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1. Introduction

This thesis concerns the transport properties of the simplest one-dimensional configuration
of Josephson junctions, a linear array of superconducting islands separated by tunnelling
junctions with the Josephson coupling energy EJ . One can regard the one-dimensional
arrays as a many-island extension of the superconducting single electron transistor (SSET)
[1, 2]. The one-dimensional arrays show a great wealth of physical phenomena that war-
rants ongoing experimental studies [3, 4, 5, 6, 7, 8, 9] . Although the arrays contain
only well known superconducting circuit elements, the Josephson junctions [10], provid-
ing a theoretical description of the experimentally observed phenomena has proven to be
non-trivial. The development of theoretical model is ongoing [11, 12].

A theoretical model of a one-dimensional Josephson junction array has at least three
free parameters, the Josephson coupling energy EJ , the capacitance CJ of the Josephson
junctions in the array and the capacitance C0 between the superconducting islands and
the ground. Due to the large parameter space the Josephson junction array can show very
different conductance behaviour. A reduction of the Josephson coupling energy EJ for
example can lead to a superconductor-insulator phase transition in the array [13]. In the
insulating regime Coulomb blockade prevents electrical currents through the array when
small bias voltages are applied.

In this work we will focus on Josephson junction arrays in the Coulomb blockade regime. A
Josephson junction array in the insulating regime shows a zero-current response to applied
voltages V lower than the switching voltage Vsw. Applied voltages above Vsw drive the
array into the conducting regime [3, 13]. In the conducting regime the current increases
linearly with the applied voltage I = G(V −V0). At the transition point the current jumps
from zero to the value I = G(Vsw − V0). Once in the conducting regime, the Josephson
junction array is stable even for voltages lower than the original switching voltage. The
array reverts back to the insulating behaviour once the applied voltage is decreased below
the retrapping voltage Vre < Vsw. The IV-curve of a Josephson junction in the insulator
phase shows a pronounced hysteresis [3, 13].

Early attempts at obtaining the switching voltage from an effective sine-Gordon model
of the array failed to reproduce the experimentally observed linear dependence of the
switching voltage on the array length N [3]. The origin of the hysteresis is still an open
question. It has been proposed that it is brought about by large effective inductances in
the array [4]. Another possibility is overheating, the raising of the effective quasi-particle
temperature of the islands by the energy that is dissipated in the transport process. The
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2 1. Introduction

higher temperature could lower the activation threshold of the charge carriers that provide
the electrical current. At the time of writing, such a model is under active theoretical
investigation.

The switching voltage Vsw and the differential conductance in the conducting regime both
depend on the Josephson coupling energy EJ . The differential conductance is proportional
to E2

J which suggests, that Cooper pair tunnelling is essential for the electrical transport
process [14]. The E2

J -dependence was also found in kinetic Monte-Carlo simulations of
the array [15]. These simulations neglect coherent tunnelling processes and obtain the
incoherent tunnelling rates form P-of-E theory.

At large voltages the array enters a second transport regime where the differential con-
ductance is independent of the Josephson coupling energy EJ and larger than in the first
transport regime. The voltage drop per junction is large enough to break Cooper pairs
into quasi-particles. The current is carried by incoherent quasi-particle tunnelling [14].

About this thesis

The aim of this thesis is to contribute to the theoretical understanding of Josephson
junction arrays in the Coulomb blockade regime. Following the IV-curve in the direction
of increasing voltage, we provide a description of the insulating array based on the well
known depinning theory of elastic media [16], compare the switching voltage obtained from
this description with numerical and experimental data and finally study the respective
importance of coherent and incoherent Cooper pair tunnelling in the transport regime.

We also shortly discuss one-dimensional quantum phase slip ladders and show that they
are described by a model that is mathematically equivalent to the Josephson junction
array model.

We set ~ = 1 throughout this thesis.

The thesis is devided into the following chapters:

Chapter 2:

Here we introduce the reader to the effective quasi-charge description of the Josephson
junction arrays that has been widely used in the literature [3, 17, 12]. We go through
the derivation introducing our notation and including charge disorder in the model. The
quasi-charge model has the form of a sine-Gordon-like model, a discrete version of the
sine-Gordon model with disorder and a periodic potential term that deviates from the
exact cosine shape of the original sine-Gordon model.

We show the reader that a voltage biased Josephson junction coupled to a large induc-
tance in the low frequency regime is approximately equivalent to a quantum phase slip
element [18]. The discussion is based on the duality of superconducting elements under
the exchange of charge and phase as well as capacitance and inductance [19]. The notion
of approximate equivalence is used to discuss the relation of four types of one-dimensional
superconducting arrays, Josephson junction arrays [3], Josephson junction ladders [20],
quantum phase slip ladders and quantum phase slip chains. At the end of the chapter we
discuss the zero-dimensional limit of a quantum phase slip ladder.

Chapter 3:

In this chapter we map the effective quasi-charge model of the Josephson junction array
to the well known problem of the depinning of elastic media [16]. The connection between
Josephson junction arrays in the insulating regime and pinned charge density waves was
first pointed out in Ref.[17]. We develop this mapping further to obtain analytic expressions
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3

for the switching voltage in the two regimes of long and short Josephson junction arrays.
We compare the analytic results with numerical simulations of the arrays and use them to
fit experimental data provided by R. Schäfer, H. Rotzinger, W. Cui, A. Fiebig and A.V.
Ustinov (all Karlsruhe Institut of Technology, KIT, Germany).

Chapter 4:

When studying the influence of coherent Cooper pair tunnelling on the electrical transport
in Josephson junction arrays we need to solve the equation of motion of the density matrix
of very large open quantum systems. We extend the quantum jump approach, a numerical
method that stochastically unravels the Lindblad master equation [21], to the stochastic
Bloch-Redfield algorithm. The stochastic Bloch-Redfield algorithm can find a stochastic
unravelling directly from a Bloch-Redfield type model of an open quantum system. Com-
pared to a standard numerical solver for differential equations, it allows us to solve the
master equation of much larger open quantum systems.

Chapter 5:

We test the stochastic Bloch-Redfield algorithm with the help of the well known example of
a superconducting single electron transistor (SSET) [1]. We simulate two different modes
of electrical transport through the SSET, transport by incoherent Cooper pair tunnelling
and transport via the Josephson quasi-particle cycle [2].

Chapter 6:

We start by giving a short review of the incoherent transport model used in Ref.[15]
to simulate the transport through Josephson junction arrays. In these simulations the
incoherent tunnelling rates of the charge carriers were obtained from P-of-E theory. In this
thesis we introduce a simplified model, a Josephson junction array segment whose charge
states are restricted to a single excess Cooper pair that can be dressed by surrounding
Cooper pair dipoles. We use the simplified model to determine in which parameter regimes
it is sufficient to use incoherent tunneling rates obtained from P-of-E theory. In the
simulations of the simplified model we make use of the stochastic Bloch-Redfield algorithm.

Chapter 7:

In the last chapter we summarize the key results of the thesis and conclude with an outlook
on possible extensions of this work.
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2. Array models and the
zero-dimensional limit

In this chapter we present the fundamental model of the Josephson junction array that
we use for most of this work. Other one-dimensional arrays containing quantum phase
slip (QPS) elements and Josephson junctions are introduced and it is shown that they
are closely related to Josephson junction arrays. We discuss the derivation of an effective
sine-Gordon-like model as it has been used to study clean Josephson junction arrays in
Refs.[22, 23, 3, 4, 24, 12]. At the end of the chapter we take a look at the limit of large
interaction lengths Λ, where the arrays are effectively zero-dimensional systems.

2.1 Duality of array elements

Before introducing the full array models we want to discuss the building blocks of the
arrays, Josephson junctions and quantum phase slip elements. We will show that in the
low frequency regime a Josephson junction coupled to a large inductance is approximately
equivalent to a quantum phase slip element. The same is true for a QPS-element parallel
to a large capacitance in the low frequency regime. It is approximately equivalent to a
Josephson junction.

In a Josephson junction (Fig.2.1) a current can flow without dissipation due to the coherent
tunnelling of Cooper pairs [10]. The Hamiltonian of a single Josephson junction includes
the charging energy of the charge q on the capacitance of the junction and the Josephson
tunnelling term. The tunnelling term allows Cooper pairs to tunnel coherently from one
side of the Josephson junction to the other. Its amplitude is known as the Josephson
coupling energy EJ and it takes the form of the cosine of the phase difference φ over the
junction. The Hamiltonian of a current-biased Josephson junction is given by,

HJJ =
1

2CJ
q2 − EJ cos(

2π

Φ0
φ)− Iextφ , (2.1)

Φ0 =
h

2e
=
π~
e
, (2.2)

where Φ0 is the magnetic flux quantum. In the special case of the external current being
fixed to zero, Iext = 0, the Hamiltonian simplifies to,

HJJ =
1

2CJ
q2 − EJ cos(

2π

Φ0
φ) . (2.3)
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6 2. Array models and the zero-dimensional limit

Iext

EJ

φ

CJ

EJ

φ

CJ

Figure 2.1: Upper circuit: sketch of a current-biased Josephson junction with capacitance
CJ and Josephson coupling energy EJ .The phase-difference over the Josephson
junction is given by φ, the charge on the Josephson junction capacitance by q.
Lower circuit: The special case of Iext = 0, an open Josephson junction ele-
ment.

It is well known that the equation of motion of the phase-difference φ of the current-biased
Josephson junction is given by [19, 25],

CJ
d2

dt2
φ+ Ic sin

(
2π

Φ0
φ

)
= Iext , (2.4)

where Ic is the critical current of the Josephson junction,

Ic = EJ
2π

Φ0
. (2.5)

The typical frequency scale of the Josephson junction is given by the plasma frequency,

ω>p =
√

2ECEJ , (2.6)

EC =
(2e)2

2CJ
, (2.7)

where EC is the charging energy of the Josephson junction capacitance CJ with respect
to one Cooper pair.

A quantum phase slip element is the dual superconducting circuit-element to a Josephson
junction. In a quantum phase slip element it is the superconducting phase difference over
the QPS-element that can change by 2π in a coherent tunnelling event. The Hamiltonian of
a voltage-biased QPS-element (Fig.2.2) consists of an inductive term, the phase tunnelling
term with the phase slip energy Es and the voltage bias [18],

Hps =
1

2Lps
φ2 − Es cos

(π
e
Q
)
− V extQ , (2.8)
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2.1. Duality of array elements 7

V ext

Es

Q

Lps

Es

Q

Lps

Figure 2.2: Upper circuit: sketch of a voltage-biased quantum phase slip element with
inductance Lps and a quantum phase slip energy Es.The total charge that has
flown through the QPS-element is given by Q, the phase-difference over the
inductance Lps by φ.
Lower circuit: The special case of V ext = 0, a quantum phase slip element in
a superconducting loop.

where φ is the phase difference over the inductance Lps and Q is the total charge that
has flown through the QPS-element. The special case of zero external voltage V ext corre-
sponds to the case of vanishing external current for Josephson junctions. The Hamiltonian
simplifies to,

Hps =
1

2Lps
φ2 − Es cos

(π
e
Q
)
. (2.9)

The equation of motion of the biased QPS-element is,

Lps
d2

dt2
Q+ Vc sin

(π
e
Q
)

= V ext , (2.10)

where Vc is the critical voltage of the QPS-element,

Vc = Es
π

e
. (2.11)

The plasma frequency of the QPS-element in a closed superconducting ring is,

ωQPSp =
√

2ELEs , (2.12)

EL =
Φ2

0

2Lps
. (2.13)

The inductive energy EL plays the role of the charging energy EC in the Josephson junction
case.

The two Hamiltonians Hps and HJJ are dual under the exchange of charge and phase, if
we identify capacitance with inductance and Es with EJ . A detailed discussion of this
duality between quantum phase slip elements and Josephson junctions can be found in
Ref.[26] and Ref.[18].

In superconducting circuits the quantum phase slip elements are implemented as long thin
wires of superconducting material, for example Molybdenum-Germanium compounds [27],
Niobium [18] or Aluminum [28].
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8 2. Array models and the zero-dimensional limit

2.1.1 Josephson junction with enforced slow quasi-charge dynamics

We will now discuss the approximate equivalence of QPS-elements and Josephson junc-
tions coupled to a large inductance in the low frequency regime. This problem has been
studied in Ref.[19] for circuits that were coupled to a dissipative environment. Here we will
discuss the approximate equivalence without considering complications due to a dissipative
environment.

+
−V ext

CL

EJ qφ

ΦCΦL

CJ

L

Figure 2.3: The schematics of a Josephson junction in series with a large inductance L
in a voltage-biased circuit (CJL-model). The phase ΦL is dropping over the
inductance and the phase ΦC is dropping over the measurement capacitance
CL. The charge on the capacitance of the Josephson junction is given by q.
The phase φ dropping over the Josephson junction is conjugate to the number
of Cooper pairs n that have tunnelled through the Josephson junction. The
large measurement capacitance CL decouples the degrees of freedom φ and ΦL.

The approximate equivalence can be shown most conveniently when comparing the equa-
tion of motion of a voltage-biased linear circuit containing a Josephson junction and an
inductance L (CJL-model) with the equation of motion of a voltage-biased quantum phase
slip element. The CJL-model is shown in Fig.2.3 . The Lagrangian of the model is given
by,

LCJL =
1

2
CL

(
Φ̇L + φ̇+ V ext

)2
− 1

2L

(
ΦL
)2

+
1

2
CJ

(
φ̇
)2

+ EJ cos

(
2π

Φ0
φ

)
. (2.14)

The phase ΦL is the phase dropping over the inductance L, φ is the phase dropping over the
Josephson junction and V ext is the externally applied voltage. Defining the quasi-charge
Q,

Q =
∂LCJL
∂Φ̇L

, (2.15)

one can find the Hamiltonian of the problem in terms of the quasi-charge and the number
of tunnelled Cooper pairs n,

HCJL =
1

2CL
Q2 +

1

2L

(
ΦL
)2

+
1

2CJ
(Q− 2e n̂)2 − EJ (|n+ 1〉 〈n|+ h.c.)−QV ext .

(2.16)

The large inductance L prevents fast oscillations of the quasi-charge. Fast oscillations of Q
imply a large current Q̇ through the inductance, incurring a large energy cost 1

2LQ̇
2. The

quasi-charge changes adiabatically compared to the rate of Cooper pair tunnelling when
the inductive energy is much smaller than the Josephson coupling energy,

EL � EJ . (2.17)
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2.1. Duality of array elements 9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Q [2e]

E
Q
(Q

)
[E

C
]

EJ = 0 EJ = EC EJ = 0.5EC EJ = 0.1EC

Figure 2.4: The charging energy of Hamiltonian Eq.2.18 is given by an infinite succession of
parabolas, each corresponding to a different |n〉-state. The Josephson coupling
energy EJ lifts the degeneracy between |n〉-states. For a large ratio of EJ
and charging energy EJ & EC the ground-state band is approximately cosine-
shaped. With decreasing EJ the ground-state band approaches as succession
of parabola segments with avoided crossings at the degeneracy points Q =
(e+ 2e z) z ∈ Z.

In the adiabatic limit, the CJL-model can be solved by applying the Born-Oppenheimer
approximation. The quasi-charge is taken to be a classical parameter of the Josephson
junction contribution, HJJ(Q), to the Hamiltonian HCJL,

HJJ(Q) =
1

2CJ
(Q− 2e n̂)2 − EJ (|n+ 1〉 〈n|+ h.c.) . (2.18)

For each possible value of the quasi-charge Q, the Cooper pair Hamiltonian HJJ(Q) is
diagonalised. The quasi-charge changes adiabatically and the change in Q does not lead
to Landau-Zener transitions. The system can be approximated to be in the |n〉-ground-
state. The ground state energy of HJJ (Q) provides an effective potential energy for every
possible quasi-charge Q. Compared to the standard Born-Oppenheimer approximation
used to model ionized atoms and conduction electrons in condensed matter systems [29],
the quasi-charges take the role of the slowly varying positions of the ions. The Cooper
pair number n takes the role of the position of the conduction electrons.

The charging energy as a function of the classical parameter Q is given by an infinite
number of parabolas. Each parabola corresponds to one |n〉-state in the Cooper pair
number basis and is shifted from the origin Q = 0 by 2en. At the crossing points of the
parabolas the degeneracy is lifted by the tunnelling term EJ (|n+ 1〉 〈n|+ h.c.), as shown
in Fig.2.4.

We refer to the Q-dependent |n〉-ground-state of HJJ(Q) by |g.s.〉. The ground state

9



10 2. Array models and the zero-dimensional limit

energy as a function of the quasi-charge is given by,

EQ(Q) = 〈g.s.| (2en̂−Q)2

2CJ
− EJ (|n+ 1〉 〈n|+ h.c.) |g.s.〉 . (2.19)

As the number of Cooper pairs n is unbounded, the Hamiltonian HJJ(Q) is invariant
under a shift of the quasi-charge by integer multiples of two electron charges,

HJJ(Q) = HJJ(Q+ 2e z) z ∈ Z . (2.20)

As a consequence, the ground state energy and indeed any eigenenergy of HJJ(Q) is 2e-
periodic in Q,

EQ(Q) = EQ(Q+ 2e) . (2.21)

For Josephson coupling energies much larger than the charging energy, EJ � EC , the
ground state energy EQ(Q) approaches a cosine-shape. The amplitude EmaxQ of the periodic
function EQ(Q) is exponentially suppressed with growing Josephson coupling energy [17],

EmaxQ = max
Q∈[−e,e]

(EQ(Q))− min
Q∈[−e,e]

(EQ(Q)) , (2.22)

EmaxQ = 16EJ

(
EC
π2EJ

) 1
4

exp

(
−2

√
EJ
EC

)
for

EJ
EC
→ 0 . (2.23)

In the opposite limit EJ � EC the degeneracy between |n〉-states is barely lifted and sep-
aration between lowest and second energy-band is approximately given by the Josephson
coupling Energy EJ . The ground state band is a periodic succession of parabola segments,
as shown in Fig.2.4. The amplitude of the periodic function is e2

2C = 1
4EC .

For intermediate regimes it is easiest to calculate the ground state energy numerically by
diagonalizing HJJ(Q) for a finite number of |n〉-states in the interval −e < Q ≤ e. For
values of Q outside this interval the function is continued periodically. As long as EJ is not
much larger than EC a relatively small number of |n〉-states is sufficient. In the numerical
calculations used in the rest of this thesis we always use,

N|n〉-state = 15 , (2.24)

|n〉-states.

The ground-state energy EQ obtained from the Born-Oppenheimer approximation provides
an effective potential for the quasi-charge equation of motion [19],

L
d2

dt2
Q+

1

CL
Q+

d

dQ
EQ (Q) = V ext . (2.25)

We now assume that the measurement capacitance CL is so large that the characteristic
frequency of the L-CL-circuit,

ωLCL =
1

LCL
, (2.26)

is much smaller than all relevant frequency scales at which the system is probed. In this
case we can use the limit,

CL →∞ , (2.27)

L
d2

dt2
Q+

d

dQ
EQ (Q) = V ext . (2.28)

10



2.1. Duality of array elements 11

In this limit, the equations of motion of the CJL-model and of the voltage-biased quantum
phase slip element are approximately equivalent. The equivalence is only approximate as
the lowest Bloch-band energy EQ(Q) is not exactly cosine-shaped. It approaches a cosine
with increasing Josephson coupling energy. The duality between the two models becomes
exact in the limit ECJLJ � ECJLC .

The Hamiltonian of the system in the large CL limit is given by,

H =
1

2L

(
ΦL
)2

+ EQ (Q)− V extQ . (2.29)

The characteristic frequency of oscillations given by the equation of motion Eq.2.25 is the
new lower plasma frequency,

ω<p ≈
√
ELEmaxQ , (2.30)

EL =
1

2L
Φ2

0 , (2.31)

where EL is the inductive energy of L. Due to the large inductance it is much smaller
than the original plasma frequency of the Josephson junction,

EL � EJ , (2.32)

ω<p � ω>p . (2.33)

Driving the CJL-circuit at large frequencies ω comparable to ω>p forces the quasi-charge to
change on timescales of 1/EJ . The quasi-charge does not change adiabatically compared
to the Cooper pair tunnelling and the Born-Oppenheimer approximation is no longer valid.

The approximate equivalence is linked to the energy scale EL introduced by the large
inductance. It was shown in Ref.[31] that shunting a Josephson junction with a large
inductance introduces new energy-levels in the spectrum of the Josephson junction. The
scale of the level spacing of the eigenenergies of the bare Josephson junction is given by
the large plasma frequency of the junction ω>p . With the introduction of L, the energy
levels of the bare Junction split into new levels with a level spacing of the order of the
small plasma frequency ω<p .

2.1.2 QPS-element with enforced slow quasi-phase dynamics

Iext

ES

Lps

Q

QLCqC LC

Figure 2.5: The schematics of a quantum phase slip element parallel to a large capacitance
C in a current-biased circuit (PSC-model). The charge qC is the charge on the
large shunting capacitance C. The total charge that has flown through the
QPS-element is given by Q. The large measurement inductance LC decouples
the degrees of freedom Q and qC .

11



12 2. Array models and the zero-dimensional limit

The same type of approximate equivalence can be found between a current-biased QPS-
element and a current-biased Josephson junction. In this case the QPS-element is shunted
by a large capacitance C and is considered in the low frequency regime (PSC-model as
given in Fig.2.5),

LPSC =
1

2
LC

(
Q̇+ q̇C + Iext

)2
− 1

2C

(
qC
)2

+
1

2
Lps

(
Q̇
)2

+ ES cos
(π
e
Q
)
, (2.34)

where qC is the charge on the shunting capacitance, Q is the charge that has flown through
the QPS-element and Iext is the bias current.

The derivation of an effective equation of motion of the PSC-model is mathematically
identical to the derivation of the effective equation of motion of the CJL-model. The
equation of motion is now an equation of the quasi-phase Φ,

Φ =
∂LPSC
∂q̇C

. (2.35)

The effective quasi-phase Hamiltonian of the shunted QPS-element is,

HPSC =
1

2C

(
qC
)2

+
1

2LC
(Φ)2 + EΦ (Φ)− IextΦ , (2.36)

where EΦ(Φ) is the effective quasi-phase potential. We assume that the measurement
inductance LC is large compared to all other scales of the system, LC →∞. The Hamil-
tonian is dual to the effective Hamiltonian of the CJL-model Eq.2.29,

HPSC =
1

2C

(
qC
)2

+ EΦ (Φ)− IextΦ , (2.37)

and corresponds to the Hamiltonian of a current-biased Josephson junction Eq.2.1. The
function of a Josephson junction in a superconducting circuit can also be fulfilled by a
QPS-element in a high capacitance environment. In Refs.[32, 33] a Cooper pair box and
a superconducting single electron transistor (SSET) where the Josephson junctions are
replaced by quantum phase slip elements were proposed. The new devices were called the
phase slip box and the QPS transistor.

2.2 The Josephson junction array

We now derive the Hamiltonian used to describe the Josephson junction array shown in
Fig.2.6. The Josephson junction array consists of superconducting islands connected by
Josephson junctions with capacitance CJ and Josephson coupling energy EJ . Capacitances
C0 couple the islands to the ground.

Considering two neighbouring islands inside the array the state of this array section in a
Lagrangian description is given by the phase-differences φqi of the Josephson junction and
ψqi and ψqi+1 of the capacitances C0. An array segment is shown in Fig.2.7.

The Lagrangian of this section is,

Li =
1

2
CJ

(
φ̇qi

)2
+

1

2
C0

(
ψ̇qi

)2
+ EJ cos

(
2π

Φ0
φqi

)
, (2.38)

where the phase differences φq and ψq are given in units of the magnetic flux quantum,

Φ0 =
h

2e
=
π~
e
. (2.39)

12



2.2. The Josephson junction array 13

+
−V + U

EJ

C0

EJ

C0

EJ

C0 C0

EJ

C0

EJ +
− U

Figure 2.6: A sketch of the boundary-biased Josephson junction array. The chain of N
superconducting islands is voltage-biased with an offset voltage U and a bias-
voltage V . Each island is coupled to the two neighbouring islands by Josephson
junctions and to the ground by the capacitance C0. The Josephson junctions
are characterized by the Josephson coupling energy EJ and the capacitance
CJ .

C0 ψqi−1

φqiCJ

2eni

2efi

EJ

ψqiC0

EJ

Figure 2.7: A segment from the bulk of the Josephson junction array. The state of the
segment is defined by the phase differences over the Josephson junction φqi and
the capacitances to the ground ψqi−1 and ψqi . The number of excess Cooper
pairs on the i-th island is given by ni. For each superconducting island we
include constant background-charges 2e fi. In the disorder-free model without
background-charges the frustration is zero fi = 0. Kirchhoff’s law and charge
neutrality of each island connect the degrees of freedom φqi , ψ

q
i and ni.

The phase degrees of freedom are connected by the conservation of electrical charge on
the island and Kirchhoff’s circuit law. The charge neutrality of the island leads to the
relation,

CJ φ̇
q
i + C0ψ̇

q
i − CJ φ̇

q
i+1 = 2e (ni + fi) , (2.40)

where ni is the number of excess Cooper pairs on the island compared to the equilibrium
number of Cooper pairs n0

i in the BCS condensate.

Additionally to the discrete number of Cooper pairs we include continuous disorder back-
ground charges 2e fi in our model. The background charges are determined by the di-
mensionless frustration fi. At this point we do not need to specify any particular disorder
model. It is sufficient to note that charge disorder is present in every realistic super-
conducting circuit containing small superconducting islands [34]. Microscopic sources of
disorder could include charge impurities or inhomogeneities in the substrate and the amor-
phous insulating layer of the Josephson junctions. We will present several specific models
of the probability distribution p(fi) in Ch.3.

Kirchhoff’s law connects the phase differences in a closed loop of the circuit to the enclosed
magnetic flux. We assume that no magnetic field is applied parallel to the fabrication plane
of the Josephson junction array. As the loop consisting of the Josephson junctions and the

13



14 2. Array models and the zero-dimensional limit

two capacitances C0 in the array segment is perpendicular to the fabrication plane, the
sum over the phase differences is zero,

φqi + ψqi − ψ
q
i−1 = 0 i ∈ {2, . . . N} . (2.41)

Real world experiments are conducted with finite size arrays. We do not use the theoretical
simplification of an infinite or semi-infinite array but consider a boundary biased finite-
size array. The terminating circuit loops (Fig.2.8) consist of one Josephson junction, one
capacitance C0 and the voltage source biasing the array with an offset voltage U and a
bias voltage V on the left and just the offset voltage U on the right.

+
−V + U

φq1CJ

2en1EJ

2ef1

EJ

C0 ψq1

EJ

C0 ψqN

φqN+1CJ

2enN

2efN

EJ +
− U

Figure 2.8: A sketch of the left and right terminating loops of the Josephson junction array.
The array contains N + 1 Josephson junctions but only N superconducting
islands. The capacitive energy term of the capacity C0 is missing from the
Lagrangian of the rightmost loop LN+1.

The Lagrangian of the left terminating loop L1 is the same as the one given for the bulk
of the array Li. The Lagrangian of the right loop,

LN+1 =
1

2
CJ

(
φ̇qN+1

)2
+ EJ cos

(
2π

Φ0
φqN+1

)
, (2.42)

is missing the term corresponding to the charging energy of the capacitance to the ground.
An array of N + 1 junctions has only N superconducting islands and by convention each
capacitor C0 is counted together with the left Josephson junction of the island. The N
equations of charge neutrality of the islands all have the same form, Eq.2.40. Kirchhoff’s
law is modified for both terminating loops,

φq1 + ψq1 = (V + U) t ,

φqN+1 − ψ
q
N = −U t . (2.43)

The full Lagrangian description of the model is now given by summing over the Lagrangians
of all single array segments,

L =
N∑

i=1

Li + LN+1 . (2.44)

We introduce the canonical conjugate variables of the phases φqi and ψqi , the charge qi on

the capacitances of the Josephson junctions and the charge qψi on the capacitances to the
ground,

qi =
∂L
∂φ̇qi

= CJ φ̇
q
i , (2.45)

qψi =
∂L
∂ψ̇qi

= C0ψ̇
q
i . (2.46)

14



2.2. The Josephson junction array 15

The energy of the system in terms of qi and qψi is given by,

E =
∑

i

1

2CJ
q2
i +

1

2C0

(
qψi

)2
− EJ cos

(
2π

Φ0
φi

)
+

1

2C
q2
N+1 . (2.47)

In this formulation of the problem the energy is not the Hamiltonian function as it contains
4N + 2 continuous variables that are not independent. Using charge neutrality (Eq.2.40)
and Kirchhoff’s law (Eq.2.41 and Eq.2.43), the energy can be expressed in terms of the
discrete Cooper pair numbers ni and the phase differences φqi . The energy in terms of φqi
and ni gives the Hamiltonian of the problem,

H =
∑

i j

1

2
(2 e)2 (ñi + fi)

(
C−1
m

)
ij

(ñj + fj)−
∑

i

EJ cos (φqi ) , (2.48)

cos (φqi ) =
∑

i

|ni+1 + 1, ni − 1〉 〈ni+1, ni|+ |ni+1 − 1, ni + 1〉 〈ni+1, ni|+ h.c. , (2.49)

ñi = ni + (V + U) δi,1 − Uδi,N . (2.50)

The inverse capacitance matrix
(
C−1
m

)
ij

determines the Coulomb-interaction between charges

on sites i and j that is mediated by the capacitances CJ and C0 [35, 12],

(Cm)ij = (2CJ + C0) δi,j − CJδi,j−1 − CJδi,j+1 . (2.51)

The modified number of Cooper pairs ñi was introduced to take into account the charging
energy due to the applied voltages V and U .

Here it is useful to introduce the Cooper pair charging energy,

EC =
(2 e)2

2CJ
, (2.52)

that sets the relevant energy scale associated with the capacitance matrix.

For large arrays the inverse of the capacitance matrix is approximately [15, 36],

(
C−1
m

)
ij
≈ 1

2 sinh(λ−1)

(
1

CJ
e−
|i−j|
λ − δij

1

2CJ

)
. (2.53)

The relevant length scale of the interaction between charges is given by λ [15],

λ = cosh−1

(
1 +

C0

CJ

)
. (2.54)

We always assume C0 � CJ where λ can be approximated by,

λ ≈
√
CJ
C0
≡ Λ . (2.55)

The length Λ is given in the natural units of the array, the number of array sites between
two points. In many condensed matter problems the model is defined on a discrete lattice
but the number of array-sites is huge and not exactly known (take for example any tight
binding model of a semiconductor sample of experimentally realistic size). In this case
it is most convenient to use the lattice constant a0 to define all lengths in terms of real
spatial distance. The parameters of the problem are measured in the form of densities per
unit length. In an Josephson junction array for example, the capacitance density would be
cj = CJ

a0
. Indeed this has also been used in parts of the literature on Josephson junction

arrays [3, 4].

15



16 2. Array models and the zero-dimensional limit

The Josephson junction arrays we consider are deliberately fabricated. The number of
array sites is exactly known and the parameters like CJ can be directly measured without
resorting to capacitance densities (for a discussion on the measurement of CJ see also
Sec.3.4). It is more convenient to work in the dimensionless units of inter-array-site dis-
tances. We will do so for the rest of this work and all distances have to be understood to be
in the dimensionless units. The results we obtain do not depend on the actual real-space
size of the arrays. They are influenced by the physical size of the array only insofar, as
the other parameters EJ , CJ and C0 depend on the size of the Josephson junction or the
superconducting islands.

Taking the Cooper pair number n̂i to be a quantum operator the canonical conjugate
operator is the exponential of the superconducting phase of the i-th island θ̂i [35, 37],

[
n̂i, e

±iθ̂j
]

= ±δi,jeiθ̂j . (2.56)

We expressed the Hamiltonian in terms of the phase difference φ instead of the supercon-
ducting phase. With,

φ̂qi = θ̂i − θ̂i−1 , (2.57)
[
θ̂i, θ̂j

]
= 0 , (2.58)

we obtain,
[
n̂i, e

±i 2π
Φ0
φ̂qj

]
= ±

(
δi,je

i 2π
Φ0
φ̂qj + δi,j−1e

i 2π
Φ0
φ̂qj

)
, (2.59)

as the commutation relation between the operators in the Hamiltonian Eq.2.48.

Writing the Hamiltonian as a function of Cooper pair occupation and hopping operators is
especially useful when considering transport processes in the arrays. Recently the model
in the Cooper pair representation has been used in kinetic-Monte-Carlo simulations of the
electrical transport in Josephson junction arrays [15].

2.2.1 The quasi-charge representation

A different well established (see for example Refs.[3, 4, 24, 35, 12]) representation of the
Josephson junction arrays introduces a continuous degree of freedom, the quasi-charge
Qi. Using this representation an effective low-frequency model, similar to the sine-Gordon
model can be obtained. The derivation of the sine-Gordon-like model will be discussed
later in Sec.2.2.2.

The idea behind the quasi-charge model is to decouple the discrete degrees of freedom of dif-
ferent array-sites by introducing a new continuous degree of freedom. It was demonstrated
in Ref.[12] and Ref.[39] that this operation is equivalent to the Hubbard-Stratonovich trans-
formation in field theory.

The first step in the introduction of the quasi-charge is defining the fields mi, the cumu-
lative number of Cooper pairs, and the quasi-frustration Fi,

mi = −
i−1∑

j=1

nj i > 1 , (2.60)

ni = mi −mi+1 , (2.61)

Fi =
i−1∑

j=1

fj i > 1 . (2.62)

16



2.2. The Josephson junction array 17

Figure 2.9: Schematic picture to illustrate the difference between the discrete degrees of
freedom ni and mi. The first gives the number of Cooper pair on the i-th
island of the array, the later gives the cumulative number of Cooper pairs on
the first (i− 1)-islands

Instead of writing the Hamiltonian purely in terms of mi, the quasi-charge Qi is introduced.
In terms of the original degrees of freedom, Qi is given by,

Qi =

i−1∑

j=1

(qψj ) + q1 , (2.63)

qi =
i−1∑

j=1

(qψj + 2e fj) + 2e
i−1∑

j=1

ni + q1 (2.64)

= Qi + 2e Fi + 2e−mi , (2.65)

qψi = Qi+1 −Qi , (2.66)

and the energy of the array is given by,

E(Q,m) =

N∑

i=1

[
(2em̂i − 2eFi −Qi)2

2CJ
+

(Qi −Qi+1)2

2C0
− EJ cos

(
2π

Φ0
φi

)]

− (V + U)Q1 + UQN+1 , (2.67)

Q ≡ {Qi} , (2.68)

m ≡ {mi} . (2.69)

By introducing mi, Fi and the quasi-charge Qi we change from a picture where the array
is divided into N equal islands to a picture where the array is divided into islands of
successively increasing size, as seen in Fig.2.9. Increasing the island-number i, the islands
described by ni move along the array, the islands given by mi expand along the array. Both
n1 and m2 give the Cooper pair occupation of the first superconducting island. The degree
of freedom n2 corresponds to the second island but m3 gives the number of Cooper pairs
of the first two islands of the array. The same is the case for the frustration fi compared
to the quasi-frustration Fi. The quasi-charge Qi+1 corresponds to the total charge on the
capacitances to the ground C0 of the first i islands. Assuming that at the time t0 the
quasi-charge is zero throughout the array, the quasicharge Qi at a time t1 also gives the
amount of charge that has flown through the i-th junction between t = t0 and t = t+ 1.

Before we go on to discuss the nature of the quasi-charge we want to note that in the
definition of mi and Fi, Eq.2.60 and Eq.2.62, m1 and F1 are not well defined. The degrees

17



18 2. Array models and the zero-dimensional limit

of freedom m1 and F1 are introduced in the transition to the Hamiltonian Eq.2.67. In
the transition from the number of Cooper pairs ni to the fields mi we use the fact that
the Josephson junction arrays are essentially open systems. The Hamiltonian Eq.2.48
describes a closed quantum system of finite size. Without adding additional terms to the
Hamiltonian, Cooper pairs can not tunnel in and out of the system via the leads. This
is not a problem in the infinite system limit and the question of the correct definition of
boundary terms in Eq.2.60 and Eq.2.62 can be compensated by adding a constant offset
at i = −∞ [35].

As we explicitly deal with finite systems, we have to be more careful here. The mi are
essentially a measure of the number of Cooper pairs that have tunneled through the i-th
Josephson junction. In a closed system, Cooper-pairs can not tunnel into the array and
m1 is zero. When going from Hamiltonian H Eq.2.48 to E(Q,m) Eq.2.67, we use the
Cooper pair tunnelling between array and leads, to implicitly introduce an new discrete
degree of freedom, the number of Cooper pairs exchanged between the Josephson junction
array and the leads. In this way we go from N discrete degrees of freedom ni to the N + 1
degrees of freedom mi in Eq.2.67. The field m1 is a normal degree of freedom in E(Q,m).
The quasi-disorder on the first site will be zero, F1 = 0. The array has only N islands
with N background charges fi. The open system character does not change that. The
superconducting leads do not carry a background-charge with respect to the ground of the
superconducting circuit.

It is important to take the open-system character into account here. Failing to introduce
m1 as an additional degree of freedom would lead to a potential term in E(Q,m) that
grows infinitely with increasing Q1. It would be impossible to describe any transport
processes in the quasi-charge model. This has to be expected for a model in which the
array is decoupled from the leads.

The quasi-charges we introduced in E(Q,m) are strictly speaking not independent degrees
of freedom. The Qi can be expressed as functions of the fields mi with the help of the
charge neutrality condition (Eq.2.40) and Kirchhoff’s law (Eq.2.41 and Eq. 2.43) . The
set of equations that connect Qi and mi can also be directly obtained from E(Q,m) by
minimising E(Q,m) with respect to the Qi. The solutions of the set of equations,

∂

∂Qi
E(Q,m) = 0 , (2.70)

determines the quasi-charge configuration {Qi} that minimizes the energy E(Q,m) for a

given set of {mi} [35, 39]. In the same way the relation between qi, q
ψ
i and ni can be

obtained from the Lagrangian Eq.2.44 via the Euler-Lagrange equations.

The introduction of the quasi-charge corresponds to a Hubbard-Stratonovich transforma-
tion in field theory [35, 39]. In the Hubbard-Stratonovich transformation an additional
field is introduced into the path-integral that determines the partition function [40, 41],

Z =

∫ ∏

i

DmiDφ
q
i e

i
∫
dt
[∑

imiφ̇
q
i−
∑
i,j(2e)

2(mi−Fi)Dij(mj−Fj)+
∑
i EJ cos

(
2π
Φ0
φqi

)]

= N
∫ ∏

i

DQiDmiDφ
q
i e

i
∫
dt[
∑
imiφ̇

q
i−E(Q,m)] , (2.71)

Dij =
(
C−1
m

)
i+1,j+1

+
(
C−1
m

)
i,j
−
(
C−1
m

)
i+1,j

−
(
C−1
m

)
i,j+1

, (2.72)

where N is a normalization factor that compensates the introduction of the additional
functional field integration over Qi. The additional fields Qi decouple the fields mi and
mj for different sites i 6= j. Originally they are coupled by the matrix Dij , the inverse
capacitance matrix in the mi-basis.

18



2.2. The Josephson junction array 19

2.2.2 The sine-Gordon-like model

In this section we discuss the derivation of the effective sine-Gordon-like model that has
often been used in Literature [3, 4, 24] to describe the behaviour of Josephson junction
arrays. In most papers that use the sine-Gordon-like model it was derived under the
assumption that large inductances are present in the array. We will discuss this case in
the next section Sec.2.2.3. It has been recently conjectured in Refs.[12, 39] that a sine-
Gordon-like model also gives a valid description of Josephson junction arrays that do not
a priori contain large inductances L. We follow the logic of the derivation given in Ref.[39]
for the inductance-free case.

Starting from the energy E(Q,m), one arrives at the effective model for the quasi-charge
Qi by tracing out the discrete degrees of freedom of the fields mi. For the general case this
is a non-trivial problem. We make the assumption that the quasi-charges Qi change very
slowly in time compared to the Cooper pair hopping. The Qi can be regarded as classical
constant parameter in a Hamiltonian of the form,

Hm ({Q}) =
N∑

i=1

(2em̂i − 2eFi −Qi)2

2CJ
− EJ (|mi + 1〉 〈mi|+ h.c.) , (2.73)

that operates on the Hilbert-space of the occupation numbers mi. With this assumption
we can use the Born-Oppenheimer approximation [24, 12].

At this point a word of caution is in order. We must not violate the Born-Oppenheimer
approximation by applying an external driving force at frequencies ωext that would drive
Landau-Zener transitions in the system. Save driving frequencies meet the condition,

ωext �
E2
J

EC
. (2.74)

If the system is externally driven at higher frequencies, the driving can lead to transitions
from the mi-ground-state to higher states that are excluded in the Born-Oppenheimer
approximation. Practically this is not too much of a problem. Most experiments we are
interested in [3, 4, 9, 39] are conducted in the DC regime with ωext = 0.

When diagonalising the Cooper pair Hamiltonian we see that for a fixed quasi-charge con-
figuration {〈Q〉} the Hamiltonian H ({〈Q〉}) separates into N + 1 identical single particle
Hamiltonians [24, 12] of the fields mi of each island,

Hi(Qi) =
(2em̂i − 2eFi −Qi)2

2CJ
− EJ (|mi + 1〉 〈mi|+ h.c.) . (2.75)

The single particle is to be understood as a fictitious single particle that can move on
a discrete lattice in a potential where the lattice position is determined by the operator
m̂i. The Hamiltonians for each site differ only by the value of the quasi-charge Qi and
frustration Fi on the sites. The problem simplifies significantly as only the ground-state
of a single particle Hamiltonian Hi(Q) has to be found for all relevant values of Q. This
was exactly the reason behind the introduction of the quasi-charge Qi and the fields mi

in Sec.2.2.

The Hamiltonian Hi(Q) can be diagonalised in the same way as the Josephson junction
contribution to the Hamiltonian of the CJL-model in Sec.2.1. From the diagonalization in
the Born-Oppenheimer approximation we obtain the Hamiltonian of the effective quasi-
charge model where the ground state energy of Hi(Q) provides an effective potential term,

HQ =
∑

i

(Qi −Qi+1)2

2C0
+ EQ(Qi) . (2.76)
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20 2. Array models and the zero-dimensional limit

Coming back to the remark on introducing the additional degree of freedomm1, we can now
see what would happen if we do not take into account the fact that Josephson junction
arrays are open quantum systems. In that case the field m1 of the first island is not
an independent degree of freedom. The Hamiltonian Hm ({Q}) does not contain m1-
tunnelling terms and the single particle Hamiltonian of the first site is simply a quasi-charge
dependent energy term with constant m1,

H1(Q1) = E1
Q(Q1) =

(2em1 −Q1)2

2CJ
. (2.77)

The parabolic potential E1
Q(Q1) in HQ diverges as the absolute quasi-charge on the first

site goes to infinity |Q1| → ∞. It prevents DC charge transport through the array.The
effective quasi-charge model of a closed Josephson junction array correctly predicts that no
long term current can flow through an array without Cooper-pairs tunnelling between the
array and the leads. Currents can only flow in the array to redistribute charge internally
to compensate external perturbations.

The Born-Oppenheimer approximation is exact in the full adiabatic limit of a vanishing
quasi-charge velocity,

vQi =
∂

∂t
Qi → 0 . (2.78)

Whenever vQi is finite one can consider corrections to the adiabatic assumption. In the
Josephson junction arrays these corrections give an inductive term in the effective quasi-
charge model [35, 12],

LQ =
∑

i

1

2
LB(Qi + Fi) (∂tQi)

2 − (Qi −Qi+1)2

2C0
− EQ (Qi + 2e Fi) + (V + U)Q1 − UQN+1 ,

(2.79)

HQ =
∑

i

1

2LB(Qi + Fi)

(
ΦL
i

)2
+

(Qi −Qi+1)2

2C0
+ EQ (Qi + 2e Fi)− (V + U)Q1 + UQN+1 ,

(2.80)

where LB(Q) is the quasi-charge dependent Bloch inductance [34]. The detailed derivation
of the Bloch inductance from time dependent perturbation theory and a discussion of the
valid parameter space can be found in Refs.[35, 12].

To give a short summary of the mechanism behind the appearance of the Bloch inductance
let us consider the degeneracy point of two parabolas m = 0 and m = 1 in Fig.2.10.
Neglecting the other |m〉-states, scanning through the degeneracy point with a constant
vQ is equivalent to the Landau-Zener problem [42, 43, 44, 45]. We assume the system is
in the lower band at infinite negative times t0 = −∞ and Q = −∞ and Q grows with the
constant velocity vQ until, at t1 = 0, the point of minimal level splitting between lower and
upper band is reached. The velocity vQ is kept constant so that the system moves away
from the degeneracy point. The probability that the finite velocity leads to a transition
from lower to upper band in the infinite time limit t→∞ is given by [12, 42],

P ≈ e−
π
2~E

2
J

2e
EC

1

|vQ| . (2.81)

If the velocity is small enough the system will still be in the ground-state in the infinite
time limit and no transition occurs.

During the time-evolution of the system state,

|ψ(t)〉 = α(t) |m = 0〉+ β(t) |m = 1〉 , (2.82)
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Figure 2.10: The degeneracy between the charging energies of the states |m = 0〉 and
|m = 1〉 (plotted in black) at Q = e is lifted by the Josephson coupling energy
EJ . Here we only plot two of the m-bands for simplicity. Moving the quasi-
charge through the degeneracy point with a finite velocity vQ leads to a mixing
between the upper |↑〉 and lower band |↓〉 in the vicinity of Q = e . Even when
no transition to the upper band occurs in the infinite time limit at Q → ∞,
the mixing around the degeneracy point incurs an energy cost.

the finite velocity of the classical parameter Q(t) leads nonetheless to a mixing pmix with
the upper band state,

pmix = 〈ψ(t) | ↑〉 6= 0 . (2.83)

The mixing with the upper band state increases with increasing velocity and decreasing
energy difference between the bands. As the energy difference depends on the value of the
quasi-charge Q so does the mixing pmix.

The mixing with the higher energy eigenstates of Hi(Q) carries an energy cost and leads to
an additional inductive term in the Hamiltonian of the effective quasi-charge model Eq.2.80
[35, 12]. The Bloch inductance is peaked around the avoided level crossings, Qi = e+n 2e,
where the level splitting is minimal. The peak Bloch inductance is large enough to slow
down the time evolution of the quasi-charge sufficiently to justify the Born-Oppenheimer
approximation [35, 12]. One can argue that the large value of LB(Q) makes the adiabatic
assumption self-consistent.

The self-consistency arguments presented here are more qualitative arguments than exact
quantitative mathematical statements. With the help of depinning-theory we will give
an estimated range of validity for the self-consistency argument in the following chapter,
Ch.3.

Equations of motion

The physical behaviour of the Josephson junction arrays is often directly obtained from
the equations of motion of the quasi-charge [3, 12]. The equations of motion following
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22 2. Array models and the zero-dimensional limit

from the Lagrangian LQ (Eq.2.79) are given by,

V dyn
i +

2Qi −Qi−1 −Qi+1

C0
+ VQ(Qi + 2e Fi) = 0, (2.84)

for the bulk,

V dyn
1 +

Q1 −Q2

C0
+ VQ (Q1) = V + U , (2.85)

for the leftmost island and,

V dyn
N+1 +

QN −QN+1

C0
+ VQ (QN+1 + 2e FN+1) = −U , (2.86)

for the rightmost island. We used the shorthand notation,

V dyn
i = LB(Qi + 2e Fi) Q̈i +

∂

∂Qi
LB(Qi + 2e Fi) Q̇

2
i . (2.87)

The function VQ(Q) is the quasi-charge derivative of the effective potential EQ(Q),

VQ (Q+ 2e F ) =
∂

∂Q
EQ(Q+ 2e F ) . (2.88)

From our previous discussion of the form of EQ(Q) (Fig.2.4) we know that, in the EJ ≥ EC
limit, VQ(Q) is sinusoidal. In the opposite limit, EJ � EC , it approaches the shape of a
saw function. As the potential EQ(Q), the voltage function VQ(Q) is 2e-periodic in the
quasi-charge. The limits of the amplitude V max

Q of VQ(Q) are given by,

V max
Q = max

Q∈[−e,e]
(VQ(Q))− min

Q∈[−e,e]
(VQ(Q)) , (2.89)

V max
Q →

{
π
e

1
4EC for EJ

EC
→ 0

0 for EJ
EC
→∞ . (2.90)

A sample of VQ(Q) for different ratios of EJ/EC is plotted in Fig.2.11.

The equations of motion Eq.2.84, Eq.2.85 and Eq.2.86 can be simplified by replacing the
Q-dependent Bloch inductance with a constant inductance, LB(Q)→ L, when modelling
of the onset of transport. In the insulating regime the quasi-charge velocity is zero and
the inductive term in the Hamiltonian gives no energy-contribution. Once the transport
threshold set by the potential EQ(Q) is overcome, the inductance determines the time-scale
of the acceleration of the charge transport. To find the value of the threshold the exact
value of LB(Q) is not important and we can use the simplified version of the equations of
motion,

LQ̈i +
2Qi −Qi−1 −Qi+1

C0
+ VQ (Qi + 2e Fi) = 0 , (2.91)

LQ̈1 +
Q1 −Q2

C0
+ VQ (Q1) = V + U , (2.92)

LQ̈N+1 +
QN −QN+1

C0
+ VQ (QN+1 + 2e FN+1) = −U , (2.93)

and the simplified Hamiltonian,

HQ =
∑

i

1

2L

(
ΦL
i

)2
+

(Qi −Qi+1)2

2C0
+ EQ(Qi)− (V + U)Q1 + UQN+1 . (2.94)
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Figure 2.11: A sample of quasi-charge dependent voltage functions VQ(Q) obtained from
the diagonalisation of the Q-dependent Hamiltonian Eq.2.75. Decreasing the
ratio between Josephson coupling energy and charging energy EJ

EC
changes the

form of the function from a sine to a saw-shape and increases the amplitude
of the periodic function.

We will use these simplified equations of motion in the next chapter Ch.3 to study the
switching voltage in the IV-curve of Josephson junction arrays.

We finally see why the effective quasi-charge model can also be referred to as the sine-
Gordon-like model. When taking the continuum limit of the equation of motion Eq.2.91
the coupling term between the quasi-charges on neighbouring sites takes the form of a
second spatial derivative [3],

LQ̈ (x, t) +
1

C0

∂2

∂x2
Q (x, t) + VQ (Q(x, t) + 2e F (x)) = 0 , (2.95)

and the equations of motion for the terminating islands Eq.2.92 and Eq.2.93 take the form
of boundary conditions [3],

1

C0

∂

∂x
Q (x, t)

∣∣∣∣
x=0

= V + U ,

1

C0

∂

∂x
Q (x, t)

∣∣∣∣
x=N

= −U . (2.96)

The continuum limit is justified when the typical length scale of the problem is large Λ� 1
and the quasi-charge can be expected to be a smooth function over many array sites.

For EJ � EC , the continuum limit can be approximated by,

LQ̈ (x, t) +
1

C0

∂2

∂x2
Q (x, t) +

π

e
EmaxQ sin

(π
e
Q (x, t) + 2π F (x)

)
= 0 , (2.97)
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24 2. Array models and the zero-dimensional limit

the sine-Gordon-equation with disorder in the potential term. In the same limit, EJ �
EC , the simplified equation of motion Eq.2.91 is the discrete version of the sine-Gordon-
equation also known as Frenkel-Kontorova equation [46]. In the general case the voltage
VQ(Q) is not sinusoidal but still 2e-periodic and bears a certain resemblance to a sine.
To introduce a short hand notation and to keep in mind that the resulting physics is
strongly connected to the exact sine-Gordon-model we call Eq.2.91, Eq.2.92 and Eq.2.93
the sine-Gordon-like model.

2.2.3 The Josephson junction array with additional inductances

Many works on Josephson junction arrays in the past have used a different circuit model
of the array than it was used in the previous sections. It was assumed that in each array
segment a large inductance L follows each Josephson junction [22, 23, 3, 4, 24], see also
Fig2.12 for an array segment with an additional inductance. With inductances present in
the array, the Lagrangian of a bulk array segment takes the form,

Li =
1

2
CJ

(
φ̇qi

)2
+

1

2
C0

(
ψ̇qi

)2
− 1

2L

(
ΦL
i

)2
+ EJ cos

(
2π

Φ0
φqi

)
, (2.98)

where ΦL
i is the phase dropping over the inductance in units of Φ0.

C0 ψqi−1

φqiCJ

L

ΦL
i

2efi

EJ

ψqiC0

EJ

Figure 2.12: In the literature [22, 23, 3, 4, 24] Josephson junction arrays with large in-
ductances L after each Josephson junction are often considered. The large
inductance introduces an additional degree of freedom, the phase-difference
ΦL
i over the inductance.

In the presence of inductances L the phase-drop over the inductance has to be considered
in Kirchhoff’s law Eq.2.41 and one obtains,

φqi + ΦL
i + ψqi − ψ

q
i−1 = 0 i ∈ {2, . . . N} , (2.99)

as a sum rule for the phase differences in the bulk of the array. The boundary Lagrangians
are modified in the same way as for the array without inductances. The left Lagrangian
L1 is given by the bulk Li and the right loop Lagrangian,

LN+1 =
1

2
CJ

(
φ̇qN+1

)2
− 1

2L

(
ΦL
N+1

)2
+ EJ cos

(
2π

Φ0
φqN+1

)
, (2.100)

is missing the 1
C0

-term. Kirchhoff’s law for the terminating loops is given by,

φq1 + ΦL
1 + ψq1 = (V + U) t ,

φqN+1 + ΦL
N+1 − ψqN = −U . (2.101)
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2.2. The Josephson junction array 25

As before we can define the fields mi, the quasi-frustration Fi and the quasi-charge Qi,

mi = −
i−1∑

j=1

nj , (2.102)

Fi =
i−1∑

j=1

fj , (2.103)

Qi =
i−1∑

j=1

(qψj ) + q1 . (2.104)

The quasi-charge Qi is the canonical conjugate to the phase ΦL
i dropping over the induc-

tances,

[
ΦL
k , Ql

]
= iδk,l . (2.105)

Due to the additional independent degrees of freedom ΦL
i , the quasi-charge is not in-

troduced by a Hubbard-Stratonovich transformation. In the presence of inductances the
introduction of the quasi-charge is essentially equivalent to a linear transformation [3, 24].

This does not only hold for large inductances L as we assume in this section but also for
arbitrarily small inductances. From the start the system has N+1 more degrees of freedom
than the array without inductances. The equations of charge neutrality and Kirchhoff’s
law eliminate 2N+1 independent degrees of freedom from the problem by expressing them
as functions of other variables. Without the ΦL

i introduced by the inductances L this is

sufficient to express all original continuous degrees qi, q
psi
i as functions of the Cooper pair

number ni. With the inductances two sets of independent variables remain, the discrete
ni and the continuous qψi . The quasi-charges Qi and the mi are therefore independent
degrees of freedom.

Naturally the quasi-charge can be introduced in this way for the models that assume large
inductances as in Eq.2.98 and Fig.2.12. The argument is even valid for infinitesimal induc-
tances, L = Linf , as long as the ΦL

i are not exactly zero. A model without any inductances
in the Hamiltonian H Eq.2.47 relies on the assumption that the charge distribution on each
superconducting island is in equilibrium at all times. A change in the phase difference over
the capacitances connecting the island to its neighbours leads to an instantaneous redis-
tribution of charge between the capacitances CJ and C0. This is of course not exactly
correct in the microscopic model of an array island. A shift in the density distribution of
the superconducting condensate takes a small but finite amount of time.

The delay in the response of the charge distribution to the applied voltage corresponds
to a non-vanishing inductance Linf of the island. However the inductance Linf can be
infinitesimal compared to all other parameters of the model. We also want to note that
the microscopic argument for the presence of an infinitesimal Linf is only relevant as far
as one can write down the Hamiltonian H ({Q}) Eq.2.67 without invoking a Hubbard-
Stratonovich transformation. The number of required assumptions in the derivation of the
effective sine-Gordon model is only reduced in the presence of large inductances L.

Writing down the Hamiltonian in the quasi-charge representation,

H
(
{Q̂}

)
=

N∑

i=1

1

2L

(
ΦL
i

)2
+

(
2em̂i − 2eFi − Q̂i

)2

2CJ
+

(
Q̂i − Q̂i+1

)2

2C0

− EJ (|mi + 1〉 〈mi|+ h.c.) , (2.106)
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26 2. Array models and the zero-dimensional limit

we see why the derivation of the effective quasi-charge model is more robust in the presence
of large inductances L. So far the slow rate of change of the quasi-charges has only been
postulated. The inductive energy term in the Hamiltonian has the form of a pseudo
mass term. Fast changes in the quasi-charge carry an additional energy cost that grows
linearly with L. A large inductance forces Qi to change adiabatically, so that the Born-
Oppenheimer approximation is valid without resorting to the Bloch-inductance and self-
consistency arguments. The equations of motion of the quasi-charge can be obtained in
the same way as the equations of motion in the inductance-less case. In the equations of
motion, the pure Bloch inductance LB(Q) has to be replaced by a combination Lcomb(Q)
of the microscopic inductance L and the emergent inductance LB(Q),

LB(Q)→ Lcomb(Q) = L+ LB(Q) . (2.107)

We assume that the inductances L are large, L� LB(Q), and obtain the simplified model,

Lcomb(Q) = L , (2.108)

with,

LQ̈i +
2Qi −Qi−1 −Qi+1

C0
+ VQ (Qi + 2e Fi) = 0 , (2.109)

LQ̈1 +
Q1 −Q2

C0
+ VQ (Q1) = V + U , (2.110)

LQ̈N+1 +
QN −QN+1

C0
+ VQ (QN+1 + 2e FN+1) = −U , (2.111)

and the effective quasi-charge Hamiltonian,

HQ =
∑

i

1

2L

(
ΦL
i

)2 (Qi −Qi+1)2

2C0
+ EQ (Qi + 2e Fi)− (V + U)Q1 + UQN+1 . (2.112)

2.3 The quantum phase slip array

Although the Josephson junction array is the main topic of this work, we also want to
discuss the dual model to the Josephson junction array, the quantum phase slip array (QPS-
array). The QPS-array is in large parts governed by the same mathematical equations as
the Josephson junction array, except that the role of charge is exchanged with the role of
phase and the role of voltage is exchanged with the role of current.

A circuit of N + 1 quantum phase slip elements that is arranged in a ladder geometry
(Fig.2.13) is dual to the Josephson junction array of N superconducting islands. The
vertical connections in the array are the QPS-elements. They are characterized by the
inductance Lps and the phase slip energy Es. The phase difference over the i − th QPS-
element is φi. The horizontal elements are superconducting connections. In the upper rail
the connection has a kinetic inductance L0 and a vanishing quantum phase slip amplitude.
The upper rail corresponds to the capacitance to the ground in the Josephson junction
array. The phase differences over the inductances L0 in the upper rail is given by ψi. The
lower rail has a vanishingly small inductance. Again all phase-differences are given in units
of Φ0. A sketch of two loops of the ladder with all relevant phases is shown in Fig.2.14.

The QPS-array is dual to our model of the Josephson junction array.

In the quantum phase slip ladder Kirchhoff’s law takes the form,

φi + ψi − φi+1 = Φ0 (ni + fi) , (2.113)
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2.3. The quantum phase slip array 27

Iext1
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L0

Lps

IextN+1

Figure 2.13: A sketch of the quantum phase slip ladder. Each loop of the ladder con-
tains the horizontal inductance L0 and two vertical connections, the quantum
phase slip elements. The quantum phase slip elements are characterized by
an inductance Lps and the phase slip energy Es.

Es Lps

Iexti−1

Φ0ni−1
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Figure 2.14: A segment of the QPS-ladder in Fig.2.13. In each loop the sum over the
phases dropping over the QPS-elements φi and −φi+1 and the phase ψi over
the inductance L0 is equal to the total magnetic flux in the loop given by
the number of flux quanta ni and the external frustration fi. The sum over
the external bias current −Iexti , the horizontal currents Iψi−1 and −Iψi and the

current through the QPS-element Iφi is zero according to Kirchoff’s circuit
laws.

where ni is the number of magnetic flux quanta Φ0 in the i-th loop of the array, as seen
in Fig.2.14. Together with the magnetic frustration fi it gives the total magnetic flux
through the loop. The flux quanta in the loops play the same role as the excess Cooper
pairs on the superconducting islands of the Josephson junction array. A quantum phase
slip through the i-th QPS-element is a tunnelling event of one flux quantum from loop
i− 1 to loop i.

Contrary to the disordered background charges in Josephson junction arrays we do not
expect a large number of disordered sources of magnetic flux in the background of the
QPS-arrays. The frustration fi can be assumed to be zero if no further external sources
of magnetic frustration are present. It is however very simple to produce a homogeneous
frustration by applying a magnetic field. The fi are simply given by the external magnetic
flux per loop divided by the flux quantum Φ0. The homogeneous frustration corresponds to
the offset voltage U in the Josephson junction array model. Both set a chemical potential
or preferred filling factor for the Cooper pairs or flux quanta in the respective systems.
We will further discuss some consequences of externally controlled frustration at the end
of this chapter in Sec.2.5.
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28 2. Array models and the zero-dimensional limit

The second set of equations that reduces the number of independent degrees of freedom
in the quantum phase slip ladder is derived from the sum rule for the electric currents at
each intersection of superconducting wires. As the intersections can not be net sources of
charge the net current has to be zero,

∑

i

Ii = 0 . (2.114)

Considering the currents of the upper intersection between two loops in the bulk of the
array in Fig.2.14, the sum of the two currents Iψi through the inductances L0 and the

current through the QPS-element Iφi has to be equal to the current Iexti leaving the array,

−Iphii + Iψi−1 − I
ψ
i = Iexti , (2.115)

−qφi + qψi−1 − q
ψ
i = Qexti , (2.116)

where qψi and qφi are the total charges that have passed through the i-th inductances L0

and Lps and Qexti is the total charge that has left the array at intersection i,

Iψi = q̇ψi , Iφi = q̇φi , (2.117)

Iexti = Q̇exti . (2.118)

The Qexti provide the biasing of the QPS-array. The analogue to the boundary biasing in
the Josephson junction array is a situation where only Qext1 and QextN+1 are nonzero.

Using Faraday’s law of induction,

İφi =
1

Lps
φ̇i , (2.119)

İψi =
1

L0
ψ̇i , (2.120)

we can express Kirchhoff’s law Eq.2.113 in terms of the flown charges,

Lpsq̇
φ
i + L0q̇

ψ
i − Lpsq̇

φ
i+1 = Φ0 (ni + fi) . (2.121)

The conditions connecting the flown charges to the discrete number of flux quanta are
dual to Kirchoff’s law and the charge neutrality condition Eq.2.41, Eq.2.43 and Eq.2.40 in
Josephson junction arrays.

The Lagrangian for a bulk loop of the quantum phase slip ladder contains the inductive
energy of the phase differences over Lps and L0 and the cosine of the charge flown through
the QPS-element in the potential. It is given by,

Lpsi =
1

2
Lps

(
q̇φi

)2
+

1

2
L0

(
q̇ψi

)2
+ Es cos

(π
e
qφi

)
. (2.122)

Just as for the Josephson junction array, the Lagrangian of the right terminating loop and
the current sum rule Eq.2.116 for both terminating loops have to be adjusted,

qφ1 + qψ1 = Qext1 ,

qφN+1 − q
ψ
N = QextN+1 . (2.123)

This time the inductive term of the horizontal superconducting connections is missing from
the last Lagrangian as there are only N horizontal connections,

LpsN+1 =
1

2
Lps

(
q̇φN+1

)2
+ Es cos

(π
e
qφN+1

)
, (2.124)

28



2.3. The quantum phase slip array 29

so that the total Lagrangian of the ladder is the sum,

Lps =
N∑

i=1

Lpsi + LpsN+1 . (2.125)

From now on we can follow the same mathematical derivation as for the Josephson junction
arrays. We quickly present the results, all explanations and discussion from the Josephson
array derivation apply analogously under the exchange of the role of charge and phase as
well as capacitance and inductance. The quantum phase slip ladder Hamiltonian, Hps, is
given by,

Hps =
∑

i

1

2Lps
φ2
i +

1

2L0
(ψi)

2 − Es cos
(π
e
qφi

)
+

1

2Lps
φ2
N+1 . (2.126)

As a function of the discrete numbers ni of flux quanta Φ0 in the loops, the Hamiltonian
takes the form,

Hps =
∑

i j

1

2

(
Φ0 (ni + fi) +Qexti

) (
L−1
m

)
ij

(
Φ0 (nj + fj) +Qextj

)
−
∑

i

Es cos
(π
e
qφi

)
,

(2.127)

with,

cos
(π
e
qφi

)
=
∑

i

(|ni+1 + 1, ni − 1〉 〈ni+1, ni|+ |ni+1 − 1, ni + 1〉 〈ni+1, ni|+ h.c.) ,

(2.128)

where Lm is the inductance matrix that has the same function as the capacitance matrix
Cm in the Josephson junction array,

(Lm)ij = (2Lps + L0) δi,j − Lpsδi,j−1 − Lpsδi,j+1 . (2.129)

The relevant energy scale of the interaction between two flux quanta in different loops is
determined by the magnetic energy EL,

EL =
1

2Ls
Φ2

0 . (2.130)

The length scale Λ is now the square root of the ratio of the two inductances of the array,

Λ =

√
Lps
L0

. (2.131)

Instead of a quasi-charge Qi we define a quasi-phase Φi, along with the fields mi and the
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30 2. Array models and the zero-dimensional limit

quasi-frustration Fi,

mi = −
i−1∑

j=1

nj i > 1 , (2.132)

ni = mi −mi+1 , (2.133)

Fi =
i−1∑

j=1

fj i > 0 , (2.134)

Φi =

i−1∑

j=1

(ψj) + φ1 , (2.135)

φi =

i−1∑

j=1

(ψj + Φ0 fj) + Φ0

i−1∑

j=1

ni + φ1 (2.136)

= Φi + Φ0 Fi − Φ0mi , (2.137)

ψi = Φi+1 − Φi . (2.138)

By using either a Hubbard-Stratonovich transformation or by including infinitesimal ca-
pacitances Cinf parallel to the QPS-element, the quasi-phases Φi are introduced into the
QPS-ladder Hamiltonian and the mi from different loops of the ladder are decoupled. As
for the infinitesimal inductances Linf in the Josephson junction array, we want to note
that the presence of capacitances Cinf is realistic from a microscopic point of view. The
horizontal superconducting connections in the upper and lower rail with inductance L0

are superconducting wires with a finite length in real space. In principle a geometric ca-
pacitance exists between the upper and lower rail, it will however be small compared to
the other parameters of the array.

Finally we arrive at the dual Hamiltonian to the quasi-charge HamiltonianH ({Q}) Eq.2.67
of the Josephson junction array,

Hps ({Φ}) =

N∑

i=1

(Φ0mi − Φ0Fi − Φi)
2

2Lps
+

(Φi − Φi+1)2

2L0
+ ΦiQ

ext
i − Es cos

(π
e
qφi

)
.

(2.139)

2.3.1 The quasi-phase model

Due to the duality of the models we can map everything we did to obtain an effective
model of the Josephson junction chain to the quantum phase slip ladder. An effective
quasi-phase model for a single QPS-element in a superconducting ring was developed in
Ref.[28]. As the ladder-model in the Born-Oppenheimer approximation separates into N
independent Hamiltonians the derivation of the effective potential in Ref.[28] is also valid
for a QPS-ladder. We will quickly give the most important steps in the derivation of the
quasi-phase model of the ladder for later reference.

Taking the quasi-phases Φi to change adiabatically compared to the phase slip rate Es,
we can regard {Φi} as a set of classical parameters of the quantum phase slip ladder
Hamiltonian Hps ({Φ}). Like the Josephson junction array Hamiltonian, it separates into
N + 1 single particle Hamiltonians,

Hps
i (Φi) =

(Φ0m̂i − Φ0Fi − Φi)
2

2Lps
− Es (|mi + 1〉 〈mi|+ h.c.) , (2.140)
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2.3. The quantum phase slip array 31

where the phase-slip inductance Lps takes the place of the Josephson junction capacitance
CJ and the phase slip energy Es the place of the Josephson energy EJ . An effective
potential for the quasi-phase is obtained from the ground-state energy of Hps

i (Φi),

EΦ(Φ) = 〈g.s.| (Φ0m̂− Φ)2

2Lps
− Es (|m+ 1〉 〈m|+ h.c.) |g.s.〉 . (2.141)

Again higher order corrections to the Born-Oppenheimer approximation in the finite ve-
locity of the quasi-phase give an additional term in the Lagrangian. As inductance and
capacitance are dual one obtains an effective capacitance Ceff (Φ) instead of a Bloch in-
ductance,

LΦ =
∑

i

1

2
Ceff (Φi + Φ0Fi) (∂tΦi)

2 − (Φi − Φi+1)2

2L0
− EΦ (Φi + Φ0Fi) + Iexti Φi , (2.142)

HΦ =
∑

i

1

2Ceff (Φi + Φ0Fi)

(
QΦ
i

)2
+

(Φi − Φi+1)2

2L0
+ EΦ (Φi + Φ0Fi)− Iexti Φi , (2.143)

where QΦ is the canonical conjugate of the quasi-phase Φi. The equations of motion of
the bulk are given by,

Idyni +
2Φi − Φi−1 − Φi+1

L0
+ IΦ

(
Φi + FΦ

i

)
= Iexti , (2.144)

with the short-hand notation,

Idyni = Ceff
(
Φi + FΦ

i

)
Φ̈i +

∂

∂Φi
Ceff

(
Φi + FΦ

i

)
Φ̇2
i , (2.145)

FΦ
i = Φ0Fi . (2.146)

For the left and right terminating loops one obtains,

Ceff (Φ1) Φ̈1 +
∂

∂Φ1
Ceff (Φ1)

(
Φ̇1

)2
+

Φ1 − Φ2

L0
+ IΦ (Φ1) = Iext1 , (2.147)

and,

IdynN+1 +
ΦN − ΦN+1

L0
+ IΦ

(
QN+1 + FΦ

N+1

)
= IextN+1 . (2.148)

We defined the function IΦ,

IΦ (Φ + Φ0 F ) =
∂

∂Φ
EΦ(Φ + Φ0 F ) (2.149)

= 〈g.s.| 1

Lps
(Φ0 m− Φ− Φ0 F ) |g.s.〉

=

〈
1

Lps
φi

〉

g.s.

=
〈
Iφi

〉
g.s.

, (2.150)

that gives the expectation value of the current Iφi flowing through the i-th QPS-element.
Note that biasing terms Iexti appear in all equations. We have not restricted ourselves to
a purely boundary biased situation as in the Josephson junction chain.
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Figure 2.15: The sketch of a segment of a QPS-ladder in which the QPS-elements are
shunted by large capacitances C. The model is dual to the Josephson junc-
tion array with large inductances (Fig.2.12). The capacitances introduce an
additional degree of freedom, the charge qCi on the capacitance.

2.3.2 The quantum phase slip array with additional capacitances

In the duality between quantum phase slip circuits and Josephson junction circuits the role
of inductance and capacitance is exchanged. The dual model to a Josephson junction array
with large inductances in Sec.2.2.3 is a quantum phase slip ladder with a large capacitance
C parallel to each quantum phase slip element. This model is shown in Fig.2.15.

In the QPS-ladder with large capacitances, the current sum rule is extended to include
the charge qCi on the capacitance C,

−qφi + qψi−1 − q
ψ
i + qCi = Qi , (2.151)

and all Lagrangians acquire a capacitative charging term,

Lpsi =
1

2
Lps

(
q̇φi

)2
+

1

2
L0

(
q̇ψi

)2
− 1

2C

(
qCi
)2

+ Es cos
(π
e
qφi

)
. (2.152)

The derivation of the effective quasi-phase model is equivalent to the derivation of the
effective quasi-charge model in the presence of large inductances in Sec.2.2.3. The quasi-
phase Φi is not introduced as an additional degree of freedom by a Hubbard-Stratonovich
transformation. It is the canonical conjugate of the independent degree of freedom qCi . The
adiabaticity of the quasi-phase used in the Born-Oppenheimer approximation is guaranteed
by the large capacitances C.

In the presence of capacitances much larger than the effective capacitance, C � Ceff (Φ),
the time-evolution of the QPS-ladder is given by,

CΦ̈i +
2Φi − Φi−1 − Φi+1

L0
+ IΦ (Φi + Φ0 Fi) = Iexti , (2.153)

CΦ̈1 +
Φ1 − Φ2

C0
+ IΦ (Q1) = Iext1 , (2.154)

CΦ̈N+1 +
ΦN − ΦN+1

C0
+ IΦ (QN+1 + Φ0 FN+1) = IextN+1 . (2.155)

The equations of motion are dual to those of a Josephson junction array with large induc-
tances L under the exchange of charge and phase as well as capacitance and inductance.
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Figure 2.16: A sketch of the linear quantum phase slip chain. The quantum phase slip
chain corresponds to a Josephson junction array (Fig. 2.6) where all Joseph-
son junctions have been replaced by QPS-elements with phase slip energy Es
and inductance Lps.
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Figure 2.17: A sketch of the Josephson junction ladder. The Josephson junction ladder
corresponds to a quantum phase slip ladder (Fig. 2.13) where all quantum
phase slip elements have been replaced by Josephson junction with capaci-
tance CJ and Josephson coupling energy EJ .

2.4 Additional array models

Due to the approximate equivalences between Josephson junctions and QPS-elements dis-
cussed in Sec.2.1 it can be possible to exchange Josephson junctions and QPS-elements
in superconducting circuits without changing the low frequency behaviour. With this in
mind we define two additional array models, the linear quantum phase slip chain (Fig.2.16)
and the Josephson junction ladder (Fig.2.17). The linear QPS-chain is a linear chain of
superconducting islands with capacitive coupling to the ground, just as in the Josephson
junction array. Instead of Josephson junctions the islands are connected by QPS-elements
with inductance Lps and phase-slip energy Eps . In the Josephson junction ladder the ver-
tical QPS-elements from a quantum phase slip ladder (Fig.2.13) are replaced by Joseph-
son junctions. The Josephson junction ladder is the discrete version of a long Joseph-
son junction array. It has been studied theoretically and experimentally in great detail
[10, 47, 48, 49, 50, 20, 51].

Using the definitions for quasi-charge Qi, quasi-phase Φi and quasi-frustration from the
Josephson junction array model Sec.2.2 and the QPS-ladder Sec.2.3 the two new arrays
have the Hamiltonians of discrete sine-Gordon models. The Hamiltonian of the linear
QPS-chain is given by,

Hps-chain =
∑

i

1

2Lps
(φi)

2 +
(Qi −Qi+1)2

2C0
+ Es cos

(π
e
Qi + 2π Fi

)
− (V + U)Q1 + UQN+1,

(2.156)

where φi is the phase difference over the i-th QPS-element. The phase φi and the quasi-
charge Qi are canonical conjugates. The Hamiltonian of the Josephson junction ladder is
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Figure 2.18: A schematic picture of the duality relation between Josephson junction array,
QPS-ladder, QPS-chains and Josephson junction ladders. It follows from the
duality of Josephson junctions and QPS-elements that in the upper and lower
pair the ladder and the chain model are dual to each other. The effective
quasi-phase model of a Josephson junction array in the adiabatic limit is ap-
proximately equivalent to the QPS-chain. The effective quasi-phase-model of
the QPS-ladder in the adiabatic limit is equivalent to the Josephson junction
ladder.

given by,

HJJ-ladder =
∑

i

1

2CJ

(
qφi

)2
+

(Φi − Φi+1)2

2L0
+ EJ cos (Φi + Φ0Fi)− Iexti Φi , (2.157)

where qφi is the charge on the Josephson junction capacitance CJ . Again the quasi-phase

Φi and the charge qφi are canonical conjugates. These sine-Gordon Hamiltonians are not
effective models, they contain all original degrees of freedom and are valid at all frequencies.

The picture (Fig.2.18) describing the relation between the four types of arrays emerges.
The Josephson junction array and the QPS-ladder form a dual pair of array models. The
other dual pair of array models consists of the linear QPS-chain and the Josephson junction
ladder. Furthermore, in parameter regimes where the Born-Oppenheimer approximation
can be applied to the first pair of arrays, the resulting quasi-charge Eq.2.80 and quasi-
phase Eq.2.143 models are approximately equivalent to the models of the second pair of
arrays.

The main differences between the models are the quasi-charge dependence of the Bloch
inductance LB(Q) and the quasi-phase dependence of the effective capacitance Ceff (Φ)
and a different shape of the periodic effective potentials EQ(Q) and EΦ(Φ) from the exact
cosine of Hps-chain and HJJ-ladder.

The conceptual duality between the four arrays is not necessarily reflected in experimental
implementations of the arrays. The discrete number of flux quanta per array loop in
the QPS-ladder (or Josephson junction ladder) is the dual variable to the number of
Cooper pairs in the Josephson junction array (or linear QPS-array). In principle each
superconducting island of the linear chains has an additional discrete degree of freedom,
the number of quasi-particles with charge e excited from the BCS-condensate. There is no
flux-degree of freedom in the ladder-arrays that is dual to the quasi-particle number. The
properties of ladder-arrays and linear chain arrays are only dual as long as the influence
of quasi-particles in the chains can be neglected.

The expected distribution of the frustration fi per array side is also different for arrays of
superconducting islands and ladder arrays. On the superconducting islands background
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charges are present [34] and the fi have a stochastic distribution. It would be experimen-
tally hard to gate every superconducting island in the array to control fi by an externally
applied voltage. We do not expect background fluxes in the loops of the ladder array. The
bare frustration is zero fi = 0. It is however easy to apply an external magnetic field to
apply a uniform frustration to all array loops fi = f . While this limits the use of duality in
transferring theoretical and experimental results between dual arrays, it also means that
one can explore a larger parameter space of the sine-Gordon-like models using both dual
arrays.

There are certain types of experiments that could only be done in one of the four closely
connected arrays as not all parameters of the superconducting elements can be controlled
equally well. It is for example possible to externally control the Josephson coupling energy
in the Josephson junction array by replacing the Josephson junctions with superconducting
interference devices (SQUIDs). Each SQUID forms an effective Josephson junction with
an EJ that is controlled by an external magnetic flux.

The quantum-phase slip energy Es in the dual QPS-ladder on the other hand can not be
controlled during the experiment but is set during device fabrication. The changing EJ
results in changes in the amplitude and form of the effective quasi-charge potential.

In the linear QPS-chain the amplitude of the cosine is given by Es and can not be con-
trolled.

In the Josephson junction ladder the amplitude is the Josephson coupling energy and could
be controlled by using a SQUID. However applying an external magnetic field to change
EJ would also change the magnetic frustration in the loops of the ladder. In the Josephson
junction ladder it is impossible to control EJ independently from the frustration.

2.5 The zero-dimensional limit

In this section we discuss the zero-dimensional limit of the Josephson junction and quantum
phase-slip arrays. This limit Λ � N reduces the complexity of the problem significantly.
The zero-dimensional limit shows the most interesting features for specific configurations
of frustration fi other than a random distribution. In the Josephson junction arrays
disordered background charges will be present [34] and a specific ordered distribution fi
can not be obtained. Therefore we will discuss the zero-dimensional limit of the quantum
phase-slip ladder. In the QPS-ladder a homogeneous disorder configuration fi = f can
be easily obtained in experiments by applying an external magnetic field. The situation
is very similar to the well studied case of a Josephson junction ladder [10, 48, 49, 50, 20].
We mainly want to show the effect of the non-cosine-shaped effective potential.

We start from the effective quasi-phase model of the QPS-ladder Eq.2.142 derived in
Sec.2.3.1,

LΦ =
∑

i

1

2
Ceff (Φi + Φ0Fi) (∂tΦi)

2 − (Φi − Φi+1)2

2L0
− EΦ (Φi + Φ0Fi) + Iexti Φi . (2.158)

In the limit Λ � N the inductive energy scale of the horizontal inductances L0 in the
QPS-ladder is much larger than the upper limit of the potential energy of the whole array,

EL0 :=
Φ2

0

2L0
= Λ2EL � N2 max

Φ
(EΦ(Φ)) . (2.159)

The energy contribution of the inter-site coupling,

Ecoupling =
1

2L0
(Φi − Φi+1)2 , (2.160)
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36 2. Array models and the zero-dimensional limit

dominates the Lagrangian and is minimized by a flat quasi-phase distribution along the
array Φi ≈ Φi+1. In the limit of infinite Λ, the differences between quasi-phases vanish,

Λ

N
→∞ ⇒ Φi − Φj → 0 ∀i, j ∈ {1 . . . N} . (2.161)

We use this limit and substitute the quasi-phase distribution {Φi} with a single quasi-phase
Φ. The quantum phase slip ladder looses all information about the spatial distribution
of the quasi-phase and acts as a zero-dimensional system. This is also referred to as the
lumped element approach. It has been used in Refs.[52, 4] as an approximate model of
Josephson junction arrays. The zero-dimensional model is given by,

LΦ =
1

2
Cteff (Φ)

(
Φ̇
)2
− EtΦ (Φ) + IextΦ , (2.162)

CtΦ(Φ) =
∑

i

Ceff (Φ + Φ0Fi) , (2.163)

EtΦ(Φ) =
∑

i

EΦ(Φ + Φ0Fi) , (2.164)

Iext =
∑

i

Iexti , (2.165)

where CtΦ(Φ) is the total capacitance of the QPS-ladder, EtΦ(Φ) is the total potential and
Iext is the total applied bias current. The equations of motion of the quasi-phase also
reduce to a single equation,

Cteff (Φ) Φ̈ +
∂

∂Φ
Cteff (Φ)

(
Φ̇
)2

+ ItΦ (Φ) = Iext , (2.166)

with the total quasi-phase dependent current ItΦ through all QPS-elements of the ladder,

ItΦ (Φ) =
∂

∂Φ
EtΦ(Φ)

=
∑

i

IΦ(Φ + Φ0Fi) . (2.167)

We are now going to discuss the signature of a lumped QPS-ladder in an experimental
setup where the ladder is biased by an DC-current and the voltage-response is measured.

Considering the DC case, we note that the equation of motion Eq.2.166 is very similar to
the equation that describes the time-evolution of the phase-difference φq of a current-biased
ideal Josephson junction in the quasi-classical limit [10],

CJ φ̈q + Ic sin

(
2π

Φ0
φq
)

= Iext , (2.168)

with the critical current Ic. Here we have ignored all environmental couplings, including
to the quasi-particles in the superconductors, that would lead to a dissipative term in the
equation of motion. The equation of motion is only a valid description as long as the
absolute value of Iext is small enough that the phase φq is confined to one of the potential
wells of the cosine potential. In the running regime, where φq can escape the minima of
the potential due to external driving, the time-evolution of the phase is determined by the
dissipation. The same is true for the QPS-ladder. We have not included dissipation in our
model of quantum phase slip ladder.

The signature of a Josephson junction and a lumped QPS-ladder in the DC experiment is
the same. Just as for the standard Josephson junction [10], the solution of the equations
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of motion is static Φ̇ = φ̇q = 0 for a small current-bias,

ItΦ (Φ) = Iext ,

Ic sin

(
2π

Φ0
φq
)

= Iext . (2.169)

The system transitions to the running regime Φ̇ 6= 0, when the static relations Eq.2.169
have no solution and the bias current Iext exceeds the critical current IQPSc ,

IQPSc = max
Φ

(
ItΦ(Φ)

)
. (2.170)

In an experiment the critical current is determined by the measured voltage response. In
the static phase regime, the external current passes through the QPS-ladder without a
voltage response and in the running phase a voltage-drop across the QPS-ladder develops
[10].

One signature of the effective quasi-phase model that can be checked experimentally is the
dependence of the critical current on the length of the ladder. When no external magnetic
field is applied and the frustration is zero, fi = Fi = 0, we call the system a clean QPS-
ladder. In the clean case, the sum over the frustration configuration in the definition of
the function ItΦ Eq.2.167 does not alter the functional form but gives an (N +1)-prefactor,

ItΦ (Φ) = N IΦ (Φ) , (2.171)

IQPSc = (N + 1) max
Φ

(IΦ(Φ)) . (2.172)

In the frustration-free case, one can expect the critical current to grow linearly with the
size of the lumped QPS-ladder, as long as N � Λ. The linear scaling of IQPSc with the
number of QPS-connections in the ladder may seem to be a trivial result but we will later
see (Sec.3.3.1) that we do not find linear scaling in the clean case for Λ < N .

A better test of the quasi-phase model would be to experimentally check the predictions
for the effective potential EΦ(Φ) or the current IΦ (Φ). By measuring the critical current
in the clean case, one can determine the maximum of IΦ. The quasi-phase model predicts
that the amplitude of IΦ decreases with increasing ratio of phase-slip energy and inductive
energy, Es/EL. This could be measured with a set of experimental samples with different
parameters.

With the help of the externally tunable frustration one can also obtain some information
about the functional form of IΦ (Φ). The form of IΦ changes smoothly from a saw-function
in the limit Es/EL → 0 to a cosine-shape in the case Es/EL & 1. Applying an external
magnetic field leads to a homogeneous frustration in every loop of the QPS-ladder, fi = f
and the quasi-frustration grows linearly Fi =

∑i−1
j=1 fi ∝ i. In this case, taking the sum in

the definition of the function ItΦ corresponds to averaging over N instances of a periodic
function, each one shifted by the same amount Φ0f with respect to the previous one. The
shift leads to a partial cancellation of maxima and minima of the single IΦ (Φ + Φ0Fi) and
a reduction in the amplitude of Itφ compared to the clean case. As the number of QPS-
elements in the QPS-array is finite and IΦ(Φ) is Φ0-periodic, the effect of the externally
applied frustration is periodic,

ItΦ (Φ)
∣∣
fi=0

= ItΦ (Φ)
∣∣
fi=1

. (2.173)

The effect of frustration is illustrated in Fig.2.19.
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Figure 2.19: In a QPS-ladder with two loopsN = 2 and a frustration of f = 1
6 , the function

ItΦ
∣∣
f= 1

6
is a sum of the three shifted periodic functions IΦ(Φ), IΦ(Φ + 1

6Φ0)

and IΦ(Φ + 1
3Φ0). Compared to the frustration free function ItΦ

∣∣
f=0

the
amplitude is reduced. The QPS-ladder is in the regime Es = 10EL � EL and
the function IΦ(Φ) is approximately sinusoidal.

We first take the large Es limit, where Iφ is sinusoidal. With the help of a sum rule for
the sine we find for a homogeneous frustration,

ItΦ (Φ) =

N∑

j=0

Imc sin

(
2π

Φ0
Φ + 2π j f

)
(2.174)

= Imc

sin
(
2πN+1

2 f
)

sin
(

2π
Φ0

Φ +N π f
)

sinπf
, (2.175)

where Imc is the critical current of the effective quasi-phase potential of one QPS-element.
This behaviour is known from Josephson junction ladders [10, 48]. At the special values
of the frustration,

fmin =
1

(N + 1)
n n ∈ {1, 2, . . . , N} , (2.176)

the function ItΦ (Φ) is exactly zero for all quasi-phases. In this case the critical current

of the QPS-ladder is zero IQPSc = 0 and no super-current can flow across the quantum
phase slip ladder (see also Fig.2.20 for the case of N = 1). The mechanism is completely
analogous the suppression of super-current through a SQUID.

In the opposite limit Es � EL, due to the saw-form of IΦ(Φ) a finite number of shifted
functions, IΦ (Φ + Φ0Fi), can never average to a constant ItΦ (Φ) and the critical current at
the special values of the external frustration is not exactly zero but strongly suppressed.
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Figure 2.20: We plot the quasi-phase dependent functions ItΦ of a QPS-ladder with one
loop N = 1 in the regime Es = 10EL � EL. For a frustration of f = 1

2
the two shifted periodic functions IΦ(Φ) and IΦ(Φ + 1

2Φ0) compensate each
other and the function ItΦ

∣∣
fi=

1
2

is zero for all quasi-phases. A magnetic flux

of half a flux-quantum Φ0 in the loop reduces the critical current to zero. The
situation is analogue to the suppression of the super-current in a SQUID. The
total current-function with no frustration ItΦ

∣∣
fi=0

is plotted for comparison.

This is shown for N + 1 = 2 in Fig.2.21. The value of the critical current in the local
minima increases with decreasing Es/EL as the function IΦ (Φ) becomes more saw-like.

Away from the special frustration fmin, the critical current is never completely suppressed
in a finite ladder for arbitrary ratios Es/EL. The critical current as a function of the
frustration is shown in Fig.2.22a and Fig.2.22b for the limiting cases of Es & EL and
Es � EL. With growing N the critical current develops more and deeper local minima.
The more periodic functions are summed over, the more the amplitude of the total function
in the frustrated case is suppressed compared to the amplitude in the frustration free case.

The special frustration values fmin correspond to the minima in the Fraunhofer pattern
that is found in the critical current of a Josephson junction in a magnetic field [53]. The
Josephson junction corresponds to the continuum limit of the QPS-ladder array 1� N �
Λ. The sum in the definition of the function ItΦ becomes an integral over the length
of the Josephson junction perpendicular to the magnetic field that provides the external
frustration[53],

ItΦ (Φ) =

∫ L

0
dx Imc sin (Φ + Φ0f(x)) , (2.177)

where f(x) is a frustration density. The integral vanishes for all Φ when the total flux
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Figure 2.21: We plot the quasi-phase dependent functions ItΦ of a QPS-ladder with one
loop N = 1 in the regime Es = 0.1 EL � EL are plotted. As the shifted
functions IΦ(Φ) and IΦ(Φ+Φ0

1
2) are approximately saw-shaped, the function

ItΦ
∣∣
fi=

1
2

for a frustration of f = 1
2 is not exactly zero.

through the Josephson junction area is equal to half a flux-quantum,

ft =

∫ L

0
dxf(x) =

1

2
. (2.178)

The integral over the frustration density leads to a Fraunhofer pattern in the dependence
of the critical current on the total frustration ft [53].

In realistic models one has to include variations in the phase-slip energy of the QPS-
elements. In Fig.2.23 we show the influence of the variation in ES for the formation of
the pseudo Fraunhofer pattern. The disorder inhibits destructive interference between
the single functions IΦ(Φ) and increases Itφ at the minima. In the case of constructive

interference the values of the maxima of ItΦ are also increased. The disorder includes
deviations to smaller ES for which the maxima of the individual functions IΦ(Φ) are
larger. The disorder shifts the whole pattern upwards, but the main minima and maxima
can still be distinguished. The same effect of disorder has been found in Josephson junction
ladders with non-uniform Josephson junctions [48].

Experimental evidence for the validity of the effective quasi-phase model of the quantum
phase slip ladder could be provided by finding pseudo Fraunhofer patterns (Fig.2.22a and
Fig.2.22b) for different array lengths N in the experimentally measured dependence of the
critical current on an external magnetic field.
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c in the limit of large Es, Es = 10 EL � EL, where the function IΦ

has a cosine shape. The critical current follows the discrete version of a Fraunhofer pattern.
The critical current is zero when the frustration is an integer multiple of 1
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(b) The critical current in the limit of small Es, Es = 0.1 EL � EL, where the function IΦ
has a saw-shape. The critical current follows a pseudo Fraunhofer pattern. Contrary to the
sinusoidal case Es � EL (Fig.2.22a) the critical current is not exactly zero at integer multiples
of 1

N+1 , but has local minima at these points. The depth of the local minima increases with
array-length N .

Figure 2.22: The critical current IQPSc over the homogeneous frustration fi = f provided
by an external magnetic field. The function is plotted for the array lengths:
N = 2 (black), N = 3 (blue) and N = 8 (red).
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Figure 2.23: The pseudo-Fraunhofer pattern for different disorder strengths in the phase
slip energy ES (no disorder: black line, 5% disorder: blue line, 20% disorder:
red line), for a N = 10 site array with average phase slip energy ES = 1

10EL.
The main effect of disorder is to shift the pseudo-Fraunhofer pattern upwards.
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3. Charge pinning and the switching
voltage

In this chapter we study the transition of Josephson junction arrays from the insulating to
the transport regime driven by an applied bias voltage. We do not consider the transition
in the opposite direction and the hysteresis in the IV curves that has been observed in
experiments [52]. It will be shown that the dependence of the switching voltage of the
transition can be obtained from depinning theory. In the broadest sense, depinning theory
describes the onset of transport of elastic objects that are pinned by a random potential.
It applies to many different physical systems, for example flux line lattices in type II
superconductors [54, 55] and charge density waves [56]. The connection between the onset
of transport in Josephson junction arrays and pinning of charge density waves (CDW) was
first pointed out by Gurarie and Tsvelik in Ref.[17].

We start with a short introduction to basic depinning theory and its connection to the
effective quasi-charge model of Josephson junction arrays. We then present numerical sim-
ulations of the switching voltage in the sine-Gordon-like model for three different disorder
models. In the end we show that the experimentally observed dependence of the switching
voltage on the Josephson energy can be obtained from the sine-Gordon-like model together
with depinning theory. Parts of the results of the first section and the results of the last
section have been published in Ref.[39].

3.1 Basics of depinning theory

In this section we introduce the aspects of depinning theory required to understand the
depinning of the quasi-charge in Josephson junction arrays. A detailed discussion of depin-
ning theory in general would by far exceed the scope of this work. The interested reader
can find a detailed review of depinning theory in Ref.[16]. The general Hamiltonian of a
pinned one-dimensional system is given by,

Hdep =

∫
dx

1

2Cel
(∂xQ(x))2 + u [Q(x), x] + fdrQ(x) , (3.1)

where Q(x) is the pinned field. Here Q is a dimensionless quantity. The elastic energy of
the field Q(x) is determined by the elastic constant 1

Cel
. The elastic field is pinned by the

random pinning potential u [Q(x), x] and driven by the homogeneous driving force fdr.

In the pinned regime the applied force fdr is not strong enough to overcome the potential
barrier imposed on the elastic object Q(x) by the random pinning potential u [Q(x), x].
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44 3. Charge pinning and the switching voltage

The pinned regime

We first consider the case where no driving is applied, fdr = 0. The form of the elastic
object is determined by a competition between the elastic term and the pinning term in
Hdep. In the limit of vanishing stiffness the elastic field Q(x) settles in one of the local
minima of the pinning potential,

1

Cel
→ 0 , (3.2)

Q(x)→ Qmin(x) , (3.3)

∂Qu [Q(x), x]|Q(x)=Qmin(x) = 0 . (3.4)

The opposite limit is the limit of vanishing pinning potential, u [Q(x), x] → 0. In this
limit only the elastic energy term remains. In a static state where we have no vibrational
excitations, all deformations of the elastic object go to zero,

Q(x)→ Q . (3.5)

Between the two limits one finds a crossover in the behaviour of Q. On small length-scales,
where the elastic energy term dominates, Q(x) is approximately constant. The field Q(x)
changes on large length-scales where the pinning potential dominates. The two regimes
are separated by the length Lp. It was first determined by Larkin for a flux line lattice
in type II superconductors [55]. The length Lp goes by many names depending on the
physical systems that are pinned. In type II superconductors it is called Larkin length, in
ferromagnets with domain boundaries Imry-Ma length [57] and for charge density waves it
is called Fukuyama-Lee length [56]. In this work we use the term Larkin length. In type II
superconductors Larkin found Lp by minimising the free energy of a volume Vc = LCR

2
C

of the superconductor with a constant flux line lattice [55]. The spatial dimensions LC
and RC for which the free energy of the volume is minimal give the length-scale of rigidity
of the flux line lattice. The length-scale of the axis parallel to the flux line lattice is LC
and the length scale of the perpendicular axis is RC .

In one-dimensional systems one can follow the derivation of Fukuyama and Lee [56]: One
assumes that Q(x) changes on the length-scale Li and that the average value of Q(x) over
an interval of length Li can be chosen to minimize the energy contribution of the pinning
potential. The average energy gained by minimizing the potential energy is proportional
to the square root of the length-scale Li,

Epot(Li) =

〈∫ Li

0
dxu[Q(x), x]

〉

dis

= −αpot
√
Li , (3.6)

where 〈.〉dis means averaging over the disorder and αpot is a prefactor that depends on the
exact form of u[Q, x]. On the other hand, the average elastic energy Eel of a field Q(x)
that changes smoothly on Li is inversely proportional to the length Li,

Eel(Li) =
1

2Cel

〈∫ Li

0
dx (∂xQ(x))2

〉

dis

= αel
1

2Cel

1

Li
, (3.7)

where αel is another Li-independent prefactor. The total energy per unit length,

Etot(Li) =
1

Li
(Epot(Li) + Eel(Li)) , (3.8)

is minimized with respect to the length Li when the potential energy per unit length and
the elastic energy per unit length have the same absolute value. This length defines the
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crossover from length scales dominated by the elastic energy to length scales dominated
by the pinning potential. The total energy Etot(L) is minimized by the Larkin length Lp.

A detailed calculation [16] shows that the prefactor in the potential energy is a function
of the correlation function R(Q) of the random pinning potential,

〈u [Q1, x1]u [Q2, x2]〉dis = R(Q2 −Q1)δ(x2 − x1) . (3.9)

Here it is assumed that the random pinning potential u is nearly delta-correlated in space.
The delta-function is broadened on a length-scale l, shorter than the other length-scales
of the problem.

The approximate value of the Larkin length in one-dimensional systems as a function of
R(Q), l and Cel is given by [16],

Lp ≈
(

3l2

C2
el |RQQ(0)|

) 1
3

, (3.10)

RQQ(0) =
d2

dQ2
R(Q)

∣∣∣∣
Q=0

. (3.11)

The depinning transition

Once the driving force fdr exceeds a critical force fdp, the pinning potential is overcome and
the elastic object starts to move through the disordered medium. An intuitive argument
to find the value of the critical driving force can be found by comparing the driving force
to the pinning force at the Larkin length. The distribution of Q is rigid on length-scales
up to the Larkin length. The elastic object can only start to move when the driving force
exceeds the collective pinning force on a segment with length L = Lp,

Lpfdr ≥ Fpot(Lp) =

〈∫ Lp

0
dx ∂Qu[Q(x), x]

〉

dis

. (3.12)

At the same time, the Larkin length is just defined as the length scale at which the average
pinning force and the average elastic force balance each other,

Fpot(Lp) ≈ −Fel(Lp) , (3.13)

Fel(Lp) =
1

Cel

〈∫ Lp

0
dx ∂2

xQ(x)

〉

dis

∝ 1

Cel

1

Lp
. (3.14)

One can find the approximate value of the critical depinning force fdp by replacing the
average pinning force with the average elastic force at the Larkin length Lp,

fdp ≈
1

Cel
l

1

L2
p

. (3.15)

Corrections to this intuitive approach have been obtained from renormalization-group-
theory [16, 58, 59]. In this work we use the approximate value of the depinning force
Eq.3.15.

3.2 Connection to Josephson junction arrays

We now consider the depinning of the quasi-charge in the effective sine-Gordon-like model
(Eq.2.112) of the Josephson junction array,

HQ =
∑

i

1

2
L
(
Q̇i

)2
+

(Qi −Qi+1)2

2C0
+ EQ (Qi + 2e Fi)− (V + U)Q1 + UQN+1 . (3.16)
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46 3. Charge pinning and the switching voltage

We use the simplified model, where the quasi-charge dependent Bloch-inductance LB(Q)
is replaced by a constant inductance L. We are interested in the transition from the
insulating to the transport regime in the Josephson junction arrays. The point of the
transition is determined by the breakdown of the static solution {Qi} of the equation
of motion of the quasi-charge. In the static regime the terms proportional to the time-
derivative of Qi are zero, they have no influence on the value of the depinning voltage.
The precise functional form of the Bloch-inductance can be neglected as long as LB(Q) is
large enough to guarantee the adiabaticity of the quasi-charge.

We assume that the typical interaction length is large compared to the inter-site distance
in the array,

Λ� 1 . (3.17)

In this case the continuum limit of the quasi-charge model is justified and the depinning
results obtained for a continuum model Hdep can be used,

Qi → Q(x) , (3.18)

Fi → F (x) , (3.19)

Qi −Qi+1 → ∂xQ(x) , (3.20)
∑

i

→
∫

dx . (3.21)

The Josephson junction array is boundary biased whereas the standard depinning model
is driven by a homogeneous driving force fdr. We can map the boundary biased Josephson
junction array to a homogeneously driven system by shifting the quasicharge Qi and quasi-
disorder Fi by a parabolic function of the position in the array,

Q̃i = Qi − C0V
(N + 1− i)(N − i)

2N
, (3.22)

F̃i = Fi +
1

2e
C0V

(N + 1− i)(N − i)
2N

, (3.23)

with the Hamiltonian,

HQ =
∑

i

1

2
L
(

˙̃Qi

)2
+

(
Q̃i − Q̃i+1

)2

2C0
+ EQ

(
Q̃i + 2e F̃i

)
+ EdrQ̃i . (3.24)

The homogeneous electric field is then given by,

Edr =
V

N
. (3.25)

We can identify the parameters of the generic depinning model Hdep with the parameters
of the Josephson junction array,

Cel =
1

(e)2C0 , (3.26)

fdr = e Edr . (3.27)

The effective quasi-charge potential EQ(Q) together with the quasi-disorder Fi acts as the
random pinning potential,

u
[
Q̃, i
]

= EQ

(
Q̃i + 2e F̃i

)
. (3.28)

To calculate the correlation function R(Q) of the pinning potential we have to specify the
disorder model of the bare charge-disorder fi.
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3.2.1 Maximal disorder

We first consider the maximally disordered model,

2e fi ∈ [−e, e] , (3.29)

p(fi) = ΘH(
1

2
− |fi|) , (3.30)

where p(fi) is the probability distribution of the disorder fi and ΘH is the Heaviside Θ-
function. This model corresponds to the strongest possible charge disorder in Josephson
junction arrays. A disorder charge with an absolute value larger than the elementary
charge e on an array island is compensated by placing an additional (anti)-Cooper pair on
the island while lowering the charging energy at the same time. The disorder is bounded
by ±e and a box-distribution of disorder-charges inside these boundaries is the maximal
disorder. The shift of 2e fi back into the [−e, e]-interval is also the physical model for the
origin of the box-disorder. Assuming the distribution of charge-disorder p(fi) is originally
Gaussian with a standard deviation much larger than 1/2,

p(fi) =
1

σ
√

2π
e−

1
2

f2
i
σ2 , (3.31)

σ � 1

2
, (3.32)

the disorder outside the [−e, e]-interval is shifted back into the interval creating an ap-
proximately equal probability to find the disorder charge 2e fi anywhere in [−e, e].
In the maximal disorder model the quasi-disorder F̃i itself is correlated between different
array islands i and j,

〈
F̃iF̃j

〉
dis
6= 0 for i 6= j . (3.33)

The quasi-disorder F̃i+1 can be decomposed into,

F̃i+1 = fi + Fi−1 +
1

2e
C0V

(N − i)(N − i− 1)

2N
= fi + f0

i , (3.34)

with an offset f0
i to the box-distributed disorder fi. All information about the correlation

with the disorder F̃j on other array sites is contained in f0
i . The quasi-charge potential on

the other hand is a function of the quasi-charge with a periodicity of 2e. Since the disorder
fi is box distributed in an interval that corresponds to the periodicity of the potential, the
offset can be absorbed into another uncorrelated box-distributed disorder term,

EQ

(
Q̃+ 2e f̃i + 2e f0

i

)
= EQ

(
Q̃+ 2e f̃ ′i

)
, (3.35)

2e f ′i ∈ [−e, e] , (3.36)

p(f ′i) = ΘH(
1

2
−
∣∣f ′i
∣∣) . (3.37)

From the point of view of the quasi-charge potential, the quasi-disorder F̃i in the maximally
disordered model is uncorrelated. The correlation function of the pinning potential is δ-
correlated,

〈
EQ

(
Q̃1 + 2e F̃i

)
EQ

(
Q̃2 + 2e F̃j

)〉
dis

= R(Q2 −Q1)δi,j , (3.38)

where the δ-function of the continuous model Hdep is replaced by a Kronecker δ. While
the δ-function is understood to be broadened on a small length l, the minimal correlation
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48 3. Charge pinning and the switching voltage

length of the disorder in the discrete model is the lattice constant. As we measure all
distances in units of the lattice constant we find l = 1 in the quasi-charge model of the
Josephson junction arrays.

The correlation function R(Q) is given by,

R(Q) =

∫ 1
2

− 1
2

dF EQ(Q+ 2e F )EQ(2e F ) . (3.39)

For an arbitrary ratio of Josephson coupling energy EJ and charging energy the func-
tional form of the potential EQ(Q) and the correlation function R(Q) can be calculated
numerically. In the limit EJ � EC one finds,

EQ(Q) = EmaxQ

[
1− cos

(π
e
Q
)]

, (3.40)

R(Q) =
(
EmaxQ

)2
π cos

(π
e
Q
)
, (3.41)

where EmaxQ is the amplitude of the quasi-charge potential.

The general expression for the switching voltage Vsw is obtained by inserting Eq.3.27,
Eq.3.26 and Eq.3.15 in Eq.3.25,

Vsw =
1

e
N
e2

C0

1

L2
p

, (3.42)

Lp =


 3

C2
0

∣∣∣ 1
(e)2RQQ(0)

∣∣∣




1
3

. (3.43)

In the maximal disordered model the switching voltage is proportional to the system length
N . In the special case EJ � EC the expression for the Larkin length takes the simple
form,

RQQ(0) =
(
EmaxQ

)2 π3

e2
, (3.44)

Lp =


 3e4

π3C2
0

(
EmaxQ

)2




1
3

, (3.45)

and the switching voltage is given by,

Vsw = N 3−
2
3π2 e

C0

(
1

e4

(
EmaxQ

)2
) 2

3

. (3.46)

In Josephson junction arrays the experimentally relevant parameters of the array are the
charging energy EC , the Josephson coupling energy EJ , the array length N and the inter-
action length Λ. To express the switching voltage in terms of these parameters we define
the function R̃,

∂2

∂Q2
R(Q)

∣∣∣∣
Q=0

=
E2
C

e2
R̃

(
EJ
EC

)
. (3.47)

The dimensionless correlation function R̃ depends on only one free parameter of the system,
the dimensionless ratio of the Josephson and charging energy. The function needs to be

48



3.2. Connection to Josephson junction arrays 49

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

EJ
EC

R̃

Figure 3.1: The numerically determined dimensionless correlation function R̃ as a function
of EJ/EC . (Figure and caption Ref.[39])

determined numerically only once (see Fig.3.1) for all possible values of array length and
C0. The switching voltage is given by,

Vsw =
NEC

2e
Λ−

2
3

(
4

3

) 2
3
{
R̃

(
EJ
EC

)} 2
3

. (3.48)

The depinning of the whole elastic object given by the quasi-charge distribution {Qi} is
remarkably different from the depinning of a single charge soliton in a disordered array.
The latter case was analyzed within the disordered sine-Gordon model in Ref.[60]. It
was shown that the depinning critical force grows with the soliton length Λ. In our case,
however, the depinning transition is a collective phenomenon happening in the whole array.
At the transition point the array contains, on average, one extra charge of 2e per Larkin
length, Lp ∝ Λ4/3R̃−1/3. With increasing Λ, the number of pinned charges decreases and

it becomes easier to drive the system in the transport regime, Vsw ∝ Λ−
2
3 R̃2/3.

The switching voltage decreases with increasing interaction length Λ. At the same time
the Larkin length increases,

Lp ∝ Λ
4
3 . (3.49)

In finite arrays the Larkin length becomes equal to the system size N when the interaction
length reaches the value,

ΛN = N
3
4

(
4

3

) 1
4
{
R̃

(
EJ
EC

)} 1
4

. (3.50)

Increasing Λ further while keeping EC constant only increases the coupling-strength 1
C0

between the quasi-charge on neighbouring islands. The Larkin length, the length-scale

49



50 3. Charge pinning and the switching voltage

on which the quasi-charge Q is approximately constant, should increase. The Larkin
length however is equal to the system size. The quasi-charge is already approximately
constant along the whole array. Increasing the coupling strength further has no effect. For
Λ � ΛN the switching voltage is independent of the interaction length as long as EC is
kept constant. A lower boundary for the switching voltage is approximately given by,

Vsw ≈
√
N
EC
2e

2

3
1
2

{
R̃

(
EJ
EC

)} 1
2

. (3.51)

This is the switching voltage Vsw one finds for Λ = ΛN . In reality Vsw saturates for smaller
Λ, when N is of the same order of magnitude as Lp (for comparison see the numerical
simulations in Sec.3.3.2). This leaves the principal behaviour of Eq.3.51 unchanged and
contributes a prefactor of order one in the expression for the switching voltage.

3.2.2 Self consistency

We can now show, that the adiabaticity assumption in the quasi-charge model is self-
consistent for Josephson coupling energies EJ comparable to the charging energy EC . We
consider the characteristic oscillation frequency ω of an array segment of length Lp with
rigid quasi-charge Q. We approximate the Bloch inductance by a constant value in the
interval Q ∈ [−e, e],

LB(Q) ≈ LJ , (3.52)

LJ =
Φ2

0

4π2EJ
, (3.53)

where LJ is the Josephson inductance. The energy of the array segment is approximately
given by the energy of a harmonic oscillator,

E = Lp
LJ
2
Q̇2 + EmaxQ

√
Lp

Q2

4e2
. (3.54)

The average potential energy due to the interaction with the disorder grows with the square
of the length of the segment [55]. The frequency of the harmonic oscillator grows with
the Josephson coupling energy and the amplitude of the quasi-charge potential EmaxQ . It
decreases with the Larkin length,

ω2 ∝ EJEmaxQ L
− 1

2
p . (3.55)

The adiabaticity assumption is justified when oscillations of the quasi-charge of the array
segment do not lead to Landau-Zener transitions. For EJ ∼ EC this is at least the case
when,

EJ ≥ ω , (3.56)

EJ ≥ α
√
EJEmaxQ L

− 1
4

p , (3.57)

with a numerical prefactor α of the order of one. Using the inequality,

EmaxQ

(
EminJ

EC

)
≤ EC

4
, (3.58)

we see that the adiabaticity condition,

EJ
EC
≥ βL−

1
2

p , (3.59)

can always be fulfilled for a constant numerical prefactor β, when the Larkin length Lp is
sufficiently large.
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3.2.3 Weak disorder

In the weak disorder case the bare disorder fi is not evenly distributed in the [−e, e]-
interval. We consider two models of weak disorder, the weak box disorder,

2e fi ∈ [−γ e, γ e] , (3.60)

p(fi) =
1

γ
ΘH(

γ

2
− |fi|) , (3.61)

with the disorder strength γ < 1 and Gaussian disorder,

p(fi) =
1

σ
√

2π
e−

1
2

f2
i
σ2 , (3.62)

with a standard deviation σ < 1/2.

In the weak disorder models the spatial correlation in the quasi-disorder F̃i+1 can not be
neglected, even in the argument of the quasi-charge potential EQ(Q). The maximal value
of the disorder 2e fi is smaller than the periodicity of the potential and the offset f0

i can
not be absorbed into an uncorrelated box-distributed disorder term f ′i . With the long
range correlation in the quasi-disorder F̃i, the correlation function of the pinning potential
also acquires a long range correlation component. We decompose the correlation function
into short and long-range components,

〈
EQ

(
Q̃1 + 2e F̃i

)
EQ

(
Q̃2 + 2e F̃j

)〉
dis

= R(Q1 −Q2)δi,j +R2(Q1 −Q2, i, j) , (3.63)

with the δ-correlated component R(Q) and the long range correlation function R2(Q, i, j).
Due to the long range correlations the intuitive picture of the depinning-transition is not
valid anymore. For a long range correlation function,

R2(Q1, Q2, i, j) ∝ |i− j|−a , (3.64)

that decays with a power law, the problem has been approached with the functional
renormalization group method (FRG) in Ref.[61] and Ref.[62].

It was shown in Ref.[63] and Ref.[64] that the long-range correlations lead to the emergence
of a new length-scale in the pinned system, the typical correlation length Lcorr. The
roughness function w(x) of a pinned system shows a different behaviour, namely a different
roughness exponent ζrough, depending on whether the system is probed at length-scales
smaller or larger than the correlation length [64]. We derive a typical correlation lengths
for the two weak disorder models under the assumption that EQ can be approximated as
a cosine-potential,

EJ ∼ EC , (3.65)

EQ(Q) ≈ EmaxQ

[
1− cos

(π
e
Q
)]

. (3.66)

In the next section (Sec.3.3.3) we compare the numerical results for the depinning-transition
of the weak box-disorder model with the analytic estimate for the typical correlation length-
scale.

To calculate the correlation function of the pinning-potential of two different array sites j
and k we set, without the loss of generality, j < k. The correlation function in the weak

51



52 3. Charge pinning and the switching voltage

box-disorder model is given by an integral over the disorder,

R2(Q, j, k) =
(
EmaxQ

)2
∫ ∞

−∞
dFj p̃(Fj)

(
1

γ

)k−j ∫ γ
2

− γ
2

dfj . . .

∫ γ
2

− γ
2

dfk−1 cos (Y1) cos (Y2) ,

(3.67)

Y1 = Q+ 2e Fj + C0V
(N + 1− j)(N − j)

2N
, (3.68)

Y2 = Q+ 2e Fj + 2e

k−1∑

l=j

fl + C0V
(N + 1− k)(N − k)

2N
, (3.69)

where p̃(Fj) is the probability distribution of the quasi-disorder Fj . Expanding the cosine
to exponentials one obtains,

R2(Q, j, k) =
(
EmaxQ

)2
∫ ∞

−∞
dFj p̃(Fj)

(
sin (πγ)

πγ

)k−j
,

1

2

(
e2πi X1 + (−1)k−je−2πi X1 + (−1)k−je2πi X2 + e−2πi X2

)
, (3.70)

X1 =
1

2e
Q+ 2Fj +

C0V

2e

1

2N
[(N + 1− k)(N − k) + (N + 1− j)(N − j)] ,

(3.71)

X1 =
1

2e
Q+

C0V

2e

1

2N
[(N + 1− k)(N − k)− (N + 1− j)(N − j)] . (3.72)

We find that the absolute value of the correlation function R2 is bounded by an envelope
function RE ,

|R2(Q, j, k)| ≤ RE(Q, k − j) = 2
(
EmaxQ

)2
(

sin (πγ)

πγ

)k−j
. (3.73)

The long-range correlation function decays exponentially with the distance k − j. The
correlation of the pinning-potential decays on the length-scale,

Lcorr = − 1

ln
(

sin(πγ)
πγ

) . (3.74)

As expected the correlation length goes to zero in the limit of the maximal disorder and
diverges in the clean limit without disorder,

γ → 1 ⇒ Lcorr → 0 , (3.75)

γ → 0 ⇒ Lcorr →∞ . (3.76)

For a Gaussian distribution of the bare disorder fi the correlation function is,

R2(Q, j, k) =
(
EmaxQ

)2
∫ ∞

−∞
dFj p̃(Fj)

(
1√
2πσ

)k−j ∫ ∞

−∞
dfje

− 1
2

f2
j

σ2 . . .

∫ γ
2

− γ
2

dfk−1e
− 1

2

f2
k−1

σ2 cos (Y1) cos (Y2) . (3.77)

The disorder integrals are solved by completing the square and we find the correlation
function,

R2(Q, j, k) =
(
EmaxQ

)2
∫ ∞

−∞
dFj p̃(Fj)

(
e−2π2σ2

)k−j
(cos(X1) + cos(X2)) . (3.78)
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Figure 3.2: The switching-voltage of the clean array is plotted as a function of the array-
length for several values of the interaction-length Λ. As long as the array is
more than twice as long as Λ, the switching-voltage is independent of the length
N and proportional to Λ. The switching-voltage has the value predicted by an
analytic estimate by Haviland and Delsing[3]. In the region where the array is
shorter than Λ the system is in the zero-dimensional limit discussed in Sec.2.5.
The switching-voltage is proportional to N and does not depend on Λ.

The correlation length is determined by the standard deviation σ of the bare disorder,

Lcorr =
1

2π2σ2
. (3.79)

In the limit of an infinitely broad distribution, the system approaches the maximal box-
disorder limit,

σ →∞ ⇒ Lcorr → 0 , (3.80)

σ → 0 ⇒ Lcorr →∞ . (3.81)

3.3 Numerical simulations

The switching voltage Vsw of the Josephson junction array can be obtained by numerically
solving the equations of motion of the quasi-charge in a boundary biased array,

LQ̈i +
2Qi −Qi−1 −Qi+1

C0
+ αRQ̇i + VQ (Qi + 2e Fi) = 0 , (3.82)

LQ̈1 +
Q1 −Q2

C0
+ αRQ̇2 + VQ (Q1) = V , (3.83)

LQ̈N+1 +
QN+1 −QN

C0
+ αRQ̇N+1 + VQ (QN+1 + 2e FN+1) = 0 . (3.84)
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Figure 3.3: The switching-voltage Vsw as a function of the interaction length Λ for dif-
ferent array-lengths N in the clean array. As long as Λ is larger than 2 the
analytic estimate Eq.3.90 is reproduced and it is Vsw ∝ Λ, as it is shown by the
linear fit (dashed line) in the plot. For smaller Λ non-propagating 2e-charge-
excitations can be created in the array by the adiabatic switch-on of the voltage.
The number of the charge-excitations is proportional to the array-length and
the switching-voltage is proportional to N -times the depinning-voltage of one
charge-excitation. The depinning-voltage of the charge-excitations has been
fitted (red lines) to an exponential function Vsol = βe−γΛ as it arises from the
Peierls-Nabarro-Potential[46, 60].

Here we set the offset voltage to zero U = 0 and apply the bias voltage V on the left of the
array. We include a phenomenological Ohmic dissipation term with a resistance constant
αR. Similar numerically simulations of the switching voltage in arrays of normal tunnel
contacts have been conducted a long time ago in Ref.[65].

The switching voltage is determined by adiabatically applying the bias voltage and de-
termining whether a stable solution for the quasi-charge distribution Qi can be found.
Although the bias voltage is increased slowly, the switch-on time of the voltage V in the
numerical simulation is finite. The phenomenological dissipative term has to be included
to compensate the small current introduced by the switch-on of V . The introduction of
a phenomenological term is also a standard tool in the derivation of the depinning force
fdp in renormalization-group-treatments of pinned systems [16]. The resistance constant
αR determines the strength of the electrical current in the running regime. It does not
affect the switching voltage. The inductance L and the resistance αR both affect the dy-
namical properties of the system, they have no influence on the breakdown of the static
quasi-charge state.

In each simulation the Josephson array is initialised in an empty state Qi = 0. For
an equilibration time Teql no voltage is applied and the array can equilibrate with the
background charge disorder fi. During an adiabatic switch-on time Tad the applied voltage
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Figure 3.4: The switching-voltage Vsw as a function of the array-length in a disordered
array. For Λ = 2 (black crosses) the switching-voltage grows linearly with the
array-length N , fitting to the analytic estimate (black line). For Λ = 5 (blue
triangles) the Vsw is proportional at higher array lengths when N ≈ 100 ≈
2.5Lp and fits the analytic estimate (blue solid line) from Eq.3.48. Due to the
strong dependence on the random disorder-configuration the linear dependence
is only realised on average. The error-bars give the standard-deviation of the
switching-voltage in the sample of disorder-configurations.

V is increased linearly to the desired value. After a second waiting time Twait, during which
all diabatically induced currents can decay, the quasi-charge current Q̇i is averaged over
all array sites i and a short time ∆t. To account for the finite numerical precision, the
Josephson junction array is taken to be in the running regime when the averaged current
exceeds a small threshold current It and in the insulating regime otherwise. To determine
the switching voltage for a single set of parameters and one disorder realisation a series of
simulations of the time-evolution with converging bias voltages V is calculated. The series
is stopped when the switching voltage has been determined within a numerical uncertainty
of,

∆Vsw = 0.001
e

C
. (3.85)

In all simulations we choose the charging and Josephson energies to be equal, EJ = EC .
The length of the array N and the interaction length Λ are varied.

3.3.1 The clean array

The clean case of Josephson junction arrays was used as the default model in a number
of experimental papers on Josephson junction arrays [3, 13, 4]. The model might be more
relevant for QPS-arrays than Josephson junction arrays as the former lack the strong
charge disorder that can be found in the latter. In the continuum limit (Λ � 1) for long
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Figure 3.5: The switching-voltage as a function of the interaction-length Λ in disordered
arrays for a wide range of Λ. For Λ < 2 the depinning-theory for the continuum
limit is not applicable. For large Λ the Larkin length Lp is comparable to the
array length. Vsw is independent of Λ. See also Eq.3.51.

arrays (Λ � N) the effective quasi-charge model of the clean array is equal to the sine-
Gordon model with a modified potential model. The solutions of the standard sine-Gordon
equation of motion are the well known quasi-charge solitons [12, 60],

Q(x) =
4e

π
arctan

(
eγsol

x−vt
Λ

)
, (3.86)

γsol =
1√

1− v2

LC0

, (3.87)

with the soliton velocity v. The spatial derivative of a static soliton v = 0 has a maximal
value of

∂xQ(x)|v=0 ≤
2e

π

1

Λ
. (3.88)

The voltage bias takes the form of a boundary condition on the spatial derivative at x = 0,

∂xQ(x)|x=0 = C0V . (3.89)

This was used in Ref.[3] to estimate the maximal bias voltage for which a static soliton
can exist at the array ends. This voltage is the switching voltage of the clean array,

Vsw =
4√
π

√
e

C0
V max
Q ∝ Λ , (3.90)

V max
Q = max

Q
(∂QEQ(Q)) . (3.91)
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Figure 3.6: The switching-voltage as a function of the interaction-length Λ in disordered
arrays. In the intermediate regime the switching voltage Vsw can be fitted to
a power-law decay with Λ. From the fit (solid lines) we obtain an exponent of
−0.49 (N = 150) and −0.56 (N = 195) instead of −2

3 as expected form the
analytic estimate Eq.3.48 (dashed lines).

The switching voltage does not depend on the array length and is proportional to the
interaction length Λ. Both features are confirmed by the numerical simulations in Fig.3.2
and Fig.3.3.

In the limit Λ > N the clean array model reduces to the zero-dimensional case for zero
frustration fi = 0 that was discussed in Sec.2.5. As we expect form our previous discussion
the switching voltage (corresponding to the total critical current in QPS-ladders) increases
linearly with array size and is independent of Λ (Fig.3.2).

When the interaction length Λ is comparable to the inter-site distance we are no longer in
the continuum limit and the analytic approximation Eq.3.90 is not valid. When decreasing
Λ we find a transition region between Λ = 2 and Λ = 1. The system reaches a new regime
at Λ = 1. The switching-voltage is proportional to the length N and the Λ-dependence
can be fitted to an exponential behaviour,

Vsw = Nβe−γΛ , (3.92)

as seen in Fig.3.3. Only one set of fitting parameters β, γ is used for all four simulated
array-lengths. The Λ-dependence arises from the Peierls-Nabarro-pinning-potential[46].
In the context of Josephson-junction-arrays this was discussed by Fedorov et al. for the
depinning of a single 2e-charge-excitation [60].

The change of the switching voltage behaviour can be understood in the following way. The
interaction length Λ is a measure for the ratio of the elastic coupling between neighbouring
islands and the depth of the pinning-potential. For small interaction lengths Λ < 2, 2e-
charge-excitations can be created at the biased end of the array without driving the array
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58 3. Charge pinning and the switching voltage

in the conducting regime. During the adiabatic increase of the bias voltage the whole
array is filled with non-propagating charge excitation. To drive the array in the transport
regime, the applied voltage needs to overcome the pinning-force acting on all the charge-
excitations in the array. Since the number of charge-excitations in the array scales with
its length, the required switching-voltage is proportional to N -times the depinning voltage
of one 2e-charge-excitation obtained from the Peierls-Nabarro-potential.

3.3.2 The maximally disordered array

Here we present the switching voltage obtained from numerical simulations of the maxi-
mally disordered model.

In Fig.3.4 we compare the dependence of the switching voltage Vsw on the parameter
N with analytic estimate Eq.3.48. At large N where the array is longer than the Larkin
length N > Lp we find that the numerical simulations fit to the expected linear dependence
on the system length. For small system lengths the switching voltage does not increase
linearly with N , as expected from Eq.3.51.

The numerically determined dependence of Vsw on Λ is shown in Fig.3.5 and Fig.3.6.
For small Λ the inter-site distance is comparable to Λ and the continuum limit of the
standard depinning-picture does not apply. For large Λ the Larkin-length is comparable
to the array-length N and we observe a saturation of the switching voltage with Λ. The
saturation sets in for,

N ≈ αsatLp , (3.93)

where αsat is of order of one. Comparing the the analytic estimate Eq.3.51 with the
saturation points we expect αsat in the range between αsat ≈ 2.5 and αsat ≈ 3.5.

In the intermediate regime we expect a power-law behaviour with an exponent of −2
3

(Eq.3.48). Fitting the numerical data to a power-law we obtain the exponents −0.49±0.05
(N = 150) and −0.56 ± 0.03 (N = 195). Due to the limitations in numerically accessible
array-lengths we can not obtain a robust confirmation of the value of the exponent of Λ
from the numerical simulations.

In principle a numerical simulation includes all higher order corrections to the values
of the switching voltage that were obtained from intuitive arguments in Sec.3.1. The
numerical data we obtained for the maximally disordered model is not sufficient to draw
definitive conclusions about the corrections to the approximate values of the switching
voltage (Eq.3.51 and Eq.3.48). We will continue to use the approximate values for Vsw in
the rest of this work.

3.3.3 Weak disorder and emergent correlation length

To validate our analytic model of the introduction of a new length-scale by weak disorder
we have simulated the depinning-transition of the Josephson junction array with weak
box-disorder. We chose the disorder strengths γ = 0.25 (Lcorr(γ = 0.25) ≈ 10) and
γ = 0.125 (Lcorr(γ = 0.125) ≈ 40). In Fig.3.7 it is shown that the system undergoes
a transition when the array-length becomes equal to the correlation length, N = Lcorr.
Below N < Lcorr the Josephson junction array is described by the clean array model
(γ = 0). Above the transition the switching voltage increases linearly with N . The
N -dependence of the switching voltage matches the maximally disordered model γ = 1.
When the correlation length is significantly larger than the array size we can approximate
all correlated disorder terms Fi by a single value Fi ≈ F . The perfectly correlated disorder
term F can be absorbed into the definition of the quasi-charge and the system is equivalent
to the clean array without disorder Fi = 0.
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Figure 3.7: The switching-voltage Vsw as a function of the array-length in a weak box-
disorder model of the Josephson array (γ = 0.125 green markers, lower plot,
γ = 0.25 blue markers, upper plot). For comparison the switching voltages of
the clean case (γ = 0, red markers) and the maximally disordered model (γ = 1,
black markers) are included in the plots. When the array length becomes larger
than the correlation length Lcorr the behaviour of the weakly disordered models
changes. Below N = Lcorr, the switching voltage has approximately the same
value as in the clean case. Above N = Lcorr it increases linearly with N as in
the maximal disorder model (Lcorr(γ = 0.25) ≈ 10 and Lcorr(γ = 0.125) ≈ 40).
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3.4 Fitting an experiment

Φext

EJ

EJ
Figure 3.8: Sketch of a superconducting quantum interference device (SQUID). Both

Josephson junctions have the same bare Josephson coupling energy. The
SQUID-loop is threaded by an external magnetic flux Φ.

At the end of this chapter we compare the results for the switching voltage obtained
from depinning theory with the experimental data on the switching behaviour of six dif-
ferent Josephson junction arrays. The experimental data was provided by R.Schäfer, H.
Rotzinger, W. Cui, A. Fiebig and A.V. Ustinov (all Karlsruhe Institut of Technology, KIT,
Germany). The results have been published in Ref.[39].

In the six arrays the Josephson junctions are replaced by superconducting quantum in-
terference devices (SQUIDs) (see Fig.3.8). The SQUIDs consist of two equal Josephson
junctions with Josephson junction energy 1

2E
m
J . The junctions are placed symmetrically in

a superconducting loop. The SQUID acts as an effective Josephson junction with tunable
EJ . In the absence of additional fields Cooper pairs can tunnel through both Josephson
junctions in the loop and the SQUID acts as a Josephson junction with Josephson energy
EmJ , twice the Josephson energy of the bare junctions. When an external magnetic field
is applied the magnetic flux through the loop Φ causes interference between the tunneling
through the upper and lower bare junction. As a function of the flux the Josephson energy
of the SQUID is given by,

EJ = EmJ cos

(
Φ

Φ0

)
, (3.94)

where Φ0 is the magnetic flux quantum. This dependence is used in experiments to control
the effective Josephson coupling energy of the arrays by applying a magnetic field. The
switching voltage is determined as a function of the magnetic flux through the SQUID
loops. Due to the periodicity of the Josephson coupling energy, Vsw(Φ) is Φ0-periodic in
the magnetic flux.

The six experimental samples are divided into two sets. Samples A255, B255, C255 where
fabricated with the same target values for C0, CJ and EJ . All three samples consist of 255
SQUIDs. The samples D39, E59 and F255 where fabricated with different uniform target
values for the system parameters. The array lengths of the samples are N = 39, N = 59
and N = 255. We assume that all samples are strongly disordered so that we can apply
the maximal disorder model.
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Figure 3.9: The switching voltage normalized to the array length N as a function of the
magnetic flux Φ for three arrays of length 255. Solid lines are fitted functions,
markers show experimental data. (Figure and Caption Ref.[39])

We obtain the analytic formula for Vsw as a function of magnetic flux by inserting the
expression for the Josephson energy in Eq.3.48,

Vsw =
NEC

2e
Λ−

2
3

(
4

3

) 2
3
{
R̃

(
EmJ
EC

cos

(
Φext

Φ0

))} 2
3

. (3.95)

When fitting the experimental data to Eq.3.95 (see Fig.3.10) we determine two free fit
parameters. The Josephson junction arrays have three so far undetermined parameters,
the interaction length Λ, the charging energy EC and the bare Josephson energy EmJ .
Values for EmJ and EC can be obtained experimentally from the conductance at high bias
voltages. At high enough bias voltage the current is carried by quasi-particles and EmJ
is given by the normal resistance of the junctions. The expected value of the charging
energy EexpC can be found from the offset in the IV-curve of the junctions with the help of
P-of-E theory [38]. The experimental value obtained for EmJ is more reliable and is used
to determine EC and Λ from the fitting parameters. The results of the fit of A255 and
C255 to Eq.3.95 is given in Tab.3.1.
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Figure 3.10: The switching voltage normalized to array length N as a function of the
magnetic flux Φ for arrays of length 39, 59 and 255. Solid lines are fitted
functions, markers show experimental data. Using Eq.(3.48) we can resolve
the double-peak-structure for larger Φ caused by an ABABAB . . . pattern
in the SQUID-loop areas. This pattern is also responsible for the deviation
from the Φ0-periodicity at higher Φ.(Figure and Caption Ref.[39])

array N EexpC EmJ Λ EC
A255 255 380µeV 125µeV 13.6± 0.3 310± 4µeV

B255 255 372µeV 113µeV Λ & 17.5 209± 4µeV

C255 255 368µeV 125µeV 8.1± 0.1 239± 2µeV

D39 39 88µeV 180µeV Λ & 5.5 78± 1.5µeV

E59 59 116µeV 160µeV Λ & 7.5 92± 2µeV

F255 255 148µeV 117µeV Λ & 17.5 106± 2µeV

Table 3.1: The experimental estimates and fitted values for Josephson junction arrays
A255 to F255. (Table and caption Ref.[39]).

The data from sample B255 should not be fitted to Eq.3.95. The Λ found in the fit to
Eq.3.95 corresponds to a Larkin length that is comparable to a third of the array size
Lp & 1

3N . As we found in Sec.3.1, the Λ-dependence of the switching voltage saturates for
Lp ≈ 1

3N . We fit the numerical data to the analytic estimate for the switching voltage in
the saturated regime Eq.3.51,

Vsw ∝
√
N
EC
2e

{
R̃

(
EmJ
EC

cos

(
Φext

Φ0

))} 1
2

. (3.96)

The right side of the expression for the switching voltage in short arrays contains an un-
determined prefactor of the order of one. We only use the free fitting parameter EmJ /EC
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to determine the charging energy. For the interaction length Λ we can only give an ap-
proximate lower boundary where we expect the saturation to set in. The lower boundary
of Λ is determined by,

3Lp = N . (3.97)

The result of the fitting is given in Tab3.1.

All samples from the second set D39 to F255 belong to the category of short arrays
with a saturated Λ-dependence. In this set of samples the fabrication did not result in
a homogeneous loop size of the SQUIDs but in an ABABAB . . . alternating pattern of
SQUID areas. This is a known effect in the fabrication of SQUID-arrays [3]. In the
maximally disordered model the disorder Fi is uncorrelated and we can double the size of
the unit-cell to obtain a homogeneous model of AB-elements. The new expression for the
switching voltage is,

Vsw ∝
√
N
EC
2e

{
1

2
R̃

(
EmJ
EC

cos

(
A
πΦ

Φ0

))
+

1

2
R̃

(
EmJ
EC

cos

(
B
πΦ

Φ0

))} 1
2

, (3.98)

where A and B are the alternating SQUID areas in units of the average area used to define
Φ. The experimental data from D39 to F255 has been fitted to Eq.3.98 in Fig.3.10 and
the results are given in Tab.3.1.

Overall the analytic expressions for the switching voltage in the short (Eq.3.51) and long
(Eq.3.48) Josephson junction arrays show good agreement with numerical simulations and
experimental data. We can regard this as evidence that the transition from insulating to
transport behaviour in voltage biased Josephson junction is a depinning transition of an
effective quasi-charge model.
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4. Method development: The stochastic
Bloch-Redfield algorithm

In this chapter we introduce the stochastic Bloch-Redfield algorithm that allows us to
simulate the time-evolution of large solid state open quantum systems. The chapter is
devoted to method development. The numerical approach introduced in this chapter
is demonstrated on the example problem of a superconducting single electron transistor
(SSET) in the next chapter (Ch.5) and used for transport simulations of Josephson junction
arrays in Ch.4. The results presented in this chapter have partially been published in
Ref.[66].

Most mesoscopic superconducting devices interact with an environment or reservoir, for
example phonon baths or ensembles of two-level-fluctuators, leading to relaxation and
dephasing of the quantum-system. Due to the environmental noise the system is no longer
in a pure quantum state but in a classical mixture of quantum states. The full information
about the state of the system is given by the density matrix ρ.

To correspond to a real physical system the density matrix at all times has to have a
trace of one, meaning that the combined probability to find the system in one of the basis
states is one. It also has to be positive semidefinite, which means there can be no negative
probability to find the system in one quantum state. For time-independent problems, it
was shown by Lindblad[67, 68] that the most general form of the equation of motion of a
density matrix that guarantees these properties is the Lindblad-equation,

ρ̇ = i [ρ,HS ] +
∑

α

Γα

(
−1

2

{
L†αLα, ρ

}
+ LαρL

†
α

)
, (4.1)

where HS is the Hamiltonian of the coherent time-evolution, Γα are the relaxation and
dephasing rates and the Lα are the Lindblad operators. The rates are always larger or
equal to zero, Γα > 0.

In principle it is only necessary to solve this master equation to obtain the full time-
evolution of the density matrix ρ. For a given system with a Hilbert or Fock-space of
dimension N , the density matrix has N2 elements and the master equation can be written
as a differential vector-equation,

~̇ρ = L~ρ , (4.2)
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where the superoperator L is an N2 ×N2-matrix. As a consequence, the complexity rises
very fast with the number of quantum-states of the system and it is impossible to solve
the master equation numerically for problems with a large Hilbert space dimension N .

It is possible to deal with this problem to a certain extent by using stochastic Schrödinger
equations (SSE). The stochastic Schrödinger equation is an equation for the time-evolution
of a system-state |ψ(t)〉 that contains stochastic elements. The SSE is constructed in such a
way that averaging over a sufficiently large number of stochastic solutions of the SSE repro-
duces the solution of the original master equation. There is no unique choice of stochastic
Schrödinger equations corresponding to a certain master-equation. Two common choices
or unravellings of stochastic Schrödinger equations are quantum state diffusion[69], which
relies on continuous stochastic changes, and quantum-jumps which uses stochastically dis-
tributed jump events [70, 71, 72, 73, 74, 75, 76]. The interested reader can find extensive
introductions to quantum state diffusion in a book by Ian Percival [69] and to quantum
jumps in a book by Wiseman and Milburn [21].

In the Lindblad-form of the master-equation (Eq.4.1) the form of the decoherence-operators
Lα and the decoherence rates Γα are often postulated. In this case it is a phenomenological
theory with respect to decoherence. In many situations it is sufficient to use generic
Lindblad-operators that correspond to relaxation and dephasing in the system and use
the decoherence rates as parameters of the model, for example if we deal with a simple
two-state-system where the bath is the quantised electromagnetic-field of a cavity and the
radiation field couples to the system via the dipole-moments of the system-states.

Especially in solid-state physics, where the bath is responsible for decoherence and the cou-
pling to this bath can be very complex it is often not sufficient to work on this phenomeno-
logical level. A method that derives the master-equation for an open quantum-system from
the microscopic theory of the bath and the system-bath-coupling is the Bloch-Redfield-
theory [77, 78]. It is often used in solid-state physics, especially in the context of quantum
information [79, 80, 81, 82, 83].

In the rest of this chapter we will show how we can combine the microscopic approach
of Bloch-Redfield-theory and the numerical efficiency of quantum-jumps. The standard
quantum-jump-method is presented in Sec.4.1 and the Bloch-Redfield-theory is introduced
in Sec.4.2. In Sec.4.3 we derive a stochastic version of the Bloch-Redfield approach and
in Sec.4.4 we show the connection between the stochastic Bloch-Redfield-method and the
kinetic Monte-Carlo-algorithm.

4.1 Quantum jumps

In this section we will give a short introduction to quantum-jumps following the logic
of Dalibard et al. [72] for the reader unfamiliar with these topics and to introduce our
notation.

The concept of the quantum-jump-approach can be most easily understood starting from
the example of a system interacting with a quantised light-mode in the presence of a photon
detector [75, 21]. Indeed some of the early applications of quantum-jumps considered
exactly such systems[72]. In the simplest case the systems correspond to a two-state qubit
with states | ↑〉 and | ↓〉. We assume that the qubit is in resonance with the radiation-field,

HS = ωσz , (4.3)

HB = ω

(
a†a+

1

2

)
. (4.4)

We apply the rotating wave approximation (RWA) to the coupling with the radiation field
so that the coupling Hamiltonian H int

SB can be expressed with standard creation a† and
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annihilation a operators acting on the radiation field and Pauli-operators acting on the
qubit,

H int
SB = g

(
a†σ− + aσ+

)
. (4.5)

We consider the system in the interaction picture so that the total Hamiltonian is reduced
to the coupling operator in the interaction picture,

H = H int
SB . (4.6)

Let us assume that at time t the state of the qubit is given by,

|ψ(t)〉 = sin(θ)| ↑〉+ cos(θ)| ↓〉 , (4.7)

where θ is an arbitrary mixing angle between the two states |↑〉 and |↓〉, 0 ≤ θ < 2π. The
light-mode contains no photon,

|n(t)〉 = |0〉 . (4.8)

We call the combined state |φ(t)〉 = |ψ(t)〉|n(t)〉.
The coupling between the qubit and the radiation field leads to photon-emissions of the
qubit with rate Γ. The master-equation for the density matrix of the qubit can be easily
found with standard methods[84],

ρ̇ = −Γ

[
1

2

{
σ+σ−, ρ

}
− σ−ρσ+

]
. (4.9)

Now assume that after a short time-interval the photon-detector will detect whether the
light-mode is in the one-photon or the vacuum state. The time-interval ∆t is taken to
be short. We can expand the time-evolution of the system to first order in ∆t [72]. The
amount of population that has shifted from the | ↑〉⊗|0〉 to the | ↓〉⊗|1〉-state is proportional
to the decay rate Γ times the time-interval ∆t,

|φ(t+ ∆t)〉 =

[
(1− 1

2
Γ∆t) sin(θ)| ↑〉+ cos(θ)| ↓〉

]
⊗ |0〉+ Γ∆t sin(θ)| ↓〉 ⊗ |1〉 .

Measuring the photon-number-state corresponds to measuring whether the qubit has in-
teracted with the light-mode or not. The measurement projects the state |φ(t+ ∆t)〉 into
the |n〉 = |0〉 or the |n〉 = |1〉 sub-space. The probability of each measurement outcome is
given by,

p0 = |〈0|φ(t+ ∆t)〉|2 =

∣∣∣∣(1−
1

2
Γ sin(θ)∆t) |↑〉+ cos(θ) |↓〉

∣∣∣∣
2

= 1− Γ sin(θ)2∆t+O(∆t2) , (4.10)

p1 = 1− p0 = Γ sin(θ)2∆t+O(∆t2) . (4.11)

Note that the normalization can be a difficult point in the unraveling of master equations
into stochastic-Schrödinger-equations in general. To obtain the SSE the time-evolution is
often considered for an infinitesimal time-step dt and the full time-evolution is expanded
into a series which is truncated at a certain finite order η. The new state obtained by
applying the truncated series expansion is usually only normalized up to dtη+1. This
can lead to a probability-mismatch for the different measurement-outcomes. Take for
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68 4. Method development: The stochastic Bloch-Redfield algorithm

example the expression for the probability p1 we found above (Eq.4.11), if we had used
the probability,

p1 = |〈1|φ(t+ ∆)〉|2 (4.12)

= 0 +O
(
∆t2

)
, (4.13)

the probability of a quantum jump would be zero according to our truncation scheme. The
probabilities of the jumps obtained by measuring the bath-state do not sum up to one.
The probability p1 has to be obtained from p0 where the correction to leading order in ∆t
can be calculated.

If a photon is detected, the state of the qubit changes drastically, the system state after
the measurement |φ′〉 is given by,

|φ′〉 =
1

|〈1|φ(t+ ∆t)〉| 〈1|φ(t+ ∆t)〉 ⊗ |0〉

= | ↓〉 ⊗ |0〉 = |ψ′〉 ⊗ |0〉 , (4.14)

where the photon number-state is returned to |0〉 since the photon is absorbed in the
measurement process. The measurement projects the qubit into the | ↓〉-state, a quantum-
jump has occurred.

If no photon is detected the qubit-state changes only gradually,

|φ′′〉 =
1√
p0
〈0|φ(t+ ∆t)〉 ⊗ |0〉

=

[{
1− 1

2
Γ∆t+

1

2
Γ sin(θ)2∆t+O(∆t2)

}
sin(θ)| ↑〉

+

{
1 +

1

2
Γ sin(θ)2∆t+O(∆t2)

}
cos(θ)| ↓〉

]
⊗ |0〉

=|ψ′′〉 ⊗ |0〉 . (4.15)

The information that no photon was emitted in the time-span ∆t does not correspond to
a full measurement of the qubit-state. The distribution between the | ↑〉 and | ↓〉-states in
the qubit is shifted in favour of the | ↓〉-state. The failure to detect a photon increases the
probability that the qubit is in the state that can not emit a photon. Repeating this kind
of time-evolution over ∆t, the state of the qubit decays steadily from the mixed-state to
the | ↓〉-state until it either jumps from the mixed state to the pure state | ↑〉 or it reaches
| ↓〉 purely by decay. A detailed discussion of the coexistence of a continuous change in
the state of a quantum system with sudden quantum-jumps can be found in a paper on
quantum trajectories by Brun [75].

To confirm that we regain the original master-equation we now construct the average
change in the density-matrix of the qubit from the two possible measurement outcomes. We
reduce the finite time-step ∆t to the infinitesimal dt. The density matrices corresponding
to the pure states |ψ′〉 and |ψ′′〉 are given by |ψ′〉〈ψ′| and |ψ′′〉〈ψ′′|. The time derivative is
given by the weighted sum over the pure density matrices. The weights are the probabilities
of the state |φ(t)〉 evolving to state |φ′〉 or |φ′′〉. These are the probabilities p0 and p1 of the
measurement of the photon-number resulting in |0〉 or |1〉 and the qubit-state collapsing
to |ψ′〉 or |ψ′′〉 respectively,

dρ(t)

dt
=

1

dt
[ρ(t+ dt)− ρ(t)] (4.16)

=
1

dt

[
p0|ψ′′〉〈ψ′′|+ p1|ψ′〉〈ψ′| − |ψ(t)〉〈ψ(t)|

]
(4.17)

= −1

2
Γ
[
σ+σ−ρ+ ρσ+σ− − 2σ−ρ(t)σ+

]
. (4.18)
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The master equation obtained by the averaging over the stochastic distribution of the pure
states |ψ′〉 and |ψ′′〉 is the same master-equation that describes the radiative decay of the
qubit Eq.4.9. The correct time-evolution of ρ can be obtained by numerically calculating
many realisations of the stochastic trajectories given by Eq.4.14 and Eq.4.15. The average
over the density matrices obtained from the trajectory states at each time is the density-
matrix of the mixed state of the qubit.

The approach above is not limited to the simple case of one qubit in contact with one
laser-mode. Every Lindblad master-equation Eq.4.1 can be unravelled into a stochastic-
Schrödinger-equation with this quantum-jump-approach. Looking at the Lindblad-equation,

ρ̇ = i [ρ,H] +
∑

α

(
Γα −

1

2

{
L†αLα, ρ

}
+ LαρL

†
α

)
, (4.19)

we can identify the Lindblad-operators Lα and L†α with the σ+ and σ− operators of the
special qubit case. To unravel the master-equation into a stochastic-Schrödinger-equation
we allow for the state of the system |ψ(t)〉 to evolve into one of Nα + 1 possible states
|ψ(t + dt)〉α/0 in the infinitesimal time-interval dt, where Nα is the number of Lindblad-
operators.

The states the system-state |ψ(t)〉 can evolve to are given by,

|ψ(t+ dt)〉0 =
1√
p0

(1− iHcodt)|ψ(t)〉 , (4.20)

Hco = H + i
1

2

∑

α

ΓαL
†
αLα , (4.21)

p0 = 〈ψ(t)|(1− iHcodt)|ψ(t)〉 , (4.22)

|ψ(t+ dt)〉α =
1√
pα

√
ΓαdtLα|ψ(t)〉 (4.23)

=
1

|Lα|ψ(t)〉|Lα|ψ(t)〉 , (4.24)

pα = 〈ψ(t)|ΓαL†αLα|ψ(t)〉dt . (4.25)

The states |ψ(t+dt)〉α are jump-states, they correspond to a quantum-jump of the system
due to the Lindblad-operator (or jump-operator) Lα. The probability of each quantum-
jump pα is determined by the rate Γα the time dt and the norm of the state after the jump
|Lα|ψ(t)〉|.
The dependence of the jump-probability on the norm of the jumped state may seem surpris-
ing at first. After all the jump-probability should correspond to the rate Γα of the LαρL

†
α-

term in the master-equation Eq.4.1. Contrary to the density-matrix the pure system-states
used in stochastic-Schrödinger-equations can not capture the classical statistical mixture of
quantum-states. The system-state after a jump needs to be normalized. In the Lindblad-
equation the norm of LαρL

†
α can be small compared to the norm of the density matrix ρ(t)

so that the Lindblad operator Lα leads to a slow change of the density-matrix even if the
rate Γα is large. To reproduce this behaviour in the stochastic-Schrödinger-equation the
probability of a quantum-jump needs to be suppressed by the norm of the jumped state
Lα|ψ(t)〉.
The

√
dt-factor is fundamentally connected to the ability of the Lindblad-master-equation

to turn the density-matrix of a pure quantum-state |φ〉 into the density matrix of a
statistical-mixture of quantum-states. If a density-matrix could always be expressed as
the product of a pure quantum-state and its hermitian conjugate ρ = |φ〉〈φ|, its differen-
tial would simply be given by,

dρ = d(|φ〉〈φ|) = |dφ〉〈φ|+ |φ〉〈dφ| . (4.26)
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70 4. Method development: The stochastic Bloch-Redfield algorithm

In the infinitesimal time dt either the left ket-state or the conjugated right bra-state
changes, not both states simultaneously. The term LαρL

†
α in the master-equation Eq.4.1

acts on the density matrix from both sides. If one would unravel this operator product
into an infinitesimal change of the state |φ〉 linear in the infinitesimal time-step dt,

|dφ(t)〉α ∝ Lα|φ(t)〉dt , (4.27)

the corresponding infinitesimal change of the density-matrix,

dρ(t)α ∝ |dφ(t)〉α〈dφ(t)|α = Lα|φ(t)〉〈φ(t)|L†αdt2 , (4.28)

would be quadratic in the infinitesimal time-step dt. This term could not contribute to
the time-derivative of the density matrix at first order and thus the LαρL

†
α-part of the

master-equation could not be reconstructed in this formulation.

The Lindblad-operators acting on both sides of the density matrix in Eq.4.1 take the
density matrix out of the subspace where it is given by the product of the ket |φ〉 and bra
〈φ| of the same state. This part of the master-equation can not be mapped to a standard
differential equation for the time-evolution of a quantum-state. It can be mapped to a
stochastic equation of motion for a quantum-state. In averaging over the many possible
realisations of the stochastic time-evolution we regain a density-matrix that corresponds
to a statistical mixture of pure quantum-states even though for each realisation of the time
evolution the state |φ(t)〉 is a pure state at all times t.

In the stochastic-Schrödinger-equation, the occurrence of dt2 can be compensated by in-
troducing the infinitesimal time-element

√
dt so that (

√
dt)2 is of the same order as the

standard infinitesimal dt and
√
dtdt is of higher order and can be disregarded. The same

ansatz is central to the Itô-calculus used in quantum state diffusion[69].

The infinitesimal element |dφ(t)〉 is composed of two elements linear in dt and
√
dt respec-

tively,

|dφ(t)〉 = p0|dφ〉0 +
∑

α

pα|dφ〉α , (4.29)

|dφ〉0 ∝ dt , (4.30)

pα|dφ〉α ∝
√
dt . (4.31)

The time-evolution linear in dt and
√
dt is orthogonal. Averaged over many realisations the

contribution linear in
√
dt gives a contribution to the time evolution of the density-matrix

that is linear in dt,

p2
α|dφ〉α〈dφ|α = ΓαLαρL

†
αdt . (4.32)

While pα gives the probability of ρ turning from the density-matrix of a pure-state into
a statistical mixture of quantum states, p0 is the probability of ρ staying a pure-state
density-matrix during the time-evolution t → t + dt. The time-evolution-operator Hco

combines the coherent time-evolution of the Hamiltonian H with the combinations of the
Lindblad operators −i1

2

∑
α L
†
αLα that only act on one side of ρ in Eq.4.1 and do not take

ρ out of the pure-state-subspace.

The complex combined Hamiltonian Hco is not Hermitian and reduces the norm of the state
|φ(t)〉 it acts on. The combined effect of the imaginary part of Hco and the renormalization
with 1√

p0
is to change the amplitudes in the linear combination of basis states that forms

|φ(t)〉. It reduces the amplitudes of the states from which a quantum-jump Lα can occur
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4.2. The Bloch-Redfield equation 71

and increases the amplitudes of the states which are stable with respect to the jump
operator Lα.

Constructing density-matrices from the states |φ(t+ dt)〉0 and |φ(t+ dt)〉α and averaging
weighted by the probabilities p0 and pα we obtain,

ρ̇ = [ρ,H] +
∑

α

Γα −
(

1

2

{
L†αLα, ρ

}
+ LαρL

†
α

)
, (4.33)

the original Lindblad-equation. A more in-depth discussion of the relation of different
unravellings can be found by the interested reader in Ref.[69].

In this work we always use the quantum-jump unravelling [85, 86, 87, 88, 89, 90, 91, 92, 93].
If one wants to connect the quantum-jump-unravelling to a physical picture one could think
of additional degrees of freedom |χα〉 which are decoupled from the system. The state |χα〉
is only affected by the jump-operator Lα so that,

Lα|χα〉 = |χα + 1〉 ,
L†αLα|χα〉 = |χα〉 . (4.34)

The additional degrees of freedom count how often the Lindblad-operators act on the
system. If we assume that we can constantly measure the state |χα〉 the measurement-
outcome will project the system into a state where no jump occurred with probability p0

and into a jumped state with pα.

In an intuitive algorithm for a numerical implementation the probabilities of no-jump
p0 and the jumps pα are calculated at each numerical time-step and it is decided by a
random-number-generator whether and which quantum-jump occurs.

In real numerical simulations the implementation is usually slightly modified from the
intuitive algorithm [21]. The probability p0 of no jump occurring is quadratic in |φ(t)〉. Due
to the renormalization, the no-jump time-evolution is no longer linear in |φ(t)〉. This makes
numerical simulations of the time-evolution much more time-consuming. It is common[21]
to not renormalise the state |φ(t+dt)〉0 as long as no jump occurs. In this algorithm first a
random number r1 is generated, then the time-evolution of the state |φu.n.(t)〉 is calculated
using the Schrödinger-equation and the combined Hamiltonian Hco without renormalizing
the state at every time-step. The time-evolution is stopped once the square of the norm of
the state is smaller than the random number. The renormalization of the state 1√

p0
and the

probability of no-jump p0 are connected so that the combined probability P0(0, t) of no-
jump occurring in the time-interval [0, t] and the squared norm have the same exponential
time-dependence,

P0(0, t) ∝ exp

[
ln(p0)

t

∆t

]
, (4.35)

||φu.n.(t)〉|2 ∝ exp

[
−2 ln

(
1√
p0

)
+ ln

(
t

∆t

)]
= exp

[
ln(p0)

t

∆t

]
. (4.36)

Waiting until the norm of the state has decayed to r1 is on average equivalent to deciding
at each timestep if a jump occurs with probability 1 − p0 or not. Once it is determined
that a jump occurs at time t, the state is renormalized and a second random-number r2 is
used to choose the quantum-jump-operator Γα.

4.2 The Bloch-Redfield equation

In this section we show the derivation of the Bloch-Redfield-master-equation from the mi-
croscopic model of the bath and system-bath-coupling that leads to decoherence. Detailed
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72 4. Method development: The stochastic Bloch-Redfield algorithm

introductions to Bloch-Redfield-theory can be found in many textbooks and review-articles
for example by Carmichael [84] or Weiss [94]. Nevertheless we want to present a short
derivation since we refer to certain steps in the derivation later on. The reader familiar
with the Bloch-Redfield approach can continue with section Sec.4.3.

Before we begin with the derivation we want to note that the Bloch-Redfield-equation
unlike the Lindblad-equation can produce density-matrices that are not physical at all
times. Due to the imperfect nature of the approximations in the derivation of the Bloch-
Redfield-equation the density-matrix obtained from the Bloch-Redfield-master-equation is
not guaranteed to have a trace of one or to be positive semidefinite at all times. Both
are necessary conditions if the density-matrix is to correspond to a physical system. How-
ever these problems typically only arise on short timescales after initialising the system
with the density-matrix of a pure state which can be very different from the equilibrium
density-matrix. If the secular approximation is applied, the Bloch-Redfield-equation can be
mapped to the Lindblad-form[82] and the density-matrix is guaranteed to have a physical
form at all times. We will discuss the secular approximation later on.

The Bloch-Redfield-approach assumes that the considered system defined by the system-
Hamiltonian HS is in contact with a bath. In principle there can be several independent
baths and the derivation of the master equation will hold in the same way. We limit
ourselves to one bath for simplicity.

The bath is defined by its Hamiltonian HB and its equilibrium density-matrix ρB. We
refer to the combination of system and bath as the world-system or just the “world”. The
world-system is given by,

HW = HS +HB +HSB , (4.37)

HSB =
∑

i

giXizi , (4.38)

with the coupling Hamiltonian HSB, a linear combination of products of system (zi) and
bath (Xi) coupling-operators with coupling-strength gi. It should be noted that the Xi

and zi do not need to be Hermitian individually as long as HSB is.

The von Neumann-equation for the time-evolution of the world-density-matrix ρW is given
by,

ρ̇W (t) = i [ρW (t), HW ] . (4.39)

The standard derivation[84, 77, 78] of the Bloch-Redfield-equation is to change into the
interaction picture with respect to HS and HB,

ρ̇IW (t) = i
[
ρIW (t), HI(t)

]
, (4.40)

ρIW (t) = ei(HS+HB)(t−t0)ρW (t)e−i(HS+HB)(t−t0) , (4.41)

HI(t) = e−i(HS+HB)(t−t0)HSBe
i(HS+HB)(t−t0) , (4.42)

and to insert the integral form of the von Neumann-equation Eq.4.40,

ρIW (t) = ρIW (t0) +

∫ t

t0

dt′i
[
ρIW (t′), HI(t

′)
]
, (4.43)

into itself,

ρ̇IW (t) = i
[
ρIW (t0), HI(t)

]
−
∫ t

t0

dt′
[[
ρIW (t′), HI(t

′)
]
, HI(t)

]
. (4.44)
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The Bloch-Redfield-approach is based on the assumption of weak coupling between system
and bath. Since the coupling-strength gi is small compared to the other parameters of the
problem the equation of motion can be truncated at the second order in gi.

It is assumed that at time t0 the world-density-matrix ρW (t0) is a direct product between
the system-density-matrix ρS and the bath-density-matrix ρB,

ρIW (t0) = ρIS(t0)⊗ ρIB(t0) . (4.45)

The system and the bath are not entangled at t0. The entanglement created between
system and bath is at least linear in the interaction-Hamiltonian and so of first order of
the coupling gi,

ρIW (t) = ρIS(t)⊗ ρIB(t) +O(HI) . (4.46)

Since we truncate Eq.4.44 at the second order of gi the contribution of the entanglement-
correction to ρIW (t) is neglected on the right side of Eq.4.44.

Assuming ρW is always a direct product allows us to trace out the degrees of freedom of
the bath to obtain the time-evolution of the density-matrix of the system. In taking the
trace of Eq.4.44 one essentially reduces the equation of motion of the world to the equation
of motion of the system under the influence of the bath.

We assume that the trace of the term linear in the bath-operator Xi is zero. If the
expectation value 〈Xi〉 = Tr (XiρB) was not zero, the linear contribution of the system-
bath-coupling-operator HSB would correspond to a Lamb-shift in the original system-
Hamiltonian,

HS → H ′S = HS +
∑

i

gi 〈Xi〉 zi . (4.47)

The Lamb-shift could be absorbed into the original Hamiltonian HS .

The bath is assumed to be large enough so that the density-matrix of the bath ρB is always
in the thermal equilibrium and time-independent. The time-evolution of the system is
given by,

ρ̇IS(t) = −
∫ t

t0

dt’
∑

i,j

Tr
(
ρBXi(t

′)Xj(t)
) (
ρIS(t′)zi(t′)zj(t)− zi(t′)ρIS(t′)zj(t)

)

−Tr
(
ρBXj(t)Xi(t

′)
) (
zj(t)ρ

I
S(t′)zi(t′)− zj(t)zi(t′)ρIS(t′)

)
. (4.48)

The bath-properties enter the equation via the correlation functions of the bath-coupling-
operators Xi and Xj ,

C̃ij(t, t
′) = C̃ij(t− t′) =

〈
Xi(t− t′)Xj(0)

〉
B
. (4.49)

The correlation function C̃ij(τ) depends only on the time difference τ = t− t′, not on the
absolute times, unless the density-matrix of the bath ρB is time-dependent.

The separation between system and bath is only justified as long as the correlation function
C̃ij decays on a timescale τcorr that is short compared to the timescale set by the interaction
between system and bath. When the correlation time is long compared to the inverse
interaction-strength 1

gi
we can not trace out the degrees of freedom of the bath. The bath

has to be treated as a coherent part of the system.

73



74 4. Method development: The stochastic Bloch-Redfield algorithm

If we can separate system and bath, the t′-integral in Eq.4.48 can be shifted to an integral
over the time-difference τ and the integration can be extended to the interval [0,∞) as
C̃ij(τ) is approximately zero for |τ | ≥ t− t0,

ρ̇IS(t) = −
∫ ∞

0
dτ
∑

i,j

C̃ij(−τ)
(
ρIS(t− τ)zi(t− τ)zj(t)− zi(t− τ)ρIS(t− τ)zj(t)

)

−C̃ji(τ)
(
zj(t)ρ

I
S(t− τ)zi(t− τ)− zj(t)zi(t− τ)ρIS(tτ)

)
(4.50)

In this form the time-evolution of ρIS(t) is not strictly Markovian, the time-derivative of
ρIS(t) does not only depend on the state of ρIS at time t but also at earlier time t′ via the
τ -integral on the right hand side of Eq.4.50.

In the final step of the derivation of the Bloch-Redfield-equation we apply the Markov
approximation to the system-density-matrix ρIS . We replace ρIS(t − τ) with ρIS(t) on the
right-hand-side of Eq.4.50. The time-derivative of the system-density-matrix at time t now
depends solely on the state of ρIS at time t.

Using the Markov approximation and returning to the Schrödinger picture we obtain the
final form of the Bloch-Redfield-equation in the time-integral formulation,

ρ̇S(t) = i [ρS(t), HS ]−
∫ ∞

0
dτ
∑

ij

C̃ij(−τ)
[
ρS(t)zie

iHSτzje
−iHSτ − ziρS(t)eiHSτzje

−iHSτ ]

−Cji(τ)
[
eiHSτzje

−iHSτρS(t)zi − eiHSτzje−iHSτziρS(t)
]
.

(4.51)

This approximation is valid as long as the time-evolution of ρS(t) is completely dominated
by the bare system-Hamiltonian HS on the timescale τcorr.The interaction with the bath
does not cause dephasing or relaxation in ρS(t) on this timescale. The time-evolution due
to the system-Hamiltonian HS is shifted from the density-matrix to the operators.

Physically in the Markov approximation, the state of the bath changed by the interaction
with the system at time t0 returns to equilibrium long before the changed bath-state can
have an effect at later times t+ t0 + τ . Information can only flow from the system to the
bath. Interaction-strengths gi that allow the system to regain information about its state
at earlier times via the bath break Markovianity.

In essence the Bloch-Redfield equation describes the time-evolution of a system weakly
coupled to a large bath so that the complex bath can be reduced to the correlation function
C̃ij(τ) with respect to its influence on the bath.

The time-integral-formulation of Eq.4.51 is not very useful to find numerical or analytical
solutions to the Bloch-Redfield-equation. The integral can be evaluated by introducing an
infinitesimal convergence factor e−ετ for τ → ∞ and using the Fourier-transform of the
correlation function, the spectral function,

Cij(ω) =

∫ ∞

−∞
C̃ij(τ)e−iωτdτ . (4.52)

This is most easily done in the eigenbasis of the system-Hamiltonian. We denote the basis
states of HS with greek letters (|β〉, |γ〉, |δ〉, |η〉). The unitary transformation matrix V
diagonalises the system Hamiltonian. The system-coupling-operators in the eigenbasis are
denoted as ξi = V †ziV . The Bloch-Redfield-equation can be written as,

ρ̇S(t) = i [ρS(t), HS ]− P (ρS(t)) (4.53)
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with the superoperator P (ρ) leading to dephasing and relaxation,

P (ρ) = − 1

2π
lim
ε→0

∫ ∞

−∞
dω

∫ ∞

0
dτ
∑

i,j

∑

β,γ,δ,η

ξβ,γj ξη,δi

{
C̃ij(−τ)eiωτe−iωβγτe−ετZ1

β,γ,δ,η(ρ(t))

−C̃ji(τ)eiωτe−iωβγτe−ετZ2
β,γ,δ,η(ρ(t))

}
,

(4.54)

where we used,

Z1
β,γ,δ,η(ρ(t)) = [ρS(t)|η〉〈δ||β〉〈γ| − |η〉〈δ|ρS(t)|β〉〈γ|] , (4.55)

Z2
β,γ,δ,η(ρ(t)) = [|β〉〈γ|ρS(t)|η〉〈δ| − |β〉〈γ||η〉〈δ|ρS(t)] . (4.56)

We defined the energy-difference between eigenstates ωβγ as,

ωβγ = Eγ − Eβ , (4.57)

ξβγi = 〈β|ξi|γ〉 . (4.58)

We use an integral-identity to convert the time-integral into a δ-function and a Cauchy
principal value,

lim
ε→0

∫ ∞

0
eiωτe−iωβγτe−ετ = 2πδ(ω − ωβγ)− i P.V.

1

ω − ωβγ
(4.59)

The Cauchy principal value, P.V. 1
ω−ωβγ , contributes an imaginary correction to the omega-

integral in Eq.4.54. This contribution modifies the energy-levels of the system like the
Lamb-shift (in the case where the bath is given by the quantized electro-magnetic field it
is the Lamb-shift). When using the Bloch-Redfield-equation it is commonly assumed that
the principal-value-contribution is already included in HS and the imaginary part of the
ω-integral is ignored[84].

The spectral-function-form of the Bloch-Redfield-equation contains all time integrals in
Cji(ω),

ρ̇S(t) = i [ρS(t), HS ]− 1

2

∑

i,j

∑

β,γ,δ,η

ξβ,γj ξη,δi {Cij(−ωβγ) [ρS(t)|η〉〈δ||β〉〈γ| − |η〉〈δ|ρS(t)|β〉〈γ|]

−Cji(ωβγ) [|β〉〈γ|ρS(t)|η〉〈δ| − |β〉〈γ||η〉〈δ|ρS(t)]} ,
(4.60)

The strength of dephasing and relaxation is determined by the spectral function evaluated
at the energy-differences of the system. The spectral function Cij(ω) is a measure of the
weight of an energy-transfer of ω between the system and the bath by the bath coupling-
operators Xi and Xj . The system coupling-operators zi and zj can correspond to a combi-
nation of several transitions between system-energy-eigenstates. Each of these transitions
|β〉〈γ| is weighted with the value of the spectral-function at the transition frequency ωβγ .
For later reference we introduce a shorthand notation for the Bloch-Redfield-equation in
the eigenbasis,

ρV (t) = V ρS(t)V † ,

ρ̇V (t) = i
[
ρV (t), V †HSV

]
− 1

2

∑

i,j

[
ρS(t)ζ−ij ξi − ξiρS(t)ζ−ij − ζ+

jiρS(t)ξi + ξiζ
+
jiρS(t)

]
,

(4.61)
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76 4. Method development: The stochastic Bloch-Redfield algorithm

with the spectral-weighted coupling-operators,

〈β|ζ±ij |γ〉 = 〈β|ξj |γ〉Cij(±ωβγ) . (4.62)

It is often possible to further simplify the Bloch-Redfield-equation with the secular approx-
imation. In the interaction picture the coupling operators in Eq.4.60 acquire an oscillating
time-dependence,

ρ̇IS(t) = −1

2

∑

i,j

∑

β,γ,δ,η

e−i(ωβγ−ωδη)tξβ,γj ξη,δi
{
Cij(−ωβγ)

[
ρIS(t)|η〉〈δ||β〉〈γ| − |η〉〈δ|ρIS(t)|β〉〈γ|

]

−Cji(ωβγ)
[
|β〉〈γ|ρIS(t)|η〉〈δ| − |β〉〈γ||η〉〈δ|ρIS(t)

]}
,

(4.63)

The exponential function e−i(ωβγ−ωδη)t oscillates on the time-scale of the coherent time-
evolution of the system. In the interaction picture the density matrix ρIS(t) changes on
the time-scale of the dephasing-time T2 and relaxation-time T1 of the system.

The average contribution of the terms with,

|ωβγ − ωδη| � max

({
1

T1
,

1

T2

})
(4.64)

to the Bloch-Redfield master equation Eq.4.63 vanishes due to the fast oscillations. The
strict secular approximation postulates that each combination of transition frequencies is
either exactly zero,

ωβγ − ωδη = 0 , (4.65)

or large compared to T1 and T2 (Eq.4.64). The sum over the eigenbasis in Eq.4.63 is
modified by introducing a Kronecker delta,

∑

β,γ,δ,η

→
∑

β,γ,δ,η

δ(ωβγ − ωδη) . (4.66)

Only pairs of transitions with the same transition frequency contribute to the incoherent
time-evolution. The strict secular approximation is not a good approximation when the
problem contains pairs of transitions so that ωβγ and ωδη are not equal but the difference
is comparable to 1/T1 and 1/T2. In small systems the strict secular approximation can be
relaxed by hand for specific combinations of transitions. In this work we always understand
the secular approximation to be the strict secular approximation defined by Eq.4.66.

4.3 Stochastic Bloch-Redfield-theory

In this section we unravel the full Bloch-Redfield-master-equation into a stochastic differen-
tial equation to obtain the stochastic Bloch-Redfield algorithm (also published in Ref.[66]).
In this way we combine the microscopic foundations of the Bloch-Redfield-theory with the
gains in numerical efficiency of the quantum-jump approach. The presented algorithm is
general in the sense that it makes no specific assumptions about the model of the system
except that the standard Bloch-Redfield approach is applicable.

So far to our knowledge all stochastic unravellings that take into account the microscopic
model of the environment, as it has to be done in a solid state environment [80, 66], have
to be adapted to the specific model. Often a master equation in Lindblad form has been
derived by hand for the microscopic model of the bath [85, 86, 87, 88, 89, 90, 91, 92, 93].
Other works have extended stochastic unravellings to non-Markovian problems [95, 96].
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4.3. Stochastic Bloch-Redfield-theory 77

As a specific Markovian correlation function C̃(t) in the Bloch-Redfield equation is just a
special case of a general non-Markovian memory kernel one can in principle use one of the
non-Markovian unravellings for a specific bath model with a known spectral function.

In one case additional fictitious oscillator modes were added to the system [95]. The ficti-
tious oscillator modes are chosen in such a way that by tracing out their degrees of freedom
one obtains a non-Markovian master equation of the form Eq.4.51 with the original non-
Markovian memory kernel C̃ij(τ). The full system with the fictitious oscillator modes
is then simulated with the quantum-jump-method. In another case the non-Markovian
unravelling was based on the quantum-state-diffusion unravelling[97, 96]. In this method
the size of the Hilbert space is not expanded. However, one has to find a suitable an-
alytic ansatz for each type of system and noise environment and one has to evaluate a
time-integral over the memory-kernel at each simulation-step. Both these methods are
numerically much more expensive as they can also deal with non-Markovian problems.
The advantage of our method is that it provides a closed algorithm that does not have to
be adapted separately to each microscopic bath model.

At a first glance the main obstacle to rewrite the Bloch-Redfield-equation Eq.4.61 into a
stochastic-Schrödinger-equation is the imbalance of the operators acting on the density-
matrix ρ from left and right. Unlike the Lindblad-operators Lα and L†α th operators ξi
and ζ−ij are not Hermitian conjugates. This imbalance is a manifestation of a fundamental
difference between the Bloch-Redfield-equation and the Lindblad-equation. Density ma-
trices obtained from the Lindblad equation always have physical form, those obtained for
Bloch-Redfield can contain unphysical negative probabilities to find the system in certain
states.

Density matrices ρ obtained from a stochastic unravelling are always physical. They are
an average over pure-state density matrices |φ〉 〈φ|. Each pure state density matrix has
a trace of one Tr(|φ〉 〈φ|) and is positive semidefinite. Averaging over many pure state
matrices,

ρ =
m∑

i=1

1

m
|φi〉 〈φi| , (4.67)

preserves the physical properties. As the Lindblad equation is the most general master
equation that produces such density matrices, a time-independent master equation can
only be stochastically unravelled if it is mappable to Lindblad form.

Unravelling the Bloch-Redfield-equation into a stochastic-Schrödinger-equation requires
additional approximations. In the strict secular approximation the Bloch-Redfield-equation
can be rewritten in Lindblad-form [82]. We will use a notation that is especially suited
to turn the Lindblad-form into a stochastic-Schrödinger-equation. Later on we will dis-
cuss which part of the secular-approximation are essential to obtain the stochastic form of
Bloch-Redfield and introduce the piecewise flat spectral-function (PWFS) approximation.

We start with the Bloch-Redfield equation Eq.4.60 in the secular approximation,

ρ̇S(t) = i [ρS(t), HS ]− 1

2

∑

i,j

∑

β,γ,δ,η

δ(ωβγ − ωδη)ξβ,γj ξη,δi
{
Cij(−ωβγ)Z1

β,γ,δ,η(ρ(t))

−Cji(ωβγ)Z2
β,γ,δ,η(ρ(t))

}
. (4.68)

The energy differences ωβγ of system eigenstates |β〉 and |γ〉 can be written as an antisym-
metric N ×N -matrix of the same dimension as the coupling operators ξi. For each unique
value of the eigenenergy-differences ω we define a subset M(ω) of the N × N complex
vector-space so that,

M(ω) =
{
M ∈ CN×N | ∀ β, γ ωβγ 6= ω ⇒ Mβγ = 0

}
. (4.69)
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78 4. Method development: The stochastic Bloch-Redfield algorithm

For each subset we define P(ω) as the projector into that subset. Let mE be the number
of unique eigenenergy-differences ω and mC the number of coupling operators ξi. The
maximal value of mE for a completely non-degenerate system is mE = N2 − N + 1. We
now decompose the mC coupling-operators ξi into mC ×mE new coupling operators ξJk ,

ξJk = ξJ(mE(i−1)+n) = P(ωn)ξi . (4.70)

If we take, for example, the following ω-matrix and coupling operator,

ω =




0 ω1 ω2

−ω1 0 ω1
...

... 0


 , ξ1 =




ξ11
1 ξ12

1 ξ13
1

... ξ22
1 ξ23

1
... ξ33

1


 , (4.71)

the decomposed coupling operators are given by,

ξJ1 =



ξ11

1 0 0
0 ξ22

1 0
0 0 ξ33

1


 , ξJ2 =




0 ξ12
1 0

0 0 ξ23
1

0 0 0


 , ξJ3 =




0 0 ξ13
1

0 0 0
0 0 0


 . . . (4.72)

Each of the new coupling-operators ξJk corresponds to exactly one eigenenergy-difference
ωk and the spectral-function Cij(±ω) is substituted by two rate-matrices Γ±,

Γ±kl = Ci(k,l)j(k,l) (±ω(k)) . (4.73)

We make the additional assumption that all pairs of original coupling operators ξi and ξj
with a non-zero spectral-function Cij(ω) are Hermitian conjugates,

Cij(ω) 6= 0 ⇒ ξj = ξ†i . (4.74)

In most practical cases this is no restriction of the form of the system-bath-coupling. Typ-
ically microscopic coupling operators correspond either to observables that are Hermitian
by themselves or to creation and annihilation-operators as in the Jaynes-Cummings-model.
This restriction is not valid when the noise sources are spatially correlated [82, 66].

In general this assumption does not carry over to the new coupling operators ξJk and
ξJl and rate matrices Γ±kl. Take for example the simple three-dimensional case Eq.4.72,
assuming a non-zero spectral-function C11(ω) of the original coupling operator ξ1, the rate
matrix elements Γ±23 are not zero even though ξJ2 and ξJ3 are not Hermitian conjugates.
This is precisely where we make use of the strict specular approximation. Up to this
point the construction of the new coupling operators is completely general for all Bloch-
Redfield-equations. In the strict secular approximation only the combination of ξJk and
ξJl with ω(k) = −ω(l) contributes to the time-evolution. Since the ω-matrix is real and
antisymmetric,

ωγβ = Eβ − Eγ = − (Eγ − Eβ) = −ωβγ , (4.75)

it follows that,

ξJk = P(ω)ξi =
(
P(−ω)ξ†i

)†
= (P(−ω)ξj)

† =
(
ξJl
)†

. (4.76)

Therefore we can absorb the Kronecker-delta of the secular approximation in Eq.4.68 into

the rate-matrices Γ±kl so that the matrix element is zero except for ξJk =
(
ξJl
)†

. We can
now write the Bloch-Redfield-equation as,

ρ̇S(t) = i [ρS(t), HS ]− 1

2

∑

k,l

∑

β,γ,δ,η

〈|β|ξJl |γ〉〈δ|ξJk |η〉
{

Γ−klZ
1
β,γ,δ,η(ρ(t))− Γ+

lkZ
2
β,γ,δ,η(ρ(t))

}
.

(4.77)
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Or in the shorthand notation of Eq.4.61,

ρ̇S(t) = i [ρS(t)HS ]− 1

2

∑

k,l

{
Γ−kl
[
ρS(t)ξJl ξ

J
k − ξJk ρS(t)ξJl

]
− Γ+

lk

[
ξJl ρS(t)ξJk − ξJl ξJk ρS(t)

]}
,

(4.78)

In the second part of the decoherence-contribution we can exchange the names of the
indices k and l in the sum over all coupling-operators and use Γ+

lk = Γ−kl to eliminate all
occurrences of Γ+

kl. Using,

Γ−kl = Γkδsec(k, l) , (4.79)

δsec(k, l) =

{
0 for

(
ξJl
)† 6= ξJk

1 for
(
ξJl
)†

= ξJk
, (4.80)

we finally arrive at,

ρ̇S(t) = i [ρS(t)HS ] +
1

2

∑

k

Γk

[
2ξJk ρS(t)(ξJk )† − ρS(t)(ξJk )†ξJk − ξJk (ξJk )†ρS(t)

]
. (4.81)

The equation of motion has taken the Lindblad-form and can be turned into a stochastic-
Schrödinger-equation as in Eq.4.20. The coupling-operators have become the jump-operators
ξJk .

Rewriting the Bloch-Redfield-equation in Lindblad form and applying the known quantum-
jump approach is conceptionally straightforward. It is important to note that the stochas-
tic Bloch-Redfield approach is of practical interest for physical systems whose number
of states is much larger than in most situations where the Bloch-Redfield-equation is
normally applied. We obtain a new jump-operator for each combination of an original
coupling-operator and a unique transition frequency. The number of jump-operators can
be very large compared to the number of coupling operators in standard Bloch-Redfield-
equations and the number of phenomenological jump-operators used in a standard Lind-
blad quantum-jump-approach. In a system with just two original jump-operators ξi and
200 states we could obtain over seventy thousand jump-operators ξJk .

So far we have used the strict secular approximation to derive the stochastic Bloch-Redfield
approach. As explained in more detail in section Sec.4.2 the strict secular approximation
assumes that the frequency corresponding to the difference of two eigenenergy-differences
∆βγδη = ωβγ − ωδη is either zero or oscillates fast on the timescales set by relaxation T1

and dephasing T2 of the system. This is not generally the case. It is always possible that
the system has an intermediate frequency ∆βδγη which is nonzero but of the same order
as relaxation and dephasing rates Γ1 and Γ2. The contribution of coupling-operators
corresponding to such an intermediate frequency can neither be neglected due to fast
oscillations nor can ∆βδγη be approximated by zero since it changes the phase of a system
state significantly on the timescale of decoherence.

The occurrence of such an intermediate frequency ∆βγδη is even more likely in the large
systems suited for the stochastic Bloch-Redfield-algorithm as the number of eigenenergy-
differences ωβγ scales with system-size squared O(N2). In small systems intermediate
frequencies can be dealt with by excluding the corresponding coupling terms from the
secular approximation.

In large systems where a stochastic unravelling approach is of interest we follow a different
approach. Since the bath-operator-correlation-function C̃ij(τ) decays on timescales much
shorter than T1 and T2, the Fourier-transformed spectral function Cij(ω) varies only slowly
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80 4. Method development: The stochastic Bloch-Redfield algorithm

on frequency-scales smaller than the decoherence rates Γ1 and Γ2. We now approximate
the spectral function Cij(ω) by a series of bins,

Cij(ω) ≈ Cpwfij (ω) =
∑

n

CnijΘ(ω − ωn)Θ(ωn+1 − ω) , (4.82)

where Θ(ω) is the Heaviside Θ-function and the bin-amplitudes Cnij and intervals [ωn, ωn+1]
are chosen such that,

∀n : ω ∈ [ωn, ωn+1]⇒
∣∣Cij(ω)− Cnij

∣∣ ≤ δC , (4.83)

with the cut-off-parameter of the approximation δC. We refer to the approximated spec-
tral function Cpwf (ω) as the piecewise flat spectral function. We now assume that the
original correlation function Cij is smooth enough so that the bin-size of the approxi-

mated correlation-function Cpwfij is much larger than the dephasing and relaxation rates
of the system,

∀n : ωn+1 − ωn � Γ1,Γ2 . (4.84)

We also assume that, for two transition frequencies ωβγ and ωδη differing by an intermediate
frequency ∆βγδη, we can either choose Caij so that ωβγ and ωδη belong to the same bin, or
the weight of the matrix-elements 〈β|ξi|γ〉 and 〈δ|ξj |η〉 can be neglected compared to the
sum of all other transitions in the Bloch-Redfield-equation Eq.4.60.

This approximation is justified for most systems in practice. If a large number of transition
frequencies ωβγ in a dense distribution correspond to nonzero matrix elements 〈β|ξi|γ〉 ,
the weight of one pair of transitions 〈β|ξi|γ〉 and 〈η|ξj |δ〉 is very small. If the distribu-
tion of transition frequencies is not dense and has gaps, we can choose the bins to avoid
intermediate frequencies at the bin boundaries.

We neglect all combinations of transitions |β〉〈γ| and |η〉〈δ| in Eq.4.60 where ωβγ and ωδη
do not belong to the same bin in Cpwfij . They are either negligible compared to all other
contributions or their contribution to the Bloch-Redfield-equation oscillates so fast that
we discard them as we did in the secular approximation in Eq.4.63. We refer to this as
the piecewise flat spectral function (PWFS) approximation.

The values of the piecewise flat spectral function Cpwfij (ω) at the transition frequencies
ωβγ can be written in the same matrix-form as the transition frequencies themselves,

〈β|Cij |γ〉 ≡ Cpwfij (ωβγ) . (4.85)

We use the same kind of decomposition as in Eq.4.69 and Eq.4.70 but instead of the matrix-
elements with the same transition frequencies we are grouping the identical weights of the
transtions 〈β|Cij |γ〉 together. With the unique entries Γm of Cij we define new subsets of
the N ×N -matrix-space,

M(Γm) =
{
M ∈ CN×N | 〈β|Cij |γ〉 6= Γm ⇒Mβγ = 0

}
, (4.86)

with the corresponding projector P(Γ) and the jump-operators,

ξJk = P(Γm)ξi(k) . (4.87)

Each coupling-operator ξi is decomposed into a different number of jump-operators. The
number of unique rates Γm depends on the exact distributions of bins in Cpwfij and the
number of non-zero matrix-elements in the coupling-operators.
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In the PWFS approximation all contributions of transitions from different bins in Cpwfij are

neglected. The bins determine the unique rates Γm. All contributions of products ξJk (ξJl )†

of jump-operators corresponding to different rates Γk and Γl are neglected. The double
sum over pairs of jump-operators is reduced to a single sum over all jump-operators,

∑

kl

ξJk (ξJl )† →
∑

k

ξJk (ξJk )† . (4.88)

The Bloch-Redfield-equation (Eq.4.60) in the PWFS approximation can again be mapped
to Lindblad-form as we did in the strict secular approximation. The only difference is the
definition of the jump-operators (Eq.4.87) and the jump rates (Eq.4.85).

Note that the number of jump-operators in the PWFS approximation is typically much
smaller than the number of operators in the complete secular approximation. A large
number of eigenenergy-differences ωβγ can correspond to one bin in Cpwfij so that the
corresponding transitions |β〉〈γ| all belong to one jump-operator instead of requiring one
jump-operator for each transition.

The PWFS approximation does not only deal with intermediate frequencies ∆βγδη for
which the secular approximation is not applicable, it also solves a scaling problem. In
numerical calculations the time consumed by the construction of the jump-operators is non-
negligible. Each jump-operator is an N×N -matrix and the construction of jump-operators
scales as O(N2) with system-size N . In the complete secular approximation the number
of jump-operators also scales as O(N2) so that the combined numerical complexity of the
jump-operator-construction is O(N4), the same complexity as the numerical solution of the
full Bloch-Redfield-master-equation for the density-matrix ρ. The stochastic-Schrödinger-
equation approach looses its scaling-advantage in the strict secular approximation.

In the PWFS approximation the number of jump-operators does not scale as O(N2).

The transition frequencies ωβγ of many transitions belong to the same bin in Cpwfij . The

construction of the jump-operators scales as O(N2) the same as the calculation of one
stochastic trajectory of a state |ψ(t)〉. The stochastic Bloch-Redfield-algorithm in the
PWFS approximation has the same scaling behaviour as the quantum-jump-algorithm for
a Lindblad-equation.

So far we have considered stochastic-Schrödinger-equations simply as a way to obtain the
time-evolution of the density matrix more efficiently than by solving the non-stochastic
master-equation for the density matrix. It has been pointed out in Ref.[98] that one trajec-
tory of the quantum-state |φ(t)〉 corresponds to the physical time-evolution of the system
in contact with a bath that is constantly measured as long as the time-evolution of the
density-matrix is given by a completely Markovian Lindblad-equation. This corresponds
to the physical interpretation of the quantum-jump-procedure at the end of Sec.4.1.

The premise from Ref.[98] is not given in the stochastic Bloch-Redfield approach. In a
completely Markovian master equation the time differential of the density matrix at time
t only depends on the density matrix at the same time. The memory kernel in the Bloch-
Redfield equation in time-integral form is a δ-function,

C̃ij(t) ∝ δ(t) . (4.89)

In typical solid-state environments this condition only holds for times larger than a time-
scale set by the bath. The time-scale can be so small that it is irrelevant for the time-
evolution of the system. This is the case when the spectral function Cij(ω) is constant
for all relevant eigenenergies of the system. When we however conceptually consider con-
tinuous measurements, Eq.4.89 has to hold on all time-scales. In a complex solid-state
environment a single trajectory has no straightforward physical interpretation. It is merely
a tool to obtain the full time-evolution of the density matrix.
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4.4 From stochastic Bloch-Redfield to kinetic Monte-Carlo

In this section we show under which conditions the stochastic Bloch-Redfield-algorithm
corresponds to the kinetic Monte-Carlo (KMC) algorithm [99, 100, 101, 102]. Kinetic
Monte-Carlo is one of the most widely used simulation-methods based on Monte-Carlo-
algorithms. The main feature of the kinetic Monte-Carlo-algorithm is its ability to simu-
late the incoherent time-evolution of the system under consideration, whereas many other
Monte-Carlo methods simply converge to the equilibrium state of the simulated system.
This makes the kinetic Monte-Carlo-algorithm a very important tool in the study of equi-
libration and externally driven transport processes in chemistry and physics [101, 102]. In
solid-state physics the KMC algorithm has also been used to simulate transport processes
in linear and bilinear Josephson junction chains [103, 15]. For a detailed discussion of
kinetic Monte-Carlo see for example Ref.[101]. Kinetic Monte-Carlo does not take into
account the coherent quantum-mechanical evolution of the system. It only simulates the
incoherent transitions between the states of the system.

In the KMC-procedure a set of N system-states {j} and transition rates between them
Γjk are given. For a system in state j at time t1 the vector s with the elements sk,

sk =
k∑

l=1

Γjl , (4.90)

is defined. A random number r1 ∈ (0, 1) is chosen and the k-th system-state is selected so
that,

sk ≤ sN · r1 < sk+1 . (4.91)

State k is the new state after the stochastic Monte-Carlo-step. The time is incremented by
the escape time ∆t. The time increment of the KMC-step is obtained from the probability
distribution for the time ∆t after which a system escapes from state j to any other state
for an exponential decay pj(t) = exp(−sN t). The probability distribution is given by [101],

pesc(∆t) = sNe
−sN∆t . (4.92)

Drawing from an exponential distribution Eq.4.92 is equivalent to drawing a number r2

from an even distribution in the interval (0, 1) and using,

∆t = −sN · ln(r2) . (4.93)

The escape time is proportional to the logarithm of the random number r2.

In the stochastic Bloch-Redfield algorithm the calculation of a single trajectory between
the quantum jumps can be drastically simplified if the jump operators ξJk project the state
|ψ(t)〉 to an eigenstate of the system-Hamiltonian HS with each quantum jump . Assume
that at time ti a quantum jump takes the system-state from the eigenstate |βi−1〉 to the
eigenstate |βi〉 and the trajectory-state |ψ(ti)〉 has a phase of φi at ti. The system state
|ψ(t)〉 in the interval [ti, ti+1] is given by,

∀ t ∈ [ti, ti+1] :

|ψ(t)〉 = eiφie−Eβi (t−ti)|βi〉 . (4.94)

The time of the next quantum jump can be determined by the decay of the state-norm
of the unnormalized trajectory-state. The jump occurs once the squared norm of the
unnormalized state |ψu.n.(t)〉 is smaller than a random number r1 ∈ (0, 1). Under the
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assumption that the jump operators act as projectors, the state |ψu.n.(t)〉 is guaranteed to
be proportional to an eigenstate and one finds,

d

dt
|ψu.n.(t)〉 = −iEi −

1

2

∑

k

Γk
(
ξJk
)†
ξJk |ψu.n.(t)〉 , (4.95)

〈ψu.n.(t)|ψu.n.(t)〉 = exp

(
−
∑

k

Γk〈βi|
(
ξJk
)†
ξJk |βi〉(t− ti)

)
, (4.96)

ti+1 = ti + ln(
1

ri
)

(∑

k

Γk〈βi|
(
ξJk
)†
ξJk |βi〉

)−1

, (4.97)

φi+1 = φi − Eβi(ti+1 − ti) . (4.98)

The expression Eq.4.97 determines the time between jumps ∆t = ti+1−ti in the stochastic
Bloch-Redfield algorithm. Comparing Eq.4.97 and Eq.4.93 we see that the only difference
between the classic KMC algorithm and the stochastic Bloch-Redfield-algorithm for pure
eigenstates is the order of stochastically choosing the transition and the transition time
which is purely a matter of convention.

Given that the system state |ψ(t)〉 between quantum jumps is an energy eigenstate the
stochastic Bloch-Redfield algorithm maps directly to the established kinetic Monte-Carlo
method. For the moment we assume that the system state is already proportional to an
energy eigenstate at the beginning of the time-evolution.

All possible quantum jumps will correspond to transitions between energy eigenstates of
the system if and only if all jump-operators meet the condition,

∀|β〉, |γ〉, |δ〉 eigenstates of HS , ∀ ξJk :

〈β|ξJk |γ〉 = 〈δ|ξJk |γ〉 ⇒ |β〉 = |δ〉 . (4.99)

Jump operators have to correspond to exactly one transition between eigenstates,

ξJk ∝ |β〉〈γ| . (4.100)

The only exception is the jump operator that corresponds to transition frequencies of zero
ωββ = 0 and therefore pure dephasing,

ξJdeph =
∑

β

cβ |β〉 〈β| , (4.101)

where the cβ are arbitrary coefficients.

Condition Eq.4.99 contains the strict secular approximation. Each jump operator corre-
sponds to exactly one transition and therefore to exactly one transition frequency. The
condition corresponds to the strict secular approximation in a system where all transition
frequencies are different,

∀ |β〉, |γ〉, |δ〉, |η〉 eigenstates of HS (4.102)

ωβγ = ωδη ⇒ |β〉 = |δ〉, |γ〉 = |η〉 . (4.103)

In general the initial state of a stochastic Bloch-Redfield simulation will not be an energy
eigenstate of the system Hamiltonian. When the condition for the mapping to KMC is
met, the time evolution can be simulated with the stochastic Bloch-Redfield algorithm
until the first off-diagonal quantum jump with a jump operator Eq.4.100 occurs. The
off-diagonal quantum-jump projects the system-state to an energy eigenstate. Once the
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84 4. Method development: The stochastic Bloch-Redfield algorithm

system is in an energy eigenstate the stochastic Bloch-Redfield algorithm is equivalent to
the KMC algorithm.

At the end of this section we want to note two important points. First, given that all
approximations are valid, we can reconstruct the full time-evolution of the density-matrix
although we only simulate the incoherent processes in the KMC-inspired algorithm. Usu-
ally the KMC algorithm is used to obtain only the populations of a certain basis-set of the
system, the diagonal elements of the density-matrix. We can reconstruct the full density
matrix since we already diagonalized the system. The system-state with the full phase-
information can be obtained for any time from our knowledge of the eigenenergies Eβ and
eigenstates |β〉.
As a second point, we want to stress that the shown connection between the stochastic
Bloch-Redfield and kinetic Monte-Carlo algorithms in no way means that we can sim-
ply substitute the stochastic Bloch-Redfield algorithm with the KMC algorithm nor can
we simply expand normal KMC-simulations to obtain the full density-matrix. The re-
formulation of the stochastic Bloch-Redfield algorithm in KMC-form only works in the
eigenbasis of the system-Hamiltonian. In the Bloch-Redfield approach it is always neces-
sary to diagonalize the system-Hamiltonian to calculate the dephasing and relaxation-rates
from the spectral function Cij(ω). In the typical KMC-simulation, where the incoherent
transition-rates are obtained by other means, the original basis is used as an approximation
of the eigenbasis, e.g. the occupation basis in a lattice with very small tunnelling-matrix-
elements. A diagonalization of the system-Hamiltonian is neither necessary nor feasible
for the typical system-sizes.

Take for example the transport of interacting Cooper-pairs and anti-Cooper-pairs in a
one-dimensional Josephson-junction-array, a lattice of length N . A complete state-basis
of this system has dimension 3N , if we restrict ourselves to the case where each site can
be occupied by a Cooper-pair, anti-Cooper-pair or be empty. It is not possible to find
the eigensystem of the corresponding system-Hamiltonian for an array of 50 sites with
computational resources typically available today. With a KMC algorithm the current
transport in such and larger systems can be simulated on a standard personal computer
[103, 15].
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5. Applying the stochastic Bloch-Redfield
algorithm to an SSET

In this chapter we will demonstrate the practical application of the stochastic Bloch-
Redfield-method. The superconducting single electron transistor (SSET) is used as an
exemplary system. The SSET has been studied in great detail theoretically [104, 1, 2, 105]
and experimentally [106]. Depending on the number of tunnelled-charge states one chooses
to include the energetically accessible Hilbert space of an SSET can be arbitrarily large.
It is an ideal test case to compare the results of the stochastic Bloch-Redfield-algorithm
with established techniques. The numerical results presented in this chapter have also
been published by the author in Ref.[66].

An SSET consists of a superconducting island connected to two superconducting leads by
insulating Josephson-junctions (see Fig.5.1). The superconducting island is capacitively
coupled to the ground with a capacitance Cg. Each Josephson-junction can be charac-
terised with the Josephson coupling energy EJ and the capacitance of the junction CJ .
The total capacitance of the island with respect to the ground is,

C = 2CJ + Cg , (5.1)

An offset voltage Vg is applied between the superconducting island and the ground and
the left and right Josephson-junctions are biased by the voltages V1 and V2 with the total
bias voltage Vbias = V2 − V1.

+
−V1

EJ , CJ

+
−Vg

Cg

+
−V2

Figure 5.1: Circuit diagram of the SSET with capacitance to the ground Cg, the bias
voltages V1,V2, the voltage to the ground Vg and the Josephson junctions with
the Josephson energy EJ and the capacitance CJ . (As published in Ref.[66])
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86 5. Applying the stochastic Bloch-Redfield algorithm to an SSET

The superconducting island is small enough so that the number of Cooper-pairs and quasi-
particles on the island is a good quantum-number. The state of the island is given by the
number N of elementary charges on the island compared to a neutral equilibrium. We
assume that the charging energy EisC of the island,

EisC =
e2

2C
. (5.2)

is large enough that it is sufficient to consider the states with N ∈ −2 . . . 2. At each point in
time the island can be empty or be occupied by an anti-Cooper pair, an anti-quasi-particle,
a quasi-particle or a Cooper pair. We do not include quasi-particle double-occupancies. It
is assumed that two quasi-particles on the superconducting islands relax to a Cooper pair
occupation state on a time-scale much shorter than all other time-scales of the problem.

While the state of the superconducting island alone is given by N , the state of the SSET
can be characterized by the number of charges on the island N and the number of charges
N̄ that have tunnelled through the right Josephson junction. Normally the variable N̄ is
not considered as a degree of freedom of the system. The transport properties of the SSET
can be obtained from a master equation for the density matrix of the N -states alone (see
for example Ref.[2]). We are however free to consider an arbitrarily large basis

∣∣N, N̄
〉

with N̄ bounded by mN̄ , 0 ≤ N̄ < mN̄ . The corresponding Hilbert space has dimension
5mN̄ . We can therefore test the stochastic Bloch-Redfield algorithm introduced in the
previous chapter (Chap.4) with a system that has a large Hilbert space. At the same time
we can compare the behaviour we obtain from the stochastic Bloch-Redfield approach with
established results.

The Hamiltonian of the system in the variables N and N̄ is given by [66],

HS = HC +HV +Ht , (5.3)

HC =
1

2C

(
eN̂ − ng

)2
, (5.4)

HV = V2e
ˆ̄N − V1

(
e ˆ̄N − eN̂

)
, (5.5)

Ht =
∑

N,N̄

(
EJ
∣∣N + 2, N̄ − 2

〉 〈
N, N̄

∣∣+ EJ
∣∣N + 2, N̄

〉 〈
N, N̄

∣∣+ h.c.
)
, (5.6)

ng = CgVg + CJ(V2 − V1) , (5.7)

and consists of the charging Hamiltonian HC with the offset charge ng, the voltage Hamil-
tonian HV and the Josephson tunneling Hamiltonian Ht. The bias part of the Hamiltonian
HV gives the energy gained by a charge carrier tunnelling through the Josephson-junctions
connecting the dot with the leads. The tunneling Hamiltonian Ht consists of two parts.
The first term changes N̄ and is responsible for the Cooper pair tunnelling through the
right junction. The second part leaves N̄ unchanged and corresponds to the coherent
tunnelling through the left junction.

As every mesoscopic solid-state system the SSET can couple to many different sources of
environmental decoherence, for example the bath of thermally activated quasi-particles
in the superconducting leads [2], fluctuations in the applied voltages due to external
impedances Z(ω) [104, 105], the phonon-bath in the substrate on which the SSET is
fabricated or two level fluctuators in the Josephson junctions as they are found in many
qubits. Here we consider system bath models,

H = HS +HSB +HB , (5.8)

that are governed by the Bloch-Redfield equation Eq.4.61.
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Figure 5.2: A plot of the convergence of the expectation value of the time-evolution of
the tunnelled charges

〈
N̄
〉

in the JQP cycle when averaged over an increasing
number of iterations of the stochastic Bloch-Redfield algorithm in the PWFS
approximation. After 8000 iterations the result is almost indistinguishable
from the solution of the master-equation (dashed blue line). The expectation
value

〈
N̄
〉
, which corresponds to the transported charge, increase linearly over

time. (Figure and caption Ref.[66])

5.1 The Josephson Quasi Particle Cycle

A characteristic process in SSETs is the Josephson quasi particle cycle (JQP cycle) [104,
106]. In this section we discuss the physics behind the JQP cycle and show how the JQP
cycle can be simulated with standard density matrix master-equations and the stochastic
Bloch-Redfield method in the secular approximation and in the piecewise flat spectral
function approximation (PWFS approximation).

The DC-transport in an SSET under small voltage bias Vb = V2 − V1 is constricted by a
Coulomb blockade depending on the equilibrium offset charge ng. As in every normal SET
for −0.5e ≤ ng ≤ 0.5e the states with no Cooper pairs or quasi-particles on the island∣∣N = 0, N̄

〉
have the lowest energy with respect to the charging Hamiltonian HC . An

additional Cooper pair on the island requires an additional energy of ∆EC = 1
2C (2e−ng)2,

whereas an additional quasi-particle requires ∆Eqp = 1
2C (e−ng)2. In a normal conducting

SET with no Cooper pairs this leads to a ng-dependent Coulomb blockade threshold voltage
for DC-transport,

V normal
t (ng) =

1

2C

(e− ng)2

e
. (5.9)

In the SSET it is not sufficient for the bias voltage Vb to overcome the Coulomb blockade to
have quasi-particle transport, at low temperatures all electrons are in the superconducting
condensate and the number of occupied quasi-particle states in the leads is negligible. For
a quasi-particle excitation of charge e to incoherently tunnel into the island or from the
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Figure 5.3: The piecewise flat spectral function approximation: The spectral function
C(ω) (blue) is approximated by the piecewise-flat function Cpwf (ω) (red) de-
fined by the values of C(ω) at the transition frequencies ωβγ of the system
(black lines). The transition frequencies in the JQPC-example are spaced so
far apart that each transition frequency corresponds to another bin in Cpwf (ω).
In the intervals between the transition frequencies Cpwf (ω) can take very dif-
ferent values from C(ω), however this is not important as the value of the
spectral function at these energies does not enter the Bloch-Redfield equation.
(Figure and caption Ref.[66])

island a Cooper pair has to be broken at an energy cost of 2∆. Overall one obtains the
threshold voltage for quasi-particle transport in the SSET,

Vt =
1

E

(
(e− ng)2

2C
+ 4∆

)
. (5.10)

Depending on the parameter regime the transport behaviour can be modified by the parity
effect. In the state with one additional quasi-particle on the superconducting island the
quasi-particle is forced to occupy a state with at least energy ∆ since the quasi-particle
density of states is zero below the superconducting gap ∆. This one quasi-particle can
incoherently tunnel from the island into one of the leads without breaking a Cooper pair
with the assorted energy cost 2∆. The tunnelling rate of the quasi-particle is however
suppressed by a small prefactor since the number of exited quasi-particles on the island
has to be compared with the number of electrons in the condensate. A detailed discussion
of the parity effect in SSETs can be found in Ref.[1]. We assume that the parity effect can
be neglected for the system we consider.

Usually pure Cooper pair transport does not contribute to the DC-transport through a
voltage biased SSET. Coherent Cooper pair tunnelling under a dc bias voltage can only
lead to an AC-current response as the energy gained by the charge carriers from the bias
voltage is not dissipated. Incoherent Cooper pair tunnelling as obtained from P-of-E theory
can in principle contribute to DC-conductance but the tunnelling rates are proportional
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Figure 5.4: The population in the states N = 0 and N = 1 of the SSET for several
single trajectories of the stochastic Bloch-Redfield algorithm. The population
is plotted with an offset for each trajectory. For the chosen parameter of
the JQP cycle the PWFS (solid lines) and the secular approximation (circles)
are equivalent as explained in Fig.5.3. The PWFS-approximation and the
secular trajectories were initialized with the same seed for the random number
generator. As the system was not initialized in an eigenstate the quantum jump
trajectories show coherent oscillations of the system state before the system is
projected into an eigenstate by the first quantum jump. (Figure and caption
Ref.[66])

to E2
J [38] and the contribution can be neglected for small Josephson energies EJ .

The Josephson quasi-particle cycle lowers the transport threshold voltage due to a com-
bination of coherent Cooper pair and incoherent quasi-particle tunnelling. We assume
that the dissipative environment of the SSET is given by the quasi-particle bath of the
superconducting leads. The system bath Hamiltonian HSB is given by the quasi-particle
tunnelling operators,

HSB =
∑

N,N̄

(∣∣N − 1, N̄
〉 〈
N, N̄

∣∣Xleft +
∣∣N + 1, N̄ − 1

〉 〈
N, N̄

∣∣Xright + h.c.
)
, (5.11)

where Xleft/right are the bath coupling operators for the left and right lead. The spectral
function of the bath coupling operators can be expressed as an energy integral [1],

C(ω) =
1

e2Rt

∫ ∞

−∞
dε

∫ ∞

−∞
dε′N (ε)N (ε′)f(ε)

[
1− f(ε′)

]
δ(ε− ε′ − ω) . (5.12)

The population of the states on both sides of the Josephson junction is given by the Fermi
function f(ε), N (ε) gives the density of states of the quasi-particle states and Rt is the
normal tunnelling resistance of the Josephson junction. The exact value of the spectral
function can be calculated numerically. We limit ourselves to the low temperature limit
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Figure 5.5: The time-evolution of the population of the charge-states of the SSET-island
N = −2 to N = 2 in the JQP cycle over a short time obtained by averaging
over 8000 of the trajectories seen in Fig.5.4 (circles). The master-equation gives
the same result (solid line) as the stochastic Bloch-Redfield algorithm in the
PFS-approximation . Population oscillates coherently between states |N = 0〉
and |N = 2〉. The amplitude of the oscillation decays as dephasing destroys
the coherent quantum-oscillations. Population relaxes from states |N = 0〉 and
|N = 2〉 to state |N = 1〉 via dissipative quasi-particle tunnelling. (Figure and
caption Ref.[66])

where the spectral function can be approximated as,

C(ω) =
1

e2Rt
Θ(ω − 2∆)ω , (5.13)

with the superconducting energy gap ∆. In the low temperature limit, the spectral func-
tion is zero for transition energies ω smaller than twice the superconducting energy gap.
Incoherent quasi-particle tunnelling only occurs when the charging energy difference ∆E
is large enough to split a Cooper pair in two quasi-particles. We characterise the strength
of incoherent quasi-particle tunnelling by introducing the rate Γ1,

Γ1 =
2∆

e2Rt
. (5.14)

To achieve a Josephson quasi-particle cycle in the SSET, the gate charge is set to one
ng = 1. The states with one quasi-particle on the superconducting island are energetically
favourable. The states with one Cooper pair and the states with no charge on the island
have degenerate charging energies,

〈
N = 1, N̄

∣∣HC

∣∣N = 1, N̄
〉

= 0 , (5.15)
〈
N = 0, N̄

∣∣HC

∣∣N = 0, N̄
〉

=
〈
N = 2, N̄

∣∣HC

∣∣N = 2, N̄
〉

= EisC . (5.16)
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Figure 5.6: The distribution of the population at Γt = 50, Γt = 75 and Γt = 100 of the∣∣N̄
〉
-states. The distribution has a peak that moves to larger N̄ and broadens

over time as charge is transported. The form of the peak can be fitted to the
sum of two Gaussians with the same width and peak position but different
amplitudes for odd (dots and solid line) and even (triangles and dashed line)
N̄ -states.
Inlay: Plot of the expectation value
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N̄
〉

(blue/light) and the standard devi-
ation ∆N̄ (red/dark) for a large system (N̄max = 100) and long simulation
time, Γtmax = 100, not accessible with numerical solution to the full density
matrix master equation. Results of the stochastic Bloch-Redfield algorithm in
the secular (squares) and PFS (circles) approximation after 8000 iterations are
shown. The expectation value

〈
N̄
〉

and ∆N̄ increase linearly for the whole
simulation as expected [2]. (Figure and caption Ref.[66])

The bias voltages are set to,

V1 = 0 , (5.17)

V2 = EC + 2∆ . (5.18)

The Josephson quasi-particle cycle consists of three tunneling events. Starting from a
state with an empty island

∣∣N = 0, N̄
〉
, a Cooper pair can tunnel coherently trough the

left junction without dissipating energy. The energy difference between the new state∣∣N = 2, N̄
〉

and the state
∣∣N = 1, N̄ + 1

〉
is large enough to break up the Cooper pair and

lead to the incoherent tunnelling of a quasi-particle through the right Josephson junction.
A second incoherent tunnelling event brings the system back to a state with an empty
island

∣∣N = 0, N̄ + 2
〉

and the cycle can start again.

We have simulated the transport through the SSET in the Josephson quasi-particle cycle
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Figure 5.7: Three-dimensional representation of the spreading of the population (height)
over the

∣∣N̄
〉
-states (x-axis) and time (y-axis) in the stochastic Bloch-Redfield

JQPC-simulation of the large system. States with population < 0.01 have been
truncated for clarity. Starting in a single peak at Γt = 0 the population spreads
out over several

∣∣N̄
〉
-states over time while the center of the distribution moves

to higher N̄ . (Figure and caption Ref.[66])

with the stochastic Bloch-Redfield method for the parameters,

∆ = 20 EJ , (5.19)

EisC = 2.5 EJ , (5.20)

Γ1 = 0.2 EJ . (5.21)

The number mstoch of independent stochastic trajectories in the stochastic Bloch-Redfield
algorithm was set to mstoch = 8000. Two different system sizes mN̄ where simulated.
Simulations for mN̄ = 11 and 55-dimensional Hilbert space were compared to solutions
obtained from solving the standard Bloch-Redfield equation with a numerical Runge-Kutta
algorithm. The comparison of the master-equation method and the stochastic Bloch-
Redfield method is shown in Fig.5.2. Both methods yield the same result. The figure also
shows the convergence of the results when averaging over increasing numbers of stochastic
trajectories.

In the model of the Josephson quasi-particle cycle the strict secular approximation and
the piecewise flat spectral function (PWFS) approximation (see Chap.4) are equivalent.
The differences between the transition frequencies of the JQP-cycle-Hamiltonian is large
compared to the slope of the spectral function Eq.5.13. Each transition between states∣∣N, N̄

〉 〈
N ′, N̄ ′

∣∣ corresponds to a different bin in the PWFS approximation (Fig.5.3).
Mixed terms of transitions with different transition frequencies are neglected from the
Bloch-Redfield master equation.

Since all jump operators correspond to exactly one transition between eigenstates the
system is projected into an energy eigenstate after each quantum jump. After the first
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5.2. Incoherent Cooper pair tunnelling 93

quantum jump no coherent oscillations occur in the populations of the |N〉-states of a
single trajectory. The coherent oscillations are only recovered after averaging over many
trajectories, as shown in Fig.5.4 and Fig.5.5.

The numerical advantage of the stochastic unravelling is demonstrated by a simulation
with a larger system size mbarN = 101. Here the Hilbert space has dimension 505. The
system is much to large to be solved by the usual master-equation approach. Using the
stochastic Bloch-Redfield approach we can not only simulate the time evolution of the
system (Fig.5.6) we can also go to much longer simulation times. It takes longer until
the SSET reaches the maximal value of N̄ . In the larger systems we can observe how
the probability distribution for the number of charges N̄ transported by the JQP cycle is
established. As shown in Fig.5.6, the distribution of N̄ takes the form of two Gaussians
for even and odd N̄ . The mean of the Gaussian increases linearly in time corresponding
to the charge transport in the JQP-cycle. The mean deviation of the charge distribution
N̄ also increases linearly in time. A similar behaviour has been predicted in Ref.[2] for the
number of charges tunnelling over a certain time interval τ in a JQP cycle. In Fig.5.7 we
show the spread and shift in the population of the N̄ -states over time.

5.2 Incoherent Cooper pair tunnelling

To demonstrate the difference between the strict secular and the piecewise flat spectral
function approximation we consider pure incoherent Cooper pair transport in the SSET
in this section. We neglect the coupling of the SSET to the quasi-particle bath. The
system-bath coupling is strictly longitudinal,

HSB = N̂Xlong , (5.22)

where Xlong is the longitudinal bath coupling operator. We assume that the spectral func-
tion of the bath coupling operator in the relevant energy range is given by an Ohmic
function for positive frequencies and by the detailed balance relation for negative frequen-
cies. For ω > 0 one can write,

C(ω) = Γ2 , (5.23)

C(−ω) = e−βωC(ω) , (5.24)

β =
1

kBT
. (5.25)

Due to the coherent tunnelling amplitude of Cooper pairs EJ the purely longitudinal
system coupling operator has off-diagonal matrix elements in the energy-eigenbasis of the
system. The off-diagonal terms lead to dissipative transitions in the energy-eigenbasis.
In the original charge-basis the dissipative transitions correspond to incoherent Cooper
pair tunnelling. The emergence of dissipative tunnelling rates due to longitudinal noise
and coherent tunnelling terms is a standard feature of P-of-E theory [38]. We will discuss
P-of-E theory in greater detail in the next chapter Chap.6.

The SSET parameters are unchanged from the JQP simulations, it is biased similarly to
the JQP cycle simulations,

∆ = 20 EJ , (5.26)

Ec = 2.5 EJ , (5.27)

and we choose a similar voltage biasing,

ng = 1 , (5.28)

V1 = 0 , (5.29)

V2 = 12.5 Ej . (5.30)
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The parameters of the environmental noise are set to,

β = 100
1

EJ
, (5.31)

Γ2 = 0.2 Ej . (5.32)

In Fig.5.8 we compare the time-evolution of the population of the charge states of the island
of single trajectories in the strict secular and PWFS approximation. In the strict secular
approximation the population only changes when a quantum jump occurs, in the PWFS
approximation the population shows coherent oscillations between quantum jumps. As in
the JQP cycle the jump operators in the strict secular approximation project the system to
energy eigenstates. Due to the flat spectral function of the longitudinal coupling operators,
the piecewise flat spectral function has only one bin for positive frequencies. In this case it
is the opposite of the strict secular approximation. Instead of one jump operator for each
possible transition between energy eigenstates there is only one jump operator containing
all possible dissipative transitions in the PWFS approximation. A quantum jump does
not project the system into an energy-eigenstate and we find coherent oscillations between
the eigenstates in a single stochastic trajectory. After averaging over many trajectories
the strict secular and the PWFS approximation still yield the same result that agrees with
a standard master equation treatment. The strict secular approximation is valid in the
chosen parameter regime.

The long time behaviour of the probability distribution of tunneled charges N̄ is shown
in Fig.5.9. As in the JQP cycle the distribution broadens over time and the center shifts
to larger N̄ . The transport behaviour is linear. The model we consider here does not
include quasi-particle tunneling. The number of transported charges can only change by
two elementary charges in each tunnelling event. Only even N̄ states can be populated.
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Figure 5.8: The stochastic trajectories of the ICPT-system in the secular (upper plot)
and in the PWFS (lower plot) approximation. (Figure and caption Ref.[66]).
Both plots use the same color code for the population: N = −2 black, N = −1
magenta, N = 0 red, N = 1 cyan and N = 2 blue.
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Figure 5.9: The three-dimensional representation of the population for a long simulation
Γtmax = 500 of a large ICPT-system N̄max = 100. The main difference between
the ICPT-case and the JQPC-case (Fig.5.7) is that incoherent Cooper-pair
tunnelling only connects states which differ by N̄ = 2 and therefore only odd∣∣N̄
〉
-states are occupied in this case. (Figure and caption Ref.[66])
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6. Charge transport: Simulating coherent
Cooper pair tunnelling

In this chapter we consider Josephson junction arrays in the transport regime. We employ
numerical simulations of coherent and incoherent transport processes of Cooper pairs to
obtain the transport properties of a Josephson junction array. In the model we present in
Sec.6.2.1 we limit ourselves to a short inner section of a Josephson junction array and limit
the number of Cooper pairs and anti-Cooper pairs in this section. The model we consider
describes more closely a single excess Cooper-pair in a homogeneously biased Josephson
junction ring (as discussed in Ref.[35]) than an open boundary-biased Josephson junction
array. Even in the limited model the Hilbert space of the system is very large. We use the
stochastic Bloch-Redfield algorithm developed in Ch.4 to simulate the full time-evolution
of the density matrix according to Bloch-Redfield theory.

In Sec.6.1 we present the P (E)-theory [38] that is used in literature together with ki-
netic Monte-Carlo simulations to model the transport of Cooper pairs and quasi-particles
through Josephson junction arrays [15]. By comparing the results of the P (E) approach
and the Bloch-Redfield simulations we gain information on the parameter regimes where it
is appropriate to use P (E)-theory to obtain the incoherent tunnelling rates of the Cooper
pairs.

Since the first experimental realisations of Josephson junction arrays [3, 4] it has been
known that the current through the array increases linearly with the applied voltage V once
it exceeds the switching voltage Vsw. The current as a function of the applied voltage has a
nonzero offset so that Ohms law, V = RI, is not exactly met. The differential conductance
of the IV-curve is proportional to the square of the Josephson coupling energy. At much
higher voltages than the switching voltage a transition to a second conduction regime with
higher differential conductance occurs [14]. An experimental IV-curve including the high
voltage regime is shown in Fig.6.1. In the second conductance regime, the bias voltage
is large enough to create quasi-particles by breaking Cooper pairs along the array and
the resistance is determined by the normal resistance of the array. The current at the
transition from first to second conductance regime is of the same order of magnitude as
the Zener current. The Zener current is the current at which the velocity of the quasi-
charge from Sec.2.2.2 is so large that one can assume that Landau-Zener transitions from
lower to higher Bloch-bands occur at every degeneracy-point of the effective quasi-charge
model (see Ch.2).

When the Josephson junction array is described with the help of a sine-Gordon-like model,
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98 6. Charge transport: Simulating coherent Cooper pair tunnelling
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largest below a voltage threshold which corresponds approximately to 2N∆/e ∼ 100 mV.

The steep rise at zero magnetic field, evident from the blue curve in Fig. 3 (a), can tentatively

be identified with the onset of pair breaking processes and the transport above 2N∆∗/e

is dominated by quasiparticles. Here, the energy gap ∆∗ can be smaller than the zero

temperature gap ∆ of aluminum due to non-equilibrium effects[12].

At lower bias voltages, the charge transport has to rely on the Josephson coupling which is

strongly suppressed at f = n+1/2. The periodic modulation of the transport characteristics

below |eV | < 2N∆ is evidence that the main transport mechanism in this voltage bias regime

is due to the motion of Cooper pairs. However, the motion of Cooper pairs is presumably

6

Figure 6.1: A plot of experimental IV-curves of a Josephson junction array recorded over
a large voltage range from Ref.[14]. The effective Josephson energy EJ can be
suppressed with an external magnetic field (compare Sec.3.4). In the red curve
EJ is not suppressed, in the blue curve EJ is maximally suppressed with a half
flux quantum per SQUID.

the finite differential conductance in the transport regime is often accounted for by includ-
ing a phenomenological resistive term in the equation of motion Eq.2.91 [13, 52],

LQ̈i +
2Qi −Qi−1 −Qi+1

C0
+ αR(Q̇i)Q̇i + VQ (Qi + 2e Fi) = 0 , (6.1)

where αR(Q̇i) is the friction coefficient of the quasi-charge. In the simplest case of a
purely Ohmic phenomenological resistance R we have αR(Q̇i) = 1

R . In Refs.[13] and [52]
a nonlinear resistance is used,

αR(Q̇i) =

{
0 for Q̇i ≤ Itr
1
R for Q̇i > Itr

. (6.2)

Dissipation only sets in once the current exceeds a threshold current Itr.

Including a phenomenological resistance does not explain on a microscopic level why the
differential conductance is proportional to the squared Josephson coupling energy. In the
literature the dependence on the Josephson coupling energy is commonly explained by
deriving the incoherent Cooper pair tunnelling rates from P (E)-theory [15, 14].

6.1 P (E)-theory and kinetic Monte Carlo

In this section we give a short recap of the well known P (E)-theory in the context of
tunnelling through Josephson junctions. A detailed discussion can be found in Ref.[38].
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We then quickly review how P (E)-theory has been used in literature together with kinetic
Monte Carlo simulations [15] to obtain the transport properties of a Josephson junction
array.

The purpose of P (E)-theory is to obtain the incoherent tunnelling rates of the charge
carriers through the Josephson junction. Let us consider an island connected to a lead with
a Josephson junction that is biased with a fluctuating voltage. The system Hamiltonian is
given by the charging energy of the states of the island Hcharge, the Cooper pair tunnelling
term and the energy of Cooper pairs on the island due to the externally applied voltage,

H̃ = Hcharge + H̃tun + 2eV m̂ , (6.3)

H̃tun = EJ
∑

m

|m+ 1〉 〈m|+ h.c. . (6.4)

The voltage difference over the Josephson junction can be absorbed into the tunnelling
Hamiltonian by a unitary transformation. The transformation corresponds to changing
into a rotating frame of reference. A description of the transformation procedure is given
in Ref.[38]. In the rotating frame the system is given by,

H = Hcharge +Htun , (6.5)

Htun = EJ
∑

m

e−iφ |m+ 1〉 〈m|+ h.c. . (6.6)

The voltage difference is included in the phase φ in the tunnelling term. A Cooper pair
tunnelling through the Josephson junction picks up a phase of φ. The phase φ also couples
the system to the environmental bath. The bath in this case is given by the environmental
impedance of the circuit.

If incoherent tunnelling of quasi-particles is considered instead of the incoherent Cooper
pair tunnelling, the sum over Cooper pair numbers m has to be replaced by a sum over
quasi-particle states |k〉. The Josephson coupling energy EJ is replaced by the quasi-
particle tunnelling rates Tkk′ .

P (E)-theory uses Fermi’s golden rule to obtain the tunnelling probability of the charge
carriers. Given an initial state |i〉 and a final state |f〉 connected by the tunnelling Hamil-
tonian the transition rate is [38],

Γi→f = 2π |〈f |Htun |i〉|2 δ (Ei − Ef ) , (6.7)

where we have omitted a factor of 1/~ as we set ~ = 1. The initial and final states are
states of the whole system-bath combination, including the degrees of freedom of the bath.
To obtain the transition rate Γci→f between two charge-states of the system, |ic〉 and |f c〉,
we have to trace out the degrees of freedom of the bath,

∣∣iB
〉

and
∣∣fB

〉
, just as in the

derivation of the Bloch-Redfield equation(Sec.4.2),

Γci→f = 2π
∑

iB ,fB

〈
iB
∣∣ ρB

∣∣iB
〉 ∣∣∣
〈
fB
∣∣ e−iφ

∣∣iB
〉∣∣∣

2∑

m

2E2
J |〈f c |m+ 1〉 〈m |ic〉|2 δ (∆Ei,f ) ,

(6.8)

∆Ei,f = Eci − Ecf + EBi − EBf . (6.9)

The matrix element
〈
iB
∣∣ ρB

∣∣iB
〉

of the density matrix of the bath ρB gives the probability
to find the bath in the initial state

∣∣iB
〉
. Only the phase difference φ couples to the bath

degrees of freedom and only operators containing φ have to be averaged over the bath
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100 6. Charge transport: Simulating coherent Cooper pair tunnelling

states. It can be shown [38] that, by expanding the δ-function into an integral over time,
the system-bath coupling takes the form of a correlator of exponential coupling operators,

Γci→f =

∫ ∞

−∞
dt 2π

〈
eiφ(t)e−iφ(0)

〉
B

∑

m

2E2
J |〈f c |m+ 1〉 〈m |ic〉|2 ei(Eci−Ecf)t , (6.10)

where φ(t) is the phase-operator in the interaction picture with respect to the bath Hamil-
tonian. In the case of a Gaussian bath where Wick’s theorem holds, the correlator of
exponentials can be written as an exponential of a correlator [38],

〈
eiφ(t)e−iφ(0)

〉
B

= e〈[φ(t)−φ(0)]φ(0)〉B . (6.11)

The Fourier transform of the correlation function is called the P (E)-function,

P (E) =
1

2π

∫ ∞

−∞
dte〈[φ(t)−φ(0)]φ(0)〉BeiEt . (6.12)

The tunnelling rate from an occupied charge state |ic〉 to an unoccupied state |f c〉 is
given by the P (E) function evaluated at the energy difference times the tunnelling matrix
element squared,

Γci→f =
∑

m

2E2
J |〈f c |m+ 1〉 〈m |ic〉|2 P

(
Eci − Ecf

)
. (6.13)

In the case of quasi-particle tunnelling one has to consider that the number of occupied
quasi-particle states on one side of the junction and the unoccupied states on the other
side of the junction are determined by the Fermi distribution f(E) [38],

Γci→f =
1

e2RT

∫
dE1dE2 ν(E1)ν(E2) f(E1)

[
1− f(E2 + Eci − Ecf )

]
P (E1 − E2) , (6.14)

where ν(E) is the density of states of the quasi-particles and the tunnelling matrix elements
E2
J 〈f c |m+ 1〉 〈m |ic〉 are contained in the normal tunnelling resistance RT of the junction.

The proportionality to the squared tunnelling matrix element highlights the crucial dif-
ference between P (E)-theory as it is used to model Josephson junction arrays [15] and
Bloch-Redfield theory as presented in Sec.4.2. The P (E)-theory is perturbative in the
tunnelling term of the system Hamiltonian. The Bloch-Redfield theory is perturbative in
the system-bath-coupling strength. P (E)-theory assumes that the charge states connected
by the tunnelling terms are a good approximation of the eigenbasis. In that sense P (E)-
theory is always a local theory that describes the tunnelling of charge carriers through
certain Josephson junctions in the array. Bloch-Redfield theory connects the eigenstates
of the Josephson junction array. A Cooper pair is delocalised over several array sites and
relaxation corresponds to the incoherent transition from one delocalised state to another.
The relaxation can not be interpreted as a charge carrier tunnelling through a distinct
Josephson junction in the array. We will come back to the difference between P (E) and
Bloch-Redfield in the next section.

As P (E)-theory explicitly connects charge states its use is always warranted in a situation
where corrections due to coherent tunnelling are excluded in the first place. In the kinetic
Monte Carlo simulation of Ref.[15] this is exactly the case. We will now give a short
summary of the simulations and results of Ref.[15], these results constitute the motivation
of the study of the corrections due to coherent Cooper pair tunnelling in the following
section.

In the simulations of a 50-site Josephson junction array in Ref.[15] no coherent superposi-
tions between states is allowed. The Josephson junction array is not treated as a quantum
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6.1. P (E)-theory and kinetic Monte Carlo 101

system, but as a classical system or rather a quantum system completely dominated by
the incoherent time-evolution. In Ref.[15] it was observed that each island is in one of
five possible states, unoccupied, occupied by a quasi-particle, occupied by a Cooper pair,
occupied by an anti-quasi-particle and occupied by an anti-Cooper pair. These states are
also the states with the lowest charging energies.

The system state only changes by incoherent tunnelling of Cooper pairs or quasi-particles.
Coherent Cooper-pair tunnelling is omitted from the time-evolution in the model of Ref.[15].
In the numerical simulations of Ref.[15] the system state is propagated according to the
kinetic Monte Carlo algorithm by randomly choosing an incoherent charge tunnelling event
and a tunnelling time. The probability distribution of the stochastic processes is derived
from the incoherent charge tunnelling rates. The details of the algorithm can be found in
Ref.[101] or Ch.4.

The incoherent tunnelling rates of the Cooper pairs and quasi-particles used in Ref.[15]
are derived from P (E)-theory under the assumption that the environmental bath for each
Josephson junction is given by the impedance of the rest of the array. As seen in Fig.6.2
each Josephson junction in the array is taken to be shunted by the normal state resistance
of the junction RT . In Ref.[15] it is then assumed that the relevant environment in the
P (E) derivation of the tunnelling rates can be approximated by the total impedance
Zt(ω), the combination of the impedance of the Josephson junction impedance ZJ(ω) and
the impedance of half the Josephson junction array Z(ω) (compare Fig.6.3),

Zt(ω) =

(
Z−1
J (ω) +

1

2
Z−1(ω)

)−1

, (6.15)

Z−1
J (ω) = iωCJ , (6.16)

Z(ω) =

(
iωCHA +

2

NRT

)−1

, (6.17)

CHA =
1

2

(
C0 +

√
C0 (4CJ + C0)

)
. (6.18)

The impedance Z(ω) of the half array is determined by the total capacitance CHA of the
half Josephson junction array and the resistance of half the array, N/2 times the normal
state resistance RT .

C0

RT

EJ

C0

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 6.2: A sketch of one Josephson junction in the Josephson junction array. In the
model of Ref.[15] the dissipative environment is given by the normal Resistance
RT that shunts every Josephson junction, a widely used model in the theory
of incoherent quasi-particle tunnelling [38].

The noise model of Ref.[15] works well with P (E)-theory as it assumes that dissipative
processes are a local phenomenon at the individual Josephson junctions in the array. The
rest of the array is treated as the noise environment. This assumption is not valid when
the Cooper pairs are delocalised over large parts of the Josephson junction array.
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102 6. Charge transport: Simulating coherent Cooper pair tunnelling

ZJ = iωCJ

Z(ω)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 6.3: In Ref.[15] the collective effect of all resistive shunts and capacitances in the
Josephson junction array on a single junction is approximated by assuming
that each single Josephson junction in the array sees an effective impedance
environment that corresponds to the impedance of the half array Z(ω).

Following the well known procedure to obtain the P (E)-function from an impedance en-
vironment [38], the P (E)-function is Gaussian shaped for quasi-particle and Cooper pair
tunnelling in the parameter regime of Ref.[15],

P (E) =

√
β

πkEC
e
−β (E− 1

4 kEC)
2

kEC , (6.19)

k =

{
1 for quasi-particle tunnelling
4 for Cooper pair tunnelling

. (6.20)

Using the standard relation between Josephson coupling energy and normal resistance
[107],

EJ =
~

2eRT

π∆

2e
tanh (∆β) , (6.21)

the simulations in Ref.[15] could reproduce several characteristic features of the transport
regime of Josephson junction arrays.

At low applied bias voltages the simulations in Ref.[15] show insulating behaviour. With
increasing bias voltage the Josephson junction array starts to conduct current above a
certain threshold voltage and after a transition region the current increases linearly with the
applied voltage. Although the model of Ref.[15] includes incoherent Cooper pair and quasi-
particle tunnelling and only the incoherent Cooper pair tunnelling rate is proportional to
E2
J , the initial transport regime is controlled by Cooper pair tunnelling and the current is

also proportional to the squared Josephson coupling energy.

The simulations that show good qualitative agreement with experimentally known be-
haviour [14] rely on the applicability of P (E)-theory. Especially the E2

J -dependence is a
direct consequence of the perturbative nature of the tunnelling matrix element in P (E)-
theory. On the other hand it is known that the qualitative transport behaviour of Joseph-
son junction arrays holds up to values of the Josephson coupling energy that are compa-
rable to the Josephson charging energy EJ ≈ EC [14]. This concludes the summary of
the results of the numerical simulations from Ref.[15]. The success of these simulations in
reproducing experimentally observed features of the transport regime serves as our moti-
vation to investigate the validity of the P (E) approach in a simplified model by comparing
it to Bloch-Redfield theory in the next section.

6.2 Coherent transport

In this section we are using Bloch-Redfield theory to simulate the coherent and incoherent
charge transport through a simplified model of a Josephson junction array and compare
it to the purely incoherent transport obtained from P (E)-theory.
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6.2. Coherent transport 103

To see the importance of the coherent processes that are omitted in P (E)-theory let us
first consider the simplest possible example, a two level system, for example two charging
sites, that is longitudinally coupled to a bath,

H = HS +HSB +HB (6.22)

=

(
1
2EC EJ
EJ −1

2EC

)
⊗ 1 + g

(
1 0
0 −1

)
⊗X +

(
1 0
0 1

)
⊗HB , (6.23)

where X is the bath coupling operator and HB is the bath Hamiltonian. As usual in
Bloch-Redfield theory all relevant information about the environment is contained in the
spectral function of the bath coupling operator CXX(ω).

The rate of charge tunnelling is determined by the relaxation rate of the system which can
be obtained from the Bloch-Redfield equation as discussed in Ch.4. The dephasing and
decoherence rates in the Bloch-Redfield equation are determined by the system coupling
operator σz rotated into the energy eigenbasis. We call this operator in the eigenbasis ξ.
To obtain ξ we first diagonalize the system Hamiltonian,

U †
(

1
2EC EJ
EJ −1

2EC

)
U =

√
E2
C

4
+ E2

J

(
1 0
0 −1

)
, (6.24)

U =

(
cos(1

2θ) sin(1
2θ)

− sin(1
2θ) cos(1

2θ)

)
, (6.25)

tan(θ) = 2
EJ
EC

, (6.26)

and then rotate the original system coupling operator,

ξ = U †
(

1 0
0 −1

)
U =

(
cos(θ) sin(θ)
sin(θ) cos(θ)

)
. (6.27)

The relaxation rate Γrel of the system is proportional to the square of the off-diagonal
matrix element of ξ times the spectral function evaluated at the transition frequency ∆E.
The transition frequency corresponds to the energy difference between the two energy
eigenstates,

Γrel ∝ sin2(θ)CXX(∆E) , (6.28)

∆E =

√
E2
C

4
+ E2

J . (6.29)

For the detailed discussion see Ch.4.

Of course the two-dimensional matrix HS can be diagonalized directly. Here however we
deliberately use time-independent perturbation theory to compare the problem with the
perturbative P (E)-theory. In the case that the charging energy is much larger than the
coupling energy EJ � EC , the unitary matrix U is approximately given by the identity
matrix with corrections of the order of EJ/EC ,

U = 1 +O
(
EJ
EC

)
, (6.30)

sin(
1

2
θ) = 0 +O

(
EJ
EC

)
. (6.31)
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The eigenstates are approximately given by the original charge states and the eigenenergies
by,

E1/2 = ±1

2
EC +O

(
EJ
EC

)
, (6.32)

CXX(∆E) ≈ CXX(EC) . (6.33)

The physical process of energy relaxation can be approximated by incoherent tunnelling
processes between the two original charge states. The weight given by the spectral function
at the transition frequencies is independent from EJ . The coupling energy EJ enters the
relaxation rate Γrel only via the off-diagonal elements of ξ. The relaxation rate is in leading
order proportional to E2

J ,

Γrel ∝ sin2(θ) ∝
(
EJ
EC

)2

+O
(
E3
J

E3
C

)
. (6.34)

In the small EJ -regime Bloch-Redfield theory gives us the same picture and the same
result as P (E)-theory.

Considering the other extreme case of vanishing charging energy,

EC = 0 , (6.35)

H =

(
0 EJ
EJ 0

)
⊗ 1 + g

(
1 0
0 −1

)
⊗X +

(
1 0
0 1

)
⊗HB , (6.36)

one can immediately see that the picture of tunnelling charges in the original basis is not
applicable. The eigenbasis of the system is given by the symmetric and antisymmetric
delocalised states,

U =
1√
2

(
1 1
1 −1

)
, (6.37)

and relaxation can not be regarded as a charge hopping from the first to the second site
or back. In this extreme case the off-diagonal matrix elements of ξ are independent from
EJ and the coupling energy enters the relaxation rate solely via the spectral function

Γrel ∝ CXX(2EJ) . (6.38)

For an Ohmic spectral function one would for example expect the dissipation to be pro-
portional to EJ and not E2

J .

The same trade-off between the Josephson coupling energy and the energy differences
between neighbouring islands determines the range of validity of P (E)-theory in Josephson
junction arrays. To investigate further we study the behaviour of a simplified model of an
inner section of a Josephson junction array.

6.2.1 The model

In the simplified model we consider an inner section of the Josephson junction array. The
section has N = 20 sites. As we are mostly interested in the relative importance of coherent
and incoherent Cooper pair tunnelling we neglect the contribution of quasi-particles and
only take Cooper pairs and anti-Cooper pairs into account.

In this chapter we do not want to consider the problem of charge injection from the leads
into the array, as it was done in Ch.3 and Ref.[3]. We always take the initial state to
correspond to one excess Cooper pair at the left end of the simulated section of the array.
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6.2. Coherent transport 105

Furthermore we assume that no additional net charges enter the simulated section of the
array from the surrounding parts of the Josephson junction array.

The only way to create additional charge carriers in the simulated section of the array
is the creation of Cooper pair/anti-Cooper pair dipoles. We will only include the dipole
excitations around a single Cooper pair in the array that are energetically closest to the
bare Cooper pair state. In the eigenbasis of the Josephson junction array the mixing
between charging states due to the coherent Cooper pair tunnelling amplitude EJ increases
with decreasing energy difference. The energetically closest dipole states contribute the
leading corrections to the transport properties of a Cooper pair. The dipoles dress the
bare Cooper pair. To take into account the relevant dipole excitations we use a model
introduced in Ref.[12]. The dipole excitations around a Cooper pair in the Josephson
junction array are mapped to states of a spin-chain.

The charging energy of any Cooper pair configuration in a Josephson junction array is
determined by the inverse capacitance matrix of the array, C−1

m . For the purpose of
estimating the relevant excitations, the charging energy of a configuration {ni} of Cooper
pairs can be approximately obtained from an exponentially decaying interaction,

Ec({ni}) =
∑

ij

(2e)2

2
ni
(
C−1
m

)
ij
nj ≈

∑

ij

1

2
ΛECninje

− |i−j|
Λ , (6.39)

where it was assumed that all charges are far enough from the ends of the array so that all
boundary effects can be neglected. The approximate charging energies of a single Cooper
pair Eccp and a single dipole on neighbouring islands Ecdp are given by,

Eccp ≈
1

2
ΛEC , (6.40)

Ecdp = Ec({. . . ni = ±1, ni+1 = ∓1, . . . }) ≈ ΛEC

(
1− e− 1

Λ

)
≈ EC . (6.41)

When placing an additional dipole in the array far away from the single Cooper pair the
exponentially decaying interaction can be neglected and the energy difference to the bare
Cooper pair state is simply given by Ecdp. If we on the other hand place a dipole next to a
single Cooper pair in the array, so that positive and negative charges alternate, the energy
difference between bare and dressed state is given by,

∆Edp = Ec({. . . ni = 1, ni+1 = −1, ni+2 = 1 . . . })− Eccp
≈ ΛEC

(
1− 2e−

1
Λ + e−

2
Λ

)

≈ 2

Λ
EC , (6.42)

and inverting the orientation of the dipole leads to an energy difference of

Ec({. . . ni = 1, ni+1 = 1, ni+2 = −1 . . . })− Eccp ≈ ΛEC

(
1− e− 2

Λ

)
(6.43)

≈ 2EC . (6.44)

In the most relevant dressed states the dipoles are located in the vicinity of the bare
Cooper pair, where the exponentially decaying interaction is relevant. The length-scale
of this environment is given by Λ. The dipoles are oriented so that Cooper pairs and
anti-Cooper pairs alternate when going along the Josephson junction array.

The alternating charge states of an N -site section of an array can be mapped to the states
of a N + 1-site spin chain [12]. The empty section is either mapped to the state with
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106 6. Charge transport: Simulating coherent Cooper pair tunnelling

all spins up or to the state with all spins down. A spin flip from |↓〉i to |↑〉i+1 between
neighbouring sites is mapped to a Cooper pair on site i, |ni = +1〉, the opposite flip from
|↑〉i to |↓〉i+1 is mapped to an anti-Cooper pair |ni = −1〉. As a positive charge in the
alternating states is always followed by a negative charge an up-flip in the spin-chain is
always followed by a down-flip. In the mapping the Hilbert-space of a spin-chain is never
left by two or more consecutive up-flips. An example of the mapping is shown in Fig.6.4.

array segment 0 0 1 0 0 0

spin chain

array segment 0 1 0 −1 1 0

spin chain

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Figure 6.4: Two examples of the mapping from dressed Cooper pair states in a section
of an array to states of a spin chain [12]. A positive charge is mapped to an
upwards spin-flip between neighbouring sites, a negative charge is mapped to a
downwards spin-flip. In alternating charge configurations an upwards spin-flip
is always followed by a downwards spin-flip.

In our simplified model we use the spin-chain representation to take all dipole excitations
into account that are within Ldip sites of the bare Cooper pair. In the numerical simulations
we use different dipole lengths Ldip to investigate how the transport behaviour changes
when including dressed states with higher charging energy. The case Ldip = 0 corresponds
to a single bare Cooper pair propagating through the 20-site Josephson junction array. We
also consider Ldip = Λ− 1, Ldip = Λ and Ldip = Λ + 1 for an interaction length of Λ = 3.

To avoid complications from the interactions with the finite array boundaries, we assume
that the simulated section is in the middle of the array, far away from the boundaries. Nu-
merically this is achieved by calculating all charging energies from the inverse capacitance
matrix of C−1

m of an array with N + 8Λ sites,

Ec({ni}) =
∑

ij

(2e)2

2
n̄i
(
C−1
m

)
ij
n̄j , (6.45)

n̄i =





0 i ≤ 4Λ
ni 4Λ < i ≤ 4Λ +N
0 4Λ +N < i

. (6.46)

Empty charge arrays with length 4Λ are amended on both sites of the charge configuration
{ni} of the section of the array we are simulating. Due to the large distance, the interaction
of charges in the inner section with the boundaries is negligible.

The voltage is applied homogeneously along the array with a voltage Vh across each Joseph-
son junction. The applied voltage can be included as a shift of the energy in the charge
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basis,

EV ({ni}) =
∑

j

(2e)Vh · j · nj . (6.47)

The simplified model is a good approximation for a section of a ring-shaped Josephson
junction array. A Josephson junction ring is not connected to external leads. The net
charge in the array does not change with time, allowing for exactly one excess Cooper pair
in the ring. In such a ring the voltage would be applied inductively by a constantly changing
magnetic flux through the ring (as proposed in [35]). The voltage drops homogeneously
over the whole array. In an open Josephson junction array the applied voltage can not be
separated from the interaction with the boundaries and the injection of charge carriers. A
boundary-applied voltage injects charge carriers into the first array site. The additional
charge at the end of the array repels charge carriers further inside the array. The charge
carriers are pushed further and further inside the array effectively spreading the applied
voltage along the array.

In the kinetic Monte Carlo simulations [15] the distribution of charge carriers in the trans-
port regime leads to a redistribution of the applied voltage along the array. The effective
voltage drops approximately linearly over the Josephson junction array. One can therefore
argue that in the transport regime the average effect of the interaction of one dressed
Cooper pair with the other charges can be approximated by a homogeneous voltage drop.

We assume that the superconducting islands in the Josephson junction array couple to
Ohmic noise baths via coupling operators that are diagonal in the charge basis. Each
capacitance C0 in the Josephson junction array is connected to the ground via a resistance
R. The resistance is a source of Ohmic voltage noise δV . For a sketch see Fig.6.5. Con-
sidering a single island of the Josephson junction array, this noise model is the same as
introduced in Ref.[108] for the voltage noise in a Josephson charge qubit.

In the system bath model, the system Hamiltonian HS contains all charging energy and
coherent tunnelling terms. The system bath coupling operator is diagonal in the charge
basis,

H = HS +
∑

i

niXi +HB . (6.48)

All superconducting islands are coupled to independent baths that are not correlated. The
spectral function of two bath coupling operators from the same island i has the standard
Ohmic form,

Cii(ω) = 4α ω Θ(ωc − ω)
1

e−βω + 1
, (6.49)

where α is the Ohmic bath coupling strength . We assume that the cut off frequency ωc of
the spectral function is large enough, so that all relevant energies of the system are smaller
and it does not affect the time evolution of the system. We consider a low temperature
limit where the spectral function is approximately zero for negative energies and linear for
positive frequencies,

Cii(ω) ≈
{

4α ω Θ(ωc − ω) ω ≥ 0
0 ω < 0

(6.50)

Our model, as shown in Fig.6.5, corresponds to a junction shunted by an impedance
dominated by the large resistance R. The P (E)-function for such a model can be found
in the Literature, for example in Ref.[38] At small positive energies E the P (E)-function
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Figure 6.5: A sketch of a section of an array with the noise sources of the simplified
model. The resistances R that connect the capacitances C0 to the ground
introduce voltage noise δV into the Josephson junction array. The noise couples
via the charging energy of the capacitances C0 longitudinally to the Cooper
pair occupation of each superconducting island. The spectral function of the
resistive noise source is assumed to be determined by the standard Ohmic
spectral density J(ω) (Eq.6.49).

follows a power law with an exponent that is determined by the system-bath coupling
strength α,

P (E) ∝ E2α−1 . (6.51)

More precisely for positive energies we use the expression from Ref.[38],

P (E) =
e−2γα

Γ (2α)

1

E

[
πα

E

Ec

]2α

, (6.52)

where γ is Euler’s constant and Γ is the gamma-function. The P (E)-function for negative
frequencies is obtained from detailed balance,

P (−E) = e−βEP (E) . (6.53)

With this P (E)-function the time evolution of the system density matrix ρ in the charge
basis is given by,

ρij = 0 for i 6= j , (6.54)

ρ̇ii(t) =
∑

j

−E2
JP (Eci − Ecj )ρii(t) + E2

JP (Ecj − Eci )ρjj(t) . (6.55)

The off-diagonal elements of the density matrix are zero since we only consider the inco-
herent time-evolution in the P (E) simulation.

6.2.2 Numerical simulations

The time-evolution of the density matrix of the section of the array is simulated in the
Bloch-Redfield approach and the P (E)-theory. We use different basis sets that include
increasing numbers of dipole dressed Cooper pair states. The dressed states we consider
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Figure 6.6: The expectation value of the charge on the array sites in a P (E) simulation
plotted against simulation time t times the system-bath coupling strength α.
For better visibility only the charge on the first 10 sites is plotted. The sim-
ulation includes charge states with dipoles on the Ldip = Λ sites around the
excess Cooper pair. The applied voltage is Vh = 1

8
EC
e . The positive charge

located on the first site at t = 0 spreads over several neighbouring sites. At the
same time the center of the broadening charge distribution propagates slowly
along the array.

contain dipoles on the Ldip ∈ {0,Λ− 1,Λ,Λ + 1} sites around the bare Cooper pairs. In
all simulations we set the interaction length Λ and the system-bath coupling strength to,

Λ = 3 , (6.56)

α = 0.025EC , (6.57)

EC = 32µeV . (6.58)

We are in the low temperature limit,

β =
1

kBT
= 100 (µeV)−1 , (6.59)

e−βEc ≈ 0 . (6.60)

From the numerical simulations we obtain the expectation value 2eni of the charge on the
i-th island of the array,

ni(t) = 〈n̂i(t)〉 = Tr (2en̂iρ(t)) , (6.61)

where ρ(t) is the time-dependent density matrix obtained from solving the Bloch-Redfield
equation or from the rate equation of the P (E) approach (Eq.6.55 ). An example of the
charge distribution {2eni} is given in Fig.6.6. The 2e-charge is located on the first site at
t = 0 and is propagated along the array over time while spreading over several sites.
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Figure 6.7: Averaging over the charge distribution (compare Fig.6.6) we obtain the centre
of charge, the mean location of the excess Cooper pair in the array. The same
simulation parameters as in Fig.6.6 were used. The centre of charge increases
linearly with time and saturates once the dressed Cooper pair reaches the end
of the finite array. We define the Cooper pair transport velocity vcp as the
slope of the linear increase of the center of charge.

To characterize the transport of the excess Cooper pair we define the center of charge xcc,

xcc(t) =
∑

j

j nj(t) . (6.62)

An example of the time-evolution of the center of charge is plotted in Fig.6.7. The center of
charge increases linearly with time until it reaches the end of the finite array. Depending
on the parameter regime and whether we use a Bloch-Redfield simulation or a P (E)
simulation the region of linear increase can be preceded by coherent oscillations of the
centre of charge.

We use the region of linear transport to define the Cooper pair velocity vcp, a measure of
the transport properties of the system,

xcc(t) = vcpt+ η , (6.63)

where η is an offset due to nonlinear behaviour at the beginning of the time-evolution. For
each transport simulation vcp is obtained by fitting a linear function to the region of linear
increase. We now look at the EJ and Vh-dependence of vcp to compare the different array
models with Ldip ∈ {0,Λ− 1,Λ,Λ + 1} and the Bloch-Redfield and P (E) approaches.

Low Voltages

First we consider low applied voltages, 2eVh < EC . For the P (E) simulations the Joseph-
son energy dependence of vcp at fixed voltages (as shown in Fig.6.8, Fig.6.9 and Fig.6.10 )
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can be directly obtained from Eq.6.55. All tunnelling rates are proportional to the squared
Josephson energy. Changing the Josephson energy speeds up all processes in the P (E)
simulation by a factor of E2

J . The Cooper pair velocity is proportional to E2
J .

The effect of including additional dipole states (Ldip = Λ− 1, Ldip = Λ, Ldip = Λ + 1) in
the simulations compared to the bare Cooper pair states Ldip = 0 depends on the relative
strength of homogeneous voltage Vh and the energy required to create a dipole next to the
bare Cooper pair ∆Ecp. When the additional dipole energy exceeds the energy gained by
a Cooper pair tunnelling to an island with lower potential,

∆Edp > 2eVh , (6.64)

the creation of dipoles in the array is thermally suppressed. Since we are in the zero
temperature limit, no dipole states can be created by incoherent tunnelling. Including
additional dipole dressed states in the simulation has no effect on the transport properties
as these states are never populated. The Cooper pair velocity of all simulations including
dressed states (Ldip > 0) is the same as for Ldip = 0. This can be seen in Fig.6.8 for
Ldip = Λ − 1 and Ldip = Λ and in Fig.6.12 for Ldip = Λ + 1. Due to the large number
of basis states (512) all simulations for Ldip = Λ + 1 were calculated with the stochastic
Bloch-Redfield algorithm (Ch.4).

In the other case,

∆Edp < 2eVh , (6.65)

the applied voltage is large enough to create dipoles next to the bare Cooper pair. Increas-
ing the number of allowed dipole states with Ldip also increases the phase space available
for incoherent tunnelling. The Cooper pair velocity vcp increases with increasing Ldip.
This situation is shown in Fig.6.10.
Calculating the Cooper pair velocity as a function of the applied voltage Vh with fixed EJ
(see Fig.6.13) one can see the transition from the first to the second regime at Vh = 0.25ECe .

The power law of the voltage dependence of the Cooper pair velocity for the bare Cooper
pair states (Ldip = 0) can be directly obtained from the power law of the P (E)-function,
Eq.6.51. In the absence of dipole dressed states all basis states have the same charging
energy. The energy difference between the charge states is simply given by the homoge-
neously applied voltage. The incoherent tunnelling rates between neighbouring islands i
and i+ 1 are,

Γi→i+1 = E2
JP (2eVh) , (6.66)

Γi+1→i = E2
JP (−2eVh) = 0 . (6.67)

The Cooper pair velocity is proportional to the incoherent tunnelling rates. At fixed EJ
vcp has the same functional form as the P (E) function.

To determine whether the use of P (E)-theory is a valid approach we compare the results
with the Bloch-Redfield simulations in Fig.6.8, Fig.6.9, Fig.6.11 and Fig.6.12. At small
voltages the results of the two methods do not agree. If we take for example the EJ -
dependence of the Bloch-Redfield simulations for Ldip = 0, vcp increases linearly with the
Josephson coupling energy and not quadratically as in the P (E)-theory.

The reason behind the discrepancy is simple. We are considering an inner section of the
array far away from all boundaries. The charging energy of a bare excess Cooper pair is
the same for each island of the array. In the considered N = 20-site section of the array, we
find a twentyfold degeneracy of the charging energy of the bare Cooper pair states. The
energy difference between the bare Cooper pair states is completely determined by the
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Figure 6.8: The Cooper pair velocity vcp as a function of the Josephson energy EJ for a
homogeneous voltage Vh = 1

32
EC
e . The Cooper pair transport was simulated

with P (E) and Bloch-Redfield theory for a charge basis that included dressed
Cooper pair states with dipoles on the Ldip sites surrounding the Cooper pair.
The solid blue line labeled as “fit P (E), Ldip = 0 ” is obtained from fitting
the P (E) result for the undressed Cooper pair basis to the expected vcp ∝ E2

J -
behaviour. The results of the P (E) simulations of all Ldip lie on the same
curve.
The Cooper pair velocity obtained from Bloch Redfield theory with Ldip = 0
increases linearly with the Josephson energy EJ . At EJ smaller than the
additional energy of a dipole ∆Edp the results for all simulations with Ldip = 0,
Ldip = Λ − 1 and Ldip = Λ agree. At larger Josephson energies the Cooper
pair velocity vcp does not converge with increasing Ldip.

applied voltage Vh. The degeneracy of the N bare Cooper pair states is also present when
additionally including dressed Cooper pair states (Ldip ∈ {Λ − 1,Λ,Λ + 1}). At small
voltages, where the electrostatic energy difference is small compared to the Josephson
coupling energy,

2eVh < EJ , (6.68)

the coherent Cooper pair tunnelling can not be regarded as a small perturbation to the
eigenenergies of charge states |{ni}〉. P (E)-theory does not give a valid description of the
physical system. At higher fixed voltages (Vh = 1

8
EC
e Fig.6.9 and Vh = 1

4
EC
e Fig.6.11), the

Cooper pair velocity vcp obtained from Bloch-Redfield simulations is proportional to E2
J

at small EJ and approximately agrees with the P (E) result. Only at larger EJ we find a
transition to linear EJ dependence and a breakdown of the perturbation theory in EJ .

The same effect can be seen in Fig.6.14 when comparing the voltage dependence of vcp
obtained from P (E) and Bloch-Redfield theory. At low applied voltages the perturbation
theory in the Josephson coupling energy is not valid and Bloch-Redfield theory and P (E)-
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Figure 6.9: The Cooper pair velocity vcp as a function of the Josephson energy EJ for a
homogeneous voltage Vh = 1

8
EC
e . The P (E) results for all Ldip ∈ {0,Λ− 1,Λ}

lie on the same curve. For simplicity we only plot the fit of the P (E) results to
the expected E2

J behaviour. At small EJ the energy difference between states
connected by coherent tunnelling is larger than the Josephson coupling energy
∆E = 2eVh > EJ . The coherent tunnelling can be treated perturbatively and
the P (E) and Bloch-Redfield result agree. At larger Josephson energy the
coherent tunnelling can not be treated perturbatively and the velocity vcp as
a function of EJ changes from a quadratic to a linear dependence.

theory give completely different vcp. With increasing Vh, approaching the limit,

2eVh = EJ , (6.69)

the Bloch-Redfield results converge towards the P (E) results. The two curves for Ldip =
Λ + 1 have not yet converged in this limit but converge at higher voltages as shown in
Fig.6.16.

When the Josephson coupling energy is considerably smaller than the additional energy
of a dipole,

EJ < ∆Edp , (6.70)

the coherent tunnelling amplitude is too small to cause significant mixing between the
initial bare state and the dipole dressed states that are included for Ldip ∈ {Λ−1,Λ,Λ+1}.
The results of all Bloch-Redfield simulations with different dipole lengths Ldip agree. At
Josephson energies larger that ∆Edp the mixing with the dressed states leads to a faster
conductance and higher vcp for Ldip ≥ Λ−1. This can be nicely seen in Fig.6.8 and Fig.6.9
where the results of the three Bloch-Redfield simulations start to deviate at EJ = 0.3EC .

The last point we want to make considering the Bloch-Redfield simulations at low applied
voltages Vh concerns the validity of the reduced basis sets we choose for our simplified
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Figure 6.10: The Cooper pair velocity vcp as a function of the Josephson energy EJ for
a homogeneous voltage Vh = 1

4
EC
e obtained solely from P (E) simulations.

The applied homogeneous voltage is high enough to allow for the creation of
dipoles by incoherent tunnelling. We obtain different transport velocities for
Ldip = 0, Ldip = Λ − 1 and Ldip = Λ in the P (E) simulations. For each of
the three basis sets, the Josephson energy dependence of the velocity fits the
behaviour vcp ∝ E2

j expected from the EJ dependence of the P (E) tunnelling
rates (Eq.6.13).

model. In the limit EJ → EC the Josephson energy approaches the charging energy of an
isolated dipole Ecdp. The coherent tunnelling amplitude is large enough to create dipoles
at arbitrary distances from the bare Cooper pair in the array. Using a basis with finite
Ldip is not justified for EJ ≥ EC . This is also the reason why vcp does not converge with
increasing number of included dipole states (increasing Ldip) at EJ = EC .

High Voltages

Let us now consider high applied voltages,

2eVh > EC . (6.71)

Here we face the same problem as for Josephson coupling energies that exceed the charging
energy EC . The applied voltage Vh is high enough to create dipoles at arbitrary distances
from the bare Cooper pairs by incoherent tunnelling. A basis with finite Ldip, where charge
dipoles are only allowed in a certain distance from the bare Cooper pair, can not describe
the full transport behaviour of the Josephson junction array.

On the other hand we can regard the simulations as a first approximation of the propa-
gation of one of the many dressed charge carriers in a strongly biased Josephson junction
array. This approximation disregards the precise interaction of the simulated dressed
Cooper pair with all other Cooper pairs in the array and replaces it with a homogeneously
applied voltage.
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Figure 6.11: The Cooper pair velocity vcp as a function of the Josephson energy EJ for a
homogeneous voltage Vh = 1

4
EC
e , including the results from the Bloch-Redfield

simulations. As in Fig.6.9 the Bloch-Redfield results show a E2
J behaviour for

small EJ and transition to a linear dependence on EJ for larger EJ . Compared
to Fig.6.9 the transition happens as higher EJ .

In the high voltage regime the eigenenergies of the charge states are large compared to
the typical Josephson coupling energy EJ . The coherent tunnelling can be considered as
a small perturbation. The perturbative expansion in the derivation of the P (E)-theory is
valid. We obtain the Cooper pair velocity obtained from P (E)-theory and Bloch-Redfield
theory up to large Josephson energies EJ > EC as is shown in Fig.6.15. Calculating vcp
as a function of applied voltage (Fig.6.16) we see that Bloch-Redfield and P (E) results
converge with increasing voltage for all dipole lengths Ldip. The small deviation between
the two methods for Ldip = 0 and Ldip = Λ − 1 at very high voltages is due to the fact
that the expression for P (E), Eq.6.52, only holds for small energy differences.

Conclusion

In conclusion we can state that at low homogeneous voltages it is not sufficient to determine
the transport properties from P (E)-theory. A full Bloch-Redfield treatment including the
coherent tunnelling is necessary. This parameter regime is only relevant for a ring-shaped
Josephson junction array. In open Josephson junction arrays the low applied voltages
would not be sufficient to overcome the charge injection threshold and bring the system
in the conducting regime.

At high applied voltages the dressed Cooper pair basis with finite dipole length Ldip is not
a good basis of the biased array as the high voltage can create dipole states at every site in
the array. When the collective effect of the other charge carriers in the array on a dressed
Cooper pair can be approximated as a homogeneous voltage, the P (E)-theory gives a valid
description of the propagation of the dressed Cooper pair in the high voltage regime. This
is the valid regime for the transport in open Josephson junction arrays, as the applied
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Figure 6.12: The Cooper pair velocity vcp as a function of the Josephson energy EJ for a
homogeneous voltage Vh = 1

16
EC
e . Here we show simulations with the larger

basis set that includes dressed states with dipoles on Ldip = Λ+1 sites around
the bare Cooper pair. The time evolution of the system with the large charge
basis was simulated with the stochastic Bloch Redfield algorithm (Ch.4). As
for Ldip = Λ − 1 and Ldip = Λ the P (E) result for Ldip = Λ + 1 is the same
as for bare Cooper pairs (Ldip = 0), since the creation of Cooper pairs by
incoherent tunnelling is energetically impossible.

bias voltages are of order of N EC
e or larger. A full simulation of the transport properties

can then be obtained with the help of the kinetic Monte Carlo algorithm that includes
all possible charge states. The KMC method is self consistent when the dissipated energy
∆E at all incoherent tunnelling events is larger than the Josephson coupling energy.

Finally we can see that the E2
J dependence of the transport current seen in experiments is

not an universal feature but emerges in certain parameter regimes. The same is true for
the nearly Ohmic IV -behaviour seen in experiments on open Josephson junction arrays.
Although we explicitly assume an Ohmic noise source the transport velocity of a single
dressed Cooper pair decreases with applied voltage. The linear increase in current with
voltage is a many body effect.
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Figure 6.13: The Cooper pair velocity vcp as a function of applied voltage in the low
voltage regime. The Josephson coupling energy is equal to the charging energy
EJ = EC . For better visibility only the results of the P (E) simulations are
shown. The voltage dependence in the case that only bare Cooper pair states
are considered Ldip = 0 follows the power law expected for the P (E) function
(Eq.6.51), vcp ∝ V −1+2α. For homogeneous voltages below the threshold of
the creation of dipoles 1

e∆Edp the P (E) results for Ldip = 0, Ldip = Λ − 1,
Ldip = Λ and Ldip = Λ + 1 all follow the same power law. Once the creation
of dipoles is energetically possible the phase space available for tunnelling
increases and the Cooper pair velocity vcp increases with Ldip.
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Figure 6.14: The Cooper pair velocity vcp as a function of applied voltage in the low volt-
age regime. The Josephson coupling energy is equal to the charging energy
EJ = EC . Compared to Fig.6.13 we now include the results from the Bloch-
Redfield simulations. As expected from Fig.6.8 and Fig.6.9 at low voltages
the coherent tunnelling can not be treated as a perturbation and the Bloch-
Redfield result deviates significantly from the P (E) result. As Vh approaches
1
2
EC
e the energy differences between neighbouring sites 2eVh becomes com-

parable to the Josephson energy EJ . The velocity vcp obtained from the
Bloch-Redfield simulations approaches the result obtained from the pertur-
bative treatment of the coherent tunnelling term in P (E)-theory. In the shown
voltage range we do not yet see convergence of P (E) and Bloch-Redfield the-
ory for Ldip = Λ + 1. The two results converge at higher voltages shown in
Fig.6.16.
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Figure 6.15: The Cooper pair velocity vcp as a function of the Josephson energy EJ for a
homogeneous voltage Vh = EC

e . The applied homogeneous voltage Vh is so
high that it is energetically possible to create dipole excitations at arbitrary
distances from the bare Cooper pair. The dressed Cooper pair basis is not
the correct basis to treat transport as it omits charge configurations that can
be reached easily by coherent tunnelling. The Cooper pair velocity will not
converge for a finite Ldip. If we nevertheless restrict ourselves to the dressed
state basis the energy differences between charge states are dominated by the
energy contribution of the homogeneous voltage Vh. As long as 2eVh > EJ ,
which is the case here, the perturbative treatment of coherent tunnelling
in P (E)-theory is a good approximation and the Bloch-Redfield and P (E)
results approximately agree.
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Figure 6.16: The Cooper pair velocity vcp as a function of applied voltage in the high
voltage regime. the Josephson coupling energy is equal to the charging energy
EJ = EC .
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7. Conclusion

The conductance properties of one-dimensional Josephson junction arrays are a current
and not yet completely understood problem at the intersection of traditional condensed
matter theory and superconducting quantum information systems. This thesis provides
three main results concerning the conductance properties of Josephson junction arrays in
the insulator phase.

First it shows the connection of Josephson junction arrays with other one dimensional
arrays of superconducting circuit elements, quantum phase slip ladders, linear chains of
quantum phase slip elements and Josephson junction ladders. The Josephson junction
array is dual to the quantum phase slip ladder under the exchange of charge and phase
as well as capacitance and inductance. In the low frequency limit the Josephson junction
array is approximately equivalent to a linear quantum phase slip chain. The quantum
phase slip ladder in the low frequency limit is on the other hand approximately equivalent
to a Josephson junction ladder. Finally we find that the Josephson junction ladder and
the quantum phase slip chain are again dual systems. The duality and approximate equiv-
alence of the one-dimensional superconducting arrays can in principle be used to study
complementing regions of parameter space to achieve a better understanding of the un-
derlying model. One could, for example, study the strongly disordered limit in Josephson
junction arrays, which suffer from charge disorder, and the clean case in quantum phase
slip ladders.

The second result is the explanation of the onset of transport in boundary biased arrays
with the help of depinning theory. We provided analytic estimates of the switching voltage
Vsw for the two cases of long and short Josephson junction arrays. Numerical simulations
showed good overall agreement between the analytic estimate and the numerical data. The
biggest deviation was found in the power-law of the switching voltage as a function of the
interaction length Λ. The analytic estimate predicts an exponent of −2

3 and fitting the
numerical data resulted in exponents of approximately −0.5± 0.05. The deviation in the
exponent might be the result of neglecting corrections to the analytic estimate that are
usually included in the depinning-theory by employing a renormalization group treatment
[16].

It could also be shown that weak disorder in the Josephson junction array leads to a new
correlation length in the model. Arrays that are shorter than the correlation length behave
like clean arrays, arrays longer than the correlation length show the same behaviour as
strongly disordered arrays. Numerical simulations found the transition at the correlation
length that was obtained analytically from the disorder model.
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122 7. Conclusion

The analytic estimates of the switching voltage were used to fit experimental data on
the switching voltage provided by R. Schäfer, H. Rotzinger, W. Cui, A. Fiebig and A.V.
Ustinov (all Karlsruhe Institut of Technology, KIT, Germany). The parameters obtained
from the fit are in good agreement with experimental expectations, thereby providing
confirmation for the presented model of the onset of transport in Josephson junction
arrays.

The third result is a check of the validity of the incoherent tunnelling model used in
literature [15] to simulate the transport in Josephson junction arrays. We numerically
simulated a simplified model, a homogeneously biased Josephson junction array segment
that contains only one excess Cooper pair that is dressed by surrounding Cooper pair
dipoles. The model is more closely related to a Josephson junction array that forms a
closed ring than to an open array set-up as it is used in experiments.

To be able to perform the simulations of the large open quantum systems we extended
the numerical method of quantum jumps. The quantum jump method is an established
numerical tool to use an efficient stochastic unravelling to obtain the solution of a Lindblad
master equation. The developed stochastic Bloch-Redfield algorithm is capable of finding
a stochastic unravelling directly from a Bloch-Redfield master equation.

At small applied voltages we find large corrections when including coherent Cooper pair
tunnelling compared to a simulation that only takes incoherent tunnelling into account.
At large applied voltages the simplified model is not a valid description of the whole
array anymore. It does not take into account additional free charge carriers created by the
dissolution of Cooper pair dipoles. In the simulations that use purely incoherent tunnelling
processes [15] a large numbers of free charge carriers are present in the array at each time.
It was found that the net effect of the free charge carriers on one screened Cooper pair can
be approximated by a large homogeneous voltage drop over each Josephson junction. In
this case both models, the incoherent tunnelling model and the model including coherent
tunnelling, yield the same results. We have shown that the incoherent tunnelling model
used in literature is a good approach to obtain the transport properties even when the
Josephson coupling energy is comparable to the Josephson junction charging energy.

The work presented in this thesis has many possible extensions. Conceptually it would
be desirable to describe the insulating and the conducting regime of the IV-curve in the
same theoretical framework. A full description of the transport regime in the quasi-charge
model requires a derivation of the dissipative term in the quasi-charge equation of motion
from a microscopic model of the dissipative environment. Another possible direction of
investigation is the temperature dependence of the switching voltage. The model used in
this work assumed the zero temperature limit. The last open question we want to mention
is the retrapping voltage. Whether the hysteresis in the IV-curve of Josephson junction
arrays is due to the large effective inductances or overheating, understanding how the
quasi-charge returns to the pinned configuration will be important to find a theoretical
prediction of Vre.

This work has contributed to the understanding of some open questions of the physics
of Josephson junction arrays, however there remains much to learn about these systems.
Josephson junction arrays will stay an interesting theoretical and experimental research
object for some time to come.
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September 2013 New Journal of Physics 15(9), 095014.

[9] Zimmer, J., Vogt, N., Fiebig, A., Syzranov, S. V., Lukashenko, A., Schäfer, R.,
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für die Anleitung und Unterstützung bei meiner ersten Zusammenarbeit mit der Gruppe
von Professor Ustinov bedanken.

Während der letzten Jahre habe ich sehr von der hervorragenden Arbeitsumgebung, sowohl
am Institut für Theorie der Kondensierten Materie in Karlsruhe, als auch am RMIT in Mel-
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