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Abstract In this paper, the performance of the existing energy system model
PERSEUS-NET is improved in terms of computing time. Therefore, the possibil-
ity of switching from a perfect foresight to a myopic approach has been implemented.
PERSEUS-NET is a linear optimization model generating scenarios of the future
German electricity generation system until 2030, whilst considering exogenous
regional characteristics such as electricity demand and existing power plants as well
as electricity transmission network restrictions. Up to now, the model has been based
on a perfect foresight approach, optimizing all variables over the whole time frame
in a single run, thus determining the global optimum. However, this approach results
in long computing times due to the high complexity of the problem. The new myopic
approach splits the optimization into multiple, individually smaller, optimization prob-
lems each representing a 5 year period. The change within the generation system in
each period is determined by optimizing the subproblem, whilst taking into account
only the restrictions of that particular period. It was found that the optimization over
the whole time frame with the myopic approach takes less than one tenth of the com-
puting time of the perfect foresight approach. Therefore, we analyse in this paper
the advantages and draw-backs of a change in the foresight as a way of reducing the
complexity of energy system models. For PERSEUS-NET it is found that the myopic
approach with stable input parameters is as suitable as the perfect foresight approach
to generate consistent scenarios, with the advantage of significantly less computing
time.
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List of symbols

Indices

DEMPROC Demand processes
ec Energy carriers and materials (ec ∈ EC)

ECseas, ECnon−seas Seasonal and non-seasonal energy carriers
elec Electricity as energy carrier
exp Sinks of the graph structure (exp ∈ EXP)

GENPROC Generation processes
Imp Sources of the graph structure (imp ∈ IMP)

kyo CO2 emission allowances (kyp ∈ KYO)

proc Processes (proc ∈ PROC)

prod Producers (prod ∈ PROD)

seas Time slots (seas ∈ SEAS)

t Year, period (t ∈ T )

unit Units (unit ∈ UNIT)

Parameters

Avaiunit,t Availability factor for the generation unit unit in period t
αt Discount factor
λproc,ec Share of energy carrier ec related to total input/output of the

process proc
ηprod,prod′

,ec,t Flow efficiency of energy carrier ec between producers prod and
prod’

ηproc,t Efficiency of process proc in period t
CapResunit,t Installed capacity of unit unit at the beginning of period t
Cfixunit,t Fixed annual operation costs of the generation unit unit in period

t
Cfuelimp,prod′,ec Fuel costs for the delivery of the energy carrier ec to producer

prod’ in period t
Cinvunit,t Specific investment for commissioning the generation unit unit

in period t
Ckyokyo,t Costs for the acquisition of CO2 allowances from the contingent

kyo in period t
Cloadunit,t Load change costs for the generation unit unit in period t
Cvarproc,t Variable operating costs of the process proc in period t
Dt,seas Demand for electricity in time slice seas in period t
hseas Number of hours in season seas

Variables

Capunit,t Installed capacity of the generation unit unit in period t
Flimp,prod′,ec,t Level of ec-flow from the source of the graph structure imp to

producer prod’ per year
Flprod,prod′,ec,t Level of ec-flow from producer prod’ to producer prod per year



Flprod,exp,ec,t Level of ec-flow from producer prod to the sink of the
graph structure exp per year

FSprod,prod′,ec,t,seas Level of ec-flow from producer prod’ to producer prod
per time slot

FSprod,exp,ec,t,seas Level of ec-flow from producer prod to the sink of the
graph structure exp per year

KyoCertkyo,t Procurement of CO2 allowances kyo in period t
LVchangeunit,seas−1,seas,t Load change of generation unit unit between time slices

seas-1 and seas in t
NewCapunit,t Newly installed capacity of generation unit unit in a

period t
PLproc,t Activity level of process proc per year in period t
PSproc,t,seas Activity level of process proc in time slot seas in

period t

1 Introduction

Energy system modelling is a common approach for analysing the potential develop-
ment of the generation system as a reaction to given circumstances, such as different
policies and changes in primary resource prices. The short-sightedness of policy mak-
ers and the volatility of fuel prices make long-term forecasts increasingly difficult.
Nevertheless, in the energy sector with capital-intensive investments and long-lasting
assets, the success of investments depends strongly on the underlying scenarios of the
considered time horizon. Therefore, energy system models are essential to generate
a basis for decisions. Their results should be, however, understood not as forecasts
but as what-if analyses, quantifying the effects of the corresponding assumptions like
policy measures.

One means of performing such what-if analyses are optimizing bottom-up energy
system models. In such models the energy demand, for example for fuel, electricity
and/or heat has to be satisfied by a given market and/or given technology options, while
for instance the costs to do so are minimized. Because of the high complexity of the
energy system the corresponding models are extensive and include a large number of
variables, parameters, restrictions and assumptions. The more precise the mapping of
the reality is represented, the more complex the underlying equations are composed and
the more data is to be processed and the higher the resulting computing time becomes.
In order to have a feasible computing time, detailed optimizing energy system models
tend to be modelled as linear problems, avoiding mixed integer or nonlinear problems
that have a comparably higher computing time. Thus restrictions are linearized and
as models reach a certain size the time resolution has to be decreased. This enables
the user to achieve reliable results on common computers in reasonable computing
times and to avoid high performance computer access. In short, a trade-off between
exactness and computing time has to be made.

Energy system models are broadly applied in energy economics to assist in making
investment decisions and/or the dispatching of power plants based on assumptions of
the future energy system [1–4]. In the years to come, the complexity of the energy



system will increase due to a raising share of renewable resources and the decentralisa-
tion of the electricity provision [5]. A growing importance of renewable feed-in leads
to the need for a high time resolution in energy system models as the feed-in can change
quickly, challenging the energy system to a quick and sometimes short-term reaction.
At the same time, the growing decentralisation requires a high regional resolution to
depict energy flows correctly. This is especially true for the German electricity system,
which is expected to have more than 80 % electricity by renewable resources by 2050
[6]. Hence, the electricity generation is less controllable and imposing the pressure on
the underlying grid and electricity demand. Therefore, energy system models should
consider regional effects (i.e. the grids) and improve the temporal resolution in order
to recognize the fluctuating wind supply. This fosters the complexity of these models
significantly.

In order to cope with the complexity of modern energy system models and meet the
challenges in terms of keeping the computing time feasible we could either use high
performance computers or optimise other model specific characteristics (e.g. algo-
rithms, solvers). As there have recently already been several versions of international
known energy system models that changed the considered time-horizon from perfect
foresight to a myopic sight [7–9] we concentrate in this paper on analysing the advan-
tages and draw-backs of this change as a way of reducing the complexity of energy
system models. We enhance the performance of the energy system model PERSEUS-
NET through replacing the usually applied perfect foresight approach by a myopic (or
time step) approach. While the perfect foresight approach finds the intertemporal opti-
mum over the whole time frame, the myopic approach returns the optimum for each
of the considered periods without setting them in the context with the other periods.
Future developments are neglected. This could lead—as in the case of PERSEUS-
NET—to a resulting time saving of several hours or days and, hence, keep the model
development more flexible.

In order to analyse the advantages and drawbacks of optimizing energy system
models using myopic approaches instead of perfect foresight approaches, the paper
is structured as follows. In the next section the theoretical background and a short
review of other energy system models with a myopic approach is given before in
Sect. 3 the energy system model PERSEUS-NET is introduced which serves as the
reference model for the following analysis. At first the features of PERSEUS-NET are
explained before in Sect. 3.2 the computational realization of the implementation of
the new approach is illustrated. Section 4 introduces two exemplary scenarios, which
are used to determine the differences in the results and computing time of the myopic
and the perfect foresight approach. In Sect. 5 the assets and drawbacks of the two
approaches are discussed before in Sect. 6 the outcomes of this study are summarized
and an outlook on future fields of research is given.

2 Scientific context

The terms myopic and perfect foresight refer to the way in which expectations of
economic actors are represented in the model. In a perfect foresight model, the eco-
nomic actors know exactly how energy demand and energy carrier prices will develop



into the future. Thus the solution represents an optimal allocation of resource usage
over the whole timeframe, i.e. the global optimum. In contrast, in the myopic model,
the economic actors base their decisions only on the given price and demand scenar-
ios in the period of the decision. Thus decisions are made as if energy carrier prices
and electricity demand would remain unchanged after the current period. The conse-
quence is, firstly, that the model’s solution based on perfect foresight will have lower
total costs, as it can anticipate energy carrier price developments, for example, and
make investments in new generation capacity accordingly. Another consequence of the
approach is that the optimization problem of the perfect foresight approach is split into
several, individually smaller optimization problems: one for each calculated period.
These sub-problems can be solved in fractions of the time it takes to solve the original
problem. Especially during the calibration or expansion of a model this facilitates the
work for the model developer, since in this case many dozen model runs have to be
executed. In the myopic model often only one period has to be calculated in order to
verify a new parameter setting or the function of a new equation [10].

Traditionally energy system optimization models tend to optimize intertemporal
based on perfect foresight as for example the well-known MARKAL [11] or the
MESSAGE [12] model. However, more recently existing energy system models have
been extended with myopic or so called time-step approaches as for example the SAGE
[7] model which has been developed out of the MARKAL model. According to the
EIA [7] the limited foresight was integrated in order to take the evolutionary nature of
the energy and technology markets into account. Also as stated in [8] there has been a
myopic version of the MESSAGE model developed in order to asses “the consequences
of short-term decisions in the context of achieving long-term objectives”. Another
example is the development of a myopic model to integrate a more realistic character
of projection into the energy system model IKARUS by Martinsen et al. [3,9]. Their
conclusion is that consistent and plausible scenarios can be produced and analysed
with the myopic approach. Comparing energy system modelling of perfect foresight
and myopic foresight, Krey [10] came to the same conclusion. The perfect foresight
model is especially apt to determine an economically efficient solution for a transition
of the energy system, whilst considering technical and environmental restrictions.
Nevertheless, it may not fully capture the decision framework relevant for real life
decision makers. In reality, future costs and prices are subject to uncertainties that
increase with the length of the considered time-frame [13].

As Babiker et al. [14] shows, the level of foresight influences total costs as well
as investment decisions. A myopic approach may allow the model to deliver more
realistic and contemporary results. Some authors argue, however, that with a myopic
approach the model constructor himself has a better understanding of the future than
the modelled decision maker. The latter has no information of the future at all, which
may on the one hand lead to a time-delay in adjusting to changes and irreversible
investments [15,16]. On the other hand, this makes a myopic approach more suitable
than the perfect foresight approach to examine the consequences of unpredictable
events, as for example the developments of CO2 allowance prices. The effect of a
sudden rise in prices is softened when applying a perfect foresight approach since the
optimization model knows about the upcoming price shock and can adapt the invest-
ment strategy accordingly, while with a myopic approach, the system does not know



about future occurrences in the next period since its optimization focus covers only
the current period. Thus it does not adapt to changes in advance. Keppo et al. [17]
examine the influences of limited foresight on energy transitions based on the MES-
SAGE model and also find that considering only the current needs leads to postponing
investments. According to Krey [10] those so called “lost opportunities” occur when
the measurements that can be taken are time depended and have an effect or life time
over decades. If there is for example the need for new generation capacities now and
carbon intensive capacities are build, in 5 years it will be too late to change them into
low carbon capacities even if new emission laws or costs come up. The opportunity to
lower the carbon emissions of the generation system within the renovation cycle will
already be lost. Krey [10] also states that the results of an optimization with perfect
foresight and an optimization based on myopic foresight are very similar as long as
the input parameters of the scenarios change continuously over the considered time
frame. While it is possible to find the absolute optimum over the time frame with
perfect foresight, price-shocks are better examined with a myopic approach in regard
to real-life behaviour.

Using once the myopic and once the perfect foresight approach with an energy
system model the reaction to two extreme horizons can be analysed. In the first case
every period is optimized individually knowing nothing about the future while in the
other extreme everything is known and an intertemporal optimum is found. Obviously,
there are possible approaches in between as for example granting the model knowledge
about at least one future period that is taken into account besides the current period
(rolling horizon approach [18]). Those strategies of limited foresight might combine
the advantages of both approaches and might lead to the most realistic prediction of
the system reactions to future events. Our main target is to find a measure to lower
the computing time of the energy system model PERSEUS-NET significantly without
compromising the quality of our results. Therefore, we compare here the two extreme
approaches.

3 Model description

3.1 PERSEUS-NET

PERSEUS-NET is a bottom-up linear optimizing energy system model including
a nodal pricing based approach. It is part of the PERSEUS (program package for
emission reduction strategies in energy use and supply) model family of technology-
based energy and material flow optimization models that assumes perfect competition
and complete information. The aim of PERSEUS-NET [19] is to minimize costs of
power supply until 2030 while satisfying the exogenously given electricity demand
and considering the restrictions by the underlying electricity grid. PERSEUS-NET
is structured as a graph in which so called producers (P RO D) form the nodes and
flows form the edges in between. While the nodes and flows form the structural level
of the model there is also a more aggregated level (aggregating producers and flows
to regions and sectors) and a detailed level (representing reference generation units
and processes—ct. Fig. 1). Within that hierarchic structure each of the producers
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Fig. 1 Hierarchy of the model elements in PERSEUS-NET [19]

belongs to a sector which corresponds to the part of the energy system assigned to
a specific grid node of the transmission network. Sectors themselves belong to so
called regions which represent countries. Generation units (UNIT) allocated close
to or at a grid node are assigned to the corresponding producer of that grid node.
Each unit has at least one operation mode as a process (PROC). A generation unit
can for example have one generation process (GENPROC) that converts coal to elec-
tricity and one other that converts coal to electricity and heat. Besides those genera-
tion processes there are also demand processes (DEMPROC) indirectly assigned to a
producer.

The value of the objective function is the sum of all system relevant expendi-
tures discounted to the base year (αt discount factor of year t) as shown in Eq. (1).
The first summand comprises all fuel expenditures, the costs (C f uelimp,prod ′

,ec) to
import (imp) an energy carrier (ec) into the system to a specific producer (prod)

are multiplied with the corresponding energy carrier flow (F Limp,prod ′
,ec,t ). The

second summand comprises the variable costs of energy conversion (Cvarproc,t )

and industrial production (P L proc,t ) for each conversion process (proc). The third
summand reflects all specific expenditures (Cinvunit,t ) for the installation of new
capacity (NewCapunit,t ), fixed costs (C f i xunit,t ) of all capacity (Capunit,t ) and
costs (Cloadunit,t ) for load changes (LV changeunit,seas−1,seas,t ) from one times-
lot (seas) to the next for coal, lignite and uranium units. For new units the annu-
ity of the investment is used, thus taking into account their economic lifetime.
The fourth summand represent the costs (Ckyokyo,t ) for CO2 emission allowances
(K yoCertkyo,t ) [19].



min
∑

t∈T
αt ∗

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑
imp∈I M P

∑
ec∈EC

∑
prod ′ ∈P RO D′

(
F Limp,prod ′

,ec,t∗C f uelimp,prod ′
,ec

)

+∑
proc∈PROC

(
P L proc,t∗Cvarproc,t

)

+∑
unit∈UNIT

⎛

⎝

(
Capunit,t∗C f i xunit,t

)

+ (
NewCapunit,t ∗ Cinvunit,t

)

+∑
seas∈SE AS

(
LV changeunit,seas−1,seas,t

) ∗ Cloadunit,t

⎞

⎠

+∑
kyo∈K Y O K yoCertkyo,t ∗ Ckyokyo,t

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Further technical and economical characteristics are considered through 24 constraints
concerning energy and material flow balances, matching supply and demand spatially
and temporally as well as generating capacity restrictions, e.g. lifetimes of generat-
ing stations and timely availability. The most important once are represented in the
following, for more details and information on the other constraints see [19].

With a time horizon of 2030 and a base year of 2007 in PERSEUS-NET at least
every 5 year is optimised (all other years can be interpolated). A year is represented
via eight days of a type consisting of weekend and weekdays for each season. These
days of a type have between three and seven timeslots each. The 46 typified times-
lots represent in between 1 and 22 h of that 8 days. The first periods (2007 and
2010) serve the model constructors for calibration and checking of the model. As the
energy demand is the driving force of the model, Eq. (2) represents the correspond-
ing restriction, which states, that electricity demand (Dt,seas) equals the electricity
flow (F L prod,exp,elec,t,seas) exported (exp) over the considered system boundaries
for each producer in every timeslot and every year.

F L prod,exp,elec,t,seas ≥ Dt,seas

∀prod ∈ P RO D; ∀exp ∈ E X P; ∀t ∈ T ; ∀seas ∈ SE AS (2)

Seasonal energy carriers (ECseas) such as electricity or heat are balanced via Eq.
(3) Seasonal flows (F Sprod,prod,ec,t,seas) and seasonal process levels (P Sproc,seas,t )

are balanced for every producer and each of the 46 time slots (SE AS). The
sum of the inflows of an energy carrier to a producer from another producer
(F Sprod ′

,prod,ec,t,seas) and/or the generation of that energy carrier (P Sproc,t,seas∗
λproc,ec) within each time slot equals the outflows (F Sprod,exp,ec,t,seas,

F Sprod,prod ′
,ec,t,seas) and use of it (P Sproc,t,seas ∗ λproc,ec) from this producer con-

sidering the efficiency of the flows and the use process (ηprod,exp,ec,t , ηprod,prod ′
,ec,t ,

ηprod,ec).

∑
prod ′ ∈P RO D

F Sprod ′
,prod,ec,t,seas +

∑
proc∈G E N P ROC

P Sproc,t,seas ∗ λproc,ec

=
∑

exp∈E X P

F Sprod,exp,ec,t,seas

ηprod,exp,ec,t
+

∑
prod ′ ∈P RO D

F Sprod,prod ′
,ec,t,seas

ηprod,prod ′
,ec,t

+
∑

proc∈DE M P ROC
P Sproc,t,seas ∗ λproc,ec

ηprod,ec

∀t ∈ T ; ∀seas ∈ SE AS; ∀prod ∈ P RO D; ∀ec ∈ ECseas (3)



Equation (4) is responsible for the energy and material flow balance of non-seasonal
energy carriers (ECnon−seas) such as coal or gas. It ensures that the yearly flows
(F L prod,prod ′

,ec,t ) and process levels (P L proc,t ) with non-seasonal energy carriers
are balanced in each year the same way as the seasonal energy carriers in each time
slot. Different is only that non-seasonal energy carriers can be “imported” from out
of the system boundaries (F Limp,prod ′

,ec,t ).

∑
imp∈I M P

F Limp,prod ′
,ec,t +

∑
prod ′ ∈P RO D

F L prod ′
,prod,ec,t

+
∑

proc∈G E N P ROC
P L proc,t ∗ λproc,ec

=
∑

exp∈E X P

F L prod,exp,ec,t

ηprod,exp,ec,t
+

∑
prod ′ ∈P RO D

F L prod,prod ′
,ec,t

ηprod,prod ′
,ec,t

+
∑

proc∈DE M P ROC
P L proc,t ∗ λproc,ec

ηprod,ec

∀t ∈ T ; ∀prod ∈ P RO D; ∀ec ∈ ECnon−seas (4)

Two further equations stating that the sum over the time slots of the seasonal
process/flow levels has to be the yearly process/flow level of that process/flow com-
plement the balancing equations.

In order to model the generation processes according to their technological charac-
teristics there are several constrains implemented. Equation (5) for example guaran-
tees that all processes of a unit are in each timeslot and year only used (P Sproc,seas,t )

within total unit capacity (Capunit,t ), considering unit availability (Avaiunit,t ) and
the length of the time slot (hseas). Besides, there are equations referring to the mini-
mum the maximum full load hours of a unit, as well as to the costs for load changing.
Furthermore, there are specific equations included for the use of pump storage systems
and combined heating and generation units.

Capunit,t ∗ Avaiunit,t ∗ hseas ≥
∑

proc∈P ROCunit
P Sproc,t,seas

∀t ∈ T ; ∀seas ∈ SE AS; ∀unit ∈ UNIT (5)

Equation (6) refers to the capacity expansions. The installed capacity in each period
equals the already existing capacity (CapResunit,t ) in that period plus the newly
build capacity. Capacity expansions are limited by exogenously given values, which
for existing units mirror their actual installation. Generation units are automatically
decommissioned due to their age 40 years after being commissioned.

Capunit,t = CapResunit,t + NewCapunit,t

∀t ∈ T ; ∀unit ∈ UNIT (6)

These balancing and technical restrictions are complemented by equations regarding
the transmission grid [20], which is represented in the model by 560 transmission



lines that connect all power stations and grid nodes. Each neighbouring country is
depict via one grid node through which the electricity exchange to and from Germany
can be set. Network expansion projects are taken into account considering actual
delays. Therefore the network expansions differ in comparison to EnLAG [21]. A DC
(direct current) load flow approach is used to represent thermal limitations of power
lines’ transmission capacity. Nodal prices serve as price signals depending on both the
location and time of demand. If there is not sufficient transmission capacity between
certain grid nodes, there might be a surplus of generated electricity on one side of the
bottleneck and a shortage on the other side, resulting in the use of more expensive
power plants in the county with the shortage and higher nodal prices than in the county
with the surplus.

To give a correct representation of physical location and resulting power flows, the
area of Germany is subdivided into 440 administrative districts, which all have a spe-
cific load and are connected to the transmission network via grid nodes. The demand is
calculated individually for each district based on the estimated development of gross
domestic product and population. In order to satisfy the exogenously given demand
in each district, the existing local generation system can be used or electricity can be
imported from neighbouring grid nodes. To meet additional electricity demand in the
system or to substitute old power plants there is the possibility to install new lignite,
coal or gas power plants. Each district has a specific generation system of decentral-
ized generating units. Larger power plants (>100 MW) are directly connected to the
transmission network, and for each district the development of renewable energy gen-
eration is exogenously fixed. The overall renewable energy development in Germany
is in accordance with the German pilot study [22] and is distributed to the administra-
tive districts based on regional potentials [23]. The installation of renewable energy
generators is exogenously fixed, because time and place of the generating units is in
general not determined by economics alone. Renewables are modelled as base-load
capacities, partially neglecting their volatile character. Due to this simplification and
the rough time structure, which makes it impossible to model the advantages of quick-
response generating units, another restriction is implemented to assure that 10 % of
the unit capacity has to consist of peak load capacities such as pump storage systems
or gas turbines.

In summary PERSEUS-NET consists of about 3 million equations and 3.4 million
variables and allows the calculation of the future generation system in Germany based
on different scenarios in which energy carrier prices, CO2 prices and imports are dif-
ferently defined (cf. [19,23]). However, even so that it is a linear optimization model
with only 46 timeslots representing a year the computing time of the model is still as
long as a few days [19]. Furthermore, the growing feed-in of volatile renewable elec-
tricity leads to the need for a more detailed time structure and/or a better representation
of the electricity grid [20], which would drastically increase computing time.

3.2 Computational realization of the myopic feature

Implementing the myopic feature in PERSEUS-NET means that the generation system
and its capacity utilization are no longer optimized at once for the whole time-frame.
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Instead, newly build capacities and the capacity utilization are calculated for each
period individually considering the resulting generation system of the period before
and the current needs of the calculated period. Figure 2 illustrates the differences.

The code of PERSEUS-NET is written in GAMS and solved with the CPLEX
solver. The main challenge about switching PERSEUS-NET from perfect to myopic
foresight is to automatically read the output of one period in terms of the generating
system as the input for the next period. Up to now the input data was stored in a
Microsoft® Access database which has been read in GAMS through include files,
while the output was stored, via a GDX interface, in Microsoft® Excel. To facilitate
the handover from one period to another, the database has been switched to Excel
with a GDX interface between GAMS and Excel to read and write data. The program
is started by opening a batch file, which first calls a GAMS program that creates a
GDX file out of the database where all the scenario data has been stored, then the first
part of the PERSEUS code is opened and the optimization of the first period begins.
After the optimization, the resulting generation system for that period is written to an
Excel sheet. Additionally all results are given to the second part of PERSEUS that
creates another GDX file. Subsequent periods are sequentially started with the batch
file, reading in the results from the period before, which have been stored in the myopic
(time-step) database. After the last period, the batch file calls up another GAMS code
that merges the GDX files of all the calculated periods to one single result file and
writes it to Excel. Figure 3 illustrations the sequence of the programs/files that are
started/used by the batch file.

Compared to the necessary approach for perfect foresight where the batch file
only calls the GDX-Creator once, and the two parts of PERSEUS (see Fig. 4), the
myopic optimization seems more sophisticated. However, the calculation time with a
myopic approach is shorter than with a perfect foresight approach. This is because the
solution space of linear optimization problems grows exponentially with the number of
variables [24]. In the worst case that means that the computing time of the problem also
grows exponentially with the number of variables. In PERSEUS-NET the calculation
of seven periods at once has about seven times as many variables (7 times n) as the
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calculation of one single period (n variables). Hence, instead of a computing time that
is in the worst case exponentially proportional to seven times the number of variables
of one period (7 times n) the computing time of each of the seven periods is only
exponentially proportional to n variables.

4 Case study based on the German energy system

4.1 Scenario definition

In order to assess the deviations in results both modelling approaches are applied to two
scenarios. A first scenario, the reference scenario, is used to analyse the consistency
of the results when input factors such as resource prices have no major jumps in
their development. Energy carrier price developments for Germany are based on the
world energy outlook 2008. The European carbon prices are assumed to increase from
8 e/tCO2 in 2007 to 45 e/tCO2 in 2030 [1]. The second scenario, the CO2 shock
scenario, is analysed in order to assess the reaction of both approaches to sudden
changes. Input parameters are identical to the ones described in the reference scenario
except for the development of CO2 prices. The price shock is modelled by raising
the prices in 2030 to double the prices in the reference scenario. Figure 5 shows the
development of input factors.
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Fig. 5 Energy carrier and CO2 price development for Germany [1,25]



The starting generation system for both scenarios is originally based on [26] and
has been constantly updated with information among others based on experts, web
sites of operators and [27]. In total over 260 large units (>100 MW) are modelled
at specific grid nodes and about 1,600 small units are geographically combined and
assigned to administrative districts (cf. [19]). The development of the renewables
is exogenously given and based on [22], in total the installed renewable generating
capacity increases from about 60 GW in 2010 up to 90 GW in 2030. The nuclear fade
out is considered as completed until 2022 as stated in the current German legislation.
Electricity demand is slightly decreasing until 2030 compared to today, the numbers
and geographical distribution are taken from [19]. Further information about input
data such as the inter-regional power exchange, the transmission grid or the techno-
economic characteristics of the investment options can also be found in [19].

4.2 Results

Applying the myopic approach to the PERSEUS-NET model has a significant effect
on the calculation time compared to the perfect foresight approach. The calculations
show that it is possible to solve a model that took 26 h in perfect foresight mode within
2.5 h in myopic foresight mode. This advantage might however cause some changes
in the results: The global optimum is not guaranteed anymore and the difference might
be substantial—depending mainly on the assumed price development. The following
description of scenario results will focus on the developments in the years 2025 and
2030, as most differences are to be found there.

4.2.1 Reference scenario

In the following, the results of the limited foresight model and the perfect foresight
model under reference conditions are compared. Regarding capacity development, the
results show moderate differences between the two modelling approaches. The change
in newly built capacities can be seen in Fig. 6. These minor changes have their origin
in the moderate rises in energy carrier prices. The differences between the two models
regarding newly installed capacities are about 6–8 % for gas and about 3 % for lignite
generation capacities. However, taking into account the already existing power plants,
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the differences between the myopic and the perfect foresight approach only result in
a deviation of 1.3 % in installed capacities of lignite plants and 0.4 % in installed
gas-fired capacity.

Regarding electricity generation, the results are also compared only for the energy
carriers coal, gas and lignite as the levels for all other energy carriers are equal.
In Fig. 7, total electricity generation per energy carrier is depicted. In 2025, the
differences are rather small at only about 1 %. However, in 2030 slightly greater
deviations can be witnessed. Generation from coal is down by 1.5 % in the myopic
model while generation from lignite is up by 1.4 %. These deviations are due to
the development in energy carrier prices and CO2price developments which the
perfect-foresight based model can anticipate and the myopic model cannot. Hence,
the myopic model invests in lignite units that have higher installation costs than coal
units, thus neglecting that lignite power generation is more CO2 emission intensive
than coal and is therefore more affected by the (slightly) increasing CO2 prices. The
opposite is true for the development of coal and gas generation capacity investment
decisions.

As can be seen in Fig. 8, the slightly higher generation from lignite, instead of coal,
results in slightly lower average marginal costs in the case of the myopic approach.
However, the average yearly marginal costs are very similar in both models and rise
from 38 e/MWh in 2007 to about 70 e/MWh in 2030. This strong increase is mainly
enhanced by the nuclear fade-out completed in 2025 and the increase in energy carrier
prices. The lower marginal costs of the myopic approach are due to the fact that invest-
ments are not reflected in marginal costs. Thus, the slightly higher lignite generation
capacity in the myopic model leads to slightly lower marginal costs. For the same



reason the CO2 emissions also differ slightly: while the myopic model calculates up
to 245 Mt CO2 in 2025 and 205 Mt CO2 in 2030 the perfect foresight approach result
to emissions of 245 Mt CO2 in 2025 and 204 Mt CO2in 2030.

Due to the similar results regarding location and capacity of new generation invest-
ments, there are also almost no differences to be seen in transmission bottlenecks and
regional marginal costs.

4.2.2 CO2 shock scenario

To further analyse possible differences between the modelling approaches, a second
scenario is calculated, integrating a sudden price shock. Regarding capacity devel-
opment, there is a significantly different development to be seen in 2025. Since
the perfect foresight approach is already “informed” about the CO2 price jump in
2030, almost no more lignite plants are built because of their high specific CO2
emissions. Figure 9 shows the newly installed capacity in the years 2025 and 2030
for both approaches. The investments in coal based generation capacity in 2030
are to a large extent CCS enhanced technologies. In the perfect foresight model,
13.5 GW are CCS coal technology and in the myopic model 9.3 GW are CCS coal
capacities.

Due to the different mixes of installed power plants, in 2025 with the perfect fore-
sight approach 34 TWh additional electricity is generated from coal and 5 TWh more
gas which are generated with lignite instead with myopic foresight (Fig. 10). In 2030
this changes to 32 TWh generation from coal and 2 TWh from gas that are in the
myopic approach subsidized by lignite generation. CO2 emissions develop accord-
ingly, resulting in 21 % higher emissions of the myopic approach in 2030, the period
in which prices have risen (Fig. 11). While perfect foresight has in 2030 emissions
of 126 Mt CO2, which is only about 60 % of the reference value, myopic emissions
result with 152 Mt to about 75 % of the former value.

Comparing the two models, the myopic model invests in 2025 too heavily in lignite
power generation, missing out on the opportunity to invest in the not as carbon intensive
coal generation instead. This leads to a high share of lignite based power generation
capacity in the generation system in 2030. The perfect foresight model on the other
hand invests into a more balanced generation system leading to distinctly lower carbon
emissions and total costs of energy supply in 2030.
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The different generation capacities also result in different average marginal prices
in 2025. As to be seen in Fig. 12 with perfect foresight the average marginal price is
at 83 e/MWh, while it is only 69 e/MWh in the myopic approach.

5 Discussion

Concluding from the results presented in the last chapter, it can be found that the
advantages and draw-backs of the two analysed approaches depend on the considered
scenario.

On the one hand there is the case that the input parameters are steady. In this
case the results are similar. Hence both approaches are equally adequate for scenario
analysis with continuously changing parameters. However, the myopic approach has
the substantially shorter computing time.



On the other hand, a sudden jump of exogenous parameters in the scenario assump-
tions leads to significantly different results of the two approaches. This could for
example happen based on the occurrence of a new technology or the CO2 price devel-
opment. With the perfect foresight approach the global optimum is calculated, showing
the ideal reaction of the system to sudden events, partially even before its occurrence.
Therefore, the results of the perfect foresight approach can be considered as an upper
limit to the performance of a system in a certain scenario. Though, if the intention of
the scenario is to analyse a more realistic reaction of the system to unforeseen sud-
den events this can better be done with the myopic approach. The myopic approach
determines for each period the optimum for the current conditions without anticipat-
ing any changes in future periods. It has to be kept in mind that in reality even this
instantaneous reaction to sudden price changes would need major advance planning
because of the construction time that is not explicitly modelled. If it is known that there
are structural changes to come, as for example a rise in CO2 prices due to a known
cut in the cap, the results of the myopic approach would be suboptimal compared to
perfect foresight as they would not mirror that knowledge. The results include costs
of a delayed reaction to the known events. Furthermore, lost opportunities because
of the total lack of knowledge of future events can be identified through a compari-
son of the myopic results to the global optimum. Accordingly, both approaches are
especially suited to different types of problems thus the two versions can be seen as
complimentary.

Nevertheless, using a myopic approach, it has to be kept in mind that the character-
istic of the optimization shifts more towards a simulative approach and that the result
can differ to the intertemporal optimum. Furthermore, having perfect information
within the considered period and no information about future periods does not seem
to be more realistic and the model results loose the advantage of being interpretable
as the intertemporal optimum. Then again, the uncertainties increase in the German
energy sector because of the shift towards renewables, making perfect foresight less
probable. As in long term energy system models structural or technological changes
are not precisely predictable in time, the disadvantage of the myopic approach of not
having the global optimum seems to become somewhat less significant for the “qual-
ity” of the forecasts of the model. Hence, a myopic approach is suitable to analyse
how short-term decision making influences the long term energy system development.
It can be used instead of the perfect foresight approach in scenarios with monotonic
developments of prices in order to reduce the required computing time.

6 Conclusion and outlook

Since the complexity of energy systems increases due to rising shares of renewable
and decentralised electricity provision, the complexity of energy system models, rep-
resenting these real world phenomena, increases as well. The resulting computing
time has become a major obstacle in today’s modelling of energy systems. To keep
models feasible, trade-offs between exactness and computing time have to be made.
In this paper the function to switch from a perfect foresight approach to a myopic
approach has been integrated into the energy system model PERSEUS-NET in order



to compare the assets and drawbacks of a myopic modelling approach against the
gains in computing time. It is shown, that in scenarios with a steady development of
parameters the differences between the results are negligible when using the myopic
instead the perfect foresight approach, but with much shorter computing time.

Currently, the complexity of energy models rises due to the increasing volatile
feed-in, especially if stochastic parameters were taken into account, making the trade-
off between exactness and computing time even more crucial. To account for the
evolutionary character of modern energy systems, myopic versions, have been already
developed for traditional energy system models such as MESKAL or MESSAGE.

Through the implementation of the myopic approach in PERSEUS-NET the com-
puting time could be reduced to about a tenth of the computing time with perfect
foresight. It is planned to use the gained flexibility to generate new model versions that
concentrate on specific consequences of an increased share of electricity by renewable
energy resources such as the need for a higher time resolution, storage systems or the
interaction with the gas transmission system, as natural gas is also a grid-bound energy
carrier. Because of the advantage of shorter calculation time, the myopic approach is
suitable for complex energy system models with a high computing time—especially
with a monotonic development of prices. As the future energy system will consist of
an increasing share of renewables and decentralised generation units an increasing
time and geographical resolution is needed. Hereby the complexity and therefore the
computing time increase significantly. The integration of characteristic feed-in pro-
files of renewable energies and more time slots representing a calendar year can be
done with accessible time for calibrating and calculating the model. Future research
should therefore integrate a high spatial and temporal resolution making more realistic
modelling of future energy systems possible.
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