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Introduction

The structure of matter — as found in nature or artificially engineered — is of funda-
mental importance for its physical and chemical properties. For the investigation of the
structure of matter on length scales down to the order of the size of a single atom or typical
interatomic distances in solids and liquids, electromagnetic radiation with photon energies
in the order of some keV (“X-ray radiation”) proofed highly valuable. The wavelength of
such radiation is in the order of Angstroms and, therefore, is able to reveal correlations
down to this length scale. In this manuscript, we focus on the extraction of information
about crystalline structures from their X-ray scattering.

Arrangements which are invariant upon (discrete) translational shifts give rise to the con-
cept of the reciprocal lattice (“Bragg peaks”). Its elements define the admissible momentum
transfers of an incident X-ray photon after interacting with the structure. We point out
that the structure is necessarily infinitely extended in the directions which correspond to
the discrete translational symmetry. Each (ideal, infinitely extended) crystal exhibits such
discrete translational symmetries. As soon as a crystalline structure is truncated to finite
dimensions, but much larger in dimension than the period of the translational shifts, the
momentum transfer is still limited to values close to the elements of the reciprocal lattice
(“size broadening”). The smaller the dimensions of the truncated crystalline structure are,
the larger is the size broadening.

In addition to such size broadening of the signal in reciprocal space, the atoms in the crystal
may be displaced inhomogeneously with respect to their ideal positions which results in
an inhomogeneous strain distribution in the crystalline structure. If the displacement field
fulfills certain conditions, the scattering signal of such structures is still aggregated in the
vicinity of the Bragg peaks but additional broadening takes place (“strain broadening”).

Such inhomogeneous strain distributions may, for example, result from non-zero tempera-
ture gradients in case of a single material or from cooling as well as heating of (at least)
two cohesive materials with different thermal expansion coefficients. Moreover, the strain
distribution is also of high relevance at the interface of two different materials.

If the atomic ordering of one material is crystalline and a second material is connected to
its surface such that the atomic ordering at the surface is preserved along the interface
without the formation of defects, the interface is referred to as epitaxial. Since the second
material typically has different native lattice constants, a non-zero inhomogeneous strain
distribution is induced in both materials in the vicinity of their interface.

Specifically, the aim of this manuscript is the exploration of the capabilities and limitations
to extract valuable information on crystalline nanostructures from their scattered X-ray
intensity distribution in the vicinity of a Bragg peak given the following two scenarios:

• In the first part of this manuscript, we consider the scattering of a large number of
(nano)objects where the interior of each object consists of a sequence of two alternating,
epitaxially linked atomic arrangements (“polytypes”, see Sec. 1.4) with slightly different
lattice constants. The thickness of each polytypic segment of this sequence is obtained
from a stochastic process and, thus, is non-deterministic.
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Introduction

The understanding of the scattering of such systems is the main goal of the first part of
the manuscript, because it is of high importance for the proper interpretation of X-ray
investigations of free-standing, polytypic nanowires (see Sec. 1.4) and such X-ray measure-
ments have been performed recently time-resolved and in-situ in the portable molecular
beam epitaxy (PMBE) growth chamber at ANKA (currently equipped for growing GaInAs
structures). We derive and discuss its capabilities for X-ray investigation in Sec. 2.

During these time-resolved in-situ X-ray measurements, a fixed planar cut in reciprocal
space through the (111)zyc Bragg reflection of zinc blende GaAs has been recorded time-
resolved during the growth (“in-situ”) of GaAs nanowires on Si-111 substrates (see Sec. 4.1).
If the interplanar spacings of the [111]zyc planes in the zinc blende polytype and the
[00.2]wyh2 planes in the wurtzite polytype were equal, the scattering angles of these two
reflections would coincide. By virtue of the small difference of the interplanar spacings
of the polytypes, their scattering angles differ slightly. Thus, the intensity distribution in
the vicinity of the (111)zyc reflection of GaAs contains information on the polytypism in
the nanowires. For illustration, we consider the limiting cases of polytypic nanowires with
either very large or very small segments of the alternating polytypes:

As long as the mean thicknesses of the segments of both polytypes are large, the signals
from individual polytype segments do not overlap in reciprocal space (due to their different
lattice constants and the small size broadening). In consequence, two well-separated peaks
are observed close to the (111)zyc Bragg reflection of GaAs. Nonetheless, the signals from
all segments of the same polytype are centered around the same position in reciprocal space
and, therefore, strongly overlap. If the mean thicknesses of the segments of the polytypes
decrease, the scattering of the individual segments of the different polytypes additionally
starts to overlap. Since the lattice constants of the polytypes differ only slightly, this
overlapping must be considered for yet very thick segments.

The smaller the thicknesses of the segments are, the stronger is the overlap of the scattering
signals of the different polytypes near the (111)zyc reflection. In the limit of segments with
a thickness of one layer of the crystalline arrangement of the respective polytype only –
the shortest possible segments – we obtain a perfect, defect-free super-lattice. Instead of
two peaks as observed for very pure wires (large polytype segments), the scattering signal
contains only a single peak – centered at the mean lattice constants of the two polytypes.

The full intensity distribution near a Bragg peak is determined by a complicated interplay
of (i) the coherence properties of the impinging beam, (ii) the spatial distribution of the
different nanoobjects and (iii) the statistical properties of segments of the both polytypes.
We assume that the properties of the impinging beam were such that (a) a large number of
nanowires has been illuminated simultaneously, (b) the scattered photons from (at least)
one nanowire interfere fully coherent, and (c) the number of illuminated coherence volumes
is much larger than the number of wires per coherence volume.

In Sec. 4.3, we simulate the X-ray signal in the vicinity of a Bragg peak for such beam
conditions. Specifically, we investigate the behavior of the X-ray signal for a variety of
statistical distributions for the thicknesses of the polytypic segments and, thereby reveal
which features of the statistical distributions induce which features of the scattered X-ray
intensity distributions. In particular, we focus on the experimentally measured vicinity
of the (111)zyc Bragg reflection of GaAs. Nonetheless, we also present simulations of the
(333)zyc reflections (see Sec. 4.3.2.5) and discuss the possibilities to access other reflections
than (111)zyc in future experiments (see Sec. 2.2), e.g. the polytype and twin selective
series of reflections (220)zyc, (10.3)wyh2, and (311)zyc on the asymmetric truncation rod.

The interpretation of the currently available experimental data of the (111)zyc Bragg
reflection is further complicated by the fact that parasitic growth (“crystallites”) must be
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considered in addition to the growth of nanowires. For proper evaluation and interpretation
of the experimental data, we thus also discuss (i) additional measurements of the full three
dimensional vicinity of the corresponding Bragg reflection in reciprocal space, which have
been performed in-situ directly after the growth (see Sec. 3.1), and (ii) spatially resolved
post-growth ex-situ measurements with a highly focussed beam (see Sec. 3.2).

From the latter, we do not only obtain valuable information for the separation of the
contributions from the nanowires and the crystallites to the (111)zyc Bragg reflection,
but are also able to extract an estimate for the ratio dWZ/dZB of the thickness dZB of a
GaAs layer in [111]zyc direction in zinc blende versus the thickness dWZ of a GaAs layer
in [00.2]wyh2 direction in wurtzite.

Finally, the (time-resolved) experimental data is interpreted in Sec. 4.4 in the framework
of a Markov model with time-dependent transition probabilities. Thereby, we obtain the
temporal evolution of the phase purities of both polytypes during growth (see Sec. 4.4.1)
and rough estimates for the differences of the nucleation barriers for continuing growth of
the current polytype and for continuing growth with the other polytype and their temporal
evolution (see Sec. 4.4.2).

Considering the perspectives of time-resolved in-situ X-ray-investigations of growth (in-
cluding early growth stages like nucleation of initial droplets as well as the last growth
phase of solidification of the droplet in case of nanowire growth, non-constant temporal
evolution of the external growth conditions [substrate temperature and material fluxes in
case of MBE growth] or the cool-down after growth) and annealing (in vacuum, air, or spe-
cific artificial atmospheres) of nanostructures in general, we are convinced that the results
presented in this work are also useful for planning, performing, evaluating and interpreting
many future experiments.

• In the second part of the manuscript we investigate the extraction of the displace-
ment field and strain distribution inside a nanoobject (“reconstructions”) from its (fully)
coherently scattered intensity distribution in the vicinity of a Bragg peak. In addition
to the intensity distribution in the vicinity of a Bragg peak, we always assume that the
geometrical shape of the nanostructure under investigation is known.

Commonly, linear elasticity theory serves as a model for determination of the displacement
field and strain distribution in the interior of a nanostructure by finite element modeling
— given its geometry, its chemical composition, the constants of elasticity and appropriate
boundary conditions. However, in some cases, the chemical composition profile or ade-
quate constants of elasticity are not known (or linear elasticity theory is not applicable
for other reasons). Nonetheless, it is desirable to extract the displacement field and strain
distribution inside such nanostructures.

For this, we give an introduction to the relevant physical, mathematical and algorithmic
details in Sec. 6. After introduction of a test system for benchmarking our reconstructions
(see Sec. 7.1) and an illustration of the shortcomings (Sec. 7.2) of the currently most widely
used reconstruction algorithm – the HIO+ER-algorithm – we improve this algorithm in
order to increase its range of applicability towards higher strain.

First, we demonstrate the benefits of appropriate randomization of the HIO-part of this
algorithm (see Sec. 7.3). This modification is solely a mathematical modification: no addi-
tional a priori knowledge in comparison to the traditional HIO+ER-algorithm is required.

In contrast, Sec. 7.4 is dedicated to a detailed analysis of mathematical constraints during
the reconstruction procedure which proofed valuable for the extraction of the displace-
ment field from some particular experimental data sets. A closer investigation of these
particular constraints is highly interesting because (i) they are applicable for a large vari-
ety of nanostructures and (ii) the parameters required as input are estimated easily from
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a priori knowledge on the nanostructure. Nonetheless, a thorough investigation of these
constraints — in order to evaluate and benchmark their benefits for a reconstruction —
had not yet been performed.

The outcome of the considerations in Secs. 7.2 and 7.3 is the HIOA
OR

+ERA-algorithm –
an extension of the traditional HIO+ER-algorithm with significantly better reconstruction
capabilities.

The extraction of the displacement field and strain distribution from the output of the
reconstruction process may be hindered by vortex defects. Their detection and elimination
is discussed in Sec. 7.5.

The results in chapter 7 are based on simulated “ideal data” within the model for coher-
ent diffractive imaging as derived in Sec. 6.1. The investigations in chapter 8 look at the
impact of typical experimental artifacts and limitations. Specifically, we demonstrate that
an artificially introduced small damping in low intensity domains in reciprocal space as
regularization during the reconstruction process is beneficial for the quality of its output
(see Sec. 8.1). The influence of Poisson photon noise in the detected intensity distribu-
tion and adequate counter-measures are presented in Sec. 8.2. In the last section of this
chapter – Sec. 8.3 – we consider the effect of inconsistencies along the crystal truncation
rod between experimental and modelled data. Adequate modifications of HIOA

OR
+ERA-

algorithm, which significantly improve its capabilities for providing successful reconstruc-
tions in presence of such inconsistencies, are presented and investigated.

Both parts of the manuscript are ended by a separate conclusion.

Parts of this work have already been published in:

• M. Köhl, A. A. Minkevich, T. Baumbach, Improved success rate and stability for
phase retrieval by including randomized overrelaxation in the hybrid input output
algorithm, Optics Express 20, 17093-17106, 2012

• M. Köhl, P. Schroth, A. A. Minkevich, T. Baumbach, Retrieving the displacement
of strained nanoobjects: the impact of bounds for the scattering magnitude in direct
space, Optics Express 21, 27734-27749, 2013

• M. Köhl, P. Schroth, A. A. Minkevich, J.-W. Hornung, E. Dimakis, C. Somaschini, L.
Geelhaar, T. Aschenbrenner, S. Lazarev, D. Grigoriev, U. Pietsch and T. Baumbach,
Polytypism in GaAs nanowires: Determination of the interplanar spacing of wurtzite
GaAs by X-ray diffraction, Journal of Synchrotron Radiation 22, 67-75, 2015

Figures taken from these manuscripts are labelled by ( c©2012 The Optical Society (OSA),
from [1]), ( c©2013 The Optical Society (OSA), from [2]) or ( c©2014 International Union of
Crystallography (IUCr), from [3]) and are reproduced here in accordance with the copy-
right transfer agreement of the Optical Society of America (OSA) [4, 5] or the International
Union of Crystallography (IUCr) [6] respectively.
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Part I.

Time-resolved in-situ investigation of
the growth of nanowires
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1. Introduction to the growth of
nanowires

We start this manuscript with an overview over the growth process of nanowires. We
summarize important and useful experimental results about the growth as well as those
relevant for modelling and understanding the growth process. First, we provide a broad
overview of the relevant aspects of nanowire growth. Then, we illustrate the complexity
of III–V nanowire growth even for nanowires with only a single crystalline phase: On
the one hand, we show the influence of limited amount of type V atoms in the droplet
which acts as a reservoir for the growth of the crystalline nanowire (Sec. 1.2). On the
other hand, we discuss the the implications from a model by Dubrovskii (Sec. 1.3) which
focusses on the coupled dynamics of radial and axial growth. Finally, we introduce and
discuss polytypism – the occurrence of multiple phases even in a single nanowire – in III-V
nanowires in Sec. 1.4.

1.1. Overview over the dynamics of nanowire growth

Current state-of-the-art research already demonstrated a variety nanowire structures that
are interesting for fundamental research (e.g. on qubits [7], single photon sources [8], Majo-
rana fermions [9]) as well as for applications [10–12]. Such applications include transistors
[13, 14], lasing [15, 16], solar cells [17], thermoelectric materials [18] and sensors [19, 20].
Even the physics of single spins in seminconductor nanowires has already been studied
extensively (see e.g. Ref. [21]).

Depending on the application, the requirements span from single phase pure wires over
superlattice structures to complicated heterostructures [22–26]. Such heterostructures in-
clude core-shell heterostructures as well as axial heterostructures and may require con-
trolled embedding of specific objects like quantum dots. One advantage of free-standing,
thin, vertical nanowires is their ability to relax lateral strain on short distances, which
typically results in a strongly reduced dislocation density as compared to conventional
two-dimensional layer growth in lattice-mismatched heteroepitaxy [27–29]. Consequently,
a profound understanding of nanowire growth, which facilitates comprehensive control of
the growing structures, is required. Many aspects of this growth have already been studied
which we now shortly review.

In Fig. 1.1, we depict the growth process of gallium arsenic (GaAs) nanowires in a molec-
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1. Introduction to the growth of nanowires

modeling the 
growth of GaAs

nanowires 

growth substrate nanowire

temporal evolution of external growth conditions

parasitic growthdroplet

Ga and As fluxsubstrate 
temperature

initial growth/incubation 
(catalyst or catalyst-free)

incorporation

Figure 1.1.: Overview over nanowire growth from a bird’s-eye view.

ular beam epitaxy (MBE) [30, 31] growth chamber from a bird’s eye view:1

The temporal evolution of the external growth conditions is controlled by a suitable growth
chamber. Most importantly, by this growth chamber, the temperature of the substrate
for growth and the impinging fluxes of growth material are controlled. Often, the flux
of Ga is provided before the arsenic flux is turned on. In this case, liquid Ga-droplets
on the surface of the substrate accumulate. Then, the arsenic flux is turned on and
arsenic accumulates in the liquid Gallium droplets [33–37]. Given appropriate conditions,
crystalline GaAs forms layer by layer below the liquid droplet which results in vertical
nanowire growth. The incorporated material of such additional layers is consumed from
the liquid Ga droplet. However, the consumption of the Ga droplet is anticipated by the
impinging fluxes of Ga and As which interact with the substrate, the nanowire side facets
and the droplet directly. Although growth without a liquid droplet has been observed
for various conditions and material systems (see for example [38–44]), we mainly focus
on growth with such a liquid droplet (VLS growth mechanism introduced by Wagner and
Ellis in 1964 for silicon whiskers [45–49] which has been applied to many other material
systems than silicon since that time).

The above described case is referred to as self-catalyzed (or self-induced) growth. Early
results about self-catalyzed nanowires are, for example, presented in Ref. [50] and is
becoming now more and more popular (see e.g. Refs. [41–43, 49, 51–58]).

In contrast, the initial droplets may be formed by some catalyst – instead of Gallium.
Often, gold is employed as such a catalyst (see e.g. Refs. [46, 59–63]). The catalyst
substitutes the “self” in self-catalyzed growth, e.g. Au-catalyzed growth. However, gold
modifies the resulting optical and electronic properties [26, 58, 64, 65], typically in a non-
desired way.

In addition to the growth of nanowires, we also have parasitic growth (any growth beside
the growth of the desired nanowires) for many conditions.

This rough overview barely illustrates the complexity of the dynamics and physics involved
in nanowire growth. Consequently, we present a more detailed and more abstract overview
in Fig. 1.2:

For a profound understanding of nanowire growth, (at least) the four “subsystems” growth
substrate, liquid droplet, the (crystalline) nanowire and parasitic growth as well as their

1Although it is possible to grow GaAs nanowires also with other growth techniques such as MOVPE (see
e.g. [32]), we restrict our discussion to MBE growth.
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1.1. Overview over the dynamics of nanowire growth

growth substrate with/without oxid layer

roughness of surface
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diffusion nanowire

geometry 
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(incorporation from
side facets)
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adsorption and desorption

droplet 
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from droplet)
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(Gibbs-Thomson-effect)
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(crystallites, layer growth, ...)

Figure 1.2.: Overview over the most important aspects of nanowire growth on a more
detailed and more abstract level than in Fig. 1.1.

interaction must be modelled and analyzed: Each of these subsystems has already rich
and complicated dynamics for its own which we now discuss [25, 66]:

• growth substrate: First of all, the substrates can be either cleaned from oxide coverage
or intentionally oxidized for a specific amount of time [67, 68]. The limit of long
oxidation time at room temperature is referred to as native oxide. If such an oxide
layer is present, its thickness and porosity is crucial for nanowire growth. In any case
– with or without an oxide layer – the roughness of the surface highly influences the
diffusion and nucleation dynamics of the Ga and As on top of this surface. Moreover,
the adsorption and desorption of these species from the surround gas phase must be
modelled and taken properly into account.

• droplet : In the initial growth stage, the liquid droplets form on the substrate. These
initial droplets as well as their evolution must be modelled. With and without
catalyst atoms complicated dynamical features have been found: In addition to the
adsorption and desorption from the gas phase, the geometrical aspects [69, 70] (most
importantly the involved crystallographic facets [71]) and the composition [59, 69]
(most importantly the supersaturation [59]) of the droplet must be modelled. The
geometrical aspects mainly influence the geometry of the growing nanowires (radius,
tapering) whereas the composition strongly influences the axial growth rates as well
as the crystallographic properties of the nanowires. For determination of the chemical
potentials of the species in the droplet, the composition as well as the geometry are
relevant, since the Gibbs-Thomson effect relates both quantities [72, 73]. In contrast
to the (solid) nanowire and (solid) substrate subsystem, where only surface diffusion
seems relevant, the liquid droplet additionally allows for bulk diffusion. We would
like to mention that even metastable crystalline phases have been found in the droplet
[74]. As already mentioned before, for some conditions, nanowire growth without a
liquid droplet has been observed. However, these systems are beyond the scope of
this introductory overview.

• nanowire: For the nanowires, we also have to distinguish its bulk and its surface
dynamics: Whereas for the surface, the most relevant aspects are the involved facets
(and their energies), adsorption from and desorption to the gas phase, surface dif-
fusion and, finally, incorporation of GaAs for radial growth of the nanowires, the
crystalline bulk consists of stacked crystalline layers – possibly with all kinds of
defects. In particular, these defects include substitutional and interstitial foreign
atoms, which have strong influence on the final electronic and optical properties,
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1. Introduction to the growth of nanowires

and errors in the stacking sequence with respect to the expected stacking sequence
from the bulk material. For some growth conditions, nucleation in two competing
“ideal” stacking sequences has been observed. This phenomenon is referred to as
polytypism and will be discussed in detail in Sec. 1.4 and will be of major impor-
tance for the first part of this manuscript. Finally, the bulk of the nanowire grows
by axial growth.

• parasitic growth: All growth that does not result in nanowires is attributed to
the parasitic growth. Possible parasitic growth includes growth of continuous two-
dimensional layers or growth of small crystallites [67]. However, two-dimensional
layer growth can typically be avoided (which would change the surface diffusion of
the substrate). For most samples, only the material consumption of the parasitic
growth is relevant for modelling the growth of the nanowires.

An example of a recent, extensive parameter study of nanowire growth, which investigates
the influence of the thickness of the silicon oxide layer, the growth time, the substrate
temperature and the Ga and As fluxes can be found in Ref. [68], whereas the book [66]
written by Dubrovskii – which also includes many recent results – gives an extensive
overview over the theoretical aspects of nanowire growth.

We point out that on this abstract layer, the gas phase in the growth chamber is not
considered a dynamical system, but only an infinite reservoir of (directional) impinging
flux and its“interaction”with the four above subsystem is only modelled by adsorption and
desorption. Moreover, the growth of different nanowires starts to interact above a certain
density and size due to shadowing of the impinging flux and reduction of the effective
material collection area on the substrate due to competing nanowires. This multi-wire
interaction has not been depicted in Fig. 1.2.

In addition to the dynamics in each of the subsystems, these subsystems are highly coupled
and this couplings are essential for the growth of the nanowires.

During the initial growth stage, the growth substrate directly interacts with the initial
droplets. At any later growth stage, no direct interaction between the substrate the
droplets of the nanowires takes place. Instead, the nanowire separates these two sub-
systems. Consequently, diffusion along side-facets of the nanowires links the composition
and volume of the droplet with the properties of the substrate [75, 76]. However, we again
point out, that material on the side facets can also be incorporated directly in the nanowire
which results in radial growth – instead of refilling the droplet reservoir on the tip of the
nanowire.

Moreover, the interaction between the solid topmost layers of the nanowire and the liq-
uid droplet reservoir must be modelled. This interaction is rather complicated: Recent
studies with environmental transmission electron microscopy (ETEM) indicate that the
nucleation does not take place directly at the triple phase line of the system [49, 77, 78]
and this assumption would be an oversimplification. Instead, crystallographic surfaces and
geometric factors must likely be considered.

This complicated interplay of all the above-mentioned factors poses a major challenge
which needs to be resolved in order to gain maximum control during nanowire growth. In
order to gain such understanding, sophisticated experiments with various techniques such
as environmental TEM or in-situ X-ray diffraction have been performed.

It is a main goal of part I of this thesis to investigate the perspectives and limitations
of in-situ X-ray diffraction with the current PMBE growth chamber (see Sec. 2) at the
synchrotron source ANKA for studying polytypism (see Sec. 1.4) in GaAs nanowires. In
Sec. 2.1, a short motivation for this approach by comparison with other experimental
approaches is given.

10



1.2. Fluctuations of the height of nanowires (anti-bunching)

1.2. Fluctuations of the height of nanowires (anti-bunching)

Before we focus on the wurtzite zincblende polytypism in GaAs nanowires in Sec. 1.4, we
present in this section a detailed illustration of the complexity of nanowire growth even if
only a single phase is contained in a nanowire. As an example, we discuss anti-bunching
during growth as, e.g., observed by Glas et al. in Ref. [79]. In this work, Glas et al.
investigated the fluctuations of the number of nucleation events after a particular growth
time. Experimental observation – based on periodic modulation of the growth conditions
[79, 80] – revealed constant fluctuations of the number of grown layers with respect to
growth time. They explained the behavior of their sample by a non-linear self-regulatory
process based on the memory of the droplet at the nanowire tip. In this section, we also
study this self-regulatory mechanism.

First, we give a detailed presentation of the model which is studied afterwards numer-
ically. We assume a nanowire which grows by successive single layer nucleation. The
material which is incorporated in a newly grown layer is taken from a material reservoir
(“droplet”) located at the tip of the nanowire. The rate of nucleation of an additional layer
is proportional to the Boltzmann factor e−βE where β = 1/(kBTS) and E is the energy
barrier for creation of a nucleus to form the next crystalline layer. kB is the Boltzmann
constant and TS is the temperature of the substrate (“growth temperature”). However, the
energy is not constant over time due to an accumulation of type V atoms (As in the case
of GaAs nanowires) in the droplet after the depletion resulting from a nucleation event.
Thus, E is a function of this concentration. The Boltzmann factor only describes the mean
rate, which in turn determines the mean nucleation time µN. The statistical distribution
resulting in this mean rate is not determined. To the best of the author’s knowledge,
this distribution is currently not known. A good review on the dynamics of systems with
intrinsic fluctuations can be found in Ref. [81].

In the framework of this thesis, we illustrate the self-regulatory mechanism for

p (t, µN) ∝ Θ(t)
1

µN
e−t/µN , (1.1)

for nucleation of the next, additional layer on top of nanowire after time t. Here, Θ(t) is
the Heaviside step function and µN is the mean nucleation time. It is a function of the
number of type V atoms NV in the droplet and, therefore, also a function of time. The
normalization of every probability distribution to one fixes the proportionality constant in
Eq. (1.1). For constant µN, this proportionality factor is equal to one.

µN has to fulfill certain limits: Below a minimum number of type V atoms N
(Min)
V , no

additional layer can nucleate. Thus, µN(NV ≤ N (Min)
V ) =∞. On the other hand, for large

NV the mean nucleation approaches its minimum value µN(NV → ∞) = µMin. These
limits hold for the parametrization

µN(NV) = µMin +
1

f(NV)
, (1.2a)

f(NV ≤ N (Min)
V ) = 0+ , f(NV →∞) =∞ , f(NV) > 0 . (1.2b)

For the purpose of illustration of the non-linear self-regulatory mechanism, we employ

f(NV) = α1

(
NV

N
(Min)
V

− 1

)α3

·Θ

(
NV

N
(Min)
V

− 1

)
. (1.3)

as a model. It is based on the relative abundance
NV−N

(Min)
V

N
(Min)
V

(to some power α3), incor-

porates the lower bound N
(Min)
V for nucleation by the Heaviside function and continuously

11



1. Introduction to the growth of nanowires

goes to zero at NV = N
(Min)
V for α3 > 0. The parameter α−1

1 gives the linear slope in Eq.
(1.2a). The parameter α3 is dimensionless and the parameter α1 has dimension s−1 which,
however, we suppress in the subsequent discussion for simplicity.

Finally, we model NV as a function of time. We consider an affine linearly increasing
number of type V atoms with respect to time t which is measured starting from the

previous nucleation event. The offset N
(Offset)
V (t0, n(t0)) of this linear model is determined

by the filling at time t0 which refers to nucleation of the previous layer. n(t0) is the number
of layers grown at time t0. Consequently, we have in total

NV(t) = r · t+N
(Offset)
V (t0, n(t0)) (1.4a)

= r · t+ r · t0 − n(t0) ·N (CPL)
V +N

(Initial)
V . (1.4b)

Here, r is the refill rate of type V atoms, N
(CPL)
V is the cost of type V atoms per nucleated

layer and, finally, N
(Initial)
V the amount of type V atoms in the droplet at the beginning of

growth. We point out that Eq. (1.1) to (1.4b) should be generalized in more sophisticated
models for the nanowire growth, but the simple model is sufficient for illustration.

In total, Eq. (1.1) yields

p (t) =
1

N
f(NV(t)) ·Θ(t)

1 + µMin · f(NV(t))
e
− f(NV(t))·t

1+µMin·f(NV(t)) , (1.5a)

N =

∫ ∞
0

f(NV(t)) ·Θ(t)

1 + µMin · f(NV(t))
e
− f(NV(t))·t

1+µMin·f(NV(t)) dt , (1.5b)

where f(NV) is defined in Eq. (1.3) and NV(t) in Eq. (1.4b). The dependence of p(t) on

µN, α1, α3, r, N
(CPL)
V , N

(Min)
V , and N

(Initial)
V has been suppressed.

It is necessary to carefully distinguish between the mean nucleation time µN in Eq. (1.1)
and the mean nucleation time

µr =

∫ ∞
0

t · p (t, µN(t)) dt (1.6)

of the full time dependent model in Eq. (1.5b).

The generation of random events according to a predefined probability density distribution
is described in appendix A. The example defined by Eq. (9.6) in that section of the
appendix is taken from the model described here.

If at time t = 0, the droplet concentration of the type V atoms is below the minimum

N
(Min)
V which is required for nucleation of a new layer, the probability p in Eq. (1.5b) is

equal to zero until the number of atoms in the droplet exceeds N
(Min)
V due to the refill

rate r. From that point on, nucleation of a new layer is possible. If at time t = 0, NV is

greater than N
(Min)
V , the Heaviside function Θ(t) eliminates nucleation at negative times

t < 0. However, the probability for immediate re-nucleation at t = 0 is greater than zero
in this case.

The self-regulatory mechanism works in the following way: By balancing incoming material
and material incorporated in the nanowire, we expect a mean growth time

tMGT =
N

(CPL)
V

r
(1.7)

and respective mean growth rate t−1
MGT. If several layers grow faster than expected by the

mean layer growth time tMGT as a result of statistical fluctuations, the amount of type

12



1.2. Fluctuations of the height of nanowires (anti-bunching)

V atoms in the droplet is depleted. As a result, the expected time for the nucleation of
the next layer is increased, thus decreasing the fluctuations of the number of layers grown
in a particular time interval. In contrast, if several layers grow slower than expected
by the mean layer growth time tMGT, the amount of type V atoms increases and it is
more likely for the next layer to grow faster than tMGT. Consequently, the fluctuations
around the expectation value for the number of grown layers are also reduced for that case.
Whereas the maximum number of grown layers after a particular time is bound from above
with this self-regulatory mechanism2, this bound does not hold without the self-regulatory
mechanism.

For the numerical simulations, we point out that only the ratio NV

N
(Min)
V

determines f(NV)

(see Eq. (1.3)). Thus, the solution of the model is invariant upon simultaneous rescaling

of NV and N
(Min)
V . Therefore, we interpret the parameters r, N

(CPL)
V and N

(Initial)
V of

the model (1.4b) as multiples of N
(Min)
V . By rescaling and assuming a particular value

for N
(Min)
V , we can interpret the model in terms of “number of atoms of type V”. The

initial filling N
(Initial)
V is irrelevant for the long time limit. Unless stated otherwise, we set

N
(Initial)
V = 0. The parameters µMin, α1, and α3 determine the fluctuations of the number

of grown layers and the equilibrium value of NV in the droplet.

First, we consider the deterministic limit of our model before we proceed to the full statistic
model for the nucleation time of the new layer. In this deterministic limit, no random event
according to the distribution (1.5b) is drawn. Instead, the mean nucleation time µr of the
full time-dependent model in Eq. (1.5b) is taken as time difference to the subsequent
nucleation event.

In Fig. 1.3, the time required for growing a particular number of layers as well as the
nucleation time are depicted as a function of the number of grown layers for various

values of the parameter µMin. The parameters are r = 0.1s−1 and N
(CPL)
V = 0.05 (both

understood as multiples of N
(Min)
V ), whereas α1 and α3 are set equal to one. Thus, the

mean growth time tMGT per layer as defined in Eq. (1.7) is 0.5s.

For values µMin . 0.5s, the mean nucleation time tMGT decreases quickly to the static
limit tMGT = 0.5s after some initial accumulation of type V material in the droplet (see
Figs. 1.3). After this initial phase, the amount of type V material in the droplet converges
to a static limit (see Fig. 1.3(c)).

If the linear increase of the number of grown layers at layer growth times is extrapolated
to zero layers, i.e., neglecting the transient behavior during the early growth phase, the
intersection of this linear approximation with the time axis provides one approach to define
the incubation time of the growth process.

However, once µMin exceeds the critical value3 µMin = tMGT = 0.5s, the type V material
accumulates more and more in the droplet (see Fig. 1.3(c)). For such huge values of µMin,
the type V material can no longer be incorporated sufficiently fast in newly grown layers.
The mean nucleation time remains above the expected static limit tMGT (see Fig. 1.3).
As a consequence, the time that is required to grow a given number of layer increases
(see Fig. 1.3). Physically, limiting the mean of the distribution in Eq. (1.5b) might, for
example, model a dynamic process in the droplet which needs to take place after every
nucleation event prior to the formation of a new nucleus. One example for such a process

2The bound is obtained if all material exceeding N
(Min)
V which has been accumulated by the refilling r

plus the initial material N
(Initial)
V has been incorporated in the nanowire.

3The true critical value for µMin is slightly below the static limit tMGT since the mean value of the
distribution defined in Eq. (1.5b) is always larger than µMin. However, for practical purposes, it is
typically sufficient to approximate the critical value by the static limit tMGT.
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Figure 1.3.: Deterministic limit of the model for reservoir based growth: Instead of random
nucleation times, the mean of the distribution (1.5b) is used as nucleation time
of the next layer. Figures illustrate the transient initial behaviour as well as
the resulting equilibrium state.

would be a diffusion process in the droplet which transports new type V material towards
the nucleated layer on top of which the new nucleus has to form.

Now, we include statistical fluctuations in the growth time of a new layer as described by
the time-dependent model in Eq. (1.5b). Some results are depicted in Fig. 1.4: Unless
stated otherwise, the parameter µMin is zero. In Figs. 1.4(a) and 1.4(b), we again depict
the growth time for a particular number of layers and the filling of the reservoir for various
parameter αi. The deterministic limit – as described in the previous paragraphs – is
depicted as dashed-dotted line. The statistical model is depicted as solid line. First, we
observe, that the time required to grow a given number of layers essentially follows the
deterministic limit. Only small fluctuations on top are present. Variation of α1 only affects
the growth of the early layers. After this, the (mean) slope in Fig. 1.4(a) is identical and
equivalent to the mean nucleation time given by Eq. (1.7) as long as µMin . 0.5s. This
result supports the widely used linear approximation of the nanowire height versus growth
time. Again, we are able to define the incubation time in the same manner as before in
the deterministic limit.

For increasing value of the parameter α1, the static limit is reached faster. On the contrary,
the mean filling of the reservoir decreases with increasing α1 (see Fig. 1.4(b)). Note that
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Figure 1.4.: Statistical model for layer by layer growth from a reservoir of single phase
nanowire. The nucleation time of a newly grown layer is drawn randomly
from the distribution (1.5b).

depending on the parameters, the mean filling of the reservoir offset may be only slightly

above N
(Min)
V – the minimum amount of type V atoms which is required for nucleation of

a new layer.

The parameter α3 influences the reservoir offset in the same way: Increasing α3 reduces the
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1. Introduction to the growth of nanowires

mean reservoir offset after some initial growth stage. Like the parameter α1, the parameter
α3 also influences the duration of the initial growth stage – until the static mean conditions
are reached.

In Fig. 1.4(c), we depict the distributions of the number of grown layers after various
growth times. At first, this distribution is very narrow. Then, its width increases with
increasing growth time during the initial growth stage. After this, however, the shape of
the distribution remains constant, only its center increases linearly. For better illustration
of the evolution of the shape of the layer distribution, the center of all distributions has
been shifted to zero in the lower part of Subfig. 1.4(c). Note, that for independent random
nucleation times for every newly nucleated layer, i.e., without modelling the self-regulatory
mechanism, the width of the nanowire height distribution grows strictly monotonously.

This observation is quantified in Fig. 1.4(d) for the set of parameters αi which is also
depicted in Fig. 1.4(b). Clearly, the width of the layer distribution converges to a static
value after the initial growth stage. The width of the layer distribution decreases with
increasing αi, i = {1, 3}. We want to point out that even if the mean filling of the droplet
with type V material is equal (e.g., (α1, α3) = (0.5, 1.0) and (α1, α3) = (1.0, 0.5) in Fig.
1.4(b)), the width of the resulting nanowire height distribution can vary. This clearly
demonstrates the importance of this self-regulatory process for growing nanowires with
narrow height distribution.

The remaining Figs. 1.4(e) and 1.4(f) are devoted to the behavior of the model for in-
creasing µMin. As soon as the parameter µMin exceeds the mean nucleation time tMGT, no
static limit for the mean reservoir filling (as depicted in Fig. 1.3(c) for the deterministic
limit of the model) exists and the stabilization of the width of the layer distribution breaks
down. Instead, its width increases as a power law with an exponent close to 0.5 (see Fig.
1.4(f)). This clearly demonstrates the complicated dynamics and huge variation of possi-
ble dynamics during the growth of a nanowire – even if only a single phase is present in
the grown wires and most aspects of nanowire growth as given in Fig. 1.2 are strongly
simplified.

However, in case of polytypic nanowires (see Sec. 1.4), competing nuclei for the competing
atomic arrangements need to be taking into account, possibly on different nucleation facets.
As a consequence, the nucleation energy barriers for continuing growth of the current phase
may depend on the current phase, and, moreover, the static limits for both phases as well.
However, transitions from one polytype to the other polytype might prevent reaching
the static limits at all. Therefore, the dynamics during growth of polytypic nanowires
is far more complicated than the single phase model which we discussed in the previous
section. On the contrary, such dynamics may open additional possibilities for controlling
nanowire growth. As a consequence, we study the wurtzite zinc blende polytypism in III-V
nanowires with X-ray radiation in the first part of this manuscript. In particular, we will
also investigate the possibilities to conclude on information about the nucleation barriers
and, thereby, help to understand the dynamic of nanowire growth (see Sec. 4).

1.3. Scaling laws in nanowire growth

The first example was dedicated to the effects of the “memory” of the droplet reservoir
of the type V atoms on the axial growth of nanowires. Radial growth was neglected
throughout this section. Our second example for illustrating the complexity of nanowire
growth even without polytypism is a scaling law which relates axial and radial growth of
nanowires in some cases.

More specifically, Dubrovskii et al. derived in [82] the temporal evolution of the height
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1.3. Scaling laws in nanowire growth

L(t) of self-induced GaN nanowires synthesized by MBE and their radius R(t) as

L(t) = L(t0) ·
(

1 +
α+ 1

α
· a · V
L(t0) ·R(t0)

(t− t0)

)α/(α+1)

(1.8a)

R(t) = R(t0) ·
(

1 +
α+ 1

α
· a · V
L(t0) ·R(t0)

(t− t0)

)1/(α+1)

(1.8b)

Here, t is the growth time. As a conclusion, the nanowire length and radius fulfill the
scaling law L(t)/L(t0) = (R(t)/R(t0))α and its parameter α can be easily extracted from
a log-log plot of L(R).

We now shortly discuss some implications of the Eq. (4)

1

V

(
∂L

∂t

)
=

a

R(t)
;

1

V

(
∂R

∂t

)
=

b

L(t)
(1.9)

in Ref. [82] which are not explicitly discussed therein. For details on the derivation of
this coupled system of partial differential equations and the physical interpretation of the
parameters a, b and V , we refer the reader to Ref. [82]. However, we point out, that only
the products aV and bV influence the results for R(t) and L(t), and, thus, the model has
only two independent parameters. Moreover, all changes in the experimental conditions
such that these two products remain equal will produce nanowires with the same geometric
features L(t) and R(t). The parameter α is given by the ratio a/b = (aV )/(bV ). The most
interesting aspect of the model is the coupling of the axial growth rate to the current
radius, and of the radial growth rate to the current length of the nanowire.

First of all, we point out that the time-derivative of the product L(t)R(t)(
∂(LR)

∂t

)
=

(
∂L

∂t

)
R+ L

(
∂R

∂t

)
= (a+ b)V , (1.10)

is constant with respect to time. Stated differently, the curvature (i.e., second derivative)
of the product L(t)R(t) is zero and the parameter combination γ ≡ (a + b)V can be
extracted easily from a linear fit to L(t)R(t).

Consequently, from the parameters α = a/b = (aV )/(bV ) and γ = aV +bV which are both
easily accessible from post-growth ex-situ studies, it is possible to extract the products aV
and bV as

aV =
γα

1 + α
; bV =

γ

1 + α
. (1.11)

We also point out that the scaling law L ∝ Rα can be nicely derived directly from the
differential equations Eq. (1.9) by application of the chain rule without explicitly solving
for L(t) and R(t), since (

∂L

∂t

)
=

(
∂L

∂R

)(
∂R

∂t

)
=

(
∂L

∂R

)(
bV

L(R)

)
(1.12a)

⇒ aV

R
=

(
∂L

∂R

)(
bV

L(R)

)
(1.12b)

⇒ R

L(R)

(
∂L

∂R

)
=
a

b
= α (1.12c)

Consequently, the expression R
L(R)

(
∂L
∂R

)
remains constant. This equation is easily solved

by separation:

1

L(R)

(
∂L

∂R

)
=
α

R

Integration⇒ ln

(
L(R)

L(R0)

)
= α · ln

(
R

R0

)
(1.13a)

⇒ L(R) = L(R0)

(
R

R0

)α
(1.13b)
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If we interpret R as a function of time, this scaling relation implies in particular that

L(t) = L(t0)

(
R(t)

R(t0)

)α
. (1.14)

Consequently, knowledge of α and either L(t) or R(t) determines the other quantity.

From a fundamental point of view, it is also interesting to consider the following scenario:
Suppose, the power law (1.13b) has been observed empirically (no pronounced tapering of
the nanowires is assumed). What would be the implications on the differential equations
for L(t) and R(t) which describe the temporal evolution of axial and radial growth?

If this scaling law holds true, the derivative
(
∂L
∂R

)
is equal to(

∂L

∂R

)
=
α · L
R

!
=

(
∂L
∂t

)(
∂R
∂t

) (1.15)

where the chain rule has been used in the last step. Consequently, we have

1

L

(
∂L

∂t

)
=
α

R

(
∂R

∂t

)
. (1.16)

Consequently, if
(
∂L
∂t

)
= f(L,R) describes the temporal evolution of the nanowire height,

the growth dynamics of radial growth is(
∂R

∂t

)
=

1

α

(
R

L

)
· f(L,R) . (1.17)

Here, f(L,R) is arbitrary two-dimensional function of L and R. Eq. (1.9) follows for
f(L,R) = aV/R.

However, if constant axial growth with time is observed, we have f(L,R) = Ã. Conse-
quently, the power law (1.13b) is only observed for(

∂R

∂t

)
=

1

α

(
R

L

)
· Ã . (1.18)

This nicely illustrates the implications which can be deduced from empirically observing
the scaling law (1.13b) and a constant axial growth rate of non-tapered nanowires on
differential equations governing nanowire growth.

From solving this equation by separation or by Eq. (1.14) (together with L(t) = L(t0) +
Ã · (t− t0)), we have

R(t) = R(t0) ·

(
1 +

Ã · (t− t0)

L(t0)

)1/α

. (1.19)

We now come back to the original model of Dubrovskii as defined in Eq. (1.9) and decouple
this system of differential equations (1.9) for L(t). From(

∂
(
1/
(
∂L
∂t

))
∂t

)
=

1

a · V

(
∂R

∂t

)
=

1

α

1

L(t)
(1.20)

we obtain the equation

α · L(t) ·
(
∂2L

∂2t

)
+

(
∂L

∂t

)2

= 0 . (1.21)
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1.4. The wurtzite zinc blende polytypism in GaAs nanowires

This non-linear differential equation for L(t) contains only α as a parameter. Consequently,
the parameter α solely determines the dynamics of growth. The absolute value of the
product aV only influences this dynamics by the initial condition(

∂L(t0)

∂t

)
=

aV

R(t0)
. (1.22)

If we modify Eq. (1.9) such that radial growth is constant with time, but without requiring
the scaling relation (1.13b), i.e.,

1

V

(
∂L

∂t

)
=

a

R(t)
;

1

V

(
∂R

∂t

)
=

b̃

V
, (1.23)

we have a linear increase in radius with R(t) = b̃ · (t− t0) +R(t0) and, consequently,(
∂L

∂t

)
=

aV

b̃ · (t− t0) +R(t0)
=
aV

b̃
· 1

(t− t0) +R(t0)/b̃
(1.24a)

⇒ L(t)
t>t0= L(t0) +

(
aV

b̃

)
· ln

(
1 +

b̃ · (t− t0)

R(t0)

)
. (1.24b)

For comparison, if we modify Eq. (1.9) such that either no radial growth takes place
(b = 0) or that the impinging flux on the droplet dominates the growth dynamics, we
would end up with

1

V

(
∂L

∂t

)
=
Ã

V
;

1

V

(
∂R

∂t

)
=

b

L(t)
. (1.25)

This immediately implies linear behavior of the nanowire height versus growth time (in
contrast to Eq. (1.8)) and logarithmic growth of the radius, i.e.,

L(t) = Ã · (t− t0) + L(t0) , (1.26a)

R(t)
t>t0= R(t0) +

(
bV

Ã

)
· ln

(
1 +

Ã · (t− t0)

L(t0)

)
. (1.26b)

In this scenario, we therefore end up with a logarithmic increase of length R(t) only –
instead of a linear or power-law behavior.

Although this model is formulated for GaN nanowires, we choose this model because it
nicely illustrates typical characteristics of growth models and its implications can be de-
rived fast and easily. Attempts to formulate growth models specifically for GaAs nanowires
can for example be found in Refs. [49, 66, 83–86]. Also, additional information on mod-
elling the growth of nanowires can be found in Refs. [63, 66, 87–91].

1.4. The wurtzite zinc blende polytypism in GaAs nanowires

We now introduce polytypism in GaAs nanowires in more detail which describes an im-
portant aspect of the crystalline structure of the grown nanowires.

We would like to mention, that this polytypism is not only observed in GaAs nanowires,
but also for other nanowires [61, 92] such as InAs [60, 93–95] or InP [96] nanowires.
Although our discussion mainly aims at GaAs structures, some aspects or references refer
to nanowires composed of other III/V materials.

Polytypism in III–V nanowires refers to the observation that for some growth conditions,
two different periodic atomic arrangements (“stackings”), namely the zinc blende and the
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1. Introduction to the growth of nanowires

Figure 1.5.: Illustration of the crystal structure of zinc blende GaAs (hexagonality 0). In
the left column the structure is described in a basis of a simple cubic lattice.
The lowest image is a view from the top on a [111]zyc surface. A description
of cubic zinc blende GaAs in a hexagonal basis can be constructed if the c-
axis is perpendicular to this (111)zyc plane. The right column in the figure
illustrates this hexagonal description. Two twins which are linked to each
other by a rotation of 60◦ around the c-axis are depicted. The respective
stackings of atomic bilayers are ABC and ACB. Ga atoms are depicted as
blue, As atoms as red spheres.

wurtzite stacking, are observed in the grown nanowires in [111]zyc direction, typically even
within the same wire (see e.g. Ref. [25] for a short review). Understanding and controlling
this polytypism is particularly important for advancing applications of nanowires, since it
typically deteriorates electronic and optical properties of III/V nanowires [86, 97–100].

These two atomic arrangements are visualized in Figs. 1.5 (zinc blende) and 1.6 (wurtzite).
In addition, Fig. 1.6 also contains an illustration of the 4H-polytype which is structure
that consists of 50% of zinc blende and 50% of wurtzite.

For better comparison of these atomic arrangements, it is useful to transform basis of the
zinc blende structure such that the cubic [111]zyc direction corresponds to the [00.2]wyh2
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1.4. The wurtzite zinc blende polytypism in GaAs nanowires

Figure 1.6.: Illustration of the crystal structure of GaAs for a hexagonality of 100%
(wurtzite) and of 50% (4H polytype). In the left column the structure for
a stacking sequence of AB and AC is depicted. The right column illustrates
the 4H polytype: Its unit cell twice as high as the unit cell of wurtzite and
is defined by the stacking ABAC (and equivalent). Ga atoms are depicted as
blue, As atoms as red spheres.

direction in this transformed basis [101]. The planes perpendicular to the original, cubic
[111]zyc direction contain either only Gallium (Ga) atoms or only Arsenic (As) atoms. In
addition, these planes containing only one kind of atoms are alternating with the planes
of the other atoms. Consequently, the primitive unit cell projected in [111]zyc direction
consists of a set of one Ga plane next to one As plane. For simplicity, we refer to this set
of two planes as a layer which consists of two sublayers. The crystal is then formed by
periodic repetition of these layers in cubic [111]zyc direction but a shift perpendicular to
this direction. For the wurtzite structure, two such layers with different in-plane positions
are repeated in the stacking sequence. For the zinc blende structure, three such layers
with different in-plane shifts are repeated.

For clarity, we distinguish coordinates with respect to the three involved crystallographic
basis as

crystallographic basis vector notation (example)

cubic basis of conventional zinc blende unit cell [111]zyc

hexagonal basis for zinc blende structure (c-axis ‖ to [111]zyc) [00.3]zyh1

hexagonal basis of wurtzite structure [00.2]wyh2

where the second letter in the index refers to the basis system and the first index to the
crystalline structure which is described with this basis. The choice of basis vectors in this
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1. Introduction to the growth of nanowires

cubic basis for zinc blende
(
a1 a2 a3

)
= ac ·

 1 0 0
0 1 0
0 0 1


hexagonal basis for zinc blende

(
a1 a2 a3

)
= ah1 ·

 1
2

1
2 0

−
√

3
2

√
3

2 0

0 0
√

6


hexagonal basis for wurtzite

(
a1 a2 a3

)
= ah1 ·


1
2

1
2 0

−
√

3
2

√
3

2 0

0 0
√

8
3(1 + dWZ

dZB
)


Table 1.1.: Choice of crystallographic basis vectors for investigating polytypism in GaAs

nanowires. dWZ
dZB

is the ratio of the inter-layer spacing between wurtzite and zinc
blende (see Sec. 3.2). ac is the cubic lattice constant of GaAs which is equal
to 5.6533Å [102]. Equivalent in-plane lattice parameters have been assumed.

structure Ga atoms As atoms

zinc blende in cubic basis c

(1
4

1
4

1
4)

(3
4

3
4

1
4)

(3
4

1
4

3
4)

(1
4

3
4

3
4)

(0 0 0)
(1

2
1
2 0)

(1
2 0 1

2)
(0 1

2
1
2)

zinc blende in hexagonal basis h1
(0 0 1

4)
(2

3
1
3

7
12)

(1
3

2
3

11
12)

(0 0 0)
(2

3
1
3

1
3)

(1
3

2
3

2
3)

wurtzite in hexagonal basis h2
(0 0 3

8)
(2

3
1
3

7
8)

(0 0 0)
(2

3
1
3

1
2)

Table 1.2.: Coordinates αi of the Ga and As atoms R =
∑3

i=1 αiai in each unit cell in
various basis coordinate systems [101].

manuscript is given in Tab. 1.1. We point out, that ch1√
3

= ac =
√

2 ah1. The coordinates

αi of the Ga and As atoms R =
∑3

i=1 αiai in each unit cell in various basis coordinate
systems are summarized in Tab. 1.2.

Finally, the distances in direct space of two planes dhkl = 2π/ |Ghkl| are given as [101, 103,
104]

d[hkl]zyc
= ac/

√
h2 + k2 + l2 (1.27a)

d[hkl]wyh2
= ah2/

√
4

3
(h2 + k2 + hk) +

(
ah2

ch2

)2

l2 (1.27b)

where ac is cubic lattice constant of the conventional unit cell and ah2 and ch2 are the
magnitudes of the basis vectors in [10.0]wyh2 and [00.1]wyh2 direction respectively.

The Bravais-Miller indices [103, 104] of these basis representations are transformed by the
matrices (see Ref. [101] and references therein) h

k
l


zyc

=Mh1←c

 h
k
l


zyh1

with Mh1←c =

 2/3 −2/3 1/3
2/3 4/3 1/3
−4/3 −2/3 1/3

 (1.28a)

and  h
k
l


zyh1

=Mh1←h2

 h
k
l


wyh2

with Mh1←h2 =

 1 0 0
0 1 0
0 0 3/2

 . (1.28b)
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1.4. The wurtzite zinc blende polytypism in GaAs nanowires

Consequently, we have, for example, the equivalence of (111)zyc = (00.3)zyh1 = (00.2)wyh2.

We point out, that for zinc blende as well as for wurtzite, non-equivalent stacking sequences
are obtained by rotations of 60◦ around the (00.3)zyh1 direction (“twin structure”). A
rotation by 120◦ maps the structure on itself. The reflections of such twin and symmetry
related structures can be found in Sec. B in the appendix.

We would also like to mention that the wurtzite stacking is obtained if consecutive stacking
faults after each layer of zinc blende are incorporated (and direct repetitions of the same
layer are excluded), i.e., after AB a layer of type C would be expected. However, a stacking
fault produces ABA. For zinc blende, now C is again expected. Another stacking fault
would produce a layer of type B, and, thus, the wurtzite sacking sequence ABAB.

If only a single stacking fault occurs in a zinc blende sequence – as an example, consider
the sequence ABCABCACBACB – a single wurtzite layer is observed and the nanowire
continues in the stacking of the equivalent twinned structure with respect to the previous
structure (i.e., ACB instead of ABC). For low probability of (repeated) stacking faults,
super-lattice structures with zinc-blende and twinned zinc blende can be constructed [22,
24, 25, 44, 56, 96].

Up to now, we illustrated the geometrical properties of the two polytypes in GaAs nanowires.
These geometrical properties of the crystalline structures will be linked to X-ray scattering
in Sec. 3.2.

Here, we now summarize the current understanding of the origin of this polytypism which
has been studied extensively by various approaches (e.g. Refs. [55, 59, 105–107]) – theo-
retically and experimentally.

For example, Akiyama et al. estimated in Ref. [89] that wurtzite structure is stabilized
for small diameters (depending on the nanowire’s composition up to 22nm) as a results of
different number of dangling surface bonds of wurtzite and zinc blende phase. For some
intermediate range of diameter (depending in the ionicity of the involved semiconductors
in the range of 12 − 32nm), zinc blende and wurtzite phase can coexist in a single wire.
From this perspective, the emergence of wurtzite structures in GaAs nanowires is a result
of the increased ratio of surface to bulk – which is relevant for many nanostructures.

Similar observations have been reported by Magri et al. in Ref. [108]. These authors found
a critical diameter of 6.3nm in first principle simulations: below this critical diameter the
gain in surface energy for formation in wurtzite exceeds the costs in bulk volume for
wurtzite formation and stable wurtzite nanowires are possible. However, such low critical
radii are too low if compared with experimental data.

For comparison, the fraction of wurtzite in Au-assisted InAs nanowires as a function of
their diameter has been studied experimentally by Johansson et al. in Ref. [109] where
typical critical radii in the order of 35nm to 60nm have been observed – depending on the
growth temperature.

In Ref. [105], Glas et al. attribute the growth of wurtzite segments in GaAs nanowires
based on the energetics of the involved surface energies to nuclei forming close to the triple-
phase-line, i.e., close to the surface of the nanowires (see also S5 in supporting information
of Ref. [60]). For nuclei away from the triple-phase-line – deep inside the droplet – the
layers which originate from such nuclei are likely to produce a zinc blende structures.

The precise behavior strongly depends on the involved facets [71, 107] which in return
are coupled to shape and composition of the droplet [55, 57, 69, 105]. In particular, it is
also of high importance if the droplet on the nanowire tip covers only the [111]zyc facet
(regime 1 in Ref. [69]) or also wets the side facets (regime 2 in Ref. [69]). In the first case,
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1. Introduction to the growth of nanowires

zinc blende structures are favored whereas in the latter case, wurtzite arrangements are
preferred.

In addition to wurtzite and zinc blende, other polytypes [110, 111] can also be considered:
For example, Dubrovskii and Sibirev predict in Ref. [111] that the 4H polytype (see Fig.
1.6) has the lowest formation energy within their model. Such higher polytypes become
particularly important if deviations from simple Markov models (see Sec. 4.3 and Refs.
[24, 25, 110]) such as the axial next nearest neighbor interaction (ANNNI) model (see Ref.
[110] and references therein) are investigated.

For examination of the intrinsic statistical properties of the nucleation process, the energy
barriers E for creation of a nucleus for the next grown layer are of high relevance (e.g., in
Boltzmann factors e−βE , where β = 1/(kBTS)) [24, 59, 105]. More specifically, (at least)
four nucleation barriers EP|P and EP̄|P should be distinguished, where P ∈ {ZB,WZ} and

P̄ is the complementary phase of P. Here, EP|P and EP̄|P correspond to continuing growth
of the current phase P ∈ {ZB,WZ} or for beginning a segment of the complementary
phase P̄ on top of the current phase P respectively.

On the one hand, their absolute values are of particular interest for the growth rate (number
of layers grown per unit of time) of the nanowire [79, 88].

On the other hand, the nucleation barrier differences δEP̄|P = EP̄|P −EP|P determine the
polytypic behavior [24, 59, 96, 105]. If the nucleation barrier differences δEP̄|P significantly
exceed the thermal energy scale kBTS, transitions from one polytype to the other polytype
are very unlikely – with the result of wires with low stacking fault density in growth
direction.

On the contrary, the frequent observation of polytypism in III-V nanowires implies, that
δEP̄|P & kBTGrowth for typical growth conditions.

The nucleation barrier differences δEP̄|P will be estimated by means of in-situ X-ray diffrac-
tion for self-catalyzed GaAs nanowires on Si(111) in Sec. 4.4.2 – without explicit assump-
tions on the geometry of the nucleus, the exact mechanisms of nucleation and the catalyst
dynamics (see in particular Refs. [25, 45, 49, 59, 60, 69, 70, 74, 77, 88, 96, 105, 106]).

In conclusion, considerable theoretical and experimental efforts aim at understanding and
controlling polytypism in order to facilitate phase engineering in nanowires.

We now turn to experimental aspects which are relevant for the investigation of polytypism:
we first motivate studying the growth of nanowires in-situ and in a time-resolved manner
with X-ray diffraction based methods (see e.g. Ref. [54]) and then discuss the possibilities
(and limitations) of the portable MBE growth chamber of the synchrotron source ANKA
for such X-ray measurements.
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2. The portable molecular beam epitaxy
(PMBE) growth chamber at ANKA

Up to now, the fundamentals of the growth of nanowires have been discussed. We now
motivate time-resolved in-situ X-ray diffraction as a valuable approach in order to pro-
vide additional insights in the growth dynamics of nanowires — despite great results and
advances obtained with other techniques (see Sec. 2.1). We then discuss in Sec. 2.2 the
feasible X-ray measurements with the current PMBE growth chamber for GaAs nanos-
tructures located at the German synchrotron source ANKA.

2.1. Motivation for time-resolved X-ray growth studies

To motivate time-resolved in-situ X-ray diffraction studies, we first provide a rough overview
over the various experimental techniques which are currently employed for understanding
the physics of nanowire growth.

One very powerful experimental technique for accessing the dynamics of nanowire growth
is environmental transmission electron microscopy (eTEM). By eTEM, a lot of insights in
the dynamics of the nucleation of a new layer and the composition and geometry of the
droplet on the tip of a growing nanowire have been revealed [70, 74, 77, 95]. However,
transmission electron microscopy (TEM) – including eTEM – directly images the direct
space structures of a rather limited field of view. If the crystalline arrangement (zinc blende
or wurtzite) is the aim of the investigation, atomic resolution is required and, thus, only a
limited number of objects or even only a fraction of a single objected can be investigated.

Scanning electron microscopy (SEM) does not provide sufficient resolution for investigation
of the crystalline arrangement on an atomic level. However, it is extremely valuable for
studying geometrical aspects of nanowire growth – from the geometry of the droplet to
the crystallographic surfaces on the side facets as well as correlating the growth rates and
diameters of nanostructures with the growth conditions.

In addition, reflection high energy electron diffraction (RHEED) is well established for
time-resolved in-situ monitoring of the growth of nanostructures. Since the wavelength
of the impinging electrons is of similar order of magnitude as the interplanar spacings of
the growing nanostructures, RHEED is capable of revealing information on the types of
growing nanostructures (wires, dots, layers) and the growing phases. However, typically,
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2. The portable molecular beam epitaxy (PMBE) growth chamber at ANKA

data quality of RHEED is rather poor and, therefore, a quantitative analysis rather diffi-
cult. Moreover, it is limited to studying few atomic layers below the surface of the grown
material. Thus, buried structures cannot be studied.

Another powerful technique for studying grown nanostructures is photoluminesence. How-
ever, photoluminesce typically requires to measure the nanostructures at low temperatures
in order to avoid thermal broadening and obtain sharp spectra. Thus, such photoluminesce
measurements are incompatible with the substrate temperatures of the nanostructures dur-
ing growth (typically several hundred Kelvin). In consequence, such measurements are not
well suited for time-resolved in-situ investigations.

We will not discuss techniques based on electronic transport or probe based microscopy
(e.g., atomic force microscopy, scanning tunneling microscopy, . . . ), although these ap-
proaches are also capable of providing very valueable insights in the behavior of nanos-
tructures [97, 112–116]. Most importantly, most of these techniques can also be applied
in-situ or in-operando (e.g., Refs. [116, 117]). However, such techniques typically study
only a limited number of objects (as TEM) and, thus, are of limited statistical significance.

Finally, the interaction of photons with matter at wavelengths similar to the interatomic
spacings is highly suitable for investigation of the structural properties (see Ref. [54] for
an example of in-situ X-ray measurements). By this approach, it is possible to resolve cor-
relations in the growing nanostructures. For crystalline structures, experiments exploiting
diffraction by particular planes can be performed. Some reflections only contain scattered
photons from one polytype in the III-V nanowires whereas scattered photons from both
polytypes contribute to other reflections. In contrast to RHEED, very fine details of the
diffracted signal can be observed with X-ray investigations due to the long propagation
distances from the sample to the detector and the high quality of the impinging beam
at current synchrotron facilities. Therefore, the investigation of polytypism in nanowires
based on X-ray diffraction is highly interesting.

Since the lattice constant in polytypic III-V nanowires typically depends on the local phase
in nanowires [92, 118, 119], the reflections which contain scattered photons from both
phases are particularly promising for time-resolved in-situ investigations. The difference
in lattice constants results in slightly different positions of the signal of the pure phases
involved in the polytypic nanowires. On the one hand, the distance of the centers might
allow splitting of the contributions from the polytypic phases. On the other hand, the
signals are still close enough that capturing the information of both phases with modern
two-dimensional detectors such as the PILATUS 100K-S [120] should be possible with little
or no movement of the detector and the sample during the time-resolved growth studies.1

Depending on the properties of the beam, X-ray diffraction experiments with high statis-
tical significance [54, 101, 119, 121, 122] as well as single wire experiments [101, 123] are
feasible. In both cases, the changes in the scattered intensity distribution over time in
time-resolved in-situ growth studies reveal the evolution of the properties of the nanowires
with increasing growth time. Details will be discussed in Sec. 4.3.

In the first part of this manuscript we focus on X-ray measurements of a huge ensemble
of nanowires. For example, we are able to measure the scattering of 106 nanowires, if
we assume a spot size of 1mm2 of the X-ray beam and a density of only a single wire
per 1µm2. This high statistical significance will facilitate the detection of a gradient in
the phase purity LP in growth direction of the nanowires in a range that is currently not
accessible by other methods and despite huge fluctuations of the length of individual phase
segments.

1Based on the results of Sec. 2.2, it is straight forward to measure even a series of polytype specific
reflections during growth in the current PMBE chamber with no movement of a current 2D detector
(e.g. PILATUS 100K-S [120]) and very little movement of the sample only (see outlook of part I).
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2.1. Motivation for time-resolved X-ray growth studies

Suppose randomly distributed independent size of each individual faultless phase segment
in the nanowires. Moreover, assume the standard deviation of the size distribution to be
similar to its mean value µ. These assumptions resembles the behavior of some models
discussed in Sec. 4.3. In this case, the error σ of the mean value scales as µ/

√
N where N is

the number of segments in the estimation of the mean value. Therefore, estimation of the
mean value µ with a relative error of 10% requires evaluation of N = 100 segments. If the
wire has 6500 layers (approximately two microns in height), a single wire is only sufficient
if the mean segment size is below 65 layers. For larger mean segment size, multiple wires
need to be evaluated.

Further assume that the mean segment size changes with increasing height: For estimation
of the mean gradient, it is necessary to estimate the mean segment size at the beginning
of the wire and at the end of the wire with a precision higher than the mean value. For
that purpose, we define ranges with width w for estimation of the mean layer size at the
beginning (µB) and the end (µE) of growth, for example the ranges 0–1000 and 5500–6500
for w = 1000 and wires with a height of 6500 layers. Moreover, we assume a gradient
δσ = |µB − µE | between the two ranges. In order to resolve this gradient, the mean values
µB and µE need to be estimated with a precision much better than this gradient δσ.
Therefore, the error σ of the mean value must fulfill

µB/E/
√
N = σ

!
� δσ , (2.1)

which implies for the number of individual segments N that need to be evaluated

N �
(
µB/E/δσ

)2
. (2.2)

However, if consider our ranges of width w, this number of individual faultless segments
N is approximately equal to (w/µB/E) · NW where NW is the number of measured wires.
Therefore,

NWw � µB/E ·
(
µB/E/δσ

)2
, (2.3)

i.e., the expectation value divided by the square of the relative deviation δσ/µB/E . For
our example w = 1000, µB/E ≈ 50 layer and a relative deviation of δσ/µB/E ≈ 0.1, we
have NW � 5. However, a study of NW ≈ 50− 500 with TEM for each set of “interesting”
growth conditions is non-feasible. If we restrict to NW = 1 and solve for the relative
deviation, we are only capable of detecting a relative deviation of δσ/µB/E � 22%.

In conclusion, the detection of the mean segment size and small gradients thereof are not
feasible with TEM studies for large mean values µ. On the contrary, X-ray diffraction
based studies are very promising for overcoming these limitations: time-resolved in-situ
measurements of an ensemble of nanowires can detect large mean segment sizes and the
gradient thereof as will be discussed in the next sections. In fact, the larger the mean
segment lengths of the polytypes are, the more powerful are diffraction techniques which
operate in reciprocal space (in contrast to direct space as TEM).

Since diffraction detects the grown crystalline structures, this approach is complementary
to modeling or studying the droplet directly. Instead, the consequences of the complicated
dynamics of the droplet and the nucleus on the growing crystalline material of the nanos-
tructure are observed. This complicated interplay of the crystalline wire and the droplet
determines the energetic nucleation barriers EP|P and EP̄|P for continuing the growth of

phase P ∈ {ZB,WZ} or for beginning a segment of the complementary phase P̄ on top of
the current phase P (see Sec. 1.4).

In Sec. 4.4.2, we will infer these nucleation barrier differences δEP̄|P and the temporal
evolution thereof based on a model for the length distribution of faultless segments of each
polytype (“phase purity”).
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Figure 2.1.: Scheme of the in-situ MBE growth chamber: The Beryllium windows limit
the angle with respect to the axis defined by the center of both Beryllium
windows to 18◦ (if a proper safety margin is included). For more information,
see Refs. [67, 124, 126, 127].

However, obtaining such data during growth (instead of post-growth ex-situ measurements)
requires special growth equipment: On the one hand, it must have windows which are
transparent for the incident and scattered X-ray beam. On the other hand, it must allow
for proper orientation of the sample and the detector with respect to the incident beam.

One such special growth chamber — suitable for time-resolved in-situ X-ray diffraction
during molecular beam epitaxy (MBE) growth of GaAs structures — has been developed
at the synchrotron source ANKA [124, 125] (see Fig. 4.1(a) on page 50). For a description
of the chamber, in particular its growth capabilities, we refer the reader to Refs. [67,
124, 126, 127]. For example, the chamber has been used to successfully investigate buried
quantum dots (QDs) using grazing incidence X-ray diffraction (GID) [125].

The calibration of the growth chamber for growth of self-catalzed GaAs nanowires on
[111]zyc oriented silicon substrates has been performed by Philipp Schroth and Jean-
Wolfgang Hornung with strong support of the Paul-Drude-Institut für Festkörperphysik
in Berlin.2

2.2. Possibilities and limitations of the PMBE chamber

We now provide a detailed discussion on the possibilities and limitations of this growth
chamber [67, 124, 126, 127] with respect to X-ray diffraction based in-situ investigations
of GaAs structures on [111]zyc oriented silicon substrates.

This growth chamber has been specifically designed for monitoring the growth of nanos-
tructures in-situ with X-rays. For this purpose two Beryllium (Be) windows are positioned
directly opposite to each other. The axis which is defined by the centers of the Be windows
is tangential to the surface of the substrate for growth. As a result, the solid angle of X-ray
radiation entering or leaving the chamber through the Be windows is limited to a maximum

of approximately Θ
(Max)
In = Θ

(Max)
Out ≈ 18◦ (if a safety margin of 2.4◦ is included with respect

to the specification which states 20.4◦ [128]) with respect to the afore-mentioned axis (see
Fig. 2.1). In addition to the limitations imposed by the Be windows, the growth chamber
needs to be positioned and rotated during measurements by a suitable set-up. Although
fixed constructions for particular Bragg reflections are in principle possible, the highest
flexibility in positioning is provided by a suitable heavy load diffractometer. However, the
limitations of such a heavy load diffractometer could impose additional restrictions on the
set of possible X-ray measurements, in particular the set of available Bragg reflections.3

2For more information on this calibration of the chamber, we refer the reader to the PhD thesis of Philipp
Schroth [67] and the diploma thesis of Jean-Wolfgang Hornung [126].

3Additional limitations may originate in collisions with detector arms of the diffractometer and the cham-
ber. However, such limitations are not discussed in this manuscript.
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2.2. Possibilities and limitations of the PMBE chamber

(000)
(000)

sample rotation
by 20 degree

Figure 2.2.: Illustration of energy and momentum conservation for scattering by crystalline
structures: For a momentum transfer G of the reciprocal lattice, a one dimen-
sional, circular manifold of solutions with ‖kOut‖2 = ‖kIn‖2 exists.

First, we discuss the relation between the geometry in direct space and a particular Bragg
reflection in reciprocal space. Then, we give a list of measurable reflections of cubic and
wurtzite GaAs at an energy of 15keV in the current growth chamber.4 Our presentation
includes three cases: First, the full solid angle in Fig. 2.1 can be used, i.e., no limitations
are imposed by the diffractometer. Second, we assume limitations of the heavy load
diffractometer similar to the conditions at the NANO beamline at ANKA. Finally, we

consider the case of an increased angle Θ
(Max)
In = Θ

(Max)
Out ≈ 28◦ and without restrictions

originating from the diffractometer. The last case corresponds to a (hypothetical) chamber
after an upgrade planned for the future.

Physically, energy conservation and momentum conservation constrain the interaction of
the X-ray photons and matter. For elastic scattering, the magnitude of the incoming and
outgoing wave vector kIn and kOut are equal. This magnitude is determined by the energy
E of the incoming radiation as

‖kOut‖2 = ‖kIn‖2 =
2π

λ
=
E

~c
, (2.4)

where ~ is the Planck constant divided by 2π and c is the vacuum speed of light. For an
ideal, infinite crystal the momentum transfer kOut − kIn is limited to the set of reciprocal
lattice vectors G which are defined by the crystal structure. The result of those constraints
is a circular set of solutions for each vector G (see Fig. 2.2). The center of this circular
set of solutions is G/2 and the radius of the circle is

r0 =

√
‖kIn‖22 − ‖G/2‖

2
2 (2.5)

which is only real if

‖kIn‖2 ≥ ‖G/2‖2 ⇔ E ≥ ~c ‖G/2‖2 . (2.6)

Thus, ~c ‖G/2‖2 is the minimum energy required for measuring the Bragg reflection G.

The set of possible vectors kIn and kOut is characterized by the parametrization

kIn(η) = r0

(
cos(η) ê1 + sin(η) ê2

)
− G

2
, (2.7a)

kOut(η) = r0

(
cos(η) ê1 + sin(η) ê2

)
+
G

2
, (2.7b)

where ê1 and ê2 are two orthonormal vectors perpendicular to G and η ∈ [0, 2π[.

4We will not include reflections in this list for which the incoming and exit beam pass through the same
Be window since those reflections are associated with high Bragg indices and, thus, typically weak in
intensity and, therefore, of minor importance.
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2. The portable molecular beam epitaxy (PMBE) growth chamber at ANKA

Suitable vectors ê1 and ê2 can be obtained either numerically by Gram-Schmidt process
[129, 130] or analytically. For example, one such analytical parametrization, which will be
used later, is given by

ê1 =
1

Gr

 Gy
−Gx

0

 , Gr =
√
G2
x +G2

y , (2.8a)

ê2 =
1

G ·Gr
G⊗ ê1 =

1

G ·Gr

 GxGz
GzGy
−G2

r

 , G = ‖G‖2 =
√
G2
r +G2

z . (2.8b)

The motivation for this particular parametrization is given by the fact that the third
component of ê1 is equal to zero which simplifies a variety of calculations (see later).

Since valid vectors

G =
3∑
i=1

nibi (2.9)

are linked to the lattice in direct space – constituted by ai – via(
b1 b2 b3

)T
= 2π

(
a1 a2 a3

)−1
, (2.10)

a particular orientation of this direct space lattice and a fixed reflection (n1 n2 n3)zyc is
associated with the compact one-dimensional manifold (2.7) of solutions (kIn,kOut). Any
such kIn can be chosen for investigation of this reflection (n1 n2 n3)zyc and will result in
an outgoing beam characterized by the respective kOut (i.e., same η).

By rotating the sample, its crystallographic axis ai are rotated. As a result, the recipro-
cal basis vectors bi and thereby the reciprocal lattice are rotated, too. ê1 and ê2 remain
perpendicular to G, if they are transformed in the same way as the reciprocal basis vec-
tor. Therefore, kIn and kOut transform identically to the reciprocal basis vectors. The
magnitudes of neither G nor kIn or kOut are modified by such isometric transformations.
Moreover, their relative angles are invariant upon isometric transforms. One such angle is
the Bragg angle of a particular reflection (n1 n2 n3)zyc: it is defined as

cos
(

2Θn1n2n3
Bragg

)
=

kIn · kOut

‖kIn‖2 ‖kOut‖2
, (2.11)

and does not depend on the orientation of the sample.

However, depending on the set-up, the orientation of the crystallographic axis ai of the
sample is limited: For example, substrates mounted inside the PMBE chamber can only
be rotated around its surface normal (without moving the chamber as a whole). This
restriction of the orientation of the sample must be included in the consideration if a
particular reflection can be measured with the PMBE growth chamber.

Additionally, rotations of the chamber itself are typically limited — due to various reasons:
one important aspect is that the heavy load diffractometer at the NANO beamline at

ANKA is capable of inclining the growth chamber only by Ψ
(Max)
In ≈ 5◦. Therefore, the

beam cannot enter the growth chamber in the full solid angle of the Be windows, but only
through a limited fraction of the surface of the respective Be window. On the contrary,
we assume that the detector can be moved freely to all positions resulting from the full
solid angle of the exit Be window. Thus, the constraints on kIn and kOut are no longer
identical.

From those considerations, it is reasonable to introduce the following set of orthonormal
right-handed coordinate systems:
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2.2. Possibilities and limitations of the PMBE chamber

1. chamber system: This coordinate system is defined such that the first basis vector
connects the centers of both Be windows (positive direction in direction of outgoing
Be window) and the third basis vector points in direction of the surface normal of
the substrate.

2. sample surface system: The third basis vector points in direction of the surface
normal of the substrate. However, the other two directions are not constrained
(beside being orthonormal right-handed). Therefore, it is only unique up to an
arbitrary rotation around the surface normal.

3. crystallographic basis ai: This basis is defined by the conventional unit cell.

Note, that the chamber system and the sample surface system coincide up to a rota-
tion around the surface normal of the substrate.5 Typically, the crystalline surface of Si
substrates is either [111]zyc or [001]zyc. Here, we restrict to [111]zyc oriented substrates.

For calculation of the feasibility to study a particular (hexagonal or cubic) reflection
(n1 n2 n3)zyc, we perform the following approach:

1. Crystalline basis:

• Calculate G and r0.

• Calculate the set of solutions (kIn(η),kOut(η)) for a step width η . 1◦.

2. Transform to sample surface basis:6 7

• Verify for each solution (kIn(η),kOut(η)) that it corresponds to Bragg geometry
(i.e., incoming and outgoing beam leave the sample). Drop otherwise. Deter-
mine the incidence angle αIn and exit angle αOut with respect to the sample
surface (not surface normal).

• Additional constraints such as specific ranges for the incidence angle (e.g. 0.1◦ ≤
αIn ≤ 1.0◦ for grazing incidence) can also be used for filtering at this point.

• For each solution (kIn(η),kOut(η)), determine the out-of-plane scattering angle
φoop by projecting out the third coordinate of both vectors and calculation of
the angle between the resulting two vectors. For coplanar scattering, this angle
is zero.

5As long as the first vector of the chamber coordinate system is parallel to the surface of the sample,
the prescription can be simplified and the chamber system and sample surface system can be merged.
However, we intend to describe the prescription in a more general manner.

6It is valid to choose any of the non-uniquely defined orthonormal right-handed basis but it must be kept
during the procedure.

7 For the transformation of a vector v from an orthonormal basis ai to any other (not necessarily or-
thonormal) basis bk, we have

v =

d∑
i=1

aiαi =

d∑
i=1

d∑
j=1

ajδjiαi =

d∑
i=1

d∑
j=1

d∑
k=1

aj (M)jk
(
M−1)

ki
αi ≡

d∑
k=1

bkβk , (2.12)

where we defined

bk =

d∑
j=1

aj (M)jk , βk =

d∑
i=1

(
M−1)

ki
αi . (2.13)

The entries of the matrix M underlying the coordinate transformation can be extracted directly from
Eq. (2.13) by projection on ai which yields

(M)ik = ai · bk . (2.14)

We emphasize that the transformation of the components αi has to be performed with the inverse of
the matrix M .
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2. The portable molecular beam epitaxy (PMBE) growth chamber at ANKA

3. For each solution (kIn(η),kOut(η)) which has not been dropped, all possible ori-
entations of the sample need to be considered. For that purpose, each solution
(kIn(η),kOut(η)) must be transformed to each sample orientation. In the PMBE
chamber, only the rotation around the surface normal (1 degree of freedom) has to
be considered and the set of possible orientations can be sampled uniformly without
significant computational effort.8

4. Transform each orientation of each solution (kIn(η),kOut(η)) to chamber coordinates
which are most suited for evaluation of the restrictions implied by the chamber. For
that purpose, kIn and kOut are parametrized as

kIn(1) = k · cos(ΘIn) kOut(1) = k · cos(ΘOut)

kIn(2) = −k · sin(ΨIn) kOut(2) = k · sin(ΨOut)

kIn(3) = −k · sin(ΩIn) kOut(3) = k · sin(ΩOut)

and where k = ‖kIn‖2 = ‖kOut‖2. These angles (ΘIn,ΨIn,ΩIn) and (ΘOut,ΨOut,ΩOut)
relate the directions of the incoming and outgoing beam to deviations from the co-
ordinate axis of the chamber coordinate system. Thus, a large set of constraints is
easily evaluated.9 For example:

• For a given distance of the Be windows to the sample and their diameters, the

mathematical constraints are ΘIn ≤ Θ
(Max)
In and ΘOut ≤ Θ

(Max)
Out . For the current

chamber we have Θ
(Max)
In = Θ

(Max)
Out = 18◦ as already stated.

• The inclination of the chamber can be constrained by ΨIn ≤ Ψ
(Max)
In .

With this procedure, we can detect if a given reflection can be studied with the chamber
(including possibly desired additional constraints as restrictions of the incidence angle) and
extract information about the specific geometry which has to be set in the experiment.

Some results of this procedure are summarized in Fig. 2.3 and Tabs. 2.1 (zinc blende) and
2.2 (wurtzite) for an X-ray energy of 15keV.

In Fig. 2.3, the ordinate is the scattering component parallel to the surface normal of the
sample. The axis of abscissae is the magnitude of the scattering vector component which
is perpendicular to this normal. For this choice of coordinates, the information about the
rotation of the sample around its normal is projected out, but the data can be visualized
nicely as a two-dimensional plot.

All cases mentioned in the beginning of this section are depicted in this figure: For Be

windows which limit Θ
(Max)
In and Θ

(Max)
Out to 28◦, an enormous number of reflections can be

measured. If Θ
(Max)
In and Θ

(Max)
Out is limited to 18◦, it is still possible to find all kind of reflec-

tions: phase selective and quasi-forbidden reflections are available as well as reflection to
which all structures (zinc blende, zinc blende twin, wurtzite) contribute. If the inclination
of the chamber is limited, the maximum scattering vector component perpendicular to the
sample surface is reduced. However, even for those strong experimental constraints, a large
set of reflections with different properties can be studied at the chosen X-ray energy of
15keV. A detailed list can be found in Tab. 2.1 for zinc blende and Tab. 2.2 for wurtzite.
If the inclination of the chamber is not restricted, the respective tables can be found in
appendix C. We point out that GID reflections are not contained in those tables: since
we neglect refraction in our considerations, either the incident or exit angle are slightly

8For a set-up with a high number of degrees of freedom, Monte-Carlo based sampling or more advanced
sampling strategies may be needed.

9Note that due to the limitations in orienting the sample in the current PMBE growth chamber, it holds
αIn = ΩIn and αOut = ΩOut.
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Figure 2.3.: Available Bragg reflections with the in-situ MBE growth chamber for a X-ray

energy of 15keV: The limitation in angular space to Θ
(Max)
In = Θ

(Max)
Out = 28◦

corresponds to a hypothetical upgraded chamber with larger Beryllium win-

dows. The constraint of angular space to Θ
(Max)
In = Θ

(Max)
Out = 18◦ corresponds

to the currently available growth chamber (after subtraction of a proper safety
margin). If the current chamber is mounted at the current heavy load diffrac-
tometer at NANO beamline at ANKA, restrictions in the diffractometer mo-

tors imply to limit the vertical offset to approximately Ψ
(Max)
In ≈ 5◦. For more

information, see main text, Tabs. 2.2 and 2.1), Sec. C in the appendix and
the relevant discussions in Refs. [67, 124, 126, 127].

smaller than zero as a consequence of numerical rounding errors. As a consequence, these
reflections are discarded when validating Bragg geometry.

In addition, the square of the magnitude of the structure factors |S|2 for the reflections
given in these tables is listed (see, for example, Ref. [101]). For a cubic lattice, the
structure factor of the reflection (hkl)zyc is

S(hkl)zyc
= 4 ·


fAs + fGa if h, k, l even and h+ k + l = 4n with n ∈ Z
fAs − fGa if h, k, l even and h+ k + l 6= 4n with n ∈ Z
fAs ± ifGa if h, k, l odd
0 else

(2.16)

whereas for the wurtzite reflection (hk.l)wyh2, the structure factor is

S(hkl)wyh2
= fAs ·

(
1 + e−2πi(h+2k

3
+ l

2)
)

+ fGa ·
(

e−2πi( 3l
8 ) + e−2πi(h+2k

3
+ 7l

8 )
)
. (2.17)

For reflections of the type (00.l)wyh2, this expression simplifies to

S(00.l)wyh2
= 2 ·

(
fAs + fGa e−πi

3
4
l
)

(2.18)

for even l. For odd l, S(00.l)wyh2
is equal to zero. For the estimations for |S|2, the atomic

for factors fAs and fGa have been approximated by their atomic number.
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2. The portable molecular beam epitaxy (PMBE) growth chamber at ANKA

Table 2.1.: List of Bragg reflections of cubic GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [111]zyc oriented surface. Constraints

are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦ and Ψ

(Max)
In = 5◦.

reflection
(cubic)

|S|2 [electrons] (qz,qr) [1/Å] ‖G‖2 [1/Å] Θreflec.
Bragg [◦] reflection

(wurtzite)
[ -1 1 1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ -1 1 0.67 ]
[ 0 0 2 ] 4 (1.2834,1.8149) 2.2228 8.41 [ -1 0 1.3 ]
[ 0 2 0 ] 4 (1.2834,1.8149) 2.2228 8.41 [ 0 1 1.3 ]
[ 0 2 2 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ -1 1 2.7 ]
[ 1 -1 1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ 0 -1 0.67 ]
[ 1 1 -1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ 1 0 0.67 ]
[ 1 1 1 ] 2050 (1.9250,0.0000) 1.9250 7.27 [ 0 0 2 ]
[ 1 1 3 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ -1 0 3.3 ]
[ 1 3 1 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ 0 1 3.3 ]
[ 2 0 0 ] 4 (1.2834,1.8149) 2.2228 8.41 [ 1 -1 1.3 ]
[ 2 0 2 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ 0 -1 2.7 ]
[ 2 2 0 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ 1 0 2.7 ]
[ 2 2 2 ] 4 (3.8501,0.0000) 3.8501 14.67 [ 0 0 4 ]
[ 3 1 1 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ 1 -1 3.3 ]

Table 2.2.: List of Bragg reflections of wurtzite GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [00.1]wyh2 oriented surface. Con-

straints are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦ and Ψ

(Max)
In = 5◦.

reflection
(wurtzite)

|S|2 [electrons] (qz,qr) [1/Å] ‖G‖2 [1/Å] Θreflec.
Bragg [◦] reflection (cubic)

[ -1 0 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.17 -0.17 1.8 ]
[ -1 0 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 0.33 0.33 2.3 ]
[ -1 0 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.83 0.83 2.8 ]
[ -1 0 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 1.3 1.3 3.3 ]
[ -1 1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.83 1.2 1.2 ]
[ -1 1 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ -0.33 1.7 1.7 ]
[ -1 1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.17 2.2 2.2 ]
[ -1 1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 0.67 2.7 2.7 ]
[ 0 -1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.2 -0.83 1.2 ]
[ 0 -1 2 ] 512 (1.9117,1.8149) 2.6360 9.98 [ 1.7 -0.33 1.7 ]
[ 0 -1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.2 0.17 2.2 ]
[ 0 -1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 2.7 0.67 2.7 ]
[ 0 0 2 ] 2050 (1.9117,0.0000) 1.9117 7.22 [ 1 1 1 ]
[ 0 0 4 ] 4 (3.8233,0.0000) 3.8233 14.57 [ 2 2 2 ]
[ 0 1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.17 1.8 -0.17 ]
[ 0 1 2 ] 512 (1.9117,1.8149) 2.6360 9.98 [ 0.33 2.3 0.33 ]
[ 0 1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.83 2.8 0.83 ]
[ 0 1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 1.3 3.3 1.3 ]
[ 1 -1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.8 -0.17 -0.17 ]
[ 1 -1 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 2.3 0.33 0.33 ]
[ 1 -1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.8 0.83 0.83 ]
[ 1 -1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 3.3 1.3 1.3 ]
[ 1 0 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.2 1.2 -0.83 ]
[ 1 0 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 1.7 1.7 -0.33 ]
[ 1 0 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.2 2.2 0.17 ]
[ 1 0 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 2.7 2.7 0.67 ]
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2.2. Possibilities and limitations of the PMBE chamber

We now shortly discuss how a scan in reciprocal space can be realized. We focus on scans
at 15keV with qr = 1.815Å−1. For wurtzite, the set of reflections (10.l)wyh2, l = 1, 2, 3,
belongs to this class. For these reflections, the vertical scattering component increases
with increasing l. Each of these four reflections is accessible with the current set-up (see
Tab. 2.2). Although we use this set of reflections for illustration of our discussion, most
of our considerations are independent of the particular reflection.

At this point, we come back to Eq. (2.7) and (2.8) and exploit it in orthonormal surface
coordinates such that the surface normal is given by the n̂ = (001) direction. For this
choice of a basis, the incidence angle and exit angle with respect to the sample surface is
given by

sin (αIn) = cos
(π

2
− αIn

)
=
kIn · (−n̂)

k
(2.19a)

sin (αOut) = cos
(π

2
− αOut

)
=
kOut · n̂

k
(2.19b)

By virtue of the choice of ê1, the contribution of the term with cos(η) drops out in the
projection on the surface normal and we obtain

sin (αIn) = ν1 + ν2 · sin(η) , (2.20a)

sin (αOut) = ν1 − ν2 · sin(η) , (2.20b)

where we defined

ν1 =
Gz
2k

> 0 , ν2 =
r0

k

Gr
G

> 0 . (2.20c)

First, we evaluate which values can be realized for αIn in Bragg geometry. In Bragg
geometry, αIn and αOut need to be bigger than zero, which is equivalent to the constraint
that the sin of these angles is larger than zero. From

0 ≤ ν1 + ν2 · sin(η)
ν2 6=0⇔ sin(η) ≥ −ν1

ν2
< 0 , (2.21a)

0 ≤ ν1 − ν2 · sin(η)
ν2 6=0⇔ sin(η) ≤ ν1

ν2
> 0 , (2.21b)

we see, that only values for η from the two intervals10 [−ηMax, ηMax] and [π−ηMax, π+ηMax]
provide Bragg geometry, where ηMax is given by

ηMax =

{
arcsin

(
ν1
ν2

)
if ν1/ν2 ≤ 1

π/2 else
. (2.22)

Therefore, irrespective of the limitations imposed by the chamber or diffractometer, we
have the limitations

0 ≤ sin (αIn) ≤ 2ν1 if ν1/ν2 ≤ 1 , (2.23a)

ν1 − ν2 ≤ sin (αIn) ≤ ν1 + ν2 otherwise . (2.23b)

In Tab. 2.3, the limitations for the incidence angle of the current experimental setup are
summarized for several hexagonal and cubic Bragg reflections. The first column in this
table ignores the restrictions imposed by the experiment setup. The angles in the second
column correspond to the opening angle of 18◦ of the current in-situ MBE growth chamber.
For the third column, the limitations in the vertical offset of the diffractometer to 5◦ are

10The transformation η → η + 180◦ transforms kIn → kOut and kOut → kIn.
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incidence angle
reflection Bragg geometry + chamber limits + diffractometer limits

(111)zyc 0◦-4.8◦ 0◦-4.8◦ 0◦-4.8◦

(10.1)wyh2 0◦-7.2◦ 0◦-7.2◦ 0◦-7.2◦

(200)zyc 0◦-9.7◦ 0◦-9.7◦ 0◦-9.7◦

(10.2)wyh2 0◦-14.6◦ 0◦-14.6◦ 0◦-14.6◦

(220)zyc 0◦-19.7◦ 1.7◦-18◦ 3.8◦-18◦

(10.3)wyh2 0◦-22.2◦ 3.9◦-18◦ 6.1◦-18◦

(311)zyc 0◦-25.0◦ 6.5◦-18◦ 8.7◦-18◦

Table 2.3.: Limitations on the incidence angle for some particular Bragg reflections.

included in the calculations. The same restrictions apply to the equivalent reflections
according to the Tabs. B.1 and B.2 in the appendix.

These considerations provide the following important conclusions:

Despite the limitations imposed by the growth chamber and the diffractometer, we are
capable of scanning the full set of reflections (10.1)wyh2, (200)zyc, (10.2)wyh2, (22.0)zyc,
(10.3)wyh2 (and symmetry equivalents thereof) as well as the trajectories in between these
reflections with a (fixed) incident angle of, e.g., 6.6◦. If we choose a (fixed) incident angle of
approximately 9.2◦, we can instead measure the full set of reflections (200)zyc, (10.2)wyh2,
(220)zyc, (10.3)wyh2, (311)zyc (and symmetry equivalents thereof). During such a scan
with fixed incidence angle, it is only required to rotate the sample around its normal and
simultaneously position the detector accordingly. No inclination of the sample itself with
respect the chamber is required.

Finally, the series (220)zyc, (10.3)wyh2, and (311)zyc of asymmetric, polytype and twin
specific reflections can even be measured at an energy of 15keV without inclination of the
chamber itself, modification of the incidence angle (αIn = 15.5◦), or repositioning of a
current 2D detector placed at a distance of approximately 50cm from the sample.

Our derivations also provide all essential information for actually performing a scan along
any suitable trajectory (qx(τ), qy(τ), qz(τ)) parametrized by τ with a fixed angle of in-
cidence: For a given incidence angle αIn and parameter τ , we obtain a solution for η.
Substituting this value for η in Eqs. (2.7) and (2.8), we obtain the full vectors kIn and
kOut in surface coordinates for the respective q(τ) point. A simple coordinate transfor-
mation from surface coordinates to the lab coordinate system for the source and detector
provides the information about the positioning of the source (in case of a lab diffractome-
ter), the chamber (in case of a heavy load diffractometer at a synchrotron beamline) and
the detector.

At this point we end the discussion on the capabilities and limitations of the PMBE growth
chamber for time-resolved in-situ X-ray measurements.
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3. Post-growth investigations of GaAs
nanowires grown in the PMBE

In this chapter, we present the results of some post-growth measurements of three GaAs
nanowire samples that have been grown in the PMBE growth chamber by Philipp Schroth
(see Sec. 2 and Ref. [67]). We begin this chapter with a discussion of the three-dimensional
intensity distribution in reciprocal space (close to the (111)zyc Bragg reflection of silicon
and GaAs) in Sec. 3.1. This information has been measured after growth – without ex-
posing the sample to air (“post-growth in-situ measurement”). In Sec. 3.2, we investigate
two GaAs nanowire samples with a nano-focus setup. By virtue of the nano-sized beam,
we obtain valuable information for the proper interpretation of the time-resolved in-situ
measurements which we will discuss in Sec. 4. In addition, we extract the ratio dWZ/dZB of
the thickness dZB of a GaAs layer in [111]zyc direction in zinc blende versus the thickness
dWZ of a GaAs layer in [00.2]wyh2 direction in wurtzite. The latter results have already
been published in Ref. [3].

Experimental investigations can be classified in two categories: ex-situ and in-situ inves-
tigations. The term in-situ refers to investigations of objects in their natural surrounding,
possibly even in operation (“in-operando”). Since we aim to study the growth of nanowires,
their natural surrounding during growth is a growth chamber – such as the PMBE growth
chamber which has been presented in Sec. 2.

If the physical question under consideration can be answered by an in-situ investigation
before and after growth only, the X-ray flux is typically no major concern for such in-
vestigations and the combination of the growth chamber with a lab setup could be also
feasible. However, if time-resolved in-situ X-ray investigations are required, hard X-ray
synchrotron sources become of relevance. We will discuss such time-resolved in-situ X-ray
investigations in Sec. 4.1

Nevertheless, extended post-growth in-situ and ex-situ measurements are highly valuable:

On the one hand, for post-growth in-situ measurements, the final state can be measured
with higher signal-to-noise ratio since time-resolution need not be considered. Moreover,
supplemental scans of other reflections (which may require additional time-consuming
alignment) can be recorded for the same reason.

On the other hand, post-growth ex-situ measurements typically provide higher experi-
mental flexibility (and, typically, also accuracy) than feasible in-situ. The possibilities

1We point out that time-resolution is not only required for studying the growth process itself, but also
for investigation of the cool-down after growth as well as for annealing studies.
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3. Post-growth investigations of GaAs nanowires grown in the PMBE

and limitations of the PMBE growth chamber at ANKA concerning the geometry of the
measurements have already been discussed in Sec. 2.2. In addition to those geometrical con-
straints, it is highly challenging to combine such a growth chamber with nano-positioning
and a nano-focus for highly localized X-ray investigations.

Equally important is the characterization after growth by complementary techniques (such
as SEM and TEM). Although the UHV laboratory at ANKA facilitates some post-growth
characterizations without exposure to air, the most important characterization of grown
GaAs nanowires is provided by SEM, which is not available in this laboratory. Conse-
quently, the post-growth SEM investigations have been performed ex-situ.

Characteristic SEM images of the samples which are relevant for this part of the manuscript
are depicted in the appendix in Sec. D. Extensive discussions of the information which has
been extracted from the large amount of SEM images of a large number of samples grown
in the PMBE growth chamber are given in Refs. [3, 67, 126, 131]. Moreover, detailed
information on the calibration of the Ga and As fluxes and the growth protocol of these
samples can be found in these references. The latter is shortly summarized now:

As substrates, p-doped Si(111) covered by a thin native oxide layer has been used. All
three samples were grown at a substrate temperature TS = 590◦. Sample 1 has been grown
at a V-III ratio of approximately 3.2, whereas sample 2 and sample 2e have been grown at
a V-III ratio of approximately 4.9. Whereas sample 1 and sample 2 have been grown for
tG = 60min after opening the Ga shutter, sample 2e has been grown for only tG = 30min.
After the time tG, the Ga and As shutters were closed, the substrate heating was stopped,
and its temperature was ramped down to TFinal = 100◦C in 8min.

3.1. In-situ measurement of the (111)zyc reflection of GaAs

We now start with the discussion of the three-dimensional intensity distribution in recip-
rocal space close to the (111)zyc Bragg reflection of silicon and GaAs measured in-situ
after growth. The results for sample S1 and sample S2 are depicted in Fig. 3.1.

In addition to the signal from the silicon substrate – its Bragg peak, its diffuse scattering
and its crystal truncation rod – we observe a cloud of intensity close to the position of
GaAs which is absent before growth. This cloud close to the position of GaAs is rather
smooth and wide-spread in qx and qy direction which is advantageous for time-resolved
in-situ measurements:

We can record any steep cut through this intensity cloud close to the center and, thereby,
acquire a good approximation to the intensity distribution in the qy-qz plane in reciprocal
space. Here, qz is defined to be the momentum transfer perpendicular to the (111)zyc

planes of the nanowires grown along [111]zyc direction.

We will in Sec. 4 exploit the qz information obtained from such steep cuts through the
(111)zyc Bragg reflection of GaAs recorded time-resolved during the growth of the samples
S1 and S2 in order to investigate the evolution of the wurtzite zinc blende polytypism (see
Sec. 1.4) of the growing nanowires.

However, the post-growth ex-situ SEM images of the final state of both samples S1 and S2
(see Sec. D in the appendix) show “crystallites” – nanostructures with aspect ratios ∆h/∆r
in the order of one (“parasitic growth”) in addition to nanowires with aspect ∆h/∆r � 1.
Here, h is the height and r is the radius of the nanoobject. The presence of the crystallites
on the samples complicates the interpretation of the cloud of intensity close to the GaAs
position because the contributions from a large number of crystallites (“parasitic growth”)
and a large number of (likely polytypic) nanowires superimpose.
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3.1. In-situ measurement of the (111)zyc reflection of GaAs
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Figure 3.1.: Intensity distribution in reciprocal space close to the (111)zyc Bragg reflection
of silicon and GaAs of samples S1 and S2 measured in-situ after growth. The
information in reciprocal space which is obtained during the time-resolved in-
situ measurements that are discussed in Sec. 4 by the fixed arrangement of
the detector, incident beam and sample is highlighted. A photograph of the
experimental setup (i.e., the PMBE growth chamber mounted at the NANO
beamline at ANKA) can be found on page 50.

Consequently, it is instructive to first study the signal of a single or few nanoobjects
only before we return to the cumulative signal from a large number of two kinds of objects
(crystallite/wire) each possibly with two kinds of internal structure (wurtzite/zinc blende).
Therefore, we will first discuss post-growth ex-situ measurements with a highly focused
X-ray beam in Sec. 3.2 before we proceed with the ensemble-averaged time-resolved in-situ
measurements in the PMBE growth chamber in Sec. 4.
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3. Post-growth investigations of GaAs nanowires grown in the PMBE
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Figure 3.2.: Typical detector frames scanned with the nanofocus setup at ID13@ESRF.
Counts of the detector have been converted to colored images by the lookup
table “Fire” in imageJ [133]. The CTR is marked by a dashed green box.

3.2. Ex-situ measurements with nano focus at ID13@ESRF

In this section, we discuss post-growth ex-situ measurements which have been performed at
ID13 at the ESRF in Grenoble [3, 132]. This beamline provides a nanofocus setup (Gaussian
beam profile with a FWHM of 250nm at an energy of 14.9keV) which is essential for the
results presented in this section. We again measured two-dimensional cuts in reciprocal
space through the (111)zyc Bragg reflection of GaAs nanowire samples with a 2D detector
as discussed in Secs. 3.1 and 4. However, instead of the temporal evolution during growth
averaged over a large number of nanowires, we measured a huge number of such cuts in
reciprocal space at different positions of the X-ray beam on two samples after growth and
thereby obtain spatially resolved information on the scale of a single or a few wires. This
way, we (i) gain important information about the composition of the spatially averaged,
time-resolved in-situ data which will be analyzed in Sec. 4 and (ii) are able to derive an
estimate on the ratio of the lattice constants in [111]zyc direction in the GaAs zinc blende
polytype and the [00.2]wyh2 direction of the GaAs wurtzite polytype.

The sample S1 studied at ID13@ESRF is a sample grown during the time-resolved in-
situ X-ray growth studies discussed in Sec. 4. The other sample (sample S2e) has been
grown with the same growth conditions as sample S2 in Sec. 4, but the growth time was
only 30 min (compared to 60 min for sample S2). For a more detailed description of the
samples, we refer the reader to the thesis of Philipp Schroth [67] and Ref. [3].

3.2.1. Contributions from nanowires and parasitic growth

In Fig. 3.2, some typical detector frames captured by the nanofocus grid scan of our samples
are depicted. All frames show intense diffuse scattering from the silicon substrate. In
addition, most detector frames of sample S1 reveal contributions from both, wires and
crystallites (see Fig. 3.2(a)). Wire contributions are attributed to the signals with high
aspect ratio and are typically rather extended in qy direction (i.e., perpendicular to qz).
Clearly, the signal of crystallites has different characteristics: Most importantly, it shows
a different aspect ratio. For this sample, we classified 194 frames mainly originating from
wire scattering, 27 frames mainly originating from crystallites only and 453 frames which
show simultaneous contributions from wires and crystallites by manual inspection. We do
not require that a single detector frame resembles only the scattering of a single object.
We only require that a single detector frame only shows scattering information of one class
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3.2. Ex-situ measurements with nano focus at ID13@ESRF

of objects. Fig. 3.2(b) shows a detector frame attributed to the class “wire scattering”
with two pronounced and well distinguished subpeaks. Those two subpeaks are attributed
to rather pure domains of zinc blende and wurtzite in the GaAs nanowires. We cannot
distinguish if both subpeaks originate from a single wire or from two (or more) wires
which may be illuminated simultaneously despite the nanofocus. However, this is of minor
importance for our considerations.

In Figs. 3.2(c) and 3.2(d), the detectors frames illustrate scattering attributed to nanowires
of sample S2e. The first example shows one peak only in qz direction, whereas for the
second example, two subpeaks along qz are found in the qz profile after integrated perpen-
dicular to qz and subtraction of the background of the diffuse silicon (see profile 24 later).
However, in the two dimensional raw detector signal, the second subpeak is not or only
barely visible. We point out that the signals are typically much stronger for the sample
S1 since (i) its wire density is higher, (ii) the mean wire diameter is thicker and (iii) the
mean wire height is larger [3, 67].

We now investigate the cumulative signal of the nanowires and the crystallites separately
and compare it to the total cumulative signal “all” (obtained from all three classes of
classification “wires-only”, “crystallites-only” and “both”). We focus on the qz direction.
Therefore, we integrate the frames in qy direction, i.e., perpendicular to the line connecting
the CTR and the center of the silicon peak. We then fit a Pearson VII function [134] to
the silicon peak to obtain the center of the diffuse silicon signal in qz direction. We shift
the qz profiles from each frame in such way that the silicon center is pixel zero.2 The GaAs
signal is thereby shifted to negative pixel values. We stick to detector pixels since a qz
calibration with the required high accuracy is very challenging and is neither required for
the extraction of the ratio dWZ/dZB nor for the understanding of the contributions in the
ensemble-averaged signal. For simplicity, we still refer to the respective axis as qz axis.

We then summed all (shifted) profiles of each class “wires”, ”crystallites” and ”all” for both
samples. This way, we obtain cumulative one dimensional qz profiles which are depicted
in Fig. 3.3(a) for sample S1 and in Fig. 3.3(b) for sample S2e. In both figures, the signal
before and after background correction is depicted.

If we take a closer look on the qz profiles in Fig. 3.3(a), we observe that

• neither the wires nor the crystallites show a pronounced fine structure,

• both signals are almost symmetric with respect to the maximum (the wire signal
shows a weak asymmetric tail towards negative pixel distances),

• the full width half maximum of the peak from the crystallites (≈ 17.7 pixel) is larger
than the full width half maximum of the peak of the nanowires (≈ 8.7 pixel), and,

• the maximum of both peaks is shifted by approximately 2.7 pixel (center of wires at
−128.7, center of crystallites at −131.4).

For sample S2e, we determine the center of the crystallite signal at −132.7 pixel. Again,
the signal of the crystallites is essentially a symmetric peak without fine structure. The full
width half maximum of the respective peak is 26.7 pixel. The wire signal, however, is non-
symmetric and, thus, is not compatible with a Gaussian shape. The additional weight in
the wire frames stems from regions in the nanowire with larger interplanar lattice spacing
— as in wurtzite segments [101, 119]. As a consequence of the disorder in the arrangement
of both phases, scattered intensity is not only present at the pure phase positions, but
also in between the two peaks. We will come back to this when we extract the interplanar
lattice spacing from our data and when discussing the in-situ data for sample S1 and S2e.

2Since the center is – in general – a non-integer value, linear interpolation of the shifted data is performed.
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(a) Cumulative qz intensity profiles of sample S1
(before [dashed line] and after [continuous line]
correction of background).
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(b) Cumulative qz intensity profiles of the sam-
ple S2e (before [dashed line] and after [continuous
line] correction of background). Note, that the
integrated intensity of the crystallites is stronger
than of the nanowire signal. Moreover, we point
out the asymmetric profile of the nanowire signal.
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(c) qz intensity profile of wires and crystallites of
three different scans of the sample S2e: Scans are
marked by color line style. Whereas the signal of
the crystallites is almost equal for all three scans,
fluctuations from scan to scan are observed in the
wire signal.
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Figure 3.3.: qz intensity profiles of the samples S1 and S2e. The first two figures are nor-
malized to the decay of the diffuse silicon peak. The third figure is normalized
such that all three scans and the total average have the same crystallite weight.
The comparison of both samples has been normalized such that the maximum
of the strongest signal of both samples is approximately equal (overall signal
for sample S1, crystallite signal for sample S2e). [Figs. (c) and (d): ( c©2014
International Union of Crystallography (IUCr), adopted from [3])]

The cumulative signal of sample S2e is constituted by three scans on the sample. The third
subfigure (Fig. 3.3(c)) shows the cumulative qz profile for the wires and the crystallites for
each of these three scans separately. For better comparison, the intensity of each scan has
been rescaled such, that the weight of the crystallites is equal. Clearly, the shape and the
center of the crystallite signal is very similar in all three scans. However, the signal of the
wires shows rather strong fluctuations: Whereas “scan 1” shows a rather broad signal with
plateau , “scan 2” and “scan 3” show a pronounced peak. However, the maximum of this
peak is shifted by two pixel. “scan 2” shows a second peak close to -148, which is absent
in “scan 3”. In the latter, only a plateau can be observed near this position. “scan 1” does
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Figure 3.4.: Distribution of centers of the wire and crystallite signals in qy direction. For
each histogram, the total number of objects “#”, the mean value, the median
and the standard deviation is given.

not even show this plateau, but decays continuously from pixel -135 to pixel -155 without
plateau or second peak. These rather strong fluctuations demonstrate the importance of
measuring the properties of nanowires with similar properties as samples S1 and S2e on a
statistical level – beyond the investigations of single or few objects.

In Fig. 3.3(d), we compare the wire, crystallites and total overall signal of both samples.
Since the detector was placed at the same position for both samples within experimental
precision, the qz distance associated with a single pixel is comparable: If we assume an error
of 1% – resulting from small deviations in the experimental calibration for each sample
and small deviations in the position of the detector – we can compare both samples within
a precision of 1.3 pixel. Within this precision, the center of the crystallites is equal for
both samples. Moreover, for both samples, the maximum of the wire signal is close to
a pixel distance of 130 with respect to the center of the diffuse scattering of the silicon
substrate. However, the asymmetric tail in the pixel range [−155,−135] is only present
for sample S2e. Again, we see the different relative total weight of the crystallites and the
wires: Whereas the signal of the crystallites is stronger for sample S2e, the signal of the
wires is stronger for sample S1. If we attribute the pixel distance to silicon close to −130
to the zinc blende phase, we see that sample S1 has a very high fraction of the zinc blende
phase. The fraction of zinc blende in sample S2e is lower than the one in sample S1, but
still above 50% since the peak at the zinc blende contains more intensity weight than the
peak at the wurtzite position which should be located close to a pixel distance of −150 to
silicon according to the results presented in Refs. [101, 119].

Before we turn to the extraction of the ratio of the lattice constants in [111]zyc direction in
the GaAs zinc blende polytype and the [00.2]wyh2 direction of the GaAs wurtzite polytype,
we consider the behaviour of our signals in qy direction.

For this, we estimated the center of mass of our wire signals as well as for the crystallites.
The distributions of these centers are depicted in Fig. 3.4 for both samples. In both cases,
the distribution of the crystallites has a width in the order of 60 pixel. On the contrary,
the distribution for the wires is smaller by a factor of four for sample S1 and a factor of
two for sample S2e.

We point out that the width of the wire distribution in Fig. 3.4(a) is systematically un-
derestimated as compared to the intrinsic true physical width of the distribution. This
systematic underestimation stems from the simultaneous illumination of multiple wires
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which becomes relevant for sample S1 due to its high density of wires. It can be under-
stood if we assume that the signal on a single detector frame results from two wires with
different qy center. If the splitting of the centers is not larger than the width of the signal
in qy direction, a separation of the two contributions is not possible if we also take into
account that almost all photons from the nanowires are located at very similar qz positions.
Since the width of the nanowire signal in qy direction is very large, their signals tend to
overlap in that manner once multiple wires are illuminated. As a consequence, the signal
from the two wires is mistaken as a single wire with a center qy typically shifted towards
the center of the distribution. Thus, the width of the distribution of the center of the
wires along qy is systematically estimated too low. For the crystallites, such overlapping
is far less likely due the typically lower width in qy direction (see e.g. the three clearly
separable crystallites in Fig. 3.2(a)). For sample S2e, the wire density is lower and their
mean height is smaller. Therefore, the probability for simultaneous illumination of two
wires also decreases. As a result, the standard deviation estimated from the measured
data is much closer to the true physical value.

We will come back to this discussion of the qy direction when we discuss the processing of
the experimental in-situ data during growth in Sec. 4.1.

3.2.2. Ratio of the inter-layer spacings in zinc blende and wurtzite GaAs

We now turn to the extraction of the ratio dWZ/dZB of the lattice constants in [111]zyc

direction in the GaAs zinc blende polytype and the [00.2]wyh2 direction of the GaAs
wurtzite polytype. We will also compare this ratio dWZ/dZB in our nanowires with the
few results for this ratio in the in GaAs which we found in literature [101, 118, 119, 121,
135–138]. An overview over the existing results is given in Tab. 3.1.

If we consider the discrepancies of the ratio dWZ/dZB in the available results for nanowires
grown on Si-111 and GaAs-111 substrates and for nanowires and bulk GaAs, the impor-
tance of re-estimation of the ratio — in particular for samples similar (or identical) to the
in-situ samples discussed in Sec. 4 — is obvious.

It will turn out that our result close resembles the results given in Refs. [101, 119, 138],
but discrepancies to the value for bulk GaAs [135, 136] and results for nanowires grown
on GaAs-111B substrates [121, 137] are found.3

For that purpose, we select a subset of our detector frames which contain typical wire
signals and show a two-peak splitting after subtraction of the background. In order to
be able to evaluate frames which contain contributions of wires and crystallites, we define
a specific qy range as region of interest (ROI). From 36 candidates for determining the
splitting of the two subpeaks as well as the positions of pure cubic and hexagonal GaAs,
we selected in a second step the best five qz profiles. This second selection was based on the
requirements of sufficient signal to noise ratio, almost Gaussian shape of both subpeaks,
and, finally, as few counts as possible in the intermediate domain. The last requirement is
very important since such counts indicate that the illuminated structures are most likely
not as pure as required: the mean lattice constant of the illuminated structures might
differ from the pure structures which may result in a drift of one or both subpeaks towards
each other. Therefore, such candidates systematically underestimate the splitting of pure
wurtzite and zinc blende.

The resulting five detector frames, ROIs and qz profiles are depicted in Fig. 3.5. For
all 36 candidates, the respective qz profiles — integrated along qy inside the ROI and
after subtraction of the diffuse silicon background which, again, has been modelled as a

3We point out, that – since we cannot obtain an estimate for the change of the in-plane lattice parameter
from our data – we cannot compare the c/a-ratios which are provided e.g. in Refs. [121, 137].
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Reference dWZ−dZB
dZB

[%] ∆ [nm] l [µm] S C T [◦C] M

[135] 0.554+0.015
−0.015 bulk bulk — — — SXRD

[118] −1.3 — — — — — DFT
[136] 0.55 — — — — — DFT

[137] 0.52 10-35 0.25-0.45 GaAsBL
111B Au 570 TEM

[121] 1.49+0.06
−0.06 75 0.5 GaAsR

111B Au 510 LXRD
[138] 0.62 50 2.1 SiR111 Au 500 LXRD

[101, 119] 0.70+0.05
−0.05 90-285 0.02-1.2 SiNO

111 Ga 580 SXRD

— 0.66+0.02
−0.02−0.06 18-25 1.2-2.2 SiNO

111 Ga 590 SXRD

Table 3.1.: Summary of the published values dWZ/dZB in GaAs. All nanowire samples have
been grown by MBE. No dopants have been added to the nanowires (apart from
possibly catalyst atoms). ∆ refers to the diameter of the nanowires, l to their
length. S refers to the substrate (NO=native oxide layer; BL=buffer layer;
R=oxide layer removed), C to the catalyst, T to the substrate temperature
during growth, and M to the measurement technique (LXRD=XRD with lab-
oratory source; SXRD=XRD at synchrotron source). The last line anticipates
the result of this manuscript. Errors are given for (dWZ − dZB)/dZB whenever
available. The first value in the superscript and subscript text for the ratio
dWZ/dZB refers to bounds for the statistic uncertainties, the second to bounds
for the systematic uncertainties. ( c©2014 International Union of Crystallogra-
phy (IUCr), from [3])

Pearson VII — have been fitted by two Gauss distributions. We point out, that data
points in between the two subpeaks need to be ignored if photons have been counted
in this region. Otherwise, the centers of the two Gaussians are systematically shifted
towards each other. As a consequence, the difference of the center of the two subpeaks
is systematically estimated too low. For those candidates for which the fitting of both
subpeaks was successful, the retrieved splittings are depicted in Fig. 3.6. The five splittings
based on the profiles after the second selection (“best profiles”) are highlighted in red.
Clearly, we see from Fig. 3.6 that most “non-optimal” candidates indicate systematically a
smaller splitting than the value retrieved from the five best profiles.

Since the number of estimations for the mean splitting is low and the error bounds vary by
a factor as big as six, the error of each single value should be included in the calculation
of the mean splitting of both phases and a weighted average is evaluated.4 The result for
the mean splitting of the two subpeaks – based on the five best profiles – is5

4The weighted average has been calculated by

µ =
∑
i

wixi , wi =
e−1
i∑
j e
−1
j

, σ =

√
1

N

∑
i

wi(xi − µ)2 , (3.1)

where σ estimates the error of the mean value. Note, that σ refers to the expected error of the mean
value µ and not to an intrinsic width of a distribution. The weights wi have been chosen as the reciprocal
of the error ei obtained from the confidence bounds of the centers from the fit to two Gaussians of each
single profile.

5The numerical values for the splitting of both subpeaks, the error thereof and the weight for the calcu-
lation of a weighted average for the best five profiles are:

profile single frame splitting [pixel] error [pixel] weight [ ]

4 19.924 0.228 0.365
13 20.897 0.468 0.178
18 21.743 0.848 0.098
19 20.891 0.281 0.296
24 23.632 1.337 0.062
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3. Post-growth investigations of GaAs nanowires grown in the PMBE

(a) detector
frame for profile
4 with ROI
(sample S1, see
Fig. 3.2(b))

(b) detector
frame for profile
13 with ROI
(sample S1)

(c) detector
frame for profile
18 with ROI
(sample S1)

(d) detector
frame for profile
19 with ROI
(sample S1, see
Fig. 3.2(a))

(e) detector
frame for profile
24 with ROI
(sample S2e, see
Fig. 3.2(d))
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(f) qz intensity profiles obtained from qy-integration of
the region of interest (green lines) in Figs. (a) to (e)
after subtraction of the background of the silicon signal.

Figure 3.5.: Details on the five best candidates for determining the ratio of the interplanar
distances in wurtzite and zinc blende structures in [111]zyc direction. ( c©2014
International Union of Crystallography (IUCr), from [3])

mean splitting [pixel] error of mean splitting [pixel]

reciprocal weight 20.793 0.502
equal weight 21.417 0.624

where the case of equally weighted data points has been included for comparison (only). If
we include all 20 profiles (out of our 36 candidates) for which a difference has been extracted
successfully, we obtain the strict lower bound (due to systematic under-estimation of some
data points)

mean splitting [pixel] error of mean splitting [pixel]

reciprocal weight 18.880 0.493
equal weight 18.507 0.532

for the splitting of wurtzite and zinc blende. This lower bound is only 9.2% smaller than
the weighted mean of the best profiles. However, we are convinced that the selection of
the five best profiles more accurately represents the true physical value due to the reduced
systematic errors. Thus, we will not discuss this lower bound in more detail. Nevertheless,
this low bound will be important later for comparison of our results with values presented
in current literature.

Since this difference is measured in pixel, we need to compare it to a second scale in
pixel. We choose to compare the splitting to the distance of the cubic GaAs subpeak
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Figure 3.6.: Splittings of the two subpeaks in reciprocal space resulting from the different
interplanar distance of cubic and wurtzite GaAs structures. The five best
profiles (see Fig. 3.5) are highlighted by red stars. Most other candidates
underestimate the splitting of the position of pure cubic and wurtzite GaAs
(see discussion in main text). For some candidates, no splitting could be
extracted in a robust and stable manner and, thus, those candidates have
been discarded. The (weighted) mean value for the splitting (and the error
thereof) are included as vertical lines (orange=best five profiles, green=all 20
profiles for which a difference could be extracted from a single frame). [( c©2014
International Union of Crystallography (IUCr), adopted from [3])]

(i.e., the subpeak closer to the silicon signal) to the center of the diffuse silicon peak. By
construction, the center of the silicon peak is located at zero. Therefore, the difference
of the silicon peak to the GaAs peak is given by the (negative) center of the cubic GaAs
subpeak. However, the uncertainty in the estimation of the Si center and the cubic GaAs
center adds up. Again, we perform a weighted average6 and obtain 128.253± 0.279 pixel
for the distance of cubic GaAs and silicon.

Therefore, the splitting of hexagonal GaAs to cubic GaAs is

s =
qZB − qWZ

qSi − qZB
=

20.793± 0.502

128.253± 0.279
= 16.2%± 0.4% (3.2)

of the splitting of cubic GaAs to silicon. If we convert this to reciprocal Angstroms – based
on the lattice constants at room temperature – we obtain7

δqz = (16.2%± 0.4%) · 0.07883Å−1 = (0.1277± 0.0032) nm−1 (3.3a)

Since the position of qz is proportional to the inverse interplanar spacing, we have for the
ratio of the interplanar spacing of wurtzite and zinc blende

dWZ

dZB
=
qZB

qWZ
=

1

1− qZB−qWZ
qZB

=
[
1− s · (qSi − qZB)

qZB

]−1
=
[
1− s · dZB − dSi

dSi

]−1
(3.4a)

=
[
1− s · aZB − aSi

aSi

]−1 ≈ 1 + s · aZB − aSi

aSi
= 1 + 0.66%± 0.02% , (3.4b)

6From the best five profiles, we obtain for the center of the cubic GaAs subpeak:

profile distance GaAs-cub to Si [pixel] error [pixel] weight [ ]

4 127.728 0.0941 0.3511
13 128.416 0.2168 0.1522
18 129.183 0.1210 0.2728
19 128.033 0.2886 0.1144
24 127.619 0.3003 0.1099

7For GaAs, we used qz = 1.925055 Å−1 and for Si, we used qz = 2.003886 Å−1.
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3. Post-growth investigations of GaAs nanowires grown in the PMBE

where we have set aZB−aSi
aSi

= 4.092%. Therefore, the interplanar distance in the wurtzite
phase structure is approximately 0.66% larger than the one in cubic GaAs. The relative
statistical error of the deviation is approximately 3%, the absolute statistical error is 0.02%.

The systematic lower bound corresponds to s = 14.7%±0.4% or dWZ
dZB

= 1+0.60%±0.02%.

We emphasize that the results for s are specific for the nanowires only, since we were able
to split their signal from the signal from the crystallites by virtue of the highly focussed
X-ray beam. Only for the ratios dWZ

dZB
– evaluated by Eq. (3.4b) – we assume that the lattice

constant of zinc blende GaAs in the bulk and in the nanowires coincides.

We now compare this ratio with the existing literature (see Tab. 3.1).

Within the error margins, our value is fully compatible with the value obtained in Refs. [101,
119] where a relative increase of inter planar spacing in [111]zyc direction of wurtzite phase
of 0.70%± 0.05% has been observed. We point out that the wires which have been inves-
tigated in Refs. [101, 119] have diameters in the range from 90nm± 8nm to 285nm± 65nm
whereas our wires are much smaller in diameter which reaches values as small as 18nm and
25nm for our wires [3, 67]. Moreover, our result closely resembles the result of Breuer [138].
Therefore, the inter planar spacing of wurtzite and zinc blende phase in [111]zyc direction
is independent of the nanowire radius at least in the range from 15nm to approximately
300nm.

We point out that our result for the ratio dWZ/dZB in nanowires as well as the results given
in Refs. [101, 119, 138] is larger than for bulk GaAs (see Ref. [135] for an experimentally
obtained value and Ref. [136] for a recent8 ab-initio DFT+LDA prediction in Tab. 3.1).

In Ref. [137], Tchernycheva et al. observed an interplanar spacing of d(WZ) = 3.281Å from
the inter-spot distance of TEM diffraction patterns of gold-catalyzed GaAs nanowires.
If we compare this to d(ZB) = a(ZB)/

√
3 = 3.26391Å, it corresponds to an increase of

the interplanar spacing of 0.52%. This value is smaller by approximately 25% than our
value and, most importantly, smaller than our lower bound 0.60%±0.02% for the increase
of the interplanar spacing. However, the authors of Ref. [137] did not provide an error
estimate for the results on the interplanar spacing, and, thus, we cannot draw conclusions
if either their value is compatible with our estimate within their errors, if our reference
d(ZB) = 3.26391Å is not valid for their sample, or, finally, if their interplanar spacing is
physically different from the value which we observed. Nonetheless, it is interesting that
their result for the ratio dWZ/dZB in nanowires is very similar to the current results for
bulk GaAs.

On the contrary, Mariager et al. extracted an interplanar spacing of d(WZ) = 3.3125Å ±
0.002Å for gold catalyzed GaAs nanowires in Ref. [121]. They could not observe any dif-
ference of the in-plane lattice parameter of cubic and hexagonal GaAs structures. Hence,
the reference is d(ZB) = 3.26391Å which corresponds to an increase of the interplanar
spacing of 1.49% ± 0.06%. This value is twice as large as our value or the value in [101,
119]. However, we cannot understand this discrepancy without further research on GaAs
nanowires grown GaAs-111 substrates.

We believe that our result together with the result from Refs. [101, 119] provides an accu-
rate estimate for the increase of the interplanar scaling dWZ/dZB in self-catalyzed GaAs
nanowires grown on Si-111, but additional research for GaAs nanowires grown on GaAs-
111 substrates is needed in future to elucidate the discrepancies to the results for Si-111.

8Considering the advances in computational power in the last two decades, we discard the result obtained
by Yeh et al. [118] in our discussion and restrict to the recent result by Panse et al. [136].
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4. Time-resolved in-situ X-ray studies of
GaAs nanowires during growth

In this section, we present results of a in-situ X-ray investigation of self-catalyzed GaAs
nanowires on a [111]zyc oriented Si substrate with native oxide layer.

For this study, the portable MBE growth chamber (see Sec. 2) was installed at the NANO
beamline at the synchrotron radiation source ANKA [67, 139, 140]. A two dimensional
detector – a PILATUS 100K-S [120] — was placed at a fixed position in space (distance
to sample ≈ 1m). From the set of possible reflections discussed in Sec. 2.2, the (111)zyc

Bragg reflection of GaAs has been chosen for the in-situ investigation: For that reflection,
scattered photons of both phases are collected with slightly different diffraction angles
as a result of the dependence of the lattice constant on the polytype. Moreover, as the
lowest indexed symmetric reflection, its integrated scattered intensity is highest, which is
advantageous for time-resolved measurements. Thus, it is a reasonable starting point for
time-resolved in-situ investigations of GaAs nanowires.

A highly monochromatic (∆E/E ≈ 10−4) and parallel beam at an energy of 14keV has
been used for the measurements underlying this section. The Bragg angles of Si and GaAs

for this energy are Θ
(111)zyc
Bragg = 8.119◦ and Θ

(111)zyc
Bragg = 7.797◦ [141]. The incident angle αi of

the impinging X-ray beam was chosen slightly smaller than the Θ
(111)zyc
Bragg of Si, near but not

equal to the Bragg angle of GaAs. From the three dimensional post-growth measurement
of the vicinity of the (111)zyc Bragg reflection (see Fig. 3.1), we see that a single detector
frame essentially corresponds to the (qy, qz) plane close to the GaAs signal. Nonetheless,
diffuse scattering of the Si substrate is still seen in this cut through reciprocal space.

The experimental setup at the NANO beamline at ANKA is depicted in Fig. 4.1(a).
The essential ingredients for time-resolved in-situ X-ray investigations are labelled (for
growth: effusion cells and vacuum growth chamber with heating stage for the substrate;
for X-ray measurements: Be windows, detector and heavy load diffractometer). The
time-resolved in-situ growth experiments at the NANO beamline have been performed
by Philipp Schroth et al. [67, 131]. Here, we discuss the evaluation of thereby obtained
data: First, we describe the processing of the experimentally measured detector frames in
Sec. 4.1 (joint work with Philipp Schroth [67]). Then, we present in Sec. 4.3 the results
of extensive numerical simulations which have been performed in order to explore and un-
derstand the possibilities and limitations of X-ray measurements of the (111)zyc reflection
of polytypic GaAs nanowires. Finally, we provide in Sec. 4.4 an interpretation of the data
based on the Markov model which is discussed in detail in Sec. 4.3.
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4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

(a) Experimental setup at NANO@ANKA

Figure 4.1.: Illustration of the experimental setup for obtaining in-situ X-ray diffraction
measurements during the growth of GaAs nanowires in the PMBE growth
chamber at the NANO beamline of the synchrotron souce ANKA.

Figure 4.2.: Illustration of the processing pipeline of the experimentally measured time-
resolved in-situ data. Details are provided in the main text.

4.1. Preprocessing of data measured at NANO@ANKA

In this section, we describe the data processing of time-resolved in-situ X-ray diffraction
data for two samples. We point out, that sample 1 is the same sample which was also
studied ex-situ with a nano-focus setup at ID13@ESRF after growth in Sec. 3.2.

Figure 4.2 illustrates the processing pipeline which has been applied to this experimentally
measured data. First, the decay of the incoming flux from the insertion device has been
corrected for each detector frame. Then, the signal-to-noise ratio of each time point was
increased at the cost of lower temporal resolution by averaging over successive frames.
Depending on the derived quantities, either NF = 197 (low temporal resolution, δt ≈ 4min)
or NF = 25 (low temporal resolution, δt ≈ 30s) have been averaged after opening the Ga
shutter of the effusion cells.
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4.1. Preprocessing of data measured at NANO@ANKA
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Figure 4.3.: One dimensional line profiles of the (averaged) detector signal at the beginning
and end the growth. Additionally, the difference thereof has been plotted.

Before we discuss the further processing of two dimensional detector frames, we shortly
compare the qz profile (integration of full qy range) and the qy profile for integration from
channel qz = 116 to qz = 195 for sample 2 before and after growth without any additional
preprocessing (see Fig. 4.3):

We observe that the intensity of the silicon peak slightly drops during the growth (see
“Difference” in Fig. 4.3(a)). Therefore, proper background correction requires an adapta-
tion of the strength of the silicon background. Moreover, we observe a peak close to pixel
145 with highly non-trivial shape – as in case of the sample S2e in Sec. 3.2. We point out,
that in this section qz decreases with increasing pixel, whereas in Sec. 3.2 qz is increasing
with increasing pixel.

The qy profile in Fig. 4.3(b) reveals a non-gaussian shape of the signal from the crystal
truncation rod (CTR). Nonetheless, the difference of the qy profiles of the beginning of the
growth and the end of the growth looks smooth: no fine structure is observed.

We now return to the processing of the two-dimensional detector images.

For subtraction of the diffuse background from the silicon substrate, the first NF = 100 (or
NF = 25 for high time resolution) frames have been averaged. This initial signal is depicted
in Fig. 4.4. This meta-frame is subtracted from all averaged meta-frames obtained during
growth in such a way that the intensity in the range from qz channel equal to 33 up to
qz channel 91 is equal. The center of silicon peak is approximated by pixel 66 for both
samples.

The resulting meta-frames show a pronounced signal at the position of the (111)zyc Bragg
reflection of GaAs as can be seen in Fig. 4.5. In both cases, a very small change in the
shape of the silicon signal is observed as well as a very small drift of the signal from the
crystal truncation rod. The artifacts from the latter have been minimized by interpolation
of those few pixel by a multidimensional Taylor series from the close-by vicinity.

After these processing steps, we obtain (after qy integration) the time-resolved qz profiles
depicted in Fig. 4.6:

For both samples, we observe an increasing overall intensity with increasing growth time.
However, the peak shapes as well as their temporal evolution are clearly different for the
two samples (see normalized intensity in the upper figures in Fig. 4.6).

51



4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

q
z

channel

q y
ch

an
ne

l

50 100 150

50

100

150

200

250

300

350

400

450
0

0.5

1

1.5

2

2.5

3

x 104

diffuse
Si-(111)
scattering

CTR

(a) Sample 1

q
z

channel

q y
ch

an
ne

l

50 100 150

50

100

150

200

250

300

350

400

450
0

2000

4000

6000

8000

10000

12000

14000

16000

diffuse
Si-(111)
scattering

CTR

(b) Sample 2

Figure 4.4.: Signal on the PILATUS detector at the beginning of growth. The exposure
time for a single frame was tExp = 1s, read-out took 0.22s. The depicted image
is the average of NF = 100 frames. The strongest signal is the diffuse cloud of
the Si (111)zyc Bragg peak. Moreover, the intersection of the Ewald sphere
with the crystal truncation rod (CTR) can be seen.
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(b) Sample 2

Figure 4.5.: Signal on the PILATUS detector at the end of growth after (adaptive) cor-
rection of the substrate signal (see Fig. 4.4). The exposure time for a single
frame was tExp = 1s, read-out took 0.22s as before. The depicted image is the
average of NF = 197 frames.

For sample 1, the change of the shape of the profile with increasing growth time is rather
limited: Whereas a small increase of the scattered intensity is seen close to pixel 138, some
intensity disappears for pixels greater than 146. As a consequence, the kink at early times
tG = 23min at pixel 146 becomes less pronounced. The kink at pixel 132 remains almost
identical in shape with increasing growth time.

In contrast, sample 2 exhibits rather pronounced temporal dynamics: In all depicted
profiles, we observe a plateau in the range from pixel 141 to 145 in addition to a peak
centered close to pixel 138. With increasing growth time, the peak height grows faster
than the plateau. As a consequence, the ratio plateau height vs. peak height decreases
with increasing growth time from approximately 0.93 at tG = 26min to approximately
0.61 at tG = 58min. Moreover, we observe asymmetric tails, in particular at early growth
times tG = 26min.

From the post-growth ex-situ investigations which have been presented in Sec. 3.2 we
know that the signal which we observe is composed of the two contributions, namely the
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Figure 4.6.: Resulting time-resolved intensity profiles I(qz, t). The lower figures illustrate
the increase in overall intensity with increasing growth time. The upper figures
are dedicated to the change of their shape: Each profile has been normalized
such that its maximum is equal to one. In addition, the ranges defining the
“sub-peaks” which are investigated in Fig. 4.7 are marked by gray boxes.

growing nanowires and the parasitic growth (“crystallites”). In particular, the signal from
the parasitic growth was broader in qz as well as in qy direction. Therefore, we expect to
observe mainly parasitic growth in the tails of the signal, for example in the pixel range
148-151 in case of sample 1 and 150-154 for sample 2. In addition, the central range has
been divided in two subpeaks to study the temporal evolution of the signal.

The temporal evolution of these three subpeaks — as well as the entire GaAs signal — are
investigated in Fig. 4.7. In case of sample 1, the subpeaks 1 and 2 behave almost identical.
This is not true for sample 2. Here, subpeak 1 and 2 behave rather different. For both
samples, subpeak 1 increases faster than the overall GaAs signal. However, subpeak 2
increases similar to subpeak 1 in case of sample 1 whereas for sample 2 it first increases
similar to the overall GaAs signal (t . tG = 35min), i.e., the ratio to the overall GaAs
signal is almost constant. Then, its ratio slightly decreases, but not as fast as in case of
subpeak 3. The ratio of subpeak 3 vs. the overall GaAs signal decreases in case of sample
1 and sample 2.

Before we interpret these results, we also consider the qy information of our time-resolved
in-situ data in the qz ranges of subpeak 1-3. For that purpose, we fit a single Pearson VII
function [134] in the form

P(x;A,m, b, s) =
2 ·A ·

√
21/m − 1

β(m− 0.5, 0.5) ·
(

1 + 4 ·
(
x−b
s

)2 · (21/m − 1
))m (4.1)
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Figure 4.7.: Integrated intensity of the GaAs signal and the three sub-domains highlighted
in Fig. 4.6. The depicted data points have a temporal resolution of approx-
imately 30s. In Figs. (a) and (b), the value after tG = 60min (“final state”)
has been normalized to 1. In addition, the inset depicts the data on a log-log
scale. In Figs. (c) and (d), the ratio of the (normalized) subpeaks vs. the
(normalized) total GaAs signal is shown.

to the qy profile which is obtained if each subpeak domain is integrated along qz. Here, β is
the beta-function. This function empirically describes the profiles very well. The temporal
evolution of the width s for both samples and each subpeak is depicted in Fig. 4.8. For
both samples, subpeak 3 is much broader than the other two subpeaks. Moreover, the
width of the other subpeaks decreases with increasing growth time.

If we combine this information on the width s of the time-resolved in-situ data in qy
direction with the temporal evolution of the intensity (see Fig. 4.7(d)), we formulate the
following hypothesis:

The signal is composed of two partially overlapping contributions, namely a rather broad
one with a width of approximately s = 80 pixel in qy and rather extended in qx direction
and a second contribution which is smaller in width in qy (s ≤ 55 pixel). The signal of
subpeak 1 mainly stems from the second contribution, especially at later growth times,
whereas the signal of subpeak 3 originates mainly from the broad signal. The behavior
of subpeak 2 is a result of interplay of both signals and strongly depends on the relative
strength of both contributions. The overall GaAs signal is the sum of those contributions
and, thus, we deduce from Fig. 4.7(d) that the broad signal grows slower than the second
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Figure 4.8.: Width of a Pearson VII fit to the qy profile of the three sub-domains highlighted
in Fig. 4.6 (integrated along qz). The large symbols are obtained from the
low time resolution, the small symbols from the high time resolution. Values
are only depicted if the coefficient of determination R2 of a fit exceeds 0.9.

contribution with increasing growth time. Therefore, the width of the fits for subpeak 3 is
closest to the true value of the broad signal at early growth times, whereas this statement
is true for subpeak 1 at latest growth times. In particular, the width of subpeak 1 (and 3)
does no longer change in case of sample 1 for growth times tG ≥ 50min.

In case of sample 1, the signal of subpeak 2 behaves very similar as subpeak 1 with time.
Thus, the relative contribution of the broad signal in the range of subpeak 1 and 2 is
rather weak, especially at larger growth times. Since the width of subpeak 3 remains
constant – despite the decrease of its relative contribution – we can conclude that the
second contribution does not produce a significant contribution in the domain of subpeak
3. Thus, it is rather narrow in qz if compared to the broad signal.

In case of sample 1, we observe a similar width at early growth times – as in case of
sample 2. However, for later growth times, the width of subpeak 3 decreases. If we assume
a constant width of the broad signal with increasing growth time, this implies that the
second contribution, which is narrower in qy, contributes at later growth times and shifts
the width of subpeak 3 to smaller values. On the contrary, the broad signal strongly
influences the width of subpeak 1 and 2, if we also assume a constant width of the second
contribution. Since the width of subpeak 1 does not yet stabilize after tG = 60min in case
of sample 2 – in constrast to sample 1 – it is very likely that the relative contribution of
the broad signal is higher in case of sample 2 than for sample 1. In addition, the second
contribtuion is broader in qz than in case of sample 1 as a consequence of the gradient of
width of subpeak 3.

We attribute the broad signal to the parasitic growth (“crystallites”) and the second contri-
bution to the nanowires. This identification is fully consistent with the post-growth ex-situ
measurements presented in Sec. 3.2 where the characteristics of these contributions have
been studied with the nanofocus setup at ID13@ESRF. However, the two contributions
must now be separated to study the temporal evolution of the nanowire signal.

In principle, the following strategies might be feasible for extraction of the nanowire signal:

First, the integration along qy direction could be restricted to a small qy region around the
center with a width approximately equal to the width of the the wire signal. This way,
the systematic error would be reduced, since a reduced fraction of the broad background
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4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

is collected as compared to the nanowire signal. However, systematic errors persist in
this approach irrespective of noise level of the data. A second approach could thus be
to use the tails in the one-dimensional profiles for estimating the contribution from the
broad signal, and, then, subtracting it from the measured data. However, evaluation of
the central amplitude by such an extrapolation implies rather large statistical errors and,
thus, should be avoided as far as possible. As a third approach, the background could be
obtained directly from the tails in the two-dimensional intensity distribution. This way,
many more data points are available and evaluation of the amplitude is much more stable
than for the one-dimensional profiles.

However, the shape of the broad crystallite background profile must be known a priori
in the second and third approach, in particular the properties of its tails. As a first
approximation, this background in the third approach could be modelled by a Gaussian

G(qy, qz) = A · e
−0.5

(
qz−qzC
σZ

)2

· e
−0.5

(
qy−qyC
σy

)2

. (4.2)

We will refer to this approach as “two-dimensional background correction”.

In addition, we aim to split the profiles of the nanowires also by the following procedure:

For each qz pixel, we fit the corresponding qy profile for each time step by the sum of two
Pearson VII functions. This way, we are able to adopt the tails – in contrast to fits based
Gaussians – and allow for non-Gaussian variation in qz direction. Nevertheless, Gaussian
behavior is included as the limit m→∞. Since this approach is in between a a single one-
dimensional background fit to the tails of the overall signal and a single two-dimensional
fit to the tails of the two-dimensional meta-frames of the detector, we refer to it as “1.5
dimensional approach”.

Such an evaluation is rather difficult for the available data quality. Without prior con-
straints for some parameters, the fitting procedure is highly unstable. However, we can
estimate some parameters of the two Pearson VII functions from the discussions on sub-
peak 1-3 and the diameter of the nanowires which has been obtained from post-growth
SEM. For the width as well as for the m-coefficient of the broad background, we average
these values over the last 15 time steps of subpeak 3 of sample 1. For this sample, no
traces of significant overlapping of subpeak 2 and subpeak 3 have been observed in Figs.
4.7 and 4.8. The result is m2 = 2.79 and s2 = 80.61 pixel. These values are then used as
estimate for both samples and all time steps. The width of the second peak is bound from
above by s1 ≈ 50 in case of sample 1 and by s1 ≈ 55 in case of sample 2 due to the results
depicted in Fig. 4.8. In addition, it is bound from below by s1 ≈ 25−30 pixel if the diam-
eter of the nanowires in direct space and the approximate resolution element of the X-ray
beam in qy direction is considered. Finally, we constrain the centers of the two Pearson
VII functions to the range [230, 250] for sample 1 and [190, 215] for sample 2. Thus, all
parameters beside m1 and the two weights of the sum are fixed. As a consequence, the 1.5
dimensional approach becomes feasible.

We now turn to the results of the separation of the contributions from the nanowires and
from the crystallites.

In Fig. 4.9, the results after a background correction of a two dimensional Gaussian as
defined in Eq. (4.2) are collected: As a result of the subtracting of the smooth broad
Gaussian background all essential features of the profiles remain unchanged, but get more
pronounced. For example, the ratio of the height of the plateau near pixel 145 to the max-
imum of the peak decreases to approximately 0.45 (see Fig. 4.9(b)) after 58min of growth
— as compared to 0.6 for the unprocessed data depicted in Fig. 4.6. The background
for sample S1 is less broad in qy direction than for sample S2. For both samples, this
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(b) Intensity profiles along qz direction from the
nanowires for sample 2
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(d) Total intensity from the nanowires and the crys-
tallites as a result of a qy and qz integration of ei-
ther the nanowire signal or the background signal.
In addition, the ratio of the total intensity from the
nanowires divided by the total intensity from the
crystallites is depicted as inset.

Figure 4.9.: Temporal evolution of the intensity profiles along qz direction resulting from
the nanowires as well as temporal evolution of the Gaussian background cor-
rection. The mask in Figs. (a) and (b) covers the qy range from pixel 100 to
300 and from 116 to 195 in qz direction.

width increases slightly with time on average. On the contrary, the width in qz direction
decreases slightly with time. However, the last two data points for sample 1 do not resem-
ble this trend. With the current data, it is not possible to uniquely identify if those two
points are the result of an erroneous model for the background, problems with fitting of
the background within the two-dimensional Gaussian model or of physical origin. Thus,
they are discarded in subsequent discussions.1 As expected from the discussion of Figs. 4.7
and 4.8(b), we observe a trend towards a larger contribution of the nanowires compared
to the parasitic growth with increasing growth time. Moreover, we point out that the tails
of the nanowire signal are modified by the subtraction of the Gaussian background.

Before we discuss these results further, we also collect the results for the 1.5 dimensional
approach in Fig. 4.10. Within this approach, the best data quality has been achieved if
the extracted two dimensional data with high temporal resolution has been processed and,

1Since the influence of these deviations on the last two temporal profile shapes of the nanowires is rather
limited, the respective profiles need not be discarded in the subsequent discussions.
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(a) Amplitudes of the broad Pearson VII contribu-
tion at the final time step in case of sample 1
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(b) Amplitudes of the broad Pearson VII contribu-
tion at the final time step in case of sample 2
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(c) Temporal evolution of intensity from crystal-
lites for sample 1 for m = 10, c = 25

125 130 135 140 145 150 155 160
Pixel [ ]

0

0,2

0,4

0,6

0,8

1

1,2

N
o
rm

al
iz

ed
 a

m
p
li

tu
d
e 

o
f 

sm
al

l 
P

ea
rs

o
n
 V

II
 [

  
]

56 min.
48 min.
40 min.
32 min.
24 min.

(d) Temporal evolution of intensity from crystal-
lites for sample 2 for m = 10, c = 25
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(e) Resulting temporal evolution of intensity of the
shape of the nanowire signal for sample 1

20 30 40 50 60
time [ min. ]

0

500

1000

1500

2000

A
re

a 
o

f 
b

ro
ad

 P
ea

rs
o

n
 V

II
 [

  
]

m=10,c=40
m=10,c=25
m=2.8,c=25

y=-336+25.89x+0.185x
2

20 30 40 50 60

0,2

0,3

0,4

F
ra

ct
io

n
 w

ir
es

 [
  
]

(f) Resulting temporal evolution of intensity of the
shape of the nanowire signal for sample 2

Figure 4.10.: Results of 1.5 dimensional splitting of parasitic growth and nanowire contri-
bution based on two Pearson VII functions.

then, in a second step a moving average of the fitted amplitudes of the two Pearson VII
fits for every qz was calculated. For this moving average, a successive sequence of NF = 16
metaframes with temporal resolution of 30s has been included. This way, a temporal
resolution of the intensity profiles of 8min is obtained.

First, we need to find estimates for the yet undefined parameters m1 and s1. For simplicity,
we refer to these two parameters as m and c respectively. From the discussion above, we
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4.1. Preprocessing of data measured at NANO@ANKA

restrict c to the range 25 to 50 pixel. For m, we consider m = 2.8 which is identically to
the value used for the broad background, m = 10 which corresponds to almost Gaussian
tails and, finally, m = 1.5 which corresponds to very pronounced, almost Lorentzian tails.
Figs. 4.10(a) and 4.10(b) depict the amplitudes of the broad background for all those cases
and both samples under consideration as a function of qz. From the post-growth ex-situ
measurements presented in Sec. 3.2 we expect this shape to be smooth peak without
any fine structure. Clearly, this requirement is not met for m = 1.5 for both samples.
For c = 50 and m = 1.5, the background is highly underestimated in the range where
the nanowire signal is expected to be most pronounced. For m = 2.8, this behavior is
also observed for c = 50. However, for m = 1.5 and m = 2.8, the artifact is weaker for
decreasing c. In case of sample 1, the background is already a smooth peak as expected for
m = 2.8 and c = 25. For m = 10 and sample 1, we obtain almost the identical shape as for
m = 2.8 and c = 25. Only towards the upper bound c = 50, a sharp, almost “triangular”
peak is observed. Therefore, we conclude that the best background fit is obtained for large
m ≈ 10 and small c ≈ 25 in case of sample 1. For these values, the resulting profile is
rather robust with respect to changes in both parameters (e.g., the depicted cases m = 2.8,
c = 25 and m = 10, c = 40).

In case of sample 2, input data quality is worse for three reasons: First, the lower density of
nanowires on the sample. Second, the smaller mean diameter of the grown nanowires. And
third, the incident X-ray flux was lower for sample 2 than for sample 1.2 Consequently,
splitting of the signal is expected to be worse than for sample 1. Most importantly, however,
an artifact close to pixel 138 is observed for all depicted values of m and c. We have not
been successful in identifying the origin of this artifact. Nevertheless, large m ≈ 10 and
small c ≈ 25 seem to be a reasonable choice. In fact, robustness with respect to deviations
from these parameters is even higher than for sample 1: For c = 25, the resulting profiles
are almost equal for all three values of m.

The nanowire profiles for m ≈ 10 and c ≈ 25 are depicted in Figs. 4.10(c) and 4.10(d).
Since we optimized for smoothness of the background in qz direction, the features of the
nanowire profiles remain. On a quantitative level, however, the ratio of the height of
the plateau near pixel 145 to the maximum of the peak decreases to approximately 0.27
after 58min of growth in case of sample 2 — as compared to 0.6 for the unprocessed
data depicted in Fig. 4.6 and 0.45 for the two-dimensional Gaussian background (see Fig.
4.9(b)). Nevertheless, for early times t = 24min and t = 32min this ratio is rather similar
to the two-dimensional Gaussian background. We point out that the 1.5 dimensional
approach for separation of the contributions from the nanowires and crystallites is not
capable of extraction of the tails in qz direction from the experimental data for early
growth times.

In Figs. 4.10(e) and 4.10(f), we depict the evolution of the area of the broad Pearson VII for
sample 1 and sample 2. Here, the total area of the broad Pearson VII fits P(A(qz, tG)) has
been estimated as the area below a Gaussian fit to the amplitudes A(qz) of the crystallites
at given growth time tG. We observe that this area is again very insensitive to the choice of
the parametersm and c. We point out that this estimate for the total area of the crystallites
does not incorporate the width c and m-coefficient, which also influence the total number
of photon counts originating from the crystallites.3 Nevertheless, this approximation is
only relevant if data with different m and c is compared.

We see that the signal from the crystallites grows faster than linear (positive coefficient

2Sample 2 was measured just before the electron beam of the synchrotron source ANKA has been dumped
and, primary intensity has decayed with respect to the flux directly after injection of the beam several
hours ago. On the contrary, sample 1 was measured directly after the subsequent injection and, thus,
with higher primary flux.

3To be specific, the qy integration of the Pearson VII has been discarded due to the large uncertainty in
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4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

in front of t2 in the fit4). In addition, the fraction of the signal originating from the wire
has been roughly estimated and included as inset in these figures.5 As expected from the
discussions in this section of the three subpeaks and the results for the two-dimensional
Gaussian background based on the tails of the intensity distribution, we again observe
that the signal of the nanowires grows faster than the signal from the crystallites. In fact,
this trend is more pronounced than in the latter case. However, the absolute fractions of
the scattered intensity originating from the nanowires is much lower than in case of the
two-dimensional Gaussian background.

4.2. Comparison with the post-growth ex-situ measurements
from Sec. 3.2

We now compare the post-growth ex-situ results presented in Sec. 3.2 with the in-situ
data obtained at the NANO beamline at ANKA (see Sec. 4.1).

For comparison, we estimate the zinc blende peak of the NANO data to be at approx-
imately pixel 138. Therefore, we map the data measured at NANO@ANKA by p →
−1.78 · (p − 66), where p is the respective pixel and 66 is the center of the diffuse silicon
signal.6 7 Of course, this is only a rough estimate for this coordinate transformation.
Nevertheless, it is sufficient for the quality of the experimental data at hand.

In addition, we point out that the signal obtained at ESRF is obtained with a beamline
with very different parameters, in particular the beam profile and the ratio of beam spot
size vs. coherence length vs. nano-wire size.

We plotted the profiles obtained at NANO and at ESRF after separation of the nanowire
and crystallite signal in Fig. 4.11. All curves have been rescaled such that their global
maximum is approximately equal for easy comparison. First, we compare the crystallite
signal. For sample S1, we used the signal after tG = 39min due to the deviations in the
later time steps (see Sec. 4.1). None of these signals shows a pronounced fine structure on
the scale of the splitting (20 pixel). However, the signal of the crystallites at the NANO

the parameters c and m, since

B(A,m, b, s) =

∫ ∞
−∞
P(qy;A,m, b, s) dqy = A · s · f(m) (4.3)

where the function f(m) is given by

f(m) =

∫ ∞
−∞

2
√

21/m − 1

β(m− 0.5, 0.5) · (1 + 4 · x2 · (21/m − 1))
m dx . (4.4)

Since neither s nor f(m) can be estimated reliably from the current data, only the amplitudes A(qz, tG)
is considered.

4For sample 1, the data range from tG = 22min to tG = 60min has been used, for sample 2, the data
range was limited to 30min to 60min due to the strong noise for tG < 30min. For both samples, the
data for m = 10 and c = 25 has been employed.

5This fraction has been estimated as
∑
qz
ANW(qz)∑

qz
ANW(qz)+AC(qz)

. Again, the parameters c and m have been

discarded as for the total area of the broad Pearson VII function. As a consequence the fraction of
photon counts from the nanowires is lower than the calculated and depicted value for the wire fraction.
In addition, the errors on the estimates for the wire fraction have large errors, since the tails of A(qz, tG)
in qz direction are not known, especially for early growth times tG.

6The prefactor −1.78 is obtained by comparison of the distances from the zinc blende GaAs signal to the
center of silicon: 138− 66 = 72 pixel at NANO@ANKA compared with −128.25 pixel at ID13@ESRF

7Based on this coordinate transformation and our results in Sec. 3.2, we estimate the expected splitting
of zinc blende and wurtzite GaAs in the detector frames obtained at the NANO beamline at ANKA
to be 16.2% · (138− 66) ≈ 12 pixel. However, we already point out, that the observed splitting in the
qz intensity profiles may be smaller than this maximum value – depending on the properties of the
nanowires as will be discussed in Sec. 4.3 (see e.g. Fig. 4.22).
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Figure 4.11.: Comparison of the preprocessed in-situ data obtained at NANO@ANKA
with the post-growth ex-situ measurements at ID13@ESRF

beamline is broader than the signal measured at ESRF: the differences in width which
has been observed at ESRF are not observed at NANO. Moreover, the maximum and the
center of mass is far off for sample S1 in case of the 1.5D Pearson VII background.

If we compare the signal originating from the nanowires, we have to keep in mind that
sample S2e is not identical to sample 2, but sample S2e has been grown for tG = 30min
only and the growth conditions (growth temperature, Ga- and As fluxes, properties of
the substrate, . . . ) are only identical up to experimental precision. Nevertheless, the
characteristic features and the width of the signal are similar, if we compare sample S2
after 56 minutes of growth with and sample S2e: In addition to a pronounced peak close
to position −128, a plateau is observed. The zinc blende peak in the cumulative signal
obtained from the ESRF data is broader than the peak obtained at NANO. Both, the
ESRF profile and the NANO profile in case of Gaussian background correction decay
very similar for pixels smaller than −147. However, in case of the ESRF data, the decay
starts also approximately at pixel −147. On the contrary, the profiles obtained at the
NANO beamline decay already starting from pixel −144 – both in case of a Pearson VII
background subtraction as well as in case of a two-dimensional Gaussian. This behavior
is most likely originating in the different coherence properties of the beamlines as well as
slight intrinsic deviations between sample S2 and sample S2e.

In contrast, the post-growth ex-situ data of sample S1 is incompatible with the in-situ
data measured at NANO@ANKA. We could not identify the origin of these deviation for
sample S1. Possible reasons include for example inhomogeneous properties of the grown
nanowires and different regions of the sample have been scanned in-situ and ex-situ. In
addition, a drift in the orbit of the electron beam in the synchrotron or a drift in the optics
or monochromator of the beamline must also be considered as possible reason, since sample
S1 has been measured after a new beam injection at ANKA whereas sample S2 has been
measured just before this injection. As a consequence, we discard the shape of the in-situ
measurements of sample 1 in our further considerations. Nonetheless, sample S1 has been
valuable for understanding the composition of the total signal from the contributions of
the nanowires and the crystallites.

For proper understanding and interpretation of the obtained nanowire profiles of sample
S2 and further future samples, we now model the X-ray signal for nanowires with different
distribution of both polytypes. Then, we return to the experimental data of sample S2.
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4.3. Numerical simulations of X-ray scattering of polytypic
GaAs nanowires

In this section, we discuss numerical simulations for the scattered X-ray intensity of GaAs
nanowires constituted by two polytypes. Focus of the discussion will be the (111)zyc

Bragg reflection which has been measured experimentally as discussed in the previous
section. Such simulations require two components: First, appropriate approximations for
the scattering under the given experimental conditions of Sec. 4.1 need to be chosen.
Second, all relevant aspects of the nanowires for the scattering signal need to be modeled.

4.3.1. Derivation of the X-ray scattering of nanowires

We assume the following approximations for the scattering of the incident X-ray-radiation:

1. First order Born approximation: The nanowires themselves are small enough that
kinematic approximation is appropriate [142]. Moreover, the reflected beam from
the substrate is weak because the incident angle αi was chosen slightly off the Bragg
peak of silicon. Hence, higher order contributions to the scattering signal can be
neglected within the precision of the measurements presented in Sec. 4.1.

2. Far field limit: The Fresnel number F = b2

λd is much smaller than one for d ≈ 1m,

λ ≈ 1Å and b ≤ 50nm. For that approximate values, the value for the Fresnel
number is F ≤ 2.5 · 10−5 � 1. Hence, far field limit is justified.

3. The coherence length is (at least) in the order of the height of a single nanowire, i.e.,
approximately 2µm.

4. The size of the impinging beam is so huge that a very large number of coherence
volumes is illuminated.

As a consequence of these assumptions the scattered signal is the incoherent sum of the
coherent scattering of an individual wire. This coherent scattering contribution is given
by the Fourier transformation of the electron density of an individual wire [142].

We characterize a wire by its geometry and its sequence of stacking of GaAs layers. The
model for the wire is illustrated in Fig. 4.12.

The geometry contains the wire’s height and its diameter. Both quantities vary from
wire to wire. Hence, they are assumed to be random quantities for an individual wire
with a given average value and a symmetric uniform distribution around this average.
For our subsequent discussion of the qz profile of (111)zyc GaAs Bragg reflection, the
orientation of the surfaces is irrelevant. Nonetheless, we will include shape effects for both
approximations in our discussion of scattering for completeness. Finally, a wire could also
be tilted, but we neglect the influence of the tilt of a wire in our simulations.

For the generation of the stacking of a wire, we focus on (i) Markov processes (see Sec.
4.3.2) for growing a wire layer by layer and (ii) alternating phase segments with random
length (see Sec. 4.3.3). This random length is determined based on a probability density
function such as a Gamma, Weibull, or Poisson distribution. We will also discuss the
relation of both approaches to each other and the limiting cases of pure zinc blende wires,
pure wurtzite wires or fully random stacking sequences (without direct repetition of the
same type of layer like ABABBABA).

From the sequence of stacking, we can approximate the local lattice constant by the neigh-
boring layers. If both neighboring layers are identical, the central layer is part of a wurtzite
phase segment and is assigned the lattice constants of wurtzite phase. If both neighboring
layers differ, we attribute the zinc blende lattice constant to the current layer. The lattice
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Modelling a wire

Stacking of layers

Geometry
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Local lattice constant (for X-ray scattering):
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Figure 4.12.: Illustration of the model of a wire for simulations of the diffracted X-ray
signal. Markov processes are discussed in Sec. 4.3.2 in detail. Phase segments
with statistically generated number of layers are the topic of Sec. 4.3.3.

constant of twin zinc blende phase segments is assumed to be identical to zinc blende itself.
Thus, we neglect effects of strain and dislocations. Finally, the first and the last layer of
each wire’s stacking sequence is attributed to the same phase and lattice constant as its
neighboring layer.

We exemplify the translation from stacking sequence to local phase (and thereby also the
local lattice constant) by an example (Z=zinc blende, W=wurtzite, T=twin-zinc blende):

Stacking sequence = ABCABCABCBCBCABACBACABCABC

Local phase = ZZZZZZZZWWWWZZWTTTTWZZZZZZ

Our approach for modeling the essential properties of thin, self-catalyzed GaAs nanowires
on Si(111) substrates are summarized in Fig. 4.12. For simulation a particular set of wires,
the developed c++ based simulation tool – parallized by openMP [143] – reads an XML
file by TinyXML [144] with a structure as described in appendix F.

Next, we derive the scattered intensity distribution for a given stacking sequence as input.

For this, we model the electron density which we split into a sum of NL layers, i.e.,

%el(x) =

NL∑
l=1

%
(l)
el (x) . (4.5)

The electron density %
(l)
el of each layer is modeled as an infinitely extended perfectly periodic

two dimensional layer of Ga and As atoms at different height zlα, α ∈ {Ga,As}, multiplied
by a (possibly layer dependent) shape Ω(l)(x⊥). Therefore,

%
(l)
el (x) = Ω(l)(x⊥)

∑
α∈{Ga,As}

%
(lα)
el (x⊥, z) , (4.6)

where the single species electron density %
(lα)
el (x⊥, z) of a single layer is approximated by

%
(lα)
el (x⊥, z) = %

(α)
el (·) ⊗3D[

δ(· · êz − zlα)
∑

R2D∈B
(l)
2D

δ
(
· ·êx − (R2D · êx + xlα)

)
δ
(
· ·êy − (R2D · êy + ylα)

)]
(4.7)

63



4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

where B(l)
2D is the two-dimensional in-plane Bravais lattice and xlα and ylα are (possibly

layer dependent) shifts of each layer’s origin. ⊗3D is the three-dimensional convolution

operator. %
(α)
el is the three dimensional electron density of an atom of type α centered at

the origin of three dimensional space. For X-ray scattering, the approximation that the

electron density %
(α)
el is independent of the chemical binding and the local lattice structure

is typically appropriate because most electrons are located in inner shells and almost not
influenced by the chemical bonding and the local lattice structure.

The height zlα of a layer can be split as

zlα = zl + z̃lα , z̃lα =

{
0 for α=As ,
3
4dl for α=Ga ,

(4.8)

where zl is the beginning of this layer and dl is the (phase dependent) thickness of this
layer. This height dl is given by

3

4
dl =

{
1
4c

(h)
ZB for the zinc blende polytype ,

3
8c

(h)
WZ for the wurtzite polytype .

(4.9)

Consequently, the form factor of a single wire F (SW)(q) can be expressed as

F (SW)(q) ∝
NL∑
l=1

(
Ω̃(l)(·)⊗2D F (SL∞⊥)

l (·, qz)
)

(q⊥) (4.10)

where

Ω̃(l)(q⊥) = FTq⊥←↩x⊥

{
Ω(l)(x⊥)

}
(4.11a)

F (SL∞⊥)
l (q⊥, qz) =

∑
α∈{Ga,As}

FTqz←↩z

{
FTq⊥←↩x⊥

{
%

(lα)
el (x⊥, z)

}}
(4.11b)

= e−iqzzl
(∑
R2D

e−iq⊥·R2D

)
·
( ∑
α∈{Ga,As}

fα(q) e−iqz z̃lα e−iq⊥·x
(lα)
⊥

)
(4.11c)

with the atomic form factors fα(q) = FTq←↩x

{
%

(α)
el (x)

}
. Note, that we approximate the

two dimensional Bravais lattice of the Ga and As plane in a single layer l as identical,

but its center might be shifted as incorporated by x
(lα)
⊥ . Up to normalization, the two

dimensional infinite sum over the Bravais lattice is∑
R2D∈B

(l)
2D

e−iq⊥·R2D ∝
∑
G

(l)
⊥

δ(2)(q⊥ −G
(l)
⊥ ) , (4.12)

where G
(l)
⊥ is the reciprocal lattice of B(l)

2D. Thus, the two-dimensional convolution in Eq.
(4.10) yields

F (SW)(q⊥, qz) ∝
NL∑
l=1

e−iqzzl
∑

α∈{Ga,As}

e−iqz z̃lα ·

·
∑
G

(l)
⊥

∫
R2

Ω̃(l)(q⊥ − τ ) δ(2)(τ −G(l)
⊥ ) fα(τ , qz) e−iτ ·x(lα)

⊥ d2τ (4.13a)

=

NL∑
l=1

e−iqzzl
∑

α∈{Ga,As}

e−iqz z̃lα ·

·
∑
G

(l)
⊥

Ω̃(l)(q⊥ −G
(l)
⊥ ) fα(G

(l)
⊥ , qz) e−iG

(l)
⊥ ·x

(lα)
⊥ (4.13b)
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4.3. Numerical simulations of X-ray scattering of polytypic GaAs nanowires

The Fourier transform of the shape Ω̃(l)(q⊥ − G
(l)
⊥ ) decays for increasing magnitude of

the argument. Hence, the dominant contribution originates from the element G
(l)
⊥ nearest

to the vector q⊥. Therefore, in lowest order, the sum over G
(l)
⊥ reduces to the particular

G
(l)
⊥ (q⊥) closest to the current value of q⊥. Moreover, we approximate the atomic form

factor fα(G
(l)
⊥ (q⊥), qz) by its value at the Bragg peak of the respective close GaAs Bragg

peak fα(QB). Thus, we obtain

F (SW)(q⊥, qz,QB) ∝
NL∑
l=1

Ω̃(l)(q⊥ −G
(l)
⊥ (q⊥)) e−iqzzl ·

·
∑

α∈{Ga,As}

fα(QB) e−iqz z̃lα e−iG
(l)
⊥ (q⊥)·x(lα)

⊥ (4.14)

in the vicinity of QB.

For the rest of this manuscript, we restrict to the qz profiles of symmetric Bragg reflections.
For the qz profile of these reflections, we have q⊥ ≡ 0. The closed reciprocal lattice point

for that value of q⊥ is G
(l)
⊥ (q⊥) ≡ 0. Hence,

F (SW)(qz,QB) ∝
NL∑
l=1

Ω̃(l)(0) e−iqzzl
∑

α∈{Ga,As}

fα(QB) e−iqz z̃lα (4.15)

The term Ω̃(l)(0) is equal to the area of the geometrical cross section of the wire at layer l.

We assume constant diameter along the height of the nanowire which renders the in-plane
shape of the nanowire a constant prefactor. If pronounced tapering of grown nanowires is
revealed, e.g. by post-growth SEM, this geometrical information can be incorporated in a
straight-forward manner in the prefactor Ω̃(l)(0).

The beginning zl of a layer l is the sum of all previously grown layers, i.e.,

z0 = 0 , zl
l≥1
=

l−1∑
k=0

ck , (4.16)

where ck is the thickness of layer k (either the value for zincblende or wurtzite). Hence,

F (SW)(qz,QB) ∝
NL∑
l=1

e−iqz(
∑l−1
k=0 ck)

∑
α∈{Ga,As}

fα(QB) e−iqz z̃lα , (4.17)

where the definition of z̃lα can be found in Eqs. (4.8) and (4.9).

For the rest of this chapter, we restrict to a single wire per coherence volume. Thus, the
positions of the center of the wires are irrelevant for the scattering signal and we do not
(need to) develop suitable models and approximations for such inter-wire correlations.

In conclusion, the measured intensity distribution I(qz) in the vicinity of the Bragg peak
QB for q⊥ = 0 is given by the sum of the absolute squares of the single wires’ form factors

F (SW)
w in Eq. (4.17), i.e.,

I(qz) ∝
NW∑
w=1

∣∣∣F (SW)
w (qz,QB)

∣∣∣2 . (4.18)
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Figure 4.13.: Illustration of the generation of a statistical stacking sequence by a Markov

process. The initial condition is determined by the probability p
(0)
WZ =

p(WZ|height = 0) that the first layers of a wire nucleate in wurtzite stacking.

4.3.2. Stacking sequences generated by a Markov model

In this section, we discuss the generation of stacking sequences based on statistical Markov
processes and the X-ray scattering signal thereof calculated by Eq. (4.18) in detail. This
way of modelling the stacking of the atomic layers in the nanowires is motivated by the
results published by Johansson et al. in [24, 110]. In addition, we discuss the effect of
(possibly strong) deviations of the initial nucleation probabilities from the behavior of the
Markov process after the initial growth stage.

4.3.2.1. Introduction to the Markov model

When forming the first three stacking layers n = 1, 2, 3 of a wire (i.e., beginning of first

polytype segment), we assume a probability p
(0)
WZ for nucleation of a wurtzite stacking. At

that stage, no previous history of the wire (i.e., n ≤ 0) is available: instead, statistical
fluctuations of the amorphous substrate surface, pre-patterned masks, gold droplet cata-
lysts, etc. determine that initial behavior. After these initial three layers we assume the
previous layers n−1, n−2 and n−3 to determine the behavior for layer n. From layer n−1
and layer n− 3, we identify the current phase of the wire. If both layers are identical, the
current phase is wurtzite. If both layers differ, the current layer n grows on top of a zinc
blende segment. Depending on the current phase, we switch to the stacking sequence of the
other phase with probabilities pZB→WZ (zinc blende to wurtzite) and pWZ→ZB (wurtzite to
zinc blende). Consequently, the current phase segments grows further by one layer with
probabilities 1−pZB→WZ (zinc blende segment) and 1−pWZ→ZB (wurtzite segment), where
we refer to

pAsym = |pWZ→ZB − pZB→WZ| (4.19)

as the asymmetry of the transition probabilities.

Depending on the growth conditions, the probabilities pZB→WZ and pWZ→ZB can be ei-
ther almost static or may change during growth even for static “external” growth condi-
tions originating in the complicated dynamics of the nucleation. Hence, the probabilities
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4.3. Numerical simulations of X-ray scattering of polytypic GaAs nanowires

pZB→WZ and pWZ→ZB may become layer-dependent. The lowest and next to lowest order
approximations for pZB→WZ and pWZ→ZB are constant and linear affine functions.8

The Markov model for generation of statistic stacking sequences is illustrated in Fig. 4.13.

In the VLS growth model (see Sec. 1.1), the probabilties pZB→WZ and pWZ→ZB are de-
termined by the content, composition and shape of the droplet and, therefore, are the
essential link between models for the properties of the droplet to the stacking sequence
of the wire seen in X-ray diffraction. For example, the model presented by Krogstrup
et al. in [69] explicitly predicts the behavior of these probabilities in dependence of the
properties of the droplet. Moreover, ongoing research by eTEM (see e.g. Refs. [70, 74,
77, 95]) revealed very complicated dynamics at the position of the triple phase point in
the framework of the VLS model. However, irrespective of such complicated behavior at
the top-edge of the wire below the droplet, any successful physical model for this behavior
must be able to quantitatively predict the probabilities pZB→WZ and pWZ→ZB.9

In Fig. 4.14, we illustrate the phase distribution in nanowires that results from the Markov
model for the stacking sequence: For different (layer-independent) sets of parameters
pZB→WZ and pWZ→ZB, three exemplary realizations have been generated and depicted

in the range from layer 0 to layer 5000. For simplicity, p
(0)
WZ was set to 0.5. Most notably,

we observe large fluctuations from segment to segment and from wire to wire.

4.3.2.2. Relation to the exponential distribution

For understanding the influence of the initial growth p
(0)
WZ on the “average wire” – and

to estimate the requirements on X-ray measurements for its observation – we first derive
the probability distribution for a defect-free phase segment to consist of n layers in the
framework of a Markov process. By this, we understand the large fluctuations of the
lengths of each segment. Then, we extend our treatment to include the initial growth.

The probability that a polytype segment – without loss of generality of the wurtzite poly-
type – which started growing at layer n0 will finally consist of exactly n ≥ 1 layers is

p
(Markov)
WZ (n0, n) = NMarkov(n0)

[
n∏
k=2

(1− pWZ→ZB(n0 + k − 1))

]
pZB→WZ(n0 + n) (4.20a)

where NMarkov(n0) is a normalization constant to enforce
∑∞

n=1 p
(Markov)
WZ (n0, n) = 1 for all

possible starting layers n0.

For layer independent probabilities pWZ→ZB, this expression simplifies to

p
(Markov)
WZ (n) = NMarkov

[
n∏
k=2

(1− pWZ→ZB)

]
pZB→WZ (4.21a)

n>0
= NMarkov pZB→WZ (1− pWZ→ZB)n−1 (4.21b)

=
NMarkov pZB→WZ

1− pWZ→ZB
elog(1−pWZ→ZB)·n (4.21c)

= Ñ (WZ)
Markov e

− n
bWZ , (4.21d)

8This way, no discontinuous changes of the transition probabilities can be modelled. As soon as experi-
mental data of better quality is available, a stepwise, iterative estimation of transition probabilities in
the time interval ti−1 to ti should be performed – taking into account the transition probabilities up
to time ti−1 and the resulting phase distributions. This way, a discontinuous change in the transition
probabilities can be revealed.

9We do not consider defect mediated growth, e.g., by twin-planes.
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Figure 4.14.: Phase distribution inside nanowires in the framework of the Markov model.
For each set of parameters on the abscissa – first the transition probability
pZB→WZ in per cent, then pWZ→ZB in per cent – three exemplary phase
distributions have been generated and depicted from layer 0 to layer 5000.
The range 4500 to 5000 has been magnified for better visibility of small
segments and their frequency of occurrence.

where the new normalization Ñ (WZ)
Markov = NMarkov pZB→WZ

1−pWZ→ZB
and the decay constant bWZ =

−1
log(1−pWZ→ZB) > 0 for 0 < pWZ→ZB < 1 has been defined. The n-dependence of Eq.

(4.21d) corresponds to an exponential distribution [129, 145] with mean µWZ = bWZ if n is
considered as a real number and not an integer. This approximation is good if bWZ � 1,

i.e., pWZ→ZB � 1.10 The corresponding normalization for n ∈ R is Ñ (WZ)
Markov = 1

bWZ
. Eq.

(4.21d) will be important for the generalizations discussed in Sec. 4.3.3.

4.3.2.3. Initial growth vs. the stationary limit of growth

We now turn to the second task and investigate the interplay of the parameters p
(0)
WZ,

pWZ→ZB and pZB→WZ: First, the implications from the Markov model for the probabilities

p
(L)
WZ(n) to find either zinc blende phase or wurtzite phase at a particular layer n of a wire

10Strictly, the mean phase segment size for phase P is

bP =
∞∑
k=0

(k + 1) · pkP→P · pP→P̄ =
1

1− pP→P
=

1

pP→P̄

. (4.22)

In the limit pP→P̄ → 0, which corresponds to the case of long decay length bP � 1 and to the
approximation of the discrete case by the exponential distribution and continuous n, bP is approximately
equal to bP ≈ −1/ log (1− pP→P̄).
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with NL layers are discussed. In addition, we consider the average fraction p̄WZ(n) of
wurtzite phase from layer k = 1 to k = n. Moreover, we discuss the stationary limit for
height independent switching probabilities pWZ→ZB and pZB→WZ.

We calculate p
(L)
WZ(n) recursively by

p
(L)
WZ(n) =

{
p

(0)
WZ n ≤ 3(
1− pWZ→ZB

)
· p(L)

WZ(n− 1) + pZB→WZ ·
(
1− p(L)

WZ(n− 1)
)

n > 3
(4.23)

The respective probability for zinc blende is 1− p(L)
WZ(n).

If any switching from one phase to another takes place, i.e., pWZ→ZB + pZB→WZ > 0, the
growth statistics of a wire will approach a stationary limit for NL → ∞. This stationary
limit is independent of the initial growth and is characterized by height independent be-

havior, i.e., p̆WZ = p
(L)
WZ(n− 1) = p

(L)
WZ(n) is no longer a function of n. If we solve the case

n > 3 in Eq. (4.23) for p̆WZ, we obtain

p̆WZ =
pZB→WZ

pWZ→ZB + pZB→WZ
=

1

1 + pWZ→ZB
pZB→WZ

. (4.24a)

Therefore, the stationary limit is invariant upon the simultaneous scaling pWZ→ZB →
α · pWZ→ZB and pZB→WZ → α · pZB→WZ, α ∈ R. Moreover, it is clearly bound by one from
above and zero from below. If pWZ→ZB +pZB→WZ = 0, the stationary limit is simply given
by the initial growth behavior, i.e.,

p̆WZ = p
(0)
WZ . (4.24b)

Typical X-ray diffraction measurements however do not reveal the probabilities p
(L)
WZ(n),

but its average over all layers k = 1 to the number of grown layers k = NL. This average
probability (or fraction) of the wurtzite polytype is given by

p̄WZ(NL) =

NL∑
k=1

p
(L)
WZ(k)

NL
(4.25)

Although our discussion was based on static probabilities pWZ→ZB and pZB→WZ indepen-
dent of n, formulas (4.23) and (4.25) are also valid for height dependent probabilities
pWZ→ZB(n) and pZB→WZ(n).

The recursive definition (4.23) will now be rewritten in an explicit expression for the case
of static probabilities pWZ→ZB and pZB→WZ. For this purpose, we define the probability
p̃12 ≡ 1− (pWZ→ZB + pZB→WZ) and rewrite Eq. (4.23) for n > 3 as

p
(L)
WZ(n)

n>3
= p̃12 · p(L)

WZ(n− 1) + pZB→WZ . (4.26)

In order to deduce an explicit expression for p
(L)
WZ(n) from this recursive relation, it is useful

to write down the explicit result for small n:

p
(L)
WZ(3) = p

(0)
WZ (4.27a)

p
(L)
WZ(4) = p̃12 · p(0)

WZ + pZB→WZ (4.27b)

p
(L)
WZ(5) = p̃2

12 · p
(0)
WZ + p̃12 · pZB→WZ + pZB→WZ (4.27c)

p
(L)
WZ(6) = p̃3

12 · p
(0)
WZ + p̃2

12 · pZB→WZ + p̃12 · pZB→WZ + pZB→WZ (4.27d)
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From this, we can deduce the explicit expression

p
(L)
WZ(n)

n>3
= p̃n−3

12 · p(0)
WZ + pZB→WZ

n−4∑
k=0

p̃k12 (4.28a)

= p̃n−3
12 · p(0)

WZ + pZB→WZ
1− p̃n−3

12

1− p̃12
= p̃n−3

12 · p(0)
WZ +

(
1− p̃n−3

12

)
· p̆WZ , (4.28b)

for arbitrary n. Here, the geometric series
∑n

k=0 q
n = 1−qn+1

1−q for |q| < 1 and Eq. (4.24a)

have been used. Both limits p̃12 → 1 (which results in p
(L)
WZ(n)→ p

(0)
WZ) and n→∞ (which

results in p
(L)
WZ(n)→ p̆WZ) are consistent with the previous discussion.

Eq. (4.28b) is a weighted average11 for the probabilities p
(L)
WZ(n) of the initial statistics

p
(0)
WZ and the stationary limit p̆WZ. Hence, the weight of the initial growth parameter p

(0)
WZ

decays as p̃n−3
12 . This weight drops below a given bound ε (e.g., ε = 5%) for

n >
log(ε)

log(p̃12)
+ 3

p̃12≈1
≈ − log(ε)

pZB→WZ + pWZ→ZB
, (4.29)

which is independent of p
(0)
WZ. Alternatively, we can define a layer n for which the relative

error of p
(L)
WZ(n) to the stationary limit p̆WZ drops below ε:

ε
!
≥

∣∣∣∣∣p
(L)
WZ(n)− p̆WZ

p̆WZ

∣∣∣∣∣ = p̃n−3
12 ·


∣∣∣p(0)

WZ − p̆WZ

∣∣∣
p̆WZ

 ⇒ n
p

(0)
WZ 6=p̆WZ

≥
log
(

ε·p̆WZ∣∣∣p(0)
WZ−p̆WZ

∣∣∣
)

log(p̃12)
+3 (4.30)

This bound depends explicitly on the log of the inverse of the relative difference of the

initial behavior and the stationary limit (i.e.,
p

(0)
WZ−p̆WZ

p̆WZ
) and the probability p̃12.

From Eq. (4.28b), we can now calculate analytically and non-recursively the effect of

possibly different initial growth behavior p
(0)
WZ on layers n > 3. For X-ray-measurements

we are typically more interested in the result of the average phase content up to some layer
NL as defined in Eq. (4.25). Evaluation of this average yields

p̄WZ(NL)
NL>3

=

3∑
k=1

p
(0)
WZ

NL
+

NL∑
k=4

p̃k−3
12 · p

(0)
WZ +

(
1− p̃k−3

12

)
· p̆WZ

NL
(4.31a)

=
3

NL
p

(0)
WZ +

(
NL − 3

NL

)
p̆WZ +

(
p

(0)
WZ − p̆WZ

NL

)
p̃12

(
NL∑
k=4

p̃k−4
12

)
(4.31b)

=
3

NL
p

(0)
WZ +

(
NL − 3

NL

)
p̆WZ + p̃12

(
p

(0)
WZ − p̆WZ

NL

)(
1− p̃NL−3

12

1− p̃12

)
(4.31c)

In the limit p̃12 → 1, we exploit limp̃12→1
1−p̃NL−3

12
1−p̃12

= NL − 3 and obtain

lim
p̃12→1

p̄WZ(NL) =
3

NL
p

(0)
WZ +

(
NL − 3

NL

)
p̆WZ +

(
p

(0)
WZ − p̆WZ

NL

)(
NL − 3

)
= p

(0)
WZ . (4.32)

In the limit NL →∞ (for p̃12 6= 1) or in the limit p
(0)
WZ → p̆WZ this expression reduces to

lim
NL→∞

p̄WZ(NL) = lim
p

(0)
WZ→p̆WZ

p̄WZ(NL) = p̆WZ . (4.33)
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Figure 4.15.: Illustration of the influence of the initial growth behavior p
(0)
WZ in the frame-

work of a Markov process. Dashed lines represent stationary limits, dashed-
dotted lines represent the probabilities for wurtzite phase in layer n (i.e.,

p
(L)
WZ(n)) and continuous lines represent the average fraction of wurtzite phase

from layer k = 1 to a particular layer n (i.e., p̄WZ(n)). Fig. (a) compares the
behavior for fixed stationary limit and different switching probabilities for

the extreme cases p
(0)
WZ ∈ {0, 1}. In Fig. (b), p

(0)
WZ and pWZ→ZB are kept fixed

and the probability pZB→WZ is varied.

From Eq. (4.31c), we can understand the interplay of time resolved X-ray data and the
initial growth stage under the assumption of static switching probabilities after the initial
growth stage. Some results are depicted in Fig. 4.15 for illustration.

Note, that Eq. (4.31c) can be rewritten as

p̄WZ(NL) =

[
3

NL
+
p̃12

NL

(
1− p̃NL−3

12

1− p̃12

)]
p

(0)
WZ +

[(
NL − 3

NL

)
− p̃12

NL

(
1− p̃NL−3

12

1− p̃12

)]
p̆WZ ,

(4.34)
which expresses the layer average p̄WZ(NL) as a weighted average of the initial wurtzite

probability p
(0)
WZ and the stationary limit p̆WZ in analogy to Eq. (4.28b). Again, we

calculate the layer NL for which the weight of the initial growth conditions drops below ε,
i.e.,

3

NL
+
p̃12

NL

(
1− p̃NL−3

12

1− p̃12

)
≤ ε. (4.35)

The solution of this equation is

NL ≥
−LambertW

(
log(p̃12) p̃

−2+ 3
ε+

p̃12
ε (1−p̃12)

12
ε (1−p̃12)

)
log(p̃12)

+
3

ε
+

p̃12

ε (1− p̃12)
(4.36)

and is depicted in Fig. 4.16(a) for various values for ε. Again, by construction, this

expression does not depend on the initial probability for wurtzite p
(0)
WZ.

In complete analogy to the case of the local wurtzite probability we can consider the

11The weights fulfill normalization of the sum to one for all layers n and are positive definite.
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Figure 4.16.: Illustration of the influence of the initial growth behavior p
(0)
WZ in the frame-

work of a Markov process (continuation of Fig. 4.15).

relative deviation of p̄WZ(NL) from the stationary limit p̆WZ. In this case, the solution is

NL ≥
−LambertW

( log(p̃12)
∣∣∣p̆WZ−p

(0)
WZ

∣∣∣ p̃−2+

∣∣∣∣p̆WZ−p
(0)
WZ

∣∣∣∣·(3−2p̃12)

ε p̆WZ (1−p̃12)
12

ε p̆WZ (1−p̃12)

)
log(p̃12)

+

∣∣∣p̆WZ − p(0)
WZ

∣∣∣ · (3− 2p̃12)

ε p̆WZ (1− p̃12)
(4.37)

and is illustrated in Figs. 4.16(b) for various combinations of stationary limit p̆WZ and

initial growth parameter p
(0)
WZ.

The results depicted in Figs. 4.15 and 4.16 are important for determination if informa-
tion about the initial growth behavior can be extracted from given experimental data of
nanowires with height NL or if the influence of the initial growth is negligible for the ob-
served data. Specifically, for the results given in Sec. 4.4.1, the influence of the initial
growth is negligible and we can restrict to the parameter space (pZB→WZ, pZB→WZ) there.

4.3.2.4. The (111)zyc reflection for static transition probabilities

Next, we consider the X-ray scattering signal I(qz) near the (111)zyc GaAs Bragg peak for
stacking sequences based on statistical Markov processes. Unless stated otherwise, a set of
NW = 2500 wires has been simulated according to Eq. (4.18). The initial growth parameter

p
(0)
WZ was set to 0.5 and the number of layers NL of each wire was drawn randomly from a

uniform distribution in the interval 6500 to 8500. The results have been normalized such
that the maximum of the scattering signal is equal to one. Due to space constraints in the
captions of the figures, the parameters pZB→WZ and pZB→WZ are sometimes abbreviated
as pZ>W and pW>Z. The transition probability of the symmetric case pZB→WZ = pZB→WZ

is sometimes referred to as pSwitch.

The results are depicted in Fig. 4.17: Fig. (a) covers symmetric transition probability
pSwitch from pSwitch = 0 to pSwitch = 1. Both limits refer to pure wires: Whereas for
pSwitch = 0 pure wurtzite and zinc blende wires are obtained with fractions determined by

p
(0)
WZ, the limit pSwitch = 1 corresponds to pure wires of the 4H polytype (see Sec. 1.4) and

we see the (222)zyc reflection of the stacking BABC-BABC-. . . (i.e., the unit cell BABC).
For those extreme cases pSwitch = 0 and pSwitch = 1, the signal is extremely sharp and
shape oscillations are observed. If we increase pSwitch from pSwitch = 0 to pSwitch = 0.1%,
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resulting in p̆WZ = 0.4 (see Eq. (4.24a))

1.905 1.91 1.915 1.92 1.925 1.93 1.935

q
z
 [ A

-1
]

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 i
n

te
n

si
ty

 [
 ]

p
Z>W

=0.203%

p
Z>W

=0.303%

p
Z>W

=0.452%

p
Z>W

=0.674%

p
Z>W

=1.005%

p
Z>W

=1.500%

p
Z>W

=2.352%

(c) Asymmetric cases pZB→WZ = 0.522 · pWZ→ZB

resulting in p̆WZ = 0.34 (see Eq. (4.24a))
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(d) Asymmetric cases with pZB→WZ = 0.50%
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Figure 4.17.: Intensity profile I(qz) near the (111)zyc GaAs Bragg peak for a Markov
process as described in Fig. 4.13.

the peaks from both phases are still distinct, but the size oscillations already vanished due
to the statistical fluctuations in the domain sizes. If we increase the switching probability
further to 0.5% ≤ pSwitch ≤ 1.5%, we observe that

• the distinct peaks of extended pure and defect-free zinc blende and wurtzite struc-
tures become increasingly broadened and start to overlap significantly,

• the maximum of the two recognizable subpeaks shifts from the native zinc blende
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and wurtzite positions towards the center qC of these two native positions, and,

• that the broadening is stronger than the shift towards the center resulting in a
significant weight of the intensity located at qz values smaller than the pure wurtzite
wires’ qz range and larger than the pure zinc blende wires’ qz range.

The drift of the maximum of the two distinct subpeaks towards the center qC is monotonous
in case of our Markov process model (see Fig. 4.13).

For pSwitch ≥ 1.5%, both subpeaks merge to a single peak centered at qC. Its width
decreases more and more for increasing switching probabilities pSwitch. For pSwitch = 50%,
we obtain the limiting case to which we refer as “fully random wires”: For every newly
grown layer, the probability for switching to the stacking order of the other phase is as big
as keeping the stacking sequence of the current phase. From this case of fully random wires,
we see that even a very shape single peak (as compared to pSwitch ≈ 2.6%) does not imply
a structure with high ordering. Note, that by Eq. (4.24a), if the transition probabilities
pZB→WZ = pWZ→ZB are equal, the phase fraction of wurtzite is equal to p̆WZ = 50%.
Moreover, for symmetric switching probabilities, the scattering signal is symmetric with
respect to the axis qz = qC.

If we want to model structures with p̆WZ 6= 50% (in the stationary limit), we must con-
sider asymmetric conditions, i.e., pZB→WZ 6= pWZ→ZB. The corresponding X-ray signal
(normalized to a maximum of 1) is depicted in Figs. 4.17(b) to 4.17(f):

On the one hand, the phase fractions of both polytypes are equal for all curves in Figs. (b)
(p̆WZ = 40%) and (c) (p̆WZ = 34%). Again, we observe a transition from two distinct
subpeaks to a single merged peak. However, in the intermediate range, a pronounced
plateau next to a pronounced peak is observed (e.g., pZB→WZ = 0.674% in Fig. (c)). The
characteristics of this signal closely resembles the features which we discussed in Sec. 4.1.
We point out a drift of the maximum towards zinc blende for decreasing phase fraction
p̆WZ for highly faulty wires.

On the other hand, the phase fractions vary in the Figs. 4.17(d) to 4.17(f). Those figures
are dedicated to fixed pZB→WZ which is set to 0.50%, 1.00% and 1.50% respectively. For
pZB→WZ = 0.50% (Fig. 4.17(d)), we observe two distinct subpeaks for pWZ→ZB ≤ 1.06%.
For close values of pWZ→ZB, we find a plateau-like behavior of the scattered intensity near
the wurtzite reflection. For even higher values for pWZ→ZB, the wurtzite subpeak can no
longer be observed: only an asymmetric single peak close to zinc blende can be observed.
During this increase of pWZ→ZB = 0.27% to pWZ→ZB = 2.60%, the shape of the wurtzite
subpeak becomes more and more broadened and shifts towards zinc blende. At the same
time, the shape of the zinc blende subpeak is almost not influenced from the change in
pZB→WZ, only its relative height with respect to zinc blende changes.

Qualitatively similar behavior is also observed for pZB→WZ = 1.00% (see Fig. 4.17(e)).
However, as the average pure phase domains get smaller due to the mostly higher tran-
sition probabilities, the peaks are broader and overlap more. Therefore, the drift of the
center of the wurtzite peak towards the center is stronger for increasing pWZ→ZB compared
to the previous case pZB→WZ = 0.50%. For pZB→WZ = 1.00%, the respective subpeak
establishes a pronounced plateau already for pWZ→ZB = 1.29%, i.e., for an asymmetry
pAsym = 0.29% as defined in Eq. (4.19) which is smaller than for the case depicted in Fig.
4.17(d) of pAsym ≈ 0.6%. For pWZ→ZB ≈ 0.52%, we observe plateau-like behavior which is
comparable to Fig. 4.17(d) if wurtzite and zinc blende parameters are interchanged.

For pWZ→ZB = pZB→WZ = 1.50%, the broadening is already so strong that the plateau is
achieved for vanishing asymmetry (pAsym = 0). Whereas for higher transition probabilities
pWZ→ZB > 1.50%, the plateau like behavior vanishes quickly for increasing probability
pWZ→ZB, the characteristics of the plateau survives even below pWZ→ZB = 0.78%.
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Figure 4.18.: Normalized central moments (as defined in Eq. (4.38)) of the intensity profile
I(qz) near the (111)zyc GaAs Bragg peak for a Markov process as described
in Fig. 4.13. All plots depict the respective moment as a function of pWZ→ZB

for various fixed values of pZB→WZ. The vertical dashed lines indicate the
positions where pWZ→ZB is equal to pZB→WZ depicted in the respective color.

For further investigation of the X-ray scattering signal, we calculate the center of mass

µ(pZB→WZ, pWZ→ZB) =

∫ 1.9367Å−1

1.90Å−1

qz · Ĩ(qz) d1qz , (4.38a)

the standard deviation

σ(pZB→WZ, pWZ→ZB) =

(∫ 1.9367Å−1

1.90Å−1

(qz − µ)2 · Ĩ(qz) d1qz

)1/2

, (4.38b)

the skewness

s(pZB→WZ, pWZ→ZB) =

∫ 1.9367Å−1

1.90Å−1

(
qz − µ
σ

)3

· Ĩ(qz) d1qz , (4.38c)

and the kurtosis

k(pZB→WZ, pWZ→ZB) =

∫ 1.9367Å−1

1.90Å−1

(
qz − µ
σ

)4

· Ĩ(qz) d1qz . (4.38d)
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of our X-ray profiles. Here, Ĩ is the normalized intensity

Ĩ(qz) = I(qz)
/(∫ 1.9367Å−1

1.90Å−1

I(qz) d1qz

)
. (4.39)

The results are depicted in Fig. 4.18 as a function of pWZ→ZB for various values of pZB→WZ.

In Fig. 4.18(a), the position of the center of mass of the scattered intensity is depicted: As
expected, the center of mass is at the average value of the positions of pure zinc blende and
wurtzite (grey dashed-dotted line). For very pronounced asymmetry, the center of mass is
located essentially at the positions of native zinc blende and wurtzite. However, the center
of mass is difficult to estimate for experimental data, since very precise calibrations with
a known reference are required. For example, for the post-growth ex-situ measurements
which we discussed in Sec. 3.2 the estimation of the center of mass is not possible with
the required precision. Moreover, in case of highly asymmetric transition probabilities,
the magnitude of the slope of the functions in Fig. 4.18(a) is very small, and, thus, would
result in huge uncertainties and errors of the retrieved values in such cases.

In contrast, it is typically much simpler to estimate the width σ of an experimentally
measured intensity profile. The bahavior of the width σ in the framework of the Markov
model is shown in Fig. 4.18(b). Most importantly, we see that the case with the biggest
width is not the symmetric case pWZ→ZB = pZB→WZ. As a function of one of the two
transition probabilities – keeping the other transition probability fixed – the case with
the highest asymmetry is close the symmetric case, but slightly shifted towards increased
phase purity. In addition, we observe that this maximum width first increases very fast
towards wires with higher phase purity. However, once the X-ray signal contains two
distinct peaks, this increase slows down and the maximum width converges to its limit.

The skewness – shown in Fig. 4.18(c) – vanishes for the symmetric case pWZ→ZB =
pZB→WZ. In contrast to the width σ, the skewness is a strict monotonous function of
pWZ→ZB for fixed pZB→WZ.

Finally, in Fig. 4.18(d), the kurtosis is depicted. Interestingly, the kurtosis varies over
more than two orders of magnitude. However, the extraction of the value of the kurtosis
requires experimental data of very high quality, since it is highly sensitive to the tails of
the signal and (statistical as well as systematic) errors in the data. Thus, it should not be
used for comparison with experimental data.

Facing the difficulties in determination of the expectation value µ and the kurtosis k, we
now turn to the question if knowledge of the width σ and the skewness s is sufficient for
interpretation of experimental data. We point out that the transition probabilities of the
model underlying Fig. 4.18(d) are assumed to be static. Therefore, the gradient of the
nanowire properties with increasing growth time must be small.

Since the skewness is a strict monotonous function of pWZ→ZB for fixed pZB→WZ with

reasonable slope, the equation sExp
!

= s(pZB→WZ, pWZ→ZB) has a unique solution pWZ→ZB

for fixed pZB→WZ. Thus, this solution pWZ→ZB can be understood as a function of pZB→WZ

and the experimental value sExp (i.e., pWZ→ZB(pZB→WZ, sExp)). Therefore, the width
σ(pZB→WZ, pWZ→ZB) can be interpreted as a function σ(pZB→WZ, pWZ→ZB(pZB→WZ, sExp)).
For given experimental skewness sExp, the width is now only a function of one independent
argument pZB→WZ. In addition, the function pWZ→ZB(pZB→WZ, sExp) needs to be known
for all relevant values for sExp.

The results for various values for sExp are depicted in Fig. 4.19. If the skewness s and the
width σ of an experimentally measured intensity profile I(qz) are known with sufficient
accuracy, these plots reveal the transition probabilities pWZ→ZB and pZB→WZ of the Markov
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(d) stationary limit p̆WZ vs. pZB→WZ

Figure 4.19.: Width σ, transition probability pWZ→ZB, the ratio pWZ→ZB
pZB→WZ

and the stationary
limit of the wurtzite fraction p̆WZ as a function of pZB→WZ for fixed skewness
s. If the skewness s and the width σ of an experimentally measured inten-
sity profile I(qz) are known with sufficient accuracy, these plots reveal the
transition probabilities of the Markov model for polytypism.

model for polytypism: From Fig. (a), it is possible to look up pZB→WZ for given skewness
and width, since the behavior of all functions is strictly monotonous. Fig. (b) maps this
value of pZB→WZ to the corresponding value of pWZ→ZB based on the skewness of the
measured intensity profile.

We point out that for pZB→WZ . 4%, the functional dependence is almost linear for
−2 ≤ s ≤ 2. Thus, in this range, knowledge of the skewness s is already sufficient to
estimate the ratio of the transition probabilities pZB→WZ/pWZ→ZB (see Fig. 4.19(c)). By
Eq. (4.24a), this ratio is sufficient for calculation of the stationary limit p̆WZ. The result is
depicted in Fig. 4.19(d). This is particularly interesting due to the fact that the skewness
s is dimensionless (in contrast to the width σ) and calculated in such a way, that it is
insensitive to the qz calibration of the experimental data.

This approach for interpretation of experimental data is well suited for understanding the
Markov model and its relation to the scattering signal and for obtaining a quick rough
estimate of the properties of the grown nanowires. However, other means for comparison of
experimentally measured data and the Markov model, which are based on pre-computing
of a large data set of parameters (pWZ→ZB, pZB→WZ) once, include:

• The evaluation of the lowest four moments of each simulated profile and the experi-
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Figure 4.20.: Illustration of the transition of the X-ray intensity qz profiles of the (111)zyc

Bragg reflection.

mental data. Then, the weighted error

ℵ(pWZ→ZB, pZB→WZ) =wµ · (µexp − µ(pWZ→ZB, pZB→WZ))2 +

wσ · (σexp − σ(pWZ→ZB, pZB→WZ))2 +

ws · (sexp − s(pWZ→ZB, pZB→WZ))2 +

wk · (kexp − k(pWZ→ZB, pZB→WZ))2 . (4.40)

could be considered (or any other suitable error metric). If any of these values cannot
be estimated properly, then the respective weight is simply set to zero (typically, wµ=0

and wk = 0). The smallest error metric ℵ(pWZ→ZB, pZB→WZ) reveals the optimal
parameters (pWZ→ZB, pZB→WZ) in the set of precomputed profiles.

• Alternatively, a comparison of the full profile for each pixel with the pre-computed
profiles can be performed. This approach is advantageous if the tails of the experi-
mentally measured profile are not reliable.

We will compare the experimental and simulated data in Sec. 4.4. We point out, that the
effects of the experimental resolution element can be incorporated in all three approaches.

Before we continue with results for the (333)zyc reflection, we shortly point out the impor-
tance of the statistical nature of our obtained X-ray profiles. If only a single wire (see for
example Refs. [101, 123] for such scans of single wires) or few wires are illuminated where
each single wire scatters fully coherent and different wires contribute incoherently, we see
the large fluctuations in the phase distribution in direct space also in the speckle patterns
in reciprocal space. The characteristics of the X-ray profiles of the (111)zyc reflection
for illumination of NReal = 1 up to NReal = 25000 wires are depicted in Fig. 4.20. For
the range NReal = 1 to NReal = 100, two different volumes with NReal wires (generated
randomly, but with identical parameters of the random process) are depicted to reveal the
large fluctuations from realization to realization. Therefore, scans of few or single wires
are much more difficult to interpret (see second part of this manuscript) and contain less
statistically relevant information. Such scans are currently only useful if the object under
consideration has low fluctuations from object to object.
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Figure 4.21.: Scattered intensity of GaAs nanowires in the framework of the Markov model
in the vicinity of the (333)zyc Bragg reflection. For comparison, some profiles
of the (111)zyc reflection are included after transforming qz → 3qz.

4.3.2.5. The (333)zyc reflection for static transition probabilities

Up to now we studied the (111)zyc Bragg reflection, because – as long as only symmetric
reflections are considered – the (222)zyc reflection is quasi-forbidden and the (333)zyc

reflection is not available at typical X-ray energies less or similar to 15keV in the current
PMBE growth chamber (see Sec. 3.2). Nevertheless, the (333)zyc reflection would be
available at higher energies or with larger Beryllium windows. Therefore, we shortly discuss
the scattering signal in the vicinity of the (333)zyc Bragg reflection in the framework of
the Markov model. The results are depicted in Fig. 4.21. For comparison, some profiles
of the (111)zyc reflection are also included – after transforming qz → 3qz.

From these results, we observe that the scattering signal of the (333)zyc reflection is iden-
tical to the (111)zyc reflection if the transition probabilities are divided by three (i.e.,
pWZ→ZB → pWZ→ZB/3 and pZB→WZ → pZB→WZ/3) and the qz values are multiplied by
3 (i.e., qz → 3qz). As a consequence access to the (333)zyc reflection would enhance the
applicability of the presented approach to nanowires with higher transition probabilities
(by a factor of 3). Moreover, alternating measurement of the (111)zyc and (333)zyc re-
flection during growth would provide highly valuable information for separation of the
nanowire signal from the background originating from the parasitic growth since the pro-
file of the nanowire signal would change in a non-trivial way whereas the shape of the
smooth Gaussian like background of the crystallites is not expected to change. Finally,
the invariance of the profile shapes under the transformation pWZ→ZB → pWZ→ZB/3 and
pZB→WZ → pZB→WZ/3 might proof useful for the detection of a possibly enhanced amount
of the 4H polytype in the nanowires (see discussion in Sec. 4.3.3), since the additional
contributions from the 4H polytype would be already observable for smaller 4H segments.

However, since currently no experimental in-situ data of the (333)zyc reflection during
growth has been measured, we do not investigate these benefits further.

4.3.2.6. The (111)zyc reflection for non-static transition probabilities

Instead, we discuss the X-ray signal of the (111)zyc reflection in presence of a gradient
of the transition probabilities along the growth direction. This point is particularly in-
teresting (and has already been mentioned in the motivation for studying polytypism in
nanowires with X-ray techniques) because it is currently not feasible with TEM based
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investigations to reliably detect such gradients – unless the mean thickness of an indi-
vidual segment is very small. For example, Johansson et al. investigated in Ref. [24]
polytypism in highly faulty nanowires with mean segment thicknesses in the order of 3-9
layers. However, the larger the mean segment size is, the more difficult is the detection of
this mean value, and in particular a gradient thereof with TEM based investigations. In
contrast, highly faulty nanowires are rather difficult to study with X-ray based techniques,
but the longer the mean phase segments become, the better is the separation of the con-
tributions from both phases (see Fig. 4.17). Therefore, X-ray diffraction based techniques
are very promising for studying polytypism in that range of parameters where TEM based
investigations are not well suited.

For illustration, we assume a linear function

pP→P̄ = uP→P̄ · n+ vP→P̄ (4.41)

for both polytypes P (see Fig. 4.13 on page 66).

In Fig. 4.22, illustrations in direct space as well as the results for the scattering signal
in reciprocal space are depicted: Clearly, the detection of the gradient in the transition
probabilities with increasing height is hardly possible from one or only a few wires – due
to the large fluctuations of the length of each individual segment. On the contrary, the
X-ray signal changes significantly with increasing number of layers NL. We observe that

• the overall intensity grows proportionally to the nanowire height NL if no radial
growth is included. This is a consequence of Plancherel’s theorem [146], since the
scattering factor of both polytypes is almost equal. Radial growth leads to devia-
tions from this linear behavior. However, for the dependence on the diameter of the
nanowire, we distinguish two cases: First, the three dimensional information in recip-
rocal space is available and integrated for the temporal evolution of the nanowires. In
this case, Plancherel’s theorem holds in three dimensional space and the integrated
intensity is simply proportional to the volume of grown crystalline GaAs. To be
specific, such newly grown material can originate from radial growth, axial growth,
parasitic growth, and, finally, nucleation of additional nanowires with increasing
growth time. If we assume linear growth in axial direction as well as absence of all
other growth but radial growth, the ratio total integrated intensity of GaAs versus
number of grown layers NL is proportional to the cross section of the nanowires (or
the square of the nanowires’ diameter).

However, if we evaluate the qz line-profile for q⊥ = 0 as in Eq. (4.15) (and, therefore,
without integration in qx and qy direction), the overall intensity is proportional to
the square of the cross section of the nanowires or the fourth power of the nanowires’
diameter (see dependence on Ω̃(l)(0) in Eq. (4.15) which is squared in order to obtain
the scattered intensity). Therefore, in Fig. 4.22(b), which is obtained from the model
resulting from Eq. (4.15), a quadratic increase of the scattered intensity (integrated

along qz for q⊥ = 0) with NL is observed, if the diameter scales as N
1/4
L .

In total, the temporal evolution of the integrated intensities reveals information
about the average volumetric growth independent of the polytypic behavior of the
nanowires. This is particularly interesting in connection with scaling laws which
connect radial and axial growth such as described in Sec. 1.3.

We point out that Plancherel’s theorem holds for any Bragg reflection of both poly-
types. Thus, temporally resolved reciprocal space mapping of reflections to which
both polytypes contribute reveals volumetric growth irrespective of the polytype.
If the phase purity of both polytypes is high enough to obtain two well separated
sub-peaks, such refections reveal volumetric growth infomation of both polytypes
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(a) Illustration of the phase distribution (dark gray is zinc blende, light grey is wurtzite) in direct
space for 25 GaAs nanowires up to NL = 7000. The large single segment size fluctuations of the
Markov model require consideration of multiple wires to verify the gradient with high statistic
significance. The layer ranges 2500–3500 and 6000–7000 are magnified on the right.
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(b) Scattered intensity in the vicinity of the
(111)zyc GaAs reflection for various heights and
with or without radial growth of the nanowires.
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(c) Comparison of the profiles of the scattered in-
tensity with and without radial growth. The max-
imum of each profile has been normalized to one.

Figure 4.22.: Results for transition probabilities with a non-zero gradient in growth di-
rection according to Eq. (4.41) with parameters uZB→WZ = −8.284 · 10−7,
uZB→WZ = 1.176 · 10−2, uWZ→ZB = 1.102 · 10−6, and vWZ→ZB = 1.089 · 10−2.

separately. If phase-selective reflections are mapped three dimensionally and in a
time-resolved manner, volumetric growth of each polytype can be measured sepa-
rately in case of highly faulty nanowires.

• the shape close to the (111)zyc reflection is independent of radial growth – as long
as the radial growth is epitaxial (see Fig. 4.22(c)). Therefore, by investigation of the
shape of the intensity profile, we are able to investigate the evolution of the transition
probabilities which determine the fraction of both polytypes, the differential phase
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Distribution Density function Expectation Variance

Gamma 1
b·Γ(m+1)

(
x
b

)m
e−

x
b , b > 0, m > −1 b · (m+ 1) b2 · (m+ 1)

Weibull α
bαx

α−1 e−( xb )α , α > 0, b > 0 b · Γ(1 + 1
α ) b2

(
Γ( 2+α

α )− Γ2( 1+α
α )
)

Pareto γ
b

(
b
x

)γ+1
, γ > 0

γb
γ−1 γ > 1

∞ γ ≤ 1

γb2

(γ−2)(γ−1)2 γ > 2

∞ γ ≤ 2
Uniform 1

u−l , 0.5 ≤ l < u <∞ 1
2 (l + u) 1

12 (u− l)2

Poisson λk

k! e−λ, λ > 0 λ λ

Logarithmic −pk
ln(1−p) k , 0 < p < 1 −1

ln(1−p)
p

1−p
−p(p+ln(1−p))
(1−p)2 ln2(1−p)

Gaussian 1
σ
√

2π
e−

1
2 ( x−µσ )

2

µ σ2

Table 4.1.: Overview over statistical distributions [129, 145, 147] for the generation of phase
segments of either zinc blende or wurtzite phase with random length. Gamma
and Weibull distribution reduce to a exponential distribution for m = 0 and
α = 1 respectively. Γ(·) denotes the Gamma function [129, 145, 147]. Gamma
and Weibull distribution are defined for x ≥ 0, the Pareto distribution for x ≥ b.
The Poisson distribution is only defined for discrete events k = 0, 1, 2, 3, . . .,
whereas k is restricted to k = 1, 2, 3, . . . for the logarithmic distribution. The
Gaussian is defined for all x ∈ R. Gamma, Weibull, Pareto, uniform and
Gaussian distribution are two parameter distributions whereas logarithmic and
Poisson distribution are one parameter distributions.

fraction (see Sec. E in the appendix) as well as the phase purity (i.e., the mean
number of layers without defects in the stacking sequence).

In conclusion, we demonstrated that time-resolved in-situ X-ray measurements are well
suited for investigation of polytypic nanowire growth. Given proper experimental time-
resolved in-situ data, the temporal evolution of the integrated intensity reveals the amount
of grown crystalline material (possibly phase selective) as well as height-dependent esti-
mates for the phase purity of the nanowires. The first aspect requires no further theoretical
investigations. On the contrary, uniqueness of the interpretation as well as characteristic
features of the X-ray profiles must be investigated more closely.

For this, we now investigate stackings based on phase segments with random lengths which
are determined by drawing random numbers according to a given probability distribution
such as a Gamma or Weibull distribution. Thereby, we reveal which aspects of the Markov
model are responsible for the characteristics of X-ray profiles. As a result, we understand
which deviations from the Markov model could be revealed by studying the (111)zyc reflec-
tion of GaAs nanowires with X-ray radiation. After this, we interpret the experimentally
obtained X-ray data of sample S2 in the framework of the Markov model.

4.3.3. Probability distributions for the thickness of defect-free segments

4.3.3.1. Generation of the stacking based on two polytypes

In Sec. 4.3.2, it was proven that the Markov model implies an exponential distribution for
the number of layers grown as a defect-free segment of a particular polytype P (see Eq.
4.21d). In this section, we compare the Markov model to a variety of other statistical
distributions for the length of a defect-free segment. In particular, we consider Weibull,
Gamma, Poisson, uniform, Pareto, logarithmic and Gaussian distributions (see Fig. 4.12
and Tab. 4.1). For those distributions which do not only return integer numbers, the
number of layers n for a particular phase segment is obtained by first drawing a real
number x ∈ R and rounding it to the nearest integer value k. The smallest value that
is produced by the Gamma, Weibull and Poisson distribution is equal to zero. Hence,
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the resulting random number is increased by one to achieve a minimum number of layers
NL = 1. For the same reason, we fix b = 1 in the Pareto distribution and l = 1 for all
uniform distributions throughout this chapter. In case of the Gaussian distribution, events
resulting in less than one layer are discarded and a new value is drawn until a positive
number of layers is generated.

In addition, we will study a simple model for the stacking that results in an enhanced
amount of the 4H polytype in the nanowires (see Eq. (4.43b)).

The Gamma distribution and Weibull distribution are particularly interesting because they
contain the exponential distribution as a special case. Hence, a smooth transition from
the Markov chain to alternative statistical models for the stacking can be investigated.

The Gamma distribution modifies mainly the behavior for short segments (x� bP in Eq.
(4.21d)) by introducing a parameter m, m > −1. Its decay remains exponential in the

form e
− x
bP . Logarithmic distributions correspond to the limiting case m → −1 of the

Gamma distribution. Physically, this corresponds to a strongly enhanced probability for
short phase segments with exponential (i.e., Markov-like) decay for longer segments at the
same time.

The Weibull distribution modifies the decay from e
− x
bP to e

−
(
x
bP

)α
, α > 0, simultaneously

with modifying the short length behavior. Nevertheless, it reduces to the exponential
distribution for α = 1. For α = 2, the decay of the Weibull distribution corresponds to
the decay of a Gaussian distribution. However, the behavior of short segments is different
from Gaussian statistics.

Uniform, Pareto and Poisson distributions are representatives of distributions with differ-
ent characteristics: Uniform distributions show a non-continuous decay to zero, but no
decay in length probability up to that bound. Pareto distributions are scale invariant and
decay as a power law. Thus, they show a very slow decay in comparison to the exponential
decay of the Gamma or Weibull distribution. The Poisson distribution has equal expec-
tation value and variance λ [129, 145]. This is again in strong contrast to the behavior
of the Gamma and Weibull distribution with respect to the parameter b: their ratio of
variance versus expectation value is proportional to b and not equal to 1 as for the Poisson
distribution. This means that for large phase segments (i.e., b� 1) the fluctuations of the
length of the individual segments is strongly suppressed for the Poisson distribution. The
Gaussian distribution facilitates independent tuning of the mean value and the variance
and, therefore, is employed for studying the transition from high fluctuations of the length
of a single segment to low fluctuations.

Before we discuss the respective X-ray profiles, we depict typical realizations of the poly-
type distribution in nanowires for illustration in Fig. 4.23 – analogous to Fig. 4.14. Having
this direction space representations in mind, we now turn to the respective X-ray profiles.

Gamma distribution

Figure 4.24 depicts results for the Gamma distribution. In Fig. 4.24(a) and 4.24(b),
we compare the results for fixed decay length bP as a function of m (continuous lines)
with the results for a Markov process with the corresponding expectation value (dashed
dotted lines in the same color). For mZ = mW = 0, the results should coincide with
pSwitch = 1.0% – as they do up to statistical fluctuations. We observe that the resulting
signal is not identical for identical expectation value of Gamma distribution for m 6= 0
and Markov chain. The changes in the scattering signal are significantly smaller than for
a Markov process if the expectation value is used for defining the scales to be compared.
Even worse, the X-ray scattering signal does not allow a unique identification in the set
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Figure 4.23.: Phase distribution inside nanowires resulting from phase segments with ran-
dom length. The realizations illustrate some important aspects for the dis-
tributions contained in Tab. 4.1. For each set of paramters, three exemplary
phase distributions have been generated and depicted from layer 0 to layer
5000. The range 4500 to 5000 has been magnified for better visibility of small
segments and the frequency thereof. Examples for the phase distribution in
the framework of the Markov model can be found in Fig. 4.14.

of all Gamma distributions: For illustration, in Fig. 4.24(a) the case of mZ = mW = 1.0
has been depicted which coincides up to very tiny differences with the X-ray signal for
pSwitch = 0.71% – or equivalently mZ = mW = 0.0 with a decay length of b = 140.
This ambiguity is also true in the asymmetric case (Fig. 4.24(b)): the scattering signal for
mZ = mW = 1.0 is almost identical to mZ = mW = 0.0 with expectation value µZ = 140
and µW = 105. Moreover, this ambiguity demonstrates that X-ray measurements of the
(111)zyc Bragg reflection can not distinguish if a simple Markov chain – equivalent to
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(a) Symmetric case for fixed decay length of 100
layers for zinc blende and wurtzite
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(b) Asymmetric case for fixed decay length of 100
layers for zinc blende and 75 layers for wurtzite
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100 layers for zinc blende and wurtzite
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Figure 4.24.: qz intensity profiles near the (111)zyc GaAs Bragg peak for a Gamma distri-
bution based phase segment length with parameters as defined in Tab. 4.1.
In Figs. (a)-(b), the result for a Markov chain with the transition probability

pSwitch =
(
b
(Markov)
P

)−1
(see main text) is plotted as a dashed-dotted line in

the same color for comparison. In Figs. (c)-(d) the expectation value of all
continuous lines is equal. For reference, the qz profiles for equal decay decay
lengths, but mP = 0 (Markovian case) are included as dashed-dotted lines in
the respective color in the latter two figures.

an exponential distribution of the phase segment length – is sufficient for describing the
stacking sequence of GaAs nanowires or deviations resulting in phase length segments
according to a Gamma distribution are present.

The expectation value of the Gamma distribution is invariant upon the simultaneous scal-
ing m+1→ s(m+1) and b→ b/s, since it is given by the product of these two quantities.
The influence of this scaling on the X-ray profiles is shown in Figs. 4.24(c) and 4.24(d):
Despite equal expectation value the X-ray profiles change significantly (continuous lines).
The value for scaling in the legend refers to a multiplication of the decay length with
scaling−1 and setting mP = scaling − 1. For reference, the Markovian case with expec-

tation value b
(Markov)
P = b

(Gamma)
P · (1 + m

(Gamma)
P ) is included (dashed-dotted lines). The

major characteristics of the signal are very similar for the cases with equal decay length
— irrespective of the variation in m.

Therefore, we can learn from Fig. 4.24: Within the set of Gamma distributions, a unique
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Figure 4.25.: qz intensity profiles of the (111)zyc GaAs Bragg peak for a logarithmic phase
segment length distribution.

extraction of parameters thereof is not possible. Nevertheless, within the set of Gamma
distributions, the decay lengths bWZ and bZB essentially determine the X-ray signal. The
short range behavior m is only of minor importance unless it deviates strongly from m = 0.
Thus, as long as we restrict to the decay lengths bWZ and bZB, we obtain meaningful
estimates even if the full set of Gamma distributions is considered. However, the mean
segment length also depends on the parameter m and, therefore, cannot be extracted if
the full set of Gamma distributions is admitted as feasible solution: X-rays are not well
suited for studying short range deviations from a Markov model described in Sec. 4.3.2.

Logarithmic distribution

In Fig. 4.25, a logarithmic phase segment length distribution is assumed. This distribution
corresponds to a strongly enhanced probability for short phase segments and is the limiting
case m→ −1 of the Gamma distribution. Even such a strong enhancement of short phase
length segments in comparison to the Markov model of Sec. 4.3.2 cannot be revealed by
X-ray profiles along qz near the (111)zyc reflection: the profiles in the symmetric and in
the asymmetric cases strongly resemble the features of the pure Markov model (compare
Fig. 4.17).

Weibull distribution

We now turn to segment lengths obtained from Weibull distributions (see Tab. 4.1 for
definition of parameters and Fig. 4.26 for results). In Fig. 4.26(a) and 4.26(b) we consider
fixed decay length bWZ and bZB and vary the shape αWZ and αZB (continuous lines).

This scattering signal is compared to a Markov process with expectation value µ
(Markov)
P =

b
(Weibull)
P Γ(1+ 1

αP
) – or equivalently to Weibull distributions with b̃

(Weibull)
P = b

(Weibull)
P Γ(1+

1
αP

) and α̃P = 1 (dashed-dotted lines in the same color). Thus, the mean segment length
is equal for the Weibull and Markovian cases and — as for the Gamma distribution —
we get by this comparison of profiles with equal mean segment length an impression of
the systematic errors if a Weibull distribution with shape parameter αP is erroneously
interpreted as Markovian dynamics.

Also as for the Gamma distribution, the two parameters (αP,bP) of the distribution (for
each polytype) are not mapped on unique scattering profiles which can be seen for example
for the shape parameter α = 0.6 and the Markov process with pZB→WZ = 0.3% and
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Figure 4.26.: qz intensity profiles near the (111)zyc GaAs Bragg peak for polytype segment
lengths based on Weibull distributions with parameters as defined in Tab. 4.1.

pWZ→ZB = 0.3% (Fig. 4.26(a)) or pWZ→ZB = 0.4% (Fig. 4.26(b)) respectively. Note, that
for α > 1.0, the expectation value changes only very slowly as a function of α. However,
the influence of the shape parameter α on the X-ray scattering signal is very strong for all
α. In particular, the changes induced by values α 6= 1.0 for fixed decay length bP exceed
the changes of X-ray profiles if only the expectation value is correspondingly rescaled in the
corresponding Markovian case. Therefore, deviations of the decay of the segment length
distribution from the Markovian case in the manner of a Weibull distribution (α 6= 1.0)
would result in strong systematic errors of the extracted values in a Markovian model.

In contrast to Figs. 4.26(a) and 4.26(b), the decay lengths bP of the Weibull distributions
are no longer fixed in Figs. 4.26(c) and 4.26(d). Instead, the decay lengths bP and and their
shape parameters αP are simultaneously adopted for equal expectation value (continuous
lines). For the dashed lines, the decay lengths are fixed and chosen equal to Figs. 4.26(a)
and 4.26(b). Clearly, the differences in the corresponding X-ray profiles are much smaller
than in Figs. 4.26(a) and 4.26(b).
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Figure 4.27.: qz intensity profiles near the (111)zyc GaAs Bragg peak for a uniform phase
segment length distribution with upper bounds Z for zinc blende and W for
wurtzite (i.e., uniform distributions bound by [1,MaxP ], MaxP ∈ {Z,W}).
The inset in Fig. (b) magnifies the region near the right peak.

This time we identify the higher sensitivity to the shape parameters αP than to the decay
lengths bP. If reasonable rough estimates for the decay lengths bP are known, the shape
parameters αP can be estimated. However, the strong differences of the changes induces
by variations in the shape parameter αP and the decay lengths bP again prevents the
extraction of reliable estimates for the mean segment lengths.

If we combine these observations with our observations for the Gamma distribution, we
can conclude on the following hierarchical influence on the profile of the X-ray signal:

• Power law exponents in the exponent of the exponential function of the distribution

• Decay length scales bP in the exponent of the exponential function

• Power law exponents in the power law dominating the behavior for small distances

However, it is important to keep in mind, the neither for the Gamma nor for the Weibull
distribution a unique identification of both parameters thereof is possible. Given the
hierarchical influence, we can only estimate the power law coefficients in the exponent of
the exponential function of the distribution in case of a Weibull distribution or the decay
length scales bP in the exponent of the exponential function in case of Gamma distributions.
It is not possible to distinguish Weibull and Gamma distributions solely by measuring the
(111)zyc reflection or to identify deviations from the Markov model presented in Sec. 4.3.2.
Most importantly, deviations in the stacking sequence for small segment lengths cannot be
well investigated by studying (111)zyc reflections as a consequence of the small influence
of the power law exponents of the power law dominating the behavior for small distances.

Whereas the general features of Gamma, Weibull, exponential and logarithmic distribu-
tions are similar for the (111)zyc reflection, we will now turn to rectangular, Poisson and
Pareto distributions. Each of the latter has characteristic features for a variety of parame-
ters which can be used to distinguish phase segment length distributions grown according
to the respective distribution.

Uniform distribution

Fig. 4.27 depicts X-ray profiles along qz near the (111)zyc GaAs reflection for uniform
phase segment length distributions bound by [1,MaxP ]. MaxP ∈ {Z,W} is the maximum
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Figure 4.28.: qz intensity profiles near the (111)zyc GaAs Bragg peak for a Poisson dis-
tributed phase segment length with expectation value Z for zinc blende and
W for wurtzite.

number of adjacent layers of phase P ∈ {ZB,WZ} before switching the stacking sequence
to the alternative phase. Fig. 4.27(a) contains X-ray profiles for equal upper bounds
Z = W : The qz profiles for Z = W ∈ {200, 300} differ from the profiles of a Markov chain
by the plateau(s) next to peak(s). However, for very high (Z = W ≥ 750) or very low
values (Z = W ≤ 100) of Z and W , the result is similar to the Markov process. The
asymmetric case Z 6= W is considered in Fig. 4.27(b): Whereas for W decreasing from
300 to 200 at Z = 300, the right peak shifts towards zinc blende, the peak degenerates to a
plateau for (Z,W ) ≈ (300, 170) (for better visibility, the mirrored case (Z,W ) ≈ (170, 300)
has been depicted instead). For (Z,W ) ≈ (300, 150), the peak maximum is even left of
the symmetric case W = 300. For W = 100, the peak maximum almost coincides with
W = 300. Hence, the peak maximum does not drift monotonously towards the native
phase positions for a rectangular distribution. Only for even smaller W , the peak shape
becomes very narrow and has almost no structure, but shifts continuously towards the
limit of pure zinc blende.

The experimentally observed in-situ X-ray measurements do not resemble the typical fea-
tures of the rectangular distribution. Hence, we exclude an (almost) uniform distribution
for the length distribution of defect-free segments for the measured GaAs nanowires.

Poisson distribution

Whereas for the Gamma and Weibull distribution (including the Markovian case) we
observed a maximum of two peaks, the number of distinct peaks is typically much higher
for a Poisson distribution (Fig. 4.28). Note, that the center of some of these subpeaks can
be at smaller or higher qz values than for pure wires. Fig. 4.28(a) depicts results for the
symmetric case Z = W : In all cases, a peak at the average of the pure wire’s qz value is
present. It is the strongest peak for Z = N ≤ 150. For Z = N � 150, the side peaks
are very weak and basically only the sharp central peak remains – as it is expected in the
limit of wires with essentially random stacking. On the contrary, for Z = N ≥ 200, the
maximum intensity of the peaks close to the pure wire’s qz values get stronger and can
outruns the central peak (Z = N = 225). For Z = N = 1000, we see – as expected for
very pure wires – that the signal accumulates at the pure wire’s positions. Nevertheless,
side peaks are still present. We point out that the number of visible side peaks in between
the pure wire’s position is also not constant: Whereas for Z = N = 1000, seven such side
peaks are clearly visible, only one peak exists in that qz range for Z = N = 100.
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Fig. 4.28(b) depicts a set of qz profiles for decreasing 100 > W > 275 at fixed Z = 225.
Here, we again clearly see the complicated interplay of a statistically distributed number of
layers for each polytype segment and partial interference. Although the relative asymmetry
for (Z,N) = (225, 275) and (Z,N) = (225, 175) is equal, these two signals are not mirrors of
each other. This change in profile can be easily seen from the change in height of the central
maximum qz ≈ 1.9185 from ≈ 0.08 [(Z,N) = (225, 275)] to ≈ 0.5 [(Z,N) = (225, 175)].

These features of the Poisson distribution are beating phenomena in the X-ray signal
despite incoherent averaging of the contribution of different wires: As a consequence of
the small standard deviation of the Poisson distribution σPoisson =

√
µPoisson � µPoisson

for expectation values µPoisson � 1, several rather sharp individual peaks are enclosed
by an envelope function. The distance δqz of two peaks is determined by the height
µZ + µW of the “meta-cell” constituted by one average element of zinc blende plus one
average element of wurtzite. Due to the small fluctuations of the Poisson distribution,
several such meta-cells are stacked with sufficiently small variation to produce distinct and
clearly separated peaks similar to diffraction of periodic multilayer structures or multi-slit
optical gratings. For example, the distance of two subpeaks of the black curve in Fig.
4.28(a) is δqz ≈ 0.00424Å−1 which corresponds to δz = 2π

δqz
≈ 148nm ≈̂ 450 layers which

is the sum of the expectation value of the zinc blende and wurtzite segments. If we
consider the red curve in Fig. 4.28(b), we have δqz ≈ 0.00478Å−1 which corresponds to
δz = 2π

δqz
≈ 131nm ≈̂ 400 layers. Again, this value is the sum of the expectation value of

the zinc blende and wurtzite segments.

In addition the distance of the subpeaks, we need to define the center of one subpeak:
One subpeak resides at the qz value of the average lattice constant of the meta-cell. For
example, if we again consider the red curve in Fig. 4.28(b), one subpeak is located at the
reflection for average layer height of

ameta−cell ≈
Z

Z +W
aZ +

W

Z +W
aW ≈ 3.2739Å ⇒ qz ≈ 1.919Å−1 (4.42)

as observed in the simulated data. As this particular subpeak which has been dis-
cussed moves further away from the wurtzite position for decreasing expectation value
for wurtzite, while at the same time the distance between to subpeaks increases, the po-
sition of the subpeaks close to wurtzite almost coincide for all depicted cases.

Most importantly, the observed experimental peak shapes in Sec. 4.1 do not resemble
the characteristics of the profiles depicted in Fig. 4.28. Therefore, we exclude a Poisson
distributed length of the phase segments of wurtzite and zinc blende for our experimentally
measured X-ray data.

Gaussian distribution

In order to further study the influence of the fluctuations of the length of a single element,
we now consider Gaussian distributions for the phase segment length distributions: By
varying their standard deviations without modifying their expectation values, we change
the relative error of each individual phase segment and tune the degree of long-range corre-
lations in the nanowires’ phase segments. If the random event generated by the Gaussian
distribution was less than one layer, the event was dropped and new random event has
been generated until a positive number of layers has been generated. Therefore, once the
standard deviation σ exceeds approximately 25% of the mean value µ, the distribution for
generation of the phase segment length is no longer a Gaussian, but a truncated Gaus-
sian. The mean µ and standard deviation σ given in this manuscript are the values of
the distribution before truncation. For increasing standard deviation σ of the Gaussian
distribution, the limit of highly correlated meta cells (σ = 0) develops towards the case of
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Figure 4.29.: qz intensity profiles near the (111)zyc GaAs Bragg peak for a Gaussian phase
segment length with expectation value Z for zinc blende and W for wurtzite.
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Figure 4.30.: qz profile of the intensity near the (111)zyc GaAs Bragg peak for a Pareto
distributed phase segment length with a tail index Z for zinc blende and W
for wurtzite (i.e., a power law decay with power Z+1 and W+1 respectively).

high fluctuations (σ . µ). In Fig. 4.29, we observe the transition of the scattering signal
from Poisson-like behavior to the characteristics for Gamma, Weibull, etc., distributions
for which the standard deviation for the length of a single segment is in the same order
as the mean (see Tab. 4.1). Therefore, X-ray investigations of the (111)zyc GaAs Bragg
peak are well suited for investigation of the correlations in (and quality of) highly periodic
wurtzite-zinc blende super-cell structures (σP � µP).

Pareto distribution

In Fig. 4.30, we depict typical scattering signals for a Pareto distribution based phase
segment length distribution where the parameter b was set to one. We point out that a
power law is scale-free. Therefore, the full depicted range of the polytype distribution in
the nanowires from layer 0 to layer 5000 in Fig. 4.23 looks very similar to the magnified
region from layer 4500 to 5000. For tail exponents Z = W ≤ 0.9, two sharp peaks at
the pure wires’ qz position are present. Some diffuse intensity is present between these
subpeaks. For higher tail index, a third peak emerges in the center of the pure phase
subpeaks. At first, this peak is very broad, but it decreases fast in width with increasing
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Figure 4.31.: Fraction and mean length of the 4H polytype in the model (4.43b). The
reference solution is taken from Eq. (4.54). The values µZB and µWZ are the
decay constants of the exponential distributions underlying the zinc blende
and wurtzite segments.

tail index Z = W . The maximum intensities of all three subpeaks are almost equal for
Z = W ≈ 1.20 (not depicted). For higher tail indices, the central peak dominates the
signal: For Z = W = 1.5, the peaks at the pure wires’ positions are barely observable any
more and have vanished for Z = W = 2.0. For very high tail indices, e.g., Z = W = 5.0,
size oscillations of a meta-cell of alternating phase become visible (as in the Markov model
in the limit pZB→WZ = pWZ→ZB → 1.0), since essentially only phase length segments with
a length given by a single layer occur.

In strong contrast to all other probability distributions in Tab. 4.1, the outer peaks do not
leave the native wires’ position, even for asymmetric tail indices (see Fig. 4.30(b)). This
fact originates from the strong influence of the long tails of the Pareto distribution which
produces some pure or almost pure wires.12 Nevertheless, the middle peak changes width
and center of mass in case of asymmetric tail indices Z 6= W . For the Pareto distribution,
this drift is monotonous towards the more likely phase. Plateaus (as e.g., for the Markov
model) have not been observed in our simulations. Thus, we also exclude power law phase
segment length distributions for our samples discussed in Sec. 4.1.

4.3.3.2. Enhanced occurrence of the 4H polytype

We now investigate the consequences for the X-ray signal near the (111)zyc Bragg reflection
if the content of 4H polytype in the nanowires is increased beyond its purely statistical
presence. The 4H structures are constituted by the stacking ABCB (and permutations
thereof) as described in Sec. 1.4. Therefore, nearest neighbors define the local polytype to
change every layer, i.e., WZWT (see beginning of Sec. 4.3). Hence, 50% of the structure
are wurtzite, and 25% of the structure are zinc blende and twinned zinc blende respectively.
In order to enhance the 4H wurtzite structures in the stacking sequences of the nanowires,
we enhance the probability for a phase segment with length 1. Note, that this is different
from enhancing short segment lengths in case of Gamma (for −1 < m < 0) or Weibull dis-
tribution (for 0 < α < 1): In those cases, the probability for 4H structure is also enhanced
compared to the Markov model (since phase segments with length 1 are enhanced), but
the modification is not equally selective as the one which is now investigated.

12Thus, the influence of the initial growth is much stronger than for the Markov model (see Sec. 4.3.2).
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A first simple model is given by the phase length distribution

p
(α)
4H+(n) = (1− α) · pMarkov(n) + α · p1+(n) (4.43a)

= (1− α)
1

b
e−n/bΘ(n) + α · δn1 (4.43b)

for generation of a polytype segment with n layers. The parameters α ∈ [0, 1] and b are
polytype dependent and δij is the Kronecker delta. Note, that b � 1 is assumed which
makes the exponential distribution a good approximation to the Markov model. In this
model, the limit α = 0 corresponds to the original Markov model. The limit α = 1 results
in pure, perfect 4H nanowires. A phase length of 1 is returned with probability

p
(α)
4H+(n = 1)

b�1
=

1

b
+ α

b− 1

b
+O

(
1

b2

)
= α+O

(
1

b

)
(4.44)

and, therefore, is enhanced by

p
(α)
4H+(n = 1)− p(0)

4H+(n = 1)
b�1
= = α

b− 1

b
+O

(
1

b2

)
= α+O

(
1

b

)
(4.45)

All other lengths are correspondingly suppressed by

p
(α)
4H+(n > 1)− p(0)

4H+(n > 1)
b�1
=
−α
b

+O
(

1

b2

)
= 0 +O

(
1

b

)
(4.46)

The mean of p
(α)
4H+(n) is

µ
(
p

(α)
4H+

)
= (1− α)b+ α

b�α
≈ (1− α)b , (4.47)

whereas the standard deviation is

σ
(
p

(α)
4H+

)
=
√

(1− α)2 · b2 + α2 · 02 = (1− α)b . (4.48)

Therefore, the ratio σ/µ equals one, irrespective for the value of α (as long as α 6= 1).

The probability for a 4H structures to exceed the lengths 2n, n ∈ N, is given by13

p4H(≥ 2n) =
(
p

(αZB)
4H+ (n = 1) p

(αWZ)
4H+ (n = 1)

)n
(4.49a)

=

[(
1

bZB
+ αZB

bZB − 1

bZB

)(
1

bWZ
+ αWZ

bWZ − 1

bWZ

)]n
(4.49b)

= e
log
[(

1
bZB

+αZB
bZB−1

bZB

)(
1

bWZ
+αWZ

bWZ−1

bWZ

)]
·n

= e−2n/b4H (4.49c)

with

b4H =
−2

log
[(

1
bZB

+ αZB
bZB−1
bZB

)(
1

bWZ
+ αWZ

bWZ−1
bWZ

)] . (4.49d)

Hence, the probability of a segment to be smaller than 2n is

p4H(< 2n) = 1− p4H(≥ 2n) = 1− e−2n/b4H . (4.50)

If we approximate n as continuous variable x, we have

p4H(< x) = 1− e−x/b4H . (4.51)

13For odd length 2n+ 1, the result has to multiplied with p
(αP)
4H+ (n = 1) of the terminating phase P.
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By differentiating, we obtain

p4H(x) =
1

b4H
e−x/b4H (4.52)

for x > 0. Therefore, the phase segment length distribution for the 4H structure is well
approximated by an exponential distribution with the decay length b4H. However, for the
decay length b4H to be significantly larger than 1, either bZB and bWZ must be in the
order of 1, or αZB and αWZ must be very close to one. It is important to understand
that for values of α very close to one, almost all “segments” which are generated are only
one layer. On the contrary, every rare event (1 − α) typically adds a large number of
layers to the stacking. Therefore, a good scale for α can be calculated from the condition
b = bZB = bWZ = b4H. Assuming α = αZB = αWZ, we isolate

b =
−1

log
[

1
b + α b−1

b

] ⇒ α =
1

b− 1

(
b e
−1
b − 1

)
(4.53)

from Eq. (4.49d). In the limit b� 1, we have

α ≈ b

b− 1

(
1− 1

b

)
− 1

b− 1
= 1− 1

b− 1
≈ 1− 1

b
. (4.54)

For values of α close to 1, the phase fraction of the 4H polytype and the mean segment
thickness of the 4H segments are depicted in Fig. 4.31.

Considering the investigations already presented, we expect additional weight at the center
of the wurtzite and zinc blende position in the X-ray signal (assuming the average lattice
constant of 4H structures equals the average lattice constant of pure zinc blende and pure
wurtzite phase). As before, the large fluctuations of the exponential distributions quickly
destroy size oscillations and beating phenomena. Moreover, the typically very small mean
segment size of the 4H segments (see Fig. 4.31(b)) results in a very broad contribution in
reciprocal space. Thus, the amplitude at every point is rather small. Therefore, a deviation
from the Markov model according to Eq. (4.43b) cannot by detected experimentally by
measuring the vicinity of the (111)zyc Bragg reflection if (1− α)b� 1 (see Fig. 4.32).

For very pure wires (see Fig. 4.32(a)), a third subpeak in between the wurtzite and zinc
blende subpeak shows up: Each subpeak is very narrow and they almost do not overlap.
Thus, for all practical purposes, the three subpeaks can be treated as independent of each
other. Nonetheless, we point out that the characteristics of the signal in this range of
parameters closely resembles the features of the Pareto distributed segment lengths with
tail indices in the range from 0.9 to 1.5 (see Fig. 4.30).

In contrast, for a decay length in the order of 100 defect-free successive layers of the
wurtzite and zinc blende polytype, the incorporation of the 4H polytype results in three
strongly overlapping peaks. Most importantly, the enhancement of the polytype 4H can
practically not be distinguished from its purely statistical presence because all signals
look very similar to the signal of the two phase Markov model without 4H enhancement.
Instead, systematically wrong transition probabilities – towards larger values, i.e., less pure
wires – would be extracted if the parameter α is not known a priori .

Whereas the layer distribution of the wurtzite and zinc blende segments can be easily
modified by substituting the contribution pMarkov in Eq. (4.43b) by another probability
distribution (see Fig. 4.32(c) for a Poisson distribution), the model given in Eq. (4.43b)
is no longer applicable, if the layer distribution of the 4H segments is not exponential. In
this case, the model needs to be extended by specifying

• three distributions for the segment lengths of pure zinc blende, pure wurtzite and
4H and the respective parameters of the distributions, and
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Figure 4.32.: qz intensity profiles near the (111)zyc GaAs Bragg peak produced by the
model defined in Eq. (4.43b). In Fig. (c) the contribution pMarkov in
Eq. (4.43b) has been substituted by Poisson distributions. The values µZB

and µWZ are the mean values of the length distributions of the zinc blende
and wurtzite segments.

• three branching ratios to determine the consecutive phase after a segment ended.14

However, this extension requires three parameters for the branching ratio, plus the choice
of the distribution for the 4H structured segments and its parameters. The model (4.43b)
requires only two additional parameters αP, P ∈ {ZB,WZ}. Since the experimentally data
of Sec. 4.1 can be explained without these extensions and additional parameters, we will
not consider the enhancement of the 4H polytype further in this manuscript. However,
we have to keep in mind, that an enhancement of the 4H polytype beyond its statistical
occurrence cannot be detected from our data, but our wires would seem less pure.

In conclusion, we performed a detailed study of a Markov chain for the stacking sequence
of nanowires. First, the influence of initial growth on the probability for a particular
phase to occur with increasing height of the wire has been studied for static transition
probabilities. Then, the X-ray scattering signal for this class of models was studied and
compared to various other probability distributions for the segment lengths of the wurtzite
and zinc blende polytype. Within the full set of Weibull and Gamma distributions, which

14For example: After a pure wurtzite segment, the probability for continuation with a pure zinc blende
segment is 30%; after a pure zinc blende segment, the probability for continuation with pure wurtzite
segment is 40% and, finally, after a 4H structured segment, the probability for continuation with a pure
wurtzite segment is 20%. The alternative continuation is given by the complementary fraction to 100%.
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reduce to the Markov model as a special case, the X-ray profile of the (111)zyc profile is no
longer unique. However, a hierarchy of strong and weak influence on the signal has been
identified. For all cases of exponential decay (Markov, Gamma, Weibull and logarithmic),
the peak profiles showed the same characteristics. Distributions with non-exponential
decay (uniform, Pareto, Poisson) produced different characteristic features for the X-ray
qz profile near the (111)zyc Bragg peak and, thus, are excluded for the experimental data
presented in Sec. 4.1.

Our simulations demonstrate that the (111)zyc reflection only reveals an enhancement
of the 4H polytype in case of very pure wires. For the samples which we discuss in this
manuscript, an enhancement of the 4H polytype would result in a seemingly reduced phase
purity in the framework of our two polytype models.

Moreover, the influence of the variance of the statistical distribution has been discussed
in connection to Poisson and Gaussian distributions: For distributions with low length
fluctuations, beating phenomena remain despite incoherent averaging of the contributions
of different wires as a consequence of the small variance.

Finally, the relation of the (111)zyc and (333)zyc reflection has been discussed for the
Markov model as well as non-static transition probabilities which are necessary for ac-
counting for the changes in the experimental X-ray profiles with advancing growth time
presented in Sec. 4.1.

4.4. Implications from the experimental in-situ data on the
growth dynamics

We now derive the implications from the experimental in-situ data of sample S2 on the
growth dynamics of nanowires where we employ the insights which have been obtained by
the simulations that have been presented in Sec. 4.3. For that purpose, we first extract
the time-dependent transition probabilities of a Markov model which correspond to these
experimental profiles (see Sec. 4.4.1). Then, we connect these transition probabilities in
Sec. 4.4.2 with differences of the nucleation barriers.

4.4.1. Probabilities for transitions of the growing phase in nanowires

The changes in the shape of the experimental intensity profiles (beyond changes originating
from changes in the geometry of the nanowires) imply non-static statistical properties of
the Markov model. Consequently, we are forced to deal with time-dependent Markov
models as discussed in connection with Eq. (4.41) (see Fig. 4.22).

We attribute the gradient in the transition probabilities to a change in the dynamics of
growing nanowires with increasing height. We assume a linear relation for the nanowire
height (i.e., its number of layers n) and the growth time tG. Consequently, layer-dependent
and height-dependent transition probabilities are synonyms in the subsequent discussion.

For the mapping of the height of the nanowire (number of layers) after a specific growth
time tG, we employ:15

layer n [ ] 2802 3585 4368 5151 5934
growth time tG [min] 26 34 41 49 56

15This mapping deviates slightly from the mapping in Ref. [131], since a more detailed evaluation of the
SEM pictures from this samples revealed a smaller mean height of the wires than used in Ref. [131].
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Even for the linearly changing transition probabilities as defined in Eq. (4.41), the extrac-
tion of the parameters uP→P̄ and vP→P̄ is highly non-trivial, since neither the beamline
parameters (like the resolution element) nor a sufficiently accurate qz calibration (see dis-
cussion close to Fig. 4.18) are available. Consequently, this information needs to be
obtained simultaneously with the transition probabilities pP→P̄(n).

In addition, due to the required correction of the nanowire signal for the contribution
from the crystallites, the accuracy of tails of the nanowire signal – which would be very
useful for a rough estimation of the nanowires properties as discussed in the framework of
Fig. 4.18 – is limited for the available experimental data.

Therefore, we fitted our data in the following way:

1. First, we calculated the “ideal” scattering signal (no resolution element) for a huge
set of parameters in Eq. (4.41) at the experimentally observed growth times tG.
The bounds for the parameters uP→P̄ and vP→P̄ have been chosen according to the
typical features of the X-ray signal for static transition probabilities pP→P̄ with a
large safety margin.

2. Then, we performed a Monte-Carlo sampling of the relevant beamline parameters
and compared each simulated set of transition probabilities with the experimentally
observed profiles.

3. From the large data set of all simulated profiles (each transition probability combined
with all beamline parameters), we chose the best fits. In addition to the best overall
fit, we exploited these best fits to extract the median of the transition probabilities
as well as 25% and 75% quantiles. These quantiles are given as error estimates.

The results are summarized in Fig. 4.33. Before we discuss these results, we first provide
more details on the data evaluation itself.

For comparison of the simulated and experimental profiles, we restricted to pixel 136 to
149 (central gray region of the X-ray signal in Fig. 4.33), since the tails of the X-ray signal
might be inaccurate due to the imperfect separation of the background from the parasitic
growth. Indeed, we see some intensity weight in the region qz ' 1.9275Å−1 which is not
fitted by the Markov model. However, we attribute this deviation to the experimental
in-situ data and the preprocessing thereof, since this additional weight is absent in case
of the post-growth ex-situ data obtained at ID13@ESRF (see Fig. 4.11). Except for this
deviation, all three fits depicted in Fig. 4.33 nicely fit the experimental data. As error
metric for the fit, we employed

ℵ(pP→P̄(n),beamline parameters) =

√∑
tExp

(1− cos (](exp, sim)))2 , (4.55)

where

cos (](exp, sim)) =
Iexp(qz) · Isim(qz)

‖Iexp(qz)‖2 · ‖Isim(qz)‖2
(4.56)

is evaluated after linear interpolation of the experimental data to the (denser) qz grid of
the simulated profiles.

Here, the resolution element of the beamline is modelled as a (circular) convolution of
a Gaussian (width σ) and the intensity profile Isim(qz). The qz calibration requires two
parameters: the distance in reciprocal space which corresponds to the inter-pixel spacing
on the detector and the global offset. The three beamline parameters have been Monte-
Carlo sampled in these ranges:
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(a) Assumptions: Background modelled as 2 dimensional Gaussian, dWZ/dZB = 1 + 0.7%
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(b) Assumptions: Background modelled as 1.5 dimensional Pearson VII, dWZ/dZB = 1 + 0.7%
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(c) Assumptions: Background modelled as 1.5 dimensional Pearson VII, dWZ/dZB = 1 + 0.5%

Figure 4.33.: Extracted time-dependent transition probabilities of the nanowires grown in
the PMBE growth chamber and monitored by in-situ X-ray diffraction during
their growth at the NANO beamline at the synchrotron ANKA.

parameter minimal value maximal value

qz(pixel = 195) [Å−1] 1.9445 1.952

δqz [Å−1] 0.00110 0.00119
σ [pixel] 1.5 5.5

For each fit in Fig. 4.33 we sampled NBL = 1000 combinations of beamline parameters.
For a ratio of the interplanar lattice spacing of wurtzite and zincblende of dWZ/dZB =
1 + 0.7%, we simulated NReal = 6000 realizations for pP→P̄(n) according to Eq. (4.41).
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For dWZ/dZB = 1 + 0.5%, we simulated NReal = 4000 realizations for pP→P̄(n).

Consequently, the error metric ℵ(pP→P̄(n),beamline parameter) was evaluated for NBL ·
NReal data sets, and the best (0.01NBL) · (0.01NReal) is used for evaluation of the 25% and
75% quantiles of the transition probabilities.

We now discuss the results presented in Fig. 4.33:

In all three cases (different ratio dWZ/dZB, different modelling of the contribution from
parasitic growth), the transition probability pZB→WZ decreases at later growth times which
results in higher phase purity of zinc blende segments. Within our model, a transition
probability less or equal to zero is to be interpreted as growing pure zinc blende wires
from that height on. In practice and for the given experimental and model precision, this
should be interpreted only in such a way, that wurtzite phase is rare and segments are
short. Moreover, we see that, for early growth times, the transition probabilities pZB→WZ

and pWZ→ZB are approach each other for growth times around 20min. Since we could not
evaluate the very weak X-ray signal for earlier growth times, one should be careful with
interpretation of the extrapolated transition probabilities pZB→WZ and pWZ→ZB for growth
times tG . 20min.

For a ratio of the interplanar spacing of the Ga layer in [111]zyc direction close to
dWZ/dZB = 1+0.7% – as supported by the post-growth ex-situ measurements presented in
Sec. 3.2 and the results in Refs. [101, 119] – we observe an increase in the transition prob-
ability pWZ→ZB with increasing growth time irrespective of employing a two-dimensional
Gaussian as background or the 1.5 dimensional Pearson VII model. Even the quantitative
values are very similar. However, the errors are different: For the 1.5 dimensional Pearson
VII model with dWZ/dZB = 1 + 0.7%, the results is compatible with a slope of zero within
the error margins which is not true for the two-dimensional Gaussian background.

Fig. 4.33(c) assumes a smaller ratio of the interplanar spacing dWZ/dZB = 1 + 0.5%. This
value has been obtained in Ref. [137]. Under this assumption, both transition probabilities
are shifted towards lower absolute values and the trend for wurtzite changes. However,
given the results presented in Sec. 3.2, we are confident, that Figs. 4.33(a) and 4.33(b)
more accurately represent the transition probabilities in our nanowires.

We point out, that for our wires the transition probabilities fulfil pP→P̄ . 2% which
corresponds to mean phase segment lengths greater than p−1

P→P̄
≈ 50 layer. Consequently,

the phase purity of our wires is at least one order of magnitude higher than of the wires
investigated by Johansson et al. in Refs. [24, 59] by means of high resolution transmission
electron microscopy (HRTEM) where an exponential distribution for the phase segment
thickness with mean segment lengths of zinc blende and twinned zinc blende segments
in the order of approximately 3 − 9 layers has been observed. We also point out, that
we observe a trend towards higher phase purity of zinc blende despite constant growth
parameters – in contrast to the in-situ X-ray experiments of Krogstrup et al. [54] where
the growth growth conditions have not been kept constant during growth.

In addition, histograms of two beamline parameters (FWHM of resolution element and
interpixel spacing δq) of the best (0.01NBL) · (0.01NReal) fits are depicted in Fig. 4.33.
Interestingly, the histograms behave differently for a two-dimensional Gaussian background
and the 1.5 dimensional Pearson VII background. Whereas for the Pearson VII model a
tendency of the resolution element towards 4 − 6 pixel is observed, the distribution is
much broader for the two-dimensional Gaussian background is observed. Only a very
small enhancement in the range 3.5 − 5 pixel is observed. Similar statements hold for
the interpixel spacing δq: For the Pearson VII model, a tendency towards higher values
(smaller values in case of dWZ/dZB = 1 + 0.5%) is observed, but no enhancement beyond
a uniform distribution is observed for the two-dimensional Gaussian background.
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Clearly, this behavior is not yet satisfactory: For a robust fitting procedure, the beamline
parameters should also “converge” to their true physical solution and not be distributed
almost uniformly in a broad range of values as in case of the two-dimensional Gaussian
background. From a different perspective, however, one might also say, that this insensi-
tive of the transition probabilities pP→P̄ to the precise parameters of the beamline might
also be an advantage. For the Pearson VII model, such “convergence” of the beamline
parameters has been observed: However, for dWZ/dZB = 1 + 0.7%, the zinc blende peak
should be almost on the native zinc blende position at later growth times, and, thus,

we expect a interplanar pixel spacing of only δq ≈ 0.078831Å−1

(137.5±1.0−66.±0.5) = 0.078831Å−1

71.5±1.5 =

0.001103Å−1 ± 0.000023Å−1. Consequently, the center of mass of the extracted interpla-
nar spacings of the best (0.01NBL) · (0.01NReal) should be located at lower values δq. This
accumulation at lower values of δq is observed for dWZ/dZB = 1 + 0.5%. However, for this
data set, the splitting of zinc blende and wurtzite is assumed smaller than indicated by
the results presented in Sec. 3.2. In order to resolve these inconsistencies completely, a
deeper investigation based on additional experimental time-resolved in-situ data sets of
better data quality taken with the PMBE growth chamber as well as better knowledge of
the beamline parameter during these measurements must be performed in future.

4.4.2. Temporal evolution of the differences of nucleation barriers

We now relate the time-resolved transition probabilities pP→P̄(n) with particular aspects
of the energetics of nanowire growth. More specifically, we estimate the nucleation barrier
differences

δEP̄|P(n) = EP̄|P(n)− EP|P(n) . (4.57)

Here, EP|P is the nucleation barrier for growing phase P on phase P. EP̄|P is the nucleation

barrier for growing the complementary phase P̄ on phase P [59, 88, 105].

For the following discussion it is useful to think of the transition probabilities pP→P̄ as
conditional probabilities pP|P̄ for growing phase P on phase P̄, i.e.

pWZ|ZB = pZB→WZ , pZB|ZB = 1− pZB→WZ , (4.58a)

pZB|WZ = pWZ→ZB , pWZ|WZ = 1− pWZ→ZB . (4.58b)

The link between these conditional probabilities and the nucleation barrier differences is
established by

pP|P(n) =
νP|P(n) · e−βEP|P(n)

νP|P(n) · e−βEP|P(n) + νP̄|P(n) · e−βEP̄|P(n)
(4.59)

where β = 1/(kBTSub) and kB is the Boltzmann constant [59, 88, 105]. TSub is the absolute
temperature of the growth substrate16. The prefactors νP|P and νP̄|P incorporate the
degeneracies of the number of nuclei which are described by the energies EP|P and EP̄|P
respectively. We point out, that relation (4.59) requires close to equilibrium statistical
behavior.

If we combine this equation with the definition (4.57) of the nucleation barrier difference
δEP̄|P, we can solve the equation for this nucleation barrier difference δEP̄|P and obtain

δEP̄|P(n) = kBTSub ·

[
ln

(
pP|P

pP̄|P

)
+ ln

(
νP̄|P

νP|P

)]
(4.60a)

= kBTSub ·
[
ln

(
1− pP→P̄(n)

pP→P̄(n)

)
+ ln

(
νP̄|P(n)

νP|P(n)

)]
, (4.60b)

16Here, it is assumed that the temperature of the substrate is identical to the currently nucleating layer.
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Figure 4.34.: Differences of the nucleation barriers as defined in Eq. (4.60b) and (differen-
tial) phase fractions in a quasi-static approximation with increasing growth
time for the transition probabilities depicted in Fig. 4.33.

where we returned to the transition probabilities pP→P̄(n) in the last step. This result
does not rely on a particular geometrical model for the nucleus, the exact mechanisms of
nucleation and the catalyst dynamics [25, 45, 49, 60, 69, 70, 74, 77, 105, 106], but on the
validity of a Markov model for the stacking of the grown nanowires.

However, estimation of the degeneracies νP|P(n) and νP̄|P(n) requires sophisticated mod-
elling of the mechanism of nucleation. Nevertheless, as long as the degeneracies are almost

equal, we have
νP̄|P(n)

νP|P(n) ≈ 1 ⇒ ln
(
νP̄|P(n)

νP|P(n)

)
≈ 0. The subsequent evaluations are based on

this assumption.

We point out, that the extraction of transition probabilities pP→P̄(n) from our measured
X-ray data is independent to modelling these parameters νP|P(n) and νP̄|P(n), but these
parameters – once detailed modelling is available – will change the quantitative numbers
for the differences of the nucleation barrier δEP̄|P(n).

For a substrate temperature of TS = 590◦C, we have kBTSub = 74.4meV. For the transition
probabilities depicted in Fig. 4.33 and this value of kBTSub, the resulting differences of the
nucleation barriers are given in Fig. 4.34(a).

For pP→P̄ = 2%, we have δEP̄|P ≈ 3.9 kBTSub ≈ 290meV, and for pP→P̄ = 0.5%, we have
δEP̄|P ≈ 5.3 kBTSub ≈ 400meV. Consequently, the nucleation barrier differences evolve
within these bounds for the two-dimensional Gaussian background correction.

For the Pearson VII background correction, pWZ→ZB drops below 0.5% and, consequently,
the respective nucleation barrier difference EWZ|ZB exceeds the bound of 400meV. For
pWZ→ZB → 0, this quantity diverges. However, within the precision of our model and our

data, we should only conclude that ln
(

1−pP→P̄(n)
pP→P̄(n)

)
� 1, and, therefore, EWZ|ZB � kBTSub.

We attribute the trend of the transition probabilities and the nucleation barrier differences
mainly to the dynamics of the droplet at the nanowire tip, in particular its shape and its
composition.

One possible origin is in increase of the supersaturation of As in the liquid droplet during
growth. This could lead to a higher probability for the nucleation of zinc blende [56].

Additionally, the volume of the liquid droplet might decrease [69]. Since the droplet mainly
consists of Ga, the volume of the liquid droplet is essentially equal to its amount of Ga.
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4. Time-resolved in-situ X-ray studies of GaAs nanowires during growth

This amount of Gallium might decrease due to a reduction of the Ga-flux towards the
droplet via the nanowire side walls as the wire grows longer [87, 148, 149]. This reduction
in the volume might have two (non excluding) consequences: First, the diameter of the
droplet on the tip might decrease. Secondly, the wetting angle of the droplet with the
top-facet of the nanowire might change.

If the diameter of the droplet would decrease, such behavior would most likely produce
highly tapered nanowires [46] which has not been observed in the post-growth SEM inves-
tigations of the samples [67]. Therefore, the diameter of the droplet likely remains constant
with increasing growth time.

Consequently, the reduction of the volume of the Ga droplet probably induces mainly a
decrease of the wetting angle of the droplet [69].

Our results imply an increasing phase fraction of zinc blende with increasing growth time
(see Fig. 4.34(b)). For the evaluation of the phase fraction, we assume quasi-static proba-
bilities during the mean length of a segment and employ Eq. (4.24a). This is valid as long
as the gradient of the transition probabilities is sufficiently small. The result corresponds

to the “differential” probabilities p
(L)
WZ(n) and not to the global mean fraction p̄WZ(n) (see

Sec. 4.3.2 close to Eq. (4.25)). A discussion of the “differential phase fraction” (i.e., the
phase fraction of the newly grown segments) and the global mean phase fraction which is
independent of the Markov model is given in Sec. E in the appendix.

The same trend towards a higher phase fraction of zinc blende has also been found by
post-growth ex-situ investigations by Biermanns et al. [101, 119].17 However, the authors
of these references could not draw any conclusions on the phase purity (in the meaning of
the mean length of a faultless phase segment) in the nanowires from their data.

In summary, we carefully explored in Sec. 4 the perspectives and limitations of time-
resolved in-situ X-ray diffraction measurements of the (111)zyc Bragg reflection: We
demonstrated that — under certain assumptions — estimates for the phase purities —
a key quantity for many applications of nanowires — and their evolution during growth
can be obtained. From this, the phase fractions and the nucleation barrier differences as
well as their evolution during growth could also be estimated. Nonetheless, several aspects
must be investigated in future more closely once additional experimental data time-resolved
in-situ X-ray data is available. For example, the non-uniqueness of the (111)zyc X-ray
profiles of the nanowire signal and the separation of the contributions from nanowires and
parasitic growths should be revisited once the (111)zyc and (333)zyc reflection can be
measured during growth after an upgrade of the PMBE growth chamber. After consid-
eration of the limitations of the (hhh)zyc reflections which exploit the tiny differences of
the lattice constants of the polytypes but diffract at the same planes, we also propose to
supplement measurements of the (hhh)zyc reflections by scans of a set of reflections of the
asymmetric truncation rod, which are sensitive to polytype specific planes, as discussed
in Sec. 2.2. Finally, the simultaneous acquiring of high resolution X-ray diffraction data
of specific reflections and RHEED data (which essentially measures many reflections in
reciprocal space simultaneously but with low resolution) would also provide significant
benefits for data evaluation and should also be considered in future.

17We would like to mention, that in Ref. [101], a more precise evaluation of the SEM images of the same
samples in comparison with Ref. [119] has been performed. Therefore, we advice the reader to consult
Ref. [101] instead or in addition to Ref. [119].
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5. Conclusion and outlook (Part I.)

In the first part of the manuscript, time-resolved in-situ measurements of a two-dimensional
cut in reciprocal space close to the (111)zyc Bragg reflection during the growth of poly-
typic nanowires have been analyzed. Since this cubic reflection almost coincides with the
(00.2)wyh2 wurtzite reflections, where the small shift stems from a small difference in the
interplanar spacing of the polytypes in [111]zyc direction, scattering from the zinc blende
and the wurtzite polytype is recorded in that region of reciprocal space. Extensive numer-
ical simulations as well as additional measurements after growth have been performed for
optimal interpretation of these time-resolved in-situ measurements.

Most notably, post-growth ex-situ measurements at the European Synchrotron Radiation
Facility (ESRF) with a highly focussed beam (in order to achieve spatial resolution and
to simultaneously illuminate a few nanostructures at maximum) revealed important infor-
mation for the separation of the signal from the growing wires and parasitic growth in the
time-resolved in-situ measurements. Moreover, indications of high fluctuations in distri-
bution of the polytypes inside the nanowires have been found. Therefore, the averaging
over many nanowires in the time-resolved in-situ measurements is desired for achieving
high statistical significance of results on polytypism. Finally, we could extract the ratio of
the interplanar spacing of the two polytypes in [111]zyc direction from this data.

Nonetheless, some information is lost due to the averaging over a large number of nanowires,
in particular if fluctuations are large. The measured time-resolved in-situ X-ray measure-
ments can be explained well by a Markov model for the stacking sequence in the nanowires,
which is consistent with (and based on) the few statistical segment length studies obtained
by TEM of nanowires with very short polytype segments. However, deviations of this
Markov model retaining its high fluctuations would not be visible in the qz profile in the
vicinity of the (111)zyc reflection, but lead to systematic errors with respect to the Markov
model at least in some range of parameters. This has been illustrated by investigations
of the Gamma- and Weibull distribution (which contain the Markovian behavior as the
special case) for the length distribution of the polytypic segments. Moreover, an enhance-
ment of the 4H polytype with respect to the Markovian behavior would not be detected for
some range of phase purities. In consequence, additional theoretical modelling to constrain
the length distribution as well as additional experimental investigations thereof must be
performed in future.

For example, the scaling bahavior of the nanowire signal by comparison of the (111)zyc,
(333)zyc, and (444)zyc reflections might be of importance for such investigations, where we
shortly discussed the Markovian case for reference. This scaling might additionally prove
highly valuable for separation of the contributions from parasitic growth and nanowire

103



5. Conclusion and outlook (Part I.)

Si-(311)c

GaAs
(311)c

GaAs
(10.3)w

GaAs
(220)c

Figure 5.1.: Illustration of the output of a scan of the reflections (220)zyc, (10.3)wyh2,
(311)zyc which is compatible with the current PMBE chamber (X-ray energy
15keV). The demonstration shown here for illustration of the resulting X-
ray signal has been emulated ex-situ without the PMBE chamber. Incidence
angle and detector position is fixed (Pilatus 100K at a distance of 50cm to the
sample), no inclination of the chamber is needed. The scan is performed by
rotations of the sample around its surface normal by approximately δϕ ≈ 5◦,
which has been integrated for the illustration depicted in log-scale.

signal, and for extension of the range of applicability of monitoring symmetric reflections
during growth of polytypic nanowires to wires with lower phase purities. However, the
(333)zyc and (444)zyc reflections are not accessible with the current growth chamber at
X-ray energies up to 15keV. The alternative is to combine measurements of the symmetric
(111)zyc reflection with measurements of a series of asymmetric reflections, for example
the sequence (220)zyc, (10.3)wyh2, (311)zyc which has been done based on the results pre-
sented in Sec. 2.2 (see Fig. 5.1). A clear advantage of such measurements (compared to
the (111)zyc reflection) is the better separability of the zinc blende and wurtzite polytype,
the separability of the zinc blende twins. However, a rotation of the sample around its
normal is required for calibration and scanning of the sample and the scattered intensity
is weaker, which both are disadvantageous for time-resolved measurements. Consider-
ing these disadvantages, it is very important to achieve a detailed understanding of the
prospects and limitations of measurements of the (111)zyc reflection.

Therefore, the experimentally available time-resolved in-situ measurement of the vicinity
of the (111)zyc reflection has been interpreted in the framework of the Markov model
for the stacking sequence with transition probabilities with non-zero temporal derivative.
Specifically, we derived the temporal evolution of the phase purities of both polytypes (and
phase fractions) within this model.

The largest systematic uncertainties in the theoretical modelling underlying our results are
possible deviations from the Markov model for the stacking in the wires and the absence
of higher order contributions in the temporal evolution of the transition probabilities.
Whereas the latter can (only) be improved by experimental data of higher quality, the
first aspect requires additional research in future. The most important uncertainty in the
processing of experimental data is the separation of the signal from parasitic growth and
from the wires. Here, further research and improvements are needed for increased precision
of results concerning nanowires.

Within the Markov model, approximations for the nucleation barrier differences for con-
tinuing growth with the current phase or with the complementary phase can be extracted,
if the ratio of the degeneracies of states for nuclei for an additional layer of both cases
are known. As a first (rough) estimate, these degeneracies have been assumed equal, but
future modelling of the nanowire growth should not only aim for the length distribution of
the polytypic segments, but also for the degeneracies of states for nuclei of the currently
growing layer in order to reduce the systematic errors in the values for the nucleation
barrier differences.
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Part II.

Phase retrieval in coherent X-ray
diffractive imaging
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6. Introduction to coherent X-ray
diffractive imaging (CXDI)

In the first part of the manuscript, the evaluation of scattering data from a large number of
objects has been investigated. Each object was assumed to interfere coherently with itself,
but the scattering from different objects adds up incoherently. Statistical fluctuations
were relevant on the level of a single object as well as from one object to another. The
combination of large statistical fluctuations in the objects with the partially coherent
scattering led to non-unique profiles of the scattered intensity, as was demonstrated in
Sec. 4.3.

Additionally, the influence of non-zero strain, which could be located at the interface of
the two polytypes or close to the interface to the substrate, and the proper ratio of the
interplanar spacings of Ga (or As) planes in growth direction are hard to study from
such scattering – at least in some range of parameters. For example, the time-resolved
experimental in-situ profiles could be fitted well for dWZ/dZB = 1 + 0.7% as well as for
dWZ/dZB = 1 + 0.5% (see Fig. 4.33). Consequently, this information had to be taken
from other measurements and was required as a priori knowledge for the interpretation of
these profiles. Whereas the latter ratio dWZ/dZB could be estimated from our post-growth
ex-situ measurements (see Sec. 3.2), an investigation of the strain distribution close to the
interfaces is more challanging. The first question has been addressed by TEM and FEM
in Ref. [150] for free-standing InAs/InP nanowires and their results give some indication
that the assumption to neglect strain in the [111]zyc direction close to the interfaces of
the polytypes is reasonable for the extracted mean segment lengths.

Although some information on the strain distribution inside the nanostructures can be
obtained from such TEM investigations, it is important to understand under which con-
ditions the displacement field and the strain distribution inside a nanostructure can be
retrieved from the intensity distribution in the vicinity of a Bragg peak (“X-ray diffractive
imaging”), because X-ray measurements are non-destructive and can typically be applied
more easily in-situ and in-operando than TEM. Therefore, we now turn to the extrac-
tion of the strain distribution and the displacement field inside nanostructures from their
scattered intensity in the second part of this manuscript. Since the strain distribution
follows from the displacement field by derivation, we mainly speak of the extraction of the
displacement field only.

In contrast to the first part of this manuscript, we assume that the scattering volume
and the coherence volume coincide (“perfect coherence”) and the impinging beam is well
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Figure 6.1.: Illustration of the interplay of data analysis, the experimental result of the
scattering experiment and the modeling thereof.

approximated by a plane wave inside the scattering volume (“coherent X-ray diffractive
imaging”, abbreviated as “CXDI”). The formalism is not restricted to a particular Bragg
reflection QB. For numerical investigations, we have chosen the Bragg reflection (004)zyc

which is linked to the third component of the displacement field.

Sections 6.2 and 7.1 to 7.3 are mainly based on the author’s work already published
in Refs. [1, 2]. Moreover, Secs. 7.4 and 8.1 contain material which has been published in
Ref. [2]. Nonetheless, in particular Sec. 7.4 contains a more detailed and more sophisticated
discussion of the derivation of the final algorithm in comparison to the presentation in
Ref. [2].

For the successful extraction of the displacement field in a sample three aspects must
be considered, as illustrated in Fig. 6.1. On the one hand, an appropriate scattering
experiment must be performed. On the other hand, an adequate model for the thus
obtained experimental data is required. Here, we need to model the relevant properties
of the sample as well as the interaction with the impinging X-rays (“scattering”). Finally,
this model is employed for analyzing the experimental data (“data analysis”).

The focus of this (part of the) manuscript is to improve data analysis in the framework of
the current model for CXDI, as introduced and derived in Sec. 6.1.

It is very important to realize that each of the three “aspects” (actual experiment, model
of the experiment and data analysis) typically have their own limitations — some inde-
pendent of the other topic, some dependent. For example, the equations for modelling an
experiment may be so complicated (e.g., coupled non-linear partial differential equations)
that finding their solutions is barely or not possible. In such a case, either the model
has to be simplified which typically implies stronger limitations on the physical system
that can be studied. Or, alternatively, data analysis must be improved until the solution
can be found in the model in a reliable and robust manner. In the framework of CXDI,
the model derived in Sec. 6.1 seems the least complicated physical model worth studying
(plane wave illumination, first order Born approximation, far field, . . . ) without employing
linear elasticity theory as part of the model. Yet data analysis within this model is already
rather challenging and fails in many cases even for “ideal data”. We are convinced that
before proceeding to data analysis within more sophisticated models, it is important to
understand and improve data analysis in the simple model given in Sec. 6.1 — as done in
this manuscript.

Is is also important to keep in mind that the capabilities of finding the solution within
this model strongly depend on the a priori knowledge on the sample and the particular
numerical algorithm that is employed for finding the solution based on the available a priori
knowledge. As a consequence, data evaluation can (and will) be improved by modification
of the numerical algorithm only (without changing the underlying a priori knowledge) as
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6.1. Derivation of the model for X-ray scattering in CXDI

well as by modification of the exploited a priori knowledge (which also entails modifications
of the numerical algorithm).

Throughout this manuscript we assume that the geometry of the nanoobjects under con-
sideration is known and focus on the reconstruction of the displacement field in the interior
of this geometry. Nevertheless, we point out that other algorithms aim at simultaneous
reconstruction of this geometrical information (see e.g. Refs. [151, 152]). However, such
approaches are typically limited to weakly strained objects.

In Sec. 7.3, we demonstrate that the introduction of randomization in data analysis — in-
corporated in the widely used HIO+ER-algorithm (see Sec. 6.2.3) — improves the recon-
struction capabilities without changing the underlying a priori knowledge. Numerically,
suitable randomization can be incorporated efficiently by overrelaxation of the non-convex
and non-linear projection operator in reciprocal space in the HIO+ER-algorithm.

In Sec. 7.4, we then investigate the influence of additional a priori knowledge on the
sample beyond its shape in direct space and the intensity distribution near a Bragg peak
in reciprocal space. Focus of our investigation are direct space constraints on the local
scattering magnitude.

The extraction of the displacement field is typically a two-step process: In the first step,
a (complex valued) effective electron density is reconstructed. Its phase field is linked to
the displacement field, but its determination requires unwrapping of the phase field of the
effective electron density. Vortex artifacts in the phase field would imply non-unique phase
unwrapping which must be considered non-physical. Therefore, such vortex defects in the
phase field must be detected and eliminated. We will discuss their elimination from the
reconstructed phase field in Sec. 7.5.

Up to that point, our discussion is based on “ideal” input data within the CXDI model.
Neither limitations of the experimental measurements nor the limitations of the model for
the scattering experiment (see Fig. 6.1) have been included up to this point. However, these
limitations typically lead to inconsistencies during data evaluation. Their influence must
be studied and in many cases adequate counter-measures must be incorporated during
data evaluation in order to “heal” these inconsistencies. This is the topic of chapter 8.

Specifically, we demonstrate that that a small damping combined with an upper bound
(“cut-off”) is beneficial for treating data points of very low intensity (below the given cut-
off) in reciprocal space during the iterative reconstruction (see Sec. 8.1). The presence of
Poisson photon noise in the experimentally measured intensity distribution – investigated
in Sec. 8.2 – induces instabilities of the reconstruction procedure without modifications.
If we include small gaps around the constraints in reciprocal space (which are the con-
straints that are distorted by the Poisson noise) above the before mentioned cut-off, these
instabilities are significantly reduced. If the same gaps are applied below the cut-off, the
quality of the output of the reconstruction process suffers. Instead, the small damping in
addition to the upper bound is preferential below the cut-off.

Whereas these two limitations are more of an experimental nature (limited signal-to-noise
ratio and limited incoming X-ray flux), the third limitation which we investigate is related
to the model of the nanostructure during reconstruction: Typically, its geometry is trun-
cated artificially in the computational model – in strong contrast to most experimental
samples. This artificial truncation causes strong inconsistencies along the crystal trun-
cation rod of the substrate (including its Bragg peak) . Extensions which provide good
reconstruction capabilities despite these inconsistencies are finally discussed in Sec. 8.3.

109



6. Introduction to coherent X-ray diffractive imaging (CXDI)

Figure 6.2.: Illustration of the displacement field u(R) in a two-dimensional crystal. Each
atom located at a Bravais position R is shifted by a displacement u(R) from
its ideal position.

6.1. Derivation of the model for X-ray scattering in CXDI

In this section, we derive the physical model which constitutes the set of equations which
needs to be solved in CXDI. The derivation is based on kinematic approximation and
the far-field limit [142]. Absorption is neglected. We do not consider the effect of multiple
scattering, since its contribution is negligible as long as the extension of the sample domain
under investigation is much smaller as the mean free path of the propagating radiation.
Contrarily to“typical” photonic crystals for which this length length can decrease even to a
single (photonic) unit cell at optical frequencies [153–165], nanocrystalline samples which
contain a huge number of (atomic) unit cells can be studied with hard X-ray radiation
within this approximation.

Consider an ideal crystal with Bravais lattice B. Its lattice points are referred to as R.

The basis of each lattice point R is defined as %
(I)
C (r).

Each lattice pointR is now displaced by a displacement u(R) (see Fig. 6.2) in a continuous
and invertible manner (“elastic deformation”). Such a deformation is accompanied by a
modification of the basis at each point and in general breaks the discrete translational

symmetry: The basis %
(I)
C (r) has to be modified to the R-dependent quantity %

(D)
C (r,R)

which describes the elastically strained unit cell. The full electron density after the elastic
deformation can be written as

%el(r) =
∑
R

%
(D)
C (r − (R+ u(R)),R) . (6.1)

The term R+ u(R) shifts each elastically strained cell to its proper position.

If the crystal structure is not infinite, it is useful to introduce the shape function Ω which
is equal to one for all points R inside the crystal and zero elsewhere. Then, the electron
density reads

%el(r) =
∑
R

Ω(R) %
(D)
C (r − (R+ u(R)),R) . (6.2)

Fourier transformation of this expression results in

E(q = QB +Q) =
∑
R

Ω(R)Φ
(D)
C (q,R) ei(QB+Q)·u(R) eiQ·R , (6.3)

where Φ
(D)
C (q,R) = FTq←↩r

{
%

(D)
C ( · ,R)

}
and the vector q in reciprocal space has been

split as q = QB +Q where QB is a Bragg point of the Bravais lattice B.
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6.1. Derivation of the model for X-ray scattering in CXDI

Moreover, the Fourier shift theorem was applied for the shift r −→ r +R + u(R). This
shift is the origin of the phase term ei(QB+Q)·u(R). By definition, QB · R is an integer
multiple of 2π. Hence, it has been dropped in the last exponential.

Next, we investigate the expression Φ
(D)
C (q,R) more closely: The electron density of a

single, elastically strained cell with NApC atoms can be written as

%
(D)
C (r,R) =

NApC∑
i=1

%
(A)
i (r − (Ri + u(R+Ri)− u(R)),R) . (6.4)

In this equation, Ri is the equilibrium position of an atom in the original Bravais lattice B.1

u(R+Ri)−u(R) is the displacement of an atom inside the strained cell with respect to its
displaced Bravais point R+u(R). Here, we allow atoms from the original (translationally
invariant and non-strained) crystal to be locally substituted by atoms of different kind.
Therefore, %(A) must be considered as R-dependent. Its Fourier transform is

Φ
(D)
C (q,R) =

NApC∑
i=1

fi(q,R) eiq·(Ri+u(R+Ri)−u(R)) , (6.5)

where the Fourier shift theorem has been applied again (shift: r −→ r+Ri+u(R+Ri)−
u(R)) and fi(q,R) = FTq←↩r

{
%

(A)
i ( · ,R)

}
is the atomic form factor of atom i in cell R.

Next, we approximate the displacement field u in each cell R by a linear map, i.e.,

u(R+Ri) ≈ u(R) + τ(R)Ri ⇒ u(R+Ri)− u(R) = τ(R)Ri . (6.6)

The quantity τ is referred to as displacement gradient tensor. For continuous displacement
fields, this tensor is defined as

τ =


(
∂u1
∂x

) (
∂u1
∂y

) (
∂u1
∂z

)(
∂u2
∂x

) (
∂u2
∂y

) (
∂u2
∂z

)(
∂u3
∂x

) (
∂u3
∂y

) (
∂u3
∂z

)
 . (6.7)

In our case, the displacement field is defined on a discrete grid only. Hence, the components
of the linear approximation (6.6) needs to be calculated by means of a non-linear least
square procedure, finite difference schemes or a singular value decomposition [166]. Note
that components of the displacement gradient tensor are dimensionless.

With the linearization (6.6), we have

Φ
(D)
C (q = QB +Q,R) =

NApC∑
i=1

fi(q,R) ei(QB+Q)·(1+τ(R))Ri (6.8a)

=

NApC∑
i=1

eiQB·Rifi(q,R) eiQB·τ(R)Ri eiQ·Ri eiQ·τ(R)Ri . (6.8b)

The first phase term eiQB·Ri corresponds to the ideal, non-strained crystal. The other
terms vanish at Bragg peaks Q = 0 or without displacement gradient (i.e., τ = 0).

The Takagi-approximation [142, 167] refers to the approximation that the unit cell of the
crystal is shifted, but its local deformation is not taken into account for the calculation

1To be specific, we refer to the position of an atom as its center of mass of the electronic charge distribution.

111



6. Introduction to coherent X-ray diffractive imaging (CXDI)

of the scattering signal. Based on Eq. (6.8b), we can estimate the limitations of this and
other approximation.

For these estimations, it is useful to rewrite

QB =
d∑
i=1

ηi
2π

ai
b̂i , ηi ∈ Z , (6.9a)

Q =
d∑
i=1

ζi
2π

ai
b̂i , ζi ∈ R , (6.9b)

R =

d∑
i=1

αiaiâi , αi ∈ Z , (6.9c)

Ri =

d∑
i=1

βiaiâi , −0.5 ≤ βi < 0.5 , (6.9d)

u(R) =
d∑
i=1

γi(R)aiâi , γi ∈ R , (6.9e)

where âi are normalized crystallographic basis vectors in direct space with lattice constants
{ai} and b̂i the corresponding normalized basis vectors of the reciprocal lattice. Therefore,
âi · b̂j = δij holds by definition.

First, we focus on the contribution of eiQ·Ri which can be neglected if |Q ·Ri| � 1. This
is guaranteed if the 1-norm of the coefficient vector ζ in Eq. (6.9b) fulfills

‖ζ‖1 �
1

π
(6.10)

because

|Q ·Ri| =

∣∣∣∣∣
d∑

m=1

d∑
n=1

ζm
2π

am
βnan b̂mân

∣∣∣∣∣ = 2π

∣∣∣∣∣
d∑

m=1

ζmβm

∣∣∣∣∣ (6.11a)

≤ 2π

d∑
m=1

|ζmβm|
|βm|≤0.5

≤ π

d∑
m=1

|ζm| = π ‖ζ‖1 (6.11b)

This implies that only a small region – determined by the condition (6.10) – can be
exploited for CXDI if the contribution eiQ·Ri is neglected.

This bound has strong implications for the lattice contrast

c
(+)
i =

ai,Max − ai,Ref

ai,Ref
, c

(−)
i =

ai,Min − ai,Ref

ai,Ref
(6.12)

in the sample which can be investigated in the framework of the derived model. For
simplicity, we choose the reference lattice constants ai,Ref = (ai,Max + ai,Min)/2 which
simplifies the lattice contrast to

ci ≡ c
(+)
i =

ai,Max − ai,Min

ai,Max + ai,Min
= − c

(−)
i > 0 . (6.13)

The difference in reciprocal space (in direction i) of the Bragg peaks with lattice constant
ai,Ref and ai,c = (1 + ci)ai,Ref is

Qi = 2πhi

(
1

ai,Ref
− 1

(1 + ci)ai,Ref

)
= hi

(
2π

ai,Ref

)(
ci

1 + ci

)
, (6.14)
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where hi is the Miller Bravais index [103, 104] of the respective Bragg reflection in direction
i. Comparison with Eq. (6.9b) reveals that the components ζi are equal to

ζi = hi

(
ci

1 + ci

)
. (6.15)

Thus, the constraint (6.10) constraints the lattice contrast by

d∑
i=1

|hi|
(

ci
1 + ci

)
� 1

2π
, (6.16)

which reduces to

c3 � c̃ ≡ 1

4π − 1
≈ 8.6% , (6.17)

for the (004)zyc Bragg reflection. Note, that the lattice contrast should be much smaller
than the bounds derived from (6.16) because interference effects and shape effects spread
the signal to a larger domain in reciprocal space than estimated by Eq. (6.14). A better

approximation is to add a fraction ζ
(0)
i to the coefficients (6.15): this fraction ζ

(0)
i estimates

the broadening of the signal in per cent of the distance to the neighboring Bragg peaks.

However, as long as no estimate for ζ
(0)
i is available, this constraint can only be evaluated

as a function of ζ
(0)
i . Hence, we are constrained by

d∑
i=1

[
|hi|

(
ci

1 + ci

)
+ ζ

(0)
i

]
� 1

π
, (6.18)

or

c3 �
1− πζ(0)

3

π
(

4 + ζ
(0)
3

)
− 1

0≤ζ(0)
3 �1
≈ 1− πζ(0)

3

4π − 1
(6.19a)

= c̃−
(

π

4π − 1

)
ζ

(0)
3 ≈ 8.6%− 0.27 · ζ(0)

3 (6.19b)

in the special case of the (004)zyc Bragg reflection. For the example of ζ
(0)
3 ≈ 5%, the

lattice contrast is thus limited to c3 � 7.2%.

Next, we consider eiQ·τ(R)Ri in Eq. (6.8b): As long as the magnitude of the largest
eigenvalue is smaller than one,

Q · τ(R)Ri

maxm=1,...,d(τm)≤1

≤ |Q ·Ri| (6.20)

and the respective contribution eiQ·τ(R)Ri can be neglected. For small strain up to a few
per cent, the eigenvalues of the displacement gradient tensor are also in the order of a few
per cent. Hence, the restriction on the eigenvalues of τ(R) has no implications for the
application to real word samples.

Finally, we have to consider the dependence of the atomic form factors fi(q,R) on the
scattering vector Q: The definition

fi(q,R) =

∫
Rd

eiq·x%
(A)
i (x,R) ddx , (6.21)

can be rewritten as

fi(q,R) =

∫
Rd

eiQ·x eiQB·x%
(A)
i (x,R) ddx , (6.22)
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where q has been replaced by QB +Q. To a good approximation, the electron density of
the atom vanishes at distances larger than the lattice constants am. Hence, the domain
of integration can be reduced from Rd to ⊗di=1[−ai, ai]. Thus, each component xi in Q · x
is bound by [−ai, ai]. Therefore, the contribution eiQ·x in the atomic form factors can be
neglected under the conditions as the expression eiQ·Ri in Eq. (6.8b), i.e., the restriction
in Eq. (6.10). As a result, it is valid to approximate

fi(q,R)
(6.10)
≈ fi(QB,R) . (6.23)

If we combine our recent approximations, we simplified Eq. (6.8b) to

Φ
(D)
C (q = QB +Q,R) ≡ Φ(D)

C (QB,R)
(6.10)

=

NApC∑
i=1

eiQB·Rifi(QB,R) eiQB·τ(R)Ri , (6.24)

i.e., a function dependent only on QB and R, but no longer dependent on Q. Therefore,
Eq. 6.3 reads

E(q = QB +Q)
(6.10)

=
∑
R

Ω(R)

Φ
(D)
C

(
QB,R, {fi(QB,R)}, {τ(R)}

)
eiQB·u(R) eiQ·u(R) eiQ·R , (6.25)

where the dependencies of Φ
(D)
C (QB,R) on the atomic form factors {fi(QB,R)} and

{τ(R)} have been stated explicitly.

Still, the displacement u(R) is coupled to the Fourier variable Q in the term eiQ·u(R). For

|Q · u(R)| � 1 , (6.26)

it can be neglected, too. If we exploit the dimensionless coefficients defined in Eq. (6.9),
this is equivalent to the constraint

|Q · u(R)| =

∣∣∣∣∣
d∑

m=1

d∑
n=1

ζm
2π

am
γn(R)anânb̂m

∣∣∣∣∣ = 2π

∣∣∣∣∣
d∑

m=1

ζmγm(R)

∣∣∣∣∣ (6.27a)

= 2π |ζ · γ| ≤ 2π ‖ζ‖p ‖γ‖ p
p−1

, (6.27b)

where in the last step the Hölder inequality [168] – valid for 1 ≤ p ≤ ∞, p ∈ R – has been
used. Whereas for p = 2 the Hölder inequality simplifies to the Cauchy Schwarz inequality
[169], for our discussion the case p = 1 is more suited because the constraint (6.10) refers
to ‖ζ‖1. Hence, the previous equation reads

|Q · u(R)| ≤ 2π ‖ζ‖1 ‖γ‖∞ . (6.28)

Therefore the constraint (6.26) is satisfied if

‖γ‖∞ �
1

2π ‖ζ‖1
. (6.29)

Since ζ is constrained by Eq. (6.10), Eq. (6.26) is fulfilled as long as

‖γ‖∞ . 1 . (6.30)

Therefore, the maximum displacement (in any direction) in the nanostructure under in-
vestigation is restricted by the unit cell’s lattice constants ai in the respective direction âi.
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However, we note that the maximum displacement which may be present in the nanos-
tructure increases with decreasing domain in reciprocal space which is exploited for the
reconstruction of the displacement field. For example, if ‖ζ‖1 could be restricted to values
as small as one per mill, Eq. (6.29) is well-satisfied even for ‖γ‖∞ ≈ 10. However, for
current applications of the resulting model the constraint (6.30) should be considered.

If we define the effective electron density

%eff

(
QB,R, {fi(QB,R)}, {u(R)}, {τ(R)}

)
=

Φ
(D)
C

(
QB,R, {fi(QB,R)}, {τ(R)}

)
eiQB·u(R) ∈ C (6.31)

which is independent on the distance Q from the Bragg peak QB, and impose the condi-
tions given in Eq. (6.29), Eq. (6.25) simplifies to

E(QB,Q) =
∑
R

Ω(R) %eff

(
QB,R, {fi(QB,R)}, {u(R)}, {τ(R)}

)
eiQ·R . (6.32)

Although in this formula only the last term eiQ·R depends on Q, it is important to un-
derstand and investigate under which condition(s) the effective electron density does not
depend on the displacement gradient τ(R) to a very good approximation. The displace-
ment gradient tensor only contributes by eiQB·τ(R)Ri in Eq. (6.24). Hence, the requirement
is

τM �
1

2π ‖η‖1
. (6.33)

This way, it is guaranteed that

|QB · τ(R)Ri| � 1 (6.34)

because

|QB · τ(R)Ri|
(6.9)
= 2π

∣∣∣∣∣
d∑

m=1

d∑
n=1

ηmβn
an
am
b̂mτ(R)ân

∣∣∣∣∣ (6.35a)

≤ 2π

d∑
m=1

d∑
n=1

∣∣∣∣ηmβn an
am

∣∣∣∣ ∣∣∣b̂mτ(R)ân

∣∣∣ (6.35b)

≤ 2π τM

d∑
m=1

d∑
n=1

∣∣∣∣ηmβn an
am

∣∣∣∣ (6.35c)

≈ 2π τM

d∑
m=1

d∑
n=1

|ηmβn| (6.35d)

= 2π τM

(
d∑

m=1

|ηm|

)(
d∑

n=1

|βn|

)
(6.35e)

= 2π τM ‖η‖1 ‖β‖1 ≤ 2π τM ‖η‖1 . (6.35f)

Here, τM is the largest magnitude of the eigenvalues of the displacement gradient tensor
τ(R) of all unit cells R and an approximate cubic lattice has been assumed which implies
an/am ≈ 1.

For the (004)zyc Bragg reflection, the constraint (6.33) implies τM � 4%. Given the
constraint (6.17) and under the assumption that displacement gradient tensor is bound
from above by the lattice contrast, the influence of the displacement gradient tensor on
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the effective electron density can be neglected and the latter can be approximated as a
function %eff = %eff

(
QB,R, {fi(QB,R)}, {u(R)}

)
. Thus, we have

E(QB,Q) =
∑
R

Ω(R) %eff

(
QB,R, {fi(QB,R)}, {u(R)}

)
eiQ·R . (6.36)

To summarize, the model

I(QB,Q) ∝ |E(QB,Q)|2 (6.37a)

E(QB,Q)
(6.36)

=
∑
R

Ω(R)%eff

(
QB,R, {fi(QB,R)}, {u(R)}

)
eiQ·R

(6.37b)

%eff

(
QB,R, {fi(QB,R)}, {u(R)}

) (6.31)
= Φ

(D)
C

(
QB,R, {fi(QB,R)}

)
eiQB·u(R) (6.37c)

Φ
(D)
C (QB,R, {fi(QB,R)}) (6.24)

=

NApC∑
i=1

eiQB·Rifi(QB,R) (6.37d)

describes the intensity distribution close to a Bragg peak QB under the assumptions:

• Eq. (6.10):
The experimentally measured intensity I is only considered in a limited domain in
reciprocal space close to the Bragg peak QB

• Eq. (6.18):
The maximum lattice contrast is within the limits resulting from the limited domain
in reciprocal space

• Eq. (6.30):
The maximum displacement in any direction i does not exceed approximately one
lattice constant

• Moreover, we assume kinematic approximation and illumination with a monochro-
matic plane wave. This implicitly implies perfect coherence properties and no angular
divergence of the impinging beam.

Note, that the sum in Eq. (6.37b) contains all lattice points R. Therefore, we now
investigate under which conditions this sum can be approximated by an integration over
a continuous variable. For this, the functions Ω(R) and %eff

(
QB,R, {fi(QB,R)}, {u(R)}

)
need to be defined as a function of r ∈ Rd and not only on the Bravais lattice points R.
For the shape, we define Ω(r) to be one if r is inside the volume of any unit cell R inside
the nanostructure and zero otherwise.

For the effective electron density, we define fi(QB, r) in analogy to the shape function
Ω(r): We map r to the unit cell R in which r is located in. Then we attribute fi(QB, r) to

fi(QB,R) with thatR. Then, we eliminate the discontinuities of Φ
(D)
C

(
QB,R, {fi(QB,R)}

)
at the edge of each unit cell by smoothing with a multidimensional Gaussian with FWHM
equal to the unit cell dimensions ai. A full discussion on the limitations resulting from
this smoothing goes beyond the scope of this manuscript. However, it is guaranteed that
the resulting function is smooth on the scale of the lattice constants ai.

As long as condition (6.33) is fulfilled, the displacement field u(R) can be interpolated
smoothly to u(r) in such way that the resulting scale of variation is not smaller than the
scale of the lattice constants ai, too.
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Therefore, the effective electron density is defined for all points r ∈ Rd and is a smooth
function on the scale of the lattice constants ai. We are now able to rewrite

E(QB,Q)
(6.36)

=
∑
R

Ω(R)%eff

(
QB,R, {fi(QB,R)}, {u(R)}

)
eiQ·R (6.38a)

=
∑
R

∫
Rd
δ(r −R) Ω(r)%eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
eiQ·r ddr (6.38b)

=

∫
Rd

[∑
R

δ(r −R)

]
Ω(r)%eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
eiQ·r ddr (6.38c)

where we exploited the definition of the Dirac delta distribution [170]∫
Rd
f(r)δ(r − r0) ddr = f(r0) (6.39)

for f(r) = Ω(r)%eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
eiQ·r and r0 = R. Since∑

R

δ(r −R) ∝
∑
G

e−iG·r (6.40)

where G is the reciprocal lattice of the Bravais lattice B with elements R, Eq. (6.38c) can
be further simplified to

E(QB,Q) ∝
∑
G

∫
Rd

Ω(r)%eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
ei(Q−G)·r ddr . (6.41)

Since we restrict to the vicinity of a specific Bragg peak QB, i.e., the magnitude of Q is
much smaller than the spacing to the neighbouring Bragg reflections, the contribution of
the points G 6= 0 is negligible. Consequently, we drop the outer sum and obtain

E(QB,Q) ∝
∫
Rd

Ω(r)%eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
eiQ·r ddr (6.42)

as approximation for Eq. (6.36).

Within the validity of this equation, the electric field E(QB,Q) in the vicinity of the Bragg
reflection QB is given by the Fourier transform of the product of the shape Ω(r) and the
effective electron density %eff

(
QB, r, {fi(QB, r)}, {u(r)}

)
.

For numerical calculations, direct space and reciprocal space are discretized. The dis-
cretization grid is chosen as a regular equidistant rectangular grid. This way, the Fourier
transform can be evaluated efficiently by the fast Fourier transform (FFT) algorithm [171].

The spacing δxm (direct space) and δqm (reciprocal space) of the grid in direction m is
connected to the boundaries of the numerical domain ranging from (−Xm, Xm) in direct
space and (−Ωm,Ωm) in reciprocal space via

δxm =
2Xm

Nm
, δqm =

2Ωm

Nm
, Nm =

2π

δqm δxm
, (6.43)

where Nm is the number of points in direction m. Consequently, by fixing Ωm and δqm,
we implicitly choose values for Nm, δxm and Xm.

At this point, we point out a severe deficiency in the conception and the discretization of
the model: Typically, we aim to investigate small nanostructures grown epitaxially on a
large single-crystalline substrate which, however, is very thick compared to the height of
the nanostructures. Thus, the shape Ω(r) of the full object is typically beyond current
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experimental (perfect plane wave as incident radiation) and computational limitations.
However, due to the non-local coupling of all direct space points to each Fourier point,
the truncation of the substrate – in order to reduce the computational domain – requires
special measures. Nevertheless, it is useful to first study objects numerically which are
truncated in the substrate as soon as the displacement field becomes negligible. After
this, we return in Sec. 8.3 to the experimental conditions (e.g., a thick substrate which is
truncated for the reconstruction).

At this point we can now define the aim of algorithmic reconstruction supported CXDI:

Given the intensity distribution I(QB,Q) in the vicinity of a Bragg peak, the goal is
to reconstruct the effective electron density %eff – optimally including the shape of the
object Ω(r). This very general task, however, requires some a priori knowledge about the
nanoobject under consideration, since the effective electron density is a complex valued
object, and, thus, has two degrees of freedom at each spatial point, whereas the intensity
distribution is only real-valued. Consequently, without additional a priori knowledge, the
number of unknowns is twice as large as the measured values.

In the framework of this manuscript, we restrict to the following simplified, yet challenging
condition for reconstructions: We always assume that the shape Ω(r) of the nanostructure
in direct space is already known. Experimentally, this can be realized by complementary
techniques such as atomic force microscopy (AFM) [172–175], scanning electron microscopy
(SEM) [176], transmission electron microscopy (TEM) [177] or grazing incidence small
angle X-ray scattering (GISAXS) [178]. For weakly strained crystals, the shape can be
estimated during the reconstruction by application of the ShrinkWarp algorithm [151].
However, this approach does no longer work for highly strained crystals. Another approach
for estimation of the shape is presented in Ref. [152].

This assumption that the shape Ω(r) of the nanostructure is available, is very important
for the elimination of two (out of three) intrinsic ambiguities in the extraction of the
effective electron density %eff. This non-uniqueness of the solution of the model results
directly from the mathematical properties of the Fourier transform. We specifically have
these ambiguities:

• Shifting the object in position space only results in a plane wave modulation in
reciprocal space, hence, producing the same intensity distribution I(QB,Q). These
ambiguities are removed by fixing the position of the shape Ω in position space.

• If the shape Ω of the nanocrystal is inversion symmetric, an additional twofold am-
biguity shows up: Both, %eff(r) and %∗eff(−r) fulfill all constraints enforced by the
input data and, therefore, constitute two distinct solutions unless %eff(r) ∝ %∗eff(−r).
We avoid this ambiguity by only investigating nanostructures with non inversion
symmetric shape.

• The remaining ambiguity indicated by the mathematical properties of the Fourier
transform is a physically irrelevant global phase shift which is not constrained in
the reconstruction. Instead, the mathematical measure which we employ for judging
upon the success of a reconstruction is insensitive to this ambiguity (see Sec. 6.2.2).

To decrease the number of unknowns below the number of measured points in reciprocal
space, the sampling must be chosen accordingly. In particular, the domain limits in direct
space must be such that at least half of the domain is outside the scattering volume. This
way, the number of complex unknowns in direct space is at least decreased by a factor of
2. The ratio of the number of measured intensity values divided by the number of points
in direct space inside the shape Ω(r) is referred to as oversampling ratio σ.

If

118



6.1. Derivation of the model for X-ray scattering in CXDI

• the dimensionality of the structure is at least equal to two,

• the shape Ω(r) is known and finite, and

• the distance δq of the measured intensity points I(QB,Q) in reciprocal space is small
enough to guarantee a sufficient oversampling ratio σ on the grid (σ ≥ 2 is a lower
bound),

it has been proven that the effective electron density %eff can be retrieved (up to the
inherent symmetries mentioned above) [1, 179–182].

In a second step, the extraction of the displacement field u(R) from the effective electron
density %eff may require phase unwrapping. For this, many algorithms have already been
developed (see for example Ref. [183] and references therein) and, consequently, will not
be developed further in this manuscript.

These conditions (known shape Ω(r) and intensity distribution I(QB,Q) on a grid with an
oversampling ratio σ ≥ 2) will be investigated in Sec. 7.3. Nevertheless, depending on the
nanostructure under consideration, additional a priori may be available. Such additional
a priori knowledge in particular includes the following aspects which are not covered by
knowledge of the shape Ω(r) and the intensity distribution I(QB,Q):

1. Far away from the nanostructure, the displacement field u in the substrate typically
decays and, finally, results in a negligible phase shift QB · u(R) in the effective
electron density as defined in Eq. (6.37). Application of this “boundary condition”
would fix the yet undetermined global phase in the reconstruction procedure.

2. Additional a priori knowledge might also be available for the quantity Φ
(D)
C as defined

in Eq. (6.37). For a crystal of uniform composition of the unit cells, this quantity
reduces to a constant. Typically, this scattering magnitude is either a slowly varying
function – up to possible material interfaces – or deviates only slightly from its
average value – at least in some sub-domains of the nanostructure (e.g. the substrate
region). The first case might induce restrictions on the spatial derivatives of the local

scattering magnitude Φ
(D)
C . The latter case will be discussed more closely in Sec. 7.4.

3. The phase in the effective electron density is connected to the displacement field u.
Consequently, restrictions related to the displacement field u translate to restrictions
of the phase field of the effective electron density %eff during the reconstruction. Here,
we need to distinguish two important aspects:

• On the one hand, the phase variation, more specifically, the derivatives of the
phase field might be limited. For example, a given maximum amount of strain
implies restrictions on the first derivative of the displacement field. A lim-
ited strain gradient corresponds to restrictions on the second derivative of the
effective electron density. Such restrictions are discussed in detail in Ref. [184].

• On the other hand, each component of the displacement field is single-valued
at any spatial position r. Consequently, the phase field must be free of phase
vortices. Otherwise, the displacement field components would be multi-valued
map. This requirement will be discussed further in Sec. 7.5.

A short summary of the a priori knowledge, which considered further in this manuscript,
and its importance for eliminition of the intrinsic ambiguities in the CXDI model is given
in Fig. 6.3. We point out that the same physical a priori knowledge may typically be
incorporated in reconstruction algorithms in multiple ways. Consequently, one carefully
needs to distinguish between a given set of a priori knowledge and the implementation
of this set of a priori knowledge in the reconstruction process. Consequently, we now
introduce the reconstruction algorithms which are of importance in this manuscript.
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Figure 6.3.: Illustration of the importance of certain a priori knowledge for the elimination
of the intrinsic ambiguities of the model underlying CXDI reconstructions.

6.2. Theoretical background of the reconstruction procedure

Given a specific set a priori knowledge which is theoretically sufficient to determine the
solution %eff uniquely (or at least up to ambiguities which are physically not relevant),
we still need to find an algorithmic procedure which is capable of retrieving this solu-
tion. Whereas very sophisticated and powerful algorithms are available for linear systems
of equations, the set of equations (6.37) is non-linear and non-convex. Thus, dedicated
algorithms should be developed which are specifically adapted to this set of equations.

In this manuscript we restrict to iterative procedures for extraction of the solution. Such
an iterative procedure aims to reduce the distance to the solution by repeatedly performing
a set of well-defined operations on a given initial guess.

Therefore, a measure for calculation of the distance of the solution of the set of equations
(“ground truth”) to any function (defined in the same mathematical space as the solution)
is needed. By this measure, the quality of the iterative approximations to the solution is
quantified. Consequently, it also reveals the improvements from one iteration to the next
iteration. This error measure for CXDI phase retrieval is discussed in Sec. 6.2.2.

Consequently, any iterative procedure requires the following ingredients:

1. the error measure which reveals the distance from the current approximation to the
desired solution,

2. an initial guess to the final solution, and

3. the operator which is repeatedly applied to this initial guess.

For some iterative procedures, the distance of the current approximation to the desired
solution decreases monotonously with every iterative step. Such behavior is desired for
optimization problems for which only a single extremum (minimum or maximum) exists.
For optimization problems with multiple local minima, such behavior is only adequate
if a very good initial guess close to the solution is available. For example, optimization
algorithms with monotonously decreasing error can also be used for fine tuning of a low-
quality approximation to the solution that has been obtained by other approaches.

If no adequate initial guess is available and many local extrema exist – which is often the
case for non-linear and non-convex optimization problems – optimization algorithms must
be able to either avoid or escape from unwanted local minima. Consequently, the error
measure does typically not decrease with every iteration. Here, one of the most prominent
examples is the simulated annealing approach [166].
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6.2. Theoretical background of the reconstruction procedure

A good iterative reconstruction algorithm should be successful in all cases and for all
conditions. Most importantly, it

1. should not depend on the starting point (as long as no good starting point is avail-
able),

2. should perform the reconstructions with little computational effort,

3. should possess these properties for a wide range of its free/internal parameters,

4. should be robust to artifacts (such as noise, . . . ) in the input data, and

5. should not require human interaction during execution (like tuning of parameters).

Reaching a success rate of or close to 100% is a challenging task for CXDI reconstructions.

Nevertheless, several inhomogeneously strained nano-sized objects like quantum dots and
quantum wires have already been inspected at synchrotron facilities by CXDI [123, 179,
185–200]. In most cases, a combination of the hybrid input output algorithm (HIO-
algorithm) and error reduction (ER-algorithm) has been employed [201–203] to solve the
highly non-linear, non-local system of equations underlying the reconstruction of the dis-
placement field. This algorithm will be be reviewed and summarized in Sec. 6.2.3.

Despite the success of this algorithm for a number of applications, its capabilities are
not fully satisfactory [1, 185, 203], in particular for very inhomogeneously highly strained
systems. Consequently, strong efforts are put in the development of novel algorithms in
order to overcome the current limitations in CXDI reconstructions (see e.g. Refs. [1, 185,
195, 200, 204–206]).

On the one hand, the incorporation of additional a priori knowledge – such as the a priori
knowledge discussed in Sec. 6.1 – is pursued for retrieving the displacement field u (see
for example Refs. [185, 195, 205]).

On the other hand, advances which are not based on additional a priori knowledge com-
pared to the existing algorithms have been achieved (see e.g. Refs. [1, 203, 204, 207]).

In this manuscript, we present results for both approaches:

Firstly, we investigate an extension of the above mentioned combination of the HIO- and
ER-algorithm based on randomization and overrelaxation of a projection operator [208,
209]. This extension does not require a priori knowledge in addition to the shape of the
object in direct space and the intensity distribution I(QB,Q) in reciprocal space. This
way some residual shortcomings of the traditional HIO+ER-algorithm have been resolved
[1, 203]. We will refer to this extension as the HIOOR+ER-algorithm [1].

Moreover, we define and discuss suitable operators for incorporating bounds on the mag-
nitude of local scattering amplitude in the traditional HIO+ER-algorithm. We refer to
this extension as the HIOA+ERA-algorithm, and evaluate the benefits of such direct space
constraints [2].

Finally, we combine both approaches – randomization of the overrelaxation of a projection
operator and bounds on the magnitude of local scattering amplitude. The respective recon-
struction algorithm is referred to as HIOA

OR
+ERA-algorithm [2]. Our results demonstrate

that the HIOA
OR

+ERA-algorithm performs significantly better in extracting the displace-
ment field (and, thus, the strain distribution) in inhomogeneously strained nanocrystals
in comparison to the traditional HIO+ER-algorithm.

Throughout this manuscript, we only consider fully automatic reconstructions with no
human interaction during the reconstruction.
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6. Introduction to coherent X-ray diffractive imaging (CXDI)

6.2.1. Multidimensional polynomials with projection maps as argument

The reconstruction algorithms presented in the upcoming sections involve various projec-
tion operators. A projection operator is defined by the property that repeated application
is identical to a single application of this operator.2 For the discussion of these algorithms,
it is useful to first discuss the simplifications in multidimensional operator polynomials

ĤOp({Mi}) = c 1 +
k∑

i1=1

ci1Mi1 +
k∑

i1=1

k∑
i2=1

ci1i2Mi1Mi2

+ . . .+

 k∑
i1=1

k∑
i2=1

. . .

k∑
iq=1

 ci1i2...iqMi1Mi2 . . .Miq (6.44a)

=

q∑
m=0

(
k∑

i1=1

k∑
i2=1

. . .
k∑

im=1

)
ci1i2...imMi1Mi2 . . .Mim (6.44b)

if the mappings Mi, 1 ≤ i ≤ k, of the k-dimensional polynomial of degree q are k (possibly
non-commutative and non-linear) projection operators Pi. For our purposes, it is sufficient
to restrict to the case k = 2.

From the defining property of projection operators, it follows that any combination of
projection operators Pn1

ξ1
Pn2
ξ2
. . .Pnm

ξm
of two different kinds ξj ∈ {Ω,Γ}, j ∈ {1, . . . ,m}, re-

duces to one of the four building blocks PΩ (PΓPΩ)n, PΓ (PΩPΓ)n, (PΩPΓ)n and (PΓPΩ)n

for some integer n ≥ 0 [1].

The identity operator 1 and the single projection operators are included for n = 0 in those
building blocks. However, the identity operator is included twice, namely for n = 0 for
(PΩPΓ)n and (PΓPΩ)n. Therefore, the identity operator must be treated separately if
those four building blocks are used to simplify Eq. (6.44b).

Taking those considerations into account, we simplify the operator polynomial (6.44b) to

ĤProj(PΓ,PΩ) = b 1 +

neven
Max∑
n=1

[cΩ,2n (PΩPΓ)n + cΓ,2n (PΓPΩ)n] +

nodd
Max∑
n=0

[cΩ,2n+1PΩ (PΓPΩ)n + cΓ,2n+1PΓ (PΩPΓ)n] , (6.45a)

if the operators Mi are projection operators and n = 2. The parameter neven
Max is given

by the largest integer smaller or equal to p
2 . nodd

Max is determined by the largest integer

smaller or equal to p−1
2 . p is the maximum number of successive projection operators

which is included in ĤProj. If we incorporate the idempotence of projection operators,

ĤProj(PΓ,PΩ) constitutes the fundamental structure for two non-commutative projection
operators with a maximum of q successive projections.

ĤProj(PΓ,PΩ) as given in Eq. (6.45a) will prove useful for discussing various approaches
for the calculation of the next iterative solution in the reconstruction algorithms (e.g., in
the manner of Eq. (6.52c) or Eq. (7.7a)).

If the polynomials ĤProj are exploited for that purpose, we must imply an additional
restriction on the coefficients (b, cΩ, cΓ), if the projection operators PΩ and PΓ reduce to
the identity operator 1 if applied to the desired solution %eff(r) (i.e., if the solution %eff(r)

2In the definition, it is sufficient to require P2
ξ = Pξ. The extension to Pn

ξ = Pξ, n ≥ 1, (idempotence)
follows directly by induction.
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6.2. Theoretical background of the reconstruction procedure

of the iterative process is a fixed point of both operators PΓ and PΩ). Given the true
solution %eff(r) as input, the operator ĤProj for determination of the next iterative solution
must simplify to the identity operator 1 for any choice of its parameters (b, cΩ, cΓ).3 This
requirement is fulfilled if and only if

b = 1−
p∑

n=1

[cn,Ω + cn,Γ] . (6.45b)

Consequently, for a maximum of p successive projections in the projection polynomial
ĤProj, 2p free parameters appear in ĤProj.

It is important to keep in mind that in general the product of two non-commutative
idempotent operators (like PΓ and PΩ) is no longer idempotent and, hence, the operator
ĤProj is not idempotent, too.

6.2.2. Error measures and their limitations

In order to investigate the performance and convergence properties of a reconstruction
algorithm, three aspects are particularly important:

1. the deviation of the current iterative approximation to the constraints which deter-
mine the solution: In our particular case, we consider the dimensionless, normalized
error measure

ε(i) =

〈
|g̃(i)| − Γ ; |g̃(i)| − Γ

〉
〈Γ ; Γ 〉

=
1

‖Γ‖22

∑
Q

(
|g̃(i)(Q)| − Γ(Q)

)2
(6.46)

for calculation of the distance from the solution %eff(r) from the constraints Γ(Q) =√
I(QB,Q) in reciprocal space. Here, ‖·‖p is the p-norm, 〈 · ; · 〉 the standard scalar

product in Rn (n is the number of points of the intensity distribution which been
measured), and Γ(Q) =

√
I(QB,Q) are the amplitudes in reciprocal space that are

derived from the measured intensity distribution I(QB,Q). g̃(i)(Q) is the (complex

valued) Fourier transform of the i-th iterative approximation %
(i)
eff(r) to the solution.

We point out that this error measure does not take into account violations of the
direct space constraints (shape Ω, . . . ). More importantly, two quite different direct
space objects %eff (hence quite different complex Fourier transforms) may posses an
extremely similar distribution of the magnitude Γ in reciprocal space [181, 205].
Consequently, this error measure is – in general – insufficient for judging on the
quality of a reconstruction algorithm or a specific reconstruction with a particular
reconstruction algorithm. Nevertheless, it may be useful to inspect its capabilities
and limitations in details, since it is widely used and can be easily applied to all
reconstruction algorithms based on the model (6.37).

One advantage of this error measure is that it is – by design – insensitive to all
inherent ambiguities that are induced by the mathematical properties of the Fourier
transform (see Sec. 6.1).

2. the change from iteration (i − 1) to iteration (i) of the approximations %
(i)
eff to the

solution %eff: A naive choice for measuring this change would be the p-norm δ(i) =∥∥∥%(i−1)
eff − %(i)

eff

∥∥∥
p
. However, this difference does not eliminate (physically irrelevant)

3Strictly speaking, if the solution %eff(r) is not unique, it is sufficient to require that ĤProj maps a given
solution %eff(r) to another solution %̃eff(r). For example, if the global phase of %eff(r) is undefined, it
is sufficient to require ĤProj%eff = eiδ%eff ≡ %̃eff, δ ∈ [0, 2π[. However, in this manuscript we restrict to
stronger constraint ĤProj%eff = %eff, i.e., we require that the solution %eff is not changed by ĤProj.
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6. Introduction to coherent X-ray diffractive imaging (CXDI)

global phase shifts from iteration (i − 1) to iteration (i). Consequently, we instead
define the angle

χ(i) = arccos

[∣∣∣〈 %(i−1)
eff ; %

(i)
eff

〉∣∣∣/√〈 %(i−1)
eff ; %

(i−1)
eff

〉〈
%

(i)
eff ; %

(i)
eff

〉]
. (6.47)

for measuring the change from iteration (i− 1) to iteration (i). The absolute value
in the nominator of the argument of the arccos function eliminates the dependence

on the undetermined, yet irrelevant global phase in %
(i)
eff . This angle χ(i) is employed

as a measure for the convergence of the algorithm.

Throughout our investigations, we terminated the iterative reconstructions either if
a pre-defined maximum number of iterations has been performed or if the change
χ(i) of %eff from iteration to iteration dropped below a certain value.

It is important to keep in mind that the convergence only implies the change from
iteration to iteration to vanish. This does – in general – not imply that the converged

approximation %
(i)
eff is close to the solution %eff [205, 208]. In order to detect whether

the result of the iterative procedure resembles to solution %eff, we need to define a
third criterion which directly measures this distance and is now defined.

3. the mathematical distance to the (sampled) true solution %eff(r): In complete analogy
to the previous discussion for monitoring the change from iteration to iteration, we
define the angle

ϕ(i) = arccos

[∣∣∣〈 %(i)
eff ; %eff

〉∣∣∣/√〈 %(i)
eff ; %

(i)
eff

〉
〈 %eff ; %eff 〉

]
. (6.48)

However, the reference in this case is not the approximation %
(i−1)
eff after iteration

(i− 1), but the ground truth %eff. For this comparison, it is even more important to
eliminate a global phase difference between the ground truth %eff and the result of

the reconstruction %
(i)
eff .

In contrast to the previous two quantities ε(i) and χ(i), the difference to the ground
truth %eff(r) can typically not be determined for experimentally obtained input data
of the reconstruction procedure. However, only by this comparison with the ground
truth, we are able to judge on the quality of a converged result of the iterative recon-
struction procedure. Consequently, it is highly important to carefully investigate the
capabilities and limitations of reconstruction algorithms with simulated data before
they are applied to experimental data.

We point out that the result of a reconstruction should ideally be benchmarked versus
the exact quantity that is extracted such as the displacement field, the strain field or
the strain gradients – instead of employing Eq. (6.48). However, this is far from trivial
since any such derived quantities require additional steps of evaluation with different
numerical challenges (e.g. the way derivatives are calculated from the displacement
field) or are even not possible in all cases (for example, if the reconstructed phase field
contains a phase vortex, unique extraction of the displacement field is not possible,
see Sec. 7.5). Consequently, the result of such a benchmark can strongly depend
on these additional steps. By the choice (6.48), we benchmark the direct output of
the reconstruction procedure and, typically, all further steps will perform well if the
input for these further steps is of high quality.
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initial guess

amplitudes 

random phases

HIOER-algorithm

check for convergence: change to previous iteration

HIO-algorithm

repeat 

;

ER-algorithm
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Figure 6.4.: Graphical illustration of the HIO+ER-algorithm including its building blocks.

6.2.3. Overview over current iterative algorithms

A good review of the most important iterative reconstruction algorithms for phase retrieval,
which have been proposed, is given in Ref. [203]. The most successful and most widely
used algorithm is the HIO+ER-“meta”-algorithm which combines NHIO repetitions of the
hybrid input output (HIO-) algorithm with NER repetitions of the error reduction (ER-)
algorithm as follow-up [201, 202]. We now shortly review it before we will extend it in the
subsequent sections.

Description of the HIO+ER-algorithm

The first building block – the ER-algorithm [201, 202] – is defined by

%
(i+1)
eff = ĤER %

(i)
eff , (6.49a)

where ĤER is the projection polynomial

ĤER = PΩ PΓ . (6.49b)

Here, PΩ and PΓ are projection operators in direct and reciprocal space respectively, i.e.,

PΩ %
(i)
eff(r) =

{
%

(i)
eff(r) if r ∈ Ω ,

0 if r /∈ Ω
(6.50a)

and

PΓF (i)(Q) = ΓQ eiarg(F(i)(Q)) . (6.50b)

Here, ΓQ =
√
I(QB,Q) are the amplitudes in reciprocal space that correspond to the

measured intensity distribution I(QB,Q). F (i)(Q) is defined as FTQ←↩r

{
%

(i)
eff

}
. The

latter operator PΓ enforces the amplitudes ΓQ on the form factor F (i)(Q) of the effective

electron density %
(i)
eff without modifying its phases arg

(
F (i)(Q)

)
.

The direct space representation of the operator PΩ is

PΩ =

{
1 if x ∈ Ω ,
0 if x /∈ Ω .

(6.51)
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6. Introduction to coherent X-ray diffractive imaging (CXDI)

For notational simplicity, we assume that any operand of the operators PΓ and PΩ is
transformed by Fourier or inverse Fourier transform to the proper space before these
operators PΓ and PΩ are applied.

By alternating projections of a trial solution onto the constraints in direct space and in
reciprocal space, the ER-algorithm is a computationally efficient iterative local minimizer
of a suitable chosen error metrics [201, 202]. However, in practice, CXDI reconstructions
typically involve a large number of local minima because the projection operator PΓ is
non-linear, non-convex and non-unique [210]. In consequence, the ER-algorithm typically
does converge to a local minimum of the error metrics, but not necessary to the global
minimum %eff(r) – as required for a successful CXDI reconstruction. Additionally, the
error metric may stagnate for many iterations before decreasing further towards a local
minimum.

A very important algorithm which aims to avoid such stagnation and getting caught in
local minima other than the global minimum is the hybrid input output (HIO) algorithm
proposed by Fienup [201, 202, 211]. This is the second block of the HIO+ER-algorithm in
addition to the ER-algorithm.

The HIO-algorithm is also an iterative procedure and is defined by

%
(i+1)
eff (r) =

{
PΓ%

(i)
eff(r) if r ∈ Ω ,

%
(i)
eff(r)− βPΓ%

(i)
eff(r) if r /∈ Ω .

(6.52a)

The parameter β is referred to as feedback parameter and typically chosen from the range
[0.5; 1.0] [211]. The success of the HIO+ER-algorithm does not sensitively depend on the
value of parameter β in this range [1]. However, it sensitively depends on the choice of the
internal parameters NHIO and NER [1] (see Sec. 7).

This definition is equivalent to

%
(i+1)
eff (r) = ĤHIO(β)%

(i)
eff(r) (6.52b)

with the projection polynomial

ĤHIO(β) = 1−PΩ − βPΓ + (1 + β) PΩPΓ . (6.52c)

However, both definitions (6.52a) and (6.52c) motivate different generalizations if addi-
tional constraints on the local scattering amplitude are incorporated in the HIO+ER-
algorithm in Sec. 7.4.

The convergence properties of the HIO-algorithm have been investigated in Refs. [212–214].

Finally, we must specify the initial guess of the iterative procedure. In most cases no a
priori knowledge on the phase field in reciprocal space is available. As a result, randomly
generated phases Φ(Q) at each point Q in reciprocal space are typically combined with
the measured amplitudes Γq, i.e.,

F (0)(Q) = ΓQ eiΦ(Q) . (6.53)

The full HIO+ER-“meta”-algorithm is visualized in Fig. 6.4.

The combination of the HIO- and ER-algorithm is in practice more successful in avoiding
stagnation and unwanted local minima than both algorithms on their own [202, 211].
Although the HIO+ER-algorithm is already quite powerful, it is not yet satisfactory as we
will illustrate further in Sec. 7.2.
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7. Reconstructions in CXDI: Results for
simulated ideal data

In this section, we investigate the performance of several reconstruction algorithms for
simulated input data. The input data is in this chapter is fully consistent within the
theoretical model described in Sec. 6.1. The influence of artifacts (such as noise) on the
reconstruction will be investigated in Sec. 8.

As a first step, we introduce in Sec. 7.1 the model systems, which are employed for our
investigations. Next, we shortly illustrate in Sec. 7.2 the stagnation of the traditional
HIO+ER-algorithm. Then, we demonstrate that proper randomization of the traditional
HIO+ER-algorithm is capable of elimination of such stagnation in many cases. If we
perform this randomization by overrelaxation of the non-convex non-linear projection op-
erator PΓ in reciprocal space in the HIO-algorithm, we obtain the HIOOR+ER-algorithm
which is based on the same a priori knowledge as the HIO+ER-algorithm and is equally
computationally efficient.

In Sec. 7.4, we will discuss the incorporation of constraints on the local scattering magni-
tude as additional a priori in the HIO+ER-algorithm. We will investigate the benefits of
this additional a priori knowledge without (HIOA+ERA-algorithm) as well as with ran-
domization (HIOA

OR
+ERA-algorithm). As for the randomization, we will again discuss two

non-equivalent approaches which incorporate the same set of given a priori knowledge.

The approximations %
(i)
eff to the solution obtained by the before-mentioned algorithms are

not guaranteed to be free of phase vortices. However, the fact that the displacement field
is a single-valued physical quantity at each point in space, the phase field of the effective
electron density must be free of phase vortices. The existence of such phase vortices in the
reconstructed effective electron density would prevent unique unwrapping of its phase field.
We will provide more details on phase vortices in the framework of CXDI reconstruction
in Sec. 7.5.

7.1. Introduction of the test objects

For the investigation of our reconstruction algorithms, we will employ four test objects.
First, we consider two smooth, analytically defined phase fields, one photograph of a fire-
works during night (truncated in order to obtain a non-inversion symmetric support),
and, finally, the displacement field in a periodic arrangement of silicon trenches which is
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7. Reconstructions in CXDI: Results for simulated ideal data

(a) This object belongs to Eq. (7.2a). (b) This object belongs to Eq. (7.2b).

Figure 7.1.: Pure phase objects which we use for the investigation of the convergence of
the HIO+ER- and HIOOR+ER-algorithm. The magnitude inside both objects
is constant. The phase field is plotted in HSV color-bar. The region outside
the shape Ω is set to black. ( c©2012 The Optical Society (OSA), from [1])

calculated by finite element modeling (FEM) of linear elasticity theory (LET). For compu-
tationally efficiency and better visualization, we restrict to two-dimensional test objects.
An investigation of the HIO+ER and HIOOR+ER-algorithm for a three dimensional test
object can be found in Ref. [215].

Analytically defined test objects

For the two analytically defined test objects, we define the shape Ω to be a triangular
domain defined by the limits (0, 0), (0, a) and (a, 0) with a = 0.97. The object has been
sampled on an equidistant grid with N1 × N2 = 256 × 256 data points in the interval
(x, y) = (−1,−1) to (x, y) = (1, 1). The oversampling ratio for this grid and support Ω is
σ = 8.456.

The magnitude |%eff(r)| inside this shape is set equal to one. Consequently, the two pure
phase objects can be written

%eff(r) = exp (i ξ(r)) , (7.1)

inside its support Ω, where ξ(r) is a real function.

We employ the functions

ξ1(x, y) = (2π)2
[
(x/b1)2 + (y/c1)2

]
, (7.2a)

ξ2(x, y) = (2π)

[
(x− b2)3 + (y − c2)2 +

x2y3

c2
2b

3
2

]
, (7.2b)

where the parameters were chosen as (b1 = 1.5515, c1 = −1.835) and (b2 = −0.3515,
c2 = 0.535). The resulting objects are depicted in Fig. 7.1.

Real-word real valued test object

In addition to these two analytically defined test objects with constant magnitude of the
effective electron density combined with a smooth phase field (phase variations of 2π
extend over several sampling points), we employ the photograph of a fireworks depicted
in Fig. 7.2 for investigation of the HIO+ER- and HIOOR+ER-algorithm. We define the
effective electron density equal to the brightness of the image. Consequently, this object
is only real valued in direct space. The support of the image has been modified such
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7.1. Introduction of the test objects

Figure 7.2.: A real valued test object for investigation of the capabilities of CXDI re-
construction algorithms, in particular the HIO+ER- and the HIOOR+ER-
algorithm. The brightness of the image is set equal to %eff. ( c©2012 The
Optical Society (OSA), from [1])

that it is no longer inversion symmetric. This is required to avoid a two-fold ambiguity
of the solution (%eff(r) and %∗eff(−r), see Sec. 6.1). The oversampling ratio of this object is
σ = 5.06.

This object has rather different characteristic features as compared to the previous objects.
On the one hand, it contains rather strong variations of its magnitude over short length
scales. On the other hand, it also has very weak contrast at the edges of the support
Ω. Consequently, it is interesting to also study the performance of the reconstruction
algorithms for such kind of objects.

Throughout this manuscript, a reconstruction of these first three test objects is considered
successful once the angle ϕ(i) to the test object (see Eq. (6.48)) falls below 0.05◦.

Inhomogeneously strained silicon trenches as test object based on FEM

The most important test object which we use for investigating and benchmarking the CDXI
reconstruction algorithms under consideration is a periodic array of Si-(001)-nanowires (see
Fig. 7.3(a)). The domains between the nanowires (“trenches”) are filled with amorphous
silicon-oxide SiO2 (gray domain in Fig. 7.3(a)) during fabrication. Since the thermal ex-
pansion coefficients of the crystalline and amorphous region differ, a non-vanishing strain
field is observed in the nanostructure after cooling down to room temperature.

We would like to mention that such systems have already been investigated experimentally
[216, 217]. In the experimental realization, the periodic nanowires have been fabricated by
etching the trenches in a silicon substrate (black domain in Fig. 7.3(a)).

For benchmarking the CXDI reconstructions with such a system, the displacement field u
inside this nanostructure has been obtained by Philipp Schroth by finite element modeling
(FEM) of linear elasticity theory (LET) with the commercial FEM software “COMSOL
Multiphysics” [125, 218–222]. From this displacement field – together with the shape of the
nanostructure – we calculated the amplitudes Γq in reciprocal space which are required as
input for a CXDI reconstruction.

Both materials (crystalline and amorphous domain) are considered homogeneous in com-
position. A planar cut perpendicular to the direction of the wires contains all information,
since we assume translational symmetry along the wires. Thus, our model system reduces
to two dimensions. Moreover, the periodic arrangement of the wires is exploited and the
simulation is restricted to a single building block of the periodically repeated wires.
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7. Reconstructions in CXDI: Results for simulated ideal data

(a) Ω (b) ux (c) uz (d) εxx (e) εxz (f) εzz

Figure 7.3.: Fig. (a) shows the geometry and composition of a unit cell of the periodic Si-
nanowires. The black domain (including the hatched subdomain) corresponds
to the crystalline shape Ω which is relevant for CXDI. The hatched domain
will become important in Sec. 7.4. Figs. (b) and (c) show the components
of the displacement field obtained by FEM in x- (crystallographic [100]zyc-
direction) and z-direction (crystallographic [001]zyc-direction). Figs. (d)-(f)
show the xx-component, xz-component, and zz-component of the strain tensor
ε respectively. The interface of the crystalline and amorphous region is marked
by a black line. [Fig. (a): ( c©2013 The Optical Society (OSA), from [2])]

The elastic properties of both materials were characterized by their Poisson ratio (νSi =
0.28 and νSiO2 = 0.17) and their Young modulus (YSi = 1.3·1011Pa and YSiO2 = 70·109Pa).
We enforced the displacement to vanish in lateral direction at the left and right edges of
the domain. Both components of the displacement field have also been set to zero at the
bottom of the 1000nm thick substrate. On the upper edge of the domain, no constraints
were applied to the displacement field. A free tetrahedral mesh with 25263 elements was
generated in order to make this geometry accessible for numerical FEM. The strain in the
Si-nanowire was then induced by thermal expansion [125, 223].

The geometry and dimensions of the system are:

• lateral periodicity: 200nm

• vertical etching of the substrate to a depth of 237nm

• filling with amorphous silicon oxide to a height of approximately 258nm (this results
in a cap layer of 21nm thickness)

• 1000nm thick substrate domain below the bottom of the nanowire (this way, the
displacement field is negligibly small at the bottom edge of the simulation domain)

The resulting displacement field and the strain distribution are depicted in Fig. 7.3. Since
the crystalline domain is chemically homogeneous, we set the amplitude of the crystalline
silicon domain constant.

We characterize the strain distribution by the maximum strain εM = max
(
∂uz
∂z

)
on the

central axis in the crystalline silicon domain of the simulated wire. Within linear elasticity
theory, we are able to increase the strain in the sample by simple linear rescaling of the
displacement field u.

The phase fields of the effective electron density %eff(r) for different values of the maximum
strain εM are collected in Fig. 7.4. We point out the increasing number of phase wraps
with increasing maximum strain. In addition, the logarithm of the intensity distribution
close to the (004)zyc Bragg reflection is also depicted in Fig. 7.4 for the respective effective
electron density distribution.
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(a) εM = 0.06% (b) εM = 0.10% (c) εM = 0.30%

Max

Figure 7.4.: Phase fieldQB ·u(r) of the effective electron density %eff(r) (left image) and re-
spective intensity distribution (log-scale) close to the Bragg reflection (004)zyc

(right image) for our periodic array of Si-nanowires (see Fig. 7.3). The figures
are labelled by the maximum strain εM on the symmetry axis of the wires
inside the crystalline silicon domain. [phase field in Figs. (b) and (c): ( c©2013
The Optical Society (OSA), from [2])]

Direct space has been discretized by a regular rectangular grid with 232x798 pixels (NTot =
185136). The distance between two pixels is 0.862nm in x-direction and 1.575nm in z-
direction. For the chosen truncation of the substrate the oversampling ratio σ is equal to
3.6326.

For this test object, the reconstruction procedure was terminated, if either NIter = 500
iterations have been performed or the change of the iterative approximation from the
current to the previous iteration as defined in Eq. (6.47) has dropped below 10−6 rad.

7.2. Shortcomings of the HIO+ER-algorithm

Before we extend the HIO+ER-algorithm in order to remedy its residual shortcomings, we
first need to investigate these shortcomings.

The most important drawbacks of the HIO+ER-algorithm are:

• its breakdown already for rather weak strain,

• its strong sensitivity to the choice of the initial guess, and

• its sensitivity to the choice of its internal parameters NHIO and NER which balance
the tendency for escaping local minima (NHIO) and for converging to the closest local
minima (NER).

For a fixed initial guess, the traditional HIO+ER-algorithm does not involve random
behavior. Consequently, for a fixed initial guess, the HIO+ER-algorithm either succeeds
or fails. However, (uniformly distributed) random phases are typically incorporated for
each measured amplitude ΓQ in the initial guess of the reconstruction. Therefore, the
HIO+ER-algorithm may succeed for some initial guesses, but fail for others. As a result,
an investigation of the overall reconstruction procedure requires to consider the success
rate s ∈ [0%, 100%] as a statistical quantity which must be estimated from a large number
of realizations for the initial guess (NReal � 1). Unless stated otherwise, the success rate
s is estimated from NReal = 100 trials for the initial guess in this manuscript. If the
reconstruction algorithm does not depend on the initial guess, the success rate s reduces
to a binary function s ∈ {0; 1}. Any good reconstruction algorithm should reach a success
rate close to 100% within a practical number of iterations NIter.
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Figure 7.5.: Sensitivity of the HIO+ER-algorithm to the initial guess and its internal pa-
rameters NHIO and NER.

In Fig. 7.5, we depict the success rate s as a function of the number of iterations of the
HIO+ER-algorithm for various combinations of the internal parameters NHIO and NER.
β has been set to 0.85.

In order to compare the various combinations of the internal parameters NHIO and NER,
the computational effort (approximated by the number of Fourier transforms) has been
normalized to the case NHIO = 130 and NER = 10. Consequently, ten iterations with
NHIO = 10 and NER = 4 have the same computational effort as a single iteration with
NHIO = 130 and NER = 10. The respective prefactor p of this normalization is given
before the square brackets in the legend.

From this figure, we can draw several very important conclusions: First, the success rate
is far from being a binary function s ∈ {0; 1} even after the large number of p · 2500
iterations. Consequently, the HIO+ER-algorithm strongly depends on the random initial
guess. Second, the choice of the internal parameters NHIO and NER strongly influences
the success rate. Third, the dependence on NHIO and NER is non-trivial: For example,
we can compare the two cases NHIO = 130 and NER = 10 and NHIO = 65 and NER = 5.
Both parameters have been rescaled by the same factor 2. Consequently, the fraction of
the building blocks HIO and ER during execution is equal. Nonetheless, the success rate
differs strongly. Moreover, we can focus on the five depicted cases with NHIO +NER = 70.
None of these cases exceeds a success rate of s = 55%. The influence of the choice of NHIO

and NER seems comparably weak in this case: In the range NHIO = 40 . . . 65, the success
rate s after 2 · 2500 iterations is very similar. For NHIO = 30, we however see a breakdown
of the HIO+ER-algorithm.

We point out that this information does not reveal any information on the failed initial
trials. Most importantly, we have to consider two possibilities for these trails: First, such
a trial could have converged, but not to the solution %eff. Second, it could have stagnated.
This stagnation on the level of a single reconstruction refers to a very small decrease of
the error metric from one iteration to the next iteration for a large number of successive
iteration. Nevertheless, this should not be confused with convergence to a local minima
mathematically, although practically both situations may be hardly distinguishable in
some cases.

If the success rate remains on a certain plateau for a large number of iterations, we also
refer to this situation as stagnation, since some initial trails might still converge after a
large number of iterations (see for example NHIO = 130 and NER = 10 in Fig. 7.5). It will
always be clear from the context or explicitly stated, if we refer to stagnation of a single
initial guess or to stagnation of the success rate s.
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(a) Single success rate s (b) Comparison s2 − s1

Figure 7.6.: Colorbars for encoding the success rate s (Fig. (a)) or comparisons thereof
(Fig. (b)). ( c©2013 The Optical Society (OSA), from [2])
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(d) Strain εM = 0.16%

Figure 7.7.: Reconstruction capabilities of the traditional HIO+ER-algorithm. The dis-
cretization step in direction of strain εM is δεM = 0.02%. The colorbar for all
plots is given in Fig. 7.6(a). ( c©2013 The Optical Society (OSA), from [2])

For comparison, we now apply the HIO+ER-algorithm to our Si nanowire (see Sec. 7.1).
Instead of the sensitivity on the internal parameters NHIO and NER, we now focus on the
dependence on the strain εM, the number of iterations i which has been performed and the
choice for the success criterion ϕMax which is used to distinguish successful reconstructions
from failed reconstructions based on Eq. (6.48). For this, we depict two-dimensional cuts
from this three dimensional parameter space. The success rate s is encoded by color. The
color scheme is identical in all those two-dimensional cuts and given in Fig. 7.6. Fig. 7.6(a)
is employed for the range 0% to 100% of the success rate s, whereas Fig. 7.6(b) encodes
values of −100% to 100%. The latter is used for comparisons of the success rates of two
different cases. The parameters NHIO, NER, and β of the reconstructions were chosen as
NHIO = 130, NER = 10, and β = 0.8.

Some results of our simulations are depicted in Fig. 7.7 where εM was sampled in the range
0.02% to 0.40% in steps δεM = 0.02%.

If we consider all random initial trails as success for which the angle ϕ(i) to the reference
solution %eff is below ϕMax = 1.0◦ in iteration (i), all trials converged to the solution within
very few iterations up to a maximum strain εM = 0.10% (see Fig. 7.7(a)). However, for
larger strain εM, the success rate drops rapidly. For εM = 0.12%, the success rate already
dropped to s = 38%. For εM > 0.20%, success rate is essentially equal to zero.

These observations are rather insensitive to the particular choice of the value ϕMax = 1.0◦
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(a) Successful re-
construction (very
rare)

(b) Reconstruction
with ϕ ≈ 20◦

after 500 iterations
(“close to solution”)

(c) Reconstruction
with ϕ ≈ 40◦ after
500 iterations (“failed
reconstruction”)

Figure 7.8.: Reconstruction capabilities of the traditional HIO+ER-algorithm for εM =
0.16%. The phase field and magnitude are encoded by HSV colorbar (phase
encoding identical to Figs. 7.1 and 7.4).

for separating successful and not successful reconstructions in Fig. 7.7(a). This can be seen
in Fig. 7.7(b) which illustrates the success rate as function of this angle and strain. Almost
no initial guess came even close (ϕMax ≤ 20◦) to the solution %eff for εM > 0.2%.

In the intermediate range 0.10% < εM ≤ 0.20% , we can identify at least two pronounced
levels of stagnation, most noticeably at approximately ϕ = 13◦ for εM = 0.14% (see
Figs. 7.7(b) and 7.7(c)). For εM = 0.18% and in iteration i = 500, s = 12% of the
initial trials dropped below the level of ϕMax = 1.0◦. If we require only the weaker
constraint ϕMax = 5.0◦ for a successful reconstruction, s = 22% of the initial trials have
been successful. In other words: 10% of the random initial guesses stagnated at the
distance of 4.0◦ to the solution %eff.

This stagnation becomes more evident in Figs. 7.7(c) and 7.7(d): here, the success rate s
is depicted as a function of iteration and the full range of possible angles ϕMax ∈ [0◦, 90◦]
for fixed strain (εM = 0.14% and εM = 0.16%). For both values of strain, we observe two
pronounced levels of stagnation. Once a reconstruction performed with the traditional
HIO+ER-algorithm stagnates, the mean number of iterations that the iterative procedure
stagnates is very high, even if this level is far from the solution %eff. For illustration, we
depict a typical result of a successful reconstruction as well as the output of reconstructions
with an error of ϕ ≈ 20◦ and ϕ ≈ 40◦ after i = 500 iterations in Fig. 7.8.

Based on the results and discussion in this section on the shortcomings of the traditional
HIO+ER-algorithm, we modify the HIO+ER-algorithm in the next section. These modifi-
cations will significantly reduce the sensitivity to the random initial guess and the internal
parameters NHIO and NER. Moreover, these modifications increase the maximum strain
εM which can be reconstructed successfully.

7.3. Elimination of stagnation by randomization

The origin of the shortcomings in projection based phase retrieval algorithms such as the
HIO+ER-algorithm are the mathematical properties of the projection operator PΓ: Its
non-convexity allows for the existence of traps and tunnels [208] during iterative optimiza-
tion or minimization schemes.

In this section, we aim to avoid stagnation or local minima other than the global minimum
by randomization during the iterative reconstruction. This randomization is performed
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such that the solution %eff – the fix point of the iterative procedure – remains a fix point
irrespective of this randomization. However, by randomization of the iterative procedure,
we hope to change the traps and tunnels from iteration to iteration. Consequently, “con-
vergence” and stagnation in such “non-static” traps and tunnels is no longer possible – in
contrast to the solution %eff which remains a “static” fix point of the iterative procedure.

Marchesini demonstrated in Ref. [207] that for his particular numerical example an ad-
ditional low-dimensional subspace saddle-point optimization was also able to overcome
stagnation of the traditional HIO+ER-algorithm. In our approach, such additional opti-
mization procedures are not required.

As a consequence of our approach, random numbers influence the reconstruction at two
stages: first, the initial guess itself is based on random phases for the given amplitudes Γ,
and, second, for algorithms that exploit randomization during reconstruction, the iterative
approximation to the solution varies for each repeated instance of the reconstruction even
for the same initial trial.

In this section we pursue two approaches for such a randomization:

1. We exploit the concept of overrelaxation [208, 209, 224] and substitute the projection
operator PΓ in the HIO-operator by its overrelaxed analogue

QΓ;λΓ
= 1 + λΓ (PΓ − 1) . (7.3)

The direct space assembly in Eq. (6.52a) of the HIO-algorithm remains unchanged.
Since we have QΓ;λΓ

= PΓ = 1 for the solution %eff(r) (irrespective of the value for the
relaxation parameter λΓ) randomization of λΓ seems promising for achieving “non-
static” traps and tunnels. Consequently, the relaxation parameter λΓ is drawn each
iteration of the HIO-algorithm from a uniform random distribution in the interval
[1− ν, 1 + ν], ν ≥ 0. Unless stated otherwise, we choose ν = 0.5.

The limiting case QΓ;λΓ
→ PΓ is obtained for λΓ → 1 (equivalent to ν → 0) which

corresponds to the traditional HIO+ER-algorithm.

2. We randomize some coefficients in projection polynomial ĤHIO of the HIO-algorithm.
For this purpose, we split the coefficients cξ,n, ξ ∈ {Ω,Γ}, n ≥ 1, in Eq. (6.45a) in a

deterministic part c
(D)
ξ,n and a random part rξ,n c

(R)
ξ,n , i.e.,

cξ,n = c
(D)
ξ,n + rξ,n c

(R)
ξ,n . (7.4)

Here, we set the deterministic contribution c
(D)
ξ,n equal to the traditional HIO-algorithm

(see Eq. (6.52c)). rξ,n is uniformly distributed in the range [−1, 1]. The reconstruc-

tions contains randomization if at least one coefficient c
(R)
ξ,n is non-zero. In this

approach, Eq. (6.45b) guarantees that the solution %eff remains a fixed point of the
iterative procedure irrespective of the randomization.

We point out that overrelaxation without randomization has been investigated for convex
problems [209] and in connection with the ER-algorithm for phase retrieval [208]. More-
over, overrelaxation is also included in the difference map algorithm proposed by Elser in
Ref. [224]. In the difference map algorithm with overrelaxation, the iterative step for our
set of constraints is given by [203]

%
(i+1)
eff (r) = [1 + β (PΩQΓ;λΓ

−PΓQΩ;λΩ
)] %

(i)
eff(r) ≡ ĤDiff(β, λΓ, λΩ)%

(i)
eff(r) , (7.5)

where Elser proposes to choose the relaxation parameters as λΓ = λΩ = β−1 [224]. How-
ever, as will be shown, randomization turned out to be indispensable for overcoming
stagnation in the traditional HIO+ER-algorithm.
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A comparison of both approaches can also be nicely performed in the framework of pro-
jection polynomials.

The replacement Eq. (7.3) of the (non-linear and non-convex) projection operator PΓ in
reciprocal space in the HIO-algorithm corresponds to changing Eq. (6.52c) to

%
(i+1)
eff (r) = [1−PΩ − βQΓ;λΓ

+ (1 + β) PΩQΓ;λΓ
] %

(i)
eff(r) ≡ ĤHIO+OR

(β, λΓ)%
(i)
eff(r) .

(7.6)
Here, we defined the operator ĤHIO+OR

(β, λΓ) of the HIOOR-algorithm.

If we exploit the linearity of PΩ, we can re-express the operator polynomial (7.6) as a
projection polynomial in the original projection operators PΩ and PΓ as

ĤHIO+OR
(β, λΓ) ≡ [1 + β (λΓ − 1)] + [β − λΓ − βλΓ] PΩ − βλΓPΓ + [(1 + β)λΓ] PΩPΓ .

(7.7a)
For the subsequent discussions, it is useful to split the contribution of the traditional
HIO+ER-algorithm (λΓ = 1) from the modifications induces by overrelaxation. For that
purpose, we substitute λΓ = 1 + γΓ and obtain

ĤHIO+OR
(β, λΓ = 1 + γΓ) = [1 + βγΓ] + [−1− γΓ(1 + β)] PΩ+

[−β(1 + γΓ)] PΓ + [(1 + β)(1 + γΓ)] PΩPΓ . (7.7b)

Hence, γΓ is distributed uniformly in [−ν, ν].

The deviation βγΓ = β (λΓ − 1) from the identity operator in the first term can neither be
represented by the traditional HIO-algorithm for any value of β (see Eq. (6.52c)) nor by the
difference map algorithm for any combination of values for β, λΓ, and λΩ (see Eq. (7.5)).

In both cases, the previous iterative result %
(i)
eff(r) is weighted with 1 or projected at least

once either in direct space (by PΩ) or in reciprocal space (by PΓ) before being included

in the calculation of the next approximative solution %
(i+1)
eff (r).

From these projection polynomials, we can read of the coefficients

b = 1 + β (λΓ − 1) = 1 + βγΓ , (7.8a)

cΩ,1 = β − λΓ − βλΓ = −1− γΓ(1 + β) , (7.8b)

cΩ,2 = (1 + β)λΓ = (1 + β)(1 + γΓ) , (7.8c)

cΓ,1 = −βλΓ = −β(1 + γΓ) , (7.8d)

cΓ,2 = 0 (7.8e)

in the projection polynomial

ĤProj(b, cΩ,1, cΩ,1, cΓ,1, cΓ,2) ≡ b 1 + cΩ,1PΩ + cΓ,1PΓ + cΩ,2PΩPΓ + cΓ,2PΓPΩ , (7.8f)

of the HIOOR-algorithm. We point out, that these coefficients fulfill the constraint b =
1−

∑2
n=1 [cn,Ω + cn,Γ] by construction (see Eq. (6.45b)).

Also by construction, the deterministic contribution c
(D)
ξ,n (for γΓ = 0) reproduces the

traditional HIO-algorithm (see Eq. (6.52c))

c
(D)
Ω,1 = −1 , c

(D)
Γ,1 = −β , c

(D)
Ω,2 = 1 + β , c

(D)
Γ,2 = 0 . (7.9)

The coefficients c
(R)
ξ,n in Eq. (7.4) however are not constant, but parametrized by ν and β.

Specifically, we find

c
(R)
Ω,1 = −ν(1 + β) , c

(R)
Γ,1 = −νβ , c

(R)
Ω,2 = ν(1 + β) , c

(R)
Γ,2 = 0 . (7.10)
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(a) First phase object defined in Eq. (7.2a).
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(b) Second phase object defined in Eq. (7.2b).

Figure 7.9.: Comparison of the success rate s of reconstructions of the pure phase objects
defined by Eqs. (7.1), (7.2a) and (7.2b) (see Fig. 7.1) with the HIO+ER- and
the HIOOR+ER-algorithm. The parameter β was fixed to 0.85. Continu-
ous lines represent results of the HIOOR+ER-algorithm, isolated dots of the
HIO+ER-algorithm. A pure HIOOR-calculation without ER is included as
black, dash-dotted curve. ( c©2012 The Optical Society (OSA), from [1])

For ν → 0, the amplitudes c
(R)
ξ,n of the randomization vanish and we obtain again the

traditional HIO+ER-algorithm. In addition to these correlations in c
(R)
ξ,n , we only have a

single common random number r = rξ,n for all coefficients. Consequently, the random
contributions are not statistically independent, but highly correlated.

This is in strong contrast to a statistically independent randomization of each coefficient

cξ,n separately: These correlations in c
(R)
ξ,n and rξ,n induced by overrelaxation are absent,

if we set some coefficients c
(R)
ξ,n 6= 0 and draw statistically independent random values rξ,n.

This way, we can distinguish whether the benefits from randomization require the precise
correlations induced by overrelaxation or if other approaches for randomization are simi-
larly successful. For the same purpose, we will also consider the overrelaxation (7.3) with
a pre-defined fixed relaxation parameter λΓ throughout the entire iterative reconstruction.

If we apply the concept (7.3) to our model systems (see Sec. 7.1), we obtain the results
depicted in Fig. 7.9 for the two analytically defined pure phase objects (see Fig. 7.1) and
in Fig. 7.2 for the real valued test object with strong amplitude variation on short length
scales and weak contrast at the edge of the support (see Fig. 7.2). Every trial has its own
random initial guess and its own set of random overrelaxation parameters λΓ.

Again, for the traditional HIO+ER-algorithm, we observe stagnation and a strong in-
fluence of the choice of the internal parameters NHIO and NER (see also Fig. 7.5). In
contrast, the incorporation of randomization (HIOOR+ER-algorithm) succeeds in over-
coming stagnation for these three test objects as well as strongly reducing the sensitiv-
ity to the choice of the internal parameters NHIO and NER. For all choices of these
parameters, the success rate s is close to 100% after few iterations. Here, the num-
ber of iterations for the different parameters NHIO and NER is again normalized with
respect to the case NHIO = 130 and NER = 10 as described for Fig. 7.5. The recon-
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Figure 7.10.: Comparison of the success rate s of reconstructions of the purely real test
object with strong variation of its magnitude over short length scales and
weak contrast at the edge of the support (see Fig. 7.2) with the HIO+ER-
and the HIOOR+ER-algorithm. The parameter β was fixed to 0.8. Contin-
uous lines represent the HIOOR+ER-algorithm, isolated dots the HIO+ER-
algorithm. A pure HIOOR-calculation without ER is included as black, dash-
dotted curve. ( c©2012 The Optical Society (OSA), from [1])

struction with the HIOOR+ER-algorithm was even successful if the success rate of the
HIO+ER-algorithm was close to zero (for example: (NHIO, NER) = (50, 20) in Fig. 7.10 or
(NHIO, NER) = (40, 30) in Fig. 7.9(b)). Moreover, very good performance has also been
observed if no ER has been included (HIOOR-algorithm). Only for the second phase object
(Fig. 7.9(b)) and the choice (NHIO, NER) = (130, 10), the traditional HIO+ER-algorithm
performed slightly better than the HIOOR+ER- or HIOOR-algorithm. In all other cases,
we observe significant improvements as a consequence of the incorporation of randomized
overrelaxation.

We point out that the behavior of those initial guesses which did not reach the criterion
for success (ϕ(i) ≤ 0.05◦; see Eq. (6.48)) is different for these three test objects: Whereas
the failed reconstruction of the second phase object (Fig. 7.9(b)) and the real valued test
object (Fig. 7.10) are typically at least close to the solution %eff (angles ϕ(i) ≤ 5◦) and
plagued by very persistent stripe artifacts, the failed reconstructions of the first phase
object (Fig. 7.9(a)) are far from the solution %eff (angles ϕ(i) ≥ 55◦).

Before we study these results in more detail, we also apply the HIOOR+ER-algorithm to the
simulated Si-nanowires (see Sec. 7.1) and compare the results to the HIO+ER-algorithm
(see Fig. 7.7).

Fig. 7.11(a) is the direct analogue to Fig. 7.7(a) after incorporation of randomized over-
relaxation. For better comparison, the difference of the success rate of those two cases
is directly given in Fig. 7.11(b). Strong advantage of the HIOOR+ER-algorithm in com-
parison to the HIO+ER-algorithm is observed in the range εM = 0.12% to εM = 0.28%.
Here, the HIOOR+ER-algorithm is clearly superior to the traditional HIO+ER-algorithm.
Successful reconstructions are achieved independent of the random initial guess with a
success probability close to 100% within i = 500 iterations. In the range εM ≤ 0.10%,
no negative penalty of randomized overrelaxation has been discovered. Consequently, the
incorporation of randomized overrelaxation shifted the maximum strain εM which could
be reconstructed successfully towards higher values. At the same time, the influence of
the initial guess is reduced tremendously.

Figs. 7.11(c) to 7.11(f) are the analogue of Figs. 7.7(c) and 7.7(d) which were devoted
to the traditional HIO+ER-algorithm. These figures nicely illustrate the ability of the
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(c) Strain εM = 0.22% ( c©2013
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(d) Strain εM = 0.24% ( c©2013
The Optical Society (OSA),
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(e) Strain εM = 0.26% ( c©2013
The Optical Society (OSA),
from [2])
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(f) Strain εM = 0.28%

Figure 7.11.: Reconstruction capabilities of the HIOOR+ER-algorithm for the Si-nanowires
depicted in Figs. 7.3 and 7.4. The discretization step in direction of strain εM
is δεM = 0.02%. The colorbar for all plots except (b) is given in Fig. 7.6(a).
The colorbar for Fig. (b) is given by Fig. 7.6(b).

HIOOR+ER-algorithm to escape from stagnation more successfully than the traditional
HIO+ER-algorithm. Moreover, they illustrate the breakdown of the reconstruction process
with increasing strain: We observe that with increasing strain the number of iterations
which is required to escape from stagnation by randomized overrelaxation is increasing
more and more. Nevertheless, the characteristics near the breakdown of the HIOOR+ER-
algorithm is clearly different from the breakdown behavior of the traditional HIO+ER-
algorithm.

However, for strain εM > 0.30%, almost no random initial trial succeeded in coming
close to the solution %eff(r) after i = 500 iterations, even if randomized overrelaxation is
incorporated. In order to extent the applicability to higher values of εM, we will investigate
possible benefits from additional physical knowledge which allows to constrain the local
magnitude of the effective electron density |%eff(r)| in Sec. 7.4. Before, we investigate the
modification (7.3) in the HIO+ER-algorithm more detailed.

First, we investigate the sensitivity of the HIOOR+ER-algorithm on the choice of its inter-
nal parameters other than NHIO and NER. Therefore, we depict in Fig. 7.12 the sensitivity
of the HIOOR+ER-algorithm on the choice of the parameter β (feedback parameter) (see
Fig. 7.12(a)) and on the bounds of the uniform distribution for the relaxation parameter
λΓ for the first phase object which has been defined in Eq. (7.2a) (see Fig. 7.12(b)).

The star symbols in Fig. 7.12(a) correspond to the traditional HIO+ER-algorithm (ν = 0)
and the continuous blue line to the value ν = 0.5 which is employed if not specified other-
wise. After same transient behavior (ν . 0.3) the success rate s is almost independent of
the value for ν in the range ν = 0.4 to ν = 0.6. As for the traditional HIO+ER-algorithm,
the influence of the parameter β is minor in the range β ∈ (0.65, 0.85). Consequently, the
HIOOR+ER is also robust to changes of the parameters β and ν.

139



7. Reconstructions in CXDI: Results for simulated ideal data

0 10 20 30 40 50 60 70 80 90 100
Iteration [ ]

0

20

40

60

80

100

S
u

c
c
e
ss

R
a
te

[
%

]
0.40-1.60
0.50-1.50
0.60-1.40
0.80-1.20
0.95-1.05
1.00-1.00

(a) Dependence of the success rate on the bounds
of a uniformly distributed relaxation parameter λΓ.

0 10 20 30 40 50 60 70 80 90 100
Iteration [ ]

0

20

40

60

80

100

S
u

c
c
e
ss

R
a
te

[
%

]

β=0.65

β=0.70

β=0.75

β=0.80

β=0.85

(b) Dependence of the success rate on the param-
eter β of the HIOOR+ER-algorithm.

Figure 7.12.: Investigation of the sensitivity of the HIOOR+ER-algorithm on the choice
of the parameter β (feedback parameter) and on the bounds of the uniform
distribution for the relaxation parameter λΓ for the first phase object (defined
in Eq. 7.2a). The parameters NHIO and NER have been set to NHIO = 50 and
NER = 20. ( c©2012 The Optical Society (OSA), from [1])

Fig. 7.13 demonstrates that randomization of the relaxation parameter is essential for
overcoming the shortcomings of the traditional HIO+ER-algorithm: overrelaxation with
a fixed relaxation parameter λΓ typically even decreases the performance of the HIO+ER-
algorithm. For a deviation of λΓ greater than ten percent from λΓ = 1.00, almost no
successful reconstructions have been observed for any of the three test objects. However,
the strong dependence of the results on the precise choice of the value of λΓ is an indication
that the traps and tunnels induced by the non-convex projection operator PΓ in reciprocal
space can indeed be influenced by overrelaxation – as has been argued at the beginning
of this section. Consequently, it is interesting to investigate whether other modifications
of the iterative operator ĤHIO (see Eq. (6.52c)) such as Eq. (7.4) provide similar benefits
in combination with randomization or if these benefits rely on the specific mathematical
features of overrelaxation (see Eq. (7.10)).

For that, we investigate the approach defined by Eq. (7.4) for three sets of coefficients:

c
(D)
Ω,1 = −1.0 c

(D)
Ω,2 = 1.85 c

(D)
Γ,1 = −0.85 c

(D)
Γ,2 = 0.0

c
(R)
Ω,1 = 0.2 c

(R)
Ω,2 = 0.2 c

(R)
Γ,1 = 0.2 c

(R)
Γ,2 = 0.2

(7.11a)

c
(D)
Ω,1 = −1.3 c

(D)
Ω,2 = 1.5 c

(D)
Γ,1 = −0.5 c

(D)
Γ,2 = 0.3

c
(R)
Ω,1 = 0.2 c

(R)
Ω,2 = 0.2 c

(R)
Γ,1 = 0.1 c

(R)
Γ,2 = 0.1

(7.11b)

c
(D)
Ω,1 = −1.0 c

(D)
Ω,2 = 1.3 c

(D)
Γ,1 = −0.3 c

(D)
Γ,2 = 0.0

c
(R)
Ω,3 = 0.1 c

(R)
Ω,4 = 0.1 c

(R)
Γ,3 = 0.1 c

(R)
Γ,4 = 0.1

(7.11c)

All parameters which are not listed – except b which is defined by Eq. (6.45) – are zero.
The respective results are depicted in Fig. 7.14.

The deterministic contribution in Eq. (7.11a) is given by the traditional HIO-algorithm

(see Eq. (7.9)) for β = 0.85, whereas the amplitudes c
(R)
Ω,1 , c

(R)
Γ,1 , c

(R)
Ω,2, and c

(R)
Γ,2 for the

randomized contribution are all set equal to c(R) = 0.2. Consequently, it is useful for
judging on the importance of the correlations in Eq. (7.10).

For the parameters (7.11b), the deterministic contribution has been slightly modified and
can no longer be mapped to the traditional HIO-algorithm. Moreover, the noise amplitudes

c
(R)
Γ,1 and c

(R)
Γ,2 have been decreased.
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(b) Second phase object defined in Eq. (7.2b).

Figure 7.13.: Success rate of the HIO+ER-algorithm modified by overrelaxation with fixed
relaxation parameter λΓ (no randomization). The parameters are set to
NHIO = 130, NER = 10 and β = 0.85. ( c©2012 The Optical Society (OSA),
from [1])

Finally, the deterministic contribution in Eq. (7.11c) corresponds to the traditional HIO-
algorithm for β = 0.3. However, randomization is here included only in coefficients cξ,n
with n > 2 – in strong contrast to the randomization based on overrelaxation. Conse-
quently, the random contribution differs strongly from the case of randomized overrelax-
ation and Eqs. (7.11a) and (7.11b).

For none of the sets of parameters defined in Eq. (7.11), we observe stagnation for any
of our test objects in Fig. 7.14. However, performance of the different parameter sets dif-
fers: Whereas the parameters (7.11a) are equally efficient as randomized overrelaxation,
the other two set of parameters are less efficient than HIOOR-based reconstructions, in
particular for the second phase object and the purely real test object. The worst perfor-
mance on average is observed if the deterministic coefficients no longer coincide with the
traditional HIO+ER-algorithm. Consequently, such deviations should be avoided without
good reason. Although randomization of the coefficients cξ,n with n > 2 is also capable
of overcoming stagnation, randomization of the coefficients cξ,n with n ≤ 2 seems more
efficient. Finally, we observe that the correlations contained in Eq. (7.10) seem of minor
importance for the benefits which are achieved by randomization of the HIO-algorithm.

The latter point however is important if we consider computational efficiency and simplic-
ity of implementation of the reconstruction algorithms and their number of free internal
parameters: In comparison to a randomization of the coefficients cξ,n, ξ ∈ {Ω,Γ}, n ≥ 1,
(see Eqs. (6.45a) and (7.4)), the HIOOR-algorithm is computationally more efficient (only
two Fourier transformations for each iteration), is more straight forward to implement
and, finally, has less internal degrees of freedom (only one uniform random distributions
defined by ν instead of four). Consequently, we prefer the HIOOR-algorithm over indepen-
dent randomization of the coefficients cξ,n, ξ ∈ {Ω,Γ}.

In summary, we demonstrated that the concept of randomization remedies the short-
comings of the traditional HIO+ER-algorithm as described in Sec. 7.2 to a large degree.
Nonetheless, the computational effort of the HIOOR+ER-algorithm scales identical to the
traditional HIO+ER-algorithm and its implementation is simple and straight-forward (in-
cluding parallelization). Finally, we could not find any indication of a negative penalty of
our proposed extension.
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(a) Parameters according to Eq. (7.11a). ( c©2012 The Optical Society (OSA), from [1])
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Figure 7.14.: Comparison of the success rate of both frameworks (7.3) [HIOOR-algorithm]
and (7.4) which provide a generalization of the traditional HIO-algorithm
based on randomization. No ER has been performed. The parameters of
the projection polynomials are found in Eq. (7.11). The parameters of the
traditional HIO-algorithm are NHIO = 140 and β = 0.85. Continuous lines
illustrate the behavior for randomized overrelaxation of PΓ, whereas dots
represent the behavior of the success rate resulting from uncorrelated ran-
domization of the coefficients cξ,n in a projection polynomial.

7.4. Regularization by constraining the scattering magnitude

For a reconstruction of experimental data, additional a priori knowledge was valuable in
some cases [184, 185, 195, 205]. However, a thorough investigation of the benefits – and
possible drawbacks – of such additional a priori knowledge has not yet been performed.
In this section, we will provide such a detailed investigation for additional constraints on
the magnitude of the effective electron %eff density in direct space (see also the discussion
in Sec. 6.1). Typically, such constraints are relevant for materials with low contrast in the

local scattering magnitude Φ
(D)
C in Eq. (6.37), in particular for chemically homogeneous

materials such as our Si-nanowire model system.

Whereas the improvements of the traditional HIO-algorithm based on randomized overre-
laxation in Sec. 7.3 did not modify the a priori knowledge of the reconstruction procedure,
but yet succeeded in significant improvements of the reconstruction capabilities, we now
incorporate the above described additional a priori constraints in the traditional HIO+ER-
algorithm (HIOA+ERA-algorithm). We again point out that the same set of physical a
priori knowledge can typically be incorporated in various ways in a reconstruction algo-
rithm.
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7.4. Regularization by constraining the scattering magnitude

We will also unify these direct space constraints on the scattering magnitude with the
concepts of randomized overrelaxation (HIOA

OR
+ERA-algorithm). For this unification,

the suggested implementation of the direct space constraints on the local scattering mag-
nitude differs from the implementation previously published in Refs. [195, 205]. Again,
we will observe advantages from randomization during the iterative reconstruction (i.e.,
HIOA

OR
+ERA-algorithm compared to the HIOA+ERA-algorithm).

Throughout this section, we restrict to the Si-nanowires as test system (see Sec. 7.1).

In the first part of this section, we define and discuss operators that are suited for constrain-
ing the local scattering magnitude (“gapped homogeneity constraints”) in the HIO+ER-
algorithm before we discuss the results of our numerical simulations in the second part of
this section. It will turn out that the incorporation of such additional a priori knowledge
in the HIO+ER-algorithm will shift the range of applicability of phase retrieval to signif-
icantly higher values of strain and, moreover, improve the robustness of the method for
equal strain distribution.

The HIOA+ERA-algorithm

Since the magnitude of the effective electron density |%eff| (or the local scattering magnitude

|Φ(D)
C | is typically both, a slowly varying function (up to material interfaces where chemical

contrast might give rise to a strong variation on short length scales) and a function which
deviates only slightly from its average value (at least in some sub-domains Ωj ⊆ Ω of the
sample with geometry Ω), we first motivate why we give preference of the second property
for our investigation over the first.

First, the local scattering magnitude |Φ(D)
C | may be inconsistent with the first property at

material boundaries. At boundaries changes of the chemical composition and, therefore,
of the local scattering magnitude can occur on very short length scales which violates the
first property (unless the chemical gradient at the interface is smooth e.g. as a result of
high temperature annealing induced diffusion). Consequently, in addition to limits on the
gradient inside the material domains, good estimates of the internal material distribution
and the resulting boundaries would be required. However, such kind of a priori knowledge
is difficult to obtain. In contrast, the deviation from the mean value is small at least
at interfaces with small chemical contrast and we do not require estimates of such inner
boundaries.

Both approaches could be applied in specific sub-domains Ωj ⊆ Ω only. The unification of
the domains Ωj does not need to coincide with the full sample Ω. Moreover, the domains
may even overlap. An important example for such a sub-domain is the substrate region
which can typically be considered chemically homogeneous and almost unstrained irrespec-
tive of the nanostructure which is grown on top. Hence, the local scattering magnitude
in this sub-domain of the full structure is a slowly varying function as well as a function
that deviates only slightly from its average. This is independent of additional constraints
for the nanostructure on top of the substrate or a global constraint for the full domain Ω.

The most stringent case for both assumptions is a chemically homogeneous material. In

that case, the scattering magnitude Φ
(D)
C (r) is constant – as long as we neglect the changes

originating in strain. As a result, the derivatives of Φ
(D)
C (r) are equal to zero as well as

the deviation from its average.

Consequently, physically both approaches are interesting with a preference for constraints
on the local scattering magnitude since such a priori knowledge can typically be obtained
more easily for a specific sample.

If we instead look at these two types of constraints from a mathematical and numerical
point, we have to account for the following aspects:
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1. The first approach — slow variation of |Φ(D)
C | — focuses only on near-distance con-

straints in direct space. Since however the intensity distributions I(QB,Q) typically
decay very fast, the total intensity weight at large |Q|-values – which corresponds to
near-distance fluctuations – is typically very weak and erroneous short range fluctu-
ations already suppressed by the decay of Γ(Q).

Contrarily, the second approach — constraining the local scattering magnitude |Φ(D)
C |

to the interval [average-gap, average+gap] — eliminates physically non-feasible con-
tributions on all length scales up to the dimensions of the respective domain Ωj .
Consequently, such constraints are likely to have a larger impact on the intensity
distribution in reciprocal space at smaller |Q|-values where more intensity weight
is located. Consequently, we may expect that reconstructions should benefit more
from the second approach than from the first.

2. Finally, we point out that the second approach is also more advantageous from the
perspective of implementation and computational efficiency, since it can be incorpo-
rated as a point operation (i.e., local, single pixel operation) with projection property
(as long as the average value is assumed to be known, see detailed discussion later).
In contrast, derivatives of a function cannot be implemented as point operations, but
require higher computational effort.

As a conclusion of the entire discussion, we now focus on restrictions for the magnitude of
the magnitude of the effective electron density |%eff|.

More specifically and expressed mathematically, we consider the constraints

AL,jζ̄j ≤ |%eff(r)| ≤ AH,jζ̄j ∀ r ∈ Ωj ⊆ Ω , (7.12)

where Ωj are the domains to be constrained. AL,j ≤ 1 and AH,j ≥ 1 are additional
parameters which need to be known a priori for every domain j. The averages ζ̄j are
defined as1

ζ̄j =
√〈

PΩj |%eff| ; PΩj |%eff|
〉
/
〈
PΩj ; PΩj

〉
. (7.14)

The parametrization of the two independent parameters AL,jζ̄j and AH,jζ̄j of each domain
Ωj by three variables (the relative values AL,j ≤ 1 and AH,j ≥ 1 and the average value
ζ̄j) will be useful for incorporation of the fact that for typical experimental conditions
the averages ζ̄j are not a priori known. Instead, they also need to be extracted during
the reconstruction process. We will return to this additional difficulty later. For now, we
assume that the averages ζ̄j are a priori knowledge at hand.

For implementation of these constraits, we define the set of projection operators

P
(j)
A %

(i)
eff(r) =

{
A

(i)
j (r) e

i arg
(
%

(i)
eff (r)

)
if r ∈ Ωj ,

%
(i)
eff(r) if r /∈ Ωj ,

(7.15a)

with

A
(i)
j (r) = min

(
AH,jζ̄j ; max

(
AL,jζ̄j ;

∣∣∣%(i)
eff(r)

∣∣∣)) , (7.15b)

where (i) labels iterations and (j) labels the domains Ωj .

We particularly point out four properties of the operators P
(j)
A :

1 If the constraints (7.12) are applied to the full domain Ω, we could alternatively define the average ζ̄ by

ζ̄ =
√
〈 |%eff| ; |%eff| 〉 / 〈PΩ ; PΩ 〉 , (7.13)

which would additionally take the behavior of |%eff(r)| outside the support Ω into account. However,
Eq. (7.14) allows for a unified discussion and algorithm irrespective of the geometry of the domains Ωj ,
even it coincides with the full support Ω. Therefore, we give preference to Eq. (7.14).
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1. They are nonlinear (i.e., it is not guaranteed that P
(j)
A

(
α1%

(i)
eff 1

+ α2%
(i)
eff 2

)
is equal

to α1P
(j)
A %

(i)
eff 1

+ α2P
(j)
A %

(i)
eff 2

for all α1, α2 ∈ R).

2. They commute with PΩ (i.e., [PΩ,P
(j)
A ] = PΩP

(j)
A −P

(j)
A PΩ = 0 for all j).

3. P
(m)
A and P

(n)
A also commute pairwise (i.e., [P

(m)
A ,P

(n)
A ] = 0 for all n and m) .

4. None of the operators P
(j)
A and PΩ commutes with the projection operator PΓ.

The second feature is a consequence of the fact, that PΩ reduces to the identity operator
in Ωj ⊂ Ω (see Eq. (6.51)).

For the third property, we have to distinguish two cases: First, if the domains Ωm and Ωn

do not intersect, one of the operators reduces the identity map for every point r. Second,
if both domains intersect, they commute if AH,mζ̄m ≥ AL,nζ̄n and AL,mζ̄m ≤ AH,nζ̄n. The
interpretation of this conditions is simple: The lower and upper bounds of the domains Ωn

and Ωm must not be contradictory for any point r. Consequently, for reasonably chosen

bounds AL,j and AH,j, the operators P
(m)
A and P

(n)
A commute pairwise.

Keeping these properties in mind, we now turn to the implementation of such a priori
knowledge as an extension to the traditional HIO-algorithm.

As for the implementation of randomization in Sec. 7.3, we again address two non-equivalent
approaches for the mathematical realization of the same a priori knowledge:

1. The first way of including our constraints is based on the substitution of the shape
operator PΩ in the projection polynomials of the HIO- and ER-algorithm (see
Eqs. (6.49b) and (6.52c)) by the operator PΩ,A which is defined as

PΩ,A = PΩPA = PΩ

∏
j

P
(j)
A . (7.16a)

The composite operator PΩ,A is again a projection operator, since the defining prop-
erty P2

Ω,A = PΩ,A of a projection operator (idempotence) is fulfilled due to the the
permutation properties described above.

After this substitution, the projection polynomials of the HIO+ER-algorithm read

Ĥ
(PP)
HIO+A = 1−PΩ,A − βPΓ + (1 + β) PΩ,APΓ , (7.16b)

Ĥ
(PP)
ER,A = PΩ,APΓ . (7.16c)

2. The second approach of incorporating the constraints (7.12) is specifically targeted
at the HIO-algorithm. Its direct space assembly (6.52a) can be read as

%
(i+1)
eff (r) =

{
MC%

(i)
eff(r) if r ∈ Ω ,

%
(i)
eff(r)− βMC%

(i)
eff(r) if r /∈ Ω ,

(7.17a)

MC = PΓ (7.17b)

where the mapping MC incorporates all constraints except the geometry Ω. Reading
the HIO-algorithm like this, natural generalizations for MC are obtained by

MC = PAPΓ , (7.18a)

MC = PΓPA , (7.18b)

MC = 0.5 · {PA,PΓ} , (7.18c)
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where {·, ·} denotes the common anticommutator in physics.

Whereas the mapping MC in case of the traditional HIO-algorithm as defined in
Eq. (7.17b) is a projection operator (i.e., M2

C = MC), this is no longer true for the
extensions (7.18).

Nevertheless, the solution %eff(r) is a fixed point of MC for the extensions (7.18),
since MC reduces simply to the identity operator 1 if applied to %eff(r).

We restrict to Eq. (7.18a) which results in the projection polynomials

ĤHIO,A = 1−PΩ − βPAPΓ + (1 + β) PΩPAPΓ (7.19a)

= 1−PΩ − βPAPΓ + (1 + β) PΩ,APΓ , (7.19b)

where the definition (7.16a) has been used in the second expression.

The ER-algorithm is modified in the same way as in our first approach (see Eq. (7.16c)).

The second approach for modifying the HIO-algorithm is clearly different from our first ap-
proach resulting in Eq. (7.16b), because it is composed of three“basis projection operators”
(PΩ, PΓ, and (PΩ,A or PA)) instead of two (PΓ and PΩ,A).

For comparison, it is useful to rewrite the action of Ĥ
(PP)
HIO+A on the effective electron density

%eff(r) – given in Eq. (7.16b) – for points r inside and outside the shape Ω separately as

%
(i+1)
eff (r) =

{
ĤHIO (β; PΩ → PA) %

(i)
eff(r) if r ∈ Ω ,

(1− βPΓ) %
(i)
eff(r) if r /∈ Ω ,

(7.20)

where ĤHIO (β; PΩ → PA) is the HIO-operator defined in Eq. (6.52c) after the substitution
PΩ → PA. This equation needs to be compared to Eq. (7.17a) together with Eq. (7.18a).

We now face the complication that the averages ζ̄j are typically not known for “real world”
reconstructions of experimental data. Consequently, it is necessary to estimate these av-
erages ζ̄j during reconstruction.

For this task, we modify Eq. (7.15b) to

ζ̄
(i)
j =

√〈
PΩj

∣∣∣%(i)
eff

∣∣∣ ; PΩj

∣∣∣%(i)
eff

∣∣∣ 〉/〈PΩj ; PΩj

〉
, (7.21a)

A
(i)
j (r) = min

(
AH,jζ̄

(i)
j ; max

(
AL,jζ̄

(i)
j ;
∣∣∣%(i)

eff(r)
∣∣∣)) . (7.21b)

To distinguish the projection operator (7.15) from its modified counterpart based on

Eqs. (7.15a) and (7.21), we refer to these new mappings by M
(j)
A .

We again analyse the properties of these operators M
(j)
A before we consider the implications

for the reconstruction procedure:

• The essential property P
(j)
A %eff(r) = %eff(r) is still valid for the mappings M

(j)
A .

• In general, two operators M
(n)
A and M

(m)
A do no longer commute, if the domains Ωn

and Ωm intersect. Nonetheless, they still commute for disjoint domains Ωn and Ωm.

• The operators P
(j)
A still commute with PΩ as long as Ωj ⊂ Ω.

• The mappings M
(j)
A are in general no longer projection operators: If applied re-

peatedly to an object, the average during the next action may be different from the
current one. Thus, the operator is no longer idempotent as required for a projection
operator. An exception is the case AL,j = AH,j = 1. In this case, applying a mapping

M
(j)
A repeatedly yields in the same result as applying it once.
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7.4. Regularization by constraining the scattering magnitude

Figure 7.15.: Schematics of the HIOA
OR

-algorithm: The difference to the HIOOR-algorithm
is the application of the operator MA before the feedback based calculation

of the next iterative candidate %
(i+1)
eff (r).

As a consequence, a generalization of Eq. (7.16b) in the framework of projection polyno-

mials is no longer possible once the estimation (7.21) of the averages ζ̄
(i)
j is included in the

iterative solution procedure.

In contrast, the approach (7.17a) together with (7.18) includes the estimation of the aver-
ages ζ̄j by substituting

P
(j)
A −→M

(j)
A , MA =

∏
j

M
(j)
A (7.22)

in Eq. (7.18) in a straight forward way and without conceptional changes (since the map-
pings MC as defined in Eq. (7.18a) are no projection operators even if the averages ζ̄j are
not estimated during the reconstruction).

In consequence, we will restrict ourselves to the framework defined by Eq. (7.17a) together
with

MC = MAPΓ (7.23)

and refer to it as HIOA-algorithm. For the ERA-algorithm, we employ

Ĥ
(OP)
ER,A = PΩMAPΓ . (7.24)

We refer to the combination of those building blocks as the HIOA+ERA-algorithm.

Considering the benefits from randomization (see Sec. 7.3), the next step is the incorpora-
tion of randomized overrelaxation in the HIOA-algorithm.

The HIOA
OR

+ERA-algorithm

The combination of randomized overrelaxation with the modifications described by Eqs. (7.17a)
and (7.23) can be done in the same manner as without the constraints MA by the substi-
tution PΓ −→ QΓ;λΓ

in the HIOA-algorithm.

Consequently, we have
MC(λΓ) = MAQΓ;λΓ

(7.25)

instead of Eq. (7.23). The direct space assembly as defined in Eq. (7.17a) is not modified.

Since overrelaxation was only employed in the HIO-algorithm, error reduction is still given
by Eq. (7.24).

The final scheme of the HIOA
OR

-algorithm is illustrated graphically in Fig. 7.15 and its
combination with the ER-algorithm analog to the traditional HIO+ER-algorithm (see
Fig. 6.4 on page 125). The HIOA

OR
+ERA is computational equally efficient as the standard

HIO+ER-algorithm. The computational efficiency is limited by the N log(N)-scaling of
the FFT algorithm.

147



7. Reconstructions in CXDI: Results for simulated ideal data

We point out that over-relaxation (irrespective of randomization) also destroys the idem-
potence of the operator MC for λΓ 6= 1 – irrespective of the introduction of the magnitude
constraints MA.

We stress the different nature of our modifications: Whereas randomized overrelaxation
succeeds in utilizing the same given a priori knowledge more successfully, the constraints
MA aim at a regularization of the reconstruction with additional a priori knowledge.

In Sec. G in the appendix, we shortly comment on the operator polynomial approach for
combining the magnitude constraints MA and randomized overrelaxation QΓ;λΓ

.

Numerical results for the HIOA+ERA- and HIOA
OR

+ERA-algorithm

We now present results for three particular cases for the magnitude constraints given in
Eq. (7.12):

• Firstly, we investigate the case AL, = AH, = 1.0 in the full domain Ω.

• Secondly, we consider the case AL, = AH, = 1.0, but only applied deep in the
substrate and no magnitude constraints elsewhere.

• Finally, we allow for a gap of ±0.3, i.e., AL, = 0.7 and AH, = 1.3 and apply this
limitation in the full domain Ω.

The benefits of each of these three exemplary constraints will be investigated separately
for the HIOA+ERA-algorithm and for the HIOA

OR
+ERA-algorithm. For the latter, we will

also apply the second and third constraint simultaneously, since it closely resembles typ-
ical experimental conditions: strong constraints in the (practically unstrained) substrate
domain, and some weaker constraints for the inhomogeneously strained domain on top.

We perform our investigations in the same manner as for the HIO+ER- and HIOOR+ER-
algorithm based on the Si nanowire test system (see Sec. 7.1 and Figs. 7.7 and 7.11). This
way, a straight forward comparison of our results is possible.

We stop our simulations at latest at εM = 1.0% for two reasons: On the one hand, we
exceed the validity of the model (6.37). On the other hand, the number of pixels in
our discrete numerical grid representing the fastest 2π-oscillation in the effective electron
density %eff dropped to approximately eight pixels. Consequently, for higher values of εM,
a denser numerical grid in direct space would be required. However, we prefer to keep the
numerical grid identical throughout our numerical investigations.

Investigation of the HIOA+ERA-algorithm

The result for applying AL, = AH, = 1.0 to the full domain Ω is depicted in Fig. 7.16.
First, we observe, that the range of successful convergence to the solution %eff is shifted
to higher strain values εM = 0.56% as compared to the classical HIO+ER-algorithm (see
Fig. 7.16(b)). Moreover, we see, that for strain εM > 0.56%, stagnation typically takes
place at angles ϕ greater than 20.0◦, so again on a level far from the solution %eff (com-
pare Fig. 7.7). Nevertheless, a reasonable fraction of the random initial trials successfully
converged to the solution %eff even for strain values as high as εM = 0.80%. In some rare
cases, we even observe a successful reconstruction up to 1.0% of strain (see Fig. 7.17).
Hence, homogeneous structures can be reconstructed successfully for much higher values
of strain if the constraint AL, = AH, = 1.0 is exploited during the reconstruction. However,
the regularization by this additional a priori -knowledge is insufficient for elimination of
the influence of the chosen initial guess for large strain εM. Moreover, the reconstructed
effective electron density often suffers from phase vortices which are non-physical and will
be discussed in Sec. 7.5.
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(b) Result after i = 500 itera-
tions

Figure 7.16.: Reconstruction capabilities of the HIOA+ERA-algorithm, where the magni-
tude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 1.0 and
AH, = 1.0 are applied in the full direct space domain Ω. The discretization
step in direction of strain εM is δεM = 0.04%. Colorbar for both plots is given
in Fig. 7.6(a). ( c©2013 The Optical Society (OSA), from [2])

In Fig. 7.18, we apply the constraint AL, = AH, = 1.0 only in a substrate region with
thickness in z-direction equal to 80 pixel (see hatched domain in Fig. 7.3(a)). The highest
strain εM for which the reconstruction is independent of the random initial trail, almost
does not change in comparison to the traditional HIO+ER-algorithm. However, we still
observe three improvements: First, the upper bound of the “transition range” – the range
of strain εM for which at least some initial guesses have been reconstructed successfully –
changes from strain values of εM ≈ 0.20% (in case of the traditional HIO+ER-algorithm)
to approximately εM = 0.30%. Second, the success rate s in this transition range improves
to higher values as compared to the traditional HIO+ER-algorithm. Yet, it typically does
not reach values close to s = 100% in most cases in that range. Finally, in the transition
range, we observe several local minima close to the true solution after i = 500 iterations
(i.e., angles ϕ ≤ 20.0◦). Nevertheless, the success rate s is almost independent of ϕMax in
the range ϕMax ≤ 10.0◦.

The most complicated bahavior is observed for the “relaxed” constraint AL, = 0.7 and
AH, = 1.3 applied to full domain Ω. The respective results are depicted in Fig. 7.19.

In this case, the success rate does depend on the choice of the value of ϕMax even be-
low ϕMax = 10.0◦ (compare Figs. 7.19(a) and 7.19(b)). If we only look ϕMax = 1.0◦

(Fig. 7.19(a)), it seems that most benefits of the strict magnitude constraint AL, = AH, =
1.0 (see Fig. 7.16) are lost for a gap of ±0.3 – corresponding to AL, = 0.7 and AH, = 1.3.
Almost no reconstructions which drop below the distance ϕMax = 1.0◦ are observed for
εM > 0.22%.

However, we see that many local minima near the true solution emerge, as can be seen in
Fig. 7.19(c). This observation explains the differences of the success rate for ϕMax = 1.0◦

and ϕMax = 10.0◦.

It is interesting to compare these results in greater detail with the traditional HIO+ER-
algorithm and the HIOOR+ER-algorithm:

In Fig. 7.19(d), we compare the gapped magnitude constraints to the classical HIO+ER-
algorithm. This plot demonstrates that our modification to incorporate constraints on

Φ
(D)
C results in no penalty in comparison to traditional HIO+ER-algorithms for gaps as

large as ±0.3. The most pronounced advantages are observed in the range εM = 0.12%
to εM = 0.20% where some reconstructions with the traditional HIO+ER-algorithm have
been successful, but many stagnated far from the solution. For εM & 0.20%, where the
success rate s of the traditional HIO+ER-algorithm is essentially equal to zero, also the
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7. Reconstructions in CXDI: Results for simulated ideal data

(a) Successful recon-
struction (very rare)

(b) Failed recon-
struction after 500
iterations: Output
contains non-physical
phase vortices

(c) Failed recon-
struction after 500
iterations: Output
contains non-physical
phase vortices

Figure 7.17.: Illustration of the output of reconstructions with the HIOA+ERA-algorithm
for εM = 1.0%, where the magnitude constraints MA defined in Eqs. (7.15a)
and (7.21) with AL, = 1.0 and AH, = 1.0 are applied in the full direct space
domain Ω. The phase field and magnitude are encoded by HSV colorbar
(phase encoding identical to Figs. 7.1 and 7.4).

benefits of the additional constraints AL, = 0.7 and AH, = 1.3 applied to full domain Ω
are less pronounced.

In addition, Fig. 7.19(e) and 7.19(f) compare the results for the ±0.3 gapped magnitude
constraints AL, = 0.7 and AH, = 1.3 applied to full domain Ω with the HIOOR+ER-
algorithm. Both plots clearly demonstrate the power of randomized overrelaxation. In
the range εM = 0.12% to εM = 0.28%, the benefits from randomized overrelaxation –
a pure modification of data evaluation without modification of the underlying a priori
knowledge – exceed the benefits provided by adding additional a priori knowledge to the
HIO+ER-algorithm. In contrast, this additional a priori knowledge is essential for strain
values higher than εM & 0.28% (see Fig. 7.19(f)): For such values of εM, the HIOA+ERA-
algorithm was more successful than the HIOOR+ER-algorithm. Thus, the combination of
both modifications – randomized overrelaxation in the projection operator in reciprocal
space and the direct space constraints on |%eff(r)| – seems very promising for improving
data evaluation in the framework of CXDI and will therefore now investigated.

Investigation of the HIOA
OR

+ERA-algorithm

For the investigation of the HIOA
OR

+ERA-algorithm, we focus on the same three cases for

the magnitude constraints on |%eff(r)| in framework of HIOA+ERA-algorithm. Moreover,
we investigate the combination of the±0.3 gapped magnitude constraints applied to the full
structure Ω and strict magnitude constraints ±0.0 in the essentially unstrained substrate
region as an additional fourth case.

Again, we first look at the result for strict magnitude constraints AL, = AH, = 1.0 in the
full domain Ω. The respective results are depicted in Fig. 7.20. Even for strain as high as
εM = 1.0%, the success rate s reaches almost 100% in few iterations (see Fig. 7.20(a)): s ≥
90% [s ≥ 95%] is realized after NIter = 104 [NIter = 153] iterations. A direct comparison to
reconstructions based on the same a priori knowledge, but performed without randomized
overrelaxation (i.e., with the HIOA+ERA-algorithm) is given in Fig. 7.20(b). Clearly,
randomized overrelaxation provides strong benefits in escaping stagnation also in presence
of magnitude constraints on |%eff(r)|. The characteristic features of the improvement are
identical to those which are obtained by incorporating randomized overrelaxation in the
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(b) Result after i = 500 itera-
tions ( c©2013 The Optical Soci-
ety (OSA), from [2])

Figure 7.18.: Reconstruction capabilities of the HIOA+ERA-algorithm, where the magni-
tude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 1.0 and
AH, = 1.0 are applied in the substrate domain (hatched domain in Fig. 7.3(a))
inside the direct space object. The discretization step in direction of strain
εM is δεM = 0.02%. Colorbar for both plots is given in Fig. 7.6(a).

classical HIO+ER-algorithm (see Fig. 7.11(b)): Long term stagnation of certain random
initial trials during the iterative reconstruction is almost absent.

If we limit the magnitude constraints to the same deep substrate domain as before, we
also observe a significantly more robust reconstruction process than without randomized
overrelaxation (see Fig. 7.21): Up to εM = 0.42%, distances of ϕ ≤ 1.0◦ are reached in
less than i = 500 iterations independent of the random initial phases (see Fig. 7.21(a) and
7.21(b)). From Fig. 7.21(b), we see a smooth increase in distance to the true solution after
i = 500 iterations up to εM = 0.50%. The behavior for εM = 0.44% – the first value
for which the criterion ϕ ≤ 1.0◦ could not be reached in almost all cases – is depicted in
Fig. 7.21(c). We recognize a level of stagnation at approximately 20.0◦ which is left by
more and more initial trails with increasing number of iterations. Moreover, a second level
of stagnation at approximately 10.0◦ can be observed. The attraction of this level is so
strong, that even with randomized overrelaxation the iterative process barely manages to
escape from this level.

In the remaining three figures of Fig. 7.21, we compare this behavior to the HIOOR+ER-
and HIOA+ERA-algorithm:

In Fig. 7.21(d), we compare to reconstructions including randomization and focus on the
benefits from the additional physical knowledge of the sample’s constant local magnitude
constraint |%eff(r)| in the substrate region (HIOOR+ER-algorithm). In contrast to this, the
advantage of the incorporation of randomized overrelaxation – a purely mathematical mod-
ification of the reconstruction process without employing any additional physical knowl-
edge – in the HIOA+ERA-algorithm is highlighted in Figs. 7.21(e) (strain vs. iteration)
and 7.21(f) (angle vs. strain). As each of these two modifications on their own showed
no drawbacks compared to the traditional HIO+ER-algorithm, we also observe no draw-
backs of the HIOA

OR
+ERA-algorithm compared to the special cases of the HIOOR+ER-

and HIOA+ERA-algorithm for this set of given a priori knowledge.

For better illustration of the output of the HIOA+ERA-algorithm and the HIOA
OR

+ERA-
algorithm for the effective electron density %eff based on this set of constraints, we depict
a typical result for %eff of these algorithms for εM = 0.18% in Fig. 7.22. We remind the
reader that for this value of εM a large fraction of initial trials failed in coming close to
the true solution with the HIOA+ERA-algorithm.

Next, we investigate the influence of randomized overrelaxation on the reconstruction

151



7. Reconstructions in CXDI: Results for simulated ideal data

100 200 300 400 500
Iteration [ ]

0,10
0,20
0,30
0,40
0,50
0,60

St
ra

in
[%

]

(a) Criterion for success ϕ(i) ≤
ϕMax = 1.0◦

100 200 300 400 500
Iteration [ ]

0,10
0,20
0,30
0,40
0,50
0,60

St
ra

in
[%

]

(b) Criterion for success ϕ(i) ≤
ϕMax = 10.0◦

0,1 0,2 0,3 0,4 0,5 0,6
Strain [ % ]

3
6
9

12
15
18

A
ng

le
[d

eg
.]

(c) Result after i = 500 itera-
tions ( c©2013 The Optical Soci-
ety (OSA), from [2])
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(d) Comparison to HIO+ER-
algorithm at iteration i = 500
(Fig. 7.7(b))
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(f) Comparison to HIOOR+ER-
algorithm at iteration i = 500

Figure 7.19.: Reconstruction capabilities of the HIOA+ERA-algorithm, where the magni-
tude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 0.7 and
AH, = 1.3 are applied in the full direct space shape Ω. The discretization
step in direction of strain εM is δεM = 0.02%. Colorbar for plots (a)-(c) is
given in Fig. 7.6(a), for plots (d)-(f) in Fig. 7.6(b).

process for the case of a ±30% gapped magnitude constraint in the entire direct space
domain Ω of the object, i.e., choosing AL, = 0.7 and AH, = 1.3. The results are summarized
in Fig. 7.23. As for the HIOA+ERA-algorithm, the success rate s depends on the choice for
ϕMax in this case: In Figs. 7.23(a) and 7.23(b), we depict the success rates s as a function
of strain and iteration for ϕMax = 1.0◦ and ϕMax = 10.0◦. The corresponding figures for
the HIOA+ERA-algorithm are Figs. 7.19(a) and 7.19(b) respectively.

In contrast to the behavior of the HIOA+ERA-algorithm, the dependence of the success
rate on the success criterion is, by far, more systematic: The dependence of the success rate
s on ϕMax can be seen nicely in Fig. 7.23(c) which shows s as a function of strain εM and
ϕMax after i = 500 iterations. In Fig. 7.23(c) all initial trials end up at a similar distance
to the solution %eff. Up to εM = 0.28% – approximately the same strain εM which could
be solved by the HIOOR+ER-algorithm without incorporating constraints on |%eff(r)| – all
random initial trials still converge successfully to the solution %eff with an error smaller
than ϕMax = 1.0◦. Beyond this value εM = 0.28%, a single pronounced level of stagnation
shows up. Its typical distance ϕ to the solution %eff as a function of strain εM increases
monotonically, but slowly to values ϕMax > 1.0◦ – up to a strain εM of almost εM . 1.0%.
Up to this bound εM, the level of stagnation is close to the true solution and is reached
by the HIOA

OR
+ERA-algorithm independent of the random initial trial. Both observations

do not hold for the HIOA+ERA-algorithm, as can be seen from the direct comparison of
Figs. 7.19(c) and 7.23(c) given in Fig. 7.23(d).

Fig. 7.23(e) shows the success rate s as a function of the angle ϕMax and iteration i for the
value εM = 0.60%. This plot demonstrates that the achieved quality of the result of the
iterative process is almost independent of the iteration i which is underlying Fig. 7.23(c)
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(b) Comparison to HIOA+ERA-
algorithm (Fig. 7.16(a))

Figure 7.20.: Reconstruction capabilities of the HIOA
OR

+ERA-algorithm, where the mag-
nitude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 1.0 and
AH, = 1.0 are applied in the full direct space shape Ω. The discretization
step in direction of strain εM is δεM = 0.04%. Colorbar of Fig. (a) is given in
Fig. 7.6(a), for Fig. (b) in Fig. 7.6(b).

after the initial phase of the reconstruction. Those levels of long-term stagnation close
to the solution %eff are so strong that they are not left successfully despite randomized
overrelaxation. For completeness, the direct comparison to the HIOA+ERA-algorithm of
s as a function of ϕMax and i for εM = 0.60% can be found in Fig. 7.23(f).

Finally, we focus on the combination of ±0.3 gapped magnitude constraints in the entire

sample (M
(1)
A ) plus strict magnitude constraints in the substrate region (M

(2)
A ) in the

framework of the HIOA
OR

+ERA-algorithm. The results are collected in Fig. 7.24.

Again, the success rate s depends on the choice for ϕMax, but the behavior is still different

compared to employing each of the magnitudes constraints M
(1)
A and M

(2)
A on their own.

For strain values εM ≤ 0.48%, almost no dependence on ϕMax can be observed for values
greater or equal to 0.5◦ (see Fig. 7.24(c)). Then, an almost linear behavior separates the
regions of successful and not successful reconstructions in the plot from εM = 0.52% to
εM = 0.76%. At this bound εM = 0.76%, the success rate for angles ϕMax & 9.0◦ is almost
100% and quickly drops to almost 0% for angles ϕMax . 9.0◦. However, by employing

the strict substrate constraints on |%eff(r)| (i.e., M
(2)
A ) in addition to M

(1)
A , this quality

(defined by the error of approximately 9.0◦) remains constant for strain up to εM = 1.0%
for almost all initial trails. In order to exclude effects from the specific value i = 500 – the
basis of Fig. 7.24(c) – we depict the behavior of the success rate s as a function of ϕMax

and iteration i for εM = 0.60% and εM = 1.00% in Fig. 7.24. From this we see that the
value i = 500 has been chosen reasonable for the before-mentioned considerations.

Investigation of the HIOA
OR

-algorithm (HIOA
OR

+ERA-algorithm with NER = 0)

Up to now, the results are based on the internal parameters NHIO = 130 and NER =
10 of the HIO+ER-based algorithms. In Sec. 7.3, we demonstrated that the concept of
randomized overrelaxation is powerful enough to even eliminate the need for error reduction
in many cases entirely – as long as no additional a priori information was added to the
traditional HIO+ER-algorithm. We now discuss this special case NER = 0 (HIOA

OR
-

algorithm) of the HIOA
OR

+ERA-algorithm. For this, we consider the two cases AL, =
AH, = 1.0 and AL, = 0.7 and AH, = 1.3 in the entire domain Ω.

The results for the HIOA
OR

-algorithm (NER = 0) and the direct comparisons to the

HIOA
OR

+ERA-algorithm with NHIO = 130 and NER = 10 are depicted in Fig. 7.25. The

differences to the HIOA
OR

+ERA-algorithm with NER = 10 are minor:
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(b) Result after i = 500 itera-
tions ( c©2013 The Optical Soci-
ety (OSA), from [2])
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(c) Strain εM = 0.44%
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(d) Comparison to HIOOR+ER-
algorithm (Fig. 7.11(a))
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(e) Comparison to HIOA+ERA-
algorithm (strain vs. iteration)
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(f) Comparison to HIOA+ERA-
algorithm (angle vs. strain)

Figure 7.21.: Reconstruction capabilities of the HIOA
OR

+ERA-algorithm, where the mag-
nitude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 1.0 and
AH, = 1.0 are applied in the substrate domain in the direct space object only
(see hatched domain in Fig. 7.3(a)). The discretization step in direction of
strain εM is δεM = 0.02%. Colorbar for plots (a)-(c) is given in Fig. 7.6(a),
for the remaining plots in 7.6(b).

In case of strict magnitude constraints, error reduction slightly speeds up convergence
for low strain εM . 0.30% which, however, is achieved after few iterations for low strain
anyway. For larger strain, it slightly slows down convergence to the solution (for better
visibility the x-axis only covers the range up to iteration 100 – instead of 500 in most
related plots). In case of the ±0.3 gapped magnitude constraints, the efforts of the HIO-
algorithm to escape from local minima lift the average quality of the solution to a slightly
higher value ϕ since the “polishing” of the ER-algorithm is missing. Apart from this, the
behavior is very similar.

Thus, we demonstrated that also in presence of constraints on the magnitude of the effective
electron density, the differences in the behavior of the reconstruction with and without
error reduction are minor if randomized overrelaxation is included in the reciprocal space
projection of the hybrid input output algorithm.

At this point, we shortly summarize our results on the HIOA
OR

+ERA-algorithm: On the
one hand, we demonstrated the benefits which are obtained by adding additional physical
a priori knowledge to the reconstruction process where our focus of discussion were con-
straints on the magnitude of the effective electron density |%eff(r)|, since such constraints
can typically be employed for experimental samples and, at the same time, tremendously
extend the range of applicability of the currently most widely used reconstruction algorithm
in CXDI. On the other hand, we demonstrated that the given a priori information – with
and without such magnitude constraints – is exploited more efficiently, if the concept of
randomized overrelaxation is included in data evaluation based on the HIO+ER-algorithm.
In particular, the influence of the initial guess of the reconstruction becomes negligible.
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7.5. Elimination of vortices in the reconstructed phase field

(a) effective elec-
tron density %eff

(b) magnitude of
the effective electron
density |%eff|

(c) effective elec-
tron density %eff

(d) magnitude of
the effective electron
density |%eff|

Figure 7.22.: Illustration of the output of reconstructions with the HIOA+ERA- and the
HIOA

OR
+ERA-algorithm (see Figs. 7.18 and 7.21) for εM = 0.18%, where the

magnitude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 1.0
and AH, = 1.0 are applied in the substrate domain in the direct space ob-
ject only (see hatched domain in Fig. 7.3(a)). Figs. (a)-(b) show a stagnated
initial guess of a reconstruction with the HIOA+ERA-algorithm, whereas
Figs. (c)-(d) illustrate the output of the HIOA

OR
+ERA-algorithm: a successful

reconstruction independent of the initial guess. The complex valued effective
electron densities are encoded by HSV colorbar (phase encoding identical to
Figs. 7.1 and 7.4), whereas their magnitudes are encoded by a black (max)
and white (zero) colorbar separately for better visibility.

7.5. Elimination of vortices in the reconstructed phase field

Despite the benefits from randomized overrelaxation and the constraints MA defined in
Eqs. (7.15a) and (7.21), further investigations (and improvements) are still required be-
fore CXDI becomes an easily applicable method for the investigation of inhomogeneously
strained nanocrystals.

On the one hand, experimentally measured data is not “ideal” – like the input data which
is employed in this section. Several typical deviations will be investigated in Sec. 8.

On the other hand, neither the traditional HIO+ER-algorithm nor the HIOA
OR

+ERA-
algorithm guarantee that the phase field of the iterative approximations to the solution
%eff can be unwrapped globally without inconsistencies. Since the unwrapping of the phase
field is required for obtaining the displacement field in highly strained nanostructures, this
drawback is unsatisfactory.

Such inconsistencies have already been observed in failed reconstruction in this manuscript,
for example in Fig. 7.17(b), and will now be investigated more closely.

We remind the reader that the possible existence of such inconsistencies already imposed
restrictions on the choice of the error metric for judging on the quality of our reconstructed
effective electron densities (see discussion in Sec. 6.2.2). Therefore, a deep understanding
thereof is even more important.

In Fig. 7.26, we magnified the bottom of Fig. 7.17(b) which is nicely suited for a thorough
discussion of vortex artifacts.

The phase field of the effective electron density %eff(r) is given by Φ(r) = QB · u(r) (see
Sec. 6.1). Since each component of the displacement field u(r) is a single-valued function
of the position r, also the phase field Φ(r) is a single-valued function at each position r.
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7. Reconstructions in CXDI: Results for simulated ideal data
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(a) Criterion for success ϕ(i) ≤
ϕMax = 1.0◦ (compare to
Fig. 7.19(a))
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(b) Criterion for success ϕ(i) ≤
ϕMax = 10.0◦ (compare to
Fig. 7.19(b))
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(c) Result after i = 500 itera-
tions ( c©2013 The Optical Soci-
ety (OSA), from [2])
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(d) Comparison with ±0.3
gapped HIOA+ERA-algorithm
at iteration 500 (Fig. 7.19(c))
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(e) Strain εM = 0.60%
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(f) Comparison for εM = 0.60%
to ±0.3 gapped HIOA+ERA-
algorithm

Figure 7.23.: Reconstruction capabilities of the HIOA
OR

+ERA-algorithm, where the mag-
nitude constraints MA defined in Eqs. (7.15a) and (7.21) with AL, = 0.7 and
AH, = 1.3 are applied to the entire object domain Ω. The discretization step
in direction of strain εM is δεM = 0.04%. Colorbar for plots (a)-(c) and (e)
is given in Fig. 7.6(a), for the remaining plots in Fig. 7.6(b).

This phase field can therefore be understood as the anti-derivative (“potential”) of a vector
field (“force field”) F (r) = ∇Φ(r). By construction, this vector field is conservative and
non-vortical, i.e., ∇⊗F ≡ 0 in the entire nanostructure (which is assumed to constitute a
simply connected domain Ω). As a consequence, the integration

∫
γ F (r) dr of the vector

field F is equal for all paths γ as long as its starting and end point are identical. Most
importantly, this implies that ∮

γ
F (r) dr = 0 (7.26)

for any closed path γ (i.e., its starting and end point coincide).

The phase field Φ(r) in Fig. 7.26 is however not non-vortical in the entire depicted domain:
Consider for example the integration paths γi as depicted in Fig. 7.26(b). If we decompose
these paths into its straight line contributions, we reduce the integration

∮
γ F (r) dr to one-

dimensional integrations. Since the phase field is a mathematically“well behaved” function
along the paths γi, the anti-derivative Φ(rEnd) − Φ(rBegin) directly gives the result. We
point out, that – depending on the phase field – one-dimensional local unwrapping of the
phase field of the effective electron density %eff(r) may be required which, however is a
straight forward task as long as the data is not corrupted by noise and not undersampled
numerically. By this approach, we have:

path γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

integral [ ·(2π) ] 0 0 1 -1 2 0 1 -1

Consequently, we detected violations of Eq. (7.26) which however are only multiples of 2π.
The deviations stem from four point vortices inside the paths γi, i = 3, 4, 7, 8. The exact
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7.5. Elimination of vortices in the reconstructed phase field
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(a) Criterion for success ϕ(i) ≤
ϕMax = 1.0◦
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(b) Criterion for success ϕ(i) ≤
ϕMax = 10.0◦
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(c) Result after i = 500 itera-
tions ( c©2013 The Optical Soci-
ety (OSA), from [2])
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(d) Comparison to absence of
strict magnitude constraints in
the substrate (Fig. 7.23(c))
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(e) Strain εM = 0.60%
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(f) Strain εM = 1.00%

Figure 7.24.: Reconstruction capabilities of the HIOA
OR

+ERA-algorithm with magnitude

constraints M
(1)
A with zero gap in the substrate domain (AL,1 = 1.0, AH,1 =

1.0) supplemented by M
(2)
A with ±0.3 gap in entire support Ω (AL,2 = 0.7,

AH,2 = 1.3). The discretization step in direction of strain εM is δεM = 0.04%.
Colorbar for all plots except (d) is given in Fig. 7.6(a), for the remaining plot
in Fig. 7.6(b).

positions of these point vortices can be located by shrinking the paths continuously until
only a single pixel is contained in the interior of the paths γi.

If each pixel is scanned by a rectangular path through the neighbouring pixels, we attribute
the result of this (numerical) integration after division by 2π to each pixel as its vortex
charge. This charge is quantized and can only take integer values.

After detection of point vortices, we are able to actively manipulate them: Although
many different interesting and promising possibilities for manipulation of vortex defects
can be considered, we here restrict to the annihilation of point vortices by creating and
super-imposing an anti-vortex: Such an anti-vortex is charged oppositely as the original
vortex. Our approach closely resembles the mathematical concepts of second quantization
in quantum field theory which is employed for the description of matter and anti-matter
[225, 226].

We point out that identical or similar mathematical and formal concepts as described here
are of high importance in various aspects of physics and mathematics such as electro-
dynamics (Maxwell’s equations), quantum mechanics (discretization), advanced calculus
(winding number), . . . , but, to the best of the authors’ knowledge, such advanced concepts
for detection and, more importantly, for active manipulation and control have not yet been
incorporated in CXDI phase retrieval algorithms [227, 228]. As a result, the behavior of
such vortices has not yet been thoroughly investigated.

In this manuscript, we pursue the following approach for incorporation of control over the

vortices in the iterative approximations %
(i)
eff :
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7. Reconstructions in CXDI: Results for simulated ideal data
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(a) Pure HIOA

OR
-based recon-

structions (no ER) with zero gap
constraints AL, = AH, = 1.0,
where ϕMax = 1.0◦.
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(b) Comparison to
HIOA

OR
+ERA-algorithm with

NHIO = 130 and NER = 10,
where ϕMax = 1.0◦
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(c) Pure HIOA
OR

-based recon-
structions (no ER) with AL, =
0.7 and AH, = 1.3 after i = 500
iterations
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(d) Comparison to
HIOA

OR
+ERA-algorithm with

NHIO = 130 and NER = 10 for
AL, = 0.7 and AH, = 1.3

Figure 7.25.: Behavior of the HIOA
OR

-algorithm (HIOA
OR

+ERA-algorithm with NER = 0).

After each “meta-iteration” of the HIOA
OR

+ERA-algorithm (i.e., NHIO iterations of the

HIOA
OR

- and NER iterations of the ERA-algorithm), we extract the current phase Φ(i)(r) =

arg
(
%

(i)
eff(r)

)
and store the current values ρ(i)(r) = |%(i)

eff(r)|. For this phase field Φ(i)(r),

we detect the charge κ of each pixel (x, y) by contour integration of the closed path

(x, y)→ (x, y + 1)→ (x+ 1, y + 1)→ (x+ 1, y)→ (x, y) (7.27)

after local unwrapping of the two neighbouring pixels.2 If any of these points is outside
the geometrical shape Ω, the charge κ is set to zero. At the edges of the computational
domain, we employ periodic boundary conditions.

Based on this charge distribution we construct a field Ψ(i)(r) for compensation by creation
of the respective anti-vortices. For each position (xk, yk) (pixel coordinates) with non-zero
charge, we add the field

Ψ
(i)
k (r) = −κ atan2 (y − yk, x− xk) (7.29)

to the compensation field Ψ(i)(r). We point out that the field configuration (7.29) is not
unique. Without additional constraints, any spatial field distribution which has a single
point vortex at position (xk, yk) is applicable. The field (7.29) is circular with respect to
the distance in pixels. For a non-equal pixel spacing in the orthogonal directions – for

2Of course, also other paths such as

(x− 1, y + 1)→ (x, y + 1)→ (x+ 1, y + 1)→ (x+ 1, y)→ (x+ 1, y − 1)→
→ (x, y − 1)→ (x− 1, y − 1)→ (x− 1, y)→ (x− 1, y + 1) (7.28)

can be used. For simplicity, we restrict to Eq. (7.27) in this manuscript.
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7.5. Elimination of vortices in the reconstructed phase field

(a) Magnification of the bottom 74 pixels of Fig. 7.17(b)

(b) Exemplary integration paths γi, i = 1, . . . , 8 for Fig. (a)

Figure 7.26.: Illustration of vortices in the phase field of the reconstructed effective electron
density %eff which prevent a globally consistent phase unwrapping.

example in case of our Si nanowire test system – we could also employ the field

Ψ̃
(i)
k (r) = −κ atan2 (sy · (y − yk) , sx · (x− xk)) (7.30)

where the factors sx/y correspond to the distance of two neighbouring pixels in x and y
direction. As a result, the point vortex would posses circular symmetry in physical length
dimensions instead of pixels.

Both field configurations (7.29) and (7.30) have a non-vanishing gradient throughout the
entire domain Ω. As a consequence, these corrections will also change the gradient of the
effective electron density %eff throughout the entire geometry Ω. In contrast, the field

Ψ̇
(i)
k (r) = − sgn (κ)


0 if y > yk
π if y < yk
1
2π if y = yk and x ≥ xk
3
2π if y = yk and x < xk

(7.31)

also constitutes a point vortex at (xk, yk) with charge |κ| = 1.3 However, its gradient
vanishes everywhere expect on the line yk. Nonetheless, it induces a phase shift by π of
regions below and above this line.

We would like to mention the cancellation effects of close-by point vortices of opposite
charge. In such cases, the long-ranged modifications strongly cancel each other – similar
to the cancellation effects in the far-field of multipoles in electrodynamics.

For simplicity, we restrict to the field (7.29) for the remainder of this manuscript.

After construction of the compensation field Ψ(i)(r), we add it to the current phase field
Φ(i)(r), i.e.,

Φ(i)(r) −→ Φ(i)(r) + Ψ(i)(r) . (7.32)

3This field configuration is only applicable for point vortices with charge |κ| = 1. For higher charges, this
field configuration can no longer be locally unwrapped.
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7. Reconstructions in CXDI: Results for simulated ideal data

(a) Magnification of the central region of the phase field in Fig. (d)

(b) Magnification of the bottom region of the phase field in Fig. (d) (left image identical to Fig. 7.26)

(c) Solution for
%eff as reference

(d) HIOA+ERA-algorithm with
AL, = 1.0 and AH, = 1.0 (10 vor-
tices corrected)

(e) HIOA
OR

+ERA-algorithm
with AL, = 0.7 and AH, = 1.3
(25 vortices corrected)

(f) HIOA
OR

+ERA-algorithm
with AL, = 0.7 and AH, = 1.3
(57 vortices corrected)

(g) HIOA
OR

+ERA-algorithm
with AL, = 0.7 and AH, = 1.3
(43 vortices corrected)

Figure 7.27.: Illustration of the correction for phase vortices by superposition of anti-vortex
excitations for failed reconstructions (output for %eff after 500 iterations) at
εM = 1.0% despite magnitude constraints MA in the domain Ω in direct space
and randomized overrelaxation. In each figure, the left image depicts the
phase field of the effective electron density before vortex correction, whereas
the right image shows the output after vortex correction.

160



7.5. Elimination of vortices in the reconstructed phase field
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Figure 7.28.: Success rate of the HIOA
OR

+ERA-algorithm for strict amplitude constraints
AL, = 1.0 and AH, = 1.0 in the full domain Ω with and without vortex
correction as a function of iteration for εM ∈ {0.80%, 1.00%}. Criterion for
success is ϕ(i) ≤ ϕMax = 1.0◦.

We point out, that only the vortex detection is restricted to the geometry Ω, but the fields
Φ(i) and Ψ(i) in general extend beyond this geometry.

The final step is to combine the stored amplitudes ρ(i)(r) with these corrected phases

Φ(i)(r) in the natural way, i.e, %
(i)
eff(r) = ρ(i)(r) · ei Φ(i)(r). This iterative approximation

%
(i)
eff(r) is now free of vortices and taken as input for the next “meta-iteration” of the

HIOA
OR

+ERA-algorithm.

Before we discuss the performance of the combination of the HIOA
OR

+ERA-algorithm and
this way of vortex elimination, we give in Fig. 7.27 some examples for the effective electron
density %eff before and after vortex correction – without running additional meta-iterations
of the HIOA

OR
+ERA-algorithm. Clearly, we see the non-local character — also intrinsic

to the Fourier transform itself as to our magnitude constraints discussed in Sec. 7.4 — of
the vortex correction. After this correction, all depicted failed reconstructions resemble
the solution %eff, which is given in Fig. 7.27(c) for reference, much better than before this
correction. We also nicely observe the localization of the effects of the vortex correction
in case two oppositely charged point vortices are close to each other, for example the
configuration close to the bottom in Fig. 7.27(d). Away from these pairs of vortices, the
influence on the gradient of the phase field Φ(r) is only very small.

Moreover, and more importantly, the phase field Φ(r) of any of the corrected approxi-
mations can be unwrapped and, as a consequence, error metrics which measure the error
of the reconstructed strain field and the reconstructed displacement field can be investi-
gated (see also the discussion in Sec. 6.2.2). For illustration, we compare the number of
phase wraps from the center of the substrate domain to the center of the top: For the
true solution 7.27(c), we see approximately 14.5 phase wraps. After vortex correction,
we find approximately 15, 13.5, 14.5 and 14.25 phase wraps in the examples depicted in
Figs. 7.27(d) to 7.27(g) respectively. Consequently, the relative error of the displacement
of the nanowire top versus its bottom is smaller than 7% in these examples – despite
the fact that no further iterations of HIOA

OR
+ERA-algorithm are performed after vortex

correction.

These examples clearly demonstrate the power and importance of control over the point
vortex structure in the reconstructed phase field.

A disadvantage of the vortex correction is that the required computational effort is not a
priori known since the number of vortices which are corrected each meta-iteration is not
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7. Reconstructions in CXDI: Results for simulated ideal data

a priori known. As a consequence, the number of meta-iterations of the HIOA
OR

+ERA-
algorithm is no longer a valid measure for comparison of the computational efficiency.
Nonetheless, the behavior of the success rate as a function of the number of meta-iterations
is still interesting: A significant reduction of the number of iterations which is required to
achieve success rates close to 100% would indicate a high value of the vortex correction as
additionally employed a priori knowledge – irrespective of the computational efficiency. We
compare the success rate of the HIOA

OR
+ERA-algorithm for strict magnitude constraints

(AL, = 1.0 and AH, = 1.0 in the full domain Ω) for reconstructions with and without vortex
correction as a function of iteration for εM ∈ {0.80%, 1.00%} in Fig. 7.28. In fact, we see
that the number of iterations which is required to achieve success rates close to 100% is
significantly reduced in case of vortex correction after each meta-iteration. Since, however,
the HIOA

OR
+ERA-algorithm is already able to achieve success rates close to 100% with a

well defined computational effort, the incorporation of our approach for vortex corrections
is of minor importance for ideal data. Nonetheless, it will become important in Sec. 8.3
where we discuss the impact of the inconsistencies in the experimental and theoretical
scattering data if the substrate is artificially truncated in direct space.
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8. Reconstructions in CXDI: Results for
simulated non-ideal data

In Sec. 7, we performed a thorough analysis of the reconstruction capabilities of the
HIO+ER-algorithm in the framework of CXDI as described in Sec. 6.1. Based on these
results, we developed several extensions and modifications which all provide significant
improvements of the HIO+ER-algorithm.

These investigations of the HIO+ER-algorithm and its extensions have – up to now – been
performed with ideal data in the framework of the CXDI model for the scattering of an
inhomogeneously strained nanostructure in the vicinity of a Bragg peak.

In this chapter, we now consider the impact of typical deviations of experimentally mea-
sured data from the CXDI model on reconstructions based on the extensions of the
HIO+ER-algorithm which we developed in Sec. 7.

Specifically, we focus on three such deviations:

• First, we investigate different approaches for treating (the typically large fraction of)
reciprocal space data points which do not exceed the noise level. This investigation
and its implications are presented in Sec. 8.1.

• Second, we consider in Sec. 8.2 the consequences of Poisson noise for the number of
photons at each measured q point in reciprocal space.

• Third, we deal in Sec. 8.3 with the inconsistencies along the crystal truncation rod
(CTR) of the substrate for nanostructures that are grown epitaxial on a crystalline
substrate.

We point out the different nature of the three investigations: The first deviation mainly
stems from technological and experimental limitations which will change in future. The
second deviation is an intrinsic characteristics of the quantization of the light field as pho-
tons. The last deviation is a systematic error in the CXDI model for typical experimental
structures: On the one hand, consideration of the full substrate is computationally not
feasible and cannot be described by kinematic theory. On the other hand, truncation of
the substrate near the nanoobject results in inconsistencies on the crystal truncation rod.

We mention that further aspects have to be investigated before CXDI might become ap-
plicable to experimental data in a robust way. Since CXDI is based on proper sampling
of the reciprocal space intensity distribution, the following aspects should be investigated
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8. Reconstructions in CXDI: Results for simulated non-ideal data

(a) εM = 0.10% (b) εM = 0.20% (c) εM = 0.28%

Figure 8.1.: Scattering signal in presence of a low signal cutoff ΓN. Only the central region
of the scattering signal around the Bragg peak QB is shown (58x133 pixels,
corrected for non-square direct space pixel dimensions). The Bragg Peak QB

is located in the center of the images and highlighted in yellow. The data
points in reciprocal space below the noise level ΓN are masked in dark cyan.
The scattering signal above noise level is logarithmic from black (low intensity)
to red (high intensity). ( c©2013 The Optical Society (OSA), from [2])

carefully: First, the influence of the experimental resolution function should be consid-
ered. Proper sampling is typically only obtained if the spread of the resolution element is
much smaller than the distance of neighbouring points of the q-grid in reciprocal space.
Second, typical experimental measurements of reciprocal space with one-dimensional or
two-dimensional pixel detector do not sample a regular rectangular q-grid in reciprocal
space (due to the non-linear transformations from the geometrical scattering angles to re-
ciprocal space [142]). Third, the robustness with respect to deviations of the geometrical
shape Ω (or approaches for its simultaneous reconstruction) also need to be investigated.

8.1. Strategies for treating points of low intensity

The signal to noise ratio of our simulated input data for the reciprocal space amplitudes
Γq in the previous chapter was only limited only by finite digit precision. In contrast, the
signal to noise ratio of the experimental scattering data Γq given in Refs. [196, 197] is in the
order of approximately 100 (excluding the central Bragg peak). As a consequence, the true
value Γq of most data points in reciprocal space is not accessible by current experimental
measurements. Possible reasons include detector noise or additional diffuse scattering,
e.g. by optical elements, Be windows of vacuum flight tubes, etc. . Nonetheless, we know
that the “background level” ΓN (as estimated from the signal to noise ratio) constitutes an
upper bound of these inaccessible data points, i.e., Γq ≤ ΓN.

In order to make CXDI of inhomogeneously strained nanostructures a robust technique
of experimental value, we face this problem and compare in this section six strategies for
treating these data points Γq ≤ ΓN in reciprocal space.

To be specific, we define for every value of strain εM the low cutoff ΓN as ΓN = µ maxq (Γq)
where µ = 0.005. If we exclude the Bragg peak, this value for µ corresponds approximately
to the experimental value for the signal to noise ratio of current experimental data men-
tioned above. Fig. 8.1 shows which part of the scattering signal for the particular values of
strain εM = 0.10%, εM = 0.20% and εM = 0.28% exceeds this cutoff level ΓN. In Tab. 8.1,
we quantify the effects of this cutoff µ = 0.005 in reciprocal space. For this purpose,
we define the effective oversampling ratio σeff as the ratio of the number of data points
exceeding the cutoff level ΓN divided by the number of data points inside the direct space
support. It is listed in Tab. 8.1 together with the number and percentage of data points
in the scattering signal which exceed the cutoff ΓN. Moreover, this table contains the

164



8.1. Strategies for treating points of low intensity

εM 0.10% 0.20% 0.28%

σeff 0.0304 0.0392 0.0442
# points > ΓN 1548 2000 2255
( # points > ΓN)/NTot 0.84% 1.08% 1.22%
‖Γq < ΓN‖1 / ‖Γq‖1 64.6% 59.7% 56.3%
‖Γq < ΓN‖2 / ‖Γq‖2 0.433% 0.401% 0.396%

Table 8.1.: Characteristics of the input data in case of the finite signal to noise ratio ΓN

defined by µ = 0.005. ( c©2013 The Optical Society (OSA), from [2])

fraction of the L1- and L2-norm which is accumulated in the ideal scattering signal below
the cutoff ΓN.

The effective oversampling ratio is only in the range of σeff = 0.03 to σeff = 0.05 for the
three cases which we employ for illustration. This values are not only much smaller than
for the ideal system (σ = 3.6326), but also below the lower bound σ = 2 for the traditional
HIO+ER-algorithm (see Sec. 6.1).

For the cutoff µ = 0.005 and our discretization in direct and reciprocal space, only for
approximately 1% of the points in reciprocal space a better estimate than the upper
bound ΓN is known. The “residual” approximately 99% of data points must be treated in
such a way that the small fraction of data points exceeding ΓN is sufficient for a successful
reconstruction.

It is interesting to observe that these few data points > ΓN contain more than 99.5%
of the scattered intensity (1 − ‖Γq < ΓN‖2 / ‖Γq‖2 from Tab. 8.1). The large number of
data points below the cutoff ΓN accounts in total only to less than 0.5% of the scattered
intensity. In contrast, more of 50% of the weight of the amplitudes Γq – which is the
relevant input for a CXDI reconstruction with the HIO+ER-algorithm and its extensions
– is below the cutoff ΓN.

Of course, the precise values in Tab. 8.1 depend on the spacings of the discretization grid in
direct space: A grid with larger inter-pixel spacing in direct space will suffer from aliasing
artifacts, whereas a finer grid will reduce the effective oversampling even further and,
therefore, relies even more on an efficient approach for low signal data points. However,
the optimal choice of the direct space grid goes beyond the scope of this manuscript.

Based on this discussion, the importance of an adequate treatment of the data points
below a cutoff comparable to the scale in current experiments is evident. In consequence,
we investigate the behavior of HIOOR+ER and HIOA

OR
+ERA-algorithm for ΓN > 0.

Our approaches modify the definition of PΓ given in Eq. (6.50b) to

PΓ F (i)(q) = κq ei arg(F(i)(q)) , (8.1)

but differ in the definition of κq.

The first, naive approach is based on

κ
(A)
q =

{
Γq if Γq > ΓN ,

|F (i)(q)| if Γq ≤ ΓN .
(8.2a)

With other words: the reciprocal space amplitudes may evolve unconstrained in the en-
tire noisy domain. Of course, we expect bad performance of this approach because the
available information – namely the upper bound of the signal – is completely discarded.
Nevertheless, it is useful for comparison and therefore included for completeness.
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The second approach incorporates the noisy region as the weak signal limit, i.e., approxi-
mating all amplitudes below the lower cutoff ΓN as zero. Hence, we define

κ
(B)
q =

{
Γq if Γq > ΓN ,
0 if Γq ≤ ΓN .

(8.2b)

The third, fourth and fifth approach are combinations of the first and second approach:
they allow the reciprocal space amplitude at every q-point to evolve freely until it exceeds
the given cutoff ΓN. The approaches differ in the behavior if the cutoff is exceeded during
the iterative procedure: In the third approach, the respective amplitude is reset to zero.
In the fourth approach, it is reset to a random value (uniform distribution) in the interval
[0,ΓN]. The fifth approach resets the amplitude only to its upper bound ΓN. In formulas,
these approaches correspond to defining κq as

κ
(C)
q =


Γq if Γq > ΓN ,

|F (i)(q)| if (Γq ≤ ΓN) ∧ (|F (i)(q)| ≤ ΓN) ,

0 if (Γq ≤ ΓN) ∧ (|F (i)(q)| > ΓN) ,

(8.2c)

in case of the third approach,

κ
(D)
q =


Γq if Γq > ΓN ,

|F (i)(q)| if (Γq ≤ ΓN) ∧ (|F (i)(q)| ≤ ΓN) ,

rand (0; ΓN) if (Γq ≤ ΓN) ∧ (|F (i)(q)| > ΓN) ,

(8.2d)

where rand (0; ΓN) is a uniform random distribution in the interval [0,ΓN], for the fourth
approach and, finally,

κ
(E)
q =


Γq if Γq > ΓN ,

|F (i)(q)| if (Γq ≤ ΓN) ∧ (|F (i)(q)| ≤ ΓN) ,

ΓN if (Γq ≤ ΓN) ∧ (|F (i)(q)| > ΓN) ,

(8.2e)

for the fifth approach.

Moreover, we include a sixth approach which is based on

κ
(F )
q =


Γq if Γq > ΓN ,

cD|F (i)(q)| if (Γq ≤ ΓN) ∧ (|F (i)(q)| ≤ ΓN) ,

ΓN if (Γq ≤ ΓN) ∧ (|F (i)(q)| > ΓN) ,

(8.2f)

where cD . 1 models a small damping of the intensity in regions below ΓN. This way, we
regularize the corrupted data points such that their respective spatial frequencies in the
direct space effective electron density %eff(x) are slightly damped each iteration. The idea
behind this approach is that this slight damping will be compensated by the direct space
constraints on the (oversampled) grid if “incorrectly” damped, but still accounts for the
fact that most data points below the upper bound ΓN are (much) smaller than this upper
bound.

Note, that the last approach (F ) reduces to the fifth approach (E) in the limit cD → 1.
Throughout this manuscript, we consider cD = 0.99.

For a proper investigation of these models defined in Eq. (8.2), we must eliminate the
amplitude information Γq from the initial guess (6.53) for all points Γq ≤ ΓN. For that
purpose, we set Γq = 0 for all point Γq in the initial guess for which Γq ≤ ΓN is fulfilled.

We first investigate the behavior of the angle ϕ(i) (see Eq. (6.48)) as a function of iteration
on the level of a single reconstruction and for a fixed strain εM (see Fig. 8.2). The behavior
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(a) HIOOR+ER-algorithm for εM = 0.20%
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(b) HIOA
OR

+ERA-algorithm for εM = 0.28% with
AL, = AH, = 1.0 in entire domain Ω

Figure 8.2.: Illustration of the typical behavior of ϕ(i) for the models (A) to (F ) (as defined
in Eq. (8.2)) as a function of iteration for a single reconstruction.

of the models is very similar for the HIO+ER- for εM = 0.20% (Fig. 8.2(a)) and the
HIOA

OR
+ERA-algorithm for εM = 0.28% (Fig. 8.2(b)):

As expected, model (A) – which completely disregards the upper bound information in
the low cutoff domain – fails completely. Model (B), i.e., setting the low signal amplitudes
simply to zero, results in very unstable behavior: As soon as the solution is approached to
some level, the projection of the low signal amplitudes Γq to zero redistributes scattering
amplitude from the interior of the object’s domain Ω to its exterior. As a consequence, the
iterative reconstruction procedure is unable to consistently fit the reciprocal space signal
from sharp surfaces which is very pronounced due to the discontinuity of the effective
electron density at surfaces. The inconsistencies in the scattering signal are strong enough
to produce the pronounced instabilities visible in Fig. 8.2 for model (B). Model (C), (D)
and (E) all allow for free variation of Γq in the low signal region until the upper bound
ΓN is exceeded. The instabilities in model (C) are less pronounced than in model (B),
but still rather strong. The origin of the instabilities is identical to model (B). Model (D)
and model (E) avoid these strict zeros in reciprocal space and thus are more stable than
model (C), but achieve almost equal quality of the iterative reconstruction. model (E)
shows almost no instabilities. However, model (E) only achieves angles ϕ which are too big
for obtaining high-quality reconstruction: the best results for our parameters underlying
Fig. 8.2 are only in the order of 18.0◦. The drawback of all models (A) to (E) is that
no “regularization” for the data points Γq ≤ ΓN is included. For that purpose, the small
damping has been added to model (F ). With this modification, very small angles in the
range of 0.5◦ to 2.0◦ are achieved without instabilities of practical importance (see Fig. 8.2).

Next, we again focus on the success rate s as a statistical quantity (see Fig. 8.3). How-
ever, we should take into account the observed instabilities during a single reconstruction
procedure. For this, we distinguish two cases and extract two numbers for each of the
NReal = 100 initial trials (with new random initial phases):

• First, we extract the smallest distance ϕ(i) which was achieved at any iteration
i ≤ 500 (left bars in Fig. 8.3).

• Second, we extract the distance ϕ(500), i.e., the distance to the solution %eff after
i = 500 iterations (right bars in Fig. 8.3).

If the reconstruction algorithm is stable and the error is an approximately monotonously
decreasing function of the number of performed iterations, the error after i = 500 iterations
should be similar to the error of the best reconstruction. If the reconstruction algorithm is
unstable, it is likely that the error after i = 500 iterations of a large fraction of the initial
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(a) HIOOR+ER-algorithm for εM = 0.20% (b) HIOA
OR

+ERA-algorithm for εM = 0.28% with
AL, = AH, = 1.0 in entire domain Ω

Figure 8.3.: Comparison of the success rate s for the models defined in Eq. (8.2) for fixed
strain εM. For every model the left bar shows the success rate s if the best

iterative approximation %
(i)
eff at any iteration i ≤ 500 is compared to the angle

ϕMax ∈ [0◦, 30◦] on the ordinate. The right bar evaluates s for ϕMax ∈ [0◦, 30◦]

if only the result %
(i)
eff after iteration i = 500 is considered. Colorbar for the

success rate s is given by Fig. 7.6(a).
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(b) Result after i = 500 itera-
tions

Figure 8.4.: Reconstruction capabilities of the HIOOR+ER-algorithm in case of a non-zero
low cutoff (see Tab. 8.1) and treatment according to Eq. (8.2f). The discretiza-
tion step in direction of strain εM is δεM = 0.02%. Colorbar for both plots is
given in Fig. 7.6(a). ( c©2013 The Optical Society (OSA), from [2])

trials is much larger than the best solution that has been found throughout the entire
reconstruction process. Consequently, the comparison of the two bars in Fig. 8.3 contains
valuable information on the instability of the approaches (A) to (F ).

Nonetheless, the left bars in Fig. 8.3 become important if we find some robust and practical

criterion for selecting the best approximation %
(i)
eff from the NIter iterations (NIter = 500 in

our example). In contrast, the right bars are important as long as such a criterion is not
available.

Fig. 8.3 confirms our observations on the level of a single reconstruction: Model (A) is not
useful at all. Model (B) can get quite close to the true solution (especially in presence of
strict magnitude constraints), but is extremely unstable. Model (C) does not approach the
solution as good as model (B) and is still very unstable without magnitude constraints.
Instability decreases further for model (D) and (E), but typical distances to the solution
%eff are big. Model (F ) achieves much better quality and stability than the models (A)
to (E). Therefore, model (F ) is clearly the winner of our comparison in the framework of
the HIO+ER- and the HIOA

OR
+ERA-algorithm.

For the best model (F ) and the cut-off µ = 0.005 (see Tab. 8.1), the success rate s is
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tions

Figure 8.5.: Reconstruction capabilities of the HIOA
OR

+ERA-algorithm in case of a non-
zero low cutoff (see Tab. 8.1) and treatment according to Eq. (8.2f). The
constraints (7.21) with AL, = 1.0 and AH, = 1.0 were applied in the full
direct space shape Ω. The discretization step in direction of strain εM is
δεM = 0.04%. Colorbar of both plots is given in Fig. 7.6(a). ( c©2013 The
Optical Society (OSA), from [2])

depicted as a function of strain εM vs. iteration i and angle ϕMax vs. strain εM – analogous
to our discussion in case of ideal data in Sec. 7.4. Fig. 8.4 depicts the case without magni-
tude constraints (i.e., HIOOR+ER-algorithm) whereas Fig. 8.5 considers the case of strict
magnitude constraints for |%eff(r)| in the entire direct space domain Ω.

In both cases, the success rate is almost independent of the choice ϕMax for ϕMax ∈
[3.0◦, 20.0◦]. In comparison to reconstructions without the cutoff µ = 0.005 in reciprocal
space, the maximum strain εM which has been reconstructed successfully in the framework
of model (F ) dropped from εM ≈ 0.28% to εM ≈ 0.24% without constraints on |%eff(r)| and
from εM ≥ 1.0% to εM ≈ 0.68% with strict constraints on |%eff(r)| in the entire domain Ω.

Fig. 8.6 gives a graphical summary of our numerical investigation for µ = 0 and µ = 0.005:

Starting from the standard HIO+ER-algorithm, the improvements which are achieved by
including randomized overrelaxation and additional magnitude constraints MA separately
or combined can be found. Two values are extracted from every set of parameters which we
presented in this manuscript: The upper value in each rectangular box is the maximum
strain εM for which an almost perfect solution could be reconstructed within i = 500
iterations and for almost all random initial trails. The lower value is the maximum strain
εM for which the reconstruction of the effective electron density %

(500)
eff was successful if the

requirement for success is relaxed: Any strain εM for which at least a non-negligible fraction
of initial guesses managed to achieve a result close to the solution %eff (ϕMax . 10.0◦) is
classified as suitable for the respective algorithm.

From this figure, our four major results can be read off easily:

• First, additional magnitude constraints MA tremendously enhance the range of ap-
plicability, but the result still depends on the random initial guess.

• Second, randomized overrelaxation manages to eliminate the sensitivity to the ran-
dom initial guess to a large degree (with and without the constraints MA).

• Third, randomized overrelaxation manages to increase the range of applicability
further (without any additional a priori knowledge) in all cases we presented.

• Finally, model (F ) succeeds in reconstruction of input data with a signal to noise ratio
that is comparable to current experimental data – despite corresponding effective
oversampling ratios in the order of σeff . 0.05� 2.

169



8. Reconstructions in CXDI: Results for simulated non-ideal data

Stagnation
may occur
dependent
on random
initial guess

Result
almost

independent
of random
initial guess

l

l A
A
A A A

AA

Figure 8.6.: Intermediate summary of our numerical investigations: Starting from standard
HIO+ER, the improvements which are achieved by randomized overrelaxation
and additional constraints MA on the local scattering magnitude |%eff(r)| are
simplified to two values. The upper value in each rectangular box is the max-
imum strain εM for which an almost perfect solution could be reconstructed
within i = 500 iterations and for almost all random initial trails. The lower
value is the maximum strain εM for which the reconstruction of the effective
electron density %

(500)
eff was at least successful for a non-negligible fraction of

initial guesses and/or with a reduced requirement on the quality of the result.
[( c©2013 The Optical Society (OSA), from [2]), notation adopted]

Therefore, we are confident that the combination of randomized overrelaxation QΓ;λΓ
,

magnitude constraints MA and a small damping of low-intensity domains in reciprocal
space provides a major advance in CXDI data analysis.

8.2. Consequences of Poisson photon noise

In the previous section, we investigated the reconstruction capabilities if a low cut off of the
reciprocal space data is taken into account. In this section, we extend our considerations
and discuss the impact of Poisson noise in the measured intensity data, since the measured
intensity is directly proportional to the number photons. Some detectors even count the
discrete number of detected photons as measure for the intensity. We will not consider
other sources of noise (e.g., electronic noise and non-linearity of photon response in CCD
detectors) and other detection artifacts (e.g., dead time in counting detectors).

Within these assumptions, the following relation

I(q) = |Γq|2 = cN
(Ph)
q (8.3)

holds.

This implies that a change δI(q) of the intensity is related to a change of the amplitude
via

δI(q) ≈ 2 |Γq| δ |Γq| ⇒ δ |Γq| =
δI(q)

2 |Γq|
. (8.4)

Therefore, the relative change of the amplitude

δ |Γq|
|Γq|

=
1

2
· δI(q)

I(q)
(8.5)
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is half the relative change of the intensity.

We now assume Poisson statistics for the number of incident photons N
(Ph)
q for each mea-

sured point q. In this case, a good estimate for the deviation of the number of photons

δN
(Ph)
q is provided by the standard deviation

√
N

(Ph)
q of this distribution, i.e., we approx-

imate

δN
(Ph)
q ≈

√
N

(Ph)
q . (8.6)

Therefore, we have

δI(q) ≈ c
√
N

(Ph)
q , δ |Γq| =

δI(q)

2 |Γq|
=

√
c

2
(8.7a)

and
δI(q)

I(q)
=

1√
N

(Ph)
q

,
δ |Γq|
|Γq|

=
1

2

√
N

(Ph)
q

(8.7b)

in case of Poisson noise. It is important to recognize that the expected deviation of the
amplitude δ |Γq| is independent of the number of photons, but does depend on the constant
of proportionality c. In contrast, the relative deviations of intensity and amplitude are
independent of this proportionality constant c, but depend on the number of photons.

We have already seen in the previous section that the reconstruction process is very sen-
sitive to enforced inconsistencies of the constraints in direct space and reciprocal space
(model (B)) and typically instabilities are observed. A corruption of the reciprocal space
amplitudes by Poisson noise also leads to inconsistencies of the constraints in direct space
and reciprocal space.

In order to avoid the expected instabilities, we now study the influence of a gap for the
reciprocal space projection amplitudes in the projection operator PΓ: within a certain

range around the given input amplitude ΓN, the reconstructed amplitudes Γ
(i)
N are allowed

to vary freely. This way, we strongly reduce the inconsistencies of the direct space and
reciprocal space constraints and might avoid instabilities. However, such gaps render the
constraints in reciprocal space less tighten which might hinder the reconstruction.

Based on our above discussion, the gap should allow for a constant (i.e., q-independent)

deviation δ |Γq| =
√
c

2 from the given input value |Γq| in case of Poisson noise.

In our simulations, we will predefine the total number of collected photons N
(Ph)
Tot from all

q points. The corresponding value of c which is required for defining the gap interval δ |Γq|
is obtained by summation of Eq. (8.3) with respect to q, i.e.,

c =
∑
q

|Γq|2
/
N

(Ph)
Tot . (8.8)

Hence, we directly obtain an estimate for the gaps δ |Γq| =
√
c

2 . This way, we can study
the performance of the reconstruction algorithm for gapped projections in reciprocal space
even if the input data Γq is not corrupted by noise. Since the gaps δ |Γq| only define the
order of magnitude, we also investigate the reconstruction capabilities if the gap is chosen
as 2δ |Γq| =

√
c, i.e., twice as large as the above defined gap δ |Γq|.

Moreover, we also substitute the ideal amplitudes Γq for every q — alternatively or in

addition to the gaps δ |Γq| — by random Poisson events with mean N
(Ph)
q , which can be

obtained directly from Eq. (8.3) once c is calculated according to Eq. (8.8). It is important
to keep in mind that a random event drawn from a Poisson distribution is an integer
number. As a result, a reasonable fraction of the amplitudes Γq is exactly zero for a low
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Figure 8.7.: HIOA
OR

+ERA-algorithm with strict magnitude constraints MA in the full di-
rect space domain Ω (see Eqs. (7.15a) and (7.21)). In each sub-figure, the left
image is a typical result if the projections are gapped in the entire domain in
reciprocal space. The middle image enforces a zero in reciprocal space for all
pixels which measure zero photons in a random Poisson noise realization, and
gaps elsewhere. The right figure shows the result of a typical reconstruction if
points below the low cutoff µ = 0.005 are treated by model (F ) as described
in Sec. 8.1 and the remaining points as gapped projections in reciprocal space.
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Figure 8.8.: Quantitative analysis of the behavior illustrated in Fig. 8.7.

number of collected photons N
(Ph)
Tot . This fact resembles the highly unstable model (B) in

the previous section, but now these instabilities might be reduced by the gaps δ |Γq| for
the remaining points above the cutoff.

In Fig. 8.7, the best reconstruction results have been collected which have been achieved
after NIter = 250 iterations and given the following input data and data treatment during
reconstruction:

• the input amplitudes δ |Γq| are either free of noise (“noise x”), or corrupted by (dis-
crete) Poisson noise (“noise +”)

• for amplitudes Γq above the cutoff µ ∈ {−1, 0, 0.005} (see Sec. 8.1), the projection

PΓ in reciprocal space is not gapped (“gap x”), gapped by δ |Γq| =
√
c

2 (“gap +”) or
gapped by 2 · δ |Γq| (“gap ++”)

• for amplitudes Γq below or equal to the cutoff µ, the projection PΓ is done according
to model (F ) as described in Sec. 8.1 (see Eq. (8.2f))

We point out, that no amplitude Γq – with or without Poisson noise – is below the cutoff
µ = −1 < 0, and in this case, all points q are treated as gapped projections. Moreover, we
emphasize, that for µ = 0 and in presence of noise in the input data Γq, all q points for
which the outcome of the discrete Poisson event was zero, are forced to be strictly zero.
Consequently, this case will reveal if model (B) from Sec. 8.1 is significantly less unstable
if the q-points with high intensity weight are gapped.

These cases have been depicted in Fig. 8.7 for εM = 0.20%, AL, = 1.0 and AH, = 1.0 in the

full domain Ω and N
(Ph)
Tot ∈ {105, 106} as well as for εM = 0.36%, AL, = 0.7 and AH, = 1.3

in the full domain Ω and N
(Ph)
Tot = 106.
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From this collection, we first observe that the results for µ < 0 typically are worst in quality,
in particular in the case “gap ++ ; noise x”. In contrast, the quality of reconstructions
for µ = 0 and µ = 0.005 is very acceptable. In most cases, the reconstruction for µ = 0
seems slightly superior to the case µ = 0.005. Fig. 8.8 gives quantitative information
on the comparison depicted in Fig. 8.7: In Fig. 8.8(a), we compare the distance ϕ of the

iterative approximation to the solution %eff for N
(Ph)
Tot = 105 and the case “gap+”. On the

one hand, we observe strong instabilities in presence of noise (“noise +”) for µ = 0 and
µ < 0. In absence of noise, the gaps in the projection operator result in negligible change
of the solution from iteration to iteration (χ ≤ 10−6rad) after very few iterations and the
iterative reconstruction is terminated. The by far best behavior with respect to stability is
found for µ = 0.005, i.e. the projection PΓ for low-intensity q-points is bound from above
and slightly damped, while gaps δ |Γq| are applied for those q-points with high intensity.

Fig. 8.8(b) considers the case of ten times more photons and twice as large gaps. For this
case, our results are similar: For µ < 0, the gaps are large and the change from iteration to
iteration vanishes very early (only two and four iterations) which ends the reconstruction
procedure. For these larger gaps 2δ |Γq|, this termination even took place in presence of
noise in the input data. As in the previous case (Fig. 8.8(a)), the best quality for µ = 0 is
very good, but the overall behavior is very unstable and thus unwanted. For µ = 0.005,
the best quality and stability is observed – with and without noise corruption in the input
data Γq.

Figs. 8.8(c) and 8.8(d) are therefore dedicated to this case µ = 0.005 in greater detail:
From these figures, we see that a reconstruction without gaps in the projection PΓ performs
significantly less stable and produces worse quality of the reconstructed approximations to
%eff than reconstructions with gaps (“gap +” and “gap ++”). Whereas for the smaller gaps
“gaps +”, we still observe some instabilities, these instabilities are absent for our larger
gaps 2 · δ |Γq| (“gaps ++”).

In conclusion, we observe that the domains with low intensity (in total many q points, but
few photon counts only (see Tab. 8.1)) and with high intensity should be treated differently.
In our investigations, the combination of model (F ) (as described in Sec. 8.1) for the low
intensity domains with gapped projections in reciprocal space with q-independent gaps
2δ |Γq| =

√
c for q points with amplitudes Γq above the cutoff µ produced the best results.

This approach provided high stability and good quality at the same time.

8.3. Artificial truncation of the substrate during a recon-
struction

In this section, we now turn to a wide-spread inconsistency in experimentally measured
scattering data and the intensity distribution I(QB,Q) simulated within the framework
of the CXDI model as discussed in Sec. 6.1. Specifically, the Bragg peak as well as the
crystal truncation rod (CTR) require special attention: The reason is that in many cases of
experimental relevance the signal from the substrate below the nanostructure is not equal
to the signal thereof modelled in reconstruction algorithms based on kinematic theory
(such as the HIO+ER-based reconstruction algorithms).

Typically, the contribution from the substrate cannot be modelled by kinematic theory,
and, moreover, is very thick in comparison to the nanostructure. Its proper computational
modelling would therefore require non-kinematic modelling as well as huge computational
resources (in comparison the the kinematic approximation). Therefore, it would be pref-
erential to truncate the substrate during the reconstruction in the computational model
for the nanostructure artificially as soon as the displacement field is expected to be neg-
ligible. We now study which modifications of a reconstruction algorithm (such as the
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8.3. Artificial truncation of the substrate during a reconstruction

(a) εM = 0.04% (b) εM = 0.08% (c) εM = 0.12% (d) εM = 0.16% (e) εM = 0.20%

Figure 8.9.: Examples for the output of reconstructions with the HIOA
OR

+ERA-algorithm

in case the crystal truncation rod is ignored in the projections PΓ.

HIO+ER-algorithm and its extensions) are required to facilitate such a truncation in the
computational model of the nanostructure.

Since the contributions from the diffraction of the primary beam deep in the substrate,
where the displacement field is negligible, are restricted to the crystal truncation rod1,
most data points I(QB,Q) in reciprocal space are still well described by the CXDI model
defined in Sec. 6.1. However, the data on the crystal truncation rod (including the Bragg
peak) is inconsistent and must be ignored if the substrate is truncated artificially in the
computational model of the nanostructure. This is particularly important, since the crystal
truncation rod contains a significant fraction of the scattered intensity weight close to a
Bragg peak QB.

Throughout this section, we restrict our presentation to the HIOA
OR

+ERA-algorithm with
magnitude constraints MA as defined in Eqs. (7.15a) and (7.21) with AL, = 1.0 and AH, =
1.0 which are applied in the full direct space domain Ω. Moreover, we assume ideal data
(no low cutoff or photon noise) for the investigations in this section – apart from the crystal
truncation rod.

Fig. 8.9 gives an impression of the results of reconstructions for various small amounts of
strain εM if the crystal truncation rod is ignored in the projection operator PΓ in reciprocal
space (so that the respective amplitudes Γq evolve freely) and no other modifications of
the HIOA

OR
+ERA-algorithm or the employed a priori knowledge are done.

Without the information on the crystal truncation rod, no information about the substrate
domains without lateral gradient is contained in the scattering data, and horizontal stripes
are to be expected. This behavior is best seen in Fig. 8.9(b), where the effective electron
density inside the nanowire is reconstructed nicely, but the substrate is full of such stripe
“artifacts”. These “artifacts” however are unavoidable for the given constraints.

More importantly, most reconstructions in Fig. 8.9 reveal complete failure even in the
nanowire region. Out of NReal = 5 initial trials for each value of strain εM in Fig. 8.9, only
6 out of the 25 reconstructions succeeded (5 out of 5 for εM = 0.08% and 1 out of 5 for
εM = 0.16%) – despite the strongest magnitude constraints we can apply and the improve-
ments from randomized overrelaxation. Clearly, this performance is not satisfactory and
adequate modifications must be developed and thoroughly investigated. Without special
measures for incorporating the inconsistencies along the crystal truncation rod, CXDI re-
constructions with the HIOA

OR
+ERA-algorithm are not sufficiently robust for application

to experimental data.

1Unless the Bragg condition for the substrate is fulfilled, the “secondary” beam which stems from the
diffraction of the substrate is much weaker than the primary beam. The contributions from small angle
scattering of this “secondary” beam at the nanostructure – which are not included in the first order
Born approximation – are very small.
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phase field of effective electron density must 
be free of vortices (disadvantage: numerically 
yet unstable in presence of noise-like artifacts)

No modifications apart from
ignoring the CTR data in the

projections in reciprocal space

boundary condition: 
displacement field vanishes 

approximately far in the substrate

"artifical" variation of geometrical support:
shrinking of the substrate domain 

with increasing iteration

"artifical" homogenization as for low cutoff:
small damping of CTR (excl. Bragg peak)
and/or small amplification of Bragg peak 

Modification of a-priori
knowledge applied during

reconstruction

Modification of reconstruction 
algorithm without additional 

a-priori knowlege

inconsistent intensity distribution along the crystal truncation rod (CTR)
(consequence of the "artificial" truncation of the substrate)

Figure 8.10.: Overview over the discussed approaches for resolving the inconsistent inten-
sity distribution along the crystal truncation rod (CTR). Green boxes corre-
spond to approaches which turn out to be helpful without known drawbacks.
Yellow boxes correspond to approaches which also turn out to be helpful, but
some aspects need to be resolved before they can be applied to experimental
data. Finally, red boxes correspond to approaches which did not provide any
benefits or even made the performance worse.

It is likely that the origin of this reduction in reconstruction performance are the intrin-
sic ambiguities in the CXDI model which stem from the mathematical properties of the
Fourier transform. Once the full crystal truncation rod is ignored, the inhomogeneously
strained domains in the nanowire can be shifted to laterally homogeneous regions, for
which no constraints are contained any more. As a consequence, many additional traps
and tunnels complicate the non-linear, non-local and non-convex task to reconstruct the
effective electron density.

Fig. 8.10 gives an overview over the approaches which we discuss in this section in order
to resolve the inconsistent intensity distribution along the crystal truncation rod (CTR).

As in Secs. 7.3 and 7.4, we can either modify the reconstruction algorithm without mod-
ifications of the “physical” a priori knowledge or we can incorporate additional a priori
knowledge in order to improve the reconstruction capabilities.

For the latter approach, we investigated model (F ) as described in Sec. 8.1 (see Eq. (8.2f))
for the q-points on (i) the crystal truncation rod excluding the Bragg peak and (ii) for
the Bragg peak. We investigated values for the “damping constant” cD slightly below and
above 1.0 (the limiting case of a freely evolving amplitude) in both domains separately and
the all four combinations of damping and amplification in both domains simultaneously.
No benefits in the reconstruction capabilities have been observed if model (F ) is applied
along the crystal truncation rod instead of the domains of weak intensity. In fact, in most
cases the performance of the thus modified HIOA

OR
+ERA-algorithm was even worse.

A modification of the employed a priori knowledge with respect to the HIOA
OR

+ERA-
algorithm which already proofed valuable for ideal data, has already been discussed in
Sec. 7.5: the elimination of point vortices in the phase field of the approximated effective
electron density after each meta-iteration of the HIOA

OR
+ERA-algorithm. Since for ideal

data, the HIOA
OR

+ERA-algorithm was already capable of retrieving the effective electron
density rather efficiently and with a well-defined estimation for the computational effort
of each iterative step, vortex elimination was non-essential for ideal data. We now return
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8.3. Artificial truncation of the substrate during a reconstruction

to our approach for elimination of point vortices as described in Sec. 7.5 and apply it after
each meta-iteration of the HIOA

OR
+ERA-algorithm.

Since the error metrics defined in Eq. (6.48) is also sensitive to the deviations in the re-
constructed effective electron density which are now to be expected (such as horizontal
stripe artifacts or a smooth gradient in vertical direction), it is no longer suited for deter-
mination of the quality of the reconstructed result. Equally, we cannot employ Eq. (6.46)
(deviation of amplitudes Γ) without modification, since the inconsistencies on the crystal
truncation rod would also falsify the interpretation. In contrast, Eq. (6.47) (change from
iteration to iteration) can still be applied for determination of the convergence of the algo-
rithm. Nonetheless, Eqs. (6.46) and (6.48) can be expressed as a standard scalar product
in RNTot . Since the Fourier transform is a unitary transformation, both equations can be
equally evaluated in direct and reciprocal space. Therefore, both formulas are applicable
if we evaluate them in reciprocal space and ignore the crystal truncation rod in the evalu-
ation. Since Eq. (6.48) is not applicable in case of experimental data, we give preference
to Eqs. (6.46) and (6.47) (values given in radians) in this section on non-ideal data and
which are both of high relevance for experimental data.

In Fig. 8.11, we depict details for reconstructions with the HIOA
OR

+ERA-algorithm without
as well as with vortex elimination if the scattered intensity I(QB,Q) is ignored along
the crystal truncation rod. Without vortex correction, the depicted reconstructions for
εM = 0.20% and εM = 0.36% fail. Neither the error ε in the reciprocal space amplitudes
(ignoring the CTR) nor the change from iteration to iteration χ decreases with increasing
iteration. Most importantly, the depicted approximations to the effective electron density
are far from the solution.

In contrast, after the incorporation of vortex elimination after each meta-iteration of the
HIOA

OR
+ERA-algorithm, we observe nice reconstructions away from the homogeneous

substrate regions, as depicted in Fig. 8.11(m) for εM = 0.20% and in Fig. 8.11(q) for
εM = 0.36%. Interestingly, the error metrics behave very differently in both cases: Whereas
two pronounced sudden drops in the error metrics are observed for the depicted example
εM = 0.36% (in both error metrics) and good reconstruction quality at the bottom part
of the inhomogeneously strained nanowire is observed after the error ε dropped to ap-
proximately 10−5 (iteration i = 22), we observe only one drop in the error metrics for
εM = 0.20% after i = 11 iterations. From that point on, the errors χ and ε do not decrease
further, but remain (up to a short spike at iteration i ≈ 200) close to the level 10−2.
Nonetheless, even the bottom part of the nanowire is reconstructed well – despite the fact
that the error ε is approximately three orders of magnitude larger than for εM = 0.36%.
Most importantly, the level ε ≈ 10−2 is very similar to the completely failed reconstructions
without vortex correction. This observation is more important than it seems at first:

Typically, it is more difficult to achieve a given error level ε with vortex elimination than
without vortex elimination. The reason for this is that the set of mathematical functions
which can occur as a phase field Φ(r) of the effective electron density %eff after vortex
elimination is tremendously reduced: instead of arbitrary functions Φ(r), the phase field
Φ(r) is enforced to be free of vortices. All phase field Φ(r) with a non-vanishing number of
vortices which would produce an error level similar to the given error level ε are eliminated.
From this reduced underlying set of possible phase fields Φ(r), it is typically less likely
that functions which significantly differ from the solution %eff result in an error level close
to or below the given error level ε. In consequence, the error level ε is only meaningful in
combination with the set of applied constraints during the reconstruction. An error level in
the order of ε ≈ 10−2 without vortex correction does not indicate a good reconstruction. In
contrast, an error level in the order of ε ≈ 10−2 is already an indication for a high-quality
reconstruction.
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Figure 8.11.: Investigation of the HIOA
OR

+ERA-algorithm if the scattered intensity
I(QB,Q) along the crystal truncation rod is ignored. The Figs. (a)-(i)
provide details on reconstructions without any further modifications. In
Figs. (j)-(r), vortex elimination is performed after each meta-iteration of the
HIOA

OR
+ERA-algorithm.
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Figure 8.12.: Investigation of the HIOA
OR

+ERA-algorithm if the scattered intensity
I(QB,Q) along the crystal truncation rod is ignored, but additionally a
vanishing displacement deep in the substrate (hatched region in Fig. 7.3(a))
is enforced as a boundary condition after every iteration of the HIO- and
the ER-algorithm (Figs. (a)-(i) without vortex elimination, Figs. (j)-(r) with
vortex elimination after each meta-iteration of the HIOA

OR
+ERA-algorithm).
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Figure 8.13.: Investigation of the HIOA
OR

+ERA-algorithm if the intensity I(QB,Q) on the
crystal truncation rod is ignored, and the support Ω shrinks by one pixel every
two meta-iterations of the HIOA

OR
+ERA-algorithm. The support begins at

pixel z = 500 at iteration 1 and at pixel z = 625 after 250 iterations (Figs. (a)-
(i) without vortex elimination, Figs. (j)-(r) with vortex elimination after each
meta-iteration of the HIOA

OR
+ERA-algorithm).
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8.3. Artificial truncation of the substrate during a reconstruction

This observation also holds for the results depicted in Figs. 8.12 and 8.13 where we compare
two further approaches – each without as well as with vortex elimination – for resolving
the inconsistencies of the amplitudes Γ(q) along the crystal truncation rod.

Once we consider experimental data, the error metrics for the perfect solution %eff is no
longer zero, but a lower bound larger than zero is implied by noise and other artifacts in
the input data. Once this lower bound exceeds the error level ε which would reveals a suc-
cessful reconstruction, it can no longer be used for detection of a successful reconstruction.
Therefore, the larger the value of ε is which reveals a successful reconstruction, the better.
Vortex elimination therefore is not only important for making the reconstruction itself a
success, but also for the detection of this success.

Nonetheless, the results obtained by the combination of the HIOA
OR

+ERA-algorithm and
vortex correction are not net satisfactory for the following reasons: Firstly, the detection
of point vortices (as described in Sec. 7.5) is not sufficiently robust against the stripe
artifacts in the homogeneous substrate domain (see for example Figs. 8.11(j) and 8.11(k)).
Secondly, the current detection of the point vortices is not sufficiently robust against the
noise-like artifacts in the reconstructed approximations to the effective electron density
which originate from a low cutoff or Poisson photon noise.

Consequently, the detection of point vortices must be improved further in future, for
example by combination with phase smoothing constraints based on conjugate gradient
optimization [166, 229, 230] or Fourier filtering.

Instead, we now discuss two further approaches to resolve the inconsistencies of the am-
plitudes Γ(q) along the crystal truncation rod. Both approaches aim to reduce the above
discussed ambiguities during the reconstruction which arise from the non-constraint do-
mains deep in the substrate if the intensity distribution along the crystal truncation rod
is not constrained.

The first approach assumes an a priori guess for the depth below the nanostructure for
which the lateral gradient of the phase field Φ(r) of the effective electron density %eff

becomes negligible. Below this depth, the phase field Φ(r) is set to zero after every
iteration of the HIO- and the ER-algorithm. This boundary condition eliminates the
global phase ambiguity in the reconstructed effective electron density if the full data within
the CXDI model (including the crystal truncation rod) would be available. However, if
the data on the crystal truncation rod is ignored during the reconstruction, the global
phase which is indicated by this boundary condition, is no longer enforced away from the
phase-constrained region. Nonetheless, a large fraction of the many additional traps and
tunnels induced by the unconstrained direct space domains should be eliminated by this
boundary condition from the iterative approximation procedure and the performance of
the HIOA

OR
+ERA-algorithm for reconstruction of the effective electron density should (at

least partially) recover.

In Fig. 8.12, we depict examples for reconstructions performed with this approach: Specifi-
cally, the phase in the hatched region in Fig. 7.3(a) is set to zero after every iteration of the
HIO- and the ER-algorithm. Without (Figs. (a)-(i)) as well as with vortex elimination af-
ter each meta-iteration of the HIOA

OR
+ERA-algorithm (Figs. (j)-(r)) the inhomogeneously

strained regions in the nanowire have been reconstructed nicely. As expected from our
discussion,

• the number of horizontal stripe artifacts reduces,

• the incorporation of vortex elimination significantly reduces the number of meta-
iterations of the HIOA

OR
+ERA-algorithm before a very good approximation to the

solution %eff is found (see Sec. 7.5),
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8. Reconstructions in CXDI: Results for simulated non-ideal data

• vortex detection may become unstable in presence of horizontal stripe artifacts (see
Figs. 8.12(n) and 8.12(p)), and

• the phase correlation from the boundary condition (global phase) is lost in the interior
of the nanostructure.

Strictly speaking, this first approach adds additional a priori information to the recon-
struction process and would fix the global phase for ideal data. However, since the “only”
benefit of this additional a priori information in presence of CTR-inconsistencies is a re-
duction of the traps and tunnels, we should be able to observe similar benefits if this region
where the phase was set to zero is completely discarded from the geometry Ω.

Consequently, our second approach investigates the influence of a reduction in the geo-
metrical shape Ω below the nanostructure. More specifically, we investigate a dynamic
shrinking of the support starting from some depth zS. After a given number of iterations
zδ, the beginning of the support is shifted towards larger zS and, thereby, reducing the
height of the geometry Ω = Ω(zS). At all steps, the lower truncation of the substrate
is horizontal so that the contributions from the scattering from this artificial truncation
are limited to the ignored domain in reciprocal space. By the dynamic shrinking of the
support Ω(zS), we avoid an a priori estimate for the depth where the lateral gradient
becomes negligible. We point out that instead of shrinking the geometry Ω in the second
approach we could also dynamically grow the boundary condition Φ(r) = 0 of the previ-
ous approach. We emphasize that the second approach does not employ any additional a
priori knowledge during the reconstruction (and, hence, does not fix the global phase of
the reconstructed effective electron density even for ideal data).

In our simulations, we start at pixel zS = 500 at iteration i = 1 and increase zS by one every
two meta-iterations of the HIOA

OR
+ERA-algorithm. Exemplary results without as well as

with vortex elimination are given in Fig. 8.13. We observe, that successful reconstructions
have been achieved by this second approach. The characteristics in all depicted cases is
rather similar: After some initial iterations, a fast decrease in the error metrics is observed
and a reasonable approximation is found. However, this number of initial iterations varies
strongly from i = 21 for εM = 0.36% with vortex elimination to i ≈ 165 without vortex
elimination. However, the result after i = 21 for εM = 0.36% with vortex elimination is
only a “local attractor” close to the solution. Nonetheless, the error metrics is in the order
of ε ≈ 10−2 which is again an indication of a good approximation – in contrast to the case
without vortex correction where an error metrics in the order of 10−2 does not indicate
good approximations. At iteration i = 208, the error metrics ε decreases by one order of
magnitude. We interpret this decrease as the escape of the reconstruction procedure from
the local attractor in favor of the attractor of the solution %eff.

After the abrupt decrease of the error metrics ε (and “polishing” of the approximation in
some cases for some iterations), the further shrinkage of the support implies that domains
with small lateral gradient are removed from the shape Ω. As a result, small deviations of
the reconstructed amplitudes Γq away from the crystal truncation rod are induced which
is the reason for the slowly increasing error metrics ε with increasing number of iterations.

With further shrinkage of the support Ω(zS), more and more regions with non-zero lateral
gradient are no longer contained in the geometry Ω(zS) and the error metrics ε increases
further. In addition, more and more spikes indicate instabilities in the reconstruction pro-
cedure (for example iteration i ≈ 155 to i ≈ 230 for εM = 0.52% with vortex elimination).
At some point, the geometry Ω is so small that the inconsistencies away from the crystal
truncation rod become so strong, that the reconstruction inside this “residual” shape Ω(zS)
breaks down (for example iteration i & 230 for εM = 0.52% with vortex elimination).

The benefit of vortex elimination is also in this approach that a good approximation to
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the solution %eff is typically found after fewer iterations. However, in the framework of the
second approach, this essentially means that the reconstruction %eff of a larger geometry
Ω(zS) is possible which corresponds to an increased sensitivity to weak gradients in lateral
direction deep in the substrate.

Further optimization of the treatment of the inconsistencies is possible. For example, we
could also grow the support Ω dynamically starting from an intentionally too small domain
– instead of dynamic shrinking. In contrast to shrinking, the initial phases of this new
line have to be fixed. If a fixed global phase of the reconstruction is desired, one approach
would be to constrain the phase as in the first approach, but start from an artificially big
domain (e.g., full shape Ω) and shrink it dynamically towards the lower truncation of the
sample.

Moreover, it would also be interesting to investigate and compare the linear increase of the
parameter zS with a non-linear (possibly randomized and/or non-monotonous) variation
of this parameter zS, i.e. the thickness of the support Ω.

Nonetheless, in summary, both approaches which we presented are capable of improving
the performance of the HIOA

OR
+ERA-algorithm for CXDI reconstruction if the data along

the crystal truncation rod cannot be taken as input data Γ(q) for the reconstruction.
Dynamically shrinking of the substrate avoids additional a priori knowledge.

Before further optimization of the treatment of the inconsistencies along the crystal trun-
cation rod between model and experiment are pursued, it would be more important to
improve the robustness of the detection of point vortices in presence of noise-like artifacts
and extend the underlying concepts to three dimensional non-physical “defects” in the
phase field of the reconstructed effective electron densities. Moreover, other experimental
artifacts (see introduction of this chapter) are still to be investigated, most importantly
violations of the strict, ideal sampling in reciprocal space.
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9. Conclusion and outlook (Part II.)
The second part of this manuscript has been devoted to improving the extraction of the
displacement field and strain distribution in inhomogeneoulsy strained nanostructures from
the coherently scattered intensity distribution in the vicinity of a Bragg peak. We assume
first order Born approximation (“kinematic approximation”) and far-field conditions to be
fulfilled. Yet, the extraction of the displacement field requires finding the solution of a set
of coupled, non-linear, and non-local equations.

One approach to solving these equations, which utilizes only the object’s geometry and
the intensity distribution in the vicinity of a Bragg peak as a priori knowledge, is the
HIO+ER-algorithm. Although this algorithm succeeds in reconstruction of a variety of
objects, reconstructions of highly strained nanostructures typically fail. Moreover, the
algorithm strongly depends on the initial guess and the choice of the parameters NHIO

and NER, as illustrated in Sec. 7.2. We investigated improvements with respect to these
shortcoming by two approaches in detail: exploiting given physical a priori knowledge
more efficiently and incorporating additional a priori knowledge.

It was shown in Sec. 7.3, that the incorporation of adequate randomization in the HIO+ER-
algorithm significantly reduces the sensitivity to the choice of the parameters NHIO and
NER as well as to the initial guess, and, consequently, is of high relevance for data analysis
in coherent X-ray diffractive imaging. Overrelaxation QΓ;λΓ

of the projection operator PΓ

in reciprocal space with randomly drawn relaxation parameter provides a computationally
efficient and easy to implement approach for randomization. The developed algorithm has
been named HIOOR+ER-algorithm.

In contrast to the modifications for randomized overrelaxation in the HIO+ER-algorithm,
the HIOA+ERA-algorithm takes advantage of additional a priori knowledge for the local
scattering magnitude |%eff(r)| in domains Ωj . We limit the deviation of |%eff(r)| in a domain
Ωj with respect to its mean value in this domain Ωj by the two parameters AL,j ≤ 1 and
AH,j ≥ 1. These constraints are applicable to many samples and the parameters AL,j and
AH,j are typically easily estimated.

Although the limits of applicability are shifted towards significantly higher values of strain
by incorporation of such constraints, the success of the HIOA+ERA-algorithm still strongly
depends on the initial guess in many cases. Therefore, we introduced the HIOA

OR
+ERA-

algorithm (see Fig. 9.1) which includes both, randomized overrelaxation and the constraints
MA on the local scattering magnitude. Our results demonstrate that this algorithm ag-
gregates the benefits from both concepts: reconstructions of highly strained objects, which
are very likely to fail without our modifications, became possible with barely no failures.
Moreover, the HIOA

OR
+ERA-algorithm inherits the good computational scaling of the tra-

ditional HIO+ER-algorithm and is easy to implement.
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9. Conclusion and outlook (Part II.)

;

 

HIO    +ER  -algorithmA
OR

A

HIO    -algorithmOR
A ER   -algorithmA

initial guess
amplitudes 

random phases

check for convergence: change to previous iteration

repeat repeat 

Figure 9.1.: Summary of the HIOA
OR

+ERA-algorithm (compare Figs. 6.4 and 7.15).

Given the tremendously improved performance of the HIOA
OR

+ERA-algorithm for “ideal
data”, we started with an investigation of the consequences of experimental artifacts and
limitations for a reconstruction.

Specifically, we investigated various strategies for treating data points Γq below a cut-off
ΓN. For cut-offs ΓN adequate for current experimental data quality, a large fraction of
the number of data points Γq in smaller than this cut-off ΓN (typically leading to effective
oversampling ratios σeff � 1), but only a low fraction of the scattered photons. For
these data points, a small artificial damping in addition to limiting the reciprocal space
amplitude by ΓN from above during the reconstruction performed best in our simulations.

Moreover, instabilities during the iterative reconstruction typically occur in presence of
Poisson photon noise in the input data Γq without appropriate modifications. We demon-
strated that these instabilities can be avoided to a large degree by the introduction of
small gaps in the projection operator PΓ in reciprocal space. The gap can be chosen in-
dependent of q. Its optimal size can estimated from the total number of photons detected
in the scattered intensity distribution I(QB,Q).

Finally, we propose to dynamically shrink the substrate during the iterative reconstruction
in order to circumvent inconsistencies in the input data Γq on the crystal truncation rod.
At the same time, the crystal truncation rod is ignored in projections PΓ in reciprocal
space. The elimination of phase vortices after each “meta-iteration” of the HIOA

OR
+ERA-

algorithm proved highly valuable for achieving good reconstruction capabilities despite
such discrepancies on the crystal truncation rod.

Despite the various advancements for ideal and non-ideal data, many further improvements
are needed before CXDI becomes a robust and easily applicable method of practical value.
Most notably, the followling aspects must be resolved: First, the vortex detection as
presented in this manuscript is not yet robust in presence of noise-like artifacts in the
input data. Consequently, the reliability of the detection must be improved, for example by
combination with suitable phase smoothing before detection. In addition, the elimination
of vortex defects must be extended to three dimensional space. Second, the required
precision of the shape Ω must be reduced for reliable experimental results. For example,
the shape Ω could be replaced by a “minimal shape” Ω−, which establishes a lower bound
for the true shape Ω, and a “maximal shape” Ω+ as upper bound for Ω. However, the
extension of the reconstruction algorithms to such bounds is not straight forward and
must be investigated in detail. Finally, the impact of the current experimental limitations
with respect to sampling (typically interpolation of data recorded by a two dimensional
detector instead of proper sampling), the experimental resolution element and deviations
of the incident beam from a plane wave (coherence) must also be investigated.
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Appendix

A. Generation of random events for given probability density

For a given probability density distribution p(x), random events according to this distri-
bution can be generated by the following procedure:

1. Make sure p(x) is normalized properly to an area of 1, i.e.,

p̃(x) =
p(x)∫

R p(y) dy
(9.1)

2. Implement a function to calculate the anti-derivative

V (x) =

∫ x

−∞
p̃(y) dy . (9.2)

If possible, evaluate this integral analytically. If not, use numerical integration. The
function V (x) is restricted to the interval 0 (for x→ −∞) to 1 (for x→∞).

3. Draw a random number r from a uniform distribution on ]0, 1[.

4. Solve the equation
V (xr) = r (9.3)

for xr = V −1(r) and return xr as event.1 This way, events can be generated for
distributions p(x) for which no third party library implementation is available.

If V (x) is not available in analytical form or cannot be inverted analytically, numeri-
cal solvers need to be employed. However, if p(x) is not equal to zero on the interval
on which it is defined, a unique solution exists and can be easily found by bisection
approaches. Depending on the distribution and its properties, methods based on
the derivative of V (x) (which is p̃(x)) like the Newton method [166] may accelerate
convergence.

This procedure is based on the fact that the change dV (x) is given by

dV (x) =
dV(x)

dx
dx = p̃(x)dx . (9.4)

If every value y = V (x) is drawn equally likely, it is equivalent to drawing a particular
x = V −1(y) with probability p̃(x).

The GNU scientific library (GSL) [147] provides the functions gsl integration qag (for
definite integrations) and gsl integration qagiu for indefinite integrations which have been
exploited in this work. GSL also provides the solver methods gsl root fsolver bisection
and gsl root fsolver falsepos [147] which are suitable for solving V (xr) = r numerically

1Trivially, for this procedure to work properly, a unique inverse map V −1 must exist.
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Figure A.1.: Comparison of the analytical probability distribution function p(x) = (n +
1)/2 · (x/2)n, x ∈ [0, 2], with a normalized histogram based on N = 106

randomly generated events as described in the main text.

if required. Both methods do not rely on the derivative of V (x). For verification of the
quality of the solution, the residuum εr of |V (xr)− r| can be employed. However, if the
distance either from 0 or 1 to the drawn random number r is smaller than the predefined
upper bound for εr, special care is required.2 Moreover, if the distribution p(x) is equal to
zero for some values or on some domain, iterative Newton methods will typically become
unstable and should not be used.

This procedure will now be illustrated for three probability density distributions p(x).
The first two distributions permit analytic integration and inversion. The last example is
the most important probability density distribution in Sec. 1.2 for which neither analytic
normalization nor integration (and, thus, also inversion) is possible.

First, consider the power law distribution

p(x) = (n+ 1)/2 · (x/2)n , x ∈ [0, 2] . (9.5)

For this distribution, the procedure above yields:

1. Already normalized.

2. V (x) = (x/2)n+1.

3. r ∈ ]0, 1[ from uniform distribution.

4. xr = 2 n+1
√
r.

This way, one million events have been generated for n = 0.25 and n = 4, arranged as
a histogram and compared to the analytical density p(x) in Fig. A.1. Clearly, the events
resemble the given distribution p(x).

As a second example, the exponential distribution p(x) = 1/b · e−x/b , x ∈ [0,∞[ has been
chosen. In this case, the procedure described above yields

1. Already normalized.

2. V (x) = 1− e−x/b.

2In this work, a random number r is drawn as long as it is smaller than the upper bound for the residuum
or its difference 1− r is smaller than this bound.
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A. Generation of random events for given probability density
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Figure A.2.: Comparison of the analytical probability distribution function p(x) = 1/b ·
e−x/b, x ∈ [0,∞[, with a normalized histogram based on N = 106 randomly
generated events as described in the main text.

3. r ∈ ]0, 1[ from uniform distribution.

4. xr = −b ln(1− r).

Again, one million events have been generated. In this case, the parameter b was chosen
as b = 0.01 and b = 5.00. The events have been arranged as a histogram and compared to
the analytical density p(x) in Fig. A.2. Clearly, the events resemble the given distribution
p(x) also in case of the exponential distribution.

In the last example, all integrations and solutions are obtained by numerical methods. As
example, we choose the structure of an exponential distribution, but with non-constant
parameter µ, i.e.,

p(x) = Θ(x)
1

µ(x)
e−x/µ(x) (9.6a)

µ(x) =
1 + µMin · f(N(x))

f(N(x))
(9.6b)

f(N(x)) = α ·Θ (N(x)−NMin)

(
N(x)

NMin
− 1

)β
(9.6c)

N(x) = r · x+ ξ (9.6d)

For a motivation of the distribution, we refer the reader to Sec. 1.2.

These steps four steps are now employed (function calls as given in Ref. [147]):

1. normalization with
gsl integration qagiu( p , 0 , . . . , resultNormalization , errorEstimate)

2. anti-derivative of p̃(x) with
gsl integration qag( p , 0 , x , . . . , resultAntiDerivative , errorEstimate)
and divide by resultNormalization.

3. r = gsl rng uniform pos(. . . )

4. First, get upper bound (smaller than infinity for numerical treatment). By construc-
tion, V (0)− r < 0 is smaller than zero for the distribution which we consider. From
the expectation value of p̃(x), we obtain a scale x suitable for starting the search of
an upper bound for which V (x) − r > 0. If V (x) − r < 0 for some x, we increase
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Figure A.3.: Comparison of the analytical probability distribution function p(x), x ∈
[0,∞[, as defined in Eq. (9.6) with a normalized histogram based on N = 106

randomly generated events as described in the main text. In this case, the in-
tegration of the density p(x) is performed numerically. For all figures, numeri-
cal integration was bound by 10−8 on relative and absolute scale. Root brack-
eting with gsl root fsolver falsepos was stopped when the residuum dropped
below an absolute error of 10−6.

x by a factor (e.g. of 3) and set the lower bound to the previous limit of the upper
bound. Thus, a possible algorithm for finding the bounds is structured as:

• Set lowBound = 0 and uppBound = expectation value of p̃(x).

• While V (uppBound)− r < 0: lowBound = uppBound ; uppBound *= 3.0 ;

Then, we use the solver gsl root fsolver falsepos to obtain the solution xr numeri-
cally. Return xr.
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B. Bragg reflections of a rotated substrate

Here, we add additional tables relevant for the discussions on the X-ray reflections avail-
able with the in-situ MBE growth chamber (see Sec. 2.2, in particular Fig. 2.3). We focus
on rotations of the substrate by 60◦ and multiples thereof and provide tables and trans-
formation matrices for X-ray Bragg reflections. Only scattering for which the incoming
window and outgoing window is not equal is considered. The scan range for each index of
the Miller indices was −8 . . . 8.

First, we discuss cubic GaAs on [111]zyc-oriented substrates. If the crystalline structure is
rotated by 60◦ around the [111]zyc surface normal, the reflection indices are transformation
by the matrix

M
(111)c
60◦ =

 2/3 −1/3 2/3
2/3 2/3 −1/3
−1/3 2/3 2/3

 . (9.7)

If the rotation is 120◦ instead, the reflection indices are transformed by the matrix

M
(111)c
120◦ =

 0 0 1
1 0 0
0 1 0

 , (9.8)

i.e., a rotation by 120◦ around the [111]zyc axis corresponds to a shift of each index to the
next position with periodic back-folding. Note that a rotation by 60◦ typically does not
yield a valid reflection, but there are exceptions, e.g., if all indices are equal as (111)zyc

or for example
(
131
)

zyc
.

We now consider a hexagonal basis: In direct space, the angle between our first two basis
vectors is 120◦. In contrast, the angle between the first two basis vectors in reciprocal space
is 60◦. Consequently, the transformation matrices for direct space indices and reciprocal
space indices (such as Bragg reflections) are different. For indices with respect to the
hexagonal direct space basis, the transformation matrix for a rotation by 60◦ around the
[00.1]wyh2 direction3 is

M
(00.1)w
d,60◦ =

 1 −1 0
1 0 0
0 0 1

 (9.9)

and the respective rotation by 120◦ is resembled by the matrix

M
(00.1)w
d,120◦ =

 0 −1 0
1 −1 0
0 0 1

 . (9.10)

The transformation matrix for a rotation by 60◦ around the [00.1]wyh2 direction for indices
related to the reciprocal hexagonal basis is

M
(00.1)w
r,60◦ =

 0 −1 0
1 1 0
0 0 1

 (9.11)

and the respective rotation by 120◦ is resembled by the matrix

M
(00.1)w
r,120◦ =

 −1 −1 0
1 0 0
0 0 1

 . (9.12)

For convenience, we now add two tables which contain details about all reflections that
can be measured with the current PMBE growth chamber (see Sec. 2.2 and appendix C).

3The [00.1]wyh2 direction in direct space is parallel to the (00.1)wyh2 direction in reciprocal space, and,
thus, does not need to be distinguished.



Appendix

Table B.1.: List of Bragg reflections of cubic GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [111]zyc oriented surface. Constraints

are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦.

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ |S|2

[ -2 2 2 ] [ -0.67 -0.67 3.3 ] [ 2 -2 2 ] [ 3.3 -0.67 -0.67 ] [ 2 2 -2 ] [ -0.67 3.3 -0.67 ] 4
[ -1 -1 3 ] [ 1.7 -2.3 1.7 ] [ 3 -1 -1 ] [ 1.7 1.7 -2.3 ] [ -1 3 -1 ] [ -2.3 1.7 1.7 ] 2050
[ -1 1 1 ] [ -0.33 -0.33 1.7 ] [ 1 -1 1 ] [ 1.7 -0.33 -0.33 ] [ 1 1 -1 ] [ -0.33 1.7 -0.33 ] 2050
[ -1 1 3 ] [ 1 -1 3 ] [ 3 -1 1 ] [ 3 1 -1 ] [ 1 3 -1 ] [ -1 3 1 ] 2050
[ -1 3 -1 ] [ -2.3 1.7 1.7 ] [ -1 -1 3 ] [ 1.7 -2.3 1.7 ] [ 3 -1 -1 ] [ 1.7 1.7 -2.3 ] 2050
[ -1 3 1 ] [ -1 1 3 ] [ 1 -1 3 ] [ 3 -1 1 ] [ 3 1 -1 ] [ 1 3 -1 ] 2050
[ 0 0 2 ] [ 1.3 -0.67 1.3 ] [ 2 -0 -0 ] [ 1.3 1.3 -0.67 ] [ -0 2 -0 ] [ -0.67 1.3 1.3 ] 4
[ 0 0 4 ] [ 2.7 -1.3 2.7 ] [ 4 0 0 ] [ 2.7 2.7 -1.3 ] [ 0 4 0 ] [ -1.3 2.7 2.7 ] 4096
[ 0 2 0 ] [ -0.67 1.3 1.3 ] [ -0 -0 2 ] [ 1.3 -0.67 1.3 ] [ 2 -0 -0 ] [ 1.3 1.3 -0.67 ] 4
[ 0 2 2 ] [ 0.67 0.67 2.7 ] [ 2 0 2 ] [ 2.7 0.67 0.67 ] [ 2 2 0 ] [ 0.67 2.7 0.67 ] 4096
[ 0 4 0 ] [ -1.3 2.7 2.7 ] [ 0 0 4 ] [ 2.7 -1.3 2.7 ] [ 4 0 0 ] [ 2.7 2.7 -1.3 ] 4096
[ 1 -1 1 ] [ 1.7 -0.33 -0.33 ] [ 1 1 -1 ] [ -0.33 1.7 -0.33 ] [ -1 1 1 ] [ -0.33 -0.33 1.7 ] 2050
[ 1 -1 3 ] [ 3 -1 1 ] [ 3 1 -1 ] [ 1 3 -1 ] [ -1 3 1 ] [ -1 1 3 ] 2050
[ 1 1 -1 ] [ -0.33 1.7 -0.33 ] [ -1 1 1 ] [ -0.33 -0.33 1.7 ] [ 1 -1 1 ] [ 1.7 -0.33 -0.33 ] 2050
[ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] 2050
[ 1 1 3 ] [ 2.3 0.33 2.3 ] [ 3 1 1 ] [ 2.3 2.3 0.33 ] [ 1 3 1 ] [ 0.33 2.3 2.3 ] 2050
[ 1 3 -1 ] [ -1 3 1 ] [ -1 1 3 ] [ 1 -1 3 ] [ 3 -1 1 ] [ 3 1 -1 ] 2050
[ 1 3 1 ] [ 0.33 2.3 2.3 ] [ 1 1 3 ] [ 2.3 0.33 2.3 ] [ 3 1 1 ] [ 2.3 2.3 0.33 ] 2050
[ 2 -2 2 ] [ 3.3 -0.67 -0.67 ] [ 2 2 -2 ] [ -0.67 3.3 -0.67 ] [ -2 2 2 ] [ -0.67 -0.67 3.3 ] 4
[ 2 0 0 ] [ 1.3 1.3 -0.67 ] [ -0 2 -0 ] [ -0.67 1.3 1.3 ] [ -0 -0 2 ] [ 1.3 -0.67 1.3 ] 4
[ 2 0 2 ] [ 2.7 0.67 0.67 ] [ 2 2 0 ] [ 0.67 2.7 0.67 ] [ 0 2 2 ] [ 0.67 0.67 2.7 ] 4096
[ 2 2 -2 ] [ -0.67 3.3 -0.67 ] [ -2 2 2 ] [ -0.67 -0.67 3.3 ] [ 2 -2 2 ] [ 3.3 -0.67 -0.67 ] 4
[ 2 2 0 ] [ 0.67 2.7 0.67 ] [ 0 2 2 ] [ 0.67 0.67 2.7 ] [ 2 0 2 ] [ 2.7 0.67 0.67 ] 4096
[ 2 2 2 ] [ 2 2 2 ] [ 2 2 2 ] [ 2 2 2 ] [ 2 2 2 ] [ 2 2 2 ] 4

[ 3 -1 -1 ] [ 1.7 1.7 -2.3 ] [ -1 3 -1 ] [ -2.3 1.7 1.7 ] [ -1 -1 3 ] [ 1.7 -2.3 1.7 ] 2050
[ 3 -1 1 ] [ 3 1 -1 ] [ 1 3 -1 ] [ -1 3 1 ] [ -1 1 3 ] [ 1 -1 3 ] 2050
[ 3 1 -1 ] [ 1 3 -1 ] [ -1 3 1 ] [ -1 1 3 ] [ 1 -1 3 ] [ 3 -1 1 ] 2050
[ 3 1 1 ] [ 2.3 2.3 0.33 ] [ 1 3 1 ] [ 0.33 2.3 2.3 ] [ 1 1 3 ] [ 2.3 0.33 2.3 ] 2050
[ 4 0 0 ] [ 2.7 2.7 -1.3 ] [ 0 4 0 ] [ -1.3 2.7 2.7 ] [ 0 0 4 ] [ 2.7 -1.3 2.7 ] 4096
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B. Bragg reflections of a rotated substrate

Table B.2.: List of Bragg reflections of wurtzite GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [00.1]wyh2 oriented surface. Con-

straints are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦.

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ |S|2

[ -2 0 1 ] [ 0 -2 1 ] [ 2 -2 1 ] [ 2 0 1 ] [ 0 2 1 ] [ -2 2 1 ] 452
[ -2 0 2 ] [ 0 -2 2 ] [ 2 -2 2 ] [ 2 0 2 ] [ 0 2 2 ] [ -2 2 2 ] 512
[ -2 0 3 ] [ 0 -2 3 ] [ 2 -2 3 ] [ 2 0 3 ] [ 0 2 3 ] [ -2 2 3 ] 2623
[ -2 1 2 ] [ -1 -1 2 ] [ 1 -2 2 ] [ 2 -1 2 ] [ 1 1 2 ] [ -1 2 2 ] 2050
[ -2 2 1 ] [ -2 0 1 ] [ 0 -2 1 ] [ 2 -2 1 ] [ 2 0 1 ] [ 0 2 1 ] 452
[ -2 2 2 ] [ -2 0 2 ] [ 0 -2 2 ] [ 2 -2 2 ] [ 2 0 2 ] [ 0 2 2 ] 512
[ -2 2 3 ] [ -2 0 3 ] [ 0 -2 3 ] [ 2 -2 3 ] [ 2 0 3 ] [ 0 2 3 ] 2623
[ -1 -1 2 ] [ 1 -2 2 ] [ 2 -1 2 ] [ 1 1 2 ] [ -1 2 2 ] [ -2 1 2 ] 2050
[ -1 0 1 ] [ 0 -1 1 ] [ 1 -1 1 ] [ 1 0 1 ] [ 0 1 1 ] [ -1 1 1 ] 452
[ -1 0 2 ] [ 0 -1 2 ] [ 1 -1 2 ] [ 1 0 2 ] [ 0 1 2 ] [ -1 1 2 ] 513
[ -1 0 3 ] [ 0 -1 3 ] [ 1 -1 3 ] [ 1 0 3 ] [ 0 1 3 ] [ -1 1 3 ] 2623
[ -1 0 4 ] [ 0 -1 4 ] [ 1 -1 4 ] [ 1 0 4 ] [ 0 1 4 ] [ -1 1 4 ] 1
[ -1 1 1 ] [ -1 0 1 ] [ 0 -1 1 ] [ 1 -1 1 ] [ 1 0 1 ] [ 0 1 1 ] 452
[ -1 1 2 ] [ -1 0 2 ] [ 0 -1 2 ] [ 1 -1 2 ] [ 1 0 2 ] [ 0 1 2 ] 513
[ -1 1 3 ] [ -1 0 3 ] [ 0 -1 3 ] [ 1 -1 3 ] [ 1 0 3 ] [ 0 1 3 ] 2623
[ -1 1 4 ] [ -1 0 4 ] [ 0 -1 4 ] [ 1 -1 4 ] [ 1 0 4 ] [ 0 1 4 ] 1
[ -1 2 2 ] [ -2 1 2 ] [ -1 -1 2 ] [ 1 -2 2 ] [ 2 -1 2 ] [ 1 1 2 ] 2050
[ 0 -2 1 ] [ 2 -2 1 ] [ 2 0 1 ] [ 0 2 1 ] [ -2 2 1 ] [ -2 0 1 ] 452
[ 0 -2 2 ] [ 2 -2 2 ] [ 2 0 2 ] [ 0 2 2 ] [ -2 2 2 ] [ -2 0 2 ] 513
[ 0 -2 3 ] [ 2 -2 3 ] [ 2 0 3 ] [ 0 2 3 ] [ -2 2 3 ] [ -2 0 3 ] 2623
[ 0 -1 1 ] [ 1 -1 1 ] [ 1 0 1 ] [ 0 1 1 ] [ -1 1 1 ] [ -1 0 1 ] 452
[ 0 -1 2 ] [ 1 -1 2 ] [ 1 0 2 ] [ 0 1 2 ] [ -1 1 2 ] [ -1 0 2 ] 512
[ 0 -1 3 ] [ 1 -1 3 ] [ 1 0 3 ] [ 0 1 3 ] [ -1 1 3 ] [ -1 0 3 ] 2623
[ 0 -1 4 ] [ 1 -1 4 ] [ 1 0 4 ] [ 0 1 4 ] [ -1 1 4 ] [ -1 0 4 ] 1
[ 0 0 2 ] [ 0 0 2 ] [ 0 0 2 ] [ 0 0 2 ] [ 0 0 2 ] [ 0 0 2 ] 2050
[ 0 0 4 ] [ 0 0 4 ] [ 0 0 4 ] [ 0 0 4 ] [ 0 0 4 ] [ 0 0 4 ] 4
[ 0 1 1 ] [ -1 1 1 ] [ -1 0 1 ] [ 0 -1 1 ] [ 1 -1 1 ] [ 1 0 1 ] 452
[ 0 1 2 ] [ -1 1 2 ] [ -1 0 2 ] [ 0 -1 2 ] [ 1 -1 2 ] [ 1 0 2 ] 512
[ 0 1 3 ] [ -1 1 3 ] [ -1 0 3 ] [ 0 -1 3 ] [ 1 -1 3 ] [ 1 0 3 ] 2623
[ 0 1 4 ] [ -1 1 4 ] [ -1 0 4 ] [ 0 -1 4 ] [ 1 -1 4 ] [ 1 0 4 ] 1
[ 0 2 1 ] [ -2 2 1 ] [ -2 0 1 ] [ 0 -2 1 ] [ 2 -2 1 ] [ 2 0 1 ] 452
[ 0 2 2 ] [ -2 2 2 ] [ -2 0 2 ] [ 0 -2 2 ] [ 2 -2 2 ] [ 2 0 2 ] 513
[ 0 2 3 ] [ -2 2 3 ] [ -2 0 3 ] [ 0 -2 3 ] [ 2 -2 3 ] [ 2 0 3 ] 2623
[ 1 -2 2 ] [ 2 -1 2 ] [ 1 1 2 ] [ -1 2 2 ] [ -2 1 2 ] [ -1 -1 2 ] 2050
[ 1 -1 1 ] [ 1 0 1 ] [ 0 1 1 ] [ -1 1 1 ] [ -1 0 1 ] [ 0 -1 1 ] 452
[ 1 -1 2 ] [ 1 0 2 ] [ 0 1 2 ] [ -1 1 2 ] [ -1 0 2 ] [ 0 -1 2 ] 513
[ 1 -1 3 ] [ 1 0 3 ] [ 0 1 3 ] [ -1 1 3 ] [ -1 0 3 ] [ 0 -1 3 ] 2623
[ 1 -1 4 ] [ 1 0 4 ] [ 0 1 4 ] [ -1 1 4 ] [ -1 0 4 ] [ 0 -1 4 ] 1
[ 1 0 1 ] [ 0 1 1 ] [ -1 1 1 ] [ -1 0 1 ] [ 0 -1 1 ] [ 1 -1 1 ] 452
[ 1 0 2 ] [ 0 1 2 ] [ -1 1 2 ] [ -1 0 2 ] [ 0 -1 2 ] [ 1 -1 2 ] 513
[ 1 0 3 ] [ 0 1 3 ] [ -1 1 3 ] [ -1 0 3 ] [ 0 -1 3 ] [ 1 -1 3 ] 2623
[ 1 0 4 ] [ 0 1 4 ] [ -1 1 4 ] [ -1 0 4 ] [ 0 -1 4 ] [ 1 -1 4 ] 1
[ 1 1 2 ] [ -1 2 2 ] [ -2 1 2 ] [ -1 -1 2 ] [ 1 -2 2 ] [ 2 -1 2 ] 2050
[ 2 -2 1 ] [ 2 0 1 ] [ 0 2 1 ] [ -2 2 1 ] [ -2 0 1 ] [ 0 -2 1 ] 452
[ 2 -2 2 ] [ 2 0 2 ] [ 0 2 2 ] [ -2 2 2 ] [ -2 0 2 ] [ 0 -2 2 ] 512
[ 2 -2 3 ] [ 2 0 3 ] [ 0 2 3 ] [ -2 2 3 ] [ -2 0 3 ] [ 0 -2 3 ] 2623
[ 2 -1 2 ] [ 1 1 2 ] [ -1 2 2 ] [ -2 1 2 ] [ -1 -1 2 ] [ 1 -2 2 ] 2050
[ 2 0 1 ] [ 0 2 1 ] [ -2 2 1 ] [ -2 0 1 ] [ 0 -2 1 ] [ 2 -2 1 ] 452
[ 2 0 2 ] [ 0 2 2 ] [ -2 2 2 ] [ -2 0 2 ] [ 0 -2 2 ] [ 2 -2 2 ] 512
[ 2 0 3 ] [ 0 2 3 ] [ -2 2 3 ] [ -2 0 3 ] [ 0 -2 3 ] [ 2 -2 3 ] 2623
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C. Extended tables to Sec. 2.2

Here, we add additional tables relevant for the discussions on the X-ray reflections available
with the in-situ MBE growth chamber (see Sec. 2.2, in particular Fig. 2.3).4 All data is
based on 15keV energy of the incident X-ray radiation and 0.7% increased vertical lattice
constant of wurtzite in comparison to zinc blende [119]. Only scattering for which the
incoming window and outgoing window is not equal is considered. The scan range for each
index of the Miller indices was −8 . . . 8.

Table C.3.: List of Bragg reflections of cubic GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [111]zyc oriented surface. Constraints

are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦.

reflection
(cubic)

|S|2 [electrons] (qz,qr) [1/Å] ‖G‖2 [1/Å] Θreflec.
Bragg [◦] reflection

(wurtzite)
[ -2 2 2 ] 4 (1.2834,3.6299) 3.8501 14.67 [ -2 2 1.3 ]
[ -1 -1 3 ] 2050 (0.6417,3.6299) 3.6862 14.03 [ -2 0 0.67 ]
[ -1 1 1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ -1 1 0.67 ]
[ -1 1 3 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ -2 1 2 ]
[ -1 3 -1 ] 2050 (0.6417,3.6299) 3.6862 14.03 [ 0 2 0.67 ]
[ -1 3 1 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ -1 2 2 ]
[ 0 0 2 ] 4 (1.2834,1.8149) 2.2228 8.41 [ -1 0 1.3 ]
[ 0 0 4 ] 4096 (2.5667,3.6299) 4.4457 17.00 [ -2 0 2.7 ]
[ 0 2 0 ] 4 (1.2834,1.8149) 2.2228 8.41 [ 0 1 1.3 ]
[ 0 2 2 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ -1 1 2.7 ]
[ 0 4 0 ] 4096 (2.5667,3.6299) 4.4457 17.00 [ 0 2 2.7 ]
[ 1 -1 1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ 0 -1 0.67 ]
[ 1 -1 3 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ -1 -1 2 ]
[ 1 1 -1 ] 2050 (0.6417,1.8149) 1.9250 7.27 [ 1 0 0.67 ]
[ 1 1 1 ] 2050 (1.9250,0.0000) 1.9250 7.27 [ 0 0 2 ]
[ 1 1 3 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ -1 0 3.3 ]
[ 1 3 -1 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ 1 1 2 ]
[ 1 3 1 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ 0 1 3.3 ]
[ 2 -2 2 ] 4 (1.2834,3.6299) 3.8501 14.67 [ 0 -2 1.3 ]
[ 2 0 0 ] 4 (1.2834,1.8149) 2.2228 8.41 [ 1 -1 1.3 ]
[ 2 0 2 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ 0 -1 2.7 ]
[ 2 2 -2 ] 4 (1.2834,3.6299) 3.8501 14.67 [ 2 0 1.3 ]
[ 2 2 0 ] 4096 (2.5667,1.8149) 3.1436 11.93 [ 1 0 2.7 ]
[ 2 2 2 ] 4 (3.8501,0.0000) 3.8501 14.67 [ 0 0 4 ]
[ 3 -1 -1 ] 2050 (0.6417,3.6299) 3.6862 14.03 [ 2 -2 0.67 ]
[ 3 -1 1 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ 1 -2 2 ]
[ 3 1 -1 ] 2050 (1.9250,3.1436) 3.6862 14.03 [ 2 -1 2 ]
[ 3 1 1 ] 2050 (3.2084,1.8149) 3.6862 14.03 [ 1 -1 3.3 ]
[ 4 0 0 ] 4096 (2.5667,3.6299) 4.4457 17.00 [ 2 -2 2.7 ]

4For information on rotations of the substrate by 60◦ and multiples thereof, see appendix B.
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Table C.4.: List of Bragg reflections of wurtzite GaAs which can be studied with the current PMBE
growth chamber at an X-ray energy of 15keV and [00.1]wyh2 oriented surface. Con-

straints are Θ
(Max)
In = 18◦, Θ

(Max)
Out = 18◦.

reflection
(wurtzite)

|S|2 [electrons] (qz,qr) [1/Å] ‖G‖2 [1/Å] Θreflec.
Bragg [◦] reflection (cubic)

[ -2 0 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ -0.83 -0.83 3.2 ]
[ -2 0 2 ] 512 (1.9117,3.6299) 4.1025 15.65 [ -0.33 -0.33 3.7 ]
[ -2 0 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ 0.17 0.17 4.2 ]
[ -2 1 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ -1 1 3 ]
[ -2 2 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ -2.2 1.8 1.8 ]
[ -2 2 2 ] 512 (1.9117,3.6299) 4.1025 15.65 [ -1.7 2.3 2.3 ]
[ -2 2 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ -1.2 2.8 2.8 ]
[ -1 -1 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ 1 -1 3 ]
[ -1 0 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.17 -0.17 1.8 ]
[ -1 0 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 0.33 0.33 2.3 ]
[ -1 0 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.83 0.83 2.8 ]
[ -1 0 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 1.3 1.3 3.3 ]
[ -1 1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.83 1.2 1.2 ]
[ -1 1 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ -0.33 1.7 1.7 ]
[ -1 1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.17 2.2 2.2 ]
[ -1 1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 0.67 2.7 2.7 ]
[ -1 2 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ -1 3 1 ]
[ 0 -2 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ 1.8 -2.2 1.8 ]
[ 0 -2 2 ] 513 (1.9117,3.6299) 4.1025 15.65 [ 2.3 -1.7 2.3 ]
[ 0 -2 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ 2.8 -1.2 2.8 ]
[ 0 -1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.2 -0.83 1.2 ]
[ 0 -1 2 ] 512 (1.9117,1.8149) 2.6360 9.98 [ 1.7 -0.33 1.7 ]
[ 0 -1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.2 0.17 2.2 ]
[ 0 -1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 2.7 0.67 2.7 ]
[ 0 0 2 ] 2050 (1.9117,0.0000) 1.9117 7.22 [ 1 1 1 ]
[ 0 0 4 ] 4 (3.8233,0.0000) 3.8233 14.57 [ 2 2 2 ]
[ 0 1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ -0.17 1.8 -0.17 ]
[ 0 1 2 ] 512 (1.9117,1.8149) 2.6360 9.98 [ 0.33 2.3 0.33 ]
[ 0 1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 0.83 2.8 0.83 ]
[ 0 1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 1.3 3.3 1.3 ]
[ 0 2 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ -0.83 3.2 -0.83 ]
[ 0 2 2 ] 513 (1.9117,3.6299) 4.1025 15.65 [ -0.33 3.7 -0.33 ]
[ 0 2 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ 0.17 4.2 0.17 ]
[ 1 -2 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ 3 -1 1 ]
[ 1 -1 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.8 -0.17 -0.17 ]
[ 1 -1 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 2.3 0.33 0.33 ]
[ 1 -1 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.8 0.83 0.83 ]
[ 1 -1 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 3.3 1.3 1.3 ]
[ 1 0 1 ] 452 (0.9558,1.8149) 2.0512 7.75 [ 1.2 1.2 -0.83 ]
[ 1 0 2 ] 513 (1.9117,1.8149) 2.6360 9.98 [ 1.7 1.7 -0.33 ]
[ 1 0 3 ] 2623 (2.8675,1.8149) 3.3936 12.90 [ 2.2 2.2 0.17 ]
[ 1 0 4 ] 1 (3.8233,1.8149) 4.2322 16.16 [ 2.7 2.7 0.67 ]
[ 1 1 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ 1 3 -1 ]
[ 2 -2 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ 3.2 -0.83 -0.83 ]
[ 2 -2 2 ] 512 (1.9117,3.6299) 4.1025 15.65 [ 3.7 -0.33 -0.33 ]
[ 2 -2 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ 4.2 0.17 0.17 ]
[ 2 -1 2 ] 2050 (1.9117,3.1436) 3.6792 14.00 [ 3 1 -1 ]
[ 2 0 1 ] 452 (0.9558,3.6299) 3.7536 14.29 [ 1.8 1.8 -2.2 ]
[ 2 0 2 ] 512 (1.9117,3.6299) 4.1025 15.65 [ 2.3 2.3 -1.7 ]
[ 2 0 3 ] 2623 (2.8675,3.6299) 4.6258 17.71 [ 2.8 2.8 -1.2 ]
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D. Exemplary SEM images from the samples S1, S2 and S2e

(a) sample 1

(b) sample 2

(c) sample 2e

Figure D.4.: Post-growth ex-situ SEM images of the samples which are discussed in Secs. 3
and 4. Colors have been adopted for better contrast. Images have been
taken by Philipp Schroth, Jean-Wolfgang Hornung and Robby Prang and are
reproduced with permission.





E. Relation between mean and currently growing polytype fractions

E. Relation between mean and currently growing polytype
fractions

Here, we derive the relation between the total fractions fP of a particular phase P ∈
{ZB,WZ} in the entire set of wires at times t and t+ δt and their relation to the fraction
of that particular phase in the newly grown fragments during the time δt at the top of the
wire. We refer to this fraction of phase P in the newly grown domains during the time t
to t+ δt as differential phase fraction f̃P(t, t+ δt).

We assume:

1. No phase transformations take place in the part of the wires already grown before
time t.

2. The diameter of the wires is constant (“no radial growth”).

3. The height of the wires is a linear function of time after an incubation time tInc.

Based on the first assumption, we can express total fraction fP(t+ δt) of a single wire as

fP(t+ δt) =

(
V (t)

V (t) + δV (t, t+ δt)

)
fP(t) +

(
δV (t, t+ δt)

V (t) + δV (t, t+ δt)

)
f̃P(t, t+ δt) (9.13)

where V (t) is volume of the wire at time t and δV (t, t + δt) is the volume grown in
the time interval t to t + δt. The second assumption implies that V (t) = A0 h(t) and
δV (t, t+δt) = A0 δh(t, t+δt) where h(t) is wire’s height after time t and δh(t, t+δt) is the
change of height from t to t+δt. Finally, the third approximation induces the equivalences

h(t) = g · (t− tInc) , (9.14a)

δh(t, t+ δt) = h(t+ δt)− h(t) = g · δt , (9.14b)

where g is the growth rate of the wires in height with dimension [ g ] = 1m
s . Therefore, Eq.

(9.13) simplifies to

fP(t+ δt) =

(
t− tInc

t− tInc + δt

)
fP(t) +

(
δt

t− tInc + δt

)
f̃P(t, t+ δt) . (9.15)

Hence, the finite difference approximation for the differential phase fraction f̃P(t, t+ δt) is

f̃P(t, t+ δt) =

(
t− tInc + δt

δt

)
fP(t+ δt)−

(
t− tInc

δt

)
fP(t) . (9.16)

However, this finite difference approximation is very sensitive to noise. Typically, it is bet-
ter to fit the (less noisy, discrete) total fraction fP(t) by a time-continuous model function
(e.g., a polynomial of degree n) and calculate the differential phase fraction f̃P(t, t+δt) an-
alytically in the limit δt→ 0. Hence, f̃P(t, t+ δt) simplifies to f̃P(t) ≡ limδt→0 f̃P(t, t+ δt).
In the limit δt→ 0, it is valid to approximate fP(t+ δt) by

fP(t+ δt) ≈ fP(t) + δt

(
∂fP(t)

∂t

)
. (9.17)

Therefore, we obtain from Eq. (9.16) the result

f̃P(t) = lim
δt→0

f̃P(t, t+ δt) (9.18a)

= lim
δt→0

[(
t− tInc + δt

δt

)(
fP(t) + δt

(
∂fP(t)

∂t

))
−
(
t− tInc

δt

)
fP(t)

]
(9.18b)

= fP(t) + (t− tInc)

(
∂fP(t)

∂t

)
. (9.18c)
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Suppose, the total fraction fP(t) can be modeled well by a polynomial of degree n, i.e.,

fP(t) =
n∑
k=0

pk(t− tInc)
k . (9.19)

The differential fraction f̃P(t) is then given by the polynomial

f̃P(t) =
n∑
k=0

(1 + k) pk (t− tInc)
k (9.20)

of the same degree n, but coefficients p̃k = (1 + k) pk. For the special case of a polynomial
of degree 2, the result for f̃P(t) is

f̃P(t) = p0 + 2p1(t− tInc) + 3p2(t− tInc)
2 . (9.21)

However, it is important to keep in mind, that our derivation is based on a single wire.
Therefore, errors in f̃P are induced by the fact that different wires are not identical in
height and incubation time, but may have a broad distribution for these quantities. In
addition, radial growth might need to be included – depending on the ratio of the axial
and radial growth rate.
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F. Structure of the XML File for simulations of GaAs nanowires
on Si(111)

In this section, we exemplary add detailed information on the structure of the XML-based
configuration files for the simulations concerning polytypic GaAs nanowires as discussed
in Sec. 4.3.

The basic structure of the XML file is as follows:

<?xml version="1.0" ?>

<InSituWireScattering debugLevel="0"

maxNumberOfThreads="24" logFilename="inSitu.log">

[List of Tasks]

</InSituWireScattering>

The list of tasks to be done can be any number of entries from the two possible topics:

• Extraction of some statistical information for a given model for the stacking sequence.
No X-ray simulations are performed. In this case, the task to be done has the
following structure:

<ExtractStatistics fileBasename="./output" numberOfVolumes="1">

[Properties]

</ExtractStatistics>

• Calculation of the qz intensity profile for some X-ray Bragg reflection. In this case,
the task to be done has the following structure:

<LineProfileQZ fileBasename="./output" qx="0.0" qy="0.0"

qzMin="1.907" qzStep="0.000025" qzMax="1.93" qzResolution="0.001"

hklHex="(0,0,3)" numberOfIncoherentVolumes="2500">

[Properties]

</LineProfileQZ>

Here, “hklHex” refers to the indices of (hkl)zyh1 as defined in Sec. 1.4.

In both cases, properties must contain a section WireModeling in the follow structure:

<WireModeling wiresInSingleCoherenceVolume="1">

<LatticeParameter

cGaAsWz="6.573563633494758628"

cGaAsZnB="9.791802830429134003"

aGaAsWz="3.9974868"

aGaAsZnB="3.9974868"

/>

<StackingModel>

[SpecificModels]

</StackingModel>

</WireModeling>

Lattice parameters are in Angstroms. Specific models, which have been implemented, are:



Appendix

<pureZnB probability="0.0">

[Geometry]

</pureZnB>

<pureWz probability="0.0">

[Geometry]

</<pureWz>

<randomStackingLayersWithoutRepetitions probability="0.0">

[Geometry]

</randomStackingLayersWithoutRepetitions>

<randomStackingHexOrZnB probability="0.0" pZnB="0.75">

[Geometry]

</randomStackingHexOrZnB>

<markovChain probability="0.00"

pStartWz="0.75" pSwitchHexToZnB="0.01" pSwitchZnBToWz="0.0075">

[Geometry]

</markovChain>

<markovChainLayerDependentProbabilityLinear probability="0.0"

pStartWz="0.75"

pSwitchHexToZnBSlopePerLayer="0.0" pSwitchHexToZnBLayerZero="0.01"

pSwitchZnBToWzSlopePerLayer="0.0" pSwitchZnBToWzLayerZero="0.0075">

[Geometry]

</markovChainLayerDependentProbabilityLinear>

<phaseLengthDistributionBasedWires probability="1.0" pStartWz="0.5">

[Geometry]

<StatisticalDistributionLengthLayersZnB>

[DistributionDefinition]

</StatisticalDistributionLengthLayersZnB>

<StatisticalDistributionLengthLayersWz>

[DistributionDefinition]

</StatisticalDistributionLengthLayersWz>

</phaseLengthDistributionBasedWires>

In principle, the stacking model and its particular values within a wire can depend on
the geometry of a wire. Therefore, we defined that the geometry is a sub-element of the
specific models. The geometry contains information about the diameter, the height and
position of the center of each wire in the following format:

<Diameter

shapeGeometry="0"

shapeDistributionMean="400"

shapeDistributionWidth="50"

/>

<Height model="0" mean="5500" width="500" />

<WirePosition model="0"/>
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F. Structure of the XML File for simulations of GaAs nanowires on Si(111)

For the definition of the models, we refer the reader directly to the source code. In case of
“phaseLengthDistributionBasedWires”, an element to which we referred as Distribution-
Definition needs to be defined and must be one of the following elements:

<Exponential mu="100" pDeviateMarkov4HEnhance="0.0"/>

<Gamma powerLawExp="0.0" expInvDecayConst="100.0"

pDeviateMarkov4HEnhance="0.0"/>

<Weibull shape="2.0" expInvDecayConst="100.0"

pDeviateMarkov4HEnhance="0.0"/>

<Rectangular minimumLayers="1" maximumLayers="100"

pDeviateMarkov4HEnhance="0.0"/>

<Pareto tailIndex="0.4" minimumLayers="1.0"

pDeviateMarkov4HEnhance="0.0"/>

<Poisson mu="100" pDeviateMarkov4HEnhance="0.0"/>

<Logarithmic p="0.5" pDeviateMarkov4HEnhance="0.0"/>

<Gauss mu="100" sigma="5" pDeviateMarkov4HEnhance="0.0"/>

<Laplace mu="100" shift="30" pDeviateMarkov4HEnhance="0.0"/>

<LevySkew scale="1.0" exponent="0.5"

skewness="0.0" shiftOffset="0.0"

pDeviateMarkov4HEnhance="0.0"/>

<Logistisch mu="100.0" expInvDecayConst="100.0"

pDeviateMarkov4HEnhance="0.0"/>

Random numbers according to these distributions are generated with the GSL [147]. The
first group of distributions (up to logarithmic) yields a non-negative number of layers
only. If zero is a possible result of the respective distribution, an offset of one is added to
achieve a minimum number of one layer. If the respective distribution can yield negative
numbers, parameters are used as they are typically referred to, but for negative results a
new random number is drawn, i.e., the distribution is truncated from below at one layer. In
the main text, we only discuss results for the first group of distributions and the Gaussian
distribution. The parameter pDeviateMarkov4HEnhance refers to α in Eq. (4.43b) where
pMarkov is substituted by any of the above distributions.

In addition to the WireModeling-element, the calculation of the qz profile via <LinePro-
fileQZ/> requires additionally the element

<AtomicScattering Ga="1.0" As="1.0"/>

as sub-element.

Finally, a full XML file for a calculation of the X-ray profile near the (111)zyc reflection
with enhanced 4H polytype might look like this:

<?xml version="1.0" ?>

<InSituWireScattering debugLevel="0"

maxNumberOfThreads="24" logFilename="inSitu.log" >

<LineProfileQZ fileBasename="./output"

qx="0.0" qy="0.0" qzMin="1.90" qzMax="1.94" qzStep="0.00002"

qzResolution="0.0" hklHex="(0,0,3)" numberOfIncoherentVolumes="2500">
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<AtomicScattering Ga="5.605" As="5.8977"/>

<WireModeling wiresInSingleCoherenceVolume="1"

exportWireStackingToFile="0" exportWireStackingFilename="wires.log">

<LatticeParameter

cGaAsWz="6.573563633494758628" cGaAsZnB="9.791802830429134003"

aGaAsWz="3.9974868" aGaAsZnB="3.9974868"/>

<StackingModel>

<phaseLengthDistributionBasedWires probability="1.0"

nrOfEventsForDistributionVerification="0" pStartWz="0.5">

<StatisticalDistributionLengthLayersZnB>

<Exponential mu="125.0" pDeviateMarkov4HEnhance="0.995"/>

</StatisticalDistributionLengthLayersZnB>

<StatisticalDistributionLengthLayersWz>

<Exponential mu="100.0" pDeviateMarkov4HEnhance="0.990"/>

</StatisticalDistributionLengthLayersWz>

<Diameter shapeGeometry="0"

shapeDistributionMean="400" shapeDistributionWidth="50"/>

<Height model="0" mean="7500" width="1000"/>

<WirePosition model="0"/>

</phaseLengthDistributionBasedWires>

</StackingModel>

</WireModeling>

</LineProfileQZ>

</InSituWireScattering>

The simulations presented in Sec. 1.2 and in part II of this manuscript are also configured
by XML files. However, in those cases we refer the reader to the respective source codes
and the example XML file therein.
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G. Operator polynomial approach for combining MA and QΓ;λΓ

Here, we shortly comment on the combination of randomized overrelaxation QΓ;λΓ
and our

magnitude constraints MA starting from HIO as a projection polynomial (i.e., Eq. (6.52c)).
For the understanding of this discussion, it is required to study Sec. 7.4 in detail first.

In this approach, it is important to distinguish if we introduce overrelaxation QΓ;λΓ
or

magnitude constraints MA first in Eq. (6.52c):

The transformation from the operator polynomial (7.6) to an projection polynomial (7.7b)
relies on the linearity of the operator PΩ. Therefore, this transformation can no longer be
performed if the substitution (7.16a) is performed first – irrespective of taking into account
the estimation of the averages ζ̄j by Eq. (7.21a) or not. Only if we introduce overrelaxation
first and then include the constraints MA by substitution of PΩ as a second step, the
resulting operator is a projection polynomial as long as we assume the averages ζ̄j to be
known a priori . Therefore, this sequence of incorporation of randomized overrelaxation
and the magnitude constraints should be preferred.

However, once we include the estimation of the averages ζ̄j as defined in Eq. (7.21a), the
operator is no longer contained in the set of projection polynomials irrespective of the
order of substitution. Nonetheless, it can still be employed as an iterative prescription
during the reconstruction.

In analogy to Eq. (7.16b), but after the substitutions PΩ → PΩ,A (see Eq. (7.16a)) and
(7.22) in the projection polynomial of the HIOOR-algorithm (see Eq. (7.7b)), we obtain

Ĥ
(OP)
HIO+OR+A(β, λΓ = 1 + γΓ) = [1 + βγΓ] + [−1− γΓ(1 + β)] PΩMA−

[−β(1 + γΓ)] PΓ + [(1 + β)(1 + γΓ)] PΩMAPΓ . (9.22)

γΓ is still uniformly distributed in [−ν, ν]. Still, the property Ĥ
(OP)
HIO+OR+A(β, λΓ) %eff = %eff

is guaranteed for all β and λΓ by construction.

This formula establishes the result of the combination randomized overrelaxation and our
magnitude constraints starting from the projection polynomial approach.
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macher.

”
Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer“. In:

Journal of Crystal Growth 353.1 (2012), pp. 39 –46.

[69] Peter Krogstrup, Stefano Curiotto, Erik Johnson, Martin Aagesen, Jesper Nyg̊ard,
and Dominique Chatain.

”
Impact of the Liquid Phase Shape on the Structure of

III-V Nanowires“. In: Physical Review Letters 106.12 (Mar. 2011), p. 125505.

[70] Michael Moseler, Felipe Cervantes-Sodi, Stephan Hofmann, Gábor Csányi, and
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