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Abstract: 

In this paper, the performance of the existing energy system model PERSEUS-NET is improved in 

terms of computing time. Therefore, the possibility of switching from a perfect foresight to a 

myopic approach has been implemented. PERSEUS-NET is a linear optimization model generating 

scenarios of the future German electricity generation system until 2030, whilst considering 

exogenous regional characteristics such as electricity demand and existing power plants as well 

as electricity transmission network restrictions. Up to now, the model has been based on a 

perfect foresight approach, optimizing all variables over the whole time frame in a single run, 

thus determining the global optimum. However, this approach results in long computing times 

due to the high complexity of the problem. The new myopic approach splits the optimization into 

multiple, individually smaller, optimization problems each representing a five year period. The 

change within the generation system in each period is determined by optimizing the subproblem, 

whilst taking into account only the restrictions of that particular period. It was found that the 

optimization over the whole time frame with the myopic approach takes less than one tenth of 

the computing time of the perfect foresight approach. Therefore, we analyse in this paper the 

advantages and draw-backs of a change in the foresight as a way of reducing the complexity of 

energy system models. For PERSEUS-NET it is found that the myopic approach with stable input 

parameters is as suitable as the perfect foresight approach to generate consistent scenarios, with 

the advantage of significantly less computing time.  

Keywords: Myopic, perfect foresight, energy system modelling, PERSEUS 

Nomenclature: 

Indices 
DEMPROC   Demand processes 
ec    Energy carriers and materials (𝑒𝑐 ∈ 𝐸𝐶)  
ECseas, ECnon-seas    Seasonal and non-seasonal energy carriers 
elec    Electricity as energy carrier 
exp    Sinks of the graph structure (𝑒𝑥𝑝 ∈ 𝐸𝑋𝑃) 
GENPROC   Generation processes 
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Imp    Sources of the graph structure (𝑖𝑚𝑝 ∈ 𝐼𝑀𝑃) 
kyo    CO2 emission allowances (𝑘𝑦𝑝 ∈ 𝐾𝑌𝑂) 
proc    Processes (𝑝𝑟𝑜𝑐 ∈ 𝑃𝑅𝑂𝐶) 
prod    Producers (𝑝𝑟𝑜𝑑 ∈ 𝑃𝑅𝑂𝐷) 
seas    Time slots (𝑠𝑒𝑎𝑠 ∈ 𝑆𝐸𝐴𝑆) 
t    Year, period (𝑡 ∈ 𝑇) 
unit    Units (𝑢𝑛𝑖𝑡 ∈ 𝑈𝑁𝐼𝑇) 
 
Parameters 
Avaiunit,t    Availability factor for the generation unit unit in period t 
αt    Discount factor 
λproc,ec Share of energy carrier ec related to total input/output of 

the process proc 
ηprod,prod’,ec,t Flow efficiency of energy carrier ec between producers 

prod and prod’ 
ηproc,t    Efficiency of process proc in period t 
CapResunit,t   Installed capacity of unit unit at the beginning of period t 
Cfixunit,t Fixed annual operation costs of the generation unit unit 

in period t 
Cfuelimp,prod’,ec Fuel costs for the delivery of the energy carrier ec to 

producer prod’ in period t 
Cinvunit,t Specific investment for commissioning the generation 

unit unit in period t 
Ckyokyo,t Costs for the acquisition of CO2 allowances from the 

contingent kyo in period t 
Cloadunit,t   Load change costs for the generation unit unit in period t 
Cvarproc,t   Variable operating costs of the process proc in period t 
Dt,seas  Demand for electricity in time slice seas in period t 
hseas    Number of hours in season seas 
 
Variables 
Capunit,t    Installed capacity of the generation unit unit in period t 
Flimp,prod’,ec,t Level of ec-flow from the source of the graph structure 

imp to producer prod’ per year 
Flprod,prod’,ec,t Level of ec-flow from producer prod’ to producer prod per 

year 
Flprod,exp,ec,t Level of ec-flow from producer prod to the sink of the 

graph structure exp per year 
FSprod,prod’,ec,t,seas Level of ec-flow from producer prod’ to producer prod per 

time slot 
FSprod,exp,ec,t,seas Level of ec-flow from producer prod to the sink of the 

graph structure exp per year 
KyoCertkyo,t   Procurement of CO2 allowances kyo in period t 
LVchangeunit,seas-1,seas,t Load change of generation unit unit between time slices 

seas-1 and seas in t 
NewCapunit,t Newly installed capacity of generation unit unit in a 

period t 
PLproc,t    Activity level of process proc per year in period t 
PSproc,t,seas   Activity level of process proc in time slot seas in period t  
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1. Introduction 

Energy system modelling is a common approach for analysing the potential 

development of the generation system as a reaction to given circumstances, such as 

different policies and changes in primary resource prices. The short-sightedness of policy 

makers and the volatility of fuel prices make long-term forecasts increasingly difficult. 

Nevertheless, in the energy sector with capital-intensive investments and long-lasting 

assets, the success of investments depends strongly on the underlying scenarios of the 

considered time horizon. Therefore, energy system models are essential to generate a 

basis for decisions. Their results should be, however, understood not as forecasts but as 

what-if analyses, quantifying the effects of the corresponding assumptions like policy 

measures.  

One means of performing such what-if analyses are optimizing bottom-up energy 

system models. In such models the energy demand, for example for fuel, electricity 

and/or heat has to be satisfied by a given market and/or given technology options, while 

for instance the costs to do so are minimized. Because of the high complexity of the 

energy system the corresponding models are extensive and include a large number of 

variables, parameters, restrictions and assumptions. The more precise the mapping of 

the reality is represented, the more complex the underlying equations are composed 

and the more data is to be processed and the higher the resulting computing time 

becomes. In order to have a feasible computing time, detailed optimizing energy system 

models tend to be modelled as linear problems, avoiding mixed integer or nonlinear 

problems that have a comparably higher computing time. Thus restrictions are 

linearized and as models reach a certain size the time resolution has to be decreased. 

This enables the user to achieve reliable results on common computers in reasonable 

computing times and to avoid high performance computer access. In short, a trade-off 

between exactness and computing time has to be made. 

Energy system models are broadly applied in energy economics to assist in making 

investment decisions and/or the dispatching of power plants based on assumptions of 

the future energy system [1-4]. In the years to come, the complexity of the energy 

system will increase due to a raising share of renewable resources and the 

decentralisation of the electricity provision [5]. A growing importance of renewable 

feed-in leads to the need for a high time resolution in energy system models as the feed-

in can change quickly, challenging the energy system to a quick and sometimes short-

term reaction. At the same time, the growing decentralisation requires a high regional 

resolution to depict energy flows correctly. This is especially true for the German 

electricity system, which is expected to have more than 80 % electricity by renewable 

resources by 2050 [6]. Hence, the electricity generation is less controllable and imposing 

the pressure on the underlying grid and electricity demand. Therefore, energy system 

models should consider regional effects (i.e. the grids) and improve the temporal 

resolution in order to recognize the fluctuating wind supply. This fosters the complexity 

of these models significantly. 

In order to cope with the complexity of modern energy system models and meet the 

challenges in terms of keeping the computing time feasible we could either use high 
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performance computers or optimise other model specific characteristics (e.g. 

algorithms, solvers). As there have recently already been several versions of 

international known energy system models that changed the considered time-horizon 

from perfect foresight to a myopic sight [7-9] we concentrate in this paper on analysing 

the advantages and draw-backs of this change as a way of reducing the complexity of 

energy system models. We enhance the performance of the energy system model 

PERSEUS-NET through replacing the usually applied perfect foresight approach by a 

myopic (or time step) approach. While the perfect foresight approach finds the 

intertemporal optimum over the whole time frame, the myopic approach returns the 

optimum for each of the considered periods without setting them in the context with 

the other periods. Future developments are neglected.  This could lead – as in the case 

of PERSEUS-NET – to a resulting time saving of several hours or days and, hence, keep 

the model development more flexible.  

In order to analyse the advantages and drawbacks of optimizing energy system models 

using myopic approaches instead of perfect foresight approaches, the paper is 

structured as follows. In the next section the theoretical background and a short review 

of other energy system models with a myopic approach is given before in section 3 the 

energy system model PERSEUS-NET is introduced which serves as the reference model 

for the following analysis. At first the features of PERSEUS-NET are explained before in 

section 3.2 the computational realization of the implementation of the new approach is 

illustrated. Section 4 introduces two exemplary scenarios, which are used to determine 

the differences in the results and computing time of the myopic and the perfect 

foresight approach. In section 5 the assets and drawbacks of the two approaches are 

discussed before in section 6 the outcomes of this study are summarized and an outlook 

on future fields of research is given. 

 

2. Scientific context 

The terms myopic and perfect foresight refer to the way in which expectations of 

economic actors are represented in the model. In a perfect foresight model, the 

economic actors know exactly how energy demand and energy carrier prices will 

develop into the future. Thus the solution represents an optimal allocation of resource 

usage over the whole timeframe, i.e. the global optimum. In contrast, in the myopic 

model, the economic actors base their decisions only on the given price and demand 

scenarios in the period of the decision. Thus decisions are made as if energy carrier 

prices and electricity demand would remain unchanged after the current period. The 

consequence is, firstly, that the model’s solution based on perfect foresight will have 

lower total costs, as it can anticipate energy carrier price developments, for example, 

and make investments in new generation capacity accordingly. Another consequence of 

the approach is that the optimization problem of the perfect foresight approach is split 

into several, individually smaller optimization problems: one for each calculated period. 

These sub-problems can be solved in fractions of the time it takes to solve the original 

problem. Especially during the calibration or expansion of a model this facilitates the 

work for the model developer, since in this case many dozen model runs have to be 
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executed. In the myopic model often only one period has to be calculated in order to 

verify a new parameter setting or the function of a new equation [10].  

Traditionally energy system optimization models tend to optimize intertemporal based 

on perfect foresight as for example the well-known MARKAL [11] or the MESSAGE [12] 

model. However, more recently existing energy system models have been extended 

with myopic or so called time-step approaches as for example the SAGE [7] model which 

has been developed out of the MARKAL model. According to the EIA [7] the limited 

foresight was integrated in order to take the evolutionary nature of the energy and 

technology markets into account. Also as stated in [8] there has been a myopic version 

of the MESSAGE model developed in order to asses “the consequences of short-term 

decisions in the context of achieving long-term objectives”. Another example is the 

development of a myopic model to integrate a more realistic character of projection 

into the energy system model IKARUS by Martinsen et al. [9,3]. Their conclusion is that 

consistent and plausible scenarios can be produced and analysed with the myopic 

approach. Comparing energy system modelling of perfect foresight and myopic 

foresight, Krey [10] came to the same conclusion. The perfect foresight model is 

especially apt to determine an economically efficient solution for a transition of the 

energy system, whilst considering technical and environmental restrictions. 

Nevertheless, it may not fully capture the decision framework relevant for real life 

decision makers. In reality, future costs and prices are subject to uncertainties that 

increase with the length of the considered time-frame [13].   

As Babiker et al. [14] shows, the level of foresight influences total costs as well as 

investment decisions. A myopic approach may allow the model to deliver more realistic 

and contemporary results. Some authors argue, however, that with a myopic approach 

the model constructor himself has a better understanding of the future than the 

modelled decision maker. The latter has no information of the future at all, which may 

on the one hand lead to a time-delay in adjusting to changes and irreversible 

investments  [15,16]. On the other hand, this makes a myopic approach more suitable 

than the perfect foresight approach to examine the consequences of unpredictable 

events, as for example the developments of CO2 allowance prices. The effect of a 

sudden rise in prices is softened when applying a perfect foresight approach since the 

optimization model knows about the upcoming price shock and can adapt the 

investment strategy accordingly, while with a myopic approach, the system does not 

know about future occurrences in the next period since its optimization focus covers 

only the current period. Thus it does not adapt to changes in advance. Keppo et al. [17] 

examine the influences of limited foresight on energy transitions based on the MESSAGE 

model and also find that considering only the current needs leads to postponing 

investments. According to Krey [10] those so called “lost opportunities” occur when the 

measurements that can be taken are time depended and have an effect or life time over 

decades. If there is for example the need for new generation capacities now and carbon 

intensive capacities are build, in five years it will be too late to change them into low 

carbon capacities even if new emission laws or costs come up. The opportunity to lower 

the carbon emissions of the generation system within the renovation cycle will already 

be lost. Krey [10] also states that the results of an optimization with perfect foresight 
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and an optimization based on myopic foresight are very similar as long as the input 

parameters of the scenarios change continuously over the considered time frame. While 

it is possible to find the absolute optimum over the time frame with perfect foresight, 

price-shocks are better examined with a myopic approach in regard to real-life 

behaviour.  

Using once the myopic and once the perfect foresight approach with an energy system 

model the reaction to two extreme horizons can be analysed. In the first case every 

period is optimized individually knowing nothing about the future while in the other 

extreme everything is known and an intertemporal optimum is found. Obviously, there 

are possible approaches in between as for example granting the model knowledge 

about at least one future period that is taken into account besides the current period 

(rolling horizon approach [18]). Those strategies of limited foresight might combine the 

advantages of both approaches and might lead to the most realistic prediction of the 

system reactions to future events. Our main target is to find a measure to lower the 

computing time of the energy system model PERSEUS-NET significantly without 

compromising the quality of our results. Therefore, we compare here the two extreme 

approaches.  

3. Model Description  

3.1 PERSEUS-NET  

PERSEUS-NET is a bottom-up linear optimizing energy system model including a nodal 

pricing based approach. It is part of the PERSEUS (Program Package For Emission 

Reduction Strategies In Energy Use and Supply) model family of technology-based 

energy and material flow optimization models that assumes perfect competition and 

complete information. The aim of PERSEUS-NET [19] is to minimize costs of power 

supply until 2030 while satisfying the exogenously given electricity demand and 

considering the restrictions by the underlying electricity grid. PERSEUS-NET is structured 

as a graph in which so called producers (𝑃𝑅𝑂𝐷) form the nodes and flows form the 

edges in between. While the nodes and flows form the structural level of the model 

there is also a more aggregated level (aggregating producers and flows to regions and 

sectors) and a detailed level (representing reference generation units and processes – ct. 

Figure 1). Within that hierarchic structure each of the producers belongs to a sector 

which corresponds to the part of the energy system assigned to a specific grid node of 

the transmission network. Sectors themselves belong to so called regions which 

represent countries. Generation units (𝑈𝑁𝐼𝑇) allocated close to or at a grid node are 

assigned to the corresponding producer of that grid node. Each unit has at least one 

operation mode as a process (𝑃𝑅𝑂𝐶). A generation unit can for example have one 

generation process (𝐺𝐸𝑁𝑃𝑅𝑂𝐶) that converts coal to electricity and one other that 

converts coal to electricity and heat. Besides those generation processes there are also 

demand processes (𝐷𝐸𝑀𝑃𝑅𝑂𝐶) indirectly assigned to a producer.  
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Figure 1: Hierarchy of the model elements in PERSEUS-NET [19] 

The value of the objective function is the sum of all system relevant expenditures 

discounted to the base year (𝛼𝑡 discount factor of year 𝑡) as shown in equation 1. The 

first summand comprises all fuel expenditures, the costs (𝐶𝑓𝑢𝑒𝑙𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐  ) to import 

(𝑖𝑚𝑝) an energy carrier (𝑒𝑐) into the system to a specific producer (𝑝𝑟𝑜𝑑) are multiplied 

with the corresponding energy carrier flow (𝐹𝐿𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡). The second summand 

comprises the variable costs of energy conversion (𝐶𝑣𝑎𝑟𝑝𝑟𝑜𝑐,𝑡  ) and industrial production 

(𝑃𝐿𝑝𝑟𝑜𝑐,𝑡) for each conversion process (𝑝𝑟𝑜𝑐). The third summand reflects all specific 

expenditures (𝐶𝑖𝑛𝑣𝑢𝑛𝑖𝑡,𝑡) for the installation of new capacity (𝑁𝑒𝑤𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡), fixed costs 

(𝐶𝑓𝑖𝑥𝑢𝑛𝑖𝑡,𝑡) of all capacity (𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡  ) and costs (𝐶𝑙𝑜𝑎𝑑𝑢𝑛𝑖𝑡,𝑡) for load changes 

(𝐿𝑉𝑐ℎ𝑎𝑛𝑔𝑒𝑢𝑛𝑖𝑡,𝑠𝑒𝑎𝑠−1,𝑠𝑒𝑎𝑠,𝑡) from one timeslot (𝑠𝑒𝑎𝑠) to the next for coal, lignite and 

uranium units. For new units the annuity of the investment is used, thus taking into 

account their economic lifetime. The fourth summand represent the costs (𝐶𝑘𝑦𝑜𝑘𝑦𝑜,𝑡) 

for CO2 emission allowances (𝐾𝑦𝑜𝐶𝑒𝑟𝑡𝑘𝑦𝑜,𝑡) [19]. 

min∑ 𝛼𝑡𝑡∈𝑇 ∗

(

 
 
 
 
 
 

∑ ∑ ∑ (𝐹𝐿𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡 ∗ 𝐶𝑓𝑢𝑒𝑙𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐)𝑝𝑟𝑜𝑑′∈𝑃𝑅𝑂𝐷′𝑒𝑐∈𝐸𝐶𝑖𝑚𝑝∈𝐼𝑀𝑃   

+∑ (𝑃𝐿𝑝𝑟𝑜𝑐,𝑡 ∗ 𝐶𝑣𝑎𝑟𝑝𝑟𝑜𝑐,𝑡)𝑝𝑟𝑜𝑐∈PROC                                                                    

+∑ (

(𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡 ∗ 𝐶𝑓𝑖𝑥𝑢𝑛𝑖𝑡,𝑡)                                                          

+(𝑁𝑒𝑤𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡 ∗ 𝐶𝑖𝑛𝑣𝑢𝑛𝑖𝑡,𝑡)                                               

+∑ (𝐿𝑉𝑐ℎ𝑎𝑛𝑔𝑒𝑢𝑛𝑖𝑡,𝑠𝑒𝑎𝑠−1,𝑠𝑒𝑎𝑠,𝑡) ∗ 𝐶𝑙𝑜𝑎𝑑𝑢𝑛𝑖𝑡,𝑡𝑠𝑒𝑎𝑠∈𝑆𝐸𝐴𝑆

)𝑢𝑛𝑖𝑡∈𝑈𝑁𝐼𝑇

+∑ 𝐾𝑦𝑜𝐶𝑒𝑟𝑡𝑘𝑦𝑜,𝑡 ∗ 𝐶𝑘𝑦𝑜𝑘𝑦𝑜,𝑡𝑘𝑦𝑜∈𝐾𝑌𝑂                                                                 
                                                  )

 
 
 
 
 
 

   (1) 

Further technical and economical characteristics are considered through 24 constraints 

concerning energy and material flow balances, matching supply and demand spatially 

and temporally as well as generating capacity restrictions, e.g. lifetimes of generating 
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stations and timely availability. The most important once are represented in the 

following, for more details and information on the other constraints see [19].  

With a time horizon of 2030 and a base year of 2007 in PERSEUS-NET at least every fifth 

year is optimised (all other years can be interpolated). A year is represented via eight 

days of a type consisting of weekend and weekdays for each season. These days of a 

type have between three and seven timeslots each. The 46 typified timeslots represent 

in between one and 22 hours of that eight days. The first periods (2007 and 2010) serve 

the model constructors for calibration and checking of the model. As the energy demand 

is the driving force of the model, equation 2 represents the corresponding restriction, 

which states, that electricity demand (𝐷𝑡,𝑠𝑒𝑎𝑠) equals the electricity flow 

(𝐹𝐿𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑙𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠) exported (𝑒𝑥𝑝) over the considered system boundaries for each 

producer in every timeslot and every year.  

𝐹𝐿𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑙𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠 ≥ 𝐷𝑡,𝑠𝑒𝑎𝑠   

∀𝑝𝑟𝑜𝑑 ∈ 𝑃𝑅𝑂𝐷; ∀𝑒𝑥𝑝 ∈ 𝐸𝑋𝑃; ∀𝑡 ∈ 𝑇; ∀𝑠𝑒𝑎𝑠 ∈ 𝑆𝐸𝐴𝑆   (2) 

Seasonal energy carriers (𝐸𝐶𝑠𝑒𝑎𝑠) such as electricity or heat are balanced via equation 3. 

Seasonal flows (𝐹𝑆𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠) and seasonal process levels (𝑃𝑆𝑝𝑟𝑜𝑐,seas,𝑡) are 

balanced for every producer and each of the 46 time slots (𝑆𝐸𝐴𝑆). The sum of the 

inflows of an energy carrier to a producer from another producer (𝐹𝑆𝑝𝑟𝑜𝑑′,𝑝𝑟𝑜𝑑,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠) 

and/or the generation of that energy carrier (𝑃𝑆𝑝𝑟𝑜𝑐,𝑡,𝑠𝑒𝑎𝑠 ∗ 𝜆𝑝𝑟𝑜𝑐,𝑒𝑐) within each time 

slot equals the outflows (𝐹𝑆𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠, 𝐹𝑆𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠) and use of it 

(𝑃𝑆𝑝𝑟𝑜𝑐,𝑡,𝑠𝑒𝑎𝑠 ∗ 𝜆𝑝𝑟𝑜𝑐,𝑒𝑐) from this producer considering the efficiency of the flows and 

the use process (𝜂𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡,  𝜂𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡,  𝜂𝑝𝑟𝑜𝑑,𝑒𝑐). 

∑  𝐹𝑆𝑝𝑟𝑜𝑑′,𝑝𝑟𝑜𝑑,𝑒𝑐,t,seas
𝑝𝑟𝑜𝑑′∈𝑃𝑅𝑂𝐷

  

+ ∑ 𝑃𝑆𝑝𝑟𝑜𝑐,t,seas  ∗ 𝜆𝑝𝑟𝑜𝑐,𝑒𝑐
𝑝𝑟𝑜𝑐∈𝐺𝐸𝑁𝑃𝑅𝑂𝐶 

 

 =  ∑
𝐹𝑆𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠

𝜂𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡𝑒𝑥𝑝∈𝐸𝑋𝑃 
+∑  

𝐹𝑆𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡,𝑠𝑒𝑎𝑠

𝜂𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡𝑝𝑟𝑜𝑑′∈𝑃𝑅𝑂𝐷
  

+ ∑  𝑃𝑆𝑝𝑟𝑜𝑐,𝑡,𝑠𝑒𝑎𝑠  ∗  
𝜆𝑝𝑟𝑜𝑐,𝑒𝑐
𝜂𝑝𝑟𝑜𝑑,𝑒𝑐𝑝𝑟𝑜𝑐∈𝐷𝐸𝑀𝑃𝑅𝑂𝐶

 

∀𝑡 ∈ 𝑇; ∀𝑠𝑒𝑎𝑠 ∈ 𝑆𝐸𝐴𝑆; ∀𝑝𝑟𝑜𝑑 ∈ 𝑃𝑅𝑂𝐷; ∀𝑒𝑐 ∈ 𝐸𝐶𝑠𝑒𝑎𝑠   (3) 

Equation 4 is responsible for the energy and material flow balance of non-seasonal 

energy carriers (𝐸𝐶𝑛𝑜𝑛−𝑠𝑒𝑎𝑠) such as coal or gas. It ensures that the yearly flows 

(𝐹𝐿𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡) and process levels (𝑃𝐿𝑝𝑟𝑜𝑐,𝑡) with non-seasonal energy carriers are 

balanced in each year the same way as the seasonal energy carriers in each time slot. 

Different is only that non-seasonal energy carriers can be “imported” from out of the 

system boundaries (𝐹𝐿𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡 ).  
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∑ 𝐹𝐿𝑖𝑚𝑝,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡
𝑖𝑚𝑝∈𝐼𝑀𝑃

+∑ 𝐹𝐿𝑝𝑟𝑜𝑑′,𝑝𝑟𝑜𝑑,𝑒𝑐,𝑡
𝑝𝑟𝑜𝑑′∈𝑃𝑅𝑂𝐷

+∑ 𝑃𝐿𝑝𝑟𝑜𝑐,𝑡 ∗ 𝜆𝑝𝑟𝑜𝑐,𝑒𝑐
𝑝𝑟𝑜𝑐∈𝐺𝐸𝑁𝑃𝑅𝑂𝐶

  

= 

∑
𝐹𝐿𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡
𝜂𝑝𝑟𝑜𝑑,𝑒𝑥𝑝,𝑒𝑐,𝑡𝑒𝑥𝑝∈𝐸𝑋𝑃

+∑
𝐹𝐿𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡

𝜂𝑝𝑟𝑜𝑑,𝑝𝑟𝑜𝑑′,𝑒𝑐,𝑡𝑝𝑟𝑜𝑑′∈𝑃𝑅𝑂𝐷
 

+∑ 𝑃𝐿𝑝𝑟𝑜𝑐,𝑡 ∗
𝜆𝑝𝑟𝑜𝑐,𝑒𝑐

𝜂𝑝𝑟𝑜𝑑,𝑒𝑐
𝑝𝑟𝑜𝑐∈𝐷𝐸𝑀𝑃𝑅𝑂𝐶   

∀𝑡 ∈ 𝑇; ∀𝑝𝑟𝑜𝑑 ∈ 𝑃𝑅𝑂𝐷; ∀𝑒𝑐 ∈ 𝐸𝐶𝑛𝑜𝑛−𝑠𝑒𝑎𝑠     (4) 

Two further equations stating that the sum over the time slots of the seasonal 

process/flow levels has to be the yearly process/flow level of that process/flow 

complement the balancing equations.  

In order to model the generation processes according to their technological 

characteristics there are several constrains implemented. Equation 5 for example 

guarantees that all processes of a unit are in each timeslot and year only used 

(𝑃𝑆𝑝𝑟𝑜𝑐,𝑠𝑒𝑎𝑠,𝑡) within total unit capacity (𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡), considering unit availability 

(𝐴𝑣𝑎𝑖𝑢𝑛𝑖𝑡,𝑡) and the length of the time slot (ℎ𝑠𝑒𝑎𝑠). Besides, there are equations 

referring to the minimum the maximum full load hours of a unit, as well as to the costs 

for load changing. Furthermore, there are specific equations included for the use of 

pump storage systems and combined heating and generation units.   

𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡 ∗ 𝐴𝑣𝑎𝑖𝑢𝑛𝑖𝑡,𝑡 ∗ ℎ𝑠𝑒𝑎𝑠 ≥ ∑ 𝑃𝑆𝑝𝑟𝑜𝑐,𝑡,𝑠𝑒𝑎𝑠𝑝𝑟𝑜𝑐∈𝑃𝑅𝑂𝐶𝑢𝑛𝑖𝑡      

∀𝑡 ∈ 𝑇; ∀𝑠𝑒𝑎𝑠 ∈ 𝑆𝐸𝐴𝑆; ∀𝑢𝑛𝑖𝑡 ∈ 𝑈𝑁𝐼𝑇     (5) 

Equation 6 refers to the capacity expansions. The installed capacity in each period 

equals the already existing capacity (𝐶𝑎𝑝𝑅𝑒𝑠𝑢𝑛𝑖𝑡,𝑡) in that period plus the newly build 

capacity. Capacity expansions are limited by exogenously given values, which for existing 

units mirror their actual installation. Generation units are automatically 

decommissioned due to their age 40 years after being commissioned.    

𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡  =  𝐶𝑎𝑝𝑅𝑒𝑠𝑢𝑛𝑖𝑡,𝑡 +𝑁𝑒𝑤𝐶𝑎𝑝𝑢𝑛𝑖𝑡,𝑡  

∀𝑡 ∈ 𝑇; ∀𝑢𝑛𝑖𝑡 ∈ 𝑈𝑁𝐼𝑇        (6) 

These balancing and technical restrictions are complemented by equations regarding 

the transmission grid [20], which is represented in the model by 560 transmission lines 

that connect all power stations and grid nodes. Each neighbouring country is depict via 

one grid node through which the electricity exchange to and from Germany can be set. 

Network expansion projects are taken into account considering actual delays. Therefore 

the network expansions differ in comparison to EnLAG [21]. A DC (direct current) load 

flow approach is used to represent thermal limitations of power lines’ transmission 

capacity. Nodal prices serve as price signals depending on both the location and time of 

demand. If there is not sufficient transmission capacity between certain grid nodes, 

there might be a surplus of generated electricity on one side of the bottleneck and a 
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shortage on the other side, resulting in the use of more expensive power plants in the 

county with the shortage and higher nodal prices than in the county with the surplus.  

To give a correct representation of physical location and resulting power flows, the area 

of Germany is subdivided into 440 administrative districts, which all have a specific load 

and are connected to the transmission network via grid nodes. The demand is calculated 

individually for each district based on the estimated development of gross domestic 

product and population. In order to satisfy the exogenously given demand in each 

district, the existing local generation system can be used or electricity can be imported 

from neighbouring grid nodes. To meet additional electricity demand in the system or to 

substitute old power plants there is the possibility to install new lignite, coal or gas 

power plants. Each district has a specific generation system of decentralized generating 

units. Larger power plants (>100 MW) are directly connected to the transmission 

network, and for each district the development of renewable energy generation is 

exogenously fixed. The overall renewable energy development in Germany is in 

accordance with the German pilot study [22] and is distributed to the administrative 

districts based on regional potentials [23]. The installation of renewable energy 

generators is exogenously fixed, because time and place of the generating units is in 

general not determined by economics alone. Renewables are modelled as base-load 

capacities, partially neglecting their volatile character. Due to this simplification and the 

rough time structure, which makes it impossible to model the advantages of quick-

response generating units, another restriction is implemented to assure that 10 % of the 

unit capacity has to consist of peak load capacities such as pump storage systems or gas 

turbines.  

In summary PERSEUS-NET consists of about 3 million equations and 3.4 million variables 

and allows the calculation of the future generation system in Germany based on 

different scenarios in which energy carrier prices, CO2 prices and imports are differently 

defined (cf. [23,19]). However, even so that it is a linear optimization model with only 46 

timeslots representing a year the computing time of the model is still as long as a few 

days [19]. Furthermore, the growing feed-in of volatile renewable electricity leads to the 

need for a more detailed time structure and/or a better representation of the electricity 

grid [20], which would drastically increase computing time.  

3.2 Computational realization of the myopic feature 

Implementing the myopic feature in PERSEUS-NET means that the generation system 

and its capacity utilization are no longer optimized at once for the whole time-frame. 

Instead, newly build capacities and the capacity utilization are calculated for each period 

individually considering the resulting generation system of the period before and the 

current needs of the calculated period. Figure 2 illustrates the differences.   
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Figure 2: Perfect Foresight approach vs. myopic approach 

The code of PERSEUS-NET is written in GAMS and solved with the CPLEX solver. The 

main challenge about switching PERSEUS-NET from perfect to myopic foresight is to 

automatically read the output of one period in terms of the generating system as the 

input for the next period. Up to now the input data was stored in a Microsoft® Access 

database which has been read in GAMS through include files, while the output was 

stored, via a GDX interface, in Microsoft® Excel. To facilitate the handover from one 

period to another, the database has been switched to Excel with a GDX interface 

between GAMS and Excel to read and write data. The program is started by opening a 

batch file, which first calls a GAMS program that creates a GDX file out of the database 

where all the scenario data has been stored, then the first part of the PERSEUS code is 

opened and the optimization of the first period begins. After the optimization, the 

resulting generation system for that period is written to an Excel sheet. Additionally all 

results are given to the second part of PERSEUS that creates another GDX file. 

Subsequent periods are sequentially started with the batch file, reading in the results 

from the period before, which have been stored in the myopic (time-step) database. 

After the last period, the batch file calls up another GAMS code that merges the GDX 

files of all the calculated periods to one single result file and writes it to Excel. Figure 3 

illustrations the sequence of the programs/files that are started/used by the batch file.  

 

Figure 3: Sequence of programs for the myopic optimization. 

Compared to the necessary approach for perfect foresight where the batch file only calls 

the GDX-Creator once, and the two parts of PERSEUS (see Figure 4), the myopic 

optimization seems more sophisticated. However, the calculation time with a myopic 

approach is shorter than with a perfect foresight approach. This is because the solution 

space of linear optimization problems grows exponentially with the number of variables 

[24]. In the worst case that means that the computing time of the problem also grows 
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exponentially with the number of variables. In PERSEUS-NET the calculation of seven 

periods at once has about seven times as many variables (7 times n) as the calculation of 

one single period (n variables). Hence, instead of a computing time that is in the worst 

case exponentially proportional to seven times the number of variables of one period (7 

times n) the computing time of each of the seven periods is only exponentially 

proportional to n variables. 

 

Figure 4: Sequence of programs for the perfect foresight optimization. 

 

4. Case study based on the German energy system  

4.1 Scenario definition 

In order to assess the deviations in results both modelling approaches are applied to two 

scenarios. A first scenario, the reference scenario, is used to analyse the consistency of 

the results when input factors such as resource prices have no major jumps in their 

development. Energy carrier price developments for Germany are based on the world 

energy outlook 2008. The European carbon prices are assumed to increase from 

8 €/tCO2 in 2007 to 45 €/tCO2 in 2030 [1]. The second scenario, the CO2 shock scenario, 

is analysed in order to assess the reaction of both approaches to sudden changes. Input 

parameters are identical to the ones described in the reference scenario except for the 

development of CO2 prices. The price shock is modelled by raising the prices in 2030 to 

double the prices in the reference scenario. Figure 5 shows the development of input 

factors. 

 

Figure 5: Energy carrier and CO2 price development for Germany [25,1] 

The starting generation system for both scenarios is originally based on [26] and has 

been constantly updated with information among others based on experts, web sites of 

operators and [27]. In total over 260 large units (>100 MW) are modelled at specific grid 

nodes and about 1600 small units are geographically combined and assigned to 

administrative districts (cf. [19]). The development of the renewables is exogenously 

given and based on [22], in total the installed renewable generating capacity increases 
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from about 60 GW in 2010 up to 90 GW in 2030.  The nuclear fade out is considered as 

completed until 2022 as stated in the current German legislation. Electricity demand is 

slightly decreasing until 2030 compared to today, the numbers and geographical 

distribution are taken from [19]. Further information about input data such as the inter-

regional power exchange, the transmission grid or the techno-economic characteristics 

of the investment options can also be found in [19]. 

4.2 Results 

Applying the myopic approach to the PERSEUS-NET model has a significant effect on the 

calculation time compared to the perfect foresight approach. The calculations show that 

it is possible to solve a model that took 26 hours in perfect foresight mode within 2.5 h 

in myopic foresight mode. This advantage might however cause some changes in the 

results: The global optimum is not guaranteed anymore and the difference might be 

substantial – depending mainly on the assumed price development. The following 

description of scenario results will focus on the developments in the years 2025 and 

2030, as most differences are to be found there.  

Reference Scenario 

In the following, the results of the limited foresight model and the perfect foresight 

model under reference conditions are compared. Regarding capacity development, the 

results show moderate differences between the two modelling approaches. The change 

in newly built capacities can be seen in Figure 6. These minor changes have their origin 

in the moderate rises in energy carrier prices. The differences between the two models 

regarding newly installed capacities are about 6-8 % for gas and about 3 % for lignite 

generation capacities. However, taking into account the already existing power plants, 

the differences between the myopic and the perfect foresight approach only result in a 

deviation of 1.3 % in installed capacities of lignite plants and 0.4 % in installed gas-fired 

capacity.  

 

Figure 6: In 2025 and 2030 newly build thermal capacities in Germany (reference scenario) 

Regarding electricity generation, the results are also compared only for the energy 

carriers coal, gas and lignite as the levels for all other energy carriers are equal. In Figure 

7, total electricity generation per energy carrier is depicted. In 2025, the differences are 

rather small at only about 1 %. However, in 2030 slightly greater deviations can be 

witnessed. Generation from coal is down by 1.5 % in the myopic model while generation 

from lignite is up by 1.4 %. These deviations are due to the development in energy 
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carrier prices and CO2 price developments which the perfect-foresight based model can 

anticipate and the myopic model cannot. Hence, the myopic model invests in lignite 

units that have higher installation costs than coal units, thus neglecting that lignite 

power generation is more CO2 emission intensive than coal and is therefore more 

affected by the (slightly) increasing CO2 prices. The opposite is true for the development 

of coal and gas generation capacity investment decisions. 

 

Figure 7: German thermal electricity generation in 2025 and 2030 (reference scenario)  

As can be seen in Figure 8, the slightly higher generation from lignite, instead of coal, 

results in slightly lower average marginal costs in the case of the myopic approach. 

However, the average yearly marginal costs are very similar in both models and rise 

from 38 €/MWh in 2007 to about 70 €/MWh in 2030. This strong increase is mainly 

enhanced by the nuclear fade-out completed in 2025 and the increase in energy carrier 

prices. The lower marginal costs of the myopic approach are due to the fact that 

investments are not reflected in marginal costs. Thus, the slightly higher lignite 

generation capacity in the myopic model leads to slightly lower marginal costs. For the 

same reason the CO2 emissions also differ slightly: while the myopic model calculates up 

to 245 Mt CO2 in 2025 and 205 Mt CO2 in 2030 the perfect foresight approach result to 

emissions of 245 Mt CO2 in 2025 and 204 Mt CO2 in 2030. 

 

Figure 8: Average marginal generation costs in Germany (reference scenario) 

Due to the similar results regarding location and capacity of new generation 

investments, there are also almost no differences to be seen in transmission bottlenecks 

and regional marginal costs.  
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CO2 Shock Scenario 

To further analyse possible differences between the modelling approaches, a second 

scenario is calculated, integrating a sudden price shock. Regarding capacity 

development, there is a significantly different development to be seen in 2025. Since the 

perfect foresight approach is already “informed” about the CO2 price jump in 2030, 

almost no more lignite plants are built because of their high specific CO2 emissions. 

Figure 9 shows the newly installed capacity in the years 2025 and 2030 for both 

approaches. The investments in coal based generation capacity in 2030 are to a large 

extent CCS enhanced technologies. In the perfect foresight model, 13.5 GW are CCS coal 

technology and in the myopic model 9.3 GW are CCS coal capacities. 

 

Figure 9: In 2025 and 2030 newly build thermal capacities in Germany (CO2 shock scenario) 

Due to the different mixes of installed power plants, in 2025 with the perfect foresight 

approach 34 TWh additional electricity is generated from coal and 5 TWh more gas 

which are generated with lignite instead with myopic foresight (Figure 10). In 2030 this 

changes to 32 TWh generation from coal and 2 TWh from gas that are in the myopic 

approach subsidized by lignite generation. CO2 emissions develop accordingly, resulting 

in 21 % higher emissions of the myopic approach in 2030, the period in which prices 

have risen (Figure 11). While perfect foresight has in 2030 emissions of 126 Mt CO2, 

which is only about 60 % of the reference value, myopic emissions result with 152 Mt to 

about 75 % of the former value. 

 

Figure 10: German thermal electricity generation in 2025 and 2030 (CO2 shock scenario) 

Comparing the two models, the myopic model invests in 2025 too heavily in lignite 

power generation, missing out on the opportunity to invest in the not as carbon 

intensive coal generation instead. This leads to a high share of lignite based power 
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generation capacity in the generation system in 2030. The perfect foresight model on 

the other hand invests into a more balanced generation system leading to distinctly 

lower carbon emissions and total costs of energy supply in 2030. 

 

Figure 11: CO2 emissions in Germany (CO2 shock scenario) 

The different generation capacities also result in different average marginal prices in 

2025. As to be seen in Figure 12 with perfect foresight the average marginal price is at 

83 €/MWh, while it is only 69 €/MWh in the myopic approach.  

 

Figure 12: Average marginal generation costs in Germany (CO2 shock scenario) 

 

5. Discussion 

Concluding from the results presented in the last chapter, it can be found that the 

advantages and draw-backs of the two analysed approaches depend on the considered 

scenario. 

On the one hand there is the case that the input parameters are steady. In this case the 

results are similar. Hence both approaches are equally adequate for scenario analysis 

with continuously changing parameters. However, the myopic approach has the 

substantially shorter computing time. 

On the other hand, a sudden jump of exogenous parameters in the scenario 

assumptions leads to significantly different results of the two approaches. This could for 

example happen based on the occurrence of a new technology or the CO2 price 

development. With the perfect foresight approach the global optimum is calculated, 

showing the ideal reaction of the system to sudden events, partially even before its 
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occurrence. Therefore, the results of the perfect foresight approach can be considered 

as an upper limit to the performance of a system in a certain scenario. Though, if the 

intention of the scenario is to analyse a more realistic reaction of the system to 

unforeseen sudden events this can better be done with the myopic approach. The 

myopic approach determines for each period the optimum for the current conditions 

without anticipating any changes in future periods. It has to be kept in mind that in 

reality even this instantaneous reaction to sudden price changes would need major 

advance planning because of the construction time that is not explicitly modelled. If it is 

known that there are structural changes to come, as for example a rise in CO2 prices due 

to a known cut in the cap, the results of the myopic approach would be suboptimal 

compared to perfect foresight as they would not mirror that knowledge. The results 

include costs of a delayed reaction to the known events. Furthermore, lost opportunities 

because of the total lack of knowledge of future events can be identified through a 

comparison of the myopic results to the global optimum. Accordingly, both approaches 

are especially suited to different types of problems thus the two versions can be seen as 

complimentary.  

Nevertheless, using a myopic approach, it has to be kept in mind that the characteristic 

of the optimization shifts more towards a simulative approach and that the result can 

differ to the intertemporal optimum. Furthermore, having perfect information within 

the considered period and no information about future periods does not seem to be 

more realistic and the model results loose the advantage of being interpretable as the 

intertemporal optimum. Then again, the uncertainties increase in the German energy 

sector because of the shift towards renewables, making perfect foresight less probable. 

As in long term energy system models structural or technological changes are not 

precisely predictable in time, the disadvantage of the myopic approach of not having the 

global optimum seems to become somewhat less significant for the “quality” of the 

forecasts of the model. Hence, a myopic approach is suitable to analyse how short-term 

decision making influences the long term energy system development. It can be used 

instead of the perfect foresight approach in scenarios with monotonic developments of 

prices in order to reduce the required computing time.  

 

6. Conclusion and Outlook 

Since the complexity of energy systems increases due to rising shares of renewable and 

decentralised electricity provision, the complexity of energy system models, 

representing these real world phenomena, increases as well. The resulting computing 

time has become a major obstacle in today’s modelling of energy systems. To keep 

models feasible, trade-offs between exactness and computing time have to be made. In 

this paper the function to switch from a perfect foresight approach to a myopic 

approach has been integrated into the energy system model PERSEUS-NET in order to 

compare the assets and drawbacks of a myopic modelling approach against the gains in 

computing time. It is shown, that in scenarios with a steady development of parameters 

the differences between the results are negligible when using the myopic instead the 

perfect foresight approach, but with much shorter computing time.  
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Currently, the complexity of energy models rises due to the increasing volatile feed-in, 

especially if stochastic parameters were taken into account, making the trade-off 

between exactness and computing time even more crucial. To account for the 

evolutionary character of modern energy systems, myopic versions, have been already 

developed for traditional energy system models such as MESKAL or MESSAGE.  

Through the implementation of the myopic approach in PERSEUS-NET the computing 

time could be reduced to about a tenth of the computing time with perfect foresight. It 

is planned to use the gained flexibility to generate new model versions that concentrate 

on specific consequences of an increased share of electricity by renewable energy 

resources such as the need for a higher time resolution, storage systems or the 

interaction with the gas transmission system, as natural gas is also a grid-bound energy 

carrier. Because of the advantage of shorter calculation time, the myopic approach is 

suitable for complex energy system models with a high computing time – especially with 

a monotonic development of prices. As the future energy system will consist of an 

increasing share of renewables and decentralised generation units an increasing time 

and geographical resolution is needed. Hereby the complexity and therefore the 

computing time increase significantly. The integration of characteristic feed-in profiles of 

renewable energies and more time slots representing a calendar year can be done with 

accessible time for calibrating and calculating the model. Future research should 

therefore integrate a high spatial and temporal resolution making more realistic 

modelling of future energy systems possible.  
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