
Integrating Combinatorial Reasoning and
Continuous Methods for Optimal Motion

Planning of Autonomous Vehicles

Master’s esis
of

Ömer Şahin Taş

KIT – Department of Measurement and Control
FZI – Mobile Perception Systems

Reviewer: Prof. Dr.-Ing. Christoph Stiller
Advisor: Dipl.-Ing. Philipp Bender
Second Advisor: Dipl.-Inform. Julius Ziegler

Work period: . March  — . September 

KIT – University of the State of Baden-Wueremberg and National Research Center of the Helmholtz Association
FZI – Research Center for Information Technology

is document is licensed under the Creative Commons
Aribution-Share Alike . DE Licence (CC BY-SA . DE):

hp://creativecommons.org/licences/by-sa/./de

ii

http://creativecommons.org/licences/by-sa/3.0/de

Decleration

I hereby declare that I have developed and wrien the enclosed thesis completely by
myself, and have only referred to the sources or means presented in bibliography.

Karlsruhe, September , .

iii

Abstract

Driving involves deciding among numerous combinatorial options encountered in traf-
fic. ese combinations arise due to presence of, among other things, traffic partic-
ipants, static obstacles, and traffic lights. In real world scenarios optimal motion is
aained only in selecting the most favorable of the combinatorial alternatives. For au-
tonomous vehicles, this necessitates integrating combinatorial reasoning into motion
planning. is work addresses that task by starting with an initial discussion on alter-
native methods for optimal motion planning. Once it is clarified that only continuous
methods can yield truly optimal results, methods for extraction and evaluation of all of
the feasible combinations are presented. As a simplifying assumption, the set of all ob-
stacles is assumed to be perfectly known, i.e. sensor uncertainty is neglected. Moreover,
overtaking is prohibited. To restrain the planned motion into a selected combination,
necessary constraints on the planner are formalized. e formulations are done for
both complete and path-velocity decomposed planning. Subsequently, the presented
approaches are simulated on several non-signalized intersection scenarios. e laer
were created by utilizing an existing geographical mapping framework. Finally with
the help of the results obtained, the plannings are compared and evaluated.

Keywords: Motion planning, combinatorial reasoning, autonomous driving, continu-
ous methods, nonlinear optimization, path-velocity decomposition.

v

Kurzfassung

Beim Fahren müssen Entscheidungen aus zahlreichen kombinatorischen Auswahlmög-
lichkeiten, die im Straßenverkehr vorkommen, getroffen werden. Diese Kombinatio-
nen entstehen typischerweise durch andere Verkehrsteilnehmer, statische Hindernis-
se und Verkehrsampeln. In der realen Welt, kann die optimale Bewegung nur dann
erreicht werden, wenn die günstigste Kombination aus den Alternativen ausgewählt
wird. Für autonome Fahrzeuge erfordert dies die Integration der kombinatorischen
Schlussfolgerung in die Bewegungsplanung, was als ein wesentliches Problem iden-
tifiziert wird. Diese Arbeit geht auf das Problem zuerst durch eine Diskussion über
alternative Methoden ür optimale Bewegungsplanung ein. Nachdem herausgearbei-
tet wurde, dass nur kontinuierlichen Methoden tatsächlich optimale Ergebnisse liefern,
werden Verfahren der Extraktion und Evaluation ür alle möglichen Kombinationen
vorgestellt. Als vereinfachende Annahmewird dieMenge der Hindernisse als genau be-
kannt angenommen, d.h. Messunsicherheiten werden vernachlässigt und zusätzlich da-
zuwird Überholen untersagt. Um die geplante Bewegung innerhalb einer ausgewählten
Kombination einschränken zu können, werden Bedingungen ür den Bewegungspla-
ner formalisiert. Die Formulierungen werden sowohl ür komplee als auch ür Pfad-
Geschwindigkeit zerlegte Planungen vorgestellt. Infolgedessen werden die dargestell-
ten Ansätze auf mehreren nicht-signalisierten Kreuzungsszenarien simuliert, welche
mit Hilfe eines vorhandenen geographischen Kartierungs-Frameworks erzeugt wur-
den. Die ermielten Ergebnisse aus beiden Planungen werden verglichen und ausge-
wertet.

Slagwörter: Bewegungsplanung, kombinatorische Schlussfolgerung, autonomes Fah-
ren, kontinuierliche Methoden, nichtlineare Optimierung, Pfad-Geschwindigkeit Zer-
legung.

vii

Acknowledgements

I am very happy to have completed my master’s thesis. Before I started the work, I
was familiar with neither nonlinear optimization nor motion planning. Hence, from
the beginning the thesis was a substantial challenge for me. In the end, I finished a
program exceeding  lines of code. Of course, like in any undertaking, the work
I have accomplished fundamentally relied on mental advancement I gained through-
out the years starting from childhood with family and subsequently continuing with
friends, teachers and professors, with whom I have become acquainted. I express my
sincere thanks to all of them.

Several people specifically have spent their valuable time by supporting me. First and
foremost, I would like to express my very great appreciation to Mr. Philipp Bender; not
only for his support, useful critiques and efforts while he was mentoring, but also for
his patient guidance with programming. Secondly, I would like offer my special thanks
to Mr. Julius Ziegler. His advice has been a great help in understanding the vehicle
model and control related aspects. I would also like to extend my thanks to my friends
who have supported me. Particularly, I would like to thank to Mr. Ömer Kehri and Mr.
Emre Taşpolatoğlu for their friendly support.

e research presented in this thesis has been performed at the FZI Research Center for
Information Technology, at the department on Mobile Perception Systems supervised
by Prof. Dr.-Ing. Christoph Stiller. I am very grateful for working at an institute dedi-
cated to realizing fully autonomous driving and which provides a perfect environment
and convivial atmosphere for research.

My master’s studies at the Karlsruhe Institute of Technology were financed by the Ger-
manAcademic Exchange Service (DAAD) and the Turkish Education Foundation (TEV).
I would like to thank both organizations for trusting in me and bestowing me with this
great opportunity.

Finally, I wish to thank my family for their support and encouragement throughout my
studies.

Ömer Şahin Taş
Karlsruhe, September , 

ix

Contents

List of Figures xiii

List of Tables xv

Notations xvii

1. Introduction 1
.. Motivation . 
.. Objective . 
.. esis Overview . 

2. Fundamentals of Motion Planning 7
.. Basic Definitions . 
.. Overview of Various Motion Planning Methods 

... Artificial Potential Fields . 
... Roadmaps . 
... Cell Decompostions . 
... Sampling-based Methods . 

.. Application of Various Motion Planning Methods on Autonomous Ve-
hicles . 

.. Optimal Trajectory Planning . 

3. Theory of Optimization 17
.. Basic Definitions in Optimization . 
.. Nonlinear Optimization . 

... Unconstrained Optimization . 
... Constrained Optimization . 
... Sequential adratic Programming 

4. Trajectory Planning as an Optimization Problem 31
.. Problem Definition and Formalization 

... Objective Function . 
... Constraints . 
... Discretization . 

.. Initialization . 

xi

Contents

5. Kinodynamic Optimal Trajectory Planning 41
.. Combinatorial Problems in Roadways 
.. Integrating Combinatorial Reasoning into Trajectory Planning Problem 

... Extraction of Combinatorial Options 
... Formalization of Constraints . 
... Initialization of the Constrained Problem 

.. Path-Velocity Decomposition . 

6. Implementation 55
.. Environment Model . 
.. e Solver: NLopt and SLSQP . 
.. Overview of the Simulation Program 
.. Further Remarks on Implementation . 

7. Results and Evaluation 65
.. Inspected Situations and Results . 
.. Comparison of Path-Velocity Decomposition and Complete Planning . 
.. Influence of Initialization on Optimization Process 
.. Convergence Process of the Optimization Algorithm 
.. Further Remarks on Results . 

8. Conclusion and Future Work 83

A. Appendix 87
A.. Seings File . 
A.. Pseudocode . 
A.. Supplementary Figures . 

Bibliography 93

xii

List of Figures

.. Fatality rates per  million kilometers traveled 

.. Kinematic one track model . 

.. Illustration of a smooth and non-smooth function 
.. Illustration of global and local minimizers 
.. Hessian approximation methods . 
.. Flowchart of a SQP algorithm with quasi-Newton update 

.. Normal vector of reference velocity . 
.. Signed distance function of an arbitrary line 
.. Roadside boundary constraint . 
.. Vehicle corners to be regarded for the driving corridor constraint . . . 
.. Frenet coordinates with respect to a reference curve 
.. Comparison of displacement measurement in Frenet coordinates with

Cartesian coordinates . 

.. Combinatorial problem in presence of a static obstacle 
.. A basic combinatorial problem . 
.. Illustration of the objective function for a combination of ‘merging in

between vehicles’ . 
.. Referencing path-coordinates of other vehicle with respect to ego vehicle 
.. Motion of other vehicles ploed on path-time diagram 
.. Region occupied by other vehicles, whilemaintaining some safety distance 
.. Representation of feasible l-coordinates for a combination 
.. Representation of a combination on path-time diagram 
.. Illustration of alternative path-planning methods for initialization . . . 
.. Illustration of steps of visibility graph 
.. Rule followed while labeling an arbitrary obstacle 
.. Steps of improving visibility graph . 
.. Initialization flowchart of kinodynamic planning 
.. Steps of path-velocity decomposition 

.. Screenshot of JOSM while modifying tracks 
.. Pathological cases that can occur during mapping 
.. Contour plot of the centerline cost function for an arbitrary driving cor-

ridor . 

xiii

List of Figures

.. ree segments of a road . 
.. Generation of centerline for a roundabout 
.. Terminal outputs accompanied with the output-animation 

.. Several challenging scenarios encountered in every-day traffic 
.. Spatiotemporal analysis of the t-junction considered 
.. Manuevering in presence of a static obstacle 
.. Distinct combinations for a roundabout 
.. Spatiotemporal analysis of the roundabout considered 
.. Comparison of complete and decoupled-planning for a narrow pass . . 
.. A comparison of good and bad initialization 
.. PT diagram of a badly initialized problem 
.. Optimization process presented aer two different evaluation numbers 

A.. All of the possible combinations on path-time graph 
A.. Steps of initialization for a specific combination 
A.. Initialization of feasible alternative combinations for the roundabout

scenario considered . 
A.. Alternative combinations along time on path-time diagram 

xiv

List of Tables

.. Cost-evolution of feasible combinations throughout the time 
.. Costs of alternative combinations for the roundabout scenario considered 
.. Cost-evolution of feasible combinations throughout the timewhen com-

puted with PVD . 
.. Comparison of good and bad initializations 

xv

Notations

Abbreviations

ABS Anti-Lock Braking System
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistant Systems
BFGS Broyden Fletcher Goldfarb and Shanno Algorithm
COBYLA Constrained Optimization by Linear Approximations
CP Complete Planning
DARPA Defense Advanced Research Projects Agency
ESP Electronic Stability Program
EST Expansive-Space Tree planner
GUI Graphical User Interface
JOSM Java OpenStreetMap Editor
KKT Karush Kuhn Tucker Conditions
MMA Method of Moving Asymptotes
NHTSA National Highway Traffic Safety Administration
NLP Nonlinear Programming
OSM OpenStreetMap
PATH Program on Advanced Technology for the Highway
PRM Probabilistic Roadmap Planner
PT Path-Time
PVD Path-Velocity Decomposition
RRT Rapidly-exploring Random Tree planner
SLSQP Sequential Least Squares Programming
SQP Sequential adratic Programming
SRT Sampling-Based Roadmap of Trees
TCS Traction Control System
WHO World Health Organization

xvii

Notations

Acronyms

αk step width at k th step
amax acceleration limit
Bk approximated Hessian at k th step
bsign sign of a binary combination
c equality constraints obtained from KKT conditions
C convex set
Call number of possible combinations
ccorridor driving corridor constraint function
ci i th constraint
C n continuity of n th level
d path-lateral coordinate
di path-lateral coordinate of the i th trajectory support point
dcenter signed normal distance from road centerline
dleft signed normal distance from the le corridor bound
dright signed normal distance from the right corridor bound
dreference reference signed normal distance
δ steering angle at wheels
∆t trajectory discretization step-width
g inequality constraints
γ merit function for step size selection
h equality constraints
H Hamiltonian
jacceleration acceleration summand of the integrand
J cost functional
Jd cost function
jjerk jerk summand of the integrand
joffset offset summand of the integrand
jvelocity velocity summand of the integrand
κ curvature
κmax curvature limit of the vehicle
L integrand of the cost functional
λ Lagrange multipliers
l path-longitudinal coordinate
li path-longitudinal coordinate of the i th trajectory support point
lfeasible feasible range of longitudinal coordinates
lsafety required minimum intervehicular distance
lv2v intervehicular distance
lw wheelbase length
m number of inequality constraints
N number of timesteps
n number of optimization parameters

xviii

νk Lagrange multipliers at k th step in SQP
o number of objectives
p number of equality constraints
ϕ penalty function for determining step size
ρki penalty term of i th at kth iteration
pk search direction at k th step
ψ yaw angle
Q configuration space
Qfree obstacle-free configuration space
r radius of the vehicle body
S feasible solution set
s signed speed
sdes desired travel speed
smax speed limit
T length of planning horizon in seconds
ti time at i th timestep
u control inputs
v number of vehicles present
vdes reference velocity for a given road
W workspace of the robot
wacceleration weight factor of acceleration
wjerk weight factor of jerk
woffset weight factor of offset
wvelocity weight factor of velocity
x x-component of position in Cartesian coordinates
xi x-coordinate of the i th trajectory support point
xi trajectory support point of i th timestep
x∗ a local or global optimizer
y y-component of position in Cartesian coordinates
yi y-coordinate of the i th trajectory support point

xix

1. Introduction

is chapter starts with presenting brief history of driver assistant systems and au-
tonomous vehicles with an emphasis on traffic crashes and resulting fatalities. Aer
the impact of driver assistant systems on collision avoidance is clarified, one of the ma-
jor deficiencies of state-of-art autonomous vehicles is addressed. e stated deficiency
constitutes the motivation behind the objective of the thesis. In Section . the objec-
tive is explicitly restated together with the subobjectives that are to be followed for
accomplishing the objective. e chapter subsequently introduces contexts of individ-
ual chapters and provides an overview to the layout of this work.

1.1. Motivation

Ever since Carl Benz made the patent application of the first automobile on  January
 in Berlin, the demand and interest on automobiles has increased progressively
and automobiles have finally become the primary means of individual mobility. With
increasing welfare, the society in any region of the world has demanded more automo-
biles, where the saturation level on the demand is at about . car per person on average
[]. Considering the increasing world population and other factors that intensify this
trend, automobile sales are expected to increase from , millions in  to , mil-
lions in  worldwide, which indicates an increase at about % [, p. ]. e rise in
the sales, being an indirect factor of more motor vehicles to be travelling on roadways,
leads typically to various environmental hazards, a higher congestion on the available
roadways, and even more traffic accidents to occur. A study reveals the actual costs
of accidents in the year  to be nearly one trillion dollars [, p. ]. A recent study
of WHO indicates . million people around the world have lost their lives in road
traffic in , which equals a death rate of . per minute []. Not only the number
of traveling vehicles on the roadways, but also the growing older driving population
and the fact that driving skills deteriorate with age is an important contributing factor
to the fatalities [].

Driver assistance systems, although first developed with the intention to reduce the
duties of the driver mainly for increasing driving-comfort, such as the automatic shis
introduced in s by Oldsmobile, or servo-assisted steering by Chrysler in  etc.,
have also aained the goal to mitigate roadway-accidents. Statistically, human errors,
which mainly result from fatigue, inaention or drowsiness, are with % the major
rationale of roadway accidents [, p. ]. Among most prominent ones of the driver



. Introduction

assistance systems is the Anti-Lock Braking System (ABS) that is first developed by
B in . e success of ABS and Traction Control System (TCS) led to the de-
velopment and become widespread of the Electronic Stability Program ESP, which in-
corporates the functions of ABS and TCS, besides maintaining stability. In , U.S.
National Highway Traffic Safety Administration (NHTSA) has concluded that about
one-third of fatal accidents could be prevented by using this technology []. In ,
European Union decided to make ESPmandatory for all newmodels to be revealed aer
November,  []. Since then here has been a substantial reduction in fatality rates
in occured accidents, according to the statistics of NHTSA and of the German Federal
Statistical Office [], [, p. ]. is can be explained by the widespread and success
of ESP.

Fa
ta

li
ti

es
 p

er
 1

00
 M

il
li

on
 K

il
om

et
er

s
T

ra
ve

le
d NHTSA FATALITY ANALYSIS REPORTING SYSTEM (FARS) ENCYCLOPEDIA

Years

Figure .: Fatality rates per  million kilometers traveled among  and  [].

Aer the notable benefits of driver assistance systems have become widely known,
and have gained market acceptance, the era of next generation assistance systems has
begun. Commonly known as Advanced Driver Assistant Systems (ADAS) are defined
as “the collection of systems and subsystems on the way to fully autonomous driving”
and embrace systems such as Adaptive Cruise Control (ACC), Blind Spot Monitoring,
Lane Departure Warning, Lane Change Assistance, Pedestrian Protection Systems etc.
ese systems, besides increasing safety, provide a higher level of comfort by taking
over tertiary, secondary and even primary driver tasks and thereby reduce the strain
of the driver [, p. ]. Gwehenberger (, p.) claims that if all of the vehicles in
Europe would be equipped with ADAS, at least half of the serious accidents could be
prevented [, p. ].

Mentioned concerns regarding roadway safety and the prestige of being the first in-
novator and mass producer of those systems has given rise to the research and devel-
opment investments of automotive companies. According to a research of Bratzel and
Tellermann (, p.), the industry spent in  €  billion to innovation activities,



.. Motivation

amounting an increase of % compared to the previous year [, p. ]. Germany, with
€ billion research and development expenditures in  and ten accepted patents per
day, belongs to the top investors[, p. ].

Undoubtedly, the innovation of driver assistance systems has led the industry to focus
more on the next technology vehicles and especially to autonomous driving. Efforts
towards autonomous driving started in  at Stanford with the ‘Cart with Cable’
and continued with the introduction of a vehicle of Tsukuba Mechanical Engineer-
ing Lab in Japan, which could drive  meters on a street by tracking white street
markers with speeds up to km/h. Contributions from Europe came with the Pan-
European P project, in which Daimler-Benz, University of German Armed
Forces and many others participated. e project is renowned for the drive from Mu-
nich to Odensee and back, corresponding to a route of  km. During this drive, the
vehicle ‘VaMP’ executed maneuvers to overtake other vehicles and has reached speeds
up to  km/h, whereas human intervention remained only at %. e longest path
without human action was km, whereas  intervention per  km was on average.
In the same years a similar research has been conducted by team of Carnegie Mellon
University in the United States. e project was called ‘No hands across America’ and
could successfully drive from Washington D.C. to San Diego, semi-autonomously; the
driver only needed to control longitudinal acceleration [].

Another trials until the DARPA Grand Challenge were performed from various compa-
nies and research labs around the world. Although the first event of the Grand Chal-
lenge had no winner in , just a year later, tremendous progress was achieved and
many teams performed beer than results the best team could obtain in . Short
aer the Grand Challenge, DARPA announced a new competition, called the ‘Urban
Challenge’ which served as the milestone of autonomous driving. Since then, the issue
has become increasingly popular and the lessons learned from those challenges have
led to significant advancements in the field. Shortly aer, Google introduced its au-
tonomous vehicles which would play a key-role in the establishment of Google Street
View. Among other equipments required for cartography, these vehicles have a 
rotating lidar mounted on the roof for D mapping of the environment. As those weird
looking vehicles got noticed and become popular among people, and were also proven
to be safe enough, legislations to allow those vehicles completely autonomously were
issued. e U.S. state of Nevada being the first, followed by states of Florida and Cali-
fornia gave license for testing those vehicles on public roadways autonomously.

e development of autonomous vehicles has also involved into the area of race-cars.
e autonomous race-car Shelley, developed by Stanford University and Volkswagen
of America, inheriting base technology and equipments Junior once had, could suc-
cessfully complete the Pikes Peak Hill Climb autonomously []. e project aimed to
preserve the stability of the vehicle at the limits of handling, besides being a precursor
of robot-car races that may emerge in the future, the technology could also serve as a
foundation for taking over the control of vehicle, whenever the driver cannot maintain



. Introduction

the stability of the vehicle.

Simultaneously with the development of autonomous vehicles, aempts to develop in-
telligent vehicles that can communicate with each other and with the infrastructure are
also made. e California Program on Advanced Technology for the Highway (PATH),
led by J. Karl Hedrick, was the first project that studied the issue for a broad scope
[]. In the late s and s several studies for intervehicular communication were
performed in the US, Japan and Europe. In , the Grand Cooperative Driving Chal-
lenge was the first competition in which heterogeneous vehicles; from trucks to mini-
cars were involved and tests regarding platooning and string stability were performed
[].

Another very substantial advancement has been achievedwith Bertha, a Mercedes-
Benz S-Class vehicle, for completing a fully autonomous drive on the Bertha Benz
Memorial Route in August ,  years aer Bertha-Benz and her two sons did
the first cross-country automobile journey in the world. e route covered slightly
more than  kilometers with a number of highly complex situations, where traffic
lights were exposed to direct sunlight and the brightness of red light had become less,
various road-intersections and roundabouts, speeds exceeding  km/h, a number of
traffic participants such as cyclists and pedestrians, and driving corridors that are par-
tially occluded by parking-vehicles. Just  years ago, in the Urban Challenge, even
though the vehicles were exploiting astonishingly expensive sensors, none of partici-
pants had to -and probably could manage to- cope with those real world complications.
Unlike the vehicles involved in the Urban Challenge, Bertha was equipped with solely a
few additional radar and vision sensors other than its serial-production version beheld.
Moreover, those additional sensors were hardly perceivable from exterior, making the
vehicle almost indistinguishable from its stock version. e autonomous drive in the
tracks of Bertha Benz has been a substantial and promising enhancement to the capa-
bilities of the autonomous-vehicles and redemonstrated the feasibility of autonomous
driving [].

However, even the state of art autonomous vehicle Bertha had some deficiencies. When-
ever it came across intersections or roundabouts, where various combinatorial possi-
bilities about sequencing occur, it performed in overall far inferior to the level of an
aentive human driver. e sluggish behavior is aributed to still remaining high false-
positive rate of the perception system and to the trajectory planning algorithms, which
evaluated the combinatorial problems in ad-hoc manner []. Combined with the fact
that collisions happened in intersections take the major portion with roughly about %
among all accidents [, p. ], existing systems for motion planning at intersection
scenarios have to be replaced with methods that employs combinatorial reasoning for
planning collision free and optimal trajectories.

e autonomous vehicle of the Stanford Racing Team in the  DARPA Urban Challenge.



.. Objective

1.2. Objective

is work is devoted to inspect combinatorial problems encountered in roadways and
aims to propose methods that force the behavior generation system to return optimal
reference motion profiles by treating the combinatorial options present.

e objective will be addressed by dividing it into twomajor subobjectives. e first one
is the optimal motion generation in absence of other traffic participants. Although this
corresponds to a case devoid of any combinatorial alternatives, it will serve as the foun-
dation for the later study on combinatorial problems. As will be explained in Chapter ,
the sole way of obtaining truly optimal trajectories for a customarily defined optimality
criteria is to refer to continuous methods. Once knowledge on optimization based tra-
jectory planning is mature, focus on combinatorial problems and retaining optimality
in presence of other traffic participants will be given. is requires integration of com-
binatorial reasoning into continuous methods and constitutes the second subobjective
of the thesis.

e inspection of combinatorial options starts with extracting a representation for all
of the combinatorial options available. As simplifying assumptions, the position of all
of the obstacles is assumed to be perfectly known, i.e. sensor uncertainty is neglected,
and overtaking is restricted. Instructions to abandon these assumptions will however
be proposed in future work. To find the most favorable combination, all of the com-
binations will be separately analyzed and optimal motion profiles for the feasible ones
will be aained via the use of nonlinear optimization. Hence, finding infeasible combi-
nations, providing an initial guess of the motion profile for the local optimization, and
formalization of constraints, which delimit the vehicle motion into a given combina-
torial option form the subobjectives of the thesis. Once optimal, real-time applicable
trajectories that negotiate safely between the combinatorial gaps in traffic is found, the
costs of the combinations will be compared and the most favorable among them will
serve as the reference motion for the autonomous vehicle. e derived formulations
will be tested and simulated on several non-signalized intersection scenarios created
by utilizing an existing geographical mapping framework. Subsequently, the same ap-
proach will also be done with the path-velocity decomposition (PVD) and the results
will then be compared and evaluated.

1.3. Thesis Overview

e remainder of this thesis is structured as follows.

Chapter  elucidates the reason behind utilization of continuous methods for opti-
mal motion planning. First, it recapitulates basic definitions and reviews conventional
methods for motion planning. It subsequently focuses on their application on au-
tonomous vehicles and then provides discussions about the degree of optimality they



. Introduction

can yield. Aerwards, it presents nonlinear optimization based motion planning as an
alternative and states that ultimate optimality can only be reached by their means. e
chapter concludes with presenting a vehicle model for obtaining reference inputs.

Chapter  offers a crash course into the theory of mathematical optimization. It starts
with the categorization of optimization problems and then continues with introduc-
ing the fundamentals of nonlinear optimization and sequential quadratic programming
(SQP) based local optimization algorithms. As explained in Chapter , the SQPmethods
are promising solvers for the specific problem present.

Formulation of motion planning as an optimization problem constitutes the topic of
the th Chapter. is chapter reveals the objective function and the constraints that
maintain a feasible motion. In order to facilitate formalization, the chapter considers
an environment free from obstacles. e chapter subsequently presents discretization
and initialization required for the utilization of a local optimization algorithm.

Presence of traffic participants and combinatorial problems they bring about are ana-
lyzed in Chapter . is chapter extends the constraints and the initialization method
introduced in previous chapter to handle combinatorial options and essentially forms
the core of the thesis. Instructions for implementation of path-velocity decomposition
is given within this chapter.

e aspects regarding implementation are elaborated in Chapter . e context of this
chapter does not entail providing pseudocodes or any type of application specific as-
pects. It merely introduces solutions to the problems encountered in implementation
and yields information about the geographical mapping framework, and the solver uti-
lized. Aer the chapter clarifies these issues, it gives an insight into the wrien simu-
lation program.

Chapter  presents and evaluates results of various intersection scenarios simulated.
ese results comprise figures about optimized motion profiles, and values indicating
the optimization process. A comparison of complete and path-velocity decomposed
planning, and aspects such as the influence of ‘good’ and ‘bad’ initialization and other
factors that have an effect on the solution are also discussed in this chapter.

Finally,Chapter  gives a brief summary to the conducted research and obtained results,
and provides an outlook for future research.



2. Fundamentals of Motion Planning

is chapter starts with presenting basic definitions in motion planning. Once these
are clarified, a review of various motion planning methods is presented. e chapter
then focuses on the applicability of the presented methods on autonomous vehicles.
Typically, the quality of a planned motion is evaluated according to some predefined
criteria. e aspect of quality constitutes the topic of the last section. In this regard, dis-
cussions about how well such measures on quality can be satisfied with the introduced
methods and how the nonlinear optimization based methods arise as an alternative are
presented. e discussion concludes by evaluating the option to integrate vehicle model
into the optimization problem and thereby obtaining the reference inputs required for
the low level motion controllers directly.

2.1. Basic Definitions

Like any mobile robot, an autonomous vehicle has to perceive its environment and
navigate through it in order to complete any given goal. Once perception systems have
sensed the obstacles and the structures surrounding the robot, the cognitive system
is liable to plan the motion of the robot, under consideration of certain requirements.
Finding a motion that fulfills the requirements set is commonly called as motion plan-
ning and has been addressed as a fundamental problem in robotics.

Based on the requirements set on motion, a distinction is made between path planning
and trajectory planning. In path planning, which is sometimes referred as the Piano
Mover’s Problem, only the geometric (or the kinematic) constraints are considered. As
the most of the mobile robots operate at low speeds and agility is not a fundamen-
tal design parameter, planning with only kinematic constraints is generally adequate.
However, if this is not case, a more complex planning approach, in which dynamic con-
straints besides the geometric ones need to be employed. Such a planning method is
called as trajectory planning, or sometimes interchangeably called as motion planning.
In this case, path is planned together with speed along the path with C 2 continuity. Mo-
tion planning can be, under circumstances, done in an ambient where moving obstacles
(commonly referred as dynamic obstacle or sometimes as velocity-obstacle) are present.
If this is the case, for any trajectory to be collision-free, the motion of such obstacles
must be taken into consideration, in effect, evolving the motion planning problem to a
kinodynamic planning problem [].



. Fundamentals of Motion Planning

Apart from the stated distinctions, there may be some additional requirements that do
not necessarily have to be held but, their satisfaction at any time-instance of motion
may be beneficial. ese type of requirements define the quality or optimality of the
planned motion. Minimization of execution time, expended energy for cases which
respectively time-optimal, energy-optimal trajectories is of interest, can be given as a
trivial example.

Another distinction in motion planning is made between offline planning and online
planning. In offline planning, the cognitive system (or in other words the planner) plans
the path before that start of motion. is requires the assumption that all the parame-
ters of the obstacles are perfectly known and the execution of the planned path is exact.
Albeit being a plausible assumption for an environment which only comprises static
obstacles, if the path of any dynamic obstacle (or sometimes so-called velocity-obstacle)
may have the possibility to intersect with the path of the autonomous agent, or if the
uncertainties and changes in environment of the robot are significant, the assumption
loses its viability and in such a case, continuous planning relying on the updates of
sensor values during the robot’s movement must be conducted. e incrementally gen-
erated and updated path planning is called online planning.

Especially in the context of autonomous vehicles, planning is divided into two main
categories: planning in structured environments and unstructured environments. A
very comprehensible definition could be made through the distinction between, streets,
which contains directives such as lanes or other type of signs, and places like parking
lots, where many such indicators are absent. Environments that exhibit characteristics
like the former case is called structured environments and the ones that do not are called
as unstructured environments. It should be further noticed that, within the context of
autonomous vehicles, unstructured environments pose a quasi-static problem and the
structured environments pose a dynamic problem.

Besides to what extend the optional requirements are met, there are other factors spec-
ifying the quality of a given algorithm. Among others, of primary importance are the
computational complexity and completeness. With the term computational complexity,
the dependency of an algorithm’s runtime (and sometimes memory requirements) to
the “size” of the environment is defined. Generally, algorithms that run in polynomial
time at worst case are especially aractive [, p. ]. An algorithm is called complete
if it finds a solution for the motion planning problem whenever a solution exists, and
terminates with failure otherwise. However, as the search space of the motion planning
problem grows, computation time will rise and completeness may become an arduous
task to reach. For such cases, completeness is generally sacrificed and more convenient
sub-forms of completeness, such as resolution completeness and probabilistic complete-
ness are defined [, p. ].

Apart from the definitions based on algorithms, there are two notions that everymotion
planning algorithm relies on: the workspace and the configuration space of a robot. e
workspaceW of a robot is defined as the ambient space of the robot, or in other words:
the space in which the robot is located. e configuration space Q (also called C-space)



.. Overview of Various Motion Planning Methods

is the set of all possible configurations that the robot can take. Any configuration of a
robot is defined by finite number of parameters used for representing all of its position
with respect to an inertial reference [].

2.2. Overview of Various Motion Planning Methods

In the literature there is a huge variety of approaches for motion planning, each of them
having distinct pros and cons. However, in a general, they all share a common trend:
austereness on the optimality results with an increasing complexity. Before delimiting
the context of the thesis onto autonomous vehicle motion planning, a rough introduc-
tion to existing motion planning methods will be given below. Among them, visibility
graph method will be referred in the next chapters.

Rapid development in diversity of algorithms can probably be listed as one of the com-
plexities of robot motion planning. Siblings of existing algorithms, providing new fea-
tures and covering the deficiencies of their predecessors are added up to the literature
every day and the borders in between the distinct classes become fuzzier. e classifi-
cation differs even among the major books of the field. e brief summary will hence
be done in parallel with the classification of the book by Howie Choset et. al. [], but
will slight diverge from it, by revising several definitions in the light of recent develop-
ments and evaluations from other sources, such as the book by Roland Siegwart et al.
[].

2.2.1. Artificial Potential Fields

Artificial potential field methods rely on treating the distance to the goal position as
a potential energy function, and thereby, forces the robot to move in a direction that
reduces the potential at most. While, the goal position forms the aractive forces, the
obstacles in the workspace form the repulsive forces and their coalescence constitute
the artificial potential field.

Mathematically denoted, a potential energy function is defined as a continuous function
U : Rn → R and the direction of the movement is the direction yielding the steepest de-
scent in the gradient of the potential functionU. In this case,∇U(q∗) = 0 corresponds to
a critical point, whose type can determined by checking the second derivative, namely
the Hessian H matrix of the energy function. At any point, a positive definite H in-
dicates the point being a local maximum and a negative definite H indicates a local
minimum [, p. ].

All gradient based potential field algorithms are plagued by being trapped into a local
minimum any other than the global one, whereas the global one corresponds to the goal
position. Horseshoe shaped obstacles are the primary source of such problems, [, p.



. Fundamentals of Motion Planning

]. However, in the literature there are remedies introduced, of which the most basic
one is to follow the negative gradient back whenever such a situation is encountered.

Brushfire algorithm and the wave-front planner are probably the most employed meth-
ods among the variants of artificial potential field methods.

2.2.2. Roadmaps

Roadmap theory in motion planning begun with the dissertation of John Canny [].
Roadmaps are fundamentally alike how humans use highways to drive from a point to
an another: in order to reach somewhere, the driver searches for the closest highway
and drives to it, completes the bulk motion on the highway until s/he reaches to the
point on the highway, that is closest to its goal position. Aer that point, it gets to
its destination by finding a path from the final highway-point. An analogy in robotics
is done in such a way that the paths are constructed in advance, and during motion
planning the autonomous agent only needs to find a path that has access to an existing
path. ereby, the burden of finding a bulk-path is eliminated and the search problem
is reduced. [, p. ] Paths created with such an intention are oen represented
by topological maps, called roadmaps, and are gathered by nodes and edges. Nodes can
represent any type of remarkable information, whereas edges represent an intersection,
or an adjacency, of nodes. Many approaches in motion planning can be grouped under
roadmapmethods: visibilitymaps, deformation retracts, silhouees and even sampling-
based methods.

In visibilitymaps approach, in its simplest form a visibility graph is created by using ver-
tex of configuration space obstacles and the start & goal configurations. en, straight
lines between the nodes are drawn and a visibility map is built. ereby paths yielding
shortest possible distance are obtained. Albeit this can be a desirable property return-
ing length-optimal paths, it is more likely to be a flaw, as it causes the robot to get to
obstacles as close as possible. A remedy is to add some reasonable safety distance to
the obstacles and grow them appropriately. It should be remarked that the application
of this approach is limited to configuration spaces with polygonal obstacles. Visibil-
ity graph methods are among the fastest planning methods in sparse environments.
Increasing number of obstacles, due the increase in number of vertices, will lead to
slower runtimes.

Deformation retracts tend to find a line that is equidistant to the obstacles in the am-
bient. e most renowned method is the Voronoi diagram. In silhouee approach,
shapes or silhouees of objects are defined as a one-dimensional function and the free-
workspace is sliced at the extrema of it. Such an extremum is called critical point and
roadmaps are generated by using them.



.. Overview of Various Motion Planning Methods

2.2.3. Cell Decompostions

Path planning in cell decompositions start with discretizing, or decomposing obstacle-
free-workspace into regions called cells. Once the decomposition is completed, path
planning starts with determining the cells in which the start and the goal points lie.
Aerwards, according the adjacency of cells, some graph search algorithms such as
breadth-first, depth-first, Djikstra etc. are run and thereby the path planning is done.

Cell decomposition methods are generally used for coverage, where it is important for
the agent to move over all of the points in a free space. Trapezoidal decomposition,
Morse decompositions, visibility-based decompositions for pursuit/evasion, and the
state laice graphs are the most significant variants of cell decomposition methods.

2.2.4. Sampling-based Methods

Sampling-based methods are first introduced S.M. LaValle in the late s, as an effi-
cient alternative for roadmap methods. In high dimensional path planning problems,
the complexity of roadmap generation increases and hence, it becomes intractable to
find a solution within a limited amount of time. In such cases, it is favorable to cre-
ate a roadmap by searching the configuration space randomly and checking whether
a single robot configuration is in Qfree or not. ereby, without explicitly construct-
ing the boundaries of the configuration space obstacles, but by merely accessing the
configuration space obstacles, solutions could be obtained very fast [, p. ].

A very aractive property of randomized search techniques is that, themotion planning
can still be performed under kinodynamic constraints, and as a result, can successfully
be applied to variously constrained systems. ere have been tremendous research
in sampling based-methods and now there are dozens of randomized search methods
available. Most of them posses the desirable property of being probabilistically com-
plete, indicating that as the number of searches goes towards infinity, the algorithm
will eventually find a solution.

Among its variants, Probabilistic RoadMap Planners (PRM) arewidely used formultiple-
query planning, whereas for many planning applications the answer for a single query
is important, i.e.whether the given configuration is feasible or not. is is oen the case
in kinodynamic planning, where the initial and the goal configurations are known and
quests about intermediary configurations are to be performed. Expansive-Space Tree
planner (EST) and Rapidly-exploring Random Tree planner (RRT) and their descendant
variants are suitable for such queries. For very difficult path planning problems, their
combination, the Sampling-Based Roadmap of Trees (SRT) is used.

e other prominent alternative sampling-based motion planning method is the re-
cently adopted laice search. is approach is based on selecting state laice samples
from a precomputed graph of feasible maneuvers that is created for a discretized con-
figuration space of the robot. Due to the discretization, they are sometimes grouped



. Fundamentals of Motion Planning

under cell decomposition methods. e precomputed alternative samples are stored in
memory and during execution, the best one is selected with the aid of graph search al-
gorithms. e distinguishing property of laice search from other cell decompositions
is that, the constraints influencing the path of the robot is intrinsically implemented in
the laice generation phase.

2.3. Application of Various Motion Planning Methods
on Autonomous Vehicles

Autonomous vehicles diverge from other forms of autonomous agents with the con-
straints they have to obey. First and probably the most fundamental constraint arises
from the form of being a “car-like vehicle”. e restriction on sideway translation limits
the values that the velocity can take and, in end effect, prevents the velocity values to
be integrated into configuration constraints. Such constraints are referred to as non-
holonomic constraint.

ere are also other factors delimiting the motion of the vehicle, like the Ackermann
angle (or the minimum turning radius), steering rate, tire friction limits and the acceler-
ation limit arising out of it. Moreover, the demands on a comfortable ride and the high
dimensional, kinodynamic obstacle containing structure of the environment impose ad-
ditional constraints which are to be taken into consideration. Not the vast majority of
the motion planning algorithms, however, are able to observe such requirements during
planning and hence, only several types can come to the fore.

Among them, RRT is the most widespread variant. Papers reporting its applications
can be found in [], [], [] and in many others. It should however be noted that
all of the randomized sampling algorithms necessitate post-processing in order return
applicable trajectories. Systems motivated from laice search methods, which recently
have become popular, can be found in [], [], [], [] and many others. Apart from
the papers published, the book edited by J.P. Laumond is entirely devoted to trajectory
planning for nonholonomic systems [], [, p. ].

2.4. Optimal Trajectory Planning

e progress in engineering have always brought about the effort to optimize existing
systems and products according to certain criteria. is also applies to trajectory plan-
ning, in which optimality in terms of some predefined criteria is a key effort to reach.
As aforementioned, there are different evaluations of optimality: given initial and goal
positions, an algorithmmay be optimal in sense of generating the shortest feasible path,
or returning a path that takes the least time to reach the goal, i.e. a time-optimal tra-
jectory. Although many existing motion planners in field robotics define their path



.. Optimal Trajectory Planning

quality based on such strict definitions, in reality, such definitions make rarely sense
and an optimality criteria comprised of various aspects is more likely to be of interest.
For example, besides time optimality, consumed energy could be a secondary design
criteria and in case, could lead to trade-off in time-optimality to a certain extend. Or
as a further example from our context, the ride comfort is an essential element which
needs to be integrated into the optimality measure. e sole way of obtaining a path,
with regard to any customarily defined criteria is to employ cost functionals and per-
form optimization, either as a reshaping agent in post-processing of a path obtained
from the previously indicated methods, or as a stand-alone approach.

Before focusing more throughly on trajectories based on custom optimality definitions,
common optimal path planning methods for autonomous vehicles will be briefly re-
viewed in terms of optimality. A traditional approach is to treat a vehicle as either a
Dubins’ or Reeds-Shepp’s car. A limiting factor of those approaches was that they were
defined for obstacle-free environments, but some papers extended these to dynamic
environments [, p. ], [], []. However, although they become utilizable in dy-
namic environments aer these extensions, they are only optimal in sense of delivering
the shortest path possible, i.e. not a custom objective function or even time-optimality.

Sampling based methods, which have dominated the past decade of motion planning,
are based on sampling the configuration space either randomly or deterministically.
Aer the samples are generated, best trajectory with respect to any given criteria is
selected. e randomized methods, such as the RRT, return a trajectory sampled by
happenstance and hence, even aer postprocessing, any solution obtained could be
far away from the true optimum. Although RRT algorithms seem to be a promising
way for motion planning, they have significant drawbacks of having non-deterministic
execution times and being unexceptionally suboptimal, which is a result of sacrificing
complete search for faster execution times.

e laice search, which is the sole representative of deterministic sampling, in the
contrary, is not plagued by randomness. But like any other cell decomposition method,
this approach also requires a certain degree of discretization of the workspace, leading
the accuracy, and accordingly the optimality, of the path being restricted to the sampling
resolution. Although reducing the grid size appears as a remedy and as a way to obtain
near optimal trajectories, this will yield tremendous search space and eventually results
in excessive search time [], [].

An another way to find trajectories that are optimal in terms of a customarily defined
objective function is to refer tomethods that are based on employing nonlinear program-
ming (NLP) (or nonlinear optimization). ese methods, which sometimes are called as
trajectory optimization, do not discreticize the workspace, but rather perform continu-
ous optimization to find the trajectory parameters for any given time. ereby, they do
not introduce any inaccuracy that would intrinsically arise due to discretization. e
continuous search space brings about the opportunity to obtain truly optimal solutions.
Optimization of the objective function (or the cost functional, i.e. integrals involving



. Fundamentals of Motion Planning

functions and their derivatives) is performed for timesteps generated by parameteriz-
ing time into equal step-lengths, under restriction of applied constraints.

Transforming trajectory planning problem into such an optimization problem usually
returns a nonlinear quadratic program, which can be best solved through the utilization
of sequential quadratic programming (SQP) methods. Such theoretical aspects of these
methods will be explained in Chapter , but for short, they utilize gradient descent
to determine the search direction that reduces the value of the cost function at most.
rough that, a cost function defined in accordance with general paern of vehicle-
motion will result in desirable reference trajectories.

A property of these methods is that, they share the same solution methods with op-
timal control problems. Optimal control inputs of any system are usually found by
transforming optimal control problems into parameter optimization problems []. A
conceptional overview of the application of such a method functions can be given as
follows. e functional that is to be optimized can be given as:

J =
∫ tf

0
L(x(t),u(t), t)dx , (.)

where the integrand L is representing the Lagrangian, which is a generalization of
the Lagrangian used in dynamics. Aerwards, to be able to include the constraints
set on motion, the Hamiltonian H is defined. Integrating the constraints can be done
using Lagrange multipliers, just like it is done in the case of nonlinear optimization,
which will be explained in next chapter. However, in optimal control lingo, although
there is not any practical difference, these multipliers are defined as costate variables.
e set of optimal control inputs can be found by numerically solving the values of
those multipliers. According to Pontryagin’s minimum principle, any optimal solution
must minimize the value of the H. is actually represents the first order necessary
condition:

∂H
∂u

= 0 . (.)

e sufficient condition is obtained from the convexity condition, or the Legendre-
Clebsch condition;

∂2H
∂u2 > 0 , (.)

whose le hand side is the Hessian of the Hamiltonian [, p. ], [, p. ], [].
is formulation of nonlinear-optimal control has in fact the same structure as an ar-
bitrary constrained non-linear optimization problem and therefore evokes questioning
the incorporation of low-level control actions to upper level, or the behavioral layer. In
such a case, the parameters of the optimization problem would also be the action vari-
ables of the system and thereby, the requirement on implementing an additional feed-
back tracking controller would be saved. Whenever the vehicle would deviate from its
reference path, presumably as a result of any external excitation, the optimal-controller
would adjust the control input in such a way that it would regulate the vehicle back to



.. Optimal Trajectory Planning

its optimal path. However, it was shown that decoupling trajectory tracking from plan-
ning, and dealing with them in separate layers is advantageous [, p. ]. us, tracking
of a path generated in the behavioral layer can be donewith a separate longitudinal con-
troller. e lateral offset can then be eliminated through the use of a lateral tracking
controller that is based on vehicle kinematic model.

For modeling the kinematics of a vehicle, bicycle model is usually sufficient. How-
ever, the basic bicycle model allows instantaneous changes of steering angle. Although
this may be applicable to a motion at very low speeds, such as for parking maneuvers
where quasi-static motion is present, at high speeds it loses its validity. In such cases,
improvement on the model can be obtained through introducing an integrator to the
action variable, namely to the steering angle and hence, continuous change in the steer-
ing angle can be secured. For such a model, the state of the vehicle can be represented
by (x, y, ψ, s) and control inputs can be defined as (ṡ, δ), where x and y denote the ve-
hicle position in Cartesian coordinates, ψ the vehicle orientation or yaw angle, s the
longitudinal velocity, or the signed speed, ṡ the longitudinal acceleration at the center
of the rear axle, and δ the steering angle at wheels. is model is sometimes referred
as continuous-steering car [, p. ]. Notice that, high lateral accelerations will cause
considerable slip angles at tires to occur, and will eventually fail to yield accurate re-
sults.

Figure .: Kinematic one track model of a vehicle [].

Some of the dynamic systems, enclosing car-like vehicles, have the property called flat-
ness, or sometimes referred to as differential flatness [], [, p. ]. For such systems,
all states and inputs can be expressed with a set of flat outputs, which is in the same
dimension of the inputs, and their time derivatives []. is yields

x, y, ψ, s, δ, ṡ←→ x, y, ẋ, ẏ, ẍ, ÿ , (.)

where the ψ, s, δ, ṡ can be obtained from the kinematic vehicle model, as shown in



. Fundamentals of Motion Planning

Figure .

ψ = arctan
(
ẏ
ẋ

)
, (.a)

s =
∥∥(ẋ, ẏ)T∥∥ , (.b)

δ = arctan(lw · κ) , (.c)
ṡ =

∥∥(ẍ, ÿ)T∥∥ . (.d)

lw and κ denote vehicle wheelbase length and curvature respectively. ereby, once a
trajectory that minimizes a cost-functional is found, the state variables and the track-
ing control inputs can be easily derived using the equations given above. Together
with the state variables, these will serve as input to the lateral and longitudinal motion
controller.



3. Theory of Optimization

A recapitulation of existing motion planning methods were given in the Chapter . In
that chapter, it was clarified that a trajectory that is truly optimal in sense of minimizing
any customarily defined goal function is only achievable by the utilization of continuous
methods. Before inspecting how the trajectory planning problem can be converted
into an extremum problem, it is beneficial to review the essentials of mathematical
optimization.

e review starts with introducing basic definitions and the categorization of optimiza-
tion problems. Aerwards, it continues with focusing on the theory behind the al-
gorithms used for solving the special type of optimization problem undertaken. e
survey, however, is restricted to the theoretical backgrounds and hence, is presented
without addressing properties of the application specific problem. Any information
about the structure of the problem, will be presented in Chapter .

3.1. Basic Definitions in Optimization

A mathematical optimization problem has the form,

min
x∈S

f (x) , (.a)

where the f : Rn → R is the objective function. e vector x ∈ Rn represents the n
optimization parameters and define the dimensionality of the problem. In some cir-
cumstances, the values that the parameters can take may be limited. Such a limitation
on the parameter values is called bound constraints and is defined as

lbi ≤ xi ≤ ubi . (.b)

e lbi and ubi represent the lower bounds and upper bounds respectively. An opti-
mization problem may additionally be subject to a set of constraints of the form:

gi(x) ≤ 0, i = 1, . . . ,m (.c)
hi(x) = 0, i = 1, . . . , p . (.d)

e gi represents the inequality constraints, and hi represents the equality constraints.
If a point satisfies all of the constraints employed on the problem, the point is stated



. eory of Optimization

as a feasible point and the set of all feasible points is stated as the feasible region or the
feasible set. A feasible set will be denoted by S. It should be noticed that inequality
constraints reduce the size and the equality constraints reduce both the size and the
dimensionality of a feasible region.

e equations specifying the objective function and the constraint functions, can be
linear or nonlinear. If the output of any of the constraint functions or the objective
function is not proportional to the input, that is, if the superposition principle

f (x1 + x2) = f (x1) + f (x2) , (.a)

and the homogeneity

f (αx1) = αf (x1) (.b)

does not hold, the problem at hand is a nonlinear optimization problem. Most of the
systems in science and engineering arise as nonlinear problems.

Convexity of a function plays an important role in the optimization theory. If a line
segment connecting any two points in a set C ⊂ Rn lies also in C, i.e. if any x1,x2 ∈ C
and any θ with 000 ≤ θ ≤ 111 satisfies

θ x1+(111− θ)x2 ∈ C (.a)

then the set C is convex. Like the definition of a convex set, the convexity of a function
can be defined. A continuous function f (x),x ∈ C is convex if ∀ x1,x2 ∈ C, and
000 ≤ θ ≤ 111 the inequality

f(θx1 + (111− θ)x2) ≤ θf(x1) + (111− θ)f (x2) (.b)

holds. Convex objective and constraint functions constitute a convex optimization
problem. More information about convex functions and their optimization can be found
in [, p. ], including discussions about which of the mathematical operations pre-
serve convexity.

Regarding whether the gradient of a function is defined globally and is continuous, a
distinction is made between smooth and non-smooth functions. Class of continuity is
oen denoted by C n, where n represents the class of continuity. Smooth functions, due
to their recursive differentiability, are sometimes denoted with C∞ – class continuity.
e issue is depicted in Figure .: the function f1 is a smooth function, and the f2 is a
C 0 class continuous function, hence is non-smooth. However, smoothness practically
is aributed to any function that fulfills C 2 continuity, which implies continuity of the
functions first and second derivatives [, p. ].



.. Basic Definitions in Optimization

Figure .: Illustration of a smooth and non-smooth function []. It should be re-
marked that both of the functions are continuous.

A solution of the optimization problem, which commonly is denoted by x∗, can be either
a global optimizer or a local optimizer. A global optimizer minimizes the objective over
all feasible points, whereas a local optimizer minimizes over the feasible points in the
vicinity (ϵ) of x∗. eir mathematical expression can be given as

f (x∗) ≤ f (x) ∀x ∈ S (.a)

for global optimizers, and for local optimizers

f (x∗) ≤ f (x) ∀x ∈ S, such that ∥x− x∗∥ < ϵ . (.b)

Figure . shows the minima: xb and x c correspond to local minimizers and x a corre-
sponds to the global minimizer.

Figure .: Illustration of global and local minimizers for a univariate function.

Whether the objective is to find a local or a global minimizer, optimization algorithms
are separated into two classes: global optimization and local optimization. Global op-
timization algorithms trade off finding the global optimum to run time. e difficulty
of finding the optimum parameters grow exponentially as the number of optimization
parameters n increase [, p. ]. Because local optimization algorithms have beer
runtimes than the global optimization algorithms and since they can solve problems of
larger scale more efficiently, they are especially for nonlinear optimization problems
widely applied.

A significant drawback of local optimization algorithms is their requirement on a rea-
sonable initial guess to be made. Absolutely the initial guess determines to which local



. eory of Optimization

minima the algorithm will converge. erefore, the initial guess and the constraints,
by confining the parameters, play a key role on the quality of the solution.

Local optimization algorithms are especially aractive for convex problems. An opti-
mization problem, whose objective and the inequality constraint functions are convex,
will have a single local minimum, and in this case, any obtained solutionwill correspond
to that minimum, which is also the global one [, p. ].

Apart from the global/local distinction, local algorithms are separated into two classes
depending on whether they use gradient information or not. If the problem at hand,
i.e. the objective and constraint functions, is differentiable and their gradients are easy
to determine, then it is beneficial to use that gradient information during optimization.
e gradient is the partial derivative of the function with respect to each parameter,
and describes how the function value reacts to a change in the parameter values. It
facilitates finding out the descent and ascent directions of the objective function, whose
incorporation into the optimization algorithms leads to significantly lower computation
times. Such algorithms are called gradient-based algorithms.

Some problems, however, may be hard to differentiate, which in result making the an-
alytic gradient calculation to become very hard. In such cases there are two remedies:
either to employ finite-difference methods, or to use automatic differentiation tools.
Finite difference methods evaluate the derivative of a function for a given input using
the Taylor’s series. Such a derivative calculation has two significant problems. First,
the derivative approximation is dependent on the input given. at means, the whole
calculation must be redone, if derivative at a different point is sought for. Second, as
a result of being based on Taylor’s series, they are subject to truncation and round-off
errors, and can therefore yield only an approximation of the true derivative. It should
be noticed that, the differentiation operation will amplify any non-smoothness in the
problem. is has the potential to plague any Hessian approximation derived from nu-
merically calculated derivative. In circumstances, the amplified errors in the Hessian
may even cause the algorithms to fail [, p. ].

e alternative option, automatic differentiation methods apply a different approach.
ey evaluate a given function and, commonly using chain rule, compute an equiv-
alent function together with its analytical derivative. Once the analytical derivative
is obtained, they return more accurate answers with lower computational costs. e
drawback of these methods is the requirement to store all of the intermediate results
during the evaluation of the optimization problem [, p. ].

In cases, where the gradient is hard to obtain or is not reliable, algorithms that do not
rely on the gradient information, namely derivative-free algorithms, are recommended
to be utilized. Nevertheless, the unavailability of the gradient information leads to con-
siderably longer computation times. e most renowned derivative-free algorithm is
the Nelder and Mead (or the Simplex) method.

Objective functions modeling physical systems or real life incidents can rarely be ex-
pressed with a single function. Usually there are conflicting objectives. A value de-



.. Basic Definitions in Optimization

creasing the cost of a single objective simultaneously exacerbates the cost of other ob-
jectives. us, the optimality of any solution can be defined in sense of the trade-offs
done among these conflicting goals. Such an optimization problem is calledmultiobjec-
tive optimization, multicriteria optimization, or sometimes Pareto optimization and any
optimal solution obtained is called a Pareto-optimal solution.

ere are three types of solution methodologies. Probably the most commonly used
one is the weighted sum approach, which is classified under the a-priori methods [,
p. ]. In this approach, all of the objective functions ares multiplied with a weight
representing their relative significance. en, an objective function is gathered from
the sum of weighted objective functions. e new objective function can eventually be
optimized using existing optimization methods.

For a problem having o objectives, the multiobjective function can be given as

min
x∈S

o∑
i=1

αi fi(x) , (.a)

where αi = 1, . . . , o represents the relative weight of each objective and satisfies

α ≥ 000 |
o∑

i=1
αi = 1 (.b)

[, p. ].

Like in other forms of numerical methods, any solution found will only be an approx-
imation of the real value. How close a solution should be to the real value determines
the termination point of an algorithm. However, solution is the element that is sought
for and hence is unknown at the beginning. erefore, not the solution itself but, how
much the value of a solution candidate changes from one step to another can alterna-
tively be exploited. Depending on whether the change, with other words defined as
the tolerance, in the optimization parameters or in the function value is observed, it
is distinguished between parameter tolerance and function value tolerance. A further
classification on tolerance condition is the absolute and relative tolerance. ey are
calculated as:

Absolute tolerance = |∆xi| = |xi − xi−1| , (.a)

Relative tolerance =
∣∣∣∣∆xi

xi

∣∣∣∣ = ∣∣∣∣xi − xi−1

xi

∣∣∣∣ . (.b)

Apart from the tolerance conditions stated above, the elapsed computation time or the
number of function evaluations can be used as a termination criteria as well.

Within the context of this thesis, as explained in Chapter , a nonlinear, convex func-
tion is solved using gradient-based local optimization algorithms. erefore, the work
continues with presenting appropriate algorithms.



. eory of Optimization

3.2. Nonlinear Optimization

Like most of the problems in engineering, the trajectory optimization problem is non-
linear. e theoretical analysis of nonlinear optimization methods start with consid-
ering an optimization problem without any constraints. is facilitates understanding
the fundamentals of a very general case, which eventually serves as a foundation for
constrained optimization algorithms. Once an insight into the unconstrained case is
gained, equality constrained problems are transformed into a form such that they can
be solved using the same fundamental procedure. A similar approach is applied for
inequality constrained problems. is section will only introduce the fundamentals,
without delivering their derivations. Necessary derivations and proofs can be found in
almost every textbook, such as in [], [], [].

3.2.1. Unconstrained Optimization

In the Section . the fact that the local optimization algorithms are only able to find
a minimum in the vicinity (ϵ) of a given point x∗ was mentioned. In gradient-based
methods, for function f of C 2 continuity, whether any point in the vicinity yields a
greater minimum can be checked efficiently by using the gradient∇f (x∗) and the Hes-
sian ∇2f (x∗). For such a function, the second-order Taylor series of a point x∗ can be
formulated in remainder form as

f (x∗ + p) = f (x∗) +∇f (x∗)
Tp+

1
2
pT∇2f (ξ)p , (.)

where p represents the feasible search directions, which in an unconstrained case can
take any value. Skipping the derivations, it can be shown that, for a point x∗ to be a
minimum, it has to satisfy

. ∇f (x∗) = 000, i.e. x∗ be a stationary point

. det[∇2f (x∗)− λI] = 0, ∀λi ≥ 0, i.e. ∇2f (x∗) positive semidefinite.

ese conditions are called first-order necessary condition and second-order sufficient con-
dition, respectively. However, there are cases in which sufficient conditions are not
necessary, as in the case of f (x) = x 4, where the Hessian matrix vanishes [, p. ],
[, p. ].

e Newton-Raphson method (or just Newton’s method) is a method for finding itera-
tively beer approximations of a value, to find the roots of a function. Once an estimate
of the solution xk of the function f is given, by using the first two terms of the Taylor
series of f, a linear approximation by drawing geometrically a tangent line from the
function value at xk is done. e point, where the tangent line crosses x-axis is taken as
the new value xk+1. is process is repeated iteratively until the change in the values
falls below the predefined tolerance criteria. Like for any nonlinear function, the New-
ton’s method can employed to first-order necessary condition to the value of x∗. e



.. Nonlinear Optimization

utilization of Newton’s method for optimization is sometimes called Newton’s method
in optimization. Within concern of this work, it will simply be referred as Newton’s
method.

e Newton’s method for multidimensional case is commonly formulated as

xk+1 = xk − [∇2f (xk)]
−1∇f (xk) . (.a)

A more succint formulation can be given as

xk+1 = xk + pk , (.b)

where pk is the solution to the Newton’s equations and represents the search direction.
Instead of the form given in (.a), the computation of pk is done by solving linear
equations in place of computing the inverse of ∇2f (xk):

[∇2f (xk)]p = −∇f (xk) (.c)

[, p. ].

Newton’s method has a very desirable property. If the initial estimation is close enough
to solution, it converges quadratically. e method unfortunately has two very crucial
drawbacks that overshadow the aforementioned property. If the initial estimation is far
away from the solution sought for, it will likely converge very slow. In some circum-
stances it may even not converge at all. A further case to be considered are the costs
related to use of Newton’s method. In the preceding form, or so-called in its classical
form, Newton’s method requires the Hessian ∇2f (x), which can be an expensive pro-
cess to calculate. It requires O(n2) derivative computations for obtaining the Hessian,
O(n2) storage locations for storing it, and O(n3) arithmetic operations for solving the
Newton formula. So, once the Hessian is derived, the computational cost of solving the
linear system is O(n3) times the cost of evaluating f. As these are the costs per iteration,
for a problem of moderate size (n < 200) storing the matrix can be acceptable, whereas
the computational cost might probably be not [, p. ]. erefore, alternative meth-
ods motivated from Newton’s method are developed.

Cost related problems that arise due to computing and storing the Hessian can be re-
solved by using some approximation instead of Hessian. For such a case, the search di-
rection can be determined by using the approximation Bk, which is a positive-definite
matrix:

Bk p = −∇f (xk) . (.)

It should be noted that, this equation has the same form as the Formula (.c). e dif-
ference is the approximatedBk, which is in case of Newton’s method equal to∇2f (xk).
For very large problems, not only the computation complexity, but also the huge storage
requirements may necessitate to skip over the use of Hessian by taking Bk as an iden-
tity matrix. Such an approximation is called Steepest-Descent method. In fact, it has a



. eory of Optimization

quite different derivation than it is stated above, but for simplicity, it can be considered
as an identity matrix.

Although approximating the Hessian may seem beneficial and logical at first, if its task
is to be considered, it would be evident that the cons overweight the pros. e primary
task of the Hessian is to provide a beer estimation of the search direction by modeling
the change in the gradient of the function. As a result, any approximation done on
it will compromise on the main benefit it brings about. To state it more explicitly, any
approximation onHessianwill sacrifice the quadratic convergence to a certain extend.

Steepest-Descent Method asi-Newton Methods Newton's Method

Figure .: Hessian approximation methods.

e impracticality of both methods have led to the development of “hybrid” approx-
imation methods, the so called quasi-Newton methods. e family of quasi-Newton
methods beholds various methods with disparate approximation formulas. Neverthe-
less, they are all based on the finite difference approximation of the secant formula.
Skipping the derivation, a very popular quasi-Newton algorithm is given by the for-
mula

Bk+1 = Bk −
(Bksk)(Bksk)

T

sTk Bk sk
+

qkq
T
k

qT
k sk

, (.)

where sk = αk pk and qk = ∇f (xk+1) − ∇f(xk). e algorithm is named aer its
discoverers Broyden, Fletcher, Goldfarb and Shanno, and is briefly called the BFGS al-
gorithm, Iteratively approximating Bk+1 from Bk in the consideration of the additional
knowledge gained from that step allows the application of Cholesky factorization. is
reduces O(n3) arithmetic operations required for solving the linear system of equations
at each step to O(n2). e gain obtained in the computational complexity is not in a
huge expense of convergence, like in steepest-descent; BFGS converges superlinearly.
Superlinear convergence is defined as 1 < r < 2 for

lim
k→∞

∥ek+1∥
∥ek∥

r

= C <∞ , (.)

where ek corresponds to xk − x∗. In the case of quadratic convergence r = 2 [, p.
].

With the BFGS-update algorithm, the properties of Hessian, such as the symmetrical-
ness or the positive definiteness, can also be imposed on the approximation Bk. is
makes the quasi-Newton methods to become especially suitable for quadratic optimiza-
tion problems [, pp. , ]. So will one of the two major problems of the Newton’s
method be rectified. An illustration of steepest descent method and the Hessian illus-
tration is given in Figure ..



.. Nonlinear Optimization

ere is a very important difference between Newton’s method and steepest descent
method for several type of problems. If the solutions of the parameters of a multipa-
rameter optimization problems are too separate from each other, i.e. for example, while,
x1 ≈ 10−8, x2 ≈ 1 and x3 ≈ 108, then the problem is indicated as poorly scaled. In such a
case, equal amount of changes in parameters will return higher differences in the value
of the objective function. It is not hard to imagine that, such a case corresponds to
elliptical contour lines of the objective function. As the steepest descent method uses
only the gradient information while finding the direction, it geometrically takes a step
that is normal to the contour line at that point. In case of elliptical contours, at the
sides where the decrease in the function value is low, this causes “zigzagging”, and con-
sequently, the steepest descent method to converges very slowly. On the other hand,
the Newton’s method, by virtue of the incorporated Hessian, is unaffected by it [,
p. ]. erefore, if steepest descent or quasi-Newton methods would be used in the
solution process, and the solution of the parameters are expected to differ substantially,
prescaling must be done. However, some of the quasi-Newton methods do the scaling
by itself [].

For guaranteeing convergence, there are two main strategies: the line search and trust
region. ese are sometimes referred as globalization strategy and provide a safety net,
against the case the algorithms diverge. Both essentially try to follow the fundamental
principle of decreasing the function value at each iteration. Its mathematical expression
can be given as

xk+1 = xk +αk pk , (.a)

so that

f (xk+1) < f (xk) . (.b)

In the line search methods, or linear search methods, the algorithm uses the Newton
direction to search for a new point xk+1 by creating a line y(α) = xk+αk, and chooses
an appropriate step-width αk, such that it causes the function value to decrease. For
the special case of Newton’s method, αk is equal to 111. Trust region methods, on the
other hand, follow a quite different strategy. ey use the information gained about f at
the current point xk to construct a model and then choose the maximum step-widthαk

– or more specifically the trust-region radius ∆k – and select the direction of the step
pk that reduces the function value at most. If the obtained results are unsatisfactory,
the process is repeated by selecting a smaller ∆k.

Although the performance of these methods is dependent on the individual problem,
their performance on average is equal [, p. ]. e algorithm used in the thesis uses
a method that can be categorized as line search method. Many of such methods make
four assumptions in total, two on search direction pk and two on the step length αk

to guarantee convergence. ese are: pk produces “sufficient descent” and is “gradient
related”, and αk produces “sufficient decrease” and is not too small. ese lead to the



. eory of Optimization

definition of Armijo and Wolfe conditions, and if obeyed to them, the convergence will
be secured [, p. ].

3.2.2. Constrained Optimization

Constrained optimization can fundamentally be solved using the same procedures de-
fined for unconstrained optimization, once the constraints are somehow included in
the problem. A C 2 continuous function f is now subject to C 2 equality and inequal-
ity constraint functions of the form (.d) and (.c), where the gradients of the active
constraints are linearly independent.

Considering only equality constraintsh(x) first, if their substitution inside the objective
function is not possible, which is a common situation, they all can be coupled to the
objective function via the use of Lagrangian function

L(x,λ) = f (x)−
p∑

i=1
λihi(x) = f (x)− λTh(x) , (.)

where λ is a vector of Lagrange multipliers.

rough the use of Lagrange multipliers, the equality constrained problem is recasted
as an unconstrained problem. Now, instead of the original function f , the equality
constraint coupled Lagrangian function can be solved by using the same optimality
conditions.

Coupling inequality constraintsg(x) is quitemore complicated than equality constraints.
Unlike equality constraints, inequality constraints do not necessarily have to “bind” the
solution at all times, i.e. a solution can satisfy the constraint by being arbitrarily less
than the equality definition. Or differently interpreted, if an inequality constraint binds
the solution, it can be modeled as an equality constraint. is leads to the need of spec-
ifying which of the inequality constraints are binding, or active, and which of them
are not binding, or inactive at the solution while searching. More precisely stated, an
inequality constraint is either active, by proscribing a region that would behold a mini-
mum if the constraint itself would be absent, or is inactive, by proscribing a region that
would not behold the minimum even if the constraint itself would be absent, [, p. ].
is corresponds to the complementary slackness condition, which explicitly points out
that for the inactive case, Lagrange multiplier corresponding the constraint to be zero.
If an active constraint has a Lagrange multiplier equal to zero, it is called a degenerate
constraint. Degeneracy is an important issue as it may lead the algorithms to converge
very slowly, or even to fail [, p. ]. Another reason of the degeneracy is the linearly
dependent, or redundant, constraints [, p. ]. If an active constraint can be inferred
from another, it is defined as redundant.

Implementation of the stated considerations allow the generalization of Lagrange mul-
tipliers method. Named aer the inventors of this approach, Karush & Kuhn-Tucker



.. Nonlinear Optimization

(KKT) conditions define the necessary conditions, known as regularity conditions, for a
solution to be optimal.

In a general case, where nondegenerate both inequality and equality constraints are
present for a regular point x∗, there exists a vector of Lagrange multipliers λ∗ such that

∇xL(x∗,λ∗) = 000 , (.a)
λ∗ ≥ 000 , (.b)

h (x∗) = 000 , (.c)
g (x∗) ≤ 000 , (.d)

λT
∗ h (x∗) = 000 . (.e)

ese are the necessary conditions of first order for optimality. e second order suf-
ficient condition is given by

yT∇xxL(x∗,λ∗)y to be positive definite, (.f)

where y is a basis for the null space of the Jacobian matrix of nondegenerate constraints
at x∗ [, p. ]. is actually corresponds to tangent vectors of the active constraints
at a solution x∗ [, p. ].

It should be noticed that, the Equation (.e) corresponds to the complementary slack-
ness condition. In some sources, the Lagrange multipliers of the inequality constraints
are termed as KKT-multipliers and denoted with µ∗.

e multipliers essentially give the coefficients of the linear combination between the
gradient of the objective function and the gradients of the constraints. ey therefore
define the “sensitivity” of the objective function value to changes in the constraints.
Hence, a λi equal to zero would indicate that the constraint present does not have any
effect on the solution.

e KKT conditions are solved by checking the solutions of the Lagrangian function
given in Formula (.). Any solution satisfying these constraints will be a local solution
of the problem. Among the solutions, only one will yield the optimal result and that will
be selected as the solution. e process of findingwhich of the constraints are active and
then taking the solution that is yielding the optimal solution is quite burdensome. For
determining which of the sets are active, several approaches exist in literature, such as
active set methods or penalty methods. Nevertheless, in a convex problem, any solution
found will automatically correspond to the global minimum. Hence, the if a solution
satisfies the constraints, there is not any reason to check other solutions whether they
yield a beer minimum and therefore, the optimization can be terminated.

It should also be noted that, in case of constrained optimization, feasible search direc-
tions are not on line any more, but are rather on curves. is result arises from the
surface-like geometric structure of constraints. erefore, small movement that main-
tain feasibility are said to be as on feasible curves.



. eory of Optimization

3.2.3. Sequentialadratic Programming

Sequential quadratic programming (SQP) methods are the indispensable methods for
solving nonlinearly constrained problems, and they exhibit their strengths when sig-
nificant nonlinearities are present in the constraints. e SQP methods, fundamentally,
generalize the Newton’s method to constrained optimization, via the use of KKT con-
ditions. ey model the objective function, as a linearly constrained quadratic function
and use the minimizer of the quadratic function to determine a new iteration of the
solution.

For an objective function defined in Formula (.), the Lagrangian function can be given
as

L(x,λ) = f (x)− λTc(x) , (.)
where c(x) is a vector of equality constraints obtained from KKT conditions. e vec-
tor is in the same length with the summation of number of equality and inequality
constraints, that means it has m + p elements in total, and all of the active constraints
are linearly independent.

e first order optimality condition can be given as

∇L(x,λ) = 0 , (.)

or in open form

∇xL(xk,λk) = ∇f (xk)−∇c (xk)λk = 000 , (.a)
∇λL(xk,λk) = −c (xk) = 000 . (.b)

∇c represents the transpose of the Jacobian of each constraint ci, i ∈ (1, ...,m+ p).

e Newton’s method, given in its basic form in Equation (.b) can be used for itera-
tively solving the Equation (.) or (.): xk+1

λk+1

 =

 xk

λk

+

 pk

νk

 (.)

However, in order to be able solve the equation (.), pk and νk must be known. ese
can be obtained from the following linear system:

∇2L(xk,λk)

 pk

νk

 = −∇L(xk,λk) . (.)

Or, in open form expressed as ∇2
xxL(xk,λk) −∇c(xk)

−∇c (xk)
T 0

 pk

νk

 =

 −∇xL(xk,λk)

c(xk)

 . (.)



.. Nonlinear Optimization

e equation (.) corresponds to the following quadratic optimization problem:

min
p

q(p) = 1
2p

T[∇2
xxL(xk,λk)]p+ pT[∇xL(xk,λk)] , (.a)

subject to [∇c (xk)]
Tp+ c(xk) = 0 . (.b)

It can be realized that the equation (.a) corresponds to Taylor approximation of the
Lagrangian at (xk,λk), and the equation (.b) corresponds to the linear approximation
of the constraints at c(xk + p). is an expected situation of applying KKT conditions
and Newton’s method.

e SQP methods exhibit the same characteristic properties as the Newton’s method.
e convergence properties are highly dependent on the initial estimation done. If
the initial estimation x0,λ0 is close enough to the solution x∗,λ∗, than it will deliver
quadratic convergence. For globalization, either merit functions or trust region meth-
ods can be used. Merit functions include terms for the assessment of the candidate
step width, yielding a “beer” estimate of the solution and feasibility-degree regarding
constraints. ese terms penalize undesired steps via the penalty methods or barrier
methods and increase the value of the merit function. Subsequently, a step that returns
the smallest result is taken. Analogous conditions to the conditions for unconstrained
problems are subject to merit functions. Algorithms depending on merit functions,
however, may undergo an undesirable phenomenon called Maratos effect, which may
invalidate the superlinear convergence in the absence of precautions [, p. ].

e computational cost, also as in the Newton’s method, is dominated by the compu-
tation of Hessian matrix. erefore, it is common for many SQP methods to use quasi-
Newton methods, which are categorized as full quasi-Newton methods and reduced
quasi-Newton methods. However, regard must be payed to the choice of the Hessian
approximation, as it is in core of the solution process and the convergence properties
of the algorithm are influenced by it [, p. ].

In this section the solution methodology and the fundamental theorems behind the
SQP-methods have been introduced. ese serve as the foundation and reflect the main
considerations behind all SQP algorithms. e theory of optimization is immense, and
there are other crucial issues such as ill-conditioning of the Hessian, which can, for
example, occur in the utilization of penalty functions, or as a natural result of an ac-
tive constraint binding a solution [, p. ]. Furthermore, in case of sparse Hessian
or sparse constraint matrices, which is a typical case for moderate to large problems,
there are some special techniques called sparse matrix techniques [, p. ]. ese
techniques reduce the storage and the computational cost of using Newton’s method.
Apart from the general issues, even sole SQP family is a vast area of research and there
is a huge literature about these methods. e context of this work does not include
improving the algorithmic details of the solver used for the trajectory optimization.
Hence, the investigation of the optimization theory and SQP methods will be finished
here. For a comprehensive survey of SQP-methods readers are referred to Chapter 
in [] or to []. e used SQP algorithm is presented in Section ..



. eory of Optimization

e flowchart a SQP-algorithm with a quasi-Newton method is illustrated in Figure ..
e quadratic subproblem controlling the steps of the optimization can be seen.

Calculate

Start

Solve the adratic Equation

Stop
Yes

Select a step length
satisfying

convergence conditions

No

Calculate

Calculate asi-Newton Update

using

for

Figure .: Flowchart of a SQP algorithm with quasi-Newton update.



4. Trajectory Planning as an
Optimization Problem

In Chapter , various motion planning methods were reviewed and the reasons for the
utilization of optimization based methods was mentioned. In Chapter  the theoretical
backgrounds and essential information about these methods were given. is chapter
focuses on the formulation ofmotion planning as a constrained optimization problem.

e chapter starts with introducing formulation for themost simple case, namely where
the only task is to plan an optimal trajectory along an obstacle free, structured environ-
ment. Structure of the cost function and the required constraints to maintain a feasible
trajectory planning are given in this chapter. ese will later serve as the basis for more
complex scenarios, where other traffic participants are present.

Large extend of the work presented in this chapter has already been published in [].

4.1. Problem Definition and Formalization

efirst step at establishing any type of optimization problem is the identification of the
optimization parameters and their underlying dimensionality. If the vehicle is reduced
to a point, where the point corresponds to the center of the rear axle, its motion can be
represented by the position of that point along time axis. Defining such a point as node
x, any node in global coordinate system can be represented by two variables: through
x and y coordinates. Hence, the dimensionality of finding a single position is , or in
other words, each node introduces two optimization parameters. e vehicle motion
is conventionally planned for a certain finite time in the future, which commonly is
referred as time-horizon, or horizon T for short. It is beneficial to select the horizon
as large as possible, however, the computation time is a bounding factor and therefore
it cannot be selected as arbitrarily large. While the range of the horizon may variate,
reasonable values are in between -s.

Once the parameters and the dimensionality of the optimization problem is introduced,
the function that adjusts the parameters under consideration of certain constraints must
be given. Subsequently, in order to be able to compute these formulations in digi-
tal computers, obtained equations for continous case must be transformed into their
discrete counterparts. e respecting objective and constraint functions and their dis-
cretization are given in the subsections below.



. Trajectory Planning as an Optimization Problem

4.1.1. Objective Function

e objective function is the core of an optimization process. It is the function that sets
the properties of ideal trajectory up and penalizes the deviations from it with increasing
cost values. Certainly, an ideal trajectory has to reflect the desired profile of a motion,
such as minimization of the lateral distance from driving corridor centerline, or driving
with the reference set-speed. On the other hand, it should be remarked that the fulfill-
ment of requirements may in some cases be impractical by means of comfort, or even
energy consumption. For example, driving on a road with hairpin turns at the same
speed as if it were a straight road will decrease the ride comfort. Or as a further exam-
ple, if a trajectory contains rapid accelerations and decelerations, corresponding fuel
consumption will be high, and the comfort will be low. To sum up, for a trajectory to
be optimal, besides the terms that comprise the main requirements set on motion, also
terms that smooth the trajectory have to be implemented to the objective function.

In this respect, an optimal trajectory at time t0 can be obtained by minimizing the fol-
lowing cost functional:

J [x(t)] =
∫ t0+T

t0
L(x, ẋ, ẍ,

…
x) dt , (.a)

where L is given by

L = joffset + jvelocity + jacceleration + jjerk . (.b)

e individual summands of the integrand L respectively represent the offset from the
imaginary centerline, the deviation from desired velocity, and terms that dampens ex-
cessive acceleration and jerk values.

e offset term is obtained by using the squared normal distance from the road-centerline
dcenter and then by multiplying it with a relative weighting factor, as indicated below:

joffset(x(t)) = woffset|dcenter(x(t))|2. (.)

Evidently, there is not any such line on the roadways and this merely represents a
virtual line. Another option would be to use the sum of signed distances from the
right and le corridor bounds, instead of the dcenter. is would be the only possible
choice for a simultaneous mapping and driving application. However, if the map of the
environment would be available prior to driving, creating such centerlines and adding
them intomap-data would be beneficent. During planning, this would result in deriving
distance from only one line, which thus reduces the computational costs of a single
query. Considering the objective function is evaluated multiple times during planning,
this could result with notably shorter computation times.



.. Problem Definition and Formalization

e second term penalizes any deviation of velocity from the reference value vdes, and
is given by:

jvelocity (x(t)) = wvelocity |vdes(x(t))− ẋ(t)|2. (.)

e reference velocity is always in tangential direction to the road boundaries, with
its magnitude being equal to the desired travel speed. e direction of the reference
velocity for an arbitrary node is given in Figure .. As an intrinsic result of the change
of the road geometry in (x × y) coordinates, the tangent vector also generally points
to disparate directions throughout the road. Hence, the reference velocity can only be
defined by transforming unit tangential vector to its x- and y-components and then
multiplying it with the scalar reference speed sdes value.

Figure .: Normal vector of reference velocity.

ere are several alternative ways to define the reference velocity. e most basic op-
tion would be to set it simply equal to the desired speed, without explicitly defining
its x- and y-components. However, such a definition does not discern between for-
wards and backwards driving. Both of them return same cost. Such a case obviously
represents an undesirable case and is far away from being a feasible alternative.

Both of the introduced terms until now serve the vehicle to follow a given trajectory.
As discussed, smoothness can be maintained by the following terms:

jacceleration (x(t)) = wacceleration |ẍ(t)|2, (.)

and
jjerk (x(t)) = wjerk |

…
x(t)|2. (.)

e selection of the objective function not only has a vast impact on the result, but it
also constitutes the form of the optimization problem and plays a key role on the selec-
tion of the optimization method. In section ., it was clarified that local and gradient
based solvers are able to return results within a short amount of time and a real time
optimization implementation can achieved only by their utilization. It was also men-
tioned that they only can return a local minimum, and this might be in some cases a



. Trajectory Planning as an Optimization Problem

real consideration. erefore, the cost function has to be selected in such that it does
not contain any stationary point, to which, if encountered, the solver would get stuck
to.

It can be noticed that there are multiple objectives present, some of which having even
contradicting inclinations on the selection of optimization parameters. is is the form
of a typical multicriteria optimization, as introduced in Section ., on Page . An ag-
gregation of the individual summands can be realized by introducing weighting factors,
that define the relative impact of each parameter. It is, however, crucial to use relative
factors, and to abstain from using absolute factors. Although the use of absolute factors
is merely like multiplying the relative factors with some scalars, practical experience
have shown that in medium to large problems this caused the gradient computation to
fail, probably because of numerical effects.

e choice of weighting parameters plays a key role on the profile of generated trajec-
tory. eir selection was done in a similar way like finding weighting factors of any
other engineering problem. As a first step, they are selected such that each parameter
has roughly the same order of magnitude. Aerwards, they are multiplied with scalars
according to their relative importance. e final step was to use experimentation, and
tuning the parameters with the insights obtained from overshoot and oscillation in con-
trol theory.

A further issue to notice is the quadratic from of the cost functional. As mentioned in
Chapter , objective functions of quadratic form are convex, and this makes the local-
gradient based optimization algorithms especially aractive for such problems. Any
local minimizer of such a function will correspond to the global minimum.

4.1.2. Constraints

In order to fit the optimization parameters into a range that yields feasible trajectories,
the objective function must be subject to certain constraints. In gradient-based opti-
mization, besides the cost function, the constraints must be continuous as well. Con-
straints in motion planning are divided into two categories: internal constraints, that
arise due to the physical limits of the autonomous agent, and external constraints, that
result from the environment of the agent. Although the primary interest of the thesis is
on external constraints, the internal constraints will be briefly reviewed before dealing
with the external constraints.

Vehicle motion is limited by the kinematics of the steering geometry and by the forces
that the engine can deliver, or in other words the tires can transmit to the road sur-
face. Typically, at low speeds restrictions due to bounds of turning radius become more
prevalent. It is common to use the curvature, which is the inverse of turning radius,
while defining cornering. iswas previously illustrated on Figure ., andwas denoted



.. Problem Definition and Formalization

with the symbol κ. In Cartesian coordinates, curvature at any instant can be extracted
from velocity and acceleration information using the formula below:

κ(t) =
ẋ(t) ÿ(t)− ẏ(t) ẍ(t)

3
√

ẋ(t)2 + ẏ(t)2
, (.a)

where the κ is bounded by a maximum value:

|κ(t)| < κmax . (.b)

Such a symmetric, state-independent bound κmax corresponds to the simplest type of
actuator limit. For an ordinary sedan vehicle, turning radius is generally between –
meters.

At high speeds, due to the increasing aerodynamic forces and rolling resistance of the
tire, the longitudinal acceleration limit is lower than it is at lower speeds. Moreover, the
friction limit of the tire plays more decisive role on the feasibility. is circumstance is
best described by the circle of forces and can very roughly be formulated as

∥ẍ(t)∥2 < amax
2 , (.)

where amax represents the radius of the circle. A beer limitation could be given by
separating longitudinal acceleration from lateral, and spliing the longitudinal accel-
eration limits into acceleration and deceleration. If dealing with tanker trucks, it may
also be necessary to limit jerk in the same way as for acceleration. Jerk values can be
crucial for all objects which do not have a stable mass center. e dynamics of tanker
trucks are closely related to the fill rate of the liquid they are transporting, and if not
fully loaded, changes in acceleration values play a deciding role.

Travel speed is also bounded typically by the regulations of the environment. erefore,
they fit under the group of external constraints. For a speed limit smax specified by the
regulations, the inequality below must hold:

∥ẋ(t)∥2 < smax . (.)

e major external constraint in the absence of obstacles is undoubtedly the constraint,
that keeps the vehicle inside the driving corridor. is can be maintained by using the
signed distance. Signed distance of a point with respect to a line is positive on one side
of the line, and negative at other side. A contour plot of an arbitrary line is given in
Figure .. Reddish colors indicate positive values and the bluish ones negative values.
If the signed distance of a point is taken with respect to the right and le bounds of
the road, the multiplication of the distances will be negative inside the driving corridor,
and be positive outside. Capitalizing on that, the vehicle can be kept inside the driving
corridor by constraining the centerpoint to have a negative value.



. Trajectory Planning as an Optimization Problem

Figure .: Signed distance function of an arbitrary line. Smoothness at the both edges
should be remarked. Only the normals at the both tips of the reference line
are discontinuous.

Figure .: Roadside boundary constraint.

However, there is another issue to be taken into consideration. e vehicle was reduced
to a single point that corresponds to the rear axle centerpoint. Of course, checking
barely that point is not sufficient as this would set only that point to be inside the
driving corridor, and not the whole vehicle body or the maneuver area. Two remedies
for that will be introduced here. One way is to calculate the position of the edges
of the vehicle and perform the check for those four corner points instead of the axle
centerpoint. Vehicle corners to be regarded are illustrated in Figure ..

Figure .: Vehicle corners to be regarded for the driving corridor constraint.

Although this might be the felicitous solution, checking four points instead one would
increase the computational costs. A practical way is to benefit from R2 workspace and
grow the configuration space by a certain length r up. Constraint formulation ccorridor
in this case for the centerpoint x can be given as

ccorridor(x) = (dright(x)− r) · (dleft(x) + r) , (.a)

where

ccorridor(x) < 0,∀x ∈ Wcorridor . (.b)

dright and dleft indicate the signed normal distance from the right and le corridor
bounds, respectively. e minimum value of r depends on the geometry of the vehicle.



.. Problem Definition and Formalization

A proper selection would be greater than the diagonal length from axle-centerpoint to
the furthest cornerpoint. In fact, this corresponds to decomposing vehicle shape into
a big circle. However if the vehicle is passing through a narrow corridor in parallel,
then the half of the vehicle width can also be taken. Such parallel motions make the
method to become quite more practical. A further way is to use circle decomposition
of the vehicle, as presented in [].

ese were the fundamental constraints that maintain a feasible reference trajectory.
Any instance of a planned trajectory must observe these limits.

4.1.3. Discretization

Once the formal representations of the functionals are clarified, due to reason men-
tioned in the beginning of the current section, they have to be transformed to functions
via the use of finite differences. e integral was defined over time t and now it will
be discretized into equally spaced intervals called timesteps. In this case, the horizon T
can be divided into N ∈ N timesteps and the trajectory will be approximated via them.
If the trajectory would be approximated by step-widths of ∆t, a formulation for N can
be given as:

N =
T
∆t

, (.)

and any time ti aer t0 would be

ti = t0 + i∆t, 0 ≤ i < N . (.)

e time derivatives of the trajectory nodes can be approximated by a various finite
difference formulations. Considering efficiency and computational cost, forwards and
backwards differences have found more application in pratice. Furthermore, unlike the
central differences, they do not introduce any smoothing effect on the obtained deriva-
tives, which could lead to deceptive results. Although backwards and forwards differ-
ences essentially yield the same result, the timestep for which they find the derivative
varies. For sense of simplicity in indexing, backwards differences are used. It should be
remarked that, in order to obtain the jerk value at a node, the positions of three nodes
in prior to it are needed. Time derivatives obtained by utilizing backwards difference
of trajectory nodes xi can be given as:

ẋ(ti) ≈ xd =
xi − xi−1

∆t
, (.a)

ẍ(ti) ≈ xdd =
xi − 2xi−1 + xi−2

(∆t)2
, (.b)

…
x(ti) ≈ xddd =

xi − 3xi−1 + 3xi−2 − xi−3

(∆t)3
. (.c)



. Trajectory Planning as an Optimization Problem

In this case, the integral given in equation .a will transform into a finite sum:

J [x(t)] ≈ Jd(x0,x1, . . . ,xN−1) =
N−1∑
i=3

L(ti, xi, xd, xdd, xddd)∆t . (.)

Now, the equation presented above can be minimized with respect to the parameters
x0,x1, . . . ,xN−1. Each of these parameters consists of x- and y-components and are
commonly referred as trajectory support points.

Considering the quadratic structure of the cost function and the nonlinear structure
of the constraints, the problem corresponds to a nonlinearly constrained optimization
problem. As introduced in Chapter , the SQP methods among other local-gradient
based algorithms are renowned as powerful solvers for this type of problems.

4.2. Initialization

Local optimization algorithms require an initial guess to start the optimization. e
quality of the solution depends heavily on the initial guess. As indicated in Chapter
, even the Newton’s method converges quadratically only if the initial guess is close
enough to the solution.

Initial guess plays a key role not only on the speed of convergence, but also on whether
the algorithm convergence at all. ere is not any proof convergence if the initial guess
is not in the feasible solution set S. Although, practical experience shows that the algo-
rithms that rely on the true Hessian mostly tend to find a feasible solution aer a certain
time, even if the initialization is not inside S. Nevertheless, it should be refrained from
bad initializations and it must be striven for performing feasible and solution-proximate
guesses.

Startingwith the simplest case, inwhich the task is to perform initialization for a vehicle
heading on+x direction, an initial guess can be made by multiplying the desired travel
speed with the respective timesteps and step-width, and eventually summing it up with
the initial position, i.e.

xi = [xi, yi] = [x0 + sdes i∆t, y0]. (.)

Almost the same formulation can be used for any straight motion on Cartesian coordi-
nates. However, when the vehicle has to drive on a curved road, such a formulation will
not be tractable any more. In that case, coordinates must be defined with respect to the
geometry of the street. Hopefully, such a reference exists in differential geometry and
is called the Frenet frame []. Coordinates in Frenet frame, as illustrated in Figure .,
are defined by taking the signed distance of the closest normal d to the curve, and the
arc length l of the curve until the point to which the normal corresponds. By exploit-
ing this frame system, initializations invariant to street geometry can be performed.



.. Initialization

Figure .: Frenet coordinates with respect to a reference curve.

e first is to find coordinates in Frenet frame by exploiting the formulation given in
Equation .:

[li, di] = [l0 + sdes i∆t, dreference] (.)
Aerwards, the obtained coordinates are transformed to (x× y) coordinate system, to
which the optimization is defined on:

xi = [xi, yi]← [li , di] . (.)

From now on, transformation from (x × y) coordinates to (l × d) coordinates will be
defined as forwards transformation, and the vice-versa as backwards transformation.

e selection of the reference normal distance dreference depends on the reference line
selected, i.e. if the centerline of the road is selected as the reference line, dreference can be
taken equal to 0. On the other hand, if the right or le bound of the road is used, than
dreference must be taken equal to the half of the lane width.

It should be remarked that, although the coordinate system was changed, the speed
used to calculate the displacement sdes has remained the same. As illustrated in Figure
. below, displacement calculation in the vicinity of roadside boundaries leads to fal-
lacious results. However, considering that the vehicle is expected to center the lane, an
appropriate initialization would minimally suffer from this effect, eventually making
this concern to become insignificant.

e initialization model represented by the Equation . does not incorporate the ef-
fect of initial acceleration and jerk values. Certainly, if their corresponding values are
high, and the horizon is limited to a few seconds, this would lead to a bad initialization.
Nevertheless, the intended horizons are typically greater than - seconds. In such
a case, even though the initial values of acceleration and jerk may be high, if the ini-
tial speed does not deviate from the desired travel speed remarkably, the initialization
would be successful in overall. Furthermore, if the effect of acceleration is not included
into the predicted trajectory calculation, the acceleration values throughout the motion
would only vary in consequence of the change in the road curvature. If the vehicle is
not heading at high speeds on sharp turns, the lateral acceleration values would also be
typically below the defined constraint limits. Albeit this might seem like quite an op-
timistic approach, even if the acceleration values exceed the limits, the optimizer will
presumably find, may be not very optimal but, a feasible solution. An enhancement
on the initialization will however be presented in Section .., and another way of
initialization will be presented in Chapter , while proposing future work.



. Trajectory Planning as an Optimization Problem

Figure .: Comparison of displacement measurement in Frenet coordinates with
Cartesian coordinates. Red arrows indicate the measurement in Cartesian
and the black arrows in Frenet coordinates. All of the black arrows repre-
sent the same displacement value l, whereas each of the red arrows represent
distinct values.

e constraint on steering angle will be inherently satisfied by any initialization done,
as roads are constructed respecting the physical limits of vehicles. In case the corridor
boundaries are generated by the autonomous vehicles perception system simultane-
ously, then a plausibility test for the generated road geometry must be performed and
unsuitable road geometries arising from faults of the perception system must thereby
be filtered out. e other constraint that keeps the vehicle inside the road boundaries
will also be satisfied at any instance if dreference is adjusted such that it corresponds to
the center of the road. Hence, it will also not be a maer of concern.



5. Kinodynamic Optimal Trajectory
Planning

An autonomous vehicle typically operates in an environment which comprises dynamic
obstacles. is requires the optimal planning method presented in Chapter  to be
extended in such away that it delivers optimal trajectories even if the path of the vehicle
is occluded by other vehicles. e intention of this chapter is to give the necessary
formalizations that yield a collision free optimal trajectory in the presence of velocity
obstacles. e presented methods in principle are also applicable to static obstacles, as
they represent a special case of velocity obstacles.

e chapter starts with introducing combinatorial problems encountered in roadways
and continues with presenting a method for the identification of all feasible combina-
tions. Subsequently, constraints that yield combination restrained collision-free tra-
jectories are introduced. As these additional constraints set on motion must also be
satisfied by the initial guess, the method presented for initialization must be extended
appropriately. Finally, considering the computational burden resulting from the multi-
combinatorial structure of the environment, the so called path-velocity decomposition
is described together with its implementation.

5.1. Combinatorial Problems in Roadways

Driving inherently involves decision making about various combinatorial options. e
most basic combinatorial problem to be solved starts even prior to the start of motion,
with route planning. Considering the case where a driver needs to reach B from A and
assuming there is a variety of occasionally intersecting roads leading to the destination,
driver selects a route among the alternatives according to a certain criteria, such as
travel time, path length etc. For that purpose, the driver evaluates several alternatives,
and in case combines several road segments to obtain the optimal path. Although the
combinatorial problem seems to be seled, in fact, it starts once the vehicle hits the
road.

Any obstacle on roadways, static or dynamic, create combinatorial possibilities from
which the driver has to choose the most favorable one. In its simplest form, a road that
is partly blocked by a static obstacle can be analyzed. Such a situation, where a tree



. Kinodynamic Optimal Trajectory Planning

located at about the center of the road is illustrated in Figure .. e driver in that case
must decide either to drive on the right or on the le side of the obstacle.

Figure .: Combinatorial problem in presence of a static obstacle.

Or as a further example, a situation from dynamic street scenarios, such as the one
illustrated in Figure ., can be considered. As illustrated in the figure, assuming that
there is not any traffic sign controlling the merge-flow, the ego vehicle, represented in
blue color, has to decide in which sequence it will enter the intersection. at is, it can
either yield to other vehicles, or accelerate and become the leading vehicle, or take a
position in between them.

Figure .: A basic combinatorial problem in dynamic street scenarios.

When treated as an extremum problem, the presence of multiple combinations would
generate multiple local minima, and the objective function in overall would look like
one given in the Figure .. However, due to the fact that some positions that the
vehicle can be located on are already blocked by their vehicle widths and and by a
safety distance, some regions of the figure would be restricted. Considering the merge
situation illustrated in Figure . as an example, the cost function for the combination
“driving in between both vehicles” could be depicted as in Figure ..

Figure .: Illustration of the objective function for the combination of ‘merging in be-
tween vehicles’ in the merge scenario given in Figure .. A represents the
region restricted by the red vehicle and B by the green vehicle.

Drivers unwiingly make lots of such decisions while driving. ese are however not
always correct, in sense they select the most favorable combination. An autonomous



.. Integrating Combinatorial Reasoning into Trajectory Planning Problem

vehicle optimal trajectory planner in contrast has always to pick up the most favor-
able option, i.e. the global minimum, and plan its trajectory accordingly. Finding the
global minimum problem in such a case would typically require the utilization of global
optimization algorithms. However, the drawbacks of global optimization algorithms
were mentioned in Chapter . In Chapter , it was shown that the ordinary trajectory
problem has a nonlinear-convex structure and is best solved by local-gradient based
algorithms. Apparently, if the problem could be decomposed into individual parts rep-
resenting distinct combinatorial possibilities, each of the combinations would have a
convex cost function and their minima would eventually become aainable by local-
gradient based algorithms. Naturally, each of the separate combinations would yield a
local minimum, whereas one of them would correspond to the global minimum. e
approach in this work will derive constraints that confine the search space to each of
the feasible combinations andwill aerwards perform constrained local optimization.

5.2. Integrating Combinatorial Reasoning into
Trajectory Planning Problem

How obstacles on roadways create a variety of alternative feasible trajectories and
thereby pose combinatorial problems onmotion planners was introduced in the preced-
ing section. Focus will now be given on their integration into the trajectory planning
problem. Necessary formulations will be developed in three steps. e first step would
be to determine all of the combinatorial options. Once they are found, generalization
about their imposition onto the optimization problem will be given as the second step.
Finally, as a requirement of exploiting local optimization algorithms, a method for an
initialization obeying the combinatorial constraints will be presented.

5.2.1. Extraction of Combinatorial Options

A practical and complete representation of available combinatorial options plays a key
role on the selection of the most favorable combination. Because optimization is an ex-
pensive process, optimal trajectory computation for any combination should be done
once the combination is found to be feasible and is distinct from other combinations
listed. Hence, the representation must not only be complete by comprising all of the
combinations, but also must be freed from any redundancy while maintaining feasibil-
ity.

A reasonable approach is to divide the extraction problem into two subsequent steps.
e objective of the first step would be to list all of the combinations up, while avoid-
ing redundancy. As the second step, by interpreting feasibility conditions as a filter,
the combinations found can be passed through it and infeasible ones can thereby be
eliminated. In fact, this merely corresponds to applying feasibility constraints on the
combinations found, i.e. if a combination satisfies the constraints it will be retained, else,



. Kinodynamic Optimal Trajectory Planning

it will be skipped. Hence, the inspection on the feasibility of a combinatorial option can
be done once the constraints are formalized.

Any vehicle on a roadway will introduce two options for the ego vehicle while order-
ing, or as will be called from now on, while sequencing. e ego vehicle can be either
sequenced before, or aer a reference vehicle on its path. It is advantageous to describe
combinations of sequencing by binary numbers. In the former case, i.e. driving in front
of the reference vehicle, the binary representation can be given as ‘’, and in the laer
case, i.e.while driving behind of the vehicle, it can be given as ‘’. Neglecting feasibility,
in the presence of v number of vehicles, the total number of possible combinations Call

can be given as:
Call = 2v. (.)

Each of the combinations can be obtained by the binary representation of all of the
numbers until 2v. Considering the case illustrated in Figure ., the presence of  ve-
hicles lead to 22 = 4 distinct combinations. And the possible combinations are (0)2 =
‘’, (1)2 = ‘’, (2)2 = ‘’, (3)2 = ‘’, where each digit represents the relative binary
position to a distinct vehicle. Hence, if the vehicles would be listed up in a fixed list, all
of the possible combinations could be obtained.

5.2.2. Formalization of Constraints

Formalization of combinatorial constraints and filtering infeasible combinations out is
not as easy as listing up the possible ones. Because optimization is performed once
the combination is found to be feasible, feasibility must be checked prior to the start of
optimization. Feasibility of a combination can be investigated by checking whether it
satisfies the introduced constraints or not. erefore, focus will now be given on the
formalization of constraints.

In order to facilitate formalization, the previous example can be considered. Assuming
that the first digit represents the relative position to the red vehicle and the second
digit represents the relative position to the green vehicle, it can be shown that the ego
vehicle cannot be in front of the green vehicle, but also behind of the red vehicle at the
same time. is indicates that the combination ‘’ is infeasible. at was the most
basic infeasibility to determine. However, there are other factors bounding the motion
range of the vehicle and their investigation is quite elaborate. ese may arise both
from the internal and the external constraints, for which the speed and the acceleration
may be a limiting factor due to the geometry of the road. Considering the example
illustrated, the path length until the intersection may be so long that even a very fast
and agile vehicle would not manage to reach the intersection before the other vehicles
and become the lead vehicle. As a result, the sequence ‘’ may become invalid. In
order to analyze alike cases, the vehicle positions must not be only defined in Frenet
frame, but they must also be referenced with respect to a common basis. For practical
reasons the Frenet frame of the ego vehicle is taken as the reference. In this case, as



.. Integrating Combinatorial Reasoning into Trajectory Planning Problem

illustrated in Figure ., the position of any other vehicle will be given by subtracting
the difference in arc-lengths ∆l from the vehicle’s l-coordinate

lref_vehicle = lref_vehicle,self −∆l , (.)

where the ∆l is obtained by subtracting ego vehicle’s reference line length until the
intersection (lpath,ego) from that of the considered vehicle (lpath,ref_vehicle) :

∆l = lpath,ego − lpath,ref_vehicle . (.)

Figure .: Referencing path-coordinates of other vehicle with respect to ego vehicle.

Once the vehicles are referenced on a common basis, their motion can be considered
on path-time plane, whose abscissa values represent time of motion, and the ordinate
values represent the arc-length from the beginning of the reference line to the rear axle
center of the vehicle []. Although such a representation neglects the information
about d-coordinates, it provides an overview to the obstacles present and ameliorates
the investigation of alternative combinations. When motion of vehicles are ploed
on path-time diagram, as they were modeled as point-objects, their motion will cor-
respond to curves along time t. Path-time (PT) diagram, or sometimes called as the
spatio-temporal analysis of motion, for the example considered is given in Figure ..

e blue half-star at time t = 0.0s in the figure indicates the position of the ego vehicle.
In the figure presented position values of the red and the green vehicles are referenced to
the ego vehicle. In practical application, these values are based on sensor data, whereas
the positions from t = 0.0s on correspond to predicted trajectories. eir calculation
is based on the instantaneous velocity at time t = 0.0s. Figure . reflects that the rear
axle centerpoint of the green and red vehicle are expected be on the path of the ego
vehicle from t = 4.5s and t = 11.0s on, respectively. While the vehicles enter the path,
the ego vehicle must preserve some safety distance lsafety, as illustrated on Figure ..
e safety distance is generally a function of the relative speed among vehicles, but for
sense of simplicity, it will be taken as a reasonably high constant value. As a result of
the required safety distance, the area occluded by a vehicle cannot be described by a
point any more, but will rather be transformed into a line segment. us, when the line
segment is extruded in time-space, its area on path-time diagram will have the form of
a quadrilateral.



. Kinodynamic Optimal Trajectory Planning

Figure .: Motion of other vehicles ploed on path-time diagram. e dots on the dia-
gram represent sampling instances, and the colored areas represent the re-
stricted l-coordinates in order to maintain some predefined safety distance.
ey appear once the respective vehicle is on the path of ego vehicle.

Figure .: Region occupied by other vehicles, while maintaining some safety distance
lsafety, aer t = 11.0 .

e region illustrated on Figure . represents the l-coordinates, that are restricted in
any combinatorial alternative. is restriction arises from the traffic regulations. e
combinatorial alternatives will restrict additional regions in l-coordinates. e case for
the combination ‘’ is depicted in Figure .. e extended green and red colored
regions are restricted by the combinatorial alternative. e range of l-coordinates, on
which the ego vehicle can be located, can be given with lfeasible.

Figure .: Representation of feasible l-coordinates for the combination ‘’. e infea-
sible regions are colored with red and green.

e path-time diagram is very suitable for visualization and evaluation of such com-
binatorial alternatives. Any sequence with respect to a vehicle can be illustrated by
proscribed areas. When these are incorporated into the safety distance violating ar-
eas, the resulting quadrilateral will correspond to the combinational constraint violating
area. An illustration for the combination ‘’ is given in Figure .a and the diagrams
of other combinations are given in Appendix A..



.. Integrating Combinatorial Reasoning into Trajectory Planning Problem

(a) Path-time diagram extended to represent
combinational constraints.

(b) Path-time diagram with speed constraint
reference.

Figure .: Representation of the combination ‘’ on path-time diagram.

It was previously discussed in this subsection that the feasibility also depends on crite-
ria emerging from the internal constraints of the vehicle. Among those constraints, the
speed constraint can easily be represented by a line on the path-time diagram. In this
case, lines with lower slopes would satisfy the speed constraint and are therefore reach-
able by vehicle. e pink area at the upper part of the Figure .b represent motions
that would violate the speed constraint. Within the context of this work, backwards
driving is prohibited. Hence, at any instance of motion the signed speed must be posi-
tive. is can be represented by the pink area at the lower half of the figure. It should
be remarked that these regions are only qualitative for the very first timestep. Parallels
of those lines have to be taken as reference for any other timestep.

For a combination to be assessed as feasible, it must be able yield a feasible curve from
its initial position until the end of the preview horizon. Expressed in other words, there
must at least one curve connecting initial position to any position at final time, with-
out intersecting the constrained areas on the path-time diagram and requiring a speed
value beyond the feasible range. Apparently, for the combination ‘’ multiple such
curves can be found, where only one of them will correspond to the optimal trajectory.
However, if the combination ‘’ would be regarded, no line can be found. e analysis
of whether any such line exist is in fact an analogous problem of procuring an appropri-
ate initialization. erefore, the feasibility check of a given combination will continue
during initialization.

Aer a combination is found to be feasible, optimal motion for that combination can
be obtained by constraining the optimization problem, that was introduced in Chapter
, with additional constraints. It was mentioned that the ego vehicle can either be
heading in front of or behind of a reference vehicle. However, how much in front of,
or similarly, how much behind of the reference vehicle is insignificant while defining
sequencing. e ego vehicle can have any arbitrary distance to the reference vehicle.
Mathematically expressed, such a statement corresponds to an inequality. Considering



. Kinodynamic Optimal Trajectory Planning

the case illustrated in Figure ., the intervehicular distance can be given as:

lv2v = l− lref_vehicle . (.)

In this case, for a given combination the feasible range of ego vehicles l-coordinates can
be represented by the inequality

bsign(lv2v + bsign lsafety) > 0, (.)

where bsign represents the ‘sign’ of a binary reference. In case the vehicle is the lead
vehicle, the binary index would be equal to ‘’, and its bsign will also be equal to 1.
Where the vehicle is being leaded, then its binary index would be equal to ‘’, and its
bsign will also be equal to −1. Such a formulation can be applied with respect to all of
the vehicles in the environment, and thereby the parameter interval of the optimization
problem can be constrained for a given feasible combination.

5.2.3. Initialization of the Constrained Problem

e role of initialization on the convergence rate of optimization was explained in Sec-
tion .. e same discussions apply to kinodynamic planning. Because the path-time
diagram represents an overview of the region of feasible motion, it can be used as a basis
while performing the initial guess. Colored regions on the diagram can be interpreted
as an obstacle and the vehicle’s l-coordinate at t = 0.0s can be regarded as the initial
position of the autonomous agent. e speed constraint can imposed as restriction sub-
ject onto the motion of the agent. us, the initialization problem can be regarded as
finding a path from the initial position of the agent to an arbitrary position at t = T.
is corresponds to a trivial path planning problem.

Previous discussions addressed the reasons behind predicting the speed of other vehi-
cles as constant. It was also shown in Subsection .. that such an assumption yields
linear curves on the path-time diagram. is leads the “obstacles” on path-time diagram
to have polygonal shapes. In Subsection . various alternative methods on path plan-
ning were presented. e visibility-graph approach among them, was introduced as a
very fast, practical and simple to implement method for the case of polygonal obstacles.
On the other hand, the fact that it delivers results that come too close to the boundary
of the obstacles was regarded as a deficiency of the method. However, when alternative
combinations are searched for, the deficiency evolves into a desirable property. is re-
sults from the fact that, moving at the upper and lower bounds prevents the elimination
of feasible alternatives. If, for example, the median of upper and lower bound would be
used, which very roughly represents the cases in artificial potential field methods and
the Voronoi method, then aer several timesteps, some corner points would become
impossible to reach. An illustration of alternative methods is given on Figure .. e
trajectories obtained by Voronoi graph and potential field method in the figure do not
satisfy the speed constraint. It is even hard to check which parts of the trajectory do
not meet the constraint. In contrast, as visibility graphs are created by lines of sight,



.. Integrating Combinatorial Reasoning into Trajectory Planning Problem

the inspection on feasibility of motion can be performed by checking individual lines.
Of course, both of these methods may be extended in such a way that they observe the
constraints and find paths appropriately. Or as a further option, sampling methods may
also be employed. However, all of these alternatives will entangle the initialization and
while a very simple method is present, none of them can become prevalent.

Visibility Graph

Potential Field
Voronoi Graph

Figure .: Illustration of alternative path-planningmethods for initialization. Aer t =
11.0s, in order to reach the tip of the blue obstacle, the paths obtained from
Voronoi and potential field methods require a higher speed than allowed.
In contrary, the basic visibility graph approach intrinsically overcomes the
problem by geing to the obstacles as close as possible.

A visibility graph is created by connecting all of the vertex of the polygons in the envi-
ronment, that see each other. Each of such lines of sights correspond to edges and once
all of them are found, a tree-graph is constructed. Aerwards through the utilization
of graph search algorithms, such as breadth-first-search, depth-first search etc. all of
the alternative paths are found. Among the alternatives, the path that yields the short-
est distance is selected. Connecting all of the vertex causes lots of edges to be found.
However, many of these vertex will not satisfy the speed constraint, or even will not be
accessible by the robot. Even though they will not make a contribution to the solution,
they will slow the path search down. In sparse environments, where the amount of
obstacles are limited, this may not be a problem at all. But, if there are also numerous
obstacles, these useless vertex may considerably slow the search progress down.

A practical way is to create lines of sight incrementally, while at the same time checking
if they hold the speed limit constraint. In this case, starting from the the point where
the robot is located, i.e. source node, only the nodes that are visible from the source node
and obey the constraints are added as an edge. Performing this operation recursively
results in a reduced visibility diagram and this facilitates the search process. e steps
are illustrated in Figure .. e dashed lines in the figure correspond to traveling

Deviating from its formal definition, the term reduced is used for the elimination of infeasible edges.



. Kinodynamic Optimal Trajectory Planning

with the desired speed. Of course, this line serves only as a reference. Because of the
obstacles present, and due to the geometry of the road such a travel is unlikely to be
achievable. Figure .d shows different alternative paths that end up at t = T. ere is

(a) Corner node placement. (b) Nodes visible from source node.

(c) Visibility of the nodes that are connected to
the source.

(d) Final form of visibility graph.

Figure .: Illustration of steps of visibility graph. e dashed line represents the de-
sired travel speed.

not only a variety of paths, but there are even two distinct final nodes. One of them has
a final l-value at about 300m and the other one at about 400m. Among the paths, the
one that terminates as close as possible to the desired-terminal node has to be selected.
But the selected initial-trajectory must also have a profile that is at closest to the desired
profile. is can be checked by summing the hypotenuses of the individual line seg-
ments, constituting the motion profile. Furthermore, as any corner point in a visibility
graph brings about instantaneous changes in velocity and its derivatives, their number
along the path must also be minimized. Each of these considerations with their prior-
ity play a unique role during the extraction of the best initial-trajectory. Several tests
were performed in order to determine the selection sequence. e tests have proven
that, as the primary criteria, the alternative that is at closest to the desired node has to



.. Integrating Combinatorial Reasoning into Trajectory Planning Problem

be selected. If there are still multiple candidates, then the aforementioned approach of
summing hypotenuses must be applied. In this case, the found alternative corresponds
in general to the best initialization obtainable. Furthermore, the requirement of pass-
ing over least number of nodes is also intrinsically satisfied by the condition of similar
profiles, i.e. by comparing segment lengths.

e figure reflects a further problem while obtaining the best-initialization. Even when
the initial-trajectory that mimics the desired travel profile at best is selected, the speed
at the last section of the profile will be the same to the speed of one of the obstacles
present. Hence, although the vehicle can travel with its desired speed, the approach so
far would cause the ego vehicle to drive at the speeds of other vehicles. is resembles
the optimized motion profile very poorly. As mentioned previously, the convergence
properties depend a lot on the initialization done. erefore, it must be endeavored
for initializing the problem as good as possible. Of course, the analysis done on the
path-time diagram disregards geometry of the road and the weighting factors of the
individual summands in the cost functional, albeit they have decisive role on the quality
of initialization. For example, if the weighting factors are tuned to promote sluggish
behavior of the vehicle, then the number and the magnitude of instantaneous changes
in the initialized trajectory will determine the quality of initialization. Nevertheless, the
discussion about influence of initialization on optimization will be le to Section .,
and focus on gaining the best trajectories through the utilization of visibility graphs
will be given to. For resolving the mentioned problem, an improved visibility graph
approach can be proposed.

e improved visibility graph approach is founded on sketching from each of the nodes
a line of sight with the desired speed until t = T. If it does not hit any obstacle, then the
node it terminates is added together with its corresponding edge to alternatives, as illus-
trated in Figure .a. e added nodes and edges are represented with turquoise color
in the figure. e search-tree of the visibility graph is given in Figure .b. e nodes
are colored in compliance with the color of the obstacles and are labeled according to
a certain rule. e first character, the leer ‘O’ represents that it is an obstacle. e
second character, which is a number, represents arbitrarily chosen obstacle number.
e last character represents to which corner of the obstacle the node corresponds to.
As illustrated on Figure ., starting with the upper le corner, in clockwise direction,
the labels are A, B, C, D.e obtained terminal nodes are labeled with the ‘T’ as the first
character and followed by a random id-number. As indicated in Figure .b, extend-
ing the graph with additional nodes and edges results in greater number of alternative
paths, making the graph-search process more complex and slower. ere is however

A
B

C
D

Figure .: Rule followed while labeling an arbitrary obstacle.



. Kinodynamic Optimal Trajectory Planning

a remedy for this situation. Once a desired-node is visible from a corner node, all other
visible nodes from that node will become irrelevant, as they will represent an apparent
undesirable choice. erefore, such edges can be eliminated from the list and a purified
visibility graph can be obtained, as illustrated in Figure .c. e corresponding tree-
graph is given in Figure .d. It significantly consists of fewer nodes and edges, which
enhances the graph-search speed and yields an initialization beer than the ordinary
visibility graph can yield.

(a) Extending the visibility graph. (b) Tree-graph of the extended visibility graph.

(c) Purification of visibility graph. (d) Tree-graph of the purified visibility graph.

Figure .: Steps of improving visibility graph.

Extraction and initialization of all of the feasible combinations can thereby be com-
pleted. A flowchart providing an overview is also presented in Figure .. Once the
initial trajectories are aained, these will be sent to the solver and the trajectories will
be optimized. If there are alternative combinations and if the vehicle has multiple cores,
then the optimization for each of the combinations can be run in parallel. In dense ur-
ban traffic, where dozens of combinatorial options are present, this would reduce the
computation time.



.. Path-Velocity Decomposition

Yes

e combination is feasible

No

Extract all of the
combinatorial options

Try to perform an initialization
that satisfies the constraints

Constraints satisfied? Skip that combination

Perform optimization

Pick one of the combinations

Figure .: Initialization flowchart of kinodynamic planning.

5.3. Path-Velocity Decomposition

Trajectory planning so far was done along a driving corridor, with utilization of both
longitudinal (l) and lateral (d) coordinates. is had introduced two parameters for
each node into the optimization problem. e computational burden during optimiza-
tion typically grows polynomially with the number of parameters. is causes large
horizon selection to become intractable whenever the computational power is lim-
ited. Especially, if the combinational alternatives are computed sequentially, this would
emerge as a serious problem.

A remedy is to utilize path-velocity decomposition (PVD). In this approach, path is planned
offline and then during execution, in order to avoid potential collisions with kinody-
namic obstacles, only the speed is regulated. ereby, time parameterization of trajec-
tory planning is decoupled from path-planning. If the velocity of the vehicle is calcu-
lated on Frenet coordinates, the longitudinal component, i.e. the l-coordinates, is ade-
quate for calculating the velocity. In this case, it can be sacrificed from the exploit of
lateral coordinates. is corresponds to optimizing only the longitudinal coordinates
throughout the path. In this way, each node will introduce a single parameter and



. Kinodynamic Optimal Trajectory Planning

especially at long horizons, this would notably reduce the computational costs.

For obtaining the path on which the velocity will be regulated, the trajectory optimiza-
tion introduced in Chapter  can be used. First, the trajectory optimization is run offline.
en, the resulting path is taken as the reference for l-coordinate computations. Alter-
natively, the street center can also be used as the reference. However, independent
from the selection of the path, the motion of a vehicle obtained via PVD would be a
like the motion of a streetcar. As the rails of a streetcar are fixed, only the longitudinal
motion is controlled. Escape maneuvers from obstacles will hence be not realizable.

e subsequent steps of PVD for the previously inspected example is shown in Figure
.. First, the trajectory is planned offline for an obstacle free environment . Aer-
wards, in order to maintain smoothness among the trajectory support points, a spline is
fied. Subsequently, during planning in kinodynamic environments, the l-coordinates
are optimized for each of the combinations.

(a) Offline created optimal trajectory.

(b) Velocity planning for the combination ‘’.

(c) Velocity planning for the combination ‘’.

(d) Velocity planning for the combination ‘’.

Figure .: Steps of path-velocity decomposition.



6. Implementation

Discussed considerations so far were devoid of any focus on implementation. During
practical application, several crucial problems are encountered. is chapter is devoted
to the discussion of implementation related aspects and to resolve them by providing
necessary formulations.

e chapter starts with introducing the environment model to which the simulation is
built on. Within this section, elements while mapping the real-world, such as the lane
information and vehicle positioning, are discussed. ese considerations constitute the
main subject of this chapter. e chapter continues with presenting the optimization
library and the solver used. en the essentials of the developed simulation program
are presented. ese comprise the selection of the language, structure of the seings
file and the design of the output-GUI. Finally, several further remarks considered during
implementation are given.

6.1. Environment Model

A precise environment model is a key element for autonomous vehicle navigation and
localization. A good environment model must represent geometrical features of the
road, but furthermore must transmit the topological information required. Among var-
ious alternatives, one option is to define the environment on OpenStreetMap (OSM)
[], []. OSM is a project that aims collaborative editing of geographic data from all
over the world. It uses three key elements to model the world in WGS coordinate
frame: nodes, ways and relations. Nodes correspond to point-objects, ways represent
group of nodes, and relations represent a group of any element-type. To any of these
elements keys and values specifying properties about the elements can be tagged. All
of the tagging and modeling can performed in JOSM, an OSM editor wrien in Java
[]. e OSM-project uses xml format for storing the processed data. Hence, it can be
parsed in almost any programming language. It should however be noted that, as the ge-
ographical data is stored in latitude and longitudes, for further processing in Cartesian
coordinates, they must be projected. is can be achieved, for example, via Mercator
transformation [].

OSM serves as a perfect tool for the topological representation of the environment.
However, it has deficiencies in representing the geometrical features of the environ-
ment. Information about lane-width, from that stemming local geometrical informa-



. Implementation

tion such as curvature etc. , or driving direction are not included. Such information can
however be added through properties in form of ‘keys’ and ‘values’.

Within the context of the current work, road geometry is definedwith the aid of satellite
imagery. Several merge scenarios from real world are selected and right & le bounds
of the driving corridor are defined through the ‘way’ element-type. e created ways
are sequentially associated with the utilization of relations. ereby, driving routes
are formed. In between the driving corridor, vehicles are arbitrarily located via tracks.
A screenshot of tracks while being edited in JOSM editor is given in Figure .. Such
tracks are added in form of ways, where each node resembles a timestamp. e repre-
sentation style is implemented without a profound concentration on extendability. A
comprehensive, in practice applied approach for lanes and environment modeling is in-
troduced as Lanelets and is accompanied by the in paper presented soware libLanelet
[].

Figure .: Screenshot of JOSM while modifying tracks.

Up to this chapter, the advantages of using the road centerline was several times partly
mentioned. Here it will be discussed in a broader perspective. e foremost issue to
indicate is that the centerlines can be built up offline, whereas all of the gains that will
be mentioned originate from this property.

As discussed in Page , the lateral offset calculation inside cost functional will be calcu-
lated by a single arithmetic operation, and therefore the computational costs will be at
least the half, in comparison with checking lateral distance from both the right and the
le corridor-bound. In the laer case, the signed-distance from both boundaries must
be retrieved and subsequently be added. As the cost function constitutes the core of the
trajectory generation and is likely to be called multiple times for a single instance, this
would notably reduce the computation time.



.. Environment Model

(a) Backwards mapping by specifying some lateral distance from the reference curve. Depend-
ing on the value of lateral distance and curvature, a node can be mapped behind a node that
has a smaller longitudinal value. is pathological case is magnified.

(b) Forwards mapping done for the blue curve on Figure .a. e nodes are mapped to the
closest curve. At the narrow pass, high values of lateral distance caused mapping to the
undesired curve. erefore, the lateral coordinate values of the points in the narrow pass
are different from the lateral distance values of the blue curve.

Figure .: Pathological cases that can occur during mapping.

e Figure . demonstrated that at the center of curves the Frenet coordinates and
the Cartesian coordinates deviate from each other at least. As illustrated in Figure
., if the lateral distance of a node to the reference curve is relatively big, then some
pathological cases occur. To delimit such undesirable situations, and their misleading
results, the reference curve must be in equal distance to the both bounds of the driving
corridor. is implies that the most accurate results are obtained through selection
of road-centerline as the reference curve. If such cases occur during the centerline
computation, they can be recognized and treated by resorting the nodes. e resorting
process can be done by arranging the nodes according to their Euclidean distance. Such
a treatment is also included in the implementation. However, it should be noted that
this has the potential to bring about zig-zagging of the centerline. On the contrary, if
the trajectory computation would be based on right&le bounds, then it would even be
almost impossible to detect such pathological cases.

Another advantage emerges from the need to predict the motion of other vehicles. If
the road-centerline on which they are traveling is known in advance, just by projecting
the vehicle’s speed along the centerline, their predicted trajectory can be aained.

A further reason arises not only as an alternative but rather as an indispensable need.
e calculation of time-to-intersection or time-to-merge with an another vehicle re-



. Implementation

quires the path length from that vehicle’s current position until the intersection point
to be known. Furthermore, the precision of the path length has influence on the whole
computation. An accurate way to measure such lengths is to exploit centerlines, with
the underlying reason being similar to the reason behind the using centerlines as reference-
curves.

e benefits of creating a centerline and choosing it as the reference are clarified. How
the centerline are generated will now be discussed. In fact, centerlines are generated
by merely calculating a point that lies to the right & le bounds at the same distance.
is can be formulated as an optimization problem, where the objective is to minimize
a cost function that consists of quadrature of the sum of lateral signed distances from
the both bounds of the corridor (J = (dright + dleft)2). In this case, the profile of the
cost function will be as illustrated in Figure .a , where the minimumwill reflect the d-
coordinate of a given l-coordinate. If thewhole driving corridorwould bemodeled alike,
the cost profile for a trivial path would be as illustrated in Figure .b. e centerline
can computed along l-coordinates with finite steps. Due to the quadratic structure of
the cost profile, a SQP-based optimization algorithm would be a promising solver. In
this case, the need for an initial guess could be perfectly met by introducing d value of
the previous l-coordinate (li−1).

(a) Cross section of the quadratic cost profile. (b) Top view of the driving corridor.

Figure .: Contour plot of the centerline cost function for an arbitrary driving corridor.

e selected step length for the centerline computation must be small enough to de-
scribe sharp turns with a reasonable smoothness. is corresponds to a sampling length
of - cm in practical application. At straight roads, however, a sampling rate of -m
would usually be an appropriate selection. Hence, sampling the whole road geometry
with a unique interval length is not plausible preference and the sampling-length must
be selected according to the curvature of the road geometry. erefore, a curvature-
adaptive step length selection is required. An adaptive sampling method was imple-
mented into the simulation program. Its pseudo-code is given in Appendix A.. An
illustration of the resulting curvature-adaptive sampling for a roundabout is given in
Figure .. Notice the increase of support nodes at curves.



.. e Solver: NLopt and SLSQP

It was mentioned that the centerlines serve as backbone behind the time to intersection
calculations. Within this respect, all of the roads on which the vehicles are traveling
on must be defined relative to the road the ego vehicle is traveling on. at requires
all of the roads defined to consist of three road-segments, as presented in Figure .:
before intersection, intersection, and aer intersection. ese segment lengths can be ob-
tained by matching roads to each other and then checking whether the lateral distance
between them is below some threshold. e check-points that have a distance to the
matched curve lower than the threshold indicate intersection. If the distance exceeds
the threshold aer an intersection, the segment from the last intersection check-point
on will constitute the ‘aer intersection’ part.

Figure .: ree segments of a road.

e lengths of the segments play an essential role on motion planning of ego vehicle.
Not only for returning information about how much a vehicle has to travel until the
intersection, but also for determining whether a vehicle is located somewhere on the
path of ego vehicle. e check whether a vehicle is on the path of ego vehicle can
performed by firstly checking it’s l-coordinates, i.e. whether it is some neighborhood
ϵ of lintersection. If it is inside (|l− lintersection| ≤ ϵ), then the driving corridor check
introduced in Chapter  on page  can be applied. e reason behind twofold check is
illustrated in Figure . below. As shown, in some cases, evenwhen the roads practically
intersect, the intersection starts aer several meters. Increasing the threshold may be
proposed as a remedy but this would sacrifice the precision during departure, at the start
of ‘aer intersection’ segment. Hence, the two-stage check is the felicitous solution.

6.2. The Solver: NLopt and SLSQP

For solving nonlinear problems with a SQP method, numerous optimization toolboxes,
including open-source variants, such as pyOpt, Scipy, and NLopt, are available [],
[], []. Among them, the NLopt was chosen as the solver for the trajectory opti-
mization problem.

NLopt is wrien in C programming language by Steven Johnson at MIT and entails
numerous algorithms that are callable from C, C++, Fortran, MATLAB, GNU Octave,
Python and more with a common interface. e SQP algorithm implemented in NLopt
is based on the Sequential Least Squares adratic Programming (SLSQP) algorithm
by Dieter Kra []. e original algorithm was wrien in Fortran, but the version in



. Implementation

Start of intersection

Figure .: Generation of centerline for a roundabout. e centerlines are indicated
with red color and the road boundaries with dashed black lines. e green
points on the red lines are the support nodes and the green normal lines indi-
cate to which point on the reference curve they are mapped to. Start point
of intersection is indicated with an orange ellipse. It should be remarked
that, in practical terms, the intersection begins prior to the start point.

NLopt is reimplemented in C and has been enhanced towards increasing efficiency and
robustness. e other alternative, pyOpt, contains several SQP algorithms, including
the SLSQP. So does also Scipy. However, they both, as result of being limited to Python,
are unlikely to be supported and documented as well as NLopt.

e SLSQP algorithm uses the ordinary BFGS update, which is a dense matrix method,
for approximating the Hessian []. e step size α is determined by the penalty func-
tion proposed by Han []:

ϕ(xk,ρk) = f (xk) +

p∑
i=1

ρki |ixk| −
m+p∑
i=1

ρki min (0, ci(xk)) , (.)

where ρki is the penalty term of the ith constraint ci, and can iteratively be computed as
suggested by Powell []:

ρki = max

(1
2
(
ρki−1 + |λki |

)
, |λki |

)
. (.)

e λki represents the Lagrange multiplier of the constraint ci, whereas the p and m
represent the number of equality and inequality constraints respectively. A step size α



.. Overview of the Simulation Program

that reduces the value of the merit function γ will be chosen:

γ(α) = ϕ(xk +αpk). (.)

e quadratic problem is then solved using an equivalent linear least squares problem,
whose solution was proposed by Lawson and Hanson [].

6.3. Overview of the Simulation Program

e simulation program is wrien in Python. In contrast to C++, Python offers ease of
implementation and good readability resulting from its high-level structure. In order
to start the analysis, a seings file in form presented in Appendix A. is entered.

Aer the simulation is started, OSM data specified in the seings file is parsed via xml
Python binder lxml. Next, the check for the existence of a file that contains road topol-
ogy and geometry data is performed. If such a file is not found, centerlines for all of the
roads defined inside the OSM file are computed and matched with each other, and are
subsequently stored in a pickle file for later simulations.

Once the road data is available, together with specifications about temporary objects in-
troduced inOSMfile, such as information on obstacles and ego vehicle, the environment-
object is constituted. At the next step of the optimization process, information about
traffic participants are extracted from the environment. Based on the introduced tracks
and timestep step-width defined in seings file, a spline is fied for the tracks of the
vehicles. Depending on whether the step-width set is greater or smaller than the times-
tamps of the tracks, interpolation or extrapolation is performed. e purpose of this
process is to set the vehicle timestamps and the analysis-times on a common basis.
e initial velocity information of other vehicles are extracted from those recreated
timestamps. For the ego vehicle, besides its speed, also acceleration and jerk values are
calculated. Notice that, obtaining such informations for the last step prior to the begin
of trajectory generation entails introduction of at least three timestamps for the ego
vehicle, and two timetamps for other vehicles within the OSM file. is is an expected
result arising from the use of finite differences, as introduced in Section ...

e necessary data is then processed using Numpy [], whereas splines were fied
using the interpolation module of Scipy []. It should however be noted that all of
the data used was first normalized before the spline was fied. e retrieved data from
spline was later multiplied with the normalization factor. Overlooking the normaliza-
tion process leads to poor fits.

e gradients required for the optimization algorithm are computed numerically, using
the module Numdiools []. Finally, the optimized results of combinations are stored
in JSON format for portability. However, all combinations with their optimization de-
tails are also stored in a pickle file further inspection.



. Implementation

For visualizing computed trajectories, the obtained motion profile is animated on a GUI
and the crucial parameters affecting the computation are simultaneously printed to the
console. A screenshot of the GUI and the form of the printed outputs is given in Figure
. and . respectively. On the le half of the GUI, vehicle motion is ploed onto the
imagery obtained from OSM. e bar below allows to focus onto the vehicle. On the
right half, the motion diagram is simulated trajectory is ploed. is consists of plots of
x- and y-components of velocity, acceleration and jerk. It was shown in Subsection ..
that the constraints, in their simplest form, bound the quadrature of the values. If these
scalar values, such as the speed, is desired to be viewed, the magnitude buon located
at the right-lower corner of the GUI can be clicked. is will activate ploing their
magnitude. e animation can also be paused and a screenshot at any instance can be
taken with the aid of the other two buons next to the magnitude buon. Also, in cases
where the plots of x- and y-components intersect, in order to view any of them in single,
they can be activated or deactivated by clicking onto their corresponding legend. e

Figure .: Terminal outputs accompanied with the output-animation.

terminal outputs print the details of motion, i.e. position, velocity, acceleration values,
the signed distance to the right&le bounds of the driving corridor, distance to all of
the vehicles present, and also the instantaneous yaw angle, road angle and road-relative
yaw angle.

In order to inspect and understand the optimization process, trace of all of the evalu-
ated parameters are stored. ese parameters are later visualized on a GUI through an
animation. e corresponding GUI is depicted in Figure .. e buons in the GUI are
similarly arranged. Additionally, through the use of ‘show optimum value’ buon, it
can be switched between the currently tested parameters, and to the optimum reached
so far.



.. Further Remarks on Implementation

6.4. Further Remarks on Implementation

ere are further issues that do not fit into the sections given so far. erefore, such
issues and considerations will be discussed in this section.

First of all, as mentioned in Chapter , there are some assumptions made during the
simulation. e most fundamental one is that, the position of other vehicles are as-
sumed to be perfectly known. In other words sensor uncertainty is neglected during
the simulation. However, if the uncertainty is to be included, the obstacles in path-
time diagram can be grown according to the degree of uncertainty. A more realistic
approach will be presented in Chapter , while mentioning future work. A further con-
dition on the analysis was more like a pursued requirement rather than a simplification.
e planning is done in such a way that, the motion of the ego vehicle does not have
any influence on the trajectory of other vehicles. Explicitly stated, planned trajectories
do not necessitate acceleration or deceleration of other vehicles. ereby, the motion
of ego vehicle will theoretically not interrupt the behavior of other vehicles and the ego
vehicle will glide along the traffic flow.

e trajectory and prediction formulations were obtained for a single instance, i.e. plan-
ning was done quasi-statically. However, if the refresh rate of the computation is above
some level, the planner will be able to deal with the dynamic obstacles present in the
environment. Otherwise the ego vehicle might become passive. In practical application
refresh rates above Hz yield desirable results. e required refresh rate is however not
only determined by the dynamicity of the environment. If the sensor uncertainties are
high, the refresh rate must be increased further for collision-free planning.

e presented implementation aims the study of factors affecting the trajectory op-
timization and combinatorial variations. In this respect, tolerance value is selected as
the termination criteria. e chosen tolerance was the relative tolerance of the function
value. e reason behind the selection of relative tolerance is that, unlike absolute toler-
ance, it exploits the whole interval of machine precision. Absolute tolerance in contrast
can only deliver half of the machine precision reliably. In fact, using absolute parameter
tolerance would yield beer results. Such a termination criteria is independent of the
length of the curves on the road, which inherently increases the cost of planned trajec-
tories. Actually, in a real-time implementation, as the planner has a bounded time to
return a result, a termination criteria based on tolerance value becomes irrelevant. e
only option in such a case is to set a time limit on the optimization process.

It should be emphasized that the effective planning horizon value is obtained by sub-
tracting the computation time from the set horizon value. For fail-safe design, in case
no result is found within a specified time, the vehicle must be programmed to deceler-
ate and eventually to stop. As an alternative, in such cases the planning horizon can
be reduced and trajectories for shorter horizons can be obtained. Of course, if this al-
ternative is selected, then whenever the horizon value falls below some critical-level
emergency braking must be activated.



. Implementation

As the simulator program is implemented for checking feasibility of the presented ap-
proaches, once the analysis is started, visibility graphs, search-tree diagrams are au-
tomatically stored for each combination and for each time instant. Of course, if any
obstacle will cross the road of ego vehicle, then for initialization the visibility graph
approach will not be called.

During the implementation of the simulator program, time of computation was not a
primary design criteria. It is also a reason behind the selection of Python as program-
ming language, the use of numerical derivatives, and an optimization algorithm that
relies on Hessian approximation. However, considerations reflecting real time appli-
cation has always been given throughout the thesis. Besides remarks given so far, if
analytical gradient and Hessian information would be provided, real time implementa-
tions could be achieved [].

Previously, it was mentioned multiple times that a transformation between Cartesian
coordinates and Frenet coordinates is done. For the transformation, a pseudo-distance
function is used. e details about its implementation is given in [] and [], hence
will not be repeated here.



7. Results and Evaluation

Outcomes of the introduced formulation are presented and evaluated in this chapter.
e chapter starts with presenting several scenarios encountered in everyday traffic.
Optimized motion profiles are given for all of the feasible combinations of the inspected
scenarios. Once the analysis of complete planning is complete, one of those scenarios
is selected and based on that, a comparison for the trajectory qualities is made between
complete planning and decoupled planning. e third section of the chapter investi-
gates the effect of initialization on the result and the convergence speed. While reca-
pitulating local optimization, it was emphasized that the initial guess must be in the
vicinity of the solution, otherwise the convergence might fall in danger. Hence, keep-
ing initialization close enough to the optimal result has been a maer of substantial
endeavor. However, the measure of ‘close enough’ was le unmentioned. In order to
define this measure and to reveal its influence, a problem is initialized once very close
and then quite away from the solution. e investigation is done for both complete and
decoupled planning. As the optimization algorithm plays a decisive role on the obtained
trajectory, the optimization procedure of the selected algorithm is also examined within
this chapter. Subsequently, with some further remarks the chapter is concluded.

7.1. Inspected Situations and Results

A variety of different combinatorial problems occur at everyday traffic. Certainly, the
motion planner must be able to yield desirable results independent from road geometry
and the number of obstacles. For that purpose, the representative example used in
Chapter  is replaced by several real world scenarios with various road geometries.
Some of the selected scenarios are given in Figure ..

e initial tests for the trajectory optimization were done in absence of other vehicles.
is removed the obligation to handle kinodynamic obstacles and therefrom arising
complexities. e primary goal was to test the simulation program and to tune the
weighting factors. Weighting factors can be best tuned in curved roads. Such roads
pose conflicting goals on the motion planner. e frequent curves cause deterioration
of driving comfort, where the planner can only ameliorate it in expense of deviating
from its desired trajectory.

A very winding road appropriate for such an analysis is the Lombard Street, located in
San Francisco, USA. A trajectory planned on Lombard Street is given in Figure .a. e



. Results and Evaluation

Cartesian mapping of the optimized motion is given on the le hand side, whereas its
profile is given on the right hand side of the figure. e velocity, acceleration and jerk
profiles are very smooth and are in compliance with the geometry of the road. As the
samples were taken at equidistant timesteps, the frequency of the points on Cartesian
mapping represent the speed of the vehicle. It should be underlined that increasing
frequency of those points indicate a decrease in the speed. is represents the trade-off
made for reducing the cornering forces in against increasing ride-comfort. e vehicle
on the figure generally tends to follow the center of the street. It is a consequence of the
impact of weighting factors forcing the vehicle to remain on the centerline (wtrack). If
for example, wtrack would be reduced, or if the weight of traveling at set-speed wvelocity

would be increased, then a broader range of lane width would be utilized.

A critical issue should further be mentioned. Towards the end of the planning horizon
the planner returns an implausible trajectory. Although this may seem an error, it is
an expected situation. At the last timesteps the driving corridor does not practically
bound the vehicle motion. Hence, the vehicle starts to accelerate, unaware of the fact
that relying on those support points will violate the driving corridor constraint and will
be subject to major changes aer the vehicle has moved a bit. e only remedy is to
cross several points towards the end out.

Another difficult problem in autonomous vehicle trajectory planning is posed by un-
controlled t-junctions. A vehicle at a t-junction has not only to observe the vehicles
on the route it will merge to, but also the oncoming traffic while crossing the intersec-
tion. An example of an uncontrolled intersection from the Istanbul Technical University
campus, Istanbul, Turkey is given in Figure .b. In this scenario, the ego vehicle has
to turn le, whereas a vehicle (cyan colored) on that lane and two vehicles (orange and
green colored) on the opposite direction are also proceeding to the intersection. More-
over, the motion of the ego vehicle is further restricted by another vehicle (dark red
colored) heading on the same route as the ego vehicle. e instance given in the figure
corresponds to the combination of yielding to cyan and orange vehicles, but moving
before the green vehicle. Notice that the vehicle slightly decelerates while approaching
the intersection.

e path-time diagram of the scenario is given in Figure .a. On the diagram two
characteristic features are clearly visible. First, from the first instance on, the position
of the dark red vehicle is grown by the required safety distance. is implies that the
vehicle shares the same route with the ego vehicle. e other distinct feature is seen
from the inclination of the motion lines. Two of the lines, the green and the orange
one have a decreasing inclination. is indicates that these vehicles are oncoming and
hence are traveling on the opposite direction.

Optimized trajectories of alternative combinations are given in Figure .b. e in Fig-
ure .b treated combination corresponds to the curve in between the others. On the
curve of that combination, the bending prior to the green quadrilateral is a consequence
of the deceleration done before maneuvering. e combination of driving ahead of the



.. Inspected Situations and Results

(a) Lombard Street, San Francisco, USA. Hairpin turns allow tuning of weight factors.

(b) A t-junction at the Istanbul Technical University campus, Istanbul, TR.

(c) A narrow pass in presence of two upcoming vehicles at the KIT campus, Karlsruhe, DE.

Figure .: Several challenging scenarios encountered in every-day traffic.



. Results and Evaluation

orange vehicle is not very smooth. Especially the node just before the area of the or-
ange vehicle is likely to be an outlier and therefore it indicates that further optimization
could yield beer results. e question why the motion of this combination is not as
smooth as the others will be discussed on Page . e computation steps of the profile
in Figure .b is given in Appendix A. in detail.

(a) Motion of other vehicles on PT diagram. (b) Alternative combinations on PT diagram.

Figure .: Spatiotemporal analysis of the t-junction considered.

A more complex problem for autonomous vehicle motion planning occur when the
vehicle is allowed to overtake. In this case an additional possible combination arises for
every vehicle traveling on the same direction as the ego vehicle. However, modeling
such a case is a more arduous task than the intersection scenarios. Nevertheless, it is
striven for to resolve such problems and the target is broken down into subproblems.
e first step is to model a vehicle as a static obstacle, occupying some part of a road.
In such a case, as illustrated in Figure .a, the ego vehicle has to depart from the road
centerline and has thereby to escape from the obstacle. Bymodeling a vehicle as a closed
contour and exploiting signed distance, this can successfully be realized. e contour
plot of a quadrilateral obstacle is given in Figure .b. e sum of signed distances from
the boundaries of the obstacle are positive outside and negative inside the obstacle.

(a) Signed distance function of a closed contour. (b) Ego vehicle escaping from static obstacle.

Figure .: Manuevering in presence of a static obstacle.

e next step was to model the road as narrow pass and to focus on maintaining the
safe-ride. In fact this does not have any difference than the scenario discussed for a



.. Inspected Situations and Results

t-junction. e constraints developed for oncoming vehicles in that case can be applied
here in the same way. For testing such a situation, a scenario from the campus of the
Karlsruhe Institute of Technology, Karlsruhe, Germany was selected. e optimized
trajectory for this scenario is given in Figure .c. A black depicted obstacle, which in
fact was indented to represent the KIT shule bus, is parked on the route of ego vehicle.
From the other direction of the street two vehicles, colored in orange and cyan, are
traveling. In the presented figure, among other combinatorial options, the ego vehicle
passes the junction aer the orange vehicle and before the cyan vehicle. A very smooth
trajectory is obtained for such a situation.

e next step on the implementation of overtaking is to model the road such that at any
instance the ego vehicle can cross the oncoming lane. Aerwards, by combining the
presented escape technique and the formulation used for the narrow pass, an overtak-
ing can be realized. It should however be mentioned that, in this case the analysis of
possible combinations, which in fact founds the core of combinatorial reasoning, devel-
ops into a very complex problem that is unlikely to be examinable on a two dimensional
path-time diagram. Due to time restrictions, such scenarios could not be studied fur-
ther. However, even resolving the narrow pass problem has been a significant progress
for autonomous vehicle motion planning. e discussions introduced will surely serve
as a foundation for future studies on overtaking.

How the costs of combinatorial options evolve throughout the time is an important is-
sue. If there is incoherence between the best combinations, i.e. if the best combination
alter at every planning instant, the planner may undergo instability. A test for evolu-
tion of the combinatorial costs was performed for the scenario at the KIT campus. As
illustrated on Figure .c, there are two oncoming vehicles. ese result in three alter-
native combinations of passing the corridor before both of them, before one of them,
and aer all of them. e Figure .c gave the motion profile for the combination  at
t = 75.5s. Costs of alternative combinations from that timestamp on are given in Table
., and the path-time diagram of alternative combinations at several timesteps is given
in Appendix A..

Combination Timestamp

75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5

‘’ 46.46 60.67 101.75 155.10 – – – – –

‘’ 17.34 17.32 17.12 16.93 16.69 16.38 16.00 15.56 15.04

‘’ 41.78 48.58 49.49 49.96 50.16 50.18 50.16 50.50 51.28

Table .: Cost-evolution of feasible combinations throughout the time for the situation
considered in Figure .c.

As presented in the table, for timestamp t = 75.5s the most favorable combination is the
‘’. Hence, the planner will select that combination and drive based on its reference



. Results and Evaluation

trajectory, until a new trajectory is available. At t = 76.0s a new trajectory is planned.
e combination  has still the smallest cost value, whereas the costs of other combi-
nations have increased. e costs of other options were expected to increase, however,
the cost of the picked combination must not necessarily decrease. Its change depends
on the road geometry at the end of the planned horizon. When change in all of the op-
tions are compared, the cost of traversing the narrow pass before both of the vehicles
has increased significantly more than the cost of driving aer. is can be aributed
to two basic reasons. First, as the ego vehicle and the orange vehicle are driving in
opposing directions, the feasible interval (lfeasible) for passing through the narrow pass
has decreased considerably. Hence, the ego vehicle needs to hit the gas in order to still
be able to drive by the static obstacle before the orange occludes the passage. Such
an acceleration naturally results in an increased cost. Second, in the case of driving
aer both of them, the motion of other vehicles may not be restricting the motion of
ego vehicle very much. So, the ego vehicle can apply that combination by just braking
slightly. As presented in the table, the discussed trend remains the same along the time.
Aer some time however, the first combination becomes infeasible. e internal limits
of the vehicle do not allow aer t = 77.0s the ego vehicle to apply the combination
‘’.

Roundabouts are another critical intersection scenario encountered in everyday traf-
fic. Several roads from various directions intersect at an ordinary roundabout. e au-
tonomous vehicle has to consider all of the vehicles, that are approaching from different
roads and heading to different destinations. So, the situation is quite more entangled
than the ones considered so far. Until now, the vehicles remained on the same road,
but now they can depart from the route of ego vehicle. is enables the feasibility of
additional combinations.

e roundabout scenario selected for simulation is the Rondellplatz in Karlsruhe, Ger-
many. Five alternative combinations are given in Figure .. e analysis was per-
formed with a desired travel speed of 10m/s. In this case, the expected motion to be
picked up is given in Figure .a. e vehicle travels until the intersection at a slightly
higher speed than the desired and performs its motion without requiring high lateral
offset values. In this case, the vehicle travels before the orange vehicle, but aer the
purple, green, cyan and the partly visible dark red vehicles.

An alternative combination is to accelerate slightly and enter the intersection before
the green vehicle. is combination is illustrated on Figure .b. e increase in speed
inside the roundabout has also brought about the increase in the acceleration and the
jerk values while cornering. Whenever a comfortable ride is intended, these values will
lead to an increase in the cost of this combination.

An another combination is to accelerate slightly more and to enter the intersection also
before the purple vehicle. is case is illustrated on Figure .c. e acceleration and
jerk values while cornering have increased significantly. It should also be noticed that
vehicle is not driving on the centerline any more. In order to reduce the acceleration
and jerk terms, the planner has exploited the width of the lane while cornering.



.. Inspected Situations and Results

(a) Ideal combination for approaching a roundabout (combination: ‘’). Figure taken at
t = 15.5s.

(b) e alternative combination of driving before green vehicle (combination: ‘’). Figure
taken at t = 13.5s.

(c) e alternative combination of driving before green, and purple vehicle (combination:
‘’). Figure taken at t = 13.5s.



. Results and Evaluation

(d) e alternative combination of driving before green, purple, and cyan vehicle (combination:
‘’). Figure taken at t = 12.0s.

(e) e alternative combination of yielding to all of the other vehicles (combination: ‘’).
Figure taken at t = 20.0s.

Figure .: Distinct combinations for the roundabout at Rondellplatz, Karlsruhe, DE.

A further combination is to accelerate even more and also to lead to the cyan vehicle.
is combination is given in Figure .d. e acceleration and jerk values in this case
jump to very high values, which might be infeasible due to the physical limits of the
vehicle. Another issue to be remarked is the loss of smoothness of the jerk profile. is
indicates that the optimization algorithm has not completely optimized the trajectory,
i.e. further iterations could deliver beer results. e selection of relative function tol-
erance as the optimization termination criteria is the reason behind why such a case is
observed. e increase in cost resulted in the denominator given in Equation .b to
increase, making the change at each iteration become smaller. is is also the reason
behind the jerkiness of the first combination at t-junction example, whose path-time



.. Inspected Situations and Results

diagram (PT) was presented in Figure .b.

A further combination for the roundabout scenario is to yield all of the vehicles present.
e corresponding motion is illustrated in Figure .e. It is evident that the vehicle
enters the roundabout towards the end of the horizon. e cornering terms are also
very small, the acceleration, for example, does not exceed 2m/s2. ite surprisingly,
this combination returns the minimum cost among the others. ere are two reasons
behind why this is the most favorable one. First of all, as indicated, the cornering values
are very small when compared with the other combinations. Apparently, the weights of
the cost function have promoted a very comfortable, and also a sluggish ride. erefore,
this combination has resulted in being the most favorable one.

e reasonmentioned is obvious. If an agilemotion profile is desired, increasingwvelocity

will cause another combination, for example the one given in Figure .a, to become
the most favorable. However, there is a further reason, and this can under some cir-
cumstances be a primary maer of concern. In order to illustrate it, a scenario that is
based on the same example can be considered. is time, deviating from its original
version, an agile motion is desired and the weight factors are appropriately arranged.
Additionally, the planning horizon has been reduced to about two third of the previ-
ously illustrated value. In such a case, the combination of yielding to orange vehicle will
result in a motion profile similar to the previously presented combination of yielding to
all vehicles (combination: ‘’). However, as the two third of the previous horizon
is selected, the vehicle will not enter the roundabout at all. Hence, the combination for
that instant will be free from any penalties resulting from cornering, which eventually
causes its cost to be lower than the other combinations. Although an aggressive motion
was desired, the sluggish combination has become again the most favorable one again.
If wvelocity is selected high enough, then that combination will not become favorable
any more, but this may result in far too agile motion profiles.

e considered example reveals the complexity while tuning weight parameters. For
the stated problem an another remedy can be proposed. It is clear that the trajectory
nodes corresponding the beginning of the horizon are more reliable. A change in the ex-
pected road geometry will cause the position of the trajectory nodes at the beginning of
the horizon to change less than the nodes at the end. e reason behind is the accumu-
lation of the change. Hence, it might be beneficial to multiply the nodes with additional
weights based on their reliability. Weighting based on Gauss distribution might be a
suitable choice. is would also be beneficial for modeling the sensor uncertainty, as
the motion of objects at the limits of sensor range is likely to be more unreliable than
the objects that are in the vicinity.

Motion profiles given in Figure .c and especially the one on Figure .d have accel-
eration values which probably exceed the physical limits of many vehicles. During the
simulation, the parameters were not constrained by an acceleration constraint. Asmen-
tioned in Section .., restricting magnitude of acceleration does not accurately rep-
resent the physical limits of motion. erefore, whether the illustrated motion profiles
are infeasible or not is ambiguous. Furthermore, an initialization done on a visibility



. Results and Evaluation

graph disregards the limits in acceleration. So, even if the internal constraints would
be activated, as the initial guess does not guarantee holding the acceleration constraint,
the algorithm may not converge to a local minimum. Hence, in the presented figures,
high acceleration values were only penalized by an increasing cost term. Although this
may appear as an impractical situation, for a reasonable balance between ride comfort
and agility, such combinations will return high cost values, eventually making them to
become unfavorable.

(a) Motion of other vehicles on PT diagram. (b) Alternative combinations on PT diagram.

Figure .: Spatiotemporal analysis of the roundabout considered in Figure ..

During initialization, the feasibility of a combinationwas determined by two constraints,
the velocity constraint and the feasible interval constraint. at is the reason behind
why the combination of entering the intersection before the dark red vehicle was not
checked. It simply could not satisfy the velocity constraint. is can clearly be seen on
a path-time diagram. e path-time diagram of the vehicles present in the environment
are given in Figure .a, and the optimized combinations are given on Figure .b. e
Initial guess of all of the feasible combinations is also given in Appendix A..

Combination ‘’ ‘’ ‘’ ‘’ ‘’

Cost of initial guess 517.13 339.78 1151.05 1879.57 5466.75

Cost of optimized motion 23.63 40.29 85.56 111.77 294.64

Table .: Costs of alternative combinations for the roundabout scenario in Figure ..

7.2. Comparison of Path-Velocity Decomposition and
Complete Planning

In Section . the path-velocity decomposition was presented as a way for reducing the
computational burden of trajectory optimization in kinodynamic environments. It was



.. Comparison of Path-Velocity Decomposition and Complete Planning

mentioned that once the path on which the vehicle would drive is found, by optimizing
l-coordinates online, collision free trajectories can be obtained. Now, a comparison on
the trajectory qualities between complete planning (CP) and path velocity decomposed
(PVD) planning for the narrow pass scenario at the KIT campus will be given.

e scenario illustrated in Figure .c is recomputed via path-velocity decomposition.
e resulting trajectory for the driving before cyan and aer orange vehicle (combina-
tion: ‘’) is presented in Figure .a. e trajectory obtained required about the same
speed with which the path was generated. As a result, the path has served as perfect
reference and a very smooth motion profile is obtained. is is also supported by the
cost value of that combination at t = 75.5, which is given in Table .. ere is only a
slight difference in between the costs, and therefore the trajectories can practically be
considered as identical.

Combination Timestamp

75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5

‘’ 71.81 89.60 117.97 200.18 – – – – –

‘’ 18.50 18.40 18.19 17.98 17.71 17.37 16.96 16.47 15.90

‘’ 42.36 48.98 49.83 50.26 50.57 51.16 51.98 51.92 52.36

Table .: Cost-evolution of feasible combinations throughout the timewhen computed
with PVD. e situation considered is the same as the one in Figure .c.

For the same timestamp, the trajectory of the combination driving before both of them
(combination: ‘’) is given in Figure .b. It is evident from the acceleration and jerk
diagrams that the trajectory is not smooth any more. e reason behind the jerkiness
is the speed of vehicle, which considerably exceeded the level with which the path
was generated. is combination returned a cost value of 71.81, whereas the complete
planning had returned only 46.46.

In order to reveal the factor that lead to a reduction in costs, the same combination,
but this time computed via complete planning, is given in Figure .c. If the Cartesian
mapping of motion is inspected, it will be realized that the vehicle has driven closer
to the black obstacle, and thereby has sacrificed from following the centerline, but in
contrast, has gained a lot in terms of ride comfort.

e cost values from timestamp 75.5 on show the same trend. e difference in costs
becomes more prominent when the vehicle drives at higher speeds than with which the
path was planned. On the other hand, if the speed is lower than the level of path plan-
ning, the difference between complete planning and velocity decomposed planning is
negligible. In terms of computational cost, the number of required function evaluations
is in general about one third to one fourth of in complete planning. As a final remark,



. Results and Evaluation

(a) PVD of a combination that requires speeds at about the level with which the path was gen-
erated. e smooth motion profile is remarkable.

(b) PVD of a combination that requires higher speeds than with which the path was generated.
e motion diagram is not smooth any more.

(c) e same combination as illustrated in (b) however, this time planned with CP. It should be
remarked that the vehicle gets closer to the black obstacle while crossing the passage.

Figure .: Comparison of complete and decoupled-planning for a narrow pass.


.. Influence of Initialization on Optimization Process

as discussed on Page , because the d-coordinates cannot be utilized, escape maneu-
vers from obstacles, and also overtaking if it is founded that, cannot be performed via
path-velocity decomposition.

7.3. Influence of Initialization on Optimization
Process

e significance of initialization on the convergencewas indicatedmany times through-
out the thesis. e solver used, namely the SQP method, is a Newton-type solver and
the foun minimum and convergence of these methods depend highly on the initializa-
tion done. If the initialization of a Newton method is ‘close enough’ to the solution,
then quadratic convergence can be achieved. Relying on this information, it may be
claimed that, the initialization process introduced in Section .. is unnecessary, as
the initialization obtained through the use of basic visibility graph is already imitating
the solution good enough. Subsequently, due to the resulting quadratic convergence,
the benefits delivered by the improved visibility graph approach is negligible. e de-
ficiency of path-time diagram at representing road geometry may be addressed as a
contributing factor to the claim.

(a) Good initialization. (b) Bad initialization.

Figure .: A comparison of good and bad initialization. e red doed line indicates
the initialization and the grey line behind represents the optimal solution.

In order to inspect the influence of initialization, a problem is once initialized with the
improved visibility graph and then with the basic visibility graph approach. In Figure
., initializations performed for the combination ‘’ of the narrow pass scenario at
the KIT is given as an example. e red doed line on the figures indicates the ini-
tial guess and the grey line at the background represents the optimal solution. e
initialization obtained from the improved visibility graph is given on the le side, and
the one obtained from the basic visibility graph is given on the right side. According
to the path-time diagram, the improved visibility graph mimic the solution very good,



. Results and Evaluation

whereas the basic visibility can only poorly imitate the solution. A comparison is per-
formed both for complete planning and velocity decomposed planning. e results are
presented on Table ..

CP PVD

Good Bad Good Bad

Number of function evaluations 390 421 255 209

Optimized value 40.95 40.93 60.18 60.18

Table .: Comparison of good and bad initializations.

Values in the table reflect that there is not any substantial difference between the initial-
izations. ey converged to the same minimum aer roughly equal number of function
evaluations. In the case of decomposed planning, the ‘bad’ initialization has even re-
turned the solution faster. Although this example implies that the initial guess obtained
from the basic visibility graph was already close enough to the solution, this single ex-
amples is not adequate for a generalization.

Initialization does not only have an influence on the convergence, but also on where the
solution will converge to. A local optimization algorithm has the potential to get stuck
to a stationary point, and to converge to an undesirable minimum. is danger can be
eliminated either by constraints, or by a close to minimum initialization. Considering
the previous example, if the optimization problem is badly initialized and if backwards
driving is not prohibited by a constraint, a motion profile given in Figure . can be
obtained. is motion profile in the figure evidently corresponds to a profile other than
the desired minimum.

Figure .: PT diagram of a badly initialized problem. Due to the absence of necessary
constraints, the initialization has led the algorithm to converge a point any
other than the desired minimum.



.. Convergence Process of the Optimization Algorithm

e endeavor for obtaining a close to minimum initialization brings about a further ad-
vantage. A variety of distinct analysis results have proven that, the combination whose
initialization returns the smallest cost generally remains the most favorable one at the
end of the optimization. Capitalizing on that, a perfect heuristic for determining which
of the combinations does probably yield the most favorable solution can be established.
Whenever the number of feasible alternative combinations exceed the limits of com-
putational power, this heuristic can be utilized and then, only the combinations that
probably would yield the minimum will be optimized.

Finally, as the visibility graph ignores the inertia of the vehicle and allows instantaneous
changes in speed, it will yield poor initial guesses if the weight factors are adjusted
for a comfortable ride. A remedy in this case could be to use a cascade optimization
structure. First, based on the initialization obtained from the visibility graph, path-
velocity decomposed trajectory planning along the road centerline can be performed.
Once a result from the one dimensional optimization obtained, it can be served as the
initial guess to the complete planner. is will yield an efficient and close to minimum
initialization. e initialization done in this way will also include the geometry of the
road, making the approach remarkably suitable for windy roads.

7.4. Convergence Process of the Optimization
Algorithm

e convergence process founds the core of trajectory optimization. Monitoring the
progress of the solver algorithm plays an essential role on understanding the shape of
the cost function and the behavior of line search algorithm. In this respect, the progress
of many scenarios has been inspected. Some of the generalizations inferred are pre-
sented next.

Section . indicated that the simulations are performed by selecting the relative func-
tion tolerance as the termination criteria. In this terms, obtaining smooth jerk profiles
for a planning horizon of - seconds at mostly straight roads required tolerances
reaching 1e−13. is typically corresponds to node computation precision higher than
10cm, and function evaluations in between -. Certainly, the number of evalu-
ations depend on how strict the problem is constrained. However, for trivial problems,
such as the ones illustrated so far, aer 500−600 evaluations smooth velocity and accel-
eration profiles are generally obtained. e rest of the evaluations provide smoothness
of the jerk profiles. In terms of relative function tolerance, this typically corresponds
to values ranging from 1e−5 to 1e−8.

In fact, the convergence rate decreases significantly aer a tolerance value of 1e−10, or
expressed in terms of function evaluation, aer 800 evaluations. is issue is illustrated
in Figure .. In the first figure, the optimized motion profile and the cost for the th
evaluation is given. As printed in the GUI, the reached tolerance is 1e−12, the optimum



. Results and Evaluation

cost value is 31.23878834, and the cost of the tested value at that instant is 31.23883449.
In the second figure the situation aer th evaluation is given. e reached tolerance
and the minimum cost are still the same. At that instant, the cost of the tested profile is
31.23883449. is situation implies that the algorithm jumps over the minimum, from
one side of the valley to the other side of it. e fundamental reason why this occurs
is the shape of the problem. e cost values require a tolerance value at about the level
of numerical precision. Due to the approximated Hessian and the numerical gradient
calculation, numerical errors become dominant and plague the computation.

A further issue to be inspected is the effect of scaling. Different locations around the
world have from each other significantly varying x and y-coordinate values. is evokes
the analysis of the optimization algorithms vulnerability to prescaling. In this respect,
a naive test was done. e initial coordinates of the ego vehicle is subtracted from the
coordinates of all of the objects, including the roads defined in the environment. e
solution process is then compared with the conventional approach. Although this does
not resemble a correct analysis of scaling, it gives a rough estimate of its influence on
the optimization problem. e results obtained did not exhibit a remarkable difference
in the number of function evaluations between the both cases. It can be concluded that,
the effect of scaling on the optimization process is not prominent.

7.5. Further Remarks on Results

ere are several further remarks that do not fit into the previous sections, but are
advantageous to convey. ese will be presented here.

e analysis has revealed that, regardless of themotion of other obstacles, the number of
alternative combinations depend on the sensor range of the ego vehicle and the length
of the planning horizon. e reliably delivered sensor range is a vital factor on the
trajectory prediction of other vehicles. If it is plagued by remarkable errors, fallacious
reference trajectories can be generated. Besides the sensor range, also the planning
horizon is a decisive factor on the evaluation of alternative combinations. Any com-
binatorial option must be covered by the range of planning horizon. If the planning
horizon is not long enough, the motion profile required to maintain a combination will
exceed the internal limits of the vehicle. is will eventually make many combinations
to become infeasible. A combined planning length and sensor range of at least -
seconds will allow the evaluation of several alternatives. At low speeds, for values in
the range of - seconds only a few options will be feasible.

Speed, acceleration etc. values were calculated for motion in Cartesian coordinates.
Underlying reason behind it was the fact that the Frenet coordinates do not discriminate
between curved and straight roads. e analysis results have shown that, the values
obtained from Frenet and Cartesian systems can deviate about %.



.. Further Remarks on Results

(a) Optimization process at th evaluation.

(b) Optimization process at th evaluation.

Figure .: Optimization process presented aer two different evaluation numbers.



. Results and Evaluation

e optimization library NLopt offers two local, derivative based solvers for inequality
constrained problems. e SLSQP and the ‘Method of Moving Asymptodes’ (MMA)
[]. Both of them are Newton-type solvers and approximate the Hessian. Because
the SQP algorithms are renowned for their success at handling nonlinear problems,
the SLSQP was utilized. However, several scenarios were also solved with the MMA. In
general, theMMA performed - times slower than the SLSQP.e SLSQP exhibits very
aggressive step size selection when compared with other algorithms. It easily jumps to
the other edge of the cost-contour valley. is may be the underlying reason of its
speed of convergence. However, such long and aggressive step lengths also increases
the danger of geing stuck to a stationary point around the minimum, if such points
are present.

e optimized results for the indicated tolerance values are obtained roughly aer
- function evaluations. When the simulation program was run with a local,
derivative-free optimization algorithm, such as with COBYLA (Constrained Optimiza-
tion by Linear Approximations) [],  evaluations were reached aer one minute.
Due to the numerical derivative approximation  evaluations took considerably longer
than that. However, if the gradient and the Hessian is provided analytically, the SQP
converges much more faster and rarely needs to exceed two digit number of evalua-
tions. In such a case, the probability of geing trapped into a stationary point is also
less than the case in approximated Hessian.



8. Conclusion and Future Work

is work has demonstrated the integrability of combinatorial reasoning into continu-
ous methods for optimal motion planning. For obstacle free environments, it is shown
that globally optimal trajectories can be generated by accurately initializing an appro-
priately established optimization problem. In structured kinodynamic environments,
whenever the ego vehicle has to merge into traffic flow at a non-signalized intersec-
tion, or pass with the oncoming traffic, various combinations on sequencing occur.
When reasoning among the set of alternative combinations is modeled as an optimiza-
tion problem, each of the feasible combinations correspond to convex regions, having
distinct local minima. An option for aaining the global minimum among them would
be to use global optimization algorithms. However, these methods lack real time imple-
mentability. As a remedy, the problem is subdivided in accordance with the combina-
torial options by exploiting inequality constraints. Aerwards, feasible trajectories for
the individual combinations are computed by a Newton-type local optimization rou-
tine. Once the costs of alternative combinations are achieved, the one, returning the
smallest costs is selected. ereby, the globally optimal trajectory is procured.

As an indispensable requirement of utilizing a local optimization algorithm, the solver
is fed with an initial guess, that meets all of the constraints set on motion. Yielding
an initialization that is inside the solution set and resembles a good estimate of the so-
lution has been a primary concern throughout the thesis. In order to reduce the load
of the computation, the infeasible combinations are eliminated at the level of initial-
ization and are not sent to the solver routine. erefore, besides the aforementioned
requirements, the detection of feasible combinations has also emerged as an additional
task onto the initialization. Considering these aspects, the basic visibility graph ap-
proach has been improved and subsequently utilized on path-time space. In general,
the initial estimation done in this way imitated the solution good enough. However,
two significant drawbacks of the method has appeared. First, as a result of being based
on visibility graph approach, the initialization allows instantaneous changes of speed
values. Second, as the initialization is performed on path-time space, the geometry of
the road is not considered.

e results have proven that the presented approach of dividing the combinatorial prob-
lem into local optimization problems is applicable to any type of scenarios. Truly op-
timal trajectories for various scenarios from all around the world have been success-
fully generated. It is further demonstrated that the presented approach serves a basis
for the study on overtaking scenarios. Comparisons made between complete planning



. Conclusion and Future Work

and path-velocity decomposed planning have revealed that, when driven at about the
speeds with which the path was generated, the costs of path velocity decomposed tra-
jectories do not remarkably deviate from costs of the trajectories created with complete
planning. However, as the path-velocity decomposition plans a motion along a given
path, and does not utilize lateral coordinates, it is ineligible for realizing overtaking and
escaping from obstacles.

e initializations obtained from the improved visibility graph have proven to be close
enough to the optimal trajectories. Moreover, among combinatorial options, the one
whose initialization delivers the least cost has remained the most favorable one aer
the optimization. is suggests that, if not a very comfortable ride is sought for, the
improved visibility graph could be used as a perfect heuristics for determining which
combinations are likely to return the best combination. Exploiting from such an heuris-
tic would be very beneficial whenever the computational power is scarce and a number
of feasible alternative combinations are available. As the visibility graph approach is
incapable of inspecting feasibility in terms of acceleration, the acceleration constraint
was deactivated. Hoever, as a result of exploiting an energy-type cost functional, the
combinations requiring high acceleration values return increasing cost values, which
eventually makes them unfavorable among others. Considering that the combination
of preserving the current sequence will be available at all times, such a penalization
based approach also does not pose any safety-critic problems.

During the simulations, the analytical gradient and Hessian was not provided to the
solver algorithm. erefore, the gradient was calculated numerically and the Hessian
was approximated. With this seing, smoothness in jerk was maintained aer -
function evaluations. If the analytical counterparts would be used, the same results
would be reached aer - evaluations. Certainly, when more evaluations are re-
quired, the danger of encountering runtime errors and reaching round-off limits typi-
cally increases. Motion planning based on local continuous methods require a strong
intuition and vast experience about the shape of the contour lines and the structure of
the optimization problem. Boyd and Vandenberghe () describe this phenomenon
on local optimization with the following: “Roughly speaking, local optimization methods
are more art than technology. Local optimization is a well developed art, and oen very
effective, but it is nevertheless an art” [, p. ].

It has further been revealed that, two interconnected factors play a major role on the
detection of alternative feasible combinations. e first one is the sensor range with
high reliability. e other factor is the planning horizon of the ego vehicle. Both of
them determine feasible region of the obstacle-relative motion, and depending on it,
the number of alternative combinations. Currently, the values supplied by state-of-art
autonomous vehicles are only likely to perform combinatorial reasoning at low speeds
and find a very limited amount of feasible alternatives.

Future work could include deriving analytical gradients and Hessians and supplying
them to the optimization problem. e deficiency of the initialization can be resolved
by utilizing either sampling based methods, or the cascade optimization proposed on



Page . As introduced in Chapter , a variety of constraints can be employed on sam-
pling based methods. Capitalizing on that, an initial guess that is inside the solution set
can be obtained. If these methods would be utilized, the obstacles on path-time diagram
will not be necessarily polygonal obstacles any more. is will facilitate the adjustment
of intervehicular safety distance at varying relative speeds, allowing the trajectory pre-
diction of other vehicles to involve their instantaneous acceleration. While considering
the problem the intersections were assumed to be non-signalized. However, the traffic
lights for example can also be treated as a source of combinatorial options and be in-
cluded inside the analysis. e traffic signs on the other hand can also be modeled as a
constraint and imposed into the optimization problem. If they are implemented, more
realistic scenarios would be obtained. As a further simplifying assumption, the obstacle
behavior was accepted to be perfectly known and the sensor uncertainty was neglected.
Studies to abandon this assumption can be done. For example, the method presented on
Page  can be utilized for dealing with uncertainties. Finally, the altitude information
can be included into the geometrical mapping framework, and by involving it into the
optimization process, energy optimal trajectories can be obtained.



A. Appendix

A.1. Seings File

settings = {
"Main" : {

"horizon" : 12, # s
"dt" : 0.5, # s (step-width)
"speed_limit" : 20, # m/s
"acceleration_limit" : 2.5, # m/s2
"desired_travel_spd" : 10, # m/s
"distance2static_obs" : 1.0, # m
"v2v_safety_dist" : 15.0, # m
"Path-Velocity_decompostion" : False,
"travel_length" : 0.5 # s

},
"Map" : {

"road_data" : 'KIT',
"centerline_computation_step-width" : 5,
"centerline_computation_tolerace" : 1e-12,
"global_coordinates" : True,
"verbose" : True

},
"Opt" : {

"weight_factors" : {
"velocity" : 10,
"acceleration" : 25,
"jerk" : 100,
"track" : 500

},
"constraint_tol" : 1e-12,
"relative_tol" : 1e-12,
"method" : 40,
"constraints" : ["roadsides_corners",

"speed_limit",
"collision_avoid",
"acceleration_limit"],

"verbose" : True,
"trace" : True

},
"Opt_1D" : {

"weight_factors" : {
"velocity" : 10,
"acceleration" : 20,
"jerk" : 400,
"track" : 500

},
"constraint_tol" : 1e-8,
"relative_tol" : 1e-8,
"method" : 40,
"verbose" : True,
"trace" : True

}
}



A. Appendix

A.2. Pseudocode

Algorithm  Curvature Adaptive Centerline Computation
Input: reference curve, d-value, array of equidistant l-coordinates
Output: curvature adaptive l-coordinates

: find Cartesian coordinates for each of the li (using predefined d-value and pseu-
dodistance object of the reference curve).

: create an array whose first column stores the l-coordinates li and in its second col-
umn the angle-difference ϕi found in Cartesian coordinates

: i = 1
: while i < len (array)− 1 do
: if (|ϕi+1 − ϕi| > thresholdϕ) ∧ (|li+1 − li| > thresholdl) then
: Add a new point between i and i+ 1
: recalculate the array
: else
: i = i+ 1

: end if
: end while

: return the first column of the array



A.. Supplementary Figures

A.3. Supplementary Figures

(a) Combination ‘’. (b) Combination ‘’.

(c) Combination ‘’. (d) Combination ‘’.

Figure A.: All of the possible combinations on PT graph. Infeasibility of the combina-
tion ‘’ is apparent.



A. Appendix

(a) Visibility diagram.

O2D

O

O2C

O4D

O4C

O3A

(b) Corresponding search tree.

(c) Performed initial guess. (d) Optimized trajectory.

Figure A.: Steps of initialization for the combination ‘’ in Figure .b.



A.. Supplementary Figures

(a) Combination ‘’. (b) Combination ‘’.

(c) Combination ‘’. (d) Combination ‘’.

(e) Combination ‘’.

Figure A.: Initialization of feasible alternative combinations for the roundabout sce-
nario considered in Figure ..



A. Appendix

(a) PT diagram at t = 75.5s. (b) PT diagram at t = 77.0s.

(c) PT diagram at t = 77.5s. (d) PT diagram at t = 81.0s.

(e) PT diagram at t = 83.0s. (f) PT diagram at t = 86.5s.

Figure A.: Alternative combinations in Figure .c along time on path-time diagram.
In Figure (a), the combination at center is the most favorable one. ere-
fore, it is selected as the reference trajectory. e first combination, which
corresponds to being the lead vehicle, becomes infeasible at t = 75.5s. So
does also the combination of ‘yielding to all others’. At time t = 86.5s that
combination is not valid anymore.



Bibliography

[] Lino Guzzella. “Automobiles of the future and the role of automatic control in
those systems.” In: Annual Reviews in Control . (), pp. –.

[] Bernhard Ebel and Markus B Hofer. Automotive Management - Strategie und Mar-
keting in der Automobilwirtscha. Springer, . : ----.

[] Rajesh Rajamani. Vehicle dynamics and control. Springer, .
[] T. Toroyan. Global status report on road safety : supporting a decade of action.

World Health Organization. . : http : / / www . who . int / violence _
injury_prevention/road_safety_status/2013/en/ (visited on //).

[] William F Powers and Paul R Nicastri. “Automotive vehicle control challenges in
the st century.” In: Control engineering practice . (), pp. –.

[] Karel A Brookhuis, Dick DeWaard, andWiel H Janssen. “Behavioural impacts of
advanced driver assistance systems–an overview.” In: European Journal of Trans-
port and Infrastructure Research . (), pp. –.

[] Jennifer. N. Dang. Updated Estimates of Fatality Reduction by Electronic Stability
Control. Evaluation Note DOT HS  . National Highway Traffic Safety Ad-
ministration, Sept. . : http://www.nhtsa.gov/cars/rules/regrev/
evaluate/809790.html (visited on //).

[] Regulation //EC. European Parliament andCouncil of the EuropeanUnion.
Brussels, Belgium, .

[] Fatality Analysis Reporting System (FARS) encyclopedia. National Highway Traffic
Safety Administration. . : http://www-fars.nhtsa.dot.gov/Main/
index.aspx (visited on //).

[] Statistisches Jahrbuch  - Deutschland und Internationales. German Federal Sta-
tistical Office / Statistisches Bundesamt, ISBN: ----. Wiesbaden,
Germany, .

[] Patrick Planing. Innovation Acceptance - e Case of Advanced Driver Assistant
Systems. Springer, . : ----.

[] Julius Ziegler et al. “Making Bertha Drive? AnAutonomous Journey on a Historic
Route.” In: Intelligent Transportation Systems Magazine, IEEE . (), pp. –.

[] Joseph Funke et al. “Up to the limits: Autonomous Audi TTS.” In: Intelligent Ve-
hicles Symposium (IV),  IEEE. IEEE. , pp. –.



http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2013/en/
http://www.nhtsa.gov/cars/rules/regrev/evaluate/809790.html
http://www.nhtsa.gov/cars/rules/regrev/evaluate/809790.html
http://www-fars.nhtsa.dot.gov/Main/index.aspx
http://www-fars.nhtsa.dot.gov/Main/index.aspx

Bibliography

[] Steven E Shladover et al. “Automated vehicle control developments in the PATH
program.” In: Vehicular Technology, IEEE Transactions on . (), pp. –.

[] Levent Guvenc et al. “Cooperative adaptive cruise control implementation of
teammekar at the grand cooperative driving challenge.” In: Intelligent Transporta-
tion Systems, IEEE Transactions on . (), pp. –.

[] Statistisches Jahrbuch  - Deutschland und Internationales. German Federal Sta-
tistical Office / Statistisches Bundesamt, ISBN: ----. Wiesbaden,
Germany, .

[] BruceDonald et al. “Kinodynamicmotion planning.” In: Journal of the ACM (JACM)
. (), pp. –.

[] Howie M Choset. Principles of robot motion: theory, algorithms, and implementa-
tion. MIT press, .

[] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to
autonomous mobile robots. MIT press, .

[] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. “Real-time motion planning
for agile autonomous vehicles.” In: Journal of Guidance, Control, and Dynamics
. (), pp. –.

[] John Canny. e complexity of robot motion planning. MIT press, .
[] Yoshiaki Kuwata et al. “Motion planning for urban driving using RRT.” In: Intel-

ligent Robots and Systems, . IROS . IEEE/RSJ International Conference on.
IEEE. , pp. –.

[] Kristijan Macek, M Becked, and Roland Siegwart. “Motion planning for car-like
vehicles in dynamic urban scenarios.” In: Intelligent Robots and Systems, 
IEEE/RSJ International Conference on. IEEE. , pp. –.

[] Romain Pepy, Alain Lambert, and Hugues Mounier. “Path planning using a dy-
namic vehiclemodel.” In: Information and Communication Technologies, . ICTTA’.
nd. Vol. . IEEE. , pp. –.

[] MoritzWerling. Ein neues Konzept ür die Trajektoriengenerierung und-stabilisierung
in zeitkritischen Verkehrsszenarien. Vol. . KIT Scientific Publishing, .

[] Christopher R Baker, David I Ferguson, and John M Dolan. “Robust mission ex-
ecution for autonomous urban driving.” In: Robotics Institute (), p. .

[] Maxim Likhachev and Dave Ferguson. “Planning long dynamically feasible ma-
neuvers for autonomous vehicles.” In: e International Journal of Robotics Re-
search . (), pp. –.

[] Martin Rufli and Roland Siegwart. “On the design of deformable input-/state-
laice graphs.” In: Robotics and Automation (ICRA),  IEEE International Con-
ference on. IEEE. , pp. –.



Bibliography

[] Jean-Paul [Hrsg.] Laumond, ed. Robot motion planning and control. Lecture notes
in control and information sciences ; . London: Springer, . : --
-.

[] Steven M LaValle. Planning algorithms. Cambridge university press, .
[] J-P Laumond et al. “Amotion planner for nonholonomicmobile robots.” In: Robotics

and Automation, IEEE Transactions on . (), pp. –.
[] Ryo Takei et al. “A practical path-planning algorithm for a simple car: a Hamilton-

Jacobi approach.” In:American Control Conference (ACC), . IEEE. , pp. –
.

[] Julius Ziegler and Christoph Stiller. “Spatiotemporal state laices for fast tra-
jectory planning in dynamic on-road driving scenarios.” In: Intelligent Robots
and Systems, . IROS . IEEE/RSJ International Conference on. IEEE. ,
pp. –.

[] Julius Ziegler et al. “Trajectory planning for Bertha—A local, continuousmethod.”
In: Intelligent Vehicles Symposium Proceedings,  IEEE. IEEE. , pp. –.

[] David G Hull. “Conversion of optimal control problems into parameter optimiza-
tion problems.” In: Journal of Guidance, Control, and Dynamics . (), pp. –
.

[] John T Bes. “Survey of numerical methods for trajectory optimization.” In: Jour-
nal of guidance, control, and dynamics . (), pp. –.

[] Sören Kammel et al. “TeamAnnieWAY’s autonomous system for the  DARPA
Urban Challenge.” In: Journal of Field Robotics . (), pp. –.

[] Dawn Tilbury, Richard M Murray, and S Shankar Sastry. “Trajectory generation
for the N-trailer problem using Goursat normal form.” In:Automatic Control, IEEE
Transactions on . (), pp. –.

[] Michael J Van Nieuwstadt and Richard M Murray. “Real time trajectory genera-
tion for differentially flat systems.” In: ().

[] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, .

[] Igor Griva, Stephen G Nash, and Ariela Sofer. Linear and nonlinear optimization.
Siam, .

[] Gaël Varoquaux. Mathematical optimization: finding minima of functions. Scipy
Lecture Notes. . : "http://scipy-lectures.github.io/advanced/
mathematical_optimization/" (visited on //).

[] Julien Legriel. “Multi-criteria optimization and its application to multi-processor
embedded systems.” PhD thesis. PhD thesis, Grenoble, University Joseph Fourier,
.

[] Markos Papageorgiou.Optimierung: statische, dynamische, stochastische Verfahren.
Springer DE, .



"http://scipy-lectures.github.io/advanced/mathematical_optimization/"
"http://scipy-lectures.github.io/advanced/mathematical_optimization/"

Bibliography

[] SJWright and J Nocedal.Numerical optimization. Vol. . Springer New York, .
[] JorgeNocedal and Ya-xiang Yuan. “Analysis of a self-scaling quasi-Newtonmethod.”

In: Mathematical Programming .- (), pp. –.
[] Özgür Turhan.Optimizasyon Yöntemleri. Turkish. University lecture notes. Istan-

bul Technical University. Feb. .
[] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming.” In: Acta nu-

merica  (), pp. –.
[] MoritzWerling et al. “Optimal trajectory generation for dynamic street scenarios

in a Frenet frame.” In: Robotics and Automation (ICRA),  IEEE International
Conference on. IEEE. , pp. –.

[] Kamal Kant and Steven W Zucker. “Toward efficient trajectory planning: e
path-velocity decomposition.” In: e International Journal of Robotics Research
. (), pp. –.

[] Philipp Bender, Julius Ziegler, and Christoph Stiller. “Lanelets: Efficient map rep-
resentation for autonomous driving.” In: Intelligent Vehicles Symposium Proceed-
ings,  IEEE. IEEE. , pp. –.

[] Marcus A Brubaker, Andreas Geiger, and Raquel Urtasun. “Lost! leveraging the
crowd for probabilistic visual self-localization.” In: Computer Vision and Paern
Recognition (CVPR),  IEEE Conference on. IEEE. , pp. –.

[] Dirk Stöcker and Immanuel Scholz. Java OpenStreetMap Editor. Program. Avail-
able online. . : https://josm.openstreetmap.de/ (visited on //).

[] John Parr Snyder. Map projections–A working manual. . USGPO, .
[] Ruben E. Perez, PeterW. Jansen, and Joaquim R. R. A. Martins. “pyOpt: A Python-

Based Object-Oriented Framework for Nonlinear Constrained Optimization.” In:
Structures and Multidisciplinary Optimization . (), pp. –. : 10.
1007/s00158-011-0666-3.

[] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python. . : "http://www.scipy.org/" (visited on //).

[] Steven G Johnson. e NLopt nonlinear-optimization package. Optimization li-
brary. Available online. . : http://ab-initio.mit.edu/wiki/index.
php/NLopt (visited on //).

[] Dieter Kra. A soware package for sequential quadratic programming. DFVLR
Obersfaffenhofen, Germany, .

[] ShihPing Han. “A globally convergent method for nonlinear programming.” In:
Journal of optimization theory and applications . (), pp. –.

[] Michael JD Powell. “A fast algorithm for nonlinearly constrained optimization
calculations.” In: Numerical analysis. Springer, , pp. –.

[] Charles L Lawson and Richard J Hanson. Solving least squares problems. Vol. .
SIAM, .



https://josm.openstreetmap.de/
http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.1007/s00158-011-0666-3
"http://www.scipy.org/"
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://ab-initio.mit.edu/wiki/index.php/NLopt

Bibliography

[] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “e NumPy array: a
structure for efficient numerical computation.” In: Computing in Science & Engi-
neering . (), pp. –.

[] Andreas Brodtkorb. Numerical Differentiation Tool for Python. Tool. . :
https://code.google.com/p/numdifftools/ (visited on //).

[] Krister Svanberg. “A class of globally convergent optimization methods based on
conservative convex separable approximations.” In: SIAM journal on optimization
. (), pp. –.

[] Michael JD Powell. “A direct search optimization method that models the objec-
tive and constraint functions by linear interpolation.” In:Advances in optimization
and numerical analysis. Springer, , pp. –.



https://code.google.com/p/numdifftools/

	List of Figures
	List of Tables
	Notations
	Introduction
	Motivation
	Objective
	Thesis Overview

	Fundamentals of Motion Planning
	Basic Definitions
	Overview of Various Motion Planning Methods
	Artificial Potential Fields
	Roadmaps
	Cell Decompostions
	Sampling-based Methods

	Application of Various Motion Planning Methods on Autonomous Vehicles
	Optimal Trajectory Planning

	Theory of Optimization
	Basic Definitions in Optimization
	Nonlinear Optimization
	Unconstrained Optimization
	Constrained Optimization
	Sequential Quadratic Programming

	Trajectory Planning as an Optimization Problem
	Problem Definition and Formalization
	Objective Function
	Constraints
	Discretization

	Initialization

	Kinodynamic Optimal Trajectory Planning
	Combinatorial Problems in Roadways
	Integrating Combinatorial Reasoning into Trajectory Planning Problem
	Extraction of Combinatorial Options
	Formalization of Constraints
	Initialization of the Constrained Problem

	Path-Velocity Decomposition

	Implementation
	Environment Model
	The Solver: NLopt and SLSQP
	Overview of the Simulation Program
	Further Remarks on Implementation

	Results and Evaluation
	Inspected Situations and Results
	Comparison of Path-Velocity Decomposition and Complete Planning
	Influence of Initialization on Optimization Process
	Convergence Process of the Optimization Algorithm
	Further Remarks on Results

	Conclusion and Future Work
	Appendix
	Settings File
	Pseudocode
	Supplementary Figures

	Bibliography

