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Abstract

Turbulent mixed convection is a mode of heat transfer that combines both forced and natural
convection. Temperature field acts as an active scalar, meaning that the momentum and the
energy equations are closely coupled. In the numerical study of turbulent heat transfer, the
common modeling approach is based on the concept of constant turbulent Prandtl number,
Prsgs, which assumes similarity between velocity and temperature fields. However, this ap-
proach is insufficient for the flows of fluids whose molecular Prandtl number strongly deviates
from one, or if the flow field experiences some additional source terms, e.g. buoyancy or
Lorentz forces. When this is the case, alternative closure methods for energy equation should
be considered.

In the present work, new subgrid-scale (SGS) model for turbulent heat flux based on the
algebraic equations and dynamic procedure for evaluation of model coefficients is developed.
The new model explicitly includes the buoyancy production term and is expected to improve
quality of Large Eddy Simulation (LES) results for those modes of heat transfer where buoy-
ancy effects play an important role. In addition, a dynamic model for turbulent Prandtl number
is also derived. Here, Prsgs is calculated dynamically in time depending on the flow and heat
transfer conditions. Both models are implemented in Computational Fluid Dynamics (CFD)
toolbox OpenFOAM. An experiment on turbulent mixed convection to water is chosen for vali-
dation of the new model. Moreover, influence of the Prsgs on the heat transfer is investigated
and it is found out that this parameter significantly affects both velocity and temperature fields.
Simulation results showed that the new model can be successfully applied for simulation of
turbulent mixed convection. It performed better than the standard models based on constant
Prsgs approach.
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Zusammenfassung

Turbulente Mischkonvetion ist die Kombination aus erzwungener und natürlicher Konvektion.
Das Temperaturfeld verhält sich wie ein aktiver Skalar, dies bedeutet, dass die Momenten-
und Energiegleichung stark miteinander gekoppelt sind. Bei der numerischen Simulation
von turbulentem Wärmetransport wird gewöhnlich das Konzept einer konstanten Prandtl Zahl
Prsgs angewandt. Hierbei wird von einer Ähnlichkeit zwischen Geschwindigkeit- und Tem-
peraturfeld ausgegangen. Diese Annahme ist jedoch unzureichend für Fluide deren moleku-
lare Prandtl Zahl sich stark von eins unterscheidet oder wenn zusätzliche Quellen auf die
Strömung einwirken wie Schwerkraft oder Lorenzkraft. In diesen Fällen werden alternative
Schließungsmodelle für die Energiegleichung benötigt.

In dieser Arbeit wird ein neues Feinstruktur Modell für den Transport turbulenter Wärme-
ströme vorgestellt. Dieses Modell basiert auf algebraischen Gleichungen. Zur Bestimmung
der Modellkoefizienten wurde eine dynamische Prozedur herangezogen. Das neue Mod-
ell beinhaltet explizit den Schwerkraft-Produktionsterm, woraus sich eine Verbesserung der
Qualität von Ergebnissen aus Large Eddy Simulationen (LES) erhoffen lässt, wenn Schw-
erkraftseinflüsse bei dem Transport der Wärme eine wichtige Rolle spielen. Zusätzlich wurde
ein dynamisches Modell zur Bestimmung der turbulenten Prandtl Zahl hergeleitet. Hierbei
wird die Prsgs dynamisch, in Abhängigkeit von den Strömungs- und Wärmetransportbedin-
gungen, berechnet. Implementiert wurden diesen beide Modelle in die numerische Strö-
mungsmechanik Bibliothek OpenFOAM. Zur Validierung der neuen Modelle wurde ein Ex-
periment mit turbulentem Wärmetransport mit Wasser nachgerechnet. Des Weiteren wurde
der Einfluss von Prsgs auf den Wärmetransport untersucht. Dabei konnte festgestellt werden,
dass dieser Parameter sowohl das Temperatur, als auch das Geschwindigkeitsfeld signifikant
beeinflusst. Die Simulationsergebnisse zeigten, dass das neue Modell mit Erfolg zur Berech-
nung von Strömungen mit turbulenter Mischkonvektion verwendet werden kann. Es zeigte sich
eine deutliche Verbesserung im Vergleich zu herkömmlichen Modellen, die auf dem Konzept
einer konstanten Prsgs beruhen.
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Chapter 1

Introduction

1.1 Motivation

Most of the flows appearing in everyday life and engineering applications are turbulent. In
some cases turbulence is favorable, in other not. Whatever the case is, a high level of knowl-
edge about the physics of turbulence and related phenomena is necessary.

Due to the fast development in computational technology in the recent years, numerical
techniques became a very promising tool for simulation of turbulent flows. A branch of fluid
mechanics which deals with numerical simulations of fluid flows is known as Computational
Fluid Dynamics, or short CFD. Depending on the level of description of the turbulent flows,
these technique are divided into the three main branches: Reynolds- Averaged Navier Stokes
(RANS) equations, Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

In RANS, instantaneous flow variables are decomposed into the mean and fluctuating
quantity and the governing equations are averaged in time. As a consequence, the results
obtained by using this type of simulation provide only the averaged fields and fluctuations
cannot be reproduced. Turbulence effects are represented by the turbulence models. RANS
simulations are fastest and require lowest computational power compared to the other two
groups. They are very popular among the engineers interested in qualitative results that can
be obtained in a short period of time.

The most accurate approach to solve the Navier-Stokes equations is to use sufficiently
fine numerical grids that are able to resolve all relevant scales of turbulence down to the
Kolmogorov microscales, the smallest scales of turbulent motions on which the kinetic energy
is dissipated and eventually converted into heat. This approach is known as DNS. Apart form
the requirement that the smallest scales of motions have to be captured, the computational
domain has to be large enough to resolve the largest turbulent motions which are limited by
the physical boundaries (e.g. geometry of the apparatus). These scales are very important
since the most of the energy are contained in them. A measure of the largest scale in a
turbulent field is the integral length scale, L, and the computational domain has to be at least
as large as the integral length scale. The results available from a DNS are highly detailed and
provide information about turbulence which cannot be obtained otherwise (e.g. by mean of
experiment). The required number of grid cells, Nc , is extremely high, approximately Nc /
Re9=4, Leonard [65], or according to recent research of Choi and Moin [12], Nc / Re37=14.
Here Re is the ratio of inertial to viscous forces, known as Reynolds number. The number of
cells strongly depends on Re which limits the applicability of DNS only to the flows of small to
medium Reynolds numbers.

1



Chapter 1. Introduction

In DNS, most of the computational resources are used to resolve the smallest scales,
those that are responsible for the dissipation of energy. However, in a turbulent flow, largest
scales contain most of the energy and contribute the most to the transport of fluid particles.
Hence, in order to decrease computational costs and at the same time keep the fidelity of
the results at sufficiently high level, it makes sense to compute only the large scales directly,
while modeling all other scales. Since only the large scales are simulated, this approach
is called Large Eddy Simulation. LES has been appearing in turbulence research since the
seminal work of Smagorinsky [98]. The scales are separated by applying a filtering operation
on the governing equations. The filtering operation is defined as a convolution product of a
flow variable and a filter function. Filter functions which are widely applied in LES are box or
top-hat filter, Gaussian and sharp spectral filter. More details about the filtering operation in
LES will be given in Chapter 2.

The subgrid scales are more uniform than the large ones, which means that, in general,
can be represented by models which are more simple than those used in RANS. The models
that account for the influence of the subgrid (unresolved) scales on the large (resolved) scales
are called subgrid-scale (SGS) models. It is usually said that, if the large scales are completely
resolved by the numerical grid, than is the role of the subgrid models only to dissipate the
energy. However, this is not quite true since it was observed in the measurements that in
some cases (see e.g. [90]) a backward transport of energy from small to the large scales is
also important. This process is known as backscatter. Therefore, an ability to account for a
backscatter is a favorable feature of SGS models. A popular way to improve the performance
of eddy diffusivity models, which are purely dissipative, is to use a dynamic procedure to
determine model coefficients depending on the flow conditions. However, such models are
usually unstable because of the model coefficient which may become and stay negative for
a long period of time. Stability issues are usually treated by ad hoc averaging of the model
coefficients over the homogeneous direction. Improved version of the dynamic models include
in addition a transport equation for subgrid-scale kinetic energy which is a measure of available
energy contained in the subgrid scales.

Physical systems that are found in engineering applications very often include coupling
of velocity and scalar fields, e.g temperature, mass concentration, concentration of reactants,
etc. If there is no feedback of the scalar field on the momentum transport, it is said that the
scalar field acts as a passive scalar. In this case, the scalar dynamics is completely governed
by the velocity field. Isothermal flows or flows with small variations of fluid temperature (so that
the molecular fluid properties are not significantly affected) are examples of velocity-passive
scalar coupling.

If a flow field exhibits high scalar gradients, additional volumetric forces occur and affect
the momentum transport. Influence of scalar on the velocity field is too important to be ne-
glected and has to be included in the momentum equation. This is known as the active scalar
case. A typical example are those flows where density gradients, caused by the temperature
differences, generate buoyancy force which can either generate or suppress turbulence. De-
pending on the intensity of the buoyancy force, heat transfer can be regarded as a forced,
natural or mixed (combined) convection. The focus of this work is on the turbulent mixed con-
vection, which appears when the approaching flow is turbulent and the buoyancy effects play
an important role. These flows are characterized by strong unsteadinesses and a wide variety
of physical phenomena and flow structures. They are encountered very often in the engineer-
ing application, therefore is a detailed investigation of turbulent mixed convection necessary.
For that purpose, LES is an attractive approach.

Most of the common models for SGS heat flux are based on the Reynolds analogy and
use a SGS turbulent Prandtl number, Prsgs. However, this approach may be insufficient since
the influence of the buoyancy force on Prsgs is not clear. Analogously to the momentum
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equation, models for SGS heat flux can be improved by using a procedure to calculate Prsgs
dynamically and/or to include the buoyancy production term in the equation for SGS kinetic
energy. However, in natural and turbulent mixed convection, velocity and temperature field are
coupled also on the subgrid level, i.e. buoyancy production appears in the transport equation
for the SGS heat flux. Hence, the main idea in this work is that the models for SGS heat
flux based on algebraic transport equations (analogously to the RANS algebraic models for
turbulent heat flux) may be a better choice when simulating buoyant turbulent flows.

1.2 Turbulent mixed convection

Turbulent mixed convection is a mode of heat transfer which combines both natural and forced
convection. It is frequently encountered in variety of engineering applications, e.g. nuclear re-
actor cooling systems, turbine blades, cooling of electronic equipment, heat exchangers, solar
panels, ... as well as in the nature, e.g. dynamic of oceanic and atmospheric circulations. As
a consequence of density and/or temperature gradients, the buoyancy force arise, changing
the structure and intensity of both mean and turbulence fields. Effects of buoyancy enter the
Navier-Stokes equation through a body force. Temperature acts as an active scalar so that the
momentum and energy transport are closely coupled. Because the density variations directly
depend on temperature, it is possible to use only the temperature differences to represent the
buoyancy force. This approach is known as the Boussinesq approximation.

In some cases, buoyancy force may increase turbulence production, while in the other it
leads to the suppression of turbulence fluctuations and laminarization of the flow. A typical
example of the later is the thermal stratification, which appears when density increases in
the direction of gravity (see e.g. [20]). Depending on the orientation, buoyancy can either
increase or decrease overall heat transfer. If the buoyancy force acts in the same direction
as forced convection (buoyancy-aided flow), the advection of heat is enhanced. However,
the effectiveness of heat transfer is reduced with regard to corresponding forced or natural
convection. This is explained by the reduction of shear stress in the layer near the surface (see
e.g. [112]). With further increase of buoyancy influence, the effectiveness of heat transfer can
be improved. If the buoyancy force acts in the opposite direction than the forced convection
(buoyancy opposed flow), the advection of heat is decreased, but the effectiveness of heat
transfer is increased.

Fig. 1.1: LES of turbulent mixed convection heat transfer from a horizontal cylinder in a cross-flow,
Red D 189, Rid D 9.3, Grd D 3.5 � 105

Fig. 1.1 represents an example of turbulent mixed convection heat transfer to and from
a horizontal cylinder in a cross-flow with heating from below. The original experiment was
performed by Laskowski et al. [61] and here are shown LES results obtained by using the
same setup as in the experiment. In the figure, the instantaneous temperature field is shown.
Thermal plumes, which are consequence of buoyancy, are rising from the heated surfaces
(bottom wall and cylinder) and cause transition to turbulence.
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Before proceeding further, it is useful to define some of the dimensionless parameters
related to the turbulent mixed convection.

� Reynolds number. Ratio of inertial to viscous forces

Re D
uL
�

(1.1)

� Prandtl number. Ratio of kinematic viscosity to thermal diffusivity

Pr D
�

�
(1.2)

� Grashof number. Ratio of buoyancy to viscous forces

Gr D
gˇjTs � TbjL3

�2
(1.3)

� Richardson number. Ratio of natural to the forced convection

Ri D
Gr
Re2

(1.4)

In the equations (1.1) to (1.4) u is fluid velocity, L is characteristic length, Ts and Tb are surface
and bulk temperatures respectively, �, � and ˇ are kinematic viscosity, thermal diffusivity and
coefficient of thermal expansion, while g represents gravitational acceleration.

1.3 Experimental and numerical investigations

Due to the common occurrence in engineering problems, turbulent mixed convection has re-
ceived considerable attention in the last fifty years. Therefore, many researchers have inves-
tigated this problem both experimentally and numerically, and in the literature exists a large
number of papers dealing with this topic. However, due to the complexity of the phenomena
and difficulties in measurements, many of the experiments do not provide enough data that
can be used for validation of new models. Therefore, numerical studies by means of direct
numerical simulation represent an attractive approach to gain more insight in the physics of
the phenomena. However, due to the high computational costs, direct numerical simulations
are limited to the academical problems. Nevertheless, these simulations provide enough data
which cannot be obtained experimentally, hence they are very popular and widely used for
validation of models. Some of the experiments and numerical simulations available in the
literature are given in Tab. 1.1.

1.3.1 Experimental investigations

Experimental study of mixed convection in an upward turbulent air flow through a vertical pipe
heated with constant wall heat flux was performed by Carr et al. [11]. Inlet Reynolds num-
bers based on the pipe diameter and inlet velocity were varied between 5000 and 14000. The
measurements were made at the streamwise location L=D D 100 (length/diameter). Data
available from the experiment are velocity and temperature profiles and their fluctuations as
well as turbulent shear stress and heat flux distribution, which are calculated from the ex-
perimental data. The measurements showed that, with increasing wall heat flux, buoyancy
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Tab. 1.1: Experimental and numerical investigations.

Author Year Method Working fluid
Steiner [101] 1971 Experiment Air
Carr et al. [11] 1973 Experiment Air
Komori and Ueda [58] 1982 Experiment Water
Jackson [43] 1983 Experiment Liquid sodium
Osborne and Incropera [79] 1985 Experiment Water
Fukui and Nakajima [29] 1985 Experiment Water
Kitamura and Inagaki [55] 1987 Experiment Water
Tanaka et al. [104] 1987 Experiment Nitrogen
Polyakov and Shindin [87] 1988 Experiment Air
Mori [76] 1995 Experiment Air
Zhang and Dutta [120] 1997 Experiment Water
Kasagi and Nishimura [50] 1997 DNS Air
Iida and Kasagi [42] 1997 DNS -
Knebel et al. [56] 1998 Experiment Liquid sodium
Dutta et al. [21] 1999 Experiment Water
You et al. [118] 2003 DNS Air
Wang et al. [112] 2004 Experiment Water
Laskowski et al. [62] 2007 Experiment Water
Abu-Mulaweh [4] 2009 Experiment Air
Poskas et al. [91] 2011 Experiment Air
Marocco et al. [68] 2012 Experiment Liquid lead bismuth
Maudou et al. [72] 2013 Experiment Air
Zonta and Soldati [121] 2014 DNS Water

force increasingly affects the velocity and temperature fields. In the purely forced convec-
tion, velocity shows a flat profile in the bulk of the channel and maximum is in the channel
center. However, with increasing heat flux, velocity is increased near the wall and decreased
in the channel center and the maximum moved closer to the walls. For the lowest Grashof
and the highest Reynolds number independently, influence of buoyancy on the velocity profile
was negligible. Influence of buoyancy force is higher at lower Reynolds numbers (influence of
natural convection is higher). Increasing buoyancy force suppresses the streamwise velocity
fluctuations whose profile becomes flatter over the channel cross section. At fixed Reynolds
number, the temperature gradient near the wall became steeper, while temperature fluctua-
tions first decreased and then increased with increasing heat flux. The streamwise component
of turbulent heat flux was monotonically increased over most of the cross section. Turbulent
shear stress and wall-normal turbulent heat flux are calculated from the measured data. It is
found that higher buoyancy force results in lower turbulent shear stress, while the wall-normal
turbulent heat flux first decreases and then increases with buoyancy influence.

In the late 1980s, turbulent mixed convection in vertical pipes was experimentally investi-
gated by Tanaka et al. [104] and Polyakov and Shindin [87]. In the study of Tanaka et al. [104],
pressurized nitrogen gas is used as a working fluid. Two Reynolds numbers, Re D 3000 and
5000 were considered, while the Grashof number was varied between 4.5� 103 and 9.4� 106

so that a regime map for mixed convection is provided. Experiments of Polyakov and Shindin
[87] were carried out at higher Reynolds numbers, Re D 5100 and Re D 9000, while the work-
ing fluid was air. Both mean values and fluctuations of velocity and temperature fields were
measured. The results showed that heat transfer coefficient along the channel wall strongly
depends on buoyancy force. Starting from the isothermal case, the increase of the buoyancy
force until some certain value (Gr D 1.5� 107 in this experiment) resulted in the monotonous
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decrease of Nusselt number over the whole pipe length. Further increase of buoyancy force
caused an increase of Nusselt number and at high Grashof numbers it exceeds the value
for forced convection thus indicating the transition to free convection regime. Same as in the
experiment of Carr et al. [11], the velocity profile showed an M-shape. The velocity and tem-
perature fluctuations decreased when the buoyancy force was increased which is an indicator
of partial flow laminarization. Turbulent shear stresses decreased and also became negative
under the influence of higher buoyancy force, which is caused by the local maxima of veloc-
ity profile. Unlike the turbulent shear stress, turbulent heat flux remained always positive. A
detailed review of mixed convection in vertical pipes is given in Jackson et al. [44].

Komori and Ueda [58] performed an experimental investigation of turbulent mixed convec-
tion in an open-channel (flume) flow. The idea was to investigate the influence of buoyancy
on the turbulence structures and heat transport in unstably-stratified flow cooled from above.
Reynolds numbers used in the experiment ranged from Re D 10100 to 41700, and Richard-
son numbers ranged between Ri D 0 and �490. Among other conclusions, it is found that
the ratio of the wall-normal to the streamwise turbulent heat flux significantly increases with
increasing buoyancy force.

Experiments on turbulent convective heat transfer in horizontal channels have been per-
formed by, e.g. Osborne and Incropera [79] and Fukui and Nakajima [29]. Air was used as a
working fluid in [29], and water was used in [79]. Reynolds numbers ranged from 1400 to 6500
in [79] and from 6500 to 13900 in [29]. Grashof numbers ranged from 8.6� 105 to 2.8� 108 in
[79], while the Richardson numbers used in [29] were between �0.0059 and �0.0451. When
asymmetric heating conditions are used (only the bottom wall was heated), Nusselt numbers
at the bottom wall were about 50% larger than at the top wall, [79]. Time averaged values of
velocity and temperature as well as their fluctuations are measured and given in [29] and an
evident dependence on the buoyancy was observed. Streamwise velocity fluctuations were
increased in the region yC < 50 with increasing buoyancy effect and no significant influence
was detected in the outer region, yC > 100. A contrary behavior was observed for fluctu-
ations in wall-normal direction. Temperature fluctuations decreased in the outer region, and
remained almost constant in the region close to the wall, yC < 25.

Kitamura and Inagaki [55] conducted a series of experiments in order to investigate the
buoyancy influence on the boundary layer developing at the hot vertical plate. In their experi-
ments, water is used as a working fluid while the inlet velocity and wall heat flux were varying
in order to achieve different heat transfer configurations. This experiment is used for validation
and will be given in details in Chapter 4.

Turbulent mixed convection heat transfer to liquid metals was investigated by e.g. Jackson
[43] and Jackson et al. [45] who investigated turbulent mixed convection to liquid sodium in
an uniformly heated vertical pipe, Knebel et al. [56], who measured mean velocity, mean
temperature and temperature fluctuations in a vertical axisymmetric turbulent buoyant sodium
jets, or more recently by Marocco et al. [68], where experimental investigations of turbulent
lead bismuth flow within a vertical annulus were performed. In [68] Reynolds number were
between 1.45 � 104 and 2.37 � 105, while the wall heat flux was varied between 135 kW=m2

and 905 kW=m2 so that both forced and mixed convection regime were covered.

Wang et al. [112] investigated turbulent mixed convection heat transfer to air in a vertical
channel heated from one side. Both buoyancy- aided and buoyancy-opposed flows were con-
sidered. Moreover, radiation played a significant role in this configuration since the radiative
heat transfer between section walls was up to 20%. The heat emitted from the heated wall
was absorbed by the unheated wall and removed from it by the air flowing through the chan-
nel. It is found that the process of heat removal from the unheated wall was also influenced
by the buoyancy.
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More recently Maudou et al. [72] studied the influence of eccentricity on the heat transfer
in the mixed convection regime. The experimental configuration was annular channel with
both internal surfaces uniformly heated. Three different inlet Reynolds numbers were consid-
ered: Re D 1500, 2800 and 5700, so that laminar, transitional and turbulent flows were were
included. The results showed that small eccentricities almost have no effects on the heat
transfer, but at high eccentricities (0.8 � e � 0.9) the average heat transfer rate was up to
60% lower than in the concentric annular channel.

1.3.2 Numerical investigations

Direct numerical simulations of turbulent mixed convection available in the literature are limited
to the simple geometries like vertical or horizontal pipes or channels. The channel configu-
rations are much more popular since it is easier to impose temperature boundary conditions
at the wall: the walls are usually kept at constant but different temperatures, where one wall
is heated and the other one is cooled. Furthermore, channels are very convenient for study
of some external effects, e.g. magnetic field or radiation, on the flow and temperature fields.
Another simplification, which however cannot be justified for higher temperature differences,
is the assumption of uniform fluid properties which is used in almost every DNS found in the
literature.

Turbulent channel flow

Kasagi and Nishimura [50] performed a direct numerical simulation of mixed convection in an
infinite vertical plane channel, where the channel walls were kept at different temperatures -
one heated and one cooled wall. In this configuration it is possible to investigate buoyancy-
aiding and buoyancy opposing flows at the same time: aiding flow arises at the heated wall,
while opposing flow arises on the cooled wall. The friction Reynolds number based on the
channel half width and friction velocity calculated from the wall shear-stress averaged on both
walls was Re� D 150. The Grashof number based on the channel width and the wall temper-
ature difference was between 0 and 1.6�106. The Prandtl number was set to 0.71, which cor-
responds to air. The Navier-Stokes equations with the Boussinesq approximation are solved
together with continuity and energy equations on the 5�ı� 2�ı� 2ı computational domain (ı
represents the channel half width). Some of the main conclusions from the results are:

� The friction coefficient was increased in the aiding flow and decreased in the opposing
flow with the increase of buoyancy

� The nusselt number was decreased in the aiding and increased in the opposing flow
with the increase of buoyancy

� The velocity profile becomes more asymmetric with the increase of buoyancy

� The RMS values of velocity fluctuations are decreased in the aiding and increased in
the opposing flow

� The mean temperature profile becomes asymmetric with the increase of buoyancy

� The mean temperature gradient is becomes larger in the aiding and smaller in the op-
posing flow

� The RMS of temperature fluctuations in the near-wall regionare decreased in the aiding
and increased in the opposing flow
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� The wall-normal component of the turbulent heat flux is decreased in the aiding and
increased in the opposing flow with the increase of buoyancy

� The buoyancy force affects turbulent statistics and coherent structures in much the same
way as the wall injection/suction or magnetic force.

The database provided in [50] is extensively used for validation of both RANS and LES models.

Iida and Kasagi [42] conducted a DNS of a fully developed horizontal turbulent channel flow
under conditions of unstable thermal stratification. Bottom and top channel walls were kept
at constant but different temperatures. The incompressible set of equations with Boussinesq
approximation and constant fluid properties (except density which is treated as a function of
temperature) is solved on the 5�ı � 2�ı � 2ı computational domain (for some specific cases,
computational domain was enlarged or decreased). Friction Reynolds number was set to
Re� D 150 which gave the bulk Reynolds number of Re D 4580. The Grashof number was
varied between Gr D 0 and 4.8�106. Furthermore, the effect of the molecular Prandtl number
on the heat transfer was investigated by increasing the Prandtl number from Pr D 0.01 to 2 for
constant Grashof number of Gr D 1.3� 106. Among other conclusions, it is found out that the
Prandtl number significantly affects the flow field. For the lowest Prandtl number, Pr D 0.01,
heat is transported mainly by the molecular diffusion and the buoyancy effects become less
important.

DNS of turbulent dispersion of a non-buoyant scalar, mixed convection in a vertical channel
and dispersion of a buoyant plume in a horizontal channel are performed by Fabregat et al.
[23]. Friction Reynolds number and Grashof number for the cases of mixed convection and
dispersion of a buoyant scalar was Re� D 150 and 180 and Gr D 9.65 and 107 respectively.
Again, incompressible set of equations with constant properties (except density) is solved.
Working fluid was air. The main contribution of this work is the database for dispersion of
a buoyant plume which can be interesting for validation of SGS models. Further studies on
this topic were conducted by Karna and Papavassiliou [49], who investigated dispersion of a
buoyant scalar at higher friction Reynolds number, Re� D 300, which corresponds to Re D
5320 based on the channel half width. Five different Prandtl numbers were used: Pr D 0.1,
0.7, 6, 20 and 50.

The radiation effect on turbulent mixed convection in a horizontal channel is investigated
by Sakurai et al. [95]. In their DNS, incompressible continuity, Navier-Stokes and energy
equations are solved. Friction Reynolds, Prandtl and Grashof numbers were set to 150, 0.71
and 1.3�106 respectively. The Boussinesq approximation is used to represent buoyancy force
and radiative source term is expressed as divergence of the radiative heat flux.

In most of the DNS of mixed convection, the incompressible set of equations with Boussi-
nesq approximation is solved. The effects of non-constant fluid properties were recently in-
vestigated by Zonta and Soldati [121]. They have conducted DNS of a turbulent flow of water
through a horizontal channel at three friction Reynolds numbers: Re� D 110, 150 and 180 and
Grashof number of Gr D 1.12 � 107. Molecular Prandtl number was set to Pr D 3. The aim
of the study was to assess the influence of fluid properties. For that purpose, three different
cases were investigated, one with constant fluid properties, one with temperature dependent
dynamic viscosity, �, and one with temperature dependent coefficient of thermal expansion,
ˇ. The authors found out that only ˇ is important, whereas the effect of � can be negligi-
ble. However, a case where both dynamic viscosity and coefficient of thermal expansion are
temperature dependent is not considered.
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Turbulent pipe flow

Turbulent mixed convection in a vertical pipe heated with uniform wall heat flux was inves-
tigated by You et al. [118] by means of direct numerical simulation. Both upward (aiding)
and downward (opposing) flows were simulated. A constant mass flow rate is imposed, and
Reynolds number based on the pipe radius and bulk velocity was fixed at Re D 2650 which
corresponds to the friction Reynolds number of Re� D 180. Air is used as a working fluid,
Pr D 0.71. The incompressible set of equations with the Boussinesq approximation is solved
and fluid properties are treated as constant. Four different values of wall heat flux were applied
which gave values for Grq=Re2 D 0 (forced convection), 0.063, 0.087 and 0.241. Some of the
observations from the simulation results are:

� In upward heated (aiding) flow the velocity profile near the wall first decreases and then
increases with increasing wall heat flux. M-shapes are observed at high wall heat fluxes

� In downward heated (opposing) flow the velocity profile increases monotonically in the
bulk region

� RMS values of velocity fluctuations in upward flow first decrease and then increase with
increasing wall heat flux, while in downward flow they monotonically increase

� The non-dimensional temperature profile first decreases and then increases with the
increasing heat flux in upward flow, while it decreases monotonically in downward flow.
RMS values of temperature fluctuations show similar behavior in upward flow, while a
monotonous increase is observed in downward flow

� The magnitude of streamwise and wall normal turbulent heat fluxes first decreases and
then increases in upward flow, while it monotonically increases in downward heated flow

� The heat transfer coefficient first decreases and then increases in upward heated flow
and monotonically increases with increasing heat flux in downward flow.

Many researchers have used this database to validate their subgrid-scale models for heat flux
in the mixed convection conditions (see e.g. [26]).

1.4 Subgrid-scale heat flux modeling - State of the art

In this section, we shell consider some of the models for subgrid-scale heat flux available
in the literature. Generally, the subgrid-scale modeling is a fertile scientific field and in the
literature exists a large number of models for both subgrid-scale momentum and temperature
(scalar) fluxes. Sometimes it is very hard to make a clear division between different groups of
models, since some of them represent a combination of different modeling approaches (mixed
models). In this work, modeling approaches for subgrid-scale heat flux are simply divide into
the three main categories:

� Scalar SGS diffusivity

� Tensor (anisotropic) SGS diffusivity

� Mixed models.
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The most popular models for SGS heat flux are those which assume that turbulence affects
the main field in a similar way as molecular diffusion does. In analogy to molecular diffusion,
the effects of turbulence are represented by a scalar quantity, known as turbulent (subgrid-
scale) diffusivity, �sgs. Likewise, the effects of turbulence on the momentum transfer can be
represented by turbulent (subgrid-scale) viscosity, �sgs. The ratio of �sgs to �sgs is defined as
subgrid-scale (turbulent) Prandtl number, Prsgs. Provided that �sgs is known, one only has to
give a value for Prsgs in order to evaluate �sgs. In most cases, Prsgs is taken to be a constant
value close to one. However, this approach may result in unsatisfactory results, in particular
for flows where temperature field acts as an active scalar (e.g. natural or mixed convection).
Therefore, many researchers have tried to improve the models based on the scalar SGS
diffusivity: Eidson [22] has included buoyancy effects in his formulation of �sgs; Moin et al. [75]
and Lilly [66] derived models for Prsgs which is calculated dynamically in time depending on
the velocity and temperature fields. Other works where the models based on the scalar SGS
diffusivity are improved for different heat transfer conditions are, e.g. Wong and Lilly [115],
Peng and Davidson [84], You and Moin [117], or more recently, Otic [81], who derived a model
that provides an estimate for Prsgs, which is calculated depending on the local fluid properties.

Tab. 1.2: Models for SGS heat flux

Author Year

Scalar thermal diffusivity

Eidson [22] 1985
Moin et al. [75] 1991
Lilly [66] 1992
Wong and Lilly [115] 1994
Peng and Davidson [84] 2001
You and Moin [117] 2007
Otic [81] 2010

Anisotropic thermal diffusivity

Pullin [92] 2000
Peng and Davidson [85] 2002
Wang et al. [109] 2007
Wang et al. [110] 2007
Wang et al. [111] 2008
Rasam et al. [93] 2013

Mixed models

Salvetti and Banerjee [96] 1995
Porte-Agel et al. [89] 2001
Porte-Agel et al. [90] 2001

Models for subgrid-scale heat flux which are based on tensor (anisotropic) SGS diffusivity
are derived to be applied for complex flows where anisotropy of turbulent (SGS) stresses
and heat fluxes cannot be neglected. Several tensor SGS diffusivity models were developed
in the first decade of this century, mostly for forced convection and rotational flows: Pullin
[92] proposed a model for the flux of passive scalar; Peng and Davidson [85] developed a
nonlinear SGS heat flux model which was tested for the buoyant flow in a vertical channel;
Wang et al. [109, 110, 111] proposed a series of models where the SGS het flux includes
strain-rate tensor, rotation rate tensor and gradient of large-scale temperature field; Rasam
et al. [93] proposed a model for SGS heat flux which is capable to account for system rotation.

Mixed models represent a combination of different modeling approaches, for example,
gradient diffusion and scale similarity model. In scale-similarity models, SGS heat flux is
assumed to be proportional to the resolved (which can be directly calculated) heat flux. Same
as for tensor SGS diffusivity models, SGS heat flux is not necessary aligned with the resolved
temperature gradient. An example of such an scale-similarity model is the model of Salvetti
and Banerjee [96], who added a term proportional to the resolved heat flux vector to the
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scalar SGS diffusivity model. A mixed model which includes the gradient diffusion model and
the nonlinear (SGS diffusivity) model is investigated in [89, 90]

Some of the models for SGS heat flux available in the literature are given in Tab. 1.2. A
more detailed description for some of them is given in Sec. 2.5. For further details about the
different modeling approaches in LES, interested reader is referred to Sagaut [94].

1.5 Objectives and approach

Objective of this work is to propose a novel approach to calculate subgrid-scale heat flux for
turbulent mixed convection.

The new models is developed by extending the idea of algebraic heat flux models which
is widely used in RANS to model turbulent heat flux. Buoyancy production term from the
transport equation for SGS heat flux is explicitly included into the modeled equation for SGS
heat flux. Instead of solving an additional equation for SGS temperature variance, it is ap-
proximated by a term proportional to its production rate. In addition, the dynamic procedure is
applied to evaluate model coefficients which are calculated dynamically by solving a system
of two linear equations.

It is expected from the new model to improve prediction for the turbulent flows where
buoyancy effects play an important role, such as turbulent mixed convection. At the same time,
the new model can be applied without any kind of a priori adjustment of model coefficients.
For purely forced convection, the model will perform like the standard dynamic Prsgs model.

This document is organized as follows. In Chapter 2, governing equations and necessary
background for turbulent flows, large eddy simulation and finite volume discretization are given.
Derivation of the new model for subgrid-scale heat flux is shown in Chapter 3, and validation
is given in Chapter 4. Finally, conclusions are given in Chapter 5.
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Theoretical background

In this chapter, fundamentals of turbulence, large eddy simulation and numerical discretization
are given. Basic introduction to turbulent flows is provided in the first section. Concept of LES
and governing equations are described in 2.2 and 2.3. Some of the subgri-scale models
for momentum and energy equations are given in 2.4 and 2.5. Finite volume method and
numerical discretization are briefly presented in 2.6.

2.1 Turbulent flows

At the beginning of this chapter it is useful to mention some of the important properties of
turbulent flows. According to Hinze [40], "Turbulent fluid motion is an irregular condition of
flow in which the various quantities show a random variation with time and space coordinates,
so that statistically distinct average values can be discerned". Turbulent flows are governed
by the Navier-Stokes equations whose solutions are random. The Navier-Stokes equations
strongly depend on the initial and boundary conditions and even the smallest perturbation can
produce quite different solutions.

A vast number of flows occurring in the nature and engineering applications are turbulent.
In some applications turbulence is desirable but in other, not. Whatever the case is, turbulent
flows have to be carefully investigated. It is hard to find an universal definition of turbulence,
however, some of the main characteristics can be distinguished. Detailed introduction to tur-
bulence is given in e.g. [16, 40, 88, 105].

� Turbulent flows are three-dimensional and rotational.

� They are irregular (random) in both space and time, and exhibit large level of fluctua-
tions.

� They are dissipative in nature. Kinetic energy of flow is transformed into heat due to the
viscosity effects. Without an external source, turbulence will decay.

� Turbulence increases the transport rate of fluid parcels. The process of mixing of fluid
parcels under the influence of turbulence is known as turbulent diffusion.

� The smallest scales of turbulent motions are far larger the mean free path of molecules.

� Turbulence is characteristic of a flow and not of a fluid.
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Turbulence occurs when inertial forces become too high compared to viscous forces (at
high Reynolds numbers) as a consequence of flow instabilities. Reynolds number, Re, is a
dimensionless quantity which relates inertial to viscous forces

Re D
uDH

�
D
�uDH

�
, (2.1)

wherein �, � and � are density, kinematic and dynamic viscosity respectively, u is velocity
and DH is hydraulic diameter. Reynolds number is, among other things, used to distinguish
different flow regimes. For a pipe flow, transition to turbulence occurs at Re > 2300 and the
transitional region is usually between 2300 < Re < 4000.

Fig. 2.1: Turbulent mixing of Fluorescein (green) and Rhodamine (red) in a water turbulent jet (blue),
Kree et al. [59].

2.1.1 The statistical description of turbulence

Unlike laminar flow, turbulence is a random process which means that the values of flow
variables are unpredictable in time. However, a scope of values which certain variable could
have can be determined by a theory and for that purpose a statistical description of turbulence
is required. Therefore it is useful do define some statistical tools which are used throughout
this work (for more details see e.g. [20, 88, 105]).

Fig. 2.2: Definition of PDF (adjusted from Durbin and Reif [20]).
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� Probability Density Function (PDF). PDF, P.r /, of a random function x.t/ is defined
as a fraction of time that the function x.t/ spends in the range between r � 1

2
dr and

r C 1
2
dr , where r represents a dummy variable that ranges between the possible values

of x .

P.r /dr D lim
T!1

1

T

X
dt 0, (2.2)

in which T represents the time coordinate. PDF is always positive and fulfills the nor-
malization condition:

1Z
�1

P.r /dr D 1. (2.3)

Fig. 2.2 shows a schematic definition of PDF. For isotropic turbulence (the one without a
preferred direction) probability of amplitudes of fluctuations around a mean value shows
the Gaussian distribution.

� Mean value. Most of the turbulence data available from the experiments are in the form
of mean values. A mean value of a function x.t/ can be calculated as follows ([20]).

– Continuous case.
Nx D

Z
rP.r /dr . (2.4)

– Discrete case. In practice, it is more likely to use the discrete data sets so that
the mean value of a discrete random function x , which takes the values xi D

fa1, a2, ..., aJg, can be calculated as

Nx D
1

N

NX
iD1

xi D

JX
jD1

Nj

N
aj D

JX
jD1

pjaj , (2.5)

where Nj is the number of times the value aj appears in the sample xi and pj is
the probability of the value aj occurring.

For statistically stationary (independent of time) random processes, ensemble averaging
and time averaging are equivalent. Properties of such an averaging operation are:

x C y D Nx C Ny , (2.6)

ax D a Nx , (2.7)
NNx D Nx , (2.8)

x � Nx D 0, (2.9)

where a is a constant value.

� Variance. It is also known as second moment. Fluctuation of x around mean value Nx is
defined as

x 0 � x � Nx . (2.10)

Now, variance is defined as a mean of square fluctuation

var .x/ � x 02 D
Z
.r � Nx/2 P.r /dr . (2.11)

A very common in practice is a square-root of the variance, which is known as standard
deviation or rms (root mean square) of x :

rms.x/ �
p

var .x/. (2.12)

Higher moments, second and third, are also common in turbulence research. These are
used to define skewness and flatness factor.
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2.1.2 Numerical studies of turbulent flows

Because of the closure problem, numerical methods seem to be only possibility to solve
Navier-Stokes equations. Depending on the Level of description, numerical studies of tur-
bulent flows can be divided into the three main branches which will be briefly described here.

Reynolds-average Navier-Stokes equations (RANS)

A turbulent flow field obtained by solving the RANS equations contains lowest level of details
compared to the other two approaches. Governing equations are averaged in time so that
only the time-averaged fields come as results. This method is very popular among engineers
which are interested mainly in quantitative properties of the turbulent flow and are limited by
the computational time. Turbulence is completely modeled so that the models implemented in
RANS suffer from high mathematical complexity.

The effects of turbulence are contained in Reynolds stress tensor, which has to be mod-
eled in order to close the momentum equation, and in turbulent heat flux, which is needed to
close the energy equation. Transport equations can be used for Reynolds stress tensor and
turbulent heat flux, however, every additional transport equation includes new unknown terms
that, again, need additional equations, and so on. This is known as closure problem. There-
fore, approximations (turbulence models) are used to describe the unknown terms. Generally,
turbulence models used in RANS can be divided into four main categories ([114]):

1. Algebraic (Zero-Equation) Models. These are the most simple turbulence models. No
addition equation is needed.

2. One-Equation Models. They are based on the equation for turbulent kinetic energy.
Length scale is the unspecified part, and it is assumed that the length scale is propor-
tional to the mixing length.

3. Two-Equation Models. Beside the equation for turbulent kinetic energy, and additional
equation to determine the turbulent length scale is solved. A common approach is to
use the equation for dissipation rate of turbulent kinematic energy; this is the well-known
k � � model.

4. Second-Order Closure Models. Instead of applying the Boussinesqu approximation, a
transport equation is used to compute the Reynolds stress tensor. The modes are more
robust than the other RANS models but require higher computational costs.

Even though the RANS simulations provide only an averaged picture of turbulence, for
many engineering problems, RANS method is still the only numerical tool that can be applied.

Large Eddy Simulation (LES)

Level of description of LES lays between RANS and DNS. Only the most energetic structures
of the flow are resolved directly while the all other scales (usually called subrid-scales) are rep-
resented by models. Computational cost is higher than for RANS, but resolved fields contain
more details. Mathematical models that represent effects of the subrid-scales are generally
simpler than the models used in RANS. LES method will be presented in details in 2.2.

15



Chapter 2. Theoretical background

Direct Numerical Simulation (DNS)

Numerical grid spacing used in DNS is fine enough so that all relevant scales down to the
Kolmogorov scale are directly resolved and there is no need for additional turbulence models.
This means that (depending on the Reynolds number) a very large number of grid cells is
required, which limits the applicability of DNS only to the flows at relatively low Reynolds
numbers. Most of the computational power is used to capture the smallest scales which are
responsible for dissipation of turbulence energy. With increasing Reynolds number, the scales
that are expected to occur in the flow field becomes smaller. Moreover, numerical algorithm
should produce low numerical dissipation, because otherwise small eddies can be smeared.
On the other hand, numerical schemes that are not dissipative enough are very often unstable.

Beside the spatial resolution, time resolution has to be fine enough to capture life-times of
all eddies, from smallest to largest, which means that the time step should be small enough
and that the simulation time should be long enough. In addition, time step affects accuracy
of the solution so that it is usually required that a path that fluid parcel travels in a single time
step should be smaller than grid spacing. This criteria is defined by the Courant number

C D
u��t
�x

, (2.13)

where u� is velocity in a computational cell, �t is a time step and �x is length of a cell in the
flow direction. Suggestions are that the Courant number should be around 1=20, [88].

Data obtained from DNS are very detailed and can replace experimental measurements,
especially for the cases where measurements are complicated or even not feasible. DNS is
very often used to generate data bases for validation of RANS and LES models.

2.2 Concept of Large Eddy Simulation

Turbulent flows are characterized by a wide range of length and time scales. The energy flows
in a cascade process from large to the small scales, eventually being dissipated at the small-
est scales, known as Kolmogorov microscales. In order to get highest quality of the results the
discretization has to be fine enough so that all scales can be solved - direct numerical simula-
tion. This means that a large number of cells is needed, Nc / Re9=4, Leonard [65]. However,
recent researches, Choi and Moin [12], showed that this number is even larger, Nc / Re37=14.
Moreover, time step should be smaller than the smallest time scale. Consequently, direct nu-
merical simulations require high computational resources which, except for a limited number
of academic cases, exceeds the present super computers capacities.

Since the large scales are more energetic and transport of the momentum and other con-
served fluid properties are mostly carried out by these scales, it is reasonable to solve only the
large scales directly by the numerical grid, while modeling all other scales. This is the basic
idea of large eddy simulation. Small, or, unresolved scales are more uniform and it is possible
to parametrize them by using the models which are simpler than the models used in RANS.
By doing so, it is possible to significantly reduce the computational costs and at the same time
to provide enough informations about the problem of interest so that the flow physics is re-
sembled in a more realistic way. Regarding the computational requirements, LES is between
RANS and DNS.

Fig. 2.3 shows a schematic view of scale separation in physical (left) and Fourier space
(right). Large and small scales are naturally separated by the numerical grid: grid is fine
enough to capture large scales, while all other scales smaller than cell size, N�, are "invisible".

16



Chapter 2. Theoretical background

However, those subgrid scales affects the large (resolved) scales and this interaction has to be
represented by SGS model. In the Fourier space, it can be seen that only the low-frequency
modes, which are associated with the large scale motions, are computed directly.

It should be mentioned that the above discussion is referred to the explicit Large Eddy
Simulation approach. In this approach, effect of the unresolved scales is represented through
the subgrid-scale model which is included in the governing equations. In addition there is
also the implicit Large Eddy Simulation approach, where the effects of the subgrid scales are
included by numerical methods. More about this topic is given in Sagaut [94].

(a)

Fig. 2.3: Different scales in a turbulent flow (left) and scale separation in LES shown in Fourier space
(right), Sagaut [94].

2.2.1 Filtering

Definition of filtering

In Large Eddy Simulation, scales are separated by applying a low-pass filtering operation
which is defined as a convolution product. Given a field �.x/ which is a space variable (for the
sake of brevity the time variable is not considered) and contains all scales of motions, then the
filtered field N�.x/ is defined by the relation (see e.g. [25, 28, 65, 88, 94]):

N�.x/ D
Z
�

G .x � �/ �.�/d�, (2.14)

where x and � represent position vectors, G .x � �/ is the convolution kernel whose role is to
damp fluctuations shorter than some characteristic filter width � and the integration is over
the whole domain. The filter width has to be smaller than the size of the smallest energy-
containing eddy so that the energy-containing scales can be directly resolved. Relation (2.14)
is very often symbolically given by N� D G ?�. The convolution kernel (or filter function) G has
to fulfill the following criteria: Z

�

G .x � �/d� D 1. (2.15)

Then, the field �.x/ can be written in the terms of resolved and subgrid scales as:

�.x/ D N�.x/C �0.x/, (2.16)
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where �0.x/ represents unresolved or subgrid scales. It is important to mention that the re-
solved field N�.x/ is a random field.

Filter properties

Filters used in LES must possess the following fundamental properties (see [94]):

1. Conservation of constants. Eq. (2.15) yields:

Nc D c. (2.17)

2. Linearity
� C  D N� C N . (2.18)

3. Commutation with derivation

@�

@s
D
@ N�

@s
, s D x , t , (2.19)

where t is a time variable.

It has to be mentioned that commutation with derivation property always holds if the derivation
is with respect to time. However, if the derivation is with respect to spatial coordinate x , then
the convolution and derivation do not commute in general (see e.g. [35, 88]). This can be
shown by finding the partial derivative of (2.14) with respect to x . By integrating by parts, the
following relation is obtained:

@ N�

@x
D
@�

@x
C

Z
�

�.�/G.x � �/d�, (2.20)

which shows that filtering and derivation with respect to spatial variable do not commute in
general. This means that in LES every spatial derivation generates additional unknown terms.
Ghosal and Moin [35] found that the commutation error is of the order O.�2/.

However, for homogeneous filters will second term on the RHS of Eq. (2.20) vanish so
that the relation (2.19) holds also when s is a spatial variable. In this work we assume that the
filter is homogeneous (filter width is constant) � D const . The commutation errors between
filtering and spatial derivation are ignored. It should be noted that this idealized approach is
widely used among the LES researchers, see e.g. [94].

Other important characteristics of the filter that have to be mentioned are:

� In general, the filter is not a Reynolds operator

NN� ¤ N�. (2.21)

� The filter is not idempotent
� N ¤ N� N . (2.22)

� Filtered subgrid quantity does not vanish in general

N�0 ¤ 0. (2.23)
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Standard filters in LES

The most common filters used in LES are (see [94]):

� Box or top-hat filter. Represents the average of a field over a box bounded by the filter
width �

G.xi � �i/´

(
1
�

if jxi � �i j �
�
2

0 otherwise
, (2.24)

OG.k/ D
sin .k�=2/

k�=2
, (2.25)

where OG.k/ represents transfer function. For uniform grids, filter width can be easily
chosen to be equal to the grid-spacing. It is smooth in spectral space.

� Gaussian filter. The Gaussian distribution is used for filter function

G.xi � �i/ D
� 

��2

�1=2
exp

�
� jxi � �i j

2

�2

�
, (2.26)

OG.k/ D exp
�
��2k2

4

�
, (2.27)

where  is a constant. It is smooth in both physical and spectral spaces.

� Sharp spectral filter. This filter is sharp in spectral space which means that it eliminates
all wave-numbers above some chosen cutoff wave-number.

G.xi � �i/ D
sin .kc.xi � �i//

kc.x � �/
, with kc D

�

�
, (2.28)

OG.k/´

(
1 if jk j � kc

0 otherwise
. (2.29)

Fig. 2.4 shows these three filters and their transfer functions. Throughout this work, the box
filter will be used.

Numerical representation of filters

For an arbitrary polyhedral computational domain element with n faces, filtered field N� can be
evaluated as follows

N� D

nX
iD1

ai�i , (2.30)

in which ai are filter coefficients and �i is the value of unfiltered field � at the i th cell face.
Conservation of constant values, Eq. (2.17), is assured if coefficients ai obey the condition

nX
iD1

ai D 1. (2.31)

For a homogeneous filter, � D const , coefficients ai are equal, a1 D a2 D ... D an D const .
In practice, [1], ratio of face-surface area to cell-surface are can be used for coefficients ai , so
that the filtered field can be obtained from the following relation:

N� D

nP
iD1

Si�i

nP
iD1

Si

, (2.32)
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(a) Box filter - physical space (b) Box filter - transfer function

(c) Gaussian filter - physical space (d) Gaussian filter - transfer function

(e) Spectral filter - physical space (f) Spectral filter - transfer function

Fig. 2.4: Standard filters in LES. Adapted from Sagaut [94].

where Si represent magnitude of face i and �i is value of the unfiltered field at the face i . Eq.
(2.32) automatically assures conservation of constants.

An example of filtering

In order to complete the definition of the filtering operation, an example of filtering in one
dimension will be shown here.

A box filter given by Eq. (2.24) is applied to filter the function �.x/ D sin
�
2�x

l

�
C
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0.1 sin
�
30�x

l

�
. Fig. 2.5 shows filtered function N�.x/ obtained by applying different filter sizes.

(a) � D 0.4 (b) � D 0.2

(c) � D 0.1 (d) � D 0.02

Fig. 2.5: An example of filtering for different filter sizes.

For the highest filter width � D 0.4, Fig. 2.5 (a), filtered (or resolved) field contains only the
large (most energetic) scales of motion. Subgrid-scales, �0.x/ need to be represented by a
model. On the other hand, if the filter width is fine enough, � D 0.02, resolved field contains
almost all scales of motions, Fig. 2.5 (c). In this case, the effects of subgrid-scales are close
to zero and our simulation approaches the level of direct numerical simulation.

The number of cells required for LES can be estimated. In wall-bounded flows, Choi and
Moin [12] found that the number of cells required for wall-modeled LES is proportional to
Nc / ReLx , and for wall-resolved LES Nc / Re13=7Lx

, where Lx represents the length of flat
plate.

Favre filtering

A typical way to simplify compressible equation set in LES is to use Favre-filtering, [24, 75].
In RANS framework, this method is known as Favre-averaging (see e.g. Wilcox [114]). For a
transportable quantity �, Favre-filtering is defined as:

Q� D
��

N�
. (2.33)

Favre-filtering of a product of two variables � and  is defined as:

e� D �� 

N�
. (2.34)

By using the Favre-filtering, compressible equations can be written in an analogous form
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as incompressible equations:

�� ´

(
� N� if � D const
N� Q� if � ¤ const

. (2.35)

2.3 Governing equations

2.3.1 Filtered equations

Governing equations in a compressible Newtonian fluid in a reference Cartesian coordinate
system are continuity, momentum and energy equation, which can be written in the following
form:

@�

@t
C
@.�ui/

@xi
D 0, (2.36)

@.�ui/

@t
C
@.�uiuj/

@xj
D �

@p
@xi
C
@�ij

@xj
C �gi , (2.37)

@.�h/
@t
C
@.�uih/
@xi

D �
@2.�h/
@xi@xi

, (2.38)

where

�ij D �

�
@ui

@xj
C
@uj

@xi

�
�
2

3
�
@uk

@xk
ıij . (2.39)

In equations (2.36) to (2.39) �, �, � and Cp represent density, dynamic viscosity, thermal
diffusivity and specific heat at constant pressure respectively; ui , h and p are the Cartesian
components of velocity vector, enthalpy and pressure, while ıij is the Kronecker delta.

Application of filtering on the above set of equations yields the following filtered equations:

@ Q�

@t
C
@. Q� Nui/

@xi
D 0, (2.40)

@. Q� Nui/

@t
C
@. Q�uiuj/

@xj
D �

@ Qp
@xi
C
@ Q�ij

@xj
C Q�gi , (2.41)

@. Q� Nh/
@t
C
@. Q�uih/
@xi

D �
@2. Q� Nh/
@xi@xi

. (2.42)

Please note that in the remainder of this document a "bar" over a symbol, N�, represents the
Favre filtering. In the equations (2.41) and (2.42) terms uiuj and uih, also known as nonlinear
terms, are not known and need to be further decomposed.

2.3.2 Decomposition of unknown terms

Momentum equation

First, we start with the decomposition of the term appearing in the filtered momentum equation
(2.41). If we write the velocity field in the form of resolved and subgrid-scale quantities,

ui D Nui C u0i , (2.43)
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then, according to Leonard [65] (see also Sagaut [94]), nonlinear term can be decomposed
as follows:

uiuj D . Nui C u0i /. Nuj C u0j /

D Nui Nuj C Nuiu0j C u0i Nuj C u0i u
0
j , (2.44)

where

Cij D Nuiu0j C u0i Nuj , (2.45)

Rij D u0i u
0
j , (2.46)

are the cross-stress tensor and the Reynolds subgird stress tensor respectively. The effects
of subgrid-scales are grouped into the subgrid-scale stress tensor �ij :

�ij D
�
Nuiu0j C u0i Nuj

�
C u0i u

0
j D Cij C Rij . (2.47)

This decomposition is known as double decomposition. However, term Nui Nuj cannot be directly
calculated in LES and therefore it has to be decomposed further I.

In order to express the nonlinear part only in the form of resolved fields ( Nui and Nuj ), Eq.
(2.44) can be further decomposed as follows

uiuj D
�
Nui Nuj � Nui Nuj

�
C Nuiu0j C u0i Nuj C u0i u

0
j C Nui Nuj (2.48)

D Lij C Cij C Rij C Nui Nuj , (2.49)

where Lij is the Leonard tensor and it represents interaction among the large scales

Lij D
�
Nui Nuj � Nui Nuj

�
. (2.50)

This decomposition is known as Leonard, or triple decomposition. The subgrid-scale stress
tensor is now

�ij D uiuj � Nui Nuj (2.51)

D Lij C Cij C Rij . (2.52)

Relation (2.51) is then substituted in Eq. (2.41) and the final form of the filtered momentum
equation is obtained

@ Q� Nui

@t
C
@. Q� Nui Nuj/

@xj
D �

@ Qp
@xi
C
@ Q�ij

@xj
�
@. Q��ij/

@xj
C Q�gi . (2.53)

Unknown term �ij has to be represent by a SGS model. Different approaches for modeling �ij
will be discussed in the next section.

An important modification of the Leonard decomposition is presented in [32]. Since the
Leonard term and subgrid-scale cross term are not Galilean invariant, Germano [32] proposed
a modification of the original decomposition. According to Germano [32], SGS stress tensor
is rewritten as follows

�ij D Lij C Cij CRij . (2.54)

IAt the early beginning of LES the usual approach was to approximate Nui Nuj ' Nui Nuj . For further details about
this approach and associated deficiencies see Leonard [65].
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The modified Leonard stress, SGS cross stress and SGS Reynolds stress are

Lij D Nui Nuj � NNui NNuj , (2.55)

Cij D Nuiu0j C u0i Nuj � NNuiu0j � u0i NNuj , (2.56)

Rij D u0i u
0
j �
Nu0i
Nu0j . (2.57)

By redefining the SGS stresses on this manner, the Galilean invariance is assured.

This decomposition, known as consistent decomposition, represents the cornerstone for
the dynamic procedure which will be introduced several years later. A connection between
Leonard decomposition and consistent decomposition, as well as dynamic model, will be given
in the next section.

Energy equation

The enthalpy from Eq. (2.42) is equal to h D Cp� , where Cp and � are specific heat at
constant pressure and temperature respectively. Furthermore, it is assumed that Cp can be
taken out of the filtering operation, so that the unknown term in Eq. (2.42) can be written as
follows:

uih D Cpui� , (2.58)

Same as it was done for the momentum equation, velocity and temperature field can be
expressed in the form of resolved and subrid quantities. Therefore, temperature is given as:

� D N� C � 0. (2.59)

Now, nonlinear term ui� can be written as:

ui� D Nui N� C Nui� 0 C u0i N� C u0i �
0, (2.60)

which is further decomposed in the manner of triple decomposition to yield

ui� D
�
Nui N� � Nui N�

�
C Nui� 0 C u0i N� C u0i �

0 C Nui N� . (2.61)

Subgrid-scale heat flux is then defined as follows:

qi D ui� � Nui N� (2.62)

D

�
Nui N� � Nui N�

�
C Nui� 0 C u0i N� C u0i �

0. (2.63)

Finally, upon substituting (2.58) and (2.62) into Eq. (2.42), the final form of the filtered energy
equation is obtained

@. Q�Cp N�/

@t
C
@. Q�Cp Nui N�/

@xi
D �

@2. Q�Cp N�/

@xi@xi
�
@. Q�Cpqi/

@xi
. (2.64)

In order to close the filtered energy equation, subgrid-scale heat flux has to be modeled.

2.3.3 Test filtering and Germano identity

Germano Identity is the fundamental theory behind the dynamic procedure, a method which is
widely used to calculate unknown model coefficients dynamically in time. The identity relates
subgrid-scale momentum fluxes at two different filtering levels: test and grid filter. The test
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filter, which is denoted by O./ throughout this work, is defined on the same way as the grid filter,
Eq. (2.14),

O�.x/ D
Z
�

OG .x � �/ �.�/d�. (2.65)

The test filter width, O�, is larger than that of grid filter, and it is a usual choice that the ratio
of the filters is two, i.e. O�=� D 2. The test-filtering operation is then applied on the grid-
filtered momentum equation, Eq. (2.41), which produces a test-filtered momentum equation.
Afterwards, by analogy to the grid-filtered momentum equation, the turbulent stresses at test-
filtering level (subtest-scale stress tensor) are defined as:

Tij D
buiuj � ONui ONuj . (2.66)

Germano [33] observed that the resolved stress tensor, Lij , is equal to the difference of
the turbulent stresses at the test-filtering level and the test-filtered value of turbulent stresses
at the grid-filtering level. This statement reads as follows:

Lij D Tij � O�ij (2.67)

The expression (2.67) is known as Germano identity and will be extensively used in this
work. The resolved stress tensor, Lij , can be explicitly evaluated from the large scales

Lij DbNui Nuj � ONui ONuj . (2.68)

Germano identity, (2.67), is the cornerstone of the dynamic modeling. In his further work,
Germano et al. [34] exploited it to derive equations for the constant appearing in the Smagorin-
sky model, Smagorinsky [98].

Example of grid and test filtering is given in Fig. 2.6. Cutoff wave numbers kg and kt
correspond to the grid and test filters respectively, �ij and Tij represent subgrid- and subtest-
scale stress tensors, while ug

i and ut
i are resolved velocities.

Fig. 2.6: Schematic view of two filtering levels; lower-case letters g and t stand for grid and test filter.
Adjusted from [94].
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Extension for the energy equation

Germano identity can be also written for the subgrid-scale heat (scalar) fluxes. SGS heat
fluxes at grid and test filtering levels are

qi D ui� � Nui N� , (2.69)

Qi D
cui� � ONui

ON� . (2.70)

Substituting the test-filtered subgrid-scale heat flux (2.69) from the heat flux at subtest level,
(2.70), yields

Pi D Qi � Oqi D
c
Nui N� � ONui

ON� . (2.71)

"Test window" (resolved) heat flux, Pi , can be directly calculated from the resolved fields. Re-
lation (2.71) can be applied to determine subgrid-scale turbulent Prandtl number dynamically.
In the present work, relation (2.71) is utilized to determine coefficients of the new model which
will be proposed in Chapter 3.

2.4 Subgrid-scale modeling for momentum equation

In order to close the filtered momentum, (2.53), and energy equations, (2.64), unknown terms
�ij and qi , which represent the influence of the unresolved on the resolved scales, have to
be modeled. This process is known as subgrid-scale modeling and it can be divided in two
modeling strategies (see [94])

� Structural modeling. Unknown terms are represented by approximations constructed
from resolved scales.

� Functional modeling. Instead of modeling the unknown terms, the action of subgrid on
the resolved scales is modeled.

When developing a new SGS model it has to be kept in mind that the model has to fulfill
some of the physical and numerical constraints (see [31]):

� Physical constraints

– Contribution of the SGS model has to vanish if the grid resolution is fine enough
to resolve even the smallest scales or if there is no fluctuations of the considered
field (velocity, temperature, ...);

– The model has to produce effects of the same kind as the modeled terms.

� Numerical constraints

– Computational costs have to be acceptable;

– Computational stability should not be affected.
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2.4.1 Smagorinsky model

The Smagorinsky model represents a pioneering work in LES, originally proposed by Smagorin-
sky [98] in 1963. The model is based on two steps (see e.g. [28, 88]): first, linear SGS vis-
cosity model is used to parametrize SGS stress tensor; second, analogy to the mixing length
hypothesis is used to model SGS viscosity.

SGS stress tensor is related to the resolved scales by the following relation

�ij D �2�sgs NSij , (2.72)

where
NSij D

1

2

�
@ Nui

@xj
C
@ Nuj

@xi

�
. (2.73)

In the second step, SGS viscosity is defined as

�sgs D l�q�, (2.74)

where, l� and q� are characteristic length and velocity respectively. For characteristic velocity
a product of the characteristic length and norm of NSij is used q� D l�j NSj, where j NSj Dq
2 NSij NSij . A natural choice for characteristic length in LES is filter width�. In the Smagorinsky

model, filter width multiplied by a model coefficient CS is used for the characteristic length,
l� D CS�. Hence, SGS viscosity is defined as

�SGS D l�l�j NSj

D .CS�/
2
j NSj. (2.75)

SGS viscosity from Eq. (2.72) is replaced with (2.75), which yields the relation for SGS stress
tensor:

�ij D �.CS�/
2
j NSj NSij . (2.76)

Model coefficient CS is known as Smagorinsky coefficient, and its value can be determined
depending on the flow type. However, there is no an universal value for CS which is suitable
for all flow types and different values can be found in the literature. For example, in the case
of isotropic turbulence, CS can vary between 0.19 and 0.24, while for the sher flows the value
has to be reduced up to 0.065 or 0.1 (see [28]). Reduction of the CS value in shear flows was
necessary due to the excessive dissipation produced by the model.

Another disadvantage of the Smagorinsky model considers the transfer of energy between
scales. The rate of transfer of energy from the resolved to the unresolved scales is given by
the relation (see [88])

Psgs � ��ij NSij , (2.77)

and after using the Smagorinsky model (2.72) for �ij

Psgs D 2�sgs NSij NSij . (2.78)

Since the SGS viscosity is always positive, Psgs is also always positive, which means that
it appears as a source term in the equation for SGS kinetic energy. Hence, the energy is
transfered only from the resolved to the subgrid scales and the revers process is not possible.
Reverse transfer of energy (from small to large scales) is known as backscatter and it is
experimentally confirmed.

The Smagorinsky model can be improved by combining it with other models or by providing
methods to calculate model coefficient independently of flow type.
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2.4.2 Dynamic models

Dynamic Smagorinsky model

The idea of using the identity (2.67) to construct more sophisticated SGS models was firstly
introduced by Germano et al. [34] and it is also the first dynamic model published in the lit-
erature. Led by inability of the Smagorinsky model to predict correctly with a single universal
constant different flow types (shear, rotating, transitional flows, etc.), Germano and co-workers
developed a new eddy viscosity model in which the smallest resolved scales are utilized to de-
termine the subgrid-scale momentum fluxes. Rather than being prescribed, the Smagorinsky
model coefficient was calculated dynamically in time allowing the model to adjust to different
flow regimes.

To derive a new model for SGS stress tensor, Germano and co-workers assumed that the
same closure approximation, in this case the Smagorinsky [98] model, can be used for both
�ij and Tij :

�ij �
ıij

3
�kk ' mij D �2C N�2j NSj NSij , (2.79)

Tij �
ıij

3
Tkk ' Mij D �2C ON�2j

ONSj ONSij , (2.80)

where ONSij D
1
2
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@xi

!
is test filtered strain rate tensor and its norm is j NSj D

q
2 NSij NSij

and j ONSj D
q
2
ONSij
ONSij . Model coefficient C is equal to the square of the original Smagorinsky

coefficient CS and is assumed to be equal for the both filtering levels.

Equations (2.79) and (2.80) are substituted into (2.67) (which is again given here for com-
pleteness)

Lij D Tij �b� ij ,

and the resulting expression is contracted with NSij to yield:

Lij NSij D �2C
�
ON�2j
ONSj ONSij NSij � N�

2
j NSj NSij NSij

�
. (2.81)

In general, model coefficient C can be determined from the above equation. However, initial
tests showed that the quantity in parentheses can become zero making the C indeterminate
or ill-conditioned. Therefore, to alleviate this problem, authors have averaged Eq. (2.81) over
the homogeneous directions, so that for the case of turbulent channel flow it was assumed
that C is only a function of the wall-normal direction. Dynamic equation for model coefficient
in its averaged form is given as follows:

C.y , t/ D �
1

2

hLkl NSkli

ON�2hj
ONSj ONSmn NSmni � N�2hj NSj NSpq NSpqi

, (2.82)

where hi represents averaging over a plane parallel to the wall and t stands for time. Finally,
by substituting (2.82) into (2.79), the new dynamic eddy-viscosity model is derived:

mij D
hLkl NSkli

ON�2

N�2
hj
ONSj ONSmn NSmni � hj NSj NSpq NSpqi

j NSj NSij . (2.83)

Since its beginning, the dynamic model given by (2.83) showed some favorable properties.
It vanishes in the case of laminar flow or at solid boundaries and has correct asymptotic
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behavior without the use of damping functions. Furthermore, it is reported that the model
can account for backscatter. However, the rather arbitrary averaging over the homogeneous
direction reduces the functionality of the model for the flows within complex geometries, i. e.
flows without homogeneous directions.

Dynamic Smagorinsky model - Lilly’s modification

Even though that the dynamic Smagorinsky model showed some promising results and drew
significant attention at the beginning, the model suffered because of the stability reasons.
Namely, it was found that the denominator of Eq. (2.82) could vanish or become very small
eventually leading to the computational instability. Averaging of the model coefficient over
the planes parallel to the channel walls were proposed in order to stabilize the computation.
However, this method reduces some fundamental advantages of the model and restricts its
applicability to the flows with at least one homogeneous direction. In order to remove the
singularity associated with the original formulation, Lilly [66] modified the original model by
using a least squares technique to minimize the error between the closure approximations
and resolved stresses.

Starting from the Germano identity and after the Smagorinsky model was applied for Tij
and �ij , Eq. (2.81) can be rewritten in a slightly modified form:

Lij �
1

3
ıijLkk D 2CMij , (2.84)

Mij D O�
2
j
ONSj ONSij ��

21
j NSj NSij . (2.85)

Since the system of equations (2.84) is overdetermined (five independent equations in one
unknown) Lilly [66] proposed to find an optimal value for C by minimizing the error of (2.84) by
applying a least squares method. To do so, a square of the error in (2.84) has to be defined:

Q D
�
Lij �

1

3
ıijLkk � 2CMij

�2
. (2.86)

Now, since Q is a function of the model coefficient C it is necessary to find an optimal value
for C which yields the minimum of Q. This is done by setting the first derivative of Q with
respect to C to zero:

@Q
@C
D 0. (2.87)

Finally, expression for C is obtained as:

C D
1

2

LijMij

M2
ij

. (2.88)

Equation (2.88) gives either positive or negative C values meaning that the model does not
exclude backscatter.

Advantage of the model (2.88) over (2.82) is, as reported in [66], that the denominator
of (2.88) can vanish only if each of the five independent component of Mij vanish separately.
However, the author also reported that when applied to individual grid points the method can
produce high C values which leads to computational instability. Therefore, some sort of local
averaging or truncation of the isolated large values were suggested by the author.
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Localized dynamic model

Dynamic Smagorinsky, Eq. (2.82), and its modified version, Eq. (2.88) are derived assuming
that the model coefficient C does not depend on the position which is, in fact, an arbitrary
assumption. Ignoring that C is spatially dependent, makes possible to exclude it from the
filtering operations in (2.81) and (2.85), so that the integral equations are reduced to the
algebraic equations.

This mathematical inconsistency is removed in the work of Ghosal et al. [36] who pro-
posed a method based on the variational formulation. As a result, an integral equation, whose
solution determines C as a function of position and time, is derived. New model is applica-
ble also to the flows without homogeneous directions and does not require any kind of local
averaging. In order to improve the computational stability, model coefficient C is restricted
only to the positive values. Furthermore, the authors demonstrated that the expressions for C
obtained by Germano et al. [34] and Lilly [66] can be derived by adopting some constraints in
the variational formulation.

If C is a function of position, than it cannot be removed from filtering operations in (2.81)
and (2.84), so that the Germano identity yields:

Lij �
1

3
ıijLkk D ˛ijC � b̌ijC, (2.89)

where

˛ij D �2 O�
2
j
ONSj ONSij , (2.90)

ˇij D �2�
2
j NSj NSij . (2.91)

The error in (2.89) can be defined as:

Eij.x/ D Lij �
1

3
ıijLkk � ˛ijC C b̌ijC, (2.92)

where x is a position vector. Optimal function C.x/which minimizes the error Eij.x/ is obtained
by solving the variational problem and for the further details please refer to Ghosal et al. [36].

Solution of the variational problem leads to the Fredholm’s integral equation of the second
kind which has to be solved numerically. By using this approach to formulate a dynamic SGS
model, mathematical inconsistency associated with the assumption of the uniform, spatially-
independent, model coefficient is removed, thereby putting the modeling on a strong mathe-
matical background. However, instability associated with the negative eddy viscosity (caused
by the negative C values) remained, and Ghosal and co-authors eliminated it by constraining
C only to positive values, i.e. C � 0. Finally, an expression for model coefficient C as a
function of position is derived:

C.x/ D
�
f .x/C

Z
K.x , y/dy

�
C

, (2.93)

where C denotes the positive part and:

K.x , y/ D
KA.x , y/CKA.y , x/ �KJ .x , y/

˛kl.x/˛kl.x/
, (2.94)

KA.x , y/ D ˛ij.x/ˇij.y/G.x , y/, (2.95)

KJ .x , y/ D ˇij.x/ˇij.y/
Z

G.z, x/G.z, y/dz. (2.96)

Negative C values, which may occur in some grid points, are simply replaced with zero. By
doing so, eddy viscosity is limited to positive values and computational stability is increased.
Unfortunately, since the eddy viscosity cannot become negative, the model is purely dissipa-
tive and cannot predict backscatter.
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Localized dynamic one equation

By allowing the model coefficient C to have either signs, the model is able to reproduce
backscatter of energy. However, the Smagorinsky model does not contain the information
about the available energy in the subgrid scales. This means that, theoretically, negative SGS
viscosity can drain more than available amount of energy from the subgrid scales. In order to
solve this problem, Ghosal et al. [36] have included the transport equation for subgrid-scale
kinetic energy and made the SGS viscosity dependent on it. By doing so, the information
regarding the total amount of energy contained in the subgrid scales is included in the model.
If in some point in the flow field backscatter appears, SGS kinetic energy will decrease to-
ward zero eventually quenching the backscatter and removing the numerical instabilities. This
model is also known as dynamic one equation model and is very often used in LES.

In the same manner as in the Smagorinsky model, SGS viscosity can be defined as a
product of characteristic length scale and characteristic velocity. In LES, an obvious choice for
the characteristic length is a grid filter width,�, while, unlike the Smagorinsky model, a square
root of the SGS kinetic energy is used for the characteristic velocity. Hence, SGS viscosity
can be written as

�sgs D C�k1=2, (2.97)

which yields

�ij �
1

3
ıij�kk D �2C�k1=2 NSij , (2.98)

Tij �
1

3
ıijTkk D �2CK 1=2 ONSij , (2.99)

where subgrid-scale and subtest scale kinetic energies k and K are given as follows

k D
1

2
.uiui � Nui Nui/ D

1

2
�ii , (2.100)

K D
1

2

�buiui � ONui ONui

�
D
1

2
Tii . (2.101)

Both of these quantities are unknown, but they are related by the relation which can be derived
by taking the trace of the Germano identity (2.67), which yields

K D Ok C
1

2
Lii . (2.102)

Now, equations (2.100) and (2.101) are used in (2.67) to obtain Eq. (2.89), but with ˛ij and ˇij
being calculated as

˛ij D �2 O�K 1=2 ONSij , (2.103)

ˇij D �2�k1=2 NSij . (2.104)

The only unknown term, beside the model coefficient C, is SGS kinetic energy, which is
obtained by solving the modeled transport equation

@k
@t
C Nuj

@k
@xj
D ��ij NSij � C�

k3=2

�
C

@

@xj

�
D�k1=2

@k
@xj

�
C

1

Re
@2k
@xj@xj

, (2.105)

in which are C� and D non-negative dimensionless functions of position and time. These
coefficients are dynamically calculated (see [36] for details).

The method is independent of any subgrid-scale model and can be applied to determine
one or more model coefficients, depending on the SGS model used. However, when applied
to high Reynolds number flows in complex geometries, high wall layer resolution is needed.
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Localized dynamic one equation model - scale similarity assumption

Implementation of the Localized dynamic model - k equation (see above) requires an expen-
sive iterative procedure. Kim and Menon [54] proposed a localized dynamic one equation
model based on the scale similarity assumption which does not require considerably larger
computational resources than the simple dynamic Smagorinsky model.

Kim and Menon [54] have considered other form of stress tensor at test filtering level; the
one that does not contain additional unknown terms

tij DbNui Nuj � ONui ONuj

D 2C O�
�
1

2

�bNui Nui � ONui ONui

��1=2
ONSij C

2

3
ıij

�
1

2

�bNui Nui � ONui ONui

��
(2.106)

Coefficient C is then obtained by applying a least square method which yields

C D
1

2

tijMij

MijMij
, (2.107)

where

Mij D O�

�
1

2

�bNui Nui � ONui ONui

��1=2
ONSij . (2.108)

It is reported in [30, 54] that the denominator of (2.107) is always nonzero which removes
possible singularities.

Dissipation rate from transport equation for SGS kinetic energy is given as

� D c�
k3=2

�
, (2.109)

and the unknown coefficient is calculated form the following relation

c� D
�

�1@ Nui
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@xj

@ ONui
@xj

�
h
1
2

�bNui Nuj � ONui ONuj

�i3=2
= N�

, (2.110)

which completes the model.

2.4.3 Scale similarity and mixed models

Other type of models, which are very often used in LES, are scale similarity and mixed models.
Similarity models assume that the SGS stress tensor is proportional to the resolved stress:

�ij D cb

�bNui Nuj � ONui ONuj

�
, (2.111)

where cb is a constant of proportionality. However, the model given by the Eq. (2.111) is not
dissipative enough which can lead to the numerical instabilities. Therefore, similarity models
are very often combined with other dissipative models.

When combined with the Smagorinsky model, resulting mixed model reads

�ij �
ıij

3
�kk D �2C�2j NSjSij C Lij �

ıij

3
Lkk , (2.112)

where C represents a square of the original Smagorinsky coefficient. Model coefficients can
be prescribed or, alternatively, the dynamic procedure can be used for their evaluation in time,
see e.g. Zang et al. [119].
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2.5 Subgrid-scale modeling for energy equation

A brief description of existing SGS heat flux models is showed in the previous chapter. More
details are given next.

2.5.1 Scalar subgrid-scale diffusivity

This is the most common approach to calculate subgrid-scale heat flux, which is given as a
product of a scalar subgrid-scale diffusivity and gradient of the resolved temperature field:

qj D ��sgs
@ N�

@xj
, (2.113)

in which �sgs is subgrid-scale diffusivity and N� is the resolved temperature field.

Constant Prsgs approach

This approach is based on the Reynolds analogy and the concept of subgrid-scale turbulent
Prandtl number, Prsgs. Here, one has to provide a single constant value for Prsgs which is, in
most cases, assumed to be between 0.3 and 1. SGS diffusivity is calculated as the ratio of
SGS viscosity and Prsgs:

�sgs D
�sgs

Prsgs
, (2.114)

where �sgs is subgrid-scale viscosity. SGS heat flux is then obtained from the following rela-
tion:

qj D �
�sgs

Prsgs

@ N�

@xj
. (2.115)

Very often is the one equation model used to close the momentum equation. This yields the
following expression for SGS diffusivity:

�sgs D
c�

Prsgs
�k1=2. (2.116)

Subgrid-scale turbulent Prandtl number for forced convection heat transfer to air in turbu-
lent channel ranges from Prsgs D 0.4 in the center of the channel to Prsgs D 1 near the walls,
Kim and Moin [53]. Investigations, e.g. Pallares and Davidson [82], showed that a simple
choice of Prsgs D 0.4 usually gives good agreement with DNS data and experimental mea-
surements. However, if we consider some other fluids than air, for example water or liquid
metals, whose molecular Prandtl number significantly differs from one, the proper choice of
Prsgs is not known. Moreover, if the fluid experiences action of some volumetric forces, like
buoyancy force, additional modeling of turbulent heat flux should be considered. According to
Sagaut [94], values for Prsgs found in the literature range from 0.1 to 1.

This approach provides satisfactory good results for forced convection heat transfer and for
flows which do not experience some external effects, e.g. system rotation or buoyancy force.
However, the constant Prsgs approach may be insufficient if the mesh resolution is fine enough
to resolve the velocity field, while the temperature still remains unresolved, which may happen
if working fluid has molecular Prandtl number larger than one - water is a typical example. If
this is the case, Eq. (2.114) will yield a zero thermal diffusivity even though that subgrid-scale
heat flux still exists. Moreover, the Prsgs is case sensitive and it depends on both molecular
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fluid properties and flow parameters. Despite the aforementioned shortcomings, this method
is still the most popular one among engineers.

Based on the well known Smagorinsky model, Smagorinsky [98], Eidson [22] derived a
new model for natural convection by including a buoyancy contribution in the subgrid-scale
turbulent kinetic energy production term. Eq. (2.114) is used to calculate subgrid-scale diffu-
sivity and the effects of buoyancy are included in an equation for SGS viscosity:

�sgs D
.C�/2

21=2

 
NS2 � 2

Pr Ra
Prsgs

@ N�

@x3

!1=2
, (2.117)

where C is the Smagorinsky constant and x3 is the coordinate in the direction of gravity.
Values of C and Prsgs used in the simulation were C D 0.21 and Prsgs D 0.4. First part of
the expression (2.117) represents the original Smagorinsky model. The model was evaluated
by performing a large eddy simulation of turbulent natural convection. Working fluid was air
(Pr D 0.71) and six different Rayleigh numbers are used Ra D 1 � 104, 3.8 � 105, 6.3 � 105,
1.4 � 106, 2.5 � 106 and 1.0 � 107 The simulation results showed good agreement with the
experimental measurements. Furthermore, the author suggested that the use of a transport
equation for SGS kinetic energy, which could be used as a velocity time scale, would improve
modeling.

Dynamic models for Prsgs

Applicability of the model Eq. (2.113) can be increased by providing the methods to calculate
Prsgs depending on the fluid properties and on the flow and heat transfer characteristics. This
means that the subgrid-scale turbulent Prandtl number will be made space and time depen-
dent. Very popular and effective methods to calculate Prsgs and other model coefficients are
based on the dynamic procedure initially introduced by Germano et al. [34] and subsequently
revised by Moin et al. [75] and Lilly [66]. Prsgs evaluated by the dynamic procedure is time
dependent and, if averaging and constraints on the model coefficients are not applied, it is
also space dependent.

Moin et al. [75] extended the dynamic model of Germano et al. [34] to the compressible
flows and transport of passive scalar. This is also the first published application of dynamic
procedure to calculate SGS turbulent Prandtl number. By means of dynamic procedure, Prsgs
is calculated as:
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, (2.118)

where C is model coefficient from momentum equation, �, � and � are filter width, density
and temperature, vk is the velocity component in the k th direction and jSj is the second norm
of the SGS stress tensor. Grid filtering is given by N.�/, O.�/ represents test filtering and Q.�/ is
Favre filtering. Then, subgrid-scale heat flux can be calculated as follows

qk D
N��T

Prsgs

@ Q�

@xk
(2.119)

However, because of the numerical instability, appropriate averaging, i.e. over the ho-
mogeneous directions, is applied. The expression for Prsgs is analyzed using DNS data of
isotropic turbulence, homogeneous shear flow and turbulent channel flow. For the case of
isotropic turbulence it is found out that initial temperature spectrum has significant effect on
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the Prsgs. The value of Prsgs for the case where the initial temperature field was obtained from
the equation of state and had an initial spectrum similar to the pressure spectrum, was around
0.4. For the flow field obtained from the simulation started with zero-fluctuations pressure and
temperature fields, the evaluated Prsgs was approximately 0.85. The results pointed out to a
deficiency of the model with fixed, constant subgrid-scale turbulent Prandtl number which is
independent of the instantaneous flow conditions. Furthermore, the influence of the mesh res-
olution and molecular Prandtl number on Prsgs is investigated for the case of homogeneous
shear flow. Three different molecular Prandtl numbers were tested, Pr D 0.2, 0.7 and 2. Prsgs
varied between 0.6 and 1.6 for the extreme case: coarse grid and high molecular Prandtl num-
ber, Pr D 2. Variations of Prsgs were reduced for the finer grids. For the case of turbulent
channel flow, again three different molecular Prandtl numbers were tested: Pr D 0.1, 0.7 and
2. Behavior of Prsgs is investigated in the direction normal to the wall and averaging is applied
over the homogeneous directions. Contrary to the homogeneous shear flow test case, it was
observed that the lowest molecular Prandtl number, Pr D 0.1, generates highest variations of
Prsgs. These results add to the importance of flow configuration on the Prsgs.

Both dynamic SGS stress model of Germano et al. [34] and dynamic model for SGS tur-
bulent Prandtl number flawed from being numerically unstable. To avoid the stability problem,
the authors applied averaging of numerator and denominator of the equations for model coef-
ficients over homogeneous directions. Lilly [66] recognized that additional averaging perhaps
eliminates some of the conceptual advantages of their formulations. In his work, Lilly [66],
applied a least squares technique to minimize the difference between the closure assump-
tions and resolved stresses. This method improved numerical stability of the original dynamic
model without introducing additional averaging. In the same paper, Lilly [66] also proposed a
method to calculate subgrid-scale turbulent Prandtl number where a least squares technique
is used to find an optimal value for Prsgs:
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LikMik

PjRj

R2j
, (2.120)

where
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Pj is calculated from Eq. (2.71).

The Lilly’s method has drawn a lot of attention among researchers and in the next twenty
years many of them applied the idea of minimizing the error between resolved heat fluxes and
closure approximations by means of the least squares technique in order to determine model
coefficients of their models.

Wong and Lilly [115] proposed two dynamic subgrid-scale closure methods for turbulent
thermal convection: stratification and scaling formulations. In stratification formulation, [10,
102], it is assumed that the dissipation rate balances the SGS energy production rate that
includes a buoyancy term. SGS viscosity and diffusivity are modified to account for buoyancy
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effects explicitly:
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where g, �0 and z are the gravitational acceleration, reference temperature and vertical coor-
dinate respectively. Buoyancy force is represent by the second term in parentheses in equa-
tions (2.124) and (2.125). Because of the buoyancy coupling, an iterative scheme is needed
to solve the system of equations. However, it turned out that it is impossible to find a real
converged solution and in practice the iterative scheme is terminated after ten iterations. In
their work, Wong and Lilly [115] proposed a simplified model, scaling formulation, based on
the Kolmogorov scaling, Kolmogorov [57]. SGS diffusivity is given as

�sgs D
C2=3

Prsgs
N�4=3�1=3, (2.126)

where � is the dissipation rate. This model excludes the assumption that the dissipation rate
equals the SGS energy production rate. Dynamic procedure of Germano et al. [34] and Lilly
[66] is utilized to determine model coefficient C and Prsgs and it is assumed that these do
not depend on the filter width. Advantage of the model (2.126) over (2.125) is considerable
reduction of computational effort, and in their study the ratio of the total computational times
was 1.7. However, the model (2.126) does not account for buoyancy effects. Furthermore,
spatial averaging was required to prevent the numerical instability. The two models were eval-
uated both a priori, by using a DNS database, and a posteriori by conducing a LES of turbulent
Rayleigh-Benard convection. Interesting result from their simulation is the behavior of subgrid-
scale turbulent Prandtl number. It is found out that the scaling formulation produces Prsgs
values that are smaller than the values suggested from the literature. For example, Deardorff
[18, 19] reported that the spectrum for temperature became similar to the velocity spectra at
high wavenumbers only after the SGS eddy diffusivity had been increased by a factor of three
over SGS viscosity; in his work, Eidson [22] suggests a value of 0.4; Schmidt and Schumann
[97] have calculated from the coefficients of ’one dimensional’ longitudinal velocity and tem-
perature spectra that the value for Prsgs should be around 0.42. The values of Prsgs evaluated
from the DNS database with the scaling formulation were around 0.1 in the bulk, but, near the
walls the values turned negative. When computed from LES study, Prsgs showed flat profile
in the bulk with the values around 0.2, and increased near the wall with the maximal values
below 0.6. On the other hand, Prsgs values from the stratification formulation are higher than
the values from literature. Prsgs values according to the stratification formulation evaluated
from DNS data were between 0.6 and 1 in the bulk of the channel and around 1.5 close to the
walls. For LES, study Prsgs ranges between 0.4 and 0.8 in the bulk and increases sharply, up
to 4, near the walls. Since the stratification formulation includes buoyant effects explicitly, this
may be the reason for higher subgrid-scale turbulent Prandtl numbers.

Peng and Davidson [84] investigated a turbulent natural convection flow in a confined cav-
ity with two differentially heated side walls. This kind of flows is characterized by a large span
of scales interacting with each other: the boundary layer, which forms along the enclosure
surfaces, interacts with the wall shear and with the core region. Mainly due to the complexity
of physics associated with this kind of flows, previous simulations performed by the same au-
thors failed to give satisfactory good agreement with the experimental measurements. As a
cause of a disagreement, Peng and Davidson [84] pointed to the inability of the SGS model "...
to capture the underlying physics of the energy backscatter phenomenon, which is regarded
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as an essential ingredient in reproducing the transition regime in the boundary layer near the
vertical heated/cooled wall". Based on the previous work of Eidson [22], who included a buoy-
ancy production term in the production of subgrid-scale kinetic energy, Peng and Davidson
[84] proposed a modified model for SGS time scale and hence for the SGS viscosity. The
original formulation of Eidson [22] is given by Eq. (2.117) and, as it can be seen, if the term
in parentheses becomes negative, i.e. j NSj2 < 2Pr Ra

Prsgs

@ N�
@x3

, then the equation for SGS viscosity
has a non-real solution. If this occurs, the issue is usually treated by fixing the SGS viscosity
to zero. Peng and Davidson [84] overcame the problem of non-real solutions by dividing the
time scale used in the Eidson model by the magnitude of the resolved strain rate tensor, so
that a new expression for time scale was proposed:

T D
 
j NSj �

gˇ
PrsgsjSj

@ N�

@xj
ı2j

!�1
, (2.127)

where ı2j defines the coordinate in the direction of gravity. Afterwards, this time scale is
used to calculate subgrid-scale viscosity, �sgs D C�2=T . Negative �sgs values are allowed
in the range Œ0,���. Since the effective viscosity, �eff D � C �sgs, should not be negative,
higher negative �sgs values need to be clipped in order to retain numerical stability. Model
coefficient C represents a square of the of the original Smagorinsky coefficient and it has
been determined using the dynamic procedure. The authors have mentioned that the dynamic
procedure can also be applied to calculate Prsgs, however, in the simulation they have used a
fixed value, Prsgs D 0.4. The new model coupled with the dynamic procedure showed better
behavior than the original Smagorinsky and Eidson models. However, a disadvantages is that
a fixed value for Prsgs is used. There is a possibility to calculate subgrid-scale turbulent Prandtl
number dynamically, but this would lead to a system of non-linear equations which cannot be
solved directly and it would be necessary to find the best among the multiple possible roots of
the system, see Sagaut [94]. To solve the resulting system of non-linear equations, an iterative
scheme would be needed, but this is associated with numerical problems, see e.g. Wong and
Lilly [115].

You and Moin [116, 117] derived a dynamic global-coefficient subgrid-scale model where
the model coefficients are globally uniform in space but vary in time. The model is based
on the "global equilibrium" assumption between the subgrid-scale scalar diffusion and the
molecular diffusion. Previously, based on the model proposed by Vreman [107], Park et al.
[83] derived a subgrid-scale momentum flux model with global model coefficients and "global
equilibrium" assumption. However, the model of Park et al. [83] required two test-filter levels
which reduced the model applicability. The model of You and Moin [117] requires only one
test filter and does not require any numerical stabilization procedure. The dynamic equation
for the model coefficient DT , which appears in the subgrid scale scalar flux, is obtained by
extracting the test filtered transport equation for the scalar variance at the grid-filter level from
the transport equation for scalar variance at test-filter level. The resulting transport equation is
then volume-averaged over the entire computational domain and in addition it was assumed
that the volume averages of the redistribution term and the time variation term are negligible.
The dynamic equation for Prsgs is given as follows:
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� , (2.128)

where �g
T and �t

T are SGS viscosities at grid and test filter levels and subgrid-scale scalar flux

is qj D �
�

g
T

DT

@ N�
@xj

. It should be noted that model coefficient DT corresponds to the subgrid-scale

37



Chapter 2. Theoretical background

turbulent Prandtl number. Equation (2.128) represents relation of the subgrid-scale scalar
diffusivity to the molecular diffusivity. As a benchmark test, turbulent flow through a plane
channel at two different friction Reynolds numbers of Re� D 180 and 300 and two different
molecular Prandtl numbers of 1 and 25 is investigated. As expected, it is found out that model
coefficient DT (or Prsgs) strongly depends on molecular diffusivity. The results show that for
Re� D 150 and high molecular Prandtl number, Pr D 25, the model coefficient was much
larger than the value obtained for Pr D 1: DT � 11 compared to DT � 1.

Temperature dependent Prsgs (Otic 2010)

Otic [81] developed a method to estimate Prsgs which accounts for the effect of molecular fluid
properties on the energy transfer. The method is based on the one equation model for the
velocity field and temperature and velocity spectra of the unresolved scales.

In a simplified model, one assumes a similarity of the velocity and temperature fields over
all flow scales. However, this can be justified only for the flows of fluids whose molecular
Prandtl number does not strongly differ from one, e.g. air. In other cases, difference between
velocity and temperature field spectra, see Fig. 2.7, can be significant so that the molecular
fluid properties have to be considered when choosing an appropriate value for Prsgs in order
to fulfill different requirements on SGS models. In order to improve modeling, Otic [81] ap-

(a) Pr << 1 (b) Pr >> 1

Fig. 2.7: Schematic of the kinetic energy spectrum (dashed line) and the temperature variance
spectrum (solid line). Adjusted from [94].

plied the idea of temperature and velocity parametrization as a geometric mean of both fields
instead of assuming the similarity of the both fields. A short derivation of the model is given
next.

The model is based on the simple gradient diffusion hypothesis for subgrid-scale heat flux,
Eq. (2.113). If the one equation eddy viscosity model is applied to close the momentum
equation, then subgird-scale viscosity �sgs and corresponding subgrid-scale diffusivity, �sgs
can be written in the following form:

�sgs D c0��k , (2.129)

�sgs D c0��k , , (2.130)

where � is a time-scale and � is the characteristic length. Equation (2.114) can be easily
derived form Eq. (2.130) if the mechanical time-scale � D k=� is used in combination with the
Rotta’s model, Eq. (2.132), for dissipation of turbulent kinetic energy, �.
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Instead of using the mechanical time-scale, a concept of mixed time-scale is applied:

� D

s
k
�

� 02

��
, (2.131)

where � 02 and �� are SGS temperature variance and its dissipation rate. Turbulent kinetic
energy dissipation rate is approximated by the Rotta’s model

� D c�
k3=2

�
. (2.132)

Further on, author have derived an averaged approximation of Eq. (2.131) and this will be
briefly shown in the following equations. For details about the derivation of the model, see
[81].

In the inertial-convective subrange of isotropic turbulence, the spectra of kinetic energy
and temperature variance integrated over all wave numbers K give

E.K / D ˛h�i2=3K�5=3, (2.133)

E� .K / D ˇh�� ih�i�1=3K�5=3, (2.134)

where hi represents the ensemble average of a quantity. The coefficients ˛ and ˇ of the
three-dimensional are approximated as:

˛ � 1.6, ˇ � 1.3. (2.135)

From the equations (2.133) and (2.134), the subgrid-scale kinetic energy and temperature
variance are:
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, (2.136)
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, (2.137)

where Kc and �Kc are the effective cutoff wave numbers of the kinetic energy spectrum and
temperature variance spectrum respectively. According to Corrsin [13], the ratio of the cutoff
wave numbers can be estimated as:

�Kc

Kc
D Pr3=4. (2.138)

Finally, from (2.136), (2.137), (2.138) and (2.132) followss
k
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�1=2
Pr4=9�hki�1=2. (2.139)

Furthermore, since k and hence hki are locally defined positive quantities, there exists a
locally defined positive coefficient c0� such that c0�k

�1=2 D hki�1=2. This statement is used in
(2.139) and together with (2.130) yields

�sgs D c�

�
ˇ

˛

�1=2
Pr4=9�k1=2, (2.140)

where ˛ and ˇ are given in (2.135) and Pr is molecular Prandtl number. The model (2.140) is
further simplified by using the results from Schmidt and Schumann [97]

c� D .2˛=ˇ/c� , (2.141)

39



Chapter 2. Theoretical background

which yields:

�sgs D c�

�
4˛

ˇ

�1=2
Pr4=9�k1=2. (2.142)

From the above equation, Prsgs is calculated as follows

Prsgs D
�sgs

�sgs
D
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ˇ

�1=2
Pr4=9

!�1
. (2.143)

Subgrid-scale turbulent Prandtl number calculated on this way depends on the molecular fluid
properties. Therefore, this model should bring improvements when simulating turbulent flows
with strong temperature variations. In addition, it can be used to estimate Prsgs for different
fluids.

2.5.2 Tensor subgrid-scale diffusivity

The concept of scalar subgrid-scale diffusivity is usually sufficient for homogeneous flows,
where both velocity and temperature (scalar) fields are isotropic. However, for more complex
flow configurations, which are likely to appear in real engineering problems, velocity and/or
temperature fields are anisotropic. For these types of flows, modeling can be improved by
applying a concept of tensor (anisotropic) SGS viscosity/diffusivity. In this case, subgrid-scale
heat flux is determined from the following equation

qj D ��sgsij

@ N�

@xj
, (2.144)

where �sgsij is tensor SGS diffusivity. The concept of tensor eddy diffusivity was originally
proposed by Batchelor [8] for RANS modeling.

Pullin [92] developed an anisotropic subgrid-scale diffusivity model for SGS flux of a pas-
sive scalar. The model is based on an analytical solution for convection of passive scalar field
by the axisymmetric model of a subgrid vortex. In addition, it was assumed that the effects
of scalar diffusivity are negligible small compared to convection within the vortex. Pullin [92]
argued that this is a physically reasonable assumption if the order of magnitude of molecular
diffusivity is not larger than the order of magnitude of molecular viscosity, i.e. if molecular
Schmidt (or Prandtl) number is Sc D O.1/. The equation for SGS diffusivity reads as follows

�sgspj D
�

2kc
K 1=2

�
ıjp � ev

j ev
p

�
, (2.145)

where K is subgrid energy,  is a dimensionless constant (the author used  D 1 for the
calculations), ev

j and ev
p are the direction cosines of the vortex axis and kc is cutoff wave

number. The model requires input of one coefficient,  . Recently, Mattner [71] applied this
model for LES of turbulent mixing layers.

Peng and Davidson [85] investigated Rayleigh-Benard convection in an infinite vertical
channel (infinite cavity). Characteristic of this flow types is that the mean temperature gradient
vanishes in the streamwise direction, which means that the conventional SGS models, which
are based on the linear subgrid-scale diffusivity assumption, will give a zero SGS heat flux
in this direction. This is, however, contrary to the experimental investigations which showed
that the resolved turbulent heat flux component in this direction is considerably larger than in
the wall-normal direction. In order to improve modeling of subgrid-scale heat flux, particularly
for Rayleigh -Benard convection problem, Peng and Davidson [85] developed a dynamic non-
linear SGS heat flux model where the SGS viscosity is represented by a tensor. The idea of
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Peng and Davidson [85] was to represent the SGS heat flux by a term which is proportional
to the production term of the SGS heat flux transport equation. This production term includes
shear production and buoyancy production. Moreover, the buoyancy production includes the
subgrid-scale scalar variance, which is not known and therefore requires additional equation.
The authors have concluded that such kind of modeling would result in a very complicated
implicit algebraic formulation for SGS heat flux vector since the model invokes more than
one coefficient that has to be determined. Hence, the authors have simplified the equation
for SGS heat flux by excluding the production terms due to the buoyancy and large scale
velocity gradient. The only production term which is left, the production due to the large scale
temperature gradient, is modified by considering only the deviatoric part of the SGS stress
tensor. SGS time scale is defined in terms of filter size and SGS viscosity. Finally, the following
model for SGS heat flux is proposed:

qi D Ct N�
2 NSij

@ N�

@xj
, (2.146)

where Ct is a model coefficient which can be determined dynamically:
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, (2.147)
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and Pj is given in Eq. (2.71). The proposed model provides non-zero SGS heat flux in the
streamwise direction even in the case of zero temperature gradient.

The model is tested a posteriori for a buoyant flow in an infinite vertical channel with
differentially heated side walls and the results are compared with those obtained by using
a scalar SGS diffusivity model. Two models produced almost identical results for the mean
velocity and temperature as well as for their fluctuations. The only significant difference was
in the streamwise component of velocity fluctuations and SGS heat flux where the proposed
model gave better prediction. Since the Smagorinsky model was used in both cases, the
analysis showed that the modeling of SGS heat flux also affects the large scale velocity field.
A disadvantage of the model is that, even if it is proposed for buoyancy driven flows, the
production term due to the buoyancy is excluded.

The tensor SGS thermal diffusivity in the model of Peng and Davidson [85] is a linear
homogeneous function of the resolved strain rate tensor and large scale temperature gradient.
By applying a theory of tensor invariants and tensor functions, Wang et al. [109] developed a
new model, where the SGS heat-flux is described as a vector function of a strain rate tensor,
NSij , rotation rate tensor, N�ij and gradient of large scale temperature field, @ N�=@xj . According
to Wang et al. [109], SGS heat flux can be generally expressed as

qj D �0
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, (2.149)

where �ii are model coefficients which can be constructed from large fields. Terms on the
right-hand side represent zeroth, first and second order terms. However, Wang et al. [109]
stated that it is inefficient to solve Eq. (2.149) because there are six independent terms and
six model coefficients that have to be calculated. Hence, the authors simplified Eq. (2.149) by
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excluding the second order terms, which reduced the nonlinear equation to the linear one. As
a result, an expression for SGS is diffusivity is proposed

�sgsjk D f
�
NSjk , N�jk

�
D C�E N�

2
j NAjıjk C C�S N�

2 NSjk C C�W N�
2 N�jk , (2.150)

where NAij represents large scale velocity gradient, NAij � @ Nui=@xj , and C�E , C�S , C�W are
model coefficients which can be calculated dynamically. Furthermore, the authors showed
that some of the linear SGS diffusivity models and mixed models for SGS heat flux can be
derived from the model proposed here. The model was tested for the case of mixed convection
in an infinite vertical channel at friction Reynolds number of Re� D 150 and Grashof number
Gr D 9.6�105 and it is compared with the standard dynamic scalar SGS diffusivity model. The
comparison showed that both models produce similar results for the mean large-scale velocity
and temperature fields as well as for for the velocity and temperature fluctuations. The distinct
difference between two modeling approaches exists only at the SGS scales. Again, same as
the model proposed by Peng and Davidson [85], the model proposed by Wang et al. [109]
also does not include buoyancy effects. Because of the rotation rate tensor, which is directly
included in the SGS diffusivity, the model might be suitable for rotational flows.

Further variations of the model (2.150) are proposed by Wang et al. [110] in the same
year. The first of the proposed models, called dynamic full linear tensor diffusivity model, is
basically the same as Eq. (2.150) with the difference that the rotational term is excluded.
In the second model, complete and irreducible dynamic nonlinear tensor diffusivity, the Noll’s
formula is applied to construct subgrid-scale heat flux as a vector-valued function of strain rate
tensor, large-scale temperature gradient and square of the strain rate tensor. This formulation
yields a quadratic nonlinear tensor SGS diffusivity:

�sgsjk D C�E N�
2
j NSjıjk C C�S N�

2 NSjk C C�N N�
2
NSji NSjk

jSj
. (2.151)

Model coefficients C�E , C�S and C�N are calculated dynamically.

More general class of models for SGS tensor diffusivity can be constructed by considering
the SGS stress tensor instead of resolved strain rate tensor. Wang et al. [111] proposed
three new models for SGS tensor diffusivity based on the SGS stress tensor: homogeneous
linear, full linear and quadratic SGS tensor diffusivity model. The homogeneous linear model
represents the extension of the original relation of Daly and Harlow [15] for modeling the
turbulent heat flux in RANS. Within the frame of LES, SGS tensor diffusivity is modeled as

�sgsjk D C�GT ��jk , (2.152)

in which T represents time scale, C�G is model coefficient and ��jk is deviatoric part of SGS
stress tensor. Model coefficient is obtained from the dynamic procedure. Instantaneous value
of SGS tensor diffusivity calculated from Eq. (2.152) can locally become negative which is
considered by the authors as a backscatter of scalar energy from the subgrid to large scales.

The second proposed model by Wang et al. [111] is a full linear SGS tensor diffusivity
model. It represents some kind of combination between simple SGS scalar diffusivity (which
is a function of SGS stress tensor of the zeroth order) and the homogeneous linear model
(which is a function of SGS stress tensor of the first order), Eq. (2.152). The expression for
�sgsjk is same as Eq. (2.151) except that SGS stress tensor �ij is used instead of the large
scale strain rate tensor, NSjk , and last term on the RHS is not considered.

The most general model proposed in [111] is a quadratic SGS tensor diffusivity model.
As well as the model (2.151), the quadratic model for �sgsjk is derived from Noll’s formula in
which the SGS stress tensor is used. If the original Smagorinsky model is used for �ij and
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SGS time scale is evaluated as T D 1=j NSj, then the quadratic nonlinear model, Eq. (2.151),
can be recast from the quadratic model proposed here. Moreover, it is also shown that the
model of Peng and Davidson [85] can be derived from this model. Validation of the models
has been performed using two test cases of fully developed turbulent channel flow where the
temperature behaves both as a passive and an active scalar.

Recently, Rasam et al. [93] proposed an explicit algebraic model for subgrid-scale scalar
flux. The model represents an extension of the previous work of Marstorp et al. [69], who
developed an explicit subgrid-scale stress model which involves the strain rate and rotation
rate tensors. The model proposed by Rasam et al. [93] includes resolved strain rate and
rotation rate tensors, resolved scalar gradient vector and subgrid-scale stress tensor. The
resulting expression for SGS heat flux is an algebraic equation. Since it combines the resolved
and subgrid strain rate tensors and temperature gradient, the model is not necessarily aligned
with the resolved temperature gradient. Because of the rotation rate tensor, the model is
suitable for rotating flows. Tensor SGS diffusivity is calculated from the following equation:
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where Q1 D c2s tr . NS�2ij /C c2�tr . N��2ij / and Q2 D 2
3
c3s tr . NS�3ij /C 2csc2�tr . NS�ij N�

�2
ij /, T is a time

scale and NS�ij and N��ij are resolved strain and rotation rate tensors multiplied by a time scale.
Model coefficients ci are calculated dynamically. The model is validated for the scalar transport
in a channel flow without rotation and with wall-normal rotation at friction Reynolds numbers
Re� D 180 and 590, and it was found to perform better than standard dynamic SGS diffusivity
model.

2.5.3 Mixed models

Mixed models combine standard linear scalar diffusivity models with some other model, usu-
ally scale similarity or nonlinear (tensor SGS diffusivity) models.

Following the idea of Bardina et al. [7], Salvetti and Banerjee [96] proposed a mixed dy-
namic model for subgrid-scale heat flux which combines standard gradient diffusion and the
scale similarity models. As a result, the following expression for SGS heat flux is proposed:
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where qL
k represents the resolved part of the SGS heat flux:

qL
k D N�.

b
Nuk N� � ONuk

ON�/, (2.155)

which can be directly calculated.

As well as SGS Prandtl number, the model coefficient h is also determined dynamically.
The model was tested only a priori using DNS data for fully developed turbulent incompressible
and compressible flows. Further tests, both a priori and a posteriori are given in Jiménez et al.
[48].

A mixed model, based on the idea of Bardina et al. [6, 7], which combines scalar and
tensor SGS diffusivity models is investigated in Porte-Agel et al. [89, 90]. The model has
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favorable features of both models: it is dissipative enough due to the scalar SGS diffusivity
part, and the due to the nonlinear part, the model is able to account for backscatter of energy
which can be of high importance. SGS heat flux is calculated as follows
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h
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�2jSj
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��2
@ Nui

@xk
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, (2.156)

in which
h
Pr�1sgsC2s

i�
and ŒCnl �

� are model coefficients which can be calculated dynamically.
The model is suitable for atmospheric surface layer research where the traditional scale SGS
diffusivity models fail to predict SGS flux and dissipation of temperature variance mainly due to
their fully dissipative nature and inability to provide backscatter (whose existence is confirmed
by experimental measurements).

2.5.4 Conclusions

Literature review revealed that most of the modeling in LES are focused on the forced convec-
tion. Only a small number of proposed models include buoyancy effects, but all of them are
actually based on the model of Eidson [22], where the buoyancy effects are included in the
production term of the subgrid-scale kinetic energy, which is assumed to be balanced by the
dissipation rate of k . The Eidson’s model is improved by introducing the dynamic procedure
to calculate the Smagorinsky coefficient and SGS turbulent Prandtl number (C D 0.21 and
Prsgs D 0.4 are used in [22]). However, application of dynamic procedure to calculate model
coefficients resulted in numerical instabilities, Wong and Lilly [115]. Moreover, the inclusion of
buoyancy effects only in the production term of turbulent kinetic energy may be insufficient.

To the authors knowledge, all models in the known literature that are using some kind
of anisotropic SGS diffusivity are constructed without considering the buoyancy force. In the
work of Peng and Davidson [85] buoyancy production term was excluded since, according to
the authors, it would result in a complicated system of equations. Other external forces, like
system rotation, are included in the works of Wang et al. [109] and Rasam et al. [93].

In the mixed model of Salvetti and Banerjee [96] one part of the SGS heat flux is assumed
to be proportional to the resolved heat flux vector. Model of Porte-Agel et al. [89, 90] repre-
sents combination of scalar and tensor SGS diffusivity. However, in both models buoyancy
production term is not considered.

An alternative approach to model subgrid-scale heat flux is to provide an expression which
includes also the buoyancy production term. In this case, SGS heat flux is represented by an
algebraic relation, which is a common modeling approach in RANS. The model constructed
on this way contains more unknown coefficients: one for each of the terms appearing in the
algebraic relation. In this work, algebraic model for SGS heat flux contains a term based on
the SGD hypothesis and the buoyancy production term. Therefore, the model requires two
coefficients and the dynamic procedure will be used in order to calculate these. Depending
on the constraints imposed on model coefficients, two versions of the model are possible:
volume averaged and locally dependent. In the volume averaged case, it will be assumed that
each of the model coefficients has one unique value for whole computational domain. This
approach is suitable for homogeneous flows, or if fluid temperature variations are small. In
locally dependent version, model coefficients can vary also in space. However, this approach
requires a more complicated mathematical procedure.

Derivations of the dynamic model for Prsgs based on the one equation model for velocity
field, and the new model for subgrid-scale heat flux are given in the next chapter.
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2.6 Numerical Methods

Fundamentals of the numerical methods used in the present work are given in this section. A
detailed introduction on the topic is given in i.e. [17, 25, 46].

2.6.1 Finite volume discretization

In the Finite Volume Method (FVM), the solution domain is divided into a finite number of
control volumes, or shortly cells. Variable values are to be calculated at the center of each
cell, while the values at cell faces are obtained by interpolation. Control volumes can be of
any shape (polyhedral cells), so that FVM is suitable for complex geometries.

The finite volume method is based on the integral form of conservative equation. Conser-
vation equation for a generic quantity � is
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. (2.157)

Here, � is any conserved intensive property, � is a volume occupied by a computational cell
and S represents its surface, En is the surface normal vector and Eu is the fluid velocity. Equation
(2.157) applies to each computational cell. Surface integrals in Eq. (2.157) can be converted
into volume integral by using the Gauss’s divergence theoremZ
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�EndS D
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r�d�, (2.158)

which yields
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Note that the Eq. (2.159) is now written for an arbitrary control volume, VP .

Because the diffusion term includes the second derivative of � with respect to spatial
coordinate, the Eq. (2.159) is of the second order. Hence, the discretization scheme has to
be of at least second order both in space and time.

Let us consider the Taylor series expansion about P
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where H represents the higher order terms. To achieve that discretization scheme is of the
second order we assume that variable � varies linearly around the point P

�.xi/ D �P C .xi � xi P/.r�/P , (2.161)

and in time
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t
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A numerical solution requires that a series of volume and surface integrals need to be
calculated for each control volume. A volume integral can be simply approximated by the
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product of the mean value of the integrand (value at the cell center) and cell volume, which
yields Z

VP

�dV D �PVP , (2.163)

where �P is a value at the cell center and VP is the cell volume. Calculation of surface integrals
is a little bit more complex. Integral over the entire cell boundary is equal to the sum of integrals
over the cell faces Z

S
�dS D

X
k

Z
Sk

�dS, (2.164)

where Sk is k -th surface and index k loops over the each cell surface (four in 2D case, six in
3D, ...). However, in order to evaluate the integral (2.164), a value of � on the cell surface Sk
is required. Unfortunately, only the values �P (at the cell center) are known, so that the values
at cell surfaces have to be approximated. The easiest way to approximate the values at the
cell surfaces is to use the midpoint rule. That is, the integral is approximated as a product of
the integrand at the cell-face center and cell-face areaZ

Sk

�dS � �kSk , (2.165)

where �k is value of the variable � at the center of k -th cell surface and Sk is its area. However,
value of the integrand at the cell-face center �k is not known, so that it has to be approximated
by interpolation.

Approximation of cell-face values

Some of the interpolation schemes that are commonly used in CFD are: upwind, linear and
quadratic upwind interpolations.

In Upwind Interpolation (UDS), a value at the cell-face center is assumed to be equal to
the value at the cell center upstream form the face, depending on the flow direction. This can
be written as

�e D

(
�P if .Eu � En/e > 0
�E if .Eu � En/e < 0

. (2.166)

Here �P and �E are values at cell centers upstream from the face e. Only the first term on the
right-hand side of Eq. (2.160) is retained, which means that this interpolation scheme is of the
first order. Leading truncation error implicitly introduces numerical diffusion into the system,
which significantly violates the accuracy (particularly in LES).

Another simple interpolation scheme is Linear Interpolation (CDS). Here, value at the
cell-face center e is linearly interpolated from the values at the neighboring cell centers, P
and E . Expression for �e reads as follows

�e D �E�e C �P.1 � �e/, (2.167)

where �e is the linear interpolation factor, defines as

�e D
xi e � xi P

xi E � xi P
, (2.168)

where xi are nodal coordinates. This is the second order interpolation scheme.

The value at cell-face center e can be evaluated more accurately by introducing the value
at one more cell center. The additional cell is taken to be on the upstream side from the face
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e. This interpolation scheme is known as Quadratic Upwind Interpolation (QUICK). Value
at the face center �e is calculated as follows

�e D �U C g1.�D � �U/C g2.�U � �UU/. (2.169)

Coefficients g1 and g2 depend on the nodal locations

g1 D
.xe � xU/.xe � xUU/

.xD � xU/.xD � xUU/
, (2.170)

g2 D
.xe � xU/.xD � xe/

.xU � xUU/.xD � xUU/
. (2.171)

Subscripts D, U and UU stand for the downstream, the first upstream and the second up-
stream. This interpolation scheme is of the third order.

Approximation of convection term

Convective term from Eq. (2.159) can be discretized applying the equations (2.158), (2.164)
and (2.165), which yieldsZ

VP

r � .��Eu/dV D
X

k

.ESk � Eu/k .��/k D
X

k

F .��/k , (2.172)

in which ESk is surface-area vector (EnS) of the k -th cell face and F is the volume flux through
the face k .

Approximation of diffusion term

Diffusion term can be discretized on the similar way as convection term. First is the Gauss’s
theorem (2.158) applied to convert volume integral to surface integral. Surface integral over
the control volume is then evaluated as a sum of the surface integrals over the cell faces, Eq.
(2.164). Finally, Eq. (2.165) is used to evaluate each of the integrals over the cell faces.Z

VP

r � .�r�/dV D
X

k

ES � .�r�/k . (2.173)

Approximation of source term

Source term needs to be linearized before discretization:

S�.�/ D Su C Sp�. (2.174)

Afterwards, Eq. (2.163) is applied to evaluated volume integral, which eventually yieldsZ
VP

S�.�/dV D SuPVP C SpPVP�P . (2.175)
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2.6.2 Time integration

Integration over the control volume produces solution only at the one instant in time. However,
in unsteady problems, integration has to be performed also in time. Time integration of Eq.
(2.159) is given asZ tC�t

t

�
@

@t

Z
VP

��dV C
Z

VP

r � .��Eu/dV �
Z

VP

r � .�r�/dV
�

dt

D

Z tC�t

t

�Z
VP

S�.�/dV
�

dt . (2.176)

Convection, diffusion and source terms are replaced with the expressions (2.172), (2.173)
and (2.175) to obtainZ tC�t

t

"�
@��

@t

�
P

VP C
X

k

F .��/k �
X

k

ES � .�r�/k

#
dt

D

Z tC�t

t

�
SuPVP C SpPVP�P

�
dt . (2.177)

Crank-Nicholson Method

This method is based on the trapezoidal rule for approximating the definite integrals. It requires
evaluation of terms at two different time levels. The time derivative and time integral can be
calculated as follows �

@��

@t

�
P
D
�n

P�
n
P � �

n�1
P �n�1

P
�t

, (2.178)Z tC�t

t
�.t/dt D

�n�1 C �n

2
�t , (2.179)

where n � 1 and n represent the first old and the new time steps respectively. Because the
value of � at the new time step is not known, the scheme is implicit and a system of algebraic
equations needs to be solved within a time step in order to calculate a new value. Now,
expressions (2.178) and (2.179) are used in (2.177) to obtained the following discretized form
of the equation:

�P�
n
P � �P�

n�1
P

�t
VP C

1

2

X
k

F .��n/k �
1

2

X
k

ES � .�r�n/k

C
1

2

X
k

F .��n�1/k �
1

2

X
k

ES � .�r�n�1/k

D SuVP C
1

2
SpVP�

n
P C

1

2
SpVP�

n�1
P . (2.180)

In the above equation it is assumed that density and diffusivity do not change in time. Crank-
Nicholson method is the second order accurate in time.

Backward Differencing

In addition to the first old and the new time levels which are required for the Crank-Nicholson
method, Backward Differencing scheme includes also the second old time level. This method
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is also the second order accurate in time. The time derivative at the new time level is calculated
as �

@�

@t

�n

D

3
2
�n � 2�n�1 C 1

2
�n�2

�t
, (2.181)

where n � 2 represents the second old time step (�n�2 D �.t ��t/). Discretized form of the
transport equation (2.177) takes the following form

3
2
�P�

n � 2�P�
n�1 C 1

2
�P�

n�2

�t
VP C

X
k

F .��n/k �
X

k

ES � .�r�n/k

D SuVP C
1

2
SpVP�

n
P . (2.182)

Backward Differencing method is cheaper and easier to implement than the Crank-Nicholson
method, however, it can produce high numerical diffusion which is an issue in LES (see [17]).
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Subgrid-scale heat flux modeling

In this chapter, new model for subgrid-scale heat flux which includes buoyancy production
term is proposed. Derivation of the model is given in Sect. 3.2. In subsections 3.2.2, 3.2.3
and 3.2.4, dynamic procedure is applied to calculate model coefficients. In order to assess
applicability of the dynamic procedure, dynamic model for Prsgs based on the one equation
model for velocity field is also derived. This is given in Sect. 3.1.

3.1 Dynamic Prsgs

Dynamic procedure is well known technique in LES which is very often used to determine
unknown model coefficients. The model for SGS heat flux which is proposed in this work
combines two terms: one which corresponds to the gradient diffusion hypothesis, and one
which includes buoyancy effects. Therefore, the new model contains two coefficients which
have to be determined, and for that purpose the dynamic procedure will be used. Before
applying the dynamic procedure on the new model, it is applied to derive a dynamic model
for Prsgs. The purpose of this is to test the behavior and stability of the dynamic modeling.
First dynamic models for Prsgs have been proposed by Moin et al. [75] and followed by Lilly
[66], and these models were based on the Smagorinsky model for velocity field. In this work,
dynamic model for Prsgs is derived based on the one equation model.

To derive the model for Prsgs, let us start from the filtered energy equation, Eq. (2.64),
which is, for the sake of completeness, given here again:

@. Q�Cp N�/

@t
C
@. Q�Cp Nuj N�/

@xj
D �

@2. Q�Cp N�/

@xj@xj
�
@. Q�Cpqj/

@xj
, (3.1)

where qj represents subgrid-scale heat flux:

qls
j D uj� � Nuj N� . (3.2)

In Eq. (3.2) superscript "ls" stands for "large scales" meaning that the quantity is defined
based on the large scales. Now, the test filter (see 2.3.3) is applied on the Eq. (3.1), and by
direct analogy to SGS heat flux, Eq. (3.2), subtest-scale heat flux is defined as

Qls
j D

cuj� � ONuj
ON� . (3.3)

Since both qls
j and Qls

j cannot be directly calculated, it is necessary to relate these terms to
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the resolved fields, for what the Germano identity, Eq. (2.71), can be applied:

P ls
j D Qls

j � Oq
ls
j D

�cuj� � ONuj
ON�

�
�

�cuj� �
c
Nuj N�

�
D
c
Nuj N� � ONuj

ON� . (3.4)

Term, P ls
j , is called test-window heat flux and it can be explicitly calculated from the large

scales.

As it was mentioned above, subgrid-scale heat fluxes can be modeled by standard gra-
dient diffusion hypothesis, and the one equation model is used for the momentum equation.
Furthermore, it is assumed that there exists a model coefficient, ct , which is a function of
position, such that subgrid-scale heat fluxes at grid and test filter levels can be modeled as:

qca
j D �

ck

Prsgs
�k1=2

@ N�

@xj
D �ct�k1=2

@ N�

@xj
, (3.5)

Qca
j D �

ck

Prsgs
O�K 1=2 @

ON�

@xj
D �ct O�K 1=2 @

ON�

@xj
, (3.6)

ct �
ck

Prsgs
, (3.7)

where � and O� are grid and test filter width and throughout this work a ratio O� D 2� will be
used and superscript "ca" is abbreviation for "closure approximation" meaning that the quantity
is evaluated by using the models. Turbulent kinetic energies at "grid" and "test" levels, k and K
are given in the equations (2.100) and (2.101). Consistency between (3.5) and (3.6) depends
on a proper local choice of ct , see e.g. Lilly [66].

Let an expression relating the closure approximations (3.5) and (3.6) be defined as:

Pca
j D Qca

j � Oq
ca
j D �ct˛j Cbctˇj , (3.8)

where

˛j � O�K 1=2 @
ON�

@xj
, (3.9)

and

ˇj � �k1=2
@ N�

@xj
. (3.10)

Both (3.4) and (3.8) are relating turbulent heat fluxes at two filtering levels and in the case of
ideal modeling these expressions should give the same values, P ls

j D Pca
j . This statement

can be exploited further to derive the equation for ct . The error between (3.4) and (3.8) can
be defined as:

Ej D P ls
j � Pca

j D P ls
j C ˛jct �bctˇj . (3.11)

System of equations (3.11) represents a system of three integral equations in just one un-
known, ct . The optimal solution, which yields the consistency between expressions (3.5) and
(3.6), can be obtained by minimizing the square of the error Ej . In calculus of variations, this
is achieved by finding the extremal function of the functional:

ˆŒct � D

Z
V

Ej.Er /Ej.Er /dEr , (3.12)

where Er is a position vector and integration is over the whole computational domain.
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In general, there are two possible solutions to find ct . First, the more simple way, is to
assume that ct does not depend on position. This will produce a single, volume averaged
constant, which changes dynamically as simulation progresses in time

ct D f .t/. (3.13)

This method will be presented in 3.1.1.

Second possibility is to think of ct as a function of position which will require a solution of
the variational problem (3.12). The model coefficient ct derived in this manner will be locally
dependent but this is to be paid by a more complicated set of equations and harder numerical
implementation.

ct D f .Er , t/. (3.14)

This method is given in 3.1.2.

3.1.1 Volume averaged Prsgs

If we assume that ct does not depend on position, i.e. it has one single value for the whole
computational domain, then the functional (3.12) reduces to a function since ct can be taken
out from the filtering operation in (3.11). The optimal value for ct will be the minimum point of
the function:

F D
Z

V
Ej.Er /Ej.Er /dEr , (3.15)

where Ej is reduced to:
Ej D P ls

j � ctmj , (3.16)

and
mj � �˛j C b̌j . (3.17)

Ej from (3.15) is substituted with (3.16) and after setting the first derivative with respect to ct
to zero:

@F
@ct
D

@

@ct

Z
V

�
.P ls

j /
2
� 2ctmjP ls

j C c2t m2
j

�
dEr D 0, (3.18)

one finally gets the expression for ct :

ct D
hP ls

j mji

hmjmji
, (3.19)

where the angular bracket represents volume averaging. It is easy to see that the second
derivative of (3.15) with respect to ct is always positive which means that (3.19) really repre-
sents the optimal value. Finally, the subgrid-scale turbulent Prandtl number is:

Prsgs D
ck

ct
. (3.20)

The model for Prsgs described with the equations (3.19) and (3.20) is very simple to imple-
ment and it does not require significant increase of computational costs. It’s favorable feature
is self-adaptivity to different flow and heat transfer regimes without any a priori tuning of Prsgs.
Moreover, the model showed stable behavior even when simulations were started from uni-
form internal fields (zero-gradients). Disadvantage of the model might be the fact that Prsgs
has one value for the whole computational domain independent of the local flow and heat
transfer conditions.
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3.1.2 Locally dependent Prsgs

When the model coefficient ct is not a single constant but a function depending on the position,
an extremal function for the functional (3.12) has to be found. This procedure is given in Ghosal
et al. [36] and we are going to use the same technique for this case.

To find the extremal function for the functional (3.12), we set the variation of ˆ to zero:

ıˆŒct � D ı

Z
V

Ej.Er /Ej.Er /dEr D
Z

V

�
ıEj.Er /Ej.Er /C ıEj.Er /Ej.Er /

�
dEr D 0

D 2

Z
V

Ej.Er /ıEj.Er /dEr D 0. (3.21)

Variation of Ej.Er / is defined as:

ıEj.Er / D
@Ej.Er /
@ct.Er /

ıct.Er / D ˛j.Er /ıct.Er / � 4ˇj.Er /ıct.Er /. (3.22)

Introducing (3.22) in (3.21) yields:Z
V

�
Ej.Er /˛j.Er /ıct.Er / � Ej.Er /4ˇj.Er /ıct.Er /

�
dEr D 0. (3.23)

From the the definition of filtering in LES, follows from (3.23):Z
V

�
Ej.Er /˛j.Er /ıct.Er / � Ej.Er /

Z
V

G
�
Er , E�

�
ˇj
�
E�
�
ıct
�
E�
�
d E�
�

dEr D 0, (3.24)

or: Z
V

Ej.Er /˛j.Er /ıct.Er /dEr �
Z

V

Z
V

Ej.Er /G
�
Er , E�

�
ˇj
�
E�
�
ıct
�
E�
�
d E�dEr D 0. (3.25)

Throughout this work the box filter is applied. It is defined as:

G
�
E�, Er
�
´

(
1
�

if jE� � Er j � �
2

0 otherwise
, (3.26)

Because the computational domain is a finite Euclidean space, the following equality holds:

j� � r j D jr � �j ! G
�
E�, Er
�
D G

�
Er , E�

�
. (3.27)

Now, it is possible to interchange Er and E� in Eq. (3.25), which yields:Z
V

Ej.Er /˛j.Er /ıct.Er /dEr �
Z

V

Z
V

Ej
�
E�
�
G
�
E�, Er
�
ˇj.Er /ıct.Er /dErd E� D 0, (3.28)

and after changing the order of integration:Z
V

Ej.Er /˛j.Er /ıct.Er /dEr �
Z

V
ˇj.Er /ıct.Er /

Z
V

Ej
�
E�
�
G
�
E�, Er
�
d E�dEr D 0. (3.29)

Equation (3.29) can be rewritten as:Z
V

�
Ej.Er /˛j.Er / � ˇj.Er /

Z
V

Ej
�
E�
�
G
�
Er , E�

�
d E�
�
ıct.Er /dEr D 0. (3.30)

Equation (3.30) holds when either term in the bracket is zero, or ıct D 0. Since we are
interested in a non-trivial solution, that is, ıct ¤ 0, Eq. (3.30) reduces to:

Ej.Er /˛j.Er / � ˇj.Er /
Z

V
Ej
�
E�
�
G
�
Er , E�

�
d E� D 0. (3.31)
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The integral in Eq. (3.31) represents filtering, so that we can write:

Ej.Er /˛j.Er / D ˇj.Er /1Ej.Er /, (3.32)

and after substituting Eq. (3.11) into (3.32) we get:�
P ls

j .Er /C ˛j.Er /ct.Er / �4ˇj.Er /ct.Er /
�
˛j.Er / D ˇj.Er /

�
8
P ls

j .r /C ˛j.Er /ct.Er / �4ˇj.Er /ct.Er /

�
. (3.33)

Equation (3.33) can be further rearranged as follows:

ct.Er / D �fj.Er /C
1

˛j.Er /˛j.Er /

264˛j.Er /4ˇj.Er /ct.Er /„             ƒ‚             …
A

Cˇj.Er / 3˛j.Er /ct.Er /„             ƒ‚             …
B

�ˇj.Er /
44ˇj.Er /ct.Er /„             ƒ‚             …

C

375 , (3.34)

fj.Er / D
1

˛j.Er /˛j.Er /

�
P ls

j .Er /˛j.Er / � ˇj.Er /
1P ls

j .Er /
�

, (3.35)

where fj.Er / can be explicitly evaluated from the large scales.

Further, Eq. (3.34) may be expressed as Fredholm integral equation of the second kind:

A D
Z

V
G
�
Er , E�

�
˛j.Er /ˇj

�
E�
�
ct
�
E�
�
d E�, (3.36)

B D
Z

V
G
�
Er , E�

�
ˇj.Er /˛j

�
E�
�
ct
�
E�
�
d E�, (3.37)

C D
Z

V
ˇj.Er /ˇj

�
E�
�
ct
�
E�
� Z

V
G
�
E�, Er
�
G
�
E�, E�
�
d E�d E�, (3.38)

which finally gives:

ct.Er / D �fj.Er /C
Z

V
H
�
Er , E�

�
ct
�
E�
�
d E�, (3.39)

H
�
Er , E�

�
D

1

˛j.Er /˛j.Er /
�
HA
�
Er , E�

�
C HA

�
E�, Er
�
� HB

�
Er , E�

��
, (3.40)

HA
�
Er , E�

�
D G

�
Er , E�

�
˛j.Er /ˇj

�
E�
�
, (3.41)

HB
�
Er , E�

�
D ˇj.Er /ˇj

�
E�
� Z

V
G
�
E�, Er
�
G
�
E�, E�
�
d E�. (3.42)

Equation (3.39) can be solved by applying the method proposed by Ghosal et al. [36].
When applied on (3.39), this methods yields the following iteration scheme:

cn
t .Er / D

1

1 � �g.x/

�
�fj.Er /C

Z
V

H
�
Er , E�

�
ct
�
E�
�
d E� � �g.x/cn�1

t .Er /
�

, (3.43)

where, for a top-hat filter:

g.Er / D
2˛ij.Er /ˇij.Er / � ˇkl.Er /ˇkl.Er /

˛mn.Er /˛mn.Er /
. (3.44)

However, Piomelli and Liu [86] reported that the iterative scheme (3.43) - (3.44) leads to a
significant increase of the computational time. Therefore, this method is not considered here.

A simple and easy to implement way to solve Eq. (3.34), is to replace ct.Er / on the RHS of
the equation with a value which is assumed to be known. This yields:

cn
t .Er / D �fj.Er /C

1

˛j.Er /˛j.Er /

h
˛j.Er /4ˇj.Er /c�t .Er /C ˇj.Er /4˛j.Er /c�t .Er /

�ˇj.Er /
44ˇj.Er /c�t .Er /

�
, (3.45)
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where c�t .Er / has to be determine yet. There are various ways to obtain c�t .Er / and some of
them are given in [86]:

1. Use the value from the previous time step:

c�t .Er / D cn�1
t .Er /. (3.46)

2. Estimate the value:

c�t .Er / D cn�1
t .Er /C�t

@ct.Er /
@t
C : : : , (3.47)

where �t is a time step.

3. Iterative scheme: use a value for c�t .Er / from the previous time step and then solve
(3.45). Afterwards, within the same time step but in the second inner-iteration, a newly
calculated value for c�t .Er / is used instead of c�t .Er / to solve (3.45) and iteration process
is repeated until convergence is reached.

Since the second and third methods would require additional computational cost, we approx-
imate c�t .Er / by using the value from the previous time step. As a result, implementation of
Eq. (3.45) is very simple and without significant increase of computational effort compared to
volume averaged method (see 3.1.1).

The model coefficient obtained by solving the Eq. (3.45) locally depends on the flow field
and heat transfer. If in some regions of the flow field values for ct.Er / become very high, which
may cause stability problems, local averaging over the neighboring grid points can be applied.
These extreme situations are likely to occur if simulation is started from uniform velocity and
temperature fields.

3.2 Dynamic subgrid-scale heat flux model

In this section, a dynamic model for subgrid-scale heat flux, based on the transport equation,
is proposed. In the first part of the section, 3.2.1, we propose an algebraic model for subgrid-
scale heat flux. In the second part, 3.2.2, dynamic procedure is applied once again to calculate
model coefficients c1 and c2. Same as for Prsgs, model coefficients can be treated as volume
averaged, or locally dependent.

3.2.1 Model for subgrid-scale heat flux

Transport equation for the subgrid-scale heat flux can be derived from momentum and energy
equations and it reads as follows:
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@u0i
@xj

. (3.48)

As it was mentioned before, the simplest model for u0i �
0 is the one based on the simple

gradient diffusion hypothesis which is commonly used in CFD for both RANS and LES. It is well
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known from the literature, e.g. Otic [80], that this method fails to give good prediction for heat
transfer in the conditions where the buoyancy effects are of significant importance. In order to
improve modeling for buoyancy dominated flows, buoyancy effects need to be included in the
modeled equation for SGS heat flux.

If we now examine the transport equation for SGS heat flux, Eq. (3.48), we see that the
buoyancy term includes the temperature variance, � 02, which is a measure for the temper-
ature fluctuations on the same manner as the turbulent kinetic energy is a measure for the
fluctuations of velocity field. This means that, if we want to include the buoyancy term into the
modeled equation for SGS heat flux, we have either to solve the transport equation for tem-
perature variance, which is given by the equation (3.49), or to provide an adequate modeled
expression for it.

@� 02

@t
C Nuj

@� 02

@xj
D �

@

@xj
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02 � �

@� 02

@xj

!
� 2u0j �

0
@ N�

@xj
� 2�

@� 0

@xj

@� 0

@xj
. (3.49)

Double and triple correlations appearing in (3.49) require further modeling which produces
new constants that have to be prescribed or dynamically calculated as the simulation pro-
gresses in time. Unfortunately, this significantly increases both complexity and computational
costs. It is important to keep in mind that LES lays between RANS and DNS and one of the
main characteristics is that the effects of small scales can be estimated by using the models
which are, in general, more simple than the models used in RANS. Since our goal is to pro-
pose a new model for the flows where buoyancy plays an important role and at the same time
keep the model as simple as possible, we skip solving Eq. (3.49) and, instead of that, ap-
proximate temperature variance, � 02, with the expression proportional to the production term.
This approach is widely used, see e.g. Launder [63] who has suggested that the unknown
terms may be modeled by invoking the so called WET (Wealth / Earnings � Time) hypoth-
esis, which states that an unknown term is proportional to it’s generation (production) rate.
Afterwards, this newly obtained expression for buoyancy production is added to the gradient
diffusion model and eventually a new model is proposed. Derivation of the model is shown
through the equations (3.50) to (3.55).

We start from the production term in temperature variance equation, Eq. (3.49), which
reads as follows:

P� D �2u0j �
0
@ N�

@xj
. (3.50)

Production of SGS heat flux due to the buoyancy effects is given by the following term:

Pˇ D �ˇgi� 02. (3.51)

Temperature variance in equation (3.51) is replaced with the term proportional to (3.50) and
multiplied by a constant of proportionality. In addition, dimensional analysis is used and new
expression for buoyancy production term is derived:

B D c2�ˇ
gj

jgj
u0j �
0
@ N�

@xj
, (3.52)

where c2 represents a model coefficient and � is filter width. Equation (3.52) is subsequently
added to the gradient diffusion approximation, which yields the following expression for SGS
heat flux:
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, (3.53)

which after rearranging the eddy viscosity, �t D ck�
p

k , takes the following form:
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jgj
u0j �
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@ N�
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�
, (3.54)
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where c1 D ck=Prsgs.

Equation (3.54) is implicitly defined and for the numerical implementation SGS heat flux
on the RHS u0j �

0 is replaced by its value from the previous time step. This yields the final
expression for the proposed model for SGS heat flux:

u0j �
0
n
D �

�
c1�
p

k
@ N�

@xj
C c2�ˇ

gj

jgj
u0j �
0
.n�1/ @ N�

@xj

�
. (3.55)

In the above equation, gj , ˇ and u0j �
0
.n�1/

are gravity, coefficient of thermal expansion and
SGS heat flux from the previous time step.

Equation (3.55) is the model for subgrid-scale heat flux for the flows where buoyancy has
significant influence. Depending on the constraints imposed when deriving the dynamic equa-
tions for c1 and c2, these coefficients can take either single values for the whole computational
domain, or alternatively, they can vary locally. In both cases, model coefficients are calculated
dynamically in time. Derivation of the dynamic equations for c1 and c2 is given in the succeed-
ing subsections. Application of the model is given in the next chapter.

3.2.2 Determination of model coefficients

To close the model for SGS heat flux, Eq. (3.55), once again the well known dynamic proce-
dure is applied. Unlike the dynamic model for subgrid-scale turbulent Prandtl number, where
only one model coefficient, ct , was unknown, in this case there are two unknown model coef-
ficients, c1 and c2.

In particular, there are two different approaches to determine c1 and c2. First approach
would be to treat c1 and c2 independently of each other: c1 is derived by assuming that c2 D 0
and vice versa. This yields two dynamic equation: one for c1 and the other for c2, where the
equation for c1 is exactly the same as the equation for ct , Eq. (3.19). When deriving the
equation for c2, instead of (3.9) and (3.10) one has to use:

˛j2 � 2�ˇ
gj

g
Qn�1

j
@ ON�

@xj
, (3.56)

and

ˇj2 � �ˇ
gj

jgj
qn�1

j
@ N�

@xj
. (3.57)

This approach will be called uncoupled and final forms of the equations for c1 and c2 will be
given later in this section.

In the second approach, equations for c1 and c2 are derived in a coupled manner which
means that no additional assumptions are introduced (it is not necessary to set one coefficient
to zero when determining the other one). Behavior of the model coefficient c1 is explicitly
influenced by c2 and vice versa. As a result, a system of two linear algebraic equations whose
solution yields c1 and c2 is obtained. Derivation of the model is given next.

By following the same procedure as for the determination of the subgrid-scale turbulent
Prandtl number (see Sect. 3.1), and using the new model for closure approximation, (3.55),
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subgrid-scale heat fluxes at grid, qca
j , and test filter level, Qca

j , are given as follows:
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, (3.58)
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When applied on the equations (3.58) and (3.59), Germano identity, [34] yields the following
expressions which relate SGS heat fluxes at two filtering levels:
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Again, the "error" between test window heat fluxes, Eq. (3.4), and closure approximations,
equations (3.58) and (3.59) is introduced:

Ej D P ls
j � Pca

j D P ls
j �

h
�c1˛1 C bc1ˇ1 � c2˛2 C bc2ˇ2

i
. (3.63)

In general case both c1 and c2 are functions of position and in order to find functions c1 and
c2 which make functional ˆ stationary (minimize the error):

ˆŒc1, c2� D
Z

V
Ej.Er /Ej.Er /dEr , (3.64)

one has to solve two Euler-Lagrange equations (see e.g. [9], [5]). Same as it was done for
subgrid-scale turbulent Prandtl number, there are two possibilities to determine c1 and c2.
First possibility is to assume that constants do not depend on position, which reduces the
functional ˆ to a function of two variables. In this case are the model coefficients functions
only of time

c1 D f .t/, c2 D f .t/. (3.65)

This approach is presented in 3.2.3.

Second possibility is to treat c1 and c2 as functions which depend on both position and
time

c1 D f .Er , t/, c2 D f .Er , t/. (3.66)

Locally dependent approach is given in 3.2.4.

3.2.3 Volume averaged model coefficients

First, let impose a constraint that model coefficients do not depend on the position. This is
a strong assumption which can be justified for homogeneous flows. By doing so, both model
derivation and later numerical implementation are significantly simplified.

If c1 and c2 are spatially independent, then these can be taken out from the filtering oper-
ation in (3.63) and functional (3.64) reduces to a function of two variables:

F .c1, c2/ D
Z

V
Ej.Er /Ej.Er /dEr . (3.67)
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Optimal values for c1 and c2 are those that minimize the function F .c1, c2/. Because the test
filter in (3.63) does not affect the model coefficients, error Ej is now:

Ej D P ls
j � c1mj1 � c2mj2, (3.68)

mj1 D Ǒ1 � ˛1, mj2 D Ǒ2 � ˛2, (3.69)

and ˛1,˛2,ˇ1 and ˇ2 are given by (3.61) and (3.62). Expression (3.68) is substituted in (3.67)
to give a function:

F .c1, c2/ D
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V

�
P ls2

j .Er / � 2c1mj1.Er /P ls
j .Er / � 2c2mj2.Er /P ls

j .Er /

C 2c1c2mj1.Er /mj2.Er /C c21m2
j1.Er /C c22m2

j2.Er /
�

dEr . (3.70)

Afterwards, first derivatives with respect to c1 and c2 are set to zero, @F .c1,c2/
@c1

D 0 and
@F .c1,c2/
@c2

D 0, which gives following relations for model coefficients:

c1 D
hP ls

j mj1 � c2mj1mj2i

hmj1mj1i
, (3.71)

c2 D
hP ls

j mj2 � c1mj1mj2i

hmj2mj2i
, (3.72)

where hi represents volume averaging. Mode coefficients calculated on this way represent the
optimal values since the second derivatives of F .c1, c2/ with respect to c1 and c2 are always
positive.

Equations (3.71) and (3.72) represent a system of two linear equations with two unknowns.
Written in matrix form, the system of equations is:24 1

hmj1mj2i

hmj1mj1i
hmj1mj2i

hmj2mj2i
1

35 � �c1
c2

�
D

24 hP ls
j mj1i

hmj1mj1i

hP ls
j mj2i

hmj2mj2i

35 . (3.73)

Since the numbers of unknowns and and equations are same, the system of linear equations
(3.73) has an unique solution which is found by applying the Gaussian elimination. Model
coefficients evaluated by solving the system (3.73) have a single values for the whole flow
field. Those values are changing dynamically in time and if we considered a steady state
case, they will tend to some constant values if the simulation has progressed long enough
in time. Furthermore the model is self-adaptive to the heat transfer regime (forced or mixed
convection) by adjusting c1 or c2. For example, if the considered case is a purely forced
convection, c2 will become less important, reducing the model to the simple gradient diffusion
model with dynamically calculated subgrid-scale turbulent Prandtl number. The fact that the
model coefficients have "global", but not the "local" values is a drawback which can become
important if the flow has strong local variations of flow and temperature fields. This problem is
solved by not using the constraint that model coefficients do not depend on position and this
is given in the next subsection.

Uncoupled case

Second possibility to derive the equations for model coefficients c1 and c2 is to treat them
independently of each other. This means that we have to set one of the coefficient to zero
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in order to derive the equation for the other and vice versa. Derived on this way, model
coefficients do not explicitly affect each other. If this is the case, for c1 Eq. (3.19) can be used:

c1 D
hP ls

j mji

hmjmji
, (3.74)

where P ls
j and mj are given by Eq. (3.4) and Eq. (3.17) respectively.

Dynamic equation for c2 has the similar form:

c2 D
hP ls

j mj2i

hmj2mj2i
, (3.75)

where Eq. (3.69) determines mj2.

3.2.4 Locally dependent model coefficients

If the problem of interest is characterized by some kind of complex geometry and it includes
phenomena like flow separation and reattachment, turbulent mixing, transition to turbulence,
etc., which is very often the case in real engineering problems, local variations of c1 and c2
need to considered.

Since in this case we have two independent variables, two model coefficients, the value of
the functional (3.64) depends on both c1.Er / and c2.Er /, and in this case we will have to solve
two Euler-Lagrange equations, one for each unknown. By carrying out the derivation similar
to the one we used to determine locally dependent Prsgs (see 3.1.2), we derive the equations
for locally dependent c1.Er / and c2.Er /.

To find the extremal functions that make the functional (3.64) stationary, variations of model
coefficients are set to zero:

ıˆjc1 D 0 ^ ıˆjc2 D 0. (3.76)

These two conditions lead to the aforementioned two Euler-Lagrange equations. Complete
derivation for the case of one dependent variable (locally dependent subgrid-scale turbulent
Prandtl number) is given in 3.1.2 and it would be tedious to repeat the similar procedure here.
Hence, we skip the derivation and write down the final forms of the equations for c1.Er / and
c2.Er /:

cn
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�
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#
, (3.77)
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6˛j2.Er /cn�1
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66ˇj2.Er /cn�1

2 .Er /

#
. (3.78)

In the above equation, superscript n � 1 represents the previous time step, and ˛j1, ˛j2,
ˇj1 and ˇj2 are given in (3.61) and (3.62). Nonhomogeneous parts, fj1 and fj2, known from
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the large scales, are given as follows:
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Equations (3.77), (3.78), (3.79) and (3.80) complete the model. Initial tests shoved that
the model coefficients calculated from the above equation set can experience very strong
variations between neighboring computational cells (especially if the regions with uniform ve-
locity and temperature fields occur within the computational domain). If this happens, than
some kind of local averaging (averaging over the neighboring cells) have to be applied in or-
der to stabilize computation. Alternatively, high variations of c1 and c2 can be limited to some
acceptable range.

In the next chapter, new model for subgrid-scale heat flux is applied to simulate a turbulent
mixed convection test case.
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Results

4.1 Introduction

This chapter is devoted to validation of the dynamic model for subgrid-scale heat flux which is
given in 3.2.1. First part of the chapter, Sec. 4.2, deals with the dynamic model for subgrid-
scale turbulent Prandtl number. Here, the model for Prsgs is applied to simulate a heat transfer
within a T-junction geometry for which purpose the well known Vattenfall benchmark experi-
ment is used as a test case. Goal of this test is to investigate behavior and stability of the
dynamic procedure which is, afterwards, applied to calculate model coefficients of the newly
developed model for subgrid-scale heat flux.

In the second part of the chapter, Sec. 4.3, the dynamic model for subgrid-scale heat
flux will be validated by simulating turbulent buoyant flow and heat transfer. Results will be
compared with the experimental measurements and with the results obtained by using the
standard gradient diffusion model with three different values for Prsgs: 0.1, 0.9 and 2.

4.2 Vattenfall T-junction test case

As a test case for validation of the dynamic model for Prsgs, the well known T-junction bench-
mark experiment, conducted at Vattenfall test facility, Smith et al. [99], is chosen. Since the
main purpose was to calculate model coefficients by applying the dynamic procedure, whose
performances strongly depend on the stability, strong requirements were imposed on the pos-
sible test case. It was required that the test case fulfills some criteria regarding geometry, flow
physics, fluid properties, etc.

� Geometry. Geometry that appears in the real engineering problem considerably differs
from purely academic cases like simple pipes or channels. Unfortunately, complex ge-
ometry causes additional problems for experimental setup and increases costs, hence
the experiments dealing with complex geometry are much rarer than those conducted
on pipes or channels. This problem is even more highlighted when considering DNS
where numerical schemes require additional attention and those kind of simulations are
still a challenging task. T-junction configuration, together with some others like, i. e.
forward and backward facing steps, flows around cylinders or cubes, etc., are usual
choices among researchers. By using this kind of geometry it is possible to reproduce
flow phenomena that are likely to appear in the real world. In a T-junction configura-
tion we have intrusion of one fluid stream into another which leads to unsteady flow
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field. Fluids are usually of different temperatures: higher temperature difference means
higher requirement on the subgrid-scale model.

� Flow physics. In the case of simple geometry configuration, dynamic models will run
smoothly with model coefficients rapidly converging to some constant values. Initial
computations, that have been conducted on a turbulent channel test case, have proved
this statement. In order to test the model in a more rigorous way, it is necessary to
check its behavior if there exists some flow unsteadiness, like flow separation and reat-
tachment, turbulent mixing, transition to turbulence, etc. Flow physics is closely related
to the geometry.

� Fluid properties. Importance of SGS modeling depends on molecular fluid properties.
For example, large thermal diffusivity of liquid metals, which is much larger than kine-
matic viscosity, smears out temperature fluctuations reducing the contribution of SGS
model for a given numerical grid. Vice versa, SGS modeling in the case of water flow
is much more important since low thermal diffusivity (compared to kinematic viscosity)
makes the temperature field to decay slower than the velocity field. Because of that, this
research is focused on test cases with water as a working fluid.

Some of the test cases available in the literature are listed in Tab. 4.1.

Tab. 4.1: List of test cases.

Author Year Method Working fluid
Suzuki et al. [103] 1991 Experiment Water
Meinders and Hanjalic [73] 1999 Experiment Air
Tokuhiro and Kimura [106] 1999 Experiment Water
Miyake et al. [74] 2001 DNS Air
Hattori and Nagano [39] 2004 DNS Air
Nagano et al. [77] 2004 DNS Air
Kruse and von Rohr [60] 2006 Experiment Water
Kawamura et al. [51] 2007 DNS Air
Hosseini et al. [41] 2008 Experiment Water
Walker et al. [108] 2009 Experiment Water
Smith et al. [99] 2011 Experiment Water
Matsubara et al. [70] 2012 DNS Pr = 0.025 to 5.0

Although a large database of turbulent heat transfer exists, it is hard to find a single test
case which fulfills all the requirements mentioned above. The Vattenfall T-junction test case,
Smith et al. [99] is chosen since it deals with water in a complex geometry. Deficiency is the
rather limited temperature measurements, but this is not a critical issue since the main goal
was to test the behavior of the dynamic procedure.

4.2.1 Test facility

The Vattenfall T-junction test facility is described in Smith et al. [99] and here will be given just
a short description with the main parameters. Experimental configuration of the Vattenfall test
facility is given in Fig. 4.1. A high-level reservoir provides a constant flow rate of cold water
which is controled by the flow meter Q2. In order to provide a high quality flow without large-
scale turbulence or secondary flows, a stagnation chamber of diameter 400 Œmm� is mounted
at the inlet of the horizontal pipe. The stagnation chamber is connected to a 10 Œm� long plastic
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pipe section which is followed by a plexiglas section extending 1270 Œmm� upstream of the T-
junction. Diameter of the pipe is 140 Œmm� with the total length exceeding 11.2 Œm� which is
more than 80 pipe diameters, assuring a fully developed velocity profile.

Fig. 4.1: T-junction test rig.

A pump is used to supply the system with hot water which is taken from a 70 Œm3� reservoir
and a flow meter Q1 is used to control the flow rate, automatically adjustable by the control
of the pump’s rotational speed. Same as for the cold water, a stagnation chamber is used to
provide a high quality flow. The stagnation chamber is connected to the more than 2 Œm� long
steel pipe with the inner diameter D1 D 100 Œmm�. Since the length to diameter ratio of the
hot pipe is about 20, a fully developed velocity profile is not achieved.

In Fig. 4.2, a close up of the T-junction test section is shown. Curved surfaces of the pipes
can distort the laser beams and in order to prevent it, each of the three pipes is surrounded
by a rectangular water box. LDA measurements have been taken 3 diameters upstream of the
junction for the cold pipe and 3.1 diameters upstream for the hot pipe. These flow measure-
ments provide inlet boundary conditions for velocity and they confirm fully developed flow for
the cold, and not fully developed flow for the hot water. Finally, the pipe walls are considered
adiabatic.

Fig. 4.2: T-junction test section close up.
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4.2.2 Inlet boundary conditions

Flow rates and temperatures together with Reynolds numbers based on the volumetric flow
rates are listed in Tab. 4.2. The measuring location was 420 Œmm� upstream of the T-junction
for the cold (main) pipe and 310 Œmm� upstream of the T-junction for hot (branch) pipe. A uni-
form distribution of the temperature is assumed and, because of that, just one thermocouple
is used.

Tab. 4.2: Inlet boundary conditions

Temperature ŒıC� Diameter Œmm� Flow rate Œl=s� Re Œ��
Cold pipe 19 140 9.0 79400
Hot pipe 36 100 6.0 107000

A two component LDA system is used to measure velocity in two perpendicular directions:
one in the main flow direction and the other one transverse to the first one. The coordinate
system adopted is shown in Fig. 4.3 and the measured velocity is given in Fig. 4.4, where
Ubulk represents the bulk velocity determined by the volumetric flow rate.

Fig. 4.3: LDA measurements coordinate system.

It must be mentioned that the upstream velocity measurements shown here are actually
the scaled measurements from the previous experiment done by Westin et al. [113] in which

(a) Cold pipe (b) Hot pipe

Fig. 4.4: Velocity upstream measurements.

volumetric flow rates were 12 Œl=s� and 6 Œl=s� for cold and hot pipe respectively. In the present
test, the hot water flow rate is kept the same while the flow rate of cold water is decreased to
9 Œl=s�. Since the cold water velocity profile is fully developed, results from previous experi-
ments are simply scaled. Velocity data shown here are later used as inlet boundary condition
for CFD calculation. From Fig. 4.4, it can be seen that the velocity profile for the hot stream
is not fully developed since the length of the hot pipe is only about 20 diameters. This velocity
profile is almost impossible to reproduce by any kind of inflow boundary conditions and the
discussion on the inflow boundary conditions and influence on the LES results will be given
later in this section.
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4.2.3 Computational setup

Computational mesh The computational mesh is block-structured, generated by Ansys
ICEM CFD, [2]. By using the the block-structured mesh, it is possible to create a fine mesh
in those regions of the domain where high resolution is required and, on the other hand, to
keep the total number of cells at reasonable level. The mesh generated for this test case
consists of 2.2 million cells and it is shown in Fig. 4.5. Meshes with different cell numbers

(a) Cold inlet (b) Junction (c) Hot inlet

Fig. 4.5: Block structured mesh.

have been tested too and it is found out that the one with 2.2 millions was the optimal solu-
tion. Any further increase of mesh number significantly increases computational costs, while
the improvement of the simulation results was small. Computational domain and measuring
locations are shown in Fig. 4.6.

Fig. 4.6: Geometry and computational domain for T-junction test case.

Boundary conditions Boundary conditions for the simulation are defined by the experi-
mental setup. Inlet velocities for the cold and hot inlet are interpolated from the experimental
results shown in Fig. 4.4. Advective boundary conditions are used at the outlet, while a no-slip
boundary condition is set on the walls. A low level of perturbations of the inlet velocity field,
10�5, is used in order to remove errors introduced by interpolating the experimental data.

For temperature, constant values of 19ıC and 36ıC are set for cold and hot inlet respec-
tively. As it was suggested by the experimental setup, it is assumed uniform temperature
distribution for both inlets. No additional perturbations of inlet temperature fields were intro-
duced. Adiabatic boundaries are used for walls. Pressure inlets are zero-gradient, while the
outlet is a fixed value.

66



Chapter 4. Results

(a) Cold inlet (b) Hot inlet

Fig. 4.7: Interpolated velocities at the inlets.

Fluid properties There are two possibilities for choosing the fluid properties: constant, used
in S1 (see Tab. 4.3) and temperature-dependent, used in other simulations. Temperature
dependent fluid properties are calculated from the polynomials constructed by interpolating
the data for water properties which are available in [64], for the temperature range from 15ıC
to 40ıC. Fluid properties are given by the following equations:

�.T / D 662.5C 2.498T � 0.004616T 2, (4.1)

Cp.T / D 6318 � 13.88T C 0.02252T 2, (4.2)

�.T / D 0.03773 � 0.0002263T C 0.0000003447T 2, (4.3)

�.T / D �0.6958C 0.007042T � 0.00000896T 2. (4.4)

In equations (4.1) to (4.4) � is density, Cp - specific heat at constant pressure, � - dynamic vis-
cosity, � - thermal conductivity and T is temperature given in ŒK �. Figure 4.8 shows agreement
between polynomials and data from the literature.

(a) � (b) Cp

(c) � (d) �

Fig. 4.8: Fluid properties.
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SGS model for velocity The dynamic one-equation model, given in Sect. 2.4, is used for
the velocity field. As it was mentioned before, the modeled transport equation for the SGS
kinetic energy is solved and SGS diffusivity is determined by following relation:

�sgs D ck�
p

k , (4.5)

where ck is the model coefficient calculated dynamically. � is characteristic length and it is
calculated as a cube root of a cell volume: � D 3

p
�x�y�z .

In addition, in order to reduce characteristic length scale, �, in the near wall region, van
Driest damping function is applied. This was necessary because the mesh resolution in the
near-wall region is not sufficient to resolve the viscous sublayer, and any further mesh re-
finement would significantly increase computational cost. In OpenFOAM, van Driest damping
function is given as follows:

� D min
�

y
�

C

�
1 � exp

�
�

yC

AC

��
,
3
p

V
�

, (4.6)

where �, C and AC are usually set to 0.41, 0.158 and 26 respectively and V is a cell volume.

SGS model for temperature Three models based on the standard gradient diffusion hypoth-
esis are used to close the temperature equation and they differ in the treatment of subgrid-
scale turbulent Prandtl number. The first one is the standard, constant Prsgs, model with the
value for Prsgs set to 0.9.

In the second model, S2, which is proposed by Otic [81], Prsgs depends on temperature
and molecular fluid properties. In this model, Prsgs is calculated from Eq. (2.143):

Prsgs D
�sgs

�sgs
D

 �
4˛

ˇ

�1=2
Pr4=9

!�1
.

The third model, used in S3, is the volume-averaged version of the dynamic model for
Prsgs, which is derived in Sect. 3.1. Prsgs is determined by the Eq. (3.20). All models are
listed in Table 4.3. Results and discussion follow in the succeeding section.

Tab. 4.3: Models for subgrid-scale heat flux.

Simulation SGS heat flux Prsgs
S1 SGD 0.9
S2 SGD f .T /
S3 SGD dynamic

4.2.4 Results

Before analyzing the results, it would be useful to point out the measuring locations. It
is reported in [99] that velocities were measured at x D 1.6D2, 2.6D2, 3.6D2 and 4.6D2
along two lines perpendicular to the flow: horizontal (�70mm < y < 70mm) and vertical
(�70mm < z < 70mm), but, in the same document, just the measurements at two loca-
tions (x D 1.6 and 4.6) were provided. For temperature measurements, thermo couples were
placed at x D 2D2, 4D2, 6D2, 8D2, 10D2, 15D2 and 20D2. The computational domain used
for this validation is just a little longer than 8D2, see Fig. 4.6, hence the measurements at
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x D 10D2, 15D2 and 20D2 are not considered. For both velocity and temperature, mean and
rms values are provided. Reported uncertainties were 6 � 8% for velocity and 8 � 13% for
Trms. For the mean temperature, a constant uncertainty of 0.03 in terms of the normalized
temperature (T�) is given. Normalized temperature is defined as:

T� D
.T � Tcold /

�T
, (4.7)

where �T D Thot � Tcold .

Results are compared with the experimental measurements and with the results from the
T-junction benchmark which are available in [99, 100]. Results published by other researchers
can be found in, e.g. [27, 38, 47, 52, 78].

Velocity

Prior to the comparison of different models for SGS heat flux, it is necessary to reproduce the
velocity field as close as possible to the experimental measurements. Figure 4.9 shows the
instantaneous and time-average velocity distribution for case S3. Apparent visual differences
of instantaneous velocity field between simulations were not observed.

(a) Instantaneous

(b) Mean

Fig. 4.9: Velocity field for S3 case.

At the first look, a region of recirculation fluid can be observed immediately after the branch
pipe. It emerges as a consequence of the hot stream intrusion and spans to 2�3D2 in the main
flow direction. Directly under this region, is the region with highest velocities, with the highest
peeks up to 1.6m

s , which is about 65% above the bulk velocity. Starting from about 3D2, flow
slowly becomes recovered and towards the end of the computational domain it looks like fully
developed pipe flow. Furthermore, in one of the previous reports, Frank et al. [27] observed
a so-called horseshoe vortex structure forming upstream from the center of T-junction and the
same structures are found in our simulation.

In Figures 4.10 and 4.11, velocity is compared with the experimental measurements and
with the results from benchmark simulations published in [99]. For data comparison, two
benchmark simulations are chosen: BS1 is a high-resolution LES simulation (70.5 million
cells) which showed the best agreement to the experiment, and BS2, which showed also very
good agreement while the mesh size was much closer to the present setup: 5.8 million cells.
Details of these simulations are given in Table 4.4.
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Tab. 4.4: Benchmark simulations chosen for comparison.

Simulation Code Turbulence Mesh
BS1 Fluent LES, Dyn. Smagorinsky 70.5M
BS2 Fluent 6.3.26 LES, Dyn. Smagorinsky 5.8M

Tim averaged values are provided by the experiment, hence it was necessary to average
velocity and temperature fields for long enough time prior to the data comparison. After an
initial flow development period, which took between 4 and 5s, results are averaged in the next
20s of physical time. This averaging time was long enough for mean velocity and temperature
to reach smooth and symmetric profiles, however it was still insufficient for rms values. The
overall rate of change of the rms profiles was too slow to make any further extension of the
simulation time reasonable. The time averaged velocity at x D 1.6D2 is shown in Fig. 4.10 and
4.11. The mean velocity is normalized by the bulk velocity, ubulk D 0.97m

s . Even though results
for z D 0 overpredict measurements, overall good agreement is achieved. Small differences

Fig. 4.10: Mean velocity at x D 1.6D2 and z D 0.

between S1 and S2 and S3 are visible and this is caused by the different fluid properties:
constant fluid properties are used in S1, while temperature dependen fluid properties (see
equations (4.1) to (4.4)) are used in S2 and S3. Differences between S2 and S3 are probably
caused by the small differences in temperature fields. Furthermore, its is shown that mean
velocity field can be reproduced with much coarser mesh than the meshes used in benchmark

Fig. 4.11: Mean velocity at x D 1.6D2 and y D 0.
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Fig. 4.12: Mean velocity at x D 4.6D2 and z D 0.

Fig. 4.13: Mean velocity at x D 4.6D2 and y D 0.

tests.

Figures 4.12 and 4.13 show normalized time averaged velocities at x D 4.6. Again, overall
good agreement with the experiment is obtained. From figures 4.10 to 4.13 it can bee seen
how the flow field recovers from the intrusion of hot water from the branch pipe. RMS values
of velocity fluctuations are given in Fig. 4.14. Nevertheless that small underprediction can be
observed, overall agreement is satisfying.

From figures 4.10 to 4.14 it can be conclude that mean velocity correlates well with the
experimental results and, even more, at some measuring locations agreement is better than
for the benchmark simulations BS1 and BS2.

Temperature

Temperatures are compared in non-dimensional form given by Eq. (4.7). This kind of com-
parison was necessary since, as it was reported in [99], it was difficult to keep constant fluid
temperatures at the measuring locations upstream from the center of T-junction. Thermocou-
ples are placed at four streamwise locations around the pipe wall, defined at the beginning of
this subsection, taking 0ı to be the top wall of the main pipe (y D 0, z D 70 Œmm�) and 90ı

bottom wall (y D 0, z D �70 Œmm�).

Fig. 4.15 (a) to (i) shows development of temperature field for S3 case. Numerical
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Fig. 4.14: RMS of velocity fluctuations at x D 1.6D2 and z D 0.

schlieren technique, given by relation (4.8), is applied to instantaneous temperature field in
order to expose even the smallest non-uniformities in temperature field:

�S D ˇexp
�
�
�rj� j

j� jmax

�
, (4.8)

where ˇ and � are adjustable parameters and subscript max denotes maximum value over
the whole domain. Further details on numerical schlieren, as well as some other visualization
techniques can be found in [37] or [67]. Fig. 4.15 (a) shows the cross-section at 50 Œmm� from
the center of T-junction, after intrusion of hot stream. A clear, sharp border separates cold and
hot stream and it extends within the upper half of the main pipe. At the pipe walls, hot stream
goes further toward the bottom wall, but this protrusion of hot fluid is limited to the thin layer in
the wall vicinity. In figures (b) and (c), the clear border between two streams is still visible but
now it extends to the bottom half of the pipe. Turbulent structures can be observed in the upper
half of the pipe surrounded by the mixing front, while the lower half remains almost without
any indication of turbulence. As a result of interaction between turbulent structures (turbulent
mixing) emerging in the upper part, the mixing front is smeared and in Fig (d) it cannot be
distinguished even though the flow field is still separated. Following recovery of the flow field,
beginning from the x D 4D2 turbulent mixing takes part in the whole flow field and this can
be observed in figures (e) to (h). About x D 8D2, fig (i), temperature field has properties of
fully developed turbulent pipe flow. At the end, it should be mentioned that this analyses is
for instantaneous temperature field obtained from the S3 case. Other two test cases produce
more or less same development of temperature field (in visual sense).

Normalized mean temperatures and rms of temperature fluctuations are shown in Fig.
4.16 from (a) to (h). Results are compared with the experimental measurements and with the
benchmark test BS1. The second benchmark test, BS2, is not available in [99] since it did not
enter top five scores for temperature. Fig. (a) shows the normalized mean temperature, NT�,
at the top wall. All three tested models gave better prediction at x D 2D2, while temperature
at x D 8D2 is overpredicted. Models S2 and S3 give almost the same trend for temperature
curve. In Fig. (e), normalized mean temperature at bottom wall, � D 180ı, is shown. All three
models underpredict wall temperature but the overall trend is reproduced. The temperature
obtained from S2 is closer to the experimental measurements than temperatures produced
by two other models. Case S3, which uses the dynamic model for subgrid-scale turbulent
Prandtl number, showed improvement compared to the standard model with constant Prsgs,
but it fails to reach results of S2. This is probably caused by the fact that S3 uses "global"
version of dynamic Prsgs - it is averaged over the whole computational domain and it fails to
account for the local variations of velocity and temperature. Figures (c) and (g) show results
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(a) x D 0.5D1 (b) x D 1D2 (c) x D 2D2

(d) x D 3D2 (e) x D 4D2 (f) x D 5D2

(g) x D 6D2 (h) x D 7D2 (i) x D 8D2

Fig. 4.15: Numerical schlieren of temperature for S3 case obtained by using Eq. (4.8) with ˇ D 0.8
and � D 15. Darker regions represent higher temperature gradients.

for left, � D 90ı, and for the right main pipe wall, � D 270ı. Same as for the top wall, results
at x D 2D2 are closer to the experimental than the results at x D 8D2 where overprediction
exists. For side walls, S3 produces slightly better results than S2. It is worth noting that the
experimental results show a small asymmetry which can be seen at x D 4D2 and this should
be addressed to the difficulties in keeping the thermal boundary conditions constant. From the
comparison of normalized mean temperatures follows that all three models, S1, S2 and S3
are able to give good prediction for temperature field even with a mesh which contains much
less computational volumes than the mesh used in benchmark simulation BS1.

RMS values of temperature fluctuations at the pipe wall are given in Fig. 4.16: (b), (d),
(f) and (h). At the first look it can be seen that averaging time of 20s is not long enough
because the curves still contain some fluctuations. For further averaging, more than 25s,
overall changes in rms values were too small and it would take a long time before getting
completely smooth curves. Fig. (b) shows rms values at the top wall, � D 0ı. As opposed
to the normalized mean temperature, simulation results at x D 8D2 showed better agreement
to the experiment than the results at x D 2D2. All three models slightly overpredict the
experiment, but the overall trend reproduces the measurements. S1 gave slightly better results
than S2 and S3 which are almost the same. T�rms at the bottom wall, � D 0ı, is given in
(f). Same as for the normalized mean temperatures at the same position, S2 gave the best
results. This can be addressed to the temperature dependent Prsgs which takes the local value
at each computational volume. Again, S3 fails to give better prediction, probably because of
the volume averaging which is implemented in the model. Figures (d) and (h) show T�rms at
side walls of the pipe: left, � D 90ı and right, � D 270ı. S2 and S3 produced almost the
same results and both of the models show good agreement with the experiment, while S1
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(a) NT�, top wall, � D 0ı (b) T�rms, top wall, � D 0ı

(c) NT�, left wall, � D 90ı (d) T�rms, left wall, � D 90ı

(e) NT�, bottom wall, � D 180ı (f) T�rms, bottom wall, � D 180ı

(g) NT�, right wall, � D 270ı (h) T�rms, right wall, � D 270ı

Fig. 4.16: Normalized mean temperature and RMS values of temperature fluctuations at the wall.
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overpredicts the measurements. By comparing these results, it can be concluded that Prsgs
significantly influences results in the bottom part of the main pipe, which can be observed in
(f), while the effects in the upper region are smaller. Hence, when simulating the turbulent
heat transfer in flows where molecular Prandtl number significantly differs from 1, as it was the
case in this experiment, some kind of modeling for Prsgs definitely has to be considered.

Normalized mean temperatures over the cross sections at x D 1.6D2 and 4.6D2 are given
in Fig. 4.17, (a) to (d). Unfortunately, there are no available experimental measurements and
it is possible to compare different models just between each other. The general characteristic
observed here is that the models used in S2 and S3 produce almost similar mean temperature
profiles. On the other hand S1, which uses constant fluid properties, gives somewhat different
profiles and this difference is increasing with the x coordinate.

(a) NT� at x D 1.6D2 and z D 0 (b) NT� at x D 1.6D2 and y D 0

(c) NT� at x D 4.6D2 and z D 0 (d) NT� at x D 4.6D2 and y D 0

Fig. 4.17: Normalized mean temperature over the cross sections.

Bearing in mind the mesh resolution used in present simulations, a satisfactory agreement
with the experimental measurements is achieved. Models based on variable subgrid-scale
turbulent Prandtl number, S2 and S3, show better performance, especially for the rms values.
Furthermore, S2 gives better results for the bottom wall than other two models and this is the
consequence of locally dependent Prsgs which is able to adjust its value depending on the
local fluid temperature.

Since the main purpose of this test case was to validate the dynamic modeling approach,
the primary interest is in S3 case. Results are in satisfactory good agreement with the ex-
periment and improvement over the standard model which uses a constant value for Prsgs is
achieved. However, the most important conclusion is that the dynamic procedure is able to
give good prediction for Prsgs in the conditions of turbulent mixing at high Reynolds numbers
and, at the same time, it showed stable behavior. This means that the dynamic procedure is
suitable for further application to calculate model coefficients in other models for SGS heat
flux.
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Fig. 4.18: Local distribution of Prsgs.

Subgrid-scale turbulent Prandtl number, Prsgs

Figure 4.18 shows the distribution of temperature dependent Prsgs which is used in S2. It
is calculated from Eq. (2.143), which is solved for each computational volume so that the
Prsgs has local distribution. It can be seen that higher values correspond to the higher fluid
temperatures or lower molecular Prandtl numbers (Pr of water decreases with the temperature
increase). Calculated values are in the range between 0.18209 and 0.22342 and this range is
fixed because of the constant inlet temperatures. The difference of 0.04 between minimal and
maximal value is not big, but, the difference between cold and hot stream, �T , is only 19ıC.
It is expected that for higher �T , the temperature dependent Prsgs model will further improve
results in regard to the models based on constant Prsgs.

The dynamic model, which is applied in S3, calculates Prsgs at each time step as simula-
tion progresses and, as it was already mentioned, it is assumed that Prsgs takes one single
value for the whole computational domain. The progress of dynamic Prsgs for the first five
seconds of physical time is shown in Fig. 4.19. The time step used in the simulation was
�t D 0.0001 Œs�, which kept the maximal Courant number under 0.5. It can be seen that first
1�1.5 Œs� of physical time (first 10000 - 15000 time steps) is characterized by strong variations
of Prsgs value with both positive and negative peeks. At the beginning of the simulation, Prsgs
is very low, just above zero. This was expected because internal fields for velocity and tem-
perature were uniform (zero-gradient). The highest negative peek, Prsgs D �2.36648, occurs
at t D 0.0033 Œs�. This is probably caused by the negative value of model coefficient ck , which
could be an indication of backscatter of energy. However, this high negative peek appears at
just on time step while the values around it are about ten orders of magnitude higher. Initial
period of simulation lasts until t � 0.1 Œs� whereupon Prsgs starts to increase monotonically. At
about t � 0.27 � 0.28 Œs�, which corresponds to the beginning of intrusion of hot fluid into the
main stream (the centerline velocity in the hot pipe is ucl � 0.865 Œm=s�), as a consequence
of intense mixing Prsgs starts to increase sharply and at t D 0.3413 Œs� the highest value is
reached: Prsgs D 5.41579. After the highest peek is reached, Prsgs decreases very fast until a
stable value of about Prsgs � 0.3� 0.35 at t � 0.5 Œs�. This part of the simulation, intrusion of
the hot fluid, is the most critical one and high time steps can lead to divergence of the solution.
Since the temperature of internal field was set at the same value as the temperature of cold
stream, 19ıŒC�, collision of two streams, which occurs at t � 0.7 Œs� does not produce strong
variations of Prsgs. Instead of that, Prsgs slowly increases for another second of physical time
and after t � 2 Œs� a stable region is reached. In this region Prsgs oscillates around mean
value NPr sgs D 0.65, which is obtained by averaging Prsgs over the first five seconds. It has to
be mentioned that the beginning of the stable region at t D 2 Œs� agrees to the time suggested
in [99]: t D 2 � 4 Œs�. At t D 5 Œs� averaging of the velocity and temperature fields is started.

At the end of Prsgs analyses, one further stability detail has to be mentioned. If the differ-
ence between hot and cold stream were higher than �T D 19 ŒıC�, the maximal Prsgs would
be higher than the value observed in this test case. Higher peeks means that some kind of
clipping of very high (or very low) Prsgs values might be necessary in order to stabilize the
calculation. Since the region with strong and irregular oscillations of Prsgs is usually limited to
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Fig. 4.19: Prsgs in the first 5 seconds of physical time.

a short period of time with just occasional very low or very high peeks, clipping of Prsgs values
appears to be an attractive solution because it is very simple to implement and fundamental
advantages of dynamic procedure are not affected.

4.2.5 Discussion

The aim of the T-junction test case was to validate the dynamic procedure which is applied in
the dynamic model for Prsgs. The validation is done by comparing the results for velocity and
temperature with the experimental measurements, results from other simulations available in
the literature and with the results obtained by using standard models, case S1, or by using
other models for Prsgs, case S2.

The dynamic one equation model for momentum equation is applied in all three cases.
The only difference was that in S1 constant fluid properties are used while in S2 and S3 fluid
properties depend on temperature. Since the inlet Reynolds numbers were Rec D 79400 and
Reh D 107000, while the temperature difference between two streams was �T D 19 ŒıC�,
the test case is forced convection. This means that different models for Prsgs have minimal
influence on the velocity field, hence difference in velocity results is mainly caused by different
treatment of fluid properties: constant or polynomial. Following conclusions can be drawn
from velocity comparison:

� Overall good agreement to the experimental measurements and results from the litera-
ture, for both mean and rms values is achieved.

� The dynamic model for momentum equation combined with the van Driest damping in
the wall vicinity gives good results even if applied on the meshes with lower resolutions.

Same as for the velocity, the temperature validation is done by comparing the mean and
rms values at the wall with the results from the experiment and literature. In every simulation
a different treatment of Prsgs is used: constant Prsgs is used in S1, temperature dependent
Prsgs in S2 and newly formulated dynamic model for Prsgs in S3. Following the temperature
comparison, the following can be concluded:

� The overall agreement to the existing results is worse than the agreement obtained for
the velocity field. This can be explained by the fact that, since the spectra of temper-
ature field decays slower than velocity field spectra (at the temperatures used in this
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experiment Prandtl number of water is around 7), mesh requirements for temperature
are higher than for the velocity.

� Results for the side walls (� D 90ı and � D 270ı) are better than results for top wall
(� D 0ı). S2 and S3 give very good qualitative agreement for rms values to the experi-
ment, but both models underpredict value at x D 2D2.

� S2 gives better results for the bottom wall than the other two models, while S3 is better
than S1. Since the only difference between S2 and S3 is in Prsgs, it follows that mod-
eling of Prsgs is of high importance. In S3 Prsgs does not vary spatially and this is a
disadvantage over S2.

� Wall mean temperatures and rms values predicted by S3 are in reasonable good agree-
ment with the experimental data.

� The dynamic model for Prsgs is stable despite the strong flow unsteadiness caused by
intrusion of hot fluid.

� The local dynamic model for Prsgs can be applied but it requires some arbitrary clipping
of very high or very low values.

At the end, it can be concluded that the dynamic model for Prsgs is successfully validated.
This gives the basis for further utilization of the dynamic procedure: to calculate model coeffi-
cients for the dynamic subgrid-scale heat flux model which is derived in 3.2.

4.3 Turbulent mixed convection

The new dynamic model for subgrid-scale heat flux is validated in this section. For the valida-
tion purpose chosen is an experiment, where the aiding flow of water along a vertical flat plate
is investigated, Kitamura and Inagaki [55]. The experiment was performed in the region of
high Rayleigh and Reynolds numbers and provides both mean and root mean square values
of velocity and temperature for different inlet and boundary conditions.

Beside the experiment selected for our validation purpose, a number of other experiments
or direct numerical simulations exists in the literature, some of whom are listed in Tab. 1.1.
Experiments and DNSs listed here cover a large range of Reynolds and Grashof numbers and
build up a large database for further validation of the model.

4.3.1 Test facility

A schematic illustration of the experimental facility is shown in Fig. 4.20. A flow of water is
forced through a vertical, rectangular duct of 0.3 � 0.3m2 cross section area and of 3.6m
height. A uniform, vertical flow of maximum turbulent intensity level less than 3% was pro-
vided to the duct inlet. One wall was heated by a uniform wall heat flux which ranged between
1000W=m2 and 7800W=m2, depending on the experimental setup. The heat lost by con-
duction through the heating plate and by the radiation from the heating plate was estimated
to be less than 3.5%. The temperature of the main stream was in the range from 26ıC to
28ıC while the measured temperature of the heated surface was between 30ıC and 46ıC,
depending on the wall heat flux. Inlet velocity and wall heat flux were varied to obtain different
experimental conditions which are given in Tab. 4.5. The inlet temperature was 27ıC for all
experimental configurations. Further details about the experiment are given in [55]. Values in
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Fig. 4.20: Schematic of the test facility.

Tab. 4.5: Experimental conditions.

Run Main ve-
locity,
U1 Œcm=s�

Wall
heat flux,
qw ŒW=m2�

Reynolds
number,
Rez

Grashof
number,
Gr�z

Nusselt
number,
Nuz

Non-
dimensional
parameter
�

Q1 2.6 4000 7.30 � 104 9.98 � 1014 1570 4.70�10�2

Q2 4.4 4000 12.0 � 104 9.89 � 1014 1470 1.30�10�2

Q3 9.6 4000 24.8 � 104 9.75 � 1014 1255 2.12�10�3

Q4 11.2 4000 32.2 � 104 10.1 � 1014 1550 8.80�10�4

U1 4.4 1000 12.0 � 104 2.26 � 1014 910 4.80�10�3

U2 4.4 0 12.3 � 104 0 - 0

the table are given at Z D 3m, where Z represents distance from the inlet in streamwise di-
rection. A non-dimensional parameter which is used by the authors to define the heat transfer
regime (forced, natural or mixed convection) is given by the following relation

� D
Gr�z

NuzRe2.7
z

. (4.9)

Regimes of heat transfer depending on the parameter � are given in Tab. 4.6.

Tab. 4.6: Regimes of heat transfer.

Non-dimensional parameter � Heat transfer regime
� < 4 � 10�4 Forced convection
� > 4 � 10�3 Natural convection
4 � 10�4 < � < 4 � 10�3 Mixed convection
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4.3.2 Computational setup

Experimental configuration Two experimental configuration, Q1 and Q2 (see Tab. 4.5)
were chosen for validation purpose. In both cases, the wall heat flux was qw D 4000W=m2.
Inlet velocities were 0.026m=s in Q1 and 0.044m=s in Q2. Higher inlet velocity in Q2 in-
creases the influence of forced convection which affects the velocity and temperature profiles
near to the wall. All data were reported at the measuring location Z D 3m from the inlet.

Computational mesh The computational mesh used for the simulations is depicted in Fig.
4.21. The number of cells in x , y and z directions are 64, 30 and 200 respectively, while the
total number is 384000. The mesh is refined in the region of heated wall in order to capture
the generation of thermal plumes. The mesh is optimized so that minimum 6 cells lay within
the region of yC < 10, with the first cell being at yC � 0.7.

Fig. 4.21: Computational mesh.

Fluid properties Density, specific heat capacity at constant pressure, dynamic viscosity and
thermal conductivity are determined from second order polynomials constructed by interpolat-
ing the NIST data, [3], for the temperature range between 25ıC and 55ıC:

� D 746.5C 1.95T � 0.00372T 2, (4.10)

Cp D 5320 � 7.356T C 0.01186T 2, (4.11)

� D 0.0234 � 0.0001327T C 1.917 � 10�7T 2, (4.12)

� D �0.861C 0.008122 � 1.073 � 10�5T 2, (4.13)

where T is temperature given in K . Fig. 4.22 shows agreement between the polynomials
(4.10) to (4.13) and NIST data.

SGS model for velocity The dynamic one equation model is applied for velocity field. Full
description of the model is given in Sec. 2.4.

SGS model for temperature Two models are used to close the energy equation. First one
is the model based on the standard gradient diffusion hypothesis (SGD) and subgrid-scale
turbulent Prandtl number approach. Here, three methods for Prsgs are used:
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(a) � (b) Cp

(c) � (d) �

Fig. 4.22: Comparison between calculated fluid properties and NIST data.

� Constant Prsgs. Three different values are used 0.1, 0.9 and 2. Those values are chosen
because the range of Prsgs that can be found in the literature is covered by these three
values.

� Temperature dependent Prsgs. This model is described in 2.5. In this approach Prsgs
depends on temperature.

� Dynamic Prsgs - volume averaged. The model is given in 3.1.1. Prsgs is spatially inde-
pendent.

� Dynamic Prsgs - locally dependent. The model is given in 3.1.2. Prsgs is locally depen-
dent.

The second method to calculate SGS heat flux is the dynamic model which is proposed in
3.2.1. Both approaches to determine model coefficients are tested. The first one, derived in
3.2.3, assumes spatial independent model coefficients, while in the second approach, derived
in 3.2.4, model coefficients are locally dependent.

4.3.3 Results - Case Q1

In this experimental configuration, the inlet velocity was 0.026m=s and wall heat flux was
qw D 4000W=m2.

Experimental data available for comparison are time average and root mean square values
of streamwise velocity component and fluid temperature measured at the streamwise location
of Z D 3m. Velocity and rms values are normalized by the velocity at the duct center, which
is almost the same as the main stream velocity (it is reported by the experimentalists that the
relative difference between the velocities at two locations Z D 0 and 3m is less than 6% even
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Tab. 4.7: Models for SGS heat flux.

Simulation SGS heat flux Prsgs
LES1 SGD 0.1
LES2 SGD 0.9
LES3 SGD 2
LES4 SGD f .T /
LES5 SGD dynamic - averaged
LES6 SGD dynamic - local
LES7 dynamic - averaged -
LES8 dynamic - local -

in the most severe cases, so that the velocity at the duct inlet is adopted as the main stream
velocity, U1). Normalized velocity is given as follows

u� D
u
uc

, (4.14)

where uc is the velocity at the duct center.

The temperature is reported in the form of local temperature difference normalized by the
difference between the wall and free stream temperature (which is same as the inlet temper-
ature):

T� D
T � T1
Tw � T1

, (4.15)

in which T1 is the free stream temperature.

Velocity

Figure 4.23 shows instantaneous and time-averaged streamwise component of the velocity
field obtained form LES7 (see 4.7). Vertical xz plane in the middle of the duct, y D 0, between
the streamwise distances z D 1.5 and z D 3.2m is shown. As a consequence of buoyancy
force generated by density gradients, thermal plumes are developing at the heated wall which
leads to the acceleration of fluid. In the region close to the heated wall, the velocity reaches
its highest values which are, on the average, about 100% higher than velocities in the middle
of the duct.

The streamwise component of the time averaged velocity normalized by the centerline
velocity is shown in Fig. 4.24. Same as in the experiment, it is assumed that the velocity in
the duct center is equal to the inlet velocity, uc D uin D 0.026m=s. Time averaged velocity is
calculated by the Eq. (4.16) (see [1])

N�n
D

Dt � dt
Dt

N�n�1
C

dt
Dt
�n, (4.16)

where Dt is total elapsed time, dt is current time step and superscripts n and .n � 1/ rep-
resent values at current and previous time steps. It can be seen that Prsgs strongly affects
the velocity field. Lower values (LES1 and LES4) lead to the very high overprediction of the
experimental measurements. The results produced by LES1 and LES4 are about 100% and
50% respectively above the measurements. Simulation results were improved for larger Prsgs
values (LES2 and LES3), however results are still about 20% too high.

Simulation results are improved when dynamic models for Prsgs (LES5 and LES6) and for
subgrid-scale heat flux (LES7 and LES8) are used. There was no significant difference among
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Fig. 4.23: Instantaneous and time-averaged streamwise velocity for case Q1.

Fig. 4.24: Time averaged streamwise velocity.

SGS models and simulation results are about 15% above the experimental measurements.
Same as in the experiment, the maximal velocity near the heated wall is about 2 times higher
than the velocity in the duct center.

Temperature

As it was mentioned before, two models, standard gradient diffusion and dynamic subgrid-
scale heat flux model, are used to close the energy equation, see Tab. 4.7. The influence
of different models on the temperature field is investigated by comparing the dimensionless
temperature, Eq. (4.15) with the experimental measurements.

Figure 4.25 shows time averaged temperature distribution in the region close to the heated
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wall. Results show the influence of different Prsgs numbers on temperature field. It can be
seen that lowest value for subgrid-scale turbulent Prandtl number Prsgs D 0.1 (LES1) pro-
duces smallest temperature gradient and by increasing the Prsgs, temperature gradient be-
comes larger. This can be explained by larger subgrid scale thermal diffusivity �sgs, which is
inversely proportional to Prsgs, i.e. lower Prsgs values give higher �sgs:

�sgs D
�sgs

Prsgs
, (4.17)

�eff D � C �sgs, (4.18)

where � is molecular thermal diffusivity. Higher thermal diffusivity better transports heat from
the heated wall into the bulk region thereby smearing the temperature gradient.

Correct temperature profile in the wall region can be obtained by adjusting the Prsgs, how-
ever, this is a rather arbitrary process and the proper choice for Prsgs is not known in advance.
Moreover, a constant Prsgs approach will always influence the large scale temperature field
even though that a SGS model might be unnecessary (i.e. fine mesh or zero temperature
gradient). Model where Prsgs depends on temperature, LES4, gives better results than LES1.

Fig. 4.25: Time averaged temperature distribution for cases LES1, LES2, LES3 and LES4.

However, it seams that Prsgs calculated on this way is still too small which produces smooth
temperature gradient. For the present test case, calculated Prsgs values vary between 0.2 and
0.25 which is about four times smaller than a common choice for Prsgs value, Prsgs D 0.9,
which was used in LES2. Even though that results are much closer to the measurements
than LES1 and LES2, it can be concluded from the results that a further improvement can be
achieved by using larger values for Prsgs. This is shown in LES3. Difference between LES2
and LES3 is very small but it is expected that further increase of Prsgs would produce results
that are even closer to the measurements.

Dynamic models for Prsgs are used in LES5 and LES6, and the models for subgrid-scale
heat flux are applied in LES7 and LES8. Comparison between these models and the one
with Prsgs D 0.9 is shown in 4.26. It can be seen that an improvement over the standard
model is achieved. However, difference between different dynamic models is very small. This
is probably due to the fact that the temperature variations within the water are less than 20ıC.
These temperature variations can be observed only in a thermal boundary layer region which
is, according to the experiment (see [55]), about 30mm thick. It is expected that the difference
between these models would be higher for the larger variations of fluid temperature. This has
to be further investigated for other experiments. All simulations LES5 to LES8 were conducted
without any kind of adjustment of the model coefficients.
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Fig. 4.26: Time averaged temperature distribution for cases LES2, LES5, LES6, LES7 and LES8.

The root mean square values of temperature fluctuations are calculated as follows (see
[1]):

�02
n
D

Dt � dt
Dt

�02
n�1
C

dt
Dt
�2 � N�2, (4.19)

�rms D

q
�02, (4.20)

where � is a free variable and represents temperature in this case. Furthermore, � can be
replaced by any scalar or vector variable.

Figure 4.27 shows temperature rms values for different Prsgs numbers compared with the
experimental measurements. Again, the difference between different Prsgs numbers is obvi-
ous. Differences are particularly highlighted at the wall. Same as for the mean temperature,
LES2 (Prsgs D 0.9) and LES3 (Prsgs D 2) produce almost similar results which are lower than
measurements. LES1 overpredicts the experiment over the whole thermal boundary layer
region. Model with temperature dependent Prsgs (LES4) overpredicts the measurements in
the region close to the wall x < 3mm. Away from the wall, x > 3mm, agreement with the
experiment is very good.

Fig. 4.27: RMS of temperature fluctuations for case LES1, LES2, LES3 and LES4.

Dynamic models together with LES2 are shown in Fig. 4.28. Simulation results overpredict
the measurements at the wall and underpredict the measurements in the region 3 < x <

20 Œmm�. Difference between models can be observed only close to the wall, x < 3mm.
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Models LES5, LES7 and LES8 correctly predicts the peak value, which is, however, shifted
closer to the wall than in the experiment; xsim � 1.25mm compared to xexp � 2.5mm. Again,
small temperature variations are probably the reason why the dynamic models for Prsgs and
SGS heat flux produce very similar results.

Fig. 4.28: RMS of temperature fluctuations for cases LES2, LES5, LES6, LES7 and LES8.

Due to buoyancy force, thermal plumes are developing at the heated wall as can be seen
in Fig. 4.29. Six cross sections normal to the flow direction at the streamwise locations z D 1,
1.5, 2, 2.5, 3 and 3.5m are shown. Again, here is the numerical schlieren technique (see
Eq. (4.8)) applied in order to expose even the smallest temperature gradients. Darkest values
correspond to the highest temperature gradients. We can see that the temperature gradients
exist only in the region near the wall, while in the outer region temperature field stays uniform
over the whole duct length. At the streamwise position Z D 3m, temperature gradients extend
only until x < 100mm.

(a) z D 1m (b) z D 1.5m (c) z D 2m

(d) z D 2.5m (e) z D 3m (f) z D 3.5m

Fig. 4.29: Development of thermal plumes along the heated wall.
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Wall temperatures at location Z D 3m are listed in Tab. 4.8. It is interesting to note that
the model with lowest Prsgs, LES1, gives highest wall temperature, see also Fig. 4.30. This is
a consequence of ineffective heat transfer (small Nusselt number). Other simulations produce
wall temperatures that are close to each other, between NTw D 311.6K and NTw D 312.4K .

Fig. 4.30: Time-averaged wall temperatures for different simulations.

Local Nusselt numbers are shown in Fig. 4.31. They are calculated from the following
equation:

Nuz D
hZ
�f

, (4.21)

where �f is thermal conductivity evaluated at the film temperature, Z is distance in the stream-
wise direction (flow direction) and h is heat transfer coefficient

h D
qw

.Tw � Tf /
. (4.22)

Local Nusselt numbers at the measuring location, Z D 3m, are given in Tab. 4.5. For the
experimental configuration Q1, local Nusselt number is Nuz D 1570. Simulation LES4 was
closest to this value, Nuz � 1620, however, the mean temperature distribution predicted by
this model was very poor. All dynamic models showed improvement over LES2 where the
standard value for Prsgs was used. The highest difference between different dynamic models
was in the region 1.5m < Z < 2m. The dynamic models for SGS heat flux, LES7 and
LES8, produce slightly lower Nusselt numbers than dynamic models for Prsgs. Since the
only difference between these two type of models is the buoyancy production term which is
explicitly included in LES7 and LES8, we conclude that the buoyancy effects are the main
reason for such a behavior of local Nusselt number.

Model coefficients

Figure 4.32 shows dynamic Prsgs obtained from LES5 for the first 2000 seconds of physical
time. Since the simulation was started from previously developed velocity and temperature
fields, high oscillations of Prsgs have not been observed. Highest value was Prsgs D 10.2
which appeared at t D 1710.2 s. Averaged value for the first 2000 s was NPr sgs D 7.51.
This value is much higher than values that are commonly used in LES, which is, among other
things, a consequence of the buoyancy effects. It is expected that with an increase of buoyancy
force, or decrease of inlet velocity, Prsgs will further increase. Further simulations showed that
higher inlet velocities (lower influence of buoyancy force) reduced Prsgs. However, it has to
be mentioned that Prsgs is not only a function of buoyancy, but also of the mesh resolution.
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Fig. 4.31: Local Nusselt numbers at the heated wall for different simulations.

Fig. 4.32: Dynamic behavior of Prsgs.

Different meshes yield different values for Prsgs. Mesh dependency for Prsgs will not be studied
here.

Dynamic behavior of time dependent model coefficients c1 and c2 for the first 2000 s of
physical time are shown in Fig. 4.33. Strong oscillations of both c1 and c2 are limited to
the firs 50 � 100 seconds and after that initial period both coefficients approach and slightly
oscillate around some mean values. This initialization period corresponds to approximately
one flow-through time (residence time).

In the present case it is found that c1 approaches and oscillates around 0.00016 and c2
around 0.38. These oscillations of model coefficients did not affect computational stability so
that the clipping of c1 and c2 was not necessary. In extreme cases, if the oscillations of model
coefficients are very strong and frequent so that the computational stability is violated, further
clipping of c1 and c2 values can be applied. Since the values of c1 and c2 are not known in
advance, maximal and minimal allowable values, i.e. clipping limits, have to be determined ad
hoc. This can be achieved by running the simulation on a coarse mesh and monitoring the
behavior of model coefficients. Afterwards, the lowest and highest allowable values can be
implemented in the code to prevent strong oscillations. However, in the test cases simulated
so far, such an unstable behavior of model coefficients was not experienced.

Mean values, around which the model coefficients oscillate, depend on Reynolds number,
molecular fluid properties, heat transfer, mesh resolution, etc. Since this approach of calcu-
lating the subgrid-scale heat flux is, to our knowledge, new in LES, it is necessary to conduct
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(a)

(b)

Fig. 4.33: Dynamic behavior of c1 and c2.

more computations with different fluids at heat transfer regimes in order to get further insight
in the behavior of model coefficients.

4.3.4 Results - Case Q2

For the constant wall heat flux, 4000W=m2, an increase of the inlet velocity results in an
increased influence of forced convection. In this experimental configuration, the inlet velocity
is increased from 0.026m=s to 0.044m=c and the wall heat flux was kept the same as in Q1.

Velocity

Fig. 4.34 shows instantaneous (left) and time-averaged (right) streamwise velocity compo-
nent. We can see that the influence of buoyancy force is reduced as compared to the ex-
perimental configuration Q1 where the inlet velocity was 0.026m=s. Difference between the
highest velocity near to the heated wall and velocity in the middle of the duct is not as big as in
the previous case. The time-average velocity near to the heated wall is about 50% larger than
the value in the center. Due to the buoyancy force, the fluid is accelerated near the heated
wall. However, the layer in which is the fluid accelerated is apparently thinner than in Q2.
Compared to the Q1 case, it can be seen that the buoyancy force does not significantly affect
the flow field before the streamwise length of Z � 2.5m.

Figure 4.35 (a) shows time-averaged streamwise velocity profile normalized by the center-
line velocity for three different Prsgs numbers, 0.1, 0.9 and 2 and for the model with temperature
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Fig. 4.34: Instantaneous and time-averaged streamwise velocity for case Q2.

dependent Prsgs, LES4. It can bee seen that Prsgs has highest influence in the region close to
the heated wall. Lower Prsgs values produced lower velocity peak and smoother velocity gra-
dient. This is probably caused by the higher effective thermal diffusivity which more effectively
transports heat from the wall to the bulk region so that the temperature (and density) profile
is more uniform. Values of Prsgs obtained from LES4 are between 0.21, and 0.23,which cor-
responds to the lowest temperatures and to the highest temperatures respectively. Difference
between LES1 (Prsgs D 0.1) and LES2 (Prsgs D 0.9) is much higher than difference between
LES2 and LES3 (Prsgs D 2).

Velocity profiles for cases where dynamic models for Prsgs and SGS heat flux are used are
shown in Fig. 4.35 and LES2 is also given for comparison. We can see that all models produce
very similar velocity distributions. The only simulation that slightly differs is LES6, where the
localized dynamic model for Prsgs is used. This simulation together with LES7 produce slightly
higher velocity peaks. Away from the wall, y > 50mm, all models produce similar velocity
profiles. This means that the influence of the SGS heat flux models on the velocity field
is highest in the near-wall region. Agreement with the experimental measurements is fairly
good. The highest discrepancy between the experimental and simulation velocity peaks is
less than 8%.

Temperature

Figures 4.36 (a) and (b) show time-averaged temperature distributions obtained from different
simulations. Same as in the previous case, temperature is given in the dimensionless form,
Eq. (4.15).

Effects of the various Prsgs values on the time-averaged temperature distribution are
shown in Fig. 4.36 (a). It can bee seen that low Prsgs values (LES1 and LES2) produce
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(a)

(b)

Fig. 4.35: Time averaged streamwise velocity.

very smooth temperature gradients. Due to the high effective thermal diffusivity produced by
low Prsgs (0.1 in LES1), heat is effectively removed from the heated wall, resulting in an in-
correct temperature distribution. In LES4, Prsgs depends on temperature and, as mentioned
before, it varies between 0.21 and 0.23. In this case, temperature distribution is much closer to
the experimental measurements, but discrepancy is still to high. Further increase of Prsgs (0.9
in LES2 and 2 in LES3) results in further improvement of temperature prediction. However,
it is very interesting to note that there is almost no difference between LES2 and LES3, as it
was the case in Q1. From these results we can conclude that

� For a given computational mesh, an increase of the forced convection influence leads to
a lower Prsgs value

� For a given computational mesh, an increase of the natural convection influence (buoy-
ancy force) increases the influence of the subgrid scales requirements, i.e. if velocity is
reduced, number of mesh cells may become insufficient

However, these conclusions are based just on the present test case and additional investiga-
tions are necessary.

A better agreement between the experimental measurements and simulation results can
be achieved by using the dynamic models for Prsgs (LES5 and LES6) or by using the dynamic
models for subgrid-scale heat flux (LES7 and LES8). Comparison between these models
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(a)

(b)

Fig. 4.36: Time averaged normalized temperature distribution.

and standard gradient model with Prsgs D 0.9 is given in Fig. 4.36 (b). All models show
improvement over the standard model, while the difference among dynamic models is small.

Temperature rms values are plotted in Fig. 4.37 (a) and (b). It can bee seen that simulation
with lowest Prsgs (LES1) underpredicts the experimental measurements near the wall (y <

3mm) and overpredicts measurements away from the wall, y > 3mm. On the other hand,
higher Prsgs values used in LES2 and LES3 resulted in overprediction of the measurements
in the near-wall region and underprediction apart from the wall. The model for Prsgs based on
the fluid temperature showed the best behavior.

Furthermore, it is observed that with an increase of Prsgs, peak of the temperature rms
values increases and moves toward the wall. This is contrary to the previous configuration
(Q1) where the peak of temperature rms values decreased with increasing Prsgs.

When the dynamic models for Prsgs and SGS heat flux are applied, temperature RMS
values overpredict the experimental measurements in the near-wall region, and underpredict
the measurements away from the wall. The profile is close to LES2 profile, with the highest
discrepancy less than 1%. This is probably caused by the slightly higher wall temperature. The
highest discrepancy between the simulations LES5 to LES8 and experimental measurements
is less than 5%.

Time-averaged wall temperatures are given in Tab. 4.8. As expected, lowest wall tem-
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(a)

(b)

Fig. 4.37: RMS of temperature fluctuations.

perature , Tw D 306.41 ŒK � was obtained in LES1, where the lowest Prsgs was used. When
the model with temperature dependent Prsgs is applied (LES4), wall temperature was Tw D

309.1 ŒK �. These low wall temperatures are caused by higher effective thermal diffusivity. In-
crease of Prsgs (LES2 and LES3) led to the further increase of wall temperature, but difference
was less than 1 ŒK �. Dynamic models for Psgs and SGS heat flux (LES5 to LES8) increased
the wall temperature up to Tw � 314 ŒK �.

Tab. 4.8: Time-averaged wall temperatures for Q1 and Q2 cases.

Simulation Q1, NTw ŒK � Q2 NTw ŒK �
LES1 316.9 306.4
LES2 311.6 312.7
LES3 311.8 313.5
LES4 312.4 309.1
LES5 311.9 313.8
LES6 311.9 313.5
LES7 311.9 313.8
LES8 312 313.9

Figures 4.38 (a) to (d) show instantaneous and time-averaged wall temperatures for Q1
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(figures a and b) and Q2 (figures c and d) obtained from case LES7. Higher temperature
regions correspond to the lower heat transfer coefficients. Streaky patterns, that are observed
in the experiment, are also found here. It can be seen that higher buoyancy influence (case
Q1) causes that transition to turbulence occurs earlier.

(a) (b) (c) (d)

Fig. 4.38: Case Q1: (a) instantaneous wall temperature, (b) time-averaged wall temperature; Case
Q2: (a) instantaneous wall temperature, (b) time-averaged wall temperature. Results are from case

LES7.

Figure 4.39 shows the development of the time-averaged temperature over the heated wall
at the middle of the duct (y D 0). High discrepancy among different models can be observed.
For the low Prsgs values, wall temperature reaches some value and stays almost constant.
Starting from the streamwise location of Z D 0.5m, difference between LES2, which uses a
common value for subgrid-scale turbulent Prandtl number Prsgs D 0.9, and dynamic models
is monotonically increasing until Z � 2.3m. Simulations based on the dynamic models for
SGS heat flux (LES7 and LES8) produce very similar wall temperatures. These models also
predict higher wall temperatures than the dynamic Prsgs models.

Figure 4.40 shows local Nusselt numbers, Nuz , along the heated wall. Local Nusselt
number is given by Eq. (4.21). Again, smaller Prsgs values considerably increase heat transfer
which results in much higher than experimental Nusselt number. Furthermore, Prsgs D 0.9
(LES2) seams to be too small to correctly predict the effects of natural convection in buoyancy
aiding flow since the local Nusselt number at Z D 3m is higher than the experimental result,
Nuz � 1570 compared to Nuz � 1470. This means that, if the model for SGS heat flux is
based on the constant subgrid-scale turbulent Prandtl number, a larger value for Prsgs has to
be used when simulating turbulent flows with high influence of buoyancy.

Modeling of heat transfer is improved by using dynamic models for Prsgs and subgrid-
scale heat flux. All models, LES5 to LES8, produce nearly the same values for local Nusselt
numbers which are close to the experimental measurements, Nut D 1470. All dynamic models
showed a clear improvement over the model with a standard, constant value for Prsgs, LES2.
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Fig. 4.39: Time-averaged wall temperatures at the heated wall for different simulations.

Fig. 4.40: Local Nusselt numbers at the heated wall for different simulations.

Model coefficients

Figure 4.41 shows variation of Prsgs during the first 1200 seconds of physical time obtained
from LES5. Averaged value for this simulation period was NPr sgs D 5.85. Because the simula-
tion was started from already developed velocity and temperature fields obtained by simulating
the same test case but on a coarser mesh (that contained approximately 100000 cells), strong
oscillations of Prsgs were avoided. The lowest value was Prsgs � 0.68 at t � 0.18 s. Nev-
ertheless, it took about 250 s, which corresponds to approximately three flow-through times,
until Prsgs approached a mean value of 5.85.

As we can see from the results, the time-averaged Prsgs evaluated for this case is smaller
than in the previous case, where the inlet velocity was lower, 5.85 compared to 7.51. Since
the computational mesh and wall heat flux are same for both cases, the reduction of Prsgs
must be caused by the higher inlet velocity. In Q2, the influence of forced convection is larger
than in Q1. Hence, for the mixed convection heat transfer regime, we can conclude that, if the
natural convection heat transfer is increased with respect to the forced convection, Prsgs will
increase too.

Figure 4.42 shows the dynamic behavior of model coefficient c1 (a) and c2 (b). Slightly
stronger oscillations are observed only in the first 50 seconds. After this initial period, both
coefficients converge very fast to mean values Nc1 D 1.1 � 10�4 and Nc2 D 0.39. Within this
initial period, c1 was oscillating between lowest value cmin

1 D 3.2 � 10�5 and highest value
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Fig. 4.41: Dynamic behavior of Prsgs.

cmax
1 D 1.6 � 10�4. c2 was oscillating between cmin

2 D 0.09 and cmax
2 D 1.03.

The time-averaged model coefficient c1 in the present case, NcQ2
1 D 0.00011, is lower than

in the previous case, NcQ1
1 D 0.00016. This is associated with the reduction of velocity fluctua-

tions. Namely, it is found out in the experiment and also in the present simulations that velocity
fluctuations decrease significantly with an increase of inlet velocity. Velocity fluctuations de-
crease until a certain value of inlet velocity is reached, after which a further increase of inlet
velocity leads to an increase of velocity fluctuations. In the present experiment, velocity fluctu-
ations were decreasing monotonically for inlet velocities of uin D 0.026, 0.044 and 0.096m=s.
However, when the inlet velocity was increased to uin D 0.112m=s, velocity fluctuations were
increased too. The highest value of velocity fluctuations was obtained for uin D 0.026m=s.

On the other hand, because the variations in fluid temperature are small, the time-averaged
coefficient c2 increased only from 0.38 to 0.39. From table 4.8 we can see that the wall tem-
peratures in Q2 ( NTw D 313.8K ) are higher than in Q1 ( NTw D 311.9K ). Since the inlet
temperature was constant in both cases (Tin D 300.15K ), the higher temperature difference
that occurs in Q2 can be the reason for increase in c2. Nevertheless, further simulations with
different heat transfer conditions are required in order to get a better understanding in the
behavior of model coefficients.

Same as Prsgs, coefficients c1 and c2 also depend on the mesh size and this has to be
investigated further. In all cases that have been tested so far, oscillations of model coefficients
did not violate the computational stability.

4.3.5 Discussion

The present numerical studies have been performed to investigate the dynamic model for
subgrid-scale heat flux which is applied to simulate a buoyancy-aided turbulent convective
heat transfer to water flowing through a 3.6m long vertical duct with one of the walls heated
with uniform wall heat flux, qw D 4000W=m2. Two experimental configurations have been
considered: Q1, where the inlet velocity was uin D 0.026m=s, and Q2, where the inlet velocity
was uin D 0.044m=s. The computational domain consisted of 384 thousands cells.

Dynamic models for Prsgs and SGS heat flux are used to close the energy equation.
Simulation results are compared with the experimental measurements and with the results
obtained by using simple SGD model with three different subgrid scale-turbulent Prandtl num-
bers: Prsgs D 0.1, 0.9 and 2 and one that uses a temperature dependent Prsgs. Conclusions
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(a)

(b)

Fig. 4.42: Dynamic behavior of c1 and c2.

from the simulation results can be divided into two groups, one considering subgrid-scale tur-
bulent Prandtl number and the other considering the dynamic model for subgrid-scale heat
flux.

� A value for Prsgs. As it was expected, Prsgs significantly affects both velocity and tem-
perature fields. Values that are too low lead to the wrong prediction of time-averaged
temperature distribution, see Fig. 4.25 and 4.36. Effectiveness of heat transfer is also
affected, see Fig. 4.30, 4.31, 4.39 and 4.40. In Q1, effectiveness of heat transfer was
reduced when low values for Prsgs were used. Contrary, heat transfer was more effec-
tive for low Prsgs values in Q2. The velocity field was especially affected by Prsgs in Q1,
where the buoyancy effects were more important. This is shown in Fig. 4.24. Low Prsgs
values produced very high velocities in the near-wall region, up to four times higher that
the value in the duct center (Prsgs D 0.1). Dynamic models for Prsgs improved simu-
lation results and showed that with higher buoyancy influence, a higher value for Prsgs
may be required, see Fig. 4.32 and 4.41.

� Dynamic model for SGS heat flux. Models based on an algebraic relation for subgrid-
scale heat flux showed improvement over the models with fixed Prsgs. Results are close
to those obtained with the dynamic models for Prsgs, which is probably a consequence
of relatively small changes in fluid temperature (less than 20 ıC). This is expected to be
changed for higher oscillations in temperature field. Model coefficients c1 and c2 showed
a stable behavior and converged very fast to some constant values. Higher oscillations
were observed only at the beginning of the simulation and this is because the simu-
lations were started from previously developed velocity and temperature fields. Some

97



Chapter 4. Results

preliminary testes showed that computations started from the uniform (zero-gradient)
velocity and temperature fields can become unstable. This can be avoided by "clipping"
very high or very low values of model coefficients.
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Conclusions and Outlook

The goal of the present study was to propose a new approach for determination of the subgrid-
scale heat flux for turbulent flows which are significantly influenced by the buoyancy force.
For that purpose, the dynamic procedure is used to model subgrid-scale turbulent Prandtl
number and heat flux. The new model was implemented in an open source computational fluid
dynamics toolbox, OpenFOAM. Two different type of models for SGS heat flux are derived

� Dynamic model for subgrid-scale turbulent Prandtl number

� Dynamic model for subgrid-scale heat flux.

The idea of using the dynamic procedure to evaluate Prsgs was previously used by some
researchers (see Chapter 2). In this work, the same approach is adopted do derive a model
for Prsgs which is based on the one equation model for momentum equation. Depending on
how the model coefficients are trated, there are two possibilities to evaluate Prsgs: either as a
volume-averaged, time-dependent single value which is constant for the whole computational
domain, or as a spatially and time dependent value. The dynamic Prsgs model was validated
by simulating the T-junction benchmark test case. The simulations results showed fairly good
agreement with the experimental measurements. Even though high oscillations of Prsgs oc-
curred in the initial period, the computational stability was not affected. The time-averaged
Prsgs value was 0.65, which is within the suggested range for Prsgs found in the literature.

A more robust approach to calculate SGS heat flux is to use an algebraic relation which
combines gradient diffusion hypothesis and the buoyancy production term. By doing so, the
buoyancy effects can be explicitly included in the SGS heat flux model.

In the next step, a new algebraic model for SGS heat flux is proposed. The new model
explicitly includes the buoyancy production term from the transport equation for SGS heat flux.
Temperature variance, which appears in the buoyancy production term, is modeled by a new
term which is proportional to the production term from the transport equation for temperature
variance and some constant of proportionality, named c2 in the present work. As a result,
the new model for subgrid-scale heat flux contains two parts: a gradient diffusion hypothesis
and production due to the buoyancy effects. Eventually, the dynamic procedure is applied
in order to evaluate model coefficients, denoted as c1 and c2, which multiply each of the
terms in model. In the previous part of the work, this procedure was successfully applied
to evaluate Prsgs. Since the dynamic model for SGS heat flux includes two separate terms,
a system of two linear algebraic equations has to be solved in order to calculate the model
coefficients. An alternative approach is to treat the model terms independently of each other
which leads to two separate equations for each of the model coefficients. Depending on the
treatment of the model coefficients, two variants of the model are possible: volume averaged
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(each of the model coefficients has a single value for the whole computational domain) and
locally dependent (model coefficients depend on the local flow and heat transfer conditions).
A detailed derivation of the model is given in Chapter 3.

For validation of the dynamic model for SGS heat flux, chosen is an experiment where
the aiding flow of water through a vertical duct is investigated. Beside this model, which is
based on an algebraic relation for SGS heat flux, the simple gradient diffusion model was
also tested. In order to check how Prsgs affects velocity and temperature fields, three different
constant values were used: Prsgs D 0.1, 0.9 and 2. In addition, two models for Prsgs were also
tested. The first one is the temperature dependent model which was described in Chapter 2.
Here, Prsgs depends on the local fluid temperature. The second model is the dynamic model
Psgs, derived in Chapter 3.

Results showed that Prsgs value has significant influence both on time averaged and rms
values. Small Prsgs value results in smoother temperature gradient which is a consequence of
higher effective thermal diffusivity. By increasing the Prsgs, the temperature gradient becomes
sharper and the time averaged temperature shows a good agreement with experimental mea-
surements. Therefore, when the simple gradient diffusion model is used, the choice of Prsgs is
very important when simulating a turbulent flow with significant influence of buoyancy (or some
other heat transfer regime, where temperature field acts as an active scalar). Moreover, Prsgs
has a significant effect on the velocity field. These effects are more important if the buoyancy
force is higher. By increasing the inlet velocity, the forced convection becomes the dominant
mechanism of heat transfer, thereby reducing the influence of Prsgs on the velocity field.

Temperature dependent Prsgs model showed very good agreement with the experimental
measurements in the case of forced convection (T-junction test case). However, in the case
of buoyancy dominated heat transfer, it turned out the Prsgs calculated on this way has rather
small values, which caused excessive transport of heat from the heated wall to the bulk region.
This resulted in a smoother temperature gradient in the near wall region.

Instead of prescribing a value for Prsgs, the dynamic approach is applied and results
showed improvements over the standard method. Prsgs is self-calibrating to different flow
and heat transfer conditions. The simulation was started from the previously developed veloc-
ity and temperature fields, thereby preventing strong oscillations and potential computational
instabilities. For a fixed wall heat flux, it is shown that inlet velocity significantly affects Prsgs.
In addition, it is also found out that higher influence of buoyancy also requires a higher value
for Prsgs. For the considered experimental configurations and computational mesh, no signif-
icant difference between the volume averaged and locally dependent versions of the model
was observed.

The main contribution of this work is the dynamic model for subgrid-scale heat flux. The
proposed model performed as well or better than dynamic Prsgs model. In both experimen-
tal configurations improvements over the gradient diffusion model with constant Prsgs are
achieved. Behavior of the model coefficients was also monitored. For the fixed heating (same
wall heat flux is used in both experimental configurations), the model coefficient c1 (multiplies
the gradient diffusion term) varied more than c2 (multiplies the buoyancy production term). The
change in c1 is mainly caused by an increase or a decrease (depending on the inlet velocity)
of velocity fluctuations. Because of the low variations in fluid temperature, c2 stayed almost
constant for the both experimental configurations. However, in order to get a better under-
standing in the behavior of the model coefficients, it is necessary to perform more test cases
with different configurations (different working fluids, higher temperature variations within the
fluid, etc).

Overall, the present validation test showed that the dynamic model for subgrid-scale heat
flux can be successfully applied to calculate buoyancy dominated flows. It is expected that
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the model is able to perform equally well for the purely forced or natural convection; therefore,
additional simulation tests are required.
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