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Abstract

Many-light rendering has proven to be an efficient and versatile solution for generating synthetic
images of virtual scenes. The concept of representing all lighting in the scene using a set of
carefully chosen virtual point lights has, however, its specific pitfalls. In particular, contracting
all radiant energy into a finite set of infinitesimal emitters leads to singularities, which make
high-quality results hard to obtain. Most existing techniques thus simply accept visual artifacts
or some form of a systematic error. We present several approaches based on virtual lights that
aim at capturing the light transport without compromising quality, and while preserving the
elegance and efficiency of many-light rendering.

We first analyze a crucial component of high-quality rendering with virtual point lights, the so-
called bias compensation that counteracts the systematic error. By reformulating the integration
scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive,
high-quality lighting on surfaces, and one for handling scenes with participating media. We then
continue investigating the more general problem of solving the light transport in the presence of
participating media and present two lighting primitives for many-light rendering: the virtual ray
light and the virtual beam light. Representing scattered light with the first primitive significantly
reduces the degree of the singularity in the integrand—the major deficiency of rendering with
virtual point lights—thereby minimizing the artifacts and allowing for more efficient unbiased
computation. The second primitive then avoids the singularity completely by redistributing the
emitted energy over the volume of the beam. We demonstrate that these two lighting primi-
tives enable faster convergence and provide better temporal stability than traditional many-light
methods based on virtual point lights.

We also address the main bottleneck of (not only) many-light rendering—the visibility testing—
and present a novel accelerating structure for fast, approximate ray tracing. Our rasterized bound-
ing volume hierarchies decouple the accelerator from the input geometry by representing the ge-
ometry as a collection of hierarchically organized height fields. We show that in addition to fast
ray tracing, the hierarchy has a low memory footprint, provides inherent surface parametriza-
tion, and natively supports level-of-detail rendering. We demonstrate its advantages in various
applications.



xxii



Abstrakt

Der sogenannte Many-light Rendering Ansatz hat sich als effiziente und vielseitige Lösung für
die physikalisch-basierte Berechnung des Lichttransports für die Erstellung synthetischer Bilder
virtueller Szenen bewährt. Dieses Konzept, bei dem die gesamte Beleuchtung in der Szene
durch eine Menge von virtuellen Punktlichtquellen approximiert wird, weist jedoch besondere
Probleme auf, die bei der Bilderzeugung berücksichtigt werden müssen. Insbesondere führt
das Konzentrieren der gesamten Strahlungsenergie auf eine endlichen Menge infinitesimaler
Quellen zu Singularitäten, die als störende Artefakte in den erzeugten Bildern sichtbar sind. Die
meisten der existierenden Verfahren aus dieser Klasse von Ansätzen nehmen diese Artefakte in
Kauf, oder vermeiden sie durch Begrenzung der Singularitäten, was jedoch zu systematischen
Fehlern (engl. bias) führt. In dieser Arbeit werden mehrere auf virtuellen Punktlichtquellen
aufbauende Ansätze vorgestellt, deren Ziel es ist, den Lichttransport in einer virtuellen Szene
ohne sichtbare Qualitätsverluste bei der Darstellung zu erfassen und dabei die Eleganz und
Effizienz der Many-light Rendering-Methoden beizubehalten.

Zunächst wird der Ansatz der sogenannten Bias Compensation analysiert, der eine Möglichkeit
darstellt dem systematischen Fehler entgegenzuwirken und eine wichtige Komponente für hoch-
qualitatives Rendering ist. Eine Umformulierung des Integrationsschemas führt zu zwei nu-
merisch effizienten Verfahren, wobei sich eines auf interaktive, qualitativ hochwertige Beleuch-
tung von Oberflächen konzentriert und das andere auf die Berechnung in Szenen mit Flächen
und partizipierenden Medien. Das letztere, allgemeinere Problem des Lichttransports wird in
später weiter untersucht und zwei neue Beleuchtungsprimitive für das Many-light Rendering
vorgestellt: das Virtual Ray Light und das Virtual Beam Light. Die Darstellung des gestreuten
Lichts in partizipierenden Medien durch das erstgenannte Primitiv, entlang von Strahlen anstatt
an Punkten konzentriert, reduziert den Grad der Singularität und somit die Artefakte erhe-
blich. Das zweite Primitiv vermeidet diese Singularitäten vollständig, indem die abgestrahlte
Energie über das Volumen eines Strahlenbündels (beam) verteilt wird. Es wird gezeigt, dass
diese Berechnung des Lichttransports mit diesen Beleuchtungsprimitiven schneller konvergiert
und zudem zeitlich kohärentere Resultate als traditionelle Many-light Rendering-Methoden, die
auf virtuellen Punktlichtquellen basieren, liefert.

Letztlich wird außerdem eine für die Performanz der Many-light Rendering-Methoden (und an-
derer Ray Tracing Verfahren) kritische Operation—der Sichtbarkeitstest—untersucht. Es wird
eine neuartige Beschleunigungsstruktur für schnelles, approximatives Ray Tracing vorgestellt.
Diese Rasterized Bounding Volume Hierarchies entkoppeln die Repräsentation die Geometrie für
Schnittberechnungen von der Eingabegeometrie, indem diese als eine hierarchische Ansamm-
lung von Höhenkarten, also bildbasiert, dargestellt wird. Es wird gezeigt, dass diese Datenstruk-
tur nicht nur schnelles Ray Tracing erlaubt, sondern zudem geringeren Speicherbedarf benötigt,
eine inhärente Parametrisierung der Oberflächen, sowie adaptives Detail bietet. Diese Aspekte
werden anhand von unterschiedlichen Anwendungsfällen untersucht.
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Summary

Creating photorealistic images—one of the extensively sought goals of computer graphics—
is an intricate and computationally intensive task. Many applications that demand realistic-
looking images require the propagation of light to be simulated accurately and with emphasis
on physical correctness. In practice, this amounts to not only evaluating integro-differential
equations that govern light transport, but also carrying out the evaluation in a reasonable time
frame. This becomes challenging especially in scenes with participating media, where light
scatters on surfaces as well as inside volumes. In this thesis, we propose several new algorithms
and improvements to existing approaches that aim at efficient rendering of such scenes.

Many-Light Algorithms

We build atop instant radiosity [Keller 1997], an industry-verified algorithm that approximates
costly light transport using a collection of virtual point lights (VPLs); thus it is commonly referred
to as a many-light approach. In a nutshell, many-light algorithms trace a number of photon paths
from light sources, create a VPL whenever a photon is reflected off a surface or scatters inside a
medium (see Figure 1.a), and use these VPLs to illuminate the scene and thus approximate the
expensive multi-bounce light transport. In Chapter 3, we provide a detailed explanation and an
overview of existing many-light techniques; the chapter is based on a state-of-the-art survey:

Dachsbacher, C., K ˇ

rivánek, J., Hašan, M., Arbree, A., Walter, B., and Novák, J. [2014]. Scalable
realistic rendering with many-light methods. Computer Graphics Forum, 33(1):88–104.

In contrast to other approaches, many-light algorithms allow for coarse approximations in real-
time, accurate rendering in minutes, as well as convergence in the limit. While being extremely
efficient and versatile, many-light rendering suffers from a distinct drawback: the underlying
mathematical formulation is plagued by a singularity. The singularity stems from contracting
all the energy in the scene into a finite number of points, the VPLs. When a VPL illuminates the
scene, its contribution to each receiving point is proportional to the inverse squared distance be-
tween the two points. Nearby surfaces and volumes thus receive significantly more energy then
distant ones, causing the rendered image to suffer from distracting, high intensity “splotches”.

These artifacts can be reduced by creating more VPLs; however, avoiding them completely is
beyond computational resources of any reasonable renderer. Indeed, the only option to truly
remove them is to bound the contribution of each VPL by some user defined maximum. The
more we bound the fewer artifacts we have; however, at the same time we also selectively remove
energy and thereby bias the computation. The energy loss leads to artificial darkening in concave
areas and change in material appearance; and should be thus avoided or compensated for.
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(a) Virtual Point Lights
(VPLs)

(b) Virtual Ray Lights
(VRLs)

(c) Virtual Beam Lights
(VBLs)

Figure 1: Many-light algorithms represent multi-bounce illumination with a set of virtual lights. In addition
to improving the existing VPL-based approach (a), we present two new primitives: virtual ray lights (b)
and virtual beam lights (c), that overcome the characteristic problem of point-based many-light techniques
and enable more efficient integration of the light transport.

In Chapter 4, we study Monte Carlo approaches for recovering the lost energy. We note that
existing techniques, despite their need to recover only a small portion of the overall illumination,
often increase the rendering time by orders of magnitude and clutter the otherwise elegant
algorithm. We propose a number of approximations that improve the efficiency and simplify
the bias compensation. We demonstrate that the amount of recovered energy quickly drops
with each additional bounce of light, and thus not more than two or three bounces are usually
required. In the presence of participating media, we also show that assuming local homogeneity
and no occlusion makes the technique GPU-friendly and significantly accelerates rendering of
heterogeneous media. Based on these findings, we propose an approximate bias compensation that
recovers the missing illumination at low costs and thus preserves the efficiency of point-based
many-light algorithms. The technique is tailored for scenes with participating media, and was
published in:

Engelhardt, T., Novák, J., Schmidt, T.-W., and Dachsbacher, C. [2012]. Approximate bias compen-
sation for rendering scenes with heterogeneous participating media. Computer Graphics Forum (Proc.
of Pacific Graphics), 31(7):2145–2154.

We also demonstrate that the illumination that is removed by bounding, and successively re-
covered using the bias compensation, is highly localized. This allows us to reformulate the
rendering algorithm and explicitly split the computation into: bounded light transport between
distant points, which is computed using VPLs; and residual transport between nearby points. In
Chapter 5, we show that the residual transport between surfaces can be estimated at interactive
frame rates using a hierarchical integration in screen space. The technique was presented in:

Novák, J., Engelhardt, T., and Dachsbacher, C. [2011a]. Screen-space bias compensation for inter-
active high-quality global illumination with virtual point lights. In Proc. of Symposium on Interactive
3D Graphics and Games, pp. 119–124. ACM.

The major drawback of all bias compensation techniques is that they in some sense reduce
the elegance and simplicity of the original approach. The problem is conceptual: we first re-
move short-distance illumination of VPLs to subsequently recover it using a different integra-
tion scheme. This would not have been necessary if we managed to avoid the problem-causing
singularity in the first place.
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In participating media, scattering of light can be formulated continuously along the directions
of travel. We leverage this observation and replace VPLs with virtual ray lights (VRLs), which
are formed by entire linear segments instead of just vertices of the photon path (see Figure 1.b).
Although computing the incident light due to a ray light is slightly more expensive than with
a point light—we need to integrate the emitted energy along the length of the ray—distributing
the energy along lines provably lowers the degree of the singularity. This in practice reduces
the major weakness of many-light algorithms, i.e. the distracting “splotchy” artifacts, improves
the convergence and temporal stability, and brings down the overall rendering cost. Virtual ray
lights and their efficient sampling are described in detail in Chapter 6 and appeared in:

Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. [2012b]. Virtual ray lights for ren-
dering scenes with participating media. ACM Transactions on Graphics (Proc. of SIGGRAPH), 31(4):60:1–
60:11.

In order to avoid the singularity completely, we propose to further inflate the VRL into a virtual
beam light (VBL). Our motivation is to distribute the energy of the infinitesimal ray light over a
cylindrical region with finite thickness (see Figure 1.c). As such, the singularity disappears from
the integrand and we no longer need to bound the light transport and subsequently compensate
for the missing energy. The price to pay is the slight overblurring of illumination; however,
we formulate the rendering algorithm progressively, ensuring that the thickness of each VBL
reduces over time, the blurring diminishes, and the estimation is asymptotically consistent. VBLs
better preserve the appearance of materials and media, do not require special treatment to avoid
artifacts, and represent the current state of the art in rendering scenes with participating media
using virtual lights. The algorithm was originally published in:

Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. [2012a]. Progressive virtual beam
lights. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering), 31(4):1407–1413.

Acceleration of Visibility Computation

One of the common denominators of all rendering algorithms is that they need to resolve the
mutual visibility between points in the scene. Many-light methods are no exception to this; the
visibility is evaluated when tracing photons as well as tested when connecting shading points
to virtual lights. In order to accelerate visibility computation, we present the rasterized bounding
volume hierarchy (RBVH); an acceleration structure for fast, approximate ray tracing.

Our key idea is to represent finely tessellated, detail geometry with a collection of height fields
(i.e. raster images storing elevation data) that are organized into a hierarchy. During construc-
tion, we identify parts that can be well represented with a single, arbitrarily-oriented height field
and rasterize and organize them into a hierarchy of bounding volumes. To trace rays, we traverse
the hierarchy and search for intersections with nearby height fields. In practice, this approach is
faster than using traditional, polygon-based acceleration structures. RBVHs also provide inher-
ent surface parameterization, which enables applications such as real-time on-surface painting
and irradiance caching. Details are presented in Chapter 8, which is based on:

Novák, J. and Dachsbacher, C. [2012]. Rasterized bounding volume hierarchies. Computer Graphics
Forum (Proc. of Eurographics), 31(3):403–412.
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Zusammenfassung

Das Erstellen photorealistischer Bilder—seit Anbeginn eines der Ziele der Computergrafik—
ist ein aufwändiger und rechenintensiver Prozess. Dies ist vor allem der Fall, da hierzu die
Lichtausbreitung in einer virtuellen Szene berechnet werden muss. Viele Anwendungen sind
zudem darauf angewiesen, dass diese Simulation präzise und auf der Basis physikalischer Mod-
elle berechnet wird. In der Praxis kommt hinzu, dass die Auswertung der zugrundeliegen-
den Integro-Differentialgleichungen, die die Licht-Material-Interaktionen beschreiben, innerhalb
vertretbarer Zeitspannen erfolgen muss. Dies stellt insbesondere in Szenen mit partizipierenden
Medien eine Herausforderung dar, da in diesen das Licht nicht nur an Oberflächen, sondern an
praktisch jeder Stelle im Raum gestreut werden kann. In dieser Arbeit werden mehrere neue
Algorithmen, sowie Verbesserungen existierender Ansätze, vorgestellt, deren Ziel die effiziente
Bildsynthese solcher Szenen ist.

Many-Light-Algorithmen

Der Ursprung des Many-light Rendering Ansatzes ist das instant radiosity-Verfahren [Keller
1997], in dem die Grundidee, den Lichttransport in einer Szene durch eine Ansammlung von
virtuellen Punktlichtquellen (VPL) darzustellen, erstmals vorgestellt wurde. Im Prinzip berech-
nen Many-light-Algorithmen eine verhältnismäßig geringe Zahl von Photonen- oder Lichttrans-
portpfaden ausgehend von den Lichtquellen einer Szene und erzeugen eine VPL, wo ein Photon
an einer Oberfläche reflektiert oder in einem Volumen gestreut wird (siehe Abbildung 2.a). Die
direkte Beleuchtung der Szene durch diese VPLs stellt dann eine Approximation des gesamten
Lichttransports dar. Kapitel 3 stellt die zugrundeliegende Theorie dar und bietet einen Überblick
über existierende Many-light Rendering-Verfahren; dieses Kapitel basiert auf einem Artikel:

Dachsbacher, C., K ˇ

rivánek, J., Hašan, M., Arbree, A., Walter, B., and Novák, J. [2014]. Scalable
realistic rendering with many-light methods. Computer Graphics Forum, 33(1):88–104.

Eine Stärke des Many-light Ansatzes ist dessen Skalierbarkeit, die es erlaubt eine grobe Näherung
in Echtzeit zu berechnen, vergleichsweise genaue Resultate in wenigen Minuten zu erhalten, und
gleichzeitig Konvergenz gegen die tatsächliche Lösung garantiert. Trotz der hohen Effizienz und
Vielseitigkeit weist der Ansatz einen Nachteil auf: die zugrundeliegende mathematische For-
mulierung enthält eine Singularität, die anschaulich durch die Kontraktion des gesamten Licht-
transports einer Szene auf eine endliche Anzahl von Punkten, den VPLs, entsteht. Berechnet man
die Beleuchtung der Szene durch eine VPL, so ist ihr Beitrag zu einem Oberflächenpunkt pro-
portional zur umgekehrten quadratischen Entfernung. Nahegelegene Oberflächen und Punkte
in Volumina erhalten daher deutlich mehr Energie als weiter entfernte, was zu Artefakten in
Form von kleinen, hellen Bildregionen führt.
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Diese Artefakte können durch die Erzeugung weiterer VPLs reduziert werden; jedoch ist es na-
hezu unpraktikabel sie dadurch komplett zu vermeiden. Tatsächlich ist die einzige Möglichkeit
zur Beseitigung dieser Artefakte, den Beitrag jeder VPL zu einem Punkt auf einer Fläche bzw.
im Volumen durch ein benutzerdefiniertes Maximum zu beschränken. Je stärker der Beitrag
beschränkt wird, desto weniger Artefakte treten auf; allerdings wird gleichzeitig lokal Energie
entfernt und ein systematischer Fehler (engl. Bias) in die Berechnung eingeführt. Dieser En-
ergieverlust führt zu einer Abdunkelung konkaver Flächenstücke und zu Änderung des Ausse-
hens von Materialien und sollte daher vermieden oder besser ausgeglichen werden (engl. Bias
Compensation).

In Kapitel 4 werden Monte-Carlo-Ansätze zur Quantifizierung (und somit zur Zurückgewin-
nung) dieser entfernten Energie untersucht. Es wird gezeigt, dass diese Energiemenge nur einen
geringen Teil der transportierten Energie darstellt, existierende Verfahren aber die Gesamtrechen-
zeit oft um Größenordnungen erhöhen. Es werden eine Reihe von Näherungen vorgestellt, die
die Effizient der Zurückgewinnung deutlich steigern und deren Berechnung vereinfachen. Ins-
besondere wird ausgenutzt, dass die Menge zurückgewonnener Energie mit jeder zusätzlichen
Reflexion exponentiell abnimmt. Außerdem wird gezeigt, dass in partizipierenden Medien,
durch die Annahmen lokaler Homogenität und fehlender Verdeckung, das Verfahren effizient
auf Grafik-Hardware durchführbar ist und die Bildsynthese mit heterogenen Medien signifikant
beschleunigt werden kann. Ausgehend von diesen Resultaten erstellen wir eine Approximate Bias
Compensation vor, die die fehlende Energie mit niedrigen Kosten wiederherstellt und dadurch
die Effizienz der Many-light-Methoden bewahrt. Das Verfahren zielt ist auf Szenen mit partizip-
ierenden Medien aus und wurde in:

Engelhardt, T., Novák, J., Schmidt, T.-W., and Dachsbacher, C. [2012]. Approximate bias compen-
sation for rendering scenes with heterogeneous participating media. Computer Graphics Forum (Proc.
of Pacific Graphics), 31(7):2145–2154

veröffentlicht.

Ein weiteres Charakteristikum ist, dass die zurückgewonnene Energie nur in einem räumlich
sehr beschränkten Bereich nennenswerte Beiträge liefert. Dies erlaubt es, die Lichttransport-
gleichung umzuformulieren und die Berechnung explizit aufzuteilen: in einen beschränkten
Lichttransport zwischen weit entfernten Punkten, der mit VPLs berechnet wird, und einem
residualen Lichttransport zwischen benachbarten Punkten. In Kapitel 5 wird gezeigt, dass der
verbleibende Lichttransport zwischen Oberflächen mittels einer hierarchischen Integration im
Bildraum abgeschätzt werden kann und dies Berechnungen in interaktiver Geschwindigkeit er-
möglicht. Dieses Verfahren wurde in:

Novák, J., Engelhardt, T., and Dachsbacher, C. [2011a]. Screen-space bias compensation for inter-
active high-quality global illumination with virtual point lights. In Proc. of Symposium on Interactive
3D Graphics and Games, pp. 119–124. ACM

vorgestellt.

Trotz dieser Verbesserungen bleibt der wesentlicher Nachteil aller bias compensation-Verfahren,
dass sie in irgendeiner Weise die Eleganz und Einfachheit des ursprünglichen Ansatzes re-
duzieren. Dabei handelt es sich allerdings um ein konzeptionelles Problem: zuerst werden
die Beiträge von VPLs über kurze Entfernungen begrenzt (um Artefakte zu vermeiden), um den
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(a) Virtuelle Punktlichtquellen
(VPLs)

(b) Virtuelle lineare
Lichtquellen

(VRLs)

(c) Virtuelle Bündeln
(VBLs)

Abbildung 2: Many-light-Ansätze stellen mehrfach reflektiertes Licht als direkte Beleuchtung durch eine
Menge von virtuellen Lichtquellen dar. Neben Verbesserungen an bestehenden VPL-basierten Ansätzen
(a) werden in dieser Arbeit zwei neue Beleuchtungsprimitive vorgestellt: virtuelle lineare Strahllichter (b)
und Virtuelle Bündeln (c). Diese reduzieren bzw. vermeiden das inhärente Problem der punktbasierten
Many-Light-Ansätze und führen zu einer effizienteren Berechnung des Lichttransports.

fehlenden Lichttransport danach mittels eines anderen Integrationsschemas wieder hinzuzufü-
gen. Dies wäre nicht nötig, wenn die Singularität, die dieses Problem erzeugt, von vornherein
vermieden werden könnte.

In Kapitel 6 wird gezeigt, dass es in partizipierenden Medien möglich ist, das Konzept von
virtuellen Punktlichtquellen durch lineare Lichtquellen (Virtual Ray Lights, VRLs) zu ersetzen.
Diese stellen die Verbindungsstrecke zweier Interaktionen entlang eines Photonenpfades dar
(siehe Abbildung 2.b). Die Berechnung des einfallenden Lichts von einer VRL ist etwas teurer ist
als von einem Punktlicht, da die abgestrahlte Energie über den ganzen Strahl hinweg integriert
werden muss. Dennoch verringert das Verteilen der Energie über die ganze Länge des Strahls
den Grad der Singularität und reduziert letztendlich die Gesamtkosten für die Bildsynthese,
da die Artefakte signifikant reduziert werden. VRLs und deren effiziente Abtastung werden in
Kapitel 6 detailliert beschrieben und sind in:

Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. [2012b]. Virtual ray lights for ren-
dering scenes with participating media. ACM Transactions on Graphics (Proc. of SIGGRAPH), 31(4):60:1–
60:11

erschienen.

Um die Singularität vollständig zu vermeiden, können die strahlförmigen VRLs zu virtuellen
Bündeln (Virtual Beam Lights, VBLs) ausgedehnt werden. Die zugrundeliegende Idee ist, die
Energie des infinitesimalen Strahllichts über ein zylindrisches Gebiet mit endlicher Dicke aus-
zudehnen (siehe Abbildung 2.c). Dadurch verschwindet die Singularität gänzlich aus dem In-
tegranden und es ist nicht mehr nötig, den Lichttransport zu beschränken und nachträglich die
fehlende Energie wieder zurückzugewinnen. Diese Idee wird in einem progressiven Algorith-
mus umgesetzt, der anschaulich zu Beginn leicht unscharfe Beleuchtung berechnet, aber mit
zunehmender Rechenzeit und durch Reduzierung der Dicke der VBLs zur tatsächlichen Lösung
konvergiert. VBLs erhalten das Aussehen von Materialien und Medien besser, benötigen keine
Behandlung von Sonderfällen zur Vermeidung von Artefakten und repräsentieren den aktuellen
Stand der Technik für die Bildsynthese von partizipierenden Medien mit virtuellen Lichtquellen
dar. Der Algorithmus wurde in:
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Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. [2012a]. Progressive virtual beam
lights. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering), 31(4):1407–1413

veröffentlicht.

Beschleunigung der Sichtbarkeitsberechnung

Praktisch alle Verfahren, die die Lichtausbreitung in einer Szene berechnen, müssen während
der Berechnung überprüfen, ob zwei Punkte in einer Szene zueinander sichtbar sind, oder
ob der Lichttransport durch Flächen oder partizipierende Medien dazwischen behindert wird.
Many-light-Methoden bilden hier keine Ausnahme denn die Sichtbarkeit wird sowohl bei der
Konstruktion von Photonenpfaden, als auch bei der Berechnung der Beiträge von virtuellen
Lichtquellen zu Oberflächenpunkten oder Punkten in Volumen überprüft. Um diese Sicht-
barkeitsberechnung zu beschleunigen, wird in dieser Arbeit die Rasterized Bounding Volume Hi-
erarchy (RBVH) Beschleunigungsstruktur für schnelles, approximatives Raytracing vorgestellt.

Die zugrundeliegende Idee ist, feintessellierte und detaillierte Geometrie durch Höhenfelder
(d.h. Rasterbilder, die Höhendaten speichern) darzustellen. Während des Aufbaus der Daten-
struktur werden Teile der Eingabegeometrie identifiziert, die sich gut durch ein einzelne, beliebig
orientierte Höhenfelder darstellen lassen. Diese werden anschließend rasterisiert und in einer
Hierarchie von Hüllkörpern angeordnet (ähnlich zu den klassischen Hüllkörperhierachien für
die Beschleunigung von Raytracing). Um Strahlen zu verfolgen, wird die Hierarchie traversiert
und nach Schnitten mit Höhenfeldern gesucht. In der Praxis ist dieser Ansatz schneller als tra-
ditionelle, polygonbasierte Beschleunigungsstrukturen. RBVHs bieten außerdem eine inhärente
Oberflächenparameterisierung, die weitere Anwendungen, wie das Bemalen der Oberflächen in
Echtzeit und sogenanntes Irradiance Caching ermöglicht. Die Details hierzu werden in Kapitel 8
vorgestellt, welches auf folgender Veröffentlichung beruht:

Novák, J. and Dachsbacher, C. [2012]. Rasterized bounding volume hierarchies. Computer Graphics
Forum (Proc. of Eurographics), 31(3):403–412.
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Introduction

A painter should begin every canvas with a wash of black, because
all things in nature are dark except where exposed by the light.

— Leonardo da Vinci (1452–1519)

E ver since humans became self-aware, capturing and reproducing visual experience has
become an important instrument of communication. The first attempts to share stories
through imagery date back to prehistoric times. Starting with cave drawings, followed

by perfecting the painting craftsmanship, through photography and motion picture, all the way
to the contemporary, computer assisted image synthesis, we are on a long quest for delivering
unparalleled visual experience; be it for capturing reality or rendering imagination.

When an artist wants to project the real world onto a canvas, he knows he needs to reproduce
many intricate phenomena that light creates. From shadows, color-bleeding, caustics, to aerial
perspectives and effects due to dispersion, he must precisely replicate the outcomes of interac-
tions of light with the environment. With photography and cinematography, this became much
easier and the need for delicate painting skills was alleviated through advances in technology.
However, analog and digital light sensors can only capture what is real. Virtual worlds thus
still remain the domain of artists, and only since recently, also of computers. To convert virtual
scenes into believable images, we need to mimic physical processes that light undergoes. This
is indeed a very challenging task requiring not only a full understanding of how light interacts
and propagates through matter, but also the ability to simulate it accurately. With the recent
advent of computers, this became more tractable and we witnessed tremendous improvements
in computer generated imagery in the last three decades.

Yet there are still many problems that are not satisfyingly resolved. One of them is the propa-
gation of light in complex scenes. On a molecular level, this may seem trivial as the transport
is governed by a few well-known principles and laws. However, the exquisite intricacy comes
with the vast number of atoms forming the world around us, and the vast number of photons
that interact with them. And it is the extreme number of interactions, which we strive to simu-
late; ideally in a fraction of a second, that makes the problem extremely challenging. It seems
reasonable to ask whether we need to simulate all of these interactions. Most likely not. The
question is however ill-conditioned as many aspects of the human visual system, and perception
in general, are still not sufficiently understood. As such, drawing lines between what should
and what does not need to be simulated can easily leave us stuck in the uncanny valley1.

1The term “uncanny valley” was coined in human aesthetics and robotics signifying visual look and movement that
is almost, but not quite, human. The emotional response to such nearly human-like characters is often repulsive and
sickening.
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Realistic image synthesis is an area of computer graphics that is concerned with creating images
indistinguishable from photographs. Any progress made in this field quickly finds its use in
product design, film industry, architecture, but also in scientific visualization as efficient solu-
tions to light transport can frequently be applied to similar problems, e.g. in medicine.

The primary goal of realistic image synthesis is to reproduce all visual phenomena due to the
transport of light. Secondary—but often equally important—is the speed at which the images
are generated. Achieving a good balance between these two requires i) a suitable mathematical
framework for solving the integro-differential transport equations, ii) the right approximations
that yield speed-ups but do not compromise quality, and iii) an efficient computational approach
for realizing the solution on modern hardware. As these criteria do not always align with each
other, finding the right flavor has been, and still is, the aim of research in photorealistic rendering.

In this thesis, we build upon the so-called many-light algorithms, which exhibit great versatility
and cover a wide range of quality and performance applications. At the core of these algorithms
is an important observation that the general light transport, which is costly to simulate as pho-
tons may undergo many interactions before reaching the sensor, can be formulated as a much
simpler problem of evaluating only direct illumination from a collection of specifically generated
virtual light sources. As such, most of these algorithms fulfill the first and the third criterion of
choosing a suitable mathematical framework and an efficient computational approach. However,
they often over-simplify the simulation and thus compromise the quality of resulting images.

In a nutshell, many-light algorithms represent all indirect illumination using a set of virtual
point lights (VPLs). This brings several advantages, e.g. non-recursive evaluation, typically low
amount of noise, and the chance to efficiently handle visibility computation. Nevertheless, there
is one distinct drawback characteristic to VPL-based rendering: contracting all indirect lighting
into a finite number of infinitesimal point lights introduces singularities, i.e. points where the
integrand is undefined. Furthermore, since the radiant flux density due to a point light is
inversely proportional to the squared distance to the source, surfaces and volumes that are close
to virtual lights appear much brighter than other points in the scene. While the algorithm is still
unbiased, the resulting images suffer from high, possibly unbounded variance, which surfaces
as occasional bright “splotches” in the image. In order to remove these artifacts, most many-
light algorithms bound the contribution of each virtual light. Unfortunately, this non-uniformly
darkens the render and changes the appearance of materials.

Our goal is to improve the quality of many-light algorithms while preserving their favorable
properties, i.e. high performance, scalability, and elegance. We focus on illumination that
emphasizes the presence of virtual lights, and has so far been considered difficult to render
with many-light techniques. In particular, we aim at scenes containing glossy materials and/or
participating media. While these two phenomena may seem orthogonal, they present similar
challenges to many-light rendering. They both emphasize the discrete nature of the solution,
resulting in pronounced artifacts that plague the final image. They require more virtual lights to
capture the light transport accurately than in the case of diffuse scenes with vacuum, and finally,
they contribute immensely to the realism and visual complexity of the rendered image.

In the chapters to follow, we develop new integration techniques and introduce novel lighting
primitives that allow many-light algorithms to handle scenes with glossy surfaces and partici-
pating media more efficiently. We outline our original contributions followed by an overview of
the thesis in the next two sections.
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1.1 Overview of Original Contributions

The work presented in this thesis builds upon many-light methods. We outline our contribu-
tions that improve the bias compensation for point-based many-light techniques, present new
virtual light primitives for rendering in the presence of participating media, and describe a new
acceleration structure for fast visibility tests.

1.1.1 Efficient Bias Compensation

Our first contribution targets the efficiency of bias compensation, which can be used to “correct”
the bounded, biased solution of typical many-light algorithms. We start by analyzing the energy
that is lost due to clamping the singularity. Then we reformulate the bias compensation to enable
more efficient integration, and also propose several simplifying assumptions that have negligible
impact on quality, but yield orders of magnitude faster solutions. For greater efficiency, we
propose two techniques tailored for surfaces and volumes independently, both of which can be
easily parallelized enabling further acceleration on modern graphics hardware.

1.1.2 Ray and Beam Lights

In participating media, scattering of light happens continuously along the direction of travel. We
leverage this observation and propose a novel lighting primitive, the virtual ray light (VRL), which
is formed by an entire line segment instead of just the vertex of a photon path. Distributing the
energy along the line provably lowers the degree of the singularity. This in practice reduces
the distracting “splotchy” artifacts—the major weakness of many-light algorithms—and thus
improves the convergence, enhances temporal stability, and brings down the overall rendering
cost. In order to avoid the singularity completely, we also propose to inflate the ray light into a
virtual beam light (VBL) and further redistribute the energy over a cylindrical region with finite
thickness. To ensure convergent results, we formulate the rendering algorithm progressively,
ensuring that the error due to redistributing the energy diminishes in the limit.

1.1.3 Rasterized Bounding Volume Hierarchies

A frequent bottleneck of rendering algorithms is the computation of visibility, and many-light
algorithms are no exception. To tackle this problem we present a rasterized bounding volume hierar-
chy (RBVH); an acceleration structure for fast, approximate ray tracing. We make the observation
that decoupling visibility testing from the input, possibly finely tessellated, geometry can lead
to higher tracing performance. In order to construct an RBVH, we identify surfaces that can
be projected onto a grid without folding. Then we organize them into a hierarchy of bounding
volumes and rasterize them into a texture atlas. We show that RBVHs can achieve higher tracing
performance than traditional BVHs, and natively provide a storage for various surface signals.
We also describe a hybrid approach that enhances the robustness of our approach. The benefits
of the hierarchy are demonstrated on several applications such as real-time on-surface painting,
illumination caching, or rendering of point clouds.
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1.2 Organization of the Thesis

The thesis is organized into nine chapters. After this introduction, we lay out the fundamentals
of radiative light transport in Chapter 2. We first briefly review the history of physics concerned
with the propagation and nature of light. Then we point out important radiometric models and
quantities, describe how light interacts with surfaces and media, and gradually derive funda-
mental equations governing the propagation of light.

In Chapter 3, we focus on many-light algorithms, describe the generation and lighting with
virtual lights, and provide a detail overview of existing approaches categorized with respect to
scalability and target application.

Efficient bias compensation is the main concern of Chapters 4 and 5. We analyze the impact
of bounding the singularity and derive an efficient compensation technique for scenes with
participating media. We also formulate a new hierarchical integration scheme that enables an
efficient bias compensation between surfaces.

In Chapter 6, we present a new lighting primitive—the virtual ray light—and devise importance
sampling strategies for minimizing the variance in scenes with isotropically as well as anisotrop-
ically scattering media.

In Chapter 7, we extend the ray light primitive into a beam light, removing the singularity
completely. We also describe a progressive version of the algorithm that ensures asymptotically
convergent results.

Finally, in Chapter 8, we present a new hierarchical data structure for accelerating approximate
visibility queries. We compare its construction and performance to the current state of the art
and demonstrate its versatility on several applications.

We conclude the thesis in Chapter 9 and provide additional derivations, analysis, and interpre-
tations in Appendix A.
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Fundamentals of Radiative
Light Transport

There is a crack in everything.
That’s how the light gets in.

— Leonard Cohen (1934)

Visible light, as defined by the International Lighting Vocabulary [CIE 1987], is a radiation
that is capable of directly causing a visual sensation. In this chapther, we lay out the
fundamentals of radiative transport and detail the most important principles that are

employed in the chapters to follow. We start by briefly reviewing the history and evolution of
ideas concerned with the nature of light. Then we outline four areas of optics, which study
the phenomena at different levels of abstraction. We also introduce quantities for expressing
the amount of radiant energy with respect to different measures, and explain principles that
light obeys when interacting with surfaces and media. This knowledge will allow us to formu-
late transport equations that govern propagation of light and define the radiative equilibrium.
Methods suitable for evaluating these equations are described at the end of the chapter.

2.1 Historical Introduction

The first systematic writings formalizing the propagation of light date back to antiquity, when
Greek philosophers Empodocles and Euclid (cca. 300 BC) formulated the principles concerned
with the reflection of light. Although they also speculated on effects due to light being refracted,
it took until the seventeenth century when Snell experimentally discovered the law of refraction,
and Fermat pronounced the principle of least time, stating that “nature always acts by the shortest
course”. Following these observations, Grimaldi and Hooke discovered the tendency of light
to bend around obstacles, commonly denoted as diffraction. In 1666, Newton observed white
light being split into component colors when passing through a refractive prism, known as the
dispersion of light, and concluded that each spectral color has its specific index of refraction.
Concurrently, Huygens was conducting experiments revealing polarization of light. These and
several other findings demanded the light transport to be governed with a fundamental theory.
To that end, two competing hypotheses were enunciated. In the following we briefly describe
their historical evolution; more in-depth information can be found in Born and Wolf [1999].
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The first hypothesis was pioneered by Huygens who improved and extended the existing wave
theory, originally postulated by Aristotle. Physicists adhering to the wave theory presumed that
the space is filled with elastic aether, where every point receiving luminous disturbance can
act as a source of new disturbance, which is further propagated in spherical waves. While the
wave theory respected most of the formerly established laws and principles, it had, at the time,
difficulties reasoning about the cause of polarization. This was mostly due to the concurrent
unfamiliarity with transverse waves;1 and longitudinal waves,2 which were already known from
the propagation of sound, would not provide the desired answer.

The second, concurrent hypothesis, which laid the basis for many experiments undertaken by
Newton, was based on the corpuscular theory. The origins of the corpuscular theory date back to
antiquity, when Democritus speculated on all matter, including light, being formed by corpuscles
(i.e. small particles) that travel along straight lines with finite velocity. The widely recognized
authority of Newton and the lack of evidence for transverse waves made the corpuscular theory
prevail over the wave theory for nearly a century.

The revival of the wave theory took place at the beginning of the nineteenth century, when Young
clarified the effects of interference using transverse oscillations of the aether. Within the same
theoretical framework, Fresnel postulated principles governing the intensity and polarization of
light undergoing reflection and refraction. The decisive moment in favor of the wave theory,
however, came with an experiment originally suggested by Arago. He proposed to compare the
speed of light in media of different optical thickness (e.g. air and water); an experiment for which
the theories yielded contradictory results. While Newton’s corpuscular theory claimed light to
travel faster in optically thicker media, the wave theory correctly predicted smaller velocity, and
was indisputably confirmed by two independent realizations of Arago’s experiment in 1850.

The advent of the elastic wave theory continued with equations and principles derived by Navier,
Cauchy, Rayleigh, Doppler, and others. However, the supposed presence of the aether, imagined
as an elastic solid, raised several questions: e.g. why is there no observable resistance of the
aether against celestial bodies such as planets and stars? These concerns, stemming from all na-
ture being reasoned about using strictly mechanical principles, were rendered irrelevant with the
recognition of electromagnetic fields. The research of electromagnetism evolved almost indepen-
dently of optics, but only up to the moment when Kohlrausch and Weber calculated the speed of
electromagnetic waves be equal the speed of light. This led Maxwell, whose equations form the
basis of the wave theory as we know it today, to assume light have the form of electromagnetic
waves. In the upcoming years, the quest for explaining the nature of light using mechanical
models was gradually abandoned and the complexity of electromagnetic field, which cannot be
reduced to anything simpler, finally accepted.

The last significant turning point to set both theories complementary rather than exclusive came
after Planck’s discovery that electromagnetic energy is emitted in small quanta, also called pho-
tons. This helped Einstein in clarifying the photoelectric effect using the corpuscular theory. With
the wave theory being able to explain diffraction and interference, and the corpuscular theory
elucidating the photoelectric effect, physicists settled on a conclusion that light exhibits a du-
ality; the particle-wave duality. This means that some phenomena can be satisfyingly explained
only with one of the theories, but none of them can single-handedly describe the light transport
in its entire complexity.

1Oscillation of matter in directions perpendicular to the direction of wave propagation
2Oscillation of matter parallel, i.e. back and worth, to the direction of wave propagation.



2.2 Models of Light 7

2.2 Models of Light

The brief historical introduction from the previous section indicates that the propagation of light
and its interaction with matter can be studied at various levels of abstraction. It is not always
necessary to consider all aspects of its transport; indeed, neglecting properties that are irrelevant
to a given task can simplify the problem and concentrate the focus on the phenomena of interest.
In the following paragraphs, we outline four different areas of optics introducing them from the
simplest to the most complete. The classification is adopted from Saleh and Teich [2007].

Geometrical Optics. The most straightforward theory of light transport, describing the phe-
nomena at the level of geometric rules, is called geometrical optics (sometimes also called ray
optics). In a sense, geometrical optics amounts to the corpuscular theory and its use is most
appropriate when the wavelength of light is negligible compared to the size of objects encoun-
tered along its path. Saleh and Teich [2007] characterize geometrical optics as a limit of the wave
theory when the wavelength is infinitesimally small, and Born and Wolf [1999] demonstrate that
Maxwell’s equations in such case obey geometric rules. Under these simplifications, light can
be expressed in the form of light rays. The transport of these rays is governed by a number of
postulates, such as that light travels along straight lines in homogeneous media, it obeys Fer-
mat’s principle of least time, and the amount of refraction is dependent on the relative speeds
of light in the two media. The model allows light to be emitted, reflected, refracted, scattered
in the media, or absorbed. These interactions are enough to simulate illumination effects that
computer graphics is most concerned with, and thus, geometrical optics represents the most
frequently used model in rendering nowadays.

Wave Optics. A more complex theory, which contains the geometrical optics as a special case,
describes the propagation of light in the form of waves. Wave optics assume light to be composed
of a single scalar function of position and time, called the wave function, which obeys the wave
equation [Saleh and Teich 2007]. Waves with wavelength between 10nm and 1mm are called
optical waves and are further classified as ultraviolet (10nm to 390nm), visible (390nm to 760nm),
or infrared (760nm to 1mm). All optical waves are subject to the principle of superposition, i.e.
the sum of any two optical waves is also an optical wave with intensity attributed to interference.
For example, let us consider two waves with the same intensity. In the case of constructive
interference when the phases of both waves align perfectly, the total intensity equals four times
the intensity of each of the original wave. In the case of destructive interference, the waves
“cancel out” and the resulting intensity is zero. In addition to interference, wave optics can also
simulate the effects of diffraction and dispersion of light.

Electro-Magnetic Optics. Light, as all other electromagnetic radiation, propagates in the form
of two coupled vector fields, i.e. the electric field and the magnetic field. Electro-magnetic optics
studies the propagation of light with no simplifying assumptions, at the level of these two vector
fields. At its core are the Maxwell’s equations, which describe the divergence and rotation of
each of the vector field with respect to the medium the radiation propagates through. The vectors
of the electric and magnetic fields are perpendicular to each other and oscillate transversely to
the optical axis (i.e. the direction of propagation). If the oscillations are within a plane, we call
the light linearly polarized. In case when the vectors rotate around the optical axis, the light
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is said to be either elliptically or circularly polarized, depending whether the projections of the
vectors’ endpoints onto a plane perpendicular to the optical axis follow an ellipse or a circle,
respectively. Maxwell’s equations provide a complete guide to solving the propagation of light;
however, the level of detail is too high for most practical rendering scenarios and they are thus
rarely used in realistic image synthesis.

Quantum Optics. Although electro-magnetic optics can precisely describe the propagation of
light, the exchange of energy (e.g. due to the photoelectric effect) is left for interpretation to
quantum theory. The fundamental principle of quantum optics is that light consists of photons
that carry electromagnetic energy and momentum. They also exhibit a wave-like character that
allows them to interfere and diffract. The electric field of a photon reacts with the charges present
in atoms of matter. The photon is annihilated (absorbed) by the matter when it transfers its
energy to an atom raising it to a higher energy level. In the opposite case, when the atom transits
to a state of lower energy, a photon is emitted. In computer graphics, the laws of quantum optics
can be used to simulate materials exhibiting luminescence and phosphorescence.

2.3 Domains, Measures, and Conventions

In this section, we introduce several important domains, related measures, and conventions to
facilitate mathematical formulations delineated in the following text.

In many situations, it is convenient to treat surfaces and media independently. A medium is
defined as all matter that fills a region of space. The interface between two adjacent (non-
interpenetrating) media is then denoted as a surface. Let R3 be a three-dimensional space,
∂V ⇢ R3 the union of all surfaces, V = R3 \ ∂V the space between all surfaces referred to as
media, and S2 = {w 2 R3; |w| = 1} the set of all directions. Then the Cartesian product R3⇥ S2

represents the space of all possible rays, called the ray space. A ray with origin x and direction
w is denoted as (x, w). The ray space can also be represented as R3 ⇥R3 with a ray denoted as
(x!y).

Measures A(S), V(V), and s(W) represent the area measure [m2], volume measure [m3], and solid
angle measure [sr] of subsets S ✓ ∂V, V ✓ V, and W ✓ S2, respectively. In addition to those
we define two projected measures. For a smooth surface S with normal n(x), the projected area
measure A?(S) defined with respect to direction w is the perpendicular projection of A(S) onto
a plane perpendicular to w:

A?(S) =
Z

S
|n(x) · w|dA(x). (2.1)

Similarly, the projected solid angle measure s

?(W) is defined as:

s

?(W) =
Z

W
|n(x) · w|ds(w), (2.2)

and can be understood as projecting s(W) onto a plane perpendicular to n(x).

In the rest of the text, we use the following conventions: points 2 R3 are written in bold and
primarily denoted by x, y, and z. Directions are written in italics and mostly denoted w. For
spatio-directional quantities varying with x and w, we use arrows and! to emphasize that
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quantity h(x w) is arriving at x from direction w, and quantity h(x!w) is leaving x in direction
w, respectively. Additionally, we also use the convention that directions always originate at x
and point towards the source or the destination of h, i.e. w may face the opposite direction than
in which h propagates.

2.4 Radiometric Quantities

In order to simulate the propagation of light, we need to quantify the energy associated with
light transport. The field of physics that is concerned with measuring the amount of electromag-
netic radiation with respect to one or more parameters is called radiometry. It defines several
quantities and their physical meaning and units. In the following, we review the most relevant
ones for realistic image synthesis.

Radiant Flux. Radiant flux (or radiant power), commonly denoted F, is the basic radiometric
quantity expressing the amount of energy that passes through a region of space per unit time.
The unit of radiant flux is the Watt [W] and can be further decomposed into SI units as joules per
second [J · s�1]. Flux is often used to quantify the amount of energy emitted from light sources.
One can imagine this as measuring all light that is originating from a light source and passing
through an imaginary sphere that encloses it. It is worth noting that the size of the sphere does
not matter since radiant flux quantifies the total amount of emitted (or received) energy, not its
density.

Irradiance, Radiant Exitance, and Fluence. It is often convenient to express the amount of
radiant flux per unit area. Irradiance, denoted E, is the quantity that measures the area density
of flux incident on a surface. Similarly to the previous example, consider a sphere with the
center aligned to an omni-directional point light. The area density of radiant flux incident on
the inner surface of the sphere will depend on its radius r: E = F/4pr2. The quadratic term in
the denominator will become one of our major concerns in later chapters.

In the general case, irradiance is a function of position x, defined as the differential flux received
by a differential area dA(x) around x:

E(x) =
dF(x)
dA(x)

. (2.3)

Given this relation, we can derive an integral that expresses the total flux F received by a surface
with area A:

F =
Z

A
E(x)dA(x). (2.4)

When flux is self-radiated from a surface, we talk about radiant emittance. If we also add the
radiant density that the surface reflects, i.e. we combine the emission with the reflected light,
we obtain radiant exitance (M), which is sometimes also denoted radiosity (B); the name was
adopted from the heat transfer literature. The volumetric analog to irradiance, i.e. the radiant
flux reaching a small region of space from all directions, is called fluence (F).
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(a) Radiant flux
F

(b) Irradiance
E(x)

(c) Radiant intensity
I(w)

(d) Field radiance
L(x w)

(e) Surface radiance
L(x w)

Figure 2.1: Fundamental radiometric quantities.

All of the aforementioned densities have the same unit [W · m�2]. In some publications they are
also referred to as intensity; however, this often leads to confusion with radiant intensity, which
is introduced next. One can always distinguish them by inspecting the units.

Radiant Intensity. We can also measure the directional density of flux. This quantity is called ra-
diant intensity (I) with the units of watts per steradian [W · sr�1]. It is often used as an alternative
way of specifying power of point light sources. Radiant intensity is defined as the differential
flux emitted along directions confined to a differential solid angle ds(w) around direction w:

I(w) =
dF(w)
ds(w)

. (2.5)

Computing the radiant flux emitted from a light source with known radiant intensity amounts
to integrating I over the solid angle W, through which the light emits photons:

F =
Z

W
I(w)ds(w). (2.6)

Radiance. Probably the most important quantity in rendering is radiance, commonly denoted L.
It measures the light arriving to a small region from a small spread of directions. The term field
radiance is often used to describe incident light at a general point x in three-dimensional space.
Field radiance is defined as the radiant flux arriving through differential solid angle ds(w) and
passing through differential area dA?(x) on a hypothetical plane, which is perpendicular to w

and contains x (see Figure 2.1.d for an illustration):

L(x, w) =
d2F(x, w)

dA?(x)ds(w)
. (2.7)

When x is on a surface with normal n(x), it is often convenient to express the incoming light with
respect to the differential area dA on the surface, instead of dA? on the hypothetical plane. This
amounts to defining dA? as dA projected onto the hypothetical plane, i.e. dA? = |n(x) · w|dA.
The dot product captures how much the surface faces the incoming light and accounts for
spreading of light rays at grazing angles. The equation for computing the surface radiance from
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radiant flux reads:

L(x, w) =
d2F(x, w)

|n(x) · w|dA(x)ds(w)
. (2.8)

In some cases it is beneficial to express radiance in terms of the projected solid angle ds

?(w) =
|n(x) · w|ds(w):

L(x, w) =
d2F(x, w)

dA(x)ds

?(w)
. (2.9)

As long as it is obvious from the context, we will not distinguish between field and surface
radiance, and always refer to the quantity as radiance in the rest of the text. The units of
radiance are watts per steradian per square meter [W · sr�1m�2]. Analogously to the incident
radiance, we can also define the outgoing (e.g. emitted or reflected) radiance.

In order to compute irradiance E(x) and radiant exitance M(x) at a surface point x radiating
through the upper hemisphere H2, we need to integrate the incident and outgoing radiance,
respectively:

E(x) =
Z

H2
n(x)

L(x w) (n(x) · w)ds(w), (2.10)

M(x) =
Z

H2
n(x)

L(x!w) (n(x) · w)ds(w). (2.11)

Computing the radiant flux F received by a surface amounts to integrating the cosine-weighted
incident radiance L(x w) over the area A of the surface and over the upper hemisphere H2 of
directions about the surface normal n(x):

F =
Z

A

Z

H2
n(x)

L(x w) (n(x) · w)ds(w)dA(x). (2.12)

An important property of radiance is that the sensitivity of human eyes and camera sensors is
proportional to the incident radiance. Another characteristic of radiance is that it stays invariant
along straight lines in vacuum. More precisely, assuming no participating medium or surface
between points x and y, the incident radiance at x can be expressed as the outgoing radiance
from y:

L(x w) = L(y!�w), (2.13)

where w = y�x
kx�yk . These two properties make radiance the quantity of choice for many rendering

algorithms.

For brevity, in the rest of the text we will use shorthand notations dx and dw for the differ-
ential area dA(x) around point x and the differential solid angle ds(w) around direction w,
respectively.
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2.5 Interaction of Light with Surfaces

In the following sections, we detail local interactions of light with surfaces and media, respec-
tively, gradually extending towards equations that govern the transport from a more global
perspective.

2.5.1 Bidirectional Distribution Functions

When light reaches a surfaces, it can be reflected, refracted, or split and take part in both of these
interactions. The directions and fractions of the reflected and refracted light are governed by the
law of reflection, Snell’s law of refraction, and Fresnel’s equation. These derive the behavior of
light from the Fermat’s principle of least time with respect to optical parameters of media at both
sides of the surface. Although the laws are easy to implement, applying them at a microscopic
level would make rendering of macroscopic objects (i.e. objects that we can see with naked eyes)
intractable. It is also worth noting that geometric variations below the scale of the wavelength
can be ignored as they do not affect the wave. As such, rendering algorithms often require
surfaces to be described at a mesoscopic level (approx. 1 µm to 1 mm), incorporating the effects
of microscopic scattering directly into the surface description. The description, referred to as the
bidirectional scattering distribution function (BSDF) [Heckbert 1991], captures the average behavior
of light in a small volumetric region around the point of interest, including the absorption and
emission of light.

In general, the amount of light leaving point x in direction w depends on the amount of radiance
arriving at x from all directions. From Equation (2.10) we can derive the differential irradiance
arriving from direction w

0 at the differential area around x:

dE(x w

0) = L(x w

0)
��n(x) · w

0��dw

0. (2.14)

If we now express the relative amount of this light that is scattered by the surface in direction w,
we obtain the definition of the BSDF fs(w x w

0):

fs(w x w

0) = dL(x!w)
dE(x w

0) =
dL(x!w)

L(x w

0) |n(x) · w

0|dw

0 . (2.15)

In other words, the BSDF specifies how much of the differential irradiance arriving from a
particular direction continues along another direction after interacting with the surface. Given
this definition, we can relate the outgoing and incident radiance. The radiance leaving point x
in direction wo is defined as the product integral of the BSDF and the differential irradiance (i.e.
the cosine-weighted incident radiance) over the sphere S2 of all possible directions:

L(x!w) =
Z

S2
fs(w x w

0) dE(x w

0)dw

0

=
Z

S2
fs(w x w

0) L(x w

0)
��n(x) · w

0��dw

0. (2.16)

It is sometimes convenient to consider only the reflected light, i.e. light that exits through the
same hemisphere as it arrived. In such cases we talk about bidirectional reflectance distribution func-
tion (BRDF), and we ignore the light that radiates through the opposite hemisphere. Analogously,
we can use bidirectional transmittance distribution function (BTDF) to describe the distribution of
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(a) Diffuse BRDF (b) Glossy BRDF (c) Specular BRDF

Figure 2.2: Examples of BRDFs: (a) diffuse BRDF reflects light uniformly into all directions, (b) glossy
BRDFs concentrate the scattered light within lobes, (c) specular BRDFs, being Dirac delta functions, reflect
all light into a single direction defined by the law of reflection or refraction.

only the transmitted light. These two complementary functions allow to model the reflection
and transmission independently and were formalized by Nicodemus et al. [1977]. Combining
two BRDFs and two BTDFs (a pair for each side of the surface) makes up for a complete BSDF.

All of the aforementioned distribution functions assume that light incident at some point leaves
the surface at the same point. In cases when this assumption becomes inappropriate, and we
still do not want to simulate the full light transport in the medium “below” the surface, we can
use the bidirectional surface scattering reflectance distribution function (BSSRDF) [Nicodemus et al.
1977] fs(x!w, x0 w

0). Computing the outgoing radiance L(x! w) then requires additional
integration over the area around x:

L(x!w) =
Z

A

Z

H2
n(x)

fs(x!w, x0 w

0) L(x0 w

0)
�
n(x0) · w

0�dw

0 dx0. (2.17)

In practice, distribution functions are often wavelength dependent and can take arbitrary non-
negative values. In general, it is however desired for the distribution function to be physically
based and follow two additional constraints:

Energy conservation. The total amount of scattered flux must be less than or equal to the flux
incident on the surface. This is captured by the following equation:

Z

S2x
fs(w x w

0)
��n(x) · w

0��dw

0  1. (2.18)

Distribution functions that do not conserve energy can prevent global illumination algorithms
from finding the radiant equilibrium: by bouncing around the scene the light gets more and
more amplified, in which case, the rendering algorithm may not converge.

Reciprocity. The amount of scattered light is invariant to the direction of light flow. More
precisely: reversing the incident and outgoing directions does not affect the amount of light
being scattered. This is nicely demonstrated by an experiment where a light source illuminates
a reflective surface and the reflected light is measured by a sensor. If we exchange the source
with the sensor then the reflected light measured by the sensor stays the same.3 The principle
of reciprocity, which is often called after its discoverer Hermann von Helmholtz [1924], ensures
that the interaction of light with surfaces is symmetric, i.e. equal for both directions of travel.

3Assuming that the light source, the surface, and the sensor are sufficiently small.
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Satisfying the Helmholtz reciprocity is important especially for algorithms that resolve the light
transport from both directions, e.g. bidirectional path tracing, since they assume that construct-
ing a path in the reverse direction yields the same result. Since reflection is known to be sym-
metric,4 physically based BRDFs are reciprocal. However, this does not hold for general BSDFs.
For instance, when light is refracted on an interface between two media with different refrac-
tive indices, the corresponding BTDF is not symmetric. In such cases, bidirectional estimators
require special treatment of non-symmetrical scattering using adjoint BSDFs, see Veach [1996],
Veach [1997], and Christensen [2003] for details.

Figure 2.2 shows three example BRDFs. Since this thesis primarily focuses on participating
media, we refrain from discussing surface scattering in detail and refer the interested reader to
standard literature, such as Dutré et al. [2006] and Pharr and Humphreys [2010].

2.5.2 Rendering Equation

We shall now present the rendering equation that governs light transport in environments consist-
ing of light sources and surfaces. The rendering equation, as introduced by Kajiya [1986],5 does
not attempt to model all aspects of the light transport. Essentially, it is only an approximation of
geometric optics in environments with no participating media. As such, effects due to polariza-
tion, diffraction, varying refractive index, interaction with media, etc. have to be handled with
generalizations based on e.g. path integral techniques [Feynman and Hibbs 1965], or radiative
transfer [Chandrasekhar 1960]. The latter we review in Section 2.7.

Hemispherical Formulation. Motivated by the law of conservation of energy, the rendering
equation defines the steady-state or equilibrium radiance leaving a point as the sum of the emitted
Le(x!w) and reflected radiance Lr(x!w):

L(x!w) = Le(x!w) + Lr(x!w). (2.19)

Given Equation (2.16), the reflected radiance can be expressed in terms of incident radiance
L(x w

0):

L(x!w) = Le(x!w) +
Z

S2
fs(w x w

0) L(x w

0)
��n(x) · w

0��dw

0. (2.20)

The above rendering equation formulates the equilibrium radiance locally (i.e. with respect to a
single point) by distinguishing between incident and exitant quantities. If there is no participat-
ing medium, we can express the incident radiance at one point as the exitant radiance at another
point using the ray casting function r(x, w):

L(x w) = L(r(x, w)!�w), (2.21)

4In general, not even reflection is symmetric. There are situations when optical paths are not reversible and light
propagates along a different path when the direction of travel is inverted. Helmholtz noticed that this happens, for
instance, to polarized light in the presence of external magnetic field. As these effects are beyond our interest, we shall
assume reflection to be symmetric.

5Similarly to Chandrasekhar [1960], who uses the term specific intensity, Kajiya [1986] refers to the differential flux passing
between two points using the term intensity. It is more common nowadays to denote this quantity spectral radiance, or
simply radiance for brevity. This avoids confusion with radiant intensity.
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where r(x, w) returns the surface point seen from x along ray (x, w). By combining the previous
two equations we obtain:

L(x!w) = Le(x!w) +
Z

S2
fs(w x w

0) L(r(x, w

0)!�w

0)
��n(x) · w

0��dw

0. (2.22)

The equation formulates light transport in terms of outgoing radiance only, and reveals the
recursive nature of the rendering equation. This form of the rendering equation is also known
as the light transport equation.

Area Formulation. An alternative to integrating the incident radiance over all possible direc-
tions is to integrate the contribution from all surface points. To achieve that we need to replace
the differential solid angle with the differential surface area:

ds(w0) = |n(y) ·�w

0|
kx� yk2 dA(y), (2.23)

where y = r(x, w

0). Equation (2.22) can be then written as:

L(x!w) = Le(x!w) +
Z

A
fs(w x w

0)V(x$y)G(x$y)L(y!�w

0)dy, (2.24)

where w

0 is the direction towards y, i.e. w

0 = y�x
kx�yk . The visibility term V is a binary function

returning 1 if x and y are mutually visible, and 0 otherwise. The geometry term G accounts for
the mutual orientation and distance between the two surface points by combining the original
dot product from Equation (2.22) with the scaling factor from Equation (2.23):

G(x$y) =
|n(x) · w

0| |n(y) ·�w

0|
kx� yk2 . (2.25)

Equation (2.24) defines the light transport w.r.t three surface points (direction w can be defined
by a point z as w = z�x

kx�zk ) and thus is sometimes referred to as the three-point form of the light
transport equation.

2.6 Interaction of Light with Media

In the previous section, we introduced means to describe local interactions of light with interfaces
between media with different refraction indices. In this section, we focus on the transport through
a medium. If the medium has a constant index of refraction, the light propagates along straight
lines. When the index of refraction is continuously changing, the light travels along curved
trajectories. Additionally, the interaction of light with matter involves three main processes:
emission, scattering, and absorption.

In the following, we first outline the physical processes that occur when light travels through
media. Then we provide formalisms of characteristics that affect these processes, and briefly
categorize media accordingly. Finally, we demonstrate how to sample the free path of a photon
and how to evaluate transmittance between two points.
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electron

energetic
states

(a) Absorption (b) Spontaneous emission (c) Stimulated emission

(d) Elastic scattering (e) Inelastic scattering (f) Inelastic scattering

Figure 2.3: Examples of interactions between an atom and a photon. The wavy curves represent photons
with different wavelengths. The shorter the wavelength the higher the energy and vice versa.

2.6.1 Absorption

Absorption is a process during which electromagnetic radiation is transformed into a different
form of energy, e.g. heat or structural changes. If a photon with the right energy (i.e. frequency)
collides with an atom or molecule, it can be absorbed. See Figure 2.3.a for an illustration. The
energy of the photon must be sufficient to excite one or more electrons in the outer shell of the
atom from their current state to a state with higher energy. If the energy is not sufficient, the
photon will be (elastically) scattered or transmitted.

Absorption occurs only when the medium contains absorptive elements, such as pigments or
dyes. The process of absorption is selective, meaning that pigments and dyes can usually ab-
sorb photons with particular wavelengths only, depending on the molecule’s chromophore. The
chromophore is thus responsible for the spectral distribution of light that survives the absorp-
tion [Baranoski and Krishnaswamy 2010]. In the context of wave propagation, the process of
absorption is also called attenuation.

2.6.2 Emission

The process of exciting electrons into higher energy states can result also from collisions with
another atoms. After some time (approx. 10 ns), these electrons spontaneously transit back
to one of the lower energy states and the difference between the two states is emitted in the
form of a photon (see Figure 2.3.b). The frequency of the emitted light is given by the Einstein
equation, f = |DE| /h, where h is the Planck’s constant. In gaseous media, where the interactions
between atoms are rather weak, the spectrum of the emitted light consists of a number of narrow
bands. This is because the atoms have discrete energy levels allowing for only a finite number of
energetic differences. However, when atoms move fast and interact strongly, their high velocities
(relative to the observer) lead to the Doppler effect broadening the bands. If the bands overlap
the spectrum of the emitted light becomes continuous.
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Figure 2.4: (a) Planckian locus in the CIE 1931 chromaticity diagram; image courtesy of E. F. Schubert,
(b) shows examples of black body radiators, and (c) maps temperature of the black body to perceived hue.

An example of an ideal thermal radiator with a continuous spectrum is a black body, which
absorbs all incident radiation, thermalizes it, and then emits uniformly with spectrum dependent
solely on the temperature of the black body. In fact, all matter with temperature above absolute
zero emits radiation. Most thermal radiators with room temperatures emit light in the infra-red
region and only when the temperature reaches about 500�C the light becomes visible. Mapping
between the temperature of a black body and the spectrum of emitted light is described by the
Planckian locus, which defines the change of a color with respect to a temperature in a particular
chromacity space. Figure 2.4.a shows the Planckian locus in the CIE 1931 chromacity diagram,
and three examples of high-temperature radiators.

Temperature is not the only source of emission. Luminescent materials have the ability to tem-
porarily store incident radiation by exciting their atoms to higher energy states. When these
drop back to their ground states, the surplus energy is radiated in the form of light. Fluorescence
is one example of almost instantaneous emission of energy obtained e.g. from ultraviolet light.
Since the electrons return to the ground state via multiple transitions, the high energy of the
ultraviolet light is split into several photons, some of which may have the frequency of visible
light. In cases when the atoms stay excited for a longer time (on the order of milliseconds to
hours) we talk about phosphorescence. The longer response is caused be exciting atoms to so-
called “forbidden” meta-stable states, where the transition does not take the energetically most
efficient path [Tipler and Mosca 2004, Section 31].

Emission can be also stimulated, as illustrated in Figure 2.3.c. If a photon collides with a
molecule that is in an excited meta-stable state, the molecule transits into its ground state emit-
ting a photon that has the same direction and phase as the colliding photon. The reaction can
be chained leading to an amplification of the original light. Stimulated emission is the process
utilized in lasers to produce high energy collimated beams.
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2.6.3 Scattering

There are generally two types of scattering: elastic and inelastic. When a photon does not carry
enough of energy to excite a molecule into a higher state, it is elastically scattered and no energy
is transformed; see Figure 2.3.d. Examples of elastic scattering include Rayleigh and Lorenz-Mie
scattering. Inelastic scattering occurs when a photon carries just the right amount of energy to
excite the molecule, which, however, immediately after the excitation descends back to a lower
energetic state. If the molecule gained energy, then we observe a shift in the spectra of the
scattered light towards lower frequencies (see Figure 2.3.e). In the opposite case the molecule
loses energy and the light becomes higher frequency (see Figure 2.3.f). Inelastic scattering shall
not be confused with the effect of fluorescence, which requires a certain resonance time before
the photon is emitted.

2.6.4 Formalization of Interactions

We now formalize the aforementioned characteristics of media in a collection of parameters,
which can be used during light transport simulations.

Interaction Cross-sections. A microscopic cross-section, or simply cross-section, is an area mea-
sure of the likelihood that a particular interaction between two particles takes place. It refers
to the effective area that a particle presents to another particle (e.g. a photon) for a particular
interaction. The larger the effective area, the higher the chance that a photon will interact with
the particle. The SI units of cross-section are square meters; however, physicist often express the
value in barns (1b = 10�28m2) to deal with values in the range of tenths to few barns. Based on
the type of interaction, we distinguish between the absorption cross-section sa and the scattering
cross-section ss. The sum of the two then defines the extinction cross-section st, which represents
the total effective area of absorption and scattering.

Interaction Coefficients. Although being defined on a microscopic level, cross-sections are
rather global parameters of the medium. The actual local probability of an interaction relates
to the local density r(x) [m�3] of the medium, i.e. the number of particles within a unit vol-
ume. Taking this into account yields macroscopic cross-sections, which are in computer graphics
commonly referred to as absorption coefficient ka(x), scattering coefficient ks(x), and extinction coef-
ficient kt(x):

ka(x) = r(x)sa, (2.26)

ks(x) = r(x)ss, (2.27)

kt(x) = r(x)st = ka(x) + ks(x). (2.28)

The coefficients define the probability that a photon traveling along a path of unit length will
interact with a particle and take the corresponding interaction. The value of all of the three coef-
ficients is wavelength dependent and defined with respect to a unit distance, which ranges from
millimeters for solids and thick liquids to meters for gaseous media. The extinction coefficient is
particularly useful when defining the optical thickness and transmittance between two points.
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Albedo. Similarly to surfaces, we can also compute the single-scattering albedo a (abbr. albedo)
of the medium:

a(x) =
ks(x)
kt(x)

, (2.29)

which describes how much the medium scatters light. If it equals 1, the medium is said to be
perfectly scattering; if it equals 0, the medium does not scatter and only absorbs light.

Phase Function. The angular distribution of the scattered light is modeled by the phase func-
tion fp(w0 ! w), which is the volumetric analog to the BSDF. However, unlike the BSDF, the
phase function is normalized:

Z

S2
fp(w

0!w)dw = 1, (2.30)

and serves as a density function defining the probability that a photon, arriving along direc-
tion w

0 and scattering, continues in direction w. As a convention, the direction of incidence
points towards the scattering point, and the direction of exitance away from it. This is also dif-
ferent from the BSDF, where both directions face away from the surface point. In this text, we
assume the phase function to be independent of the scattering location and use the shorthand
notation fp(w0!w) instead of the more general, but lengthy fp(w0!x!w).

2.6.5 Examples of Interactions

In this section, we provide several examples of media with different scattering characteristics.
We start with simple models and gradually proceed towards the more complex ones.

Isotropic Scattering. When the phase function is isotropic, the medium scatters uniformly into
all directions. Since the function must be normalized, there is only one isotropic phase function
with a constant value of 1/4p. The isotropic phase function is an analog to a Lambertian surface.

Anisotropic Scattering. In order to model scattering by small particles in intergalactic dust
clouds, Henyey and Greenstein [1941] devised a phase function, often abbreviated HG phase
function, that defines the anisotropy using a single asymmetry parameter g. The function changes
in one dimension only and can be thus parametrized in terms of only the angle q between the
incident and outgoing direction:

fpHG(q) =
1

4p

1� g2

(1 + g2 � 2g cos q)3/2 . (2.31)

The asymmetry parameter g 2 h�1, 1i represents the mean cosine of the deviation from the di-
rection of incidence. The higher the value the more light scatters in forward directions, negative
values yield backward scattering. For g = 0 the phase function reduces to isotropic scattering.
Thanks to the physical meaning of g, one can easily fit HG to an arbitrary phase function just by
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Figure 2.5: Polar plots with different phase functions: (a) shows the isotropic phase function, (b) and (c)
demonstrate examples of backward and forward scattering, respectively, modeled using the Henyey and
Greenstein phase function and Schlick simplified version with k obtained from g using the polynomial
relation from Equation (2.34). Note that the plots have different linear scales to accommodate the full shape
of the phase function.

integrating its product with the cosine of the angle between w

0 and w:

g =
Z

S2
fp(w

0!w)(w0 · w)dw. (2.32)

By discretizing the above integral, one can also fit to measured data. The usability of HG ranges
from gases and liquids to biological tissues.

In order to avoid the expensive fractional exponent, Blasi et al. [1993] developed a simplified
version which is commonly known as the Schlick phase function:

fpSchlick(q) =
1

4p

1� k2

(1� k cos q)2 . (2.33)

The asymmetry parameter k 2 h�1, 1i has similar meaning to g. Pharr and Humphreys [2010]
derived a polynomial relation between k and g:

k = 1.55g� 0.55g3, (2.34)

which allows for an approximate representation of HG using the Schlick phase function.

Although both of the previously described phase functions are rotationally symmetric and
monotonous on the interval (0, p), more complex shapes can be easily obtained using weighted
sums of multiple asymmetric lobes.

Rayleigh Scattering. Rayleigh scattering, named after its discoverer Lord Rayleigh [1871],
refers to interactions of light with particles and molecules that are much smaller than the wave-
length of the light (up to one tenth of the wavelength). It can occur in transparent solids and
liquids, but most often we experience it in gases in the atmosphere. Rayleigh scattering is wave-
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Figure 2.6: Rayleigh scattering is defined by its two characteristic properties: (a) the wavelength dependent
scattering cross-section, and (b) the Rayleigh phase function.

length dependent with the scattering cross-section defined as:

ss(l, d, h) =
2p
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2 � 1
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2 + 2

◆2

, (2.35)

where l is the wavelength of the light, and d and h are the diameter and refractive index of parti-
cles, respectively. Since the probability of light being scattered varies as 1/l

4, higher frequencies
towards the blue end of the spectrum are scattered more often than lower frequencies. This ex-
plains the blue color of the sky during the day, and reddish horizons during sunset, when most
of the blue light is out-scattered before reaching the observer. The dependency of the scattering
cross-section on the wavelength of visible light is depicted in Figure 2.6.a.

The phase function of Rayleigh scattering, shown in Figure 2.6.b, is defined as:

fpRayleigh(q) =
3

16p

(1 + cos2
q), (2.36)

and captures the fact that most of the light is scattered in forward and backward directions;
scattering at right angles achieves only about half of the intensity.

Lorenz-Mie Scattering. When light interacts with particles that are comparable in size to its
wavelength, we can no longer neglect the shape of the particle or the wave character of light.
For such cases, e.g. a planar radiation arriving at a sphere, Ludvig Lorenz [1890] and Gustav
Mie [1908] independently developed a solution to Maxwell’s equations. The solution (sometimes
also called Mie theory) is given as an infinite series that describes the amount and distribution
of light after a collision with a homogeneous set of spheres. Similar solutions can be also de-
rived for cylinders and ellipsoids. Figure 2.7 shows the phase function of Mie scattering for
three differently sized spherical particles. Since the derivation and the resulting solutions are
fairly involved, Nishita et al [1987] proposed to use an experimental approximation devised
by Gibbson [1958] for two particularly interesting types of scattering in “hazy” and “murky”
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(a) Mie, particles with r = 1µm
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(b) Mie, particles with r = 10µm
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(c) Mie, particles with r = 100µm

10
-4

10
-2 1 10

2
10

4
0°

15°

30°

45°

60°

75°
90°105°

120°

135°

150°

165°

180°

195°

210°

225°

240°

255° 270°
285°

300°

315°

330°

345°

Mie hazy
Mie murky

(d) Mie hazy and murky
(log plot)

0.1 0.2 0.3 0.4
0°

15°

30°

45°

60°

75°
90°105°

120°

135°

150°

165°

180°

195°

210°

225°

240°

255° 270°
285°

300°

315°

330°

345°

Mie hazy

(e) Mie hazy atmosphere
(linear plot)

0.3 0.7 1.0 1.4
0°

15°

30°

45°

60°

75°
90°105°

120°

135°

150°

165°

180°

195°

210°

225°

240°

255° 270°
285°

300°

315°

330°

345°

Mie murky

(f) Mie murky atmosphere
(linear plot)

Figure 2.7: Phase functions of Mie scattering: (a), (b), and (c) show logarithmic polar plots of phase
functions for Mie scattering in water particles with different radii r. The data was generate using MiePlot
by Philip Laven. (d) demonstrates two approximations for “hazy” and “murky” atmospheres and (e) and (f)
plot these approximations in linear scale to relate them better to phase functions from Figures 2.5 and 2.6.

atmospheres:
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Lorenz-Mie scattering occurs mostly in gases and fluids that contain sufficiently large particles,
e.g. water droplets in clouds or fat globules in milk. The solution can be also used in a re-
verse process to determine the size of the scattering particles [Graßmann and Peters 2004], or to
compute the scattering properties of various forms of participating media [Frisvad et al. 2007].

Both Rayleigh and Mie are important when rendering realistic skies. While the first is mostly
responsible for the aerial perspective and the color of a clear sky, the latter is necessary when
simulating light transport in clouds. For a comprehensive explanation we refer the interested
reader to Born and Wolf [1999] and to Bouthors [2008] for rendering skies in real-time.
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2.6.6 Classification of Media.

We can classify participating media with respect to spatial and angular variation of the previ-
ously mentioned volumetric parameters.

Homogeneity and Heterogeneity. If the parameters of a medium (e.g. the particle density
or the cross-sections) are spatially invariant, the medium is homogeneous. As we will show
in Section 2.6.7, certain components of the radiative transfer in homogeneous media can be
expressed in a closed form. If the parameters change with position, the medium is said to be
inhomogeneous or heterogeneous. There are two traditional ways of modeling the heterogeneity,
one is based on procedural description and the other on storing the density in a discretized form
using e.g. voxel grids.

Order of Scattering. The density of the medium also affects the number of interactions that a
photon will undergo on average. If we have a good a-priori intuition about the density and inter-
action coefficients, we can introduce relevant approximations and thereby significantly speed-up
the light transport computation. As an example, consider a thin medium such as fog, haze, or
champaign. Before reaching the camera, the light is not likely to scatter more than few times (if
at all) and we can thus restrict the computation to single-scattering only. The simulation then re-
duces to direct illumination of the volume, which is far simpler than integrating the contribution
of paths of all possible lengths. In the opposite extreme, when photons undergo hundreds and
more interactions, and these are sufficiently localized, we can approximate the multiple-scattering
component using the diffusion process. We detail the individual approaches in Section 2.8.

(An)Isotropy. Media can be also be classified with regards to the phase function. If the phase
function is independent of the position or the direction of incidence, light propagates “equally”
in all directions and the medium is said to be isotropic. Note that the phase function itself can still
be anisotropic, but its shape must be the same everywhere in the medium and for all incident
directions. In some liquids and solids, e.g. those with crystalline structure, the phase function
is truly four-dimensional depending also on the incident direction. Such media are classified as
anisotropic or sometimes also referred to as oriented.

2.6.7 Transmittance

Now that we outlined the different types of interactions and participating media, we can focus
on how light propagates through the volume. In vacuum, photons travel along straight lines
unobstructed and radiance remains constant until the light reaches a surface. In media, on the
contrary, the radiance changes due to absorption and scattering of photons.

Homogeneous Media

Consider a differential beam of light, shown in Figure 2.8, that propagates through a homoge-
neous medium along direction w. We will denote the differential flux of photons entering the
beam through a differential area dA(x) along directions confined to ds(w) as L0. Let us fur-
ther assume the medium to remain stationary and unchanged for the time of studying the light
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Figure 2.8: Illustration of the Beer-Lambert law that derives transmittance through a homogeneous slab
with extinction coefficient kt.

transport within the beam. We shall now estimate Ld, i.e. the fraction of L0 that reaches the end
of the beam without interacting with the medium. As we move further away from x, some of
the original photons will be absorbed or out-scattered. This process of extinction is quantified
by the extinction coefficient kt, which expresses the fraction of light that is lost per unit distance.
Consider an infinitesimal segment of the beam with length dz. Denoting the radiance entering
the segment L, we can write the radiance exiting the segment as L + dL, where dL is the change
due to interactions with the medium. From the definition of kt, the fraction of the incident light
dL/L that makes it through the segment can be written as:

dL
L

= �ktdz. (2.39)

The reason for the negative sign on the right stems from the fact that kt expresses only the
magnitude of photons that are lost, not that they should be subtracted from L; this needs to be
accounted for explicitly using the minus sign. Integrating the differential equation yields:

ln(L) = �ktz + c, (2.40)

where the constant c vanishes when integrating over a finite length d of the beam:

ln(Ld)� ln(L0) = �ktd, (2.41)

ln
✓

Ld
L0

◆
= �ktd. (2.42)

The last equation is referred to as the Beer-Lambert law,6 which expresses the logarithmic de-
pendence of transmittance (or transmission) T = Ld/L0 on the product of the extinction coefficient
and distance the light travels through the medium. The transmittance represents the fraction of
the original radiance that travels along the entire length of the beam without interacting with
the medium, and can be obtained by exponentiating Equation (2.42):

T = e�ktd. (2.43)

Equation (2.43) provides means to evaluate the transmittance in homogeneous media along a
segment of length d. For a beam with zero length the transmittance is 1; as the length approaches
infinity the transmittance drops to 0. The product ktd is called optical thickness t and measures

6In most literature the Beer-Lambert law is concerned only with absorption. Since we are interested in all light that is
absorbed or out-scattered, we use the kt in our derivation.
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the transparency of a slab of the medium with thickness d.

Since transmittance is multiplicative:

T(x0$ . . .$xN) =
N�1

’
i=0

T(xi$xi+1), (2.44)

we can evaluate the total transmittance along a path consisting of N segments by first accumulat-
ing the optical thickness and then using a single instance of the (possibly expensive) exponential
function:

T(x0$ . . .$xN) = e�kt ÂN�1
i=0 di . (2.45)

Heterogeneous Media

In the case of a heterogeneous medium, the optical thickness is a function of two arbitrary points
requiring the extinction coefficient to be integrated along the straight line connecting them:

t(x$y) =
Z kx�yk

0
kt(x + sw)ds, (2.46)

where w is the direction pointing from x towards y. Naturally, transmittance becomes also a
function of x and y:

T(x$y) = et(x$y). (2.47)

Generally, the optical thickness between points x and y cannot be expressed in a closed form and
we need to evaluate the integral numerically, e.g. by one of the quadrature rules, which are in this
context referred to as ray marching [Jensen and Christensen 1998, Perlin and Hoffert 1989]. The
idea is to step along the ray connecting x and y breaking up the integration domain into a set of
disjoint segments. The integral is thus replaced by a sum of sub-integrals that are approximated
using one of the quadrature rules (e.g. rectangle, trapezoid, or Simpson’s rule). Since the sum
has to be finite in practice, there will be a certain error. If the marching is equidistant, the error
may show up as aliasing (e.g. banding artifacts). When the length of segments is randomized
(in the spirit of Monte Carlo integration), the aliasing is replaced by noise. Pauly et al. [2000]
elaborate more on different ray marching schemes and propose to randomly jitter a sequence of
equidistantly spaced marching steps to strike a good balance between banding and noise.

The biggest drawback of using quadratures to evaluate transmittance is that the results are
biased. This is because:

E[et(x$y)] 6= eE[t(x$y)], (2.48)

where E[X] is the expected value of X. In other words, the stochastic error of estimating the
transmittance will not average to zero and the estimation does not converge to the correct value.

In order to estimate transmittance in an unbiased way, we need to employ a form of rejection
sampling called Woodcock tracking. This technique was introduced for sampling the free path,
which we elaborate on first in the next section and defer the complete description of unbiased
transmittance computation to the end of Section 2.6.8.
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2.6.8 Free Path Sampling

The trajectory of a photon traveling through a medium consists of several segments connecting
the individual interaction events. If the medium has a constant index of refraction, the segments
are linear, but in general, they can be curved if the refractive index changes continuously. The
length of each segment, which is commonly denoted the free path, depends on the local particle
density and extinction cross-section of the medium.

An alternative to characterizing media using an extinction coefficient is to specify the mean free
path. In a homogeneous unbounded medium, the mean free path dm can be found analytically
by computing the expected value of a probability density function (PDF) p, which is based on
the transmittance along a semi-infite beam (see Equation (2.51) below):

dm = E [p(d)]

=
Z •

0
kte�ktttdt

=
1
kt

. (2.49)

The fact that dm is the reciprocal of kt should be no surprise. While the extinction coefficient
defines the fraction of energy that becomes extinct per unit length, the mean free path defines
the length traveled by a “unit” of flux (e.g. a photon) before extinction.

In the following paragraphs, we detail a few techniques developed over the years to sample the
length of the free path d of a photon traveling from x in direction w. Although we can possibly
sample the distance from an arbitrary distribution and still obtain unbiased results, we will limit
the description to techniques that sample the free path from a probability density function that
is proportional to transmittance, i.e.:

p(x, w, d) µ T(x$x + dw). (2.50)

Homogeneous Media

In homogeneous media, the extinction coefficient is constant and the probability density function
for sampling the free path can be expressed in a closed form. For an infinite medium, the free
path is unbounded and the PDF equals to the transmittance normalized to integrate to unity:

p(d) =
T(d)R •

0 T(t)dt

=
e�ktd

R •
0 e�kttdt

= kte�ktd. (2.51)

Integrating p(d) yields the cumulative distribution function (CDF) P(d):

P(d) =
Z d

0
p(t)dt

= 1� ektd. (2.52)
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Sampling the length of the free path amounts to inversion sampling of P(d), i.e. choosing a
uniform random number x 2 h0, 1) and solving the equation P(d) = x for d:

x = 1� ektd

d = � ln(1� x)
kt

. (2.53)

For x close to 1, the length of the free path will approach infinity.

It may happen that the sampled length of the free path is behind the nearest surface at distance
dmax. In that case, the photon will first interact with the surface and we thus need to clamp d to
dmax and set the PDF of the sample to 1� P(dmax).

In some situations, it is desired to restrict the free path sampling only to distances that are shorter
than dmax, e.g. when sampling the in-scattered light along a given finite camera ray. This can be
achieved by changing the normalization factor in p(d) to an integral with the upper bound set
to the maximum distance dmax:

p(d) =
e�ktd

R dmax
0 e�kttdt

=
kte�ktd

1� e�ktdmax
. (2.54)

The CDF evaluates to:

P(d) =
ektdmax � ekt(dmax�d)

ektdmax � 1
, (2.55)

and can be readily inverted to sample d using a random number x analytically:

d = dmax � ln(x � (x � 1)ektdmax )
kt

. (2.56)

Originally, we introduced the aforementioned equations in the context of sampling the free path
in homogeneous media. However, closer inspection reveals that only the extinction coefficient
needs to be constant to obtain the above closed form solutions. Indeed, the absorption and
scattering coefficients can vary spatially but as long as they add up to the same value, we can
still sample the free path analytically. Nevertheless, as the set of media with spatially varying
albedo but constant extinction coefficient is rather theoretical, the practical applicability of the
aforementioned analytic distributions reduces to homogeneous media.

Heterogeneous Media

The length of the free path in heterogeneous media can be, at the cost of some bias, resolved by
ray marching. Except for the termination criterion, the technique is similar to a ray marching
estimate of transmittance. We first draw a random number x, and then march along the ray (x, w)
accumulating the optical thickness until the transmittance reaches 1� x (or simply x, since x is
uniformly distributed), or the ray hits the nearest surface. As stated previously, using quadrature
methods to estimate exponentiated integrals does not converge to the correct result. In the next
paragraph, we describe a technique that is unbiased and can be used for both, sampling the free
path as well as evaluating the transmittance.
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(a) Heterogeneous medium (b) Woodcock tracking (c) Rejection sampling

Figure 2.9: The idea behind Woodcock tracking is to fill the heterogeneous volume (a) with imaginary
particles, so that the combined majorant extinction coefficient k̄t is constant throughout the volume. The
algorithm then samples tentative distances (b) and probabilistically decides whether the collision occurred
with a real or an imaginary particle, based on the relative extinction coefficient of real particles (c). In this
example, we show three iterations where the beam of light first collides with two imaginary particles, and
then bounces off a real particle. The plot in (c) shows the real extinction coefficient kt(x) along the beam.

Woodcock Tracking. Another iterative approach for sampling the free path is called Woodcock
tracking [Woodcock et al. 1965], sometimes also known as delta-tracking, pseudo scattering, or
more generally distance sampling. The technique, originally developed for neutron simulation
in reactors with arbitrary shape, was introduced to the field of computer graphics by Raab et
al. [2008]. Woodcock tracking is a form of rejection sampling, where samples are discarded
when the interaction does not occur with “real” particles. The idea is to fill the volume with
“imaginary” particles, so that the combined particle density, denoted r̄, is the same everywhere;
generally set to the maximum density of real particles. Formally, the imaginary particles have
the following properties (marked with 0):

s

0
a = 0, (2.57)

s

0
t = s

0
s = st, (2.58)

f 0p(q) = d(q), (2.59)

r

0(x) = r̄� r(x). (2.60)

In words, all imaginary particles have albedo equal to 1 and a perfectly forward-scattering phase
function. All light interacting with imaginary particles is scattered in the forward direction;
therefore, imaginary particles have no impact on the light transport. The majorant extinction
coefficient k̄t of the combined medium reads:

k̄t = str(x) + s

0
t r

0(x)
= st (r(x) + r̄� r(x))
= str̄ (2.61)

and is constant throughout the volume.

We can thus analytically sample a tentative free path length dt:

dt = � ln(1� x)
k̄t

, (2.62)
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WoodcockTracking(x, w, tMax)

1 extMax majorantExtinction()
2 t 0
3 do :
4 t t� log(1� rand())/extMax
5 p x + t ⇤w
6 if t >= tMax :
7 break
8 ext extinctionAt(p)
9 while rand() > ext/extMax

10 return t

Figure 2.10: Pseudocode of Woodcock tracking.

and then probabilistically decide whether the interaction at xt = x + dtw occurred with a real
or an imaginary particle. For this, we draw a random number z. If z is smaller or equal to
the relative extinction coefficient of real particles, i.e. z  kt(xt)/k̄t, the collision involves a real
particle and is accepted. In the opposite case, the light interacts with an imaginary particle, its
flux and direction remain unchanged, and we repeat the process of sampling tentative events
until an interaction with a real particle is found, or the neareast surface is hit. Figure 2.9 shows an
example of the tracking with two imaginary and one real interactions. Pseudocode of Woodcock
tracing is provided in Figure 2.10.

Imaginary particles have no impact on the light transport; they are used just to reason about
the majorant extinction coefficient and to provide an intuition for rejecting interactions and
continuing the tracking further. As for any kind of rejection sampling, the number of rejected
samples depends on how closely the envelope, here the majorant extinction coefficient, matches
the sampled distribution. In media with large differences in density, the relative concentration
of real particles will be locally low, and the tracking is likely to take many steps requiring a lot of
random numbers. This can easily become the bottleneck of the simulation. Some techniques thus
divide the volume into regions with independently computed majorant extinction coefficients
[Szirmay-Kalos et al. 2011, Yue et al. 2010]. This decreases the overall number of imaginary
particles and avoids excessive rejection of samples.

Woodcock Multi-Tracking. In order to evaluate transmittance in an unbiased manner, Jarosz
et al. [2011b] designed an estimator that uses multiple instances of Woodcock tracking. The
transmittance along a finite ray is then estimated by counting the relative number of instances
that interact with the first real particle behind the end-point of the ray. The authors show that
the expected value of such estimator equals to the transmittance and the estimation is unbiased.

One disadvantage of Woodcock multi-tracking is that estimating the transmittance using N free-
path samples requires asymptotically N ⇥ M random numbers, where M is inversely propor-
tional to the collision sampling efficiency [Leppänen 2010] of the majorant. This requirement can
be lifted by correlating the tracking of individual free paths using the same sequence of random
numbers x, and by using the same random z in the termination criterion of a single tracking.
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2.7 Radiative Transfer Equation

With the various local parameters covered in the previous sections, we can now formulate a more
complete model of light propagation in the presence of participating media. Let us consider an
infinitesimal cylindrical volume dV = dAdz, where dA and dz are the differential cross-section
and the differential length of the cylinder, respectively. The change in flux flowing between the
two sides of the cylinder along directions confined to the differential solid angle dw, where w is
the axis of the cylinder, will be subject to four physical processes.

Absorption and Out-Scattering. The change in radiance due to light being absorbed (see Fig-
ure 2.11.a) and transformed into other form of energy can be expressed as:

dL(x!w) = �ka(x)L(x!w)dz. (2.63)

The other loss comes from light being scattered out (see Figure 2.11.b) by the medium:

dL(x!w) = �ks(x)L(x!w)dz. (2.64)

Adding these two together yields the total loss of radiance per dz:

dL(x!w) = �kt(x)L(x!w)dz. (2.65)

Emission and In-Scattering. Radiance gained due to emission within the differential cylinder
(see Figure 2.11.c) can be expressed as:

dL(x!w) = ka(x)Le(x!w)dz. (2.66)

The opposite process of out-scattering is when light from all incident directions scatters within
the differential cylinder along direction w (see Figure 2.11.d). The radiance gain due to in-
scattering reads:

dL(x!w) = ks(x)Li(x!w)dz, (2.67)

where Li(x!w) is given by a product integral of the incident radiance and the phase function
fp(w �w

0) over all directions:

Li(x!w) =
Z

S2
fp(w �w

0)L(x w

0)dw

0. (2.68)

The self-emission and the in-scattered light are often expressed as a single source term J(x!w):

J(x!w) = (1� a(x))Le(x!w) + a(x)Li(x!w)

= (1� a(x))Le(x!w) + a(x)
Z

S2
fp(w �w

0)L(x w

0)dw

0, (2.69)

where a(x) is the albedo at x.

In 1960, Chandrasekhar [1960] defined and concatenated all the previous terms in the funda-
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(a) Absorption (b) Out-scattering (c) Emission (d) In-scattering

Figure 2.11: Four processes that define the change in radiance between two sides of a differential cylinder.

mental radiative transfer equation (RTE) that governs the variation of radiance in a medium:7

dL(x!w) = kt(x)J(x!w)dz| {z }
gains

� kt(x)L(x!w)dz| {z }
losses

, (2.70)

which can be further split to emphasize the individual components:

dL(x!w) = ka(x)Le(x!w)dz| {z }
emission

+ ks(x)Li(x!w)dz| {z }
in-scattering

� ka(x)L(x!w)dz| {z }
absorption

� ks(x)L(x!w)dz| {z }
out-scattering

. (2.71)

The above differential equation can be written in several alternative forms, e.g.:

(w ·r)L(x!w) = ka(x)Le(x!w)

+ ks(x)Li(x!w)

� ka(x)L(x!w)

� ks(x)L(x!w), (2.72)

or in an integral form by integrating both sides of Equation (2.71) along a semi-infinite ray (x, w),
i.e. expressing the gains that are subject to extinction as:

L(x w) =
Z •

0
T(x$xt)kt(xt)J(xt!�w)dt

=
Z •

0
T(x$xt)

⇥
ka(xt)Le(xt!�w) + ks(xt)Li(xt!�w)

⇤
dt, (2.73)

7In the original book, Chandrasekhar uses the term specific intensity for what is today commonly denoted spectral radiance.
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where xt = x + tw. This integral form of the RTE can be writen concisely as:

L(x w) =
Z •

0
T(x$xt)L(x!�w)dt. (2.74)

2.7.1 Boundary Conditions

Since most of the scenes that we deal with in computer graphics contain surfaces, we need to
express the radiance along a finite ray and with respect to boundary conditions. The boundary
condition for Equation (2.74) is given by Equation (2.20), i.e. for a ray (x, w) hitting a surface
point xb, the boundary condition is equal to the radiance scattered from xb in direction �w:

L(xb!�w) = Le(xb!�w) +
Z

S2
fs(�w xb w

0) L(xb w

0)
�
n(xb) · w

0�dw

0. (2.75)

Adding the boundary condition to Equation (2.74) expresses the total radiance reaching x from
direction w as:

L(x w) =
Z b

0
T(x$xt)L(xt!�w)dt + T(x$xb)L(xb!�w), (2.76)

see Figure 2.12 for an illustration of some of the terms. By expanding the exitant radiance
functions and writing them in terms of emmission and incident radiance, we can emphasize the
recursive nature of the RTE:

L(x w) =
Z b

0
T(x$xt)ka(xt)Le(xt!�w)dt

| {z }
accumulated volume emission

+
Z b

0
T(x$xt)ks(xt)

Z

S2
fp(�w �w

0)L(xt w

0)dw

0dt
| {z }

accumulated volume in-scattering

+ T(x$xb)Le(xb!�w)| {z }
attenuated surface emission

+ T(x$xb)
Z

S2
fs(�w xb w

0) L(xb w

0)
�
n(xb) · w

0�dw

0
| {z }

attenuated surface scattering

(2.77)

2.7.2 Sensors

When rendering a scene, we do not necessarily need to find the equilibrium radiance at all
points of the scene, but rather in a small subset that is visible to the camera. The camera can
be represented by a two-dimensional sensor that measures the radiance incident from a specific
cone of directions. Our goal is to integrate the incident radiance over the sensor’s pixel area Ap
and over the aperture W of the camera. The measurement I can be written as:

I =
Z

Ap

Z

W
W(x w)L(x w)dwdx, (2.78)
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Figure 2.12: Illustration of some of the terms from Equations (2.76) and (2.77).

where W(x w) is the sensor response function. At this point, we can simply plug in the recursive
formulation of equilibrium radiance from Equation (2.77). One disadvantage of this formulation
is the recursive “explosion” of the integrals. In the next section, we introduce an alternative, yet
equivalent formulation that avoids this problem.

2.7.3 Path Integral Formulation

Path integrals were pioneered by Feynman and Hibbs [1965]. Veach [1997] adapted the path
integral framework to light transport between surfaces and Pauly et al. [2000] extended this work
to participating media. The main idea is to hide the recursion and express the light transport as
an integral over all possible paths.

The first step is to extend the three-point formulation of the LTE (cf. Equation (2.24)) to account
for volumes. Alternatively, one can also derive it directly from the RTE (cf. Equation (2.76)). We
skip the derivation here for brevity and refer interested readers to Appendix A.1. The resulting
three-point formulation of the RTE is a Fredholm integral equation of the second kind:

L(x!w) = L̂e(x!w) +
Z

R3
f (w x w

0)Ĝ(x$y)T(x$y)V(x$y)L(y!x)dµ(y). (2.79)

The above equation unifies the notation across surface and volumetric points by using several
generalized terms; the generalized emission L̂e:

L̂e(x!w) =

⇢
Le(x!w) if x 2 ∂V

ka(x)Le(x!w) if x 2 V,
(2.80)

the generalized scattering function f :

f (x y z) =
⇢

fs(x y z) if y 2 ∂V

fp(x y z)ks(y) if y 2 V,
(2.81)
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the generalized geometry term Ĝ:

Ĝ(x$y) =
Dx(y)Dy(x)
kx� yk2 , (2.82)

Dx(y) =

(
n(x) · y�x

kx�yk if x 2 ∂V

1 if x 2 V,
(2.83)

and the generalized differential measure dµ(x):

dµ(x) =
⇢

dA(x) if x 2 ∂V

dV(x) if x 2 V.
(2.84)

Path Space. Let Pk be the set of all paths of length k:

Pk = {x̄ = x0x1 . . . xk; x0, x1, . . . , xk 2 R3}, (2.85)

where 1  k < • and x̄ is a single path of length k. For any subset D ⇢ Pk we define the product
measure as:

µk(D) =
Z

D
dµ(x0) · · ·dµ(xk), (2.86)

and the differential path measure as:

dµ(x̄) = dµ(x0) · · ·dµ(xk). (2.87)

Given the definition of Pk, we can define the path space P , i.e. the space of all paths of all possible
lengths, as:

P =
•[

k=1
Pk. (2.88)

The measurement I from Equation (2.78) can now be expressed as a single integral over the path
space:

I =
Z

P
f j(x̄)dµ(x̄), (2.89)

where the integrand f j is known as the measurement contribution function.

We shall now define f j. By combining Equation (2.76) and Equation (2.78), and then recursively
expanding the exitant radiance (see the full derivation in Appendix A.2), we can identify the
terms whose product is known as the throughput T of the path. The throughput consists of the
generalized scattering functions (one for each intermediate vertex of the path) and the general-
ized geometry, transmittance, and visibility terms (one for each path segment). See Figure 2.13
for an illustration. For a path connecting vertices xj and xk, the throughput reads:

T (xj . . . xk) =
k�1

’
i=j+1

⇥
f (xi�1!xi!xi+1)Ĝ(xi�1$xi)T(xi�1$xi)V(xi�1$xi)

⇤

Ĝ(xk�1$xk)T(xk�1$xk)V(xk�1$xk). (2.90)
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Figure 2.13: Illustration of terms defining the measurement contribution function from Equation (2.91).
The product of the f , Ĝ, T, and V terms is commonly referred to as the path throughput.

With x0 and xk being points on a light source and on the sensor, respectively, the measurement
contribution function can be succinctly written as:

Ij(x̄) = L̂e(x0!x1)T (x0 . . . xk)W(xk xk�1), (2.91)

2.7.4 Operator Notation

The transport of light, after it is emitted and until it gets absorbed, consists of two alternating
processes: scattering on surfaces and in media, and propagation (along straight lines) between
individual interactions. It is often convenient to express these steps using an operator notation.
The three operators defined in the following paragraphs are linear relations, that act on input
functions producing new instances of these functions. We adopt the surface operators introduced
by Arvo et al. [1994] and extend them to account for interactions with participating media.
Although the operators can be applied to arbitrary functions, which are defined on ray space,
we skip the formalism and define them directly on the radiance function.

Local Scattering Operator. The local scattering operator8 K takes the incident radiance L(x w

0)
at a point x and transforms it into the exitant radiance L(x!w):

(KL)(x!w) =
Z

S2
f (w x w

0)L(x w

0)dw

0?. (2.92)

Note that for x 2 ∂V, the projected solid angle dw

0? = (n(x) · w

0)dw

0 accounts for the orien-
tation of the surface w.r.t the direction of incidence w

0. For x 2 V, the dot product vanishes,
i.e. dw

0? = dw

0. K is a local operator in the sense that the relation of the exitant to the incident
radiance is defined for each point x 2 (V [ ∂V) in isolation, independent of all other points.

Propagation Operator. The transport of radiance between two interactions is described by the
propagation operator9 G. Given a point x and a direction w, the propagation operator expresses
the incident radiance L(x w) as the integral of the exitant (emitted or in-scattered) radiance
along the ray (x, w), plus the attenuated exitant radiance emitted or scattered from the nearest

8While Arvo et al. use the term local reflection operator, we prefer the more general term local scattering operator as it better
represents media scattering and surface transmission.

9Similarly to Veach [1997], we prefer the name propagation operator instead of the term field radiance operator used by Arvo
et al. [1994]
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surface point xb:

(GL)(x w) =
Z b

0
T(x$xt)L(xt!w)dt + T(x$xb)L(xb!w), (2.93)

where xt = x + tw, xb = x + bw, and b is the distance to the nearest surface visible along w.
More informally, G takes all radiance exitant from volumes and surfaces and transports it to x
attenuating it by the corresponding transmittance.

Transport Operator. The transport operator T combines G and K transforming one exitant radi-
ance function L(x! w) into another exitant radiance (TL)(x! w) as a result of a single light
bounce:

(TL)(x!w) = (KGL)(x!w) (2.94)

Whenever it does not introduce ambiguity, we will drop the functional parameters and denote
the exitant radiance as L .

2.7.5 Neumann Series

With the help of transport operators we can express Equation (2.79) in terms of exitant radiance
and write it succinctly as:

L = Le + TL, (2.95)

stating that the exitant equilibrium radiance is a sum of the emitted and transported radiance.
Equation (2.95) clearly reveals the recursive nature of solving the radiative transfer. By recur-
sively expanding the equation:

L = Le + TLe + T2Le + . . . , (2.96)

we obtain the Neumann series:

L =
•

Â
k=0

TkLe. (2.97)

In order to assess the convergence of the Neumann series, it is necessary to define the operator
norm, which for a linear operator S reads:

kSk = sup
khk1

kShk. (2.98)

For scenes containing only reflective surfaces, Arvo [1995] proves that kTk  1 if all BRDFs are
symetrical and energy conserving. Additionally, if there is at least one BRDF with albedo < 1,
then kTk < 1, which is a sufficient condition for the Neumann series to converge to a finite value.
This formalizes our discussion from Section 2.5.1 on the need for energy conserving distribution
functions to ensure convergence of global illumination algorithms.

In his thesis, Veach points out that if the scene contains refractive surfaces, then kKk, and thus
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also kTk, are no longer bounded by 1. Precisely:

kKk < h

2
max

h

2
min

, (2.99)

where h

2
max and h

2
min are the maximum and minimum refractive indices present in the scene,

respectively. This stems from the fact that radiance can increase when refracted into an optically
thicker medium. Fortunately, the condition kTk < 1 is not strictly necessary to achieve conver-
gence. As shown in [Veach 1997], a weaker condition kTkk < 1 for some k � 1 is sufficient,
i.e. as long as the radiance function decreases after a certain number of bounces, the Neumann
series converges.

2.8 Evaluation of the Radiative Transfer Equation

In order to compute a realistic image of a virtual scene, we need to find the equilibrium radiance
at points that are visible to the camera. Optimally, we would like to obtain a closed-form func-
tional representation defined over all such points; however, this is possible only in very simple
and mostly uninteresting scenes. We thus need to resort to numerical recipes. Since the number
of (infinitesimal) points that are visible to the camera is infinite, Dutré et al. [2006] formulate
the problem as finding the average equilibrium radiance over a number of point sets. The com-
putation thus simplifies to finding the radiance only for a few representatives whose combined
contribution defines the radiance for all points in the set. The exact definition of the point sets
is dependent on the rendering algorithm. In the following, we briefly outline some of the tech-
niques developed for solving the light transport and the radiative transfer equation in particular.
For an overview of other rendering algorithms please refer to Dutré et al. [2006] and Pharr and
Humphreys [2010].

2.8.1 Analytic Integration

The lack of computational power in the early years of computer graphics forced researchers
to derive analytic solutions to the integro-differential transport equations. Many of those were
adopted from the heat transfer literature, which provides more than 300 form-factors10 that de-
scribe the transport of energy between surfaces of various geometric primitives, ranging from
infinitesimal elements to shapes such cones or cylinders. A collection of these form-factors can
be found in Howel et al. [2010]. We will now focus on analytic techniques that take into account
participating medium.

In certain situations, some terms in the RTE (cf. Equation (2.77)) can be expressed in a closed
form. For instance, both emission terms yield analytic expressions in homogeneous media. In
some cases, we can integrate even the in-scattered radiance analytically. This term of the RTE is
often referred to as the airlight integral.

Lecocq et al. [2000] proposed an angular reformulation of the airlight integral for point light
sources. Instead of integrating along the length of the ray, they integrate along the angle between
the two lines that connect the point light to the start and end points of the ray. By expanding the

10In the heat transfer literature, these are often called configuration factors or geometric factors.
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reformulated integral into a Taylor series they obtain an analytic approximation of the airlight
integral. Sun et al. [2005] further simplified the angular formulation and presented a semi-
analytic model, which does not require expansion into a Taylor series, but relies on precomputing
and tabulating the integrand. Both of the previous approaches are limited to homogeneous
media with isotropic phase functions and point lights. Pegoraro and Parker [2009] derived the
first fully analytic solution to the airlight integral, and further extended the technique to handle
anisotropic phase functions and light sources with axially symmetric emission profiles [Pegoraro
et al. 2009]. The same authors then extended the technique to support arbitrary phase functions
and emission profiles [Pegoraro et al. 2010; 2011]. A common drawback to these approaches is
that the phase function and the emission profile have to be expanded into a Taylor series, which
makes the evaluation of the anti-derivative fairly expensive.

All of the aforementioned analytic techniques assume full visibility between the point light and
the camera ray. To overcome this major limitation, Biri et al. [2006] employ volumetric shadows
to identify segments of the ray that are fully visible, and break the airlight integral into a sum
over these segments. Another option is to employ the analytic solution only as a control variate
and sample the airlight integral numerically. The resulting images suffer from noise only in
regions where the camera rays are partially occluded.

2.8.2 Monte Carlo Integration

Finding an anti-derivative can be often complicated or even impossible. In such cases, we have
to employ numerical integration, i.e. we sample the value of the integral over a finite set of
points and average the obtained values. Quadrature and cubature rules distribute these points
uniformly using regular grids, and are known to be most efficient on low-dimensional integrals.
They can be extended to multiple dimensions by recursively expanding the one-dimensional
integration; however, as the number of dimensions increases, the number of evaluations of the
integral grows exponentially. To overcome the curse of dimensionality, we can instead evaluate
the integral on a set of multi-dimensional points. When these points are defined using a ran-
dom or quasi-random sequence, we talk about Monte Carlo (MC) or quasi-Monte Carlo (QMC)
integration, respectively.

The most important and distinctive property of Monte Carlo methods stems from the central
limit theorem. Given a sequence of N independent and identically distributed random variables
X1, X2, ..., XN with common mean µ and standard deviation s, the average of these variables:

X̄N =
1
N

N

Â
i=1

Xi, (2.100)

has approximately normal distribution (µ, s/
p

N). An important observation here is that Xi does
not have to be normally distributed; the averaging works for any sequence of random variables
as long as they have a well defined µ and s. Informally, the central limit theorem says that by
increasing N, we narrow the normal distribution of the average. In the limit, i.e. for N! •,
X̄N = µ and s = 0.

Consider a multi-dimensional integral F of a function f defined over a domain D:

F =
Z

D
f (x)dx. (2.101)
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In order to estimate the value of F, we define an estimator hFNi that approximates F by averaging
the value of f on N randomly chosen points from D:

F ⇡ hFNi = V
N

N

Â
i=1

f (Xi), (2.102)

where V is the size of D:

V =
Z

D
dx. (2.103)

The estimator hFNi itself is a random variable, whose value depends on the number of sampled
points and their distribution. For a set of uniformly chosen points (i.e. p(Xi) = 1/V) it can be
easily shown that the expected value of hFNi equals to F:

E
h
hFNi

i
= E

"
V
N

N

Â
i=1

f (Xi)

#

=
V
N

N

Â
i=1

E [ f (Xi)]

=
V
N

N

Â
i=1

Z

D
f (x)p(x)dx

=
1
N

N

Â
i=1

Z

D
f (x)p(x)

p(x)
dx

=
Z

D
f (x)dx

= F. (2.104)

We can also express the variance:

s

2
h
hFNi
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= s
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�
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p(X)

�
, (2.105)

and the standard deviation of the estimator:

s

h
hFNi

i
=

1p
N

s


f (X)
p(X)

�
. (2.106)

The above equations highlight two important properties of Monte Carlo estimators: first, the
estimators converge at the rate of O(N�1/2) (i.e. to reduce the error by a factor of 2 we need to
draw 4⇥ more samples), second, the variance of the estimator depends on the probability p(X),
which is used to draw the samples. In many cases, we have some a-priori information about the
integrand, which can be used to determine a suitable distribution for choosing the samples.
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A Brief History of Monte Carlo Methods.

Monte Carlo methods were originally developed in 1940s in the Los Alamos National Laboratory
to numerically verify and improve designs of thermonuclear weapons. The code name “Monte
Carlo” was proposed by Ulam and von Neumann to emphasize that these simulations involve
some sort of random decisions, as do the games in the famous casino of Monte Carlo. The funda-
mental paper describing the Monte Carlo method was published by Metropolis and Ulam [1949]
in 1949; however, this was not the first time when random sampling was used in calculations.
In 1777, Comte de Buffon proposed an experiment that involved dropping a needle many times
on parallel lines to probabilistically estimate the value of p. In order to generate random num-
bers, Lord Kelvin drew slips of paper out of a glass jar when studying kinetic energy of gases.
The initial application of Monte Carlo sampling to transport theory is sometimes attributed to
Fermi, who applied a similar approach to simulations of neutron transport in 1930s, but did not
publish anything on the topic. More information about the early applications and history of MC
sampling can be found in [Hammersley and Handscomb 1964, Kalos and Whitlock 1986].

Monte Carlo methods play an important role in transport and diffusion theory. Some parti-
cles (e.g. neutrons) penetrate deep into solid objects undergoing many interactions with the
medium inside. In order to simulate these, MC approaches create random walks that mimic
the transport of neutrons throughout the domain of interest. A survey of early MC techniques
for neutron transport was assembled by Spanier and Gelbard [1969]. The authors categorize the
approaches as collision (discrete) estimators and track length (continuous) estimators. Most of
these estimators construct random walks analogously to the underlying physical processes, i.e.
the random walks are terminated when the neutron is absorbed. A different family of estimators
can be derived from these analog processes by forbidding absorption [Gelbard et al. 1966, Spanier
1966]. Such non-analog random walks require to be terminated using some artificial termination
rule (e.g. Russian roulette), which can in some cases lead to a lower variance than with ana-
log estimators. Coleman [1968] verifies some of these estimators mathematically and Lux and
Koblinger [1991] provide a more up-to-date comparison of the different analog and non-analog
estimators.

Simulating the transport of photons in participating media shares many similarties to neutron
transport. One interesting example is the class of next event estimators (NEE) developed for
computing the energy at a given point [Kalos 1963]. These estimators compute the energy trans-
ported to the point detector explicitly after each scattering event. Such approaches however
suffer from a severe problem: since the detector is approximated by a point, the estimator con-
tains a (1/d2)-singularity causing a theoretically infinite variance. Steinberg and Kalos [1971]
proposed to incorporate the (1/d2)-singularity into the PDF for sampling the scattering event,
which effectively cancels the original singularity and results in an unbiased estimator with finite
variance. An analogous sampling scheme, called the equi-angular sampling, has recently been
introduced to the field of computer graphics by Kulla and Fajardo [2012] to minimize the vari-
ance when estimating inscattered light from a point light along a ray. To reduce the degree of
the singularity, Kalos [1963] also proposed the once-more collided flux estimator, which adds an
additional scattering event and reduces the singularity to 1/d. Georgiev et al. [2013] propose an
efficient sampling strategy for this kind of light transport.

In the early years of computer graphics, Monte Carlo concepts were leveraged by Appel [1968]
who shot random light rays from light sources to estimate shadows and spatial intensity of light
on solid objects. Whitted [1980] took an opposite approach (sometimes referred to as back-
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ward ray tracing11) by tracing rays from the camera and possibly extending them recursively
into paths if they hit specular surfaces. Cook et al. [1984] extended Whitted’s ray tracing to
support distribution effects, such as depth of field or motion blur, by stochastically integrating
over time and lens aperture. In 1986, Arvo [1986] proposed to trace rays recursively from the
light sources to synthesize caustics. In the same year, Kajiya [1986] formulated light transport
using a single integral equation (in principle Equation (2.20)) and proposed to solve it using
Monte Carlo sampling of paths. His path tracing became a de facto standard for computing ref-
erence solutions inspiring many of the follow-up publications. Lafortune and Willems [1993]
and Veach and Guibas [1994] independently proposed to combine path tracing and light trac-
ing in a unified bidirectional tracing framework, for which Veach and Guibas [1994] devised a
number of strategies to properly weight the different estimators. The same authors then applied
Metropolis-Hastings algorithm to light transport [Veach and Guibas 1997] to amortize the cost
of constructing paths by perturbing those with high contribution to construct new ones. Several
authors extended this technique to further improve the convergence in specific situations [Cline
et al. 2005, Jakob and Marschner 2012, Kaplanyan and Dachsbacher 2013b, Lehtinen et al. 2013].

Unbiased vs. Biased Estimators

The variance of Monte Carlo estimators can be further reduced by correlating the estimates
and/or caching and reusing results over several queries. Examples of such algorithms include
irradiance caching [Ward et al. 1988], volumetric radiance caching [Jarosz et al. 2008a], density es-
timation approaches [Jensen 1996, Shirley et al. 1995], or instant radiosity [Keller 1997]. These
approaches are better in suppressing noise; however, they generally introduce approximations
that bias the estimator. While unbiased estimators yield correct results on average, biased es-
timators systematically alter the result. If the estimator is consistent, the systematic error can
be made arbitrarily small by taking more samples; however, the convergence rate of consis-
tent rendering algorithms is often worse than in the case of MC approaches (e.g. progressive
photon mapping [Hachisuka et al. 2008b, Knaus and Zwicker 2011] converges at the rate of
O(N�1/3) [Kaplanyan and Dachsbacher 2013a] while path tracing converges at O(N�1/2)).

In his thesis [Veach 1997], Veach argues that unbiased estimators are preferred over biased ones,
simply because the error of the algorithm is guaranteed to manifestate itself as random variation
of the estimator, and thus easy to quantify: we just need to compute the variance of the sam-
ple. In contrast, the error of biased algorithms is generally hard to assess and the only robust
approach is to compare the results to those of an unbiased algorithm. There is no doubt that
unbiased algorithms have a certain advantage over biased ones; nevertheless, there are still situa-
tions when employing biased estimators makes sense, or is even the only viable option. Consider
for instance a scene consisting of a swimming pool with a wavy water surfaces illuminated by
a point light. When the scene is rendered using a pinhole camera, computing the illumination
at the bottom of the pool is generally impossible with unbiased path sampling techniques. This
is because the delta functions, i.e. the point light, the pinhole camera, and the specular wa-
ter surface, make the problem overconstrained for stochastic sampling. In contrast, consistent
methods can easily discover the corresponding paths and render an image that contains all light
transport, be it at the cost of a small error.

11The terms forward and backward ray tracing are sometimes interchanged. Arvo [Arvo 1986] used the term backward
ray tracing for rays that are shot from the light source. In 1995, the author added an addendum to the paper regretting
the chosen terminology as this caused a lot of confusion. We shall thus use the term “forward” when talking about
rays shot from the light source, and “backward” for rays shot from the camera.
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Another example when biasing the computation is desirable are many-light algorithms. If for-
mulated without any systematic error, the estimator suffers from unbounded variance [Kollig
and Keller 2006]. Introducing a certain amount of bias, either by removing or spatially blurring
the energy, removes distracting artifacts and produces images that are visually more pleasing
than those obtained with the original unbiased formulation.

2.8.3 Finite Element Methods

The rendering algorithms described in the previous section focus on estimating the equilibrium
radiance over points that are visible to camera, and they are thus view-dependent. We shall also
mention algorithms that try to compute the illumination in world space in a view-independent
manner. The solution can be subsequently used for several camera positions or entire animations.
These algorithms first discretize the scene by tessellating the geometry into a finite number of
patches and then seeks for the equilibrium diffuse energy, which is defined by a set of linear
equations describing the exchange of light between individual patches. Since outgoing diffuse
illumination is well modeled by radiosity, finite element methods used for rendering are often
called radiosity algorithms [Cohen and Greenberg 1985, Goral et al. 1984, Nishita and Nakamae
1985].

The fact that the solution needs to be view-independent restricts the application to diffuse scenes
only. Many publications try to overcome this limitation by computing the view-dependent trans-
port separately [Smits et al. 1992], or by supporting more complex reflections [Aupperle and
Hanrahan 1993, Immel et al. 1986, Sillion et al. 1991, Wallace et al. 1987]. Researchers also
tried to adjust the tesselation to the structure of the light transport by importance-driven re-
finement [Smits et al. 1992], discontinuity meshing [Lischinski et al. 1992], or clustering [Smits
et al. 1994]. Rushmeier and Torrance [1987] extended radiosity methods to handle participating
media. There are also several approaches that combine finite element methods with MC sam-
pling, e.g. Monte Carlo radiosity estimates the coefficients for the linear equations by tracing light
particles [Pattanaik and Mudur 1993, Shirley 1990].

Despite many of these improvements, the cost of evaluating the light transport remains tied
to the geometric complexity of the scene. Applications of radiosity algorithms to high quality
rendering are thus today rare.
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Many-Light Methods

Education is man’s going forward from cocksure
ignorance to thoughtful uncertainty.

— Kenneth G. Johnson (1922–2002)

Over the last few decades, we have been witnessing an increasing demand for visualizing
virtual scenes across many industries. The demand sparked numerous research activ-
ities resulting in rendering algorithms, which allow rasterizing virtual geometry into

a set of colored pixels. In this dissertation, we focus on synthesizing images that look virtu-
ally indistinguishable from photographs. There are different perspectives that one can take on
this problem, but in general, the goal is to solve the radiative transfer equation in either its full
complexity or in one of the simplified forms.

At the end of the previous chapter, we mentioned some of the Monte Carlo techniques that
evaluate the integro-differential equation by recursive sampling. Thanks to the central limit
theorem, these approaches yield correct results, on average, but the results often suffer from high
amount of noise. Several algorithms strive to overcome this and accelerate rendering by reusing
computation and/or correlating estimates. These techniques split the simulation of transport
between emitters and cameras into two phases. In the first phase, the algorithm distributes
information about (multi-bounce) illumination coming from emitters, and stores it in a form of
e.g. irradiance samples [Ward et al. 1988], a photon map [Jensen 1996], or a collection of virtual
point lights [Keller 1997]. The second phase is then responsible for connecting these samples
to the camera e.g. by shooting primary rays and estimating the density of photons. While the
scheme may seem convoluted, the great advantage of these algorithms is that they can reuse
results of the first part across multiple pixel queries, thereby reducing the variance.

Many-light methods, see Figure 3.1 for illustrations of the two phases, fall into this category.
The advantage of many-light algorithms is their simple, unified and adaptable solution to many
difficult rendering problems. The core insight is that the general light transport can be approxi-
mated by the simpler task of calculating direct illumination from many virtual light sources. This
gives many-light algorithms two distinct advantages. First, it provides a unified and straightfor-
ward mathematical framework for calculating global illumination. Second, it makes many-light
algorithms very adaptable: the same algorithm can be adjusted to meet a wide range of quality
and performance goals. For instance, by using fewer virtual sources, many-light methods can
produce biased, but artifact free images in a fraction of a second; this makes them attractive for
real-time rendering applications. On the other hand, by using sufficiently many virtual sources
with a highly scalable evaluation algorithm, any bias from the virtual source approximation
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(a) Generation of VPLs (b) Lighting with VPLs

Figure 3.1: Many-light algorithms operate in two passes: first, they distribute a number virtual lights, e.g.
virtual point lights (VPLs) (a), and then use them to illuminate the scene and by this approximate indirect
illumination (b).

can be reduced below the perceptible level. The algorithm then produces results comparable to
unbiased methods in less time and becomes appealing even for high-fidelity applications.

In this chapter, we provide a coherent summary of many-light rendering. The structure and
the content of the chapter is based on the state-of-the-art report by Dachsbacher et al. [2014].
First, we explain the fundamental concept of many-light algorithms in Section 3.1. Then we
describe the two important components: how to generate virtual lights and how to use them
to approximate global illumination, in Sections 3.2 and 3.3, respectively. Finally, we review
extensions addressing scalability and performance of many-light algorithms in offline and real-
time rendering in Sections 3.4 and 3.5, respectively.

3.1 Algorithm Overview

The basis for all many-light algorithms was established by Alexander Keller in 1997 in a paper
called instant radiosity [Keller 1997]. The algorithm makes a key observation that complex global
illumination can be approximated by direct illumination from a set of specifically distributed
virtual point lights (VPLs). Similarly to the original work, we will introduce the algorithm by
describing the method for surfaces only, and later generalize to include participating media as
a part of the precise mathematical formulation in Sections 3.2 and 3.3.

In principle, all global illumination MC methods evaluate light transport by constructing light
transport paths, along which light travels from light sources to camera sensors. Path tracing [Ka-
jiya 1986], for example, constructs paths by tracing rays starting from the camera. In order to
handle complex light transport more robustly, bidirectional path tracing [Lafortune and Willems
1993, Veach and Guibas 1994] traces sub-paths from camera as well as from light sources and
then (deterministically) connects them to form full paths.

Instant radiosity (IR) is a variant of bidirectional path tracing that constructs the two sets of sub-
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Figure 3.2: Illustration of terms involved in computing the contribution of a single VPL to a shading point.

paths in a specific manner. Recall the measurement contribution function from Equation (2.91),
for which we now define a Monte Carlo estimator:

hIj(x̄)i = 1
N

N

Â
i=1

L̂e(x0!x1)T (x0 . . . xk)W(xk xk�1)
p(x0 . . . xk)

, (3.1)

where p(x0 . . . xk) is the joint probability distribution for constructing the path. Keller’s key
observation here is that we can split the evaluation of the estimator into arbitrarily long light
paths x0 . . . xk�2 and rather short1 camera paths xk�1, xk. A single light path can be then reused
to calculate illumination of many different points xk�1 seen by the camera.

Specifically, instant radiosity precomputes a number of path prefixes of the form x0 . . . xk�2 and
stores their end vertices xk�2 as virtual point lights. With each VPL i the algorithm also stores
the partially evaluated estimator from Equation (3.1), which is usually referred to as the “flux”
of the VPL:

Fi =
1
N

L̂e(x0!x1)T (x0 . . . xk�2)
p(x0 . . . xk�2)

. (3.2)

Additionally, we also store information necessary to use the VPL to “illuminate” or to “connect
to” a given point xk�1, i.e. to evaluate the following terms (see Figure 3.2):

f (xk xk�1 xk�2)V(xk�1$xk�2)T(xk�1$xk�2)Ĝ(xk�1$xk�2) f (xk�1 xk�2 xk�3). (3.3)

This includes a reference to the scattering function at the VPL location xk�2, the direction towards
xk�3, and the local tangent frame if x2 resides on a surface. In practice, it is often assumed that
the scattering function at the VPL location is view independent (i.e. Lambertian if xk�2 2 ∂V

and isotropic if xk�2 2 V). In this case, we do not need to store the incident direction and we
can premultiply the VPL “flux” [W] by the value of the scattering function [sr�1], to obtain the
VPL “intensity” [W.sr�1]. It is often simpler and less error-prone to think about VPLs in terms
of partial evaluations of the estimator in Equation (3.1) rather than in terms of flux or intensity.

In general, many-light algorithms consist of two phases (see Figure 3.1 for illustration):

Phase 1: Generation of VPLs
First, a large set of light sub-paths with arbitrary length is generated and stored. For each
vertex of these sub-paths, the local geometric and material information and the current
“flux” (i.e. emitted radiance from the light source multiplied by the path throughput to
the vertex, divided by the probability density of constructing the path to that point) is

1In case of the primary ray hitting a specular or highly glossy surface, some variants of IR extend the camera path until
it reaches a diffuse or moderately glossy surface. The camera path can thus consist of more than two vertices.
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recorded. The intention is that the data stored for each vertex suffice to compute the
outgoing illumination scattered from this vertex into any direction. If this is true, we can
discard the notion of the original path and instead model the vertex as an unusual type of
point light source. Since these do not correspond to any physical light sources in the scene,
we call them virtual point lights.

Phase 2: Lighting with VPLs
In order to complete the IR algorithm, camera sub-paths are constructed for each pixel in
the second phase. Since the light sub-paths were arbitrarily long, it is sufficient to consider
only length-one camera paths. Then, like other bidirectional algorithms, IR connects ver-
tices of these camera sub-paths to vertices of the light paths to form full paths. This step
amounts to computing direct illumination of directly seen surfaces due to the VPLs.

The two phase IR algorithm is often more efficient than general bidirection methods for two rea-
sons. First, since each VPL is used to illuminate surface points seen through all (or many) image
pixels, the effort invested into generating the VPLs is well amortized. Additionally, the use of a
single set of VPLs to illuminate all surface points produces correlated pixel values. This property
is extremely efficient in visually suppressing noise, which is typical for traditional Monte Carlo
approaches that build independent paths for each pixel. Note that this latter advantage has little
to do with reducing numerical error – it is purely of perceptual nature.

The original instant radiosity method [Keller 1997] was not the end-all solution to the global
illumination problem. Its specific strategy for constructing transport paths has advantages as
well as drawbacks. Common to most variants is that they are relatively simple to implement
and quickly yield visually pleasing results at predictable rendering costs. On the other hand,
IR methods are prone to splotchy artifacts (imagine the entire light energy in a scene contracted
to few VPLs), and have difficulties with high frequency global illumination, e.g. in scenes with
highly glossy surfaces. We elaborate on these problems later, point to publications that try to
overcome them, and describe our original solutions.

3.2 Generation of Virtual Point Lights

In this section, we detail the first phase of the algorithm, and describe a common random walk
procedure used to distribute VPLs. We also discuss improvements that were developed to direct
the VPLs into visually important parts of the scene.

3.2.1 Random Walk VPL Distribution

The most common approach to generate VPLs is to distribute them using several random walks.
Indeed, we can use the same particle tracing procedure as for distributing photons in photon
mapping [Jensen 1996]. We start by tracing N light paths, which originate at light sources,
creating M VPLs; one at each bounce (vertex) of the light path. We proceed in the following
steps:

1. Sample the first vertex. The first vertex x0 we create on a light source. Usually, x0 is sam-
pled from a PDF p(x0) that is proportional to the radiant exitance of individual emitters.
We also initialize the vertex index j to 0.
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Figure 3.3: This illustration shows the terms that are required to compute the “flux” of a VPL during the
construction of random walks.

2. Sample the next path vertex. Then we sample direction wj from a PDF p(wj) proportional
to the directional emission distribution of the light source (for the first path vertex, j = 0)
or to the generalized scattering function (for other vertices, j > 0). In scenes without
participating media, this direction uniquely determines the next path vertex. To account
for media, we need to sample the free path tj along the ray rj(t) = xj + twj, i.e. how far
the particle travels before interacting with the medium. Please refer to Section 2.6.8 for
details on how to sample the free path. If the sampled distance extends beyond the nearest
surface along wj, the next path vertex xj+1 will be the corresponding surface intersection
point. Otherwise, the next vertex resides in the medium.

3. Create a VPL. A virtual point light is stored at the position of the generated path vertex
xj+1. The “flux” of the VPL is calculated as:

Fj+1 =

8
>>><

>>>:

L̂e(x0!x1) Dx0(x1) T(x0$x1)
p(x0) p(w0) p(t0)

if j = 0

Fj
f (xj+1 xj xj�1) Dxj(xj+1) T(xj$xj+1)

p(wj) p(tj) qj
if j > 0.

(3.4)

As mentioned before, for every VPL we also store a reference to the scattering function f at
the VPL location xj+1, the incident direction wj, and the local tangent frame if xj+1 2 ∂V.

4. Terminate or continue the path. Use Russian roulette to terminate the random walk with
probability (1� qj+1), where the survival probability qj+1 is usually proportional to the
albedo of the surface or volumetric point xj+1, or the throughput of the path. If the random
walk survives the Russian roulette, set j := j + 1 and go to step 2.

After finishing all random walks we divide the “flux” of each VPL by the total number of
generated light paths N. Note that the “flux” of the VPLs created by the above procedure
exactly corresponds to all the terms in Equation (3.2); see Figure 3.3 for illustration.

When the scene does not contain any participating media, we can simplify the random walk
procedure by omitting the free path sampling. The generated path vertex xj+1 is always on the
nearest surface and the transmittance T(xj$xj+1) and the PDF p(tj) equal to 1 and cancel out.

3.2.2 Improved VPL Generation

The random walk procedure described previously does not take into account the position of the
camera. It may thus generate many VPLs with only a small contribution to points in the view
frustum. The problem becomes even more prominent in large environments where the camera
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looks at a small part of the scene. Additionally, the density of VPLs generated by the basic VPL
generation algorithm along concave geometry is usually insufficient to faithfully render local
interreflections. In this section, we briefly discuss various approaches developed for generating
VPLs where they are most needed for a given camera view.

Rejection of Unimportant VPLs.

A straightforward approach to avoid VPLs with negligible contribution is to probabilistically
reject the unimportant ones. The algorithm, as proposed by Georgiev and Slusallek [2010],
generates many candidate VPLs using the previously described random walk procedure, but
keeps only those with significant contribution to the entire image. The authors first estimate the
average VPL contribution F

µ

by creating a number of pilot VPLs and rendering a low resolution
image. Then they generate candidate VPLs and for each candidate they estimate its contribution
Fi by calculating the light it delivers to a few pixels of the image. The candidate is accepted
with probability:

pi = min
⇢

Fi
F

µ

+ e, 1
�

, (3.5)

which is proportional to the ratio of the actual VPL contribution to the average contribution. If
accepted, the VPL flux is divided by pi to ensure unbiasedness. This approach is essentially a
Russian roulette driven by the relative expected contribution, which produces a set of VPLs with
approximately the same contribution to the image.

Metropolis Instant Radiosity.

The rejection sampling approach described above is simple but suffers from an important dis-
advantage: many candidate VPLs may need to be generated before one VPL is accepted. To
create VPLs that are relevant to the camera straight from the beginning, Segovia et al. [2007]
propose to replace the standard VPL tracing by a Metropolis-Hastings sampler. Consider a path
that connects a light source to the camera. As discussed in Section 3.1, the second vertex from
the camera can be interpreted as a VPL. We can now use the Metropolis-Hastings procedure,
as in the Metropolis light transport algorithm [Veach and Guibas 1997], to explore the space of
all possible light paths by proposing and probabilistically accepting path mutations. Every time
a path is mutated, the second vertex from the camera of the mutated path yields a new VPL.
Segovia et al. [2007] shows that all VPLs created in this way contribute the exact same total flux
to the image.

Though very different, both the VPL rejection algorithm [Georgiev and Slusallek 2010] and
Metropolis Instant Radiosity [Segovia et al. 2007] generate VPL sets where each VPL has at
least roughly the same contribution to the image. From this, we can expect that the VPL sets
generated by both algorithms will be of similar quality. For complex scenes, where light needs to
bounce many times to reach the camera, the rejection algorithm may perform poorly because it
will reject many VPLs. On the other hand, while the VPL rejection approach is trivial, Metropolis
Instant Radiosity requires a substantial implementation effort. Finally, as the VPL distribution
is driven by the contribution of VPLs to the entire image, none of the two algorithms addresses
glossy interreflections.
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Creating VPLs from the Camera.

The density of VPLs distributed by the generation algorithms discussed so far is usually insuf-
ficient to faithfully render local interreflections in geometric cavities. To deal with this problem,
it may be more appropriate to distribute the VPLs by tracing paths from the camera instead
of starting at the light sources. This approach is likely to produce VPLs in locations important
for the image. The idea of generating VPLs by tracing paths from the camera appeared first
in [Segovia et al. 2006a] under the name Bidirectional Instant Radiosity. It was later also used
by Davidovič et al. [2010], who refer to the VPLs generated from the camera as local VPLs (as
opposed to global VPLs, generated by tracing paths form the light sources).

3.3 Lighting with Virtual Point Lights

Once the VPLs are generated, many-light algorithms use them to illuminate the scene, i.e. to
calculate the outgoing radiance L(xk�1 ! xk) scattered from points xk�1 in the view frustum
towards points xk in the camera. This amounts to summing over all M VPLs and adding together
their “flux” Fi weighted by the terms from Expression (3.3). The estimator of L(xk�1!xk) reads:

hL(xk�1!xk)i =
M

Â
i=1

f (xk xk�1 xi
k�2)V(xk�1$xi

k�2)T(xk�1$xi
k�2)Ĝ(xk�1$xi

k�2)

f (xk�1 xi
k�2 xk�3)Fi, (3.6)

where xi
k�2 is the position of i-th VPL.

Although the equation above—the core part of many-light methods—is fairly simple and can be
evaluated efficiently, closer inspection reveals the major problem of many-light algorithms. The
geometry term Ĝ(x$y) contains a (1/d2)-singularity with d representing the distance between
the shading point and the VPL (see Equation (2.82) for definition). Since the distance can be
arbitrarily small, the contribution of a VPL to a shading point, and thus the variance of the
estimator, is possibly unbounded. This is in a sense the same problem as in a naive bidirectional
path tracing that does not employ a proper weighting of multiple estimators. The closer the two
vertices being connected are, the higher the value of the sample. As a result, some pixels in the
resulting path-traced image are very bright.

With many-light algorithms, the (1/d2)-singularity stands out even more clearly than in naive
bidirectional path tracing. This is because we correlate the estimates by connecting all shad-
ing points to the same set of VPLs. Note that the correlation itself does not compromise the
mathematical correctness of the algorithm, i.e. the estimation is still unbiased. However, we
ultimately trade noise for structured artifacts, which, thanks to the (1/d2)-singularity, show up
very clearly as high-intensity splotches, and are often more distracting than stochastic noise (see
Figure 3.4.a). Since the splotches heavily degrade the quality of rendered images, we devote the
next few sections to existing techniques that try to avoid them.
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(a) Unbounded VPLs (b) Bounded VPLs (c) Unbiased solution

Figure 3.4: Adding the full contribution of each VPL leads to high-intensity splotches (a). When the
contribution is bounded (b) these artifacts disappear; however, the rendered image becomes locally darker
than the ground-truth (c).

3.3.1 Bounded Estimation

A straightforward and popular approach to suppress the bright splotches is to bound the ge-
ometry term to a user-defined maximum b. By bounding2 we guarantee that the geometry term
does not exceed b, no matter how close the shading point to a VPL is. This technique was used
already in the original instant radiosity method [Keller 1997], where the bounding occurred as
a consequence of implementing the method in hardware, which at that time clamped all color
values to h0, 1i. Let us now define a bounded geometry term Ĝb(x$y):

Ĝb(x$y) = min(Ĝ(x$y), b). (3.7)

By substituting Ĝb(x$y) for Ĝ(x$y) in the estimator from Equation (3.6):

hL(xk�1!xk)i =
M

Â
i=1

f (xk xk�1 xi
k�2)V(xk�1$xi

k�2)T(xk�1$xi
k�2)Ĝb(xk�1$xi

k�2)

f (xk�1 xi
k�2 xk�3)Fi, (3.8)

we avoid the structured artifacts; however, we partly suppress short distance light transport, and
thus obtain a solution that is biased. Images rendered with the bounded geometry term suffer
from artificial darkening in regions with locally concave geometry, such as corners and cavities
(see Figure 3.4.b for examples). Furthermore, selectively suppressing light transport can have a
severe impact on material appearance [Křivánek et al. 2010], and should be in such cases either
avoided or compensated for.

2Sometimes also called clamping.
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3.3.2 Bias Compensation via Final Gathering

One way to avoid changes in material appearance and to ensure unbiased renderings is to add
a correction term that recovers the missing light transport. Kollig and Keller [2006] express the
energy removed due to bounding, denoted B(xk�1!xk), as the difference between the transport
obtained with the original and the bounded geometry term:

B(xk�1!xk) =
Z

R3
f (xk xk�1 xk�2)V(xk�1$xk�2)T(xk�1$xk�2)

Ĝr(xk�1$xk�2)L(xk�2!xk�1)dµ(xk�2), (3.9)

where Ĝr(x$y) is the residual geometry term transporting only the missing light:

Ĝr(x$y) = Ĝ(x$y)� Ĝb(x$y)
= Ĝ(x$y)�min(Ĝ(x$y), b)
= max(Ĝ(x$y)� b, 0). (3.10)

In order to remove the singularity from Equation (3.9), Kollig and Keller propose to change the
domain of integration to the unit sphere S2. Raab et al. [2008] extend the formulation to support
participating media by adding an additional integral to account for points along the sampled
direction. Incorporating both of these changes yields:

B(xk�1!xk) =
Z

R3
f (xk xk�1 xk�2)V(xk�1$xk�2)T(xk�1$xk�2)

Ĝr(xk�1$xk�2)

Ĝ(xk�1$xk�2)
Ĝ(xk�1$xk�2)L(xk�2!xk�1)dµ(xk�2)

=
Z

S2
f (xk xk�1 w) Dxk�1(w)

Z d

0
T(xk�1$y)

Ĝr(xk�1$y)
Ĝ(xk�1$y)

L(y!xk�1)dtdw,

(3.11)

where y is a point at distance t on a ray with origin xk�1 and direction w; d is the distance to the
nearest surface seen along the ray, and Dx(w) is defined as:

Dx(w) =

⇢
n(x) · w if x 2 ∂V

1 if x 2 V.
(3.12)

In order to obtain unbiased results, Kollig and Keller add the bias compensation term B(xk�1!xk)
to the bounded solution from Equation (3.8). As suggested in Equation (3.11), B can be estimated
via localized final gathering, i.e. by shooting rays towards nearby surfaces, calculating the out-
going radiance therefrom, and transporting back only such amount of energy that corresponds
to the removed VPL lighting.

Although the compensation is localized, the proposed implementation is fairly costly since
L(y ! xk�1) is estimated using all light sources and all VPLs. As bounding occurs during
the compensation, the technique is recursive and quickly degenerates to path tracing (see Fig-
ure 3.5). Another pitfall is that Ĝr is often zero during the MC integration and B(xk�1 ! xk)
thus suffers from high variance. As a result, the cost of obtaining unbiased results with accept-
able amount of noise can exceed the computation time of the bounded transport by orders of
magnitude, which makes the algorithm less attractive for practical applications.
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surface region with
bounded contribution

(a) Shading point x1

region with bounded 
contribution to the 

compensation vertex

(b) Compensation vertex x2

compensation vertex
is outside the

bounded regions
- recursion stops

(c) Compensation vertex x3

Figure 3.5: When computing the illumination of a shading point x1, the contribution of some VPLs (purple
arrows) is greater than a user-defined threshold b and thus bounded. To compensate for the energy loss,
Kollig and Keller [2006] propose shoot a ray to create a compensation vertex x2. If x2 is inside the original
bounding region (marked with orange in (a)) they compute the illumination of x2 (b) and transport only
the amount corresponding to the removed energy using the residual operator Ĝr. As bounding occurs also
at x2, the technique is recursive and the path is terminated only when the new vertex is outside the region
where bounding occurred (c).

3.3.3 Bias Compensation using Local Lights

Similarly to the previously mentioned technique, Davidovič et al. [2010] separate light transport
into the bounded, global component and local, residual component. The global component ac-
counts for long-distance light transport, while the local component corresponds to short-range
interreflections and indirect glossy highlights. The authors take advantage of the specific struc-
ture that the individual components exhibit, and design a solution tailored for each of them
independently. Specifically, they handle as much energy as possible in the global component
leaving only the local interreflections for the local component. This approach turns out to be
more efficient than a general global illumination solution.

The local component is handled by “local” VPLs, which are distributed by tracing paths from the
camera. Since the local VPLs are designed to calculate localized transport in regions with concave
geometry, each local VPL contributes only to a small tile of pixels around the pixel, through
which the path generating the local VPL was traced. In addition, the authors avoid occlusion
tests assuming full visibility between shading points and local VPLs. This approximation, which
is the main reason for the high efficiency in glossy scenes, is made possible by capturing most
of the energy (and indirect shadows) in the global component, and leaving just the localized,
but visually still important transport to the local component. The complete global illumination
solution is obtained by summing both components.

3.3.4 Avoiding the Singularity: Virtual Spherical Lights

Rather than compensating for the bias due to the bounded light transport, Hašan et al. [2009] try
to avoid the singularity in the first place. They notice that the intensity of bright splotches can
be exacerbated by glossy BRDFs, and the compensation can thus become arbitrarily expensive.
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This happens when the shading point and the VPL are aligned such that either of the two BRDF
terms (or both) have a large value in that direction. It is worth noting that while the artifacts due
to the geometry term are generally localized (occurring mostly in corners), the latter can happen
across large distances if the materials in the scene are sufficiently glossy.

The authors first introduce the concept of a photon light: a point light that distributes its energy
over surfaces within a surrounding spherical region of a certain radius. The name was inspired
by the connection to photon mapping, where each photon contributes its energy to nearby sur-
faces. In order to efficiently evaluate the contribution of a photon light, they use the visibility
of the original VPL for all points inside the photon light and also assume that surfaces around
the VPL are planar. This yields a new lighting primitive called the virtual spherical light (VSL).
The advantage of VSLs is that they replace the point-to-point evaluation, which is the source of
the (1/d2)-singularity, by an integration over the solid angle subtended by the spherical light.
Additionally, the integration averages the product of the two BRDFs over the solid angle, and
thus effectively avoids high intensity splotches due to sharp BRDFs.

The concept of a photon light introduces bias, which is similar to the systematic error of pho-
ton mapping with final gathering. However, unlike the straightforward bounding, it preserves
the energy by redistributing it spatially over nearby surfaces. VSLs can also be combined with
scalable many-light methods, e.g. Lightcuts [Walter et al. 2005] or Matrix Row-Column Sam-
pling [Hašan et al. 2007] that are described in the following section.

3.4 Scalability

In the preceding sections, we have discussed how VPLs are generated, represented, and evalu-
ated. In this section, we elaborate more on the last aspect in the context of truly many VPLs. This
is often critical as the accuracy of many light methods strongly depends on the number of VPLs
used. With only few VPLs, the illumination can be reconstructed only coarsely. While this may
be sufficient for small scenes or in real-time applications, generating high-quality renderings in
complex scenes requires capturing many detailed, highly localized, indirect illumination effects
such as glossy highlights, indirect shadows, and proximity color bleeding. Accurately simulat-
ing these effects may require thousands or millions of VPLs. Since the effects of individual VPLs
would often be imperceptible, a linear, brute force evaluation of Equation (3.6) for millions of
VPLs would be prohibitively expensive and inefficient. Instead, one would prefer an accurate
but approximate evaluation that requires far less computation. We will call algorithms scalable if
their cost increases slowly, or sub-linearly, with the number of VPLs used.

Alternatively, increasing scalability can be viewed as variance reduction. If an algorithm handles
a million VPLs while only spending the resources for few hundreds, this is equivalent to decreas-
ing the noise in the estimate while holding the amount of computation fixed. The main Monte
Carlo variance reduction techniques are stratification, adaptive sampling, and importance sam-
pling. The scalable algorithms discussed below are based on carefully combining stratification
and adaptivity, or caching of importance.
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(a) VPL clustering for shading point x1 (b) VPL clustering for shading point x2

Figure 3.6: Scalable many-light algorithms can achieve sub-linear cost when evaluating VPL lighting. They
cluster VPLs adaptively to adjust the accuracy of the many-light evaluation. For example, a group of distant
VPLs might be replaced with a single brighter representative.

3.4.1 VPL Clustering

The methods discussed in this section exploit a common insight: within a large set of VPLs,
each VPL does not contribute equally. Many VPLs have low importance because they contribute
very little to a region of interest; for example if the VPLs are far away or occluded. However,
typically a small number of VPLs are very important, such as VPLs that contribute to a glossy
highlight, and these must be handled accurately. A general, scalable algorithm tries to exploit
this non-uniform VPL importance to reduce computation. It seeks to identify and evaluate all of
the most important VPLs while only sparsely evaluating the unimportant ones.

While the algorithms discussed below differ in how they estimate importance and select a set
of VPLs to evaluate, they all use the same framework. Each algorithm clusters similar VPLs
together. They choose a clustering that places unimportant VPLs in large clusters and important
VPLs in smaller clusters, see Figure 3.6 for an illustration. It is then assumed that VPLs within
a cluster are sufficiently similar that their aggregate effect can be approximated by evaluating
just a single, brighter, representative VPL. If the representative is chosen randomly from the
VPLs within the cluster and its power scaled appropriately, the sum of these representative
approximations is equivalent to a stratified, Monte Carlo evaluation of the path integral, where
only a single sample is drawn from the domain of each cluster. If these algorithms can find a
set of clusters—typically called a cut—that is much smaller than the number of all VPLs, the cut
approximation becomes a scalable alternative to brute force evaluation.

We will discuss several techniques based on constructing these cuts [Hašan et al. 2007; 2008, Ou
and Pellacini 2011, Walter et al. 2006; 2005; 2012] and one more method [Georgiev et al. 2012]
that chooses the most relevant VPLs for a shading point rather than clustering them.
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Lightcuts

Lightcuts [Walter et al. 2005] was the first practical, scalable many-light method. At each receiver
point where illumination needs to be computed, lightcuts generates a customized cut based on
analytic per-cluster error bounds and a perceptual metric. As a first pass the VPLs are first
organized into a binary tree based on spatial and directional similarity. To select a cut for a
receiver, we start with a trivial, coarse clustering, such as putting all the lights in a single cluster.
This corresponds to a cut consisting of only the root node of the light tree. Then we iteratively
select the cluster in the current cut with the highest error bound and refine it replacing it by its
children in the light tree. This process is repeated until the error bounds for all clusters in the cut
are below a perceptual-based threshold. The size of the cut is typically only weakly dependent
on the number of VPLs, resulting in very large speed-ups compared to a full evaluation as the
number of VPLs grows. The use of analytic error bounds also guarantees that the most important
VPLs are always found and evaluated, making the estimation robust. Arbree et al. [2008] extend
the lightcuts method for sub-surface scatterning. Davidovič et al. [2012] describe a progressive,
GPU-friendly variant of lightcuts.

Multidimensional lightcuts [Walter et al. 2006] extends the domain of clusters and cuts to include
receiving points as well as lights, to achieve scalable performance across a much wider range
of effects. When computing a pixel, we really want the average illumination over a region
rather than its value at individual receiving points. For example, the region may extend over
an image space for anti-aliasing, over the aperture for depth of field, over time for motion blur,
and spatially for effects such a volume rendering. When rendering, these regions are typically
converted to many receiver points using sampling, but separately evaluating a cut for each
point is inefficient as they often have very different sensitivities to the lights and illumination
accuracy requirements. Instead, multidimensional lightcuts builds a hierarchy over all light-
receiver point pairs for a pixel and its cut is a partition of this much larger point-pair space. To
make this feasible, the point pair hierarchy, called the product graph, is implicitly represented as
the Cartesian product of a light tree and a receiver tree, which is also called the gather tree. The
cut selection process is similar to that in the lightcuts method in that it uses analytic per cluster
error bounds and refines the cut until a perceptual threshold is met. One major difference is that
cluster refinement can now choose between light or receiver refinement at each step. Overall this
technique greatly reduces the rendering cost when computing effects that require both many
receiver points per pixel and large numbers of VPLs.

Bidirectional lightcuts [Walter et al. 2012] extends the previous approach to handle even more
effects including glossy reflections, subsurface scattering, and short-range indirect illumination.
While its goals are similar to the bias compensation methods mentioned previously, it functions
by adding additional receiver points per pixel.

Matrix Row-Column Sampling

In contrast to lightcuts, which generates a cut per receiver point, matrix row-column sampling
(MRCS) [Hašan et al. 2007] computes a single, global cut for the whole image. Because the cut
generation is amortized over the whole frame, this approach has two advantages compared to
lightcuts.

1. As a measure of VPL importance, it replaces the error bounds, which may be expensive
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or unknown for general materials, with sparsely sampled direct estimates of each VPL’s
image contribution. This allows MRCS to easily add material and light types (including
VSLs), and to include visibility information in the cut selection algorithm.

2. The VPL importance and the VPL contributions can both be estimated by using shadow
maps. By using graphics hardware to accelerate their calculation, MRCS can achieve very
fast, low-noise rendering.

Of course, there are some disadvantages: because the cut is computed once from sparsely sam-
pled data, MRCS is less adaptive than lightcuts, and may sometimes miss small features of the
VPL illumination, such as glossy highlights that affect only few pixels.

In order to compute the global cut, MRCS models the VPL evaluation problem as a large matrix
M. The rows of M represent the surface points visible through each pixel and the columns
of M represent VPLs. Each entry M(i, j) represents the fractional energy of the j-th VPL that
reaches the camera through the i-th pixel. The key insight of MRCS is that M is usually a highly
structured, often low-rank, matrix and can be well approximated by the reduced matrix R that
subsamples the elements of M. The MRCS consists of computing R, using it to compute a cut
and then using that cut to approximate the original matrix M.

The MRCS approach has also been extended to render full animations [Hašan et al. 2008], con-
catenating the matrices of the animation frames into a 3D array (tensor), and exploiting tempo-
ral coherence to drive the number of required cluster representatives even lower. Davidovič et
al. [2010] propose a modification of MRCS called visibility clustering.

LightSlice

The lightslice [Ou and Pellacini 2011] algorithm combines the idea of locally adapted cuts from
lightcuts with the global optimization advantages of MRCS. The authors of lightslice noticed
that, while lightcuts can capture detailed illumination effects by recomputing a cut at each re-
ceiver point, MRCS demonstrated that many of these cut calculations waste effort recomputing a
shared set of global VPL clusters. The lightslice algorithm improves performance by identifying
these shared global clusters once and then reusing them as a starting point for local per-slice
cluster refinements. The lightslice algorithm works as follows:

1. Generate all the receiver points for an image and cluster them based on their geometric
proximity into groups called slices.

2. Select a representative receiver point from each slice and then run MRCS on the set of
all slice representatives. This forms both an initial, global cut for all slices and a reduced
matrix R describing the light transport of the slice representatives.

3. For each slice i, restrict R to a smaller matrix Ri that contains only the row for slice i and
the rows from other nearby slices. Iteratively refine the global clustering for i by using Ri

to identify and split high-cost, local clusters to generated localized cuts for each slice.

By using localized per-slice cuts, lightslice is able to reduce the average cut size needed compared
to a single global cut while also reducing the chance that locally important VPLs will be missed
due to the sparse sampling. Also, by reusing an initial global cut as the local starting point, it
significantly reduces the cost of cut selection.
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3.4.2 VPL Importance Sampling

Georgiev et al. [2012] propose a different approach to improve scalability: they choose the most
relevant VPLs for any given position in the scene based on cached importance. In a preprocess,
the contribution of all VPLs is computed at a number of locations in the scene, and cached.
When calculating VPL contributions during rendering, the cached contributions at a few nearby
locations are used as a discrete probability distribution from which the most relevant VPLs are
sampled randomly.

All the aforementioned scalable approaches have greatly increased the effective number of VPLs
that can be used in many-light methods, and thus increased the achievable accuracy and image
quality. In the next section, we review techniques from the other end of the application spectrum
that puts more emphasis on interactivity and real-time use.

3.5 Interactive and Real-Time Applications

The obvious challenge in interactive and real-time rendering, compared to offline methods, is
the tight time budget. This expectedly restricts the number of virtual lights that can be created
and used (typically several hundreds to thousands), and also the types of materials that can
be faithfully rendered under such constraints. Conceptually, the main difference resides in the
computation of visibility, where rasterization is typically used instead of ray casting for VPL
generation and shadowing. The following sections address these aspects and also briefly touch
on temporal stability, which is crucial for plausible, interactive animations.

3.5.1 Rapid Generation of VPLs

In typical real-time scenarios, the render times are dominated by shading and shadowing costs,
and less by VPL generation. Since the VPL generation is relatively cheap and only a small
number of VPLs can be handled, any spatial indexing structure—even if unoptimized or subop-
timally built—is sufficient for tracing the few light paths, and should be used if available.

VPLs can also be created using rasterization. Similar to shadow maps, reflective shadow maps [Dachs-
bacher and Stamminger 2005] (RSMs) render the scene from a primary light source to capture
directly lit surfaces. In addition to depth, RSMs store also the position, normal, and reflected
flux. Every pixel, or a random subset of pixels, can be thus interpreted as a small light source and
serve as a VPL. A similar idea has previously been used to create virtual dipole light sources for
rendering translucent objects [Dachsbacher and Stamminger 2003]. In the original RSM paper,
the contribution of VPLs was accumulated for a low-resolution image and refined at edges dur-
ing upsampling. Dachsbacher and Stamminger [2006] later proposed to accumulate the lights’
contributions using deferred shading and with bounded regions of influence; they also intro-
duced importance sampling of the underlying RSM.

Ritschel et al. [2011] propose to choose VPLs from RSMs by estimating their contribution to the
image, and thus obtaining a probability factor to importance sample the RSM. In both cases,
longer light paths can be obtained by recursively creating further RSMs computed for the previ-
ously generated VPLs (used in [Ritschel et al. 2008]). Note that various approaches for casting
rays using rasterization or based on voxelization exist and can also be used to trace light paths.
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3.5.2 VPL Lighting for Interactive Applications

Although programmable graphics hardware is able to shade from virtually arbitrary many light
sources, many-light rendering is almost exclusively accompanied by deferred shading tech-
niques [Deering et al. 1988, Saito and Takahashi 1990]. Bounding the regions of influence of
VPLs (as in [Dachsbacher and Stamminger 2006]) to speed up shading is often not the preferred
solution as it removes light transported over larger distances. Instead, the shading signal is
usually subsampled and subsequently interpolated. To this end, most of the techniques em-
ploy interleaved sampling [Keller and Heidrich 2001], which has been first used for many-light
rendering by Wald et al. [2002]: shading of a single pixel is not performed using all VPLs, but
instead each pixel is lit only by a disjoint subset of VPLs. The reasoning is that neighboring
pixels often represent nearby and similarly oriented geometry and their shading would thus be
similar as well. The interleaved shading is then transferred across neighboring pixels in a post-
processing step using an edge-aware image filter. Segovia et al. [2006b] describe a GPU-friendly
implementation of interleaved sampling where the deferred shading buffers are reorganized
such that pixels lit by the same subset of VPLs are stored in the same tiled sub-buffer. Inter-
leaved sampling greatly speeds up the rendering; however, it is prone to aliasing artifacts with
highly detailed geometry and normal mapping, and problematic with glossy BRDFs.

Nichols and Wyman [2009, 2010] propose a hierarchical shading technique based on the obser-
vation that indirect illumination in regions with smooth surfaces varies slowly, while geometric
detail requires more shading evaluation. Their technique makes use of a min-max mipmap of the
depth buffer to detect discontinuities. Indirect illumination is then computed in multi-resolution
deferred shading buffers where smooth regions (little variation in the min-max mipmaps) are
shaded in low-resolution buffers, and detailed regions in high-resolution buffers. The resolution
pyramid is finally combined to the final image using an adapted, bilinear interpolation tech-
nique. Note that interleaved sampling approaches are orthogonal to shadow computation from
VPLs, while multi-resolution splatting assumes a smooth shading signal (i.e., it does not detect
shadow boundaries and thus blurs across them).

Further acceleration of the shading computation with a large number of light sources can be
achieved by tiled shading: the image plane is subdivided into tiles, and for each tile a list of light
sources potentially affecting the visible surfaces is built. Each tile can then be processed inde-
pendently without evaluating all light sources [Olsson and Assarsson 2011]. Olsson et al. [2012]
extended this idea and cluster light sources by their tile and depth.

3.5.3 Visibility Computation in Interactive Rendering

Whenever we compute shading from VPLs, we also have to determine whether the shading
point is actually lit or occluded. To this end, almost all interactive methods compute the
(hemi-)spherical visibility per VPL before shading. The original instant radiosity [Keller 1997]
employed a variant of shadow volumes, but almost all later implementations rely on shadow
mapping as this technique is robust, flexible, and its main disadvantage – jagged shadow edges
– is not crucial when the contribution of hundreds of VPLs is accumulated.

Computing the per-VPL visibility, or shadow map, is often the most time-consuming part of
interactive many-light implementations. One way to speed up this step is to avoid repetitive
computation and exploit temporal coherence. Laine et al. [2007] propose to keep VPLs for as
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long as they contribute to the image, and invalidate and reposition only few of them per frame.
Their method maintains VPLs for single-bounce indirect illumination only (a limitation which
could be relaxed when computing VPLs with ray casting), and it is restricted to static scenes, or
indirect light from static on dynamic geometry only.

A different strategy is to compute visibility less accurately, which has been shown to be sufficient
for indirect illumination in many cases [Yu et al. 2009]. Ritschel et al. [2008] compute low-
resolution, low-quality imperfect shadow maps (ISM): hundreds to thousands of shadow maps
are rendered in parallel from a point representation of the scene geometry. Since only a few
thousand point samples are used per each shadow map, the resulting maps contain holes and
need to be filled using an image-space heuristic. The point representation is precomputed, but
can be deformed with the scene to support animations. In a follow-up work, Ritschel et al. [2011]
describe how these point sets can be chosen in a view-adaptive manner, improving the quality
of the shadow maps. Holländer et al. [2011] also address the many-view rendering problem
and present an incremental and GPU-friendly LoD algorithm, which can be used to compute
shadow maps. Micro-rendering [Ritschel et al. 2009a] handles visibility computation using a point
hierarchy and massively-parallel hybrid rasterization-raycasting technique to render water-tight
hemispherical images. It also supports warping of the hemisphere, as it was originally designed
for fast final gathering for both diffuse and glossy surfaces.

Recently, another approximate representation gained much interest: any scene geometry can be
voxelized allowing for simple ray marching to compute visibility. Voxelization itself is a large
research field, see Crassin’s PhD thesis [Crassin 2011] for an exhaustive overview.

3.5.4 Improving Quality and Temporal Stability

A crucial factor determining the quality of rendered images is the number of used virtual lights:
while a low number might be sufficient for (mostly) diffuse scenes, significantly more is neces-
sary for scenes with glossy surfaces [Křivánek et al. 2010]. Moreover, VPLs are often generated
using random walks and even if the same random numbers are used, the generated VPLs can
have different locations or contributions if the scene changes. This leads to distracting tem-
poral flickering. Obviously the number of VPLs cannot be increased arbitrarily for interactive
scenarios and thus special techniques had to be developed.

One possible solution, orthogonal to incrementally updating VPLs [Laine et al. 2007], is to con-
sider a VPL not as a point light, but instead as an area light that represents indirect illumination
from a certain surface area. A straightforward approach to estimate the represented area is to
initially create more VPLs and cluster them before shading. The size of the cluster serves as an
estimate of the surface area, and this yields, together with the accumulated contribution of the
VPLs, a virtual area light [Dong et al. 2009]. Visibility from area lights can efficiently be evaluated
using soft shadow methods, e.g. [Annen et al. 2008]. When using RSMs, clustering can also be
computed directly in image space of the RSM [Prutkin et al. 2012].
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Chapter �

Approximate Bias Compensation for
Rendering Scenes with Media

Truth is much too complicated to allow
anything but approximations.

— John von Neumann (1903–1957)

Participating media cause a wide variety of scattering effects that immensely contribute to
the realism of virtual scenes. In landscape sceneries, the appearance of haze, clouds, or
smoke is caused by light that is scattered multiple times due to interactions with small

particles in the air. Since scattering occurs “everywhere” and continues until the light is absorbed
or leaves the medium, simulating such transport is very costly. A common simplification is to
consider transport that involves a single scattering event only. This already creates impressive
volumetric effects, such as light shafts piercing through tree canopies, but the simplification is
only valid for participating media with low albedo (i.e. relatively high absorption). In contrast,
multiple scattering is crucial for the appearance of highly scattering media, such as clouds.

In this chapter, we present a novel method for high-quality, many-light rendering of scenes with
participating media. Our technique builds upon the algorithm proposed by Raab et al. [2008].
The authors take the original instant radiosity [Keller 1997] extended to compensate for bias due
to bounding [Kollig and Keller 2006] and demonstrate that such algorithm is capable of handling
scenes with participating media. The major difference here is that VPLs are generated also in
volumes and, in addition to illuminating surfaces, they illuminate the medium and approximate
thus effects of multiple scattering.

As described in Chapter 3, many-light algorithms feature several advantages: (1) they require
hardly any pre-processing; distributing VPLs by the means of random walks is a matter of
milliseconds, even for thousands of VPLs. (2) Rendering with VPLs is highly scalable and covers
wide application spectrum from interactive previews to high quality rendering with millions of
VPLs. (3) VPLs can rely on (deep) shadow mapping to quickly resolve visibility without the
need for additional, complicated structures (e.g. photon maps). All of these advantages hold
when extending the algorithm to account for participating media. The extra ingredient, added in
[Raab et al. 2008] on top of the original technique, is the combined single scattering from primary
light sources and VPLs, which adds the multiple scattering component.

As in the case of surfaces, illuminating media with point lights is prone to a singularity that
creates bright splotches in rendered images (see Figure 4.1.a). On surfaces, the product of the
two cosine terms in the numerator of Ĝ reduces the impact of the squared distance in the de-
nominator. The product accounts for the mutual orientation of the two surface points. In media,
this product is no longer present and Ĝ thus reduces to the inverse squared distance only. As a
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(a) Unbounded VPLs
49 minutes

(b) Bounded VPLs
49 minutes

(c) Bias compensation
8 hours

(d) Raab et al [2008]
8 hours 49 minutes

Figure 4.1: Rendering of a rising smoke with (a) unbounded contribution (i.e. with Ĝ), and (b) bounded
contribution (i.e. with Ĝb). In (c) we show the bias compensation as proposed by Kollig and Keller [2006]
and extended by Raab et al. [2008] to participating media. Adding the compensation term (c) to the
bounded solution (b) yields unbiased results (d); however, at a significant additional computation cost.

result, the artifacts due to the singularity can be even more prominent and we need to bound the
geometry term more aggressively to remove the artifacts (see Figure 4.1.b). The bias compensa-
tion by Raab et al. [2008] recovers all the missing energy (see Figure 4.1.c), unfortunately, at a
significant computational cost and thus heavily decreasing the performance of the algorithm.

In this chapter, we study bias compensation in the presence of participating media and propose
the approximate bias compensation (ABC) [Engelhardt et al. 2012], which, unlike the compensa-
tion by Raab et al. [2008], increases the entire rendering cost by only a fraction of the bounded
solution. Our goal is to create a fast, high quality renderer. We seek an approach that can be
easily accelerated using GPUs taking advantage of their strong capabilities, such as fast cre-
ation of shadow maps, to efficiently resolve visibility between shading points and VPLs. In the
following, we present:

• an analysis of bias compensation, which quantifies the amount of energy recovered with
each additional bounce of the residual transport;

• a comparison of several sampling strategies for estimating the residual transport;

• two approximations that make the integration more efficient and GPU friendly; and,

• a progressive, GPU-based renderer for synthesizing images with heterogeneous media.

The rest of the chapter is structured as follows: we review the relevant previous work concerned
with rendering participating media in the next section. In Section 4.2, we investigate and ana-
lyze different integration strategies whose implementation is described in Section 4.3. Then we
present results that can be obtained with our technique in Section 4.4, and finally, we discuss the
limitations and possible improvements in Section 4.5.
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4.1 Previous Work

Since the previous work related to many-light rendering was discussed already in Chapter 3, we
devote this section to algorithms that are primarily targeting scenes with participating media.
We also omit references to techniques that are used as building blocks (e.g. for sampling the free
path or transmittance) and refer the reader back to Sections 2.6.8 and 2.6.7.

Path Tracing Approaches. Early rendering methods aiming at the radiative transfer in par-
ticipating media [Chandrasekhar 1960] were based on stochastic techniques (e.g. [Kajiya and
Von Herzen 1984]) and/or finite element methods (e.g. [Rushmeier and Torrance 1987]); see
[Rushmeier 1995] for an overview of the pioneering work. Many of the follow-up publications
were then inspired by the path integral framework [Feynman and Hibbs 1965] and sampling
strategies developed for neutron transport simulations [Gelbard et al. 1966, Kalos 1963, Spanier
1966, Spanier and Gelbard 1969, Steinberg and Kalos 1971]. Such examples include bidirec-
tional [Lafortune and Willems 1996] and Metropolis [Pauly et al. 2000] sampling, as well as
techniques building on the path integral formulation [Premože et al. 2003; 2004] for rendering in
the presence of participating media. These approaches are general, compute unbiased solutions,
and can easily handle arbitrary phase functions. The major drawback is the slow convergence,
especially in heterogeneous media, due to the costly sampling of free paths. Some algorithms
thus divide the integration domain into smaller regions with similar properties [Szirmay-Kalos
et al. 2011, Yue et al. 2010] allowing the free path sampling to proceed more efficiently.

Caching and Density Estimation Approaches. Several methods address the high cost of pure
Monte Carlo approaches by reusing or correlating the estimates. This can be achieved by caching
irradiance [Ward et al. 1988] or radiance samples [Křivánek et al. 2005, Scherzer et al. 2012],
which has also been successfully extended to participating media [Jarosz et al. 2008a]. Similarly,
photon mapping [Jensen 1996] also samples and stores the distribution of light in the scene (in
the form of a photon map), but instead of interpolating the samples, it performs density esti-
mation to reconstruct the local flux density. Jensen and Christensen [1998] generalized photon
mapping to participating media. Jarosz et al. [2008b] improved their approach by finding all
photons along the length of each camera ray in one beam query, and later applied similar concept
to light paths turning entire path segments into photon beams [Jarosz et al. 2011a;b]. The benefits
of using lines (instead of points) to represent and to query the underlying quantity was con-
currently explored by Sun et al. [2010], who simulate single scattering and caustics by finding
nearly intersecting camera and light paths. Boudet et al. [2005] calculate the density estimation
in volumes via photon splatting and propose a GPU friendly implementation.

Several extensions seek to decrease the error caused by density estimation [Havran et al. 2005,
Herzog et al. 2007, Lastra et al. 2002, Moon and Marschner 2006], but ultimately, some amount
of bias remains. Progressive photon mapping [Hachisuka and Jensen 2009, Hachisuka et al.
2008b, Knaus and Zwicker 2011] and progressive photon beams [Jarosz et al. 2011b] eliminate
this error gradually by shooting and discarding photons in batches, while progressively refining
radiance statistics to converge to the correct solution in the limit. In spite of all the aforemen-
tioned improvements, density estimation approaches are still not very suitable for interactive
rendering, mainly due to splotchy artifacts on surfaces and in media, which go away only with
large numbers of photon points or photon beams.
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Single Scattering. In media with low density or low albedo, most of the visible effects are due
to single light bounce. In such cases, one can simplify the light transport and tailor the ren-
dering algorithm specifically to single scattering only. The integration can be then carried out
(semi-) analytically [Pegoraro and Parker 2009, Pegoraro et al. 2009; 2010; 2011, Sun et al. 2005].
Although closed form solutions are generally preferred over numerical recipes, the necessity to
handle the visibility independently [Biri et al. 2006], precompute a set of tables, or expand the
scattering function using Taylor series complicates the implementation and decreases the effi-
ciency of these techniques. Quadrature methods, such as ray marching, perform well in scenes
with limited depth especially when restricted to regions where shadowing occurs [Wyman and
Ramsey 2008]. Engelhardt and Dachsbacher [2010] observe that the amount of inscattered light
changes smoothly along epipolar lines. They detect shadow discontinuities along these lines and
place samples more intelligently to reduce the integration error. Baran et al. [2010] further im-
prove the quality via hierarchical integration. Monte Carlo integration of single scattering with a
suitable importance sampling [Kulla and Fajardo 2012] can also yield results with low variance.
When ported on graphics hardware, these techniques are capable of real-time performance.

Multiple Scattering. When the medium has high density and albedo, we can presume that
each photon gets scattered many times before reaching the camera. In such cases, one can
efficiently model the process of scattering using the diffusion theory [Fick 1855, Stam 1995]. This
approach is used intensively for rendering optically thick materials, such as marble, wax, or
skin. Jensen et al. [2001] introduced the diffusion dipole model, which analytically calculates the
amount of light transmitted between two points on a planar semi-infinite medium. To further
accelerate the computation, Jensen and Buhler [2002] proposed a hierarchical integration scheme.
In the case of human skin, the response of the diffusion dipole can be well approximated with
a set of normal distributions, which can provide real-time performance when implemented on
the GPU [d’Eon et al. 2007, Jimenez et al. 2009]. Donner and Jensen [2005] extended the model
to a multipole, and d’Eon and Irving [2011] suggested to quantize the diffusion, both obtaining
better quality than the original dipole. The major drawback of most diffusion-based approaches
are the strong assumptions about the geometry (e.g. planarity, semi-infiniteness, etc.). Recently,
Habel et al. [2013] proposed to combine diffusion with Monte Carlo sampling to better account
for the geometry, while retaining the benefits of the fast diffusion approximation.

A comprehensive overview of literature devoted to rendering scenes with participating media
can be found in [Cerezo et al. 2005].

4.2 Residual Light Transport

In this section, we study the energy recovered using the bias compensation technique by Raab et
al. [2008] (described in Section 3.3.2). Their approach is relatively costly as it requires recursive
ray tracing and access to all VPLs at every compensation vertex. We first analyze the underlying
Equation (3.11) and then derive several optimizations, sampling strategies, and simplifying as-
sumptions; all leading to a more efficient, approximate bias compensation technique that yields
results visually nearly indistinguishable from the ground truth.
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Figure 4.2: For one line (a) from renderings in Figure 4.1 we plot pixel intensity of the unbounded, bounded,
and reference solution (b). In (c), we show the amount of energy recovered by one and two compensation
steps (the top and the bottom boundary of the band correspond to the reference and the bounded solution,
respectively). The blue curve shows energy recovered assuming that the medium is locally homogeneous
(see Section 4.2.2).

4.2.1 Limiting Recursion Depth

When computing the residual transpot, Raab et al. [2008] create “compensation” vertices by ray
casting. At each compensation vertex, they estimate the illumination using the bounded estimator,
which gathers light from the original light sources and VPLs. As such, the bias compensation is
a recursive process: bounding occurs not only at the shading point, but also at the compensation
vertex. However, as the gathered radiance gets convolved with the scattering function and
attenuated by transmittance, the amount of light drops exponentially with every bounce of the
residual transport. Figure 4.2 shows that one compensation step (i.e. one bounce of residual
transport), and then bounding the VPLs’ contribution to the compensation vertices, recovers
most of the energy and already mimics the behavior of the ground truth curve quite well. It can
also be seen that two steps (and then bounding) is visually almost indistinguishable from the
ground truth solution.

4.2.2 Assuming Locally Homogeneous Media

In order to create a new “compensation” vertex y for a shading point x, Raab et al. [2008]
choose a random direction w along which they sample free path length using Woodcock track-
ing [Woodcock et al. 1965] (see Section 2.6.8). If y happens to be outside the bounding region, Ĝr
will be zero and the compensation vertex will have no contribution. This approach is unbiased,
but suffers from high variance. The variance can be reduced by creating more compensation
paths; however, as there is no possibility in heterogeneous media to limit the importance sampling
of transmittance (i.e. the Woodcock tracking) to a maximum distance, a lot of free path sam-
ples will be rejected before generating one within the bounding region. We avoid this issue by
introducing the assumption that the medium is locally homogeneous around x.

One key ingredient of our ABC is that we generate compensation vertices always inside the
bounding region around x. The radius d of the spherical bounding region can be computed from
the bound b as d = 1/

p
b. Assuming the medium inside the bounding region is homogeneous

with extinction coefficient kt, the probability density function for sampling a distance t within
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(a) Accurate transmittance (b) Locally homogeneous (c) 16⇥ difference

Figure 4.3: Bias compensation with accurately evaluated transmittance (a) and assuming the medium to
be locally homogeneous (b). (c) shows a 16⇥ scaled difference (a) - (b); green and red signify positive and
negative values, respectively.

the region reads:

p(t) =
kte�ktt

1� e�ktd
. (4.1)

Inverting the corresponding CDF and solving for the distance yields:

t = � ln(1� x(1� e�ktd))
kt

, (4.2)

where x 2 h0, 1) is a uniform random number. For the value of kt, we use the average extinction
coefficient within the bounding region, which can be efficiently obtained from a downsampled
version of the medium, if stored e.g. as a 3D texture. Note that if there is a surface intersection
along w occurring closer to x than t, this intersection becomes the new compensation vertex.

The assumption of local homogeneity does not compromise the results. In fact, it only affects
the placement of compensation vertices, and the computation remains unbiased, as long as we
correctly evaluate the transmittance T(x$ y). Nevertheless, we take the assumption one step
further, and assume the medium to be homogeneous not only for sampling the compensation
vertex, but also for evaluating the transmittance:

T(x$y) ⇡ T(x$y) = e�ktkx�yk. (4.3)

Avoiding an exact evaluation of the transmittance (e.g. using costly ray marching or Woodcock
tracking) proves useful especially for GPU implementations as all other transmittances can be
precomputed before rendering (e.g. using deep shadow maps for the camera and the VPLs). As
such, no transmittance evaluations are required during rendering, which often enables higher
frame rates.

Although the assumption of local homogeneity can theoretically fail at locations with strongly
varying extinction, it yielded results visually indistinguishable from the ground truth (see Fig-
ure 4.3) in all our test scenes. Note that these locations could be easily detected if necessary
using the gradient of kt(x).
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4.2.3 Integration Strategies

In this section, we analyze different sampling strategies for estimating the residual light trans-
port. Our goal is to find a strategy that strikes a good balance between the number of eye ray
samples and compensation vertices. In Figure 4.4, we compare the results at roughly equal
rendering times; Figure 4.5 then shows RMSE plots for four strategies that we describe next.

1-to-N Strategy. Raab et al. [2008] propose to create one com-
pensation vertex using free path sampling and illuminate it
using all N VPLs. This has two implications. First, because of
the free path sampling, the vertex may be placed outside the
bounding region and the efforts of creating the vertex thus
wasted. Furthermore, this leads to high variance since the
compensation integral from Equation (3.11) is severely under-sampled (see Figure 4.4). Sec-
ond, each compensation step requires access to all VPLs and their shadow maps, making the
approach heavy on memory and difficult to integrate into progressive renderers.

N-to-1 Strategy. We found that the variance can be signifi-
cantly reduced by creating more compensation vertices, but
connecting each of them to less VPLs. More precisely, we iter-
ate over all VPLs and for each we create a new compensation
vertex. Each of the N compensation vertices thus requires ac-
cess to one VPL only. This strategy increases the number of rays
to be traced, but despite the slightly longer run-times, it still exhibits lower variance than [Raab
et al. 2008] as shown in the equal-time comparison in Figure 4.4.

1-to-1 Strategy. A slightly different approach is to generate a
different location along the eye ray for each VPL, for instance
w.r.t the expected contribution of each VPL, which further re-
duces variance. Creating only a single compensation vertex
that is connected to the VPL seems to be sufficient and re-
duces the cost of the compensation. This approach is also GPU
friendly, since VPLs can be processed independently: we can generate one VPL, create a shadow
map for it, and compute its contribution to all pixels (including the residual transport). The VPL
is then discarded and the image computed progressively. At any moment during the rendering,
we thus need to store only a single (deep) shadow map in the memory.

1-to-1 Strategy Assuming Locally Homogeneous Medium.
Because of the free path sampling, all the previous strategies
generate many compensation vertices outside the bounding re-
gion and thus with zero contribution. To avoid this, we would
like to create all vertices inside the bounding region. This can
be achieved by assuming the medium to be locally homoge-
neous. Furthermore, it ensures that parallel execution paths do not diverge, which is favorable
for GPU implementation.
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(b) N-to-1
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(c) 1-to-1
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(d) 1-to-1 loc. homog.

Figure 4.4: Comparison of four different sampling strategies for estimating the residual transport from
Figure 4.3 (CPU implementations): (1-to-N) [Raab et al. 2008] creates one compensation vertex for each
shading point and connects it to all VPLs. (N-to-1) achieves lower variance by generating more vertices
while connecting each of them to one VPL only. Similar, but more GPU-friendly approach is to generate
only one vertex connected to a single VPL (1-to-1). By assuming a locally homogeneous medium, we avoid
the expensive evaluation of transmittance and ensure that vertices are always created within the bounding
region. To achieve roughly equal rendering times, we adjust the number of samples along the eye ray: 3, 1,
115, and 78 for 1-to-N, N-to-1, 1-to-1, and 1-to-1 locally homogeneous, respectively.
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Figure 4.5: RMSE plot for different sampling strategies used in Figure 4.4. The 1-to-1 strategy clearly
outperforms other strategies.

4.2.4 Omitting Local Visibility

Computing visibility between point x and the compensation vertex y is often the performance
bottleneck. Clearly, the transport can only be occluded when x is close to a surface. Figure 4.6.a
depicts a situation when omitting the visibility test can cause artifacts. To asses how often these
artifacts appear, and their influence on the resulting image, we set up a series of experiments.
Interestingly, it was not easy to produce visible artifacts at all. This can be explained by consid-
ering the circumstances that have to coincide to cause them: (1) x must be close to a thin opaque
object, and (2) the medium must not be too dense otherwise sampling a distance through the
opaque object is unlikely. Figure 4.6.b shows one of our test scenes; artifacts become visible only
after scaling the brightness by at least two orders of magnitude. Note that a somewhat similar
assumption (ignoring visibility on short distances) has also been used for global illumination on
surfaces [Arikan et al. 2005, Davidovič et al. 2010].
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(a) Illustration (b) Rendering

without visibility test
512

with visibility test
512

(c) Scaled insets

Figure 4.6: A test scene for evaluating the absence of the visibility test. (a) illustrates the transport of inter-
est: bleeding of the residual transport through the wall, (b) shows the rendering. In (c) we provide scaled
insets computed with accurate visibility test (top) and without testing the visibility (bottom). Artifacts can
be revealed only by tremendous scaling (⇥512).
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Figure 4.7: The data flow in our progressive GPU renderer. In the first iteration we compute the geometry
buffer, single scattering with bias compensation from primary light sources, transmittance, and direct
illumination. In each subsequent iteration we compute multiple scattering, indirect illumination, and bias
compensation due to a single VPL, and add it to the final result.

4.3 Implementation Details

We integrated our approximate bias compensation technique into a custom offline renderer to
evaluate our assumptions (Figures 4.2, 4.3, 4.4, and 4.6) For further acceleration we implemented
a progressive GPU renderer using Direct3D 11 (Figures 4.7, 4.8, 4.10, 4.11, and 4.12). Random
walks for creating VPLs are always carried out on the CPU using ray tracing. For acceleration,
we use a kD-tree built with the surface area heuristic.

In this section, we restrict ourselves to the peculiarities of the GPU implementation, which is
outlined in Figure 4.7. We split the computation into evaluating contributions from primary light
sources and from VPLs. First, we render a geometry buffer filled with all relevant information
such as BRDFs, positions, and normals. Afterwards, we evaluate single scattering and direct
illumination with visibility computed using shadow maps (with resolutions of 5122 up to 40962).
Transmittance towards light sources is evaluated analytically in case of homogeneous media and
numerically in heterogeneous media using ray marching (the offline renderer uses slower but
unbiased Woodcock tracking).



70 4 Approximate Bias Compensation

VPL Lighting. After the contribution from primary light sources has been computed, our ren-
derer iterates over all VPLs and accumulates their contribution, one per iteration. For each VPL,
we first construct a variant of the adaptive volumetric shadow map [Salvi et al. 2010], and then
compute its contribution to all surface and volumetric points seen by the camera. The latter is
evaluated using an adaptive ray marching along the camera the rays.

Bias compensation. We split the compensation integral into two terms: one for compensating
from the primary light sources, and the second gathering compensation energy from VPLs. This
allows us to evaluate compensation from the primary lights directly in the single scattering
shader, which is executed only once in the first iteration. For that we generate a buffer that
contains a set of random directions and additional random numbers used to sample the distance
along the compensation ray. Computing bias compensation due to VPLs is integrated into a
shader that evaluates multiple scattering. Our assumption of locally homogeneous medium and
neglecting visibility allow us to create the compensation vertices always within the bounding
region. This, in contrast to the original bias compensation [Raab et al. 2008], avoids branching
and divergent execution paths, substantially accelerating the GPU implementation.

4.4 Results

We evaluated our method using several test scenes with homogeneous and heterogeneous par-
ticipating media. All timings were recorded using an Intel Core i7 6-core system with 3.2GHz
and a GeForce GTX 580 GPU.

Our algorithm can be used for rendering moderately complex scenes with image-based lighting,
such as those in Figure 4.8. Both the Crytek Sponza scene (262k triangles, 118k VPLs) and the
City scene (823k triangles, 108k VPLs) were rendered with a 2-step ABC (i.e. two bounces of
residual transport). The shading cost depends on the geometric complexity of the scene and
the resolution of the 3D texture storing the heterogeneous participating medium. A detailed
analysis of the per-VPL GPU shading cost is shown in Figure 4.9.

Figure 4.10 shows a visual comparison of our approximate bias compensation technique to a
reference image computed with unbiased bias compensation Raab et al. [2008] in the partici-
pating medium. In both cases, we use 6800 VPLs in the entire scene. The approximate bias
compensation recovers most of the lost energy already after the first compensation step.

In Figure 4.11, we compare our algorithm to photon mapping with beam radiance estimate (BRE)
by Jarosz et al. [2008b]. In contrast to the BRE, instant radiosity with our compensation technique
can be trivially parallelized, thus we used the GPU implementation in the comparison. All
images are rendered at 10242 pixel resolution. Shooting photons and building the search data
structure for BRE took 25 seconds, rendering using beam queries additional 110 seconds (135
seconds in total). The instant radiosity with our 2-step ABC took 125 seconds. Photon mapping
still shows the typical artifacts that arise from an insufficient number of photons in the volume,
while ABC is nearly indistinguishable from the reference solution, which was computed using
the method of Raab et al. [2008] in 31 hours.

As shown in Figure 4.12, our algorithm also supports media with anisotropic phase functions.
We rendered the scene with 4320 VPLs and a 2-step ABC varying the g parameter of the Henyey-
Greenstein phase function. The average shading time per VPL is 16 ms.
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(a) Crytek Sponza (b) City

Figure 4.8: Our approximate bias compensation can be used in complex environments to recover the energy
loss due to clamping the contribution of VPLs. In the Crytek Sponza the clamped volumetric and surface
illumination was rendered in 39 minutes (using 118k VPLs), while the missing energy was recovered using
a two-bounce ABC in only 13 minutes.
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Adaptive Volumetric Shadow Map
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Figure 4.9: Shading time per VPL for the Crytek Sponza and City scenes: most of the shading time is
used for constructing the shadow maps (about 60%), while indirect (surface) illumination is relatively fast,
and multiple scattering with 2-step ABC requires only 35� 38% of the entire shading cost.
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(a) Reference

Clamped
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(b) Bounded

One-step ABC
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(c) 1-step ABC
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Diff. 8

(d) 2-step ABC

Figure 4.10: A room with a heterogeneous smoke (ks = 0.9, ka = 0.001) rendered with 6800 VPLs. Bounding
(b) removes a remarkable amount of energy, which is almost completely recovered using just one ABC step
(c). The insets visualize lost energy (green), and overcompensation (red). Differences on the edges are due
to different sampling of primary visibility on the CPU and GPU.
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(a) BRE [Jarosz et al. 2008b] (b) Our ABC (c) Reference

Figure 4.11: An approximate equal-time comparison of beam radiance estimate [Jarosz et al. 2008a] (a) with
1 million volumetric photons and our GPU-accelerated 2-step ABC (b) with 7887 VPLs.

(a) Backward scattering
g = �0.7

(b) Isotropic
g = 0

(c) Forward scattering
g = 0.7

Figure 4.12: The Buddha in a homogeneous medium (ks = 0.075, ka = 0.001) with varying g parameter of
the Henyey-Greenstein phase function. The scene is lit by a single point light.

4.5 Discussion and Possible Improvements

In this section, we describe our findings from experimenting with our technique, which we
believe are important to assess its strengths and limitations, and use in complex scenes.

Scattering Functions. Similarly to many-light techniques tailored for lighting surfaces, our
approach sub-samples the path space. The resulting images are typically close to ground truth
when scattering functions are isotropic or moderately anisotropic. Our method supports even
highly anisotropic phase functions; however, strong forward or backward scattering leads to
similar problems that arise when VPL techniques face highly glossy materials. This is because
sub-sampling the path space assumes smooth illumination, which is only valid for isotropic
and moderately anisotropic scattering. To achieve artifact-free renderings of highly anisotropic
media, a large number of VPLs is required. We also observe that more VPLs are necessary for
dense and heterogeneous media. Thin media can be rendered with fewer VPLs. For surfaces,
the link between the scene geometry and materials and the number of required VPLs has been
extensively studied by Křivánek et al. [2010]. Deriving similar dependency on the parameters of
the medium would be interesting future work.
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Complex Scenes. Scenes with large extent benefit from bi-directional VPL generation (see Sec-
tion 3.2.2 for an overview) to create enough VPLs that contribute to the image significantly. In
our implementation, we use a variant of Georgiev and Slusallek’s [2010] method: we create a
larger number of paths and keep only those VPLs that contribute the most to the image. This
is evaluated by simply considering whether they are close to the camera. This approach is
surprisingly well-suited for scenes with participating media, such as those in Figure 4.8.

Animations. Temporal changes to primary light sources or scene geometry inherently change
the distribution of VPLs in each frame. This becomes noticeable as flickering if an insufficient
number of VPLs is used. Since our method directly depends on the VPL distribution, this effect
is carried over. To reduce the temporal artifacts, a sufficient number of VPLs is necessary (several
thousand for small scenes). To further improve temporal coherence, the VPLs can be distributed
using the same sequence of random numbers in every frame.

Transport between Media and Surfaces. Our approximate bias compensation is primarily tai-
lored for estimating the residual transport in media. While the basic instant radiosity method
easily handles transport between surfaces and media, omitting the visibility test, as proposed
in Section 4.2.4, restricts our compensation technique to media-to-media, or surface-to-media
transport only. As a result, volumetric illumination lacks residual transport from nearby sur-
faces. This can be avoided by tracing an actual ray and placing the compensation vertex at the
intersected surface point, shall there be any before reaching the sampled distance d.

Unbiased Rendering. Some of our observations can also be used to accelerate the original bias
compensation technique [Raab et al. 2008]. The 1-to-1 integration strategy proved to be superior
over the 1-to-N and more GPU friendly. Assuming the medium to be locally homogeneous only
for sampling and evaluating the actual transmittance accurately can also improve the result,
since each of the compensation vertices is inside the bounding region and thus likely to deliver
residual energy.

4.6 Conclusion

In this chapter, we presented a fast, instant radiosity-based method for rendering global illu-
mination, including multiple scattering, in heterogeneous media. Key to our method is the
approximate bias compensation technique that enables rendering images close to ground truth
in a fraction of time required by the bias compensation from [Raab et al. 2008]. While the vi-
sual impact of our approximations is mostly indistinguishable from the original technique, our
approach is more efficient and amenable to GPU acceleration.



74 4 Approximate Bias Compensation



Chapter �

Screen-Space Bias Compensation for
Surface Illumination

There are two possible outcomes: If the result confirms the
hypothesis, then you’ve made a measurement. If the result is

contrary to the hypothesis, then you’ve made a discovery.

— Enrico Fermi (1901–1954)

I n the previous chapter, we focused on efficiently solving the radiative transfer equation using
many-light algorithms. Most of the speed-up was achieved by cleverly altering the original
technique [Kollig and Keller 2006, Raab et al. 2008], while keeping in mind all aspects of the

radiative transfer. In this chapter, we revisit the problem but in a simplified scenario considering
surface illumination only.

Our goal is to achieve high-quality global illumination at interactive frame rates. Motivated by
the steadily increasing computational power of GPUs and by the improvements of the original
instant radiosity method, such as imperfect shadow maps [Ritschel et al. 2008], we again build on
the many-light approach using virtual point lights. As shown in Chapter 3, these techniques are
GPU friendly and capable of achieving high performance. The common downside is however
the somewhat poor visual quality of the result, shall it be obtained in real-time. This is due to
the restricted number of VPLs, leading to undersampling of the local light transport, and due
to a significant amount of bounding that is required to suppress splotchy artifacts. We propose
to recover the missing energy in a GPU-friendly manner in screen space: as the compensation
essentially recomputes the missing light transport over short distances, we observe that most of
the required information about nearby surfaces can be captured in screen space.

Our approach is based on a solid theory obtained from a reformulation of the rendering equa-
tion, which is presented in Section 5.2. To further accelerate the compensation, we use a hierar-
chical approach that reduces the number of arithmetic and memory operations, and also discuss
strategies to suppress artifacts due to sparse or missing sampling of surfaces in screen space. We
show several examples demonstrating that our method achieves comparable results to offline
rendering algorithms while achieving interactive speed on contemporary GPUs.

In this chapter, we present the following:

• a new formulation of the rendering equation that enables an efficient integration of the
residual transport;

• a screen-space bias compensation amenable for GPU acceleration; and,

• a hierarchical integration scheme to further speed-up the rendering.
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5.1 Screen-Space Techniques for Global Illumination

Most of the previous work that is relevant to this chapter was already mentioned in Chapter 3
and Section 4.1, thus we avoid repeating it. Here, we focus on literature that makes expensive,
global illumination operations more tractable by moving them from world space to screen space.

These techniques are typically used when high performance needs outweigh the quality. Many
of them are based on reflective shadow maps (RSMs) [Dachsbacher and Stamminger 2005]. Sim-
ilar to a standard shadow map, an RSM captures directly lit surfaces, but stores additional
information, such as position, normal, and material properties, that are required to compute
one-bounce indirect illumination. Multi-resolution splatting [Nichols and Wyman 2009] is also
based on RSMs computing indirect lighting (without visibility) at lower resolution for smooth
surfaces, and more accurately in regions with geometric discontinuities. Image-space radios-
ity [Nichols et al. 2009] uses a hierarchy for the RSM, as well as for the image space. Computing
ambient occlusion in image-space (e.g. see [Bavoil et al. 2008]) is widely used nowadays, and
has been extended by Ritschel et al. [2009b] to account for directional lighting with colored
shadows and indirect illumination from nearby surfaces. These techniques capture short range
one-bounce light transport and typically require filtering to reduce sampling artifacts.

5.2 New Form of the Rendering Equation

Computing a solution to the rendering equation, e.g. using path tracing, is typically costly due
to the inherent recursive nature of the light transport. Instant radiosity accelerates the compu-
tation of global illumination by replacing all but the first two terms1 of the Neumann series in
Equation (2.97) with lighting due to VPLs:

L =
•

Â
k=0

TkLe

⇡ Le|{z}
emission

+ TLe|{z}
direct illum.

+ TL̂,|{z}
indirect illum.

(5.1)

where L̂ represents the radiance function due to a set of VPLs. For a single VPL with power
F, and a given direction w, L̂(x!w) = fs(w x w

0)F, where x and w

0 are the position and
direction of incidence of the VPL, respectively. Since we deal with many-light methods and
disregard effects due to participating media in this chapter, it will be convenient to express the
transport operator T from Section 2.7.4 concisely as an integral over surfaces:

(TL)(x!z) =
Z

A
fs(z x y)V(x$y)G(x$y)L(y!x)dy. (5.2)

We will now introduce two variants of T. The first one, called the bounded transport operator Tb,
replaces the standard geometry term G with its bounded version Gb. We will denote the differ-
ence between T and Tb as the residual transport operator Tr, which replaces G in Equation (5.2) be

1The original instant radiosity [Keller 1997] used VPLs even for the second term, i.e. the direct illumination.
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the residual geometry term Gr. As such, Equation (5.1) can be written as:

L ⇡ Le + TLe + (Tb + Tr)L̂
⇡ Le + TLe + Tb L̂ + Tr L̂. (5.3)

In the equation above, the VPL lighting is split into the bounded and the residual transport,
where the latter causes the splotchy artifacts. Most many-light techniques thus omit the residual
transport, which biases the integration. To preserve unbiased results, Kollig and Keller [2006]
propose to use hemispherical formulation of Tr and evaluate the residual transport using path
tracing. As this is costly, we propose a slightly different perspective on the problem.

First, we remove the source of singularities (i.e. L̂) and replace it by a general reflected radiance
function (L� Le). Conceptually, the equation remains the same, the only difference is that Tr is
now integrating “reflected light” instead of illumination from VPLs:

L ⇡ Le + TLe + Tb L̂ + Tr(L� Le). (5.4)

By recursively expanding Equation (5.4), we obtain our novel unbiased formulation of the ren-
dering equation for rendering with VPLs:

L ⇡ Le +
•

Â
i=0

Ti
r(TLe + Tb L̂) (5.5)

The above equation states that unbiased results can be obtained as an infinite sum of residual
operators that are recursively applied to direct illumination and bounded indirect illumination
computed with VPLs. That is, we can approximate global illumination using bounded VPL
lighting, and afterwards restore all residual transport using only the bounded solution. The
first term of the sum represents the direct and the bounded indirect illumination. Every further
summand represents the (bounded) compensation for the bounded contribution of the previous
step. As bounding occurs in each iteration, the results will be unbiased only for infinite sums.

In practice, we can only evaluate a finite number of iterations. The error e

k introduced by
considering the first k iterations can be expressed as a sum over all omitted higher order terms,
or even more concisely as:

e

k=Tk+1
r (TLe + TL̂). (5.6)

Notice that the error uses the complete transport operator T for the VPL lighting, therefore no
further compensation is necessary. An important observation is that the energy gain due to
the compensation is (k + 1)-times convolved with the BRDF, and therefore dropping exponen-
tially with increasing k. For practical applications, this translates into choosing k such that the
visible bias is removed. In all our test scenes we used 1 to 3 iterations, which yielded nearly
indistinguishable results from unbiased reference solutions.

Using our reformulation, we derive a new rendering algorithm with bias compensation that
consists of two major steps:

1. We first compute direct and bounded indirect illumination of each shading point by apply-
ing T to light from primary light sources and Tb to illumination from VPLs, respectively.

2. Next, we apply the residual operator iteratively k-times to compensate for the bounding.
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Instead of storing shading points over all surfaces, we will use a screen-space approach: we com-
pute illumination for visible surfaces only, and also use exclusively these surfaces to compensate
for the bias. The camera projection thus defines the integration domain and the raster provides
an efficient domain discretization for storing intermediate results.

5.3 Integration in Screen Space

In this section, we describe how to transform the residual transport from Equation (5.5) into
an efficient screen-space integration technique, which we denote as screen-space bias compensation
(SSBC). Compensating for the bias in screen space has two major advantages: first, we can
apply the residual transport operator as a post-processing filter that operates on the illumination
sampled and stored in screen space. This is achieved by projecting screen-space patches (pixels)
back to world space and integrating over the corresponding subtended area. Second, we can
easily find all (visible) surfaces that potentially contribute energy to the compensation, as these
have to be nearby in world space, and thus also in screen space.

Evaluating Tr in screen space amounts to replacing the integral by a sum over a finite number
of pixels (we discuss how to handle the inherent limitations of screen-space approaches in Sec-
tion 5.3.2). For every pixel, we obtain its position yi and normal n(yi) from a G-buffer of the
rendered image, and compute the surface area Ai, which the pixel represents in world space,
using screen-space derivatives. For a shading point x, we sum over M pixels and get:

TrL ⇡
M

Â
i=1

fs(z x yi)Gr(x$yi)V(x$yi)L(yi!x)Ai. (5.7)

As previously mentioned, only surfaces near x contribute to the compensation – otherwise the
residual geometry term Gr(x $ yi) becomes zero. This has two consequences: first, we can
estimate the radius of this region in screen space and restrict the sum to pixels therein. Second,
we observe that nearby surfaces are rarely occluded and we can thus omit the visibility function,
as also proposed in [Arikan et al. 2005, Davidovič et al. 2010] and the previous chapter.

To restrict the sum to nearby surfaces, we first estimate a world-space bounding region, which
contains surfaces contributing to the residual transport. A conservative spherical estimate, which
does not require any a-priori information about the geometry in the G-buffer, defines the bound-
ing region only based on distance (assuming the two cosine terms in the geometry term to be 1)
and the bound b. The radius r of the bounding sphere in world space equals r = 1/

p
b, and can

be transformed to screen-space radius rs, e.g. for a perspective projection as:

rs =
r

tan d

2kz� xk , (5.8)

where d is the field of view. Note that rs depends on the distance from the camera and for closer
x the screen-space radius becomes bigger spanning more pixels. Since the number of pixels lying
inside the bounding bounding region can exceed several thousands (see Figure 5.2.b; 1 mipmap
level), we derive a hierarchical integration scheme that greatly helps to achieve interactive per-
formance.
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Figure 5.1: We compute the bias compensation by adaptively applying the residual operator to world-space
patches obtained by projecting screen-space pixels back to world space (a). We first estimate a bounding
region (b) that contains all surfaces with possibly non-zero contribution, and then, using a hierarchical
traversal, we evaluate the contribution of individual neighboring patches (c) and (d). Patches spanning
discontinuities or subtending a large projected solid angle are refined (R), until their contribution can be
estimated accurately (1), or drops to zero (0).

5.3.1 Hierarchical Integration

The goal of the hierarchical integration is to compute the contribution from smooth or more
distant (yet still in the bounding region) surfaces using less pixel samples. Figure 5.1 demon-
strates the general idea of adaptively sampling the integration domain and refining where the
information is inaccurate. For this we compute a mipmap chain for the G-buffer, which contains
averaged positions, normals, and material properties, summed pixel areas, and illumination
computed from the bounded light transport, i.e. the color of the pixels. Similarly to Nichols
et al. [2009], we also compute a discontinuity buffer (and a mipmap chain thereof) to avoid
integrating over sharp edges and depth discontinuities.

When integrating the surfaces’ contributions, we start on the coarsest mipmap level (typically
with a resolution of 642 for an image resolution of 10242), and determine whether the com-
putation using this patch is accurate enough, or if we need to refine and proceed to the finer
mipmap level. In order to avoid spatial and temporal artifacts in dynamic scenes, we refine the
integration if:

1. the projected solid angle of the patch exceeds a given threshold (typically ⇡ 0.08 sr) be-
cause it is too large or too close to the shading point x,

2. the current patch spans a discontinuity. Then the position, normal, and area at the coarser
mipmap level do not represent the original geometry correctly.

If at least one of the criteria is met, we refine by recursively integrating over the four correspond-
ing sub-patches at the next finer level. The second criterion can cause a lot of refinement in areas
with negligible contribution, e.g. distant surfaces. Therefore, we only refine at discontinuities
when the projected solid angle is higher than a user specified threshold (⇡ 0.04 sr). This signif-
icantly improves the performance without introducing noticeable artifacts, as it is only effective
for patches with low possible contribution.
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Figure 5.2: In (a), we visualize the total, per-pixel number of patches used to estimate the residual transport
in the Crytek Sponza scene. In (b), we show how the average, per-pixel number of patches depends on
the number of mipmap levels in the hierarchical G-buffer. The plot in (c) illustrates the relative execution
time spent on different rendering tasks: the cost of two compensation steps is moderate compared to
that of computing illumination from VPLs. The number of VPLs and the total rendering time is given in
parentheses.

5.3.2 Avoiding Overcompensation

There are several inherent problems common to most screen-space approaches. Information
about the geometry can either be missing completely when the surface is not directly visible to
the camera, or sampled too sparsely if surfaces are seen from grazing angles. The problem of
hidden surfaces can be lifted using depth peeling or multi-fragment rendering. This complicates
the rendering algorithm and hinders the elegance of the screen-space integration. Fortunately,
since the residual transport represents only a fraction of the total energy, the absolute error is
still relatively small. In most cases, it is thus sufficient to use the frontmost surfaces only.

When a surface is nearly perpendicular to the view direction, the corresponding screen-space
pixels represent a large area in world space, even on the finest mipmap level. This can result in
overestimating the residual transport and thus bright areas in the image. The brightening would
sometimes be more distracting than the unbounded contribution of a nearby VPL; therefore, we
use a quadratic falloff to decay the contribution of pixels that have the angle between the surface
normal and the view direction greater than 80 degrees.

5.4 Implementation Details

We implemented our technique in DirectX 11 with all steps of our bias compensation executed on
the GPU. The only exception are the random walks for distributing VPLs, which are computed
on the CPU. Note that this is never the bottleneck, as we only generate a few thousands of VPLs.

During rendering, the visibility of VPLs is computed using imperfect shadow maps [Ritschel
et al. 2008]. The bias compensation is implemented in a compute shader, which enables more
efficient handling of the hierarchical refinement. The compute shader takes a mipmap chain of
the G-buffer storing position, normal, area, BRDF, and illumination (direct and bounded VPL
contribution) as input. Then we apply the hierarchical screen-space compensation to restore
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Figure 5.3: Our SSBC takes a multi-resolution image of direct and clamped indirect illumination, and the
hierarchical G-buffer as input. The compensation result is upsampled and optionally blurred, and then
added to the direct and clamped illumination yielding the final image.

the missing short-distance one bounce illumination. Optionally, we use an edge-preserving
bilateral Gaussian blur on the compensation result to avoid blocky artifacts that can appear
when the hierarchical integration uses too few samples. When applying multiple compensation
steps (i.e. multiple iterations in Equation (5.5)), we always use the illumination buffer from
the previous step as the input for the next iteration. This requires updating the illumination
mipmap. Figure 5.3 shows the workflow of our technique.

As the indirect illumination usually exhibits smooth gradations only, we can increase the perfor-
mance – without noticeable impact on visual quality – by computing the indirect illumination
and bias compensation at half resolution. We then use bilateral upsampling as in [Ritschel et al.
2009a] and compute these two components only at full resolution where the upsampling failed.

5.5 Results

In this section, we compare the quality of our results to an implementation of the unbiased
instant radiosity algorithm [Kollig and Keller 2006], analyze the rendering performance, and
discuss different settings. All renderings have been computed using an ATI Radeon HD 5870
running on an Intel Core i7 860 with 2.8 GHz and 8 GB of RAM.

Figure 5.2.b shows the dependency of the number of screen-space patches, required for the com-
pensation, on the number of mipmap levels of the G-buffer. Without the hierarchical approach,
the algorithm gathers the illumination from up to four thousand patches for every pixel. This
number quickly decreases if we use more levels in the mipmap. Figure 5.2.c reports the relative
time spent on the individual parts of the rendering pipeline. Here we always used hierarchies
with 6 levels computing the compensation for 1024⇥ 768 images and performing two compen-
sation steps (green and yellow).

In Figure 5.4, we compare the quality of the SSBC to a ground-truth [Kollig and Keller 2006].
For this comparison, we used ray traced shadows instead of shadow maps to focus only on the
error due to the integration in screen space (which was still done on the GPU). The ground-
truth rendering took about 10.9 hours to produce results with an acceptable noise level. Our
bias compensation obtains very similar results at interactive frame rates (3 SSBC steps at highest
quality settings take 550 ms).

Figure 5.5 demonstrates SSBC on three scenes and illustrates the differences between one and
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(a) Bounded VPLs (b) Bounded VPLs + 3-step BC (c) Bounded VPLs + 3-step SSBC

(d) 3-step BC (e) 3-step SSBC

Figure 5.4: Comparison of our SSBC to a ground-truth solution: (a) offline rendering with bounded indirect
illumination without bias compensation (20 min), and (b) with bias compensation [Kollig and Keller 2006]
(additional 10.9 hours). (c) shows the result with three SSBC steps (i.e. three iterations in Equation (5.5)).
The energy recovered from both compensation methods is shown in (d) and (e), respectively.

two bias compensation steps. The figure also provides a comparison to bounded and reference
solutions. We observe that one compensation step is often sufficient for diffuse surfaces, while
the second step still contributes noticeably on glossy surfaces.

5.6 Conclusion

In this chapter, we presented a novel many-light method for interactive rendering of high-quality
global illumination. We show that bias compensation can be formulated as a post-processing
step enabling efficient, screen-space approximations. Our method improves the quality and
correctness of VPL-based methods by recovering the residual energy using a hierarchical, screen-
space approach, whereas previous approaches, operating in world space, require expensive ray
casting and are thus orders of magnitude slower.

The relative time required for our compensation is only a fraction of the time spent on illuminat-
ing the scene with VPLs. This highly contrasts with the original bias compensation [Kollig and
Keller 2006], that can easily increase the total rendering time by orders of magnitude. Unlike
the hierarchical image-space radiosity [Nichols et al. 2009], we still evaluate visibility between
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Figure 5.5: Three of our test scenes for which we show a bounded GPU and a reference CPU solution
(left column), and our technique with 2 compensation steps (middle columns). The insets on the right
detail parts, where the compensation contributes significantly. Note that a single compensation step is
typically sufficient for diffuse surfaces, while glossy surfaces (e.g. the dragon) benefit from more steps.
Each compensation step takes approximately 27 ms for an image resolution of 1024⇥ 768.

the shaded point and VPLs; visibility tests are omitted only locally and only for the residual
transport.

In order to overcome the artifacts stemming from the incomplete information in screen space,
our method could be combined with any technique for revealing information about hidden
surfaces, such as depth peeling, scene voxelization, or surfel injection. These improvements
trade speed for quality and might be suitable for accelerating high-quality bias compensation in
offline renderers.
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Chapter �

Virtual Ray Lights

Death is pitch-dark, but colors are light.
To be a painter, one must work with rays of light.

— Edvard Munch (1863–1944)

W hile the previous two chapters focused on how to approximate and accelerate bias
compensation to achieve interactive performance, in this and the following chapter,
we aim more at the quality and convergence to ground truth. We also strive to solve

the complete radiative transport, not just the surface illumination. Though variants of path trac-
ing (e.g. [Lafortune and Willems 1996]) provide general solutions covering most lighting config-
urations, they converge slowly. Alternatives based on diffusion theory (e.g. [d’Eon and Irving
2011, Jensen et al. 2001]) yield efficient approximations, but are only applicable with strong
constraints on the scattering properties of the medium. For transport in general participating
media, two-pass approaches, such as many-light algorithms and density estimation techniques,
are often the preferred choice for offline rendering.

One of the main disadvantages of many-light algorithms that somehow compensate for the
bounding is that they split the light transport into two parts, each of which is computed differ-
ently. First, the rendering equation is partially solved by computing the bounded illumination
due to VPLs; second, the residual energy is added using a different integration scheme. The
initially very appealing assumption of representing multibounce illumination with a set of VPLs
turns into an obstacle when aiming for results that are free of visible artifacts. This is because
contracting the energy into a finite number of infinitesimal point lights emphasizes the singular-
ity of the area-formulated rendering equation. We thus need to bound the transport and add an
extra estimator to recover the residual energy, which makes the implementation more involved
and somewhat hinders the initially very elegant and straightforward idea.

In this chapter, we try to reduce the singularity so that we no longer need to bound the contri-
bution of the virtual light. We leverage an important observation that absorption and scattering
in the medium can be formulated continuously along directions that light follows. As a result,
we can take entire segments (not just the vertices) of a photon path and convert them into virtual
ray lights (VRLs), see Figure 6.1. This, analogously to photon beams [Jarosz et al. 2011a], results
in denser sampling of the integration domain. However, compared to photon beams and VPL-
based many-light techniques, VRLs provide higher quality multiple scattering at a fractional cost
by exploiting these important benefits:

• line segments, as opposed to points, sample the medium more densely requiring fewer
virtual lights;
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(a) VPLs (b) VRLs (c) Lighting with
a VPL

(d) Lighting with
a VRL

Figure 6.1: Virtual point light methods (a) convert vertices of each random-walk into a collection of virtual
point lights (VPLs). In this chapter, we propose to convert entire segments of the random-walk into virtual
ray lights (b). This results in denser sampling, provably weaker singularities, and higher quality when
estimating illumination from the collection of virtual lights (c, d).

• distributing energy over line segments (instead of concentrating it at discrete points) prov-
ably reduces the order of the singularity, diminishing the need to bound energy;

• using a product importance sampling scheme to efficiently integrate over the 2D domain
defined by a camera ray and a VRL allows us to more robustly handle the traditionally
challenging cases (for VPL methods) of scattering from anisotropic phase functions; and,

• computing the illumination from VRLs acts as a “guided” final gather pass over photon
beams, leading to a more efficient integration scheme.

The third point in the list above reveals an important aspect of lighting with VRLs. In order to
calculate the energy transfer between a single ray light and a single camera ray, we need to solve
an 2D integral. One dimension in the 2D integration domain corresponds to a position on the
VRL; the second dimension then represents to the position on the camera ray. In Section 6.3.1,
we present a product sampling method to efficiently compute these integrals in a Monte Carlo
framework. Our unbiased approach is effective in the presence of highly-anisotropic scatter-
ing/lighting and outperforms other variance reduction techniques, such as multiple importance
sampling Veach [1997], by accurately capturing the shape of the integrand in the 2D domain.

6.1 From Points Towards Rays

In this section, we list several examples demonstrating how using lines instead of points for
sampling, integrating, or storing data can improve the result. In photon mapping, several au-
thors proposed to use entire segments of the photon path to reduce the various forms of the
density estimation bias [Havran et al. 2005, Herzog et al. 2007, Lastra et al. 2002]. This work
has been extended to participating media by Jarosz et al., who first demonstrate that looking
up photons using a beam query (instead of a number of point queries along the camera ray) is
more efficient [Jarosz et al. 2008b], and then present a comprehensive study that compares point
and line primitives for storing and querying radiance values [Jarosz et al. 2011a]. The authors
also proposed to use photon beams, i.e. segments of photon paths with finite thickness, and later
formulated a progressive convergent algorithm [Jarosz et al. 2011b] that shrinks the thickness
of beams over time to gradually reduce the bias to zero. A similar idea to photon beams was
concurrently presented by Sun et al. [2010] to simulate single scattering and volumetric caustics
by finding nearly intersecting camera and light paths.
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In addition to light transport, line samples were used to improve other aspects of rendering as
well. Jones and Perry [2000] place lines over pixels and analytically compute triangle coverage to
obtain the final pixel color. Line samples can also be used to improve the integration of stochastic
effects. Tzeng et al. [2012] demonstrate the benefits of evaluating visibility along lines for depth
of field. Gribel et al. [2010] use line samples to analytically integrate visibility for motion blur.
Barringer et al. [2012] extend line sampling of visibility to thin structures, such as hair, fur, or
grass. Similarly to point sampling, line samples may suffer from aliasing if spaced or oriented
regularly. Sun et al. [2013] study different distributions of line segment samples and propose a
sampling scheme that retains blue-noise-like properties.

Interestingly, the problem of computing lighting from a VRL is dual to the so-called airlight
integral [Lecocq et al. 2000]. The transport of energy from a VRL towards a single point can
be seen as a reverse problem to estimating the contribution from a single VPL to entire camera
ray. Several techniques have been proposed to evaluate this transport analytically, e.g. [Pegoraro
2009, Sun et al. 2005], or numerically using ray marching [Perlin and Hoffert 1989] or Monte
Carlo importance sampling [Kulla and Fajardo 2012, Steinberg and Kalos 1971]. Our approach
can thus benefit from these integration schemes and we point to them throughout the text when
appropriate.

6.2 Light Transport with VRLs

In this section, we demonstrate how line samples can be used in the context of rendering par-
ticipating media. More precisely, each our line sample is a continuous linear light source (abbr.
ray light) whose geometry is represented by an oriented line segment with origin x, direction
wx, and length t. We also need to quantify the energy that the ray light emits. This can be done
by specifying the radiant flux emitted by the line and how the flux changes with position and
direction along the line. Since we want to use ray lights as samples of light transport, a single
VRL should represent light that travels from x in direction wx and scatters exactly once some-
where along the straight path. Furthermore, the amount and the distribution of the scattered
light should adhere firmly to the parameters of the medium that the ray goes through.

For each VRL, we thus specify only flux F that is all emitted from the origin x in direc-
tion wx.1 The flux “emitted” from an arbitrary point xv on the ray light is then defined as
FT(x$xv)ks(xv). Its directional distribution, i.e. the radiant intensity at xv, is given by the
phase function fp(wx!w). Putting all these together, we can define the radiance emitted from
a point xv on the VRL in direction w as:

L(xv!w) = FT(x$xv)ks(xv) fp(wx!w). (6.1)

We can now express the fluence due to a single VRL at an arbitrary point y in the scene. We sim-
ply take the intensity at each point of the VRL towards y and account for visibility, transmittance,
and the quadratic distance fall-off, yielding:

E(y) = F
Z t

0

ks(xv) fp(wx!w)T(x$xv)T(xv$y)V(xv$y)
kxv � yk2 dv, (6.2)

1Here, we could indeed talk about emitted radiance, nevertheless, we stick to the convention of specifying the total
emitted energy of a light source using flux.
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(a) Media-to-media transport Lm
m (b) Media-to-surface transport Lm

s

Figure 6.2: Illustration of the media-to-media (a) and media-to-surface (b) transport showing some of the
terms, e.g. transmittance and inverse-squared distance, that form the integrand of Equations (6.3) and (6.4).

where xv = x + vwx and w is the direction from xv towards y.

Let us now consider a camera ray with origin y and direction wy that hits a surface point ys
at distance s. We shall now calculate the fraction of the VRL’s flux that reaches the camera ray
and scatters towards its origin y. This can be split into two components. The first component,
which we will refer to as media-to-media transport Lm

m, accounts for the in-scattered light along
the camera ray, see Figure 6.2.a. This can be expressed as the fraction of fluence that scatters
towards the origin and does not get absorbed or out-scattered along the camera ray:

Lm
m(y wy) =

F
Z s

0

Z t

0

ks(xv)ks(yu) fp(wx!w) fp(w!�wy)T(x$xv)T(xv$yu)T(yu$y)V(xv$yu)

kxv � yuk2 dvdu,

(6.3)

where yu = y + uwy. The above equation represents the core of VRL-based many-light algo-
rithms. It simulates two bounces of volumetric light transport and can thus be—with VRLs
generated accordingly—used for efficiently computing multiple-scattering.

The second component, referred to as media-to-surface Lm
s , accounts for the fraction of irradiance

from Equation (6.2) that hits the surface at ys, scatters towards y, and reaches the origin of the
camera ray:

Lm
s (y wy) =

T(y$ys)F
Z t

0

ks(xv) fp(wx!w) fs(w!ys!�wy)Dys(xv)T(x$xv)T(xv$ys)V(xv$ys)

kxv � ysk2 dv.

(6.4)

For an illustration of the individual terms, see Figure 6.2.b.

So far we considered emission from the intermediate points of the VRL only. If the end-point of
the VRL xt is on a surface, there will be some non-zero flux that bounces off xt. We propose to
treat xt as a surface VPL with incident power Fxt :

Fxt = FT(x$xt), (6.5)

and calculate the surface-to-media Ls
m analogously to the media-to-surface illumination: in both

cases we deal with a transport between a volumetric line and a surface point, which requires
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solving the well-known airlight integral. The only difference between the two transports is the
direction in which the light propagates.

In case when the end-points of the VRL and of the camera ray are both on a surface, we should
also evaluate the respective surface-to-surface transport. As this amounts to calculating the con-
tribution of a surface VPL at xt to a surface point ys, which is described in Chapter 3, we omit
repeating the equations here. To compute the complete contribution of a VRL to a single camera
ray, we simply add all the aforementioned components together:

L(y wy) = Lm
m(y wy) + Lm

s (y wy) + Ls
m(y wy)Ls

s(y wy). (6.6)

Generation of VRLs. In order to provide more intuition on how to use VRLs as samples of
global illumination, we now briefly describe the process of generating them. This is similar to
generating VPLs in traditional many-light algorithms. We first emit random-walk photon paths
from light sources that scatter at surfaces and within the medium. At each bounce of the photon
path, point-based many-light methods store a VPL, i.e. the “flux” carried by the photon path, the
position of the bounce, direction of incidence, and possibly some other additional information.
In case of VRLs, we store entire segments defined by the origin x (i.e. the previous path vertex),
direction wx (from x towards the current path vertex), and length t. For the length, we use the
distance from the origin to the nearest surface in direction wx. Alternatively, one can also use
the actual length of the random-walk segment—we discuss the implications in Section 6.7—but
we found that longer ray lights yield better results in our test scenes. Finally, we define the flux
F of the VRL as the flux carried by the photon path in direction wx after bouncing at x.

For media-to-media transport (multiple scattering) we evaluate Equation (6.3) for each camera
ray and VRL using an efficient importance sampling strategy that we describe next. For media-
to-surface and surface-to-media transport (i.e. indirect illumination from the volume) we solve
the simpler 1D problem expressed in Equation (6.4) at the surface hit points. These steps can be
trivially repeated in a progressive fashion to provide interactive previews.

6.3 Importance Sampling for Transport between Two Rays

Equation (6.3) forms the basis for an efficient evaluation of multiple scattering in participating
media. It defines a 2D integration domain (abbr. uv-domain), where one axis is the length
t along a VRL and the other axis is the length s along a camera ray. The integrand within
this domain incorporates scattering coefficients, phase functions, and transmittances along the
camera and light ray, and the inverse-squared distance, visibility, and transmittance between the
points corresponding to u and v. We visualize the uv-domain for a single, unoccluded VRL/ray
pair in Figure 6.3.b. Unfortunately, a closed-form solution to this double integral is currently not
known. As such, we estimate the value of the integral using Monte Carlo integration.

If we denote the integrand of Equation (6.3) as g(u, v), we are interested in evaluating the fol-
lowing unbiased Monte Carlo estimator:

hLm
s (y wy)i = 1

N

N

Â
i=1

g(ui, vi)
p(ui, vi)

, (6.7)
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Figure 6.3: For every pair of a VRL and a camera ray (a), we compute the transport by integrating over the
2D uv-domain (b), here visualizing just the inverse-squared distance w(u, v)�2. We first sample point xv
on the VRL using a marginal PDF (c) and then, for this xv, we construct a conditional PDF to sample point
yu on the camera ray (d).

where p(ui, vi) is the probability of choosing a point (ui, vi) in the uv-domain. To evaluate this
estimator efficiently, the PDF should include as many properties of g as possible. We begin with
the case of isotropic phase functions, generalizing later to anisotropic unimodal phase functions.

6.3.1 Isotropic Scattering

In the isotropic case, the inverse-squared distance term in Equation (6.3) causes the most vari-
ation in the uv-domain. All the other terms are either constant or strictly bounded to some
maximum value and so we primarily target a PDF proportional to the inverse-squared distance:

p(ui, vi) µ w(u, v)�2, (6.8)

where w denotes the distance between the points on the VRL and the camera ray, i.e. w(u, v) =
kxv � yuk. Unfortunately, sampling according to this PDF using the inversion method is not
possible as computing and inverting the corresponding CDF eludes analytical computation.

Kulla et al. [2012] recently proposed an equiangular approach for importance sampling a cam-
era ray according to the inverse-squared distance to a point light, and also applied this idea
to a randomly sampled rectangular area light. We could trivially apply this approach to our
context of a linear light (the VRL) by first uniformly choosing a random length vi along the
VRL, and then importance sampling the length ui along the camera ray according to inverse-
squared distance. Unfortunately, by (uniformly) sampling vi along the VRL without regard for
the camera ray, the sampling density along the v axis does not account for variation in w(u, v)�2,
resulting in a suboptimal distribution. We visualize this in the uv-domain in Figure 6.4 along
with a corresponding Cornell box rendering, illustrating the effects of the suboptimal sampling
distribution.

In order to incorporate variation in w(u, v)�2 along both v and u, we propose to construct a
joint distribution for the entire uv-domain and sample it using a two-stage procedure. We first
distribute a sample vi along the VRL using a marginal PDF p(v) (see Figure 6.3.c) and then
sample a length ui along the camera ray according to a conditional PDF p(u|v) based on the
inverse-squared distance to the point at vi (Figure 6.3.d). In order to make the sampling routine
efficient, we strive for an analytic marginal PDF.
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We start by applying a change of variables û = u� uh and v̂ = v� vh, and similarly for the VRL
start and end points v̂0 and v̂1. Here, uh and vh are the ray parameters of the two closest points
along the camera ray and VRL, which are separated by a Euclidean distance h (see Figure 6.2.a).
Our motivation for these substitutions is to express all distances w.r.t the two closest points,
which makes the derivation easier to follow. Using the law of cosines, we can now define
the squared distance as w(û, v̂)2 = h2 + û2 + v̂2 � 2ûv̂ cos q, where cos q is the dot-product of
direction of the camera ray and the VRL, i.e. cos q = wy · wx. The marginal PDF we seek can
now be expressed as:

p(v̂) =

R û1
û0

w(û, v̂)�2 dû
R v̂1

v̂0

R û1
û0

w(û, v̂)�2 dû dv̂
. (6.9)

To best of our knowledge, there is no analytic solution to such integrals in the current math
literature [Gradshteyn and Ryzhik 2007]. Therefore, we opt to simplify the inner integral by
assuming the camera ray to be infinite (i.e. û0 = �•, û1 = •). With this change, the numerator
evaluates to:

Z •

�•
w(û, v̂)�2 dû =

pp
h2 + v̂2 sin2

q

, (6.10)

and the normalization term in the denominator evaluates to:
Z v̂1

v̂0

Z •

�•
w(û, v̂)�2 dû dv̂ = p

A(v̂1)� A(v̂0)
sin q

, (6.11)

where A(x) = sinh-1� x
h sin q

�
.

With these analytic anti-derivatives we can further integrate Equation (6.9) to obtain the marginal
CDF:

P(v̂) =
A(v̂0)� A(v̂)
A(v̂0)� A(v̂1)

, (6.12)

which can be readily solved for the inverse CDF:

P�1(x) =
h sinh(lerp(A(v̂0), A(v̂1), x))

sin q

. (6.13)

We sample a length vi (and thus a position xvi = x + viwx on the VRL) by generating a random
number xi,1 2 h0, 1) and passing it into the inverse CDF. The result can be interpreted as a VPL
located at xvi .

In the second step, we apply Kulla et al.’s method to obtain a sample location yui = y + uiwy
along the camera ray that is distributed according to the inverse-squared distance to xvi . This
involves generating another random number xi,2 2 h0, 1) and inserting it into their inverse CDF:

P�1(x) = h tan(lerp(B(û0), B(û1), x)), (6.14)

where B(x) = tan-1(x/h). Note that this is actually equivalent to the well-known truncated
Cauchy distribution. The final PDF is simply the product of the PDFs from these two sampling
steps.
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(a) Medium with an isotropic PF (b) Uniform and equiangular (c) Our analytic

Figure 6.4: Different sampling strategies of media-to-media transport (multiple scattering) in a scene with
an isotropic homogeneous medium (a). The straightforward approach is to uniformly sample a point along
one axis and then importance sample the inverse-squared distance (i.e. equiangular sampling [Kulla and
Fajardo 2012, Steinberg and Kalos 1971]) to this point along the other axis (b). We derive an analytic
marginal PDF that allows to consider the inverse-squared distance already when sampling along the first
axis (c). The inverse-squared distance is thus taken into account when sampling both points, resulting in
better distribution of samples and less noise in the same amount of time.

We illustrate the effect of incorporating variation along the v axis in Figure 6.4. Notice that the
sample distribution more closely matches the target w(u, v)�2 density, which results in less noise
in the rendered Cornell box image.

6.3.2 Anisotropic Scattering

The anisotropic case is unfortunately significantly more complex and, in this case, we aim to
sample according to the product of the two phase functions as well as the inverse-squared dis-
tance:

p(ui, vi) µ
fp(wx!w) fp(w!�wy)

w(u, v)2 . (6.15)

In order to illustrate the impact of the anisotropic phase functions, we visualize this density
function in Figure 6.5 in the same uv-domain as for the isotropic case.

Though importance sampling is possible for many commonly used phase functions, these rou-
tines consider the entire spherical domain. Even if we only considered the phase function at a
single point light, the samples would need to be constrained to lie along an arbitrary spherical
arc (e.g. the projection of the camera ray onto the point as shown in Figure 6.6.a). This type of
domain restriction is uncommon hence, to our knowledge, such sampling routines do not cur-
rently exist for phase functions. Unfortunately, our context is even more complex since we need
to consider not only the 1D camera ray domain, but also the 1D VRL domain and the product of
the phase functions aligned along each of these two domains.

A common alternative to sampling the integrand exactly is to use multiple importance sampling
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(a) Medium with an anisotropic PF (b) Our analytic (c) Our semi-analytic

Figure 6.5: Importance sampling of multiple scattering in media with an anisotropic phase function. Since
the phase function has high impact on the integration domain, taking into account just the inverse-squared
distance results in high amount of noise (b). Therefore, we propose a semi-analytic approach that considers
the product of the two phase functions and results in lower variance with only a marginal computational
overhead (34% for this simple scene).

(MIS) [Veach 1997]. After analyzing and experimenting with this option (as we will discuss
further in Section 6.4), we found that when estimating the integrals of interest with low sample
counts, MIS results in significant variance. Therefore, we developed a specialized method to
directly importance sample the product of the two phase functions and the inverse-squared
distance, which produces better results than MIS. Our solution is a simple generalization of the
two-step isotropic approach described in Section 6.3.1 and works the best with unimodal, axially
symmetric phase functions.

We first proceed as in the isotropic case, choosing a location xvi along the VRL according to the
inverse-squared distance to an infinite camera ray, see Equation (6.13). Note that we ignore the
length of the camera ray and phase functions in this first step. The resulting sample point xvi

can be interpreted as an anisotropic VPL along the VRL, see Figure 6.6.a.

In the second step, we wish to sample a location yui along the camera ray according to the
product of the inverse-squared distance and both phase functions (one at xvi aligned to the VRL,
and another aligned to the camera ray, see Figure 6.6.b). By working in the angular domain
about xvi (along the spherical arc formed by the camera ray’s projection onto xvi , shown in red),
the inverse-squared distance term is incorporated implicitly.2 We denote the remaining product
of the two phase functions as f uv

p (ui) and show a few examples in Figure 6.7 as solid red curves.
Note that in the isotropic cases, this product is constant and sampling simplifies to the method
in Section 6.3.1. Working in the angular domain has one additional advantage: we can easily
handle (semi-)infinite camera rays, because the angle covered by an infinite ray in the angular
domain is finite and equals p.

For anisotropic scattering, our solution is to construct a compact piecewise-linear PDF, which
closely approximates the product f uv

p . We first evaluate f uv
p at a fixed number of variably-spaced

points, q1 . . . qM, along the spherical arc. Then we fit a piecewise linear PDF to these evaluations,

2When we project uniformly sampled directions in the angular domain onto a ray, we obtain a distribution of points that
is proportional to the inverse-squared distance
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(a) Spherical arc (b) Sampling in the angular domain

Figure 6.6: (a) Importance sampling the phase function (orange) at a point xvi requires generating samples
only along the spherical arc (red) formed by the projection of the camera ray onto xvi . (b) We importance
sample the product of two phase functions (blue and orange) within this angular domain, viewed within
the plane containing the camera ray and xvi . In order to find the value of the phase function at the camera
ray for a give angle q, one can simply flip it and place at xvi , which simplifies the evaluation of the product.

Figure 6.7: Four example configurations of anisotropic phase functions (Henyey-Greenstein with g = 0.95)
plotted along the angular domain about a point xvi on the VRL. The product of the phase function along
the camera ray (blue) and along the VRL (orange) results in the product (solid red) to which we fit a
piecewise-linear PDF (dashed red). With only 10 vertices, we can reconstruct the product robustly for
arbitrary configurations.

and distribute samples by integrating and inverting the corresponding piecewise-quadratic CDF.
For this approach to be practical, we must fit f uv

p accurately (to obtain noise-free results) and
efficiently (since this operation is performed for every camera ray/VRL pair during rendering).

We experimented with many settings for M and found that even for very anisotropic phase
functions, e.g. Henyey-Greenstein with g = ±0.95, a 10-point piecewise linear fit was sufficient
to guarantee high accuracy (see the dashed poly-lines in Figure 6.7), if the vertices were placed
adaptively to avoid missing important features. This is possible since we have some a-priori
information about each of the phase functions, e.g. the direction of its peak(s), and we can
thus predict the local extremes of the product and space the vertices accordingly. We detail the
placement of the vertices in Appendix A.3.

Figure 6.5.c shows the resulting sample distribution in the uv-domain and a corresponding
rendering of the Cornell box. Note that our fitting approach is not much slower than our analytic
method for isotropic scattering (Figure 6.5.b), but handles the product of two arbitrary phase
functions much better. In the simple Cornell box scene, we encountered only a 34% overhead
due to constructing and sampling from the numerical CDF, and this overhead becomes negligible
as the scene complexity increases.
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(a) PF product / distance2 (b) Scat. ⇥ trans. (c) All terms

/

/

(d) Ratios

Figure 6.8: Visualizing terms from Equation (6.3) and their impact on the integrand for a scene with
occluders, heterogeneous medium, and anisotropic scattering. We compare importance sampling of (a)
the product of the phase functions divided by the squared distance (our method), to (b) the scattering
and transmittance terms along the VRL and camera ray. The complete integrand is shown in (d), and the
relative efficiency of sampling using the two PDFs is visualized in the last column, where the same scaling
is used for both ratios to allow comparison.

6.3.3 Importance Sampling for Transport between a Ray and a Point

We can apply a largely identical procedure to sample Equation (6.4), the media-to-surface trans-
port due to a VRL. In this case, we only have a 1D domain since one of the points (the surface
point) is fixed, and hence we only need the second step, i.e. the numeric CDF, of our two-step
procedure. As mentioned before, the problem of sampling a location along the VRL for a fixed
point on the surface is dual to the surface-to-media transport; the only difference is the opposite
direction of the light transport. For both Lm

s and Ls
m we proceed similarly, constructing a 1D

numeric CDF (again with 10 vertices) for the product of the phase function of the ray and the
scattering function of the point, and draw the samples on the ray from this distribution.

6.4 Analysis

In this section, we compare the performance of our importance sampling to other alternatives,
such as distance sampling. We also analyze the singularities and demonstrate that spreading
energy along lines leads to a provably lower degree of the singularity.

6.4.1 Importance Sampling Alternatives

We proposed to importance sample the transport in arbitrary media by first fixing a point on
the VRL using a marginal analytic CDF, and then sampling the camera ray according to the
product of phase functions divided by the squared distance. We also considered an alternative:
importance sampling according to the transmittance and scattering coefficients along the VRL
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(a) MIS (b) Piece-wise linear CDF (c) Reference

Figure 6.9: Comparison of sampling in the second stage of our method, i.e. according to the phase functions
along the camera ray and the VRL. In the first step, we sampled few points along VRLs (always the same
and very few only, for illustration purposes). Multiple importance sampling using the balance heuristic
(a) performs much worse than a piecewise-linear approximation (with 10 vertices) of the product of both
phase functions (b). (c) shows a “reference” solution where the PDF was constructed using 1000 vertices.
The remaining variance in (c) is due to the transmittance of the medium.

and the camera ray. Since their product is separable, we can split the 2D PDF into a product of
two 1D PDFs (one along each of the rays), avoiding an expensive construction of a numeric PDF
for the entire 2D domain.

In the top row of Figure 6.8, we visualize all the individual terms of the integrand from Equa-
tion (6.4). Then we compare the outcomes of sampling from two PDFs for: (a) the product of
phase functions divided by the squared distance, and (b) the product of scattering and transmit-
tance along the VRL and the camera ray. The complete integrand, i.e. the product of (a), (b), and
the visibility and transmittance along the connecting segment, is shown in Figure 6.8.c. All plots
to the left of the dashed line are individually normalized.

The last column depicts the ratios of the integrand to each of the PDFs. With ideal importance
sampling, this ratio would be constant, i.e. the density is just a scaled version of the integrand.
For our method (a) the ratio varies only due to the scattering and transmittance, which have
relatively low impact on the integrand. In contrast, the ratio of (c) to (b) has much higher
variation. This clearly demonstrates that considering the phase function product divided by
the squared distance is crucial for efficient numeric evaluation, and supports our choice for
importance sampling described in Section 6.3. We further compare the results obtained with
different sampling schemes in Section 6.6.

6.4.2 Multiple Importance Sampling

MIS is a common strategy to importance sample complex integrands by generating samples
according to different subsets of the integrand [Veach 1997]. We evaluated the feasibility of an
MIS approach for the second stage of our VRL method, i.e. after choosing a point on the VRL.
We are not aware of appropriate sampling routines for generating samples along the camera ray
according to variation of the phase function towards a fixed point on the VRL, and analogously
along a VRL. However, we can use tabulated representations of the two PDFs, which we can
both integrate and sample using the inversion method.
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(a) Point-to-point (b) Point-to-line

(c) Line-to-point (d) Line-to-line

Figure 6.10: We analyze four different cases of energy transfer; for illustration we use an equal number (10k)
of VPLs and VRLs to render a sphere in participating media. The left column shows surface illumination
only. Top row: light transport computed using VPLs; bottom row: VRLs illuminating surfaces and media.

The results of this experiment, where we randomly chose a strategy and combined the results us-
ing MIS, are shown in Figure 6.9. We tried both the power and balance heuristic, where the latter
resulted in less noise. For comparison, the right image in the figure shows the result of directly
sampling the product (also computed here in a brute force tabulated fashion). This constitutes
the best we could possibly hope to achieve, the remaining noise is due to the transmittance,
which is not considered here during sampling. We see that combining strategies using MIS,
which may initially seem like a good choice, results in significantly more noise than sampling
the product directly. This is because the effective PDF of MIS is actually a linear combination
of the two PDFs, and not the actual product. Furthermore, analytic sampling would require
deriving an efficient arc sampling technique for every desired phase function. Due to these
drawbacks, we instead resort to the more general but fast approach for sampling the product
directly, without the need for MIS.

6.4.3 Singularities

Similar to VPLs, we obtain VRLs directly from photon tracing. However, the distribution of
the energy along VRLs suggests that artifacts should be less pronounced compared to VPLs,
where the energy is concentrated at a finite number of discrete points. In the spirit of Jarosz et
al. [2011a], we analyze the efficiency of simulating the light transport with different geometric
primitives, namely points and lines. In Figure 6.10, we compare the media-to-surface transport
with VPLs (i.e. point-to-point) and VRLs (i.e. line-to-point), and the media-to-media transport
with VPLs (i.e. point-to-line) and VRLs (line-to-line).
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It can be seen that VPLs illuminating media (b) and VRLs lighting surfaces (c) cause less distract-
ing artifacts than VPLs illuminating surfaces (a). When using VRLs to illuminate the medium
(d), the artifacts are not visible at all.

In Appendix A.4, we derive the order of the singularity for the aforementioned types of trans-
port. We observe that point-to-point transfer expectedly suffers from the strongest singularity.
In the line-to-point and point-to-line transfer, the singularity is effectively reduced by integrating
along the line. This trend continues when evaluating line-to-line transfer thanks to the additional
integral, except for the special case where both lines are parallel.

In the same spirit as most VPL methods, we could simply bound the VRLs’ contributions to
avoid any artifacts. As we have seen, these are generally lower then for VPLs, and this means
that bounding would remove less energy from the solution, and consequently also has less
impact on material appearance [Křivánek et al. 2010]. However, we decided not to clamp in all
our renderings, as the artifacts vanish quickly when the number of VRLs increases. We leave the
development of bias compensation techniques for VRLs as future work.

6.5 Algorithm Overview

6.5.1 Light Path Splitting

The best choice of methods for computing light transport varies with the respective characteris-
tics of the individual phenomena. For example, progressive photon beams (PPB) are well suited
for rendering volumetric caustics, but have no significant advantage3 over traditional photon
mapping for media-to-surface transport (the endpoints of the beams are simply surface pho-
tons). VRLs, on the other hand, yield significantly better results for multiple scattering and
require less virtual light sources (than VPLs) for surface lighting. Fortunately, both PPB and
VRLs can be created from the same photon tracing step and naturally fit complementarily into
one rendering framework.

6.5.2 Implementation Details

We implemented our algorithm in a hybrid CPU-GPU framework. We first trace random-walk
paths from light sources, scattering photons at surfaces and in the media using a CPU ray-tracer.
This step corresponds to photon shooting in standard photon mapping [Jensen and Christensen
1998]. Photons form VPLs or VRLs where, in the latter case, the photon path segments are used
instead of the photon locations. In addition to the next event estimation from VRLs and VPLs,
we apply progressive density estimation to the photon segments (PPB) [Jarosz et al. 2011b] and
photon points (PPM) [Knaus and Zwicker 2011] to simulate volumetric single scattering and
caustics, and direct illumination and surface caustics, respectively. As proposed by Jarosz et
al. [2011b], we render directly visible single-scattered volume caustics with rasterization and use
CPU ray-tracing to handle beams only visible after specular reflection and/or refraction (e.g. all
lighting in the glasses in Figure 6.11.a).

3Some techniques demonstrate that photon beams can be beneficial even for surface illumination, e.g. for reducing the
density estimation bias [Havran et al. 2005], but these benefits are in our context rather marginal.
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In order to compute media-to-media transport (which includes multiple scattering), we evaluate
Equation (6.3) for each VRL/camera ray pair (all of which are uploaded to the GPU) by sampling
according to our product importance sampling routine. In order to resolve the visibility in a ro-
bust manner, we use ray tracing, as opposed to shadow mapping that introduces bias, and whose
performance benefits diminish with increased scene complexity or in the presence of heteroge-
neous media. Ray tracing also allows us to integrate more readily into existing physically-based
rendering frameworks. We employ Aila and Laine’s [2009] efficient GPU ray-tracer.

Evaluating the transmittance terms in Equations (6.3) and (6.4) can easily become a bottleneck in
the case of heterogeneous media. We improve the performance by precomputing the transmit-
tance along camera rays and VRLs: using Woodcock tracking we sample and cache a number
of distances (typically 16) that are later used to approximate the transmittance along the ray in
an unbiased manner (see the paragraph about Woodcock multi-tracking in Section 2.6.8). Notice
that transmittance between sample points on the VRL and the sample points on the ray (or the
surface point) cannot be cached. In this case, we use either fewer Woodcock samples or employ
fast ray-marching, which improves the performance at the cost of introducing a small but mostly
imperceptible amount of bias into the transmittance computation.

We wrap all of the methods in a progressive framework, providing interactive previews that
converge to ground truth all in the same renderer. We also utilize a Russian roulette, which is
based on the minimum distance between the virtual light and the query primitive (e.g. between
a VRL and a camera ray), to probabilistically prune virtual lights with low contribution.

6.6 Results

We compare the quality and performance of our algorithm against VPLs and PPB on an Intel
Core i7 CPU @ 2.8GHz with 8GB RAM and an NVIDIA GTX 470. The CPU ray-tracer and
density estimation for PPM and PPB are parallelized over all CPU cores. All our results use
the Henyey-Greenstein phase function and show all the energy of interest, i.e. no bounding is
used. To ensure fair comparison, we use the same framework to compare to VPLs, and thus both
many-light techniques benefit from the same acceleration structure and similar code paths.

Figure 6.11.a shows the Fruit Juice scene with glasses of orange and grapefruit juice rendered
at 512⇥ 512 resolution. We simulate anisotropic scattering for both materials. The parameters of
the media are kt = (0.41, 0.72, 5.18)cm�1, ks = (0.36, 0.50, 0.18)cm�1, and g = 0.5 for the orange
juice; and kt = (0.41, 0.95, 4.73)cm�1, ks = (0.45, 0.32, 0.23)cm�1, and g = 0.6 for the grapefruit
juice.

In Figure 6.12, we show an equal time comparison for media-to-media transport computed
using VRLs, PPB, and VPLs. Note that PPB is a biased (but consistent) method and yields
darker results prior to convergence; VPLs (without bounding) suffer from bright pixels, even
after long render times. In contrast, our method produces unbiased results and does not suffer
from concentrated bright pixels. For the final image in Figure 6.11.a, we combine our multiple
scattering result with a single scattering (volume caustic) component using PPB, and surface
illumination and surface caustics, computed using PPM.

The Smoky Room scene (see Figure 6.11.b) is filled with a heterogeneous isotropic medium
(simulated using Perlin noise) whose density decreases with height. Figure 6.13 shows media-to-
media transport only, i.e. paths whose last two interactions before reaching the camera happened
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(a) Fruit Juice (b) Smoky Room

Figure 6.11: Two scenes used for comparing the performance of our VRL algorithm to VPLs and PPB.

in the medium. At equal time, VRLs yield higher quality results than both PPB and VPLs.
Despite the fact that we accelerate PPB using hardware rasterization, it requires millions to
billions of beams to sufficiently cover the entire image, and the convergence rate is thus low.
PPB works extremely well for volumetric caustic illumination since the beams are concentrated,
reducing fill rate, while ensuring high density. For multiple scattering, photon paths quickly
become incoherent, which introduces low-frequency noise into the local density estimate. VRLs
do not rely solely on local density information and can therefore obtain higher quality multiple
scattering using significantly less beams. In contrast to VPLs, our method does not suffer from
visible artifacts due to the singularities, trading this for a slight uniform noise distributed evenly
across the image. This is because we sample each VRL/ray pair with only one random sample.
The final solution consists of media-to-media (100s) and media-to-surface (600s) illumination
computed using VRLs, and single scattering (100s) and surface-to-media (300s) light transport
computed using PPB.

Figure 6.14 shows media-to-surface illumination, i.e. light paths with the last two scattering
events being in volume and then on a surface. When using VRLs, the media-to-surface transport
converges faster than with VPLs. Only very little bounding, if any, is required. Importantly, no
bounding seems to be required for the media-to-media transport. This is an important improve-
ment over VPLs since bounding removes energy and changes the appearance of materials and
media. Bias compensation techniques can recover the lost energy, but at significant additional
expense.

In Figure 6.15 we compare different sampling strategies for evaluating the VRL-ray transport us-
ing a single sample. For each VRL and camera ray we construct a 1D piecewise linear PDF (with
100 vertices) for the transmittance (⇥ the scattering coefficient, cf. Figure 6.8.b) along the ray, and
sample each ray independently. This leads to much higher variance than sampling according to
the product of phase functions divided by the squared distance (cf. Figure 6.8.a), which has sig-
nificant impact on the integrand from Equation (6.3). Admittedly, there can be situations when
sampling according to the scattering ⇥ transmittance can also improve the efficiency. For cases
where this additional expense is warranted, the individual sampling strategies can be combined
using MIS.
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60 s 1200 s300 s
(a) VRLs

60 s 300 s 1200 s
(b) VPLs

60 s 1200 s300 s
(c) PPB

Figure 6.12: Renderings of multiple scattering (media-to-media transport) in the Fruit Juice scene after 10
minutes. While VRLs (a) provide a high quality result, both the previous state-of-the-art approaches for
general media (virtual point lights, (b); progressive photon beams, (c)) contain significant artifacts. The
insets show the quality after 1, 5, and 20 minutes.

Fruity Juice

1 Smoky Room

2

Photon (VRL) shooting 6% 2%
Ray tracing1 / Rasterization2 55% 1%
Importance sampling 9% 4%
Visibility test 23% 52%
Light transport 7% 42%

Table 6.1: Performance breakdown of the media-to-media transport.

In the supplemental video, we compare the convergence behavior of our progressive algorithm
to both PPB and VPLs. Another common problem with VPL techniques is temporal flickering
due to stochastic under-sampling the indirect lighting. The increased sample density provided
by VRLs significantly diminishes these artifacts even when using fewer virtual lights.

In Table 6.1 we show the performance breakdown for computing media-to-media transport. Our
importance sampling approach is efficient, occupying between 4–9% of the total render time
whereas 23–52% of the time is spent on evaluating visibility on the GPU, which would be even
higher if performed on the CPU.

6.7 Discussion and Possible Improvements

Our VRL is a new lighting primitive that is well-suited for computing unbiased media-to-media
and media-to-surface light transport. It can be easily combined with other techniques, such as
VPLs, PPB, and PPM, into a powerful and efficient rendering framework. In the following, we
relate VRLs to other techniques and discuss possible improvements.
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(a) VRLs (101 sec.) (b) VPLs (102 sec.) (c) PPB (102 sec.)

Figure 6.13: Media-to-media transport in a heterogeneous media in the Smoky Room scene. While VPLs
(b) suffer from singularities, and PPB (c) would require many more photon beams to sufficiently fill the
scene, our method (a) provides artifact-free results faster, benefiting from explicit gathering from the light
path segments and denser sampling of the space, respectively.

(a) VRLs (600 s) (b) VPLs (600 s)

Figure 6.14: These images show media-to-surface transport in the Smoky Room. Some regions are darker
due to absorption and out-scattering in the medium. The close-ups reveal the splotchy artifacts of VRLs (a)
and VPLs (b), both without bounding.

Analytic Integration, Duality. Equation (6.4) and the inner integral of Equation (6.3) can also
be seen as the dual of the airlight integral, for which closed-form solutions exist when con-
strained to homogeneous media and no occluders [Pegoraro and Parker 2009, Sun et al. 2005].
We have considered leveraging these analytic methods; however, we found that each analytic
integration is quite expensive (especially when incorporating anisotropic scattering [Pegoraro
et al. 2009; 2010]), and ultimately the homogeneous/visibility assumptions are too restrictive for
the general setting we consider. Furthermore, by solving the inner integral of Equation (6.3) in
isolation, we would actually be considering only a small portion of a larger 2D integration prob-
lem. Some of our sampling schemes (e.g. importance sampling the inverse squared distance);
however, are inspired by previous techniques for solving the airlight integral numerically.

General Bidirectional Algorithm. We believe that our idea of sampling transport between rays
is an important first step towards developing new bidirectional MC approaches for rendering in
the presence of participating media. At the moment, we consider only camera rays and spec-
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(a) Transmittance (b) Scat. ⇥ trans. (c) PF prod. / distance2 (d) Reference

Figure 6.15: Importance sampling strategies for the VRL/ray transport: in (a) and (b) we sample each of the
rays independently according to the transmittance and transmittance ⇥ scattering. The resulting images
suffer from high amount of noise. We propose to sample according to the phase function product divided
by the squared distance (c), which leads to significantly less noise, verifying the theoretical analysis from
Figure 6.8.

ular camera paths. Formulating a general bidirectional algorithm evaluating transport between
arbitrary segments of light and camera paths is an interesting area for future work.

Visibility. In our implementation we did not use shadow mapping, which is often used to
accelerate VPL rendering. We opted for ray tracing since shadow mapping introduces bias and
prevents a general rendering framework. Moreover, standard shadow maps cannot be used for
heterogeneous media. Nevertheless, dedicated shadow techniques for linear lights exist [Hei-
drich et al. 2000] and seem to be worth investigating. Furthermore, incorporating mutual visibil-
ity into the importance sampling could possibly speed-up the convergence for highly occluded
scenes. We believe that our approach can be combined with ideas from Georgiev et al. [2012],
though this would warrant its own in-depth investigation.

Singularities. We have seen that singularities are virtually unnoticeable when using VRLs for
volume rendering, yet they can remain visible on surfaces; however, even in this case they
are less noticeable than singularities on surfaces due to VPLs. This empirically supports our
proof of progressively lower degree of singularities (see Appendix A.4). Though we are able to
obtain unbiased images using relatively few VRLs, convergence is slower for volume-to-surface
transport. In the next chapter, we demonstrate how to avoid the remaining structured artifacts
by blurring the energy of VRLs spatially.

Long vs. Short VRLs. When generating VRLs, we have two options how to define their length.
In our examples, we used “long” ray lights, i.e. rays that extend beyond the next vertex of
the photon path to the nearest surface point. The other option is to consider the actual length
of the photon path segment. This is conceptually similar to the analog and non-analog MC
estimators described e.g. in [Kalos 1963]. If the length is determined by distance sampling (e.g.
Woodcock tracking in heterogeneous media), we can omit the transmittance term T(x $ xt)
along the ray light. This is because the transmittance T(x $ xt) is already “encoded” in the
length of the “short” ray lights. We experimented with both approaches. It seems that for thin
and moderately dense media the long ray lights perform better, since they by definition provide
higher sampling density. This advantage diminishes in highly scattering media with short mean
free path, where the inverse-squared distance-based sampling often samples far away from the
origin of the VRL, where almost no energy is transported. In such cases, short VRLs enforce the
samples to be within the sampled free path and can thus provide better convergence.
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Clustering of VRLs. Lightcuts clusters millions of VPLs and hierarchically chooses the best
representatives for each gather point. Though we do not explicitly cluster virtual lights, each
VRL/camera ray pair can be seen as a continuous family of light and gather point pairs. By
importance sampling the resulting 2D domain, we are effectively choosing the best representative
from this family for each location along a camera ray. Nonetheless, it would be interesting to see
if explicit clustering of VRLs, in the spirit of Lightcuts [Walter et al. 2006; 2005; 2012], is possible.

Reconstruction with Sample Reuse. Our uv-domain shares similarities with epipolar slices.
This geometric interpretation has previously been used to accelerate volumetric shadows [Baran
et al. 2010, Engelhardt and Dachsbacher 2010], and sampling and reconstruction of motion blur
and depth-of-field [Hachisuka et al. 2008a]. It would be interesting to consider more sophis-
ticated, but perhaps biased reconstruction of the 2D uv-slice, or whether occluders could be
directly rasterized into this warped domain.

Line-Sampling of Area Lights Lastly, VRLs can also be used to compute single scattering or
direct illumination. If the light source is planar, we can distribute VRLs over its area and use
the emission profile of the light source as the VRL’s phase function. The volumetric and surface
illumination due to these lights then accounts for single scattering and direct illumination. Our
preliminary experiments show that line sampling of area lights outperforms point sampling, and
with our semi-analytic sampling, which in this case accounts for the IES profile and the scatter-
ing function, outperforms in several cases the current state of the art in multiple importance
sampling of area lights and BRDFs. We believe that this direction is worth investigating in the
future. One could also distribute VRLs using line segment sampling [Sun et al. 2013] to preserve
desirable sampling properties.

6.8 Conclusion

We presented a new lighting primitive—virtual ray lights—for unbiased many-light rendering
of indirect illumination in, and from, participating media. VRLs are created from path segments
of photon random walks in the medium, and we showed how to compute their contribution to
entire camera rays through the medium and to surfaces. VRLs are less prone to singularities and
yield high quality multiple scattering faster than previously introduced techniques.
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Virtual Beam Lights

A clever person solves a problem.
A wise person avoids it.

— Albert Einstein (1879–1955)

I n this chapter, we extend the previously introduced virtual ray lights technique and present
a formulation that removes the singularity completely. The resulting algorithm, called pro-
gressive virtual beam lights (VBLs), “inflates” the infinitesimal ray lights into beam lights with

finite thickness. The power of the original VRL is uniformly distributed within the beam, which
eliminates the singularity in the integral. The bias that VBLs introduce can be treated in a similar
spirit to numerous recently published techniques, e.g. Hachisuka and Jensen [2009], Damnertz
et al. [2010], or Knaus and Zwicker [2011], that propose progressive formulations producing
convergent results while maintaining a fixed memory footprint. As such, we formulate the ren-
dering algorithm progressively, ensuring that the bias approaches zero in the limit. Compared
to VRLs, VBLs handle anisotropic scattering and moderately glossy surfaces more robustly. Vi-
sually pleasing images with no visible artifacts can thus be obtained in shorter time, while still
converging to the ground truth in the limit.

In addition to transport within and from participating media, we also focus on surface-to-media
illumination, i.e. photon paths that reach the eye by bouncing off a surface and then scattering in
the medium. We devise several practical schemes for importance sampling the various transport
contributions between camera rays, light rays, and surface points.

7.1 From Rays towards Beams

In this section, we review previous work that inspired the idea of inflating ray lights into beam
lights. The concept of blurring energy over area has been intensively used in photon map-
ping [Jensen 1996]. Here, the idea is to splat the energy of infinitesimal photon points over
nearby surfaces and thus allow for an efficient, although biased, integration. Since splatting
requires quantizing the scene into a number of finite elements (e.g. world-space or screen-space
patches), to which we can splat the energy, most photon mapping techniques redistribute the
energy via density estimation using a kernel with finite support. In either case, the integration
suffers from a systematic error that degrades the quality of rendered images around sharp or
thin features.

In order to reduce the error, one can formulate the estimation progressively, reducing the support
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(a) VPLs (b) VSLs (c) VRLs (d) VBLs

Figure 7.1: We are inspired by VSLs (b), which expand VPLs (a) into spheres with finite radius. We similarly
expand VRLs (c) into VBLs (d) with finite thickness. This removes the singularity and reduces render times
for indirect lighting to and from surfaces and media.

of the kernel over time [Hachisuka and Jensen 2009, Hachisuka et al. 2008b]. If this is done
carefully, the bias vanishes in the limit and the estimation becomes consistent [Kaplanyan and
Dachsbacher 2013a, Knaus and Zwicker 2011].

In the context of many-light algorithms, the idea of spreading the energy of a VPL over nearby
surfaces has been explored by Hašan et al. [2009]; please see Section 3.3.4 for an overview of
the technique. In a similar spirit, we can take each virtual ray light and distribute its energy
throughout the nearby volume, see Figure 7.1. We also leverage the observation that VSL ren-
dering (or more precisely, rendering with photon lights [Hašan et al. 2009]) can be formulated
as photon mapping with final gathering, and vice versa. This allows us to leverage the previ-
ously mentioned progressive, bias-reduction techniques, namely the progressive photon beams
(PPB) [Jarosz et al. 2011b], and formulate a consistent rendering algorithm based on progres-
sively shrinking virtual beam lights.

7.2 Light Transport with VBLs

Given a virtual ray light and a length r, we define a virtual beam light as a convolution of the
ray light with a sphere of radius r. The power of each point p on the VRL is spread uniformly
over the volume encapsulated by the sphere centered at p. The emissive volume of the VBL thus
forms a cylindrical region with spherical caps. It is worth noting that with this definition, the
volumetric density of flux is not uniform; points inside the two hemi-spherical regions centered
at the end points of the finite ray receive less energy. Compared to a strictly uniform distribution,
this formulation turns out to be advantageous as it simplifies the integration: the VBL can be
seen as a VSL swept along the ray light. Instead of evaluating the transport between a point (or
a ray) and a cylindrical region, we can simply sample points along the VBL and then integrate
over the solid angle subtended by the VSLs.

In Chapter 6, we introduced four types of light transport w.r.t whether the shading point resides
on a surface or in a medium, and whether the incident light at this point arrives from another
surface or medium. For completeness, we could also consider light arriving directly from light
sources. However, this transport is substantially simpler and we thus leave direct illumination
and single scattering out, and focus solely on indirect illumination, namely the surface-to-surface
Ls

s, media-to-surface Lm
s , surface-to-media Ls

m and media-to-media Lm
m transport paths. The first

row in Figure 7.2 shows renderings of these four transport paths computed using unbounded
VPLs and VRLs. The visual artifacts due to the singularity in the integrand can be avoided by
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Figure 7.2: Comparison between unbounded and bounded VRLs + VPLs, VBLs + VSLs, and the reference
on different transports paths. Images in each column (except for the reference) were computed using the
same number of virtual lights.

bounding; however, this results in energy loss and modifies material appearance, as shown in
the second row of Figure 7.2.

The VRL method approximates the light transport by first performing a random-walk photon
simulation and converting the segments of the random-walk paths into linear light sources. In
Chapter 6, we introduced several importance sampling strategies that can be applied to Lm

s ,
Ls

m, and Lm
m (Ls

s does not involve any integration as it is a deterministic connection between the
endpoints of the VRL and the camera ray).
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(a) Media-to-Media Lm
m (b) Media-to-Surface Lm

s

(c) Surface-to-Media Ls
m (d) Surface-to-Surface Ls

s

Figure 7.3: Visualization of each of the four light transport paths. For Lm
s and Lm

m, VBLs are illustrated as
VSLs swept along the VRL.

In the following sections, we show how the integration domain changes when inflating VRLs
into VBLs, and detail the necessary changes to importance sampling described in Section 6.3 to
preserve low variance estimation. As the VBL is formulated as a swept VSL, we build on multiple
importance sampling developed for VSLs [Hašan et al. 2009], extending it to the additional
dimension (i.e. the length of the VBL). Additionally, we show how to formulate the rendering
algorithm progressively to achieve consistent estimation. The resulting images, see Figure 7.2,
do not suffer from distracting artifacts, preserve the overall energy, and are thus visually closer
to the reference than the previously mentioned techniques.

7.2.1 Media-to-Surface Transport

When rendering with VBLs, computing Lm
s , i.e. radiance that scatters in media and reaches

the camera by bouncing off ys, requires expanding every point along the VRL into a VSL (see
Figure 7.3.b). This modifies Equation (6.4) to:

Lm
s (y wy) = T(y$ys)

Z t

0
ks(xv)T(x$xv)T(xv$ys)V(xv$ys) Lvsl

s (ys!y)dv (7.1)

where Lvsl
s (ys ! y) is the fraction of irradiance at ys due to the VSL at xv, which is reflected

towards y:

Lvsl
s (ys!y) =

F
pr2

Z

Wvsl
fp(wx!�w) fs(�w!ys!�wy)Dys(w)dw. (7.2)

Notice that none of the equations above contains the inverse squared distance; it was replaced
by the integration over the solid angle Wvsl subtended by the VSL. The transmittance and visi-
bility between points on the VSL and the surface point ys are indeed functions of w. To make
the integration tractable we introduce similar assumptions to those in [Hašan et al. 2009] and
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Figure 7.4: A VRL’s (orange) and VBL’s (blue) contribution to a shading point. Working in the angular
domain smooths out the peak and implicitly accounts for the inverse-squared falloff. The middle and right
plots show two examples of piecewise-linear PDFs for VRLs and VBLs (dashed) compared to the actual
integrand (solid).

approximate the functions with a single, point-to-point evaluation between xv and ys. As such,
the two terms can be factored out from the integral Equation (7.2).

In order to provide some physical intuition about Equation (7.1), one can reason about the
integral as a special case of radiance estimate [Jarosz et al. 2008a], which interprets the volumetric
sphere as a disc, of radius r, that always faces the gather direction w (see Figure 7.5.a). We can
also interpret the VSL as a point emitter enclosed in a perfectly transmissive diffuse sphere, or
as a spherical volumetric emitter (please see Appendix A.5 for details). All these interpretations
result in the same set of equations that we need to evaluate numerically.

Figure 7.4 plots the contributions of a VRL (orange) and a VBL (blue) to a single shading point.
The figure also illustrates the different shapes of the integrand in the angular (about the shading
point) and parametric (along the ray/beam light) domains. Notice how the fact that the angu-
lar domain implicitly incorporates the inverse squared distance fall-off reduces high-frequency
variations, making the sampling less prone to miss important parts of the integrand.

In order to importance sample the location xv on the VRL (i.e. to sample the VSL location) we
construct a piecewise-linear PDF in the angular domain about ys, much like in the case of VRLs
(see Section 6.3.2). Figure 7.4 visualizes the piecewise-linear PDF that we designed for sampling
the VRL transport. Unfortunately, this PDF does not match the VBL response well and we thus
need to find a better approximation of the integrand.

At each vertex of this PDF we would ideally evaluate the contribution of a VSL placed at that
location. However, integrating the contribution (e.g. with Monte Carlo integration of Equa-
tion (7.2) over many directions) would make the construction of the piecewise-linear PDF pro-
hibitively costly and noisy due to possibly glossy BRDFs and phase functions.

Instead, we observe that while overestimating the integrand response in the PDF is suboptimal,
it does not lead to nearly as much variance as underestimation. At each PDF vertex, we therefore
quickly approximate the maximum contribution of the integrand’s terms within Wvsl. Thus, for
every PDF vertex, we (see Figure 7.5.b):

• find the direction wmax where incident light at the surface contributes most to the reflection
according to the BRDF (usually the axis of the primary lobe of the BRDF),

• find the direction w

0
max within the cone of directions subtended by the VSL, which requires

least rotation to wmax, and
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(a) VSL integration as BRE (b) Computing w

0
max

Figure 7.5: Evaluating the volumetric VSL using a beam radiance estimate with final gather (a) and esti-
mating the max BRDF and phase direction (angle) w

0
max (b).

• evaluate the product of BRDF and phase function at w

0
max.

We repeat this procedure also for the phase function and use the bigger value of the product to
estimate the upper bound on the integral

Finding wmax is relatively simple for symmetric BRDFs (e.g. Phong, Ward); we discuss arbitrary
BRDFs in Section 7.5. Note that when the VSL overlaps with the shading point, the resulting
piecewise-linear PDF may still severely underestimate the value of the integrand. In order to
reduce variance in this case, we apply a dilation filter to the PDF.

Computing light transport during rendering now becomes straightforward: we sample a point
along the VRL according to our constructed PDF, inflate the point into a VSL, and numeri-
cally integrate Equation (7.2) by multiple importance sampling the solid angle Wvsl, the BSDF
fs(�w!ys!�wy), and the phase function fp(wx!�w).

7.2.2 Media-to-Media Transport

For Lm
m (see Figure 7.3.a) we similarly inflate points along the VRL into VSLs, obtaining the

following modification of Equation (6.3):

Lm
m(y wy)=

Z s

0

Z t

0
ks(xv)ks(yu)T(x$xv)T(xv$yu)T(yu$y)V(xv$yu)Lvsl

m (yu!y)dvdu (7.3)

where Lvsl
m (yu ! y) is defined analogously to Lvsl

s but using two phase functions instead of a
phase function and a BRDF.

For this transport type we extend our procedure in Section 7.2.1 by wrapping it into a two-stage
method to account for the 2D integration domain. We first assume the camera ray to be an
infinite line and importance sample the point xv along the VRL according to the inverse squared
distance (as in Section 6.3) where we place a VSL. Once we have a VSL, we proceed analogously
to the media-to-surface case: we construct a piecewise-linear PDF in the angular domain along
the spherical arc obtained by projecting the camera ray onto the VSL. As both locations (VSL
and the point on the camera ray) are in the media, the PDF construction evaluates two phase
functions instead of a phase function and a BRDF. We find w

0
max based on the phase function at

xv; for analytic models, e.g. Henyey-Greenstein, this is again trivial.
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7.2.3 Surface-to-Media Transport

Ls
m transport (Figure 7.3.c) is the dual of Lm

s : to sample a point on the camera ray, we construct the
PDF in the angular domain about the surface point. The surface VPL (or endpoint of the VRL)
is inflated into a VSL and its contribution to the camera ray location is evaluated numerically.

7.2.4 Surface-to-Surface Transport

Ls
s transport is computed with a modified application of the traditional VSL approach [Hašan

et al. 2009]: we compute the transport progressively (see Section 7.3.1) with a shrinking VSL
radius, resulting in converging results.

7.3 Algorithm

We implemented our algorithm in a hybrid CPU-GPU rendering system. We use CPU ray-tracing
to trace light sub-paths (scattering in the media and at surfaces) and reflected/refracted camera
rays. To connect the light and camera sub-paths (i.e. to evaluate the four different light transport
types), we use a GPU-accelerated integration scheme, which employs GPU ray-tracing [Aila and
Laine 2009] to resolve visibility queries.

Segments of the light sub-paths form our VBLs and their surface endpoints yield surface VSLs.
These are used to estimate all indirect lighting (except for caustics, which are captured using
progressive photon mapping (PPM) and progressive photon beams (PPB)1). Indirect illumina-
tion coming from surfaces is computed with VSLs [Hašan et al. 2009] using our progressive
estimation. Indirect illumination coming from media is estimated by evaluating Equation (7.1)
and Equation (7.3) for every VBL.

7.3.1 Progressive Rendering

Our complete rendering algorithm is contained within a progressive estimation framework. We
render multiple independent passes, the running average of which is displayed as the rendered
image.

Inflating VPLs into VSLs and VRLs into VBLs introduces bias by blurring out the illumination
and scattering functions. Fortunately, each of these transport types can be viewed as an explicit
final gather over either progressive photon beams [Jarosz et al. 2011b], or progressive photon
mapping [Hachisuka et al. 2008b, Knaus and Zwicker 2011]. We can therefore rely on progressive
radius reduction to ensure that both bias and variance converge to zero in the limit. In our
context, the radius reduction for all four types of light transport corresponds to a 2D blur (surface
VSLs are blurred into discs, and volumetric VSLs are integrated using the 2D blurring of the
BRE). We use the improved reduction formula from Jarosz et al. [2011b] (which minimizes the
impact of the number of photons per pass M on the final result) applied to the squared radius

1We also use PPM and PPB to evaluate direct illumination and single scattering.
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due to the 2D blurring of VSLs and VBLs. The squared radius in the ith pass is:

r2
i = r2

0

 
Mi�1

’
k=1

k + a

k

!
1

Mi
, (7.4)

where a 2 (0, 1) is a user parameter that specifies the aggressiveness of the radius reduction,
and M the number of photon paths traced per pass. We currently set the initial radius r0 of all
VBLs and VSLs to a user-specified constant, though this could be modified to use an adaptive
per-VBL/VSL radius for improved results.

7.4 Results

In this section, we compare VBLs + VSLs to VRLs + VPLs. The full global illumination solutions
for our three scenes are shown in Figure 7.6, where we additionally include volume and sur-
face caustics computed using PPB and PPM. All timings were measured on an Intel Core i7
with 12 CPUs @ 3.2GHz, 24GB RAM, and an NVIDIA Quadro 6000. The CPU ray-tracer and
PPM/PPB are parallelized over all CPU cores. We use the Henyey-Greenstein phase function for
all our results with anisotropic media. We use up to 100 rays to numerically integrate the solid
angle of VSLs, as suggested by Hašan et al. [2009]. For all our results we use a = 0.7.

Figure 7.7 shows the Buddha scene (720⇥ 720 resolution) which is filled with dense media with
a strongly anisotropic (g = 0.7) HG phase function; the statue is highly glossy with a Phong
exponent of 80. The majority of the illumination in the scene is due to indirect contributions.
Unbounded VRLs + VPLs result in visible artifacts highlighting the presence of singularities.
Bounded VRLs + VPLs lose energy and modify material appearance (note the regions around
the Buddha and the orange wall). Our technique avoids both of these drawbacks.

Figure 7.8 details the progressive radius reduction using zoomed-insets from Figure 7.7. The
images show a small region (Ls

m on the top, Lm
s on the bottom) of sharp illumination. Though the

initial estimate is somewhat blurred using VBLs and VSLs, the progressive reduction converges
to the reference solution (computed using many unbounded VRLs and VPLs).

Figure 7.9 shows a comparison for the SmokyRoom scene, which is filled with an isotropic,
heterogeneous medium (computed using Perlin noise) with density decreasing with height.

(a) Buddha scene (b) SmokyRoom scene (c) Cars scene

Figure 7.6: Full global illumination for the Buddha, SmokyRoom, and Cars scenes, including the sum
of the four light transport paths from Figures 7.2 and 7.3 as well as caustics computed using progressive
photon beams and progressive photon mapping.
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Figure 7.7: An equal-time (unconverged) comparison of unbounded/unbiased VRLs + VSLs (top),
bounded VRLs + VSLs (middle), and our method (bottom) in the Buddha scene. The orange and cyan
frames mark regions for which Figure 7.8 shows the progressive convergence over time.

3.0 s 62 s 1 h Reference

3.6 s 64 s 1 h Reference

Figure 7.8: These images show small regions from the Buddha scene (Figure 7.7 shows full renderings)
where we compare the convergence for the surface-to-media (top) and media-to-surface (bottom) transport.
Our progressive VBLs + VSLs technique converges to the reference, here computed using a large number
of VRLs + VPLs.
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Figure 7.9: An equal-time (unconverged) comparison of unbounded/unbiased VRLs + VPLs (top) and
our method (bottom) in the SmokyRoom scene. Please zoom-in in the electronic version to better see the
difference.

(a) VRLs + VPLs (b) VBLs + VSLs

Figure 7.10: Surface and volumetric indirect illumination (i.e. Lm
m + Lm

s + Ls
m + Ls

s) in the Cars scene
rendered with VRLs + VPLs (a) and VBLs + VSLs (b). Figure 7.11 shows few selected regions to better
depict the differences.
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Figure 7.11: An equal-time (unconverged) comparison of unbounded/unbiased VRLs + VPLs (top) and
VBLs + VSLs (bottom) in the Cars scene. These images are insets from renderings in Figure 7.10 and were
inidividually tone-mapped for easy comparison. The timings in the bottom right corner of each inset report
the rendering time of the entire 1280⇥ 720 image.
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Figure 7.10 show the Cars scene, which consists of 2.2 million triangles (1.2 million vertices).
Both cars are made of highly glossy materials (Phong BRDF with exponents for the car bodies of
100 and 60). The surrounding media is homogeneous with anisotropic scattering (HG coefficient
g = 0.25). Note that light sources are encased in glass, i.e. all direct illumination in the scene
is due to caustics. Figure 7.10 shows that virtually no high frequency artifacts (except for some
noise) remain visible with our method after 46.2 minutes render time (1280⇥ 720 resolution).
Figure 7.11 shows an equal-time comparison of the individual transport components that were
computed using unbounded VRLs + VPLs and our VBL + VSL method; each set of transport
types is tone mapped separately for better comparison.

7.5 Discussion and Possible Improvements

In general, our method eliminates distracting artifacts faster than VRLs + VPLs, especially when
glossy surfaces and/or anisotropic phase functions are present (see also Figure 7.2). The sin-
gularities are traded for some blurring, which is less objectionable, especially in early passes,
and results in fewer visual differences from reference than bounding. In the limit however, this
blurring disappears completely due to the progressive radius reduction (which is not currently
possible with bounding). We similarly improve standard VSLs, enabling convergent results with
fixed memory footprint. Though the mathematical convergence rate is slower than with unbi-
ased methods [Knaus and Zwicker 2011], VBLs deliver an acceptable image faster, which the
user often cares about more than numerical convergence.

Arbitrary BRDFs. For BRDFs that do not exhibit perfect circular symmetry, our approach
should still perform well as long as the BRDF has a single major peak from where its value
falls-off. In essence, the maximum angle defines a cone of directions that is guaranteed to con-
tain the maximum value. In the case of symmetric BRDFs, all values along this cone are equal
to the maximum. For general BRDFs, a more sophisticated technique could try to solve for the
unique maximum within this cone. We leave this as future work.

Perfect PDF. Our approximate PDF for the product of the two scattering functions may become
slightly suboptimal in certain cases. We avoid expensive numeric construction by identifying
directions where the BRDF (or the phase function at the VRL for Lm

m) reaches its maximum
value. We then evaluate the product of both scattering functions assuming that all the transport
occurs along that direction, using it as the value when constructing the PDF. In some cases this
might not give the actual maximum of the product.

Investigating alternative approaches to efficiently construct more accurate PDFs for our estima-
tors is an interesting area of future work. One option for circularly symmetric and monotonically
decreasing functions (measured about deviations from the axis of symmetry, e.g. the HG phase
function or Phong BRDF) is to also identify the maximum direction of contribution of the second
scattering function. The product’s maximum is guaranteed to lie on the great arc between these
two directions and may be, in some cases, found analytically.
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7.6 Conclusion

In this chapter, we presented an extension to VRLs; a new lighting primitive that eliminates
the singularities present in existing many-light techniques for volumetric media. Our technique
avoids the downsides of bounding. The benefits of VBLs over VRLs are akin to the benefits of
VSLs over VPLs, although we efficiently handle a larger range of transport scenarios. We also
devised novel importance sampling schemes to explicitly sample these complex transport paths
in, from, and to surfaces and media. Our method converges faster than the state-of-the-art,
without distracting singularities or energy loss, in scenes with complex lighting, glossy BRDFs,
anisotropic phase functions, and heterogeneous media.

We extended progressive radiance estimation to handle VBLs and counteract the bias they intro-
duce, ensuring that we converge to the correct result with a fixed memory footprint. As a result,
we can generate fast previews and converged renderings with the same algorithm.
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Rasterized Bounding Volume
Hierarchies

To improve is to change;
to be perfect is to change often.

— Winston Churchill (1874–1965)

T he efficiency of Monte Carlo integration depends on two major criteria: how well we
distribute our samples, and how quickly we can draw them. In order to render high-
quality images fast, we need to perform well in both. While in previous chapters we

strived to maximize the outcome of each sample without introducing artifacts, in this one, we
shift our focus towards another important ingredient of rendering; the visibility testing. The
common denominator of most high-quality rendering algorithms, including those in Chapters 4
to 7, is the need to resolve dozens of visibility queries. These queries are costly, if not the most
expensive part of evaluating samples.

A popular technique for computing visibility, which has been intensively studied in past decades,
is ray tracing. While the first challenge was to develop appropriate acceleration structures for
static scenes, research next began to focus on efficiently building these data structures for fully
dynamic scenes in every frame [Wald et al. 2007], and also on graphics hardware [Lauterbach
et al. 2009, Pantaleoni and Luebke 2010, Zhou et al. 2008].

Rasterization is another technique for resolving visibility. For primary rays, both ray tracing
and rasterization essentially produce identical results; and both can be accelerated using spatial
data structures, either for minimizing the number of intersection tests or culling geometry that
cannot be rasterized to the frame buffer (see [Cohen-Or et al. 2003] and [Dachsbacher 2010] for
overviews). In the case of point-based many-light algorithms, we can exploit hardware raster-
ization to quickly create omni-directional shadow maps [Williams 1978] that can resolve VPL
occlusion very efficiently. However, in the case of VRLs and VBLs the benefits of rasterization
cannot be exploited that easily as the queries are not known a-priori; we thus cannot precompute
and use a set of shadow maps.

The more general ray tracing seems to provide better means to resolve visibility queries in
our case. The generality is indeed one of the characteristic advantages of ray tracing over the
throughput oriented rasterization. In this chapter, we focus on accelerating ray tracing by cre-
ating an approximate accelerating structure called a rasterized bounding volume hierarchy (RBVH).
Our desire is to combine the high throughput of rasterization with the generality of ray tracing:
we use hardware rasterization to quickly create an accelerator, which can be later used for fast
ray tracing of arbitrary rays.
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(a) Height fields

Interior 
nodes

Leaves

Atlas

(b) Node hierarchy and atlas

Figure 8.1: A rasterized bounding volume hierarchy (RBVH) represents surfaces using a set of height fields
(a) that are organized into a hierarchy and stored in an atlas (b).

A common consensus is that the intersection computation for secondary rays is often not re-
quired to be accurate, e.g. when computing indirect lighting or glossy reflections [Yu et al. 2009].
In contrast to standard bounding volume hierarchies, we try to leverage this observation when
constructing the RBVH: we identify subtrees containing surfaces which can be represented by,
and thus rasterized to, a single height field. For these subtrees the conventional ray-surface in-
tersection, possibly involving a large number of triangles, is replaced by a simple ray marching
procedure to find the intersection with the surface.

In general, RBVHs are shallow structures with leaves storing geometry in the form of height
fields (see Figure 8.1). These can be rasterized at an arbitrary resolution and thus, thanks to
decoupling from the input surfaces, inherently provide means to adjust the level of detail (LOD).

RBVHs are best suited for complex scenes consisting of large number of primitives, e.g. obtained
from subdivision surfaces or scanned environments. We show that in these cases an RBVH
can achieve better approximate ray tracing performance than other accelerating structures. In
addition, RBVHs have further beneficial properties:

• the height fields are stored in a texture atlas, which automatically provides a parameteri-
zation of surfaces and can be used to store on-surfaces signals, e.g. for interactive painting
or photon mapping,

• RBVHs are not restricted to polygonal meshes: all representations that can be rasterized,
e.g. point clouds [Gross and Pfister 2007], can directly be used during construction, and,

• the memory footprint of RBVHs is typically much lower than that of the original geometry
as they can be created with just the required amount of detail. This enables ray casting of
large scenes with limited memory, e.g. on GPUs.

In the next section, we review the most relevant previous work. In Sections 8.2 through 8.4, we
describe how to construct and traverse RBVHs, and also introduce a hybrid RBVH, which stores
the original geometry in leaves (like a traditional BVH) whenever height fields are not well-suited
to represent the geometry. In Sections 8.5 and 8.6, we present a parallel construction scheme
to build the accelerator on the GPU and provide necessary implementation details. Finally,
in Sections 8.7 and 8.8, we present qualitative and quantitative evaluation of the RBVH and
demonstrate the benefits of using the accelerator in applications such as rendering caustics with
photon mapping, glossy reflections, interactive painting, and ray casting of point clouds.
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8.1 Previous Work

Acceleration Structures for Ray Tracing. Hierarchical and non-hierarchical spatial index struc-
tures, with all their advantages and disadvantages, have been explored for accelerating ray
casting in various applications on different architectures; Wald et al. [2007] have an excellent
overview. Recent work focuses on building BVHs and kD-trees on the GPU, where they can
be directly used for ray casting. Lauterbach et al. [2009] construct LBVHs by linearizing primi-
tives along a space filling Morton curve combined with the surface area heuristic (SAH) yielding
close to optimal hierarchies, and thus good overall performance for both construction and traver-
sal. This approach has been improved using a hierarchical formulation [Pantaleoni and Luebke
2010] and further accelerated with work queues while using less memory [Garanzha et al. 2011].
Karras [2012] presents an in-place algorithm for constructing binary radix trees and later Kar-
ras and Aila [2013] propose a massively parallel construction with tracing performance close to
sequential algorithms.

Ray tracing performance of BVHs can be improved by creating tighter axis-aligned bounding
boxes (AABBs), e.g. by split clipping [Ernst and Greiner 2007], subdividing triangles recur-
sively [Dammertz and Keller 2008], or adapting the SAH [Stich et al. 2009]. The potential of
these approaches has been analyzed by Popov et al. [2009] who also present a generic algorithm.
Aila and Laine [2009] analyze the traversal of BVHs on GPUs and their work can be considered
the state of the art in terms of ray casting performance.

kD-trees can also be efficiently built on the GPU using a data-parallel spatial median algorithm
for the upper levels of the tree to partition the workload between streaming processors [Zhou
et al. 2008]. In contrast, Choi et al. [2010] focus on precise SAH-optimized kD-trees on architec-
tures with less cores. Various two-level hierarchies were proposed for ray tracing dynamic scenes
with nested grids [Kalojanov et al. 2011] and handling tessellated and displaced patches [Hanika
et al. 2010]. The benefits of using shallow hierarchies were explored in [Dammertz et al. 2008],
but only in the context of multicore CPUs. Note that RBVHs are also shallow, as entire subtrees
are replaced by single height fields.

Ray Tracing with Sample-Based Representations. This topic is intensively studied and closely
related to our work. A classic sample-based representation is the voxelization of a scene, possibly
stored as a hierarchy in an octree, e.g. [Crassin et al. 2009; 2011]. Voxel data structures allow for
high ray casting performance and adaptive accuracy [Laine and Karras 2010], but often require
significant construction time and memory.

Detailed displacements of smooth surfaces can be represented as height fields and ray casted
very efficiently (see Szirmay-Kalos and Umenhoffer [2008] for an overview). Ray casting height
fields has further been extended to handle arbitrary geometry using non-orthogonal projec-
tions [Baboud and Décoret 2006]. A set of depth cube maps, rendered from well-chosen locations
within a scene, can also be used to accelerate ray casting for photon mapping [Yao et al. 2010].

Carr et al. [2006] use geometry images that enable efficient ray casting, since AABBs can be easily
obtained from min/max-mipmaps. Note that this approach handles deforming geometry but the
topology is not allowed to change, as it is too costly to recompute the parameterization on-the-
fly. Other examples of approximate scene representations are point hierarchies used in micro
rendering [Ritschel et al. 2009a] to synthesize GI. A common aspect of most of the previously
mentioned approaches is that the input surfaces, typically triangle meshes, are resampled.
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Closely related to our work, de Toledo et al. [2008] partition an object’s surface and represent
the individual parts as height fields. In contrast to our work, they do not construct a hierarchical
data structure and the build process is too costly for frequent updates. Although used for storing
textures, the partitioning scheme used in TileTrees [Lefebvre and Dachsbacher 2007], which splits
the surfaces into parts that can be bijectively projected onto a cube’s faces, is in spirit similar to
ours, but not feasible for updating the data structure on-the-fly.

Level of Detail. An important feature of RBVHs is the inherent possibility to adjust the LOD
of the representation. Pantaleoni et al. [2010] report that voxelization is well-suited as an ap-
proximate representation for small and medium sized scenes, but fails to handle large, complex
scenes. They propose to combine acceleration structures with a multiresolution scheme for
LOD. In principle, any mesh decimation method, e.g. progressive meshes [Hoppe 1997], could
be used; however, this requires maintaining and implementing two intricate algorithms for LOD
and construction.

Related to our work are the volume surface trees [Boubekeur et al. 2006] that combine an octree
and a set of quadtrees to represent surfaces. However, their goal is to resample surfaces for
reconstruction and mesh simplification; the resulting structure is not suitable for ray casting and
adaptive level of detail.

8.2 RBVH Construction

In contrast to a triangle-based BVH, our RBVH can be seen as a two-level data structure, where
the upper part consists of a shallow tree, and the lower part represents the geometry using height
fields. We build the RBVH in a top-down manner, i.e. we start from the scene’s bounding box
representing the root node and continue with the inner nodes towards the leaves. In general,
each node is split and the primitives (e.g. triangles or points) partitioned into child nodes
until: (1) the geometry can be faithfully represented as a single height field, and (2) the cost of
intersecting the height field is smaller than the traversal of an interior node (resembling the idea
of the SAH). Once the geometry is partitioned, we rasterize the primitives of every individual
leaf using an orthogonal projection into a texture atlas, where each tile stores depth values of a
height field that represents the surfaces in the corresponding leaf.

The RBVH is an approximate, sample-based structure providing several means to control the
quality of the representation: in Section 8.2.1 we describe two local criteria to measure and
control the accuracy of representing a surface by a height field. Then we introduce heuristics
for node splitting and minimizing traversal costs in Section 8.2.2, and finally, in Section 8.2.3,
we detail the global quality control (i.e. the sampling density) achieved through varying the
resolution of the rasterized height fields.

8.2.1 Refinement Criteria

One integral component of the RBVH construction is an efficient way to determine whether we
can, and should, represent a part of a surface as a single height field. Such representation is
only possible without loss of information, if we find a projection of the surface onto a plane
without folding. Additionally, we strive to sample surfaces as uniformly as possible and thus we
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Opening angle

Cone axis

(a) Cone of normals

Opening angle

Projected surface area

(b) Projected surface area

Projection frustum

AABB

(c) Projection frustum

Figure 8.2: During the RBVH construction, nodes are further refined if the cone of normals (a) or the
projected area (b) (depending on which one is used) exceeds a user-defined quality threshold. In the
opposite case, the surfaces within the node are rasterized using an orthogonal projection (c).

should avoid rasterizing surfaces from grazing angles. In order to find a suitable direction and
to minimize the projection error, we consider one of the following measures: the minimum cone
subtended by the normals of the surface, and the area of the projected surface. Both measures
are shown in Figure 8.2 and detailed in the following paragraphs.

Cone of Normals. The cone of normals of the primitives within a node can be used to deter-
mine if there exists an orthogonal projection where all surfaces are front-facing: if the opening
angle of the cone is less than p, such directions exist, e.g. the cone axis, and all primitives
are front facing and can be represented with a single height field. Otherwise, we should split
the surface and represent it with multiple height fields. In practice, we compute an approxi-
mation [Shirman and Abi-Ezzi 1993] and use even narrower cones (e.g. p/2) enforcing more
uniform sampling of surfaces. To maximize the minimum sampling density (of the most diverted
surface) we orient the projection frustum along the cone axis. As the direction defining the
orientation of the projection frustum we use the axis of the cone.

Projected Surface Area. Another good projection direction is the average surface orientation,
computed as the area-weighted sum over all primitives’ normals. It maximizes the average sam-
pling density, but does not guarantee sampling of the entire surface, as some primitives might
be back-facing and thus occluded. As a quality metric we use the projected area A? of the
primitives, which equals to the length of the summed area-weighted normals. We rasterize the
surfaces if the ratio A?/A, where A is the surface area, is greater than a user-defined threshold
a; otherwise we split the node.

Discussion. The cone of normals is a restrictive criterion, splitting a node whenever there is
no projection possible without back-facing primitives. According to our experiments, it is best-
suited for (manually) modeled scenes, e.g. from subdivision surfaces. The relative projected
area is robust against noise in the primitives’ orientation, which is often present in scanned
geometry. In either case the projection frustum is defined by the the minimum bounding box
that is oriented along the projection direction and contains the AABB of the surfaces. Similar to
traditional acceleration structures, we also consider whether it is beneficial to split the surface,
even if it can already be represented as a height field. Heuristics for splitting and an analysis of
their parameters are discussed in Sections 8.2.2 and 8.2.4.
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(a) Without object split (b) With object split (c) Uniform sampling

Figure 8.3: Subdividing and rasterizing surfaces can fuse surfaces of different objects (a). This can be
avoided by splitting the node w.r.t object IDs. The RBVH achieves almost uniform sampling across all
surfaces (shown as a checker board on the bunny model) (c).

8.2.2 Subdivision Strategies

The previously described refinement criteria determine whether a surface has to be split. In this
section, we discuss heuristics determining how to actually split the surface, i.e. how to partition
primitives within a node. We discuss and compare two approaches partitioning the primitives
with respect to a split plane: the RBVH pendant of the surface area heuristic (SAH) [Havran
2000] and the simple spatial median. We also introduce a complementary object split strategy
that avoids fusing surfaces of different objects by splitting according to object ID.

Surface Area Heuristic. Ray casting accelerators are often built according to the SAH, which
defines the cost of a partition by summing up the costs of intersecting each child, weighted
by the respective probability that a ray passes through them. The minimum is usually greedily
searched by evaluating the cost of several candidate split-planes at the scope of the current node.
In case of the RBVH, the cost of intersecting a surface amounts to ray marching the respective

height field. The number of ray marching steps depends on the resolution of the height field,
which is in turn linked to the surface area, as we strive to achieve uniform sampling (described
in Section 8.2.3). Therefore, the area of the children’s surfaces is already a good estimate for the
intersection cost. Note that we use the SAH only to determine where to split, not whether to
split. The modified SAH for finding the best partitioning of a node a into two children b and c
is then:

C(b, c) = p(b|a)A(b) + p(c|a)A(c), (8.1)

where A(b) is the area of the surface in b, and p(b|a) is the geometric probability of intersecting
b: p(b|a) = S(b)/S(a), where S(.) is the surface area of a node’s bounding box.

Spatial Median. The second strategy places the split plane always in the middle of the bound-
ing box perpendicular to the longest axis. This can be highly suboptimal in the case of regular
BVHs, as the number of primitives on both sides can differ significantly. However, since RB-
VHs decouple from the actual tessellation, the spatial median somewhat resembles the idea of
Equation (8.1), and, for smooth surfaces in particular, also tends to split the surface into roughly
equal areas (see Section 8.2.4 for analysis).
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Object Split. When the surfaces of two or more objects intersect, it is reasonable to split them
according to their object IDs (which is typically available from the scene modeling or hierarchy).
By this, we can avoid excessive refinement due to a low projected area or diverging normals of
nearby objects. Figure 8.3 shows an example where the object splitting also avoids fusing of two
meshes. We perform the object split whenever a node contains surfaces of exactly two objects.

8.2.3 Rasterization to the Atlas

After splitting the nodes and creating the tree hierarchy of the RBVH, we rasterize the surfaces to
the atlas. For every leaf node, we compute an orthogonal bounding frustum that is aligned with
the projection direction and contains the axis-aligned bounding box (AABB) of the corresponding
surface (see Figure 8.2.c). Next we determine the resolution allocated to the respective atlas tile,
i.e. how densely we sample the surface. Our goal is to retain a (roughly) uniform sampling
of surfaces, which can be intuitively controlled by the user. For this, we use a global pixel-to-

area ratio r to compute the resolution R of a square tile as: R =
q

rA2/A?, where rA is the
total number of pixels for representing the surface scaled by the inverse relative projected area
A/A?. Although the actual number of samples used to store the height information is usually
smaller (as a tile is typically not fully covered by the projection), we found that this approach
still provides almost uniform sampling of the entire surface (see Figure 8.3.c). Complementing
the local refinement criteria, the pixel-to-area ratio is a means to adjust the quality globally.

As we create square tiles, we can easily and tightly pack them into the atlas. For that we sort
them according to their descending resolution R and pack them row-wise. Within each row
the tiles are placed from the largest to the smallest from left to right. Resolution of the first
(largest) tile in a row determines the vertical offset to the next row. For each leaf, we store a final
projection matrix that is computed from the bounding frustum, tile resolution, and position in
the atlas. Lastly, we transform all primitives using the corresponding matrices and rasterize them
to the atlas. Note that we can use the atlas to store arbitrary on-surface signals, e.g. normals or
surface colors, by rasterizing them to additional atlas layers.

As we rasterize surfaces from different directions and at different resolutions, the height fields
typically do not match exactly at their boundaries. To avoid cracks in the reconstruction, we en-
sure that the height fields of neighboring surface parts slightly overlap by duplicating primitives
within a certain region around the split plane (±5% in our scenes), and assigning them to both
children. After rasterization we also apply a dilation filter on the atlas that creates an additional
“safety-border” for all tiles. Note that this process is common to many atlas-based techniques
(e.g. see [de Toledo et al. 2008]). In order to create meaningful data, we compute the gradient of
the surrounding pixels to ensure that the dilated surfaces do not create distracting extrusions.

8.2.4 Analysis of Subdivision Strategies

In addition to the subdivision strategies, the RBVH has another degree of freedom, which trades
between the size of the node hierarchy and the resolution of tiles: we may still want to split a
surface, which could already be represented using a single height field, if it improves the traver-
sal performance. Note that this consideration is similar to the choice of how many primitives
should be stored in the leaves of regular BVHs.
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Figure 8.4: In (a) the horizontal axis shows the average tile resolution and individual series depict the
dependency of the ray casting performance on the sampling density. In (b) we identify intervals of the
resolution with at least 98% of the peak performance and approximate the midpoints of these intervals
with a logarithmic function, that is used to select the optimal tile resolution during the RBVH construction.

To this end, we ran a series of benchmarks (primary and secondary rays separately) to find a
good balance between the depth of the node hierarchy and the tile resolution. In each test we
subdivided the nodes until the atlas tiles had resolutions lower than a specified threshold. Note
that higher tile resolution results in shallower hierarchies and vice versa. Figure 8.4.a illustrates
that the peak performance is obtained with different tile resolutions for different pixel-to-area
ratios (curves in Figure 8.4.a), i.e. depending on the sampling density, there is an optimal resolu-
tion and we should refine the nodes until their tiles reach it. To derive the optimal tile resolution
we fit a logarithmic function to the midpoints of parameter intervals with at least 98% of the peak
performance. This has proven to be more reliable than fitting to absolute maxima. For coherent
rays the optimal tile resolution is 5.76 ln(r)� 42.99; running the benchmark for secondary rays
yielded 1.23 ln(r)� 0.17. That is, depending on the application, different construction parame-
ters yield optimal RBVHs.

We also compare the impact of the SAH and spatial median heuristics in terms of ray tracing
performance and the number of RBVH nodes in Table 8.1. Although the total number of nodes
created using the spatial median was sometimes up to 2.5⇥ higher, the ray tracing was always
at least 78%, and 86% on average, of the performance of the RBVH built with SAH. Considering
the build times, it is obvious that the spatial median is the better choice for dynamic scenes.

8.2.5 Adaptive, Varying Level of Detail

In Sections 8.2.1 and 8.2.3 we described two means to control the accuracy and memory require-
ment of the RBVH. Altering these parameters also influences the performance:

1. loosening the refinement criterion, e.g. allowing larger cones of normals, effectively prunes
the tree by representing surfaces, that would be otherwise refined, with a single height
field. This sacrifices uniform sampling (eventually even bijective projections) for reducing
the number of nodes in the tree;
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Scene # of faces Spatial Median Surface Area Heuristic Relative
# of nodes CPU build Tracing # of nodes CPU build Tracing perf.

Armadillo 332k 2908 0.5 s 129.1 2553 12.9 s 140.7 92%
Hand 655k 4829 0.9 s 182.3 2893 24.9 s 204.4 89%
Dragon 699k 2999 0.9 s 146.3 2674 26.8 s 161.3 91%
Happy Buddha 1.37M 8065 1.8 s 138.1 3266 50.6 s 169.3 82%
Children 1.45M 4369 1.7 s 147.7 2936 50.9 s 172.3 86%
Beast 2.82M 7639 3.5 s 109.6 4696 118.1 s 140.5 78%
Asian Dragon 7.22M 6345 5.9 s 159.9 5227 173.0 s 180.2 89%

Table 8.1: Number of nodes, CPU construction time (using 1 core), and tracing performance (in MRays/s)
of our RBVH built using either the spatial median along the longest axis, or using the SAH selecting the
best from 32 split candidates along each axis of the bounding box. The last column shows relative tracing
performance of the tree built with spatial media to the one constructed with SAH.

2. decreasing the sampling density when rasterizing the tiles reduces memory footprint and
speeds up the ray-height field intersection.

Instead of setting these parameters once for the entire RBVH, we can determine them for every
node during construction. This enables us to adapt the level of detail according to a quality func-
tion that, for a given point in space, defines the desired quality (which is mapped to construction
parameters). By this, for instance, we can locally adjust the accuracy of the RBVH depending on
the distance to the viewer or any other point of interest (Figure 8.5).

In situations when the reconstruction of the entire RBVH is not desired, we adapt the level of
detail by mip-mapping the atlas, and select an appropriate mip level during traversal. Since
the tree structure does not change, this strategy is suboptimal to a full rebuild, but faster and
well-working as long as the atlas tiles do not fuse during the mip-map creation.

Point of Interest

Figure 8.5: RBVHs support level of detail rendering. Here the refinement criterion is loosened and the tile
resolution decreases with the distance to the point of interest. The top inset depicts the boundaries of tiles,
the bottom inset shows the varying sampling density.
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(a) Visualization of representations (b) Raytraced image

Figure 8.6: Hybrid RBVH; in (a) we visualize surfaces represented by height fields (yellow), triangles
(green), or both (purple). The resulting rendering, computed by tracing primary and secondary rays, is
free of any visible artifacts (b).

8.3 Hybrid RBVH

RBVHs work best when the input surfaces are highly tessellated and can be faithfully repre-
sented by height fields. Obviously this is not always the case and would restrict the applicability
of the RBVH in many cases. To this end, we propose a hybrid RBVH: whenever the surfaces
of a node cannot be efficiently represented as a height field (e.g., few triangles with large area,
or surfaces with sharp bends) we build the subtree as a traditional BVH. This creates hybrid
RBVHs where surfaces are partly represented as height fields and partly by triangles.

Figure 8.6 shows a car model with surfaces color-coded according to whether they are repre-
sented as height fields, triangles, or both (similar to two height fields, triangles and height fields
of adjacent nodes may overlap). For the hybrid RBVH we precompute the surface curvature for
the input mesh vertices and resort to triangles when (1) the percentage of vertices above a certain
curvature exceeds 80%; (2) there are less than 8 triangles in the node.

8.4 Traversal of the RBVH

Using RBVHs for ray casting is similar to the traversal of traditional BVHs: the traversal starts
at the root node, tests the ray against the childrens’ bounding boxes, and stores the nodes to be
visited on a stack. In the case of a leaf node, the ray segment overlapping the leaf’s bounding
box is transformed into atlas space using the stored projection matrix. Then we march along
the corresponding line segment and test for an intersection with the height field using linear
plus secant search (as in [Szirmay-Kalos and Umenhoffer 2008]). If an intersection is found, we
transform the location back to world space. Note that the texture coordinates of the intersection
can be used to look up surface attributes from other layers of the atlas. To reconstruct these
attributes without seams, filtering across tiles can be implemented [Lefebvre and Dachsbacher
2007], but in our examples, increasing the resolution of the attribute layer provided sufficient
quality.

Retrieving stored on-surface information for a given point in world space (on the surface) is
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also easy: we first search for the leaf node whose bounding box contains this point, and then
transform the point’s coordinates into atlas space using the projection matrix. Note that due to
the overlaps a surface point may be represented by two or more height fields. We account for
this when writing data into the atlas and “splat” the value to all the texels corresponding to a
single point.

8.5 GPU Construction

In this section, we describe an RBVH construction algorithm for massively parallel architectures,
such as GPUs. We favor simplicity and fast construction using the inexpensive spatial median
for partitioning the primitives. The slightly lower traversal performance is compensated by the
faster construction, which is beneficial in dynamic scenarios. As the refinement criterion we use
the more robust projected surface area, which also requires only one pass over the primitives
(cone of normals needs two).

The construction proceeds in a breadth-first manner starting from the root node (containing
all primitives) and creating nodes level by level. To construct a single level, we first compute
the axis-aligned bounding boxes (AABB) and the average surface orientation for each node in
the level. Next we determine which nodes can be rasterized and remove the corresponding
primitives from the subsequent construction steps. All other primitives are assigned to the
respective child nodes. We show a pseudocode and the meaning of the variables in Figure 8.7
and detail the construction in the next paragraphs.

We start the construction of the node hierarchy by initializing two arrays storing references to
the primitives, primRefs, and the node to which every primitive belongs to, nodeRefs. Since we
want the child nodes to slightly overlap (to prevent cracks), both arrays have to be large enough
to allow duplicating references (in all our examples 150% of the original size was sufficient).
We also keep track of the number of nodes N, the number of remaining references R, and the
references stored in the final arrays of leaves F.

The construction of the RBVH continues until all remaining references R are processed, i.e.
placed in the leaves (while R > 0, line 2). We assume that, at the beginning of each iteration, the
primitive references are sorted according to the node they belong to (stored in nodeRefs), thus
forming segments with the same node reference. In order to evaluate the refinement criterion, we
compute the AABB, total area, and the sum of area-weighted normals for every node. For this,
we fill three auxiliary arrays (nodeBounds, nodeANorm, and nodeA) with the primitive data (lines
3-7), and perform a parallel segmented reduction to obtain a single value per node (lines 8-10).

Next, using this per-node information we determine if primitives will be rasterized or further
split, thus going into new child nodes: we evaluate the splitting criterion (Section 8.2.1) and
optimal subdivision (Section 8.2.4) (line 14) and mark every primitive either for rasterization
(line 15) or splitting (lines 17-18). In the latter case, we store two flags per primitive: count
contains the number of children the primitive will go to (1 or 2), and child refers to the actual
children (1 - left child, 2 - right child, 3 - both).

These flags are used to send the primitives to the final array (when they are flagged for raster-
ization) or to the construction array of the next RBVH level. To determine the locations within
these array, we first compute parallel prefix sums (lines 19-20). Note that computing the prefix
sum on the count-array automatically reserves space for duplicating primitives. Then we again
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BuildNodeHierarchy(primBounds, primNorm, primA)

nodeBounds[], nodeA[] // AABB and surface area of nodes
nodeANorm // sum of area weighted normals in each node
primRefs {1, 2, ...N} // references to primitives
nodeRefs {1, 1, ...1} // references to nodes
finPrimRefs // final array with references to primitives
finNodeRefs // final array with references to nodes
N // (maximum) number of nodes potentially created so far

1 N  1, R number of primitives, F 0
2 while R > 0 :
3 for all i in [0, R) in parallel :
4 j primRefs[i]
5 bounds[i] primBounds[j]
6 ANorm[i] primA[j] ⇤ primNorm[j]
7 A[i] primA[j]

// compute per-node information
8 nodeBounds[N..2N] reduceByKey(bounds, nodeRefs)
9 nodeANorm[N..2N] reduceByKey(ANorm, nodeRefs)

10 nodeA[N..2N] reduceByKey(A, nodeRefs)

// decide whether to split or rasterize
11 rasterize[0..R] count[0..R] {0, 0, . . . 0}
12 for all i in [0, R) in parallel :
13 n nodeRefs[i]
14 if not requiresSplit(n) and not shouldBeSplit(n) :
15 rasterize[i] 1
16 else :
17 count[i] toNChildren(i)
18 child[i] toWhichChildren(i)

19 finRank[0..R] scan(rasterize)
20 cRank[0..R] scan(count)

// filter primitives for rasterization; compact the others
21 for all i in [0, R) in parallel :
22 if rasterize[i] :
23 finPrimRefs[F + finRank[i]] primRefs[i]
24 finNodeRefs[F + finRank[i]] nodeRefs[i]
25 else :
26 primRefs[cRank[i]] primRefs[i]
27 nodeRefs[cRank[i]] nodeRefs[i]⇤2+child[i]&1
28 if child[i] = 3 :
29 primRefs[cRank[i]� 1] primRefs[i]
30 nodeRefs[cRank[i]� 1] nodeRefs[i] ⇤ 2

// sort primitives according to the node; update counters
31 sortByKey(primRefs, nodeRefs)
32 update(R, F)
33 N  2N + 1

Figure 8.7: Parallel algorithm for constructing the upper part (hierarchy of nodes) of the RBVH.
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process all primitives: those flagged for rasterization will be simply appended to the final arrays
according to the prefix sum (lines 22-24); primitives that go into child nodes are kept in the
construction arrays, but are compacted to remove unused entries (we double-buffer the arrays
to avoid write-after-read hazards). Primitives that are sent to both child nodes (recall that we
accounted for that in the prefix sum) are duplicated in lines 29-30. Note that we use implicit ad-
dressing to avoid computing and storing pointers during the construction. In contrast to regular
BVHs, the upper part of the RBVH is very shallow (hundreds or thousands of nodes), and thus
the memory required due to storing a full tree for implicit addressing is small.

The last step of constructing a single RBVH level is to sort the references again according to the
node indices (for the next iteration), and to update the number of remaining primitive references
and references in leaves (lines 31-33).

Finalizing the RBVH. After the hierarchy construction, per-node attributes (e.g. the bounding
box) are stored in the node*** arrays. We first separate interior and leaf nodes into two arrays, and
remove the unused entries that were introduced due to the implicit addressing. Lastly, we sort
all leaf nodes according to their tile resolution, compute transformation matrices and rasterize
all primitives referenced by finPrimRefs as described in Section 8.2.3.

8.6 Implementation Details

We implemented the RBVH construction on the CPU (for evaluating the subdivision strate-
gies) and on the GPU. On the GPU, we use CUDA for the hierarchy construction and ray cast-
ing/traversal, and Direct3D 10 for rendering the primitives into the atlas. For all data parallel
primitives (reduceByKey, sortByKey, scan) we used the Thrust CUDA library [Hoberock and
Bell 2010].

After the hierarchy construction, we compact the nodes into a single tightly packed array, ob-
taining an efficient representation for fast traversal. Each interior node occupies 48 + 8 bytes for
both child-AABBs (6 floats each) and references to the child nodes (2⇥ 4 bytes). For leaves we
only need to store the projection matrix. As we use orthogonal projections only, the last row is
always {0, 0, 0, 1}, thus we can store the matrix as 12 floats, or 48 bytes, respectively.

8.7 Results and Discussion

In this section, we evaluate the RBVH regarding its ray casting performance, level of accuracy
and approximate nature, construction time, and memory requirements. All results were mea-
sured on an Intel Core i7 system running at 2.8GHz with an NVIDIA GTX 470 GPU.

Quality vs. Performance. One key feature of the RBVH is that it allows trading quality for per-
formance. Figures 8.8 and 8.9 show images where RBVHs with different quality configurations
were used to trace primary rays, or secondary (diffuse) rays, respectively. When using the RBVH
for primary rays, the approximate nature becomes visible for low quality settings such as Q4,
but not for high quality settings. For benchmarking the secondary rays, the objects are rendered
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Figure 8.8: Quality and performance of individual RBVH configurations for tracing primary rays. All
scenes, except for the Hand, have been constructed using the less restrictive projected surface area. The
construction parameters are shown in parenthesis next to the quality level. The left most column contains
references ray traced using the BVH from [Aila and Laine 2009]. Numbers in the corners report ray tracing
performance in million rays per second.
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Figure 8.9: Quality and performance of individual RBVH configurations for tracing secondary (diffuse)
rays. All scenes, except for the Hand, have been constructed using the less restrictive projected surface
area. The construction parameters are shown in parenthesis next to the quality level. The left most column
contains references ray traced using the BVH from [Aila and Laine 2009]. Numbers in the corners report
ray tracing performance in million rays per second.



132 8 Rasterized Bounding Volume Hierarchies

Primary (Coherent) Rays [MRays/s]
Scene # of triangles BVH Q0 Q1 Q2 Q3 Q4 Speedup
Hand 655 k 178.7 145.3 176.6 209.9 266.0 300.0 0.8 - 1.7
Dragon 699 k 137.2 111.6 139.8 169.4 229.4 287.2 0.8 - 2.1
Happy Buddha 1.37 M 144.6 147.5 183.9 226.2 307.2 386.4 1.0 - 2.7
Children 1.45 M 123.2 121.2 148.8 177.6 232.2 282.8 1.0 - 2.3
Beast 2.82 M 120.4 131.9 163.1 195.4 256.0 298.3 1.1 - 2.5
Asian Dragon 7.22 M 85.9 158.5 190.2 216.1 263.7 304.4 1.8 - 3.5
Thai Statue 10.02 M 122.9 197.4 250.5 302.7 375.4 454.6 1.6 - 3.7

Table 8.2: Detailed performance of tracing primary rays (in million rays per second) for the scenes shown
in Figure 8.8 with different quality settings (Q0 - finest, Q4 - coarsest; see Table 8.4 for the construction
parameters). The “BVH” column reports the performance using Aila and Laine’s [2009] method, “Speedup”
shows the relative performance range of the RBVHs to the BVH.

Primary (Coherent) Rays [MRays/s]
Scene # of triangles BVH Q0 Q1 Q2 Q3 Q4 Speedup
Hand 655 k 55.9 32.5 37.1 44.3 56.6 69.1 0.6 - 1.2
Dragon 699 k 38.2 20.7 21.7 27.6 38.7 53.3 0.5 - 1.4
Happy Buddha 1.37 M 37.2 21.7 24.9 30.5 41.4 54.6 0.6 - 1.5
Children 1.45 M 36.1 21.2 23.6 28.1 39.1 51.0 0.6 - 1.4
Beast 2.82 M 37.8 20.7 23.3 27.8 37.9 47.4 0.5 - 1.3
Asian Dragon 7.22 M 36.7 29.4 31.9 35.1 43.7 53.9 0.8 - 1.5
Thai Statue 10.02 M 32.9 30.7 35.5 41.9 51.7 59.9 0.9 - 1.8

Table 8.3: Detailed performance of tracing secondary rays (in million rays per second) for the scenes shown
in Figure 8.9 with different quality settings (Q0 - finest, Q4 - coarsest; see Table 8.4 for the construction
parameters). The “BVH” column reports the performance using Aila and Laine’s [2009] method, “Speedup”
shows the relative performance range of the RBVHs to the BVH.

Quality settings: Q0 Q1 Q2 Q3 Q4
pixel-to-area ratio rs 2M 1M 512k 128k 32
ratio of projected to world area a 0.85 0.80 0.75 0.70 0.65
cone of normals aperture j [deg] 45 50 55 60 65

Table 8.4: Parameters of different quality configurations used to render images in Figures 8.8 and 8.9 and
measure performance in Tables 8.2 and 8.3. All scenes were normalized to a total area of 1 to achieve equal
sampling density. Q0, the finest configuration, subdivides aggressively to obtain high-quality RBVHs;
Q4, the coarsest configuration, results in highly approximate but compact and high performance RBVHs.

using rasterization and the RBVHs are used to compute environmental lighting by randomly
sampling the hemisphere with 4000 rays per pixel. Note that even for the coarse Q4 settings we
obtain satisfying results.

Tables 8.2 and 8.3 present the corresponding tracing performance. To compare our accelerator
against a triangle-based BVH, we integrated Aila and Laine’s [2009] GPU ray tracer (which can
currently be considered as the state of the art) into our application to ensure that we cast exactly
the same rays with both acceleration structures. Note that the RBVH linearly trades speed for
approximation, which is important for finding the right configuration under given constraints.
Table 8.4 lists the local and global construction parameters for the five different quality levels.
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BVH RBVH Q0 Q2 Q4
Scene Tree Triangles Total Tree Atlas Total Total Total
Dragon 14.5 12.0 26.5 0.65 15.2 15.8 3.86 0.38
Happy Buddha 25.5 23.5 48.9 1.04 15.9 17.0 4.13 0.40
Asian Dragon 153.0 123.9 276.9 0.90 12.2 13.1 3.43 0.40
Thai Statue 204.4 171.1 375.5 2.29 14.3 16.6 4.21 0.56

Table 8.5: Memory consumption (in megabytes) of a triangle-based BVH and our RBVH with quality
levels Q0, Q2, and Q4. Bold numbers show the total required memory; other numbers denote the memory
required for the tree hierarchy and the geometry, i.e. triangles or atlas, respectively.

CPU Construction GPU Construction
Scene Q0 Q2 Q4 Q0 Q2 Q4
Dragon 663 530 431 121 101 82
Happy Buddha 1160 901 704 182 152 120
Beast 2395 1758 1472 330 281 239

Table 8.6: Build times (in milliseconds) of the CPU and GPU construction using the spatial median and
Q0, Q2, and Q4 quality settings.

As the RBVH is a sample-based structure, its ray casting performance does not depend on the
number of triangles. We adjusted the quality levels such that Q0 is visually indistinguishable
from the reference for primary rays at a resolution of 1024⇥ 1024. The coarser levels, Q1 to Q4,
are appropriate for secondary rays, or for primary rays if the object is further from the camera.
Here we keep the same distance to better visualize the approximate nature of the RBVH. For
primary rays and complex scenes (more than 1.5 million triangles in our examples) the RBVH
outperforms the regular BVH, as it does not store more information than actually necessary. The
absolute performance of the RBVH depends on the curvature of the surfaces; nevertheless, it
linearly grows with decreasing quality for all tested scenes. The relative speed-up of RBVHs to
BVHs increases with the scene size.

Memory Requirements. The node hierarchy of the RBVH is typically shallow and the memory
requirements are dominated by the texture atlas. The atlas size directly depends on the desired
sampling density, which enables us to build compact acceleration structures at the expense of
lower accuracy. Table 8.5 shows memory requirements of a triangle-based BVH, where the ge-
ometry is represented by indexed vertices, and our RBVH for four different models consisting of
699k (Dragon) to 10.0M triangles (Thai Statue). In all cases, the RBVH requires less memory even
at the highest quality level. The most significant compression can be observed for the Thai Statue,
where Q0 and Q4 require only 4% and 0.2% memory of the regular BVH, respectively. This
is obviously achieved by decoupling from the input geometry, which is desirable for removing
detail not required for a given resolution or rendering task.

GPU Construction. Our CUDA-based construction algorithm enables using the RBVH for in-
teractive rendering of fully dynamic scenes. Table 8.6 reports the CPU and GPU construction
timings of the RBVH for three different quality levels. Compared to existing methods for BVH
construction on the GPU, our algorithm seems to build RBVHs for comparable scenes faster than
the hybrid LBVH [Lauterbach et al. 2009], on par with HLBVH [Pantaleoni and Luebke 2010]
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(the original algorithm constructs an HLBVH for the Dragon model in 81 ms on an NVIDIA
GTX 480), but not as fast as the recently introduced more efficient HLBVH [Garanzha et al.
2011]. As most of the concepts introduced in [Garanzha et al. 2011] (e.g. the work queues) are
general, we believe that they can be used to further accelerate our current straightforward GPU
construction.

8.8 Applications

In this section, we outline some of the applications of RBVHs. In addition to “just accelerate”
ray casting, the representation as height fields and the inherent surface parameterization allow
several applications, that otherwise require dedicated methods.

Approximate Ray Tracing. The RBVH enables fast, approximate ray tracing with adaptive ac-
curacy. Note that the term “approximate” does not necessarily mean low-quality: the renderings
obtained with quality settings Q0 and Q1 are visually almost indistinguishable from triangle-
based rendering even for primary rays. However, in certain global illumination computations,
e.g. computing indirect lighting or glossy reflections, the full accuracy is not required. In such
cases, primary rays can be efficiently replaced by rasterization, and complemented by an RBVH
for secondary rays. Figure 8.10.a shows an example of using the RBVH for glossy reflections
and caching diffuse interreflections.

Using the Atlas for Texturing. Due to the implicit surface parameterization, RBVHs inherently
provide means to store surface information. For testing purposes, we implemented three prac-
tical applications: real-time photon mapping (see Figure 8.10.b), progressive ambient occlusion
(see Figure 8.10.c), and real-time on-surface painting (see Figure 8.11.a). In addition to a tra-
ditional accelerator, all of these would normally require additional parameterizations or data
structures to store the on-surface signal. With our RBVH we can store surface data by casting
rays to determine the corresponding atlas texture coordinates, e.g. for a photon-surface inter-
section, and retrieve the information later during rendering using the algorithm described in
Section 8.4.

Point-Based Rendering. The RBVH construction supports all primitive types that have finite
area and can be subdivided and rasterized. We built RBVHs from point clouds obtained by
resampling a scanned bust and directly from a 3D laser (see Figure 8.11.b). During rasteriza-
tion of the atlas tiles, the point primitives were simply rendered as discs, but any other more
sophisticated point rendering technique can be used to improve the surface quality (see [Gross
and Pfister 2007] for an overview). In contrast to other accelerators, RBVHs provide ray casting
of different primitives in a unified way.

8.9 Discussion and Possible Improvements

The major advantage, but also the most restricting limitation of RBVHs, stems from the fact
that we strive to represent the geometry using height fields. While in some cases this provides
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11 fps

(a) Interactive two-bounce GI

29 fps

(b) Photon mapping

22 fps

(c) Progressive ambient occlusion

Figure 8.10: RBVHs provide advantages over traditional acceleration structures in several applications.
The fast ray tracing and the ability to store on-surface signals allow: e.g. (a) interactive two bounce
global illumination: glossy reflections are computed using 16 secondary rays; diffuse interreflections are
progressively computed using 1 sample per frame and cached in the atlas. (b) real-time photon mapping
where the RBVH is used for tracing 400k photons, casting shadow and specular rays; caustics are generated
using density estimation of photons stored in the atlas, or (c) progressively computing and caching ambient
occlusion. All images were rendered at 1280⇥ 720 and cropped for this figure.

92 fps 60 fps

(a) Real-time on-surface painting

90 fps 20 fps

(b) Ray tracing of point clouds

Figure 8.11: RBVH can also be used for real-time on-surface painting (a). The paint is projected onto
the surface using ray casting and stored in the atlas. The accelerator also supports other primitives than
triangles, such as point-based representations; (b) shows ray casting of the Bimba Con Nastrino and the
Old Town Hall in Hannover point clouds.

great compression abilities and fast intersection tests, for high frequency and possibly discon-
nected surfaces, e.g. foliage or hair, height fields are simply not capable of representing the
fine structure efficiently. This is however true for most of the resampling based accelerators.
The hybrid RBVH can at least provide smooth transition between fully height field-based or
fully triangle-based accelerators. We believe that further investigations, for instance in the direc-
tion of enhancing the tree with some statistical data (e.g. the fractional opacity to rays), are an
interesting future work.

Surfaces reconstructed using ray casting can occasionally suffer from overlappings and cracks.
Both of these can cause visual artifacts under extreme zoom-ins. It would be interesting to
extend the current approach to ensure watertightness.

In the future, the RBVH could be further improved by using more elaborate projections, e.g. a
reverse perspective [Baboud and Décoret 2006], and signal-specialized tile resolutions. Incre-
mental maintenance via local rasterization and refitting would be another interesting extension,
as well as an out-of-core construction for fast visualization of extremely large scenes.



136 8 Rasterized Bounding Volume Hierarchies

8.10 Conclusion

In this chapter, we presented rasterized bounding volume hierarchies for approximate ray cast-
ing of triangle- and point-based surface representations with adjustable level of detail. Our data
structure can be efficiently constructed on the CPU and GPU, and provides an inherent sur-
face parameterization for storing data on the surfaces. We described several means to control
the accuracy of the resulting RBVH locally and globally, and determined optimal construction
parameters for primary and secondary rays. Hybrid RBVHs avoid excessive ray marching and
provide high accuracy by partly keeping the input geometry.

Acknowledgements. Old Town Hall point cloud is from the Institute for Cartography and
Geoinformatics Hannover; thanks to Michael Wand who provided a version with normals.
Bimba con Nastrino and further models are courtesy of AIM@SHAPE, Stanford 3D Scanning
Repository, NVIDIA.



Chapter �

Conclusion

One’s work may be finished some day,
but one’s education never.

— Alexandre Dumas (1802–1870)

I n this thesis, we presented several techniques that extend the concept of many-light render-
ing. We sought to provide high quality results while preserving the elegance and efficiency
of many-light approaches. While a large body of previous work exists; which we reviewed

in Chapter 3, it rarely meets both of these criteria.

For the classic, VPL-based rendering, we presented two bias compensation techniques, one tai-
lored for surfaces and the other aiming at participating media. When combined into a single
algorithm, these can efficiently resolve the local, residual transport, and thus improve the qual-
ity without requiring an excessive number of VPLs. The technique can handle glossy surface
materials, as well as anisotropic, heterogeneous participating media. Most of the improvements
are due to a new mathematical formulation of the residual energy. When combined with several
carefully chosen assumptions, this allows for an efficient, hardware-accelerated implementation
that generates images close to ground truth at interactive frame rates, i.e. in a fraction of time
required by previous techniques.

We also presented a new category of lighting primitives for many-light rendering of scenes with
participating media. These leverage entire linear segments of random photon paths, utilizing
them either as infinitesimal virtual ray lights, or progressively shrinking virtual beam lights. For
each of them, we derived semi-analytic importance sampling for efficiently integrating the light
transport in, from, and to surfaces and media. Furthermore, we demonstrated, both mathemat-
ically and empirically, that spreading the energy along lines effectively reduces the singularity,
and thus oftentimes sidesteps the need for bounding and subsequent bias compensation. In
cases when the remaining singularity still causes visible artifacts, we propose to inflate the ray
lights into beam lights, and progressively reduce their diameter to achieve convergent results.
We show that the new lighting primitives handle anisotropic scattering and heterogeneous par-
ticipating media well, and can be easily combined with existing progressive photon mapping
approaches.

Finally, we devised a new, hierarchical rasterization-based structure for accelerating approximate
visibility queries. In addition to fast ray tracing capabilities, we demonstrate that RBVHs are
highly scalable and provide adjustable level of detail with accuracy controlled through global
and local construction parameters. For the best performance, we analyzed these parameters and
determined optimal configurations for coherent and incoherent rays. Furthermore, we addressed
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the shortcomings, that may emerge when the input geometry cannot be represented well with
height fields, through the hybrid RBVH that combines height fields with the original geometry.
We also demonstrated that numerous applications, e.g. photon mapping or irradiance caching,
benefit from the inherent surface parametrization that RBVHs provide. The entire data structure
is designed to allow fast construction and tracing on parallel architectures, and thanks to the
small memory footprint, often fits into the hardware caches.

We believe that many-light algorithms feature properties that are extremely valuable for applica-
tions requiring high quality results and predictable render times. The contributions described in
this thesis expand these properties to cover a wider spectrum of input scenes, and thus increase
the versatility of many-light rendering.



Appendix A

Derivations and Analysis

A.1 Derivation of the Volumetric Three-Point LTE

In order to derive the volumetric three-point formulation of the light transport equation we first
express the exitant radiance L(x!w). Clearly, we need to distinguish whether x is on a surface
or in a volume:

L(x!w) =

8
><

>:

Le(x!w) +
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(A.1)

Using the generalized emission L̂e and the generalized scattering function f we can write the
above equation more concisely without distinguishing between surface and volumetric points:

L(x!w) = L̂e(x!w) +
Z

S2
f (w x w

0)Dx(w
0)L(x w

0)dw

0, (A.2)

where:

Dx(w) =

⇢ |n(x) · w| if x 2 ∂V,
1 if x 2 V.

(A.3)

We now expand the incident radiance L(x w

0) according to Equation (2.76) and reorganize the
terms to separate contributions of volumes and surfaces:
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(A.4)

where xb = x + bw

0 and xt = x + tw0. The hemispherical integration of surface contributions can
be written as an integral over the set of all surface points ∂V. Similarly, the hemispherical and
the surface integrals in the volumetric contribution can be replaced by an integral over the set of
all volumetric points V:
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Finally, since ∂V \V = 0 and ∂V [V = R3, we can combine the two integrals into a single one:

L(x!w) = L̂e(x!w) +
Z

R3
f (w x w

0)Ĝ(x$y)T(x$y)V(x$y)L(y!x)dµ(y), (A.6)

obtaining the three-point formulation of the volumetric light transport equation.

A.2 Derivation of the Path Integral

In order to define the integrand of Equation (2.89) we first expand L(x w) in Equation (2.78)
using Equation (2.76):
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W
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Using the following generalization:
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we can write Equation (A.7) as:

I =
Z

R3

Z

R3
W(x y)G(x$y)T(x$y)V(x$y)L(y!x)dµ(y)dµ(x). (A.9)

This can be recursively expanded using the three point form of the volumetric LTE (cf. Equa-
tion (2.79)) with w = x�y

kx�yk2 . Doing so k times yields light transport carried by paths with at
most k + 2 vertices. Radiance carried from the light sources to the sensor by paths with exactly
k vertices can be written as:
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where x0 is on a light source and xk is on the sensor. In order to account for the light transport of
all possible lengths, we need to integrate over the entire path space P defined in Equation (2.88):
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yielding the path integral.
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A.3 Construction of the PDF for Sampling VRLs

We first evaluate f uv
p at the two ends of the spherical arc to obtain vertices q1 and qM. We

distribute the remaining q2 . . . qM�1 interior vertices non-uniformly. Most importantly, we must
avoid missing the peak of the underlying function. Though we do not know the exact location
of the peak, we do know that the function is a product of two phase functions and that, of these,
the phase function along the camera ray must be monotonic between q1 and qM. Hence, the peak
is primarily determined by the remaining phase function along the VRL. If the direction qpeak
maximizing the VRL’s phase function lies on the arc (i.e. between q1 and qM), we can easily find
it as:

qpeak = cos-1(~a ·~e), (A.12)

~e = normalize((~c⇥ ~d)⇥~c), (A.13)

~c = normalize(~a⇥~b). (A.14)

where ~a and~b are the directions from xvi towards the origin and the end of the ray, and ~d is the
direction of the VRL. If the peak does not fall within [q1, qM], we invert ~d and repeat the above
procedure to find the possible minimum of the VRL’s phase function (negative peak). If neither
the maximum, nor the minimum fall within [q1, qM], we distribute the interior vertices with a
cosine-warped uniform spacing1:

qj = qM�q1
2

⇣
1� cos

⇣
p(j�1)
M�1

⌘⌘
. (A.15)

If qpeak 2 [q1, qM] then we place the vertex with index:

jpeak =
j

qpeak�q1
qM�q1

(M� 1) + 0.5
k

, (A.16)

at qpeak, and we distribute the remaining vertices to either side using a similar cosine-warped
distribution as in Equation (A.15), but within each subinterval.

This procedure ensures that we always sample the expected location of the peak, and distribute
the remaining vertices where the function is expected to be varying the most rapidly.

A.4 Analysis of Singularities

We analyze the singularities present in light transport simulated with VPLs and VRLs. There are
three types of transfer we are interested in comparing: point-to-point (P2P), point-to-line (P2L),
and line-to-line (L2L) as highlighted in the renderings in Figure 6.10 and illustrated in Figure A.1.
Without loss of generality, we assume a canonical geometric configuration and eliminate terms
which do not affect limit behavior as the distance between the elements approaches 0. This

1Applying a cosine to equally-spaced points pushes more points towards the boundary of the interval, where we expect
the most variation.
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(a) Point-to-point (b) Point-to-line (c) Line-to-point

Figure A.1: The canonical geometric configuration for the three different transport types.

corresponds to the following three equations:
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fL2L(w, q) =
Z 1
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1
(v cos q � u)2 + (v sin q)2 + w2 dudv (A.19)

In order, these functions correspond to: the contribution of a VPL to a point on a surface/volume;
the contribution of a VRL to a point on a surface/volume, or the contribution of a VPL integrated
along a camera ray; and, the contribution of a VRL integrated along a camera ray. Note that each
successive function integrates over an additional linear domain. We plot these functions in
Figure A.2.a.

We will prove that fL2L(w) 2 o( fP2L(w)), and fP2L(w) 2 o( fP2P(w)) as w ! 0; where for non-
zero functions f and g:

f (x) 2 o(g(x)) as x ! 0 () lim
x!0

f (x)
g(x)

= 0. (A.20)

More informally, we will show that the singularity at w = 0 for VPLs on surfaces dominates that
of VRLs at surfaces, which dominates that of VRLs integrated along a camera ray in a volume.

A.4.1 Point-to-Line vs Point-to-Point Transfer

Plugging in Equations (A.17) and (A.18) into Equation (A.20) we have:

lim
w!0

fP2L(w)
fP2P(w)

= lim
w!0


w tan-1

✓
1
w

◆�
= 0. (A.21)

Hence, fP2L(w) 2 o( fP2P(w)): the point-to-line contribution is dominated by the point-to-point
contribution as the distance w goes to 0. This limit is illustrated as the blue curve in Figure A.2.b.
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Furthermore, since

lim
w!0

fP2L(w)
w

=
p

2
, (A.22)

we know that fP2L(w) 2 Q(1/w) as w ! 0; or, in other words, the point-to-line singularity
is bounded from above and below by 1/w asymptotically. Note that this is in contrast to the
point-to-point singularity, which is of order Q(1/w2).

A.4.2 Line-to-Line vs Point-to-Line Transfer

The inner integral of Equation (A.19) has the closed form solution:

p
2
⇣

tan-1
⇣p

2v cos(q)
d(v,w,q)

⌘
� tan-1

⇣p
2(v cos(q)�1)

d(v,w,q)

⌘⌘

d(v, w, q)
, (A.23)

where d(v, w, q) =
p

v2(1� cos 2q) + 2w2. Since the numerator is bounded from above by
p

2p,
we have

fL2L(w, q) 
p

2p

Z 1

0

1
d(v, w, q)

dv (A.24)

= p csc q csch-1(w csc q), (A.25)

and, for any fixed q 2 (0, p

2 i, we can obtain

lim
w!0

fL2L(w, q)
fP2L(w)

 lim
w!0

p csc q csch-1(w csc q)
1
w tan-1

⇣
1
w

⌘ = 0. (A.26)

Hence, fL2L(w, q) 2 o( fP2L(w)): the line-to-line contribution is dominated by the point-to-line
contribution as the distance w goes to 0. This limit is illustrated as the red curve in Figure A.2.b.

Following the same simplification, we can see that

lim
w!0

fL2L(w, q)
� ln(w)

 p

sin q

, (A.27)

which is non-negative and finite for any q 2 (0, p

2 i and hence, fL2L(w, q) 2 O(� ln(w)) as w! 0;
or, in other words, the line-to-line singularity is bounded from above by � ln(w).

For the special case where the two lines approach being parallel, the term in the numerator
of Equation (A.26) is bounded by a constant: lim

q!0 fL2L(w, q)  p

w . Hence, in this special
case it can be shown that fL2L(w, 0) 2 Q( fP2L(w)) as w ! 0: the singularity of fL2L becomes
asymptotically equivalent to that of fP2L.
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Figure A.2: Asymptotic behavior of the point-to-point, point-to-line and line-to-line contributions, and
ratios showing that the singularities become successively weaker.

A.5 Interpretations of VBLs

In this section, we provide further intuition for interpreting virtual beam lights. As mentioned
in Section 7.2, a VBL can be seen as a VSL swept along a line (e.g. a VRL). The original surface
VSLs by Hašan et al. [2009] distribute power of the corresponding VPL over surfaces inside the
sphere. In the case of volumetric VPLs (or points on a VRL), we need to formulate the energy
redistribution differently.

Our goal is to preserve the energy, so that irradiance due to the spherical light at an arbitrary
receiving surface point (or the fluence at an arbitrary volumetric point), which is outside the
spherical light, is the same as due to the original point emitter. This constrain does not neces-
sarily need to hold for receiving points that are inside the spherical light. The irradiance due to
a single, omni-directional point light reads:

E(x) = F
n(x) · w

4p kp� xk2 , (A.28)

where F is the power emitted by the point light placed at p, n(x) is the normal at the shading
point x, and w is the direction from x towards p. In the following sections, we present several
interpretations that satisfy these constraints.

A.5.1 Volumetric Sphere Light

In order to redistribute the energy of a point emitter, we can uniformly spread it through a
spherical, volumetric region S centered at the emitter. To compute the irradiance at x, we
integrate the radiance emitted by S along rays, which are confined to the solid angle WS (x)
subtended by S :

E(x) =
Z

WS (x)
(n(x) · w)

Z tfar

tnear
Le(xt!�w)dtdw, (A.29)
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(a) Volumetric
sphere light

(b) Encapsulating
transmissive sphere

(c) Beam radiance
estimation

(d) Emissive
spherical cap

Figure A.3: Four different options for spreading the energy of a volumetric point emitter. The energy can be
(a) uniformly spread throughout a spherical region, (b) spread by transmission through an encapsulating
sphere, (c) queried using a density estimation technique with a finite kernel, or spread over the surface of
a spherical cap shown in (d).

where xt = x + tw and:

tnear = th �
p

r2 � h2 (A.30)

= d cos f�
q

r2 � d2 sin2
f, (A.31)

tfar = d cos f +
q

r2 � d2 sin2
f; (A.32)

see Figure A.3.a for an illustration of the individual terms.

In order to express the emitted radiance, we first differentiate the power w.r.t the differential
solid angle; since the emission is directionally invariant, this amounts to dividing by 4p. Then
we uniformly distribute the intensity over the volume S of the spherical region, resulting in
a quantity that we refer to as the volumetric intensity density

⇥
W · sr�1 · m�3⇤. By integrating

this quantity along the segments of rays that originate at x and overlap with S , we obtain the
irradiance as:

E(x) =
Z

WS (x)
(n(x) · w)

Z tfar

tnear

F
4p

3
4pr3 dtdw (A.33)

=
3F

16p

2r3

Z

WS (x)
(n(x) · w) (tfar � tnear)dw (A.34)

=
3F

8p

2r3

Z

WS (x)
(n(x) · w)

q
r2 � d2(1� (wp · w)2)dw. (A.35)

While this equation is not quite the same as Equation (A.28), we empirically verified that the
irradiance due to the volumetric sphere light is the same as due to a point light, as long as x is
outside S .

A.5.2 Encapsulating Transmissive Sphere Light

Another option is to encapsulate the point emitter with a diffuse, perfectly transmissive sphere
S , see Figure A.3.b for an illustration. In order to compute E(x), we will integrate the incident
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radiance over the solid angle WS (x) subtended by the sphere:

E(x) =
Z

WS (x)
L(x w)(n(x) · w)dw. (A.36)

The incident radiance L(x w) can be expressed as radiance exitant from point y on the surface
of the sphere in direction �w: L(x  w) = L(y ! w), where y = r(x, w). Threating the
surface transmission of S as diffuse, we can factor the BTDF fs(w y w

0) out of the integral
and replace it with the hemispherical transmittance (i.e. the analog of albedo for transmission),
which for a perfectly transmissive surface equals 1/p. The remaining integral then expresses
the irradiance at the inner side of the sphere, which can be computed by dividing the power of
the point light by the surface area of the sphere:

L(y!�w) =
1
p

Z

H2
L(y w

0)(�n(y) · w

0)dw

0 (A.37)

=
1
p

E(y) (A.38)

=
F

4p

2r2 , (A.39)

where r is the radius of S . Inserting this expression into Equation (A.36) yields the final formula
for computing the irradiance at x:

E(x) =
F

4p

2r2

Z

WS (x)
(n(x) · w)dw. (A.40)

One advantage of Equation (A.40) over Equation (A.35) is that the integrand consists of only a
dot product; therefore, a numeric evaluation will be less expensive.

A.5.3 Blurring via Density Estimation

We can also gather the energy from a point emitter using a density estimation approach, e.g. the
beam radiance estimate [Jarosz et al. 2008b]. We shoot rays through the upper hemisphere at x,
find the closest point on the ray to p and perform 2D density estimation using a radius r. Using
a constant estimation kernel 1/pr2, the irradiance computed by a BRE can be written as:

E(x) =
F

4p

2r2

Z

WS (x)
(n(x) · w)dw, (A.41)

which yields the same equation as the encapsulating transmissive sphere.

Notice that the set of rays’ closest points to p form a spherical cap (see Figure A.3.d). Another
option for spreading the energy is to distribute it over a virtual, emissive surface of the spherical
cap. It can be shown that the cap has the area pr2 and subtends solid angle WS (x). Tracing rays
confined to WS (x) and gathering emitted radiance from the virtual, emissive surface of the cap
yields again the same equation as the BRE or the encapsulating sphere formulations.

Despite being conceptually different, all these formulations yield visually equivalent results.
However, using the BRE approach, we can rely on previous publications that provide converging
results with limited memory footprint. We can apply this theory to our case and progressively
reduce the size of the spreading region so that the inherent bias diminishes in the limit.
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estimator

biased, 41
Monte Carlo, 39
unbiased, 41

extinction, 24
coefficient, 18
cross-section, 18

field radiance, 10
finite element methods, 42
fluence, 9
fluorescence, 17
free path, 65
free path sampling, 26

generalized differential measure, 34
generalized geometry term, 34
generalized scattering function, 33
geometrical optics, 7
geometry term, 15, 49, 50, 53

bounded, 50, 51
generalized, 34
residual, 77, 78

Helmholtz reciprocity, 13
Henyey-Greenstein phase function, 19
heterogeneity, 23
heterogeneous medium, 25
homogeneity, 23
homogeneous medium, 23, 26

instant radiosity, 44
Metropolis, 48

irradiance, 9
irradiance caching, 43
isotropic phase function, 19, 90

law of reflection, 5
law of refraction, 5
level of detail, 124
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light transport equation, 15, 139
three-point form, 15

lightcuts, 55
bidirectional, 55
multidimensional, 55

lightslice, 56
Lorenz-Mie scattering, 21

majorant extinction coefficient, 28
many-light algorithms, 43–45, 49

scalability, 53
many-light rendering, 138
matrix row-column sampling, 55
mean free path, 26
measure

area, 8
projected area, 8
projected solid angle, 8
solid angle, 8
volume, 8

measurement contribution function, 34
medium, 8

anisotropic, 23
heterogeneous, 23, 25
homogeneous, 23, 26
inhomogeneous, 23
interaction with light, 15
isotropic, 23
multiple-scattering, 23
single-scattering, 23

Metropolis instant radiosity, 48
Monte Carlo

integration, 38
Monte Carlo estimator, 39

standard deviation, 39
variance, 39

Neumann series, 36

object split, 122
operator

bounded transport, 76
notation, 35
propagation, 35
residual transport, 76, 77
scattering, 35
transport, 36

optical thickness, 24

optics
electro-magnetic, 7
geometrical, 7
quantum, 8
wave, 7

path space, 34
path throughput, 34
phase function, 19

anisotropic, 19, 90, 92, 94
Henyey-Greenstein, 19
isotropic, 19, 90
Mie hazy atmosphere, 22
Mie murky atmosphere, 22
Rayleigh, 21
Schlick, 20

phosphorescence, 17
photon beams, 63
photon map, 43
polarization of light, 5
principle of least time, 5
product measure, 34
progressive photon beams, 98–101, 111
progressive photon mapping, 111
progressive virtual beam lights, 105–112,

115, 116
projected area, 8
projected solid angle, 8
projected surface area, 121
propagation operator, 35

quantum optics, 8

radiance, 10
equilibrium radiance, 14

radiant emittance, 9
radiant exitance, 9
radiant flux, 9
radiant intensity, 10
radiative transfer equation, 37
radiometric quantities, 9
radiosity, 9
rasterized bounding volume hierarchies, 3,

117–124, 126–136, 138
applications, 134
construction, 120
GPU construction, 127, 133
hybrid, 126, 135
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level-of-detail, 124
rasterization, 123
refinement criteria, 120
traversal, 126

ray marching, 25, 27
ray space, 8
Rayleigh scattering, 20

cross-section, 21
phase function, 21

reciprocity, 13
reflective shadow maps, 57
rendering equation, 14

area formulation, 15
hemispherical formulation, 14

residual light transport, 64
Russian roulette, 47, 48

scattering, 18
coefficient, 18
cross-section, 18
multiple, 23
operator, 35
order, 23
Rayleigh cross-section, 21
single, 23

scattering operator, 35
Schlick phase function, 20
sensor response function, 33
spatial median, 122
surface, 8

interaction with light, 12
surface area heuristic, 122
surface radiance, 10

transmission, 24
transmittance, 23, 24
transport

bounded, 77, 79
media-to-media, 88, 97–101, 110
media-to-surface, 88, 89, 95, 97–100, 108
residual, 77, 78, 80, 83
surface-to-media, 88, 89, 95, 100, 111
surface-to-surface, 89, 111

transport operator, 36

uncanny valley, 1

virtual beam lights, 3, 105–112, 115, 116, 137,
144

virtual point lights, 2, 43–46, 89, 97, 99–101,
112, 115, 116, 137

clustering, 54
generation, 46, 57
importance sampling, 57
interactive applications, 58
lighting, 49
temporal stability, 59
visibility, 58

virtual ray lights, 3, 85–93, 95–104, 107, 109–
112, 115, 116, 137, 141

virtual spherical lights, 52, 108–112, 115, 116
visibility term, 15
volumetric sphere light, 144

wave optics, 7
wave theory, 6
Woodcock tracking, 28, 29, 65
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