that when combined
with word-level evidences, can be highly effective. Compared to state-of-the-art in-
stance matching approaches, this solution greatly improves result quality and most
importantly, is not sensitive to the choice of training data and parameter. We show
that it can be employed as a standalone solution for instance matching or combined
with a matcher as a boolean filter. As future work, we will explore the usage of
more complex boolean functions as well as a tighter combination of the boolean and
threshold approaches.

127





Chapter 7

Conclusion

We conclude this thesis by summing up the research question and the achieved re-
sults. Afterwards, we provide an outlook on further research as well as conclusions.

7.1 Summary

One main problem towards the effective use of an increasing amount of structured
data is instance matching as described in Chapter 1 and detailed in Chapter 2. Fo-
cusing on the topic of instance matching, we raised the following principal question
and investigated it in this thesis:

How to match instances effectively and efficiently for heterogeneous structured
data?

Concerning this question, we identified three challenges in Chapter 1. We tackled
all the challenges in four sequential steps of the instance matching process, where
each step corresponds to a specific research question. We investigated these ques-
tions in depth through experiments and provided a scientific contribution on each
question, as stated in Section 1.5.

Considering the challenge of heterogeneity of structured data on the Web, the first
step is to group instances that are of the same type. We showed this question is
that How to derive type semantics of instances in Chapter 3. We discussed the features
that are need to solve this problem. Because schema features perform best, but are
not abundantly available, we proposed an approach to automatically derive them
from data. Optimized for the use of schema features, we presented TYPifier, a novel
clustering algorithm that in experiments, yields better typification results than the
baseline clustering solutions.

In the second step, blocking, the question is How can match candidates be efficiently
and effectively generated, which is answered in Chapter 4. Aiming to deal with the
challenge of high complexity, we proposed an unsupervised approach to learn the

129



Chapter 7 Conclusion

type-specific representative attributes called keys, based on which match candidates
are generated by finding instances that share the same value of the key.

Due to the low quality of structured data, as stated in the third challenge in Sec-
tion 1.3, a large number of calculated candidates are actually non-matches. In the clas-
sification step, the question How can match candidates be effectively classified to matches
and non-matches is answered by a rule-based instance matching approach. In Chap-
ter 5, we proposed an almost-parameter-free approach to learn combinations of at-
tributes, similarity functions and thresholds, called instance-matching rule, for find-
ing matches. Two instances are classified to the class match if the average similarity
of the learned attributes is greater than the threshold.

In Chapter 6, we showed that since the use of threshold is sensitive to training data
and parameters, the approaches that are based on the use of thresholds and compar-
ing instances at the coarse-grained level of attribute values may not always perform
well and hence output a lot of instance pairs that are actually non-matches. This prob-
lem results in the question How to identify non-matching instance pairs by simple Boolean
functions in the filtering step. To answer this question, we proposed a parameter-free
solution that exploits fine-grained word-level dissimilarity evidences to identify the
non-matching instance pairs. Due to the Boolean nature of the word-level dissimi-
larity evidence, the learning of these evidences is more simple, i.e. does not require
parameters and is not sensitive to training data. At the word level, the large-number
evidences are more discriminative in identifying non-matches, which leads to high
precision and recall of the instance matching result.

7.2 Outlook

In this section, we provide an outlook on the future development of instance match-
ing.

Matching Unstructured Data. We described instance matching techniques that
are applied on structured data. In reality, there is a large volume of unstructured
data that is stored as free texts without any attributes, such as the content extracted
from emails, blogs and news articles [18, 26]. Information extraction techniques are
generally need for getting information that can be used for the instance matching
approaches proposed in this thesis [99]. In this way, the quality of data preprocessing
is crucial in order to achieve high quality results.

Real-time Instance Matching. Our approaches are designed to be applied as an
offline process. However, practical applications such as search engines and security
systems may need the data to be matched in real time [8, 19, 25, 64, 95, 118, 131]. Such
applications involve a trade-off between matching accuracy and matching speed as
well as the scalability to very large databases [13, 36]. The real-time processing may
also need specialized indexes of instances to enable efficient generation of match can-

130



7.3 Conclusion

didates and calculation of similarities [29, 30].
Matching Multi Data Sources. In this chapter, we discussed how instances in

two data sources can be matched. In certain applications, such as online products
comparisons, instances from more than two sources need to me matched. The cur-
rent techniques should be reconsidered carefully for matching instances that are from
multi data sources. [48, 121].

Instance Matching Framework. Currently, various approaches that correspond to
different steps of the instance matching process have been proposed. Then a uni-
fying framework for instance matching is required that allows different approaches
being integrated together towards better performance and easier evaluation. Such
framework should also allow new algorithms to be easily plugged into the system.

7.3 Conclusion

Overall, we have shown in different settings from different perspectives how hetero-
geneous structured data can be efficiently and effectively matched. We extracted the
type semantics of instances, and learned the type-specific blocking keys for each type
of instances to generate match candidates. Then, we presented solutions to learn sim-
ilarity evidences at the level of attributes and dissimilarity evidences at the level of
words to identify matching and non-matching instance pairs, respectively. Further,
the proposed approaches are all validated through extensive experiments that show
they improve upon the state of the art. Finally, we gave an outlook on the future
development of instance matching in the end of the thesis.

131





Bibliography

[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Or-
dering points to identify the clustering structure. In Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, pages 49–60, 1999.

[2] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity
joins. In Proceedings of the 32nd international conference on Very large data bases, pages
918–929. VLDB Endowment, 2006.

[3] Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik. Transformation-based frame-
work for record matching. In Proceedings of the 24th International Conference on Data
Engineering (ICDE), pages 40–49, 2008.

[4] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with con-
straints using dedupalog. In Proceedings of the 25th International Conference on Data En-
gineering (ICDE), pages 952–963, 2009.

[5] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1027–1035, 2007.

[6] Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik Magdon-Ismail,
and Nathan Preston. Finding communities by clustering a graph into overlapping sub-
graphs. In Proceedings of the IADIS International Conference on Applied Computing, pages
97–104, 2005.

[7] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking meth-
ods for record linkage. In Proc. ACM SIGKDD âĂŹ03 Workshop Data Cleaning, Record
Linkage, and Object Consolidation, pages 25–27, 2003.

[8] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similar-
ity search. In Proceedings of the 16th International Conference on World Wide Web (WWW),
pages 131–140, 2007.

[9] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support vector
clustering. Journal of Machine Learning Research, 2:125–137, 2001.

[10] Indrajit Bhattacharya and Lise Getoor. Relational clustering for multi-type entity reso-
lution. In ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM), 2005.

[11] Indrajit Bhattacharya and Lise Getoor. A latent dirichlet model for unsupervised en-
tity resolution. In Proceedings of the Sixth SIAM International Conference on Data Mining
(SDM), 2006.

133



Bibliography

[12] Indrajit Bhattacharya and Lise Getoor. Online collective entity resolution. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancou-
ver, British Columbia, Canada, pages 1606–1609, 2007. URL http://www.aaai.org/
Library/AAAI/2007/aaai07-255.php.

[13] Indrajit Bhattacharya, Lise Getoor, and Louis Licamele. Query-time entity resolution. In
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 529–534, 2006.

[14] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learn-
able string similarity measures. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 39–48, 2003.

[15] Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep D. Ravikumar, and
Stephen E. Fienberg. Adaptive name matching in information integration. IEEE Intelli-
gent Systems, 18(5):16–23, 2003.

[16] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking: Learn-
ing to scale up record linkage. In Proceedings of the 6th IEEE International Conference on
Data Mining (ICDM), pages 87–96, 2006.

[17] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci.,
337(1-3):217–239, 2005.

[18] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.

[19] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Y. Zien.
Efficient query evaluation using a two-level retrieval process. In Proceedings of the 2003
ACM CIKM International Conference on Information and Knowledge Management (CIKM),
pages 426–434, 2003.

[20] Peter Buneman, Susan B. Davidson, Mary F. Fernandez, and Dan Suciu. Adding struc-
ture to unstructured data. In Proceedings of the 6th International Conference on Database
Theory (ICDT), pages 336–350, 1997.

[21] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[22] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust and
efficient fuzzy match for online data cleaning. In Proceedings of the 22th ACM SIGMOD
International Conference on Management of Data, pages 313–324, 2003.

[23] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for
similarity joins in data cleaning. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE), page 5, 2006.

134

http://www.aaai.org/Library/AAAI/2007/aaai07-255.php
http://www.aaai.org/Library/AAAI/2007/aaai07-255.php
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Bibliography

[24] Surajit Chaudhuri, Bee-Chung Chen, Venkatesh Ganti, and Raghav Kaushik. Example-
driven design of efficient record matching queries. In Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB), pages 327–338, 2007.

[25] Hsinchun Chen, Wingyan Chung, Jennifer Jie Xu, Gang Wang, Yi Qin, and Michael
Chau. Crime data mining: A general framework and some examples. IEEE Computer,
37(4):50–56, 2004.

[26] Junghoo Cho, Narayanan Shivakumar, and Hector Garcia-Molina. Finding replicated
web collections. In Proceedings of the 19th ACM SIGMOD International Conference on
Management of Data, pages 355–366, 2000.

[27] Peter Christen. Febrl -: an open source data cleaning, deduplication and record link-
age system with a graphical user interface. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada,
USA, August 24-27, 2008, pages 1065–1068, 2008. doi: 10.1145/1401890.1402020. URL
http://doi.acm.org/10.1145/1401890.1402020.

[28] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolu-
tion, and Duplicate Detection. Data-Centric Systems and Applications. Springer, 2012.
ISBN 978-3-642-31163-5. doi: 10.1007/978-3-642-31164-2. URL http://dx.doi.
org/10.1007/978-3-642-31164-2.

[29] Peter Christen and Ross W. Gayler. Towards scalable real-time entity resolution using
a similarity-aware inverted index approach. In Proceedings of the 7th Australasian Data
Mining Conference (AusDM), pages 51–60, 2008.

[30] Peter Christen, Ross W. Gayler, and David Hawking. Similarity-aware indexing for
real-time entity resolution. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM), pages 1565–1568, 2009.

[31] Rudi Cilibrasi and Paul M. B. Vitányi. A fast quartet tree heuristic for hierarchical
clustering. Pattern Recognition, 44(3):662–677, 2011.

[32] William W. Cohen. Integration of heterogeneous databases without common domains
using queries based on textual similarity. In SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA.,
pages 201–212, 1998. doi: 10.1145/276304.276323. URL http://doi.acm.org/10.
1145/276304.276323.

[33] William W. Cohen and Jacob Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), pages 475–480,
2002.

[34] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Proceedings of IJCAI-03 Workshop on
Information Integration on the Web (IIWeb-03), pages 73–78, 2003.

135

http://doi.acm.org/10.1145/1401890.1402020
http://dx.doi.org/10.1007/978-3-642-31164-2
http://dx.doi.org/10.1007/978-3-642-31164-2
http://doi.acm.org/10.1145/276304.276323
http://doi.acm.org/10.1145/276304.276323


Bibliography

[35] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen. Robust record linkage
blocking using suffix arrays. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management (CIKM), pages 305–314, 2009.

[36] Debabrata Dey, Vijay S. Mookerjee, and Dengpan Liu. Efficient techniques for online
record linkage. IEEE Trans. Knowl. Data Eng., 23(3):373–387, 2011.

[37] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Object matching for infor-
mation integration: A profiler-based approach. In Proceedings of IJCAI-03 Workshop on
Information Integration on the Web, pages 53–58, 2003.

[38] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Profile-based object matching
for information integration. IEEE Intelligent Systems, 18(5):54–59, 2003.

[39] Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference reconciliation in com-
plex information spaces. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 85–96, 2005.

[40] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[41] Ronald Fagin and Moshe Y. Vardi. The theory of data dependencies - an overview.
In Automata, Languages and Programming, 11th Colloquium, Antwerp, Belgium, July 16-
20, 1984, Proceedings, pages 1–22, 1984. doi: 10.1007/3-540-13345-3_1. URL http:
//dx.doi.org/10.1007/3-540-13345-3_1.

[42] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record matching
rules. Proceedings of 35th International Conference on Very Large Data Bases (VLDB), 2(1):
407–418, 2009.

[43] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. A hierarchical clustering
procedure for semantically annotated resources. In Artificial Intelligence and Human-
Oriented Computing, 10th Congress of the Italian Association for Artificial Intelligence
(AI*IA), pages 266–277, 2007.

[44] Ivan Fellegi and Alan Sunter. A Theory for Record Linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969. doi: 10.2307/2286061. URL http://
dx.doi.org/10.2307/2286061.

[45] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969.

[46] Alfio Ferrara, Davide Lorusso, and Stefano Montanelli. Automatic identity recognition
in the semantic web. In Proceedings of the 1st IRSW2008 International Workshop on Identity
and Reference on the Semantic Web, 2008.

[47] Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2(2):139–172, 1987. doi: 10.1007/BF00114265. URL http://dx.doi.
org/10.1007/BF00114265.

136

http://dx.doi.org/10.1007/3-540-13345-3_1
http://dx.doi.org/10.1007/3-540-13345-3_1
http://dx.doi.org/10.2307/2286061
http://dx.doi.org/10.2307/2286061
http://dx.doi.org/10.1007/BF00114265
http://dx.doi.org/10.1007/BF00114265


Bibliography

[48] Zhichun Fu, Jun Zhou, Peter Christen, and Mac Boot. Multiple instance learning for
group record linkage. In Advances in Knowledge Discovery and Data Mining - 16th Pacific-
Asia Conference, pages 171–182, 2012.

[49] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-
Augustin Saita. Declarative data cleaning: Language, model, and algorithms. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB), pages
371–380, 2001.

[50] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and opti-
mization in semistructured databases. In Proceedings of 23rd International Conference on
Very Large Data Bases (VLDB), pages 436–445, 1997.

[51] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan,
Lauri Pietarinen, and Divesh Srivastava. Using q-grams in a dbms for approximate
string processing. IEEE Data Eng. Bull., 24(4):28–34, 2001.

[52] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan,
and Divesh Srivastava. Approximate string joins in a database (almost) for free. In
Proceedings of 27th International Conference on Very Large Data Bases (VLDB), pages 491–
500, 2001.

[53] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(Second Edition), 2012. URL http://www.w3.org/TR/owl2-overview/. W3C
Recommendation 11 December 2012.

[54] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for large
databases. In Proceedings of the 1995 ACM SIGMOD International Conference on Manage-
ment of Data, pages 127–138, 1995.

[55] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data quality and record
linkage techniques. Springer, 2007. ISBN 978-0-387-69502-0.

[56] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine Zimmermann. Some
entities are more equal than others: statistical methods to consolidate linked
data. In Workshop on New Forms of Reasoning for the Semantic Web: Scalable Dy-
namic (NeFoRS10), May 2010. URL http://www.polleres.net/publications/
hoga-etal-2010NeFoRS.pdf.

[57] Wei Hu, Jianfeng Chen, and Yuzhong Qu. A self-training approach for resolving object
coreference on the semantic web. In Proceedings of the 20th International Conference on
World Wide Web (WWW), pages 87–96, 2011.

[58] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies. Comput. J., 42(2):
100–111, 1999.

[59] Hal Daumé III and Daniel Marcu. A bayesian model for supervised clustering with the
dirichlet process prior. Journal of Machine Learning Research, 6:1551–1577, 2005.

137

http://www.w3.org/TR/owl2-overview/
http://www.polleres.net/publications/hoga-etal-2010NeFoRS.pdf
http://www.polleres.net/publications/hoga-etal-2010NeFoRS.pdf


Bibliography

[60] Robert Isele and Christian Bizer. Learning linkage rules using genetic programming.
In Proceedings of the 6th International Workshop on Ontology Matching (OM), 2011.

[61] Robert Isele and Christian Bizer. Learning expressive linkage rules using genetic pro-
gramming. PVLDB, 5(11):1638–1649, 2012. URL http://vldb.org/pvldb/vol5/
p1638_robertisele_vldb2012.pdf.

[62] Matthew A Jaro. Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Association, 84(406):
414–420, 1989.

[63] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes. Exploiting lo-
cal similarity for indexing paths in graph-structured data. In Proceedings of the 18th
International Conference on Data Engineering (ICDE), pages 129–140, 2002.

[64] Mohammad Reza Keyvanpour, Mostafa Javideh, and Mohammad Reza Ebrahimi. De-
tecting and investigating crime by means of data mining: a general crime matching
framework. Procedia CS, 3:872–880, 2011.

[65] Graham Klyne and Jeremy J. Carroll. Resource Description Framework
(RDF):Concepts and Abstract Syntax, February 2004. URL http://www.w3.
org/TR/rdf-concepts/. W3C Recommendation 10 February 2004.

[66] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution ap-
proaches on real-world match problems. Proceedings of the 36th International Conference
on Very Large Data Bases (VLDB), 3(1):484–493, 2010.

[67] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity mea-
sures and algorithms. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 802–803, 2006.

[68] Karen Kukich. Techniques for automatically correcting words in text. ACM Comput.
Surv., 24(4):377–439, 1992.

[69] Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching.
J. Algorithms, 10(2):157–169, 1989.

[70] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady, 10:707, 1966.

[71] Chen Li, Liang Jin, and Sharad Mehrotra. Supporting efficient record linkage for large
data sets using mapping techniques. World Wide Web, 9(4):557–584, 2006.

[72] Ee-Peng Lim, Satya Prabhakar, Jaideep Srivastava, and James Richardson. Entity iden-
tification in database integration. In in Proceedings Ninth International Conference on Data
Engineering, pages 294–301. IEEE Computer Society Press, 1993.

[73] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching
web tables using entities, types and relationships. Proceedings of the 36th International
Conference on Very Large Data Bases (VLDB), 3(1):1338–1347, 2010.

138

http://vldb.org/pvldb/vol5/p1638_robertisele_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1638_robertisele_vldb2012.pdf
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/


Bibliography

[74] Cheng-Ru Lin and Ming-Syan Chen. Combining partitional and hierarchical algo-
rithms for robust and efficient data clustering with cohesion self-merging. IEEE Trans.
Knowl. Data Eng., 17(2):145–159, 2005.

[75] Yongtao Ma and Thanh Tran. Typimatch: type-specific unsupervised learning of keys
and key values for heterogeneous web data integration. In Sixth ACM International
Conference on Web Search and Data Mining (WSDM), pages 325–334, 2013.

[76] Yongtao Ma, Thanh Tran, and Veli Bicer. Typifier: Inferring the type semantics of struc-
tured data. In 29th IEEE International Conference on Data Engineering (ICDE), pages 206–
217, 2013.

[77] Malik Magdon-Ismail and Jonathan T. Purnell. Ssde-cluster: Fast overlapping clus-
tering of networks using sampled spectral distance embedding and gmms. In rivacy,
Security, Risk and Trust (PASSAT)/IEEE Third International Conference on Social Computing,
pages 756–759, 2011.

[78] Nikos Mamoulis. Efficient processing of joins on set-valued attributes. In Proceedings of
the 22th ACM SIGMOD International Conference on Management of Data, pages 157–168,
2003.

[79] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. The Stanford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 55–60, 2014. URL http://www.aclweb.org/anthology/P/
P14/P14-5010.

[80] Frank Manola and Eric Miller. RDF Primer, February 2004. URL http://www.w3.
org/TR/rdf-primer/. W3C Recommendation 10 February 2004.

[81] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining (KDD),
pages 169–178, 2000.

[82] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versa-
tile graph matching algorithm and its application to schema matching. In ICDE, pages
117–128, 2002.

[83] Matthew Michelson and Craig A. Knoblock. Learning blocking schemes for record
linkage. In Proceedings of the 21th National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI), 2006.

[84] Alvaro E. Monge and Charles Elkan. An efficient domain-independent algorithm for
detecting approximately duplicate database records. In DMKD, page 0, 1997.

[85] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

139

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/


Bibliography

[86] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453, 1970.

[87] Howard B. Newcombe. Record linking: The design of efficient systems for linking
records into individual and family histories. American Journal of Human Genetics, 19(3):
335–359, May 1967.

[88] Howard B. Newcombe and James M. Kennedy. Record linkage: making maximum use
of the discriminating power of identifying information. Commun. ACM, 5(11):563–566,
1962. doi: 10.1145/368996.369026. URL http://doi.acm.org/10.1145/368996.
369026.

[89] Howard B. Newcombe, James M. Kennedy, S.J. Axford, and A.P. James. Automatic
linkage of vital records. Science, 130(3381):954–959, October 1959.

[90] Terry Ngo. Data mining: practical machine learning tools and technique, third edition
by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes,
36(5):51–52, 2011. doi: 10.1145/2020976.2021004. URL http://doi.acm.org/10.
1145/2020976.2021004.

[91] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120(1-3):197–207, 2002.

[92] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the overlap-
ping community structure of complex networks in nature and society. Nature, pages
814–818, 2005.

[93] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser. Effi-
cient entity resolution for large heterogeneous information spaces. In WSDM, pages
535–544, 2011.

[94] Bidyut Kr. Patra, Sukumar Nandi, and P. Viswanath. A distance based clustering
method for arbitrary shaped clusters in large datasets. Pattern Recognition, 44(12):2862–
2870, 2011.

[95] Clifton Phua, Kate Smith-Miles, Vincent C. S. Lee, and Ross W. Gayler. Resilient identity
crime detection. IEEE Trans. Knowl. Data Eng., 24(3):533–546, 2012.

[96] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis. Large-scale collective entity
matching. PVLDB, 4(4):208–218, 2011. URL http://www.vldb.org/pvldb/vol4/
p208-rastogi.pdf.

[97] Pradeep D. Ravikumar and William W. Cohen. A hierarchical graphical model for
record linkage. In Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence
(UAI), pages 454–461, 2004.

[98] Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance. In Proceedings of
the Fourteenth International Conference on Machine Learning (ICML), pages 287–295, 1997.

140

http://doi.acm.org/10.1145/368996.369026
http://doi.acm.org/10.1145/368996.369026
http://doi.acm.org/10.1145/2020976.2021004
http://doi.acm.org/10.1145/2020976.2021004
http://www.vldb.org/pvldb/vol4/p208-rastogi.pdf
http://www.vldb.org/pvldb/vol4/p208-rastogi.pdf


Bibliography

[99] Sunita Sarawagi. Information extraction. Foundations and Trends in Databases, 1(3):261–
377, 2008.

[100] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active
learning. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 269–278, 2002.

[101] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pages 743–754,
2004.

[102] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrapping pay-as-you-go data
integration systems. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 861–874, 2008.

[103] Warren Shen, Xin Li, and AnHai Doan. Constraint-based entity matching. In the 20th
National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference (AAAI), pages 862–867, 2005.

[104] Hung sik Kim and Dongwon Lee. Harra: fast iterative hashed record linkage for large-
scale data collections. In 13th International Conference on Extending Database Technology
(EDBT), pages 525–536, 2010.

[105] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In Proceedings
of the 6th IEEE International Conference on Data Mining (ICDM), pages 572–582, 2006.

[106] Yannis Sismanis, Paul Brown, Peter J. Haas, and Berthold Reinwald. GORDIAN: effi-
cient and scalable discovery of composite keys. In Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 691–702,
2006. URL http://www.vldb.org/conf/2006/p691-sismanis.pdf.

[107] Aya Soffer, David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Her-
scovici, and Yoëlle S. Maarek. Static index pruning for information retrieval systems.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 43–50, 2001.

[108] Dezhao Song and Jeff Heflin. Automatically generating data linkages using a domain-
independent candidate selection approach. In International Semantic Web Conference,
pages 649–664, 2011.

[109] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. Paris: Probabilistic align-
ment of relations, instances, and schema. Proceedings of the 37th International Conference
on Very Large Data Bases (VLDB), 5(3):157–168, 2011.

[110] Erkki Sutinen and Jorma Tarhio. On using q-gram locations in approximate string
matching. In the 3th Annual European Symposium (ESA), pages 327–340, 1995.

[111] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley, 2005. ISBN 0-321-32136-7.

141

http://www.vldb.org/conf/2006/p691-sismanis.pdf


Bibliography

[112] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object identification
rules for information integration. Information System, 26(8):607–633, 2001.

[113] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-independent
string transformation weights for high accuracy object identification. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 350–359, 2002.

[114] Esko Ukkonen. Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci., 92(1):191–211, 1992.

[115] Julian R. Ullmann. A binary n-gram technique for automatic correction of substitution,
deletion, insertion and reversal errors in words. Comput. J., 20(2):141–147, 1977. URL
http://dblp.uni-trier.de/db/journals/cj/cj20.html#Ullmann77.

[116] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen, Fei Wu,
Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web. Proceedings
of the 37th International Conference on Very Large Data Bases (VLDB), 4(9):528–538, 2011.

[117] P. Viswanath and V. Suresh Babu. Rough-dbscan: A fast hybrid density based clustering
method for large data sets. Pattern Recognition Letters, 30(16):1477–1488, 2009.

[118] Gang Wang, Hsinchun Chen, and Homa Atabakhsh. Automatically detecting decep-
tive criminal identities. Commun. ACM, 47(3):70–76, 2004.

[119] Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. Entity matching: How
similar is similar. Proceedings of the 37th International Conference on Very Large Data Bases
(VLDB), 4(10):622–633, 2011.

[120] Steven Whang and Hector Garcia-Molina. Entity resolution with evolving rules. Pro-
ceedings of the 36th International Conference on Very Large Data Bases, 3(1):1326–1337, 2010.

[121] Steven Euijong Whang and Hector Garcia-Molina. Joint entity resolution. In IEEE 28th
International Conference on Data Engineering (ICDE), pages 294–305, 2012.

[122] Steven Euijong Whang, Omar Benjelloun, and Hector Garcia-Molina. Generic entity
resolution with negative rules. Proceedings of the 35th International Conference on Very
Large Data Bases (VLDB), 18(6):1261–1277, 2009.

[123] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald, and
Hector Garcia-Molina. Entity resolution with iterative blocking. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 219–232, 2009.

[124] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for
near duplicate detection. In Proceedings of the 17th International Conference on World Wide
Web (WWW), pages 131–140, 2008.

[125] Tengke Xiong, Shengrui Wang, André Mayers, and Ernest Monga. Dhcc: Divisive hier-
archical clustering of categorical data. Data Min. Knowl. Discov., 24(1):103–135, 2012.

142

http://dblp.uni-trier.de/db/journals/cj/cj20.html#Ullmann77


Bibliography

[126] Rui Xu and Donald C. Wunsch II. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005.

[127] Su Yan, Dongwon Lee, Min-Yen Kan, and C. Lee Giles. Adaptive sorted neighborhood
methods for efficient record linkage. In ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pages 185–194, 2007.

[128] Jiang-She Zhang and Yiu-Wing Leung. Improved possibilistic c-means clustering algo-
rithms. IEEE T. Fuzzy Systems, 12(2):209–217, 2004.

[129] Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for
document datasets. In Proceedings of the 2002 ACM CIKM International Conference on
Information and Knowledge Management (CIKM), pages 515–524, 2002.

[130] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on structural/at-
tribute similarities. Proceedings of 35th International Conference on Very Large Data Bases
(PVLDB), 2(1):718–729, 2009.

[131] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Computing
Surveys (CSUR), 38(2), 2006.

143





List of Figures

2.1 The Instance Matching Process Applied in This thesis. . . . . . . . . . . . . . . . 10
2.2 A data graph. The solid and dotted line denote the attribute edges and type

edges respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Instance Matching Progress Applied in This thesis. . . . . . . . . . . . . . . 23
2.4 A Relationship Graph for Collective Instance Matching. . . . . . . . . . . . . . . 25

3.1 FCG for data in Tab. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Given Hierarchy (Ground Truth). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Hierarchy Generated by TYPifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Hierarchy Generated by OPTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Hierarchy Generated by BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 The effect of theta on precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 The effect of theta on recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.9 The effect of epsilon on precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.10 The effect of epsilon on recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The Effect of θ on Effectiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The Effect of ε on Effectiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Consider two rule functions f1 = Jaccard(Title)+QGram(Manufacturer)
2 and

f2 =
Jaccard(Title)+Cosine(Description)

2 . Figure (a) and (c) show the histograms
for similarities of positive examples calculated according to f1 and f2 respec-
tively. And Fig. (b) and (d) show the histograms for dissimilarities of negative
examples calculated according to f1 and f2 respectively. . . . . . . . . . . . . . . 84

5.2 PowerCCF estimation for matching certainty F(x|M+) (solid line) and
non-matching certainty F(1 − x|M−) (dotted line), where x is similar-
ity. Fig.(a) and (b) illustrate the certainty distributions that refer to f1 =
Jaccard(Title)+QGram(Manufacturer)

2 and f2 =
Jaccard(Title)+Cosine(Description)

2 re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Comparison for the total running time with different proportion of training data. 96
5.4 Evaluation result for different labeling effort . . . . . . . . . . . . . . . . . . . . 97
5.5 Influence of prior ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Influence of ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 WCG in Fig. 6.1(a) that is computed based on the attribute Description of
instances in M+ = {(n1,n2), (n6,n7)} according to data in Tab. 5.1. Solid lines
indicate word pairs co-occurring in examples. Missing lines between any two
nodes capture correct CDEs and dotted lines represent incorrect CDEs. Dotted
squares indicate words that are not in the examples. . . . . . . . . . . . . . . . 109

6.2 An example of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Parameter analysis for SiFi and effiCDE. . . . . . . . . . . . . . . . . . . . . . . . 120

145



List of Figures

6.4 Parameter analysis for ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 effiCDE as Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.6 Evaluation result for different labeling efforts. . . . . . . . . . . . . . . . . . . . 126

A.1 The upper (lower half) of the circle captures word pairs in matches, C+ (CDEs,
C−). The whole square (circle) represents C (C). The solid (lined) area con-
tains word pairs in the examples (self-matches). Because the learned CDEs are
bounded by the square, the lower area outside the square and the upper blank
area insides the square captures the false negatives and the false positives, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

146



List of Tables

2.1 Product table; some words later used as features for illustration purposes, are
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preprocessing methods. The methods that start with asterisks are proposed in
this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example blocks for different subtypes using attribute Title as blocking key and
the words Sony and VAIO as key values. . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Cluster relations based on distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Number of instances, triples, schema features (S), value-level schema features

(PS) and types and the depth of the hierarchy tree for each dataset. . . . . . . . 46
3.3 Optimal parameter settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Efficiency of typification in ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Effectiveness in terms of precision (P), recall (R) and F-measure (F). * indi-

cates the statistically significant improvements of TYPifier over the best result
achieved by the baselines (based on paired t-test with significance at p < 0.05) . 48

3.6 Quality (tree edit distance) of hierarchy tree for DBpedia. . . . . . . . . . . . . . 48

4.1 For each dataset pair: number of instances, words that appear in attribute val-
ues, value-level schema features (PS), and mappings indicating two instances
are same (ground truth, GT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Performance of learning blocking keys in ms. . . . . . . . . . . . . . . . . . . . . 66
4.3 Performance of blocking in ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Effectiveness of blocking in terms of PC and RR, * indicates statistically signifi-

cant improvements of TYPiMatch over the best baseline, Unsupervised (paired
t-test, p<0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Performance of learning instance matching schemes and executing them in ms. 68
4.6 Number of matching candidates and RR. . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Effectiveness of instance matching in terms R, P and F; * indicates statistically

significant improvements of TYPiMatch over the best baseline, Supervised for
AB, and PARIS for DS (paired t-test, p<0.05). . . . . . . . . . . . . . . . . . . . . 70

5.1 A sample of product instances taken from a real E-commerce database; match-
ing instance pairs are (n1,n2), (n3,n4), (n5,n6), (n5,n7), (n6,n7). . . . . . . . . . 78

5.2 Similarities calculated according to the similarity function
Jaccard(Title) and QGram(Manufacturer), and the rule function
f = Jaccard(Title)+QGram(Manufacturer)

2 for the data in Tbl.2.1. . . . . . . . . . . . 79
5.3 For each dataset pair: number of instances, all matches M+, and all non-

matches M−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Performance of training and testing in seconds. . . . . . . . . . . . . . . . . . . . 95
5.5 Effectiveness of instance matching in terms of F-measure. . . . . . . . . . . . . . 96

6.1 A summary of notations used in this chapter. . . . . . . . . . . . . . . . . . . . . 103
6.2 Instances and ground truth (GT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

147



List of Tables

6.3 Performance of learning and instance matching in ms. . . . . . . . . . . . . . . . 122
6.4 Effectiveness of instance matching in terms of P, R and F . . . . . . . . . . . . . 124

148



Appendix A

Algorithm Analysis

A.1 Number of aIR candidates

For aIR-based approaches, the threshold for an attribute is learned from the similari-
ties of all training examples that are calculated by all similarity functions. Assuming
there are m similarity functions, and k training examples, there would be m · k dif-
ferent threshold candidates, which form m · k similarity function predicates for each
attribute.

aIR candidates can be generated as conjunctions of similarity function predicates
of all attributes. For examples, assume there are two attributes a1 and a2, and for each
attribute there are m · k similarity function predicates. We can generate aIR candidates
by first selecting one of the similarity function predicate of a1, and then creating a
conjunction with each of the similarity function predicates of a2. In this way, we can
generate (m · k)2 different aIR candidates. In general, assume there are l attributes,
the total number of aIR candidates is (m · k)l .

A.2 Number of mIR candidates

For our technique, the number of mIR candidates equals to the number of rule func-
tions, because for each rule function we construct only one mIR candidate.

A rule function involves two different elements: (1) a set of similarity functions,
and (2) a set of attributes. For example, if we consider a set {g1, g2} of two sim-
ilarity functions, and a set {a1, a2, a3} of three attributes, then we get a total of 23

rule functions by combing each attribute with every similarity functions, such as
f1 =

g1(a1)+g1(a2)+g1(a3)
3 . In general, assume there are l attributes and m similarity func-

tions, the number of rule functions is lm, which is the same as the number of mIR
candidates.

149



Appendix A Algorithm Analysis

A.3 Time Complexity Analysis

Assume there are l attributes, m similarity functions, and k training examples, we
analyze the time complexity of our approach as follows:

CCF estimation: Because interCCF only requires the observed similarities being
sorted, the time complexity of interCCF is equal to the time complexity of sorting,
which is O(logk). And because powerCCF requires enumerating all training exam-
ples to estimate the parameters, its time complexity is O(K).

CCF value calculation: When calculate the value of CCF for an unobserved simi-
larity, interCCF requires a binary search to find the nearest observed data for interpo-
lation. Therefore, the time complexity of CCF value calculation for interCCf equals
to the time complexity of binary search, as O(logk). For powerCCF, because CCF is
directly calculated according to Eq. 5.5, the time complexity is O(1).

Learning threshold: Given a difference restriction ε, Alg. 5 actually searches the
approximate threshold from maximal 1

ε different values. The number of comparisons

required by Alg. 5 is log 1
ε . Noting the ratio F(θ̄|M+)

F(1−θ̄|M−) is calculated in each compari-
son, we also take the complexity of CCF value calculation into account. Therefore, the
overall complexity of learning threshold is O(log 1

ε logk) for interCCF and O(log 1
ε )

for powerCCF.
mIR Evaluation: Since the evaluation score of a mIR is calculated as Q̄ = 1 −

F(θ|M+), the time complexity of mIR evaluation equals to the time complexity of
CCF value calculation.

Learn single mIR: For each iteration of Alg. 6, because each of the l attributes will
be combined with all the m similarity functions, there are lm mIR candidates to be
evaluated in each iteration. Assuming there are t iterations before the termination
condition is satisfied, there are overall tlm mIR candidates to be processed. Since
for each mIR we execute CCF estimation, threshold learning, and mIR evaluation
sequentially, the time complexity for this process is determined by the highest time
complexity of each step, which is O(log 1

ε logk) for interCCF and O(k) for powerCCF.
In sum, the overall time complexity of learning a single mIR is O(tlm log 1

ε logk) for
interCCF and O(tlmk) for powerCCF.

A.4 Set-Based Analysis

Here, we provide a set-based analysis and illustration of the effects of using self-
matches and self-training.

Only positive examples. Fig. A.1(a) shows CDE learning only using positive ex-
amples. The areas representing false positives (C− \ C− = (C+ ∩ C) \ C+) and false
negatives (C− \ C− = C− \ C) are relatively large.

150



A.4 Set-Based Analysis

C + \C

C − \C− =C − \C

C+

C − C

C− \C − = (C + ∩C) \C+

(a) Positive examples

(C + \C) \C '+

C − \C

C − C

C '+

(C + C) \ (C+ C '+)

C+

(b) With Self-matches

(C + \Ci+1) \C '
+

(C + Ci+1) \ (Ci+1
+ C '+)

C − \Ci+1

C − Ci
C − Ci+1

C '+
Ci+1
+

(c) With Self-matches +
Self-training

Figure A.1: The upper (lower half) of the circle captures word pairs in matches, C+

(CDEs, C−). The whole square (circle) represents C (C). The solid (lined)
area contains word pairs in the examples (self-matches). Because the
learned CDEs are bounded by the square, the lower area outside the
square and the upper blank area insides the square captures the false neg-
atives and the false positives, respectively.

Self-Matches. Fig. A.1(b) shows CDE learning with positive examples and self-
matches. More word pairs can now be added using self-matches. This is reflected in
Fig. A.1(b) by the lined area, indicating that the upper blank area inside the square,
i.e. the number of false positives, becomes smaller: C− \C− = (C+ ∩C) \ (C+ ∪C′+).
Because the square area is only determined by the positive examples, it does not
change with the use of self-matches. Thus, using self-matches has no effect on false
negatives.

Self-Matches and Self-Training. With self-training the number of positive exam-
ples increases. As a result, the square area in Fig. A.1(c) is enlarged. This translates
to a reduced amount of false negatives, i.e. from C− \ Ci to C− \ Ci+1, Ci ⊆ Ci+1. The
set of false positives is C− \ C− = (C+ ∩ Ci+1) \ (C+

i+1 ∪ C′+).

151


	Introduction
	Structured Data
	Instance Matching
	Challenges
	Research Question
	Contribution of this Thesis
	Organization of this Thesis

	Foundations
	Data Model
	Attribute Matching
	Preprocessing
	Typical Preprocessing Tasks
	Typification

	Candidate Generation
	Classification
	Supervised Learning of Instance Matching Schema
	Efficient Execution of Instance Matching Schema
	Attribute-threshold Instance Matching Rule
	Mapping-threshold Instance Matching Rule
	Collective Instance Matching

	Filtering
	Metrics

	Typification: Inferring the Type Semantics of Structured Data
	Introduction
	Research Question and Contributions
	Overview
	Clustering Solutions
	Features and Similarities
	Techniques

	Value-level schema Features
	TYPifier
	Clusters and Cluster Relations
	Relation-based Hierarchical Clustering

	Experimental Evaluation
	Datasets
	Efficiency of Typification
	Effectiveness of Typification
	Parameter Sensitivity

	Related Work
	Conclusion

	Blocking: Learning Type-specific Blocking Key and Key Value
	Introduction
	Research Question and Contributions
	Overview
	Learning Types
	Learning Keys and Values
	Blocking Key Selection
	Key Value Selection

	Experimental Evaluation
	Datasets and Matching Tasks
	Experimental Setting
	Efficiency of Blocking
	Effectiveness of Blocking
	Efficiency of Instance Matching
	Effectiveness of Instance Matching

	Related Work
	Conclusion

	Classification: Learning Rules for Effective Almost-parameter-free Instance Matching
	Introduction
	Research Question and Contribution
	Instance Matching
	Algorithm for Learning mIR
	Certainty for Instance Matching
	Estimate (Non-)Matching Certainty
	Learn Threshold
	Evaluate mIR Candidate
	Learn Single mIR
	Learn a Set of mIRs

	Algorithm for Executing mIR
	Experimental Evaluation
	Dataset and Matching Task
	Experimental Setting
	Efficiency
	Effectiveness
	Parameter Sensitiveness

	Related Work
	Conclusion

	Filtering: Effective Parameter-free Boolean Instance Matching
	Introduction
	Research Question and Contribution
	Overview
	Thresholded Instance Matching
	Boolean Instance Matching.

	Learning Word-Level Dissimilarity Evidences
	Word Co-occurrence Based Evidences
	Learning CDE from Positive Examples
	Using Self-Matches as Examples
	Enriching Examples with Self-learning
	On the Combination of Thresholded and Boolean Matching
	Multiple Attributes

	Implementation
	Experimental Evaluation
	Parameter Analysis
	Efficiency of Instance Matching
	Effectiveness of Instance Matching
	Labeling Effort

	Related Work
	Conclusion

	Conclusion
	Summary
	Outlook
	Conclusion

	Bibliography
	List of Figures
	List of Tables
	Algorithm Analysis
	Number of aIR candidates
	Number of mIR candidates
	Time Complexity Analysis
	Set-Based Analysis


