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Kurzfassung 

Das Wachstum von Lithiumdendriten in wiederaufladbaren 

Batterien verursacht nicht nur einen starken Kapazitätsverlust, 

sondern stellt wegen der Möglichkeit eines Kurzschlusses auch 

ein beträchtliches Sicherheitsrisiko dar. Hauptsächlich betroffen 

von diesem Problem sind Lithiummetall enthaltende, wiederauf-

ladbare Batterien; es können aber auch Lithium-Ionen-Systeme 

betroffen sein, obwohl diese ursprünglich entwickelt wurden, um 

die Dendritenproblematik zu umgehen. Dieses Phänomen ist nun 

schon seit mehr als 50 Jahren bekannt, dennoch konnten die in 

der Literatur vorgeschlagenen Lösungen weder das Sicherheits-

problem noch das Problem der geringen Kapazität gleichzeitig 

lösen. Trotz der umfangreichen Grundlagenforschung zu Dendri-

ten sind die zugrunde liegenden Mechanismen immer noch nicht 

eindeutig geklärt. In der vorliegenden Arbeit werden optische in-

situ-Untersuchungen durchgeführt, um neue Einsichten in die 

elektrochemische Abscheidung von Lithium zu gewinnen. Mit 

Hilfe der Daten aus diesen Experimenten und zusätzlichen REM-

Untersuchungen konnten Mechanismen des Dendritenwachstums 

auf verschiedenen Größenskalen identifiziert werden. Es stellte 

sich heraus, dass Nadeln das Frühstadium des verzweigten 

Wachstums sind. Diese Lithiumnadeln entstehen auf ver-

schiedensten Substraten und sogar während der Abscheidung aus 

der Gasphase, sodass die Elektrochemie als beherrschender 

Einflussfaktor in diesem Stadium ausgeschlossen werden kann. 

Nadeln wachsen während der elektrochemischen Abscheidung 

durch Insertion von Lithiumatomen an kristallinen Defekten, d.h. 

an der Basis, an der Spitze und an Knicken der wachsenden Struk-

tur. Sobald sich diese Insertionsdefekte vervielfachen und gleich-

zeitig aktiv werden, verzweigt sich die Nadel und geht in einen 

Busch über. In dieser Doktorarbeit werden detaillierte Beobach-

tung der Entstehungs- und Wachstumsmechanismen poröser 
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Lithiumabscheidungen beschrieben. Es werden außerdem zusätz-

liche Aspekte wie z.B. die Reversibilität (Abscheidung und Wie-

derauflösung) und der Einfluss des Elektrolyten auf das Wachs-

tum der Lithiumstrukturen behandelt. Die vorgestellten Ergebnis-

se könnten sich bei der Entwicklung von Strategien zur 

Vermeidung des Dendritenwachstums als nützlich erweisen. Das 

ist ein zentraler Punkt für die Lithium-Ionen-Systeme heutiger 

Bauart und für die Umsetzung zukünftiger Batteriekonzepte wie 

Li-S und Li-O. 

 



 

 
 

Abstract   

Lithium dendrite growth in rechargeable batteries not only causes 

strong capacity fading and a limited lifetime, it also causes severe 

safety concerns as dendrites can short-circuit the cell. Dendrites 

primarily affect lithium metal based rechargeable batteries, but 

also to some extent today‘s lithium-ion systems that were intro-

duced to circumvent this problem. Although this phenomenon is 

known for more than 50 years, none of the presented remedies 

are able to sustainably tackle both the safety issue as well as the 

low cycling performance. Despite the extensive research that has 

been performed on the fundamentals of dendrite growth, the 

underlying mechanisms are still not clear. In this work in situ light 

microscopy with unmatched spatial resolution was performed in 

order to obtain insights into lithium deposition. Data from these 

experiments together with SEM observations helped to identify 

mechanisms associated with lithium dendrites at different length 

scales. It was found that the early stages of the ramified structures 

are filaments. These lithium needles can form on various sub-

strates even during physical vapor deposition so that electro-

chemistry can be excluded as a governing factor at this stage. The 

needles then grow by a lithium insertion mechanism where 

during electrodeposition lithium is inserted at crystalline defects 

such as the interface at the base, at kinks, as well as at the tip of 

the growing structures. Once insertion defects multiply and 

simultaneously become active, branching occurs and the needle 

transitions into a bush. This thesis deals with the detailed obser-

vation and description of the mechanisms controlling formation 

and growth of irregularly shaped lithium deposits. It addresses 

aspects such as the effect of the electrolyte on the growth as well 

as the reversibility (deposition-dissolution) of the lithium struc-
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tures. The presented results may become useful in finding strate-

gies for preventing lithium dendrites, which is a key issue for 

current lithium-ion batteries but also future lithium metal based 

battery concepts such as Li-S and Li-O.  
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1 Introduction  

High levels of air pollution in cities and industrial areas as well as 

the rising awareness for environmental damage and climate 

change has given rise to a growing demand for emission free and 

environmentally friendly energy storage and conversion systems. 

The applications range from stationary storage systems for load-

leveling of solar cells and wind turbines to storage systems for 

electric or hybrid mobility. In addition to reducing emissions, 

another challenge for storage systems is the energy thirst of 

today’s portable electronic devices; currently, these systems 

already represent over one third of the overall product weight. 

Promising candidate technologies for these challenges are battery 

systems. So far, lithium-ion batteries have taken the lead role in 

electric cars as well as in laptops and smartphones. Fig. 1.1 shows 

a Ragone plot for different battery technologies, showing the 

superior performance of state-of-the-art lithium-ion systems 

(blue) in terms of weight and size(featuring cathode materials like 

lithium iron phosphate, manganese oxides and cobalt oxide) when 

compared to lead-acid or nickel-metal-hydride cells. These ad-

vantages have made lithium-ion batteries the market leader for 

mobile applications. Also for stationary applications, lithium-ion 

batteries are of very high interest due to their high cycle life as 

compared to the widespread lead-acid batteries.  

In lithium-ion batteries, independent of their cathode materi-

als depicted in Fig. 1.1, carbon-based anodes are commonly used. 

Pairing lithium metal instead of carbon-based anodes with current 

electrodes offers an improved specific energy (gravimetric) and 

an even more strongly improved energy density (volumetric) as 

indicated in Fig. 1. This is caused by the tremendous difference in 

theoretical capacity between pure lithium metal (3860 mAh g−1) 

and the carbon anodes used today (372 mAh g−1).[4] In addition, 
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lithium metal offers the lowest negative electrochemical potential 

of all elements with −3.040 V vs. a standard hydrogen 

electrode.[5] These facts make lithium metal the anode of choice 

and has led to wide spread use of lithium metal as anodes in 

primary (i.e. non-rechargeable) cells since their first commerciali-

zation in 1973 by Panasonic [6]. 

 
Fig. 1.1: Ragone plot: The specific energy (Wh kg-1) of different battery 
technologies plotted over their energy density (Wh l-1).[7-9] 

Unfortunately, lithium metal anodes show strong disad-

vantages when it comes to recharging the cell. They suffer from 

low Coulombic efficiency, low cycling performance as well as the 

danger of short-circuiting and subsequent thermal runaway. 

These drawbacks are mainly caused by the so-called dendritic 

deposition of lithium metal. During charging, lithium does not 
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form a flat, homogeneous layer on the anode, but instead creates 

various ramified structures generally referred to as dendrites that 

can be needle-like or branched. Due to this issue, lithium metal 

anodes in secondary (i.e. rechargeable) batteries have not seen 

wide-spread application – in contrast to lithium primary cells. 

Nonetheless, a lithium metal / MoS2 rechargeable battery was 

commercialized in the late 1980s by Moli Energy. It had a three-

fold excess of lithium to compensate for the low cycling perfor-

mance that causes continuous capacity loss during cycling. In 

1989 however, they were recalled due to safety issues as several 

of these battery systems vented under spurts of flame due to 

internal overpressure, probably caused by thermal runaway [10]. 

It was not until the early 1990s that Sony commercialized the 

first lithium-ion battery and replaced the lithium metal anodes by 

graphite – in principle the same type of anodes that are still used 

in today’s lithium-ion cells. With the graphite anode, Sony was 

able to circumvent the problem of lithium deposition, but sacri-

ficed the more electronegative potential of pure lithium 

(~0.2..0.1 V [11]) and the higher specific energy. Unfortunately, 

the problem of dendritic deposition of lithium can still be a prob-

lem in today’s systems, as the intercalation process into the graph-

ite can be too slow under certain conditions, which causes the 

lithium to be deposited in its metallic form onto the graphite 

surface. These conditions can be a low operating temperature 

which slows down the intercalation process, or a charge rate that 

is too high. An extreme case is the overcharging of the cell where 

the capacity of the cathode is in excess compared to the anode 

(bad capacity balancing or disconnections of parts of the anode). 

Under these conditions the graphite electrode cannot accommo-

date all of the lithium and plating will occur. 

Numerous product recalls of rechargeable lithium-ion batter-

ies have taken place within the last years, the most prominent 
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being the recall of Sony laptop batteries in 2006: An estimated 7 

million devices worldwide were called back to the factory by 

different laptop manufacturers, amongst them over four million 

recalled by Dell and 1.8 million by Apple. The most recent recall 

started in April 2014, when Sony called back Vaio Fit 11A laptops 

featuring a Panasonic battery pack. Although the origin of the 

overheating or fires in these batteries is usually kept a manufac-

turer secret, researchers have speculated that dendrites have 

caused the short circuits [12]. These shorts lead to rapid discharge 

and overheating. The most prominent case of lithium-ion battery 

problems were the series of fires that broke out on-board the 

Boeing 787 planes while being in mid-flight. This resulted in the 

grounding of the entire Boeing 787 in early 2013; dendrite for-

mation quickly came under suspicion and has been under investi-

gation by aviation safety investigators [13]. 

“Next generation” rechargeable battery systems that are cur-

rently under investigation are attempting to increase the energy 

and power per volume and per mass to reach values closer to 

current internal combustion (IC) based systems. These future 

systems include lithium-sulfur and lithium-oxygen cells. While 

lithium-oxygen has the theoretical potential to approach the 

specific energy of the gasoline tank of the IC system, lithium-sulfur 

is closer to commercialization[14]. However, for highest energy 

densities, both systems require a lithium metal anode and there-

fore will most likely also be affected by dendritic deposition. 

Even after over 50 years of research on this topic no techno-

logically viable solution to safely apply lithium metal anodes in 

secondary cells has been established and the shear amount of 

publications on this topic underline the unbroken research inter-

est. To date, the mechanisms underlying dendritic lithium deposi-

tion are still not clear. Several properties of lithium and lithium 

based cells make research on this topic very challenging: Lithium 
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has atomic number 3 and is the least dense solid element and 

therefore a weak scatterer for electrons and x-rays. This makes 

the determination of the crystal structure and orientation chal-

lenging. Lithium is highly reactive even under nitrogen. Common 

liquid battery electrolytes are volatile and opaque for electrons 

and prevent in situ studies of liquid systems e.g. by electron 

microscopy. As a result, even basic questions such as where a 

dendrite grows – by adding atoms to the tip, to the base or some-

where else – is still under debate today.  

 





 

 
 

2 Background 

2.1 Introduction to Lithium-ion Batteries  

The word battery is usually used to refer to – what is technically – 

an array of electrochemical cells. An electrochemical cell basically 

consists of two electrodes immersed into an electrolyte. These 

electrodes are made of an electrochemically active material and a 

current collector. The principle of a battery exploits the electro-

chemical potential difference between the active materials. In 

order to create a high cell voltage, the active materials should be 

selected accordingly as the potential difference gives the voltage 

of the cell. The negative electrode is referred to as the anode, the 

positive electrode as the cathode.1 The electrolyte acts as an 

electronic insulator and ionic conductor. A separator – mostly 

porous, ceramic- or polymer based and soaked by electrolyte – is 

placed between both electrodes to avoid the contact between the 

electrodes that would result in an electrical short-circuit.  

In a lithium-ion battery, graphite is commonly used as an an-

ode material and a transition-metal oxide or phosphate is used as 

a cathode material (see Fig. 2.1). The electrodes are typically 

manufactured by forming slurries of active material powder, 

binder and a solvent. A conductive powder – often carbon black –

is used to compensate for the rather poor electronic conductivity 

of the metal oxide cathode materials. In most cases the slurry is 

coated onto aluminum foil in the case of cathodes or on a copper 

foil in the case of anodes; these foils act both as mechanical sup-

                                                                    
1 However, this denotation is only correct during discharge as the chemical 
processes at the electrodes are reversed during charging. In the field of battery 
research, the negative and the positive electrode are always called anode and 
cathode respectively regardless of charging or discharging in order to avoid 
confusion. 



2 Background  

 
8 
 

port and as current collectors. After evaporation of the solvent, a 

porous film typically in the range of 50 to 200 µm remains. A 

certain degree of porosity in the film is desirable as it increases 

the interface area with the electrolyte. Porous electrodes have 

shorter solid state diffusion paths and with the help of the carbon 

black also better electronic conductivities. 

Both anode and cathode materials allow for the lithium ions to 

intercalate into their crystal structure, as sketched in Fig. 2.1. This 

means that the ions are reversibly inserted into the host structure 

of the active material without strongly altering the crystal struc-

ture of the host. In the charged state, the lithium atoms are stored 

in between the individual layers of the graphite. During discharge, 

the lithium atoms are deintercalated and dissolved at the anode. 

At the cathode, the lithium cations are inserted into the crystal 

structure of the positive active material; in commercial systems 

this can be for example a layered structure (e.g. LiCoO2), a spinel 

structure (e.g. LiMn2O4) or an olivine structure (e.g. LiFePO4). To 

compensate for the charge that is transported by the ion, an 

electron flows from the anode through the electrical wiring to the 

cathode. Inside the cathode, the lithium cation diffuses into an 

empty lattice site. There, also an electron arrives which is trans-

ferred to the transition metal so that the transition metal gets 

reduced. The electrolyte transports the positively charged ions 

(Li+) while the negative charged electrons (e-) are carried by the 

wiring. The electron current together with the cell voltage delivers 

the electrical power. During charge, the processes are reversed 

(transition metal is oxidized) and the cell acts as a sink so that 

energy is stored. The electrolyte is often not chemically stable 

against the electrode; hence a layer consisting of decomposition 

products of the electrolyte and the electrode forms on the elec-

trodes. This layer, the so called solid electrolyte interface (SEI) 

(see Fig. 2.1) is penetrable for lithium cations and can protect the 

electrodes and the electrolyte against further degradation.  
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In order to intercalate lithium into graphite, six carbon atoms 

are needed to accommodate one lithium atom. As a result, graph-

ite cannot reach the energy density and specific energy of a lithi-

um metal anode. Here, lithium metal can be directly electrodepos-

ited onto the anode and no additional material is needed to ac-

commodate it or to increase its electric conductivity. However, the 

capacity of today’s cathodes is still –by a factor of two –smaller 

than that of graphite anodes, which makes the cathode the bottle 

neck for lighter battery designs. Nevertheless, strong improve-

ments can be achieved in terms of volume by using silicon or 

lithium metal anodes. The smaller volume of the lithium anode 

also allows for smaller volumes of the electrochemically inactive 

components so that increases in volumetric energy densities at 

the cell level of more than 200 % are possible.[15] Unfortunately, 

both silicon and even more so lithium are not yet ready for com-

mercialization. 

2.2 Growth of Dendrites and Related Struc-

tures 

As the cause and the mechanisms of dendritic growth are still 

under debate, various theories and explanations were presented 

in the past. An overview is given in the following section including 

experimental results as well as theories of ramified or needle-like 

growth that have their origin outside of electrochemistry. The 

needle-like growth will be often referred to as one-dimensional 

growth in the following, while the ramified, branched growth will 

be often referred to as three-dimensional. 

The term dendrite, derived from the Greek word for tree 

(δένδρον déndron), describes a multi-branched structure and is a 

common form of solidification of metals, e.g. from the molten state 

or during electrodeposition. Dendrite formation during electro-

deposition was reported for various metals, e.g. silver [16] copper 
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[17] and zinc [17], 3D growth of tree-, bush-, moss- and even 

needle-like dendrites was found. However, these mechanisms 

have been verified usually based on aqueous electrolyte systems 

where no SEI formation is expected, so their applicability for 

lithium in nonaqueous systems needs to be verified. Various 

alternative theories have been developed to explain dendritic 

growth. The ones relevant for this work will be presented in the 

following. 

 

 

 

 

Fig. 2.1: Schematic of lithium-ion cell working principle. In the charged 
state, lithium is stored in between the graphite layers; during discharge, 
the lithium cation travels through the electrolyte to the cathode, while the 
electron travels through the electric wiring creating the electrical current 
that the cell delivers. At the cathode, the lithium atom is placed inside the 
crystal structure of the cathode material. The SEI is ion-conductive and 
prevents further degradation. 
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2.2.1 Ionic Concentration Gradient in the Electrolyte 

An important factor can be the ionic concentration gradient in the 

electrolyte. During deposition, the concentration of metal cations 

will drop at the negative electrode where these ions are removed 

from the electrolyte, while their concentration will rise above the 

initial value close to the positive electrode where metal cations 

enter the electrolyte. The limiting current density J* marks the 

current density an electrochemical system is able to sustain – 

theoretically – for unlimited time. In batteries, there is no stirring 

and no convection (since this is blocked by the porous separator), 

which means that the concentration gradient spans the whole 

electrode distance L. In this case and for a monovalent ion, J* is 

given by 

   
        

    
 (1) 

 
with   being the elementary charge,   the initial ion concen-

tration in the electrolyte,   the diffusion coefficient and     the 

anionic transference number.[5] This means that especially in 

dilute solutions or solutions with a low diffusion coefficient, the 

limiting current is smaller. When the limiting current is exceeded, 

the cell will supply this current only for a limited time. This time is 

called Sand’s time   and it marks the time when the ionic concen-

tration at the electrode drops to zero. It is given by 

       (
    
      

)
 

 (2) 

 

After this time, the potential diverges since no charge carriers 

are available anymore. Despic and Popov [18] identified the 

influence of a complete concentration polarization on the ramifi-

cation of the electroplated species. On this basis, Fleury et al. [19] 

and Chazalviel [20] established their own mathematical growth 
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model considering a binary electrolyte and found that once the 

ionic concentration has dropped to zero, the condition of electro-

neutrality in the electrolyte is violated at the negative electrode. 

This supposedly leads to local space charge, and as results rami-

fied structures are expected to form. These structures are predict-

ed to grow at the speed of the anion drift velocity in the electro-

lyte, which is given by  

va = µaE0 (3) 
 

with µa being the anion mobility and E0 being the local electric 

field. They are expected to form after Sand’s time. Brissot et al. 

[21] experimentally confirmed ramified structure growth at anion 

drift velocity in a lithium/PEO-LiTFSI/lithium cell and later they 

also observed that the electrolyte in the vicinity around dendrites 

was depleted of ions [22]. This model falls short in predicting the 

onset of dendritic growth under low current density conditions. 

Under these conditions, no Sand’s behavior is expected as the 

concentration gradient in the electrolyte is not steep enough; so 

according to the model, no dendrites are expected to form. How-

ever, Rosso et al. [23] found dendrites to form under these condi-

tions in a lithium/polymer/lithium cell. They attributed this to the 

existence of surface inhomogeneities on the lithium which they 

ascribed to specific properties of the PEO-LiTFSI polymer electro-

lyte. This way, fluctuations in the local current density can occur 

so that the ionic concentration at the electrode can drop to zero 

locally.  

According to equation (2) the current density J is an important 

influence factor. Rosso et al. [24] could show experimentally that 

the short-circuiting through dendrite growth in a lithium polymer 

cell appeared faster with increasing current density. They stated 

that the time until a short happens roughly scales with    . Ac-

cording to Crowther and West [25], the initiation time of dendritic 

growth scales with    . Orsini et al. [26, 27] found that with in-
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creasing current density, the morphology of the deposited lithium 

changed from moss-like to tree-like (they referred to it as dendrit-

ic) in a lithium polymer cell. Similarly, Dollé et al. [28] found that 

morphology changed from moss-like to needle-like with increas-

ing current density. In contrast to that, Brissot et al. [21] observed 

a change from needle-like to bush-like dendrites with increasing 

current density using the same polymer electrolyte. 

A moving, dynamic electrolyte should be able to relax the con-

centration gradient that can form in a stagnant electrolyte and 

should hence be able to reduce the tendency to grow dendrites. 

Accordingly, it could be shown that an impinging flow of electro-

lyte could suppress the formation of dendrites during zinc elec-

trodeposition in contrast to a stagnant electrolyte under the same 

working conditions.[29] The influence of a moving 1 M LiPF6 in 

EC/DMC electrolyte by using a magnetic stirrer was also investi-

gated. At a current density of 2 mA cm-2 smooth, hemispherical 

plating of lithium was observed, while static conditions gave 

dendritic deposition, even at 0.5 mA cm-2. An improved cycling 

efficiency when compared to a stagnant electrolyte was also 

reported.[30] Crowther and West [25] observed a delayed den-

drite initiation time in their microfluidic setup with the electrolyte 

flowing in plane with the electrode surface. This effect was not 

depending on the electrolyte that was used. They also reported 

that dendrites in a stagnant electrolyte would branch more quick-

ly and more often. 

 

Based on a simulation with a coarse-grained lattice model, it 

was suggested that pulse charging could be applied to the electro-

deposition of lithium metal as an attempt to suppress dendrite 

formation.[31] It was argued that dendrite formation is the prod-

uct of a competition between lithium-ion diffusion in the electro-

lyte and the reduction process on the electrode. According to the 

model, the pause between two pulses can successfully shift this 
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competition in favor of the ion diffusion. Thus, it can reduce the 

overpotential at dendrite branches as it relaxes the ionic concen-

tration depletion that has formed there. 

 

Solvent in salt 
 

A new class of electrolytes for the application in lithium sulfur 

cells that was reported to suppress dendritic growth and to im-

prove the cycling efficiency was created by Suo.et al.[32] This new 

class was a solvent-in-salt electrolyte that provided an ultrahigh 

salt content up to 7 mol/l and high lithium-ion transference 

number. They further showed that lithium polysulfide dissolution 

is inhibited, which means they were able to overcome the ‘poly-

sulfide shuttle phenomenon’. However, it was remarked that ”too 

high a salt concentration will lead to increased cost and weight so 

an optimized salt concentration needs to be identified for practical 

applications [5]”. 

2.2.2 SEI Non-uniformity 

The SEI can reach thicknesses of up to several tens of nanometers 

depending on current density, electrolyte and the electrode [33], 

has a “non-negligible” mechanical strength and a complex, inho-

mogeneous composition. Hence, it might not be appropriate to call 

this layer an interface, as an interface is only two-dimensional by 

definition. The word interphase appears to be more suited as it 

better represents the three-dimensionality of the SEI and its 

properties. Basically two views about the morphology of the SEI 

exist in the literature.[34] Some authors describe it as a two layer 

system, with the lower layer closest to the substrate being crystal-

line, dense and mostly comprised of lithium salts. The upper layer 

is described as rather soft, porous and dominated by polymeric 

content.[35] Other authors describe the SEI as “a mosaic-type, 

multilayered structure” [36] formed by the simultaneous reduc-
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tion of the salt (forming the crystalline salt precipitates) and the 

solvent (forming the polymeric components) without a distinct 

separation between the upper and lower layer.  

Based on the latter theory, Cohen et al. proposed [36] a den-

drite growth model based on the inhomogeneous nature of SEI. 

They argue that in a nonaqueous solution, the SEI is intrinsically 

non-uniform on the nanometer and even on the micrometer scale. 

This causes localized deposition and stripping at parts of the SEI 

that have a higher ion-conductivity, either due to a smaller thick-

ness or due to more ion-conductive composition. This results in a 

stress between the shape changing lithium layer and the SEI on 

top. For high current densities, the SEI might not be able to with-

stand the induced stress and cracks, which exposes an area of the 

lithium without SEI, thereby increasing the localization even 

further. During stripping, the inhomogeneous current distribution 

causes deep pits in the lithium, and for plating this can be the 

cause for dendritic growth. 

Accordingly, adequate SEI design could help to prevent den-

dritic growth. The electrolyte strongly influences the SEI composi-

tion of an electrode, as the SEI mainly consists of the decomposi-

tion products of the lithium, the solvent and the Li salts of the 

electrolyte. Consequently, the influence of different salts, solvents 

and additives has been studied. 

Salts 

The composition of areas of the SEI that are closer to the substrate 

is dominated by the decomposition products of the anions of the 

Li salts. These products are mainly inorganic salts. It is assumed 

that if these salts form a strong and homogeneous layer, they 

might be able to suppress dendritic growth.[5] Aurbach and 

Cohen [37] used AFM and compared the influence of LiClO4 and 

LiPF6 salts on the morphology of Li electrodeposited onto a Cu 
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substrate. They found that LiPF6 created a more uniform deposi-

tion. They attributed this to the more homogeneous nature of the 

SEI formed in LiPF6. While LiClO4 creates a surface film that 

mainly consists of ROCO2Li (R is an organic group depending on 

the solvent), Li2CO2, Li halides and LiOH-Li2O, the surface film in 

LiPF6 mainly consists of LiF.[38] They later compared the perfor-

mance of both salts with LiAsF6 salt in a PC solution and found 

that LiAsF6 creates even smoother surfaces and consequently lead 

to a higher cycling efficiency.[39] A newly developed 

LiN(C2F5SO2)2 (LiBETI) salt was reported to be superior in terms 

of cycling efficiency and cycle life in comparison to – amongst 

others – LiPF6 salt in a PC solution. It was stated that the LiBETI 

salt formed a surface film that consisted mainly of LiF similar to 

LiPF6 and also gave a similarly smooth and hemispherical Li 

layer.[40] 

Solvent 

A wide range of organic solvents has been investigated. It was 

found that – in combination with LiClO4, LiPF6, LiAsF4 and LiBF4 

lithium salts – only the two ethers DME and DEE and the four 

esters PC, EC, DMC and DEC offer an oxidation potential in a Li 

metal battery with a LiMn1.9Co0.1O4 cathode which is high 

enough.[41] Amongst all possible combinations of solvent and 

salts, an even mixture of EC and DMC showed the highest cycling 

performance using 1 mol/l LiPF6.[41] Crowther and West showed 

that the initiation of dendritic growth could be delayed with a 

lower PC content in a PC/DMC based electrolyte using lithium 

bis(trifluoromethane sulfonyl) imide (LiTFSI) as salt.[25] Xu et al. 

listed the average Coulombic efficiency of several solvents report-

ed in the literature.[5] Even though many of the tested solvents 

reach values well above 95 % Coulombic efficiency, they show 

weak cycling performance and fail to prevent internal short 

circuits caused by dendritic growth. 1,3-dioxolane (DOL) in com-
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bination with LiClO4 however, as reported by Aurbach et al. [42], 

shows an outstanding cycling performance and was found to 

successfully suppress dendritic deposition of lithium. This was 

attributed to the high elastomeric content in the SEI, which makes 

it flexible enough to withstand the volume changes in the lithium 

electrode during cycling without cracking, in contrast to other SEI 

layers formed in different solvents.[43] 

Additives 

Large efforts were put into the search for electrolyte additives 

suppressing dendrites, as the selection of solvents and salts is 

comparably small. Amongst many, HF was intensively investigat-

ed [5]. Similar to the fluoride containing salts like LiPF6, HF en-

hances the formation of a homogeneous distribution of LiF and 

LiO2 on the lithium surface which leads to smooth and hemispher-

ical deposition of lithium. However, this protective effect wears off 

after several cycles, as the SEI is eventually too thick for HF to 

reach the electrode surface.[44, 45]  

Although vinylene carbonate (VC) was reported to decrease 

the cycling efficiency in combination with LiClO4 salt and PC 

solvent [46], it improved the cycling efficiency at ambient and 

higher temperature in EC/DMC based electrolytes independent of 

the salt used [47]. However, this study also showed that VC wors-

ened the cycling efficiency and lead to a thicker surface film at 

0 °C. 

Metal ions such as Sn4+, Sn2+,Al3+, In3+,Ga3+ and Bi3+ with a high-

er reduction potential than Li were also found to improve the 

Coulombic efficiency and suppress dendritic growth.[48-50] 

These metal ions are reduced on Li and are expected to alloy with 

it, forming a thin alloy layer on the lithium electrode, preferential-

ly at active points of the surface were dendrite would have formed 

otherwise. The co-deposition of Mg [51], Na [52] or K [53] was 
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also observed to improve the deposition quality. They do not alloy 

with lithium, but are expected to deposit on specific crystal faces 

of the lithium that are especially active and could lead to dendrite 

formation. 

2.2.3 Spherical Diffusion 

Barton and Bockris [16] studied the growth of silver dendrites in a 

solution of AgNO3 in an equimolar mixture of molten NaNO3 and 

KNO3. They proposed a model for dendrite growth below the 

limiting current based on the fact that deposition from a liquid 

electrolyte will be faster on thinner and elevated parts of the 

surface as they will benefit from a spherical diffusion. While on 

ideally flat surfaces linear diffusion conditions will dominate, a 3D 

diffusion will be dominant for protrusions. For a spherical diffu-

sion (spherical symmetry), the highest current densities and 

fastest growth occur at the dendrite tips with the smallest radius. 

Since experimental results report a round or flat tip with a rather 

constant diameter of the dendrite, they introduced the surface 

energy to counteract the tendency towards infinite narrowing of 

the tip and to limit the growth rate. The growth speed   of a 

dendrite growing at its tip is 

          ⁄  (4) 
 

with    being the local current density at the tip,    being the 

molar volume of the dendrites, z is the valence and   the Faraday 

constant. They also predicted the existence of a tip radius at which 

the growth speed is maximal.  

Monroe and Newman [54] and Akolkar [55] expanded the 

model of Barton and Bockris to allow for changing ionic concen-

tration in the electrolyte. Monroe and Newman’s one-dimensional 

model of a single isolated needle predicts that a dendrite acceler-

ates with time and traversed distance. It is also predicted to grow 
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faster for higher current densities, and can be slowed down by 

reducing the current during the plating process. They used the 

simplification that the tip is hemispherical and static. 

2.2.4 Edge Effect in Electric Fields 

It is well-known that the charge carriers in an electrically charged 

volume will not distribute evenly across the volume, but will show 

a higher charge density close to the surface of the volume. The 

charge density will become even higher at protrusions. This was 

suggested to lead to a stronger electric field at these protrusions. 

In the case of protrusion on a charged electrode surface inside an 

electrochemical cell, it is argued that it is the locally enhanced 

electric field is what is causing dendrite growth by preferred 

plating at the tip of the protrusion rather than on the substrate 

surface.[56, 57] This effect is expected to be self-enhancing, as 

plating at a protrusions tip further increases the protrusions 

length, and hence increasing the local electric field. [57] 

Based on this dendrite growth theory, Ding et al. have suggest-

ed a dendrite suppression mechanism, called self-healing electro-

static shield (SHES).[57, 58] According to them, metal ions like Cs+ 

can be added to the electrolyte in such a low concentration that 

their reduction potential remains below the reduction potential of 

Li+. So instead of depositing, the Cs+ cations are expected to be 

adsorbed at the electrode surface as they are attracted by electro-

static forces; this creates a layer of cations that repels the also 

positively charged lithium cations. Due to the edge effect in elec-

tric fields, the electrostatic force is higher at protrusions than at 

recessions or flat surfaces. This is then expected to cause accumu-

lation of the foreign metal cations at these protrusions, which 

actively shields further deposition of lithium at protrusions – 

particularly at dendrites and directs the plating towards recessed 

and flat areas. In an experiment, a smooth lithium deposit was 
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obtained in 1 M LiPF6 in PC with CsPF6 concentrations of 0.01 and 

0.05 M.[57, 58] A closer inspection of the supplied SEM images 

still shows the evolution of roughness. The achieved Coulombic 

efficiency is very low due to the PC-based electrolyte, and due to 

the narrow potential window between the reduction of Cs+ and 

Li+, the current density must be kept low.[58] 

2.2.5 Statistical Roughness Evolution 

Even though the kinetic roughening – a common effect in statisti-

cal mechanics [59]– cannot be responsible alone for dendritic 

growth, it can still be a trigger for dendritic growth by statistically 

creating protrusions on an electrode surface. Several theories 

were proposed that rely on the existence of initial surface protru-

sions, e.g. ionic concentration gradient in the electrolyte or the 

edge effect in electric fields, which could be provided by this 

effect. Kinetic surface roughening during chemical vapor deposi-

tion follows statistic rules; and hence surface roughness increases 

with increasing deposition thickness until the surface roughness 

reaches a steady state. Cuerno et al. have shown that their simula-

tion results of kinetic roughening for chemical vapor deposition 

can also be applied to galvanostatic electrodeposition.[60, 61]  

2.2.6 Whisker-like Growth 

A model that considers the onset of dendritic growth as whisker 

growth process was put forward by Yamaki et al. [62] based on 

the observations made in an electrolyte of LiAsF6 in EC/2MeTHF. 

They suggested that lithium dendrites grow from the base, and 

after a while they saw deposition of lithium at the tips and kinks 

of dendrites. They believe that lithium ions get plated non-

uniformly underneath the SEI due to locally higher ionic conduc-

tivities. This creates a stress between the SEI and the underlying 

lithium substrate. The lithium metal reliefs the stress by atom 
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transport, but this transport is conditioned by the surface tension 

of the curved lithium surface and the SEI. Eventually the SEI 

cracks open and the lithium metal is then able to relief the stress 

by extruding trough the crack. This causes the formation of nee-

dle-like lithium. They stated that this process is similar to tin 

whisker formation due to compressive stresses, and that the 

formation of kinks of the needles is also known for whiskers. Once 

the electrode surface is densely covered by lithium needles, ionic 

transport to the surface is hindered, and lithium is plated directly 

onto the needle, preferably at the kinks or tips. In this process the 

morphology changes to – what they call – a mushroom-like 

shape.[63] Their mathematical model predicts that if the creep 

strength of the whisker is smaller than the pressure caused by the 

surface tension, the needle will become instable. This would make 

it desirable to increase the surface tension to create particle-like 

deposits instead of needles.[62] 

2.2.7 Other Countermeasures 

The aforementioned influence factors deal with electric fields, 

diffusion inhomogeneities or electrolyte/SEI aspects, i.e. they are 

tackling the dendrite problem directly by targeting underlying 

mechanisms. Nevertheless further research has been performed 

on how lithium plating can be influenced indirectly. A selection of 

this literature is summarized below.  

Increased Shear Strength: Gel, Solid Electrolytes 

Mechanical means of dendrite suppression have been studied. 

These means reach from increasing the shear modulus of the 

liquid electrolyte over the usage of dense separators to the appli-

cation of solid electrolytes. Fumed silica added to the electrolyte 

was reported to form a continuous network that is able to restrict 

dendrite growth and to scavenge impurities from the electroly-

te.[64] The same mechanical suppression effect was reported for 
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gel-type electrolytes.[65] Solid polymer electrolytes, especially 

PEO-based electrolytes, combine high mechanical resistance with 

a high chemical stability against lithium.[66] However, their ionic 

conductivity is limited at room temperature and therefore need to 

be heated to allow for acceptable cycle rates which decreases their 

mechanical stability.[67] Dollé et al. [28] observed dendrites that 

penetrated the polymer electrolyte and short circuit their PEO / 

LiTFSI cell system. 

Stack pressure 

Applying mechanical pressure on the cell in is known to improve 

the cycling efficiency. It is assumed that the structural confine-

ment prevents lithium dendrites from getting isolated from the 

electrode during lithium dissolution (i.e. during discharge in 

terms of a cell) by pushing them back into the lithium electrode, as 

lithium metal is soft (modulus Elithium= 5 GPa) and very easily 

deformable.[68] The solid electrolyte and the mechanical force 

represents a growth restriction for growing dendrites and hence 

counteracts the growth away from the electrode.[69] 

Operating temperature 

Two different effects of the operating temperature on the cycling 

behavior of lithium electrodes have been reported and are appar-

ently contradicting. Park et al. [70] reported that increasing the 

cell temperature from -5 °C to 35 °C also increased dendrite 

growth speed and hence decreased the cycle life of the cell. They 

used a 1 M LiPF6 in the volume ratio of 1:1:1 for ethylene car-

bonate (EC), dimethyl carbonate (DMC), and ethyl methyl car-

bonate (EMC) electrolyte solution. In contrast to that, Mogi et al. 

[71] found that increasing the operating temperature to 80 °C 

increases cycling efficiency and forms smoother deposits. They 

argued that in the 1 M LiBETI/PC electrolyte they used and at 

elevated temperature, the SEI forms faster during the first cycle 
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and also repairs itself faster upon prolonged cycling. Li et al. [72] 

commented on both results and concluded that the elevated 

temperature can have two counteracting effects on the cycle life. 

While the increased temperature expedites SEI formation and 

repair, it also increases lithium ion diffusivity which might accel-

erate dendrite growth. Which effect becomes dominant would 

then be determined by factors like the type of electrolyte. 

2.2.8 Non-Electrochemical 1D Growth Mechanisms 

Several growth mechanisms in metals for one-dimensional struc-

tures have been reported. These are not directly related to lithium 

or to electrodeposition but the underlying mechanisms are men-

tioned here since they may have some applicability for the elec-

trodeposition of lithium. On the one hand, some of these mecha-

nisms cause filaments to grow accidentally and pose an unwanted 

reliability and safety issue. On the other hand, some of the mecha-

nisms are applied on purpose to manufacture filaments.  

Whiskers 

The most prominent accidental 1D metal growth is the tin whisker 

growth at solder points. These whiskers can reach lengths in the 

millimeter range. They tend form spontaneously after extended 

periods of time. The underlying mechanism was described as 

combination of the formation of an intermetallic phase, stress 

relaxation and long range atom diffusion along grain boundari-

es.[73] At a solder joint, tin as the soldering material forms a layer 

over the copper wiring of the electric circuit. At the copper/tin 

interface, an intermetallic layer begins to form, causing mechani-

cal stress in the tin layer due to the asymmetric interdiffusivity of 

Cu and Sn. The tin layer releases stress by long range atom 

transport out of the compressive areas via grain boundary diffu-

sion. Grain boundaries with a horizontal component allow for the 

incorporation of atoms at lower stress than vertical grain bounda-
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ries (of e.g. columnar grains). The grains at the tin surface that are 

associated with the boundaries with horizontal component then 

become pushed upwards, as more and more atoms are deposited 

at their grain boundary. Consequently, the resulting whisker is 

growing from its base and has the diameter of the grain where it 

originated. For other materials, the mechanism of stress relief by 

material transport over grain boundaries towards the surface 

might also be applicable.[74]. Whiskers were also observed for 

cadmium, zinc [74], silver [75], gold [76], aluminum [77], lead 

[78] and indium [78]. 

Vapor-liquid-solid method (VLS) 

Driven by the miniaturization of electronics, sensors and optics, 

research has been devoted towards the controlled fabrication of 

1D metal and semi-conductor structures. A very common tech-

nique in this field is the vapor liquid solid method (VLS). The VLS 

method for nanowire growth will be explained by using the exam-

ple of a common fabrication route for silicon nanowires.[79] Small 

droplets in the nanometer range of a metal that is known to alloy 

with silicon (usually gold) have to be finely dispersed on a silicon 

substrate. The substrate is then heated above the eutectic temper-

ature of the Si-Au alloy which allows the formation of eutectic Au-

Si liquid alloy droplets. Impingement by silane then leads to a 

supersaturation of the liquid alloy with silicon that causes the 

excess silicon to precipitate underneath the droplet. This way, a 

silicon nanowire with the diameter of the droplet is growing 

underneath the liquid alloy droplet. This process is also applicable 

for growing nanowires of e.g. Ge, SiC and ZnO.[80] Lee et al. [81] 

discovered the method of oxide-assisted growth that uses silicon 

oxides instead of gold as a nucleation point. With this method 

silicon nanowires can be grown without metal impurities. 
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Nanowhisker growth by PVD  

A way of growing one-dimensional metal nanostructures without 

mechanical stresses or alloying was introduced by Richter et al. [6, 

82] They used various heated substrates (e.g. oxidized silicon 

wafers and tungsten foils at about 0.65 Tm of the whisker materi-

al) and covered them by a 30 nm thin carbon layer. Physical vapor 

deposition (PVD) of a metal onto the substrates resulted in the 

growth of a wide range of metals nanowhiskers. Based on the 

model theory of Ruth and Hirth [83] they identified the carbon 

coating as the key factor in their observed growth mechanism: 

Two different surfaces are needed to initiate the nanowhisker 

growth. One is the carbon coating that spreads over the majority 

of the substrate and represents an area with a low surface energy 

and high interface energy with the deposited whisker material 

[82] The carbon coating does not create a continuous layer, so the 

small fraction of the substrate that was not covered by carbon 

serves as an area of high surface energy combined with low 

interface energy with the deposited material. These holes in the 

carbon coating that reveal the substrate then act as nucleation 

point for the deposited whisker material.[6] Once the lateral 

growth of the nuclei reaches the boundary of the carbon layer, the 

high interface energy between the substrate and the deposited 

material then starts to hinder further lateral growth. It is im-

portant that the metal of choice does not wet the carbon layer; in 

the case of cobalt which wets carbon no whiskers were observed. 

However, they were able to grow cobalt nanowires on a CaF 

substrate, as CaF is not wetted by cobalt.[82] 

2.2.9 Summary and Motivation 

Many explanations for the formation and growth of whiskers 

exist. Some of the attempts even contradict each other and some 

are not compatible with the published experimental results: The 
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models based on the ionic transport in solution (spherical vs. 

planar diffusion, concentration gradient, edge effect) assume that 

a dendrite grows at its tip. The observations of Yamaki et al. [62] 

and Crowther and West [25] clearly demonstrate that the growth 

does not occur exclusively at the tip, however, their observations 

were limited to dendritic bushes. Yamaki et al. proposed the only 

theory describing the growth from the base, but has been criti-

cized by Monroe and Newman [54] for their questionable assump-

tions on the flow behavior of lithium. In addition, they did not 

observe elongation by deposition at the tip, and consequently 

their model does only incorporate growth at the base. However, 

Crowther and West [25] suggested that both growth locations are 

active for dendrite bushes. The exact locations of the growth 

points have not been determined so far, in particular, for the 

simplest case of needles. 

It was clearly shown by the experimental results that the cur-

rent density has a major influence on dendrite formation and 

growth, but the exact predictions for different current densities 

are contradicting. While Dollé et al. [28] found that the morpholo-

gy changes from moss-like to needle-like with increasing current 

density, Brissot et al. [21] observed the opposite namely less 

needles and more bushes/moss at higher current densities. The 

growth speed of dendrites was also clearly shown to be linked to 

the current density, but the growth speed predictions are also 

contradicting. For example, Barton and Bockris [16] predict a 

constant dendrite growth speed that is proportional to the current 

density. Monroe and Newman [54] also predict higher growth 

speeds with increasing current density, but they expect the den-

drite growth to accelerate over time. Chazalviel et al. [20] calcu-

lated a dendrite growth speed that is proportional to the electric 

field, but does not change with time. 
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Electrolyte composition and additives have also shown to have 

a major influence on dendrite growth. However, although a high 

number of electrolyte compositions have been investigated, the 

success in suppressing dendrites is rather limited. Aurbach et al. 

stated that there is no way a lithium electrode can be passivated 

well enough by careful electrolyte design so that it would be able 

to compete with graphite-based anodes during cycling at high 

rates.[84] 

2.3 Objectives of This Work 

Lithium dendrite growth is known since the 1960s, but despite all 

effort that was put into mitigating this problem, it still prevents 

the commercialization of lithium metal anodes and also haunts 

today’s lithium-ion systems. The attempts of suppressing the 

formation and growth have only shown little success as the un-

derstanding of the fundamentals of this problem is still very 

limited. As it was recently put, “future work (…) needs to focus 

more on addressing the origin of the problems instead of only on 

consequences of the problems” [5], since the literature on this 

topic is contradicting even on rather basic questions. 

The experimental evidence of this phenomenon is often based 

on light microscopy observations. Due to the high refractive index 

of the electrolyte and the rather poor optical conditions in the test 

cells, the spatial resolution of the data in the literature is not 

adequate for identifying microscopic effects. The aim of this work 

is to develop optimized in situ cells for light microscopy and 

observe the lithium plating process at the highest spatial resolu-

tion. The aim is to study the mechanisms behind dendrite growth 

and to find possible strategies to suppress dendrite growth. 

Chapter 4 addresses the surfaces on lithium deposits and gives 

indications on the growth direction of needles. In chapter 5, the 

controversial question at which sites lithium dendrites grow is 
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treated by studying the example of lithium needles. Video record-

ings of unmatched resolution were obtained in dedicated cells 

optimized for light microscopy. A detailed insertion mechanism is 

described in this chapter to explain the observed growth. Chapter 

6 deals with larger scale lithium deposits in the form of bush- or 

moss-like dendrites and investigates their growth and dissolution. 

Chapter 7 focuses on the influence of the substrate on the deposi-

tion behavior and further elucidates the role of the crystal lattice 

of the substrate on the formation and growth of needles. In chap-

ter 8, the role of electrochemistry is investigated by comparing 

deposits created by thermal evaporation with electrochemically 

deposited structures. 

The entire chapters 5 (see [1]) and 6 (see [2]) are already pub-

lished as articles in peer reviewed Journals. Chapter 8, apart from 

the footnote concerning substrate grain orientation, has been 

submitted (see [3]). 

 



 

 
 

3 Experimental 

3.1 Substrates 

Lithium deposition was carried out in different setups on various 

substrates. The substrates needed to be electrically conductive 

and electrochemically stable down to -3.04 V vs. a standard hy-

drogen electrode (the electrochemical potential of lithium). In 

addition, surface oxides as well as surface roughness had to be 

avoided to exclude their influence on the deposition. Consequent-

ly, three different substrate types were mostly used (Fig. 3.1). The 

first substrate type was tungsten films (image a). These films were 

created by sputter-depositing tungsten to a thickness of 10 nm 

onto borosilicate microscope slides. Various shapes of the sub-

strate could be realized by the lift-off technique (with scotch tape) 

as well as by cutting the microscope slide to shape with a diamond 

glass cutter. Using a Leica transfer shuttle, the substrate could be 

transferred from the sputter coater to the glove box without 

contact to atmosphere. The other substrates were copper sub-

strates. They were either cut into rectangular shape (image b, 

similar to the tungsten film samples) or lathed from a copper rod 

(Alfa Aesar, Puratronic 99.999 %) into a round, hat-like shape 

(image c). The hat shape allowed the transfer into an STM (Uni-

versity Ulm) as well as the fixation of these samples in a home-

built polishing holder (Fig. 3.2). This polishing holder secured the 

samples mechanically which allowed grinding and polishing the 

samples without the need for gluing or embedding into a resin (as 

it was needed for the rectangular copper samples). This helped 

avoiding contamination of the samples and the cell with residual 

polymers. The holder was also designed to be used in the vibrato-

ry polisher. In order to reduce surface oxides, the copper samples 

were exposed to a forming gas atmosphere (5 % H2 und 95 % Ar) 
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at about 250 °C for 15 minutes. This was performed in the large 

load lock of a glove box, so that contact with the atmosphere after 

the reduction of the oxides could be avoided. 

 

   

Fig. 3.1: Substrates used for electrochemical deposition of lithium. Image 
a) shows a structured tungsten film on a borosilicate substrate, b) shows 
a rectangular copper substrate and c) a hat-shaped copper substrate. 

 

   

Fig. 3.2: Two-part polishing holder for three hat-shaped samples (a). The 
lower part (b) has three apertures to accommodate the samples; the 
sample screws are screwed into the upper part and push the samples into 
their apertures. The other screws secure the lower part against the upper 
part. The samples protrude about 1 mm from the holder in the unpol-
ished state (c). 

 

sample screws hat samples 

a) b) c) 

a) b) c) 
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3.2 Electrolytes 

Mainly two different electrolytes were used. The first one was a 

1 M solution of LiPF6 in a 1:1 weight ration mixture of EC and 

DMC. This is a standard electrolyte for lithium-ion batteries and is 

a commercial electrolyte sold by BASF under the product name 

LP30. According to the manufacturer, the hydrofluoric acid con-

tent is below 50 ppm and the water content below 20 ppm. The 

second electrolyte was a 1 M solution of Li[CF3SO2)2N] (LiTFSI) 

in 1,3-dioxolane (DOL): dimethoxyethane (DME) (1:1 by volume) 

provided by BELLA (Battery and Electrochemistry Laboratory) 

with less than 20 ppm of water as determined by Karl Fischer 

titration. While LiPF6 electrolytes form a more salt-based SEI, 

LiTFSI salt based electrolytes are expected to form a more sol-

vent-based SEI.[85] In addition, DOL was reported to form a more 

flexible SEI on the anode due to the high elastomer content.[43] 

Consequently, LiTFSI-in-DOL electrolytes are well suited for 

anodes that undergo strong volume changes (silicon) or strongly 

localized volume changes (lithium metal, especially in Li-S sys-

tems), since a flexible SEI is required to ensure reliable pas-

sivation of the electrode during prolonged cycling. For Li-S sys-

tems, DME is added as it offers a higher polysulfide solubility and 

faster polysulfide reaction kinetics than DOL, while DOL is still 

needed as it forms a more stable SEI.[86] In addition, most other 

common electrolyte solvents were reported to react with the 

polysulfides.[87] These two very distinctly different electrolytes 

were chosen in order to investigate the effect of the electrolyte 

and the SEI on the deposition. 

3.3 Ex Situ Cell 

Conventional Swagelok cells could not be used for ex situ deposi-

tion experiments, as they require mechanical pressure on the 

electrodes and a separator which would both interfere with the 
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growth of dendrites. Therefore, a home-build cell setup was 

designed to be operated inside the glove box (Fig. 3.3). In this 

setup the substrate was immersed into the electrolyte inside a 

beaker without any restriction for the dendrite growth. However, 

this design led to the following problem: The electrolyte solvents 

are volatile, so an open cell setup could not only lead to a contam-

ination by possible impurities in the glove box atmosphere, but 

more importantly to a decreasing electrolyte level and as a result 

to an increasing salt concentration. Therefore, the system was 

designed to be gas tight while maintaining easy working electrode 

replacement. In addition, the amount of gas volume inside the cell 

was minimized to cause the gas pressure inside the cell to rise 

faster during solvent evaporation keeping the evaporation to a 

minimum. 

The working electrodes in our setup were the copper and 

tungsten substrates (see 3.1). They could be dipped vertically into 

the electrolyte or they could be inserted with their surface in 

parallel to the electrolyte surface creating a hanging meniscus. In 

the case of the vertical insertion, a higher current concentration 

and increased deposition on areas of the substrate close to the 

electrolyte surface were observed. Although the exact reason for 

this could not be determined, it was probably related to effects 

similar to the “coffee ring” effect.[88, 89] Using the hanging me-

niscus technique, this effect could be circumvented and homoge-

nous covering of the surface was obtained. 

Lithium metal foil (1 mm thick, 99.9 % from Alfa Aesar) was 

used as counter and reference electrodes. Measuring the potential 

between the reference and the working electrode instead of 

measuring the potential between the counter and the working 

electrode allows the accurate measurement of potentials by 

excluding the potentials drops from the Ohmic resistance deriving 

from the electrolyte or from the counter electrode surface layer. A 
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third lithium metal electrode was used in order to validate the 

potential of the other lithium metal electrodes. This way, a faulty 

or contaminated lithium electrode could be easily identified and 

replaced.  
 

 
 

  

   

Fig. 3.3: Ex situ cell setup. A borosilicate beaker (a) is used as a container 
for the electrolyte; the lid (b) seals the beaker (with an O-ring) and has 
four holes for electrode feedthroughs. The thinner part of the lid reaches 
into the beaker and fills up most of its volume to reduce the amount of 
gas inside. Three copper rods (c) are screwed into the lid as fixed feed-
throughs for the lithium electrodes. A pipe connector (c) serves as a 
fixation and seal for the sample holder (e and also Fig. 3.4). The substrate 
holder has a slit where tungsten-film substrates can be fitted (f). With this 
holder, the substrates are dipped vertically into the electrolyte. Li metal 
electrodes are screwed into the Li electrode contacts (f). 

substrate 

holder 

substrate 

Li electrode 

contacts 

a) b) c) 

d) e) f) 
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Fig. 3.4: Sample holder for hat shaped samples (a). Instead of using 
friction between the holder and the pipe connector (as for the sample 
holder in Fig. 3.3), both the holder and the pipe connector were equipped 
with fine-pitch threads. With this, the immersion depth of the substrate 
could be precisely controlled by rotating the holder. The samples were 
clamped to the holder by tightening a screw located at the side of the 
holder (b). With this holder, the samples are immersed parallel to the 
electrolyte surface (c). 

 

3.4 In Situ Cell 

As the electrolyte is opaque to electrons, we had to rely on light 

microscopy to perform in situ studies of lithium dendrite growth 

inside a liquid electrolyte (Fig. 3.5). The in situ cell consists of two 

tungsten current collectors sputtered onto a glass slide, a 0.2 mm 

a) 

fine-pitch 

thread b) 

c) 
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thick polyethylene (PE) frame as spacer and a 0.17 mm thick 

cover glass. A piece of lithium was placed onto the tip of one 

current collector (a), and the PE frame was melted to the glass 

slide surrounding both current collector tips (b) with a cover glass 

on top (c). This way, the frame between the cover glass and the 

glass slide created an empty space with two openings. The cell 

was filled with electrolyte by dripping electrolyte from a syringe 

onto one opening. The capillary force created by the thin cell 

interior (0.2 mm) strongly helped in this filling process. 

The second opening allowed the gas trapped in the hollow 

space to escape. The electrolyte inside both openings was re-

moved, so that only the center of the cell contained electrolyte. 

When the openings were then sealed, a gas bubble would avoid 

direct contact of the battery sealant with the electrolyte. By avoid-

ing electrolyte contact with the battery sealant (that is also why 

the PE was melted onto the glass instead of glued with sealant) 

the lifetime of the cells could be extended from several days to 

more than a week. Once the sealant was dried, two-component 

epoxy was additionally applied on top of the melt and glue joints 

to mechanically strengthen the cell and support adhesion. The flat 

sputtered electrodes not only provided smooth oxide and water 

free metal surfaces, they also helped in improving the imaging 

quality as the entire surface could be in focus even at high magni-

fication. The very thin cell design also limited the detrimental 

effect of the liquid on the optical resolution. The deposition area 

was the part of the tungsten film that was not covered by the PE 

frame (c). The area of this exposed surface was minimized by 

minimizing the width of the tungsten film and the channel in the 

PE. This way, the majority of the deposition area could by moni-

tored in one frame. 
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Fig. 3.5: In situ optical cell. Structured tungsten films are deposited by 
sputter coating (dark grey). These films act as current collectors and 
substrates; lithium (red) is then put on the tip of the wider film. This film 
is the counter electrode. A polyethylene frame (b) and a cover glass (c) 
are attached by heating the cell slightly above the melting point of PE and 
applying mechanical pressure. Electrolyte is then dripped onto the larger 
channel in the PE frame; capillary force drags the fluid into the cell while 
the gas inside cell can escape through the thin channel. Both channels are 
sealed with battery sealant; the entire cell is mechanical reinforced with 
two-component epoxy afterwards. The thin film that remains exposed 
inside the channel becomes the deposition area (c). 

a) b) c) 

deposition 

area Li 

openings electric contacts 



 

 
 

4 Crystallinity and Growth 
Direction 

Lithium was electrodeposited in the ex situ beaker cell on tung-

sten films and on vibratory polished copper. The deposition was 

carried out potentiostatically at -100 mV vs. Li for 100 s.  

4.1 Results 

The resulting deposits were imaged by SEM and are shown in 

image a) of Fig. 4.1. Needles and faceted particles were observed 

and often needles grew directly from the particles as shown in 

Fig. 4.1 b). Fig. 4.2 a) and c) shows the two most commonly 

observed shapes of the facetted particles. However, sometimes the 

shape of the particles deviated from these presented shapes by 

slight distortion. Fig. 4.3 shows that the needles growing on the 

side facets of particles were most likely growing parallel to the 

substrate. Image b) shows the tip of such a needle; by cutting 

away the tip an area of the substrate film is revealed that seems to 

have bulged and cracked as the dendrite hit it during its growth 

(image c)). 
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Fig. 4.1: SEM image of needles and facetted particles after deposition at -
100 mV vs. Li for 100 s (a). Needles were observed to grow from these 
facetted particles (b). Round particles were observed after galvanostatic 
deposition(c). 

c) b) 

a) 
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Fig. 4.2: Images a and c show the two shapes of facetted particles that 
were observed. Images b and d show Wulff shapes with {110} planes 
exclusively that were oriented to mimic the corresponding lithium 
particle. The shape in image d) is the same shape of image b) but was 
slightly rotated. The substrate is drawn in grey. The Wulff shapes were 
calculated using the software Wulffmaker [90]. 

 

 

a) b) 

c) d) 
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Fig. 4.3: SEM image of a distorted facetted particle (arrow in a). A needle 
is growing from the particle; the tip is shown in image b. After having cut 
away the tip with the electron beam, a location on the substrate where 
the tip hit the substrate during growth becomes visible. This means the 
needle had grown almost parallel to the substrate. 

 

4.2 Discussion 

Finding facetted electrodeposited lithium particles strongly 

suggests that these particles are crystalline. Conventional meth-

ods for determining crystallinity are extremely difficult to apply to 

lithium due to its extremely low density (i.e. weak electron and x-

ray interaction) and high reactivity. To determine which crystal 

plane correlates with the facets, Wulff shapes were calculated 

using the software Wulffmaker [90] and compared to the observed 

facets on the particles. Fig. 4.4 shows Wulff shapes constructed 

with different crystal planes.  

a) b) c) 
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In order to verify if the observed facets could correspond to 

certain crystallographic planes, several Wulff shapes with low 

index facets were calculated (Fig. 4.4). The comparison of the 

observed lithium particle shape in Fig. 4.2 a) to the Wulff shapes 

in Fig. 4.4 shows the strong similarity between the lithium parti-

cle and the {110} facetted Wulff shape (Fig. 4.4 b). A correspond-

ing Wulff shape with {110} facets is shown in Fig. 4.2 b) for better 

comparison. By slight rotation of this Wulff shape, the shape of 

image d) in Fig. 4.2 is obtained. This shape resembles the other 

lithium particle shape shown in image c). This means that we 

probably observed {110} facetted lithium particles exclusively. 

The crystallization of electrodeposited lithium in Wulff shapes 

suggests that the observed lithium particles are single crystals. In 

addition, this suggests the {110} planes of lithium seem to have 

the lowest interface energy and hence that they are thermody-

namically preferred, i.e. that the lithium particle forms according 

to the Wulff construction in order to reduce its free energy. Often, 

the shapes of deposits depend on the growth kinetics, i.e. they 

depend rather on the progression rates of different facets than on 

their stability. Suggesting thermodynamic control here is based on 

the assumption of fast rearrangement of the lithium atoms which 

may be justified based on the results presented in chapter 8. 

   

Fig. 4.4: Wulff shapes composed of {100} planes in image a), {110} 
planes in b) and {111} planes in c). The arrows mark the <100> axes. 
The shapes were calculated by using the software Wulffmaker [90] and 
assuming that the surface energy of the dominant planes is two times 
smaller than the surface energy of the other planes.  

 

a) b) c) 

{100} {110} {111} 
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The surface energy per area of the {100} planes were calculat-

ed to be lower than for {110} planes [91] which contradicts our 

observation. However, these calculations neglect the existence of 

the SEI and the electrolyte, which is why we assume they are 

responsible for the formation of {110} instead of {100} planes. For 

example, the interface energies between lithium and the SEI as 

well as possible adsorbates contained in the electrolyte might play 

a dominant role. Adsorbates modify the surface energies of metals 

which can result in a dependence of the Wulff shapes on the 

adsorbate chemical potential, see e.g. [92]. To further elucidate 

the role of the SEI, we compared the particles obtained by poten-

tiostatic deposition with particles obtained for galvanostatic 

deposition at comparable rates (Fig. 4.1 c). During galvanostatic 

deposition, the SEI is expected to form before the reduction 

potential of Li+ is reached. This means deposition takes place after 

a SEI has formed on the substrate and that lithium is plated un-

derneath an existing SEI. That way no direct interface between the 

lithium and the electrolyte is expected during the process. In 

addition, the SEI needs to be deformed as the lithium particles 

from underneath it; this might restrict the growth of the particles 

and the formation of facets mechanically. As a result, particles 

formed during galvanostatic conditions were observed to be non-

faceted and hemispherical. During potentiostatic deposition at 

constant potential, the voltage jumps directly to the deposition 

potential, so the SEI formation and the Li deposition should take 

place simultaneously. This means that instead of depositing 

lithium underneath an existing SEI, the SEI forms on the lithium 

particle while it is growing. This way, the particle is less restricted 

in its growth and might also have an electrolyte-lithium interface 

for a short time before an SEI forms. Hence, we suggest that the 

formation {110} facets might be triggered by two factors: little or 

no mechanical restriction through the SEI (enabling faceting at all) 

and adsorbates on the lithium surface (modifying the surface 

energy so that {110} facets form instead of {100}).  
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The SEI may be the reason why not all observed particles show 

the idealized shapes of Fig. 4.2 b) and d), as it interferes with the 

particles tendency to form {110} facetted Wulff shape when in 

contact with the electrolyte. Hence we suggest that the pro-

nounced {110} facets only form when the growth of the particles 

is not restricted. Furthermore, fast lithium diffusion is required to 

obtain equilibrium shapes, which might be the case when there is 

a direct electrolyte-lithium interface. These results suggest that 

the {110} plane of lithium has the smallest lithium/electrolyte 

interface energy. Langenhuizen [93] also reported facetted parti-

cles in a 1 M LiPF6 in EC:DEC electrolyte. However, the presented 

resolution of the SEM images was too low to identify the facets 

correctly. The facets were observed to disappear when the HF 

content was increased from 6 to 60 ppm – another indication of 

the influence of the SEI and the electrolyte. 

Depicted in Fig. 4.5 is the needle growing on a facetted particle 

as shown in Fig. 4.3 b). There are two needles growing on it. One 

shows faceting at the root close to the substrate (see Fig. 4.5 b), 

while the faceting seems to fade with increasing distance from the 

root. The needle seems to share a facet with the particle (see 

arrows in b)), a phenomenon commonly observed under these 

deposition conditions. Assuming homoepitaxial growth of the 

needle on the particle, this would mean that the needle preferably 

forms the same facets, but the influence of the SEI seems to be-

come stronger with time while the needle elongates. This could 

probably cause the fading of the facets along the length of the 

needle. 

Knowing that needles from particles probably grow parallel to 

the substrate (which is suggested by Fig. 4.3) in combination with 

the identification of the facets and the orientation of the single-

crystalline lithium particles makes it possible to identify the 

growth direction of the needles growing from these particles. This 
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is shown in Fig. 4.5. Image c) shows the calculated Wulff shape of 

the particle in b). The orientation of the particle was used to 

calculate the corresponding low index directions, shown in d), e) 

and f). The marked [111] direction of image f) appears to be the 

only low index direction that points in the growth direction of the 

needle. Hence, we suggest that the observed needles grow along 

the <111> direction.  
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Fig. 4.5: (a) SEM image of a facetted lithium particle with two needles 
growing from it. (b) SEM image of the same particle shows that the needle 
is also facetted at its root. The side facet of the needle seems to be a 
continuation of the side facet of the particle. Also the top facet of the 
needle seems to be same as one of the top facets of the particle. (c) Wulff 
shape mimicking the faceting and the orientation of the particle. The 
colored arrows in (d), (e) and (f) mark the low index directions in the 
same orientation as image c). Image (f) shows that the marked [111] 
direction is the only low index direction that comes into consideration as 
the growth direction of the needle. 

a) b) c) 

d)  <100> 

f)  <111> e)  <110> 

needle 

growth 
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5 Mechanism of Needle Growth 

Lithium needle deposition inside in situ cells was monitored by 

light microscopy and by ex situ SEM. Current and potential were 

supplied and monitored by a portable potentiostat/galvanostat. 

The growth of dendrites could be observed in situ with unmatched 

resolution. This chapter was published in [1]. 

5.1 Results 

Fig. 5.1 shows a typical galvanostatic voltage vs. time plot of 

lithium deposition on a tungsten substrate. The initial open circuit 

voltage was around 1.5 V and started to drop once a negative 

current was applied. The curve started to change slope between 

1 V and 0.5 V and after a slight negative peak, the first plated 

structures became visible on the substrate. The voltage asymptot-

ically approached a small negative value while deposition. Upon 

change of the direction of the current, the dissolution was visually 

observed. During lithium dissolution the voltage remained at a 

similar absolute value than during deposition but stayed positive. 

After a while the voltage rose. When reaching 2.5 V, the electrical 

circuit was opened and during relaxation a potential of 2 V was 

asymptotically approached. 
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Fig. 5.1: Galvanostatic voltage vs. time plot of a glass cell with a sputtered 
tungsten substrate. The red arrow marks a potential peak. The current 
density is related to the exposed tungsten working electrode area. 

 

We observed the growth of needle-like lithium on tungsten 

substrates via in situ light microscopy. The needles either grew 

directly on the tungsten substrate (Fig. 5.2) or from larger lithium 

particles (Fig. 4). During growth, an increase in diameter was not 

observed, while they significantly gained in length. The needles 

consisted of several straight linear segments of a few microns in 

length and kinks between these segments. No preferred growth 

direction was found, e.g. the needle in Fig. 4 grew almost parallel 

to the substrate while the needle from Fig. 3 grew away from the 

substrate. 



5 Mechanism of Needle Growth 

 
49 

 

 

Fig. 5.2: In situ light microscopy of needle-like lithium growth in 
1 M LiPF6 electrolyte. The structure of image a) (traced in white) remains 
unchanged, while more segments are added at the base of the structure 
as shown in the subsequent pictures, i.e. the images demonstrate that in 
this case the growth occurred exclusively at the base of the needle. A kink 
forms in c) and is marked by an arrow. Image b) was taken after 15 
seconds, c) after 180 s, and d) after 450 s after figure a) was recorded. 
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Fig. 5.3: In situ light microscopy of needle-like lithium growth in 
1 M LiPF6. Image a) shows needle-like lithium. The needle forms a kink 
(marked) in image a) and another kink (marked) in image b). Image c) 
and d) show that during further growth the size and position of the 
needle segments and kinks did not change, instead the tip segment of the 
needle grew in length. Image b) was taken after 105 s, c) after 195 s, and 
d) after 360 s. 
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Fig. 5.2 shows the growth of a needle that grew at the base. 

The long tip structure of Fig. 5.2 a) (traced in white) remained 

unchanged throughout the entire growth of the needle, while the 

part of the needle that was close to the substrate increased in 

length. In b) it can be seen that the segment at the base gained in 

length. In picture c) of Fig. 5.2, the arrow marks a kink that 

formed at the base of the needle. In d) the kink had moved for-

ward in the direction of growth. Needles were also observed to 

grow by adding material to the tip. In Fig. 5.3 a) another needle 

that grew from a larger particle is shown (see also Video S 12). It 

exhibits a kink, marked by an arrow. During its growth, it formed 

an additional kink as shown in b). Contrary to Fig. 5.2, the kinks 

stayed and did not move during further growth as can be seen for 

example by comparing c) and d). This observation is indicative of 

tip growth because growth at the base would have caused motion 

of the kinks as was observed in Fig. 5.2. Besides growth at the 

base and growth at the tip also growth can happen between kinks. 

Fig. 5.4 shows a filament structure with two pronounced kinks. 

During lithium deposition, the segment between the kinks elon-

gates. In some cases, the extension between kinks was associated 

by a change in the kink angles which can be seen by comparing a) 

with c). We also found lithium filaments that simultaneously grew 

at several points including base, top and in between kinks. For 

example, a needle has been observed with three segments that 

gained in length at the same time. Although these three different 

growth sites can be clearly identified, from the observations it 

seems that growth at the base was most common. Growth at the 

top and in between two kinks was somewhat less common. 

                                                                    
2 The video can be found online in the supplementary info of [78]. 
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Fig. 5.4: In situ light microscopy of needle-like growth in 1 M LiPF6 on a 
lithium substrate. The view on the tip and the base of the needle is 
obstructed by other lithium structures; three straight segments connect-
ed by two kinks can be seen. Images b) and c) show that the segment 
between the kinks grew in length (marked by white arrow). Image b) was 
taken after 45 s, and c) after 135 s. 

 

According to the voltage vs. time plot (Fig. 5.1) a significant 

amount of the plated lithium could be dissolved (~55 %). In the 

case of the dissolution of a lithium filament, the tip was left behind 

only connected to the substrate by a thin wire-like structure (Fig. 

5.5 and Video S 23). Both, this tip and the thin connecting rem-

nants could not be dissolved. The dissolution started in the vicini-

ty of the tip, thinning the needle locally. As dissolution progressed, 

the thinned area moved downwards, similar to the sharpening of 

a pencil, while the tip itself did not change its position. 

                                                                    
3 The video can be found online in the supplementary info of [78]. 
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Fig. 5.5: In situ light microscopy of the electro-dissolution of a lithium 
needle. Image a) shows the initial needle and images b) to f) its dissolu-
tion. In image b) the dissolution is a thinning process localized to the area 
near the tip leaving a tapered needle. As this region is dissolved, the 
thinning area moves downwards, similar to the sharpening of a pencil. 
The tip and a thin wire could not be dissolved. Image b) was taken after 
240 s, c) after 285 s, d) after 360 s, e) after 390 s, and f) after 585 s. 

 

5.2 Discussion 

Nishida et al. [94] claimed that the slight voltage peak (see red 

arrow in Fig. 5.1) is caused by a reduction of a thin surface oxide 

layer. Sagane et al. [95] attributed this peak to the nucleation and 

growth process since he observed that first precipitation occurred 

after the peak. This is also our interpretation, as we have observed 

this peak reoccurring during deposition following a complete 

dissolution of the Li. This peak was also absent during plating on 

Li metal where no nucleation process is expected. The change in 
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slope of the voltage curve below 1 V is interpreted as solvent 

decomposition and formation of the SEI. 

The tip of a dissolving needle appears to be inactive, i.e. there 

is always distinct structure remaining after the lithium is dis-

solved. We suggest that the part that is inactive during dissolution 

might be also inactive during deposition, see Fig. A 1; hence, what 

appeared as deposition on the tip is rather a deposition of lithium 

between the inactive tip and the active lithium metal of the needle. 

The fact that lithium needles grew in length, but not in diameter, 

means that atoms are not attached to the sidewalls of the needle 

but instead are inserted close to the tip or at the needle-substrate 

interface. Growth between two kinks additionally suggests lithium 

insertion at kinks. Adding atoms always at the same location 

probably leads to the constant diameter of a segment. Our obser-

vations indicate that the growth of Li filaments is defect controlled 

and that lithium atoms are inserted into the crystal at defect sites. 

This suggests that conventional explanations based on field and 

concentration gradients are not adequate for the case of our 

experiments. 

During deposition, the SEI forms on the freshly grown lithium 

while during dissolution, the SEI cannot be removed. This has 

important consequences when comparing deposition with disso-

lution. Fig. 5.5 shows the removal of lithium along the needle and 

the persistence of the structure at the tip. This suggests that an 

SEI shell remains that holds the structure at the tip in the same 

position while the lithium inside this shell dissolves. The thin 

wire-like – supposedly tubular – structures of Fig. 5.5 e) and f) 

that remained after dissolution are possibly these residues of SEI 

which are visible after the dissolution of the metal only because 

SEI attached to reflecting metal cannot be resolved by light mi-

croscopy. Although the dendrites were growing in length and not 

in diameter, the dissolution includes a thinning process starting at 
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the tip instead of a pure shortening process. Shortening of the 

whole structure might be impossible because of the constraints of 

the SEI shell. 

The inactive tips may consist of metal oxides or lithium salt, 

e.g. LiF, or other impurities which can act as catalysts for lithium 

insertion. LiF crystals have roughly the size of a dendrite and 

resemble the shape of inactive needle tips.[96] This may explain 

why the tip shape of a needle does not change during growth, e.g. 

in Fig. A 1. Using synchrotron hard X-ray microtomography, small 

crystalline contaminants were found underneath every growing 

dendrites in a lithium polymer cell also indicating that contami-

nants may act as catalysts for dendrite growth.[97] In the litera-

ture, a flat and even distribution of LiF was observed to prevent 

dendritic deposition.[98] LiF was used here as an example. The 

inactive tip could for example also just be a relatively thick SEI 

layer locally grown on the lithium nucleus probably during onset 

of metal deposition, i.e. the parts (b) to (f) of the illustration 

remain valid for a growth without an initial extra structure as 

shown in (a). 

5.3 Comparison to Other Models 

None of the previously proposed models seem to be able to ex-

plain the growth behavior observed here. The model proposed by 

Cohen et al. [36] offers a conclusive explanation for dendrite 

growth initiation. The SEI also has been accepted as one of the 

major influences on dendrite growth.[36, 96, 98] However, crack 

formation in the SEI alone cannot explain why needle-like growth 

was observed instead of the growth of three dimensional bulk 

structures. On surfaces of freshly grown structures there is also a 

fresh, i.e. thin layer of SEI. If the resistivity or thickness of the SEI 

controls the growth, it can be expected that either growing fila-

ments not only grow in length but also in diameter or that 
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branches nucleate on them more frequently. Furthermore, a 

deposition at the base of the structures seems unfavorable from 

the SEI point of view due to the thick SEI layer on the substrate. 

Defects of the SEI which may be present at kinks would result in a 

lithium deposition there, as illustrated by the round deposit 

shown in Fig. A 2 b). Lithium deposition at kink sites (shown as 

circular shapes in the model in [62]) was described explicitly for 

an LiAsF6 electrolyte by Yamaki et al. [62]; we did not observe 

such a deposition at kink sites for the 1 M LiPF6 solution. 

The models featuring the ionic concentration gradient [19-21, 

23, 55] predict a preferred growth direction into lithium ion rich 

areas of the electrolyte which is generally towards the counter 

electrode. In the case of our cell, the needles should have all 

grown towards the left in Fig. 3.5, but instead we observed what 

looks like a random distribution of growth directions. These 

models are also limited to deposition at the tip of a structure and 

hence fail to explain the observed atom insertion at the base. In 

addition, considering the current densities studied in our work, no 

significant concentration gradients are expected. 

The growth predictions of the edge effect in electric fields [16, 

54], the spherical diffusion flux [56, 57] and diffusion limited 

aggregation [99] are not limited to preferred growth directions, 

but are also limited to growth at the tip or at outer contours. In 

these cases deposition at the base of a needle is unfavorable, in 

the case of the electric field due to the locally weakened field, in 

the case of the diffusion flux because diffusion paths to the base 

are longer and are often obstructed by the already deposited 

structures. The spherical diffusion flux model by Monroe and 

Newman [54] additionally predicts that the growth of a needle 

accelerates with time. For our galvanostatic conditions, we found 

that needles continually decelerated and eventually seized to 

grow. 
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Up to now, the model of Yamaki et al. [62] of whisker-like 

growth has been the only one to explain the observed growth at 

the base of a needle. They were also the first ones to introduce the 

term “whisker” instead of dendrite, which is consistent with what 

we call needle-like growth. A classical dendrite in materials sci-

ence or electrochemistry describes a fern- or snowflake-like 

structure [100] that is growing by deposition at the tip, whereas a 

classical whisker is typically a crystalline structure, often with a 

high aspect ratio. The mechanism of growth of many whiskers is 

still not clear but whiskers are considered to either grow from the 

tip or base. An observation like the one made here, where growth 

happens at the base, at the tip, as well as between two kinks is not 

in agreement with conventional whisker growth models. The 

model by Yamaki et al. where lithium whisker growth is described 

as a stress induced process similar to the growth of tin whiskers, 

can hardly explain the growth within a kinked filament as shown 

in Fig. 5.4, as this would require another extrusion process inside 

the whisker. This is unlikely due to the following: i) At the grow-

ing structure, the SEI should be thin. Therefore, the stress buildup 

which is supposed to be related to the confinement of the SEI film 

would be smaller than on the structures deposited earlier. ii) 

Within the whisker, there is no extrusion hole. iii) There is hardly 

a pressurized volume and only a limited surface area around kinks 

to supply enough lithium for this growth mechanism. From the 

observations performed here, it seems that the formation of 

lithium whiskers can occur without stresses or – more precisely – 

stress gradients that trigger the formation of tin whiskers.[101] It 

can be concluded that the extrusion model is not suitable to 

explain the filament growth for the electrolyte and rate used here. 

We suggest that the growth occurs by immediate addition of 

lattice planes to the existing whisker. 

A consequence of this rather local insertion is that shorter dif-

fusion paths inside the solid are required as compared to tin 
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whisker growth. During whisker growth, diffusion of tin atoms 

towards the whisker along grain boundaries over distances of 

several microns occurs. For the mechanism considered here (Fig. 

5.6) the maximum distance is the diameter of the lithium filament. 

Another important process might be surface diffusion: For tin, 

lateral diffusion over enormous distances is possible;[102] similar 

to that, we consider surface diffusion of lithium atoms as a possi-

ble mechanism for the delivery of the atoms needed for growth. 

 

   

   

Fig. 5.6: Schematic describing growth of a lithium needle as observed in 
the in situ videos. The homogeneous components of the SEI – which are 
probably mainly organic – are drawn in green, Li insertion areas are light 
blue. The inoxidizable feature at the tip is depicted in red. a) initial state 
before lithium deposition with the inhomogeneity of the SEI shown in 
red, b) after growing a straight segment by lithium insertion at the 
substrate, c) after further deposition taking place below the tip, d) further 
deposition can result in a kink, e) additional Li was inserted at the base, 
causing tilting motions of the whole structure, f) final structure. All steps 
proceed by lithium insertion into the growing structure. 

 

The whisker-like growth of the lithium filaments observed 

here with a growth at the base is quite different from the usual 
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dendritic growth which – by the definition of “dendrite” – includes 

branching. Typical dendrites often have a regular, quasi-periodic 

branching pattern, but irregular structures occur for the condi-

tions where the diffusion limited aggregation model [99] applies. 

No regular branching has been observed by us or reported in the 

literature for lithium deposits, i.e. the known “lithium dendrites” 

are irregular, non-uniform structures. 

It has already been reported that Li needles can grow at either 

the tip or the base in a imidazolium chloroaluminate electrolyte, 

for which needles are expected to be much larger than in conven-

tional electrolytes.[103] In our case, we observed Li filament 

growth in the widely-spread EC/DMC/LiPF6 electrolyte, even 

though dendrites in EC:DMC have been told be too small to be 

imaged using a light microscope.[103] Our key observation is that 

lithium metal filaments do not grow exactly at the tip, but behind 

an inactive structure at the tip and that growth is also possible in 

between the base and the tip. Both processes require the insertion 

of metal atoms. This can happen at the substrate-lithium interface 

or at crystalline defects such as kinks since the insertion of atoms 

into the volume of an intact crystalline solid is unlikely from an 

energetic point of view. It may be possible that the efficiency of 

the defect for lithium insertion depends on the degree of crystal-

line disorder associated with the defect. In this context, large 

angle boundaries or amorphous regions could lead to fast inser-

tion. Our growth hypothesis (Fig. 5.6) is based on ionic and atom-

ic lithium diffusion and insertion and does not include the macro-

scopic process of plastic deformation and flow.[62] 

In addition to this insertion of lithium into growing structures 

which are probably crystalline,[104] further details can be in-

ferred from the observations. The structures at the tip (which we 

observed as extra features on some filaments in SEM images as 

the one shown in Fig. 5.7) which are not dissolved during ano-
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dization (Fig. 5.5) may be inoxidizable particles that participate in 

filament nucleation as suggested in Fig. 5.6 a)–b), e.g. by changing 

the local SEI resistance, and in the propagation as proposed in Fig. 

5.6 c)–d). On the other hand, the inoxidizable particle can be a cap 

of SEI that forms during lithium deposition. 

 

 

Fig. 5.7: SEM image (1 kV) of lithium filaments deposited on tungsten at 
−100 mV. Several filaments show structures at the tip e.g. contrast 
changes, contaminants such as particles or a broadening of the tip. 

 

An ideal SEI would be completely homogeneous, causing ho-

mogeneous plating at its interface to the metal. However, an actual 

SEI will never be uniform and may include inorganic crystals of 

oxide, hydroxide, carbonate or fluoride or other components 

depending on the electrolyte composition.[105] Due to variations 
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in the local conductivity or preferred aggregation of the dis-

charged lithium atoms at irregularities in the SEI – drawn in red in 

Fig. 5.6, the lithium metal structure can grow relatively fast at this 

localized defect, causing an instability with respect to uniform 

growth. 

After nucleation, atoms can be added at defect locations, i.e. 

either the substrate/needle interface, at the top inorganic parti-

cle/lithium interface or at kinks along the needle. For this process, 

the permeability of the SEI is of importance. The freshly formed 

SEI which grows on the lithium filament has to be thin enough 

since a thick SEI would slow down metal deposition. If growth 

would be mainly controlled by the insertion at regions where the 

SEI is thin it would not be possible to explain the observed 1D 

growth, instead rounded shapes like Fig. A 2 should result. In 

addition to SEI regions that are thin enough also crystalline de-

fects are required. It may be assumed that the SEI is modified at 

defects, e.g. the growing SEI is quickly carried away with the 

growing metal so that the SEI remains thin at the insertion site. 

Kinks can either form by a change in growth direction at the 

tip as suggested in Fig. 5.6 c–d, or at the base (Fig. 5.6 d–f). We 

would like to emphasize that the growth zones of our model, 

placed in kinks or interfaces, easily explain the strong shaking and 

twisting motion that are present in the videos and that have been 

already observed by others [94, 106]. In [94], the swinging behav-

ior was explained by residual stress, but the large amplitude and 

angles involved would again require strong plastic deformation. In 

the interface or defect dominated growth presented here no 

stresses are needed to explain the motion of the growing struc-

tures. Instead, the motion is a consequence of non-uniform inser-

tion at the base or at kinks. 

Finally we emphasize that our observations have been per-

formed with a particular liquid electrolyte (LP30, i.e. 
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EC/DMC/LiPF6) and a limited range of potentials and currents. 

For other cases, e.g. for higher currents or for polymer electrolytes 

with lower conductivity and lack of convection, the strong concen-

tration gradient or even total depletion which are crucial for the 

models by Monroe and Newman [54] or Chazalviel et al. [19-21], 

respectively, can occur so that the corresponding models are 

applicable. The same is true for the other models: If there is 

growth at the tip, it will be faster due to spherical diffusion, but 

our observation of growth at the base suggests that this diffusion 

criterion alone is not sufficient to explain the strong tendency of 

lithium to form non-planar electrodeposits. 

5.4 Conclusion 

The growth and dissolution of electrodeposited lithium filaments 

have been observed. In addition to accretion at the tip region, 

unusual growth modes have been observed: growth in between 

kinks, but also growth from the base. Tip growth does not seem to 

occur at the outermost top, but behind an inactive structure. 

Based on the observations we suggest growth being dominated by 

insertion at crystalline defects, e.g. kinks or interfaces (Fig. 5.6). 

This should also apply similarly for so called bush-like or dendrit-

ic lithium. Several types of defects have to be considered: thin 

parts of the SEI causing enhanced deposition, defects in the crystal 

structure such as grain boundaries or maybe even amorphous 

regions, and chemical inhomogeneities such as contaminants that 

can cause alloy formation or may act as nucleation centers. For the 

conditions that we used during deposition, especially the liquid 

electrolyte, the observations are not compatible with previous 

explanations of lithium dendrite growth, e.g. with models that 

emphasize the field enhancement at tips, the strong influence of 

concentration gradients or the stress induced extrusion or motion. 



 

 
 

6 Mechanisms of Bush Growth  

The formation, growth and shrinkage of lithium bushes were 

monitored by in situ light microscopy and by ex situ SEM studies. 

This chapter was published in [2]. 

6.1 Results 

Lithium was deposited and dissolved under galvanostatic condi-

tions. The electrode and the lithium structures were observed in 

situ by light microscopy. Fig. 6.1 and the corresponding video S 1 

show the growth of a needle-like structure that is surrounded by a 

bush. Between images a) and c) this structure grew in a straight 

line and gained in length. Minor variations in the apparent diame-

ter in the video images occur if the filament runs out of focus, but 

since a decrease of the diameter during electrodeposition is 

hardly possible, it is reasonable to assume that the diameter did 

not change at all. The tip seems unchanged during growth; there-

fore, growth at the tip is unlikely for this structure. The view on 

the exact growth zone however, is blocked by the surrounding 

bush. Starting from picture d), the structure started to grow in 

width at the tip where significant roughness is visible. From there 

on the straight needle part did not grow extensively anymore and 

instead the tip widened showing even more structure and curling 

indicative of, e.g., branching. 
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Fig. 6.1: In situ light microscopy of a structure during continuous 
electrodeposition on tungsten. First, it is needle-like and gets pushed 
out of a bush-like structure. At the beginning, the needle increases in 
length, then changes its growth behavior in picture d). It starts to 
increase in diameter, and later also curls. The images cover a time span 
of 30 minutes. 

c) 

20 µm f) 

a) b) 

d) 

e) 
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Fig. 6.2 and video S 24 show bush-like growth recorded by la-

ser scanning microscopy; the structure is shown in side view, i.e. 

perpendicular to the line connecting working and counter elec-

trode. The circles mark arbitrary, but easily traceable structures 

of the bush. The arrows in image b) mark their shift in position 

from their original position (image a)). These structures lack a 

preferred growth direction and they also increase the distance 

between each other.  

To inspect bush structures, we used a micromanipulator 

(Kleindiek Nanotechnik) inside an SEM to remove the upper parts 

of a lithium bush, where we found needles underneath (see area 

marked in red in Fig. A 3). Furthermore, we used the FIB to image 

cross sections of Li bushes. An example is shown in Fig. 6.3. It can 

be seen that large parts of the structure are not directly connected 

to the substrate. 

The dissolution of the bush-like structure depicted in Fig. 6.1 

is shown in Fig. A 4. The process started at the tip and was accom-

panied by the motion of the whole structure. The images suggest 

that the lithium of the broadened filament could be dissolved and 

only a thin shell of the structure remained. In contrast to this case 

where a large fraction of the metal could be redissolved, the case 

of an incomplete dissolution is shown Fig. 6.4 (cf. the video S 54): 

in image a), a bush structure is shown that was electrodeposited 

on copper, and image b) shows what remained of the structure 

after its dissolution up to 3 V vs. Li. The arrows mark a structure 

at the tip of the bush that did not change its shape while the bush 

was shrinking. 

                                                                    
4 The video can be found online in the supplementary info of [79]. 
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Fig. 6.2: In situ images – 45 minutes apart – of a Li bush growing on 
copper foil in LP30 electrolyte, in side view, during continuous electro-
deposition. The circles mark traceable structures of the bush, and the 
arrows in b) mark the shift in distance from their original position in a). 
The counter electrode is located above the Li bush, outside the field of 
view. 

 

  

a) 

b) 10 µm 
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Fig. 6.3: SEM image (5 kV) of a FIB cross section of a lithium bush 
grown in LP30 electrolyte on a tungsten substrate on glass. The part of 
the bush that connects to the substrate is marked. 

 

The two following images show a subsequent plating step. No 

new bushes have been observed; instead the electrodeposition 

took place at the location of the remaining bush. While the tip 

structure of the bush remained unchanged both during dissolu-

tion and deposition, the bush changed its size and seemed to grow 

towards the sides and around the inactive tip structure. Again, no 

obvious general growth direction was observed during electro-

deposition. The fact that a large part of the structure of Fig. 6.4 

could not be dissolved is also reflected in the galvanostatic data 

(see Fig. 5.1 for a representative graph) where it was apparent 

that the amount of charge transferred during stripping is signifi-

cantly smaller than the amount of charge transferred during 

electrodeposition. 

5 µm 
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Fig. 6.4: In situ light microscopy of the dissolution of a bush on copper 
foil (between a) and b)) with subsequent continuous electrodeposition 
(b), c), and d)) in side view. The counter electrode is located on the left 
outside the field of view. The tip structure (marked by the arrow) 
remained unchanged during stripping and plating. There is no obvious 
general growth direction. The images cover a time span of 30 minutes. 

 

d) 

35 µm 

b) 

c) 

a) 
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Fig. A 5 shows an overview of a tungsten surface during 

growth showing lithium needles and particles. All structures on 

the substrate have nucleated at roughly the same time. The ar-

rows mark lithium structures that formed and ceased to grow, 

while other structures continued to grow. Although Fig. A 5 only 

shows this effect for bush-like growth, we also observed this effect 

in needle-like growth. These active structures also remained 

active after interrupting deposition for one hour for several times. 

 

6.2 Discussion 

6.2.1 Growth of Li Bushes 

The observations as exemplified by Fig. 6.1 clearly demonstrate 

that growth can happen both at the tip and at lower parts simul-

taneously. The tip broadening (Fig. 6.1 d)) proves accretion at the 

tip; at the same time, the features of the filament tilt and move 

outwards showing that the base is flexible and still growing. Based 

on our observations of single Li needles we suggest that lithium is 

inserted either at the tip, the base or at kinks of whisker-like 

structures, and we conclude that defects are necessary to allow 

lithium atom insertion into a filament. In particular, insertion into 

intact crystal structures is unlikely; therefore, we believe that 

defects for example such as grain boundaries are required to 

allow Li atom insertion in the otherwise perfect crystals. Kinks in 

filaments with straight segments were observed frequently in our 

microscopic images. They are an experimental indication of high 

angle grain boundaries which are regions of high defect density 

containing dislocations and/or vacancies. The tilting movements 

indicate that these grain boundaries do not have fixed angles, 

which suggests that their structure is either continuously chang-
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ing by further Li addition or that it might have a liquid-like flexi-

bility. 

During lithium deposition, needle-like growth in length was 

observed frequently, which occurs – within the accuracy of light 

microscopy – without an increase in thickness. It has been de-

scribed by the mechanism of insertion at kinks or other defects. 

Video S 15 and Fig. 6.1 show that there is a transition between 

such needle-like growth, which is a quasi one-dimensional, linear 

elongation, and bush-like growth, which is three-dimensional and 

includes branching and the multiplication of defects. The growth 

in images a) to c) was clearly a one-dimensional needle elongation 

with a growth zone outside the field of view. In images d) to f), 

additional growth occurred inside the field of view, and was three-

dimensional with no discrete atom insertion point. That is why it 

is suspected that there are mechanisms for the multiplication of 

defects (and hence, lithium insertion points) so that branched 

structures can form starting from a needle. So far both growth 

modes have been treated separately. The growth of 3D structures 

may bear resemblance to the growth of needles, but with the 

further requirement that the simultaneous insertion at additional 

locations has to take place. For example the particle on the right in 

video S 16 expands in a way that suggests that this growth does 

not happen by attachment at its perimeter only. It appears to be 

polycrystalline and seems to consist of crystallites that have 

straight edges. For this case growth may be mediated by simulta-

neous lithium insertion into different grain boundaries. Another 

possible explanation of this observation is that the particles are 

not fully metallic, but have deep grooves that contain SEI, which 

would explain the strong contrast between the crystallites. In such 

regions alleviated lithium insertion may be possible leading to 3D 

growth. 

                                                                    
5 The video can be found online in the supplementary info of [79]. 



6 Mechanisms of Bush Growth 

 
71 

 

In contrast to the suggestion of Yamaki et al. [62] based on ob-

servations in LiAsF6 electrolyte, the insertion of lithium does not 

necessarily happen at the base, which is at the substrate/lithium 

interface in our case. Instead, the growth occurs by lithium inser-

tion into different growth regions which can be distant from the 

current collector. The growth of lithium dendrites occurring 

either at the tip or “at the base” was observed by Crowther and 

West [25] as well. Close inspection of their results shows that 

even in their case the growth might not be limited to these two 

insertion sites and growth similar to our observations may be 

inferred from their video. It is not likely that the growth at the 

substrate/lithium interface is an effect of a particular substrate 

metal, because Crowther and West used a copper electrode [25], 

Yamaki shows an SEM image of lithium on a stainless steel sub-

strate [62], and we used tungsten films and copper foil substrates. 

Therefore, we think that the Li growth mode with an insertion at 

the lithium-substrate interface or close to it might not depend 

strongly on the substrate material, but is rather a property of the 

lithium metal itself. 

The growth of lithium bushes shown in Fig. 6.1 and Fig. 6.2 

resembles the raisin bread expansion model (known as a cosmo-

logical model [107]). In this model, there is no preferred direction 

and the distance between every raisin in the bread increases as 

the bread expands. However, in the case of lithium moss, the 

videos show a strong random component superimposed to the 

overall expansion. This is due to the statistical nature of several 

processes. These are: nucleation events, growth speed, the distri-

bution of growth directions as well as the kinking that causes 

bending of dendrites and sudden movements. Sometimes large 

dendrite parts fold in by a pronounced rotation. Therefore, the 

growth occurring on top and in between rigid metallic structures 

is less uniform as the simple raisin bread model might suggest. 

The growth of the raisin bread has no growth center, but the 
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movement of its parts can be restricted due to the support of it. In 

our case of Li, the metal substrate fixes the bases of the bushes. In 

the case of the lithium bush, lithium atoms are inserted into the 

bush at several points that are scattered over the whole structure. 

Certainly, this “raisin bread” model – which is illustrated in Fig. 

6.5 by the transition from a) to b) – is hardly dependent of the 

substrate morphology or material since it describes processes 

occurring within the bush-like metallic lithium structure. 

 

 

Fig. 6.5: Schematic of suggested growth of moss structures. The structure 
is always covered by a SEI layer. a) as deposited, b) the structure of a) 
after further electrodeposition. Li atoms are inserted into the metal 
structure. Points (to be compared with raisins in rising dough) have been 
marked with black circles to illustrate that the distances between these 
features generally increase with Li deposition time. The large black oval 
shape indicates the expansion of the total structure. c) the structure of a) 
after a dissolution step. The tips of the structure still contain Li metal 
(“dead lithium”) but are electrically isolated from the substrate, although 
still being held by the former SEI shell, d) structure of c) after an addi-
tional electrodeposition step. The top is pushed outward by the new 
lithium moss growing underneath. 
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A very dynamic behavior of lithium, especially rotation [108] 

and swinging [94, 106] of filaments has been reported before. It 

has been explained by stresses, in particular due to a non-uniform 

distribution of mechanical properties of the SEI [106]. Based on 

our observations, we suggest an alternative explanation: Move-

ments might arise without stresses or external forces acting on 

the metal by non-uniform insertion. If the Li incorporation or 

crystallization is faster at one side, the inserted Li will have a 

wedge profile instead of the plane-parallel layers which are re-

quired for elongation without tilting. The inclination of the wedge 

might change with time if more Li is added, causing tilting or 

swinging motion of the whole upper part of the filament or den-

drite. The forces involved here are negligible, especially compared 

to the forces of plastic deformation of the metallic core that has 

been assumed before [62, 106]. 

Based on TEM observations using ionic liquids, it was suggest-

ed that Li filaments grow parallel to the electric field [109], and 

that field enhancement directs the growth [104]. In our opinion, 

the observed movements together with the randomness of growth 

suggest that the direction of the growth does not depend on the 

electrostatic fields in our LiPF6 electrolyte solution. In spite of the 

observed omnidirectional growth of large bushes, indications 

were found that there can be a transition from linear to omnidi-

rectional growth. In the cross section of Fig. 6.3, practically all 

filaments are distant from the substrate. However, a small part in 

the lower middle of the image (marked) seems to be connected to 

the substrate; this is probably the region where the growth of the 

bush was initiated (its “stem”). This stem has a quite complex 

structure of very fine filaments; some of them with diameters well 

below 0.1 µm, whereas the structures above the stem can have 

diameters of more than 0.5 µm. Thin lithium stems in the moss 



6 Mechanisms of Bush Growth  

 
74 
 

have been already suggested by Arakawa et al. in their Fig. 2 [110] 

pointing towards a growth mode transition during moss growth. 

Fig. 6.3 further supports the argument of this transition, as it 

shows that thin needles formed the base on which the more bulky 

lithium plated afterwards. Again defects seem to be responsible 

for the formation and transition. Once defects (insertion sites) can 

multiply and become simultaneously active, needles can transition 

towards bushes. Our observations indicate that whisker-like 

needles can grow to broader structures that may branch without 

the need of a pronounced step of nucleating a fresh particle on the 

existing whisker. 

The growth modes that we observed in LiPF6 electrolyte do not 

resemble the most typical dendritic growth with almost regular 

branching. According to the data presented here the term “lithium 

dendrite” describes quite randomly branched structures as exem-

plified by diffusion-limited aggregate (DLA) models [99, 111]. 

However, several aspects distinguish our suggested growth mode 

from DLA: Our “dendritic growth” includes the insertion of lithium 

into the backbone of the existing and growing branched structure. 

The branching that we describe happens by broadening and 

forking during growth whereas branching in DLA always requires 

a nucleation step (that can happen at random time long after the 

formation of the underlying structure) similar to the nucleation of 

a filament on the substrate. 

6.2.2 Dissolution of Li and Insulation of Li 

If a bush with “thin stems” (Fig. 6.3) is dissolved, it is easy to 

imagine that the lithium of the fine stem structures is consumed 

before that of the branches if we assume that the dissolution 

proceeds simultaneously on all Li surfaces. If the lithium of a 

single needle is dissolved, residues of SEI remain as an empty 

shell. Accordingly, a SEI-like residue will remain if the lithium is 
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removed from the inner part of the stems (Fig. 6.5 a) to c)), 

keeping the rest of the moss attached to the surface (Fig. 6.5 c)). 

Lithium of the more massive upper filaments persists since the 

dissolution caused electrical insulation from the substrate. This 

remaining lithium is “dead lithium” since it is electrochemically 

inactive during further cycling, although it stays chemically active 

.[112] It can be a major part of the capacity loss in Li 

electrodes.[72] In addition to dead lithium, repeated formation of 

SEI shells on new dendrites will cause degradation by repeated 

electrolyte decomposition. The total loss of capacity can also be 

seen in galvanostatic curves, which in our case typically showed 

that about 30 % of the deposited lithium could not be dissolved 

Fig. 5.1. 

Insulated lithium has been reported earlier.[112, 113] Peled 

suggested that it is a Li ball embedded in the SEI layer.[113] The 

name “dead lithium” was coined by Yoshimatsu et al. [114]; they 

emphasized the role of dendritic growth followed by dissolution 

which causes insulation. In contrast to the illustration in [114] 

where the lithium is detaching from the electrode and falling apart 

during dissolution, we suggest that the structure can keep – at 

least partially – its mechanical integrity, as the SEI shell of the 

already dissolved metal remains attached to the substrate and to 

other lithium structures. Our interpretation combines aspects of 

previous results – dead Li can remain firmly attached to the 

substrate [112] while it is covered with SEI similar to the embed-

ded Li suggested by Peled [113]. The 3D dendritic growth itself 

makes the lithium susceptible to insulation as described in [114]. 

We add the new aspect of a ramified structure held together by a 

continuous SEI shell. In addition, the highly kinked and crooked 

active and dead lithium metal might be mechanically intertwined 

in the dense bushes, resulting in structural stability. According to 

these arguments, active and dead lithium regions are then a result 

of the properties and thickness of separating SEI regions. 
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6.2.3 Electrodeposition After Dissolution – “Push 

Remnant” Mechanism 

Fig. 6.5 shows the most probable scenario to explain the observa-

tions in Fig. 6.4. During redeposition (the steps from Fig. 6.4 c) to 

d)), deposition at the tips of the old mossy structure is not possi-

ble; therefore, deposition must again occur at lower places – in 

our case, at the substrate – since all lithium electrically connected 

to the substrate has been dissolved. The freshly growing lithium 

pushes the remnants of the old moss away (from Fig. 6.4 c) to d)), 

and later freshly growing tips will outdistance the old ones. The 

schematic in Fig. 6.5 is based on many observations like the one 

shown in Fig. 6.4. Fig. 6.5 shows the two types of growth in 

comparison. The growth where dead lithium is pushed away (Fig. 

6.4 b) to d)) has to be clearly separated from the non-tip growth 

of active lithium (exemplified by Fig. 6.2) discussed before. Both 

growth modes look very similar in the microscopic images which 

do not show a visible difference between dead and active moss if 

it contains metallic Li. For both growth modes, the Li attachment 

does not occur at the tips, as expected according to usual dendritic 

growth models. Insertion into active structures was previously 

described as insertion at the base by Yamaki et al. [62] and by 

Crowther and West [25]. The insertion below insulated moss is a 

process not yet discussed in the literature that obviously excludes 

that the advancement happens at the outermost visible tips. Even 

in cases without dissolution the “push remnant Li” mechanism 

might be relevant: If the electrodeposition results in very fine 

stems of a bush, one can imagine that the formation of a thick SEI 

layer on them can consume their Li and cause insulation of the top 

structures. 
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6.2.4 Factors Affecting Nucleation and Dendritic 

Growth 

Deposition below the remaining SEI structure is preferred over 

the nucleation of new structures. This is surprising since rem-

nants obstruct Li+ diffusion between the electrodes: The diffusion 

path necessary for direct plating at a flat interface is shorter and 

more accessible than the longer and obstructed path for the 

electrodeposition below the remnants of a bush. This makes this 

path unfavorable, and mechanisms based on ionic depletion in the 

electrolyte cannot account for this observation. This means that 

depletion of Li+ ions near the electrode surface is not needed for 

the initiation of dendritic growth of Li. This conclusion has been 

made before based on the high Li concentration at the substrate 

surface at dendrite initiation [108]. Here it is assumed that the 

diffusion in the electrolyte is obstructed by the remnants causing 

decreased conductivity. However, the opposite might be the case: 

solid particles can enhance the conductivity of electrolytes by 

ionic adsorption (“soggy sand” electrolytes [115-117]). If the 

remnant parts acted as “soggy sand” causing enhanced Li+ 

transport, the nucleation below the remnant would be a result of 

this increased ionic transport. Although this concept seems to 

offer an explanation of the unexpected result of deposition at sites 

that seems obstructed at first glance, it is speculative and is not 

used in the following. Other factors can be involved besides kinet-

ic arguments such as diffusion kinetics: energetic reasons might 

lead to the insertion at a defect underneath the remnants. For 

example, the lithium insertion at a certain crystalline defect may 

require less energy than nucleation in a defect-free area with the 

associated nucleation overpotential. 

The observation that some needles and bushes seize to grow 

during deposition as shown in Fig. A 5 can be interpreted as a 

growth competition between the structures. A possible explana-
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tion may be that larger and faster-growing structures localize the 

deposition in a certain area around them. This would cause neigh-

boring structures to stop growing as the process becomes diffu-

sion limited and the electrolyte depletes of lithium ions around an 

active structure. However, this point becomes questionable when 

looking at the two large structures in the lower part of the images 

in Fig. A 5. These two structures did not seize to grow, and their 

growth speed did not seem to slow down even when they further 

approach until they touched. The fast growth of these adjacent 

features in Fig. A 5 combined with a slowdown on the same elec-

trode suggests that the growth rate is not diffusion-limited. This 

interpretation deviates from previous conclusions: For PC electro-

lytes, plotting the length of bush structures vs. the square root √t 

of time gave a linear graph. This has been explained by diffusion 

control.[108] Irrespective of such concentration gradients, gal-

vanostatic conditions force deposition at constant rate. Depending 

on the geometry, different scaling with time will result. A ∛t 

dependence would result if one could assume that the bushes 

have a constant mean density and grow isotropically. In our 

experiments, the growth direction seems to change randomly. If 

the direction of growth of a tip changed from time to time into a 

random direction, the random walk model would be applicable, 

and the distance travelled would also follow a √t relation. 

The insertion mechanism suggested here is based on defects in 

the crystal structure and in the SEI. Some defects are short-lived 

for lithium: Its low melting point (454 K, i.e. for our experiments 

done at room temperature          ) and the recrystallization 

temperature for partially transformed lithium (200 to 230 K, i.e. 

 0.5 Tm) [118] argue for a considerable lithium atom mobility and 

fast recrystallization. Therefore, even during a fast deposition, the 

number of defects such as dislocations remains limited. High angle 

grain boundaries – which can be associated with kinks that are 

visible in the microscopic images – and the substrate/lithium 
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interface are probably the most relevant crystallographic defects. 

Defects in the SEI, for example thin parts or even cracks, occur as a 

consequence of lithium growth and the corresponding increase in 

surface area. Major defects in the SEI are also short-lived since Li 

is very reactive, causing a fast (≤ 1 s) formation of an initial SEI 

[119]. 

The observations show that after growth interrupts for one 

hour, the growth continues in the same way as before the inter-

rupts, i.e. the bushes that are active stay active and the inactive 

ones remain inactive. During the interrupt there should be suffi-

cient time for the healing of short-lived defects so that these may 

be excluded from being responsible for the selection of preferred 

bushes. Such mechanisms include crystalline defects in the lithium 

like dislocations and grain boundaries and interface effects in the 

SEI. Here thinned regions with low impedance might locally 

accelerate growth but would heal within the mentioned time 

scale. Since short-lived defects can be excluded, self enhancing 

growth can also be excluded as a dominant mechanism. In such a 

process, preferred deposition through a thin SEI region would 

keep the SEI layer thin, thereby defining a growth region with a 

low resistance SEI. From the interrupted deposition it may be 

concluded that the growth mechanism seems to be dominated by 

long-lived insertion sites or defects. Good candidates for these 

objects are kinks as well as the substrate interface. In the observa-

tions (cf. Fig. A 5) it can be seen that during growth, some of the 

bushes completely cease to grow indicating that the growth 

governing long-lived defects become deactivated. Although the 

dominant growth mechanism does not change after the growth 

interruption for one hour, during growth, the growth sites can 

change and the rather stable defects or insertion sites may be-

come blocked.  
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6.3 Conclusions 

Mossy growth of metallic battery anodes has to be avoided to 

minimize interface area and reduce electrolyte decomposition in 

cells. The growth and dissolution of lithium mossy structures is a 

very dynamic process involving non-linear, apparent random 

growth and motion of the tips of the lithium filaments which are 

not dominated by the direction of the electric field in the bulk 

electrolyte solution. During dissolution, large parts of the moss 

can get isolated from the current collector causing a loss of active 

material, known as “dead lithium” in the literature. Our results 

demonstrate that this can happen even if the material remains 

attached to its original position at the substrate. This attachment 

on the one hand and the observed motion and growth from below 

on the other hand increase the probability that metal that has 

been isolated from the current collector may get reconnected 

during charging. 

Growth at the tips of lithium was observed, including the case 

of tip broadening. However, it was observed that mossy growth 

does not necessarily occur at the tips. Instead, the mossy growth 

often happens in growth points distributed throughout the moss. 

We suggest that grain boundaries, e.g. at kinks of needles or in 

between lithium particles, are the relevant growth points where 

lithium is inserted into the intact metallic backbone of the moss. 

Electric fields are not expected to have a large impact on this type 

of growth. Our results, e.g. the broadening of the filament shown 

in Fig. 6.1, give support to the view that lithium filaments are 

precursors of the mossy or “dendritic” lithium. Essential compo-

nents of moss formation and growth are the insertion of lithium 

into defects sites as observed for needles, the branching of lithium 

structures and the simultaneous activity of several insertion sites. 

The transition from filaments (1D) to moss (3D) growth occurs by 

broadening and branching during filament growth. The corre-
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sponding mechanism is neither a regular branching based on 

periodic instabilities as for dendrites with a regular forking pat-

tern causing a fern-like appearance, nor a later branch nucleation 

step on an preexisting structure at a random time as suggested by 

the diffusion limited aggregation model. Instead, the observed 

branching started with a continuously increasing tip width. We 

suggest a growth mechanism involving the multiplication of 

crystalline defects. 

 





 

 
 

7 The effect of Crystalline 
Orientation of the Substrate 

It was shown that the electrochemical formation of copper den-

drites grown by diffusion limitation is not only controlled by 

transport phenomena but also by interfacial processes.[120, 121] 

Copper dendrites were grown on copper single crystals with 

different orientations and a dependence of the kinetic overpoten-

tial on the crystal orientation was observed when 2 mM of chlo-

ride was added to the acid sulfate electrolyte. Without the chlo-

ride, this dependency was absent. We also studied the influence of 

interfacial processes on the electrochemical deposition behavior 

of lithium. We chose polycrystalline copper substrates and 

mapped the orientation of the grains by EBSD. This technique 

allows for the simultaneous investigation and comparison of 

multiple orientations in contrast to conventional electrochemical 

experiments on individual single crystals.  

Vibratory polished and oxide free copper samples with hat 

shape (“hat samples”) were annealed; lithium was deposited 

potentiostatically using the hanging meniscus technique in the ex 

situ beaker cell. The samples were then transferred into the SEM 

for imaging. After the SEM images were taken, the samples were 

rinsed with deionized water to dissolve the lithium, dried and 

again transferred into the SEM. Here, orientation maps of the 

copper substrate were recorded by EBSD measurements. 

7.1 Results 

The images of Fig. 7.1 a) and b) show SEM images the resulting 

deposits for LP30 (-100 mV for 60 s) and a 1 M LiTFSI in DOL (-

100 mV for 30 s) electrolyte respectively. The deposition was 
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inhomogeneously distributed over the sample surface, while small 

areas with a homogeneous distribution of deposits were ob-

served. Depending on the detector, dark or bright color represents 

areas that are more or less densely populated by lithium needles 

and particles (as shown in Fig. 7.1). With an SE2 detector, densely 

populated areas appear dark; with an “in lens” detector those 

areas appear bright. Fig. 7.2 a) and Fig. 7.3 a) show an overview 

over the sample surface after lithium deposition in LP30 and the 

LiTFSI electrolyte respectively, together with an out-of-plane 

orientation map of the same areas after washing. The orientation 

maps showed that the homogeneously populated areas corre-

spond to grains of the copper substrate. It also shows that the 

most densely populated grains had {111} planes parallel to the 

sample surface (blue grains in the orientation map) in both elec-

trolytes. With increasing deviation from this orientation, the 

grains showed less lithium.  

7.2 Discussion 

Langhuizen [93] also observed an inhomogeneous distribution of 

deposited lithium with small homogenously populated areas on a 

nickel substrate in a 1 M LiPF6 in EC:DEC electrolyte. However, he 

could only speculate about a possible influence of the substrate 

grains.  

The fact that the grain orientation dependence was present in 

the two different electrolytes suggests that changing properties of 

the SEI (different electrolytes result in different SEIs) does not 

affect this dependency. To further elucidate the possible influence 

of the SEI, additional deposition experiments were conducted 

galvanostatically. During galvanostatic deposition, the potential 

gradually decreases, which means that the reduction potential of 

the electrolyte is reached before the reduction potential of Li. As a 

result, the SEI forms before lithium is deposited and lithium is 
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plated underneath the SEI. To further strengthen the SEI before 

the lithium is deposited, the SEI was generated by holding the 

applied potential at 50 mV vs. Li – i.e. just above the reduction 

potential of lithium ions – for two hours. The resulting deposits 

after applying 1 mA for 60 s still showed the same orientation 

dependency. 

  

Fig. 7.1: (a) SEM image of lithium electrodeposited in LP30 on copper 
taken with the SE2 detector; densely populated areas appear dark. (b) 
SEM image of deposition in 1M LiTFSI in DOL taken with the “in lens” 
detector; densely populated areas appear bright. 

During potentiostatic deposition the influence of the SEI is 

minimized, while it maximized for galvanostatic deposition com-

bined with the preforming of the SEI. Under both conditions, the 

same substrate orientation dependence was found. This – plus the 

fact that we obtained the same results for a different electrolyte – 

suggests that this effect is not depending on the properties of the 

SEI, i.e. that it might be a purely crystalline interface effect. Possi-

ble is, for example, a low interface energy between lithium and 

{111} oriented copper planes. It could also be speculated about a 

connection between the (111) growth direction of needles and the 

preferred deposition on {111} oriented grains. Further investiga-

tion is needed to determine the influence of kinetics (e.g. Li ada-

tom mobility on different grain orientations) and energetics (e.g. 

interface energy between lithium and copper). 

a) b) 
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Fig. 7.2: (a) SEM image of lithium electrodeposited in LP30 onto copper. 
Image taken with the SE2 detector (i.e. densely populated areas are 
darker). (b) Orientation map (in out of plane coloring) of the same area 
of the copper substrate obtained by EBSD. {111} copper grains (blue) 
show the highest amount of electrodeposited lithium. 

a) 

b) 
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Fig. 7.3: (a) SEM image of lithium electrodeposited in 1 M LiTFSI in DOL 
onto copper. Image taken with the “in lens” detector (i.e. densely populat-
ed areas are brighter). (b) Orientation map (in out of plane coloring) of 
the same area of the copper substrate obtained by EBSD. {111} copper 
grains (blue) show the highest amount of electrodeposited lithium. 

 

a) 

b) 





 

 
 

8 Lithium Whisker Growth 
Without Electrochemistry 

So far it has not been clarified to what extend electrochemistry is 

involved in lithium dendrite growth. In order to elucidate this, 

experiments were performed to compare electrodeposition with 

physical vapor deposition of lithium. To investigate the mecha-

nisms of filament growth and to what extent they are affected by 

the chemical composition of the electrolyte, we additionally 

compared dendrite formation in two chemically very different 

electrolytes, the widespread LP30 (1 M LiPF6 in EC/DMC) and a 1 

M LiTFSI solution in DOL/DME using the in situ light microscopy 

cell. The following chapter is in the progress of publishing [3]. 

In both electrolytes lithium exhibits the tendency to grow nee-

dles and dendrites. As observed before, lithium filament growth 

can occur by insertion at kinks (shown in Fig. 8.1), at the sub-

strate interface and by growth at the tip (supplementary Fig. A 7 

and Fig. A 8). The electrolytes have comparable ionic conductivi-

ties (11 mS cm−1 for LP30 [122] and 15 mS cm−1 for LiTFSI [32]) 

which implies that morphological differences are related to the 

different SEI compositions. Characteristic differences in the 

growth morphology were identified: First, in contrast to LP30, the 

TFSI based electrolyte shows spheres distributed along the fila-

ments (marked by arrows in Fig. 1). Second, in LP30, needles can 

be elongated by insertion at the tip. In LiTFSI, the only growth 

observed at the tip was the deposition of lithium spheres in the tip 

area. Besides filament growth, also bushes or mossy lithium can 

form (Fig. 8.2). Here, strong differences were found: While LP30 

shows strongly branched bushes where the branches resemble 

the filaments, electrodeposition in the LiTFSI exclusively leads to 

more compact agglomerates containing spheres. Fig. 8.2 B is an 
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extreme example of such a structure not showing any elongated 

segments (as the ones shown in the lower part of Fig. 8.1) be-

tween spheres. 

 

  

   

Fig. 8.1: Image sequences of the growth of a lithium filament in the shape 

of a loop (marked with parallel white lines) in LP30 (above) and LiTFSI 

(below). Both filaments elongate by addition of new segments (marked in 

blue) without elongation of the surrounding segments (white). Hence, the 

segments must grow by atom insertion into the lattice of the filament, 

probably at kinks. The arrows mark spheres that were plated at the side 

of a filament in LiTFSI. Image B) was taken 60 seconds after A). Image D) 

was taken 30 seconds and E) 45 seconds after C). 

 

LP30 

A) 60 s B) 

LiTFSI 

C) D) 30 s E) 45 s 
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Fig. 8.2: SEM images of bush-like structures electrochemically grown on 

tungsten substrates. The bush in image A) was grown in LP30, the bush in 

B) in LiTFSI. 

These differences indicate that the SEI has a strong influence 

on the growth morphology as reported before.[123, 124] The 

process of needle growth which is found for both electrolytes 

therefore does not necessarily depend on the composition of the 

SEI. To fully exclude electrochemical effects from the deposition 

process, namely electric fields, concentration gradients and the 

SEI, deposition was additionally performed by thermal evapora-

tion (physical vapor deposition, PVD). Fig. 8.3 shows SEM images 

of lithium needles on Cu grown by PVD in comparison with those 

obtained by electrodeposition. For the case of the electrochemical 

experiment, a SEI is present on the Cu surface. Nevertheless, the 

deposits look very similar: Both contain lithium needles with a 

length in the micrometer range and a diameter of ca. 0.1-0.2 µm. 

PVD filaments – which we observed in all PVD runs on different 

substrates – can have kinks as the electrodeposited ones (see Fig. 

A 8). 

The strong resemblance of PVD and electrodeposited filaments 

(Fig. 8.3 and Fig. A 9) indicates that the underlying mechanism 

A) B) 
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could be controlled by the same insertion mechanism.6 As a 

consequence, electrochemical needle growth would not only be 

independent of SEI composition as suggested by the comparison 

of the two electrolytes above, but would not require a SEI at all. 

Accordingly, the tendency to form needle-like deposits would be 

an inherent property of metallic lithium. In this context lithium is 

no exception from other materials that form whiskers: In the field 

of vapor deposition the growth of whiskers, e.g. of copper or 

silicon, is a well-known phenomenon; it can be a useful fabrication 

route for nanostructures.[82] It occurs when deposition takes 

place at substrate temperatures above 65 % of the melting point 

of the deposited material.[6] Nanoscale whiskers have been 

observed for many metallic and a few inorganic materials on 

amorphous substrates.[82] This phenomenon is not well under-

stood but experimental evidence [6, 82] supports the following 

description: During PVD, atoms are “raining” down homogenously 

onto the substrate which should result in an even, homogeneous 

layer. Hence, any protrusion in the resulting layer must be a result 

of the mobility and the rearrangement of adatoms on the sub-

strate. On the substrate, the wetting properties vary, and a suffi-

ciently high mobility of adatoms leads to the formation of agglom-

erates in the regions of the lowest interface energy. Due to the 

elevated temperatures and the associated high mobilities, crystal-

line configurations with low energies will develop. These small 

crystallites adopt the form of a Wulff construction [125] with the 

important difference that they additionally exhibit an interface 

with the substrate at a location where the wetting is favored. The 

non-wetting regions in the vicinity of the crystallites supply 

further atoms for the growth. The interface of the crystallite with 

the substrate is assumed to be the defect where adatoms are 

                                                                    
6 The deposits from PVD also showed what appears to be a grain orientation 
dependency, where certain grains were more densely populated than others Fig. A 
6. This also points towards an insertion mechanism controlling both deposition 
techniques. However, we were not able to determine yet if the deposition is also 
preferred on {111} oriented grains.  
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continuously inserted and the facetted crystal is pushed forward 

to form an elongated whisker. For most materials, surface treat-

ments (e.g. a carbon coating [6]) are needed to adjust the wetting 

properties to obtain whisker growth, however, in the case of 

lithium we observe this phenomenon without a pretreatment. The 

formation of needles in the PVD process as described here is 

based on the one hand on the fact that adatoms are highly mobile 

and consequently low energy configurations can develop and on 

the other hand persisting defects that allow for enhanced inser-

tion. The similarity in the morphologies in Fig. 8.3 suggests that 

these arguments may also apply for the electrochemical deposi-

tion. 

An explanation suggested for the electrolytic growth of whisk-

ers is based on the blocking effect of strongly absorbing compo-

nents of the electrolyte (e.g. impurities) which can prevent the 

growth of certain crystal faces.[126] We have shown here that 

lithium filament growth by PVD and in the electrolyte is very 

similar, not only with respect to the morphology apparent in the 

images, but also with respect to the growth mechanism by inser-

tion. The absence of the SEI in vacuum demonstrates that a mech-

anism based on blocking by the firmly attached SEI layer is not 

required to explain the propensity of lithium for filament for-

mation. 

Needle growth in PVD can only be explained by considerable 

adatom mobility. This might also be transferable to needle growth 

in electrodeposition. In our previous publications [1, 2], we 

showed that mechanisms like concentration gradients, spherical 

diffusion, SEI cracking or electric fields can been ruled out as the 

cause for the needle growth. However, if these effects have only a 

minor impact, there is no explanation for the inhomogeneous 

deposition as there is no mechanism directing the lithium ions in 

the electrolyte towards the insertion sites. Hence, it seems plausi-
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ble that in electrodeposition, adatoms are first adsorbed at the 

entire electrode surface but remain mobile. Defect sites then act 

as sinks which form the initial needles. A high mobility of lithium 

adatoms is plausible due to the low melting point of lithium (Tm  = 

180.5 °C, i.e. RT  65 % Tm). The suggested adatom mobility 

mechanism also challenges the existence of the usual critical 

current density which needs to be exceeded to trigger dendritic 

growth [16, 127] and which is related to the ionic transport in 

solution [127]. 

Although we observed kinked, needle-like deposits during PVD 

of lithium, we did not find any bush-like deposits. This strongly 

suggests that bush growth is a phenomenon associated with the 

electrodeposition process. As we have already shown in a previ-

ous publication [2], the multiplication of defects is needed to 

switch from needle to bush lithium growth. It may be assumed 

that the SEI is active in the process of defect formation and multi-

plication. Different SEI compositions lead to differences in thick-

ness, electrical resistance, mechanical properties (e.g. compliance 

or fracture toughness), interface energies and wetting characteris-

tics with lithium. Therefore, the differing SEI composition can 

easily explain that different morphologies are observed for the 

two electrolytes in Fig. 8.1 and Fig. 8.2. The listed parameters of 

the SEI will affect lithium insertion into the growing structure and 

local variations of these parameters on a growing structure will 

define sites of accelerated and retarded lithium insertion. For 

example, cracking and incorporation of parts of the SEI layer into 

the lithium crystal may create further crystalline defects. Such an 

incorporation of SEI into lithium at dendrite locations was already 

observed by microtomography.[97] 
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Fig. 8.3: SEM images of lithium needles grown on copper substrates at 

room temperature. Image A) shows needles grown electrochemically in 

LP30 electrolyte; image B) shows needles grown by PVD in vacuum. 

 

B) 

A) 
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In summary, we elucidated the mechanisms behind one-

dimensional, needle growth and the three-dimensional, bush 

growth. The concepts presented are of general nature and not 

only specific to lithium so that it is plausible that they are also 

valid for the RT electrodeposition of materials with similar melt-

ing points. These include the metals sodium and tin that are also 

relevant for electrochemical energy storage. Our results show that 

on the one hand, needle growth turned out to be an inherent 

tendency of the metal. It combines a high atomic mobility caused 

by the low melting point with the insertion at defect sites, in 

particular, at the substrate-lithium interface. Hence, this mecha-

nism is not depending on the deposition technique or the pres-

ence of a surface/interface layer. On the other hand, bush growth 

and the resulting deposits were found to be a phenomenon con-

trolled by the SEI. Consequently, the SEI is the major factor de-

termining the morphology of the deposits. Both growth modes are 

superimposed during electrochemical deposition, with the needle 

growth being the precursor of bush growth.[2] Conventional 

approaches to avoid dendrites do not seem sufficient, since needle 

growth is an inherent property of lithium. Such approaches in-

clude variations of ionic transport conditions (e.g. charge rate), 

and SEI modifications (e.g. optimized mechanical properties). In 

order to attack the dendrite problem at its root, we suggest to 

additionally reduce the mobility of lithium atoms. Blocking lithium 

diffusion on the substrate including its SEI should prevent the 

formation of filaments which are the precursors of dendrites. 

 

 



 

 
 

9 Summary 

Lithium dendrite formation and growth not only cause safety 

concerns in today's lithium-ion batteries but also prevent the 

application of lithium anodes with their superior properties in 

rechargeable systems. As a phenomenon known for almost 50 

years, it has led to the proposition of numerous remedies and 

growth mechanisms. However, none of these attempts has led to 

the successful commercialization of lithium metal anodes in 

rechargeable batteries.  

Assessment of Literature 

Electric field enhancement at a protrusion, for example, is a physi-

cal fact, but simplistically applying it to electrochemical cells 

ignores the principle of electroneutrality inside a binary electro-

lyte. The magnitude of this tip effect has not been discussed 

critically in the literature yet; but it can be questioned if it is 

relevant, since for typical electrochemical conditions, the influ-

ence of migration caused by electric fields is limited compared to 

transport by diffusion driven by a gradient in concentration: 

Despite the fact that the electrical field can reach values exceeding 

1000 V/m for large currents over long distances [128], it was 

shown that the transport due to the electric field can at maximum 

be as large as that due to concentration gradients [129]. For small 

currents, the electric field is confined to the electrochemical 

double layer (a few nm) and hardly extends into the electrolyte. 

Even if a field effect exists, it is questionable whether there is a 

“self-amplification” by a growing protrusion as suggested in [57] 

(independent of the concentration gradient effects discussed 

above), since the length of the growing protrusions (often >1 µm) 

might exceed the length scales of the electrochemical double layer 

where local electric fields can have significant impact. 
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Chazalviel's model based on the ionic concentration gradient 

could correctly predict the growth speed of dendrites as being 

proportional to the anion drift velocity. However, this model could 

not predict the onset of dendritic growth for current densities 

below the limiting current, which was explained by inhomogenei-

ties that can result in locally higher current densities. Similar to 

electric field enhancement and spherical diffusion, this mecha-

nism is not able to explain the observed growth at the base of a 

needle or bush [25, 62]. The mechanism proposed by Cohen et al. 

of SEI cracking gives a plausible explanation for dendrite growth 

initiation in an electrolyte but cannot explain why lithium needles 

form at all or why they were observed to grow from the base. 

Whisker-like extrusion was the only presented mechanism that 

could explain growth from the base of a needle, but failed to 

explain the reported elongation by aggregation at the tip of a 

needle. In addition, the pressure build-up inside the lithium 

surface is not viable for deposition experiments on substrates 

other than lithium. In this case, needles form directly on the 

substrate, without the necessary lithium volume the needle can 

extrude from.  

Summary of Results 

This thesis presents new observations with high spatial resolution 

of dendrite growth starting at the early stage of individual needles 

up to the behavior of large lithium bushes. The results contradict 

the existing theories of lithium dendrite growth. They show that 

largely investigated and discussed factors like current densities, 

ionic concentrations, whisker-forming stresses and SEI composi-

tion do not govern the onset of dendrite formation. The growth 

locations of a dendrite are a topic that is controversially discussed 

in the literature, and the proposed models are divided into two 

groups: those predicting tip growth and those predicting base 

growth. Hence, we studied the growth of lithium dendrites in a 
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commercial electrolyte by in situ light microscopy. Our optimized 

cell design and microscope setup enabled us to obtain in situ 

footage with unmatched resolution. This led to identification of 

the growth locations of lithium needles in two different commer-

cial electrolytes for the first time and helped us to elucidate the 

relationship between lithium needles and bushes. SEM studies 

gave indications on the observed facets of lithium particles and 

the crystalline growth direction of needles. EBSD analysis re-

vealed an influence of the copper substrate grain orientation and 

helped to identify the grain orientations that were more densely 

populated by deposits. Finally, we were able to grow lithium 

dendrites by thermal evaporation on a variety of substrates.  

Fig. 9.1 shows a schematic that graphically summarizes our 

findings. (a) We found strong indication of the crystallinity of 

electrodeposited lithium: Lithium particles tend to form {110} 

facets, while we found strong indications for a <111> growth 

direction of needles. Our in situ data of needle growth showed that 

needle-like dendrites can grow by simultaneous atom insertion at 

the base, at the tip and at kinks. The presented theories only 

predict either growth at the tip or at the base, but not both simul-

taneously. In addition, growth at kinks was never observed before 

and is not predicted by any model. The EBSD analysis revealed 

that copper {111} surfaces are preferentially populated by lithium 

deposits. This emphasizes the importance of the lithium substrate 

interface and suggests that the lattice mismatch causes lattice 

distortion in the deposited lithium at the substrate interface. 

(b) These imperfections in the lattice are expected to control the 

nucleation and growth, not only at the base, but also at kinks with 

their high angle grain boundaries and at imperfections or non-

active particles at the tip of the needles. 



9 Summary 

 
100 
 

 

 The mechanism of atom insertion at crystalline defect sites – 

indicated by the growth of needles at interfaces and the influence 

of the orientation of the substrate crystal – does not rely on an 

electrochemical process. Consequently it was not only possible to 

grow lithium needles in different electrolytes, but also by physical 

vapor deposition in vacuum using similar deposition rates. This 

was never reported for lithium metal but in the terms of PVD this 

behavior is no exception to other metals. Nanowhisker growth of 

various materials by PVD was already reported. For most of these 

deposited materials a discontinuous dewetting layer (e.g. carbon) 

on the substrate is needed, in addition to a substrate temperature 

of about 65 % of the melting temperature of the deposited materi-

al. In the case of lithium, no surface layer was needed to form 

needles, and due to the low melting point of lithium, room tem-

perature is already ca. 65 % of the melting temperature. Both 

conditions, the dewetting layer and the high substrate tempera-

ture, result in a high mobility of adatoms which is needed to 

 

Fig. 9.1: Schematic describing of our results on electrochemical needle 
and bush growth.  
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create the strong localization of deposition. High adatom mobility 

is also expected for electrochemical deposition. In addition, the 

dependence on the crystal orientation of the substrate was ob-

served for electrodeposition in all electrolytes and after PVD of 

lithium, further supporting the view of a common insertion mech-

anism for both needle growth in electrochemical as well as vapor 

deposition. 

Bush- or moss-like lithium dendrites are the most commonly 

observed form of lithium dendrites. (c) Our in situ images of the 

broadening and branching of a lithium needle in addition to the 

needles that were found at the basis of a bush-like structure 

suggest that needles are the precursor of bush-like dendrites. 

(d) In order to form a bush from a needle, a transition in the 

growth mode is necessary. The number of atom insertion sites is 

increasing; and the growth direction is no longer alongside the 

needle. In order to create more insertion sites, the crystalline 

defects need to multiply. However, the cause for the defect multi-

plication must be a process associated with the electrochemical 

process, as no bushes were observed in PVD. The comparison of 

dendrite formation in two different electrolytes showed that the 

morphology of bushes most likely is strongly affected by the SEI 

composition. This suggests that the SEI is not only controlling the 

growth of bushes but also is the cause of bush-like growth. In 

other words, the SEI seems to be responsible for the defect multi-

plication which results in the transition of the growth mode from 

needle to bush growth.  

Bush growth showed to be particularly detrimental for the cy-

cling efficiency and safety of a cell. During dissolution cycles, large 

proportions of bushes could not be dissolved as they were electri-

cally isolated from the substrate. This was by the dissolution of 

the basis of the bush before the upper parts could be dissolved 

leading to large capacity losses. The remaining bush structure 
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stays attached to the surface by its SEI and acted as a nucleation 

point in the next deposition cycle; a new bush forms underneath 

pushing the remaining bush towards the counter electrode. This 

“push-remnant” mechanism makes bushes grow larger and larger 

during cycling which strongly increases the danger of a short 

circuit.  

Outlook 

According to the view established in this thesis, it is not surprising 

that so far countermeasures against dendrites have not proven 

successful since the roots of dendrite formation clearly lie outside 

of electrochemistry. In order to suppress lithium dendrite for-

mation, the formation of lithium needles needs to be prevented. 

This means that either the surface energy of the substrate must be 

completely homogenous, or the adatom mobility must be reduced. 

While the former appears to be an impossible task, there are 

possible ways to reduce the adatom mobility. One possibility 

would be to reduce the temperature of the substrate during 

deposition of lithium well below 65 % of its melting temperature. 

In practice this would mean that a lithium metal battery needs to 

be cooled to temperatures below 0 °C during charging which 

raises many additional problems.7 Another possibility would be to 

find an electrolyte additive (surfactant) that adsorbs on the sub-

strate surface without being incorporated into the deposit; this 

could hinder the motion of lithium adatoms on the surface. 

                                                                    
7 It should be noted that such a cooling would probably not be helpful for the case 
of graphite electrodes due to the accompanying reduction of lithium diffusion in 
the graphite. 
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A Appendix 

   

Fig. A 1: From a) to b), the needle grows in length, but the shape of the 
tip remains the same. c) After dissolution of the needle, this tip is still 
visible. 

 
 
 

  

Fig. A 2: Schematic a) shows the plating process at a kink due to 
defects in the SEI. Schematic b) shows the resulting three dimensional 
plating if the insertion into defects in the crystal is neglected. Such a 
3D deposition at kinks was not observed in the experiments, instead, 
elongation of the segments took place, as exemplified by Fig. 5.4 

a) b) c) 

a) b) not observed! 
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Fig. A 3: SEM images of bush-like dendrites grown on a tungsten 
substrate. A micromanipulator was used to remove the upper parts of 
a bush, and revealed a needle structure underneath. 

 

a) 

b) 

10 µm 
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Fig. A 4: In situ light microscopy of the stripping of the bush-like structure 
on tungsten from Fig. 2. Dissolution starts from the tip a thin hollow shell 
remains. The images cover a time span of 20 minutes. 
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Fig. A 5: In situ light microscopy overview of a tungsten substrate during 
plating. The arrows mark structures that formed, but seized to grow. The 
images cover a time span of 45 minutes. 

 

b)fa) 

c) d) 



Appendix 

 
119 

 

 

Fig. A 6: SEM image of lithium deposited by PVD onto a vibratory pol-
ished, oxide free copper substrate. The image was taken with the “in lens” 
detector. The amount of deposited lithium appears to be grain orientation 
selective. 
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Fig. A 7: Growth of a lithium needle in LiTFSI (above) and LP30 (below). 

Atoms are inserted at the base. An initial structure shown in both images 

a) and marked in white. Images b) show the structures getting pushed 

upwards by needle-like deposition (blue) underneath it. Images c) show 

new segments (black) that were added to the base. The arrows mark 

spheres that were generated at the kinks of a filament in LiTFSI. 

 

 

 

 

 

 

a) 

a) 

b) c) 

b) c) LP30 

LiTFSI 
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Fig. A 8: Light microscopy images of the growth of a lithium deposit in 
LiTFSI (above, a, b, c) and of a lithium needle in LP30 (below, d, e). 
Spheres are deposited at the tip area of the needle in LP30 while the 
structure gained in length by growth from the base. 

 

  

a) b) c) 

d) e) 

LP30 

LiTFSI 
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Fig. A 9: SEM images of lithium needles grown by PVD (images a to e) and 

electrodeposition (f). Deposits are grown by PVD on (a) tantalum (b) 

tungsten and (c) copper foil. d) shows Li needles grown on a vibratory 

polished and oxide free copper surface. e) shows a cross section of a 

needle base grown on the former surface. f) shows lithium needles grown 

on a copper surface by electrodeposition in LP30 electrolyte. 

 

a) PVD on Ta b) PVD on W 

c) PVD on Cu 

f) LP30 on W film 

d) PVD on „clean“ Cu 

e) PVD on “clean” Cu 


