KIT | KIT-Bibliothek | Impressum | Datenschutz

The KIT-LIMSI Translation System for WMT 2014

Do, Q. K.; Herrmann, T.; Niehues, J. ORCID iD icon 1; Allauzen, A.; Yvon, F.; Waibel, A. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper describes the joined submission of LIMSI and KIT to the Shared Translation Task for the German-to-English direction. The system consists of a phrase-based translation system using a pre-reordering approach. The base-line system already includes several models like conventional language models on different word factors and a discriminative word lexicon. This system is used to gen-erate a k-best list. In a second step, the list is reranked using SOUL language and translation models (Le et al., 2011). Originally, SOUL translation models were applied to n-gram-based translation systems that use tuples as translation units instead of phrase pairs. In this article, we describe their integration into the KIT phrase-based system. Experimental results show that their use can yield significant improvements in terms of BLEU score.


Verlagsausgabe §
DOI: 10.5445/IR/1000045399
Veröffentlicht am 10.06.2025
Originalveröffentlichung
DOI: 10.3115/v1/W14-3307
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2014
Sprache Englisch
Identifikator ISBN: 978-1-941643-17-4
KITopen-ID: 1000045399
Erschienen in ACL 2014 Ninth Workshop on Statistical Machine Translation : Proceedings of the Workshop June 26-27, 2014, Baltimore, Maryland, USA
Veranstaltung 9th ACL Workshop on Statistical Machine Translation (WMT 2014), Baltimore, MD, USA, 26.06.2014 – 27.06.2014
Verlag Association for Computational Linguistics (ACL)
Seiten 84-89
Externe Relationen Siehe auch
Nachgewiesen in OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger Ungleichheiten
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page