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ABSTRACT

A cyclic loading with multidimensional strain loops in the soil may be caused by traffic loading,
by wind and wave loading (e.g. offshore wind turbines) or by earthquake shaking. The present
paper focuses on the accumulation of permanent deformations due to a high-cyclic loading, that
means a loading with many cycles of small to intermediate strain amplitudes. Two different
strategies for the consideration of multidimensional strain loops in a high-cycle accumulation
model are presented. Experimental evidence for the first strategy is provided. However, it is
suitable for convex strain loops only. The second strategy can handle also non-convex strain
loops, but has not been confirmed experimentally yet. The paper discusses suitable experiments
for such prove and documents some preliminary test series.

Keywords: cyclic loading, multi-dimensional strain loops, permanent strain accumulation

INTRODUCTION

A cyclic loading may lead to an accumulation of permanent deformations in the soil. Inho-
mogeneities in the soil or a different loading of neighbored foundations may cause differential
settlements, which may endanger the serviceability of a structure or even cause damage in stat-
ically indeterminated structures.

In order to estimate the permanent deformations already during the design phase, Niemunis et
al. [7] have developed a high-cycle accumulation (HCA) model. In finite element calculations
the model is used along with a special calculation procedure which is shown schematically in
Figure 1. Only a few cycles are calculated with a conventional (e.g. elastoplastic or hypoplastic)
constitutive model formulated in terms of stress and strain rates. These parts of the calcula-
tion are necessary in order to estimate the field of the strain amplitude. During these cycles,
for each integration point in the FE model, the strain loop is recorded as a series of discrete
strain states. From the recorded strain loop the strain amplitude εampl is calculated which is
an important input parameter for the HCA model. Different strategies for the calculation of
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εampl for non-uniaxial strain loops are discussed in the following sections. Larger packages of
cycles are calculated using a HCA model. The HCA model predicts the development of residual
strain with the number of cycles without tracing the strain path during the individual cycles.
The predicted accumulation rate depends on the strain amplitude, of the actual state of the soil
(average void ratio, average stress) and of the cyclic preloading (number of cycles in the past)
(Wichtmann et al. [13]). HCA models work similar to viscoplastic models with the number of
cycles N replacing the time t. Therefore, the accumulation of deformations under cyclic loading
is treated similar to the problem of creep under constant load. After a certain number of cycles
it may be necessary to update the spatial field of the strain amplitude in a so-called ”control
cycle” (Figure 1) which is calculated conventionally again.
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Fig. 1: Procedure for the FE calculation of the settlement of a shallow foundation under cyclic loading
using a HCA model

For a number of practical problems the strain loops in the soil due to a cyclic loading are
approximately one-dimensional, e.g. due to a repeated filling and emptying of tanks, silos and
watergates or in the case of machine foundations. However, complicated multidimensional strain
loops in the soil may result from earthquake shaking (Figure 2), from moving traffic loads (e.g.
near railway tracks, Figure 3) and also in the case of offshore wind power plants, where the wind
and wave loading may have different directions and frequencies.

The influence of the shape of the strain loop on the rate of strain accumulation and the handling
of multi-dimensional strain loops in a HCA model is discussed in the following sections.
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Fig. 2: Multidimensional acceler-
ation loops due to an earthquake
(Niigata, 1964, Ishihara [4])

Fig. 3: Complicated velocity loops due to traffic loading, measure-
ments of Huber [3]

LITERATURE REVIEW

A few experimental studies in the literature demonstrated a significant influence of the shape of
the strain loop on the rate of residual strain accumulation or on the rate of pore water pressure
accumulation, respectively.
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Pyke et al. [9] subjected a dry sand layer to a multiaxial cyclic loading. Two shaking tables were
mounted transversely on each other, allowing for 2-D shearing. If approximately circular shear
stress cycles were applied, the settlements were twice larger than for uniaxial cycles with the
same maximum shear stress (Figure 4). Furthermore, if two stochastically generated loadings

τ1(t) and τ2(t) with τ ampl
1 ≈ τampl

2 were applied simultaneously, the resulting settlement was twice
larger than in the case where the sand layer was sheared only with τ1(t) or only with τ2(t). If the
shaking tables were additionally accelerated in the third, vertical direction, the accumulation
rate was even larger. Pyke et al. [9] concluded that in the case of a multidimensional cyclic
shearing in several orthogonal directions, the resulting settlement is identical with the sum of
the settlements which would result from an uniaxial cyclic shearing in the individual directions.
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Fig. 4: Shaking table tests of Pyke et al. [9]: Com-
parison of uniaxial and circular stress cycles
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Fig. 5: Influence of the shape of the stress cycles
on the liquefaction resistance after Ishihara and
Yamazaki [5]

Ishihara and Yamazaki [5] performed undrained simple shear tests with a stress-controlled shear-
ing in two mutually perpendicular directions. In a first series elliptic stress cycles were tested.
The amplitude τ ampl

1 was kept constant and the amplitude in the orthogonal direction was varied

in the range 0 ≤ τ ampl
2 ≤ τampl

1 (Figure 5). With increasing ratio τ ampl
2 /τampl

1 , the accumulation
of excess pore water pressure was accelerated and the liquefaction (defined as the time at which
a shear strain amplitude γampl = 3 % was reached) was achieved after a lower number of cycles
(Figure 5). In a second series of tests, the specimens were sheared alternatingly in the τ1- and the
τ2-direction (cross-shaped stress loops). A decrease of the liquefaction resistance was observed

with an increasing ratio τ ampl
2 /τampl

1 .

The multidimensional simple shear tests performed by Wichtmann et al. [11] showed a twice
larger accumulation rate for a circular cyclic shearing compared to one-dimensional cycles with
the same maximum span (Figure 6). Niemunis et al. [8] performed cyclic triaxial tests with a
simultaneous oscillation of the axial stress σ1 and the lateral stress σ3 in order to study the
influence of the shape of the cycles. Different shapes of the cycles in the p-q-plane were tested,
with p = (σ1 + 2σ3)/3 being the mean effective stress and q = σ1 − σ3 being the deviatoric
stress. The resulting curves of the residual strain εacc versus the number of cycles N are given
in Figure 7. Again the two-dimensional loops produce larger residual strains than the one-
dimensional cycles. In the case of the one-dimensional cycles, a single change of the polarization
by 90◦ undertaken at N = 1,000 lead to an increase of the accumulation rate. This effect was
also observed in multidimensional simple shear tests (Wichtmann et al. [11]). Although the
two-dimensional loops all had the same spans in the p- and in the q-direction, there are some
subtle differences in the accumulation rates depending on the shape of the loops (compare circle,
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diamond and cross in Figure 7).

It may be concluded that the influence of the shape of the strain loop on the rate of residual
strain accumulation is quite significant. It has to be adequately considered in a HCA model.
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Fig. 6: Comparison of circular and one-dimensional
strain loops in simple shear tests, Wichtmann et al.
[11]
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Fig. 7: Accumulation curves measured in triaxial
tests with a simultaneous cyclic variation of σ1 and
σ3, Niemunis et al. [8]

AMPLITUDE DEFINITION FOR MULTIDIMENSIONAL CONVEX STRAIN

LOOPS

The definition of a tensorial amplitude for multi-dimensional strain loops which is incorporated
in the HCA model of Niemunis et al. [7] was originally proposed by Niemunis [6]. This definition
is applicable to convex strain loops only. The procedure for the determination of εampl starts
from the series of discrete strain points recorded during the conventionally calculated cycles
(Figure 1). First, the span 2R(6) (a scalar variable) of the in general six-dimensional strain loop
is determined. The direction of the line connecting the two most distant points of the loop is
denoted by ~r(6) (a second order tensor). After that the loop is projected into the direction ~r(6)

onto a (hyper-) plane. The projected loop is five-dimensional. The span 2R(5) and the direction
of the projection are determined, and so on. The projections are illustrated in Figure 8, starting
from a three-dimensional loop. Having finished the projections, six spans 2R(6) . . . 2R(1) and six
directions ~r(6) . . .~r(1) are available. Then, the fourth-order amplitude tensor Aε is calculated as
the sum of the dyadic products of the directions ~r(i)×~r(i) weighted with the respective half span
R(i) :

Aε =
6

∑

i=1

R(i)~r(i) ×~r(i) (1)

The norm of the amplitude tensor is used as a scalar measure:

εampl = ‖Aε‖ (2)

In the special case of one-dimensional strain loops the scalar measure defined by Eqs. (1) and
(2) is identical with the classical definition of the amplitude εampl = (εmax − εmin)/2. For two-
dimensional elliptical cycles one obtains εampl =

√

(R(1))2 + (R(2))2 . Thus, circular loops with
R(1) = R(2) = R have an amplitude εampl =

√
2R.
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Fig. 8: Multiple projections of a strain loop in order to calculate an amplitude for multi-dimensional loops

The rate ε̇acc of strain accumulation is approximately proportional to the square of the strain
amplitude (εampl)2 (Wichtmann [10]). This dependence has been implemented into the HCA
model (Niemunis et al. [7]). Thus, for two-dimensional circular strain loops with a radius R
(amplitude εampl =

√
2R) the accumulation model predicts twice larger accumulation rates than

for one-dimensional cycles with a span 2R (amplitude εampl = R). The prediction of a twice
larger accumulation rate for circular cycles is in good accordance with the test results shown in
Figure 6. Thus, the amplitude definition for convex strain loops is experimentally confirmed for
the two-dimensional case.

AMPLITUDE DEFINITION FOR MORE COMPLICATED STRAIN LOOPS

It has been recognized that the amplitude definition presented in the last section may not
properly describe the accumulation rates due to more complicated strain loops as those shown
in Figures 2 and 3 or those presented in Figure 9 (which have been generated by a superposition
of harmonic functions). The definition of an amplitude and the counting of the cycles for such
loops is not clarified yet.
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Fig. 9: Complicated strain loops, obtained by superposition of sine functions a), b) with slightly different
frequencies and amplitudes or c), d) with strongly different frequencies and amplitudes

A possible treatment of such strain loops has been proposed by Niemunis et al. [8]. It is briefly
summarized in the following. It has to be stressed that this procedure has not been verified
experimentally yet.

The strain path εij(t) is assumed as a superposition of individual harmonic oscillations, which
differ by their frequency fK (or by their angular velocity ωK = 2πfK , respectively). First,
the single oscillations are extracted filtered from the entire signal. For each strain component
εij(t) the portions belonging to a certain frequency fK are extracted by means of a spectral
analysis. Their sum constitutes a harmonic oscillation. In the general case it is a six-dimensional
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ellipse in the strain space. The oscillations are numbered with the index K. The signal εij(t) is
approximated as a sum of M oscillations:

εij(t) ≈
M
∑

K=1

εamplK
ij sin(ωKt + ϕK

ij ) (3)

For each strain component, the amplitude εamplK
ij and the phase shift ϕK

ij corresponding to the

angular velocity ωK are determined. Due to the over-proportional dependence of the accumula-
tion rate on the strain amplitude, only the frequencies fK with large amplitudes εamplK

ij have to
be considered. For each oscillation the scalar measure

εamplK = ‖εamplK‖ (4)

is determined with ε
amplK being a second order tensor collecting the amplitudes of the individual

strain components εij of the oscillation K. The same value εamplK would result from the proce-
dure described in the last Section when it is applied to a strain loop where all strain components
are described by harmonic functions with amplitudes εamplK .

If M oscillations (i.e. M different frequencies) have to be considered the entire signal is decom-
posed into M packages of cycles each with an amplitude εamplK and a number of cycles N . It is
assumed that these packages can be calculated in arbitrary sequence and that in this way the
residual deformations can be estimated. Wichtmann et al. [12] have demonstrated that in the
case of packages of one-dimensional cycles with different amplitudes, the sequence of application
is of minor importance with respect to the final value of the permanent strain. However, a similar
experimental study for multi-dimensional cycles is still missing.

1x

+ 50 x
=
?

ε1

ε3

ε1

ε3

Fig. 10: Decomposition of a two-dimensional strain loop in two oscillations with different frequencies fK

In order to prove the proposed procedure for the two-dimensional case, drained axisymmetric
triaxial tests with a simultaneous oscillation of the axial and the lateral stress are planned.
Strain loops obtained by a superposition of several harmonic functions with different frequencies
and amplitudes will be tested (see the example in Figure 10). For comparison, in other tests
on fresh samples, the same oscillations will be applied separately in succession. The sequence of
application of the oscillations will also be varied. A decomposition of a strain loop into oscillations
according to the procedure described above is justified if the tests with the complicated strain
loops and those with the oscillations applied in succession deliver similar final residual strains.

In order to prevent an influence of membrane penetration effects on the data, the strains will be
measured locally by means of local displacement transducers (LDTs) of the type described by
Goto et al. [1] or Hoque et al. [2]. Specimens with a square cross section are advantageous for
such measurements. Due to problems with the long-time stability of the LDTs under pressurized
water, it is planned to perform the tests without water in the cell. The specimens will be tested
in the dry condition, since otherwise the diffusion of air through the membrane into an initially
water-saturated sample would influence the cumulative behavior. A fine sand (d50 = 0.14 mm,
Cu = d60/d10 = 1.5) will be used.
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In preliminary test series it has been studied if the sample geometry influences the cumulative
behavior, that means if cuboidal and cylindrical (standard) samples deliver the same results
in long-term cyclic tests. Another preliminary study has been performed in order to clarify
if dry and fully water-saturated specimens deliver the same results. The results of these test
series are documented in the following sections. Furthermore, the calibration of the HCA model
parameters for the fine sand is presented.

TEST RESULTS

Calibration of the HCA model parameters

First, the HCA model parameters Campl, Ce, Cp, CY , CN1, CN2 and CN3 for the fine sand have
been calibrated in stress-controlled drained cyclic triaxial tests with an uniaxial cyclic loading.
The tests were performed on cylindrical samples with a diameter d = 10 cm and a height h =
10 cm. The specimens were prepared by pluviating dry sand out of a funnel into split moulds.
After that they were flushed with CO2 and saturated with de-aired water. A back pressure of
200 kPa was used in all tests. In each test 105 load cycles were applied with a frequency of 0.2
Hz.

17 tests with four different stress amplitudes qampl, seven different initial relative densities ID0 =
(emax − e0)/(emax − emin), five different average mean pressures pav and four different average
stress ratios ηav = qav/pav were performed. Figure 11 shows a typical plot of the vertical strain
ε1(t) measured during the first 24 cycles and during five cycles recorded at N = 50, 100, 200,
. . . , 105.

Figure 12a-d shows the increase of the residual strain εacc with increasing number of cycles
N measured in the four test series. Evidently, the rate of strain accumulation increases with
increasing amplitude (Figure 12a), decreasing density (Figure 12b) and increasing average stress
ratio (Figure 12d). Similar residual strains were obtained in the tests with different average
mean pressures because the tests were performed with the same amplitude-pressure ratio ζ =
qampl/pav = 0.3 (Figure 12c).

The HCA model parameter Campl was determined from a curve-fitting of the function fampl

(Table 1) to the data shown in Figure 12e. In that figure the residual strain εacc after differ-
ent numbers of cycles is plotted versus a mean value of the strain amplitude, calculated as
εampl = 1/N

∫

εampl(N)dN . This averaging is necessary since the tests have been performed
stress-controlled and thus the strain amplitude decreases slightly with N (especially during the
first 100 cycles). On the ordinate the residual strain has been divided by the void ratio function
fe of the HCA model (Table 1) in order to purify the data from the influence of slightly different
initial densities and different compaction rates. f e has been calculated with a mean value of
void ratio e = 1/N

∫

e(N)dN . The parameter Campl given in Table 1 is the average of the values
determined for different numbers of cycles.

A curve-fitting of the function fe to the data in Figure 12f delivered the parameter Ce given in
Table 1. In Figure 12f the residual strain has been divided by the amplitude function f ampl in
order to purify the data from the influence of slightly different strain amplitudes. The data are
plotted versus a mean value of void ratio. Since f ampl is necessary to purify the data in Figure

12f and fe is used on the ordinate in Figure 12e, the determination of Campl and Ce has to be
done by iteration.

The parameters Cp and CY (Table 1) were determined from a curve-fitting of the functions fp and
fY (Table 1) to the data in Figures 12g and 12h. In those diagrams the residual strain has been
divided by the amplitude and void ratio functions and plotted versus pav or Y

av
respectively,

where Y
av

is a normalized stress ratio which is zero for isotropic stresses and 1 on the critical
state line.
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Function Param. Value

fampl = (εampl/10−4)
Campl Campl 1.31

fe =
(Ce − e)2

1 + e

1 + emax

(Ce − emax)2
Ce 0.58

fp = exp[−Cp(p
av[kPa]/100 − 1)] Cp 0.22

fY = exp(CY Y
av

) CY 1.85

ḟB
N = CN1CN3 CN1 [10−4] 2.82

ḟA
N = CN1CN2 exp(−gA/CN1/fampl) CN2 0.37

ḟN = ḟA
N + ḟB

N CN3 [10−5] 2.64

Table 1: Functions of the HCA model and parameters for the fine sand.

The curves εacc(N) from Figure 12a-d have been divided by the functions f ampl, fe, fp and fY

of the HCA model (Figure 12i) in order to determine the parameters CN1, CN2 and CN3. A
curve-fitting of the function fN = CN1[ln(1 + CN2N) + CN3N ] to the data in Figure 12i (solid
curve) delivered the CNi-values specified in Table 1.

The slight differences between the set of parameters given in Table 1 and that determined by
Wichtmann et al. [13] based on tests with isotropic average stresses needs further investigations.
Probably the differences are due to deficits of the function fY of the HCA model.

The critical friction angle ϕc = 33.1◦ necessary for the cyclic flow rule m of the HCA model
has been determined from the inclination of a pluviated cone of dry sand. The calibration of
the parameters for the elastic stiffness E of the HCA model has been discussed in detail by
Wichtmann et al. [13].

Comparison of different sample geometries

Five drained cyclic triaxial tests with different sample geometries have been performed. Two
cylindrical specimens were prepared with a diameter of 10 cm and a height of 10 cm (the
standard size at our institute). Another cylindrical specimen was prepared with a diameter of 10
cm and a height of 20 cm (the size e.g. used by Wichtmann [10]). The two cuboidal specimens
had dimensions 9 × 9 × 18 cm. All samples were prepared by air pluviation and had a medium
density (0.54 ≤ ID0 ≤ 0.65). They were tested in the water-saturated condition. The average
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effective stress (pav = 200 kPa, ηav = 0.75) and the deviatoric stress amplitude (qampl = 60
kPa) were the same in all tests. All specimens were subjected to 105 cycles of axial load using
a frequency of 0.2 Hz.

The same elastic and cumulative strains were measured for all sample geometries (Figure 13).
The small differences in the accumulation curves (Figure 13a) and strain amplitudes (Figure 13b)
are due to the slightly different initial densities. In Figure 13c the influence of density has been
eliminated by dividing the accumulation curves by the void ratio function f e . The normalized
accumulation curves εacc(N)/f e for different sample geometries coincide well. Furthermore, no
influence of the sample geometry on the ”cyclic flow rule”, that means on the ratio of the
deviatoric and volumetric strain accumulation rates, could be detected.

Comparison of dry and water-saturated specimens

Seven drained cyclic triaxial tests on medium-dense specimens (0.56 ≤ ID0 ≤ 0.61) were per-
formed. All specimens had a cylindrical shape (d = h = 10 cm) and were prepared by air
pluviation.

One test was performed on a water-saturated specimen (the data of this test has been also
included in Figure 12c). Five tests were performed on dry specimens. The constant lateral
effective stress was applied via vacuum in two of these tests and via cell pressure in the three
other ones. One of the tests with cell pressure was performed without a back pressure while a
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Fig. 13: Comparison of drained cyclic tests performed on specimens with different geometries.

back pressure of u = 200 kPa was applied in the two other tests. The purpose of the application
of back pressure to the dry specimens was to achieve the same total stress level as in the test on
the water-saturated specimen. A seventh specimen got moist due to a leakage of the membrane.
At the end of that test a water content of 7.6 % was detected.

The average effective stress (pav = 50 kPa, ηav = 0.75) and the deviatoric stress amplitude (qampl

= 15 kPa) were the same in all tests. All specimens were subjected to an axial cyclic loading
with a frequency of 0.2 Hz. The maximum number of cycles was chosen between 104 and 105

cycles.

Since volume changes could not be measured in the tests on the dry specimens, the data is given
in terms of the axial strain ε1 in Figure 14. The increase of the permanent axial strain εacc

1 with
increasing number of cycles is compared in Figure 14a. Obviously, the accumulation rates in
the tests on dry sand were approximately twice lower than those measured in the test on the
water-saturated specimen - independently whether the lateral stress was applied via vacuum
or cell pressure and whether a back pressure is used or not. This observation can only partly
be explained by the lower strain amplitudes measured for dry sand (Figure 14b). In order to
eliminate the influence of the strain amplitude, the accumulation curves have been normalized
by the amplitude function fampl in Figure 14c. However, the normalized accumulation curves of
the dry specimens still plot below that of the fully water-saturated specimen.

These test results are somewhat surprising since in a similar test series performed on a medium
coarse sand (d50 = 0.55 mm, Cu = 1.8) similar accumulation rates were measured for dry and
water-saturated specimens at different loading frequencies (Figure 15). The lower elastic and
cumulative strains for dry fine sand may be caused by electric charge of the grains.

The lowest accumulation rates were measured for the moist sample (Figure 14a). The strain
amplitudes were similar to those of the dry specimens (Figure 14b). Therefore, the normalized
accumulation curve for the moist sand in Figure 14c plots significantly lower than those of the
dry and fully saturated specimens.

SUMMARY AND CONCLUSIONS

Experimental evidence for the significant influence of the shape of the strain loop on the rate
of permanent strain accumulation due to a drained cyclic loading has been given. A definition
of an amplitude for convex multi-dimensional strain loops has been experimentally confirmed
for the two-dimensional case. This definition is incorporated into the high-cycle accumulation
(HCA) model proposed by Niemunis et al. [7]. The applicability of a novel procedure for more
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complicated strain loops has still to be checked experimentally. The procedure uses a decompo-
sition of the strain path into several harmonic oscillations, which differ in their frequency. The
idea is to filter these oscillations out of the entire signal and after that treat them separately.
The results of some preliminary test series are presented in the paper. No influence of the sample
geometry could be detected in drained cyclic triaxial tests on cylindrical samples with different
heights and on cuboidal specimens. The accumulation rates and strain amplitudes of dry fine
sand were found lower than those of water-saturated samples. Furthermore, the calibration of
the HCA model parameters for the fine sand is shown.
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