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Zusammenfassung

Die Fähigkeit die Umgebung des Fahrzeugs zur Erfassen und zu Verstehen ist ei-
ne der Schlüsseltechnologien für das automatische Fahren und moderne Fahreras-
sistenzsysteme. Beide dieser Systeme legen ihren Entscheidungen die Ergebnisse
der sensorischen Umfelderfassung zugrunde, die sich mit der Erkennung beweg-
ter Objekte (z.B. Pkw und Fußgänger) und der Erkennung von Fahrstreifen und
Fahrbahnen beschäftigt. Hierbei stellt die sensorische Erfassung von Fahrstreifen
und Fahrbahnen eine besonders große Herausforderung dar, da Geometrie und To-
pologie von Straßen häufig sehr komplex sind und in verschiedenen Umgebungen
stark variieren. Weiterhin sind die mit Sensoren gewonnen Umfelddaten häufig
verrauscht, mehrdeutig und weisen fehlende Daten aufgrund von Verdeckungen
auf.

Diese Arbeit stellt einen neuartigen Ansatz zur zuverlässigen Wahrnehmung
mehrspuriger Fahrbahnen in urbanen Umgebungen vor. Dies umfasst das Bestim-
men der Anzahl, der Lage und der Breite von Fahrstreifen, sowie das Erkennen par-
alleler, sich aufspaltender und sich verengender Fahrstreifen. Ein zentraler Aspekt
sind hierbei die verwendeten hierarchischen probabilistischen Modelle. Im Kon-
text der Fahrbahnerkennung bieten diese den Vorteil, dass sie Vorwissen über die
Topologie von Fahrbahnen in den Wahrnehmungsprozess einzubeziehen ohne har-
te Annahmen zu treffen. Stattdessen werden diese Annahmen mittels weicher pro-
babilistischer Beschränkungen ausgedrückt, was die explizite Modellierung räum-
licher Unsicherheiten ermöglicht. Darüber hinaus erlauben hierarchische Modelle
eine Zerlegung komplexe Straßenszenen in elementare Bestandteile wie Fahrbah-
nen, Fahrstreifen, Fahrstreifensegmente und schließlich beobachtbare Fahrstrei-
fenmerkmale. Diese hierarchische Zerlegung erlaubt es das komplexe Wahrneh-
mungsproblem in einfacher zu lösende Teilprobleme zu zerlegen, was die Basis
für die Echtzeitfähigkeit des vorgeschlagenen Ansatzes bildet.

Am wichtigsten ist allerdings, dass diese Arbeit die erste Anwendung hy-
brider hierarchischer Modelle für die Erkennung von Kreuzungsanfahrten vor-
stellt. Diese hybriden hierarchischen Modelle ermöglichen es neben der Topolo-
gie von Kreuzungsanfahrten auch die Lage von Haltelinien und die Abbiegerich-
tung einzelner Fahrstreifen zu bestimmen. Grundlage für diese komplexe Wahr-
nehmungsaufgabe ist die Fusion verschiedener Umfeldmerkmale, zu denen Fahr-
streifenmarkierungen, Fahrbahnränder, Haltelinien und Abbiegepfeile zählen.
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Abstract

The ability of sensing and understanding the vehicle environment is a key technol-
ogy for autonomous driving and driver assistance systems. Both of these systems
base their decisions on the environment perception results obtained by on-board
sensing. Generally, the environment perception aims to detect dynamic objects
(e.g., vehicles and pedestrians) as well as lanes and roads. In this context, the per-
ception of lanes and roads is one of the major challenges, since the geometry and
topology of roads is often complex and may vary significantly depending on the
environment. Moreover, the observations obtained by on-board sensing are likely
to be noisy, ambiguous and to suffer from occlusions.

This thesis presents a novel approach for the reliable perception of multi-lane
roads in urban environments. This includes the estimate of the number, the lo-
cation and the width of lanes as well as the detection of parallel, splitting and
merging lanes. A key aspect of the proposed approach is the application of hierar-
chical probabilistic models. These models have the advantage, that they allows to
incorporate prior knowledge on the road topology in the perception process with-
out imposing hard constraints. Instead, prior expectations on the lane topology
are expressed through weak probabilistic constraints which allow to account for
spatial uncertainties. Furthermore, the proposed hierarchical models allow for the
decomposition of complex road-scenes into fundamental elements, such as multi-
lane roads, lanes, lane segments and finally observable lane cues. This hierarchical
decomposition allows to divide the complex perception task into sub-tasks that are
easier to solve. This, in turn, is the basis for the real-time application of the pro-
posed approach.

Most importantly, however, this thesis presents the first application of hybrid
hierarchical models for holistic lane and road perception at urban intersections.
Thereby, the hybrid hierarchical models provide the possibility to simultaneously
estimate the topology of intersection roads as well as the location of stoplines and
the turn direction of individual lanes. The basis for this challenging perception task
is the fusion of multiple lane cues, including lane markings, road edges, stoplines
and turn arrows.
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NOTATION AND SYMBOLS XI

Notation and Symbols
This chapter introduces the abbreviations, notation and symbols which are used in
this thesis. In cases where a symbol has more than one meaning, the context (or a
specific statement) resolves the ambiguity.

Abbrevations
e.g., for example (latin : exempli gratia)
i.e., that is (latin : id est)
ADAS Advanced Driver Assistance System
BEV Bird’s Eye View
BN Bayesian network
CHM Compositional Hierarchical Model
CPT Conditional Probability Table
(D)GPS (Differential) Global Positioning System
GMM Gaussian Mixture Model
HMM Hidden Markov Model
IMU Inertial Measurement Unit
KDE Kernel Density Estimation
LIDAR Light Detection And Ranging
(N)BP (Nonparametric) Belief Propagation
MAP Maximum a Posteriori Probability
MCMC Markov Chain Monte Carlo
MRF Markov Random Field
PDF Probability Density Function
PF Particle Filter
PR Precision-Recall
RANSAC Random Sampling Consensus

General Notation
Scalars Regular (greek) lower case: a, b, c, σ, λ



XII NOTATION AND SYMBOLS

Vectors Bold (greek) lower case: a, b, c, σ, λ
Matrices Bold upper case: A,B, C, Σ, Λ
Sets Calligraphic upper case/Bold lower case: A, B, C, x, y, z
Distributions Calligraphic upper case: N (·),M(·),U(·)
Numbers Blackboard uppercase: N, R

Numbers
N Natural numbers
R Real numbers

Subscripts and Superscripts

i First-order index i ∈ N
j Second-order index j ∈ N
f Superscript denoting a feature variable
p Superscript denoting a patch variable
l Superscript denoting a lane variable
r Superscript denoting a road variable

Symbols and Geometry

∝ Proportional
O(·) Runtime complexity
xT Transposed of the vector x
X -1 Inverse of the matrixX
d Euclidean distance d ∈ R+

l Length l ∈ R+

w Width w ∈ R+

ν Constant ν ∈ R+

νlp Patch length νlp ∈ R+

νwp
Patch width νwp

∈ R+

(x, y) 2D position in the vehicle coordinate system (x, y) ∈ R2

ϑ Angle in the vehicles coordinate system ϑ ∈ [0; 2π)

rij Relative configuration vector rij ∈ Rn



NOTATION AND SYMBOLS XIII

klc Location of a center feature along the lane centerline kls ∈ R+

krc Location of a center feature along the road centerline krs ∈ R+

λi Vector defining the offset between the centerline of a road and its
lane i-th lane

Graph Theory

G Graph G=(E ,V)

E Set of edges in a graph G
V Set of nodes in a graph G
F Set of factor nodes in a factor graph G = (E ,V,F)

Υ (i) Neighbors of node i ∈ V
Ξ (i) Children of node i ∈ V
Γ (i) Parents of node i ∈ V

Sensory Evidence

b Set of boundary features b = {m, r}
m Set of lane marking featuresm = {m1, . . . ,mNm

}
r Set of road edge features r = {r1, . . . , rNr

}
tb Discrete boundary feature types
c Set of center features c = {a, s}
a Set of arrow features a = {a1, . . . ,aNa

}
s Set of stopline features s = {s1, . . . , sNs

}
tc Discrete center feature types

Compositional Hierarchical Model

p(·) Probability
log p(·) Logarithmic probability
p(·|·) Conditional probability
bi(·) Belief
b−i (·) Bottom up belief
Z Normalization constant Z ∈ R
G Set of hierarchies G = {G1, . . . ,GNh

}



XIV NOTATION AND SYMBOLS

G Compositional hierarchical model
Ln n-th level of a compositional hierarchical model
I Set of clique indexes
xi Continues random variable associated to node i
x Set of continues random variables x = {x1, . . . ,xNx}
di Discrete random variable associated to node i
d Set of discrete random variables d = {d1, . . . ,dNd

}
zi Hybrid random variable associated to node i
z Set of hybrid random variables z = {z1, . . . ,zNz}
φi(·) Observation potential at node i
λ0 Outlier probability
Σ0 Covariance Matrix of outlier process
ψi,j(·) Spatial constraint between nodes i and j
Si,j(·) Function predicting the mean of node j given the state of node i
ηi,j(·) Type constraint between nodes i and j
Fi,j(·) Function predicting the mean of node j given the state of node i
ϕij(·) Marginal influence of node i on node j
mi,j(·) Message send from node i to node j
µ,µ Mean, mean vector
σ2,Σ Variance, covariance matrix
U(·) Uniform distribution
N (·) Gaussian distribution
M(·) Von Misses Fisher distribution
I0(·) Modified Bessel function of first kind and order zero
τ Concentration parameter
γ Periodic variable
δ(·) Dirac delta function
s

(k)
i Sample
π

(k)
i Importance weight

Ω(s
(i)
k ) Area associated to a sample s(i)

k

κ(·) Kernel
h,Λ Bandwidth
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1 Introduction
This chapter introduces and motivates the thesis and outlines the key ideas and
contributions. The chapter also introduces the problem of lane and road perception.
Challenges in this problem are discussed along with motivations for solving them.
Further, the chapter gives an overview of the overall thesis structure.

1.1 Environment Perception in Intelligent Vehicles
Advanced Driver Assistance Systems (ADAS), which aim to either alert the driver
in certain situations or support the driver while driving, are available in most new
vehicles. Thereby, these systems not only aim to increase the driving comfort but
to reduce accident rates and to increase the traffic flow.

Examples for the first generation of commercial systems are the adaptive cruise
control [Mar01], lane keeping assist and parking assist, all aiming to support the
driver to increase the driving comfort. A typical characteristic of these systems
is that they support the driver, while he is controlling the vehicle. More recent
systems perform more complex tasks, such as autonomous lane changes or au-
tonomous parking [Kab08]. These examples show the recent shift from assisting
systems to semi-autonomous 1 systems that take over the vehicle control for spe-
cific driving maneuvers. During the next decade, this trend is assumed to continue
and therefore ADAS are expected to grow more complex towards fully autonomy.

Although the step towards fully autonomous driving seems small, the impres-
sion that this step is easy is misleading. In fact, building a systems meeting the
enormous reliability demands of commercial applications is a large-scale research
and development effort. The probably biggest challenge in the development of
such systems is the environment perception problem.

Environment perception describes a very wide concept, but two main tasks can
be identified with respect to autonomous driving. First, the perception of lanes and
roads. Second, the detection of obstacles, such as vehicles and pedestrians. This
thesis addresses the first.

Road and lane perception systems for semi and fully autonomous vehicles aim
to infer the same amount of knowledge about lanes and roads as human drivers.
As a consequence, such systems are expected to rely on the same perceptual cues

1Semi-autonomous ADAS are systems that perform autonomous driving maneuvers but rely on the
supervision of a human driver.



2 1. INTRODUCTION

as human drivers, i.e., road color, road texture, road boundaries, and lane mark-
ings. In principal, different infrastructure could be used for human drivers and
vehicles, such as lane markings for humans and some kind of car-to-infrastructure
communication for autonomous vehicles. This approach, however, is unrealistic
since it requires huge investments to be made for both the construction and the
maintenance of such redundant infrastructure. Therefore, on-board lane and road
perception based on the traditional cues remains the most likely solution for au-
tonomous driving.

This thesis considers the task of on-board lane and road perception for au-
tonomous driving, which includes detecting the topology and semantic of lanes
and roads. In this context, topology refers to the extend of the road, the number
and position of lanes, merging, splitting and ending lanes and roads [Hil12]. In
contrast, the semantics of roads refers to e.g., stopline locations on lanes and lane
turn directions. While this level of scene understanding is natural to human drivers,
it is beyond the reach of current perception systems (cf. Chapter 2).

Before the proposed approach is detailed, the following section describes open
research gaps and details the challenges addressed in this thesis. Thereafter, a more
detailed overview of the proposed approach is given.

1.2 Challenges
Lane and road perception, at least in its basic setting, seams to be an easy task. In
this setting, the task is simply to detect the host lane for a relatively short distance
ahead. In fact, this basic task has been solved in the late eighties by Dickmanns
et al. [Dic88]. While similar perception approaches are still used in commer-
cial applications, such as lane keeping assist [Bar12b], those systems make strong
assumptions on the structure of roads, i.e., a smooth and continuous curvature, par-
allel lanes and well-defined lane markings, limiting their applicability to highways
and highway-like scenarios.

Significant research effort was also devoted to applications targeting more com-
plex urban scenarios [Urm08, Kna10a]. A recent research project targeting such
urban scenarios is the project INTERSAFE-2. The goal of this project was the de-
velopment of ADAS for urban intersection, such as a stopline assistant and a left
turn assistant. Both of these systems require a high level of scene understanding.
For example, the stopline assistant requires to detect the host lane and the location
of the stopline along this lane. More challenging, however, is the left turn assistant
that requires to detect multiple lane with non-linear lane topologies (i.e., splitting
lanes) as well as to identify turn lane directions. As these systems were already re-
alized, one may get the impression that the corresponding environment perception
problems are solved. This, however, is not the case if it comes to lane and road
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perception. The reason for this is that the lack of coast constraints, together with
the availability of highly accurate digital-maps, led to solutions with very limited
or even no forms of on-board lane and road perception.

A typical vehicle in the INTERSAFE-2 project carries a stereo-vision system,
multiple Light Detection and Ranging (LIDAR) and radar sensors, a highly ac-
curate Differential Global Positioning System (DGPS), an Inertial Measurement
Unit (IMU) and a precise digital-map. The digital-map contains detail informa-
tion on the road network, such as the number and position of lanes, the location
of stoplines and the turn direction of lanes [Kna10b, Hom11]. The combination of
map data and the positioning equipment (DGPS+IMU) provide information with
an accuracy in the sub-meter range. Therefore, the combination of these two in-
formation sources makes any kind of lane and road perception unnecessary.

In contrast to the global positioning based solutions developed during the
INTERSAFE-2 project, lane and road perception for commercial vehicles has to
be accomplished with affordable sensors. Consequently, for most current vehi-
cles the sensor modalities are limited to vision, LIDAR, GPS and different radar
types. These considerations as well as the reliability issues of systems based on
global positing discussed in Section 2.1.5, imply that lane and road understanding
remains a challenge that should be solved by on-board sensing.

In recent years, considerable progress has been made in the field of on-board
lane and road perception. However, many fundamental questions are still unan-
swered. The main research gaps remaining are the detection of multiple lanes,
the estimation of complex non-linear lane and road topologies (e.g., splitting and
merging lanes) and the identification of lane semantics (e.g., turn lane directions
and stopline locations). The latter of which is particularly important to understand
intersections.

While these tasks are already an enormous challenge, commercial lane and road
perception systems are required to handle diverse scenarios (e.g., well structured
highways as well as semi structured rural and urban roads) and have to allow for
real-time computation. Especially, the diversity of target scenarios is an enormous
challenge in developing a general lane and road perception approach, since roads
often differ in their topology as well as in their appearance. This is illustrated in
Figure 1.1, showing typical road topologies and their appearance diversity on the
top. The appearance diversity is particularly challenging from a perception point
of view, because a change in appearance also affects the available lane and road
cues.

For example, while lane markings are a strong cue for structured highways, lane
marking cues are expected to be less reliable in less structured urban or rural sce-
narios. Therefore, a combination of lane markings with other lane or road cues,
such as curbstones or guardrails is required to achieve reliable results. Using multi-
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(a) Highway (b) Urban Road

(c) Low-Level Input Features (d) Estimated Road Topology and Semantic

Figure 1.1: Challenges in lane and road perception. (top) Roads are inherently
structured as highlighted in red. However, they often differ in geometry and topol-
ogy as highlighted in green. (bottom) Estimating high-level road scene knowledge
from low-level cues is a key challenge in lane an road perception.

ple cues is not only required to increase the reliability of road topology estimation,
but to recognize semantic road properties. For example, roads at intersections of-
ten comprise additional markings in the center of lanes, such as stoplines and turn
arrows, where the latter of which have different classes, i.e., forward, left, right,
forward-left and forward-right. In order to capture the semantic meaning of these
features a holistic lane and road perception approach, as proposed in this thesis,
has to incorporate both lane boundary features and lane center features to allow
for the joint estimation of the topology and semantic of roads.

The probably hardest challenge in lane and road perception, however, is to de-
velop an approach that accounts for the erroneous sensory evidence. In fact, each
lane and road cue has to be expected to suffer from clutter, measurement noise and
classification errors, as shown in Figure 1.1. Hence, any on-board lane and road
perception approach is required to take into account that the sensory knowledge
about the vehicles environment is imperfect.

This thesis addresses exactly the above challenges and thereby presents a novel
unified probabilistic framework for holistic lane and road perception, as detailed
in the next section.
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1.3 Thesis Contributions
This thesis makes contributions to the problem of lane and road perception to solve
the problems of detecting scene topologies and semantics in varying environments
(i.e., highways, rural roads and urban roads). Towards this goal, this thesis presents
a novel compositional hierarchical framework that outperforms existing algorithms
(in terms of computational efficiency and scalability) for reliable lane and road per-
ception in real-time and in the presence of uncertainty (including partial occlusion
and erroneous sensory evidence). The main contributions of this thesis are:

• A novel compositional hierarchical model of multi-lane roads is introduced.
In contrast to existing approaches, this model is compositional and generic
in the sense that it does not impose any hard constraints on the lane geometry
as imposed by e.g., clothoids or splines. Instead, a priori expectations on
the lane geometry are expressed through weak probabilistic constraints, and
lanes are assembled from a large number of lane patches.

• A novel hybrid (discrete/continuous) compositional hierarchical model of
intersection roads is presented, which in contrast to previous approaches, is
able to detect both complex road topologies and scene semantics, i.e., the
turn direction of lanes and the positions of stoplines along lanes.

• Compared to existing approaches, the presented approach is applicable to
varying road topologies by representing them in a set of compositional hi-
erarchical road models. Thereby, part-sharing [Zhu10, Spe11] is employed
which allows to account for similarities of different road topologies and thus
to avoid redundant computations.

• In contrast to previous approaches, the presented model combines multiple
features (e.g., lane markings, road edges, stoplines or turn-arrows) for in-
creased performance and robustness. Thereby, it takes into account different
turn arrow types (e.g., forward, left or right ) and lane boundary types (e.g.,
solid, dashed or curbstone).

• Building on the depth-first message passing algorithm presented in [Spe13],
a novel real-time lane detection algorithm [Töp13] is presented. This algo-
rithm dynamically initiates inference in region of strong belief and performs
message passing in several sequential sweeps. Empirical results show that
this inference algorithm requires significantly lower computation for a per-
formance comparable to classic message passing.

• A novel expectation based message passing algorithm is introduced that
accounts for the performance diversity of different feature extraction ap-
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proaches. This algorithm adopts the order in which features are incorporated
into the detection process for increased efficiency and performance.

Most important, this thesis presents the first application of hybrid compositional
hierarchical models to holistic lane and road perception in urban intersections.

For all the above aspects, it is shown that the proposed hierarchical framework
obtains reliable results both qualitatively and quantitatively, while achieving real-
time performance.

1.4 Thesis Outline
The following chapters are organized as follows:

Chapter 2: Related Work This chapter presents and discusses recent works
in the field of lane and road perception. It provides an overview on the sensor
modalities and the cues used for the task of lane and road perception. Further,
it outlines typical model assumptions regarding the longitudinal and lateral road
structure.

Chapter 3: Graphical Models and Inference This chapter briefly summarizes
the formalism and the statistical methods used in this thesis. First a brief introduc-
tion of probability theory and graph theory is provided. Then, probabilistic graphi-
cal models [Jor04, Jor01] are introduced, including undirected, directed and factor
graphs. Moreover, the probability distributions underlying the nodes of the graph-
ical models used in this thesis are presented. Towards this goal the properties of
parametric and nonparametric probability distributions are detailed. Finally, com-
mon inference methods for continuous and discrete state graphical models, along
with approximate inference algorithms are introduced.

Chapter 4: Compositional Hierarchical Models of Multi-Lane Roads This
chapter presents the key contribution of the proposed compositional hierarchical
model of multi-lane roads [Töp13]. Further, it details how part-sharing and depth-
first message passing allow for real-time applications.

Chapter 5: Hierarchical Lane and Road Perception for heterogeneous Road
Scenes This chapter introduces the notion of extending the hierarchical frame-
work to scenarios with varying road topologies using a set of hierarchies and part-
sharing [Töp13]. Further, it provides the formulation of the novel hybrid hierar-
chical representation of lanes and roads.



1.4. THESIS OUTLINE 7

Chapter 6: Hierarchical Approach for Holistic Lane and Road Perception at
Urban Intersections This chapter presents the first application of hybrid hierar-
chical compositional models to intersection scenes. The proposed hybrid frame-
work allows to infer both complex non-linear lane topologies and lane semantics,
such as the turn direction of lanes and the location of stoplines along lanes.

Chapter 7: Experimental Evaluation This chapter presents a set of quantita-
tive and qualitative results, demonstrating the reliability of the presented approach
in various real world scenarios. As part of this effort, a novel evaluation frame-
work for lane and road perception is proposed. The key benefit of this evaluation
framework is that it allows to evaluate the results of the proposed approach without
exhaustive manual labeling of the visual input.

Chapter 8: Conclusion This chapter summarizes the contributions of this the-
sis, discusses open issues and outlines promising future lines of research.
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2 Related Work
This chapter discusses related work in the field of lane and road perception as well
as scene understanding approaches in the context of intelligent vehicles. First,
Section 2.1 introduces common sensor modalities used for the task of lane and road
perception. The following sections outline lane and road detection approaches,
which typically aim to detect the topology of roads, including the number of lanes,
the position of lanes and the extend of the road.

In general, lane and road detection approaches can be decomposed in func-
tional modules, i.e., image pre-processing, feature extraction, model fitting and
time integration [McC06, Hil12], as shown in Figure 2.1. In order to abbrevi-

Feature Extraction
-CLaneCFeatures
-CRoadCFeatures

Model Fitting
-CLongitudinalCModel
-CLateralCModel

Image Pre-Processing
-CRegionCofCInterest
CCDefinition
-CObstacleCDetection
-CShadowCRemoval

Vision

Digital-Maps 
and Global Positioning

Time Integration
-CTemporalCConsistency
-CSpatialCConsistency

LIDAR

Figure 2.1: Generic system decomposition for lane and road perception ap-
proaches [McC06, Hil12].

ate the following exposition, Section 2.2 mainly focuses on the feature extraction
module and Section 2.3 on the model fitting module, as they are the most rele-
vant for this thesis. Time integration is not discussed, since it is not addressed
in this thesis. Finally, Section 2.4 covers approaches in the field of scene under-
standing which aim not only to estimate the topology of roads, but also to infer
more complex scene properties, such as the relative location of vehicles and road
infrastructure [Gei11, Spe13].
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2.1 Sensors for Lane and Road Detection
As discussed in the previous chapter there exists a large variety in topology and
appearance of target scenarios for lane and road detection. Consequently, different
sensors were employed for the task of lane and road perception. This section,
briefly reviews their main characteristics and typical usage.

2.1.1 Monocular Vision
The most frequently used system for lane and road perception is monocular vision
which consists of a single camera that is typically front mounted in the middle of
the car. Commonly, it is placed in the wiping area of the windscreen to ensure a
clear field of view. The application of vision-based systems has two main reasons.
First, the main modality used by human drivers are visual data, hence the road
infrastructure is designed to support the driver while navigating through the road
network. The road infrastructure commonly comprises lane markings and road
boundaries which are designed to support the driver during its visual perception
tasks. Therefore, it makes great sense to use vision-based perception approaches
for lane and road perception [Hil12, Dic92]. Second, cameras became a mass
product, and thus they are comparable inexpensive. Further by applying differ-
ent machine vision approaches, cameras can be used as a multi-purpose sensor
for various applications (e.g., lane keeping assistance, adaptive distance control,
emergency brake systems and traffic sign detection).

2.1.2 Light Detection and Ranging
Light Detection And Ranging (LIDAR) is an active time of flight device that can
measure the 3D environment of the vehicle. Compared to vision sensors LIDAR
sensors have two main advantages. First, they are an active light source and thus
are less affected by e.g., shadow or complete darkness. Second, LIDAR provides
measurements with high range accuracy up to several hundred meters. However,
since lane markings commonly have no 3D structure, LIDAR-based lane marking
detection often relies only on intesity measures [Die05b].

Nonetheless, LIDAR sensors provide very accurate range information and
therefore are well suitable for the segmentation of road and non-road areas
[Hom12] or for detecting elevated road-edges, such as curbstones or berms
[Man13, Kon10, Kon11, Die05b]. Thus, in contrast to 2D approaches, 3D ap-
proaches allow for greater robustness in detecting the 3D structure around the ve-
hicle, including obstacles (e.g., parking or driving cars) or the road shoulder (e.g.,
guard rail, curbstone or berms).
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2.1.3 Stereo Vision
Stereo vision systems comprise two cameras to provide visual data similar to mono
vision as well as 3D range data. Hence, stereo systems can be considered a combi-
nation of mono vision and LIDAR in a single sensor which allows for small pack-
aging. However, the accuracy of the 3D range data obtained by stereo systems cru-
cially depends on their baseline [Bro13]. While a larger baseline allows for more
accurate range information, it also leads to additional computational complexity
and a larger packaging. Therefore, in contrast to LIDAR sensors, stereo-based
range data commonly provide good accuracy only for a close range, which limits
their area of application. Nonetheless, stereo systems are an ideal multi-purpose
sensor for detecting multiple lane and road cues, such as lane markings, curbstones
and the general 3D structure of roads, as detailed in [Dan09].

2.1.4 Radar
Radar is less commonly used for lane and road detection, since it lacks the power of
detecting both lane marking and 3D structure. Nevertheless, radar sensors are used
to detect other vehicles which may hint for the presence of lanes in unstructured
areas or on snowy roads [Wei12, Ada11].

2.1.5 Digital-Maps and Global Positioning
Since the DARPA urban challenge, the combination of digital-maps and a known
ego-vehicle position is used to guide autonomous vehicles with limited percep-
tion capabilities [Urm08]. Similarly, in the more recent INTERSAFE-2 project a
combination of digital-maps and global positioning is used to introduce Advanced
Driver Assistance Systems (ADAS) for urban intersections [Kna10b, Hom11]. A
general disadvantage of these systems, however, is that they have high demands
regarding the accuracy and reliability of both Global Positioning System (GPS)
and map information.

Commercial GPS receivers obtain a localization accuracy of 5-10 m [Win05].
This accuracy can be improved to less than 1 m using a combination of GPS and
an Inertial Measurement Unit (IMU) [Car06]. Promising sources for highly accu-
rate map data are aerial images or GPS measurements collected by ground vehi-
cles [Rau12]. For example, it was shown in [Urm08] that the resolution of map
data obtained form aerial images can be 0.25 cm and higher. Accordingly, the main
accuracy gap results from the global positioning system.

The most critical aspect of systems relying on GPS and map data is the relia-
bility of both modalities. For example, the reliability of GPS crucially depends on
the visibility of a large number of satellites. The visibility of satellites, however,
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can be interrupted by e.g., bridges on highways or high-building in urban areas.
In order to cope with this temporal loss of satellite connections, often GPS is in-
tegrated with IMU systems, which is a current line of research [Car06]. The most
questionable aspect, however, is if highly accurate map data can be provided for a
large area and be kept up to date.

The bottom line is that a commercial usage of global positioning and map data
as the only modalities for lane and road perception is not expected. Thus, lane and
road perception based on on-board sensing, as proposed in this thesis, remains the
most likely solution for commercial ADAS applications.

2.2 Cues for Lane and Road Detection
The main goal of feature extraction (see Figure 2.1) is to reduce the huge amount
of information contained in the visual data. The most fundamental requirement
on a feature is that it should contain all relevant data for supporting the task of
lane and road detection. Since, commonly different feature cues are used to define
lanes and roads, highly different features are considered for lane and road percep-
tion. Therefore, in the following, two feature types are explicitly distinguished.
First, lane boundary features, such as solid or segmented lane markings [McC06].
Second, road features, such as intensity profiles, color, texture or edge features
[Fra07, Wan13, Alv12, Kue11, Woj08]. Further, approaches are discussed that use
a combination of features in order to archive the required robustness in challenging
rural and urban scenarios.

2.2.1 Lane Cues
Commonly lanes are defined by a left and a right lane marking. A particular chal-
lenge during lane marking detection arises from their varying appearance. In fact,
their shape may vary between continuous lines and dashed lines. Additionally,
their color is subject to change, e.g., white or yellow. However, if lane markings
can be detected they are a strong hint for the presence of lanes.

Extraction algorithms for local lane marking features are generally based on
geometric and photometric lane marking characteristics [Vei08]. Often, these
criteria are combined in different ways. Both criteria are e.g., used in positive-
negative gradient extractors [Klu95b] which aim to find gradients along an ex-
pected marking geometric. On the other hand, photometric approaches assume a
light lane marking on a dark background. This leaded to approaches based on e.g.,
global thresholds [Vei08], local thresholds or symmetric local threshold [Cha97].
Whereas, the two local threshold methods aim to handle non-uniform lightning
conditions by analyzing the intensity within a finite area [Guo12a]. Even though
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local threshold methods are mainly based on photometric properties they may em-
ploy additional geometric criteria.

Besides the detection of lane boundary markings, also the detection of lane
markings located in the lane center, such as stoplines [Ned09] and turn ar-
rows [Dan10] have gained increasing interest. In [Ned09] stopline detection is
performed based on local thresholds. Similarly, in [Dan10] a gradient-based arrow
detection is performed on horizontal line regions to find arrow candidates. These
candidates are further refined using a grey level segmentation. Finally, a deci-
sion tree is used to classify their type, i.e., forward, left, right, forward-left and
forward-right.

2.2.2 Road Cues

In order to provide reliable results on sparsely marked or even unmarked roads, as
typical for rural and urban areas, several approaches have been proposed that avoid
the explicit need for lane markings. The key challenge in these approaches is that
different cues may hint for the location of road boundaries, depending on the target
environment. For example, on highways roads may be bounded by guardrails or
barriers. Urban roads, on the other hand, may be bounded by curbstones. In
addition, some rural and urban roads may not have markings or even elevated
road shoulder and thus only differ from non-road areas by their color or texture.
Consequently, a variety of road features is used for the task of road detection.

A common assumption in road detection is that an elevation gap separates the
road from the non-road area [Dan09, Kon11, Sie11]. Based on this assumption, a
stereo-system is used in [Dan09] to extract the three-dimensional structure of the
scene. A similar approach is taken in [Sie11] where curbstones and road surface
are detected based on the assumption that curbstones form a vertical structure sep-
arating road surface and adjacent horizontal surfaces, such as sidewalks and traffic
isles. In [Kon11] the 3D scene structure is directly detected using a LIDAR sensor
and used for road segmentation. Note that, all the above approaches expect the
road surface to be planar. Other approaches focus on the diversity in appearance
between road and non-road areas [Fra07, Kuh11]. However, these approaches
rely on the strong assumption that the road appearance is uniform which is of-
ten not the case [McC06]. An exception is the texture-based approach presented
in [Bro06, Ras05] that use the footprints caused by wheels of preceding vehicles
to detect the geometrical structure of unpaved roads. Another road characteristic
is that the boarders of paved roads generate visible edges. However, since road
edges are often weak and ambiguous, it is beneficial to fuse them with other cues
as proposed in [Fra07].
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2.2.3 Multi-Cue Approaches
One common characteristic of many early lane and road detection approaches is
that they rely on a single cue. This cue is used regardless of how well it is per-
forming. Thus, these approaches make no attempt to account for changing lane
and road characteristics at the fundamental level of perception, i.e., from a well-
structured highway to semi-structured lanes of rural or urban roads.

In order to achieve the level of robustness, required for commercial systems
targeting such challenging scenarios, lane and road detection approaches have been
proposed that combine multiple lane and road cues [Apo04, Fra07, Dan09]. A
multi-cue detection approach dedicated to rural roads is presented in [Fra07] where
the visual input is segmented in road and non-road areas. This segmentation is
performed by computing intensity, color, edges and texture for each pixel in the
image. Since the combination of multiple features leads to multimodal probability
distributions for both lane states and observations a Particle Filter (PF) [Isa98a]
is applied to solve for the non-Gaussian lane detection problem. Similarly, a PF
is used for multi-cue lane detection in urban scenarios in [Dan09]. This approach
considers three different features obtained by a stereo vision system, i.e., gradient
based lane marking extractions, curbstones obtained by stereo-based range data
and edge features extracted from the 3D range data, which approximate the road
area.

All the methods mentioned above allow for the incorporation of multiple lane
and road cues. Similarly, this thesis is concerned with the task of multi-cue lane
and road perception to robustly estimate the course of multi-lane roads. In con-
trast to the above approaches, the presented approach explicitly considers different
feature classes, such as lane marking types (e.g., dashed or continuous) or turn
arrow types (e.g., left or right). This allows to estimate not only the topology of
roads, but also semantic road properties, such as is a lane change allowed or the
turn direction of lanes.

2.3 Models for Lane and Road Detection
Many lane and road detection approaches developed so far follow the principle
introduced by Dickmanns [Dic87] where a geometric lane model is fitted to the
visual features in a top down manner to obtain a high-level representation of lanes
and roads. Such models are used for both lanes and roads and are commonly
defined as a two-dimensional path with a left and a right boundary. A path is
commonly represent by its boundary points or its centerline where each of the
centerline positions may have an additional lane width extend [Duc10]. The key
idea of model fitting is to obtain a compact high-level representation of the path.
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Further, it aims to improve the erroneous lane and road features by restricting
them to a smooth path [Dic92, Pom95] with additional constraints on its width and
curvature. This model fitting is performed in both the image domain and the Bird’s
Eye View (BEV) [Mal91]. However, model fitting in the BEV is more common,
as the transforming of the frame into the BEV simplifies the fitting procedure.
Additionally, any driving maneuver or vehicle control task is performed in the
metric 2D space of the BEV. Note that, to transform a visual frame into the BEV
commonly a flat road surface is assumed.

As detailed in the following sections, the models for the driving path can be di-
vided into two categories. First, longitudinal models, which describing the course
of lanes and roads by means of e.g., curvature and curvature rate. Second, longi-
tudinal models that specify the dependencies between lanes and lane boundaries
(e.g., parallel/constant lane width, splitting or merging). During model fitting each
approach has to cope with the erroneous feature extraction results in the form
of missing data and a large number of outliers (e.g., clutter). In order to cope
with these challenges, many approaches employ Random Sampling Consensus
(RANSAC) [Fis81] for model fitting [Dan09, Kim08, Bor09], as it is known to be
robust to outliers. An exception to the above examples is the approach presented in
[Hur13]. Instead of detecting lanes based on model fitting, this approach employs
a conditional random field to detect lane boundaries based on local dependencies
between lane markings. A common property of many model fitting approaches is
that their input data is a set of points extracted from the boundaries of lanes and
roads. In addition, the information of the boundary direction is added in [Hua09].
Other approaches first group points into lines [Kim08] to reduce computational
complexity during model fitting.

2.3.1 Geometrical Lane Models

Since its first proposal in [Dic88] the clothoid model is the most popular geo-
metrical model used for lane and road detection. The reason for its popularity is
twofold. First, most highways and highway-like roads are constructed according
to clothoid models (see e.g., [ras95]). Accordingly, a clothoid model allows for
a good representation of the actual road geometry and therefore is expected to
archive a high robustness during model fitting. Second, clothoid models are dif-
ferentiable and continuous which makes them well suitable for any vehicle control
applications [Beh96], such as lane keeping or lane change assistance [Bar12b].

However, clothoid models make strong assumptions regarding a smooth road
curvature and are therefore limited to highways and highway-like roads [Sch03].
As the target environments became more challenging, the application of more
general models has been proposed, such as splines [Loo10] or snakes [Wan04,
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Kim08], parabolic segments [Klu95a, Hua09], line elements [Apo03] or de-
formable templates [Klu95a]. Splines are smooth piecewise polynomial functions
and are commonly used to represent curves. Several spline models have been used
to represent both lane centerlines and lane boundaries. In spline models, the curve
is parameterized by a set of control points which are either on [Kim08] or near
[Wan04] the curve. The advantage of splines over e.g., clothoids is that a small
change of their parameters also causes a small change of their curvature (see e.g.,
[Hil12]. However, the most crucial part about spline fitting is to find the best con-
trol point candidates among the erroneous lane marking detections. Further, the
complexity of splines increases drastically with the number of control points.

Most of the above lane perception approaches are designed for a specific geo-
metrical model. In contrast, the proposed model is general in the sense that it is
not limited to a specific geometrical model and thus applicable to a greater variety
of scenarios.

2.3.2 Lateral Lane Models

In multi-lane detection, the proposed algorithms detect not only the ego-lane, but
also adjacent lanes. These approaches commonly make several assumptions on the
lateral lane structure. A common assumption made by early approaches is that the
width of lanes is constant, i.e., lane boundaries are parallel [Pom95, Dic92]. This
strong assumption expects the width of lanes to be known (typically between 3.0-
3.5 m) and completely couples left and right lane boundaries. Similarly, in more
recent works, an a priori lane width is used as an initial value for a RANSAC-
based lane centerline fitting [Hua09] that accounts for small variations. A weaker
assumption is that the width of individual lanes is approximately constant and
may not vary for a finite area of the road. Boundary constraints following this
assumptions are e.g. used in [Duc10] where roads segments are used to support
lane boundary detection. While each individual segment has a constant lane-width
between each pair of segments a variation of the lane-width is allowed to account
for variations of the lane width, as common in urban intersections.

The above approaches explicitly or implicitly assume adjacent lanes to be par-
allel. While this strong assumption allows for both robustness and simplicity, it
also limits their applicability to highway or highway-like scenarios. In order to
cope with more complex lane and road topologies, including merging and split-
ting lanes, approaches have been proposed making fewer assumptions on the road
structure [Hur13, Kim08]. Both approaches follow the strategy to first detect
the lane boundaries of individual lanes, based on local dependencies. Then, in
[Kim08] a probabilistic reasoning approach is used to estimate the lane path by
choosing the the best pair of boundary hypothesis. In [Hur13], the low-level de-
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pendencies are used to formulate a conditional random field that infers the position
and course of lane boundaries. In [Hur13], the individual boundary hypothesis are
considered as the detection result, and thus no dependencies between lane bound-
aries are considered. As the presented results show, this lack of contextual knowl-
edge leads to poor performance in scenarios where clutter arises in the lane center.

All aforementioned projects are targeted at tasks such as highway driving, lane-
keeping/-following or overtaking. In contrast, this thesis addresses the more chal-
lenging task of lane and road perception at urban intersections which are much
more complex in terms of topology and geometry. Most important, the presented
approach aims to estimate semantic knowledge on intersection roads, such as the
turn directions of individual lanes and the location of stoplines. Such semantic
knowledge can not be estimated by either of the above approaches.

2.4 Scene Understanding
While typical lane and road detection approaches mainly aim to estimate the topol-
ogy of lanes and roads in a given scene, scene understanding approaches aim to
infer a richer amount of scene knowledge. More precisely, scene understanding
approaches aim to detect the scene topology as well as e.g., the presence of park-
ing [Spe11] or activities of vehicles driving in the scene [Gei11]. Many approaches
treat scene understanding as a segmentation problem. Bileschi [Bil06] proposes a
method which segments street scenes in classes, such as cars, pedestrians, roads
and trees using a biologically inspired image representation. A conditional ran-
dom field is used by Wojek et al. [Woj08] to jointly perform object detection and
scene labeling. Sturgess et al. [Stu09] developed a segmentation of road scenes
based on appearance cues and structure-from-motion features. Another segmenta-
tion approach is presented in Ess et al. [Ess09]. Their traffic scene segmentation
allows them to assign semantic labels like road types, cars or pedestrian crossings
to individual segments.

Existing approaches for high-level scene understanding often use generative
graphical models. Wang et al. [Wan09] propose a hierarchical Bayesian network to
perform activity detection in traffic scenes from a static platform. Interdependent
Dirichlet processes are used in [Kue10] to understand the behavior of moving ob-
jects in the scene. A generative model for 3d scene interpretation was proposed by
Wojek et al. [Woj10]. Their model jointly performs multi-class object detection,
object tracking, scene labeling and 3d geometric relations. For inferring about 3d
scene context as well as 3d multi-objects a reversible-jump Markov Chain Monte
Carlo (MCMC) scheme is employed. Geiger et al. [Gei14] also proposed the use
of reversible-jump MCMC to infer geometrical, topological properties of scenes
as well as semantic activities.
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Closely related to the proposed approach is the work of Spehr et al. [Spe11,
Spe13] where a compositional hierarchical scene understanding approach for park-
ing lots is proposed. They proposed a hierarchical decomposition of a parking-lot
scene into geometrical primitives like u-shapes and l-shapes. These primitives are
again decomposed into simple observable line features. Thus, the compositional
hierarchical model encodes the dependencies of low-level features and high-level
scene properties. Further, it allows to represent dependencies between different
scene components in a probabilistic graphical model. Most important, however, it
allows to share parts between different scenes which allows for real-time compu-
tation.

Similarly, this thesis proposes a compositional hierarchical model for multi-lane
roads. However, the proposed approach considers more general road scenes and
as part of this effort propose a hybrid compositional framework, which allows to
estimate the geometry and topology of roads as well as semantic properties, such
as the turn direction of lanes.
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3 Graphical Models and Inference
A key component of this thesis are probabilistic graphical models (see Figure 3.1),
since they explicitly take into account that our knowledge about the environment
is imperfect. The following sections, introduce different kinds of graphical mod-
els, including Markov random fields (Section 3.2.2), Bayesian networks (Sec-
tion 3.2.4) and factor graphs (Section 3.2.5). Further, different parametric and
nonparametric probability distributions underlying the graphical models used in
this thesis (Section 3.3) are discussed. In addition, it is detailed how graphical
models can be used to infer knowledge about quantities of interest, given some
noisy observations (Section 3.4). Finally, illustrative example that relates the in-
troduced methods to the hierarchical graphical models used throughout this thesis
are presented.

3.1 Brief Review of Graph Theory
A graph G = (V, E) consists of a set of nodes or vertices V and a set of edges E .
Each edge (i, j) ∈ E is associated with a distinct pair of nodes i ∈ V and j ∈ V .
Edges may be directed or undirected. In a directed graph an edge (i, j) ∈ E has
a particular direction pointing from the parent node i to the child node j. In this
case edges are commonly depicted as an arrow (see Figure 3.1a). In the undirected
case an edge (i, j) has no direction and hence is identical to the edge (j, i) (see
Figure 3.1b). Some other terms used throughout this thesis are:

Parent For a directed graph, the parents Γ (j) of the node j are given by Γ (j) =
{i ∈ V| (i, j) ∈ E}.

Child For a directed graph, the children Ξ (j) of the node j are given by Ξ (j) =
{k ∈ V| (j, k) ∈ E}.

Neighbors In the directed case the neighbors Υ (i) of node i can be defined by
Υ (i) = Ξ (i) ∪ Γ (i). In the undirected case the Υ (i) are those nodes
directly connected to node i.

Clique A clique is a set of nodes that are all neighbors of each other. A clique is
called maximal clique if it can not be extended by including any more node
without ceasing it to be a clique.
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Path A path from node i to j is a sequence of nodes with an edge from one node
in the sequence to its descendant.

Cycle, Loop A cycle is a directed path that starts and ends at the same node. A
path with more then two nodes is called a loop, if regardless of the edge
direction it starts and returns to the same node.

Singly Connected If there is only one path from any node i to any node j a graph
is called singly connected.

Tree, Forest Trees are singly connected graphs. A forest is a disjoint union of
trees.

Root In a directed graph, the root is a node with no parents.

Leaf In a directed graph, the leaf is a node with no children.

This section focuses on concepts of graph theory relevant to this thesis. A more
general introduction to graph theory is given in [Gib91, Die05a].

3.2 Probabilistic Graphical Models
Probabilistic graphical models, as shown in Figure 3.1, have a wide application
in statistical physics, pattern recognition, machine learning and computer vision.
Generally, they allow to decompose complex joint probability distributions over
various variables into a product of smaller and simpler subsets of theses variables
by introducing conditional independence assumptions [Bar12a, Mur06, Bis06].

Formally, a graphical model is defined as a graph G = (V, E) where each node
i ∈ V corresponds to a random variable xi. An edge (i, j) ∈ E corresponds to a
probabilistic relationship between two random variables i ∈ V and j ∈ V . Hence,
a graphical model is a graph G that represents a joint probability distribution p (x)
by encoding the conditional independence of its variables x = {x1, . . . ,xN}.

In order to illustrate the importance of independence assumptions, let us con-
sider the joint distribution p(x1, . . . ,xN ) over binary variables xi. Independently
specifying the table p(x1, . . . ,xN ) requires 2N entries. Accordingly, computing
the marginal p(xi) requires summing over the 2N−1 states of the other variables.
Even for a small number of variables storage and manipulation of the density is
clearly infeasible. The key idea of introducing conditional independence proper-
ties is to restrict the possible ways variables can interact which leads to efficient
inference algorithms. Before introducing the different kinds of graphical models,
the following section reviews some fundamental rules of probability theory.
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Figure 3.1: Graphical models of different families. (a) Bayesian network, (b)
Markov random field (moralized) and (c) factor graph. All graphs represent the
same distribution p (x1,x2,x3,x4,x5) [Pea88, Sud06, Spe13].

3.2.1 Fundamentals of Probability Theory
The concepts and rules of probability theory provide the framework to solve the
tasks addressed in this thesis. It helps to structure problem, and is the basis for for-
mulating graphical models. This section, introduces important rules of probability
theory.

Joint Probabilities

Given two Events A and B the probability of the joint event can be written as

p (A,B) = p (A|B) p (B) , (3.1)

which is commonly called the product rule. In order to calculate the marginal
distribution p (A), it has to be summed over all possible states of B as

p (A) =
∑
b

p (A,B) =
∑
b

p (A|B = b) p (B = b) . (3.2)

This is often referred to as the sum rule or the rule of total probability. Similarly,
the marginal distribution p (B) can be obtained. In the case of continuous distribu-
tion, the sum in Equation 3.2 has to be replaced by an integral as in Equation 3.6.
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Applying the product rule multiple times, yields the chain rule of probability

p(x1:N ) = p(x1)p(x2|x1)p(x3|x1,x2)

p(x4|x1,x2,x3) . . . p(xN |x1:N−1),
(3.3)

where the notation 1 : N refers to the set {1, 2, . . . , N}.

Conditional Probability and Rule of Bayes

The conditional probability of event A given event B is defined as

p (A|B) =
p (A,B)

p (B)
. (3.4)

The relationship between conditional probabilities is given by the rule of Bayes

p (A|B) =
p (B|A) p (A)

p (B)
, (3.5)

where p (A|B) is the posterior distribution and p (B|A) is the likelihood that event
A caused event B. The marginal distribution p (A) provides information about A
without knowing B and is called prior of A. The evidence or marginal likelihood
p(B) is a normalization term, which is given by

p (B) =

∫
a

p (B|A) p (A) da. (3.6)

Independence and Conditional Independence

If the joint distribution p (A,B) can be expressed as the product of two marginals

p (A,B) = p (A) p (B) (3.7)

then A and B are unconditional independent or marginal independent. However,
this is not the case in most real world applications. More common are distribution
where A and B are conditionally independent given C. This is the case if the joint
distribution can be written as a product of joint marginals, i.e.,

p (A,B|C) = p (A|C) p (B|C) . (3.8)

Such conditional independence assumptions are used to construct graphical mod-
els, which are introduced in the following sections.
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3.2.2 Undirected Graphical Models
Markov random fields (MRFs), can be visualized by an undirected graphical model
G = (V, E). Here, edges E and nodes V represent probabilistic relationships and
random variables of the MRF, respectively. Thereby, edges connect pairs of ran-
dom variables and are undirected (see. Figure 3.1b). The constraints or local
dependencies between random variables are represented by potentials, where each
potential ψ(x) is a non-negative function ψ(x) > 0 of the variable x. Poten-
tials are not necessarily a probability distribution. In fact, a potential satisfying∑

x ψ(x) = 1 is considered as a special case of a potential.

Conditional independence properties in MRFs

In order to explain conditional independence in MRFs, let us consider an undi-
rected graph G = (V, E) with three disjoint subsets of nodes A ∈ V,B ∈ V and
C ∈ V . In this example, variables A are independent of B in the graph G iff C
separates A and B in the graph G. Intuitively, this means after removing all nodes
in C there is no path left connecting A and B. This is called the global Markov
property, which is given by

p(xA,xB|xC) = p(xA|xC)p(xB|xC). (3.9)

An example for the global Markov property is depicted in Figure 3.1b, where the
graphical structure indicates that x1 and x2 are conditional independent of x4 and
x5 given x3.

Another important property is the local Markov property, which implies that a
variable xi is conditional independent of all other variables xV\i given its neigh-
bors xΥ(i)

p(xi|xV\i) = p(xi|xΥ(i)). (3.10)

In addition, the pairwise Markov property states that two nodes i and j are condi-
tionally independent given all other nodes if there is no connecting edge

p
(
xi,xj |xV\i,j

)
= p

(
xi|xV\i,j

)
p
(
xj |xV\i,j

)
. (3.11)

As can be seen, global Markov implies local Markov which implies pairwise
Markov. Further, it was shown in [Kol09] that for p(x > 0), which is the case
if all potentials are strictly positive, all three Markov properties are equivalent.

Hammersley-Clifford theorem

The Hammersley-Clifford theorem [Cli90] states that a positive distribution
p(x) > 0 satisfies the conditional independence properties of an undirected Graph
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G with a set of maximal cliques C, iff p(x) can be represented as a product of
factors, each corresponding to a maximal clique c ∈ C, i.e.,

p (x) =
1

Z

∏
c∈C

ψc (xc) , (3.12)

where Z is a real valued number given by

Z =
∑
x

∏
c∈C

ψc (xc) (3.13)

is known as partition function, which ensures the overall distribution sums to 1.
The most important statement of the Hammersley-Clifford theorem, however, is
the equivalency of MRF and the Gibbs distribution which can be expressed as

p (x) =
1

Z
exp

(
−
∑
c

E (xc)

)
. (3.14)

Here, E (xc) > 0 is an energy associated with the variables in clique c. The
corresponding MRF can be defined by using clique-potentials

ψc (xc) = exp (−E (xc)) . (3.15)

In such energy based models, low energies correspond to high probability states.

3.2.3 Pairwise Markov Random Fields
In many applications, as in this thesis, it is convenient to use pairwise Markov ran-
dom fields instead of the more general MRFs, where cliques are restricted to pairs
of random variables connected by the edges of the graph G = (V, E). For pair-
wise MRFs, the joint probability distribution is expressed as a product of potential
functions defined on that graph’s edges as

p (x) ∝
∏

(i,j)∈E

ψij (xi,xj) . (3.16)

The Hammersley-Clifford theorem guarantees that pairwise MRFs1 are Markov
with respect to G, because neighboring nodes always form a clique.

So far, it was assumed that all random variables in the graphical model are hid-
den. This goal of this thesis, however, is to estimate the values of hidden variables

1The origin of pairwise MRFs is the physical statistics, where pairwise MRFs with only binary
variables are known as Ising models [Yed00].
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Figure 3.2: Pairwise Markov random field. Shaded nodes represent observable
random variables yi and open nodes hidden random variables xi. Further illus-
trated are observation potentials φi(xi,yi) and potentials ψij(xi,xj) encoding
the relationship between hidden and observable variables and pairs of hidden ran-
dom variables, respectively.

x given some noisy observations y. In order to simplify the following expositions,
the nodes V = {x,y} are partitioned into two disjoint sets, where the set x cor-
responds to hidden variables x = {x1,x2, . . . ,xN} and the set y to observable
variables y = {y1,y2, . . . ,yM}. Similarly, the potential functions are partitioned
in a set corresponding to edges connecting two hidden variables ψij (xi,xj) and a
second set representing local observation a.k.a. observation potentials φi (xi,y).
In this case, the desired posterior distribution can be written as:

p (x|y) =
p (y|x) p (x)

p (y)
∝

∏
(i,j)∈E

ψij (xi,xj)
∏
i∈V

φi (xi,y) . (3.17)

In some cases, it might be possible to decompose the observations y into noisy
local observation corresponding to single nodes i, i ∈ y, so that the observation
potential can be written as φi (xi,y) = φi (xi,yi). Figure 3.2 shows an example
of a pairwise MRF, where shaded nodes represent local observations yi.

3.2.4 Directed Graphical Models
Directed graphical models or Baysian Networks (BNs) (see Figure 3.1a) are useful
to express causal relationships between random variables. Formally, BNs are based
on a directed acyclic graph G = (V, E). Each node i ∈ V in a BN represents a
random variable xi. The directed edges in a BN are pointing from a parent node
to its children representing the conditional dependencies of the child nodes given
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Figure 3.3: Directed (a) and undirected (b) chain graph over the same joint prob-
ability distribution p(x1,x2, . . . ,xN−1,xN ). For both cases the factorization is
given by p(x1, . . . ,xN ) =

∏N−1
i=1 ψ(xi,xi+1).

its parents. The joint probability distribution of a BN factorizes as

p (x) =
∏
i∈V

p
(
xi|xΓ(i)

)
, (3.18)

where p
(
xi|xΓ(i)

)
is the conditional probability distribution of node xi given its

parents xΓ(i).
A simple example for a BN is given in Figure 3.3a, where the joint probability

distribution for the directed chain graph is defined as a product of conditional
probabilities

p(x) = p(x1)p(x2|x1)p(x3|x2) . . . p(xN |xN−1). (3.19)

Further, the chain graph example can be used to explain the relationship between
directed and undirected graphical models. In the case of the directed chain graph
depicted in Figure 3.3a, the directed graph can easily be converted into an undi-
rected graph. For the undirected chain graph depicted in Figure 3.3b, the maximal
cliques are pairs of neighboring nodes, which leads to the following factorization
of the joint probability distribution

p(x) =
1

Z
ψ1,2(x1,x2)ψ2,3(x2,x3) . . . ψN−1,N (xN−1,xN ). (3.20)

As can be seen, the conversion is done by identifying

Z = 1

ψ1,2(x1,x2) = p(x1)p(x2|x1)

ψ2,3(x2,x3) = p(x3|x2)

...
ψN−1,N (xN−1,xN ) = p(xN |xN−1),
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where the marginal p(x1) is absorbed into the first clique potential. Another
common example is illustrated in Figure 3.1, where the factor p(x3|x1,x2) de-
pends on the variables x1,x2 and x3. In order to express this factor using an
undirected graph, an additional edges has to be added between the parents of
x3 (see Figure 3.1b). This process is called moralization and allows to identify
ψ123(x1,x2,x3) = p(x3|x1,x2). In general, any directed graph can be con-
verted into an undirected graph by adding additional edges to the graph. However,
this means that also some conditional independence properties have to be dropped.
More details on the relationship between directed and undirected graphical models
can be found in [Kol09, Bis06, Bar12a, Mur06].

3.2.5 Factor Graphs
A factor graph [Ksc01, Fre02] is an alternative graphical model that unifies di-
rected and undirected graphical models, and is commonly used to design in-
ference algorithms. Formally, a factor graph is an undirected bipartite graph
G = (V,F , E), where round nodes V correspond to random variables and squared
nodes to factors F defined on the edges E of the graph (see Figure 3.1c). If
xf = xi, i ∈ f is the corresponding set of variables for each factor f ∈ F in
a factor graph, then it defines the joint probability distribution p(x) as

p (x) ∝
∏
f∈F

ψf (xf ) , (3.21)

where the factors ψf (xf ) are functions of the corresponding set of variables xf .
Generally, most directed and undirected graphical models can be represented

using a factor graph. For example, MRFs can always be written as a factor graph
by using one factor node per clique in the MRF. Let us now consider the exam-
ple, depicted in Figure 3.1. The last section, explained how to convert the BN
depicted in Figure 3.1a into the moral graph illustrated in Figure 3.1b. An exam-
ple for a corresponding factor graph is depicted in Figure 3.1c, where the factors
corresponding to the marginals p(x1) and p(x2) are kept explicit. Note that, they
could also be absorbed into the factor ψf (x1,x2,x3), which corresponds to the
definition of the MRF given in the previous section.

3.3 Random Variables and Probability Distributions
This section, presents the different types of probability distributions commonly re-
ferred to in this thesis. A brief introduction to discrete and continuous probability
distribution is given as well as to Monte Carlo methods and kernel density esti-
mation. The former are parametric models and the latter nonparametric models.
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Figure 3.4: Two discrete distributions with discrete values Val(X) =
{1, 2, 3, 4, 5}. (a) Uniform distribution and (b) non-uniform distribution.

Parametric models have the advantage of commonly being fast to compute, but the
disadvantage of making strong assumptions about the structure of the underlying
data. Nonparametric models are more flexible, since their number of parameters
grows with the size of the underlying dataset. The disadvantage of nonparametric
models is that they are often computational intractable for large datasets.

3.3.1 Discrete Random Variables
Discrete random variables x are variables that can take one of K discrete, cate-
gorical values, so that X = {1, . . . ,K}. Any probability mass function 2 or dis-
tribution p (x) is then parameterized by the probability πk , Pr [x = k] of the K
discrete outcomes. Here, it has to be satisfied that πk ∈ [0, 1] and

∑
k∈X πk = 1.

An example, for two different probability mass functions is given in Figure 3.4,
where both distribution comprise the values Val(X) = {1, 2, 3, 4, 5}.

3.3.2 Continuous Random Variables
The most commonly used probability distribution for continuous random variables
is the multivariate Gaussian distribution. Formally, the probability density (PDF)
function of a D dimensional multivariate Gaussian distribution is given by

N (x|µ,Σ) =
1

(2π)
D/2 |Σ|1/2

exp

[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
, (3.22)

2A probability mass function consists of a finite number of Dirac delta distributions.
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Figure 3.5: Two multivariate Gaussian distribution. (a) A full covariance matrix
with elliptical contour. (b) A diagonal covariance matrix leading to an axis aligned
ellipse.

where µ ∈ RD is the mean vector and Σ ∈ RD×D the covariance matrix. The
normalization constant (2π)

D/2 |Σ|1/2 ensures that the probability density func-
tion integrates to 1. An example, for different multivariate Gaussian distribution
is depicted in Figure 3.5. One of the reasons why Gaussian distributions are
popular for inference tasks is that a product of one or more Gaussian distribu-
tions is also a Gaussian distribution. The product of N Gaussian distributions
p (xi|µi,Σi) , i ∈ {1, . . . , N} is given as

p (y) =
N∏
i=1

p (xi) = N
(
y|µy,Σy

)
, (3.23)

where

Σ−1
y =

N∑
i=1

Σ−1
i Σ−1

y µy =

N∑
i=1

Σ−1
i µi. (3.24)

Another important property of Gaussian distributions is that the conditional distri-
bution of two or more jointly Gaussian variables is also Gaussian [Ste03, Bis06].

3.3.3 Nonparametric Methods
In many practical applications, the distribution underlying a dataset is unknown.
Hence, usually the model parameters can not specified and some kind of approxi-
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mation has to be used. In this case, Monte Carlo methods [Mac98, Rob04], intro-
duced in [Met49] provide a numeric approximation of the target density by using
a weighted set of Dirac delta distribution or samples to approximation the target
density p(xi) as follows

p(xi) =
N∑
k=1

π
(k)
i δ(xi − s(k)

i )
N∑
k=1

π
(k)
i = 1, (3.25)

where {(s(k)
i , π

(k)
i )}Nk=1 is a set of weighted samples. Monte Carlo methods have

the advantage that they efficiently represent complex distributions, but the disad-
vantage is that many samples are needed for a good approximation of the target
density.

Some applications require a continuous and strictly positive density estimation.
This gives rise to a nonparametric density estimation method known as Parzen
window density estimator [Par62] or Kernel Density Estimator (KDE). KDE is
a unsupervised density estimation method that smooths the raw samples set by
assigning a smoothing kernel κ(·) to each sample s(k)

i . The approximation of the
target density p(xi) is then given by

p(xi) =
N∑
k=1

π
(k)
i κ(xi − s(k)

i ). (3.26)

A popular choice is a Gaussian kernel, since it guarantees a smooth and strictly
positive density estimation. The Gaussian kernel is defined as

κ (x) =
1(√

2πΛ
)D exp

(
−|x|

2

2Λ2

)
, (3.27)

where the bandwidth parameter h is used to control the width of the kernel and D
is the dimensionality of the variable x. Using the Gaussian kernel, the resulting
density estimate is given by a Gaussian mixture model [Mur06, Bis06] as

p(xi) =

N∑
k=1

π
(k)
i N (xi; s

(k)
i ,Λi)

N∑
k=1

π
(k)
i = 1. (3.28)

The bandwidth Λi is usually automatically selected using cross-validation or the
computational efficient rule of thumb [Sil86].

Examples for nonparametric density estimation are given in Figure 3.6. As can
be seen, the accuracy of Monte Carlo approximation increases with the number of
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Figure 3.6: Results of nonparametric density estimations for 10 and 100 samples
drawn from the true Gaussian distribution (red). (a) and (b) sample histograms.
(c) and (d) KDE using a Gaussian kernel with automatic bandwidth selection ac-
cording to the rule of thumb [Sil86].
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samples. The top row shows a histogram3 that is based on the samples drawn from
the original Gaussian distribution. The bottom row depicts the smoothed results
using a Gaussian kernel.

Note that, the mixture models of KDE requires significantly more storage space
and evaluation time, then the raw sample set of the Monte Carlo approximation.
Hence, in many practical application4, the raw sample set is used.

3.4 Inference in Graphical Models
The previous sections, introduced graphical models as a compact way to represent
complex joint probability distributions. The main use of this compact represen-
tation is to perform efficient inference. In general, inference refers to the task of
estimating the posterior distribution p(x|y) of hidden random variables x given
some noisy observations y. In many practical applications, computing the full
joint distribution is computational expensive and the posterior marginal distribu-
tion

p(xi|y) =
∑
XV\i

p(x|y) or p(xi|y) =

∫
XV\i

p(x|y)dxXV\i (3.29)

are used as an efficient summary. Here V \ i denotes the set of all nodes X in
the graph except i. The focus of the following sections are exact and approximate
inference algorithms for preforming efficient marginal inference in tree-structured
graphical models.

3.4.1 Discrete Belief Propagation
We start by introducing belief propagation (BP) [Pea88, Yed01, Yed02] for a MRF
encoded by a Graph G = (V, E), where all random variables are discrete. Using
BP, the posterior marginal distributions or belief is computed as

bi(xi) = p(xi|y) =
1

Z
φi(xi,yi)

∏
j∈Υ(i)

mji(xi), (3.30)

where the real number Z denotes the partition function that normalizes the proba-
bility distribution. This belief update is performed by combining the local observa-
tion potential φi(xi,yi) with all incoming messages mji(xi). Messages mji(xi)

3A histogram [Sil86, Bis06] is the most fundamental nonparametric representation of a density
function.

4One very popular application using the raw sample set is the standard particle filter [Dou01,
Isa98a]. A smoothed sample set is e.g., used for the regularized particle filter [Aru02, Mus01].
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send from hidden node j to hidden node i can intuitively be understood as a sum-
marized belief about the state of node i in respect to the evidence on node j. The
message update is defined as

mji(xi) ∝
∑
xj

ψij(xi,xj)φj(xj ,yj)
∏

k∈Υ(j)\i

mkj(xj). (3.31)

Generally, the message update can be performed in two stages. First, the partial
belief

bj\i(xj) = φj(xj ,yj)
∏

k∈Υ(j)\i

mkj(xj), (3.32)

is calculated which summarizes the belief about node j, except the message send
from node i to j. Then, the partial belief over node j is converted into the belief
over node i using the corresponding clique potential φi(xi,yi). As mentioned be-
fore, a brute force inference scheme, which simply enumerates all possible states
of x and evaluates p(x) requires O(LN ) computation time, and is therefore im-
practicable. The BP algorithm presented in this section can calculate all marginals
for a N node tree in O(NL2) time, which is a significant improvement.

Furthermore, it has been shown in [Pea88] that the BP algorithm only converges
to the correct marginal posterior distribution in tree-like graphical models. Thus,
Equation 3.30 only holds for tree-like graphical models.

In analogy to Equation 3.31, BP is sometimes also called sum-product algo-
rithm [Ksc01, Bis06]. If discrete BP is restricted to Hidden Markov Models, it is
equivalent to the well known forward-backward algorithm [Rab89].

3.4.2 Continuous Belief Propagation
So far, it was assumed that, all random variables in the graphical model are dis-
crete. However, this thesis also deals with continuous variables. In this case the
message update equation 3.31 of the BP algorithm has to be rewritten as

mji(xi) =

∫
xj

ψij(xi,xj)φj(xj ,yj)
∏

k∈Υ(j)\i

mkj (xj) dxj , (3.33)

where the sum over all states of xj is replaced by an integral. Note that both
Equation 3.17 and Equation 3.30 hold for discrete as well as continuous variables.
In the cases, where the potentials φj(xj ,yj) and ψij(xi,xj) are both Gaussian
also the posterior marginal distribution at each node is Gaussian and the integral
in Equation 3.33 can be calculated exactly [Wei01].
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3.4.3 Nonparametric Belief Propagation
So far, BP was introduced for the restricted classes of graphical models with dis-
crete variables or continuous Gaussian variables. However, in many application, as
in this thesis, the underling distribution are non-Gaussian due to ambiguities and
thus multimodal sensory evidence. This is what gave rise to the development of
nonparametric belief propagation (NBP) [Isa03, Sud03], which is a generalization
of sequential Monte Carlo methods [Isa98a, Dou01] to arbitrary graphs.

Nonparametric Messages and Beliefs

The key observation underling NBP is that in the non-Gaussian case the integration
required to perform the message update in Equation 3.33 can not be solved exactly.
Therefore, instead of performing inference exactly, NBP uses Monte Carlo tech-
niques and KDE to approximate both beliefs and messages.

Using Monte Carlo techniques, messages could be approximated using a set
of discrete samples {(s(k)

i , π
(k)
i )}Lk=1. Due to the independence assumptions en-

coded by the graph, samples for different messages from independent proposal
functions have to be generated. If these samples are defined on a continuous sam-
ple space this means that they are distinct with the probability one. Consequently,
the product of Equation 3.30 is guaranteed to be zero. In order to ensure that the
message product is non-degenerative Gaussian kernels (see Section 3.3.3) are used
to construct strictly positive messages

mji(xi) =

L∑
k=1

π
(k)
ji N (xi; s

(k)
ji ,Λji). (3.34)

Similarly, the belief is approximated as

bi(xi) =
L∑
k=1

π
(k)
i N (xi; s

(k)
i ,Λi). (3.35)

Belief Update and Message Propagation

Let us now consider the belief update of Equation 3.30, where all incoming mes-
sages are represented nonparametrically as in Equation 3.34. If further the ob-
servation potential is represented as a Gaussian mixture model, the belief update
requires to calculate the product of d = |Υ (j) |+ 1 Gaussian mixtures. If each of
these Gaussian mixtures has L components, the resulting product has Ld compo-
nents. Hence, the brute force approach to perform inference would require O(Ld)
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time, which is time exponential in the number of mixtures. Even for a small num-
ber of mixtures with few components, this is intractable. In order to keep inference
tracable, the NBP algorithm approximates the mixture product by a set of L inde-
pendent samples

s
(k)
i ∼ φi(xi,yi)

∏
j∈Υ(i)

mji(xi) k = 1, . . . , L. (3.36)

Given these samples, KDE methods can be employed to reconstruct the belief as
in Equation 3.35.

The NBP algorithms performs the message update of Equation 3.33 in two
stages. First, it draws L independent samples from the partial belief estimate

s
(k)
j ∼ 1

Zj
ϕij(xj)bj\i(xj) k = 1, . . . , L, (3.37)

where bj\i(xj) is the partial belief of node j (see Equation 3.32) and ϕij(xj) =∫
Xi
ψij(xi,xj)dxi is the marginal influence, which captures the influence of

ψij(xi,xj) on xj and is used to reweight the samples. Then the auxiliary samples
are propagated to node i using the associated pairwise clique potential

s
(k)
ji ∼

1

Z
(k)
i

ψij(xi,xj = s
(k)
j ) Z

(k)
i =

∫
xi

ψij(xi,xj = s
(k)
j )dxi, (3.38)

where the double subscript implies that the samples s(k)
ji are distributed according

to mji(xi). As in the case of the belief update, the resulting sample set and KDE
methods can be used to reconstruct the messages as in Equation 3.34.

It is important to note that in many application, as in this thesis, pairwise po-
tentials only depend on the difference in their arguments, so that ψij(xi,xi) =

ψ̃ij(xi−xj). In this case, the marginal influence is constant and can be neglected
[Sud06, Sig08, Fel05].

Sampling from Products of Gaussian Mixtures

Mixture products are the mechanisms by which NBP updates both beliefs and mes-
sages. As mentioned before, exact calculation of these mixture products is often
intractable. In order to overcome this issue, several solutions have been proposed.
For example, in [Sud03] good results were archived using a Gibbs sampler that
performs product sampling in K iterations and requires O(KdL2) time. Based
on the assumption that the mixtures have diagonal covariance structure, Ihler et
al. [Ihl03] proposed an approximate sampling scheme which perform the product
sampling in O(KdL) time.
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Figure 3.7: Message passing on a tree-structured graph. (a) Bottom up phase. (b)
Top down phase.

Sampling schemes dedicated to real-time applications have been proposed in
[Spe13], where nearest neighbor search is used to reduce the computational coast
of product sampling, resulting in a computational complexity of O(dL). This low
computational complexity is archived by not multiplying each Gaussian with each
Gaussian of the other mixture, but instead multiplying each Gaussian with the
most probable Gaussian. The weights πr of the product result can then simply be
computed as

πr =

∏i=2
i=1 πiN (x;µi,Λi)

N (x;µr,Λr)
. (3.39)

3.4.4 Message Passing in Hierarchical Models
So far, BP and nonparametric BP were introduced for a simple example, where a
outgoing messages was propagated as soon as all inputs were available. Applied to
tree-structured graphs, this standard message passing schedule results in propagat-
ing messages from the leaves upwards to the root and back down. In the following,
this message passing schedule is explained using the tree-structured graph depicted
in Figure 3.7, which has the same structure as the graphical models used through-
out this thesis. For illustrative reasons, let us assume that inference can be solved
using continuous BP as introduced in Section 3.4.2. Note, the presented message
passing schedule can be applied analogously for NBP.

In order to implement a message passing schedule on a undirected graph, a
definition for the root is needed, which is defined by selecting an arbitrary node.
Then, all edges are oriented away from the root, which gives a definition of parent
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and child. An example is depicted in Figure 3.7 where node r is defined as the
root. Accordingly, it can now be stated that e.g., node t is the parent of node s.

Let us now consider the task of estimating the belief of node t. In general, this
calculation can be performed in two phases. First, during the bottom up phase, the
belief of node t conditioned only on its local observation potential and evidence
that is below node t in the graph is calculated. This bottom up belief is denoted
as b−(xt) = p(xt|e−t ), where e−t is the summary of the local evidence at node
t and evidence form below node t. Second, in the top down phase, the belief of
node t is obtained by combining the bottom up belief with the evidence provided
by the parents of node t. In analogy to Equation 3.30 the bottom up belief b−(xt)
of node t can be written as

b−(xt) ∝ p(xt|e−t ) ∝ φt(xt,yt)
∏

c∈Ξ(t)

m−ct(xt), (3.40)

where m−ct(xt) refers to the incoming messages from nodes s and t. Now e.g.,
m−st(xt), can be computed according to Equation 3.33 as

m−st(xt) ∝
∫
xs

ψst(xs,xt)φs(xs,ys)
∏

c∈Ξ(s)

m−cs(xs)dxs. (3.41)

Since the above message update is computed recursively, the messages m−st(xt)
can be understood as a summary of what node t should know about its subtree s.
Formally, this is denoted as m−st(xt) := p(xt|e−st), where e−st summarizes all the
evidence in the subtree s (see Figure 3.7a). This recursive procedure continues
until all messages reached to the root. After the belief of the root is estimated, the
bottom up phase terminates and the top down phase starts.

Let us now consider the task of calculating the belief state of node s. During
the bottom up phase the bottom up belief was already computed by combining the
messages from the children of node s with the local observation potential. Hence,
only the bottom up belief of node s has to be combined with the top down messages
of its parents

b(xs) ∝ b−(xs)
∏

t∈Γ(s)

m+
ts(xs). (3.42)

In the above example, this means that the message send form node t to node s has
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to be computed, which is defined as

m+
ts(xs) := p(xs|e+

st) ∝
∫
xt

ψst(xs,xt)φt(xt,yt)
∏

c∈Ξ(t)\s

m−ct(xt)

∏
p∈Γ(t)

m+
pt(xt)dxt, (3.43)

where e+
st is the summary of all the evidence that is not part of the subtree s (see

Figure 3.7b). Note, Equation 3.43 is equivalent to Equation 3.33. However, for
illustrative reasons, the message origin is kept explicit. The top down phase ends
when all leaves received the messages.

The message passing algorithm presented in this section is a synchronous mes-
sage passing schedule, since it amounts in processing each level of the graphical
model synchronously. An alternative, is to apply an asynchronous message pass-
ing schedule [Eli06, Wai08] which propagate messages in a serial order defined
by a fixed schedule. The key challenge in asynchronous message passing is to
guarantee that each node receives all its input messages. Empirical results show
that often asynchronous message passing schedules converge faster then the naive
synchronous approach [Eli06]. Consequently, this thesis, mainly uses a fixed asyn-
chronous message passing schedule.
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4 Compositional Hierarchical
Models of Multi-Lane Roads
This chapter presents a novel compositional hierarchical framework [Töp13]
which represents multi-lane roads as a composition of parts to provide a unified
probabilistic framework for rapid multi-lane road perception. The following sec-
tions are structured as follows. Section 4.1 details the lane and road cues em-
ployed for the addressed perception tasks, and presents how they are incorporated
into the proposed framework. The Compositional Hierarchical Model (CHM) of
multi-lane roads is introduced in Section 4.2, alongside with details on how de-
pendencies between low-level cues and high-level road topologies are encoded.
Finally, Section 4.3 introduces the applied inference algorithm, including the no-
tion of using part-sharing [Zhu10, Spe11] and depth-first message passing [Töp13]
for computational efficiency.

In the proposed approach, road and lane perception is formulated as the problem
of inference in a probabilistic graphical model. More precisely, multi-lane roads
are represented in a CHM [Spe11, Tor10, Mur03] which is encoded by a pairwise
Markov random field (see Section 3.2.3). In this CHM the root corresponds to a
full model of a multi-lane road with all its intricacies (e.g., number and position of
lanes and parallel, splitting and merging lanes), and the nodes on the lower-levels
of the CHM to a recursive decomposition of the root object into parts and sub-
parts, as shown in Figure 4.1. This figure shows that this decomposition leads to
a layered object representation with decreasing part complexity in direction of the
leaves.

This compositional hierarchical representation has several convenient proper-
ties. First, the decomposition simplifies the perception of complex multi-lane
roads, because the perception problem is divided into sub-problems of lower com-
plexity. In addition, this decomposition explicitly encodes the dependencies be-
tween observable low-level cues and complex road topologies. Second, each node
in a CHM makes inference over a finite local area which ensures that e.g., clutter
partial occlusions, and local illumination changes have a limited effect on the over-
all perception process [Sig08, Fel05, Isa03, Xie03, Moh01, Fis73]. Third, edges
between nodes in a CHM encode probabilistic dependencies. These ensure not
only the compatibility of parts by introducing weak spatial constraints, but also in-
corporate a priori scene knowledge, such as expected lane widths or assumptions
on lane topologies. During the perception, this prior knowledge allows for both re-
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Figure 4.1: Simplified structure of the proposed CHM of multi-lane roads. Com-
ponents, corresponding to the nodes of the model and represent multi-lane roads on
different levels of abstraction. Edges between pairs of parts and parts and feature
detections, encode weak spatial constraints and observations potentials, respec-
tively.

ducing the search space to regions in which object-parts are likely to occur and to
reject patterns that seem to be valid, but are located in unlikely places. Therefore,
incorporating a priori scene knowledge is not only computational attractive, but
improves the overall performance of the proposed approach. Fourth, most impor-
tantly, given a small number of features CHMs have the property of being able to
construct a large number of combinations which growth exponentially with each
level of the hierarchy. In fact, this expressive power is the key in applying the
proposed framework to varying road topologies, as proposed in Chapter 5.

Given the hierarchical graphical model lane and road perception can efficiently
be performed using Belief Propagation (BP) (see Section 3.4.3). However, since
the state space represented by the proposed model is continuous and multi-
dimensional exact inference is computational intractable. Therefore, a version
of Nonparametric Belief Propagation (NBP) (see Section 3.4.3) is exploited that
performs efficient approximate inference. Most importantly, in NBP messages and
beliefs are represented nonparametrically which allows to account for the multi-
modal, non-Gaussian sensory evidence.

In summary, the proposed hierarchical framework can be viewed as having four
distinct components: (1) local evidence distributions, (2) a hierarchical graphical
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model, (3) a set of weak spatial constraints encoded by the edges of the graph, and
(4) an inference algorithm that provides the ability to infer the belief state of each
node in the graph. In the following, each one of these is discussed in turn.

4.1 Sensor Evidence
In this thesis, lane and road perception exclusively relies on low-level evidence,
obtained from the visual input during feature extraction (see Figure 2.1). Hence,
all methods presented in this thesis crucially depend on the reliability of the feature
extraction results. This section, motivates the used perceptual lane and road cues,
and the employed feature extraction approaches. Further, it specifies how fea-
tures are incorporated into the CHM, including the representation of features and
the formulation of observation potentials which encode the dependencies between
hidden and observable variables in the CHM.

4.1.1 Cues for Lane and Road Detection
Like most structured environments roads have certain characteristics that dis-
tinguish them from the background clutter in the scene. In fact, there exists
a vast amount of cues that can be used to support lane and road perception
(see Section 2.1). Generally, the following lane and road cues can be identi-
fied [Apo04, Vei08]:

• While the texture may vary between a road and its environment, it is often
homogeneous within a single road.

• Similarly, the color can be assumed to be constant within a single road.
However, shadows may change its brightness.

• The boundary separating the road from non-road areas if often characterized
by a road edge (e.g., curbstone or guard rail).

• The most common lane cue on structured roads is the lane marking which
may differ in appearance, i.e., dashed, continuous, arrows and stoplines.

Each of the above cues has been used in recent lane and road perception ap-
proaches (see Section 2.1) and has both advantages and disadvantages over the
other cues. Most importantly, however, no single cue is expected to be reliable in
all scenarios. Therefore, a combination of multiple cues is used to achieve both
the reliability and flexibility that is required for commercial ADAS applications.

The cues selected for the presented approach are designed to be simple and effi-
cient, while covering a variety of scenarios. Further, the features should be robust
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against clutter and local illumination changes. These considerations motivate the
usage of lane marking and road edge cues. Lane markings are the most common
cue on structured roads and if present a strong cue for lane and road perception.
Most importantly, the various types of lane marking cues (e.g., continuous lane
markings, dashed lane markings, stoplines and turn arrows) encode important se-
mantic road properties. Road edge cues are used as a complimentary input source
to improve the performance in less structured urban or rural scenarios, where lane
markings are not reliable. Further, both of these cues have the advantages that
there exists a variety of well developed and efficient feature extraction approaches.

More formally, given the visual input, two different feature detection approaches
are employed. First, lane marking features m = {m1, . . . ,mNm

} are extracted
from the visual input using the symmetrical local threshold method. This method
is used since according to the evaluation conducted in [Vei08] it yields the best
results in the general case. In particular, it has been shown that this method per-
forms well compared to other state-of-the-art approaches in scenarios with variable
lighting conditions (e.g., shadow, bright sun and cloudy weather), variable scene
content (e.g., dense urban to countryside) and variable road types (e.g., highways,
urban roads and country roads). Furthermore, an edge detector is used to gain road
edge features r = {r1, . . . , rNr

} in image regions where markings are missing,
but road edges such as curbs are present. A Sobel detector at multiple scales is
employed for a scale invariant edge detection. Exemplary results of applying these
two feature extraction approaches to a single input image are shown in Figure 4.2.

The approach presented in this thesis, mainly relies on these two feature extrac-
tion approaches. However, in the following chapters a subsequent classification
step is used that estimates the class of lane marking features to estimate semantic
road properties (e.g., turn direction of lanes) (see Chapter 6).

4.1.2 Feature Representation and Observation Potentials
Given the visual input, low-level features are obtained by applying the two fea-
ture extraction approaches detailed above. Subsequently, the feature extraction
results are transformed from the image domain into the vehicle coordinate sys-
tem [Mal91]1, where a flat road surface is assumed. The vehicles coordinate sys-
tem is located at the center of the rear axis on the road surface, and follows the
common axis definition (x= forward, y= left, ϑ=yaw angle).

Formally, the two feature extraction approaches obtain a set of lane marking
featuresm={m1, . . . ,mNm} and a set of road edge features r={r1, . . . , rNr}.
A lane marking feature mi = (xi, yi, ϑi) is defined by its location (xi, yi) ∈ R2

1We choose to perform lane and road perception in the vehicle coordinate system or bird’s eye view,
since most vehicle control task are performed in the 2D plane of the vehicle (see Section 2.3).
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(a)

(b) (c)

Figure 4.2: Low-level feature input for lane and road perception. (a) Lane marking
features (green). (b) Road edge features (red). (c) Projection into the vehicle
coordinate system.

and orientation ϑi ∈ [0, 2π). Similarly, a road edge feature is defined as ri =
(xi, yi, ϑi). These features constitute the observable random variables r andm of
the CHM which have corresponding hidden random variables xfi that are defined
on the same three dimensional state space that constitute the first level L1 of the
CHM (see Figure 4.4).

Definition 1 (Feature). A feature variable xfi = (xi, yi, ϑi) is specified by its
position (xi, yi) ∈ R2 and orientation ϑi ∈ [0, 2π) in the vehicles coordinate
system.

As in Section 3.2.3, the dependencies between hidden feature variables xfi and
the observations r and m are encoded using observation potential φi(x

f
i , r) and

φi(x
f
i ,m), respectively. These, observation potentials model the probability of

making an observation m or r conditioned on the state of the associated variable
xfi . In the proposed model, the probability of observing a lane marking given the
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state of the feature variable xfi is modeled by the observation potential

φi(x
f
i ,m) = ε0N0(xfi ; 0,Σ0)

+ (1− ε0)

Nm∑
k=1

πi,kN (xfi ;µk,Σi,k) (4.1)

and analogously for observation potentials φi(x
f
i , r) accounting for road edge fea-

tures. Here, Σi,k ∈ R3×3 is the covariance matrix of the kth mixture component.
Formally, this observation potential is a kernel density estimation of the true like-
lihood which is obtained by assigning a Gaussian kernel to each feature µk. πi,k
denotes the probability of the association of the k-th feature with the i-th hidden
variable. Further, the observation potential is augmented by a zero mean, high-
variance Gaussian outlier process N0(xi; 0,Σ0) that is adjusted to represent 20%
(ε0 = 0.2) of the total likelihood [Isa98a, Sud03, Sig04, Thr05]. The outlier pro-
cess is essential in the presented approach, as it ensures that the message product
is non-degenerative in the presence of partial occlusions (see Section 4.3.1).

An illustrative example of the feature extraction results and the proposed KDE-
based approximation of the true observation likelihood is depicted in Figure 4.3.
This figure shows the approximation of the true likelihood using the proposed
observation potential for a continuous and a dashed lane marking.

4.2 Compositional Hierarchical Model
In the proposed framework, a multi-lane road is represented in a CHM which is
encoded by an undirected graph G = (V, E), with nodes V and edges E . The nodes
V correspond to three disjoint sets of variables V = x ∪ m ∪ r, where x de-
notes the set of hidden random variables x={x1, . . . ,xn}. Each hidden variable
xi ⊆ x represents a part or a sub-part of the multi-lane road which is represented
by the root node of the graphical model (see Figure 4.1) and is defined on a mul-
tidimensional continuous state space. Further, the observable variables m and r
correspond to the lane marking features and the road edge features, respectively.

The edges E between pairs of hidden variables define spatial constraints
ψi,j(xi,xj) which encode the dependencies between two neighboring hidden
variables xi and xj . Intuitively, spatial constraints can be thought of as the prob-
ability of configuration xi conditioned on the spatial probability distribution over
xj . A key aspect in the design of spatial constraints is that multiple samples have
to be drawn from the potentials during message passing (see Section 3.4.3). There-
fore, the formulation of potentials has a large influence on the computational com-
plexity and should be as simple as possible, while sufficiently expressing spatial
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Figure 4.3: Observation potential. (a) Feature extraction results. (b) Approxima-
tion of the true likelihood without outlier process (green). (c) Approximation of
the true likelihood with outlier process (yellow).

uncertainties. Furthermore, edges between hidden and observable random vari-
ables encode observation potentials φi(xi,m) and φi(xi, r), as defined in Equa-
tion 4.1.

Given the above definition and assuming that the lane marking observations
m and road edge observations r are independent given x, the joint probability
distribution factorizes as

p(x1, . . . ,xN |m, r) ∝
∏

(i)∈Im

φi(xi,m)
∏

(i)∈Ir

φi(xi, r)

∏
(i,j)∈E

ψi,j(xi,xj),
(4.2)

where Im denotes the indexes of the set of cliques that are contained in x ∪m
and Ir the indexes of the cliques in x ∪ r. The above factorization is also shown
in Fig. 4.4. This figure shows a CHM for a two lane road that is represented
by the root xr31. This road is bounded by road edges (e.g., curbstones), and the
individual lanes are separated by lane markings. The road is decomposed in a
left lane xl29 and a right lane xl30. These lanes are then recursively decomposed
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Figure 4.4: CHM of a two lane road. This figure shows the factorization of the
joint probability distribution in Eq. 4.2 using an undirected graphical model. Hid-
den random variables are depicted in grey and symbols illustrate their type, i.e.,
features, patches, lanes and multi-lane roads. Observable variables are shown in
black and dependencies between random variables are highlighted using edges.

into lane-segments, local driveable areas xpi and features xfi which are directly
observable.

The specification of the hidden variables x comprised in the CHM and their
spatial dependencies are given in the following.

4.2.1 Features and Local Driveable Areas
Recall that the leaves of the model comprise the lane marking observationsm and
the road edge observations r. Each observable variable mi ⊆ m or ri ⊆ r is
connected by an edge to a hidden feature variable xfi = (xi, yi, ϑi) on the first
level of the CHM (see Figure 4.6a). Further, each of the edges between hidden
and observable variables have an associated observation potential as defined in
Equation 4.1.

Definition 2 (Hierarchical Level). The level n of a variable in the model is directly
determined by the number of associated low-level features and is denoted by Ln.
Feature variables xfi have exactly one associated feature and hence define the first
level L1 of the CHM. Patch variables ,on the other hand, comprise two features
and thus comprise the second level L2 of the CHM.

The next higher level of the CHM comprises hidden random variables that define
finite driveable areas and are referred to as patches. Each patch is defined by a
left and a right lane boundary feature (i.e., lane marking or road edge), as shown
in Figure 4.5. Formally, patches are defined by a five-dimensional state vector
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(a) (b)

Figure 4.5: Patch-based lane representation. (a) Detected lane marking features.
(b) Patches representing finite driveable areas of the lane.

xpj = (xj , yj , ϑj , wj , νlp). Here, (xj , yj) ∈ R is the patch location, ϑj ∈ [0, 2π)

its orientation angle, wj ∈ R+ its width and νlp ∈ R+ its length (see Figure 4.5).
The patch length νlp is a constant design parameter that specifies the segmentation
of the lane centerline, as detailed in Section 4.2.2.

Definition 3 (Patch). A patch xp specifies a local driveable area and is defined by
a left and a right low-level feature. The position (x, y) ∈ R2 and orientation ϑ ∈
[0, 2π) of a patch are defined in the vehicles coordinate frame. The width w ∈ R+

of a patch is equivalent to the distance between the two associated features. The
length νlp ∈ R+ of a patch is a constant design parameter.

In the CHM patches are represented by hidden random variables xpi on L2, as
shown in Figure 4.6a. It can be seen that observable variablesmi and ri comprise
the leaves of the CHM, while the hidden levels L1 and L2 correspond to feature
variables xfi and patch variables xpj , respectively. The edges of this model rep-
resent the observation potentials given by Equation 4.1. Further, edges between
hidden feature variables xfi and hidden patch variables xpj encode weak spatial
constraints which are modeled as

ψi,j(x
f
i ,x

p
j ) = N (xpj ;Si,j(x

f
i ),Σi,j), (4.3)



48 4. COMPOSITIONAL HIERARCHICAL MODELS OF MULTI-LANE ROADS

Lane marking featureRoad edge feature

ψ1,3(xf1 ,x
p
3)

xp3

xf1 xf2

r1 m2

ψ2,3(xf2 ,x
p
3)

φ1(xf1 , r1) φ2(xf2 ,m2)

(a)

Σ1,3

xf2xf1
S1,3(xf1 ) S2,3(xf2 )

Σ2,3

(b)

Figure 4.6: CHM of a patch. (a) Graphical model of a patch, where nodes
correspond to observable variables mi and ri as well as to hidden feature vari-
ables xfi and the hidden patch variable xpi . The edges encode spatial constraints
ψi,j(x

f
i ,x

p
j ) between pairs of hidden variables and observation potentials. (b)

Illustration of the modeled spatial constraints, where spatial uncertainties are de-
picted by showing 2D Gaussian distributions. Here, dark colors correspond to
more likely locations.

where for a left feature the transformation function

Si,j(x
f
i )=


xi
yi
ϑi
0
0

+


1
2 sin(ϑi) 0 0 0 0

0 − 1
2 cos(ϑi) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



νwp

νwp

0
νwp

νlp

 (4.4)

returns the predicted location of variable xpj based on the expected lane width
νwp

∈ R+ and the state of variable xfi . The covariance matrix Σi,j ∈ R4×4

is a design parameter that allows to express uncertainties regarding the spatial
dependencies, as illustrated in Figure 4.6b.

An illustration of the spatial dependencies between the feature variables xf1 and
xf2 and the patch variable xp3 is given in Figure 4.6b. It can be seen how each
feature predicts the location of the patch in the lane-center based on the a priori
patch width νwp

. However, since the actual patch width is unknown, the indi-
vidual predictions are not exact. In order to model this spatial uncertainties, the
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covariance matrix Σi,j of the spatial constraint ψi,j(x
f
i ,x

p
j ) is used. For example,

in Figure 4.6b, both covariance matrices Σ1,3 and Σ2,3 model a small uncertainty
orthogonal to the lane boundaries, while the uncertainty in lane boundary direction
is relatively large. This definition of spatial uncertainties has two key motivations.
First, clutter arising in the center of the lane amounts in patch prediction located in
regions of low belief which ensures that clutter has a small influence on the overall
results. Second, the feature extraction only obtains a finite set of discrete features.
Particularly, if both the left and the right lane boundary are dashed it is likely that
only few features can be extracted from these lane boundaries. Thus the true lane
boundary is poorly approximated by the feature set. In order to account for this
issue, a relatively large uncertainty along the lane ceterline is modeled. During
inference, this ensures that even for a sparse feature set valid patch hypotheses are
generated.

The key benefit of the proposed patch representation is its generality. In princi-
pal, it can be composed of any local lane or road cue that allows to predict the lane
center. Further, it allows to cope with clutter arising in the lane center, caused by
e.g., discontinuities in the road texture or color. Moreover, most roads can be de-
fined as a set of patches. This reduces not only model complexity, but also allows
to develop efficient inference algorithms, as detailed in Section 4.3.2.

4.2.2 Local Driveable Areas and Lanes

Patches, as introduced in the preceding section, represent local driveable areas.
Consequently, composing lanes amounts in combining several patches. Hence,
lanes are defined as a composition of a finite number of Np individual patches xp,
its width wl and its length ll as xli = {xp1, . . . ,x

p
Np
, wli, l

l
i}. Here, each patch

xpi = (xi, yi, ϑi) is defined by its position (xi, yi) ∈ R2 and orientation ϑi ∈
[0, 2π). Further, the length of a lane lli ∈ R+ is defined as the sum of Euclidean
distances d(·) between subsequent lane segments as

lli =

Np−1∑
n=1

d(xpn, x
p
n+1). (4.5)

Definition 4 (Lane). A lane xl = {xp1, . . . ,x
p
Np
, wl, ll} is composed of a finite

number of Np patches xpi = (xi, yi, ϑi), where (xi, yi) ∈ R2 and ϑi ∈ [0, 2π) are
the position and orientation of a patch, respectively. Further,wl specifies the width
of the lane. Thus, a lane is defined as a polygonal path with piecewise constant
orientation and width. The length ll ∈ R+ of a lane is implicitly given by the
number of comprised patches as defined in Equation 4.5.
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m2 r7r1 r3 m4 r5 m6 m8
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Figure 4.7: CHM of a lane with multiple levels. (L1) observable low-level fea-
tures, (L2) patches and (L4 − L8) lanes of different length. The length of lanes
is implicitly given by the number of corresponding patches. The edges of the
graphical model encode observation potentials φi(xi,mi) and φi(xi, ri) as well
as spatial dependencies ψi,j(xi,xj).

The hierarchical structure of the proposed lane representation is depicted in Fig-
ure 4.7, where for illustrative simplicity, a lane composed of only four patches2 is
depicted. Further, the short notations φi :=φi(xi,yi) and ψi,j :=ψi,j(xi,xj) are
used. As before the levels L1 and L2 comprise feature variables xfi and patches
variables xpi . The level L4, L5 and L6 comprise lane variables, where the length
lli increases with each level of the hierarchy.

A key advantage of the proposed hierarchical lane representation is the conve-
nient from of potentials which is critical for low computational complexity dur-
ing inference. The CHM of lanes comprises two additional spatial constraints.
Namely, constraints ψi,j(x

p
i ,x

l
j) encoding the spatial dependencies between patch

and lane variables and constraints ψi,j(xli,x
l
j) between neighboring lane vari-

ables. Both of these spatial constraints are defined as multivariate diagonal Gaus-
sian model as in Equation 4.3. However, they encode different spatial dependen-
cies.

Particularly convenient are potentials ψi,j(x
p
i ,x

l
j) which encode the spatial re-

lationship between the lane variables xlj and its child xpi , since it is reasonable to

2During the experiments CHMs with lanes comprising up to 50 elements with an individual length
of νlp = 2m are used.
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expect that xpi and its adjacent lane element have the same spatial configuration.
On the other hand, spatial constraints between pairs of lane variables ψi,j(xli,x

l
j)

are used to predict the expected location of the subsequent lane element using the
transformation function

Si,j(x
l
i)=


xi
yi
ϑi
wi

+


cos(ϑi) 0 0 0

0 sin(ϑi) 0 0
0 0 1 0
0 0 0 1



νlp
νlp
0
0

 , (4.6)

where νlp is the constant patch length introduced in the previous section. In the ex-
ample shown in Figure 4.7, these dependencies are encoded by ψ13,14 and ψ14,15,
while the transformation function Si,j(x

p
i ) of ψ9,13, ψ10,13, ψ11,14 and ψ12,15 sim-

ply returns the mean of the associated patch variable.
Another key benefit of the proposed lane representation is that it allows to rep-

resent lanes of different length. This is essential since the goal is to reason about
roads composed of multiple-lanes with potentially different length. This is partic-
ularly important in intersection, because they often comprise merging or splitting
lanes. This aspect is further investigate in Section 5.3.2. Further, the definition of
lanes as a composition of similar elements leads to a high reusability of parts which
is beneficial for the development of the efficient inference algorithms presented in
Section 4.3.2.

Most importantly, however, is the great flexibility of the proposed lane repre-
sentation. In contrast to many state-of-the-art approaches, it does not impose hard
constraints on the longitudinal lane geometry (e.g., clothoid or spline). Further,
lanes are not restricted to a specific lateral model (e.g., parallel lanes or constant
lane width). This great flexibility is a key benefit of the presented approach, since
it makes it applicable to scenarios beyond highways and highway-like roads.

Yet, most ADAS applications involving vehicle control require a smooth lane
representation and a small number of false detections. This commonly leads to
the introduction of model assumptions on the lateral and longitudinal road topol-
ogy [Hil12, McC06]. While in principal the proposed lane representation could
easily be extend to e.g., a clothoid model by introducing additional model param-
eters, it would limit its field of applicability. Therefore, instead of introducing
specific lateral or longitudinal lane models, such assumptions are considered as
properties of a specific road type as detailed next.

4.2.3 Lanes and multi-lane Roads
In the proposed model, roads are the most complex objects and correspond to the
root of the CHM, as shown in Figure 4.4. Roads are composed of a set of lanes
and introduce constraints on both the lateral and the longitudinal road structure.
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Definition 5 (Road). A road is defined as xr =
{xl, (λ1, . . . ,λNl

), (w1, . . . , wNl
)}. Here, xl = {xp1, . . . ,x

p
Np
, ll} is the

road centerline that is composed of Np lane segments, as in Definition 4. Further,
the lateral offset vectors (λ1, . . . ,λNl

) define the offsets between each of the Nl
lanes of the road to the road centerline. These offset vectors are either constants
to encode parallel lanes or functions of the road centerline to encode splits or
merges. Finally, each value wi ∈ R+, i ∈ Nl defines the width of each lane.

Thus, roads comprise all available information of the levels below and are con-
sidered as the output level for ADAS applications.

An example of a hierarchical representation of a road is depicted in Figure 4.4,
where a CHM of a two-lane road is shown. It can be seen that the layer L8 com-
prise the left lane xl29 and right lane xl30, where the structure of their subtrees is
equivalent to the CHM shown in Figure 4.7. The potentials ψ29,31(xl29,x

r
31) and

ψ30,31(xl30,x
r
31) are used to encode the spatial dependencies between the road

variable xr31 and its lane subparts xl29 and xl30.
For example, if a road xr has a parallel lane structure and its centerline piece-

wise linear path, the spatial dependency to its i-th lane with i ∈ Nl is defined as

ψi,j(x
l
i,x

r
j) = ψi,j(x

p
i ,x

p
j )ψi,j(wi, wj,i), (4.7)

where the spatial dependency of the road centerline and the lane centerline is de-
fined as

ψi,j(x
p
i ,x

p
j ) =

Np∑
k=1

N (xpi,k;xpj,k + npj,kλj,i,Σi,k). (4.8)

Here, npk is the normal vector of the k-th road centerline element. Furthermore,
Σi,k is the covariance matrix that models a spatial uncertainty, as illustrated in
Figure 4.6b. Further,

ψi,j(wi, wj,i) = N (wi;wj,i, δi,j) (4.9)

defines the dependency of the widthwi of the lane and the expected lane widthwj,i
of the i-th lane of the road. Note that, the above example is only one possibility
of defining the dependencies between lanes and roads. In fact, a straight forward
extension to the presented model is to use road centerlines that follow a clothoid
or a spline model.

The motivation for introducing model assumptions on the road level is twofold.
First, it allows to benefit of the rich amount of a priori scene knowledge contained
in road construction guidelines [ras95] which specify the topology of roads rather
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than the geometry of lanes. Incorporating such a priori knowledge into the spatial
constraints of the model aims to increase the reliability of the proposed approach,
as further detailed in Section 5.3.1. Second, in Section 5.3.2, the proposed model is
generalized to scenario with diverse topologies. Towards this goal, different road
types are introduced, each representing a specific road topology, e.g., road with
two parallel lanes or road with two splitting lanes. In the CHM introducing new
road types only requires to modify the road variable and the corresponding spatial
constraints. Hence, introducing new road types does not alter the lower-levels of
the CHM. In fact, this is a key aspects of the presented approach, since it allows to
compose any road type of the lanes specified in the previous section, and thus to
define different roads as a set of common parts. This allows to not only general-
izing it to scenario with diverse topologies, but also to account for heterogeneous
demands of ADAS applications and to develop computational efficient inference
algorithms. A detailed discussion of these aspects is given in Section 5.3.2.

Note that, like most models, the above formulation is only an approximation.
For example, in Figure 4.4, the graphical model implicates that the two low-level
variables xf8 and xf8 are conditional independent given the root. However, in prac-
tice they are often not independent, since the observations y8 and y9 correspond
to the same lane or road cue. However, as the experimental results show this ap-
proximation works well in practice.

This thesis mainly focuses on the task of lane and road perception based on low-
level sensory cues, as it is a key advantage of the proposed framework. However,
the presented framework also offers the possibility to make high-level variables
observable. For example, vehicles detection or vehicle trajectories could be used
to make patch variables or lane variables observable. Although including such
high-level observations is expected to increase the reliability in scenarios, such as
construction sites or snow covered roads, this aspect is not further investigated (see
Section 8.2).

4.2.4 Periodic Variables and Marginal Influence
One challenge in modeling both observation potential φi(xi,yi) (see Sec-
tion 4.1.2) and spatial constraints ψi,j(xi,xj) is that the random variables rep-
resenting angles ϑ ∈ [0, 2π) do not possess a natural origin. In order to avoid
issues regarding the choice of the origin, the angular dimension are modeled by a
von Mises-Fisher distribution [Ban05]

M(ϑ;µ, τ) =
1

2πI0(τ)
exp{τ cos(ϑ− µ)} (4.10)

which is a generalization of a Gaussian distribution to an arbitrary-dimensional
shell. Here, I0(·) denotes the modified Bessel function of the first kind and order
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zero. τ is known as the concentration parameter which corresponds to the inverse
variance σ−2 of a Gaussian distribution τ ≈ σ−2. The von Mises-Fisher distri-
bution is a convenient choice, since it can be derived from a bivariate Euclidean
Gaussian distribution with mean (cosϑ, sinϑ) [Sud06] and thus easily be added to
the Gaussian model of the spatial constraints.

A convenient property of the proposed model is that all variables are specified
in respect to the vehicle coordinate system. Hence, the spatial constraints only
depend on the difference between neighboring variables ψi,j(xi,xj) = ψ̃i,j(xi −
xj) so that the marginal influence ϕi,j(xj) can be neglected (see Section 3.4.3).

4.3 Inference of a single Road Topology
In the presented framework, the task of lane and road detection is equivalent
to computing the marginal posterior distribution p({x1, . . . ,xn|m, r) or belief
bi(x1, . . . ,xn) over all hidden variables in the CHM.

As illustrated in Figure 3.7 the belief estimate bi(xi) of a single part xi is com-
puted by combining all incoming messages at variable xi with the local obser-
vation potential. For the proposed CHM the belief update equation is given by

bi(xi) ∝ φi(xi,m)φi(xi, r)
∏

j∈Ξ(i)

mj,i(xi)
∏

k∈Γ(i)

mk,i(xi), (4.11)

where the two products contain messages from the children Ξ (i) and the parents
Γ (i) of node i, respectively. A convenient property of the presented framework
is that evidence is exclusively injected into the model via the leaves which allows
to perform the belief update in two stages as detailed in Section 3.4.4. First, the
bottom up belief state

b−i (xi) ∝ φi(xi,m)φi(xi, r)
∏

j∈Ξ(i)

mj,i(xi) (4.12)

of the variables in the model is computed by passing messages from the observable
leaves to the root. During this phase, each variable xi only receive messages from
their children Ξ (i). Second, during the top down phase, messages are passed down
from the root to the leaves. This allows to compute the belief bi(xi) by combining
the bottom up belief with the messages each variables xi receives from its parent
Γ (i) as

bi(xi) ∝ b−i (xi)
∏

k∈Γ(i)

mk,i(xi). (4.13)
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Generally, these two phases have fundamentally different goals. While the aim
of the bottom up phase is the fast generation of high-level hypotheses (e.g., lanes
and roads), the top down phase ensures the overall consistency of parts and their
subparts.

In order to cope with the continuous and high dimensional state space of the
random variables as well as with the multimodal non-Gaussian sensory evidence,
inference is performed using NBP [Isa03, Sud03]. NBP is a generalization of
the particle filter [Isa98a, Kan95, Gor93] for approximate inference in arbitrary
graphs (see Section 3.4.3). In NBP the belief bi(xi) is approximated by a set of
L importance weighted samples {(s(k)

i , π
(k)
i )}Lk=1. Each of these samples s(k)

i

represents a hypothesis for the spatial configuration of part xi and is drawn from
the product distribution

s
(k)
i ∼

∏
j∈Ξ(i)

mj,i(xi)
∏

k∈Γ(i)

mk,i(xi) (4.14)

according to the nearest neighbor product sampling method [Spe13] presented in
Section 3.4.3. The weight π(k)

i of each sample s(k)
i is then computed as

π
(k)
i ∝ φi(s(k)

i ,m)φi(s
(k)
i , r). (4.15)

This weight reflects the spatial plausibility of the hypothesis s(k)
i as well as its

plausibility in respect to the sensory evidence, used to instantiated the observ-
able variables y. Finally, the computationally efficient rule of thumb [Sil86]
is used to construct a kernel density estimation bi(xi) from the raw sample set
{(s(k)

i , π
(k)
i )}Lk=1, by assigning a Gaussian smoothing kernel to each sample. This

final step is needed to ensure that the message product is non-degenerative (see
Section 3.4.3).

In the following, the inference algorithm used in the proposed hierarchical
framework is detailed in several steps: Section 4.3.1 details the fundamental bot-
tom up message passing and message fusion algorithm, Section 4.3.2 presents how
part-sharing [Zhu10, Spe13] is used to avoid redundant computations during the
bottom up phase, and Section 4.3.3 introduces a novel depth-first message passing
schedule for lane detection [Töp13] that performs inference in several sweeps and
is particularly suitable for real-time applications.

4.3.1 Message Fusion and Outlier Handling
In NBP, the messages used in standard belief propagation (see Section 3.4.2) are
approximated by a smoothed particle set, and the conditional distribution used in
standard particle filtering is replaced by the product of incoming messages.
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The CHM in this thesis comprises two kinds of probabilistic constraints. First,
potentials ψi,j(xi,xj) encoding the spatial dependencies between pairs of hidden
variable xi and xj . Second, observation potentials φi(xi,m) and φi(xi, r), as
presented in Section 4.1.2. In order to simplify the following expositions, it is first
assumed that the observationsm and sr can be decomposed in local measurements
mi ⊆ m and ri ⊆ r. This allows to formulate single node observation poten-
tial φi(xi,mi) and φi(xi, ri). In this case, messages can generally be computed
recursively according to Equation 3.33 as

mj,i(xi) =

∫
xj

ψi,j(xi,xj)φi(xi,mi)φi(xi, ri)
∏

k∈Υ(j)\i

mk,j (xj) dxj ,

(4.16)

where Υ (j) is the set of neighbors of variable xj . This equation can be rewritten
as

mj,i(xi) =

∫
xj

ψi,j(xi,xj)b
−
j (xj)dxj (4.17)

to make the bottom up belief explicit. The computation of the message update in
Equation 4.16 requires to calculate the product of several incoming messages. The
efficient computation of these message products is a key challenge in NBP. For
example, if each of the L samples in the message is convolved with a Gaussian
kernel, then the explicit product of d messages requires (Ld) time to compute,
which is impractical in most cases. In order to keep inference tractable, nearest
neighbor product sampling [Spe13] is employed as described in Section 3.4.3. The
nearest neighbor product sampling allows to compute the approximated product in
O(Ld) time, which brings along the much desired computational efficiency.

An illustrative example of the message passing framework is shown in Fig-
ure 4.8, where message passing is based on the graphical model depicted on the
right. At the beginning of the bottom up phase, two messages m1,3(xp3) and
m2,3(xp3) are computed according to Equation 4.16. Since NBP is used, the bot-
tom up belief states b−1 (xf1 ) and b−2 (xf2 ) are approximated by a set of weighted
sample. In Figure 4.8 the samples comprised in the feature variables xf1 and xf2
are depicted by showing light blue dots. These samples are used to construct the
two messagesm1,3(xp3) andm2,3(xp3), using the corresponding spatial constraints
ψ1,3(xf1 ,x

p
3) and ψ2,3(xf2 ,x

p
3), respectively, as in Equation 3.38. In Figure 4.8a

samples from theses messages are illustrated by showing the predicted patch lo-
cation with blue dots. As can be seen, the individual features may not be able to
predict the patch location very precisely. However, as Figure 4.8b shows, the prod-
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Estimated patch location
Predicted patch position
Detected feature

(a)

(b)
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Figure 4.8: Message passing framework for an ideal feature set. In the proposed
CHM feature variables send message to the patch variables predicting the loca-
tion of patches. (a) Samples drawn from the messages predicting the location of
patches. (b) Approximated belief b−i (xp3) after message fusion. Not illustrated are
the Gaussian kernels which are assigned to each sample in order to smooth the
belief estimate.

uct of the incoming messages at the patch variables produces precise estimates of
the patch locations.

Partial Occlusions and Clutter: So far, it was assumed that inference is based
on an ideal feature set. In a more realistic scenario, however, any lane detection
approach has to deal with a large amount of outlier, due to clutter and occlusions.
As discussed above CHMs directly address these issues, and therefore the pre-
sented framework shares this capability. This is achieved by the combination of
both the outlier process (Section 4.1.2) and the a priori knowledge about the spatial
configuration of parts encoded by the spatial constraints of the CHM.

In order to explain these mechanisms, a scenario with a partly occluded feature
set is depicted in Figure 4.9a. As before, feature variables send messagesmj,i(x

p
j )

to their associated patch variables containing predictions of possible patch loca-
tions during the bottom up phase. However, if features are occluded, such mes-
sages are empty. As depicted in Figure 4.9b, during message fusion these empty
messages guarantee the result to be zero, and hence information provided by non-
occluded features are eliminated.

In order to cope with this issue, the outlier process introduced in Section 4.1.2
is used, which ensures that messages are strictly positive by assigns a high vari-
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m2,3(x
p
3)m1,3(x

p
3)

xp3

xf1 xf2

r1 m2

Estimated patch location
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Detected feature

Not detected patches

Not detected feature
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Occluded Features
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Occluded Patches
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Figure 4.9: Message passing framework in the case of partial occlusion. (a) Pre-
dicted patch locations for a partly occluded feature set. (b) Belief b−3 (xp3) over
patch locations without outlier process. (c) Belief b−3 (xp3) with outlier process.

ance Gaussian distribution to the belief state of the feature variables xfi . As can
be seen in Figure 4.9c, the outlier process ensures that partly occluded patch hy-
potheses are not eliminated. Instead, the location of partly occluded patches is
estimated based on the assumed patch width νwp , comprised in the spatial relation
ψi,j(x

f
i ,x

p
i ) (see Equation 4.3). However, since this location is only predicted by

one corresponding feature, and further νwp
is usually not equivalent to the actual

patch width, the patch location may not be constrained as tightly as in the non-
occluded case. This spatial uncertainty is reflected by the associated importance
weight πp,(k)

i which is computed according to Equation 4.15.
Similarly, a feature may lead to a patch hypothesis supported by the outlier

process in the case of clutter. Consequently, both partly occluded and clutter hy-
potheses have relatively low corresponding weights. In fact, during the bottom up
phase, it can not be distinguished between patches generated by clutter or partly
occluded patches, and therefore it has to be allowed for both to be present in the
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belief estimates. Even though this leads to the presence of many unlikely hypothe-
ses it allows to avoid early decision which simplifies the detection of lanes and
roads, as detailed in Section 4.3.3.

4.3.2 Part-Sharing
The previous section, introduced the message passing framework based on the as-
sumption that observation m and r can be decomposed into local observations
mi ⊆ m and ri ⊆ r. In practice, however, such a decomposition is often unfea-
sible, and more importantly, the introduced framework derives this decomposition
during inference. In this case, the message update is given as

mj,i(xi) =

∫
xj

ψi,j(xi,xj)φi(xi,m)φi(xi, r)
∏

k∈Υ(j)\i

mk,j (xj) dxj .

(4.18)

In order to explain the difference to the inference problem addressed in the previ-
ous sections, let us consider the CHM of a lane depicted in Figure 4.7. As before,
inference in this CHM can be performed using the bottom up/top down message
passing schedule which begins with the computation of the bottom up belief over
all feature variables b−i (xfi ) conditioned on the observations y. Since the bottom
up belief state of all feature variables b−i (xfi ) is now conditioned on all observa-
tions y it is equivalent for all feature variables. Consequently, all messages sent
from the feature variables on L1 to the patch variables on L2 contain the same
belief estimate. This means that the same message product has to be computed
for each patch variable which leads to unnecessary computational complexity. In
order to avoid such redundant computations, the propose framework employs part-
sharing which is a method that originated in the field of vision based multi-view,
multi-object detection [Zhu10] and was leveraged in [Spe11, Spe13] to 3d intelli-
gent vehicle applications for efficient inference in Markov networks.

The fundamental idea of part-sharing is to merge those nodes i during the bot-
tom up phase that receive the same messages from their children Ξ (i). Thus,
in the presented model, patch variables as well as variables in their subtrees
can be combined as depicted in Figure 4.10b. This figure shows the resulting
sharing structure that includes three sharing-nodes xf1,3,5,7 = {xf1 ,x

f
3 ,x

f
5 ,x

f
7},

xf2,4,6,8 = {xf2 ,x
f
4 ,x

f
6 ,x

f
8} and xp9,...,12 = {xp9, . . . ,x

p
12} clarifying that the bot-

tom up belief is shared between the combined hidden variables.
Using part-sharing, bottom up inference is based on this sharing structure, where

the bottom up belief state of each variable is only calculated once, and then shared
between its parents. This approach avoids not only redundant computations, but
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(b) Sharing Structure

Figure 4.10: Message passing using part-sharing. (b) During the bottom up phase
messages (blue) are passed from the leaves to the root using the sharing structure.
During this phase the belief is shared between nodes on L1 and L2 to avoid redun-
dant computations. (a) During the top down phase, message passing is based on
the structure of the CHM, since each node receives different contextual informa-
tion from its parent.

also ensures that only one object instance has to be memorized. The bottom up
phase ends, after the belief of the root is computed. Then, the top down message
passing begins, as illustrated in Figure 4.10a. Since, the patch variables receive
different messages from their parents during this phase, top down message pass-
ing is performed in the CHM. Before starting the top down phase, the sharing
variables are decomposed into the comprised variables by assigning the bottom up
belief of the sharing variable to all associated variables. Finally, the belief bi(xi)
of each variable xi is calculated by combining its bottom up belief with the in-
coming messages from its parentsmj,i(xi), j ∈ Γ (i), according to Equation 4.11.
This step is very important, since the messages of the parents contain contextual
information, and therefore constrain the hypotheses to plausible domains.

Figure 4.11 illustrates the message passing framework using part-sharing by
showing how the bottom up belief state is only computed once for similar parts,
and shared during the top down phase. This example also clarifies the motivation
for the proposed decomposition of roads into generic objects (e.g., features and
patches). This decomposition guarantees a high degree of reusability which leads
to a reduced computational complexity. Section 5.3.2 leverages this principle in
order to formulate a model of roads with varying topologies. In this model, part-
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Figure 4.11: Message passing framework using part-sharing. (a) Each low-level
feature variable sends messages to its associated patches. Samples from these
messages are illustrated by showing predicted patch locations with blue dots. (b)
The belief b−9,...,12(xp9,...,12) over the patch locations is illustrated by showing green
dots. Unlikely hypotheses (grey) are generated due to the presented approach for
occlusions handling.
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sharing is used not only to shared low-level components, but also to shared entire
lanes between different road types.

Figure 4.11 shows another property of the proposed message passing frame-
work. In contrast to the previous examples, each feature proposes locations of a
left and a right patch. This is necessary, since during the bottom up phase a low-
level feature can not be assigned to a specific feature variable yi. In other words,
during the bottom up phase, it is not known if a feature is the right or the left
feature of a patch. Thus, a left and a right patch location has to be proposed. In
combination with the outlier process presented in Section 4.3.1, this leads to the
presence of many unlikely hypotheses in the belief estimate (see Figure 4.11b).

Even though these additional hypotheses lead to a better approximation of the
bottom up belief, they also cause additional computational complexity during in-
ference. Particularly, during lane and road detection, since the number of possible
lane hypotheses growth exponentially with the number of patch hypotheses. In
order to cope with this issue, this thesis proposes the sequential message passing
schedule presented in the next section.

4.3.3 Depth-first Message Passing

In NBP both performance and execution time crucially depend on the number of
samples used during message passing. In general, using more samples results in
a more accurate representation of the probability distribution bi(xi), but in turn it
leads to additional computational complexity. This section introduces a novel se-
quential message passing schedule for lane detection [Töp13] that allows to reduce
the number of samples required for lane and road detection by performing infer-
ence in a sequence of sweeps. This algorithm is based on the depth-first message
passing algorithm for real-time inference in CHMs presented in [Spe13].

Lane detection: As detailed in Section 4.3.2, bottom up message passing is
based on the sharing-structure which amounts in processing each level one by
one (see Figure 4.10b). Intuitively, this can be understood as a breadth-first search
in the hypotheses space, since on each level of the sharing structure all possible
hypotheses are computed. The advantage of this approach is that it leads to a good
approximation of the density distributions on all levels. The drawback of this pro-
cedure, however, is that the hypotheses space growth exponential with each level,
and therefore computations are only tractable for a small number of levels. Fur-
thermore, in the addressed application, the main goal is the fast detection of high-
level hypotheses, and not an exhaustive search for low-level hypotheses. There-
fore, this section introduces a sequential message passing schedule [Spe13, Töp13]
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Figure 4.12: Lane and road detection using depth-first message passing. Based
on an initially selected patch sample a lane hypothesis is generated (blue). An
expectation-based step is used to ensure the consistency of the high-level hypothe-
sis and sensory evidence (green). Further, road hypotheses can be evaluated using
the CHM (orange). Note that the bottom up belief state of variables on level Ls1
and Ls2 is computed using part-sharing.

which is inspired by the depth-first traversal3 for arbitrary tree structured graphs.
The fundamental idea of depth-first message passing is to perform bottom up

message passing in several sweeps. In each sweep, only those patch hypotheses are
propagated that are likely to be a part of valid high-level hypotheses (i.e., lanes and
roads). In the case of lane and road detection, it is convenient to start the detection
process from patches close to the vehicle, since they are located in areas of low
uncertainty. After selecting a patch sample, the lane hypothesis can be extended
away from the vehicle into areas of higher uncertainty. Towards this goal, a single
patch sample {s(k)

i , π
(k)
i } is selected from the nonparametric density b−i (xpi ) in

each sweep according to its weight

s
(k)
i ∼ π(k)

i . (4.19)

Subsequently, the selected sample is propagated through the CHM as shown in
Figure 4.12. In this example, message passing is initiated at variable xpi by se-
lecting a single sample s(1)

i from the nonparametric density b−i (xpi ), according
to Equation 4.19. Then, Equation 3.38 is used to construct a message mi,j(x

l
j)

containing a single sample s(1)
i,j predicting the location of xlj . This message can

3Notice, depth-first traversal in tree structured graphs starts by first visiting the root, whereas the
bottom up phase starts at the leaves of the graphical model.
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now be used to update the belief b−j (xlj) by calculating the product of all incom-
ing messages from its child xpk, k ∈ Ξ (j) (see Equation 4.11). This product is
approximated using nearest neighbor product sampling [Spe13] which searches
for samples s(qnn)

kj in the incoming messages at xlj that are similar to s(1)
i,j . These

samples are accepted according to the acceptance rate [Spe13]

A
(
s

(qnn)
kj

)
= exp

(
−1

2

(
s

(1)
i,j − s

(qnn)
kj

)T
Σ−1
i,j

(
s

(1)
i,j − s

(qnn)
kj

))
, (4.20)

where qnn is the index of the nearest neighbor of the sample s(1)
i,j and Σi,j is the

covariance matrix of the spatial constraint ψi,j(x
p
i ,x

l
j). Using this acceptance

rate, samples are accepted in a stochastic manner instead of making hard decision.
This provides the possibility to preserve a certain amount of less likely hypothesis
that may become more likely at a later stage of inference.

If no sample is accepted, a top down/bottom up search for evidence supporting
the high-level hypothesis is initiated. This search can be thought of as an align-
ing process that ensures the consistency of the lane hypothesis and the low-level
evidence.

This alignment process is illustrated in Figure 4.12 showing green messages.
The alignment process has two distinct steps. First, a message mj,k(xpk) is sent
from variable xlj to variable xpk, containing a single sample s(1)

jk . This single sam-
ple is again used in the nearest neighbor product sampling to search for samples in
the messages mh,k(xpk), h ∈ Ξ (k) send to xpk from its children. As before, sam-
ples s(qnn)

hk are accepted according to Equation 4.20. However, since the messages
mh,k(xpk) contain the sensory evidence the acceptance rate is not used to decide
if an additional top down search should be initiated, but to decide whether a sam-
ple is supported by an observation or if it corresponds to the outlier process (see
Equation 4.1). This is crucial for handling occlusion as described in Section 4.3.1.

If for all messages mh,k(xpk) a sample s(qnn)
hk is accepted, the product of the

incoming and the accepted sample is calculated which amounts in calculating the
product of two Gaussian distributions. If no sample is accepted for some of the
incoming messages, the contained samples are multiplied with the high-variance
Gaussian outlier process. In the following, the product result is used to send a
single sample message mk,j(x

l
j) back to xlj . Finally, the belief update at variable

xlj is performed by computing the product of mi,j(x
l
j) and mk,j(x

l
j).

The above process is repeated for each lane variable in the CHM, and hence ter-
minates if the last lane level is processed finishing a single sweep of the algorithm.
Since a single sweep does not allow for a good approximation of the nonparamet-
ric densities of the lane variables, lane detection is performed in several sweeps.
Each of these sweeps adds samples to the belief estimates, and thus improves the
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Figure 4.13: Illustration of two depth-first message passing sweeps for lane de-
tection. For each lane segment a stochastic process (see Equation 4.20) is used to
decide weather a patch is part of a lane-hypothesis or not. This process accounts
for spatial uncertainties in e.g., splitting points and thus allows to detect different
lanes in a single image frame.

accuracy of the results.
An example of depth-first message passing for lane detection is given in Fig-

ure 4.13, showing the results of two message passing sweeps. In this example, for
both sweeps the initially patch that is selected according to Equation 4.19 is lo-
cated close to the vehicle. Subsequently, lanes are detected following the message
passing procedure shown in Figure 4.12. The lane detection results show two lane
hypotheses which are detected in a single frame. Namely, a straight and a split-
ting lane. The reason why both lanes can be detected is the stochastic process for
accepting patches given by Equation 4.20. This process, avoids making hard deci-
sion and hence it is likely that in one sweep a patch corresponding to the straight
lane is accepted and in the next one a patch of the splitting lane.

The proposed message passing approach has several convenient properties. By
using the selection criterion in Equation 4.19, it prefers hypotheses that are likely
to be valid, and thus allows for a fast lane detection. Most importantly, however,
samples are distributed according to the contextual information comprised in the
CHM which has two main advantages. First, during the alignment process, in-
ference can be limited to a finite area which reduces computational complexity.
Second, it increases the recognition performance of the presented approach, since
distributing samples based on contextual information allows to detect objects in
areas of low belief. The latter is of particular importance, since in many situations
the host lane can be detected with high confidence, while neighboring lanes are
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harder to detect. In NBP this leads to the problem that many lane samples convert
to the host lane, and thus many samples are needed to detect neighboring lanes
leading to additional computational complexity. The proposed approach, however,
overcomes this common issue of nonparametric approaches, as detailed next.

Road detection: An attractive property of depth-first message passing is that it
allows to not only propose positions for subsequent lane elements, but also to pro-
pose entire lane hypotheses. An example of this process is illustrated in Figure 4.12
showing orange messages. As can be seen, as soon as messages are propagated up
to the root, a message containing a single sample predicting the location of the
neighboring lane can be constructed. Subsequently, a top down sweep can be per-
formed to evaluate the likelihood of the proposed lane hypothesis, where at each
level hypotheses are accepted according to Equation 4.20.

This procedure is comparable to importance sampling, since during the top
down sweep, the importance weight of the lane sample is adjusted based on the
sensory evidence. More precisely, the sample s(1)

m predicting the neighboring lane
is a sample drawn from the nonparametric belief estimate bm(xlm) which equals
the proposal function in this case. Further, the importance weight of s(1)

m can easily
be evaluated as in Equation 4.15, since the proposed CHM makes the high-level
lane variable implicitly observable.

The ability to generate hypotheses based on the structure of the graphical model
is a key benefit of the proposed framework, since in contrast to other nonparametric
lane perception approaches [Dan09, Fra07] it allows to detect lanes in areas of low
belief using a relatively small number of samples.

Nonetheless, depth-first message passing is inevitably a trade-off, in that a better
approximation of some regions of the probability space results in a worse approxi-
mation of others. In depth-first message passing, the partial belief estimate is taken
into account when deciding on where to distribute samples in the bottom up/top
down sweep. Thus, potentially more of the computational resources is focused on
relevant parts of the space. In fact, the experiential results of this thesis show that
depth-first message passing allows to obtain reliable results while maintaining low
computational complexity.
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5 Hierarchical Lane and Road
Perception for heterogeneous Road
Scenes
This chapter presents a hierarchical approach for rapid lane and road perception in
heterogeneous road scenarios that allows to account for the challenge of scenario
diversity (see Section 1.2). The following sections are structured as follows: Sec-
tion 5.1 details the addressed challenge, Section 5.2 specifies the set of features
used in the experiments and Section 5.3 presents how a priori scene knowledge
is used in the proposed framework as well as how similarities between different
road types are used to facilitate inference. Finally, Section 5.4 presents the novel
class of hybrid Compositional Hierarchical Model (CHM) which accounts for both
spatial and classification uncertainties.

A crucial enabler for future Advanced Driver Assistance Systems (ADAS), is
the development of a lane and road perception approach that can cope with the
enormous diversity of target scenarios. In principal, there exist two main sources
for scenario diversity. First, roads may vary in their topology, i.e., number, position
and width of lanes, parallel merging, splitting and ending lanes and roads (cf.
Definition 5). Second, lanes and roads may be defined by varying lane and road
cues, such as different types of lane marking (e.g., dashed or continuous) or road
edges (e.g., curbstone or guardrail) and thus differ in their appearance.

In order to account for varying road topologies, a representation of different
road toplogies as a set of CHMs is proposed, where each CHM encodes a specific
road topology. The approach brings the benefit of providing the possibility of
adding an infinite number of CHMs to the presented framework and thus to make
it applicable to arbitrary scenarios. Even though this is attractive by means of
scalability it also leads to high computational complexity. In fact, performing
inference in a set of hierarchies amounts in processing each CHM separately which
is intractable due to the exponential growth of possible instances. However, it is
reasonable to expect that many hierarchies in the set of CHM comprise common
parts (see Figure 1.1). This allows to apply part-sharing, which has been proposed
for efficient inference in the image domain and for 3d problems in [Zhu10] and
[Spe11, Spe13], respectively.

Towards the goal of handling the appearance diversity, a novel class of hy-
brid CHMs is introduced, in which parts are represented on a hybrid (continu-
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ous/discrete) state space and which allows to incorporate multiple low-level fea-
ture extraction approaches. As in the previous chapter, continuous variables are
used to represent topological road properties, while the additional discrete vari-
ables encode additional road properties, such as if a lane is bounded by a dashed
marking, a continuous marking or a curbstone. This approach is motivated by the
observation that the topology and the appearance of a road are mostly indepen-
dent (e.g., the topology of a lane is not influence by the type of a lane markings).
The proposed hybrid CHM takes such independence assumptions into account and
thus provides a computational efficient probabilistic approach for estimating both
topological and appearance properties of lanes and roads.

Many recent works have addressed challenges related to scenario diversity. Sim-
ilarly, to the proposed approach in [Apo03, Fra07, Dan09] multiple lane and road
cues are used to support the task of lane and road perception. However, they
mainly focus on detecting the host lanes and further do not provide the possibility
of estimating additional properties, such as lane boundary types. More recently,
Hur et al. [Hur13] proposed an approach towards multi-lane detection on roads
with splitting, merging and parallel lanes. Even though their approach leads to
promising results, it mainly relies on lane marking cues which limits its field of
application. Further, it focuses on the detection of lane boundaries and thus only
obtains limited information on the overall road topology.

5.1 Topology and Appearance of Roads
The diversity of appearance and topology of roads is a key challenge in lane and
road perception, since it complicates the development of a generic lane and road
perception approach [Hil12, McC06]. However, as roads are designed for the hu-
man driver they follow a certain structure. In fact, most roads are constructed
according to standardized guidelines, such as [ras95]. These guidelines specify
both the topology of roads for different environments (e.g., urban, rural and high-
way) and the appearance of visual cues used to support the human driver (e.g.,
different lane marking types). Figure 5.1 shows different road topologies accord-
ing to [ras95] and the appearance diversity of a single road topology. It can be seen
that the topology of roads differs depending on the environment. Highways, for
example, comprise lanes with a width larger than the one of urban lanes to allow
for fast driving. Not illustrated is that roads may comprise a varying number of
lanes or even splitting and merging lanes.

Further, Figure 5.1 shows that even for a single road topology the appearance
of the road may vary significantly. This is caused by the different cues used to
define roads and lanes, such as continuous lane markings, dashed lane markings or
curbstones. Especially, lane markings show a great diversity, since they are used to
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urban
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highway

Figure 5.1: Examples for the diversity of road scenarios. (left) Road topologies
as specified in [ras95] for urban roads, rural roads and highways with emergency
lane. (right) Appearance diversity of the urban road topology.

encode traffic rules. For example, dashed lane markings commonly indicate that
a lane change is allowed, while continuous lane markings prohibit a lane change.
Finally, lane and road perception is complicated, since it is not guaranteed that a
specific cue is reliable in all scenarios.

A lane and road perception system has to be able to cope with both the topolog-
ical and the appearance diversity of roads. The following sections, present several
extensions to the previously introduced framework to handle exactly the above
challenges.

5.2 Multi-Cue Sensory Evidence

Lane and road perception in intelligent vehicles requires both, a framework that
allows for efficient interpretation of low-level evidence and sensors that extract
information from the vehicles environment. Since, there is no perfect low-level
feature extraction approach, many recent lane and road perception systems rely
on a combination of feature extraction approaches that are applied to the same
input image [Fra07, Dan09, Gei11, Gei14, Spe11, Spe13]. Similarly, the proposed
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approach relies on multiple low-level features obtained form a single frame, such
as lane markings, road edges, stoplines and turn arrows. While the incorporation
of turn arrows and stoplines in the proposed framework is detailed in Chapter 6,
this chapter focuses on different kinds of lane and road boundary features.

Towards this goal, the two feature extraction approaches introduced in Sec-
tion 4.1.1 are extended by an additional classification process which obtains the
class of both lane marking and road edge features. Here, the feature classes or
types continuous narrow lane markings, continuous wide lane markings, dashed
narrow lane markings, dashed wide lane markings and road edge are distin-
guished.

Formally, all boundary feature extraction results are summarized as boundary
features b = {m, r}, where m comprises a set of Nm lane marking features
m = {m1, . . . ,mNm

}. Each lane marking feature m = (xm, ym, ϑm, tb) is
defined by its position (xm, ym) ∈ R2 and its orientation ϑm ∈ [0, 2π) in vehicle
coordinate system. Furthermore, tb denotes the discrete probability distribution
over the different boundary feature classes, as discussed above. In addition, a set
of Nr road edge features r = {r1, . . . , rNr

} is detected, where in analogy to the
marking features each road edge feature r is defined as r = (xr, yr, ϑr, tb).

Sample results of applying these two feature extraction approaches to a single
input image are shown in Figure 5.2. As expected, features obtained by the lane
marking detector mostly correspond to lane markings, while the road edge detector
extracts features from the curbstones. Nonetheless, Figure 5.2 also shows that
this is not always the case. This observation is one of the motivations for the
development of the hybrid compositional models, as proposed in Section 5.4.

5.3 Topological Diversity and Sets of Hierarchies
This section, details how the rich amount of a priori scene knowledge contained in
road construction guidelines [ras95] can be incorporated into the proposed model
to support the challenging task of lane and road perception in heterogeneous road
scenes. Further, it details how diverse road topologies can be represented as a
set of CHMs and how similarities between road topologies can be used to apply
part-sharing [Zhu10, Spe11] for efficient inference.

5.3.1 Compositional Hierarchical Model of a Single Road
As detailed in Section 4.2, multi-lane roads are represented as a CHM that is en-
coded by an undirected tree-structured graph G = (V, E), with edges E and nodes
V . The nodes V correspond to three disjoint sets of variables V = x ∪m ∪ r.
Here, hidden random variables x = {x1, . . . ,xNx} define the different levels of
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(a)

(b) (c)

Figure 5.2: Low-level feature input for lane and road perception. (a) Dashed
narrow lane marking features (green), dashed wide lane marking features (yellow)
and continuous wide lane marking features (cyan). (b) Road edge features (red).
(c) Projection into the vehicle coordinate system.

the CHM and represent a road on several abstraction levels, i.e., patches, lanes and
roads (see Section 4.2). Furthermore, observable variablesm = {m1, . . . ,mNm

}
and r = {r1, . . . , rNr

} correspond to lane marking observations and road edge
observations, respectively.

Edges E encode either spatial relations ψi,j(xi,xj) between pairs of hidden
variables or observation potential φi(xi,m) and φi(xi, r), as defined in Equa-
tion 4.1. Note that, in this representation the results of the different feature extrac-
tion approaches are assumed to be independent.

The principal structure of a CHM is illustrated in Figure 5.3, showing the CHM
of the highway with emergency lanes depicted in Figure 5.1. Note that, for illustra-
tive simplicity the length of lanes or roads is not shown. In the proposed approach,
such a road topology is considered as a specific target scenario which is repre-
sented by the root node of a CHM. The CHM defines the decomposition of the
root object xr11 in its parts and subparts. In the above example, xr11 is decomposed
into a two-lane road xr10 and an emergency lane xp,l9 . The two-lane road xr10 is
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Figure 5.3: CHM of a single road scenario. The root node represents a specific
target scenario and the CHM specifies its dependency to low-level observation
mi and ri. This model contains different part types to encode if e.g., a patch is
composed of two lane marking features or a lane marking feature and a road edge
feature.

further decomposed into its lanes xp,l7 and xp,l8 . Finally, all lanes are decomposed
into boundary features xfbi that are directly observable.

The above example clarifies how a priori knowledge provided by construction
guidelines [ras95] is used in the proposed framework. Namely, for each road topol-
ogy defined in [ras95] a new CHM is specified, as shown in Figure 5.3. As a result,
the spatial constraints of this CHM contain the topological a priori knowledge of
the guideline.

For example, spatial relations ψi,j(x
f
i ,x

p
j ) between patch and features contain

a parameter νwp which specifies the expected patch width (see Equation 4.4). In
the proposed approach this parameter is specified as the lane width given in the
roadway construction guideline. However, since there exist different lane widths,
it may be necessary to specify multiple spatial constraints. This is illustrated in
Figure 5.3, showing the value of νwp

in the nodes on level L2. Further, road guide-
lines specify the number of lanes and the lane structure (e.g., parallel, splitting or
merging) of a road. In the proposed model these dependencies between neighbor-
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ing lanes are encoded by spatial constraints between lane and road variables.
Even though, the knowledge provided by construction guidelines can not be

expected to be exact, it allows to bound hypotheses to plausible domains. This is
not only computational attractive, but also allows to handle outlier, due to clutter
or occlusions, as detailed in Section 4.3.1.

Figure 5.3 also shows how distinct feature variables, shown by black and white
symbols, and corresponding observation potentials φi(xi,mi) and φi(xi, ri) can
be used to incorporate different low-level feature extraction approaches. Introduc-
ing distinct feature variables is the most direct approach to incorporate multiple
cues in the perception process. This approach, however, has two main disadvan-
tages. First, if a variety of feature types (e.g., dashed marking, continuous marking
and curbstone) has to be modeled, an enormous number of parts has to be speci-
fied, due to the many possible compositions on the higher levels of the CHM. This
leads to very complex models, where only a subset of parts is instanced at a time.
Second, by introducing distinct variables, the different feature types are assumed
to be independent which is often not the case (see Section 5.2). To overcome these
issues, this thesis proposes to represent the variables of the presented model on a
hybrid (continuous/discrete) state space. This leads to the hybrid CHMs presented
in Section 5.4, where continuous variables specify the configuration of a part and
discrete variables represent discrete probability distributions over its type (e.g., the
probability of a patch being bounded by a dashed lane marking and a road edge or
two dashed lane markings).

5.3.2 Multi-Scenario Representation

So far, only the task of formulating a graphical model for a single road topology
was considered. However, as discussed in Section 5.1 road scenarios show a great
topological diversity. While, in general, the spatial constraints of the proposed
CHM allow for a certain degree of spatial variation, as soon as these variations
become too large, or different road topologies have to be represented new separate
CHMs have to be specified. Therefore, heterogeneous road topologies are not
represented by a single CHM but by a set of Nh CHMs G = {G1, . . . ,GNh

},
where each CHM is a joint probability distribution defined over a hierarchical
graph Gi = (Vi, Ei) ⊂ G.

An illustrative example of a set of CHM is depicted in Figure 5.4, showing
the compositional hierarchies of different road topologies. At the first glance,
providing a separate CHM for each road topology seams unattractive, since it leads
to an exponential growth of instance. However, it is reasonable to expect that many
CHM contain similar parts (see Figure 1.1). In fact, the three CHMs in Figure 5.4
comprise several common parts which allows to apply part-sharing for efficient
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Figure 5.4: Representation of heterogeneous road topologies using sets of CHMs
and part-sharing. (a) Set of CHMs, where each CHM models a specific road topol-
ogy. (b) Many road topologies comprise common parts and thus can be repre-
sented by means of shared parts using a sharing structure. Performing bottom up
inference in this sharing structure is computational efficient and allows to simulta-
neously estimate multiple road topologies.

inference.

5.3.3 Similarities and Part-Sharing
Building on the part-sharing approach introduced in Section 4.3.2, it can be ex-
tended to account for sharing common parts between different road topologies.
Let us for example consider the set of hierarchies depicted in Figure 5.4. One op-
tion to perform inference in this model is to use the inference algorithm presented
in Section 4.3 and apply it to each CHM contained in the set of CHMs. This ap-
proach, however, is computational unattractive, since it ignores the fact that many
CHMs comprise similar parts. A better strategy is, therefore, to represent the set of
CHMs by means of common parts, as depicted in Figure 5.4. The shown sharing
structure clarifies the similarities between the different road topologies, showing
how e.g., the two-lane road can be shared between the three different road topolo-
gies. Note that, sharing the two-lane road also requires to share its sub-tree.

The key benefit of part-sharing is that during bottom up message passing, the
bottom up belief over all common parts has to be computed only once and then it
can be shared between its parents. Hence, as in Section 4.3.2, bottom up message
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passing is performed in the sharing structure and top down message passing in the
individual CHMs, corresponding to the root nodes of the sharing structure.

Thus, part-sharing is one of the key aspects in the proposed framework, since
it allows not only to perform efficient bottom up inference in a single CHM (see
Section 4.3.2), but also to share complex high-level objects between different road
topologies. In contrast to many recent lane and road perception approaches which
only aim to detect a single road topology (see Section 2.3) this guarantees that the
presented approach is scaleable to various topologies. And most important, the
estimation of all road topologies in the set is supported by the rich amount of a
priori knowledge contained in the construction guidelines.

5.4 Appearance Diversity and Hybrid Composi-
tional Hierarchical Models

The hierarchical framework, developed so far already allows to estimate hetero-
geneous topologies and to incorporate multiple feature detection approaches. Un-
fortunately, the proposed model does not scale well if both the topology of roads
and their appearance has to be estimated. In particular, it does not account for
uncertainties arising during feature classification, as discussed in Section 5.3.1.

In order to overcome these issues, this section proposes a novel representation
of lanes and roads using hybrid CHM. In this extended representation, the con-
figuration xi of each node is augmented with a hidden discrete variable di that
specifies the type of a part (e.g., if a feature is a continuous lane marking, a dashed
lane marking, a curbstone, etc.). Intuitively, this hybrid part representation can
be understood as a form of sharing, where the configuration of a part is shared
between different discrete types. This allows to not only attain a low model com-
plexity when reasoning about various part types, but also provides an intuitive way
of representing classification uncertainties. In fact, in the proposed hybrid CHM
the classification uncertainties are directly represented as probability distribution
p(di|b) over the discrete states of each part.

The following sections are structured as follows. Section 5.4.1 details the pro-
posed hybrid CHM, including the incorporation of multiple feature sources, the
specification of model parts and a discussion of its factorization properties. Finally,
Section 5.4.2, presents a version of Nonparametric Belief Propagation (NBP) for
efficient inference in hybrid CHMs.
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5.4.1 Hybrid Compositional Hierarchical Models
A hybrid CHM G(E ,V) specifies the factorization of a probability distribution p
over a set of variables V = x∪d∪b, where x, d and b are disjoint. Here x denotes
the continuous variables and d the discrete variables. As before a hidden variable
xi ⊆ x defines the spatial configuration of a part on a continuous state space (see
Section 4.2). Novel are the hidden discrete variables di ⊆ d that are defined on
the state space Val(di) = {di,1 . . . , di,Nd

}, where each instance di,n ∈ Val(di)
represents a specific part type. Therefore, each part zi is defined on a hybrid state
space zi = (di,xi). Note that, this means, that a discrete variable di only exists
if a sample in the continuous space is present.

Further, the previous assumptions that the features obtained by the feature de-
tectors described in Section 5.2 are independent is dropped. Hence, the observ-
able variables b = m ∪ r comprise both the marking detections and the road
edge detection. In analogy to the feature representation, each observable vari-
able b = (xb, yb, ϑb, cb) is defined by its location (xb, yb) ∈ R2 , orientation
ϑb ∈ [0; 2π) and an discrete variable tb that denotes the discrete probability distri-
bution over the feature classes (see Section 5.2).

The edges E of the graphical model encode the probabilistic dependencies.
However, before detailing the factorization properties of the hybrid CHM its hy-
brid parts are specified.

5.4.1.1 Hybrid Model Parts

The proposed hybrid CHM comprises feature, patch, lane and road variables, each
defined by a hybrid variable zi = (xi,di). While, as discussed above, the continu-
ous variable xi of each part specifies its spatial configuration, the discrete variable
di comprise different part types which encode additional road properties.

Definition 6 (Hybrid Part). Each part zi = (xi,di) in the hybrid CHM comprises
a discrete variable di, whose values di,j ∈ Val(di) correspond to the different
lane boundary types. Furthermore, the continues variable xi defines the spatial
configuration of the part.

For example, a boundary feature variable zfi = (xfi ,d
f
i ) in the hybrid model is

specified by a continuous variable xfi = (xi, yi, θi) defining its position (xi, yi) ∈
R2 and orientation θi ∈ [0, 2π) in the vehicles coordinate system. Further, dfi is a
discrete variable defining a probability distribution over the five boundary feature
classes continuous narrow lane markings, continuous wide lane markings, dashed
narrow lane markings, dashed wide lane markings and road edge. This hybrid
feature representation is illustrated in Figure 5.5. Further, this figure illustrates
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Figure 5.5: Example of a hybrid feature representation. A feature is specified
by a continuous variable xf1 and a discrete variable df1 which is defined on the
state space Val(df1 ) = {df1,1, d

f
1,2, d

f
1,3, d

f
1,4, d

f
1,5}. The belief of the continuous

states is approximated by a set of samples, shown by green dots. The belief over
the discrete variable encodes the probability of the different feature classes, i.e.,
continuous narrow lane marking, dashed narrow lane marking, continuous wide
lane marking, dashed wide lane marking or road edge.

that a probability distribution over the instances of the discrete variable dfi directly
represents the uncertainty about the class of the feature.

Similarly, the other parts in the hybrid CHM comprise a multidimensional con-
tinuous variable defining their spatial configuration, as specified in Section 4.2
and a discrete variable labeling their boundary types. An overview on the different
types of features, patches, lanes and roads considered in the proposed approach
is given in Figure 5.6. As can be seen, the discrete variables of patches, lanes
and roads encode plausible combinations of lane boundary types. Thus, each of
these types incorporates a priori knowledge into the model. Comparable to the
topological a priori knowledge comprised in the model, this a priori knowledge
allows to restrict the estimated part types to plausible domains and thus to cope
with classification uncertainties arising during low-level feature extraction.

An important assumption underlying the part types shown in Figure 5.6 is that
there exists a correlation between the lane boundary type on multi-lane roads.
Nonetheless, one may find that this correlation is weak, i.e., the left lane bound-
ary type is independent of the right lane boundary type. In this case, each lane
boundary can be represented using separate discrete variables. Another impor-
tant restriction is that the boundary types of lanes and patches are assumed to be
equivalent (see Figure 5.5), i.e., boundary type transitions are not accounted for.
However, in certain scenarios such transitions may provide important information
on the scene. For example, bike-lanes are often on the sidewalk and thus may
be defined by a curbstone on one side and some sort of texture transition on the
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3 Lane Road Types

2 Lane Road Types

Patch/Lane Types

Feature Types

Figure 5.6: Discrete instances of roads, lanes/patches and features. The fea-
ture types continuous narrow, dashed narrow, continuous wide, dashed wide lane
markings and road edge are computed during the feature extraction. The types of
patches, lanes and roads are estimated during inference.

other side. However, in intersections they commonly cross the roads where they
are defined by lane markings. A straight forward extension to the proposed frame-
work would be to introduce lane boundary types which model such transitions to
identify areas where vehicles and cyclists may intersect.

5.4.1.2 Observable Variables

To estimate the continuous and discrete properties of multi-lane roads, it is essen-
tial to evaluate how well the estimated results explain the feature extraction results.
Towards this goal, observation potential φi(zi, b) are formulated assuming a uni-
form prior on all boundary types Val(tb)

d ∼ U({1, . . . , |Val(tb)|}). (5.1)

Further, assuming that the feature class is independent of the spatial feature con-
figuration, the observation potential can be written as

φi(di,xi, bi) ∝
(
λ0N0(xi; 0,Σ0)

+ (1− λ0)

Nf∑
k=1

N (xi;µi,k,Σi,k)
) ∑
f∈Ω(xi)

pdi(f).
(5.2)

Here, Ω(xi) denotes the area around an estimated feature configuration xi. Thus,∑
f∈Ω(xi)

pdi(f) is the probability of observing a specific feature type di in the
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Figure 5.7: Independence structure of a hybrid CHM. (a) Hybrid CHM of a patch.
(b) Factor graph showing the factorization based on the assumption that the types
of neighboring parts have no influence on their spatial dependency. (c) Dropping
this assumption leads to a different factorization that is used in Section 6.2.1.

area Ω(xi), where the corresponding feature detection results f are assumed to
be independent. The reason, for computing the probability of a feature type for
a given area Ω(xi) is that it reduces ambiguities regarding the feature type when
using multiple feature detectors.

5.4.1.3 Factorization

Following the above discussion, the proposed hybrid CHM can be thought of as
having two disjoint layers with the same hierarchical structure. Namely, one layer
containing only discrete variables d and one layer containing only continuous vari-
ables x.

Consider the simplified hybrid CHM of a patch shown in Figure 5.7a, where fea-
tures and a patch are specified as hybrid parts zfi = (dfi ,x

f
i ) and zpi = (dpi ,x

p
i ),

respectively. As before, the patch is defined by a left and a right feature. Further,
the discrete variables of both patches and features may comprise different types, as
shown in Figure 5.6. The actual factorization underlying this model is illustrated
in Figure 5.7b. This factor graph shows the two variables xfi and dfi defining
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Figure 5.8: Formulation of discrete state transitions model. The probabilistic de-
pendencies between neighboring discrete variables di and dj are encoded by dis-
crete state transitions models ηi,j(di,dj). These are specified using conditional
probability tables as shown in the top right.

a feature zfi as well as a patch zpi = (dpi ,x
p
i ). The factors in the model ex-

press two types of probabilistic dependencies. First, factors between neighboring
continuous variables express the spatial constraints ψji(xi,xj) specified in Sec-
tion 4.2. Second, factors between neighboring discrete variables represent discrete
state transitions models ηji(di,dj). An example for such a discrete state transition
model is given in Figure 5.8. This figure shows the hybrid CHM of a two-lane road
zr3 with two types dr3,1 and dr3,2, defining the state space of the discrete variable
Val(dr3) = {dr3,1, dr3,2}. The types of all model parts are illustrated by showing
boxes comprising the discrete states. As can be seen, the feature nodes zfi com-
prises three discrete states. Namely, continuous lane marking, dashed lane marking
and road edge (e.g., curbstone). The patch/lane nodes zp,li comprise four discrete
states which encode plausible constellations of lane boundaries (e.g., road edge
left and dashed lane marking right). The dependencies between the discrete fea-
ture and patch states are encoded by the discrete transition model η1,2(d1,d2), for
which an exemplary Conditional Probability Table (CPT) is shown in Figure 5.8
on the right.

Finally, assuming that discrete variables and the continuous variables are inde-
pendent, the joint probability distribution p(di,xi) over a hybrid part is given by
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Figure 5.9: Probability distribution of a hybrid part. (a) Factor graph of a hybrid
variable zi = (di,xi). (b) Joint probability distribution over a hybrid variable,
where the distribution of the continuous variable xi is Gaussian (grey). Each in-
stances of the discrete variable di specifies a mixture component (green).

p(xi,di) = p(xi)p(di) =
L∑
k=1

π
(k)
i N (xi; s

(k)
i ,Λi)pi(di). (5.3)

This is illustrate in Figure 5.9b, showing a probability distribution over zi =
(xi,di). Here the belief over the continuous variable xi is assumed to be a sin-
gle Gaussian. As can be seen, each instance of the discrete variable di defines an
individual mixture component. The weight of the mixture component is the prob-
ability of that instance. Intuitively, this means that the belief of a part zi encodes
not only the spatial distribution of the part, but also encodes the probability of a
specific type at this location (see Figure 5.5). Note that, in the proposed model the
discrete instances only have an influence on the mixture weights, not on the vari-
ance or the mean of the continuous distributions, as it is often the case in hybrid
Bayesian networks [Kol99, Kol09, Rus10].

Given the above formulation, the joint probability distribution encoded by the
hybrid CHM is given by

p(d,x|b) ∝
∏
i∈ID

φi(di, bi)
∏
i∈IX

φi(xi, bi)∏
(i,j)∈Ex

ψi,j(xi,xj)
∏

(i,j)∈Ed

ηi,j(di,dj),
(5.4)

where ID denotes the indexes of the set of cliques that are contained in d ∪ b and
IX the indexes of the cliques in x ∪ b. Further, Ex and Ed are the sets of edges
between continuous variables and discrete variables, respectively.
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Assuming that all dependencies and the sensory evidence are Gaussian, Equa-
tion 5.4 clarifies that the proposed hybrid CHM induces a joint probability dis-
tribution that has the form of a mixture of Gaussian. The mixture contains one
Gaussian component for each instance of the discrete variables.

The above discussion makes the important simplifying assumptions that the
types of neighboring parts have no influence on their relative spatial configura-
tion. However, this may not always be the case. In fact, Chapter 6 aims to fuse the
set of lane boundary features with lane center cues, such as stopline and turn ar-
rows towards a more holistic lane and road perception. In this case, the orientation
of turn arrows and lane boundaries can be assumed to be the same, i.e., turn ar-
rows and lane boundaries are parallel. Stoplines and lane boundaries, on the other
hand, are orthogonal to each other, forming a u-shape. Hence, the spatial relation
of e.g., patches and lane center cues depends on their discrete type (e.g., stopline
or arrow). This, however, induces a different factorization, where the spatial con-
straints depend on the types of neighboring parts. This is depicted in Figure 5.7c,
showing factors ψi,j(xi,xj ,dj).

Another key benefit of the proposed hybrid CHM is its rich expressive power.
In fact, the number of discrete states can be chosen to be arbitrary large and thus
additional feature types can easily be introduced, such as e.g., guardrails, guiding
post, etc. This convenient property of the proposed hybrid models, is the key
towards introducing the more involved models that allow for the estimation of
lane turn directions and stopline locations in Chapter 6.

5.4.2 Inference in Hybrid Compositional Hierarchical Models
So far, inference was concerned with inferring the topology of lanes and roads us-
ing models containing only continuous variables. This section discusses inference
in hybrid models, those that include both continuous and discrete variables. The
goal during inference is to compute the marginal posterior distribution p(xi,di|b)
or belief bi(xi,di) of the hidden variables zi = (xi,di) in the model. A task that
can efficiently be performed using belief propagation [Wei01, Yed01].

In belief propagation the belief over the individual variables is computed by fus-
ing the incoming messages from its neighbors. In the hybrid model these message
can be computed as

mj,i(zi) =
∑
dj

∫
xj

ψi,j(zi, zj)φi(zi, b)
∏

k∈Υ(j)\i

mk,j(zj)dxj , (5.5)

where the integral and the sum marginalize over the continuous variables xj and
discrete variables dj , respectively.
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The messages required for the belief estimation are approximated using the fac-
torization illustrated in Figure 5.7b which decouples the discrete variables di and
continuous variables xi. This leads to a structured approximation of the inference
problem, where the message in Equation 5.5 is replaced by two separate messages

mx
j,i(xi) =

∫
xj

ψi,j(xi,xj)φj(xj , b)
∏

k∈Υ(j)\i

mx
k,j(xj)dxj (5.6)

and

md
j,i(di) =

∑
dj

ηi,j(di,dj)φj(dj , b)
∏

k∈Υ(j)\i

md
k,j(dj) (5.7)

corresponding to the factor ψi,j(xi,xj) and ηi,j(di,dj), respectively. The result-
ing message passing algorithm is illustrated in Figure 5.10. In this example, the
messages mx

i,j(x
p
j ), predicts the spatial configuration of the patch variable based

on the spatial constraint and the evidence over the continuous feature variables.
Further, the messages md

i,j(d
p
j ) contains the belief estimate over the discrete patch

variable which is computed by multiplying the sensory evidence with the discrete
state transition. This means, that the algorithm maintains independent distributions
over dpj and xpj . Thus, the belief bi(d

p
j ,x

p
j ) is essentially a product of a discrete

distribution bi(d
p
j ) and a continuous distribution bi(x

p
j ).

A convenient property of the above algorithm is that the belief updates for
discrete and continuous variables are computed separately. Hence, an exact be-
lief update can be performed for the discrete variables (see Section 3.4.1) and
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NBP [Sud03, Isa03] can be used to approximate the belief state of the continuous
variables.

5.4.3 Relation to other models
The proposed hybrid CHM of roads is inspired by the rich amount of works us-
ing hybrid probabilistic models. Popular application, of hybrid models are e.g.,
switching linear dynamical system [Isa98b, Bar06, Bar12a] and mobile robot lo-
calization [Avo02]. Further, hybrid particle filtering is applied in [Ver4a, Ver04] to
detect system faults during robot navigation and for applications of object track-
ing [Isa98b, BS04]. However, in contrast to their work, the proposed approach
uses a structural approximation that allows to perform an exact belief update of
the discrete variables and therefore only have to draw samples from the continu-
ous variables.

Other works employ hybrid models and approximate inference for human pose
estimation [Sig08, Fan05, Sud04a], where continuous state variables are aug-
mented with discrete variables in order to handle occlusions. However, the goal in
these approaches is not to estimate a distribution over the discrete variables, but to
allow for the reliable estimation of self occluding object configurations.

More recently, a new class of part-based models using mixtures of parts has
been proposed in the context of human pose estimation [Yan11, Dua12, Zhu12]
which allow the appearance model of the human to change discretely. Similarly,
to the proposed approach mixture of part models are motivated by the assumption
that geometry and appearance of objects are independent. This assumption allows
to reduces model complexity in the case of geometrical appearance diversity. In-
stead, the proposed hybrid models aim to reduce model complexity arising from
variations of semantic part properties (e.g., different lane boundary types).
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6 Hierarchical Approach for
Holistic Lane and Road Perception
at Urban Intersections
Lane and road perception in urban intersections is a challenging problem, due
to the vast amount of scenarios, complex road topologies, occlusion caused by
other vehicles and strongly varying lane an road cues. In recent years much effort
has been devoted to tasks related to this problem, such as the detection of turn
arrows, stoplines and curbstones [Enz13, Oni11, Ned09] in urban environments.
Other approaches focus on recognizing the ego-lane [Dan09] or multiple lanes
around the vehicle [Duc10, Kue12, Hur13], while relying on lane marking cues
[Duc10, Kue12, Hur13] or a combination of lane marking cues and curbstone cues
[Sei13, Dan09].

Even though these approaches show promising results, neither of them provides
the level of scene understanding required for future Advance Driver Assistance
Systems (ADAS) which may aim to perform driving maneuvers, such as automatic
turns at intersections or automatic stopping at stoplines [Hil12, Her12]. The main
bottleneck in the development of these systems is that they required not only the
recognition of complex road topologies (e.g., multiple lanes including splitting
and merging lanes), but also to estimate the locations of stoplines as well as the
turn-direction of lanes (see Figure 6.1). Such a holistic lane and road perception,
however, is beyond the reach for state-of- the-art approaches (see Chapter 2).

This chapter, builds on the hybrid compositional hierarchical model (CHM) in-
troduced in Section 5.4, extending it for incorporating both lane boundary cues as
well as lane center cues (e.g., stoplines and turn arrows). A key benefit of the pro-
posed CHM is that it allows to model both low-level and high-level dependencies.
Low-level dependencies may, for example, encode that turn arrows are located in
the middle of a lane or that lane boundaries and stoplines form a u-shape. High-
level dependencies, on the other hand, encode plausible constellations of stopline
locations or lane turn directions on multi-lane roads. In analogy to Section 4.3.1,
modeling such dependencies allows to decrease the influence of partial occlusions
and clutter which is expected to improve the overall performance of the proposed
approach. While these mechanism mainly rely on spatial dependencies, the pre-
sented framework also provides the possibility to model classification uncertainties
which for example arise during the classification of turn arrows. Intuitively, this
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provides the possibility to introduce constraints which ensure the plausibility of
turn-lane direction of neighboring lanes.

As before inference is performed using Nonparametric Belief Propagation
(NBP) [Sud03, Isa03], part-sharing (Section 4.3.2) and depth-first message pass-
ing (Section 4.3.3). Further, the possibility of using different message passing
schedules to control the order in which low-level cues are incorporated in the per-
ception process is discussed. Even though, in exact belief propagation the order
of message passing does not matter, in the context of NBP it allows to control
the way samples are distributed during inference and therefore to influence both
performance and computational complexity of the proposed approach.

The following sections are structured as follows: Section 6.1 summarizes prop-
erties of intersection roads and specifies the set of features used in the experiments,
Section 6.2 presents the proposed CHM for multi-lane intersection roads and Sec-
tion 6.3 discusses different message passing schedules for multi-cue fusion.

6.1 Semantic and Cues of Intersection Roads
Even for human drivers lanes and roads at intersections are particularly complex,
due to their complex topology (see Definition 5) and the various cues encoding
their semantics. An example for an intersection road is given in Figure 6.1. This
figure shows different lane boundary cues (e.g., lane markings and curbstones) and
lane center cues, such as stoplines and turn arrows. Particularly stoplines and turn
arrows encode important semantic road properties. More precisely, turn arrows
specify the turn direction of the individual lanes which are important for any local
navigation tasks, such as driving into a desired direction. Further, stoplines indi-
cate the location where a vehicle must stop in case of a red traffic light or a stop
sign.

In order to capture all these properties, a combination of different feature de-
tection approaches is applied to the input images. Then, the extracted features are
transformed to the vehicle coordinate system using the camera parameters. First,
lane boundary features b = {b1, . . . , bNb

} are extracted using the lane marking
detector and the road edge detector described in Section 5.2.

Furthermore, a set of Ns stoplines s = {s1, . . . , sNs
} is detected using a mod-

ified version of the lane marking detector. Turn arrows a = {a1, . . . ,aNa} are
detected in two stage as proposed in [Ned09]. First, the lane marking detector and a
geometrical arrow model are used to detect turn arrow candidates. Second, the turn
arrow type is classified using a decision tree, which was automatically learned us-
ing Weka [Hal09]. After obtaining both arrows and stopline, they are combined to
a set of lane center features c = a∪ s. A single center feature c = (xc, yc, ϑc, tc)
is defined by its position (xc, yc) ∈ R2, orientation ϑc ∈ [0, 2π) and a discrete
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(a)

(b) (c)

Figure 6.1: Low-level cues used to support lane and road perception at urban inter-
sections. (a) Lane marking features (cyan, green), stoplines (blue) and turn arrows
(blue). (b) Road edge features (red). (c) Projection into the vehicle coordinate
system showing the classified turn arrows.

variable tc that denotes the discrete probability distribution over the center feature
types forward, left, right, forward-left, forward-right and stop.

Sample results of applying all four feature extraction approaches to a single
input image are shown in Figure 6.1.

6.2 Hybrid Models for Intersection Roads

The model used for lane and road perception at intersections is defined as a set
of hybrid CHMs G = {G1, . . . ,Gi} which are specified by tree-structured graphs
Gi = (V, E) (see Section 5.3.2). Each graph Gi defines the factorization of a
joint probability distribution whose variables are associated to the nodes Vi of the
graphical model. As before the nodes V = z ∪ b ∪ c are disjoint sets of hidden
random variables z, observable variables b and observable variables c.

The hidden variables z = {z1, . . . zNz} represent multi-lane intersection roads
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and their subparts. Each variable zi = (xi,d
b
i ,d

c
i ) is defined on a hybrid state

space. Here, the continuous variable xi defines the spatial configuration of a part
(see Section 4.2) and dbi is a discrete variable specifying the boundary types of
each part (see Section 5.4.1). The additional discrete variable dci represents the
discrete probability distribution over the different center types. For example, lanes
may comprise the types forward, left, right, forward-left, forward-right as well as
five more types combining the turn direction with a stopline label. The observable
variables in the model b = {b1, . . . bNb

} and c = {c1, . . . cNc
} correspond to the

detected lane boundary features and the detected lane center features, respectively.
In analogy to Section 5.4.1.3, edges between hidden variables zi and zj encode ei-
ther spatial constraints ψi,j or discrete transitions models ηi,j . Furthermore, edges
between observable and hidden variables encode observation potentials φi, as de-
fined in Equation 5.2.

Assuming that the boundary feature observation and the center feature obser-
vations are independent given x and d, the joint probability distribution over all
variables in the model can be written as follows

p(d,x|b, c) ∝
∏
i∈Ib

φbi (zi, bi)
∏
i∈Ic

φci (zi, ci)∏
(i,j)∈E

db

ηbi,j(d
b
i ,d

b
i )

∏
(i,j)∈Edc

ηci,j(d
c
i ,d

c
i )∏

(i,j)∈E
xb

ψbi,j(xi,xj)
∏

(i,j)∈Exc

ψci,j(xi,xj ,d
c
j).

(6.1)

Here, φbi (zi, bi) and φci (zi, ci) are the observation potentials (see Equation 5.2).
As in Section 5.4.1, ψbi,j(xi,xi) denotes spatial constraints and ηbi,j(d

b
i ,d

b
i ) are

boundary transition models. Further, Ib denotes the indexes of the set of cliques
that are contained in z∪b and Ic the indexes of the cliques in z∪c. Novel are the
spatial constraints ψci,j(xi,xj ,d

c
j) which depend on discrete variables dcj as well

as the transition models ηci,j(d
c
i ,d

c
i ) for the center types.

An illustration of this factorization is shown in Figure 6.2, where a two-lane
road with stoplines and turn arrows is decomposed into its basic observable parts.

6.2.1 Features and Patches
In analogy with the previous chapters the observable variables b and c comprise
the leaves of the graphical model. Each observable node bi ⊆ b or ci ⊆ c has an
associated hidden feature variable on the first level L1 of the model. In correspon-
dence to the two kinds of observable variables the model comprises two kinds of
hidden feature variables, namely boundary feature variables zfbi and center feature
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Figure 6.2: CHM of an intersection road. The root node represents a two lane road
with stoplines and turn arrows. The hierarchical graph describes the recursive
decomposition of this road into basic observable parts on L1. The most likely
center type of the different parts is shown by symbols in the nodes. The additional
center feature observations are highlighted in blue.

variables zfbi .
For both feature variables zfi = (xfi ,d

f
i ), the continuous variables xfi =

(xf , yf , ϑf ) defines the position (xf , yf ) ∈ R2 and the orientation ϑf ∈ [0, 2π)
of a feature. The discrete variables of the two feature variables comprise different
instances. Thus, the discrete variable of a boundary feature dfbi denotes the prob-
ability distribution over boundary feature types ’continuous narrow mark’, ’con-
tinuous wide mark’, ’dashed narrow mark’, ’dashed wide mark’ and ’road edge’,
as described in Section 5.4.1. The discrete variable of a center feature dfci , on the
other hand, denotes the probability distribution over the center feature types ’for-
ward’, ’left’, ’right’, ’forward-left’, ’forward-right’ and ’stop’ (see Section 6.1).

As in the previous chapter, both feature sources the location of a feature and
its type are assumed to be independent. This allows to encode the dependencies
between the observations and the hidden feature variables using observation po-
tentials φbi (z

fb
i , b) and φci (z

fc
i , c), as defined in Equation 5.2. Here, φbi (z

fb
i , b)

denotes the likelihood of observing a boundary feature given zfbi and φci (z
fc
i , c)

the likelihood of observing a center feature given the estimated state of zfci .
The observable variables and the hidden feature variables constitute the first

levels of the hierarchical model as depicted Figure 6.3 which shows a subset of
the graphical model. This figure also shows the proposed factorization of a patch
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Figure 6.3: Hybrid CHM of a patch with different center types. A patch zp4 is
composed of two boundary features zfb1 and zfb2 and a center feature zfc3 . The
leaves of the model comprise the boundary observations b1 and b2 as well as center
observations c3. The edges of the model encode spatial constraints ψi,j , discrete
transition models ηi,j and observation potentials φi.

with center type. As before patches on L3 represent local driveable areas and
have different boundary types (see Section 5.4.1.1). Furthermore, the shown patch
comprises a center feature zfc3 . Generally, the boundary type of a patch and its
center type are assumed to be independent.

Definition 7 (Center Patch). A center patch is defined as zp = {xp,dpb ,dpc},
where xp specifies its spatial configuration and dpb encodes the different patch
boundary types, as in Definition 6. Additionally, dpc denotes the probability dis-
tribution over the patch center types. These center types are equivalent to the
feature center types dfc .

As detailed in Section 5.4.1.3, the spatial dependencies between boundary fea-
tures and patches are assumed to be independent of their type. Hence, their depen-
dencies can be encoded using spatial constraints ψbi,j(x

fb
j ,x

p
i ) (see Section 4.2.1)

and discrete state transitions ηbi,j(d
fb
j ,d

pb
i ) (see Section 5.4.1.3). The dependen-

cies between center features and patches are more complex, since their spatial rela-
tion depends on their type. Therefore, these relations are defined by unnormalized
spatial constraints ψci,j(x

fc
i ,x

p
j ,d

pc
j ) as

ψci,j(x
fc
i ,x

p
j ,d

pc
j ) =

{
N (xpj ;x

fc
i + ri,j ,Σ

s
i,j) ifdpcj =dsi (stopline)

N (xpj ;x
fc
i ,Σ

a
i,j) otherwise (arrow)

(6.2)
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Figure 6.4: Spatial constraints between different features and patches. (a) Spatial
dependencies ψbi,j between boundary feature and patches (see Section 4.2.1). (b)
and (c) show a spatial constraint ψci,j between a patch and a center feature that de-
pends on the center type. (b) For a stopline ψci,j models a large spatial uncertainty
orthogonal to the stopline direction. (c) For an arrow ψci,j models a spherical un-
certainty. Spatial uncertainties are illustrated by showing Gaussian distributions,
where dark colors correspond to more likely locations.

where

ri,j =


−sin(ϑfcj ) 0 0 0 0

0 −cos(ϑfcj ) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



νlp
νlp

0
0
0

 (6.3)

is the relative configuration vector between the stopline feature and the patch cen-
ter. Note that, the orientation of the center feature ϑfcj ∈ [0, 2π) is parallel to
the patch orientation and the length νlp ∈ R+ is the constant patch length intro-
duced in Section 4.2.1. The covariance matrices Σs

i,j ∈ R4×4 and Σa
i,j ∈ R4×4

encode different spatial uncertainties depending on the patch center type. This is
illustrated in Figure 6.4, by showing the spatial constrains ψ1,4 and ψ2,4 encoding
the spatial dependencies between boundary features zfb1 and zfb2 and the patch zp4.
Further, this figure shows that depending on the type of dpc5 the spatial constraint
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patch lane road

Figure 6.5: Sample patch center types, lane center types and road center types.
On each lane level the model comprises a set of center types which constrain the
output of the proposed approach to plausible center type sequences. Road center
types define plausible constellations of lane turn directions of neighboring lanes.

ψc3,5 encodes different relative configurations and spatial uncertainties.
In addition, the dependencies between the boundary types of features and

patches as well as the dependencies between center feature types and patch cen-
ter types have to be modeled . Assuming independence between boundary types
and center types, these dependencies are encoded using the transition model
ηbi,j(d

b
i ,d

b
j) and ηci,j(d

c
i ,d

c
j) for the boundary types and the center types, respec-

tively.

6.2.2 Lanes at Intersections
Building on the lane representation defined in Definition 6, it is augmented by a
discrete variable dlc which defines plausible sequences of lane center types, as
depicted in Figure 6.5. As the different road topologies in Section 5.3.2, these se-
quences are defined according to official roadway construction guidelines [ras95].
Thus, lane center types express the prior expectation on arrows and stopline con-
stellations and are expected to improve the robustness of the proposed approach.
Furthermore, the location of arrows and stoplines along the lane centerline is spec-
ified by a of Nc variables klcn ∈ R+, n ∈ Nc.

Definition 8 (Intersection Lane). An intersection lane zl is defined as zl =
{xl,dlb ,dlc ,klc}. As in Definition 6, xl defines the lane geometry and dlb spec-
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ifies the lane boundary types. Further, dlc defines different lane center types and
klc = (klc1 , . . . , k

lc
Nc

) specifies the location of the Nc center features, where each
klcn ∈ R+, n ∈ Nc is a coordinate along the lane centerline.

The spatial constrains between patches and lanes are assumed to be independent
of the boundary types and are therefore defined as

ψi,j(x
p
i ,x

l
j ,d

pc
j ) = N (xlj ;Si,j(x

p
i ), Fi,j(d

pc
j )) (6.4)

with

Si,j(x
p
i ) =


xi
yi
ϑi
wi
klc

+


cos(ϑi) 0 0 0 0

0 sin(ϑi) 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



νlp
νlp
0
0
0

 . (6.5)

Here Fi,j(d
pc
j ) returns the covariance matrix of the spatial relation depending on

the assignment of dpcj . These covariance matrices only differ in their entries for
the variances δklc which allows to constrain the coordinate of stoplines and arrows
to the desired location. For example, if a patch is not a stop-patch the variance
δkls is large, since the patch does not provide any knowledge on the location of the
stopline. On the other hand, if a patch is likely to be a stop-patch, a small value for
δks is selected.

The spatial constraints between adjacent lane variables are defined as

ψci,j(x
l
i,x

l
j ,d

lc
j ) = N (xlj ;Si,j(x

l
i), Fi,j(d

lc
j )), (6.6)

where Si,j(xli) has a similar form as in Equation 6.5. However, they predict the
value of kls based on the constant patch length νlp . Further, Fi,j(dlcj ) returns the
covariance matrix of the spatial relation. This function is dependent on the lane
center type dlcj . The lane center type comprises the estimate of the lane center type
and thus the probability that the next lane segment comprises a stopline, an arrow
or no center type. In the spatial constraint these information are used to define
values for the variances δklc and the configuration uncertainties of the next lane
segment. The latter of which follows the definition given in Equation 6.2.

Let us now consider the formulation of the required transition models for the
boundary types. Generally, the boundary types of neighboring variables are as-
sumed to be independent of their center type and their spatial configuration. Thus,
the boundary type transitions models introduced in Section 5.4.1 are used.

Finally, the transition model ηci,j(d
pc
i ,d

lc
j ) and ηci,j(d

lc
i ,d

lc
j ) have to be speci-

fied, where these are assumed to be independent of the spatial configuration and
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the boundary type of their associated parts. The transition model ηci,j(d
lc
i ,d

lc
j )

between neighboring lane center types dlci and dlcj models the dependency be-
tween the lane center sequences of different length and are specified as discrete
conditional probabilities. Similarly, the transition models ηci,j(d

pc
i ,d

lc
j ) between

patches and lanes specify their conditional dependency.

6.2.3 Roads at Intersections
Similar to the lane variables, each road variable is augmented with a hidden
discrete variable drci which encodes plausible constellations of lane turn direc-
tions, as shown in Figure 6.5. Further, roads comprise a set of Nc variables
krsn ∈ R+, n ∈ Nc which specify the locations of the center features along the
road centerline. The origin of these coordinate is the first segment of the road
centerline.

Definition 9 (Intersection Road). An intersection road zr = {xr,drb ,drc ,krc} is
defined by its topology xr and its boundary types drb , as in Definition 6. Further,
drc defines different road center types and krc = (krc1 , . . . , k

rc
Nc

) specifies the
location of the Nc center features along the road centerline.

The dependencies between lanes and roads are encoded using boundary type
transition models as in Section 5.4.1, center type transition models ηci,j(d

lc
i ,d

rc
j )

and spatial constraints ψi,j(xli,x
r
i ,d

rc
j ) which encode the spatial relation between

lanes and roads. These spatial constraints are based on the definition given in
Equation 4.7. However, they are extended to include the additional one dimen-
sional center feature variables. Therefore, the spatial constraints between a road
and its i-th lane is defined as

ψi,j(x
l
i,k

lc
i ,x

r
j ,k

rc
j ) = ψi,j(x

s
i ,x

s
j)ψi,j(wi, wj,i)ψi,j(k

lc
i ,k

rc
j ), (6.7)

where ψi,j(xsi ,x
s
j) and ψi,j(wi, wj,i) are defined according to Equation 4.8 and

Equation 4.9, respectively. Furthermore,

ψi,j(k
lc
i ,k

rc
j ) =

Nc∑
l=1

N (klci,l; k
rc
j,l, δi,l), (6.8)

encodes the spatial dependency of the center features of lanes and roads. Here, δi,l
models the spatial uncertainty regarding the location of the center features.

Furthermore, the proposed model comprises center type transitions
ηci,j(d

lc
i ,d

rc
j ) that encode the dependency between the lane and road center

types by means of conditional probabilities. Let us now take a closer look at these
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road center types. At the first glance the road center types seem very complex. In
fact, one could also encode road types which simply define the turn direction of
each lane. This would simplify both the road variables and the specification of
the transition model ηci,j(d

lc
i ,d

rc
j ). However, this simplified road model does not

contain any knowledge on the relative location of arrows along the lanes of a road.
The proposed model, on the other hand, explicitly models plausible locations and
types of arrows on neighboring lanes, e.g., arrows are parallel. This brings along
two main benefits. First, by constraining arrows to specific locations, the influence
of clutter or false positives on the overall result is limited. Second, it allows to
identify missing evidence and thus to initiate a top down search for, e.g., missing
arrow features, as detailed in Section 6.3.2.

A CHM for a single intersection road is shown in Figure 6.2, where the spa-
tial constraint ψi,j(xli,k

lc
i ,x

r
j ,k

rc
j ) encodes the dependencies between lanes and

roads, including assumptions on the relative location of arrows and stoplines. Not
explicitely shown are, the correlation functions ηci,j(d

lc
i ,d

rc
i ) and ηbi,j(d

lb
i ,d

rb
i )

encoding the dependencies between road types and lane types which ensure the
plausibility of lane turn direction constellations on the road level.

6.3 Inference of the Road Topology and Semantic
This section, introduces a novel inference algorithm for lane and road perception
for urban intersection roads. Towards this goal, the inference algorithm presented
in Section 5.4.2 is extend to incorporate the center types on the different levels of
the proposed hierarchical model.

6.3.1 Message Passing
The goal of inference is to estimate the most likely instance of the hybrid CHM.
This task is solved using a version of NBP [Isa03, Sud04b] with nearest neighbor
product sampling [Spe13] for the continuous valued message products and Belief
Propagation (BP) [Wei01, Yed01] for the message products only involving discrete
variables. In this case the message update equations for the continuous part is

mx
j,i(xi) =

∑
dc
j

∫
xj

ψci,j(xi,xj ,d
c
j)

∏
k∈Υ(j)\i

mx
kj(xj)dxj . (6.9)

For the discrete part, the boundary messages

mc
j,i(d

c
i ) =

∑
dc
j

ηci,j(d
c
i ,d

c
j)

∏
k∈Υ(j)\i

mc
kj(d

c
j) (6.10)



96 6. HIERARCHICAL APPROACH FOR HOLISTIC LANE AND ROAD
PERCEPTION AT URBAN INTERSECTIONS

xpi

dpci

dpbi

xfcj xfcj

dpci dpci

xfcj xpi

ci

dpcidfcj
mc

j,i

mx
j,i

dfcj

xfcj 3.
R

ed
uc

tio
n1. Computing the

center-patch type
2. Computing the
center-patch configu-
ration

Figure 6.6: Messages passing algorithm for approximate inference in the proposed
hybrid CHM. At first, the discrete patch type dpci is computed. Then, the center-
patch configuration xpi is computed. Finally, the mixture components contained in
the nonparametric belief estimate of xpi are reduced, for computational efficiency.
Not shown are the messages from the boundary features which are required to
update the boundary variable dpbi and the patch configuration xpi .

as well as the center messages

mb
j,i(d

b
i ) =

∑
db
j

ηbi,j(d
b
i ,d

b
j)

∏
k∈Υ(j)\i

mb
k,j(d

b
j) (6.11)

have to be computed, where Equation 6.10 and 6.11 are defined as in Section 5.4.2.
The main difference to the previous discussion is that the message update for the
continuous variables in Equation 6.9 requires to marginalize over dcj . In this case,
each instance of dcj produces a different mixture component as defined in Equa-
tion 6.2. During message passing this leads to the problem that the messages
contain an enormous amount of mixture components. In order to keep inference
traceable, some kind of approximation has to be found.

Towards this goal, an approach that is inspired by the Interacting Multiple Model
(IMM) algorithm [Kol09] is used, as depicted in Figure 6.6. This figure shows that
the belief over the patch variables is computed in several steps. First, the belief
over the patch center types bi(d

pc
i ) is computed. Subsequently, bi(x

p
i ) is com-

puted, where each instance of dpci produces a different mixture component, as
defined in Equation 6.9. The final and most important part of the proposed infer-
ence algorithm is to reduce the mixture to a smaller mixture with K components.
Towards this goal, the K components are retained with the largest mixture weight.
This approach is particularly suitable for the proposed approach, since the mixture
weight of each component represents both, its spatial plausibility and the proba-
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bility of the discrete instance that produced it (see Equation 5.3).
Due to illustrative simplicity Figure 6.6 does not show, messages mx

k,i and mx
n,i

which are send from the two boundary feature variables and predict the location of
the patch (see Figure 6.3). Further, messages mb

k,i and mb
n,i predicting the patch

boundary type are not depicted.
The above expositions mainly focus on the task of computing patches. This

example was chosen, since it clarifies how inference is performed if the spatial
relations depend an the instances of the center type variable (see Equation 6.2).
Computing lanes and roads requires the application of the same inference algo-
rithm, whereas the message passing schedule follows the depth first message pass-
ing algorithm presented in Section 4.3.3.

6.3.2 Message Passing Schedule in Multi-Cue Models
Message passing in the proposed framework is based on the depth-first message
passing algorithm, detailed in Section 4.3.3. This message passing algorithm re-
quires to specify a fixed message passing schedule, to guaranty non-degenerative
message products. The hybrid model, provides various possibilities to specify this
message passing schedule. In the following, some of these possibilities are dis-
cussed alongside their expected influence on the overall recognition results.

Multi-Cue Patch Recognition: Let us first consider the task of recognizing a
patch with center type, using the CHM depicted in Figure 6.3. In this CHM, mes-
sage passing can be performed in the two principal ways depicted in Figure 6.7.
First, as shown in Figure 6.7a, message passing can be initiated by propagating
messages from the boundary feature nodes zfb1 and zfb2 to the patch node zp4. Sub-
sequently, an expectation-based search for low-level evidence can be performed
by propagating messages back and forth to node zfc3 . This latter step is required,
since it can not assume that there was already a message send from zfc3 to zp4 (see
Section 4.3.3). Finally, by fusing all incoming messages at node zp4, its bottom up
belief state can be computed according to Equation 4.11.

Second, as shown in Figure 6.7b, message passing can be initiated by predicting
a patch hypothesis zp4 based on the local belief state of node zfc3 and subsequently
fuse it with the evidence at zfb1 and zfb2 .

Both of the above message passing schedules have individual strength. The
message passing schedule depicted in Figure 6.7a is particularly suitable if the
observations c contain many false positives, since samples for product approxima-
tion are selected based on the predicted patch configuration. Hence, features at zfc3

which are not similar to a patch sample at zp4 do not have to be processed and do
not influence the recognition results (see Section 4.3.3).
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Figure 6.7: Different message passing schedules for multi-cue lane perception. (a)
Recognition of a center feature zfc3 based on patch hypothesis zp4. (b) Recognition
of a patch hypothesis based on an observed center feature zfc3 . (c) An observed
stopline at zfc8 can be used to initialize the recognition of an arrow at zfc3 , using
the structure of the proposed model.

On the other hand, the message passing schedule shown in Figure 6.7b, is ex-
pected to be suitable if the results obtained by the center feature detector comprise
less false positives than the results of the boundary feature detector. In this case, it
is computational unattractive to perform message passing as shown in Figure 6.7a,
since for the many patch hypotheses, the bottom up/top down sweep has to be
performed. Another advantage of the message passing schedule in Figure 6.7b is
that it allows to generate patch hypotheses even if no lane boundary features are
detected and thus may allow for recognizing lanes even in scenarios, where only
arrows and stoplines are present.

Multi-Cue Lane and Road Recognition: Another key motivation for the pro-
posed CHM, is that it allows to use the dependencies between arrows and stoplines
to improve the performance of arrow and stopline recognition. This is shown in
Figure 6.7c, where the arrow may not have been detected during the bottom up
sweep. However, if a stopline is recognized during feature extraction (see Sec-
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tion 6.1), a search for the potentially missing arrow can be initialized using the
lane center types (see Figure 6.5).

Further, Section 6.2.3 explains how roads are used to encode plausible constel-
lations of lane turn directions. During message passing this allows to more pre-
cisely predict the turn directions of neighboring lanes. Similarly to Section 4.3.3,
messages send from the road node to the lane nodes are used to propose lanes,
including their spatial configuration, stopline positions and lane turn directions.
Subsequently, either the propose lane hypotheses can be evaluated, as detailed in
Section 4.3.3 or used to initialize a search for low-level feature, supporting e.g.,
stopline locations or turn arrow types.
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7 Experimental Evaluation
This chapter presents a set of quantitative and qualitative results of applying the
proposed framework to challenging real world scenarios. These experiments aim
to demonstrate that the approach presented in this thesis:

• can robustly infer complex road topologies (e.g., splitting and merging
lanes) from low-level observations in real-time.

• can simultaneously infer a richer amount of topological and semantic road
properties.

• allows to benefit from topological and semantic a priori knowledge.

• can incorporate different vision approaches and thus be applied to a wide
domain, i.e., highways, rural roads and urban intersections.

• allows to improve detection results by introducing sensor specific inference
schedules.

7.1 Experimental Setup and Dataset
The dataset used for the experiments performed in this thesis comprises 47 se-
quences with a duration of 20 to 40 seconds, featuring multi-lane highways, high-
way ramps, rural roads, two-lane intersection roads and three-lane intersection
roads. Each sequence captures a realistic moment of driving, where most of the
data were captured during low traffic density, i.e., the road is often completely
visible. Figure 7.1 depicts a selection of sequences of the dataset, showing the
variability of road topology and appearance.

Further the dataset comprises images with a resolution of 1024 × 512 pixel
and a field of view of about 45◦. Additionally, the dataset comprises 3D LIDAR
scans, high-accuracy (<10 cm) DGPS measurements and IMU accelerations and
velocities from a combined DGPS and IMU system.

Since manual labeling of the dataset is impractical, a novel automatic labeling
approach is used. The fundamental idea of this approach is to assign the results
to one of the four categories in the confusion matrix (i.e., false positive (FP), false
negative (FN), true positive (TP) and true negative (TN)) by aligning the detection
results to a geo-referenced ground truth database [Kna10b, Hom11]. This ground
truth comprises detailed information on roads, such as number, location and extend
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Figure 7.1: Sample images from the evaluation dataset. This figure shows 9 im-
ages out of the 47 sequences used to evaluate the proposed method. Shown are
frames of highways, rural roads and urban roads which differ significantly in topo-
logical complexity and appearance.

of lanes, the locations of stoplines, and the turn directions of lanes (see Figure 7.2).
The overall spatial accuracy of the database is approximately 10 cm. During the
labeling, for each input image, the ground truth data is transformed in the vehicle
coordinate system using the DGPS+IMU data comprised in the dataset. Then, the
labeling results are obtained by aligning ground truth and detection results. More
details on this alignment process and how errors in both DGPS locations and the
ground truth database are considered in the evaluation are presented in Section 7.2.

During the experiments, the lane marking detector and the road edge detector
are considered, as presented in Section 5.2. Further, the stopline and turn arrow
detectors are employed, as presented in Section 6.1. All detection results are pro-
jected in the vehicle coordinate system, assuming a planar ground plane.

Even though the dataset was captured at low traffic density, it may comprise
other vehicles occluding the field of view. This leads to the issue that parts of the
lane and road cues are occluded. The ground truth, however, is not affected by such
occlusion. Thus, the ground truth and the detection results are not comparable. In
order to cope with this issue, the 3D LIDAR data of the dataset is used to compute
the actual field of view which is called dynamic detection range. Subsequently,
both feature extraction results and ground truth data are restricted to this dynamic
detection range.

All experiments presented in the following sections are performed on a Win-
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dows(TM) laptop with Intel(R) Core(TM) i5-3427U CPU with 1.80 GHz and
8.00 GB computer memory. All algorithms are implemented in C++ and executed
in the Automotive Data and Time-Triggered Framework (ADTF) [Gmb13]. For
all experiments on the execution time, the profiling tool of ADTF is used.

7.2 Evaluation Metric and Data Annotation
For analyzing the results of lane detection approaches multiple evaluation metrics
have been proposed. In general, existing evaluation metrics can be categorized into
two different approaches: metrics that directly operate in the perspective image
domain [Alv08, Wu11, Shi12, Guo12a] and metrics that are applied in the vehicle
coordinate system. The following sections focus on the latter approach, since the
results of the proposed approach are obtained in the vehicle coordinate system, as
required by most vehicle control applications.

Corresponding to the large number of works in the field of lane detection a large
number of metrics for evaluating their results have been proposed. For examples,
to quantify the results of lane boundary detection, traditionally the spatial devia-
tion between detected lane-boundaries and ground truth lane boundaries is evalu-
ated [Ser08, Zha12, Hur13]. Further, in [Zha12, Gop12, Guo12b, Lin11] a flexible
margin is applied during the matching of detections and ground truth which allows
to compute true positive rates and false positive rates. Another important measure
for ADAS is the occupied lane length which is evaluated in [Gum11]. Addition-
ally, evaluation measures that focus on the width of the driving corridor have been
used in [Kuh11, Kue12]. Finally, in [Fri13] the authors propose two evaluation
measures for the vehicle coordinate system. First, a pixel-based evaluation for ap-
plications requiring a very detailed lane shape detection. Second, a behavior-based
evaluation metric that generates different driving corridor hypotheses based on a
single track model. The confidence of each hypothesis is evaluated by aligning it
to the detection results which allows for a task dependent abstraction of the orig-
inal data inputs. Finally, the corridor hypothesis with the highest confidence is
compared to the ground truth.

All the above evaluation metrics have their advantages. However, each of them
only covers a subset of the results obtained by the proposed holistic lane and road
perception approach. More precisely, the above approaches mainly focus on eval-
uating the results of lane and road topology detection. During the evaluation, how-
ever, the performance of stopline recognition and lane turn direction estimation
has to be quantified. Further, and most important, the influence of the contextual
knowledge that each level of the Compositional Hierarchical Model (CHM) intro-
duces in the perception process has to be quantified, as it is the key benefit of the
proposed approach. In order to evaluate all these aspects, the evaluation is per-
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formed using an overlap-based evaluation metric on the patch level, as detailed in
the next section.

7.2.1 Evaluation Metric
The fundamental task of the overlap-based evaluation metric is to fit the results of
the proposed approach to the ground truth and to judge if a detection is a positive
example or negative example, i.e., the evaluation is treated as a binary classification
problem. During the experiments, this labeling is performed on the patch-level,
since it is particularly suitable to evaluate the influence of contextual information
provided by the lane and road levels on the overall recognition performance. Ad-
ditionally, labeling on the patch-level allows to evaluate not only the results of
lane and road detection, but also to quantify the results of stopline and lane turn
direction recognition.

One of the key advantages of the outlined labeling method is that given a ground
truth database it allows to perform the evaluation without exhaustive labeling of
individual input images.

To perform the labeling, it is necessary to transform the ground truth data from
the Universal Transverse Mercator (UTM) coordinate systems [KAW13] to the co-
ordinate frame of the ego-vehicles. This transformation is based on the estimated
GPS location of the ego-vehicle and hence can not be performed without errors. In
addition, it has to be assumed that the ground truth has small inaccuracies. There-
fore, the labeling allows for small variations during the association of ground truth
data and detection results. More precisely, during the association, each detected
patch sample is convolved with a multivariate Gaussian distribution which models
inaccuracies in the xy-plane as well as orientation and width errors. Subsequently,
positive or negative labels are assigned to the detection depending on if a ground
truth element is found in the 1σ-range of the patch or not. During the experiments,
the parameters of the covariance matrix are fixed to δx = δy =0.3 m for the xy-
variance, to δθ =0.1 rad for the angular variance and to δw =0.2 m for the variance
of the width.

Given the labeling results, the weight of each patch sample or hypothesis can
be used to assign it to one of the following four categories: True Positives (TP)
are examples correctly labeled as positives, False Positives (FP) refer to nega-
tive examples incorrectly labeled as positives, True Negatives (TN) correspond to
negatives correctly labeled as negatives and False Negatives (FN) refer to positive
examples incorrectly labeled as negatives. This allows to quantify the performance
of the proposed approach using precision and recall. These two metrics are defined
as

Precision =
TP

TP + FP
(7.1)
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(a) (b) (c)

Figure 7.2: Evaluation framework. (a) Ground truth road network database
[Kna10b, Hom11]. (b) Nonparametric approximation of the joint probability dis-
tribution over all patch variables. The importance weights of patch-hypotheses are
depicted, showing different colors on the temperature scale, where low weights
correspond to dark red and high weights to white. (c) Labeling results, show-
ing positively labeled patch samples (green) and negatively labeled patch samples
(black).

Recall =
TP

TP + FN
(7.2)

where the recall measures the fraction of positive examples that are correctly la-
beled and precision measures the fraction of positive examples which are truly
positive. Finally, the weight of the hypothesis is used as a confidence measure to
draw Precision-Recall (PR) curves [Sok06, Gou05]. In the PR space, the Recall is
plotted on the x-axis and the precision on the y-axis.

Sample results of the proposed labeling process are depicted in Figure 7.2. It
can be seen that the ground truth data comprises detailed topological information
on lanes, roads and stopline locations. Information on lane turn directions are im-
plicitly encoded by the structure of the road network. Further, detection results on
the patch level are depicted in Figure 7.2, showing the nonparametric estimation of
the marginal posterior distribution over all patch nodes which equals the product of
all belief states over the patch variables in the proposed CHM. The unnormalized
weights of the patch hypothesis are illustrated by showing colors on the temper-
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ature scale, where black corresponds to low weights and white to high weights.
The labeling results are depicted by showing green patches and black patches for
positive labels and negative labels, respectively.

7.3 Road Detection Performance
This section presents the evaluation of the lane and road perception performance
of the proposed hierarchical framework in road scenes with varying topology. To-
wards this goal, the proposed framework is applied to the database, where in par-
ticular the performance of lane and road topology estimation on highways, rural
roads and urban roads is evaluated.

The following section are structured as follows: Section 7.3.1 specifies the em-
ployed CHM, the used inference algorithm and model assumptions, Section 7.3.2
evaluates the overall performance of applying the proposed framework to the
database, Section 7.3.3 evaluates the benefits of depth-first message passing over
standard message passing (breadth-first), Section 7.3.4 evaluates the benefit of us-
ing multiple low-level detectors and Section 7.3.5 investigates different message
passing schedules for road detection.

7.3.1 Model Specification
During the experiments, a model is used that is composed of a set of hybrid CHMs
(see Section 5.3.2). Each of these CHMs corresponds to one of the following road
types: (1) two-lane rural road, (2) two-lane highway road, (3) three-lane highway
road, (4) two-lane urban roads and (5) three-lane urban roads. For each of these
scenarios a parallel lane configuration on the road-level is assumed. However,
lanes are not restricted to be parallel. The spatial constraints are generally defined
as proposed in Section 4.2. While the lane width is estimated during inference, the
initial parameter νwp of the spatial constraint in Equation 4.3 are specified to 3.5 m,
4.0 m and 3.2 m for rural roads, highway and urban roads, respectively. The patch
length which defines the segmentation of the lane centerline is fixed to νlp =1 m
(see Section 4.2.2).

We assign a weighted sample to each detected low-level feature using the obser-
vation potential presented in Section 4.1.2. Subsequently, the belief over the patch
nodes is computed using belief sharing as detailed in Section 4.3.2. Lane detec-
tion is performed using depth-first message passing with 25 individual sweeps (see
Section 4.3.3). Consequently, the belief of each lane node is approximated by a
maximum number of 25 weighted samples. During message passing, the lane hy-
potheses are allowed to grow recursively and therefore the model is not fixed to
a specific length. However, a lane hypothesis is terminated if for six consecutive
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lane elements no local evidence is present. Furthermore, lane hypotheses are re-
stricted to a maximal length of 80 m on highways and on rural roads. In urban
environments the maximum lane length is fixed to 40 m.

After computing the lane hypotheses, they are shared between different road-
types, as proposed in Section 5.3.2. In the following, the weight of the road hy-
pothesis is computed as proposed in Section 4.3.3, where on each level the ac-
ceptance rate is used to decide if an additional top down step is necessary or not.
Since the number of plausible road hypotheses is expected to be relatively small,
the belief over road nodes is approximated by only 5 samples.

In order to bound hypotheses to plausible domains, it has to be decided, when
a hypothesis should be assigned to the outlier process of the observation poten-
tial in Equation 4.1. Towards this goal, a threshold that assigns those hypotheses
to the outlier process which exceed the 3σ range of the observation potential is
introduced.

7.3.2 Road Recognition Performance
A key benefit of the proposed framework is that each level of the CHM incor-
porates a priori scene knowledge comprised in the probabilistic constraints (see
Section 5.3.1). The importance of this knowledge is evaluated by evaluating the
posterior marginal distribution p(xpi |b) or belief bi(x

p
i ) over the patch locations

at different stages of message passing. Therefore, three different message passing
algorithms are used.

Algorithm 1 The bottom up belief b−i (xpi ) over the patch nodes is computed by
fusing messages received from their associated feature nodes xfj , j ∈ Ξ (i).

Algorithm 2 The bottom up belief of both the lane nodes b−i (xli) and patch nodes
b−i (xpi ) is computed. Then, the belief of the patches b\ri (xpi ) is computed by
propagating messages down from the lanes to the patches. Here \r denotes
that the road level of the model is not processed.

Algorithm 3 The belief bi(x
p
i ) is computed by passing message from the leaves

(feature nodes) to the root (road nodes) and back down.

Each of the above algorithms incorporates a different amount of a priori scene
knowledge in the detection results. More precisely, the bottom up belief state
b−i (xpi ) only comprises knowledge on local evidence and the expected lane width.
The belief b\ri (xpi ) represents the belief over patches in the context of lanes and
hence contains knowledge on the longitudinal lane model. Finally, the belief
bi(x

p
i ) represents the belief over patches in the context of both lanes and roads

which imposes constraints on both the longitudinal and the lateral road model.
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Figure 7.3: Precision-Recall curves for highway scenarios (a) and for rural sce-
narios (b). Results are computed using different algorithms and evaluated against
the ground truth. For details see text.

Figure 7.3 shows, the results of applying the above algorithms to the highways
and rural test frames of the dataset, while relying only on lane marking cues. As
can be seen, the performance of the proposed approach increases drastically, as
additional contextual information are incorporated. This can be explained by the
fact that Algorithm 1 performs inference over a relatively small area. Accordingly,
the results strongly rely on the presence of local evidence,i.e., missing, occluded or
damage lane markings have a significant influence on the recognition performance.

Algorithm 2, on the other hand, fuses evidence from a larger area. Accordingly,
the results are not as affected by missing local evidence as in Algorithm 1. Further,
Algorithm 2 benefits from proposed approach for occlusion handling, as presented
in Section 4.3.1. In fact, the bottom up belief of the patches b−i (xpi ) is likely to
contain many false-negatives, due to the absence of both the left and/or the right
boundary feature. However, during lane detection, the inference algorithm allows
for up to 6 missing patches which allows to detect partly occluded lanes.

Finally, the results obtained by Algorithm 3 (see Figure 7.3) clarify the im-
portance of the road levels which impose constraints on the lateral lane structure.
These constraint ensure the overall compatibility of neighboring lanes, patches and
features.

Sample results of applying the different algorithms to the dataset are depicted
in Figure 7.4 . This figure shows lane detection results in challenging scenarios
with partly occluded lanes (left), splitting lanes (middle) and complex intersection
topology (right). Note that lane hypotheses outside the lane markings are sup-
ported by marking features on one side and by the outlier process on the other side
(see Section 4.3.2). The existence of these hypotheses is allowed for, since they
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Figure 7.4: Sample results of lane topology estimation. (Top) Detected lane mark-
ing features (red). (Bottom) Lane marking features in the BEV (yellow, purple,
green) and results of lane hypotheses generation (grey).

may become plausible in the context of roads. However, given the lack of low-level
evidence their corresponding weight is relatively small (see Equation 4.15).

7.3.3 Depth-First and Breadth-First Message Passing
A key aspects of the proposed framework is depth-first message passing for lane
detection [Töp13] presented in Section 4.3.3. Depth-first message passing is ex-
pected to require significantly lower run time than breadth-first message passing,
while achieving a comparable performance.

To test this hypothesis, lane and road perception is performed by applying both
depth-first message passing and breadth-first message passing to the highway and
rural test scenarios of the dataset. To avoid an exponential growth of the lane
hypotheses using breadth-first message passing, a resampling is performed after
computing the belief update on the lane-levels. This optional step of Nonpara-
metric Belief Propagation (NBP) is used to limit the number of lane samples to
150.

It can be seen in Figure 7.5 that depth-first message passing out-performs stan-
dard breadth-first message passing over the complete range of confidence, while
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Figure 7.5: Results of lane detection for highway scenarios (a) and for rural sce-
narios (b) using depth-first message passing (red) and breadth-first message pass-
ing (green). In both scenarios depth-first message passing (25 samples) shows
more promising results than breadth-first message passing (150 samples).

Alg. 1 Alg. 2 (BF) Alg. 2 (DF) Alg. 3

time (ms) 1.47 75.29 4.41 5.38

RMS (m) 0.12 0.25 0.20 0.23

Table 7.1: Runtime and location errors of lane detection using depth-first and
breadth-first message passing. Depth-first message passing allows for real-time
performance, since patches, lanes and roads can be computed within a single sen-
sor frame (frame rate 20fps).

using a significantly reduced number of only 25 samples. The reason for this major
improvement is that applying depth-first message passing increases the probabil-
ity to first propagate those low-level hypotheses which are likely to be part of
valid high-level hypotheses. Consequently, during messages passing, less invalid
hypotheses than using breadth-first message passing are propagated. In addition,
Table 7.1 shows that applying depth-first message passing significantly reduces the
required runtime, while achieving a similar geometrical accuracy.

Illustrative results of applying both breadth-first message passing and depth-
first message passing are depicted in Figure 7.6, showing the large amount of hy-
potheses computed during breadth-first message passing (left), and the few likely
hypotheses computed during depth-first message passing (right).



7.3. ROAD DETECTION PERFORMANCE 111

Figure 7.6: Results of lane topology estimation. (Top) Detected lane marking
features (red). (Bottom) Results using breadth-first message passing (left) and
depth-first message passing (right). Lane hypotheses are shown in grey.

7.3.4 Multi-Cue Road Detection

A key benefit of the proposed hierarchical framework is that it allows for the incor-
poration of multiple lane and road boundary cues and fuses them in an intelligent
way. Particularly, in semi or unstructured urban environments using multiple cues
is expected to lead to an increased performance. This section presents the results
of evaluating the benefit of incorporation multiple lane and road boundary cues
based on the urban scenarios contained in the database. In this experiment, the
recognition performance achieved using only lane marking cues is compared to
the results obtained using both lane marking and the road edge cues.

The results of these experiments are depicted in Figure 7.7, showing that, as
expected, the additional usage of road edge cues improves the recognition perfor-
mance, since in many urban scenarios lane markings are not reliable. It can be
seen that using both cues, a precision of about 90% up to a recall of 90-95% can
be obtained, while precision drops drastically for a recall higher than 80-85% us-
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(a) single cue setup (b) multi-cue setup

Figure 7.7: Results of urban multi-cue lane detection. (a) When relying on lane
marking features the precision drops rapidly for a recall higher than 80-85%. (b)
Using both lane marking and road edge features allows to obtain a precision higher
than 90% up to a recall of 90-95%. In (b) the precision decreases slowly for a recall
between 70-95%, since the second detector also causes additional false positives.

ing only lane marking cues. However, using multiple low-level cues also leads to
additional computational complexity. In fact, the average computational time for
the single cue setup is 5.38 ms, while for the multi-cue setup processing requires
7.63 ms.

Figure 7.8 shows the detection results for a multi-lane urban road using the two
lane boundary cues.

7.3.5 Message Passing Schedule for Road Detection
In the previous section, inference is performed according to the depth-first mes-
sage passing schedule (Section 4.3.3) and roads are detected by proposing and
evaluating additional lane hypotheses based on low-level observations. This ap-
proach is expected to be ideal in means of robustness. However, the search for
corresponding low-level evidence is computational expensive. One possibility to
bootstrap inference, is to always accept lane hypotheses and thus avoid the search
for low-level evidence on the feature level which is comparable to the lane and
road perception approach presented in [Hur13].

Figure 7.9 summarizes the results obtained by applying both schedules to the
urban scenarios of the dataset. The results show that the additional top down step
which searches for corresponding low-level evidence, increases the recognition
performance. This result can be explained by the fact that terminating the top
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Figure 7.8: Results of multi-cue lane detection in urban scenarios. (Top) Feature
extraction result in the image domain. (Middle) Low-level features in the vehicle
coordinate frame, lane detection results and road hypotheses (left to right). (Bot-
tom) Joint probability distribution at different stages of inference: Algorithm 1,
Algorithm 2 and Algorithm 3 (left to right).
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Figure 7.9: Results of road detection using different message passing schedules.
(light-blue) Results of road detection, where top down validation is terminated on
the lane-level. (blue) Results of performing complete top down validation includ-
ing low-level features.

down search on the lane-level implies that the belief over the lane nodes in the
CHM is well approximated. However, during the experiments many lane samples
converge to the lane of the ego-vehicle since it is supported by the majority of the
sensory evidence. An example is shown in Figure 7.8, where most of the 25 lane
samples correspond to the ego-lane or its direct neighbor, while the most left lane
is not represented. The proposed approach overcomes this issue by performing the
complete top down search for local evidence based on the structure of the proposed
CHM.

The drawback of the latter approach is its additional computational complexity.
However, the additional time required for the evaluation of each road sample in-
cluding the low-level features is only 0.2 ms. Considering that often a small num-
ber of road samples is sufficient to obtain reliable results the total computational
complexity still fulfills real-time requirements (see Table 7.1).

7.4 Lane and Road Perception at Intersections
This section presents the results of evaluating the performance of stopline detec-
tion and lane turn direction estimation of the hybrid compositional hierarchical
framework proposed in Chapter 6. The following experiments are based on the
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hybrid CHM described in Section 6.2, where both the model parameters and the
inference algorithm follows the specification given in Section 7.1. The exception
is the patch detection which is performed as shown in Figure 6.7. The feature set
used for the following experiments comprises lane marking and road edge features
used to detect the road topology as well as detections of stoplines and turn arrows
(see Section 6.1). Further, the experiments are limited to 20 sequences of intersec-
tion approaches with an individual length of 15 to 40 seconds. The sequences stem
from 16 intersections roads with varying lane structure and different combinations
of lane turn directions.

7.4.1 Hierarchical Stopline Detection
In Section 7.3, it is shown that the spatial constraints imposed by the different hi-
erarchical levels of the model increase the robustness of lane and road perception.
Similarly, the constraints on the location of stoplines are expected to improve the
performance of stopline detection (see Section 6.2). To verify this hypothesis, the
following experiment is performed.

We begin with computing three intermediate stopline detection results, each
incorporating a different amount of constraints in the detection process.

Algorithm 4 The bottom up belief b−i (xpi ,d
pc
i =dstopi ) of the stop-patches which

comprises the local evidence of boundary features and the stopline features
is computed.

Algorithm 5 The belief b\ri (xpi ,d
pc
i = dstopi ) over the patch nodes is computed

without processing the road nodes.

Algorithm 6 The belief bi(x
p
i ,d

pc
i =dstopi ) is computed including the road nodes.

Here dpci = dstopi specifies that only the stop-patches are considered in the exper-
iment. In this case, the importance weight of a patch is scaled by the stopline
probability. This means that the importance weight of a patch sample encodes
both its spatial plausibility in respect to the low-level features and the probability
of a stopline at the patch location. After computing the importance weights, the
ground truth and the overlap criterion introduced in Section 7.2 are used to label
the detected patches. Note that, since all patch samples comprises a discrete center
type variable, each detected patch is considered as a potential stop-patch.

Figure 7.10 depicts PR curves summarizing the results of the conducted exper-
iment. As evidenced by this figure, the spatial and semantic constraints increase
the detection performance significantly. With bottom up stopline detection (Algo-
rithm 4), a precision close to 100% for a recall up to 50-55% is obtained. However,
precision drops rapidly above this level of recall. More promising are the results



116 7. EXPERIMENTAL EVALUATION

Figure 7.10: Stopline detection performance at different stages of message pass-
ing. (blue) Bottom up belief state over patch nodes b−i (xpi ,d

pc
i = dstopi ). (red)

Belief b\ri (xpi ,d
pc
i =dstopi ) over the patch nodes without processing the road lev-

els. (green) Belief bi(x
p
i ,d

pc
i =dstopi ) after completing message passing.

of Algorithm 5 and Algorithm 6. In fact, Algorithm 5 allows to obtain a precision
higher than 80% for a recall up to 65%. This suggests that constraining the stop-
patches to be part of lanes efficiently reduces the number of false positives. An
additional performance gain can be obtained by processing the road levels (Algo-
rithm 6). This clarifies the importance of the road-level constraints which constrain
stoplines to be part of neighboring lanes and thus allow to maintain a precision of
higher than 90% up to a recall of 80%. Further, Figure 7.10 shows how each
level of the hierarchy improves the recall which is achieved by performing the
expectation-based search for low-level stopline features at each level introduced in
Section 6.3.2.

The benefits of including the knowledge of the different levels into the detection
process is also illustrated in Figure 7.11. This figure shows the results of lane
and road detection (middle) based on low-level features (middle-left) extracted
from the visual input (top). The bottom row illustrates how the knowledge of the
different levels allows to constrain the stop-patch hypotheses to the actual stopline
locations which is shown by high weighted samples close to the stoplines (bottom)
and the well aligned stoplines on the road level.

Message Passing Schedule: Performing sequential message passing in a multi-
cue model complicates the choice of the message passing schedule. In the pro-
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Figure 7.11: Stopline detection results with varying amount of topological knowl-
edge. (top) Results of road edge detection (red), lane marking detection (green)
and stopline detection (blue). (middle) Feature detection results in the vehicle co-
ordinate frame, results on the lane level and results on the road level. (bottom)
belief approximation results over all patch variables obtained by Alg. 4, Alg. 5
and Alg. 6. Note that the distance to the closest stopline is approximately 25 m.
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Figure 7.12: Results of the hierarchical stopline recognition for different message
passing schedules and varying stopline detection performances. As the number of
false positives per frame increases Schedule 1 dominates the PR curves.
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posed CHM for intersection roads this gives rise to the two following message
passing schedules for stop-patch detection presented in Section 6.3.2.

Schedule 1 First stop-patch hypotheses are proposed based on previously de-
tected patches. Then, a top down/bottom up sweep is performed, in which
corresponding evidence provided by the stopline detector (see Figure 6.7a)
is incorporated

Schedule 2 Stop-patch hypotheses are initialized based on low-level stopline ob-
servations. Subsequently, the stop-patch hypotheses are aligned to the low-
level lane boundary evidence as depicted in Figure 6.7b.

Generally, it can be expect that the optimal message passing schedule strongly de-
pends on the performance of the employed low-level feature extraction approaches.
More precisely, Schedule 2 is expected to be optimal if the stopline detector is very
reliable, since it limits the influence of false positive in the lane boundary detection
results on the stopline detection performance. In contrast, Schedule 1 is expected
to be optimal if the stopline detection results comprise a high number of false
positive detections.

This hypothesis is verified by performing the following experiment. To simulate
different low-level detection performances, false positives detections are added to
the stopline detection results. These additional features are created by randomly
creating stopline features in the field of view and adding a Gaussian random noise
to each feature parameter. Then, Schedule 1 and Schedule 2 are applied to the
input data and their results are compared.

The results of this experiment are depicted in Figure 7.12, showing PR curves.
As expected, Schedule 2 leads to comparable lower performance as the false de-
tection rate of the stopline detector increases. On the other hand Schedule 1 allows
to maintain a relatively good performance for all setups. For some of the settings
the results on the lane-level are counter-intuitive, for example in Figure 7.12d the
precision for Algorithm 5 drops rapidly for a recall higher than 10%, while Al-
gorithm 4 retains a relatively high precision. These results may be explained by
the presence of many false positive detections which are well aligned to the ac-
tual course of lanes in the scene. Even though the acceptance rate introduced in
Section 4.3.3 allows to model such spatial uncertainties, if false positives are well
aligned to the course of the lane the distinction between true positives and false
positives becomes challenging. However, it can be seen in Figure 7.12d that even
in such challenging scenarios the additional constraints imposed by the road-level
allow to obtain a comparable good performance.
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Figure 7.13: Turn direction confusion matrices. (a) Confusion matrix for the
results of turn arrow recognition, with estimated turn direction and true turn direc-
tion at the x- and y-axis, respectively. (b) Results of lane turn direction recognition
using the proposed framework.

7.4.2 Hierarchical Estimation of Lane-Turn Directions
In this section, the performance of lane turn direction estimation is evaluated. To-
wards this goal, the detection results on the feature-level are compared with the
results obtained by performing a complete bottom up/top down message passing
procedure in the proposed framework. The major difference to the previous section
is that not a predefined type is of interest but the maximum a posteriori probability
(MAP) estimate of the turn direction

dfci = arg max
dfc
i

p(dfci |c). (7.3)

Hence, only the most likely lane turn direction is compared with the ground truth.
The performance of the proposed approach is then quantified using confusion ma-
trices.

The results of the experiments are depicted in Figure 7.13. As evidenced by
this figure, a large performance gain can be achieved by combining the lane-level
detection results on the road-level, since they restrict the results to plausible lane
turn direction constellations. Note that, the effect of the patch-level and the lane-
level constraints is not explicitly investigated. This is mainly due to the fact that
neither lanes nor patches impose constraints on the turn directions.

Figure 7.14 show exemplary result of urban multi-lane road recognition on the
road-level. As Figure 7.14a shows, the proposed framework allows to jointly rec-
ognize the road topology, the turn direction of individual lanes, the location of
stoplines and the type of lane boundaries. Further, Figure 7.14b, c and d indi-
cate that by combining arrow detections of neighboring lanes on the road level the
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(c)
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Figure 7.14: Sample results of joint road topology, lane turn direction and stopline
recognition.
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Module Average Runtime/Frame

Lane marking detection 1.08 ms
Road edge detection 1.78 ms
Stopline detection 2.67 ms
Turn arrow detection 3.20 ms

Patch detection (Section 4.3.1) 2.47 ms
Lane detection (Section 4.3.3) 4.92 ms
Road detection (Section 5.3.2) 7.63 ms

Patch detection (Section 6.2.1) 3.41 ms
Lane detection (Section 6.2.2) 6.87 ms
Road detection (Section 6.2.3) 9.05 ms

Table 7.2: Running times per frame. The table show average running times of
the individual modules of the C++ implementation on an Intel(R) Core(TM) i5-
3427U CPU with 1.80 GHz using the ADTF framework. The first part of the table
shows the time needed for computing the feature extraction. The second part lists
the timings for computing patches, 25 lane samples and 5 road samples, using the
CHM presented in Chapter 4. The third part shows the runtime for the hybrid
CHM for intersection roads.

proposed framework obtains reliable results even if single arrows have not been
detected. Figure 7.14e shows a scene where the classification result on the feature
level also lead to wrong results on the road level. In this case, the turn direction
constrains imposed by the proposed model do not have a positive effect on the
results, since the detected turn directions are plausible.

7.5 Runtime
In this section the computational complexity of the proposed approach is evalu-
ated. Towards this goal, the running time of the C++ implementation of the pro-
posed framework is measured, while applying it to the intersection scenarios of the
database. While the results listed in Table 7.1 already indicate that the proposed
approach runs in real-time (<50.00 ms) this evaluation provides an overview on the
runtime demands of the various modules of the implementation. Table 7.2 lists the
average running times of the various procedures of the algorithm, separated into
feature extraction as well as patch, lane and road detection. In order to evaluate the
additional runtime demands of the hybrid CHM for intersection roads as presented
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in Chapter 6, its runtime is compared with the CHM presented in Chapter 4.
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8 Conclusion

8.1 Contributions
This thesis presents a novel hierarchical probabilistic framework that outperforms
existing algorithms (in terms of computational efficiency and scalability) for reli-
ably perception of lanes and roads in real-time and in the presence of uncertainty
(including partial occlusion and error prone sensory evidence). This thesis pre-
sented novel algorithms to address these issues:

• The hierarchical representation of roads and lanes allows to infer complex
lane and road topologies from low-level sensory evidence. The presented
compositional hierarchical model provides not only a unified probabilistic
formulation of the addressed lane and road perception task, but also al-
lows to incorporate a priori scene knowledge which increases the robustness
of the proposed approach in the presence of clutter and partial occlusions.
Thereby, the proposed road model is compositional and generic in the sense
that it does not impose any hard constraints on the lane geometry as imposed
by e.g., clothoids or splines. Instead, a priori expectations on the lane ge-
ometry are expressed through weak probabilistic constraints, and lanes are
assembled from a large number of lane patches.

• The hybrid hierarchical framework allows to simultaneously infer complex
non-linear road topologies and lane semantics (e.g., turn direction and sto-
pline positions). Whereas it provides a unified probabilistic formulation that
provides an enormous expressive power.

• The proposed framework accounts for the topological diversity of target sce-
narios by formulating a hierarchical multi-scenario model. A key compo-
nent of this extended model is part-sharing [Zhu10, Spe11] which allows to
benefit from the similarities of different road topologies leading to the much
desired computational efficiency.

• Sequential depth-first message passing for lane and road perception [Töp13,
Spe13] takes into account the inherent structure of the lane and road per-
ception problem. Thus it allows for both real-time computations and the
detection of lanes and roads in areas of low belief.



126 8. CONCLUSION

Most importantly, this thesis includes the first application of hybrid compositional
hierarchical models for holistic lane and road perception at urban intersections in-
cluding the detection of non-linear road topologies, lane turn direction and stopline
locations. One of the key innovation of this hybrid framework is that it formulates
the task of lane and road perception as the problem of performing inference in a
probabilistic graphical model. This allows to not only avoid early decision, but
also to fuse the evidence of multiple low-level sensory sources in an intelligent
way. Thus, it is possible to obtain robust results in challenging real world scenar-
ios, where a single sensory source is not reliable.

For all the above aspects, it is shown that both qualitatively and quantitatively
the proposed hierarchical framework archives reliable results, while attaining real-
time performance.

8.2 Future Directions
While the previous chapter present promising results, there are a number of possi-
ble improvements and promising lines of future research.

8.2.1 Tracking
This thesis focuses on the task of inferring high-level scene knowledge from
low-level detection for a single frame, as it is the key benefit of the proposed
framework. However, the presented model can easily be extended to incorpo-
rate temporal consistency. The most direct way of extending the model is to
chain the random variables of the proposed model along time which is a rela-
tively standard undirected variant of the Hidden Markov Model (HMM) of order
one [Bis06, BS04, Thr05], as shown in Figure 8.1. The resulting spatiotemporal
model is expected to increase the robustness of the results by incorporating tempo-
ral consistency. The additional spatiotemporal constraints ψt(xi,t,xi,t−1) encode
the dependencies between random variables at time t − 1 and t. Then, these con-
straints can be used to construct additional message sent from node xi,t−1 to node
xi,t which correspond to the prediction

p(xi,t|y1:t−1) =

∫
ψT (xi,t,xi,t−1)p(xi,t−1|y1:t−1)dxi,t−1 (8.1)

where the spatiotemporal constrain ψT (xi,t,xi,t−1) models the motion of the mo-
bile platform. A convenient choice is to use a Gaussian model

ψT (xi,t,xi,t−1) = N (xi,t, ς(xi,t−1),Λi,t)) (8.2)



8.2. FUTURE DIRECTIONS 127

ψT (xi,t, xi,t−1)xi,t−1 xi,t

Figure 8.1: HMM of a compositional hierarchical lane model. The constraint
ψT (xi,t,xi,t−1) models the spatiotemporal dependency between variables at time
t− 1 and t.

where the function ς(xi,t−1) returns the predicted location of part xi at time t
based on the ego motion, and the covariance matrix Λi,t models the motion uncer-
tainty.

The above prediction can then be used as a proposal function and tracking can
be performed as in the standard particle filter [Isa98a]. Alternatively, the predic-
tion could be used as an additional input message for the belief update of node
xi,t, as proposed in [Spe13, Sig08, Sud04b]. Particularly, interesting is the ques-
tion of how to perform inference in the spatiotemporal model, since it contains
loops. Accordingly, a specific message passing schedule has to be developed, and
its convergence has to be proved. Further, tracking in the proposed model results in
multi-target tracking, as each comprised variables may comprise several hypothe-
ses for a specific object category. Maintaining, this multi-modality in the context
of nonparametric inference is a critical future challenge.

8.2.2 Observable High-Level Nodes
This thesis is concerned with the task of road topology estimation based on low-
level features, such as lane markings and road edges. However, all levels of the
proposed CHM can be observable, in principal. For example, patches could be ob-
served directly using object detections. Similarly, lanes could be observed directly
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by vehicle tracks [Wei12, Siv13]. Towards this goal, additional observation poten-
tials have to be introduced which model the dependencies of object detection and
patches as well as of lanes and vehicle tracks. The key benefit of incorporating in-
formation on other vehicles is that it allows to detect activities in the scene [Gei14]
including the detection of e.g., lane changes or of vehicles stopping at a stopline.
Additionally, incorporating vehicle tracks would allow to detect lanes and roads
even in scenarios, when roads are covered by snow or are completely unmarked.

However, vehicles driving on the road often occlude lane and road cues. Hence,
the resulting graphical model includes self occluding components, and thus im-
plicate a more complex independence structure than assumed in this thesis. A
heuristic approach to address this issue is to guarantee the independence of lane
and road cues, and vehicle detections using the dynamic detection range, which is
introduced in Section 7.1. Another approach is to allow for loops in the graphi-
cal model [Sig08] or to explicitly model the presence of occlusion, as proposed in
[Sig08, Sud04b].

8.2.3 Electronic Horizon and Localization

The vision-based lane and road perception approach presented in this thesis pro-
vides reliable lane and road perception results in the vehicles surrounding. How-
ever, the results are limited to the field of view of the used sensors. Further, the
performance of vision-based lane and road perception approaches drastically de-
creases with increasing distance to the host vehicle. State-of-the-art navigation
maps, on the other, hand may contain less detailed topological and semantic in-
formation. Their advantage, however, is that they comprise information on lanes
and roads fare beyond the sensory field of view, and that they are not affected by
clutter or occlusions.

The hierarchical framework proposed in this thesis provides several possibili-
ties to incorporate navigation maps. First, if the navigation map contains detailed
lane information, the proposed framework allows to fuse these information with
the lane estimation results. Second, if the navigation map contains road-level in-
formation, they could be used as observations of roads. Subsequently, these coarse
information could either be fused with the results obtained form the low-level cues
or evaluated in a top down manner in order to detect inaccuracies in the map data
(see Section 4.3.3). Moreover, navigation maps could be used to initiate hypoth-
esis in a coarse to fine hierarchy [Spe13] to further bootstrap inference. More
precisely, navigation maps typically contain information on road centerlines and
intersections. These information could be used to initiate specific road or even in-
tersection types, and thus restrict the hypothesis space which has to be processed
during inference. For example, a navigation map may provide the information
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that an intersection has only three roads. Even if the geometric information is ex-
pected to be inaccurate, it allows to restrict the number of intersection types (i.e.,
intersection with three roads), and thus to start inference with plausible parame-
ters. Then, more accurate information on e.g., lanes, stopline positions and lane
turn directions could be obtained from the sensory evidence, during inference. A
principal challenge of the above approaches is that they require to know the exact
position of the host vehicle on the navigation map. In fact, since the position on
the map is estimated using GPS, position errors of approximately 10−15m have
to be expected [Kap05, Töp10].

Therefore, an interesting extension to the proposed framework is to use it for
the task of precise localization. The initial erroneous global location provided by
a GPS receiver can be used to extract e.g., lane hypotheses from the navigation
map, and to transform them into the vehicles coordinate system. In order to cope
with the GPS-related uncertainties during this transformation, different hypothe-
ses for each lane can be generated by sampling locations according to the GPS
uncertainty. In the following, the importance weight of each of these hypothe-
sis can be computed using the structure of the model (see Section 4.3.3). While
many existing localization approaches rely on coarse topological scene knowl-
edge [Hom12, Kon12, Wei11], using the rich amount of topological and semantic
knowledge obtained by the proposed approach (e.g., road topology and stopline
positions) is expected to lead to more accurate and robust results.
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