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Ioana Gheţa, Martin Grafmüller, Robin Gruna, Michael Heizmann, Se-
bastian Höfer, Christian Kühnert, Achim Kuwertz, Alexey Pak, Jennifer
Sander, Michael Teutsch, Stefan Werling, and last but not least Philipp
Woock. Special thanks go to Masoud Roschani. Besides being a strong
author of one of the papers used for this thesis, he acted and still acts as
a very reliable contributor, organizer, and backup for my lecture “Prob-
abilistische Planung". I would also like to thank Gaby Gross, who is by
far more than a secretary for the IES. I enjoyed sharing work time and
experiences about traveling and football with her.

The last three and a half years I worked for AGT International in Darmstadt,
which was an interesting experience. I appreciate the time and space that
was provided and blocked by both Zachos Boufidis and Panayotis Kikiras.
They were great supporters of this thesis. I also have to thank Florian
Zeiger for his intelligence, insights, and most importantly his friendship.
Working at AGT would have been less fun without him. Finally, I would
like to thank my students Tobias Dencker and Jason Rambach for their
great work.

Outside these three organizations I would like to thank Marc Deisenroth
for his ideas on Gaussian Processes and his bright mind in general. I’m
also grateful for the review work done by Hugh Durrant-Whyte and Peter
Willett and for the support that was given to this thesis by many com-
puter science professors of the KIT. Here, I would like to mention Rainer
Stiefelhagen and Tamim Asfour among many others.

Such a work not only needs to be backed from a professional side. Of at
least the same importance is the support and understanding from beloved.
I’m grateful for having Karin by my side. Life has become much more
colorful with her and with our kids Anna-Lena and Paul.

Weinheim, January 2015 Marco Huber



To Anna-Lena and Paul





Contents

I Background & Summary 1

1 Introduction 3
1.1 Nonlinear Bayesian Filtering . . . . . . . . . . . . . . . . . . 4

1.1.1 Dynamic Models and Measurement Models . . . . . 5
1.1.2 Recursive Filtering . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Closed-form Calculation . . . . . . . . . . . . . . . . . 9
1.1.4 Approximate Filtering: State of the Art . . . . . . . . 10

1.2 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Gaussian Filtering . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Gaussian Mixture Filtering . . . . . . . . . . . . . . . 21
1.3.3 Gaussian Process Filtering . . . . . . . . . . . . . . . . 23

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Gaussian Filtering 27
2.1 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Importance of the Gaussian . . . . . . . . . . . . . . . 28
2.1.2 Dirac Delta Distribution . . . . . . . . . . . . . . . . . 30
2.1.3 The Exponential Family . . . . . . . . . . . . . . . . . 30

2.2 Exact Gaussian Filtering and Approximations . . . . . . . . 32
2.2.1 General Formulation . . . . . . . . . . . . . . . . . . . 32

i



ii Contents

2.2.2 Linear Filtering . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Linearized and Extended Kalman Filter . . . . . . . . 36
2.2.4 Statistical Linearization . . . . . . . . . . . . . . . . . 38
2.2.5 Linear Regression Kalman Filters . . . . . . . . . . . . 39

2.3 Gaussian Smoothing . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 General Formulation . . . . . . . . . . . . . . . . . . . 46
2.3.2 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Nonlinear Case . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Rao-Blackwellization . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Combining Rao-Blackwellization with Observed-
Unobserved Decomposition . . . . . . . . . . . . . . 51

2.5.2 Semi-Analytical Filtering . . . . . . . . . . . . . . . . 55
2.5.3 Chebyshev Polynomial Kalman Filtering . . . . . . . 60
2.5.4 Efficient Moment Propagation for Polynomials . . . 64
2.5.5 Homotopic Moment Matching for Polynomial Mea-

surement Models . . . . . . . . . . . . . . . . . . . . . 73
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Gaussian Mixture Filtering 85
3.1 Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Nonlinear Filtering . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.1 Individual Approximation . . . . . . . . . . . . . . . . 88
3.2.2 Generic Gaussian Mixture Filter . . . . . . . . . . . . 91

3.3 Component Adaptation . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Weight Optimization . . . . . . . . . . . . . . . . . . . 93
3.3.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.4.1 Semi-Analytic Gaussian Mixture Filter . . . . . . . . 101
3.4.2 Adaptive Gaussian Mixture Filter . . . . . . . . . . . . 105
3.4.3 Curvature-based Gaussian Mixture Reduction . . . . 112

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents iii

4 Gaussian Process Filtering 123
4.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2 Covariance Functions . . . . . . . . . . . . . . . . . . . . . . 127

4.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2.2 Hyperparameter Learning . . . . . . . . . . . . . . . . 130

4.3 Large Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.1 Active Set Approaches . . . . . . . . . . . . . . . . . . 133
4.3.2 Local Approaches . . . . . . . . . . . . . . . . . . . . . 133
4.3.3 Algebraic Tricks . . . . . . . . . . . . . . . . . . . . . . 134
4.3.4 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Nonlinear Filtering . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.5.1 Gaussian Process Filtering . . . . . . . . . . . . . . . . 136
4.5.2 Gaussian Process Smoothing . . . . . . . . . . . . . . 142
4.5.3 Recursive Gaussian Process Regression . . . . . . . . 146
4.5.4 On-line Hyperparameter Learning . . . . . . . . . . . 151

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5 Applications 161
5.1 Range-based Localization . . . . . . . . . . . . . . . . . . . . 162

5.1.1 Position Estimation . . . . . . . . . . . . . . . . . . . . 163
5.1.2 Position and Orientation Estimation . . . . . . . . . . 169

5.2 Gas Dispersion Source Estimation . . . . . . . . . . . . . . . 175
5.2.1 Atmospheric Dispersion Models . . . . . . . . . . . . 176
5.2.2 Parameter Estimation . . . . . . . . . . . . . . . . . . 179

5.3 Active Object Recognition . . . . . . . . . . . . . . . . . . . . 183
5.3.1 Object Classification . . . . . . . . . . . . . . . . . . . 185
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 Concluding Remarks 195
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



iv Contents

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A Particle Filtering 201
A.1 Perfect Monte Carlo Sampling . . . . . . . . . . . . . . . . . 201
A.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 202

A.2.1 Sequential Importance Sampling . . . . . . . . . . . 203
A.2.2 Choice of Importance Function . . . . . . . . . . . . 204
A.2.3 Resampling . . . . . . . . . . . . . . . . . . . . . . . . 205

B Performance Measures 207
B.1 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . 207
B.2 Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . 208
B.3 Normalized Estimation Error Square . . . . . . . . . . . . . . 208
B.4 Negative Log-Likelihood . . . . . . . . . . . . . . . . . . . . . 209

C �adratic Programming 211

Bibliography 213

II Publications 239

A Gaussian Filtering using State Decomposition Methods 241

B Semi-Analytic Gaussian Assumed Density Filter 243

C Chebyshev Polynomial Kalman Filter 245

D Gaussian Filtering for Polynomial Systems 247

E (Semi-)Analytic Gaussian Mixture Filter 249

F Adaptive Gaussian Mixture Filter 251

G Superficial Gaussian Mixture Reduction 253

H Analytic Moment-based Gaussian Process Filtering 255



v

I Robust Filtering and Smoothing with Gaussian Processes 257

J Recursive Gaussian Process Regression 259

K Recursive Gaussian Process: On-line Regression and
Learning 261

L Optimal Stochastic Linearization for Range-Based
Localization 263

M Semi-Analytic Stochastic Linearization for Pose Tracking 265

N On-line Dispersion Source Estimation 267

O Bayesian Active Object Recognition 269

Contents





Notation

Conventions

x Scalar
x Column vector

x , x Random variable/vector
x̂, x̂ Realization of a random variable/vector
x̄, x̄ Nominal point/vector

nx Dimension of vector x
Lx , Nx Number of elements of type x

( · )p Predicted quantity (after prediction step)
( · )e A posteriori quantity (after measurement update)
( · )s Smoothed quantity (after smoothing)

( · )x , ( · )x Quantity related to variable/vector x
( · )l , ( · )n (Conditionally) linear and nonlinear substate
( · )o , ( · )u Observed and unobserved substate

( · )k Quantity at discrete time step k
( · )0:k Time sequence of quantities

(
( · )0, ( · )1, . . . , ( · )k

)
˜( · ) Approximate quantity

( · )∗ Optimal solution of an optimization problem
i : j Sequence of integers from i to j with i < j

· | · Conditioning, i.e., the left-hand quantity is conditioned
on the right-hand quantity

vii



viii Notation

Conventions (Cont’d)

A Matrices are denoted by bold upper case letters
A Sets are denoted by calligraphic upper case letters

g (X) Evaluation of function g :Rn →R for every column of

matrix X = [
x1 x2 . . . xm

]T with xi ∈Rn , i.e., the results

corresponds to vector
[
g
(
x1

)
g
(
x2

)
. . . g

(
xm

)]T ∈Rm

N Natural numbers
R Real numbers
� End of theorem

Special Functions

N
(
x;µ,C

)
Multivariate Gaussian density function with

mean vector µ and covariance matrix C

N
(
µ,C

)
Multivariate Gaussian distribution

GP
(
µ,κ

)
Gaussian process with mean function µ( · ) and
covariance function κ( · , · )

δ
(
x
)

Dirac delta distribution
δi , j Kronecker delta function

D(.,.) Integrated squared difference (ISD)
G(.‖.) Kullback-Leibler divergence (KLD)

H(.) Shannon/differential entropy
I(.,.) Mutual information



Notation ix

Operators

diag
(
x
)

Diagonal matrix with main diagonal elements according
to x

diag(A) Diagonal matrix with main diagonal elements taken
from the main diagonal of A

vec(A) Matrix vectorization, i.e., the columns of A are stacked
to form a vector

AT Matrix transpose
A−1 Matrix inverse

Tr(A) Matrix trace
|A| Matrix determinant

‖.‖p p-Norm, where p ∈N. For p = 2, it corresponds to the
L2 or Euclidean norm

, Definition
≡ Equivalent

¹,º Element-wise comparison of two vectors, i.e.,
x ¹ y iff xi ≤ yi for all elements xi , yi of x, y

∗ Convolution
ẋ Time derivative of quantity x
⊗ Kronecker product
¯ Hadamard (element-wise) product
∼ Distribution symbol
∝ Proportional

E{ · } Expected value
var{ · } Variance

Cov{· } Covariance
O( · ) Complexity class (Big-O according to Landau notation)



x Notation

Reserved Symbols

f ( · ) General symbol for a probability density function
g ( · ) General symbol for a nonlinear function

ak ( · ) System function
hk ( · ) Measurement function

x System state
z Measurement/observation

w System noise
v Measurement noise
θ (Hyper)parameter vector
µ Mean vector

C Covariance matrix
A System matrix
H Measurement matrix
K Kalman gain matrix or kernel matrix
J Smoothing gain matrix

In Identity matrix of dimension n ×n
0n Zero matrix of dimension n ×n
Xi Sample or sigma point
ωi Weighting coefficient
Ei Non-central moment of order i
D Data set



Notation xi

Abbreviations

ADF Assumed density filter
ADM Atmospheric dispersion model

AGMF Adaptive Gaussian mixture filter
CPKF Chebyshev polynomial Kalman filter

CKF Cubature Kalman filter
EKF Extended Kalman filter
GPS Global positioning system

GHKF Gauss-Hermite Kalman filter
GP Gaussian process

HPGF Homotopic polynomial Gaussian filter
ISD Integrated squared difference

KLD Kullback-Leibler divergence
LRKF Linear Regression Kalman filter

mae Mean absolute error
MC Monte Carlo

MCMC Markov chain Monte Carlo
nees Normalized estimation error square

nll Negative log-likelihood
NN Neural network

ODE Ordinary differential equation
PF Particle filter

PKF Polynomial Kalman filter
QP Quadratic program

RGP Recursive Gaussian process regression
rmse Root mean square error
RTSS Rauch-Tung-Striebel smoother
SAGF Semi-analytic Gaussian filter

SAGMF Semi-analytic Gaussian mixture filter
SE Squared exponential

SGMR Superficial Gaussian mixture reduction
SIR Sequential importance resampling



xii Notation

Abbreviations (Cont’d)

SOGP Sparse on-line Gaussian process
SPGP Sparse pseudo-input Gaussian process
SVM Support vector machine
UKF Unscented Kalman filter

UT Unscented Transformation



Part I

Background &
Summary





1
Introduction

In the early 1960s, the researchers of the NASA Apollo program faced
severe problems with the navigation of their spacecraft. By observing
external bodies like earth, moon, and stars, the pilot had to estimate the
position, orientation, and velocity of the vehicle. These observations in
combination with the high-dimensional models describing the dynamics
of the spacecraft should allow correct guidance and trajectory following.
At that point in time, the estimation toolbox merely contained algorithms
like weighted least-squares and the Wiener filter. While the first one was
computationally too complex for the on-board computer of the spacecraft,
the latter was mathematically very involved and discrete-time measure-
ments were not supported.

It was a lucky coincidence that at the same time Rudolf Kalman invented
his famous recursive filtering approach, which is nowadays known as the
Kalman filter. As Rudolf Kalman gave a presentation of his novel approach
to NASA researchers, many of the open problems suddenly seemed to be
solvable, even though a direct application of the Kalman filter was not
possible—it was designed for linear problems, while spacecraft navigation

3



4 1 Introduction

is a nonlinear one. In addition, this novel filtering technique raised new
questions like “How to deal with numerical instabilities or systematic
measurement errors?”, which are always present when it comes to a real-
ization to practice. At the end the navigation problem was solved and the
rest of the story is well-known history. For more details see [123].

The implementation of a modified version1 of the Kalman filter for space-
craft navigation as part of the Apollo Guidance Computer was one of the
first—if not the first—technical realization of nonlinear Bayesian filter-
ing theory, which is the general topic of this thesis. Besides spacecraft
navigation, nonlinear Bayesian filtering appears in many technical fields
like robotics, control, telecommunications, signal processing, data fusion,
or machine learning, where one wants to estimate the latent parameters
or state2 of a nonlinear dynamic system from noisy measurements and
imperfect knowledge. It provides a general framework in which all appear-
ing uncertainties are represented by means of probability distributions
and the processing of these distributions occurs according to the calculus
of probability theory3.

1.1 Nonlinear Bayesian Filtering

The latent system state x ∈Rnx comprises the smallest set of variables,
which is necessary to completely describe the dynamic behavior of the
considered system at any time instant. In order to estimate the latent state,
three main components are required: First, a model of the system dynam-
ics. Second, a model of the sensor. Both include statistical models of the
noise processes affecting the system and the sensor. Third and finally,

1 Kalman-Schmidt filter, which is nowadays called the extended Kalman filter.
2 In this thesis, parameters and state are not distinguished if not stated explicitly. Thus,

only the notion of a latent state is used from now on.
3 This is in contrast to frequentist statistics, where the probability of an event reflects

the proportion of the event in an infinite number of trials. In the Bayesian viewpoint
however, the probability describes the uncertainty of an event in a single trial [19, 160].
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Dynamic
System Sensor

Bayesian
Filter

State xk Measurement ẑkInput uk

State Estimate

System Noise Measurement Noise

Figure 1.1: Block diagram of a dynamic system incorporating a Bayesian
filter for estimating the latent state xk .

the actual Bayesian filtering algorithm. The interactions of these three
components are depicted in Figure 1.1 and mathematical formulations of
the components are introduced in the following.

1.1.1 Dynamic Models and Measurement Models

The temporal evolution of the latent system state is typically described by
means of differential equations in continuous time according to

ẋ(t ) =φ(
x(t ),u(t ), w (t )

)
, (1.1)

which models the system dynamics and thus, is denoted the dynamic
model. Here, ẋ(t) is the derivative of the system state x(t) with respect
to time. For realization on a computer, a discrete-time version of the
dynamic model (1.1) is required, which is given by

xk+1 = ak

(
xk ,uk , w k

)
, (1.2)
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where the random vector xk is the system state at discrete time step
k = 0,1, . . . The time steps are related via tk+1 = tk +T , where T is the
sampling time. The state itself is represented by means of the probability
density function f x

k

(
xk

)
at time step k. Furthermore, ak (.) is the nonlinear

system function, uk is the vector of deterministic system inputs, and w k is
the system noise. In the reminder of this thesis, only discrete-time models
are considered.

As the state is assumed to be latent, i.e., it cannot be directly observed,
measurements of a sensor are required to gather information about the
system state. The measurement model in discrete-time is given by

zk = hk

(
xk , v k

)
, (1.3)

with nonlinear measurement function hk (.), measurement noise v k , and
measurement zk . An actual measurement ẑk of the sensor is a realization
of zk .

An important special case of the general models in (1.2) and (1.3) is the
additive noise case. Here, the dynamic model and the measurement
model are given by

xk+1 = ak

(
xk ,uk

)+w k ,

zk = hk

(
xk

)+v k ,
(1.4)

respectively. This special case simplifies Bayesian filtering significantly, as
the transition density and likelihood can be expressed analytically (see
next section), but still it is sufficient for modeling a large class of important
estimation problems [74].

The noise processes w k and v k in (1.2) and (1.3), respectively, account
for typical uncertainties affecting the dynamic and measurement model.
Examples are modeling uncertainties or external disturbances [74]. It is
assumed that both noise processes are white. That is, both noise terms
at time k are independent of the system state xk and independent of
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the noises at any other time step n 6= k. Both noise processes are pre-
sented by means of the probability density functions f w

k

(
wk

)
and f v

k

(
vk

)
,

respectively.

1.1.2 Recursive Filtering

Given a sequence of measurements ẑ0:n = (
ẑ0, ẑ1, . . . , ẑK

)
, the estimation

problem consists of determining an estimate of the system state xk based
on ẑ0:K . Depending on the relation between the time steps k and K , three
particular estimation tasks exist: if k > K , the estimation problem is called
prediction, for k = K it is called filtering or measurement update, and if
k < K , it is called smoothing. Predictions and measurement updates are
typically performed on-line, while smoothing is an off-line estimation
task, as it aims for improving of past state estimates given additional
information.

According to Bayesian filtering theory, the result of each of the three
estimation tasks is given in form of a conditional probability density that
represents the state estimate. Assuming that the system state xk is a
Markov process4, these densities can be calculated in a recursive fashion
commencing from a initial state density f x

0

(
x0

)
at time step k = 0.

Prediction

In practical applications it is common that prediction and measurement
update are performed alternatingly. Thus, without loss of generality, only
the one-step prediction is considered here. Predictions over multiple time
steps can be achieved by recursively performing one-step predictions.

Given the conditional density f e
k

(
xk

)
, f x

k

(
xk | ẑ0:k ,u0:k−1

)
of the previous

measurement update, the density of the predicted state for time step k +1

4 The state xk merely depends on the previous state xk−1, but not on older states x l with
l < k −1. This assumption automatically holds if the noise processes are white [93].



8 1 Introduction

is calculated according to the so-called Chapman-Kolmogorov equation
[93, 167]

f p
k+1

(
xk+1

)
, f x

k+1

(
xk+1| ẑ0:k ,u0:k

)= ∫
f
(
xk+1| xk ,uk

)
· f e

k

(
xk

)
dxk . (1.5)

Here, the conditional density f
(
xk+1| xk ,uk

)
is the transition density,

which depends on the dynamic model (1.2) and the system noise w k .
For the additive noise case (1.4), the transition density is given explicitly
by

f
(
xk+1| xk ,uk

)= f w
k

(
xk+1 −ak

(
xk ,uk

))
, (1.6)

where f w
k

(
wk

)
is the density of the system noise w k .

Measurement Update

The measurement update incorporates the current measurement vector
ẑk into the predicted density f p

k

(
xk

)
. By employing Bayes’ theorem, the

measurement update results in the posterior density of the state given by

f e
k

(
xk

)= ck · f
(
ẑk | xk

)
· f p

k

(
xk

)
(1.7)

with normalization constant ck , 1/
∫

f (ẑk |xk )· f p
k (xk )dxk . The term f

(
ẑk | xk

)
is known as the likelihood of the measurement ẑk and depends on the
measurement model (1.3) and the measurement noise v k . For the additive
noise case (1.4), the likelihood can be expressed explicitly via

f
(
ẑk | xk

)= f v
k

(
ẑk −hk

(
xk

))
(1.8)

with f v
k

(
vk

)
being the density of the measurement noise v k .

In [216] it is shown that the measurement update (1.7) is optimal from
an information processing perspective, i.e., there is no loss or waste of
information.
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Smoothing

While the measurement update utilizes the current measurement for
calculating the estimate, smoothing additionally incorporates future mea-
surements. This restricts the application of smoothing for non-real time
tasks, but the resulting estimate is more accurate as more information is
used. The smoothed density f s

k

(
xk

)
, f x

k

(
xk | ẑ0:K ,u0:K−1

)
of the state for

any time step k < K is calculated according the backward recursion5

f s
k

(
xk

)= f e
k

(
xk

)
·

∫
f
(
xk+1| xk ,uk

)
· f s

k+1

(
xk+1

)
f p

k+1

(
xk+1

) dxk+1 (1.9)

commencing from the posterior density f s
K

(
xK

) ≡ f e
K

(
xK

)
. All ingredi-

ents in (1.9) are already provided from the prediction and measurement
update.

1.1.3 Closed-form Calculation

Estimating the latent state from a sequence of noisy measurements can be
considered a statistical inverse problem (see for instance [42]), to which
Bayesian filtering provides an optimal solution by means of (1.5), (1.7),
and (1.9). The resulting conditional density functions of the system state
form a basis for calculating further statistics like the mean vector or the co-
variance matrix, which are of practical use. The optimal solution, however,
is of conceptional value only, mainly for two reasons. Although the recur-
sive nature of the Bayesian filtering equations avoids calculating a joint
distribution comprising the system states of all time steps, the resulting
conditional densities cannot be represented by means of a finite number
of parameters in general [26]. Furthermore, a closed-form solution of the
filtering equations is not possible in general due to the involved integrals
and multiplications of density functions.

5 This recursion actually holds for fixed-interval smoothing. Fixed-lag and fixed-point
smoothing can be directly derived from it.
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Figure 1.2: Popular approximate nonlinear filtering approaches.

Only for a few special cases, closed-form solutions can be found. An
exception for instance exists for linear models affected by Gaussian noise,
where the famous Kalman filter ([97] and Section 2.2.2) is optimal with
closed-form expressions. In case of a finite state space, the Wonham filter
[212] provides a closed-form solution. For general nonlinear models (1.2)
and (1.3), however, an approximation of the optimal Bayesian solution
is inevitable to obtain a feasible filter for practical applications. The
following section gives a brief overview of major streams in approximate
Bayesian filtering.

1.1.4 Approximate Filtering: State of the Art

In Figure 1.2, different groups of popular approximate filtering approaches
are depicted. To show the differences between these groups, they are
arranged regarding two approximation aspects:
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1. The filtering approaches approximate the given nonlinear dynamic
and measurement models or they approximate directly the condi-
tional densities resulting from the optimal Bayesian filter.

2. For approximation purposes, a parametric (i.e., a fixed functional
type) or non-parametric density representation is used.

Approximation of Models

One of mostly employed approximate nonlinear filtering approaches is
the extended Kalman filter (EKF), which relies on a first-order Taylor-
series expansion of the dynamic and measurement models [93, 174]. The
Taylor-series expansion results in linear models, for which the Kalman
filter equations can be employed. The major strengths of this approach
are its simplicity and computational efficiency. Due to the linearization,
the EKF is applicable only for mild nonlinearities. The EKF is described in
more detail in Section 2.2.3.

Instead of a linearization, point-mass and grid filters [14, 33, 109, 173]
utilize a discretization of the models, which leads to discrete version of
Bayesian filtering problem. In doing so, all integrals in (1.5), (1.7), and (1.9)
become summations, which are straightforward to evaluate. Point-mass
and grid filters suffer from the so-called curse of dimensionality [16], as
the number of discrete states increases exponentially with the dimension
of the state space. Thus, these filtering methods are only feasible for
low-dimensional problems.

Non-parametric Density Representation

Figure 1.2 indicates that the majority of the filters rely on an approxi-
mation of the density instead of the models. One explanation for this
imbalance can be found in [96], where the authors state:
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“It is easier to approximate a probability distribution than it
is to approximate an arbitrary nonlinear function or transfor-
mation.”

Particle filters (PFs, see Appendix A) for instance utilize a weighted sam-
ple representation of the conditional densities—the so-called particles.
In contrast to the point-mass and grid filters, where the discretization
is performed deterministically, the particles are drawn randomly. This
discrete density representation simplifies Bayesian filtering significantly,
as prediction is simply performed by propagating the samples through
the dynamic model (1.2), while measurement update and smoothing es-
sentially boil down to adapting the particle weights. This simplicity is one
of the key factors, why particle filters a very popular. Furthermore, PFs
make no strong assumptions on the conditional densities. PFs form a
Monte Carlo approximation, for which convergence towards the optimal
Bayesian filtering solution with an increasing number of particles can be
proven [59].

Although the convergence analysis is independent of the state dimension,
practice shows that also PFs suffer from the curse of dimensionality [49].
This can be explained by the fact that with an growing state dimension
also the volume to be filled with particles growth exponentially. An ad-
ditional problem with PFs is sample depletion, i.e., over time most of
the particles have zero-weight, which limits the representation of multi-
model densities. As countermeasure resampling has to be employed. Also
the choice of an appropriate proposal density from which the samples are
drawn is critical.

In the recent years, modified PF algorithms have been proposed, which are
not relying on a pure sample representation. To attenuate the aforemen-
tioned problems of PFs, these algorithms temporarily or even completely
employ continuous densities like Gaussian densities [106], hybrid sample-
Gaussian representations [201], or various mixture densities [1, 107, 129].
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Parametric Density Representation

Thanks to their universal approximator property [122], Gaussian mixture
densities are a welcome choice for approximating the conditional den-
sities of the Bayesian filter. They provide an analytical and continuous
representation that theoretically can approach the true density arbitrarily
well, depending on the number of mixture components (see Section 3.1
for detailed introduction to Gaussian mixtures). Relevant statistics like
mean or covariance can be derived in closed-form. In contrast to a sin-
gle Gaussian density, determining the optimal parameters of a Gaussian
mixture typically requires solving very demanding optimization prob-
lems. These optimization problems can be performed on-line in order to
directly approximate the true conditional densities [76] or off-line, by re-
placing the transition density and likelihood by Gaussian mixtures [84, 87].
The latter case corresponds to the class of model approximating filters.

A more light-weight class of Gaussian mixture filters utilize multiple Gaus-
sian filters like the EKF or linear regression Kalman filters (see next section)
simultaneously, i.e., for each component of the mixture, a Gaussian filter
is employed (see for example [7, 171] and Section 3). These filters com-
bine the benefits of both worlds: the simplicity of Gaussian filters and the
approximation power of Gaussian mixtures, but without sophisticated
parameter optimization.

Alternatively to fitting the approximate density directly to the true density,
assumed density filters (ADFs) calculate the approximate density in such a
way that the moments of the true density are preserved—which is known
as moment matching. This approach at least guarantees the correctness
of some important statistics like mean and covariance, which might not
be the case when directly approximating the density. Furthermore, for
some nonlinear filtering problems the true conditional densities cannot
be expressed analytically, but the moments are available in closed form
(see for instance Section 2.5.2). For most filtering problems, however,
calculating the desired moments requires numerical integration, which
is computationally demanding especially for high-dimensional states.
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Typical density representations employed in ADFs are Gaussians [67, 121],
Edgeworth/Gram-Charlier series [39, 182, 183], or exponential densities
[27, 29].

Linear Regression Kalman Filters

Basically, linear regression Kalman filters (LRKFs) like the famous un-
scented Kalman filter [96, 206] calculate a Gaussian approximation of the
true conditional densities, whereas the parameters of the Gaussian density
are obtained by propagating samples through the nonlinear models (1.2)
and (1.3). In contrast to PFs, these samples are chosen in a deterministic
fashion and capture the mean and covariance of the prior density exactly.
Although this deterministic sampling clearly refers to a density approxi-
mation approach, there also exists an alternative interpretation [113, 114]:
the same Gaussian density can be obtained by means of stochastic lin-
earization of the models through the use of statistical linear regression (a
theoretical treatment can be found in Section 2.2.5).

In contrast to the EKF, LRKFs provide more accurate estimates, while the
computational complexity is almost the same. Furthermore, LRKFs are
applicable to a larger class of filtering problems, as no differentiability of
the system and measurement functions is required.

1.2 Research Topics

Especially with the advent of the LRKFs—besides the particle filters—
significant improvements in approximating the optimal Bayesian filter
have been achieved in the recent years. Motivated by the benefits of these
Gaussian filters, in this thesis three major research topics grouped around
nonlinear Gaussian filtering are covered. At first, further improvements of
Gaussian filtering in general and LRKFs in particular are proposed. These
improvements are then used for the two other research topics: filtering
via Gaussian mixtures and Gaussian process models. In the following, for
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each of the three topics, particular reasons are identified why dealing with
Gaussians, Gaussian mixtures, and Gaussian processes in the context of
Bayesian filtering is reasonable and thus, worth for further investigation.
Also limitations of state-of-the-art approaches are exposed, which are
resolved in this thesis.

Why Gaussian Filtering?

Besides its optimality, a major reason of the wide application of the
Kalman filter is its simplicity; all calculations are performed on the ba-
sis of matrix calculus (see Section 2.2.2). The EKF and LRKFs leverage
the elegant Kalman filter equations for nonlinear filtering problems by
assuming that the optimal conditional densities can be sufficiently well
approximated by Gaussians. Additionally, these filters do not suffer from
the curse of dimensionality as the number of parameters of a Gaussian
density, i.e., the number elements of the mean vector and covariance ma-
trix, merely grow quadratically with the state dimension. This is different
for many other approaches like PFs. Gaussian filters are especially useful
in applications where limited computational demand and memory usage
is key, but an essential consideration of uncertainty is necessary.

Current Gaussian filters are typically applied in a black-box fashion, i.e.,
without a detailed analysis of the properties of the given dynamic and
measurement models. Hence, approximations are applied even in cases,
where at least some parts of the models do not require an approximate
treatment. Furthermore, the Gaussian assumption is not only applied for
the filtering results, it is also used for representing the joint distribution of
state and measurement. This assumption is necessary for exploiting the
Kalman filtering equations, but for many applications it is too strong and
limits the quality of the approximation.
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Why Gaussian Mixture Filtering?

Obviously, employing Gaussian densities to approximate the optimal
Bayesian results may not be sufficient for every filtering problem6. Es-
pecially in cases, where the resulting densities are multimodal, heavily
skewed, or have heavy tails, extending Gaussian filters towards using Gaus-
sian mixture densities is desirable. Here, Gaussian filters benefit from the
fact that this extension is straightforward to obtain as they can be applied
on each mixture component independently. With an increasing number
of components, it can be shown that Gaussian mixture filters utilizing EKF
or LRKFs converge towards the optimal result [4].

One critical part of Gaussian mixture filters is the increase of the number
of components. New components should only be introduced where the
current approximation is not accurate enough. To limit the computation
time and memory consumption, it is also necessary the reduce the num-
ber of components from time to time, especially when the number of
components is disproportionate to the complexity of the density’s shape.

Why Gaussian Process Filtering?

So far it was assumed that the dynamic and measurement models are
known. This assumption does not hold in applications, where it is too
complicated or even impossible to derive these models. These issues for
instance may arise, when the underlying real system consists of many
interacting elements like in robotics [131, 188], when the models cannot
be calibrated sufficiently well like in WiFi-based localization [65] or in
calibrating metal oxide sensors [125], or when the mapping between state
and measurement is artificial like in classification problems [88]. Here,
the mathematical models can be substituted by means of so-called Gaus-
sian process (GP) models, which are non-parametric probabilistic models

6 In [191], it is illustrated that many natural and technical phenomena generate Gaus-
sian distributions, but especially sociological systems—these also include financial
systems—cannot be described with Gaussian statistics.
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learned from data and which are a popular tool in machine learning (see
Section 4.1 for a brief introduction to GPs).

Bayesian filtering with GP models so far has only been performed ap-
proximately. Furthermore, due to the non-parametric nature of GPs, the
model accuracy but unfortunately also the model complexity increases
with the size of data set used for learning. Performing Bayesian filtering
can become infeasible if the data set grows over time.

1.3 Main Contributions

The research areas and questions posed in the previous section are cov-
ered by the 15 papers forming the second part of this thesis. The contri-
butions of these papers are summarized in this section. The papers for
each research area can be divided into two groups: one group proposes
theoretical findings and algorithms derived on the basis of these findings,
while the other group investigates a dedicated practical application. In
Figure 1.3, the papers contained in each of the three research areas as well
as the dependencies between the research areas are depicted.

1.3.1 Gaussian Filtering

Gaussian Filtering using State Decomposition Methods

In Paper A,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Gaussian Fil-
tering using State Decomposition Methods. In Proceedings
of the 12th International Conference on Information Fusion
(FUSION), pages 579–586, Seattle, WA, USA, July 2009,

LRKFs are extended in such a way that the number of samples used can
be reduced significantly by exploiting special structures in both the dy-
namic model and measurement model. For this purpose, the state vector
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Figure 1.3: Structure of the thesis. Gray boxes indicate applications.

is decomposed in two ways: First, it is exploited that only some parts of
the state vector are observable by measurements. Second, the models are
decomposed in linear and nonlinear parts, where merely the nonlinear
part is treated approximately by means of LRKFs. It shown by means of
simulations and experiments that the estimation performance of the de-
composed filters is comparable to the full-state ones, but the computation
time is significantly reduced.
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Semi-Analytic Gaussian Assumed Density Filter

The findings of Paper A are extended in Paper B,

Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck.
Semi-Analytic Gaussian Assumed Density Filter. In Proceed-
ings of the 2011 American Control Conference (ACC), pages
3006–3011, San Francisco, CA, USA, June 2011.

Instead of merely decomposing the models into linear and nonlinear sub-
structures, a nonlinear-nonlinear decomposition is proposed, where one
nonlinear part is conditionally integrable in closed form. This property
holds only for special nonlinearities like polynomials, trigonometric func-
tions, or squared exponential functions. For the conditionally integrable
nonlinear part, mean vector and covariance matrix can be calculated ana-
lytically, if the filtering result is assumed to be Gaussian distribution. The
other nonlinear part is still approximated via LRKFs. Simulations show an
improved filtering accuracy and reduced computational demand.

Chebyshev Polynomial Kalman Filter

For polynomial nonlinearities closed-form moment propagation is possi-
ble, a property that was also exploited in Paper B. Paper C,

M. F. Huber. Chebyshev Polynomial Kalman Filter. In Digital
Signal Processing, vol. 23, no. 5, pages 1620–1629, September
2013,

leverages this property for arbitrary nonlinear systems. Here, these sys-
tems first are approximated by means of a Chebyshev polynomial series.
The special structure of these orthogonal polynomials is then exploited
for deriving very efficient closed-form vector-matrix expressions for mean
and variance propagation. The superior performance of the resulting filter
over the state-of-the-art is demonstrated via simulations and a real-world
application.
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Gaussian Filtering for Polynomial Systems Based on Moment Ho-
motopy

All the algorithms proposed in Paper A–Paper C still rely on the assump-
tion that state and measurement are joint Gaussian distributed. This
assumption is relaxed in Paper D,

M. F. Huber and U. D. Hanebeck. Gaussian Filtering for Poly-
nomial Systems Based on Moment Homotopy. In Proceedings
to the 16th International Conference on Information Fusion
(FUSION), pages 1080–1087, Istanbul, Turkey, July 2013,

for polynomial nonlinearities. This relaxation offers the opportunity of
exactly determining the posterior mean and variance. However, a closed-
form calculation is not possible and thus, a novel homotopy continuation
method is proposed, which yields almost exact posterior mean and vari-
ance.

Application: Range-Based Localization

As application scenario for Gaussian filtering range-based localization is
considered in Paper L,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Optimal Stochas-
tic Linearization for Range-Based Localization. In Proceedings
of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5731–5736, Taipei, Taiwan,
October 2010,

and in Paper M,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Semi-Analytic
Stochastic Linearization for Range-Based Pose Tracking. In
Proceedings of the 2010 IEEE International Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems (MFI),
pages 44–49, Salt Lake City, UT, USA, September 2010.
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In Paper L merely position and velocity of an object are estimated based
on range measurements, which allows Gaussian assumed density filtering
with closed-form calculation of mean and covariance. The orientation of
an object is additionally considered in Paper M, which no longer allows
an analytical solution. Instead, the nonlinear-nonlinear decomposition
proposed in Paper B has to be employed.

1.3.2 Gaussian Mixture Filtering

(Semi-)Analytic Gaussian Mixture Filter

Closed-form mean and covariance calculation for special nonlinearities
as well as the nonlinear-nonlinear model decomposition are extended in
Paper E,

M. F. Huber, F. Beutler, and U. D. Hanebeck. (Semi-)Analytic
Gaussian Mixture Filter. In Proceedings of the 18th IFAC World
Congress, pages 10014–10020, Milano, Italy, August 2011,

for Gaussian mixture filters. Both techniques can be employed component-
wise and the superiority over state-of-the-art Gaussian mixture filters is
demonstrated by means of simulations.

Adaptive Gaussian Mixture Filter Based on Statistical Lineariza-
tion

Typically, Gaussian mixture filters based on the EKF or LRKFs assume a
fixed number of mixture components, but determining the appropriate
number requires to trade filtering performance off against computational
load. In Paper F,

M. F. Huber. Adaptive Gaussian Mixture Filter Based on Sta-
tistical Linearization. In Proceedings of the 14th International
Conference on Information Fusion (Fusion), Chicago, Illinois,
July 2011,
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an adaptive algorithm is proposed, which introduces new mixture compo-
nents via splitting existing components. Splitting is performed whenever
the nonlinearity of the dynamic or measurement model is high, but the
current number of components is too low and thus, large (statistical) lin-
earization errors are caused. Simulations show that new components are
actually introduced where needed, while splitting at mild nonlinear or
even linear parts of the models are avoided.

Superficial Gaussian Mixture Reduction

Due to adaptive splitting as in Paper F or due to the multiplication of
Gaussian mixtures—which occurs if the transition density (1.6) or the
likelihood (1.8) are also Gaussian mixtures—the number of mixture com-
ponents grows unbounded. To limit this growth, in Paper G,

M. F. Huber, P. Krauthausen, and U. D. Hanebeck. Superficial
Gaussian Mixture Reduction. In INFORMATIK 2011 - the 41th
Annual Conference of the Gesellschaft für Informatik e.V. (GI),
6th Workshop Sensor Data Fusion: Trends, Solutions, Applica-
tions (SDF), Berlin, Germany, October 2011,

a reduction algorithm is proposed. It minimizes an upper bound of the
curvature of the Gaussian mixture. This minimization can be formu-
lated as a quadratic program that optimizes the component weights. The
mixture is then reduced by removing component with zero weight. The
advantages are an automated determination of the necessary number of
components and a computational efficient implementation thanks to the
plethora of solvers for quadratic programs.

Application: Gas Dispersion Source Estimation

The accurate and timely estimation of the location and strength of a gas
release into atmosphere is imperative in order to increase the effectiveness
of counter measures for protecting the public. In Paper N,
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M. F. Huber. On-line Dispersion Source Estimation using
Adaptive Gaussian Mixture Filter. In Proceedings of the 19th
IFAC World Congress, pages 1059–1066, Cape Town, South
Africa, August 2014,

the adaptive Gaussian mixture filter proposed in Paper F is applied to this
parameter estimation problem. In contrast to the Monte Carlo methods
commonly used in this field, the proposed filter allows on-line estimation
of the source parameters, while at the same time the estimation error is
comparable or even lower than the state-of-the-art.

1.3.3 Gaussian Process Filtering

Analytic Moment-based Gaussian Process Filtering

Assuming that both the dynamic model and the measurement model are
represented by means of Gaussian processes, Paper H,

M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck. Analytic
Moment-based Gaussian Process Filtering. In Proceedings
of the 26th International Conference on Machine Learning
(ICML), Montreal, Canada, June 2009,

derives closed-form expressions for prediction and measurement update.
Besides the joint Gaussian assumption of state and measurement, no
additional approximations are employed.

Robust Filtering and Smoothing with Gaussian Processes

The results of Paper H are extended in Paper I,

M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck,
and C. E. Rasmussen. Robust Filtering and Smoothing with
Gaussian Processes. In IEEE Transactions on Automatic Con-
trol, vol. 57, no. 7, pages 1865–1871, July 2012,
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for smoothing. Assuming GPs with squared exponential covariance func-
tion and zero mean function, mean and covariance are derived analyti-
cally exactly and in closed form. It is further shown that restricting to this
particular type of GP is not too restrictive as it corresponds to a universal
function approximator.

Recursive Gaussian Process Regression

GPs are not well suited for applications, where data arrives during runtime.
In Paper J,

M. F. Huber. Recursive Gaussian Process Regression. In Pro-
ceedings of the 38th International Conference on Acoustics,
Sound, and Signal Processing (ICASSP), pages 3362–3366, Van-
couver, BC, Canada, May 2013,

an on-line GP regression algorithm is proposed, which determines GP
models recursively with a constant computation time. The key idea is to
use a fixed-size set of so-called basis vectors that store all information
necessary for regression. It is shown via synthetic and real-world data that
this novel GP regression performs better than other on-line approaches.
The resulting GP models can be utilized in the GP filtering algorithms
proposed in Paper H and Paper I.

Recursive Gaussian Process: On-line Regression and Learning

In Paper J it is assumed that the hyperparameters of the GPs are known.
This assumption is not valid in many applications. Alternatively, one has
to learn the hyperparameters from data. Paper K,

M. F. Huber. Recursive Gaussian Process: On-line Regression
and Learning. Pattern Recognition Letters, vol. 45, pages 85–
91, August 2014,
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extends the recursive GP regression of Paper J with an on-line hyperpa-
rameter learning capability, i.e., regression and learning are performed
simultaneously and during runtime. For this purpose, regression and
learning are formulated as a Bayesian filtering problem, where the hyper-
parameters introduce nonlinearities. The nonlinear-nonlinear decompo-
sition technique proposed in Paper B is employed to allow closed-form
estimation of the hyperparameters.

Application: Bayesian Active Object Recognition via Gaussian Pro-
cess Regression

In active object recognition, camera parameters like zoom or orientation
are adapted to improve object classification performance. Due to the
abstract nature of the mapping from object class—which corresponds to
the system state—and image features, in Paper O,

M. F. Huber, T. Dencker, M. Roschani, and J. Beyerer. Bayesian
Active Object Recognition via Gaussian Process Regression.
In Proceedings of the 15th International Conference on In-
formation Fusion (Fusion), pages 1718–1725, Singapore, July
2012,

this mapping is learned from data and represented by means of a GP.
The classification task itself is formulated as a Bayesian filtering problem,
for which closed-form expressions are derived. The appropriate cam-
era parameters result from solving a sequential optimization problem
that maximizes the mutual information between object class and image
features.

1.4 Thesis Outline

This thesis consists of two parts: The first provides the background and
the summaries of the aforementioned papers. The second part comprises
the abstracts of the papers.
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The structure of the thesis is depicted in Figure 1.3 on page 18. Chapter 2
briefly introduces the Gaussian density function and its properties. Also
state-of-the-art Gaussian filters like the Kalman filter, LRKFs, or moment
matching are described and summaries of the papers A–D are provided.

Gaussian mixture filtering is the content of Chapter 3. Besides the exten-
sion of Gaussian filters to Gaussian mixtures, this chapter also introduces
the problem of increasing and reducing the number of mixture compo-
nents. The chapter closes with summaries of the papers E–G.

In Chapter 4, Gaussian process regression and the state-of-the-art of
Bayesian filtering with GP models is introduced. Furthermore, the com-
plexity issues with GPs are discussed. This chapter comprises the sum-
maries of the papers H–K.

Chapter 5 provides an introduction to each application treated with the
algorithms developed in the papers A–K. It further summarizes the results
of the papers L–O.

The first part of the thesis closes with Chapter 6, which gives a conclusion
and an outlook to future work.



2
Gaussian Filtering

This chapter lays the foundation of the thesis. It first introduces the
Gaussian distribution and some of its important properties in Section 2.1.
Based on this, a general Gaussian filtering problem with focus on pre-
dictions and measurement updates is formulated in Section 2.2.1. This
general problem can only be solved for some special cases, where the
linear is the most prominent one (see Section 2.2.2). Otherwise, approxi-
mations have to be applied, where Sections 2.2.3–2.2.5 discuss the mostly
utilized approximation techniques. In Section 2.3, the smoothing prob-
lem is formulated. The same approximation techniques introduced for
prediction and measurement update can be applied here as well.

Many filtering problems, even though being nonlinear, comprise linear
substructures. This special situation has been exploited in the past by
means of the so-called Rao-Blackwellisation theorem. Section 2.4 pro-
vides a brief summary of this theorem and its application to Gaussian
filtering. This theorem is also the starting point for the contribution made
in this thesis for Gaussian filtering. The key findings of the Papers A–D are
summarized in Section 2.5.

27
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2.1 The Gaussian Distribution

The central distribution employed in this thesis is the Gaussian or normal
distribution. It is also the most widely used distribution in statistics,
filtering, and machine learning. Its probability density function is defined
by

N
(
x;µ,C

)
, 1p|2πC|e

− 1
2

(
x−µ

)T
C−1

(
x−µ

)
(2.1)

with the parameters mean vector and covariance matrix

µ= E
{

x
}= ∫

Rnx
x ·N

(
x;µ,C

)
dx ,

C = Cov
{

x
}= E

{(
x −µ)(

x −µ)T
}

,

respectively. The dimension of the mean vector corresponds to the di-
mension of x , which is nx . The covariance matrix is symmetric and pos-
itive semi-definite, where the number of elements is the dimension of
x squared. The term

√
|2πC| in (2.1) is a normalization factor ensuring

that the integral of the density is equal to one. If a random vector x is
Gaussian distributed, the term x ∼N

(
µ,C

)
expresses that x is Gaussian

distributed with parameters µ and C, where N
(
µ,C

)
is the (cumulative)

Gaussian distribution function. If x ∼ N (0,1), x follows the standard
Gaussian distribution.

In Figure 2.1, the density functions of various Gaussian random variables
are depicted. It can be seen that the Gaussian density has only one single
mode that is located at the mean µ.

2.1.1 Importance of the Gaussian

The Gaussian distribution is a universal tool in many fields. Besides its
application in statistics and filtering as considered in this thesis, it is for
example important in statistical mechanics to describe energy fluctua-
tions while in biology it is used to describe population dynamics ([92],
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(a) Density function of a bivari-
ate Gaussian.
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f
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N (0,1)

N (0, 1/4)

N (−2, 1/9)

(b) Density functions of differ-
ent univariate Gaussians. The
solid curve corresponds to the
standard Gaussian.

Figure 2.1: Various univariate and bivariate Gaussian densities. Character-
istic of Gaussian density functions is its bell shape.

Ch. 7). Also in economics it is the fundamental distribution, even though
here the justification of applicability is sometimes questionable [191].

The success of the Gaussian distribution has many reasons, where the
most important ones are the following [92, 101, 128]: First, it has merely
two parameters and these are easy to interpret. These parameters at
the same time correspond to the first two moments, which are the most
basic properties of a distribution. Second, the number of parameters
scales merely quadratically with the dimension of the state space. Third, if
merely the first two moments are given, the Gaussian distribution makes
the least assumptions about the true distribution according to the maxi-
mum entropy principle [19] and it is closest to the true distribution if the
Kullback-Leibler divergence is considered as deviation measure [46, 74].
In parameter estimation it minimizes the Fisher information. Forth, it
has a simple mathematical form, which allows closed-form calculations
in many filtering problems and results in straightforward implementa-
tions. Fifth, according to the central limit theorem the sum of independent
random variables approaches a Gaussian distribution, which makes the
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Gaussian a preferred choice for modeling residual errors and noise. Sixth,
Gaussians are unimodal and thus, they possess a single maximum. Such
distributions are typical in many filtering problems like single-target track-
ing [197].

2.1.2 Dirac Delta Distribution

The Gaussian distribution possesses an important limiting case. If the
determinant of the covariance matrix approaches zero, i.e., if |C|→ 0, the
Gaussian becomes a “peak" centered around the mean. This distribution
is known as the Dirac delta distribution given by

δ
(
x −µ)={

undefined if x =µ
0 if x 6=µ

such that ∫
Rnx

δ
(
x
)

dx = 1 .

The value of the Dirac delta is zero everywhere except of x =µ. A useful
property that follows from this fact is the so-called sifting property∫

Rnx
g
(
x
)

·δ
(
x −µ)

dx = g
(
µ
)

(2.2)

that selects only a single value from an integration.

2.1.3 The Exponential Family

The Gaussian density itself is a special case of two families of very general
density functions: the Gaussian mixture densities and the exponential
family. While the first family is treated in more detail in Chapter 3, a brief
introduction to the second family is provided here.
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A density function belongs to the exponential family if it is of the form

f
(
x
)= c

(
η
)

·h
(
x
)

· exp
(
ηT ·φ

(
x
))

, (2.3)

where η,
[
η0 η1 . . . ηn

]T is a parameter vector, φ
(
x
)

is a vector of suffi-

cient statistics1 comprising a set of n functions

φ
(
x
)
,

[
φ0

(
x
)

φ1
(
x
) · · · φn

(
x
)]T

. (2.4)

The term c
(
η
)

is a normalization constant ensuring the probability mass

being one and h
(
x
)

is a scaling constant, often being one.

The exponential family comprises many well-known distributions as spe-
cial cases. Examples are the Bernoulli distribution, Poisson distribution,
multinomial distribution and of course the Gaussian distribution, which
can be obtained from (2.3) by choosing

η=
[

C−1 ·µ

−1
2 C−1

]
, φ

(
x
)= [

x
x · xT

]
, c

(
η
)= 1p|2πC|e

−1
2µ

TC−1µ , h
(
x
)= 1 .

(2.5)

Furthermore, the exponential family is the only family of distributions
with finite dimensional sufficient statistics and for which conjugate priors
exist, i.e., the prior density has the same form as the likelihood, which
simplifies Bayesian filtering significantly. However, except of some special
cases like the Gaussian density, determining the moments of an exponen-
tial density in closed form is not possible in general [74].

1 A statisticφ(D) is said to be sufficient for data D if f (x|D) = f (x|φ(D)), i.e., the statistic
contains all information about the data such that the data can be discarded without
loss of information.
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2.2 Exact Gaussian Filtering and Approximations

In order to provide a solution of the general Bayesian filtering problem
stated in Section 1.1, it is assumed in the following that the state vector x
is Gaussian distributed. Thus, the filtering task boils down to calculating
the two parameters mean vector and covariance matrix.

2.2.1 General Formulation

Various approaches have been proposed in the past for calculating the
mean and covariance in case of arbitrary nonlinear dynamic and mea-
surement models. To provide a unified overview of these approaches, the
nonlinear transformation2

y = g
(
x
)+w , w ∼N

(
0,Cw

)
, (2.6)

is considered in the following, where the Gaussian state x ∼N
(
µ

x
,Cx

)
is mapped to a Gaussian random vector y via an arbitrary nonlinear
function g (.). The noise w is independent of x . For predictions, the
transformation g (.) corresponds to the dynamic model ak (.,.) in (1.4)
for a given input uk and y , w are replaced by the predicted state xk+1
and the noise w k , respectively. In case of measurement updates, g (.)
becomes the measurement model hk (.), while y and w are replaced by
the measurement vector zk and noise v k , respectively.

For solving prediction and measurement update, the goal is to determine
the joint Gaussian distribution of x and y , which is given by[

x
y

]
∼N

(
µ,C

)
with µ,

[
µ

x
µ

y

]
, C,

[
Cx Cx y

CT
x y Cy

]
, (2.7)

2 Only the additive noise case is discussed here. For non-additive noise, the solutions
derived next can be directly applied if the state x is augmented with the noise w , i.e.,
g (.) then becomes a function of both x and w .
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where

µ
y
= E

{
g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx ,

Cy = Cov
{

g
(
x
)}=

∫ (
g
(
x
)−µ

y

)(
g
(
x
)−µ

y

)T
· N

(
x;µ

x
,Cx

)
dx + Cw ,

Cx y = Cov
{

x , g
(
x
)}=

∫ (
x −µ

x

)(
g
(
x
)−µ

y

)T
· N

(
x;µ

x
,Cx

)
dx ,

(2.8)

are the unknown mean vector and covariance matrix of y as well as the
unknown cross-covariance matrix between x and y , respectively.

To perform a prediction, the respective parameters of the predicted Gaus-
sian density can be retrieved from the first two lines of (2.8), namely the
predicted mean and covariance. In case of a measurement update, an
additional calculation is required as the posterior density is conditioned
on the current measurement (see (1.7)). Thus, by conditioning x on y the
resulting density is given by (see e.g. [144], Appendix A)

x | y ∼N
(
µ

x
+Cx y C−1

y ·
(

y −µ
y

)
,Cx −Cx y C−1

y CT
x y

)
, (2.9)

which corresponds to desired posterior density.

Due to the restriction that both x and y are assumed to be Gaussian,
a Bayesian filter calculating the exact joint Gaussian (2.7) is named a
Gaussian assumed density filter. That is, although the true density is not
Gaussian due to the nonlinear transformation (2.6), at least the first two
moments—mean vector and covariance matrix—coincide with the true
respective moments, why this approach often is also named moment
matching [121]. Unfortunately, the integrals in (2.8) possess no analytic
solution for arbitrary nonlinear functions g (.) in general and thus, approx-
imations are inevitable. The various approximations proposed in the past
for Gaussian filtering essentially differ in the way the integrals in (2.8) are
solved. Just for some special cases, closed-form expressions for (2.8) can
be found. The most prominent one is discussed next.
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2.2.2 Linear Filtering

Assuming that the transformation in (2.6) is a linear one according to

y = G · x +w ,

where the matrix G corresponds to the nonlinear function g (.), the mo-
ment integrals in (2.8) can be calculated in closed form. The mean vector
and covariance matrix of the joint Gaussian are then given by

µ=
[
µ

x
G ·µ

x

]
, C =

[
Cx Cx GT

GCx GCx GT +Cw

]
. (2.10)

This follows directly from exploiting the linearity of the expectation oper-
ator E{.}. In doing so, the integrals in (2.8) are reduced to calculating the
mean and covariance of x .3

The Kalman Filter

Based on (2.10), the famous Kalman filter can be derived. For this purpose,
linear dynamic and measurement models according to

xk+1 = Ak · xk +w k , w k ∼N
(
0,Cw

k

)
zk = Hk · xk +v k , v k ∼N

(
0,Cv

k

) (2.11)

are assumed with system matrix Ak and measurement matrix Hk . Given

the posterior density f e
k

(
xk

)=N
(
xk ;µe

k
,Ce

k

)
of the system state, the pre-

diction step yields the predicted density f p
k+1

(
xk+1

)=N
(
xk+1;µp

k+1
,Cp

k+1

)
with parameters

µp
k+1

= Ak ·µe
k

,

Cp
k+1 = Ak Ce

k AT
k +Cw

k ,
(2.12)

3 For calculating Cx y the identity E
{

x · xT}= Cx +µ
x
µT

x
is required in addition.
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where both the mean vector µp
k+1

and the covariance matrix Cp
k+1 can be

extracted from the second row in (2.10) by replacing µ
x

, Cx , G, Cw with

µe
k

, Ce
k , Ak , Cw

k , respectively.

For determining the measurement update of the Kalman filter, it is neces-
sary to exploit the conditioning (2.9) by replacing µ

x
, Cx , G, and Cw with

µp
k

, Cp
k , Hk , and Cv , respectively. For a given measurement vector ẑk , the

resulting measurement update of the Kalman filter calculates the Gaus-

sian posterior density N
(
xk ;µe

k
,Ce

k

)
of the system state xk with mean

vector and covariance matrix according to

µe
k
=µp

k
+Kk ·

(
ẑk −Hk ·µp

k

)
,

Ce
k = Cp

k −Kk Hk Cp
k ,

(2.13)

where Kk = Cp
k HT

k

(
Hk Cp

k HT
k +Cv

k

)−1
is the so-called Kalman gain.

It is worth mentioning that R. Kalman used a different derivation in his
paper [97]. Instead of the above approach, which is driven from a Bayesian
perspective, he exploited orthogonal projections on the vector space
spanned by the measurements. Both derivations are equivalent, where the
Bayesian one makes the link to nonlinear Gaussian filters more obvious
[160].

Route to Nonlinear Approaches

The additional assumption that not only y but also the joint density of
x and y is Gaussian as in (2.7) is only satisfied for linear models. How-
ever, all nonlinear Gaussian filtering approaches introduced next follow
either implicitly or explicitly the same path that was utilized to derive
the Kalman filter, i.e., constructing the joint Gaussian of x and y and
conditioning on y . Thus, they all form a Kalman filter like approxima-
tion for nonlinear filtering problems. This approach is justified by the
fact that by assuming both x and y being Gaussian, there must exist a
linear transformation from x to y (see e.g. [198]). Hence, by providing an



36 2 Gaussian Filtering

(approximate) solution to the integrals in (2.8), a linear transformation
is constructed simultaneously that (implicitly) approximates the origi-
nal nonlinear transformation (2.6). By explicitly calculating this linear
transformation, the above Kalman filter equations can be applied directly.
Hence, the focus in the next sections is mainly on how the approximation
is achieved, while the actual filtering equations can be directly extracted
from the above Kalman filter equations with appropriate substitution of
the linear models (2.11).

Both approaches introduced next explicitly provide linear transforma-
tions for approximating the nonlinear filtering problem. They belong to
the group of model approximating approaches depicted in Figure 1.2 on
page 10. The filters in Section 2.2.5 instead can be considered as density
approximating as they aim for the integrals in (2.8) in order to determine
the joint Gaussian of x and y . A linear model is merely calculated implic-
itly.

2.2.3 Linearized and Extended Kalman Filter

The motivation behind the linearized Kalman filter is that in case of mild
nonlinearities it might be sufficient to linearize (2.6) about a nominal
point through a Taylor-series expansion. Let x̄ be this nominal point. The
Taylor-series expansion of the function g (.) is then given by

y = g
(
x
)+w = g

(
x̄
)+Gx

(
x̄
)

·∆x +Ox +w ,

where ∆x , x − x̄ ∼ N
(
µ

x
− x̄,Cx

)
, Gx

(
x̄
)

is the Jacobian matrix of g (.)

according to

Gx
(
x̄
)
,
∂g

(
x
)

∂xT

∣∣∣∣
x=x̄

, (2.14)
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and Ox is the remainder comprising all higher-order terms of the ex-
pansion. A linear approximation of g (.) is obtained by neglecting the
remainder term, which yields

g
(
x
)≈ g

(
x̄
)+Gx

(
x̄
)

·∆x . (2.15)

Depending on the choice of the nominal point, different realizations of
a linearized Kalman filter are obtained. In case of the basic linearized
Kalman filter as described in [121] the nominal points are chosen in ad-
vance. In doing so, the linearized model (2.15) and thus, the Kalman gains
and covariance matrices of the Kalman filter can be calculated off-line
[210], which is desirable in applications with low computation resources.

A famous variation known as the extended Kalman filter (EKF)—the non-
linear filter used in the NASA Apollo program—is obtained when choosing
the nominal points as being equal with the current state mean vector. This
filter is no longer an off-line filter, but it is more adaptive to the current
situation. This choice of nominal points also has implications on the mo-
ments of the joint Gaussian (2.7) as ∆x = x −µ

x
∼N

(
0,Cx

)
now has zero

mean. The mean vector µ
y

for instance is independent of the Jacobian Gx

according to

µ
y
= E

{
g
(
x
)+w

}
≈ E

{
g
(
µ

x

)
+Gx

(
µ

x

)
∆x +w

}
= g

(
µ

x

)
,

i.e., for calculating the mean it is sufficient to merely evaluate the nonlin-
ear function g (.) at the nominal point µ

x
.

A major advantage of linearized Kalman filters compared to Gaussian
filters introduced below is their simplicity. Given the Jacobian matrix, they
directly boil down to a Kalman filter. As a consequence, they are one of the
computationally cheapest if not the cheapest Gaussian filters. However,
differentiability of the nonlinear function g (.) is required, which is not
given in every application.
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Many improvements of linearized Kalman filters, but especially for the
EKF have been suggested. The second-order EKF for instance utilizes a
second-order Taylor-series expansion [67]. The iterated EKF performs
multiple iterations of the measurement update for the same measurement
value in order to linearize not only about the predicted state, but about
the most recent estimate. This procedure converges faster to the exact
solution than the EKF [93]. In [215] this concept has been generalized
from discrete iterations to a differential update.

2.2.4 Statistical Linearization

An alternative to a Taylor-series expansion for explicitly determining a
linear model is statistical linearization [67], where the nonlinear function
g (.) is approximated via

g
(
x
)≈ G ·∆x +b

with ∆x , x −µ
x

. Here, the terms G and b are chosen in such a way that
the mean squared error

E

{(
g
(
x
)−G ·∆x −b

)T (
g
(
x
)−G ·∆x −b

)}
(2.16)

is minimized with respect to G and b. The solution to (2.16) yields

b = E
{

g
(
x
)}

, (2.17)

G = E
{

g
(
x
)

·∆x
}

C−1
x . (2.18)

There is an interesting relation between the linearized Kalman filter and
statistical linearization. Assuming that g (.) is differentiable, the expecta-
tion in (2.18) can be reformulated to (see [160])

E
{

g
(
x
)

·∆x
}
= E

{
Gx

(
x
)}

Cx ,
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where Gx is the Jacobian matrix (2.14). In this case, the statistical lineariza-
tion becomes a Taylor-series based linearization, except that instead of
directly utilizing g (.) and the Jacobian Gx , their expected values are em-
ployed. This is beneficial in the sense that statistical linearization exploits
additional information about the state x thanks to the expectation calcu-
lation, while for the Taylor-series expansion merely the mean vector µ

x
is utilized. This comes at the expense that the expected values (2.17) and
(2.18) often cannot be calculated analytically, albeit the Jacobian matrix
may exist.

2.2.5 Linear Regression Kalman Filters

To overcome the flaws of statistical and Taylor-series based linearization,
the group of so-called linear regression Kalman filters (LRKFs) are based
on a completely different approach. Instead of directly approximating
the nonlinear model (2.6), the Gaussian representing the state x is ap-
proximated by means of a set of weighted samples Lx = {

ωi ,Xi
}
, i = 1. . .L,

which are sometimes also called sigma points. Given a sample represen-
tation of N

(
x;µ

x
,Cx

)
, the efficient evaluation of the integrals in (2.8) is

straightforward.

In order to see this, the focus is restricted in the following on the integral

E
{

g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx . (2.19)

The solution method for this integral can be directly applied to all integrals
in (2.8). In order to obtain the sample representation independent of the
current mean vector and covariance matrix of the Gaussian density, a
change of the integration variable is employed for (2.19), which results in

E
{

g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx =

∫
g

(
µ

x
+

√
Cx ·θ

)
·N

(
θ;0,I

)
dθ

(2.20)
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with
p

C being the matrix square root such that C =
p

C
(p

C
)T. This trans-

formation allows determining the sample representation in advance for
the multivariate standard Gaussian N

(
θ;0,I

)
, while the adaptation to the

actual Gaussian is performed on-line via the transformation µ
x
+

√
Cx ·θ.

With a given sample set Lθ = {
ωi ,θi

}
, i = 1. . .L, that approximates the

standard Gaussian N
(
θ;0,I

) ≈ ∑L
i=1ωi ·δ

(
θ−θi

)
as a sum of weighted

Dirac delta distributions, the integral (2.20) can be solved according to

E
{

g
(
x
)}=

∫
g

(
µ

x
+

√
Cx ·θ

)
·N

(
θ;0,I

)
dθ

≈
∫

g
(
µ

x
+

√
Cx ·θ

)
·

(
L∑

i=1
ωi ·δ

(
θ−θi

))
dθ

=
L∑

i=1
ωi · g

(
µ

x
+

√
Cx ·θi︸ ︷︷ ︸

,Xi

)
, (2.21)

where the second line follows from substituting the standard Gaussian
with its approximate sample representation. The third line follows from
exploiting the sifting property (2.2).

The quantities Xi in (2.21) correspond to the transformed sample points
with corresponding weights ωi . The actual value of Xi depends on θi and
the way the matrix square root of Cx is determined. Also the weights ωi

offer an additional degree of freedom to the sample set. Various methods
have been proposed in the past for calculating ωi and θi . Main drivers for
the calculation typically are numerical quadrature techniques for solving
Gaussian integrals or capturing information of the standard Gaussian
N

(
θ;0,I

)
like its mean and covariance.

Before the most popular of them are briefly introduced, it is worth men-
tioning that even though LRKFs resemble Monte Carlo integration in
(2.21), the sample points are determined in a deterministic fashion. Monte
Carlo methods like particle filters instead employ random sampling.
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Cubature Kalman Filter (CKF)

The cubature Kalman filter [11, 214] exploits the third-order spherical
cubature integration rule. According to this rule, the sample set consists
of L = 2·nx points

θi =
{p

nx ·e i if i = 1. . .nx

−pnx ·e i−nx
, if i = nx +1. . .2nx

(2.22)

with weights ωi = 1/2nx for all i . In (2.22), e i = [0 0 1 0 0 · · ·0]T is the canon-
ical unit vector, where only element i is one. The CKF calculates (2.19)
exactly if g (.) is a linear combination of monomials of order up to three
[10], while the covariance Cx in (2.8) is determined exactly if g (.) is linear.

Unscented Kalman Filter (UKF)

As shown in [160], the CKF approach can be generalized to the so-called
unscented transform proposed by [95], which forms the basis for the un-
scented Kalman filter [206]. Therefore, instead of 2nx sample points,
2nx +1 points are considered. The additional point is specially dedicated
to the mean of x . The sample points and the corresponding weights are
given by

θi =


p

nx +κ ·e i if i = 1. . .nx

−pnx +κ ·e i−nx
if i = nx +1. . .2nx

0 if i = 2nx +1

,

ωi =


1

2(nx+κ) if i = 1. . .nx
1

2(nx+κ) if i = nx +1. . .2nx
κ

nx+κ if i = 2nx +1

,

with κ being a free parameter. The placement of these sample points
is depicted in Figure 2.2a on the next page. For κ = 0 the sample set is
identical with the one provided by the CKF.
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Figure 2.2: Comparison of estimates of EKF and UKF. The gray dots forming
a “banana” shape in (b) correspond to a Monte Carlo estimate of the true
density.

Like for the CKF, it can be shown that the above sample set exactly cap-
tures the mean and covariance of the multivariate standard Gaussian.
Furthermore, (2.19) is evaluated exactly if g (.) is a polynomial of order up
to three.

Example 1: UKF vs. EKF

To demonstrate the difference in estimation between the UKF and
the EKF, the nonlinear function[

x
y

]
= r ·

[
cos(φ)
sin(φ)

]
, with

[
r
φ

]
∼N

([
1
π
2

]
,

[
0.0004 0.001
0.001 0.0685

])
is considered (see [96]), which transforms the polar coordinates (r,φ)
to Cartesian coordinates (x,y). The true density of the Cartesian
coordinates is clearly not Gaussian as can be seen in Figure 2.2b.
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However, the UKF almost exactly estimates the correct mean, while
the estimate of the EKF is biased and inconsistent, especially in y di-
rection. Furthermore, the EKF strongly underestimates the variance
of the y coordinate.

Gaussian Estimator

The number of sample points of the CKF or UKF are restricted by the di-
mension of the state, although there are approaches to extend the sample
set (see e.g. [193]). To allow an arbitrary number of samples, [89] proposed
a sampling scheme that incorporates additional information about the
shape of the Gaussian density function, besides merely capturing mean
and covariance. The sample points are therefore given by

θi =


µi ·e i if i = 1. . .m

µi−m ·e i−m if i = m +1. . .2m
...

µi−nx ·m ·e i−(nx−1) ·m if i = (nx −1) ·m +1. . .nx ·m

(2.23)

with weights ωi = 1/(nx ·m). Hence, the set of samples consists of L = nx ·m
points, where m is a free parameter allowing to increase or decrease the
required number of sample points. For each state dimension, the same
parameters µi , i = 1. . .m, in (2.23) are required, which are the roots of the
set of nonlinear equations

1
2

(
1+erf

(
µip

2

))
− 2i−1

2m +λµi = 0 ,

m∑
j=1

µ2
j −m = 0 ,

where erf(.) is the Gaussian error function and λ is a Lagrangian multi-
plier. Finding the roots is not possible in closed form and thus, requires a
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numerical solution. The necessary computational overhead is uncritical,
as the sample set is determined for the multivariate standard Gaussian
and can be transformed on-line according to (2.21).

Gauss-Hermite Kalman Filter (GHKF)

As can be seen from (2.23), all sample points are placed along the co-
ordinate axes, while no points are placed in the quadrants. The same
observation holds for CKF and UKF. A more dense placement of sample
points as a irregular grid results when applying the Gauss-Hermite quadra-
ture rule. Accordingly, the sample points and corresponding weights are

θi =
[
θi1 θi2 · · · θinx

]T , ωi =
nx∏
j=1

m!(
m · Hm−1

(
θi j

))2 , (2.24)

with i ,
(
i1i2 . . . inx

)
being an index vector where each index i j takes values

1. . .m. The j th element θi j , j = 1. . .nx , of the sample point θi is one of
the m roots of m-order Hermite polynomial

Hm(x) = x · Hm−1(x)− (m −1) · Hm−2(x) , m = 2,3, . . . (2.25)

whereas this recursion commences from H0(x) = 1 and H1(x) = x.

The LRKF employing the above set of sigma points is named Gauss-
Hermite Kalman Filter and was proposed in [13, 91]. Like the Gaussian
estimator, the number of sample points can be varied. However, while for
the Gaussian estimator the number of samples still scales linearly with
the dimension of the state, the number of samples of the GHKF scales
exponentially due the grid placement of the samples. This comes with the
advantage that a GHKF using an m-order Hermite polynomial is exact is
for polynomials up to order 2m −1.
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Implicit Linearization

Besides the discussed LRKFs, there exist further approaches like the cen-
tral difference filter [162] or the divided difference filter [134], which are
not discussed here in order to constrain the focus on the mostly used ap-
proaches. However, all LRKFs share the property that they directly target
the integrations (2.8). In doing so, also a linear transformation approxi-
mating the nonlinear one in (2.6) is constructed, although implicitly. As
has been shown in [113, 204], LRKFs actually perform weighted statistical
linear regression by approximating g (.) according to

g
(
x
)≈ G · x +b , (2.26)

where G and b result from minimizing

L∑
i=1

ωi ·
(
g
(
Xi

)−G ·Xi −b
)T (

g
(
Xi

)−G ·Xi −b
)

.

The desired quantities are then given by

G = CT
x y C−1

x , b =µ
y
−G ·µ

x
,

where

µ
x
=∑

i
ωi ·Xi , Cx =∑

i
ωi ·

(
Xi −µx

)(
Xi −µx

)T
,

µ
y
≈∑

i
ωi · g

(
Xi

)
, Cx y ≈

∑
i
ωi ·

(
Xi −µx

)(
g
(
Xi

)−µ
y

)T

are the sample means and covariances determined by means of the set of
sample points Lx = {

ωi ,Xi
}
.

The error of the linearization (2.26) is given by

e = g
(
x
)−G · x −b (2.27)
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and depends on the nonlinear function g (.) as well as on the state x . Both
are main sources for linearization errors, which become large for strong
nonlinearities or when the covariance of the state and thus its spread is
large. It was shown in [113] that for LRKFs the error (2.27) has zero mean
and a covariance matrix

Ce = Cy −GCx GT . (2.28)

The latter is a potential and easy to evaluate indicator of the linearization
error. If Ce is a zero matrix, the density of the error e corresponds to a Dirac
delta distribution [137] and the transformation g (.) is affine with g (x) =
G · x +b. Accordingly, LRKFs are exact for linear/affine transformations
and thus, degenerate to a standard Kalman filter.

2.3 Gaussian Smoothing

So far, the focus was on performing predictions and measurement up-
dates for Gaussian filters. Now, the missing smoothing step is derived.
According to (1.9), smoothing is a backward recursion for incorporating
not only the current but also future measurements in the state density.
For Gaussian filters it is assumed that the smoothed density is Gaussian,
i.e.,

f s
k

(
xk

)= f x
k

(
xk | ẑ0:K ,u0:K−1

)≈N
(
xk ;µs

k
,Cs

k

)
(2.29)

with appropriate mean vector µs
k

and covariance matrix Cs
k . The deriva-

tion of the smoothing recursion for calculating (2.29) is based on the
so-called Rauch-Tung-Striebel smoother (RTSS, see [145]) for linear sys-
tems and follows loosely [55, 85].

2.3.1 General Formulation

It is assumed that both the smoothed Gaussian N
(
xk+1;µs

k+1
,Cs

k+1

)
and

the posterior Gaussian N
(
xk ;µe

k
,Ce

k

)
are already given. As smoothing is
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an off-line task that is usually performed after K ≥ 1 prediction and mea-
surement update steps, the assumption of a known smoothed Gaussian
is valid since for the time step K , the smoothed density coincides with
the posterior Gaussian, i.e., f e

K

(
xk

) ≡ f s
K

(
xk

) =N
(
xK ;µs

K
,Cs

K

)
and thus

knowing N
(
xk+1;µs

k+1
,Cs

k+1

)
follows by induction.

Similar to Section 2.2.1, the interest is in the joint Gaussian[
xk

xk+1

]
∼N

(
µ

x
,Cx

)
with µ

x
,

[
µs

k
µs

k+1

]
, Cx ,

[
Cs

k Ck|k+1

CT
k|k+1 Cs

k+1

]
,

(2.30)
where the desired smoothed mean vector and covariance matrix for time
step k can be retrieved from the first row of (2.30). To obtain both quanti-
ties, the joint Gaussian is rewritten as

N
([

xk , xk+1

]T ;µ
x

,Cx

)
=N

(
xk ;µ,C

)
·N

(
xk+1;µs

k+1
Cs

k+1

)
, (2.31)

which is the product of the known smoothed Gaussian and the conditional
Gaussian N

(
xk ;µ,C

)
, f

(
xk | xk+1, ẑ0:k

)
, where the latter is independent

of the future measurements ẑk+1:K due to conditioning on xk+1. However,
the conditional Gaussian is unknown, but it can be obtained from (2.9)
when replacing x with xk ∼N

(
µe

k
,Ce

k

)
, y with xk+1 ∼N

(
µp

k+1
,Cp

k+1

)
and

the nonlinear transformation g (.) with ak (.). Hence, the unknown mean
vector and covariance matrix in (2.31) are given by

µ=µe
k
+ Jk ·

(
xk+1 −µp

k+1

)
,

C = Ce
k − Jk CT

k|k+1 ,
(2.32)

respectively, with gain matrix Jk = Ck|k+1
(
Cp

k+1

)−1
and cross-covariance

matrix Ck|k+1 according to

Ck|k+1 = Cov
{

xk , xk+1

}
=

∫ (
xk −µe

k

)(
ak

(
xk ,uk

)−µp
k+1

)T
·N

(
xk ;µe

k
,Ce

k

)
dxk . (2.33)
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Substituting the mean and covariance of (2.32) into (2.31) and solving the
product4 leads to the desired joint Gaussian of (2.30), where the smoothed
mean and covariance at time step k are given by

µs
k
=µe

k
+ Jk ·

(
µs

k+1
−µp

k+1

)
,

Cs
k = Ce

k + Jk
(
Cs

k+1 −Cp
k+1

)
JT

k ,
(2.34)

respectively. It is obvious that all quantities in (2.34) except of the gain
matrix Jk are known from predictions and measurement updates or are
calculated in a previous smoothing step. The matrix Jk requires solving
the integral in (2.33), which is not possible in closed form in general due
to the nonlinear system function ak (.).

2.3.2 Linear Case

In case of linear dynamic and measurement models as in (2.11), a closed-
form expression of the integral (2.33) and thus of the smoothing recursion
(2.34) can be found. The resulting RTS smoother or sometimes Kalman
smoother coincides with (2.34), where the gain matrix is

Jk = Ce
k AT

k

(
Cp

k+1

)−1
(2.35)

and the predicted as well as the posterior parameters are

µp
k+1

= Ak ·µe
k

, µe
k
=µp

k
+Kk ·

(
ẑk −Hk ·µp

k

)
,

Cp
k+1 = Ak Ce

k AT
k +Cw

k , Ce
k = Cp

k −Kk Hk Cp
k .

The latter correspond to the Kalman filter predictions (2.12) and measure-
ment updates (2.13), respectively.

4 A detailed solution of this product can be found in Paper J.
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2.3.3 Nonlinear Case

Similar to the predictions and measurement updates in case of nonlinear
models, it is sufficient for Gaussian smoothing to find a linear approxima-
tion of the nonlinear system function ak (.) or to solve the integral (2.33).
Hence, all the nonlinear Gaussian filters discussed in Sections 2.2.3–2.2.5
can be employed, as they explicitly or implicitly provide a linear approxi-
mation and solve (2.33), respectively. Accordingly, for any of the nonlinear
Gaussian filters a corresponding nonlinear Gaussian smoother can be
found that exploits the respective approximation technique of the filter
for determining the required quantities in (2.34). See for instance [8] for
the extended Kalman smoother, [12] for the cubature Kalman smoother,
or [159, 172] for the unscented RTS smoother.

2.4 Rao-Blackwellization

The perspective of solving a given Bayesian filtering problem was so far
very coarse. Either the models were identified as being linear and the
exact solution can be found, or the models are nonlinear and one has to
rely on approximations. Actually, besides these black and white decisions,
there are many gray scale values in between.

Example 2: Linear Substructure

Consider the measurement model

z = h
(
xn

)+H
(
xn

)
· x l +v , (2.36)

where the measurement function comprises nonlinear parts denoted
by h(.) as well as linear substructures indicated by the matrix H(.).
Accordingly, the state x consists of two sub-states according to

x =
[

x l
xn

]
, (2.37)
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where xn comprises the nonlinear state variables, while x l comprises
all state variables with conditionally linear dynamics, i.e., when con-
ditioning on xn , the model (2.36) becomes a linear model.

By exploiting the linear substructure in the above example, it is possible to
solve some of the filtering equations analytically, while an approximation
is merely required for the nonlinear parts. The estimation performance
gain of this decomposed processing is stated by the following theorem.

Theorem 1 (Rao-Blackwell, [128], Ch. 24) Let x and y be dependent

variables, and g
(
x , y

)
be some scalar function. Then

varx,y

{
g
(
x , y

)}≥ varx

{
Ey

{
g
(
x , y

)∣∣∣x
}}

. 2

According to this so-called Rao-Blackwell theorem, a Bayesian filter utiliz-
ing this decomposition will result in a lower variance than a filter without
it. This idea has been employed in many Bayesian filtering approaches
like in particle filters [9, 41, 166] or in LRKFs [126]. Even though these fil-
ters employ this theorem mainly in case of linear-nonlinear substructures
as in (2.36), it is important to note that this theorem is not restricted to
those.

2.5 Contributions

In this section, the main contributions of the Papers A–D are summarized.
The first two contributions in Section 2.5.1 and Section 2.5.2 exploited
the aforementioned Rao-Blackwellization for Gaussian filtering. For Sec-
tions 2.5.3–2.5.5, it is assumed that the nonlinear function g (.) is either
given as a polynomial and can be approximated by a polynomial. In doing
so, efficient moment calculation algorithms are proposed.
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2.5.1 Combining Rao-Blackwellization with
Observed-Unobserved Decomposition

Measurement models with the same structure as in Example 2 are con-
sidered. In addition it is assumed that the state not only comprises the
nonlinear and conditionally linear variables, but also contains state vari-
ables xu that are not directly observable, i.e., there is no functional relation
between the measurement vector z and xu through the measurement
model (2.36). Hence, the (predicted) state vector has the form

x p =
[

x p
o

x p
u

]
∼N

([
µp

o
µp

u

]
,

[
Cp

o Cp
ou

Cp
uo Cp

u

])
, (2.38)

where the observed part comprises the nonlinear and conditionally linear
variables

x p
o =

[
x p

n
x p

l

]
∼N

([
µp

n
µp

l

]
,

[
Cp

n Cp
nl

Cp
l n Cp

l

])
. (2.39)

Such kind of state compositions appear in many application, where one
is exemplified next.

Example 3: Object Localization

Consider a filtering problem, where the pose—that is location and
orientation—and the corresponding velocities of an object in 3D are
of interest. Sensors typically used for such localization problems
are inertial sensors like gyroscopes and absolute localization tech-
niques based on for instance multilateration. In such a situation,
the system state may comprise the object pose xn = [

x y z α β γ
]T,

the translational velocities xu = [
ẋ ẏ ż

]T, and the angular velocities

x l =
[
α̇ β̇ γ̇

]T
(see e.g. [18]). Hence, even though the state as a whole

is propagated via a dynamics model reflecting the motion of the
object, the translational velocities cannot be observed directly.
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Although there is no functional relation through the measurement model,
the unobserved state variables are still updated thanks to the correlation
between observed and unobserved states, which is reflected by the cross-
covariance Cou . However, due to the missing functional relation, it seems
to be a waste of computations to utilizes the state as a whole for evalu-
ating the integrals (2.8), especially when the unobserved state is of high
dimension. To reduce the computational load, a two-step decomposition
of the filtering problem is proposed:

1. Updating the directly observed state xo first with the current mea-
surement. In order to improve the estimation performance, the
nonlinear and conditionally linear structure in accordance with
Rao-Blackwellization is exploited.

2. Given the updated observed state, update the unobserved state xu
by exploiting the correlation between xo and xu .

The information flow of this two-step processing is depicted in Figure 2.3,
which corresponds to the decomposition

f e(x
)= f

(
x| ẑ) = f

(
xu , xo | ẑ

)= f
(
xu | xo

)
· f

(
xo | ẑ

)︸ ︷︷ ︸
= f (xe

o)= f
(
xe

n ,xe
l |ẑ

) (2.40)

of the conditional Gaussian (2.9).

Update of Observed State

Updating the observed state corresponds to calculating the conditional
Gaussian xe

o ∼N
(
µe

o
,Ce

o

)
according to (2.9), which requires to solve the

integrals in (2.8). The procedure for this is shown exemplary for the
measurement mean vector µ

z
. Given the measurement function in (2.36),

the mean vector is given by

µ
z
=

∫ (
h
(
xn

)+H
(
xn

)
· x l

)
· f

(
xn , x l

)︸ ︷︷ ︸
= f (x l |xn)· f (xn)

dxo , (2.41)



2.5 Contributions 53

Separation

Separation

Approximation

Calculation

Update

Combination

µp , Cp

linearnonlinear

observed

indirectly observed

{
ωi ,Xi

}
for i = 1, . . . ,L

f
(
x l | xn

)
ẑ

µe
o

, Ce
o

µe , Ce

Figure 2.3: Information flow of the measurement update. The gray boxes
indicate components that can be reused for the prediction step.

where f
(
x l | xn

)=N
(
x l ;µ

l |n
(
xn

)
,Cl |n

)
with mean vector and covariance

matrix

µ
l |n

(
xn

)=µp
l
+Cp

ln

(
Cp

n
)−1

(
xn −µp

n

)
, (2.42)

Cl |n = Cp
l −Cp

l n

(
Cp

n
)−1

Cp
nl ,

respectively. Hence, the mean of the conditional linear Gaussian f
(
x l | xn

)
is a function of the nonlinear state.
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Due to the nonlinear substate xn , solving the above integral in closed form
is not possible in general. To approximate the solution, the deterministic
sampling techniques of the LRKFs can be employed here. In doing so,
the Gaussian density f

(
xn

)
is approximated by a mixture of Dirac delta

distributions
∑

i ωi ·δ
(
xn −Xi

)
. Substituting this sample representation

in (2.41) and utilizing the sifting properties of the Dirac delta distributions
leads to

µ
z
=

L∑
i=1

ωi ·
∫ (

h
(
Xi

)+H
(
Xi

)
· x l

)
· f

(
x l |Xi

)
dx l

=
L∑

i=1
ωi ·

(
h
(
Xi

)+H
(
Xi

)
·µ

l |n
(
Xi

)
︸ ︷︷ ︸

,µz
i

)
.

The second equation follows from (2.42) and corresponds to a Kalman
prediction thanks to the conditionally linear measurement function and
the Gaussian density f

(
x l |Xi

)
. Similarly the desired covariance Cz and

cross-covariance Czx are obtained

Cz =
L∑

i=1
ωi ·

((
µz

i
−µ

z

)(
µz

i
−µ

z

)T +H
(
Xi

)
Cl |nH

(
Xi

)T
)

,

Coz =
L∑

i=1
ωi ·

([
O

Cl |nH
(
Xi

)T

]
+

([
Xi

µ
l |n

(
Xi

)]−µ
o

)(
µz

i
−µ

z

))
,

where again Kalman predictions have been used. Conditioning on the
measurement z according to (2.9) yields the desired updated observed
state xe

o .

Update of Unobserved State

For updating the indirectly observed state, the mean vector µe
o

and covari-

ance matrix Ce
o of the posterior Gaussian f

(
xo | ẑ

)
are used. According to
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[114], the mean vector of the unobserved state is updated via

µe
u
=µp

u
+ J ·

(
µe

o
−µp

o

)
(2.43)

with gain matrix J = Cp
uo

(
Cp

o
)−1

. The posterior covariance matrix of the
unobserved state and cross-covariance matrix between observed and
unobserved state are given by

Ce
u = Cp

u + J
(
Ce

o −Cp
o
)

JT , (2.44)

Ce
uo = JCe

o ,

respectively. By comparison with (2.34), it is apparent that the above
update equations coincide with an RTS smoother.

2.5.2 Semi-Analytical Filtering

The semi-analytical Gaussian filter (SAGF) introduced next takes Rao-
Blackwellization to its extremes. Instead of merely restricting the de-
composition to linear and nonlinear substructures, the SAGF exploits
nonlinear-nonlinear decompositions, where for some nonlinear state
variables an analytical solution of the Gaussian filtering problem can be
found. Nonlinear functions for which analytical solutions exist are for
example

• Monomials xi with i ∈N,

• Trigonometric functions sin(x) and cos(x),

• Squared exponential functions exp
(
cT ·φ

(
x
))

with c ∈R3

and φ
(
x
)
,

[
1 x x2]T

,

• and linear combinations of the above functions,
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assuming that the state density is Gaussian. The next example demon-
strates the difference between a closed-form calculation of the moments
in (2.8) for a quadratic function and the solution of an LRKF.

Example 4: Quadratic Transformation

For the quadratic transformation y = x2 +v with x ∼N
(
µx ,σ2

x

)
and

v ∼N
(
0,σ2

v

)
the moments in (2.8) can be calculated exactly to

µy =µ2
x +σ2

x , σ2
y = 2σ2

x ·
(
σ2

x +2µ2
x

)+σ2
v , σx y = 2·σ2

x ·µx .

Using the UKF with parameter κ= 0 the same moments are calcu-
lated to

µy =µ2
x +σ2

x , σ2
y = 4σ2

x ·µ2
x +σ2

v , σx y = 2·σ2
x ·µx .

The mean µy is correct, which is not surprising as the unscented
transform is exact for monomials up to order three. As the variance
calculation for a quadratic function corresponds to an expectation
calculation for a monomials of order four, the UKF introduces an
error. More precisely, the variance σ2

y is underestimated as the term

2σ4
x is missing and thus, the UKF is overconfident in this example.

On the one hand, analytical moment matching provides exact solutions
to (2.8), but is restricted to a few nonlinear transformations, while on
the other hand, LRKFs are generally applicable but may introduce severe
linearization errors. The difference of LRKFs and analytical moment
calculation from a linearization perspective is depicted in Figure 2.4.

The key idea of the SAGF is to combine both worlds by means of Rao-
Blackwellization. Only some dimensions of the state x are sampled via
an LRKF and thus, only some parts of the nonlinear transformation (2.6)



2.5 Contributions 57

x

y

(a) Analytic Moment
Matching

x

y

(b) Sample-based
linearization (LRKF)

xµx

y

(c) Linearization via
Taylor-series (EKF)

Figure 2.4: Illustration of different Gaussian filtering approaches: the non-
linear function (black) and its linearized versions (red dashed). Analytic
moment matching utilizes the entire density f

(
x
)

for (implicit) lineariza-
tion, while the linearization of an LRKF is based on an approximate sample
representation of f

(
x
)
. Thus, although the mean and covariance of x are

captured exactly by the samples, the same is not true for higher-order mo-
ment due to the finite number of samples. The EKF even linearizes the
nonlinear function only around a single nominal point.

have to be treated approximately. For this purpose, the transformation is
rearranged to the mapping

y = g
(
x a , x s

)+w , (2.45)

where the Gaussian state xT = [
xT

a xT
s

]
consists of the substates x a (ana-

lytically integrable) and x s (sampled) with mean and covariance

µ
x
=

[
µ

a
µ

s

]
, Cx =

[
Ca Cas

Csa Cs

]
, (2.46)

respectively. As there exists no closed-form expression for the desired
moments (2.8), the decomposition into x a and x s is chosen in such a
way that the moment integrals can be calculated analytically exactly for
any given fixed value of x s . Hence, the function g (.,.) is denoted to be
conditionally integrable. For determining a sample-based representation
of x s , the sampling via LRKFs is applied.
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It is worth mentioning that analytic moment matching and LRKFs are
extreme cases of the SAGF: if x s is an empty vector, SAGF performs analytic
moment matching and if x a is empty, the SAGF degenerates to an LRKF.

For the transformation given by (2.45), the moment calculation is shown
exemplary for the mean vector µ

y

µ
y
=

∫
g
(
xa , xs

)
· f

(
xa , xs

)
dx =

∫
g
(
xa , xs

)
· f

(
xa | xs

)
· f

(
xs

)
dx (2.47)

with the conditional Gaussian f
(
xa | xs

)=N
(
xa ;µ

a|s ,Ca|s
)

with mean and

covariance

µ
a|s =µa

+Cas ·C−1
s ·

(
xs −µs

)
,

Ca|s = Ca −Cas ·C−1
s ·Csa .

(2.48)

By approximating the density f
(
xs

)
of the sub-state x s with a mixture

of Dirac delta distributions and by exploiting the sifting property, (2.47)
simplifies to

µ
y
≈∑

i
ωi ·µy

i
with µy

i
=

∫
g
(
xa ,Xi

)
· f

(
xa |Xi

)
dxa .

It is important to note that this integral can be evaluated analytically
as the function g ( · , · ) is conditionally integrable. Furthermore, solving
these integrals is an off-line task and the solution is characterized by a
parametric representation of the moments (2.48) and the sample points
Xi for efficient on-line evaluation.

Example 5: Falling Body

To demonstrate improved estimation performance, the estimation of
the altitudeαk , velocity βk , and constant ballistic coefficient γk of a
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Table 2.1: Average rmse and its standard deviation over all simulation runs.

Altitude Velocity Ballistic coefficient

SAGF 12.6 ± 8.3 59.3 ± 143.7 0.016 ± 0.063
UKF 14.2 ± 7.9 100.1 ± 212.4 0.016 ± 0.058
GPF 100 p. 13.0 ± 8.0 60.2 ± 134.9 0.029 ± 0.098
GPF 1000 p. 12.7 ± 8.2 59.3 ± 142.1 0.019 ± 0.066

falling body is considered [94, 174]. The system equation is given by

xk+1 =
αk

βk
γk

+∆t ·

 −βk

−e−ρ ·αk ·
(
βk

)2 ·γk
0

+w k , (2.49)

where xk = [
αk βk γk

]T is the state vector, ∆t = 1 the time discretiza-
tion constant, ρ = 5·10−5 a constant factor. The noise w k is zero-
mean Gaussian with covariance matrix Cw

k = 0.1·I. The initial state
of the falling body is xT

0 = [
3·105 2·104 10−3]. The initial mean

and covariance of the estimators for all simulation runs is set to be

µx =
3·105

2·104

10−5

 , Cx =
106 0 0

0 4·106 0
0 0 20

 .

The state variables can be decomposed into x a = [
βk γk

]T
and x s =

αk . By conditioning on x s , the model (2.49) becomes a polynomial
of order two.

A linear measurement equation is considered, where the altitude is
measured directly according to

zk =αk +v k , v k ∼N
(
0,σ2

v

)
.

Due to the linearity of the measurement equation, the measurement
update can be performed via the Kalman filter.
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In Table 2.1, the average rmses of 1000 Monte Carlo simulation runs
for three Gaussian filters, namely the proposed SAGF, the UKF, and
the Gaussian particle filter (GPF, [106]), are listed. In case of the GPF
100 and 1000 particles are employed. The SAGF provides the most
accurate estimate for all three state variables. Only the GPF with
1000 particles can compete with the SAGF, which however comes
with a high computational load for the GPF. In terms of run time, the
SAGF is two times faster than the GPF with 100 particles and four
times faster than the UKF.

2.5.3 Chebyshev Polynomial Kalman Filtering

As mentioned in the previous section, analytic moment matching is for
instance possible for polynomial nonlinearities. To apply this fact more
generally, the following contribution consists of a two-step approach to
allow Gaussian filtering for arbitrary nonlinear functions: First, the given
nonlinear function is expanded in a series of Chebyshev polynomials. In
the second step, which is discussed in more detailed in Section 2.5.4, exact
expressions for the moment integrals (2.8) are provided in a computation-
ally efficient vector-matrix notation. This approach named Chebyshev
polynomial Kalman filter (CPKF) facilitates function approximation and
Bayesian filtering in a black-box fashion without the need of manual op-
erations or manual inspection similar to LRKFs, but with a potentially
higher estimation performance.

Chebyshev Polynomials

The key idea behind the CPKF is the approximation of the nonlinear func-
tion (2.6) by means of a truncated Chebyshev series expansion according
to

g (x) ≈
n∑

i=0
ci ·Ti (x) (2.50)
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on the intervalΩ, [−1,1], where Tn(x) are Chebyshev polynomials of the
first kind, which are defined compactly as

Tn(x) = cos(n · arccos x) , i = 0,1, . . .

or equivalently by means of the recursion

Tn(x) = 2x ·Tn−1(x)−Tn−2(x) , n = 2,3, . . . , (2.51)

with initial conditions

T0(x) = 1 , T1(x) = x . (2.52)

It is easy to deduce from (2.51) that the function Tn(x) is a polynomial of
degree n. If n is even (odd), then Tn(x) is a sum of even (odd) monomials,
i.e., Tn(x) is of the form

Tn(x) =
n∑

i=0
αn,i · xi =

bn/2c∑
j=0

αn,n−2 j · xn−2 j , (2.53)

where αn,i is the Chebyshev coefficient of the i th monomial of the nth
Chebyshev polynomial. The coefficient αn,i is non-zero only if i is even
(odd).

The quantities ci in (2.50) are the series coeffcients

ci =
〈g (x),Ti (x)〉
〈Ti (x),Ti (x)〉 ≈

2−δ0,n

n

n∑
m=1

g (xm) ·Ti (xm) (2.54)

for i = 0,1, . . . ,n. In (2.54) 〈g (x), f (x)〉, ∫
Ω

(
1− x2

)−1/2 · g (x) · f (x)dx. The
right-hand side follows from the discrete orthogonality property of the
Chebyshev polynomials, where xm = cos(π(m−0.5)/i) ∈ Ω, m = 1. . . i , are
the zeros of the Chebyshev polynomial Ti (x) and δi , j is the Kronecker
delta.
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Employing polynomial series expansions in Bayesian filtering is not com-
pletely new. For instance higher-order Taylor-series expansion is em-
ployed for the second-order EKF [160, 174] or Fourier-Hermite series is
used in Gaussian filtering in [161]. While the first approach is limited
in terms of the order of the polynomial series, the second approach still
requires numerical integration for moment calculation. Chebyshev series
expansions are better suited for approximating nonlinear functions in the
context of Gaussian filtering thanks to the following reasons:

• Chebyshev polynomials form a complete orthogonal system on Ω.
As a consequence, the series coefficients (2.54) can be calculated
independent of each other. This for instance is not true for Taylor-
series expansions.

• In addition to the continuous orthogonality, Chebyshev polynomi-
als are also discrete orthogonal. This property allows a very efficient
calculation of the series coefficients by means of the well-known
discrete cosine transform [30], for which a plethora of efficient al-
gorithms exists. Similar approximate calculation schemes of series
coefficients are typically not available for other orthogonal polyno-
mials series like the Fourier-Hermite series.

• A truncated Chebyshev series satisfies the near-minimax approxi-
mation property, i.e., a truncated Chebyshev series of degree n is
very close to the best possible polynomial approximation of the
same degree. While the best polynomial representation of g (.) is
typically difficult to obtain, the Chebyshev series expansion is very
close to the best solution and thanks to the discrete orthogonality
very easy to calculate.

More detailed information about Chebyshev polynomials and their prop-
erties can be found for instance in [120].
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Variable
transformation (2.55)

Inverse variable
transformation (2.56)

Moment
calculation (2.60)

Series coefficient
calculation (2.54)

Moment
propagation
(2.62)–(2.64)

Chebyshev
coefficient

calculation (2.68)
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g (x)

ciEi

µy ,σ2
y ,σx y

αi ,n

Figure 2.5: Flow chart of closed-form moment propagation for Chebyshev
polynomial Kalman filter.

Structure

The building blocks of the CPKF are depicted in Figure 2.5. The blocks
on the top are required due to the limitation that Chebyshev polynomials
are only orthogonal on the interval Ω, while the function g (.) can have an
arbitrary support [a,b] ⊆R. Thus, the function g (.) and the state x have
to undergo first the affine transformation

x ′ = 2
b−a · x − a+b

b−a , (2.55)

which yields a transformed Gaussian x ′ ∼N
(
µx ′ ,σ2

x ′
)
. Furthermore, the

zeros xm required for calculating the series coefficients (2.54) have to be
mapped to the interval [a,b], which is carried out by the inverse transfor-
mation

x = b−a
2 · x ′+ a+b

2 . (2.56)
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of (2.55). By means of these transformations, arbitrary functions g (.) can
be treated by means of the CPKF.

The blocks “Moment calculation", “Moment propagation", and “Cheby-
shev coefficient calculation" are explained in detail in the following sec-
tion.

2.5.4 E�icient Moment Propagation for Polynomials

At first a general polynomial representation of the function g (.) according
to

y = g (x)+w =
n∑

i=0
ci · x i +w (2.57)

is considered. Chebyshev polynomials are treated as a special case at the
end of this section.

General Solution

When propagating the Gaussian state x through the polynomial transfor-
mation g (.) in (2.57), the mean of y can be expressed as

µy = E
{

g (x)
}= n∑

i=0
ci ·

∫
xi ·N

(
x;µx ,σ2

x

)
dx =

n∑
i=0

ci · E
{

x i }︸ ︷︷ ︸
,Ei

. (2.58)

Thus, the mean µy results in a weighted sum of non-central moments
Ei = E

{
x i } of order i = 0,1, . . . ,n. Formulae for calculating these moments

of a Gaussian random vector are well-know (see for instance [117]), but
require the evaluation of binomial coefficients, powers of the mean value,
and weighted scalar products of the coefficient vector η. Algebraically
and computationally less demanding moment calculations can be found,
however, when considering a special member of the exponential family
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in Section 2.1.3. By choosing the sufficient statistic to consist only of
monomials of order up to n, i.e.,

φ(x) = [
1 x x2 · · · xn]T

, (2.59)

the following recursion proposed in [28] can be exploited. Although the
moments of this special exponential density cannot be expressed in closed
form, the i th order moment follows the recursion

Ei =−
n∑

j=1

j

i +1
η j Ei+ j .

Thus, if the n lower-order moments ET
0:n−1, [E0, . . . ,En−1] are given and

the moments up to Em , m ≥ n are of interest, solving the linear system of
equations

Q
(
η
)

·E0:n−1 = R
(
η
)

·En:m (2.60)

gives the desired higher-order moments ET
n:m , [En . . . Em]. Here, Q

(
η
)

is

an rectangular matrix and R
(
η
)

is a lower triangular matrix with elements
(see [74])

Qi , j =


1 if i = j
j−1

i η j−i if i < j

0 otherwise

, Ri , j =


1 if i − j = n
i− j−n

i ηn+ j−i if 0 ≤ i − j < n

0 otherwise

,

(2.61)
respectively. Thus, the matrix R

(
η
)

is zero everywhere except of the main
diagonal and the n diagonals below the main. Thanks to this special
structure, the linear system of equations (2.60) can be efficiently solved
by means of forward substitution.

The Gaussian density is a special case of (2.59) for φ(x) = [
1 x x2]T

where
the first two moments E0 = 1 and E1 = µx are known. Hence, by solving
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(2.60), the mean calculation (2.58) becomes

µy = cT
n ·E0:n = cT

n ·

[
I2

L

]
·E0:1 , (2.62)

with L,
(
R

(
η
))−1Q

(
η
)

, where the parameter vector η comprises the pa-
rameters of a (normalized) Gaussian density as defined in (2.5). Further-
more, cT

n , [c0 c1 . . . cn] is the vector of polynomial coefficients.

In a similar fashion, the variance σ2
y of y and the covariance σx y between

x and y can be determined. The variance becomes

σ2
y =

(
cn ∗ cn

)T ·E0:2n −µ2
y +σ2

w

= (
T ·cn

)T ·E0:2n −µ2
y +σ2

w ,
(2.63)

where ∗ is the discrete convolution operator. The second equality indi-
cates an efficient matrix-vector realization of the convolution by means
of the matrix T with entries ti , j = ti+1, j+1 = ci− j if i ∈ [ j , j +n] and ti , j = 0
otherwise, where i = 1,2, . . . ,2n+1 and j = 1,2, . . . ,n+1. Hence, T is special
type of matrix, namely a triangular Toeplitz matrix with only the mean
diagonal and n diagonals below the main diagonal being non-zero and all
elements on individual diagonals being equal.

The covariance can be simplified to

σx y = cT
n ·E1:n+1 −µx ·µy , (2.64)

where µy is already known from (2.62). The first summand in (2.64) is
almost identical to the mean calculation in (2.58) except for the shift by
one in the order of the involved moments.

Given all the required moments, a Gaussian filter for polynomial nonlin-
earities is complete and listed in Algorithm 1. It is important to note that
the polynomial order of the system function ak (.) and the measurement
function hk (.) need not to be the same. Accordingly, the coefficient vec-
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Algorithm 1 Polynomial Kalman Filter (PKF)

. Prediction
1: Determine moment vector E0:2np

of posterior xe
k−1 by solving (2.60)

2: Predicted mean: µp
k =

(
cp

np

)T
·E0:np

3: Predicted variance:
(
σ

p
k

)2 =
(
T ·cp

np

)T
·E0:2np

− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine moment vector E0:2ne

of predicted state x p
k by solving (2.60)

5: Measurement mean: µz
k =

(
ce

ne

)T
·E0:ne

6: Measurement variance:
(
σz

k

)2 =
(
T ·ce

ne

)T
·E0:2ne

− (
µz

k

)2 + (
σv

k

)2

7: Covariance: σxz
k =

(
ce

ne

)T
·E1:ne+1 −µp

k ·µz
k

8: Kalman gain: Kk =σxz
k

/(
σz

k

)2

9: Posterior mean: µe
k =µp

k +Kk ·
(
ẑk −µz

k

)
10: Posterior variance:

(
σe

k

)2 = (
σ

p
k

)2 −Kk ·σxz
k

tors cp
np

corresponding to the system function and ce
ne

corresponding to
the measurement function are of different dimension.

Example 6: Chaotic Synchronization

The proposed polynomial Kalman filter (PKF) is evaluated for the
polynomial system model

xk+1 = T4(xk )+w k (2.65)

as used in [117], where Ti (x) is the i th Chebyshev polynomial (2.51).
It is known that models as in (2.65) generate chaotic sequences [152],
which are of practical use in securing communication systems. The
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true initial state x0 at time step k = 0 is assumed to be Gaussian with
mean µx

0 = 0.3 and variance
(
σx

0

)2 = 0.25 .

Furthermore, a linear measurement model

zk = xk +v k (2.66)

is employed, with measurement noise variance (σv )2 = 10−2 · (σw )2

and system noise variance being (σw )2 = 10−2 (high noise) or (σw )2 =
10−3 (low noise). The PKF is compared against EKF, UKF, and a
particle filter (PF) with systematic resampling [37] and 500 samples.
The latter is the only non-Gaussian filter. For all filters, 50 Monte
Carlo simulation runs with identical noise sequences are performed,
where the estimates are calculated for 50 time steps.

In Table 2.2, the average rmse, nees, and runtime over all Monte Carlo
runs are listed for all filters and for both noise cases. For high noise,
the proposed PKF outperforms all Gaussian filters in terms of rmse
and nees, i.e., its estimates are closest to the true system state (low
rmse) and at the same time the estimates are not overly confident
(low nees). Furthermore, the matrix-vector terms proposed for the
PKF allow for a runtime being close to the EKF, which is known to be
the fastest Gaussian filter.

For the low noise case, UKF performs best in terms of estimation
error, but PKF is very close to it. PF occasionally suffers from parti-
cle depletion, i.e., most of the particles converge towards the same
state, which coincides with an overconfident estimate and thus an
exceedingly high nees value. Even significantly increasing the num-
ber of particles or using different resampling techniques yields no
improvement.
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Table 2.2: Average rmse, nees, and runtime for system model (2.65).

σ2
w = 10−2 σ2

w = 10−3

EKF UKF PF PKF EKF UKF PF PKF

rmse 0.410 0.336 0.292 0.316 0.148 0.118 0.268 0.118

nees 4.737 1.550 1.168 1.041 7.279 1.110 – 1.129

time 0.016 0.038 0.109 0.017 0.017 0.037 0.102 0.018

Special Case: Chebyshev Polynomials

For a truncated Chebyshev series expansion of an arbitrary nonlinear
function g (.) as in (2.50) the moments calculations (2.62)–(2.64) could be
applied directly. Therefore, the Chebyshev series has to be transformed
into the standard polynomial form as in (2.57), for which the so-called
Clenshaw algorithm [45] can be used. This procedure, however, has se-
vere drawbacks: Evaluating Chebyshev series in the standard form (2.57)
requires significantly more algebraic operations as the sparse structure of
the Chebyshev polynomials is no longer exploited. Furthermore, the poly-
nomial coefficients in (2.57) can be large numbers as they are products of
multiple Chebyshev polynomial coefficients, which by themself already
can be significant. For instance, the leading coefficient of Ti (x) is 2i−1.

To avoid these issues, it is recommended to reformulate (2.62)–(2.64) by
exploiting the recursive definition of the Chebyshev polynomials. The
mean µy for instance can be expressed as

µy = E
{

g (x)
}= ∫

g (x) ·N
(
x;µx ,σ2

x

)
dx

(2.50),(2.53)≈
n∑

i=0
ci

i∑
j=0

αi , j

∫
x j ·N

(
x;µx ,σ2

x

)
dx

= cT
n ·An ·E0:n . (2.67)
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In contrast to (2.62), cn , [c0 c1 . . . cn]T now is the vector of series co-
efficients (2.54). Further, An is the (n +1)× (n +1) matrix of Chebyshev
coefficients defined by

An ,
[
α0,n α1,n . . . αn,n

]T
.

Here, αi ,n , [αi ,0 αi ,1 . . . αi ,n]T ∈Nn+1, i = 0,1, . . . ,n comprises all coef-
ficients of the i th Chebyshev polynomial up to and including the nth
monomial. It is calculated via the recursion

αi ,n = 2·
[

0 αT
i−1,i−1 0 . . . 0︸ ︷︷ ︸

n−i times

]T +
[
αT

i−2,i−2 0 . . . 0︸ ︷︷ ︸
n−i+2 times

]T
, (2.68)

where the recursion commences from

α0,n = [
1 0 . . . 0

]T
, α1,n = [

0 1 0 . . . 0
]T

and exploits the definition of the Chebyshev polynomials (2.51). Accord-
ing to (2.53), the coefficients αi , j are zero for j > i . Thus, An is a sparse
lower triangular matrix, which significantly reduces the computations of
the matrix-vector products in (2.67).

Analogously, the variance σ2
y becomes

σ2
y ≈

(
cn ⊗ cn

)T ·P2n ·E0:2n −µ2
y +σ2

w , (2.69)

with ⊗ being the Kronecker product and P2n being an (n +1)2 × (2n +1)
matrix comprising the coefficients resulting from all possible products
Ti (x) ·T j (x), i , j = 0,1, . . . ,n of the Chebyshev series expansion of g (x) .

Finally the covariance between x and y is given by

σx y = cT
n ·A∗

n ·E0:n+1 −µx ·µy , (2.70)
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where the (n +1)× (n +2) matrix A∗
n is given by

A∗
k,n ,

1
2

([
0 (b −a) ·An

]+ [
(a +b) ·An 0

])
.

This matrix includes the mapping back to the interval [a,b] by means of
the inverse variable transform (2.56).

Example 7: TV Commercial Effectiveness

In this example, real-world data from monitoring the advertising
effectiveness of a TV commercial campaign for a single product is
considered [124, 209]. This data is obtained by means of weekly
surveys, where a given number of individuals from the population
of TV viewers in UK is sampled in order to count the number being
aware of current or recent TV commercials for the product. The
result of each survey is measured in standardized units known as
television ratings (TVRs) denoted by uk .

The TVR measurements drive the nonlinear dynamics equation

xk+1 = a
(
xk +w k ,uk

)
, w k ∼N

(
0,0.03·Cx

k

)
,

with system function

a(x ,u) = [
x1 x2 x3 x4

(x2 −x1)− (x2 −x1 −x3 · x5) · exp(−x4 ·u)
]T.

The state vector x ∈R5 comprises the minimum level of awareness
x1, maximum level of awareness x2, memory decay rate x3, penetra-
tion x4, and effect of TVR on the awareness x5 (for details see [209]).
The measurement equation is given by

zk = x1,k +x5,k +v k = H · xk +v k , v k ∼N (0,0.05)
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with H, [1,0,0,0,1], where zk corresponds to the awareness propor-

tion. The initial state estimate is given by x0 ∼N
(
µx

0
;Cx

0

)
with mean

vector and covariance matrix

µx
0
=


0.10
0.85
0.90
0.02
0.30

 and Cx
0 =


6.25 6.25 0 0 0
6.25 406.25 0 0 0

0 0 1 0 0
0 0 0 2.25 0
0 0 0 0 100

 ,

respectively.

As the system state has dimension five, the nonlinear-nonlinear
decomposition proposed in Section 2.5.2 is employed with x a , x4

and xT
s , [x1 x2 x3 x5]. The sampled state x s is processed by means

of the UKF. Additionally a UKF, where the unscented transform is
applied to all five state dimensions is used.

The predictions of the awareness proportion zk of the CPKF and
UKF are compared before updating the state estimates with the
true awareness value ẑk . The true awareness proportion values for
performing the update step are taken from [209]. It is important to
note that for the weeks 42, 43, and 44 no awareness measurements
are available.

In Figure 2.6, the true and predicted awareness proportions are de-
picted. It is obvious that the UKF behaves very unsteady and is
heavily fluctuating. The resulting awareness predictions are very
inaccurate. This effect can be explained by overly confident esti-
mates, i.e., the covariance matrix of the system state contains too
small variances.

The behavior of the CPKF is different, which is surprising as the CPKF
is merely applied on exp(−x4 ·u), while the remaining parts of the
system equation are processed via the UKF. Thus, the CPKF has a
stabilizing effect on the UKF resulting in awareness predictions that
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Figure 2.6: Predicted awareness proportions of the CPKF (blue solid line)
with 95% confidence region (blue dashed) as well as the predictions of the
UKF (red dotted). The true awareness proportion values are indicated by
the black dots. For the weeks k = 42,43,44 no awareness measurements are
available.

accurately follow the ground truth. Furthermore, the CPKF is not
overconfident as the predicted measurement variances

(
σz

k

)2 are
sufficiently large to capture the true awareness proportions. Even for
the weeks with missing data, the predictions of CPKF are meaningful
as the variances grow and thus, indicate an increasing uncertainty.
Though, the trend is still correct.

2.5.5 Homotopic Moment Matching for Polynomial
Measurement Models

Every Bayesian filter discussed so far in this chapter makes two different
Gaussian assumptions. First, it assumes the predicted or posterior density
to be Gaussian. Second, in order to perform the measurement update, it
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assumes that the joint density of state and measurement is Gaussian as
well. The PKF for instance would be an exact Gaussian assumed density fil-
ter if only the first Gaussian assumption would be in place, as it performs
moment matching, i.e., the mean and variance calculated by PKF coincide
with the true mean and variance. The additional joint Gaussian assump-
tion, however, can result in a poor approximation of the true mean and
variance, which may cause a significant loss in estimation performance
or even a divergence of the estimator.

Example 8: Joint Gaussian Flaw

To demonstrate the effect of the joint Gaussian assumption on the
estimation performance, the polynomial measurement model

z = x i +v (2.71)

is considered in the following, where i > 0 is even and the state is
x ∼N

(
0,σ2

x

)
. According to (2.62), (2.63), and (2.64), the mean µz ,

variance σ2
z , and covariance σxz are given by

µz = Ei , σ2
z = E2i −Ei +σ2

v , σxz = Ei+1 , (2.72)

respectively. Since x has zero mean, it follows that all even moments
of x are non-zero and all odd moments are zero, i.e., Ei 6= 0 and
Ei+1 = 0 for all i being even. Hence, the covariance σxz in (2.72) is
zero. As a result, the state x and measurement z are uncorrelated
and the joint Gaussian of state and measurement is axis-aligned.
In Figure 2.7a, the joint Gaussian for i = 2, σ2

x = 1, and σ2
v = 0.1 is

depicted.

As the covariance σxz is zero, the Kalman gain K in line 8 of Algo-
rithm 1 is zero as well and no update of the predicted state occurs,
i.e., the posterior state xe is identical to the predicted state x p . In this
case, a given measurement value has no impact on the estimation.
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Figure 2.7: Joint density f (x,z) and posterior density f e (x) for i = 2, i.e., for
a quadratic polynomial. The red line indicates the measurement value ẑ = 2.
In (c), one Gaussian approximation is obtained based on the joint Gaussian
assumption (dotted) and the other via moment matching (dashed), i.e., its
mean and variance coincide with the true posterior moments.

Without the joint Gaussian assumption the missing update will not occur.
In order to demonstrate this, the measurement update is now viewed
from a full Bayesian perspective. Here, the posterior state x is represented
by the posterior density f e (x) according to Bayes’ rule (recall (1.7))

f e (x) = f (z|x) · f p (x)

f (z)
= f (x,z)

f (z)
, (2.73)

with the predicted Gaussian density f p (x) =N
(
x;µp , (σp )2).

For the considered model (2.71) with a state x having zero mean, the
joint Gaussian assumption leads to a factorization of the joint density
f (x,z) = f p (x) · f (z) as x and z are uncorrelated, which is equivalent
to independence for Gaussian random variables. Hence, the Bayesian
update in (2.73) degenerates to f e (x) = f p (x). Actually, the joint den-
sity f (x,z) is an exponential density with monomial sufficient statis-
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tics according to (2.59). This follows from the fact that the likelihood
f (z|x) =N

(
z; xi ,σ2

v

)
according to (1.8). The product of likelihood and

prior density leads to the exponential density

f (x,z) = f (z|x) · f (x) =N
(
z; xi ,σ2

v

)
·N

(
x;0,σ2

x

)
= exp

(
− log(2πσxσv )− 1

2σ2
v

·
(
z2 + σ2

v

σ2
x

x2 −2zxi +x2i )) .
(2.74)

This exponential joint density is depicted in Figure 2.7b for i = 2. By
comparing Figure 2.7a with Figure 2.7b the difference between the true
joint density and its Gaussian approximation becomes apparent. Given
a measurement value ẑ = 2, Figure 2.7c depicts the posterior densities
obtained for the Gaussian joint density and the true exponential joint
density. It can be seen that the true posterior is bimodal, which only can
be coarsely approximated by a Gaussian density. Furthermore, due to the
joint Gaussian assumption, the Gaussian posterior does not even match
the true posterior mean and variance.

Homotopy Continuation

To overcome the limitations of the joint Gaussian assumption, a new
method for directly calculating the moments of the posterior density for
polynomial measurement models h(x) = ∑ne

i=0 ce
i · xi according to (2.57)

will be introduced. This method does not require the joint Gaussian
assumption and provides almost exact posterior mean and variance.

The key idea is to transform the known moments of the prior Gaussian
density continuously into the desired posterior moments. For this pur-
pose, homotopy continuation for calculating the moments of exponential
densities as proposed in [147] is exploited. By means of a so-called pro-
gression parameter γ ∈ [0 1] the posterior density f e (x) is parameterized
in such a way that for γ = 0 the posterior density corresponds to prior
Gaussian density f p (x) and for γ= 1 the posterior density corresponds to
the true exponential density. For the initial value γ= 0, the moments are
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known as they coincide with the moments of the Gaussian prior. Incre-
menting the progression parameter causes moment variations described
by means of a system of ordinary differential equations (ODEs). Solving
this system of ODEs for γ ∈ [0 1] gives the desired posterior moments.

To allow for homotopy continuation, the Bayesian measurement update
is parametrized according to5

f e (x;γ) ∝ f
(
x,ẑ;η(γ)

)
, f (ẑ|x)γ · f p (x) (2.75)

for a given measurement value ẑ. Here, the parametrized joint density
f
(
x,ẑ;η(γ)

)= exp
(
η(γ)T ·φ(x)

)
with φ(x) ∈R2ne+1 as in (2.59) is an expo-

nential density similar to (2.74). The parameter vector is defined as

η
(
γ
)
, ηp +γ ·ηl ∈R2ne+1

depending on γ . Here, ηp is the parameter vector of the Gaussian prior

f p (x) and ηl is the parameter vector of the likelihood f (ẑ|x).

In (2.75), f e (x;γ) is a parametrized version of the posterior density. Forγ=
1, this parametrized measurement update corresponds to the standard
Bayes’ rule, while for γ= 0, the prior density f p (x) is directly assigned to
the posterior density, i.e., no measurement update is performed.

System of Ordinary Di�erential Equations

By a continuous modification of the progression parameter γ, a contin-
uous variation of the parameter vector η(γ) is achieved. This in turn

results in a variation of the moments Ei
(
η(γ)

)
, i = 0, . . . ,2ne − 1, of the

parametrized joint density f (x,ẑ;η(γ)) . These moment variations depend-
ing on γ can be described by means of a system of ODEs by calculating

5 To simplify the following calculations merely the proportional relation is considered.
The normalization constant 1/E0 = 1/f (ẑ) can be incorporated ex post without any
disadvantages.
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the partial derivatives Ėi , ∂Ei

(
η(γ)

)
/∂γ for i = 0, . . . ,2ne −1 . The partial

derivative of the i th-order moment is given by

Ėi =
∂Ei

(
η(γ)

)
∂γ

=
[

Ei
(
η(γ)

)
Ei+1

(
η(γ)

) · · · Ei+2ne

(
η(γ)

)]
·ηl , (2.76)

which relates the variation of the i th-order moment to moments of order
up to i +2ne . In the following, E(γ)

i , Ei
(
η(γ)

)
is used as shorthand term.

With the result in (2.76), the system of ODEs comprising the moment
variations of all moments up to order 2ne −1 is

Ė0:2ne−1 =
(
T

(
ηl

))T
·E(γ)

0:4ne−1 = Tl ·E(γ)
0:2ne−1 +Th ·E(γ)

2ne :4ne−1 ,

where T
(
ηl ) = [

Tl Th
]T

is a Toeplitz matrix with entries ti , j = ti+1, j+1 =
ηl

i− j if i ∈ [
j , j +2ne

]
and ti , j = 0 otherwise, where i = 1,2, . . . ,4ne and

j = 1,2, . . . ,2ne . Besides the lower-order moments E(γ)
0:2ne−1, the system of

ODEs also depends on the higher-order moments E(γ)
2ne :4ne−1 . Fortunately,

with the result of (2.60), the dependence on the higher-order moments
can be resolved. In doing so, the system of ODEs can be reformulated into

Ė0:2ne−1 =
(
Tl +Th

(
R

(
η(γ)

))−1
Q

(
η(γ)

))
·E(γ)

0:2ne−1 (2.77)

with starting solution E(0)0:2ne−1 comprising the predicted moments. The
matrices R

(
η(γ)

)
and Q

(
η(γ)

)
corresponding to (2.61), which vary with

γ as they depend on the parameters of the parametrized joint density
f
(
x,ẑ;η(γ)

)
.

The system of ODEs in (2.77) describes the moment variations caused by
homotopy continuation of the Bayesian measurement update (2.75) in a
very elegant manner. For solving this system of ODEs, standard numerical
solvers based on the Runge-Kutta method [140] can be employed. The

solution describes a trajectory of the moments E(γ)
0:2ne−1 depending on
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(b) Cubic model z = x3 +v .

Figure 2.8: Trajectories of posterior moments.

different values of the progression parameter γ. The desired moments of
the posterior density f e (x) are obtained for γ= 1, i.e., E(1)

0:2ne−1 comprises
the result.

Example 9: Moment Trajectories

The polynomial measurement model of Example 8 is revisited, where
now merely the quadratic (order i = 2) and the cubic (order i = 3)
case are considered. Furthermore, the state x ∼N (0,1) is standard
Gaussian distributed, the measurement value is ẑ = 1, and (σv )2 =
0.1 is the variance of the measurement noise. In Figure 2.8, the
trajectories of the posterior moments resulting from the homotopy
continuation are shown. It can be seen how the moments of the prior
Gaussian are transformed into the true posterior moments.

As mentioned above, the moments in E(1)
0:2ne−1 are unnormalized as merely

the proportional relation (2.75) was considered. Multiplying E(1)
0:2ne−1 with

the normalization constant α, 1/f (ẑ) = 1/E(1)
0 yields the actual posterior
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Algorithm 2 Homotopic Polynomial Gaussian Filter (HPGF)

. Prediction
1: Determine moment vector E0:2np

of posterior xe
k−1 by solving (2.60)

2: Predicted mean: µp
k =

(
cp

np

)T
·E0:np

3: Predicted variance:
(
σ

p
k

)2 =
(
T ·cp

np

)T
·E0:2np

− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine initial solution via first-order Taylor-series expansion

around γ= 0
5: Solve system of ODEs (2.77) for γ ∈ [∆γ;1] with ∆γ¿ 1
6: Calculate posterior mean µe

k =α · E(1)
1

7: Calculate posterior variance
(
σe

k

)2 =α · E(1)
2 −(

µe
k

)2

moments. The entire Gaussian filter employing moment homotopy is
listed in Algorithm 2 and is named homotopic polynomial Gaussian filter
(HPGF). The prediction step coincides with the prediction of the PKF
since the PKF provides the exact predicted mean and variance. Before
solving the ODE (2.77), a initialization step is required in line 4 as the
matrix R

(
η(γ)

)
is singular for γ= 0. Hence, the ODE is merely solved on

the interval
[
∆γ,1

]
, where ∆γ is a very small positive value. The posterior

mean and variance calculated in line 6 and 7, respectively, are almost
exact.

Example 10: Chaos Synchronization (Cont’d)

The estimation problem of Example 6 is revisited, but instead of the
linear measurement model (2.66) the cubic measurement model

zk = x3
k

20 +v k , with v k ∼N
(
0,10−5)

is employed. Given this measurement model, it turns out that all
Gaussian filters relying on the joint Gaussian assumption diverge.
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(a) Homotopic polynomial Gaussian filter (HPGF).
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Figure 2.9: State trajectory (black, solid line) and the estimates of HPGF and
PF together with the corresponding 2-sigma confidence regions.

The HPGF, however, is able to provide valid estimates. In Figure 2.9a,
an exemplary state trajectory is depicted. The estimates of HPGF
accurately follow the true state. Furthermore, the true state is always
within the 2-sigma confidence region of the estimates. The result
of the PF depicted in Figure 2.9b is less accurate and shows sample
depletion from time step k = 20 to k = 27.
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2.6 Summary

In this chapter, the state-of-the-art in Gaussian filtering has been reviewed.
Essentially, all Gaussian filters aim at approximating three particular mo-
ment integrals. Approximation techniques applied for this purpose are
for instance linearization via Taylor-series expansions or deterministic
sampling. The introduced approximation errors can be minimized by
means of exploiting Rao-Blackwellization. This is starting point for the
contributions made in this chapter:

• Combining Rao-Blackwellization with decomposition of observed
and unobserved states: Unobserved state variables can be excluded
from the approximation which reduces the computational load and
the approximation error.

• Rao-Blackwellization for nonlinear-nonlinear decomposition: In-
stead of the commonly employed linear-nonlinear decomposition,
a novel nonlinear-nonlinear decomposition is proposed. Therefore
the concept of conditionally integrable functions was introduced,
i.e., functions that comprise a nonlinear substructure for which
analytic moment expressions exist.

• Approximation of arbitrary nonlinear models with Chebyshev poly-
nomials: Polynomials are one class of functions for which analytic
moment matching is possible. Chebyshev polynomials are well
suited for transforming arbitrary nonlinearities into polynomials
thanks to their orthogonality, sparseness, and efficient coefficient
calculation procedure.

• Closed-form moment calculation for polynomial nonlinearities:
Novel matrix-vector expressions for analytical moment calcula-
tion for polynomial dynamic and measurement models have been
proposed. These expressions allow exact predictions for Gaussian
filters.
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• Almost exact posterior moments by homotopy continuation: For
polynomial measurement models the joint Gaussian assumption
can be avoided. For this purpose a homotopy continuation method
was proposed that yields almost optimal posterior moments.

Every contribution on its own can significantly improve the estimation
performance. A boosting in performance, however, can be obtained by
exploiting the strong interrelations between the several methods. For
instance, after employing the aforementioned decompositions there will
remain nonlinear substructures for which no analytic moment matching
is possible. However, approximating these nonlinearities with Chebyshev
polynomials allows accurate Gaussian filtering for the entire nonlinear
model as shown in Example 7. Given a polynomial measurement model—
either polynomial by definition, generated via Chebyshev series expan-
sion, or as a resulting substructure after Rao-Blackwellization—the novel
moment homotopy can be employed.





3
Gaussian Mixture Filtering

Although Gaussian filters show a good estimation performance in many
practical applications, they are clearly limited when the true distribution
of the state takes a complex shape, e.g., multiple modes, strong skewness,
or heavy tailes. Such situations may for instance arise in multi-target
tracking or financial forecasts. To also provide a consistent filter in these
applications, a natural extension of Gaussian filtering is Gaussian mixture
filtering. In this chapter, a brief introduction to Gaussian mixture densi-
ties is given at first. Then the extension of the Gaussian filters discussed in
Section 3.2 is derived. Due to the usage of multiple Gaussians, Gaussian
mixtures filters require additional operations regarding the adaptation of
the number of mixture components. A statement of this additional prob-
lem is given in the Section 3.3. The contributions made by the Papers E–G
are summarized in Section 3.4.

85
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(a) Heavily skewed density con-
sisting of five components.
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(b) Multimodal density consist-
ing of four components.

Figure 3.1: Two exemplary Gaussian mixture densities. The individual
Gaussian components are plotted as dashed lines.

3.1 Gaussian Mixtures

A Gaussian mixture density is defined as a weighted sum of Gaussian
densities according to

f
(
x
)= L∑

i=1
ωi ·N

(
x;µ

i
,Ci

)
(3.1)

with non-negative weighting coefficients ωi that sum up to one. In Fig-
ure 3.1, some examples of Gaussian mixture densities are shown. Some-
times this density type is also called Gaussian sum density or mixture
of Gaussians. Obviously, the Gaussian density is a special case of (3.1)
for L = 1. By defining the two vectors ω ,

[
ω1 . . . ωL

]T and f
(
x
)
,[

N
(
x;µ

1
,C1

)
. . . N

(
x;µ

L
,CL

)]T, a more compact version of (3.1) can be
found via

f
(
x
)=ωT · f

(
x
)

. (3.2)

There are mainly three reasons for the widespread use of Gaussian mix-
tures in Bayesian filtering: First, as they consist of multiple Gaussians,
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they possess a straightforward parametrization by means of the weights
ωi , mean vectors µ

i
and covariance matrices Ci of the individual Gaus-

sian components. Second, the practically relevant moments mean and
covariance of the Gaussian mixture can be calculated in closed form by
means of

µ
x
=

L∑
i=1

ωi ·µ
i

,

Cx =
L∑

i=1
ωi ·

(
Ci +µi

·µT
i

)
−µ

x
·µT

x
.

And finally, any continuous density function f̃
(
x
)

can be approximated
by means of a Gaussian mixture as closely as required with respect to the
Lissack-Fu distance ∫ ∣∣∣ f̃

(
x
)− f

(
x
)∣∣∣dx

by increasing the number of components L and when Ci approaches the
zero matrix [7, 181]. Thus, a Gaussian mixture density can be considered
as universal approximator for density functions [122].

3.2 Nonlinear Filtering

For a Gaussian mixture filter it is assumed that both the predicted and
the posterior density of the state are represented as Gaussian mixtures
according to

f •
k

(
xk

)= L•
k∑

i=1
ω•

k,i ·N
(
xk ; x̂•

k,i ,C•
k,i

)
, with • ∈ {e,p} , (3.3)

for every time step k, where L•
k is the number of mixture components.

To calculate the parameters of these densities, several approaches exist
that can be grouped in three major classes as depicted in Figure 3.2. In
model approximating approaches, the transition density (1.6) and the
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Gaussian
mixture filters

Model
approximation

Density
approximation

Individual Joint

Figure 3.2: Taxonomy for Gaussian mixture filters. The dashed classes are
not considered in this thesis.

likelihood (1.8) are approximated by means of a Gaussian mixture, which
is typically done off-line, before the actual filtering. For instance [84,
133] propose techniques for approximating the transition density, while
likelihood approximation is content of [5, 87, 192].

Density approximation approaches instead focus on directly approximat-
ing the true predicted or posterior density by means of Gaussian mixtures.
Here, one can distinguish between joint approximation, where all Gaus-
sian components and their respective parameters are calculated jointly,
typically by solving an optimization problem as proposed in [76, 77]. In
case of individual approximations, each Gaussian component is pro-
cessed separately through the prediction and measurement update.

3.2.1 Individual Approximation

In this thesis, the focus is on individual approximation techniques as they
allow a direct utilization of the Gaussian filtering algorithms discussed in
the previous chapter. In doing so, the calculation of the desired parame-
ters of the predicted and posterior Gaussian mixtures can be performed
efficiently without any demanding off-line approximations. In the fol-
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lowing, the prediction and measurement update of a generic Gaussian
mixture filter based on individual approximation are derived.

Prediction

For calculating the predicted density, the Gaussian mixture representing
the posterior distribution f e

k

(
xk

)
is plugged into (1.5), which yields

f p
k+1

(
xk+1

)= ∫
f
(
xk+1| xk ,uk

)
·

( Le
k∑

i=1
ωe

k,i ·N
(
xk ; x̂e

k,i ,Ce
k,i

))
dxk

≈
Le

k∑
i=1

ωe
k,i ·

∫
f
(
xk+1| xk ,uk

)
·N

(
xk ; x̂e

k,i ,Ce
k,i

)
dxk︸ ︷︷ ︸

≈ N
(
xk+1;µp

k+1,i ,Cp
k+1,i

)
. (3.4)︸︷︷︸

≡
(
ω

p
k+1,i

with Lp
k ≡ Le

k . The integral cannot be solved in closed form except for the
linear case. To simplify the integration, for each individual component
of the posterior mixture the solution of the integral is approximated by
means of the Gaussian N

(
xk+1;µp

k+1,i
,Cp

k+1,i

)
. Thus, it remains to calcu-

late the mean vector µp
k+1,i

and covariance matrix Cp
k+1,i . For this purpose

any of the Gaussian filters of Chapter 2 can be employed. The weights
remain unchanged. The resulting predicted density f p

k+1

(
xk+1

)
is then

again a Gaussian mixture.

Measurement Update

In case of the measurement update, the predicted mixture (3.4) is substi-
tuted in (1.7) according to

f e
k

(
xk

)= ck · f
(
ẑk | xk

)
·

 Lp
k∑

i=1
ω

p
k,i ·N

(
xk ;µp

k,i
,Cp

k,i

) (3.5)
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Due to the nonlinearity of the measurement equation, the measurement
update cannot be solved analytically, i.e., the normalization constant as
well as the product of the likelihood with the predicted mixture possess
no closed-form expression in general.

The normalization constant ck = 1/f (ẑk ) corresponds to the reciprocal
probability of the measurement. This probability can be approximated as
in the prediction step according to

f
(
ẑk

)= 1

ck
=

∫
f
(
ẑk | xk

)
·

 Lp
k∑

i=1
ω

p
k,i ·N

(
xk ;µp

k,i
,Cp

k,i

)dxk

≈
Lp

k∑
i=1

ω
p
k,i ·N

(
ẑk ;µz

k,i
,Cz

k,i

)
, (3.6)

where the parameters µz
k,i

Cz
k,i are determined individually by means of a

Gaussian filter.

To approximate the product between likelihood and predicted mixture
in (3.5), the equation is extended with the components N

(
ẑk ;µz

k,i
,Cz

k,i

)
from (3.6), which results in

f e
k

(
xk

)≈ Lp
k∑

i=1
ck ·ωp

k,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)
·

f (ẑk |xk )·N
(
xk ;µp

k,i
,Cp

k,i

)
N

(
ẑ;µz

k,i
,Cz

k,i

)︸ ︷︷ ︸
≈ N

(
xk ;µe

k,i
,Ce

k,i

)
(3.7)︸ ︷︷ ︸

, ωe
k,i

with Lp
k ≡ Le

k . The fraction in (3.7) corresponds to a Bayesian measure-
ment update for each individual predicted Gaussian and is approximated
with a Gaussian density N

(
xk ;µe

k,i
,Ce

k,i

)
. The mean vector and covari-

ance matrix of these individual posterior Gaussian components are de-
termined by means of a Gaussian filter by employing the conditioning in
(2.9). Therefore, the parameters µz

k,i
Cz

k,i are required, which are already
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available from (3.6). Only the cross-covariance matrices Cxz
k,i need to be

calculated in addition.

3.2.2 Generic Gaussian Mixture Filter

Thanks to the individual approximation, both the prediction and mea-
surement update of the Gaussian mixture filter boil down to a bank of
Gaussian filters, where each individual Gaussian filter tracks the evolu-
tion of its assigned Gaussian component. The Gaussian mixture in each
estimation step is the linear combination of the individual results [74].

Besides the pure estimation steps, a generic Gaussian mixture filter re-
quires additional operations for maintaining an accurate density approx-
imation and an adequate run-time. In Algorithm 3, these additional
operations are listed for both prediction and measurement update. The
refinement replaces components of the given Gaussian mixture with one
or more new components. This might be necessary to overcome strong
nonlinearities in the system model or measurement model. As all Gaus-
sian filters either explicitly or implicitly perform a linearization, the lin-
earization error can be reduced by refining components [3, 64, 146].

The reapproximation comprises two operations: weight optimization and
reduction. The individual weights of the posterior Gaussian components
in (3.7) are merely an approximation of the true weights. This observation
follows from the approximate calculation of the normalization in (3.6).
The normalization is one factor forming the posterior weights. To improve
the weights, on additional weight optimization can be performed after
the measurement update.

The reduction step removes Gaussian components from the predicted and
posterior mixture. The need for this operation has many reasons: Compo-
nents may become negligible due to very low weights. Furthermore, due
to the refinement, the number of mixture components grows over time.
This growth will become a severe problem, when in addition the noise
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Algorithm 3 Generic Gaussian mixture filter

1: Initialize state density f0
(
x
)

with a Gaussian mixture
2: for each time step k do
. Prediction

3: Refinement: Introduce additional components
4: Estimation: Compute predicted Gaussian mixture f p

k

(
xk

)
5: Reapproximation: Weight optimization & component reduction
.Measurement Update

6: Refinement: Introduce additional components
7: Estimation: Compute posterior Gaussian mixture f e

k

(
xk

)
8: Reapproximation: Weight optimization & component reduction
9: end for

components w k and v k are itself represented as Gaussian mixtures1. As
the noise terms form the transition density and likelihood, respectively,
the multiplication of f

(
xk+1| xk ,uk

)
with f e

k

(
xk

)
in the prediction step

(3.4) and the multiplication of f
(
ẑk | x

)
with f p

k

(
xk

)
in the measurement

update (3.7) will lead to an exponential growth of the components. Here,
the reduction is a must to maintain a feasible algorithm.

3.3 Component Adaptation

In this section, a detailed overview of the refinement and reapproxima-
tion operations appearing in Algorithm 3. At first, the two sub-operations
weight optimization and reduction of the reapproximation step are dis-
cussed. The weight optimization part is kept short as it is not considered

1 Even if the noise is Gaussian, an approximation of the noise by means of a Gaussian
mixture might be reasonable if the noise covariance is large. In case of a large covari-
ance, the individual processing considered above becomes prone to large linearization
errors. An approximation of the noise by a Gaussian mixture leads to components with
lower covariances [7].
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further in this thesis and thus, it is merely mentioned for the sake of
completeness.

3.3.1 Weight Optimization

The posterior weight calculation in (3.7) facilitates the individual pro-
cessing of the Gaussian components, but it is merely approximate as
discussed above. To minimize the deviation between the mixture and the
true posterior density, [91] proposed to adjust the weights by minimizing
the norm ∫ ∥∥∥∥ f e

k

(
xk

)− Le
k∑

i=1
ωe

k,i ·N
(
xk ;µe

k,i
,Ce

k,i

)∥∥∥∥dxk . (3.8)

As the true posterior f e
k

(
xk

)
is not known and cannot be calculated ana-

lytically, this norm is evaluated at so-called collocation points. A natural
choice of these collocation points are the mean vectors µe

k,i
of the poste-

rior mixture. By this choice of collocation points and by using the L2 norm
in (3.8), the weight adjustment becomes a least squares optimization
problem.

At a first glance, the weights obtained after the prediction seem to be cor-
rect. No approximation with respect to the weights is involved. However,
no update of the weights is performed in the prediction; they coincide
with the posterior weights. This procedure is optimal only for linear mod-
els, but becomes suboptimal when performing individual linearizations
by means of a bank of Gaussian filters, especially when the covariances of
the individual components is large and thus, the components may have a
large overlap. For this situation, [194, 195] proposed a weight optimization
procedure for the prediction step similar to the above posterior weight
optimization. Instead of collocation points to evaluate (3.8), [194, 195]
replace the true predicted density with the approximate posterior mixture
density of the previous measurement update.
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3.3.2 Reduction

To bound the growth of the number of Gaussian mixture components,
mixture reduction aims at replacing a given Gaussian mixture f

(
x
)

with L
components as in (3.1) by a mixture f̃

(
x
)

with M components, where M
is significantly smaller than L, i.e., M ¿ L. At the same time, the deviation
between the true and the reduced mixture should kept at a minimum.

Deviation Measures

A very natural deviation measure between two densities from an informa-
tion theoretic perspective is the Kullback-Leibler divergence (KLD)

G
(

f
(
x
)‖ f̃

(
x
))
,

∫
f
(
x
)

· log
f
(
x
)

f̃
(
x
) dx . (3.9)

It can be interpreted as a quantification of the likelihood that data drawn
from the true density is spuriously considered as be drawn from the re-
duced mixture and thus, it measures the difficulty of discriminating two
densities. As discussed in [156, 211], thanks to this maximum likelihood
interpretation and its scale-independence, the KLD should be the pre-
ferred choice for Gaussian mixture reduction. Unfortunately, the KLD is
not a distance measure or norm in a strict sense as it is not symmetric.
Furthermore, due to the logarithm in (3.9), the KLD cannot be evaluated
in closed form for Gaussian mixtures.

To overcome the restrictions of the KLD, the integrated squared difference
(ISD) is often employed as an alternative. It is defined as

D
(

f
(
x
)
, f̃

(
x
))
,

∫ (
f
(
x
)− f̃

(
x
))2

dx . (3.10)
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Thus, the ISD is actually an L2 norm. In contrast to the KLD, it has a
closed-form expression for Gaussian mixtures, which is given by

D
(

f
(
x
)
, f̃

(
x
))= L∑

i=1

L∑
j=1

ωi ·ω j ·N
(
µ

i
;µ

j
,Ci +C j

)
+

L∑
i=1

M∑
j=1

ωi ·ω̃ j ·N
(
µ

i
; µ̃

j
,Ci + C̃ j

)
+

M∑
i=1

M∑
j=1

ω̃i ·ω̃ j ·N
(
µ̃

i
; µ̃

j
, C̃i + C̃ j

)
,

(3.11)

where the first term is called self-similarity of the true mixture, the second
is the cross-similarity between the true and the reduced mixture, and the
last term is the self-similarity of the reduced mixture [211].

State-of-the-Art

Depending on the optimization that is performed by a Gaussian mixture
reduction algorithm, one can distinguish three basic classes: local, global,
and pseudo-global algorithms. In the following, the key features and
typical approaches of every class are discussed.

Local reduction algorithms typically perform an iterative merging of two
or more components to a single Gaussian until a pre-defined threshold
on the maximum allowed number of components is reached.

Example 11: Moment-preserving Merge

Let ωi ·N
(
x;µ

i
,Ci

)
and ω j ·N

(
x;µ

j
,C j

)
be the two Gaussians that

are considered for merging. By merging these two components, it
should in addition be ensured that the zeroth-order (probability
mass), first-order (mean) and second-order (covariance) moments
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of the entire mixture remain unchanged. Given these constraints, a
moment-preserving merge of the two Gaussians yields the parameters

ω̃=ωi +ω j ,

µ̃= 1
ω̃ ·

(
ωi ·µ

i
+ω j ·µ

j

)
,

C̃ = 1
ω̃ ·

(
ωi ·Ci +ω j ·C j + ωi ·ω j

ω̃ ·
(
µ

i
−µ

j

)(
µ

i
−µ

j

)T
)

.

(3.12)

of the resulting single Gaussian ω̃ ·N
(
x; µ̃, C̃

)
.

The above moment-preserving merge can be easily extended for merg-
ing more than two Gaussians. The major difference of the most local
algorithms is the criterion based on which components are selected for
a merge. In [136, 158, 208] for instance, the Mahalanobis distance be-
tween Gaussians is utilized, while [189] employes a pair-wise version of
the Hellinger metric and [40] a pair-wise version of the ISD. All these
criteria only measure some similarity between components without con-
sideration of the induced global deviation between the true and reduced
mixture due to the merge, i.e., neither the KLD nor the ISD are monitored.
Certainly, local algorithms are well-suited for real-time applications due
to their low computational overhead.

In contrast, global reduction algorithms directly aim at minimizing the
KLD or the ISD. In doing so, this class of algorithms tries to find the glob-
ally optimal reduced mixture. The reduction method proposed in [90]
optimizes the parameters of the reduced mixture with respect to the ISD.
This approach is constructive as it begins with a single Gaussian and adds
components at locations where the deviation between the true and re-
duced mixture is too large. The algorithms in [31, 202] utilize the KLD,
where the first is an expectation-maximization like approach and the
second relies on variational Bayes. Merging components—when not per-
formed iteratively as done by the local algorithms—can also yield globally
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optimal results as demonstrated in [47]. Here, all possible merges are
first calculated and then the optimal solution is selected, which directly
gives the reduced mixture. This procedure, however, is only feasible for
L being a low number. In general, global algorithms suffer from a high
computational load.

A compromise between both worlds is the third class of pseudo-global
reduction algorithms. Here, iterative merging is performed as in local
algorithms, but at the same time the KLD or ISD is monitored. [211] for
instance considers that pair of Gaussians for a merge that introduces the
smallest error into the reduced mixture in an ISD sense. [156] instead em-
ployes an upper-bound of the KLD and [168] uses only the cross-likeliness
of the ISD. Because every possibly merge is inspected before actually
performing the merge, pair-wise merging is globally optimal in a single
step. Though, this does not guarantee global optimality after multiple
reduction steps. Global optimality is only achieved by the aforemen-
tioned procedure proposed in [47]. To compensate this drawback, some
algorithms like those in [70, 163] perform a dedicated optimization after
merging, where the parameters of the reduced mixture are optimized with
respect to the ISD. Alternatively to pair-wise merging, clustering-based or
k-means based reductions perform iterated assignments of components
of the true mixture to clusters. When no improvement in terms of the KLD
or ISD is gained anymore, the components assigned to a cluster a merged
which yields the reduced mixture.

Open Issues

Most of the aforementioned algorithms require a pre-defined threshold
on the resulting number of mixture components, where an appropriate
choice is difficult for the user. If the threshold is chosen too high, the
entire Gaussian mixture filter becomes computationally demanding. A
too low threshold may lead to poor estimates or even to a diverging fil-
ter. Ideally, this so-called model selection problem should be solved by
the reduction algorithm itself, which so far is only achieved by [31, 90].
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Both algorithms, however, are computationally and algorithmically very
complex. Reductions of these algorithms and also of other global and
pseudo-global approaches, are often more demanding than the actual
predictions and measurement updates.

3.3.3 Refinement

While reduction aims at removing components from the mixture, the
refinement step introduces new ones. The refinement becomes necessary
when severe linearization errors of the individual Gaussian filters threaten
the estimation performance.

Nonlinearity Measures

In order to avoid a blind adding of new components, the potential lin-
earization error or the “strength” of the nonlinearity needs to be quantified.
For some Gaussian filters, dedicated nonlinearity measures have been pro-
posed in the past. For a brief overview, the nonlinear transformation
in (2.6) is revisited, where now x and y are Gaussian mixtures as in (3.1).

If for instance an EKF is employed as Gaussian filter, [3, 93] propose the
measure

N
(
µ

i
,Ci

)
,

√
Tr

(
Gxx

(
µ

i

)
Ci Gxx

(
µ

i

)
Ci

)
σw

,

where Gxx
(
x
)
, ∂2g(x)/∂x∂xT is the Hessian matrix of g (.). Unfortunately,

this measure is restricted to EKFs and to scalar y only. A measure based
on the KLD (3.9) that is not limited by the dimension of y is proposed
in [146]. Here, every mixture component of y is compared against the
true density. As the true density is not given in closed-form, numerical
integration is necessary, which is demanding for high dimensions.
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For the UKF, [63] proposed the measure

ny∑
i=1

ηi , with ηi , 1
2

∥∥∥Yi +Ynx+i −Y2nx+1

∥∥∥2

2

that quantifies the goodness of fit of the propagated sample points Yi =
g (Xi ), i = 1. . .nx , to a linear regression model. The measure is close to
zero if g (.) is approximately linear.

Adding New Components

By means of the nonlinearity measures it is possible to locate the Gaussian
at the strongest nonlinearity or linearization error. A typical action to
attenuate the linearization error is splitting, i.e., the identified Gaussian
component ω ·N

(
x;µ,C

)
is replaced by a Gaussian mixture according to

ω ·N
(
x;µ,C

)
≈

L∑
i=1

ωi ·N
(
x;µ

i
,Ci

)
, (3.13)

where the components on the right-hand side possess smaller covariances
than the original component on the left-hand side, which is necessary for
reducing the linearization error.

It is worth mentioning that (3.13) has two interpretations. Reading the
equation from left to right corresponds to splitting, but reading the equa-
tion from right to left is nothing else then mixture reduction. Hence,
splitting can be considered the dual operation to mixture reduction.

It can be easily verified that for L > 1, the number of free parameters on
the right-hand side of (3.13), i.e., weights, mean vectors, and covariance
matrices, is larger than the number of given parameters. Hence, splitting
a Gaussian is an ill-posed problem.

The solution to this problem proposed in [6] is based on the UKF for
determining sample points of the Gaussian that has to be split. The
sample points with corresponding weights are used as the mean vectors
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µ
i

and mixture weights ωi in (3.13), respectively. The covariances Ci

are chosen to be identical. In [7, 63], the new Gaussians are placed as a
regular grid with identical covariance matrices. The weights are chosen to

be ωi =N
(
µ

i
;µ,C

)
, i.e., the normalized probability value of the original

Gaussian at the means µ
i

of the new Gaussian. A so-called splitting library
is used in [76, 86], i.e., an off-line calculated approximation of a standard
Gaussian by a mixture of Gaussians. This approximation is adjusted on-
line by means of straightforward scaling operations.

Open Issues

The discussed nonlinearity measures are either restricted to very specific
Gaussian filters like the UKF and EKF or they are difficult to evaluate for
arbitrary models. Except of the splitting library all splitting approaches
suffer from scalability problems as the number of components scales with
the dimension of the state space. Furthermore, splitting is performed very
“generous”, i.e., new components are introduced at every dimension of the
state space, although the linearization error might affect only some state
variables.

3.4 Contributions

The contributions made by the Papers E–G are discussed in the following
sections. At first, the nonlinear-nonlinear state decomposition approach
that was proposed in Section 2.5.2 is extended to Gaussian mixture filters.
In Section 3.4.2, a new measure of the degree of nonlinearity and a new
splitting approach are proposed. Both together form the so-called adap-
tive Gaussian mixture filter. Finally, a global Gaussian mixture reduction
algorithm that exploits the ISD and the curvature of the true density is
introduced.
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3.4.1 Semi-Analytic Gaussian Mixture Filter

As the generic Gaussian mixture filter in Algorithm 3 uses a bank of Gaus-
sian filters, the SAGF proposed in Section 2.5.2 can be directly applied
in order to obtain a semi-analytic Gaussian mixture filter (SAGMF). As in
Section 2.5.2, the conditionally integrable nonlinear transformation

y = g
(
x a , x s

)+w

is considered, where the state x comprises the conditionally integrable
state x a and the sampled state x s . The density of the state is

f
(
x
)= L∑

i=1
ωi ·N

(
x;µx

i
,Cx

i

)
with µx

i
=

[
µa

i
µs

i

]
, Cx

i =
[

Ca
i Cas

i
Csa

i Cs
i

]
.

(3.14)
To obtain the Gaussian mixture density

∑L
i=1ωi ·N

(
y ;µy

i
,Cy

i

)
of y , it is

necessary to solve the moment integrals (2.8) for every component of
(3.14). At first, for every component i = 1. . .L, a sample approximation
of the marginal Gaussian N

(
xs ;µs

i
,Cs

i

)
is calculated by means of an LRKF,

which yields

N
(
xs ;µs

i
,Cs

i

)
≈

N∑
j=1

ωi j ·δ
(
xs −Xi j

)
,

where L= {
ωi j ,Xi j

}
for j = 1. . . N are the sample points of the i th Gaus-

sian component.

Based on this sample representation, it is now possible to determine the
mean and covariance of the i th component of y according to

µy
i
≈

N∑
j=1

ωi j ·µy
i j

, (3.15)

Cy
i ≈

N∑
j=1

ωi j ·

(
Cy

i j −µy
i j

(
µy

i

)T −µy
i

(
µy

i j

)T +µy
i

(
µy

i

)T
)

, (3.16)
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with

µy
i j
=

∫
g

(
xa ,Xi j

)
· fi

(
xa |Xi j

)
dxa ,

Cy
i j =

∫
g

(
xa ,Xi j

)
· g

(
xa ,Xi j

)T · fi
(
xa |Xi j

)
dxa ,

(3.17)

where fi
(
xa |Xi j

)
,N

(
xa ;µa|s

i
,Ca|s

i

)
is the conditional density of the i th

component with mean and covariance as in (2.48). As g (.) is conditionally
integrable, the integrals in (3.17) can be solved analytically.

To obtain the cross-covariance Cx y
i = [

Cay
i Cs y

i

]T
it is more convenient

to calculate its sub-matrices separately according to

Cay
i =

N∑
j=1

ωi j ·

(
Cay

i j −µa|s
i j

(
µy

i

)T +µa
i

(
µy

i
−µy

i j

)T
)

,

Cs y
i =

N∑
j=1

ωi j ·
(
Xi j −µs

i

)
·
(
µy

i j
−µy

i

)T
,

(3.18)

with

Cay
i j =

∫
xa · g

(
xa ,Xi j

)T · fi
(
xa |Xi j

)
dxa ,

where µy
i j

is given by (3.17) and µa|s
i j

is calculated according to (2.48) with

xs being replaced by Xi j .

With the mean vectors (3.15), covariance matrices (3.16), and the sub-
matrices (3.18) of the cross-covariance matrix all ingredients are given that
are necessary for calculating the individual components of the predicted
and posterior Gaussian mixture densities.
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Example 12: Tricycle Kinematics

A robot with tricycle kinematics has to be localized. The nonlinear
kinematics model is defined as

p x
k+1 = p x

k +
(
uv

k +w v
k

)
· cos

(
φk +uα

k

)
,

p y
k+1 = p y

k +
(
uv

k +w v
k

)
· sin

(
φk +uα

k

)
,

φk+1 =φk +
(
uα

k +wα
k

)
,

with state xk = [
p x

k p y
k φk

]T
, where p x

k and p y
k describe the Carte-

sian position of the robot andφk its orientation. The initial position
of the robot at time step k = 0 is x0 = [5 3 0.2]T . The known control
inputs are the velocity uv

k = 0.1 and the turning angle uα
k = 0.1. w v

k
and wα

k are noise processes affecting the corresponding control in-
puts. They are assumed to be zero-mean Gaussian with variances
σ2

w v = 0.1 and σ2
wα = 0.01, respectively.

The state is decomposed into x a = [
p x p y w v wα

]T
and xb = φ .

Hence, by conditioning on x s , the system model becomes linear and
can be solved via the prediction of the Kalman filter.

Range measurements to landmarks are performed for localizing the
robot. The measured range r k is defined by the nonlinear measure-
ment model

r k =
√(

p x
k −Lx +v x

k

)2 + (
p y

k −Ly +v y
k

)2 ,

where L = [
Lx Ly]T

is the position of the landmark. Four landmarks
at the positions

[
L1 L3 L3 L4

]= [
0 2 5 10
0 2 5 10

]
.

are given. The measurement noise v k = [
v x

k v y
k

]T
is zero-mean Gaus-

sian with covariance Cv =σ2
v ·I2. For the variance σ2

v , the three noise
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Table 3.1: Average rmse and standard deviation for the different filters at
different noise levels and numbers of components.

Noise 0.5 64 8 1

FAGMF 2.02±1.34 3.17±1.98 3.76±2.01
SAGMF 2.03±1.34 3.16±1.99 3.76±2.09
UGMF 2.41±1.79 4.08±3.02 4.31±3.58
EGMF 2.64±1.86 4.08±4.99 6.40±9.64

Noise 1.0 64 8 1

FAGMF 2.05±1.36 3.16±1.97 3.70±2.07
SAGMF 2.06±1.35 3.15±1.97 3.70±2.07
UGMF 2.44±1.80 4.04±3.05 4.25±3.61
EGMF 2.95±1.73 4.40±4.43 6.72±8.71

Noise 2.0 64 8 1

FAGMF 2.16±1.35 3.22±2.02 3.78±2.16
SAGMF 2.16±1.36 3.22±2.02 3.78±2.16
UGMF 2.61±1.77 4.11±3.08 4.35±3.65
EGMF 3.42±1.55 4.95±4.14 7.21±7.60

levels 0.5, 1, and 2 are considered. The measurement step is per-
formed analytically by means of the closed-form solution derived in
Section 5.1.

The proposed semi-analytic Gaussian mixture filter (SAGMF) is com-
pared against Gaussian mixture filters employing EKFs and UKFs.
These Gaussian mixture filters are denoted EGMF and UGMF in the
following. Furthermore, a fully analytical Gaussian mixture filter
(FAGMF) is employed as a baseline that performs component-wise
moment matching for the prediction. All GMFs are initialized with
different numbers of components, namely 1, 8, and 64 components.
For each combination of noise level and number of components,
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1000 simulation runs are performed, where each run consists of 50
time steps. The results are listed in Table 3.1.

The SAGMF clearly outperforms both EGMF and UGMF independent
of the noise level or the used number of components. Furthermore,
the estimation errors are almost identical with the baseline provided
by the FAGMF. In terms of run-time, EGMF and AGMF are the fastest
filters, but SAGMF is significantly faster than the UGMF, which suffers
from the necessity of calculating high-dimensional matrix square
roots. Furthermore, it requires a high number of on-line evaluations
of the kinematics and measurement model, while in case of the
SAGMF the number of functions evaluations is reduced significantly
due to the small dimension of the sub-state x s .

It is important to point out that the outstanding performance of
FAGMF is limited to a small number of applications. The SAGMF
instead is of greater benefit as it is a general purpose filter, where
both UGMF and FAGMF are its limiting cases.

3.4.2 Adaptive Gaussian Mixture Filter

The estimation error of Gaussian mixture filters significantly depends
on the number of Gaussian components used. This number is typically
defined by the user. The novel adaptive Gaussian mixture filter (AGMF)
depicted in Figure 3.3 on the next page adapts the number of components
dynamically and on-line and thus, directly tackles the refinement step
of Algorithm 3. The nonlinear system and measurement models are lin-
earized locally by means of statistical linear regression (see Section 2) at
each component of the Gaussian mixture. The induced linearization error
is quantified by means of the linearization error covariance matrix (2.28).
Based on this error, a novel moment-preserving splitting procedure is pro-
posed for introducing new mixture components. The component causing
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Figure 3.3: Flow chart of the adaptive Gaussian mixture filter.

the highest linearization error is selected, while splitting is performed
in direction of the strongest nonlinearity, i.e., the strongest deviation
between the nonlinear model and its linearized version. Both lineariza-
tion and splitting are independent of the used statistical linear regression
method, which makes the proposed filter versatilely applicable.

Component Selection

A straightforward way to select a Gaussian component for splitting is
to consider the weights ωi , i = 1. . .L. The component with the highest
weight is then split. This however does not take the nonlinearity of g ( · ) in
the support of the selected component into account. Since linearization is
performed individually and locally, a more reasonable selection would be
to consider also the induced linearization error of each component. For
this purpose, statistical linear regression already provides an appropriate
measure of the linearization error in form of the covariance matrix Ce

in (2.28).

In order to easily assess the linearization error in the multi-dimensional
case, the trace operator is applied to Ce , which gives the measure

ε= Tr(Ce ) ∈ [0,∞) . (3.19)
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Figure 3.4: Two examples of the linearization error quantification by means
of the measures (3.19). The solid lines correspond to the function g (.), the
dashed lines to the measure (3.19), and the dotted lines indicate linearized
versions of g (.)

Geometrically speaking, the trace is proportional to circumference of
the covariance ellipsoid corresponding to Ce . The larger Ce and thus the
linearization error, the larger is ε. Conversely, the trace is zero, if and only
if Ce is the zero matrix, i.e., ε = 0 ⇔ Ce = 0. Hence, (3.19) is only zero,
when there is no linearization error.

Example 13: Quantified Linearization Error

The error measure in (3.19) is applied to both scalar functions

g (x) = cos(x) and g (x) = exp
(−x2) ,

where x ∼ N
(
µ,1

)
has constant variance and the mean is moved

along the x-axis. The corresponding linearization error values for
both functions are depicted in Figure 3.4. The measure approaches
zero whenever the function g (.) is almost linear. This is the case for
cos(x) if x = 0 and for exp

(−x2) if x =±p
2/2 and x →±∞.
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Besides the linearization error, the contribution of a component to the
nonlinear transformation is important as well. That is, the probability
mass of the component, which is given by its weight ωi , has also to be
taken into account. This avoids splitting of irrelevant components. Both
ingredients are combined in the so-called selection criterion

i∗ = arg max
i=1...L

{si } , si ,ω
γ

i ·
(
1−exp(−εi )

)1−γ (3.20)

Here, the term 1−exp(−εi ) normalizes the linearization measure (3.19)
to the interval [0,1]. For a geometric interpolation between weight and
linearization error of component i , the parameter γ ∈ [0,1] used. With
γ= 0, selecting a component for splitting only focuses on the linearization
error, while γ= 1 considers the weight only.

Spli�ing

Once a component causing a large linearization error is identified, new
components are introduced by means of splitting the identified com-
ponent. As mentioned above, splitting is an ill-posed problem due to
the high number of free parameters. To reduce the degrees of freedom,
splitting is performed given the following constraints:

1. Along principal axes of a Gaussian: This reduces the splitting prob-
lem of a multivariate Gaussian to the one-dimensional case. Fur-
thermore, splitting becomes computationally cheap and numeri-
cally stable compared to arbitrary splitting directions.

2. Splitting into two components: Allows trading the reduction of the
linearization error off against the increase of mixture components.

3. Symmetric around the mean: This minimizes the error introduced
by splitting a Gaussian.

4. Moment preserving: The mean vector and covariance matrix of the
split Gaussian and thus, of the entire mixture remains unchanged.
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The restriction to split a Gaussian into two components is no limitation.
As splitting is performed recursively by the AGMF within a time step, the
newly introduced components can be split again in the next rounds if the
linearization error is still too high.

Let ω ·N (x;µ,C) be the component considered for splitting. It is replaced
by two components according to (3.13) with parameters

ω1 =ω2 = ω
2 ,

µ
1
=µ+

p
λ ·α · v , µ

2
=µ−

p
λ ·α · v ,

C1 = C2 = C−λ ·α · v vT ,

(3.21)

whereα ∈ [−1,1] is a free parameter. The parametrization in (3.21) ensures
moment preservation, i.e., the original Gaussian component and its split
counterpart have the same mean and covariance. Furthermore, λ and v
in (3.21) are a particular eigenvalue and eigenvector, respectively, of C.

Spli�ing Direction

What remains an open question is the selection of an appropriate eigen-
vector for splitting. A straightforward choice might be the eigenvector
with the largest eigenvalue as in [64, 86]. But since (3.20) determines the
Gaussian component that causes the largest linearization error, merely
splitting along the eigenvector with the largest eigenvalue does not take
this error into account.

The key idea of the proposed criterion is to evaluate the deviation be-
tween the nonlinear transformation g (.) and its linearized version (2.26)
along each eigenvector. The eigenvector with the largest deviation is then
considered for splitting, i.e., the Gaussian is split in direction of the largest
deviation in order to cover this direction with more Gaussians, which will
reduce the error in subsequent linearization steps.
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By means of the error term (2.27), the desired criterion for the splitting
direction is defined as

dl ,
∫
R

e
(
x l (ν)

)T ·e
(
x l (ν)

)
·N

(
x l (ν);µ,C

)
dν (3.22)

with x l (ν),µ+ν · v l , l = 1. . .nx , and v l being the l th eigenvector C. The
integral in (3.22) cumulates the squared deviations along the l th eigen-
vector under the consideration of the probability at each point x l (ν). The
eigenvector that maximizes (3.22) is then chosen for splitting. Unfortu-
nately, due to the nonlinear transformation g ( · ) this integral cannot be
solved in closed-form in general. For an efficient and approximate so-
lution, the sample point calculation schemes described in Section 2.2.5
are employed to approximate the Gaussian in (3.22) in direction of v l
by means of Dirac delta distributions. This automatically leads to a dis-
cretization of the integral at a few but carefully chosen points.

Spli�ing Termination

As indicated in Figure 3.3, in every splitting round a stopping criterion is
evaluated. Splitting stops, if at least one of the three following thresholds
is reached:

Error threshold: The value si in the selection criterion (3.20) drops below
smax ∈ [0,1] for every component.

Component threshold: The number of mixture components excels Lmax.

Deviation threshold: The deviation between the original mixture f
(
x
)

and the mixture obtained via splitting f̃
(
x
)

excels dmax ∈ [0,1].

The deviation considered for the latter threshold is determined by means
of the normalized version of the ISD according to

D̄
(

f
(
x
)
, f̃

(
x
))
,

D
(

f (x), f̃ (x)
)∫

f (x)2 dx +∫
f̃ (x)2 dx

∈ [0,1] . (3.23)
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Since splitting always introduces an approximation error to the original
mixture, continuously monitoring the deviation limits this error.

Example 14: Shape Approximation

In order to demonstrate the effectiveness of splitting in direction of
the strongest nonlinearity, the nonlinear growth process

y = g
(
x
)= ξ

2
+5·

ξ

1+ξ2 +w

adapted from [102] is considered, where x = [ξ w ]T ∼N
(
[1,0]T,I2

)
.

To approximate the density of y , the Gaussian f (x) is split recursively
into a Gaussian mixture, where the number of components is always
doubled until a maximum of 64 components is reached. No mixture
reduction and no thresholds smax, dmax are used. The true density of
y is calculated via numerical integration.

Two different values for the parameter γ of the selection criterion
(3.20) are used: γ= 0.5, which makes no preference between the com-
ponent weight and the linearization error and γ= 1, which considers
the weight only. Furthermore, a rather simple selection criterion is
considered for comparison, where selecting a Gaussian for splitting
is based on the weights only (as it is the case for γ = 1), while the
splitting is performed in direction of the eigenvector with the largest
eigenvalue.

Table 3.2 shows the KLD between the true density of y and the ap-
proximations obtained by splitting. The approximations of the pro-
posed splitting scheme are significantly better than the approxima-
tions of the largest eigenvalue scheme. This follows from the fact that
the proposed scheme not only considers the spread of a component.
It also takes the linearization errors into account. In doing so, the
Gaussians are always split along the eigenvector corresponding to ξ,
since this variable is transformed nonlinearly, while w is not. This is
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Table 3.2: Approximation error (KLD × 10) for different splitting schemes
and numbers of components.

splitting number of Gaussians
scheme 1 2 4 8 16 32 64

max. eigenvalue 2.01 0.77 0.64 0.47 0.39 0.21 0.26
γ= 1 2.01 0.77 0.59 0.34 0.20 0.12 0.07
γ= 0.5 2.01 0.77 0.40 0.22 0.07 0.03 0.02

different for the largest eigenvalue scheme, which wastes nearly half
of the splits on w .

The inferior approximation quality for γ = 1 compared to γ = 0.5
results from splitting components, which may have a high impor-
tance due to their weight but which do not cause severe linearization
errors. Thus, splitting these components will not improve the ap-
proximation quality much.

In Figure 3.5, the approximate density of y is depicted for different
numbers of mixture components for γ = 0.5. With an increasing
number of components, the approximation approaches the true
density very well.

3.4.3 Curvature-based Gaussian Mixture Reduction

Basically, the AGMF proposed above can operate with any Gaussian mix-
ture reduction algorithm, but in order to maintain a high estimation
performance, the employed reduction algorithm should provide a very
good approximation of the original mixture. At the same time the reduc-
tion should be large enough in order to allow computationally feasible
estimation. As mentioned in Section 3.3.2, global and pseudo-global
reduction algorithms can provide an accurate approximation, but they
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Figure 3.5: True density function of y (black, dashed) and approximations
with an increasing number of mixture components for γ= 0.5.

suffer from a high complexity. This drawback becomes even more se-
vere, when the number of mixture components is initially very large. This
situation, however, appears quite often in filtering applications, espe-
cially when Gaussian mixtures are multiplied or when splitting adds many
components due to a high state dimension.

Especially in cases, where the number of components is large, it is possible
to find a reduced mixture merely by setting the weights ωi of many com-
ponents to zero and still, the reduced mixture approximates the original
mixture sufficiently well.

Example 15: Weight Optimization

Consider a Gaussian mixture consisting of 20 components as de-
picted in Figure 3.6a. Intuitively one would guess that two to three
Gaussians should be sufficient to provide an approximation of the
original mixture that captures both modes. The remaining com-
ponents seem to be redundant. In Figure 3.6b the extreme case is
depicted, where the weights of all components except of two are set
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Figure 3.6: A Gaussian mixture and its reduced version. Left: original Gaus-
sian mixture (black), reduced mixture (dark gray), and the mixture compo-
nents (light gray, dashed). Right: the mixture weights.

to zero. The weights of the remaining two components are merely
normalized such that their sum is equal to one. The resulting re-
duced mixture captures both modes. However, there is still room for
improvement, e.g., by optimizing the weight or by allowing one more
component.

The superficial Gaussian mixture reduction (SGMR) introduced next is a
global reduction algorithm that is based on minimizing the curvature—
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maximizing the smoothness—of the reduced mixture while keeping the
ISD low. By means of using the curvature it is possible to identify similar
components globally and to remove these components from the density.
Carrying the idea that similar components may be dropped a step further,
the trade-off between curvature and approximation error is minimized
by merely optimizing the weights, i.e., assigning zero weights to reduced
components. This approach is computationally feasible as no other pa-
rameters of the mixture need to be optimized. It further allows a simple
and efficient implementation based on standard quadratic program (QP)
solvers. Additionally, this weight-only optimization alleviates the model
selection problem as the final number of components is automatically
derived from setting the trade-off between error and roughness. This hy-
perparameter may be automatically optimized as well. In cases where the
resulting number of components still is too large from a computational
perspective, existing global reduction algorithm can be employed ex post.
Thanks to the already reduced mixture, the computational load of the
global algorithm can be lowered significantly.

�adratic Program

By focusing on the weights only, the mixture reduction problem can be
formulated as a quadratic program

min
ω̃

ω̃T Q ω̃−qTω̃ (3.24)

s.t. 1T ·ω̃= 1 ,

0 ¹ ω̃ ,

0 =∑L
i=1µi

· (ωi − ω̃i ) ,

where ω̃T, [ω̃1 . . . ω̃L] is the vector of all weights of f̃
(
x
)

to be optimized.
The symmetric matrix Q,D+λR comprises the positive semi-definite
matrices D and R, where D originates from the ISD and R is a roughness
penalty measuring the curvature of f̃ . The vector q , 2d , where d T, ω̃TD
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depends on the ISD as well. The hyperparameter λ governs the trade-off
between D and R. It needs to be determined by means of generic model
selection algorithms, see e.g. [164]. For small values of λ, the ISD will
be weighted relatively higher than the curvature. This results in more
components in the reduced mixture f̃ and less approximation error. For
large values of λ, the curvature will be weighted higher enforcing more
reduction and approximation error.

The constraints in the QP assert the integration of the probability mass to
one, the positivity of the density, and that f̃ and f have identical means.

It is important to note the number of components in f and f̃ is identical.
After solving (3.24), many weights will be zero or close to zero. Thus, the
corresponding components no longer contribute to the mixture and can
be discarded.

The components of the ISD in (3.24) are obtained, when examining (3.11)
for all parameters but the weights of f̃ as fixed. It turns out that (3.11)
merely consists of linear and quadratic terms of the weights ω̃i . Thus, the
ISD can be written as

D
(

f
(
x
)
, f̃

(
x
))= ω̃TDω̃−2d Tω̃+ c , (3.25)

where the matrix D corresponds to the self-similarity of f̃ , the vector d
encodes the cross-similarity between f and f̃ , and the constant c ,ωTDω

corresponds to the self-similarity of f .

The roughness of f̃ is interpreted as the curvatureκ of the density’s surface.
Since the curvature (see e.g. [36]) is signed and a function of the position
on the surface, a quantification in terms of the integral squared curvature
is sought. The key idea is to derive an (approximate) upper bound of
the squared curvature of the mixture. The derivation is based on the
point-wise squared curvature κ(x) for a density f̃ , for which an upper
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bound κ̆(x) is determined, integrated over the entire domain of x, i.e.,
R

(
f̃ (x)

)= ∫ κ̆(x)2 dx. For the 1D and 2D case, the upper bounds are

κ̆(x)2,
(
ω̃T f̃

xx

)2
, κ̆

(
x
)2,

(
ω̃T f̃

xx
−2ω̃T f̃

x
ω̃T f̃

y
ω̃T f̃

x y
+ ω̃T f̃

y y

)2
,

where f̃
x

and f̃
x y

being the first-order and second-order derivatives of

f̃ , with f̃ defined as in (3.2). These upper bounds of the integral squared
mean curvature are obtained by dropping the denominator and positive
summands.

For the weight optimization, the upper bound of the curvature is formu-
lated as a quadratic form ω̃T R ω̃. The elements of R may be obtained as fol-

lows. For the 1D case the elements of R are given by Ri j = ∫R f̃ (i )
xx f ( j )

xx dx ,
where f̃ (i ) refers to the i th mixture component of f̃ . For the 2D case, the
following approximation is used

(
ω̃T f̃

xx
−2ω̃T f̃

x
ω̃T f̃

y
ω̃T f̃

x y
+ ω̃T f̃

y y

)2

≈
(
ω̃T

[
f̃

xx
−2 f̃

x
f̃

T

y
f̃

x y
+ f̃

y y

])2
,

which leads to the elements

Ri j =
∫
R2

(
f̃ (i )

xx −2 f̃ (i )
x f̃ (i )

y f̃ (i )
x y + f̃ (i )

y y

)
·
(

f̃ ( j )
xx −2 f̃ ( j )

x f̃ ( j )
y f̃ ( j )

x y + f̃ ( j )
y y

)
dx .

(3.26)
For the 1D curvature, the Ri j may be calculated in closed form. Note
for a 2D density the curvature is not unique, as it is calculated from the
minimum and maximum curvature in the principal directions at each
point x, which may be multiplied (Gaussian curvature) or averaged (mean
curvature) [36]. For arbitrary Gaussian mixture densities, the terms in
(3.26) may only be calculated numerically or need to be approximated
further.
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Algorithm

The entire SGMR algorithm comprises three parts: the pre-processing
of the components of the quadratic forms and the hyperparameter, the
weight optimization by the solution of (3.24), and a fast post-optimization
of the already reduced set of weights from (3.24).

The pre-processing consists of calculating the matrix D and vector d cor-
responding to the ISD as well as the matrix R describing the curvature of
the mixture’s surface.

As the matrix Q is positive semi-definite, the QP is convex and can be
solved efficiently and globally optimal by any standard solver (see Ap-
pendix C). The resulting weights are compared against a threshold ε¿ 1.
This leads to reduced weights ω̃+

i ≥ ε, i = 1. . . M ¿ L.

The purpose of the post-optimization is an adaptation of the already re-
duced weights ω̃+, aimed at improving the accuracy, by neglecting the
curvature and only minimizing the ISD with respect to ω̃+. The corre-
sponding QP is similar to (3.24) but without the curvature matrix R.

Example 16: 1D Reduction

The proposed SGMR is compared against the following reduction
algorithms: Pruning [20] of all but the components with the highest
weights, West’s merging [208], Salmond’s clustering algorithm [158],
Williams’ merging algorithm [211], Runnalls’ algorithm [156], and
PGMR [90]. For SGMR, two variants are considered, one with post-
optimization and one without post-optimization.

For evaluation, univariate Gaussian mixtures with a number of com-
ponents L ∈ {40,80,120,160,200} are used. The mixture parameters
are drawn uniformly at random from the intervals α̃ ∈ [0.05,0.5],
µ̃ ∈ [0,3], and σ̃ ∈ [0.09,0.5]. For each number of components L, 50
Monte Carlo simulation runs are performed. For SGMR, the hyper-
parameter λ is set to 500 and the deletion threshold ε is 1e−4. The
maximum error threshold of PGMR is set to 1%.
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Figure 3.7: Reduction error (left) and runtime (right) of different reduction
algorithms for increasing number of components. The results are averages
over 50 Monte Carlo runs. The average reduction error is multiplied by 100
for better readability.

Pruning, West, Salmond, Williams, and Runnalls require a user-
defined threshold on the number of components to which the given
Gaussian mixture has to be reduced. Since SGMR reduces a Gaussian
mixture in a completely different fashion and thus, to ensure a fair
comparison, the number of components resulting from SGMR with
post-optimization is used as threshold for these approaches. In order
to quantify the reduction error, the normalized ISD (3.23) is used.

In Figure 3.7, the average reduction errors and the average computa-
tion times for all L are shown. It can be seen that SGMR provides the
lowest reduction error. Closest to SGMR is Williams’ algorithm, but
this algorithm clearly suffers from its high computational demand.
Salmond’s and West’s methods perform similarly. Both are very fast,
but their approximation quality is the worst except of pruning. In
terms of the reduction error, the results of Runnalls’ method are in
between of SGMR with and without post-optimization. But for an
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Table 3.3: Number of components in the reduced Gaussian mixture for
different reduction algorithms. The results are averages over 50 MC runs.

L SGMR w/o PGMR SGMR all others

40 21.66 7.34 20.54
80 30.88 7.42 29.5

120 37.18 7.58 35.86
160 42.86 6.78 41.8
200 45.68 6.7 44.98

increasing number of components L in the original mixture it be-
comes computationally more expensive than both SGMR methods.
Overall, SGMR provides the best trade-off between reduction error
and computation time.

The reduction performance of SGMR improves with a larger number
of components in the original mixture. As listed in Table 3.3, SGMR
reduces to about 50% if the number of components of the original
mixture is L = 40, while for L = 200 only 22% of the components
remain. Since SGMR merely adapts the weights ω̃, a larger number
of components is advantageous for SGMR for a better exploitation
of redundancies. This leads to a stronger reduction by a simultane-
ously lower reduction error. Furthermore, the comparison between
SGMR and SGMR without post-optimization shows that the post-
optimization always lowers both the reduction error and the number
of components.

For 1D mixtures, PGMR clearly is the best reduction algorithm. The
reduction error is close to SGMR without post-optimization, but the
number of components in the reduced mixture is significantly lower
(see Table 3.3). However, a straightforward extension to multivariate
mixtures is not possible as only axis-aligned Gaussian components
can be utilized for representing the reduced mixture.
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3.5 Summary

Three algorithms supporting the generic Gaussian mixture filtering as
sketched in Algorithm 3 have been proposed in this chapter, namely semi-
analytic Gaussian mixture filter (SAGMF), adaptive Gaussian mixture filter
(AGMF), and superficial Gaussian mixture reduction (SGMR). These algo-
rithms aggregate following contributions:

• Component-wise Rao-Blackwellization for nonlinear-nonlinear de-
composition: The decomposition of conditionally integrable func-
tions already proposed for Gaussian filters can be applied straight-
forwardly in a mixture setup.

• General linearization error measure for LRKFs: The proposed lin-
earization error measure exploits the error covariance that is pro-
vided as a side product of statistical linear regression. Thus, the
computational overhead for quantifying the linearization error is
low and the measure can be utilized by any LRKF.

• Splitting along the strongest nonlinearity: New components are in-
troduced at the strongest nonlinearity in order to reduce lineariza-
tion errors most effectively.

• Scalable and moment-preserving splitting: Splitting is performed
carefully as components are only added where they are really re-
quired. This facilitates scaling with high state dimensions. In ad-
dition the mean and covariance of the Gaussian mixture are pre-
served.

• Mixture reduction via weight-optimization: To lower the compu-
tational demand of global mixture reduction but at the same to
benefit from a low reduction errors, components are removed by
considering their weights only. For this purpose, a novel QP com-
promising reduction error and roughness has been proposed.
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As with the contributions made for Gaussian filtering, the above contri-
butions and algorithms can and should be used in combination. The
nonlinear sub-state that cannot be treated analytically by the SAGMF, can
be processed by means of the AGMF, where the linearization error can be
kept at a minimum. The newly introduced components due to splitting
have to be reduced from time to time in order to keep the computational
demand bounded. For this purpose, the SGMR can be employed.



4
Gaussian Process Filtering

So far it was assumed that the nonlinear relation between the current
state xk and the next state xk+1 or the measurement zk are known. In
many applications, however, this assumption is no longer valid. Instead
of a functional representation of these relations, only labeled data sets
are given. Hence, at first the functional representation has to be learned
from the data before the actual filtering can be performed. In this chapter,
Gaussian process (GP) regression for learning the nonlinear model from
data is introduced1. A GP defines a Gaussian prior density over functions,
which can be turned into a posterior density over functions using Bayesian
inference when data is present. Evaluating the resulting posterior model
at a finite number of inputs yields a Gaussian distribution of functions
values.

1 In geostatistics GP regression is known as kriging [57].

123
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A GP model is non-parametric2, which has the benefit that one has not
to worry about selecting the wrong model to fit the data. Key element
of a GP is the so-called covariance function or kernel function, which
specifies the correlation between the data points. In contrast to other
kernel methods like support vector machines (SVMs, [165]) or kernel least
squares [62] a GP in addition provides confidence intervals thanks to the
density representation of the regression result. Section 4.2 gives a short
introduction to the most commonly used covariance functions and how
the parameters of these functions can be learned from data. In Section 4.3,
the major drawback of the non-parametric nature of GPs is addressed: the
high computational demand given large-scale data sets. The state-of-the-
art of Bayesian filtering given GP models is surveyed in Section 4.4. The
contributions to GP filtering and efficient learning made in Papers H–K
are summarized in Section 4.5.

4.1 Gaussian Processes

For GP regression, it is assumed that a set D = {(
x1, y1

)
, . . . ,

(
xn , yn

)}
of

training data is drawn from the nonlinear mapping

y = g
(
x
)+w , with w ∼N

(
0,σ2) (4.1)

where xi ∈Rnx are the inputs and yi ∈R are the observations or outputs,
for i = 1. . .n. For brevity reasons, XD ,

[
x1 . . . xn

]
are all inputs and

yT
D
,

[
y1 . . . yn

]
are the corresponding observations in the following.

A GP is used to infer the latent function g (.) from the data D. It is com-
pletely defined by a mean function µ

(
x
)
, E

{
g
(
x
)}

, which specifies the

2 The term non-parameteric is a bit misleading. Non-parametric methods like GPs still
have parameters, but in contrast to parametric approaches, the learned model has no
characteristic structure and parameters. The structure/appearance of the model is
derived from training data [32].
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expected output value, and a positive semi-definite covariance function
κ
(
x,x ′), cov

{
g
(
x
)
, g

(
x ′)}, which specifies the covariance between pairs

of inputs. In the following, the zero mean function µ
(
x
)= 0 is considered,

which is a reasonable assumption and not a limitation in general [54, 139].
For a detailed discussion on covariance functions see Section 4.2.

A GP forms a Gaussian distribution over functions and thus, one can write
g ∼ GP

(
µ
(
x
)
,κ

(
x,x ′)). Accordingly, for a finite data set D the resulting

density function of the outputs is a multivariate Gaussian

f
(
g |XD

)=N
(
0,K

)
(4.2)

with g T,
[

g
(
x1

)
. . . g

(
xn

)]
being the vector of latent function values at

the training data inputs. This density is the so-called GP prior with kernel
matrix K, κ

(
XD,XD

)
comprising the elements

(
K

)
i j = κ

(
xi , x j

)
,∀xi ,x j ∈

D. In Figure 4.1a on the next page an exemplary GP prior is depicted.

The posterior density of g (.) for an arbitrary input x results from margina-
lizing the latent function over the training set according to

f
(
g
(
x
)
| x,D

)= ∫
f
(
g
(
x
)
, g

∣∣∣x,D
)

dg . (4.3)

The integrand in (4.3) results from solving the Bayesian inference

f
(
g
(
x
)
, g

∣∣∣x,D
)
= c · f

(
y
D

∣∣∣g
)

· f
(
g
(
x
)
, g

∣∣∣x,XD
)

, (4.4)

where f
(
g
(
x
)
, g

∣∣∣x,XD
)

is the GP prior as in (4.2), but extended with the

input x. The likelihood f
(

y
D

∣∣∣g
)

is given by

f
(

y
D

∣∣∣g
)
=

n∏
i=1

N
(

yi ; g
(
xi

)
,σ2

)
(4.5)

according to the model (4.1). Hence, all involved density functions are
Gaussian and thus, the inference in (4.4) as well as the marginalization in
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(b) The posterior GP after observ-
ing three data points. The solid
line corresponds to the posterior
mean (4.6).

Figure 4.1: Gaussian process prior and posterior. The gray areas indicate
2-sigma confidence regions.

(4.3) can be solved analytically. The desired posterior density in (4.3) is
Gaussian with mean and variance

µg
(
x
)= E

{
g
(
x
)}= kT ·K−1

y · y
D

, (4.6)

σ2
g

(
x
)= var

{
g
(
x
)}= κ(

x, x
)−kT ·K−1

y ·k , (4.7)

respectively, with kT , κ
(
x,XD

) = [
κ
(
x1, x

)
. . .κ

(
xn , x

)]
and Ky , K +

σ2 ·In .

Example 17: GP Posterior

The latent function is chosen to be g (x) = sin(2πx) and the noise
variance is σ2 = 0.022. As covariance function the squared expo-
nential function in (4.8) on page 128 is considered with hyperpa-
rameters α= 1 and λ= 0.1. The training data comprises the inputs
XD = [0.3 0.4 0.7] and outputs yT

D
= [0.96 0.59 − 0.93]. The corre-

sponding posterior GP is depicted in Figure 4.1b. To obtain this plot,
the GP is evaluated for 100 values of x ∈ [0 1], where the 100 values
are chosen to be equidistant.



4.2 Covariance Functions 127

It can be seen that near a data point the posterior mean (4.6) is
almost identical with the latent function and the posterior variance
(4.7) is reduced significantly. Appart from data, the mean goes back
to zero and the variance grows towards the value of the prior variance
in Figure 4.1a. As a GP defines a distribution over functions, there is
an infinite number of functions that can explain the data. Three of
them are depicted in Figure 4.1b.

Based on (4.3), it is also possible to determine the density f
(
y | x,D

)
of

the output y . This density is also Gaussian with mean as in (4.6) and with
variance

σ2
y =σ2

g +σ2 .

If instead of the zero mean function an arbitrary mean function µ
(
x
)

is
used, the posterior mean (4.6) changes to

µg
(
x
)=µ(

x
)+kT ·K−1

y ·
(
y
D
−m

)
with mT ,

[
µ
(
x1

)
. . . µ

(
xn

)]
, while the posterior variance remains the

same. For further reading on GP regression please be referred to [144].

4.2 Covariance Functions

So far it was assumed, that the covariance function is known. In real-world
applications however, this assumption is typically not valid. Selecting
an appropriate covariance function and determining its parameters is a
crucial task. For a GP, the covariance function is of same importance as the
kernel function in a SVM. It determines the relation between data points,
characterizes the smoothness of the (latent) function, and specifies the
impact of a data point on the overall function.
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Not every function mapping two vectors to the real line can be considered
as a covariance function. It has to be positive semi-definite and symmet-
ric, i.e., the resulting kernel matrix has to be positive semi-definite3 and
symmetric matrix. This constraint is important as the kernel matrix acts
as the covariance matrix of the Gaussian prior density (4.2).

4.2.1 Examples

In the following, some examplary covariance functions used throughout
this thesis are introduced. Other commonly employed functions are
discussed in [144].

Stationary Covariance Functions

Basically, covariance functions can be separated in two classes: stationary
and non-stationary functions. A covariance function is called stationary4

if it can be written as a function of the deviation∆x , x−x ′, i.e., κ
(
x, x ′)=

κ
(
∆x

)
, for two arbitrary inputs x and x ′.

One of the most widely used covariance functions for GPs, but also in
many other kernel-based machine learning algorithms like SVMs or radial-
basis networks, is the squared exponential (SE)

κ
(
∆x

)=α2 · exp
(−1

2 ·∆xTΛ−1∆x
)

. (4.8)

Here,Λ= diag
([
λ1 . . .λnx

])
is a diagonal matrix of the characteristic length-

scales λi for each input dimension i and α2 is the variance of the latent
function g (.). Such parameters of the covariance function are called the
hyperparameters of the GP.

3 All eigenvalues of the matrix are non-negative.
4 The term stationary stems from stochastic process theory, where a process is called

(weakly) stationary if it possesses a constant mean function and a translation-invariant
covariance function [100].



4.2 Covariance Functions 129

Non-Stationary Covariance Functions

Covariance functions that directly depend on the two inputs x and x ′

are called non-stationary. A widely used non-stationary kernel is the
polynomial covariance function

κ
(
x, x ′)=α2 ·

(
xT · x ′+ c

)p
, (4.9)

with degree p ∈N, bias c, and variance α2. Another popular covariance
function is the neural network (NN) kernel

κ
(
x, x ′)=α2 · sin−1

(
xTΛ−2x ′p
φ(x)φ(x ′)

)
, (4.10)

with φ
(
x
)
, 1+xTΛ−2x, variance α2, and the diagonal matrixΛ of char-

acteristic length-scales.

Constructing Covariance Functions

Covariance functions can be constructed from existing ones like the above
mentioned. Let κ1

(
x, x ′) and κ2

(
x, x ′) be two covariance functions, the

• Sum of both covariance functions κ1
(
x, x ′)+κ2

(
x, x ′),

• Product of both covariance functions κ1
(
x, x ′) ·κ2

(
x, x ′), and

• Scaling φ
(
x
)

·κ1
(
x, x ′) ·φ

(
x ′) with a deterministic function φ

(
x
)

lead again to valid covariance functions.

Example 18: SE plus Noise

In many applications, the SE kernel (4.8) is augmented by the noise
variance of the model (4.1) according to

κ
(
∆x

)=α2 · exp
(−1

2 ·∆xTΛ−1∆x
)+σ2 ·δ

(
∆x

)
. (4.11)
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This allows treating the noise variance σ2 as an additional hyperpa-
rameter to be learned from data (see next section).

4.2.2 Hyperparameter Learning

Each covariance function possesses several parameters, e.g., the variance
α2 and the length-scale matrix Λ in case of the SE function (4.8). As
mentioned above, these so-called hyperparameters need to be adjusted
such that the covariance function fits to the given application5. In case of
GPs, the hyperparameters can be determined or learned from the given
training data D. In the following, θ comprises all hyperparameters of a
given covariance function.

Example 19: Varying Hyperparameters

The latent function is chosen to be g (x) = sin(x). 20 data points are
drawn from this model. Based on this training data, three different
GPs with covariance function (4.11) are learned. The resulting GPs
are depicted in Figure 4.2. The hyperparameters chosen for the GP
in Figure 4.2a are close to optimal. Accordingly, the GP approximates
the latent function very well and the posterior variances are adequate.
In Figure 4.2b and Figure 4.2c, however, the hyperparameters are
not chosen appropriately. While the GP in Figure 4.2b is clearly
overfitting, the GP in Figure 4.2c provides an oversmoothed result.

5 Hyperparameter learning is part of the model selection problem (recall Sections 3.3.2
and 3.4.3).
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Figure 4.2: Posterior GPs for different hyperparameters θT = [α λ σ]. The
data points are indicated by the black circles.

To determine appropriate hyperparameters, the standard approach pro-
posed in [118] is evidence maximization, which essentially tries to maxi-
mize the (positive) log-likelihood (see Appendix B.4)

θ∗ = arg max
θ

{
log f

(
y
D

∣∣∣g ,θ
)}

= arg max
θ

{
− 1

2 · yT
D

K−1
y y

D︸ ︷︷ ︸
data-fit

− 1
2 log|2πKy |︸ ︷︷ ︸

complexity

}
, (4.12)

where the likelihood f
(

y
D

∣∣∣g ,θ
)

corresponds to (4.5) and Ky depends on θ.

The maximization in (4.12) yields a trade-off between fitting the data as
good as possible and obtaining a model of low complexity. Hence, this
maximization is a realization of the famous Occam’s razor6, which aims
for the simplest model possible that is consistent with the data.

Evidence maximization is a non-convex optimization problem, for which
no closed-form solution exists and which highly depends on the given

6 “Pluralitas non est ponenda sine necessitate” (plurality should not be posited without
necessity) stated by William of Ockham (also spelt Occam), an English Franciscan friar
and philosopher, c. 1287–1347.
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training data. However, practice showed that even though the global
optimum might not be found, the resulting GP based on suboptimal
hyperparameters still explains the data well enough [52]. An alternative to
evidence maximization is cross-validation, which is typically employed in
SVM training. Cross-validation however is computationally demanding,
requires MC simulation, and exploits only a fraction of the entire training
data.

4.3 Large Data Sets

The computational complexity for calculating the posterior mean (4.6)
and variance (4.7) is mainly dominated by the inversion of the matrix Ky

and evaluating matrix-vector products. Inverting Ky or the more numer-
ically robust alternative of computing its Cholesky decomposition is in
O

(
n3). Thus, for a large number of data points, this calculation becomes

very demanding. Fortunately, the Cholesky decomposition of Ky can be
determined off-line if the entire data set is given a priori. This, however is
not the case for streaming data, where the data becomes available on-line
during run-time. In this case, the matrix and thus its Cholesky decompo-
sition has to be updated. In order to avoid a complete recalculation of
the Cholesky decomposition, so-called rank-1 Cholesky updates can be
performed for introducing new data points [142].

Given the inverse or Cholesky decomposition of Ky , the complexity of
the posterior mean is in O

(
n

)
and of the posterior variance is in O

(
n2).

For small data sets, these computations are affordable, but for large
problems—tens of thousands data points—both storing Ky or its decom-
position as well as solving the matrix-vector products in (4.6) and (4.7) is
prohibitive. To overcome this problem, many approximate GP regression
methods have been proposed, where some of the most popular are briefly
reviewed in the following.
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4.3.1 Active Set Approaches

In [141] a unifying framework for so-called active set approaches has been
derived. Here, instead of processing the entire training data set, only
a subset of the data points—the active set with m ¿ n data points—is
used. The matrix Ky is replaced by a matrix that is based on the active
set, which reduces the computational complexity to O

(
m2 ·n

)
for matrix

computations, O
(
m

)
for calculating the posterior mean, and O

(
m2) for

the posterior variance.

Several active set approaches have been proposed independently, but
by means of the unifying framework in [141] it can be shown that all
these approaches merely differ on modifications of the original GP prior
(4.2). The subset of regressors approach [176, 205] is probably the simplest
realization of an active set method, where the active set is either chosen
randomly from the training set or by means of a greedy selection algorithm.
The sparse on-line GP (SOGP) regression proposed in [48] in addition
allows adding and removing data points to the active set at runtime, which
is desirable when the training data set is not given entirely a priori. The
sparse pseudo-input GP (SPGP, [177]) is generally regarded as one of the
most effective active set approaches. In contrast to other methods, the
active set has not to be a subset of the training data: elements of the active
set can be located anywhere in the input domain. For this purpose, the
active set is optimized by means of evidence maximization (4.12).

4.3.2 Local Approaches

To speed up GP regression, local or partitioning approaches split the
training data into p data sets, where for each data set a separate (local) GP
is learned. For calculating the posterior mean and variance, the individual
estimates of the separate GPs are combined. In doing so, the complexity
is O

(
p ·m3) for matrix calculation, O

(
p ·m

)
for mean calculation, and

O
(
p ·m2) for calculating the variance, where m = p/n is the number of
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data points per set. In contrast to active set methods, local approaches
make use of the entire training data.

Two instances of a local approach are the Bayesian committee machine
proposed in [199] as well as the product of GP experts proposed in [35].
In both methods partitioning is performed off-line. In contrast, the local
GP [132] is an on-line algorithm, where incoming data is assigned to the
nearest data set. To update the local kernel matrix, the above mentioned
rank-1 updating is utilized.

4.3.3 Algebraic Tricks

Besides the above approximate regression approaches, there exist several
approximations that tackle the algebraic operations necessary to compute
the posterior mean and variances. This “algebraic tricks” can be used in
combination with the above methods in order to further speed up GP
regression. Skilling’s method [175] for instance is an iterative procedure
to solve matrix-vector operations of the kind K−1 · x, which appear in
both (4.6) and (4.7). If this method is terminated after k iterations, the
complexity is O

(
k ·n2) instead of O

(
n3).

If the covariance function possesses as special structure, sparse versions
of the Matrix Ky can be obtained allowing for efficient matrix-operations.
This holds for covariance functions with compact support like the Matérn
kernel. In case of a compact support, the complexity of the aforemen-
tioned rank-1 update reduces from O

(
n2) down to O

(
n

)
[142]. In case of

stationary covariance functions, the function values merely depend on
the distance between pairs of inputs. By defining a distance threshold,
only those pairs of training data points are considered that are within
the threshold [203]. In addition, the distance dependency allows storing
the training set in a kd-tree, which provides a rapid access to the data
[73, 203].
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4.3.4 Open Issues

Most of the proposed approximations for large data sets are not suitable
for streaming data, which requires performing GP regression on-line at
runtime. Among the on-line approaches, those utilizing rank-1 updating
or partitioning merely alleviate the complexity problem. They still suffer
from an increasing amount of data points, i.e., the computational and
memory demand grows over time.

4.4 Nonlinear Filtering

Given a GP model of the latent function g (.), it is so far possible to calcu-
late the mean and variance for a deterministic input x according to (4.6)
and (4.7), respectively. In order to perform Gaussian filtering, however,
the input—more precisely the state—has to be a random vector. Accord-
ingly, one has to solve the moment integral (2.8) for g ∼ GP

(
µ,κ

)
. As

g is a random vector, it is in addition necessary to marginalize out the
uncertainty over g (.) in order to obtain the desired moments. Thus, for
Gaussian filtering with GP models, the moment integrals (2.8) become

µy =
Ï

g
(
x
)

·N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx ,

σ2
y =

Ï (
g
(
x
)−µy

)(
g
(
x
)−µy

)T ·

N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx +σ2 ,

σx y =
Ï (

x −µ
x

)(
g
(
x
)−µy

)T·N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx ,

(4.13)

containing the additional integration over the latent function/GP g (.).
Here, the Gaussian density N

(
g ;µg

(
x
)
,σ2

g

(
x
))

is extracted from the GP,
where the mean and variance are according to (4.6) and (4.7), respectively.
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The number of approaches for Gaussian filtering with GP models pro-
posed so far is limited. For arbitrary covariance functions, [69] proposed
a first-order and second-order Taylor-series expansion of the posterior
mean (4.6) and variance (4.7), respectively. Similarly, a first-order Taylor-
series expansion of (4.6) was used in [104], which yields the so-called
GP extended Kalman filter (GP-EKF). In [105], the unscented transform
(see Section 2.2.5) is employed instead. The sample points are propa-
gated through (4.6) and the desired moments (4.13) are then calculated
by means of sample mean and variance, respectively. Accordingly, the
Gaussian filter is named GP unscented Kalman filter (GP-UKF). In [68] it is
shown, that for the SE covariance function, the mean µy and the variance
σ2

y can be determined analytically. But in contrast to [104, 105], no full
Gaussian filter that also involves a measurement update was provided.
Furthermore, only a scalar output y is supported.

4.5 Contributions

In Section 4.5.1 and Section 4.5.2, a novel GP filtering and smoothing
algorithm is proposed that is based on analytic moment matching, i.e.,
the moment integrals are solved exactly given a GP representation of the
latent function g (.). These results are based on Paper H and Paper I. An
approximate on-line GP regression algorithm with on-line hyperparame-
ter learning that was proposed in Paper J and Paper K is summarized in
Section 4.5.3 and Section 4.5.4, respectively.

4.5.1 Gaussian Process Filtering

So far, only one-dimensional outputs y have been considered. For real-
world applications however, the output is typically of higher dimension.
Thus, in the following the focus is on a nonlinear transformation as in (2.6)
with multivariate output y ∈Rny and multivariate noise w ∼N

(
0,Cw

)
with Cw = diag

([
σ2

1 . . .σ2
ny

])
. It is assumed that a separate GP GP

(
µa ,κa

)
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is trained for each dimension a = 1. . .ny . For training of the ath GP,
the training data set Da = {

XD, y
a

}
consisting of n data points

(
xi , ya,i

)
,

i = 1. . .n is used.

Mean Vector µ
y

To obtain a Gaussian filter in this setup, the moment integrals (4.13) have
to be solved. Due to the representation of the each dimension by means
of a separate GP, the calculation of the mean vector µ

y
is also performed

dimension-wise. The ath element µy,a of µ
y

is given by

µy,a =
∫
µg ,a

(
x
)

·N
(
x;µ

x
,Cx

)
dx

=
n∑

i=1
βa,i ·

∫
κa

(
x, xi

)
·N

(
x;µ

x
,Cx

)
dx (4.14)

with µg ,a(.) being the ath element of the posterior mean (4.6) and βa,i

being the i th element of the vector β
a
,

(
Ka +σ2

a ·In
)−1

· y
a

with kernel

matrix Ka consisting of the elements
(
Ka

)
e, f = κa

(
xe , x f

)
for all xe , x f ∈

XD. The second equality in (4.14) follows from writing the posterior mean
function µg ,a(.) as a finite sum over the covariance functions [144].

In general the integral in (4.14) cannot be solved in closed form due to the
nonlinear covariance function, but if the covariance function belongs to
one of the function types listed in Section 2.5.2, an analytical solution is
possible. This holds for instance for the SE function (4.8) or the polyno-
mial function (4.9). For the SE covariance function with signal variance
α2

a and matrix of characteristic length-scalesΛa , (4.14) can be simplified
to

µy,a =βT
a

· q
a

(4.15)
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with q
a

comprising the elements

qa,i ,α
2
a ·

∣∣CxΛ
−1
a + I

∣∣− 1
2 · exp

(
−1

2

(
xi −µx

)T(
Cx +Λa

)−1
(
xi −µx

))
,

(4.16)
for i = 1. . .n. A similar solution can be obtained for the polynomial co-
variance function (4.9).

Covariance Matrix Cy

For calculating the covariance Cy , again each element of the matrix is
determined individually. At first, the off-diagonal elements a,b = 1. . .ny

with a 6= b of Cy , i.e., the cross-covariances, are considered. These ele-
ments are given by

σ2
y,ab =

∫
µg ,a

(
x
)

·µg ,b
(
x
)

·N
(
x;µ

x
,Cx

)
dx −µy,a ·µy,b

=
n∑

i=1

n∑
j=1

βa,i ·βb, j ·∫
κa

(
x, xi

)
·κb

(
x, x j

)
·N

(
x;µ

x
,Cx

)
dx −µy,a ·µy,b ,

with µy,a and µy,b according to (4.15). For SE covariance functions, the
cross-covariance can be further simplified to

σ2
y,ab =βT

a
·Q ·β

b
−µy,a ·µy,b (4.17)

with elements of Q ∈Rn×n according to

Qi j =
exp

(
n2

i j

)
p|R| , (4.18)

n2
i j = log

(
α2

a

)+ log
(
α2

b

)− 1
2

(
ζT

i
Λ−1

a ζ
i
+ζT

j
Λ−1

b ζ
j
− zT

i j R−1Cx zi j

)
,

where R,Cx
(
Λ−1

a +Λ−1
b

)+ I, ζ
i
, xi −µx

, and zi j ,Λ
−1
a ζ

i
+Λ−1

b ζ
j
.
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The diagonal elements (a = b) of Cy comprise in addition to (4.17) a term
reflecting the noise variance σ2

a and the uncertainty of the GP

α2
a −Tr

((
Ka +σ2

aI
)−1Q

)
+σ2

a . (4.19)

Hence, the desired elements of covariance matrix Cy are given by

σ2
y,ab =

{
Eq. (4.17)+Eq. (4.19) if a = b

Eq. (4.17) otherwise
. (4.20)

Cross-Covariance Matrix Cx y

It remains to compute the cross-covariance Cx y to fully determine a Gaus-
sian filter for GP models. Integrating out g , the cross-covariance can be
simplified to

Cx y =
∫

x ·
(
µ

g

(
x
))T

·N
(
x;µ

x
,Cx

)
dx −µ

x
·µT

y
.

By writingµ
g

(
x
)

as a finite sum over covariance functions, the ath column

of Cx y , a = 1. . .ny can be written as

n∑
i=1

βa,i ·
∫

x ·κa
(
x, xi

)
·N

(
x;µ

x
,Cx

)
dx −µ

x
·µy,a . (4.21)

With a SE covariance function, this term can be solved analytically to

n∑
i=1

βa,i · qa,i ·Cx ·
(
Cx +Λa

)−1 ·
(
xi −µx

)
, (4.22)

where the analytical solution (4.15) for µ
y,a

has been substituted and qa,i

coincides with (4.16).
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The Gaussian filter for GP models based on the expressions (4.15), (4.20),
and (4.22) for calculating the moments in (4.13) is named GP assumed
density filter (GP-ADF) in the following.

Example 20: One Step Filtering

The nonlinear dynamic system

xk = xk−1
2 + 25 xk−1

1+x2
k−1

+w k , with w k ∼N
(
0,σ2

w = 0.22) , (4.23)

zk = 5· sin(xk )+v k , with v k ∼N
(
0,σ2

v = 0.22) , (4.24)

is considered, which is a modified version of the model used in [60,
102]. The standard deviation of the initial state is set to be σx

0 = 0.5,
i.e., the initial uncertainty is fairly high. The system and measure-
ment noises are relatively small considering the amplitudes of the
system function and the measurement function. For the numerical
analysis, the mean values µx

0,i , i = 1. . .100, are placed equidistantly
on the interval [−3,3]. Then, a single (initial) state x0,i is sampled

from N
(
µx

0,i ,
(
σx

0

)2
)
, i = 1. . .100.

For the dynamic system in (4.23)–(4.24), the performance of a single
prediction and measurement update of the EKF, the UKF, the CKF,
the GP-UKF, and the GP-ADF is compared against the ground truth,
which is approximated by means of a near-optimal sampling-based
Gaussian filter (denoted as Gibbs-filter, [55]) as well as a PF with 200
particles. Compared to the evaluation of longer trajectories, evaluat-
ing a single filtering step makes it easier to analyze the estimates of
individual filtering algorithms.

Table 4.1 summarizes the performances (rmse, mae, nll) of all filters
for estimating the latent state x . The results in the table are based
on averages over 1,000 test runs and 100 randomly sampled initial
states per test run. The table also reports the 95% standard error of
the expected performances.
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Table 4.1 indicates that the GP-ADF is the most robust filter and sta-
tistically significantly outperforms all filters but the Gibbs-filter and
the PF. Amongst all other filters the GP-ADF is the closest Gaussian
filter to the computationally expensive Gibbs-filter [55]. Note that
the PF is not a Gaussian filter and is able to express multi-modality
in densities. Therefore, its performance is typically better than the
one of Gaussian filters. The difference between the PF and a near-
optimal Gaussian filter, the Gibbs-filter, is expressed in Table 4.1. The
performance difference essentially depicts how much is lost by using
a Gaussian filter instead of a particle filter.

The poor performance of the EKF is due to linearization errors. The
filters based on small sample approximations of densities (UKF,
GP-UKF, CKF) suffer from the degeneracy of these approximations,
which is illustrated in Figure 4.3. Note that the CKF uses a smaller set
of sample points than the UKF (recall Section 2.2.5), which makes
the CKF statistically even less robust than the UKF.

4.5.2 Gaussian Process Smoothing

For an RTSS given a GP representation of the system and measurement
function, most of the ingredients are already derived by means of the
above GP-ADF. The only missing component is the cross-covariance ma-
trix Ck|k+1 in (2.33). For its calculation, one can follow the above deriva-
tion of the cross-covariance matrix Cx y . According to (4.21), the ath
column of Ck|k+1 can be written as

n∑
i=1

βa,i ·
∫

x ·κa
(
x, xi

)
·N

(
x;µe

k
,Ce

k

)
dx −µe

k
·µp

k,a , (4.25)
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Figure 4.3: Degeneracy of the unscented transformation (UT) underlying
the UKF. Input distributions to the UT are the Gaussians in the sub-figures
at the bottom in each panel. The functions the UT is applied to are shown
in the top right sub-figures, i.e, the transition mapping (4.23) in (a) and the
measurement mapping (4.24) in (b). Sigma points are marked by red dots.
The predictive distributions are shown in the left sub-figures of each panel.
The true predictive distributions are the shaded areas; the UT predictive
distributions are the solid Gaussians. The predictive distribution of the time
update in (a) equals the input distribution at the bottom of (b).
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with N
(
x;µe

k
,Ce

k

)
being the posterior state density and µp

k,a
being the

ath element of the predicted mean µp
k

. For an SE covariance function, a
closed-form expression of (4.25) can be obtain given by

n∑
i=1

βa,i · qa,i ·Ce
k ·

(
Ce

k +Λa
)−1 ·

(
xi −µe

k

)
, (4.26)

with qa,i as in (4.16), but with Cx and µ
x

being substituted with Ce
k and

µe
k

, respectively.

Altogether, the GP Rauch-Tung-Striebel smoother (GP-RTSS) utilizes the
GP-ADF of the previous section for the forward sweep (prediction and
measurement update). For the actual smoothing, (4.26) is used for calcu-
lating the cross-covariance Ck|k+1, which is required for determining the
smoothed Gaussian state according to (2.34).

The computational complexity of prediction, measurement update, and
smoothing (after training the GPs) is in O

(
K ·n2 ·

(
n3

x +n3
z

))
due to matrix

inversions, matrix multiplications, and the computation of the Q-matrix
(4.18). For comparison, Kalman filter and RTSS scale with O

(
K ·

(
n3

x +n3
z

))
.

Example 21: Pendulum Tracking

The pendulum tracking example taken from [53] is considered for
comparing the performances of four filters and smoothers: the EK-
F/EKS, the UKF/URTSS, the GP-UKF/GP-URTSS, the CKF/CKS, the
Gibbs-filter/smoother, and the GP-ADF/GP-RTSS. The pendulum

has mass m = 1kg and length l = 1m. The state x = [
ϕ̇ ϕ

]T
of the

pendulum is given by the angle ϕ (measured anti-clockwise from
hanging down) and the angular velocity ϕ̇. The pendulum can exert
a constrained torque u ∈ [−5,5]Nm. A frictionless system is assumed
such that the system function a(.) is

a
(
xk ,uk

)= k+∆k∫
k

[
u(τ)−0.5ml g sin

(
ϕ(τ)

)
0.25ml 2+I
ϕ̇(τ)

]
dτ , (4.27)
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Table 4.2: Averaged filtering and smoothing performances with 95% confi-
dence intervals.

Filters nll Smoothers nll

EKF 1.6×102 ±29.1 EKS [121] 3.3×102 ±60.5
UKF 6.0±3.02 URTSS [159] 17.2±10.0
CKF 28.5±9.83 CKS [55] 72.0±25.1

GP-UKF250 4.4±1.32 GP-URTSS250 [54] 10.3±3.85
GP-ADF250 1.44±0.117 GP-RTSS250 1.04±0.204
GP-ADF20 6.63±0.149 GP-RTSS20 6.57±0.148

where I is the moment of inertia and g the acceleration of gravity.
Then, the successor state

xk+1 = xk+∆k
= a

(
xk ,uk

)+w k , with w k ∼N
(
0,diag

(
0.52,0.12))

is computed using an ODE solver for (4.27) with a zero-order hold
control signal u(τ). The torque is sampled randomly according to
u ∼U [−5,5]Nm and implemented using a zero-order-hold controller.
Every time increment ∆k = 0.2s, the state is observed according to

zk = arctan
( −1−l · sin(ϕk )

0.5−l · cos(ϕk )

)
+v k , with v k ∼N

(
0,0.052) . (4.28)

Trajectories of length K = 6s = 30 time steps are started from a state

sampled from N
(
µx

0
,Cx

0

)
with mean µx

0
= [

0 0
]T

and covariance Cx
0 =

diag
(
0.012, (π/16)2). For each trajectory, GP models GPa (system

function) and GPh (measurement function) were learned based on
randomly generated data using either 250 or 20 data points.

Table 4.2 reports the values of the nllmeasure for the EKF/EKS, the
UKF/URTSS, the GP-UKF/GP-URTSS, the GP-ADF/GP-RTSS, and
the CKF/CKS, averaged over 1,000 MC runs. The GP-RTSS is the
only method that consistently reduces the nll value compared to the
corresponding filtering algorithm. Increased nll values (red color
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in Table 4.2) occur when the state density cannot explain the state/
measurement. A detailed example of this can be found in Paper I.
Even with only 20 training points, the GP-ADF/GP-RTSS outperforms
the EKF/EKS, UKF/URTSS, CKF/CKS.

4.5.3 Recursive Gaussian Process Regression

As mentioned in Section 4.3, the complexity of GP regression scales cu-
bically with the number of training data points. This complexity can be
reduced by means of sparse approximations. Most of these approxima-
tions however only work in an off-line mode, i.e., all training data has
to be known a priori and is processed in a batch. This is not suitable for
streaming data. The recursive Gaussian Process (RGP) regression approach
introduced next allows for both a sparse representation and on-line pro-
cessing. For this purpose, the latent function is represented by means of a
finite set of so-called basis vectors.

Let X ,
[
x1, x2, . . . , xm

]
be the matrix of locations of the basis vectors,

where the number of basis vectors m is significantly lower than the size n
of D, i.e., m ¿ n. Furthermore, g , g (X) are the (unkown) values of the
latent function at the locations X. The basis vectors can be considered
an active set allowing a sparse GP representation. In contrast to most
other active set approaches, the basis vectors are updated on-line with

new observations y
k

at inputs Xk ,
[

xk,1, xk,2, . . . , xk,nk

]
and time step

k = 0,1, . . ., which facilitates to process streaming data. Hence, y
k

and Xk

can be considered a subset of y
D

and XD, respectively, but where y
D

and
XD are not known completely a priori. Also off-line processing is possible
by presenting y

D
and XD in batches to the algorithm.

For all steps k = 0,1, . . . it is assumed that the basis vectors are fixed in
number and location. Since g

(
x
)

is assumed to be a GP, the initial distri-
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Figure 4.4: (a) The black line indicates the latent function g , while the gray
solid and dotted lines represent the mean and variance of recursive GP.
The circles indicate the location of the basis vectors X (x-axis) and their
mean values µg (y-axis). The stars indicate new observations. (b) Inferring
the mean and covariance of g at the locations of the new observations
from the current recursive GP estimate. (c) Updating the GP with the new
observations gives an improved estimate of the latent function.

bution f0
(
g
)=N

(
g ;µg

0
,Cg

0

)
of g for k = 0 is Gaussian with mean vector

µg
0
,µ

(
X
)

and covariance matrix Cg
0 , κ

(
X,X

)
according to (4.2).

The goal is now to calculate the posterior distribution f
(
g
∣∣∣y

1:k

)
recur-

sively by updating the prior distribution of g from the previous step k −1

fk−1, fk−1

(
g
∣∣∣y

1:k−1

)
=N

(
g ;µg

k−1
,Cg

k−1

)
(4.29)

with the new observations y
k

. For this purpose, the desired posterior
distribution is expanded according to

fk =
∫

ck · f
(

y
k

∣∣∣g , g
k

)
· f

(
g , g

k

∣∣∣ y
1:k−1

)
︸ ︷︷ ︸

= f
(
g ,g

k
| y

1:k

)
dg

k
(4.30)

by applying Bayes’ law and by integrating out g
k
, g

(
Xk

)
from the joint

posterior f
(
g , g

k

∣∣∣y
1:k

)
. Here, ck is a normalization constant. Based on

(4.30), calculating the posterior distribution can be performed in two
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steps: Inference, i.e., calculating the joint prior f
(
g , g

k

∣∣∣y
1:k−1

)
given the

prior fk−1 in (4.29). Update, i.e., updating the joint prior with the obser-
vations y

k
and integrating out g

k
. The interaction between both steps is

depicted in Figure 4.4.

Inference

In order to determine the joint prior f
(
g , g

k

∣∣∣y
1:k−1

)
, it is important to

emphasize that the joint distribution f
(
g , g

k

)
is Gaussian with mean and

covariance

µ=
[
µ
(
X
)

µ
(
Xk

)] and C =
[
κ
(
X,X

)
κ
(
X,Xk

)
κ
(
Xk ,X

)
κ
(
Xk ,Xk

)] , (4.31)

respectively. This follows from the fact that g (.) is a GP and any finite
representation of this GP yields a Gaussian distribution. Thus, the joint
prior can be written as

f
(
g , g

k

∣∣∣y
1:k−1

)
≈ f

(
g

k

∣∣∣g )
· fk−1 =N

(
g

k
;µp

k
,B

)
·N

(
g ;µg

k−1
,Cg

k−1

)
,

(4.32)
with

µp
k
=µ(

Xk
)+ Jk ·

(
µg

k−1
−µ(

X
))

, (4.33)

B = κ(
Xk ,Xk

)− Jk ·κ
(
X,Xk

)
, (4.34)

Jk = κ(
Xk ,X

)
·κ

(
X,X

)−1 . (4.35)

The first equality in (4.32) follows from assuming that g
k

is condition-

ally independent of the past observations y
1:k−1

given g .7 Hence, the

conditional distribution f
(
g

k

∣∣∣g )
is Gaussian and results from the joint

7 This is true if all inputs X1:k−1 of the past observations are a subset of the basis vectors
X, otherwise it is an approximation.
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distribution f
(
g , g

k

)
in (4.31) by conditioning on g (see (2.9)), which re-

sults in the second equality.

After some algebraic transformations, where some basic properties of
Gaussian distributions and the Woodbury formula are utilized, the pro-

duct in (4.32) yields the joint Gaussian f
(
g ,g

k

∣∣∣y
1:k−1

)
=N

(
q ;Q

)
of g and

g
k

with mean and covariance

q ,

[
µg

k−1
µp

k

]
and Q,

[
Cg

k−1 Cg
k−1JT

k
Jk Cg

k−1 Cp
k

]
, (4.36)

respectively, and with covariance Cp
k ,B+Jk Cg

k−1JT
k . For a detailed deriva-

tion see Paper J. A close inspection of the second row in (4.36) shows that
it has the same structure as an RTSS (see Section 2.3) and it coincides with
the augmented Kalman Smoother proposed in [149], but there no update
step for basis vectors as introduced next is derived.

Update

Given the result of the previous section that the joint prior in (4.32) is a
Gaussian N

(
q ,Q

)
, the next step is to perform the update and marginal-

ization in (4.30). For this purpose, (4.30) is rearranged to

= f
(

g ,g
k
| y

1:k−1

)︷ ︸︸ ︷
fk =

∫
ck · f

(
y

k

∣∣∣g
k

)
· f

(
g

k

∣∣∣y
1:k−1

)
︸ ︷︷ ︸

= f
(
g

k
| y

1:k

)
(Kalman filter)

· f
(
g
∣∣∣g

k
,y

1:k−1

)
dg

k
(4.37)

under consideration that g is not observed and thus, f
(

y
k

∣∣∣g
k

)
is inde-

pendent of g . Since f
(

y
k

∣∣∣g
k

)
= N

(
y

k
; g

k
,σ2I

)
according to (4.5) and

f
(
g

k

∣∣∣y
1:k−1

)
=N

(
g

k
;µp

k
,Cp

k

)
are both Gaussian, g

k
can be updated eas-

ily via a Kalman filter update step. Updating g and integrating out g
k
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Algorithm 4 Recursive Gaussian Process (RGP)

. Inference
1: Calculate gain matrix Jk according to (4.35)
2: Calculate mean µp

k
via (4.33) and covariance matrix Cp

k via (4.36)
.Update

3: Calculate gain matrix Gk according to (4.40)
4: Calculate mean µg

k
via (4.38) and covariance matrix Cg

k via (4.39)

is then performed simultaneously, which yields the desired posterior

fk =N
(
g ;µg

k
,Cg

k

)
with

µg
k
=µg

k−1
+Gk ·

(
y

k
−µp

k

)
, (4.38)

Cg
k = Cg

k−1 −Gk Jk Cg
k−1 , (4.39)

Gk = Cg
k−1JT

k ·
(
Cp

k +σ2I
)−1

. (4.40)

Putting all together, at steps k = 1,2, . . . the proposed RGP recursively
processes observations y

k
at the inputs Xk as listed in Algorithm 4. This

recursion commences from the initial mean µg
0
= µ

(
X
)

and covariance

Cg
0 = κ(

X,X
)

.

Discussion

So far, it was assumed that the set of basis vectors is fixed. The inference
step, however, can also be utilized for introducing new basis vectors X′.
This might be of interest in locations where the current estimate of the la-
tent function is inaccurate. By replacing Xk with

[
X,X′], the inference step

provides the initial mean and covariance as well as the cross-covariance
between the new basis vectors and the old ones.

The computations of the inference step scale with O
(
m2 ·nk

)
due to cal-

culating Jk in (4.35), where nk is the number of observations at step k.
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Here, the inversion of the kernel matrix κ
(
X,X

)
is computationally un-

problematic, as it has to be calculated only once at step k = 0 . Once
the gain matrix Jk is calculated, predictions for a single test input are in
O(m) (mean) and O

(
m2) (covariance). Assuming that all observations are

processed at once, predictions of the RGP are as complex as predictions
of active set GP approaches. In contrast to most sparse GP approaches,
the proposed method can process new observations on-line.

The update step scales with O
(
nk ·m2), where the complexity results

from matrix multiplications for which more efficient algorithms exist, e.g.,
Strassen’s algorithm [187]. The inversion in (4.40) again is not critical as
the affected matrix is of size nk ×nk , where typically nk ¿ m .

4.5.4 On-line Hyperparameter Learning

In the following, the previous assumption of a-priori known hyperpa-
rameters is relaxed. Instead, the goal is now to learn the hyperparam-
eters θ ∈ Rnθ simultaneously with estimating the values of the latent
function g (.) at the basis vectors. This is achieved by formulating the
learning part as a recursive parameter estimation problem, which can be
performed together with the function value estimation. Similar to Sec-

tion 4.5.3, this boils down to calculating a joint posterior fk , f
(
ξ

k

∣∣∣ y
1:k

)
=

N
(
ξ

k
;µξ

k
,Cξ

k

)
, where ξT

k
,

[
g T θT

k

]
is the joint hidden state with mean and

covariance

µξ
k
,

[
µg

k
µη

k

]
, Cξ

k ,
[

Cg
k Cgη

k
Cηg

k Cη

k

]
.

Starting point for this calculation is a joint prior f
(
ξ

k−1

∣∣∣ y
1:k−1

)
at step

k − 1, which is updated with the new observations y
k

. This requires
the following two operations: Inference, i.e., calculating a joint density

f
(
ξ

k−1
, g

k

∣∣∣ y
1:k−1

)
by exploiting the results of Section 4.5.3, and Update,

i.e., incorporation of the new observations y
k

and marginalization to
obtain fk .
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Inference

To incorporate the new inputs Xk , it is necessary to infer the latent func-
tion g (.) at Xk . For this purpose, the intermediate result (4.36) is exploited.
The part of the mean q and the covariance Q regarding g

k
can alternatively

be calculated by employing a Kalman predictor on the linear state-space
model

g
k
= Jk · g +w k , w k ∼N (b,B) , (4.41)

where b,m(Xk )− Jk ·m(X) and B is according to (4.34). In order to also
correlate g

k
with the hyperparameters, the model in (4.41) is extended to

a state-space model given by

[
ξ

k−1
g

k

]
=

 I 0
0 I

Jk
(
θk−1

)
0

 ·

[
g

θk−1

]
︸ ︷︷ ︸
ξ

k−1

+ w k , (4.42)

where the noise w k ∼N
(
µw

k
,Cw

k

)
is Gaussian with mean and covariance

µw
k
,

 0
0

b
(
θk−1

)
 , Cw

k ,

0 0 0
0 0 0
0 0 B

(
θk−1

)
 , (4.43)

respectively. Here, the dependence on the hyperparameters has been
made explicit. The first two rows in (4.42) and (4.43) are merely an identity
mapping of the given joint state ξ

k−1
, while the last row corresponds to

(4.41).

Based on model (4.42), performing a prediction would yield the desired

joint distribution f
(
ξ

k−1
, g

k

∣∣∣ y
1:k−1

)
. As the model is nonlinear with re-

spect to the hyperparameters θk−1, the prediction cannot be performed
exactly in closed form. Fortunately, the model is conditionally linear.
Thus, the prediction can be approximated efficiently and accurately by
means of the decomposition technique proposed in Section 2.5.2, where
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the nonlinear part—the hyperparameters—are sampled by means of an
LRKF while the prediction of g can be performed exactly via the Kalman
predictor.

Update

In order to incorporate the new observations y
k

in a very computationally
efficient manner, the update is performed by means of the observed-
unobserved decomposition proposed in Section 2.5.1. The observed state
ξo

k
comprises the noise standard deviation σ as well as g

k
, while the

unobserved state ξu
k

comprises g and θ−k being the vector of all hyperpa-
rameters excluding σ.

Updating the observed state can be performed in closed form by means
of reformulating the nonlinear mapping (4.1) to

y i = g (xi )+σ · v , v ∼N (0,1) , (4.44)

with v being uncorrelated with σ. For a deterministic noise standard
deviation σ, the model (4.44) is equivalent to (4.1) since w = σ · v with
identical mean and variance. Here, the standard deviation σ of the ob-
servation noise is made explicitly accessible. This simplifies the update,
as the mean µy

k
and covariance Cy

k of the observations as well as the

cross-covariance Coy
k between observed state and observations can be

calculated exactly in closed form as shown in Paper K.

Assuming that the observed state ξo
k

and the observations y
k

are jointly
Gaussian distributed, updating the observed state can be performed ac-

cording to (2.9), which yields the desired conditional density f
(
ξo

k

∣∣∣ y
1:k

)
≈

N
(
µe

k
,Ce

k

)
with mean µe

k
and covariance Ce

k according to (2.9).

By means of the updated observed state it is now possible to update the

unobserved part resulting in the Gaussian density f
(
ξu

k
|ξo

k

)
=N

(
µu

k
,Cu

k

)
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with mean µu
k

and covariance Cu
k according to (2.43) and (2.44), respec-

tively.

To finalize the update step and thus, to obtain the desired joint posterior

fk =N
(
ξ

k
;µξ

k
,Cξ

k

)
with updated basis vectors and hyperparameters, the

above results are combined according to

µξ
k
=

[
µu

k
hT ·µe

k

]
, Cξ

k =
[

Cu
k Lk Ce

k h
hTCe

k LT
k hTCe

k h

]
(4.45)

with Lk ,Cuo
k

(
Co

k

)−1 and hT, [1,0,0, . . . ,0] . The first row in (4.45) corre-
sponds to marginalizing out g

k
.

Example 22: Synthetic Data

The performance of the RGP and the simultaneous regression and
hyperparameter learning approach (denoted as RGP? in the follow-
ing) is compared with a full GP as well as with the sparse GP methods
SOGP and SPGP. For this purpose, data generated by means of two
different synthetic functions are considered. The first function

y = x
2 + 25 · x

1+x2 · cos(x)+w , w ∼N (0,0.1) (4.46)

is smooth but non-stationary. It is similar to the system model in
(4.23). At each step k, 40 input-observation pairs are selected ran-
domly from the interval [−10,10]. In total 100 steps are performed.
The active sets (SOGP, SPGP) and basis vectors (RGP, RGP?) comprise
50 elements, which are placed equidistant on the interval [−10,10] .
As second function

y =N (0.6,0.04)+N (0.15,0.0015)+4· H(0.3)+w , (4.47)

is considered, where H (.) is the Heaviside step function with H (a) = 0
if x ≤ a and H(a) = 1 if x > a. This function has a discontinuity at
x = 0.3 and was considered as a benchmark in [213]. The noise w
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(a) Evolution of the hyperparameters of RGP? with SE (blue, solid) and
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Figure 4.5: Exemplary regression result of proposed approach for function
(4.46).
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has variance σ2 = 0.16. A total of 70 steps are performed, with 50
data points per step drawn from [−2,2]. On this interval, 30 active
set elements and basis vectors are placed equidistant.

The mean function of all GPs is zero and as covariance function two
different ones are employed: the SE function (4.8) as well as the
sum of SE and NN function (see (4.10)), denoted as SE+NN in the
following. The hyperparameters for the full GP are optimized via
evidence maximization (4.12). These optimized hyperparameters
are also used for the RGP.

In Figure 4.5a on the previous page, an exemplary regression re-
sult of RGP? with SE+NN covariance function is depicted. The true
function is accurately reconstructed. As shown in Figure 4.5b, the
hyperparameters are adjusted over time and converge. This leads to
improved regression results compared to the other hyperparameter
learning approaches SOGP and SPGP as can be seen in Table 4.3.
This holds for both covariance functions, whereas SE+NN yields bet-
ter results as it is possible to capture the non-stationarity thanks to
the non-stationary NN kernel. Compared to a full GP, RGP? is slightly
inferior. The off-line hyperparameter optimization (4.12) provides
optimal results and RGP? cannot improve further. With the optimal
hyperparameters however, RGP performs close to a full GP but with
significantly lower runtime.

The results in Table 4.4 indicate that off-line hyperparameter opti-
mization (4.12) is not always optimal. Here, the hyperparameters
learned by RGP? result in better estimates compared to all other
algorithms with at the same time lower computational load. It is
worth mentioning that RGP? is the only sparse approach that really
exploits the properties of the SE+NN kernel resulting in an improved
regression compared to the SE kernel.
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Discussion

Directly modeling some of the hyperparameters by means of a Gaussian
may not be appropriate in some cases. For instance, the length-scale
hyperparameters of the SE covariance function in (4.8) have to be positive.
To account for such constraints, a standard trick in GP regression is to
transform the hyperparameters first and then to train the transformed
parameters. After training, the inverse transformation is applied in order
to obtain the original hyperparameters. In case of positive hyperparam-
eters, the logarithm for transforming and the exponential function as
inverse transformation are common. RGP? can directly be used to also
train/estimate transformed hyperparameters.

Assuming Gaussian noise w in (4.1) is not reasonable for every application.
Capturing a non-Gaussian distribution by the proposed methods can for
instance be achieved via warping as proposed in [178]. Alternatively, fk

could be represented by means of a Gaussian mixture allowing for the
application of techniques proposed in Section 3.4.

The computation and memory costs of RGP? for a single time step k scale

with O
(
s ·nk ·

(
m +nθ

)2 +n3
k

)
and with O

((
m +nθ

)2
)
, respectively, where

s is the number of samples of the employed LRKF, nk is the number of
observations at step k, m is the number of basis vectors, and nθ is the
dimension of θ. If at each step k the same number of observations is
processed, than the computational and memory costs are constant for
each step for both RGP and RGP?. Furthermore and in contrast to a full
GP the computational and memory costs do not increase over time, i.e.,
when more and more observations become available.

4.6 Summary

Assuming that no analytical system and measurement models are avail-
able, but GP representations of these models exist, the contributions
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made in this chapter are concerned with performing analytic filtering and
smoothing as well as on-line learning of GP models:

• Analytic filtering and smoothing for GP models: For particular co-
variance functions, Gaussian filtering and smoothing for GP system
and measurement models can be performed in closed-form, with-
out the need of sampling or linearization. Given a sufficient amount
of training data, filtering and smoothing are superior compared to
many other Gaussian filters operating on the analytical models.

• Recursive GP regression: Especially for streaming data, there is a
lack of sparse GP regression approaches in the state-of-the-art. The
proposed RGP allows regression with constant computational and
memory demand. This approach makes no restriction on the used
mean and covariance functions.

• On-line hyperparameter learning: RGP can be extended in such
a way that on-line hyperparameter learning for streaming data is
possible. Here, updating the basis vectors and hyperparameters
with new data is treated as a joint Gaussian filtering problem, which
leads to a computationally efficient and accurate GP regression
approximation.

Generally, there are many machine learning techniques for learning sys-
tem and measurement models from data. GP regression however forms
a Bayesian approach of this task, with close relationship to Gaussian
filtering. This relationship is the main purpose for allowing the above
contributions, where it is possible to benefit from the rich theoretical and
algorithmic foundation of Gaussian filtering introduced and extended in
Chapter 2.





5
Applications

For every major distribution and filtering group introduced in the previous
three chapters a dedicated real-world application is studied in this chapter.
These applications are:

• Range-based localization: Estimating the position and orientation
of a moving object via Gaussian filtering (summarizes Papers L
and M).

• Gas dispersion source estimation: Determining the location and
strength of a gas release into atmosphere using Gaussian mixture
filtering (Paper N).

• Active Object recognition: Effectively utilizing a movable camera
for fast object recognition based on Gaussian process regression
(Paper O).

This list already indicates that Bayesian filtering in general and the pro-
posed solutions in particular are applicable in a broad range of real-world
estimation problems.

161
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5.1 Range-based Localization

In applications such as car navigation, mobile robot navigation, or telep-
resence, the position of a moving object is often localized based on range/
distance measurements between the object and known landmarks. These
ranges can for example be measured by times of arrival or field strengths
[169].

Existing range-based localization algorithms can be divided into two
classes. Approaches of the first class assume exact (or almost exact) range
measurements. As long as this assumption is satisfied, closed-form local-
ization approaches as those in [15, 34, 43, 78, 119, 196], gradient descent
algorithms [153], or methods based on linearization via Taylor-series ex-
pansion [66] perform very well. However, these approaches merely allow
for a static localization, i.e., at every time step an independent location
estimation is performed. Furthermore, accurate range measurements
require specialized and expensive hardware.

Dealing with inaccurate measurements that may arise for example from
signal strength information or ultrasonic range finders requires range-
based localization approaches from the second class. Based on probabilis-
tic models that capture measurement uncertainties—for instance arising
from measurement noise or modeling errors—the object’s position and
velocity can be estimated by means of a Bayesian filter in a recursive fash-
ion. This allows for dynamic localization, i.e., the combination of dead
reckoning and static localization, for a smoother and more robust local-
ization. The maybe most prominent range-based localization algorithm
based on Bayesian filtering is used in GPS.

Example 23: GPS

The global positioning system (GPS) is the most widely used satellite-
based navigation system. The localization principle employed in GPS
is based on multilateration, i.e., measuring the distance between
the object’s position and several reference points or landmarks in
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3D. In GPS the necessary distances are determined by using time of
arrival. Here, the satellites send a signal to the receiver (the object)
that includes information about the exact time of its broadcast. If
the time of the receiver is synchronized with the system time of the
satellites, which is the same for all satellites, the receiver is now capa-
ble of calculating the duration of signal transmission. By multiplying
the duration of the transmission with the speed of light the required
distance is obtained. The receiver typically uses an EKF for estimat-
ing its position and velocity based on the calculated distances and
the dynamics of the object [99].

When assuming that the object can be considered as a point in space,
the quantities of interest are merely position, velocity and sometimes
acceleration. GPS for instance makes this assumption. In applications
like telepresence however, where the extent of the object is important,
also the orientation and corresponding angular velocities in 3D have
to be estimated. For both problems—position and pose estimation—
dynamic range-based localization algorithms utilizing Gaussian filtering
are introduced in the following.

5.1.1 Position Estimation

At first it is assumed that the object can be considered a point as depicted

in Figure 5.1a on the next page. In this case, the state xT,
[

t T ṫ T
]

of the

object consists of its position t = [
x y z

]T and velocity ṫ = [
ẋ ẏ ż

]T.

Dynamic and Measurement Model

The dynamic behavior—the motion—of the object is described by means
of the linear discrete-time dynamic system

xk+1 = A · xk +w k , (5.1)
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(a) Position estimation.

×
object

trajectory

LM
LM

LM

range
ranges

ranges

(b) Pose estimation.

Figure 5.1: Examples for range-based localization problems. Based on the
measured ranges between landmarks (LMs) at known positions and the
unknown position of the object, the object’s trajectory has to be estimated.
In case of pose estimation (b), the object possesses itself several landmarks
(gray circles) to which range measurements can be performed. The center
of mass is indicated by the cross.

where the noise w k is assumed to be zero-mean white Gaussian. For
a position velocity model [207], the matrix A and the covariance of the
process noise Cw are given by

A =
[

I T ·I
0 I

]
, Cw =

T 3

3 Cw
c

T 2

2 Cw
c

T 2

2 Cw
c T ·Cw

c

 , (5.2)

respectively, where T is the sampling time. Cw
c , diag

([
σ2

c,x σ2
c,y σ2

c,z
])

corresponds to the process noise covariance of the continuous time sys-
tem model with σ2

c,ξ being the variances of dimension ξ ∈ {x,y,z}.

Range measurements to N landmarks at the known positions Si ∈R3 with
i = 1, . . . ,N are incorporated. The nonlinear relation between the object
position and the landmark position is given by

ρk,i =
∥∥Si − t k

∥∥
2 , (5.3)

where ρk,i is the Euclidean distance between object and landmark.
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In a real scenario, the ranges cannot be measured exactly, i.e., measure-
ment uncertainty has to be considered, which is usually done by incorpo-
rating a noise process into (5.3). Two possibilities arise for incorporation.
In the first case, which is the standard model

ρk,i =
∥∥Si − t k

∥∥
2 +v k,i , (5.4)

the noise process v k,i directly affects the range r k,i . In the second case

ρk,i =
∥∥∥Si − t k −v k,i

∥∥∥
2

, (5.5)

which is called noise before non-linearity [44], the noise process affects
the difference between object and landmark position. This measurement
model can be interpreted such that the positions of the landmarks are
uncertain. In both measurement models, the noise process is assumed to
be zero-mean white Gaussian. In the following, the second model (5.5)
is considered for mainly two reasons: First, the standard model (5.4) is
only appropriate in situations where the distance ρk,i is large compared
to the variance of the noise v k,i . Otherwise, negative ranges are possible,
which is not true in reality. This problem cannot occur in the second
measurement model. Second, the model in (5.5) allows analytic moment
matching.

Analytic Moment Matching

Thanks to the linearity of the dynamic model (5.2), the standard Kalman
filter prediction step (2.12) can be employed for propagating the state
from time step k to time step k +1. To obtain also analytic expressions
for the moment integrals (2.8) in case of the measurement update, the
measurement equation (5.5) is squared, which yields

d i ,
(
ρi

)2 = (
Si − t

)T ·
(
Si − t

)−2·
(
Si − t

)T · v i +v T
i · v i , (5.6)
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where d i is a squared range assumed to be calculated by d̂i = ρ̂2
i . Thus,

the modified measurement equation (5.6) can be described in short term
via

d i = hi
(
t ,v i

)
(5.7)

for a single measurement to landmark i and via

d = h
(
t ,v

)
(5.8)

for measurements to all landmarks, where di and hi (.,.) are the i th ele-
ment of d and h(.,.), respectively. Hence, the vector of squared ranges d̂
is calculated according to d̂ = r̂ ¯ r̂ . The measurement noise v in (5.8) is
zero-mean with covariance matrix

Cv =



Cv
1 . . . Cv

1, j . . . Cv
1,N

...
...

...
...

...
Cv

i ,1 . . . Cv
i , j . . . Cv

i ,N
...

...
...

...
...

Cv
N ,1 . . . Cv

N , j . . . Cv
N

 ,

where Cv
i , j is the 3×3 covariance matrix between the i th and j th land-

mark. By assuming correlations between landmarks, an algorithm valid
for many real-world application can be derived. The case of uncorrelated
landmarks is a special case of the algorithm.

Due to the consideration of squared ranges, the measurement model in
(5.6) is a polynomial of order two allowing closed-form calculations of
the moment integrals (2.8). Hence, according to (2.9) the mean vector
and covariance matrix of the posterior state estimate xk ∼N

(
µe

k
,Ce

k

)
are

calculated via

µe
k
=µp

k
+Cxd

k ·
(
Cd

k

)−1
·
(
d̂ k −µd

k

)
,

Ce
k = Cp

k −Cxd
k ·

(
Cd

k

)−1
·
(
Cxd

k

)T
,

(5.9)
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respectively, where µd
k

(squared measurement mean), Cd
k (squared mea-

surement covariance matrix), and Cxd
k (cross-covariance between state

and squared measurement) are given by1

µd
k
= (V¯V)T ·1M +1N · Tr

(
P ·Cp

k ·PT)+OT · diag
(
Cv )

,

Cd
k = OT ·

(
4·

(
vec(V) ·vec(V)T)¯T+2·T¯T

)
·O ,

Cxd
k =−2·Cp

k ·PT ·V ,

(5.10)

respectively, with

S,
[
S1 . . . SN

]
,

P,
[
IM 0M

]
,

V, S− (
1N

)T ⊗ (
P ·µp

k

)
,

O, IN ⊗1M ,

T,Cv +1N ⊗ (
P ·Cp ·PT)

,

where vec(V) is the vectorized version of the matrix V, 1N is a vector of
ones of dimension N , and 1N is a one matrix. The variable M = 3 stands
for the three-dimensional space.

Example 24: Four Landmarks

The proposed analytical moment calculation (AMC) is compared
against the EKF and UKF. For this purpose four landmarks with posi-
tions

S = [
S1 . . . S4

]=
−2 −2 2 2
−2 2 −2 2
0 0 0 2

 m

1 A detailed derivation can be found in Paper L.
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Figure 5.2: Result of the three estimators AMC, UKF, and EKF for different
noise levels.

are considered. The measurement noise covariance matrix of each
landmark i is assumed to be Cv

i = I ·σ2
n with σn = (n−1)/3 m where

n = 1. . .10, i.e., ten different noise levels are investigated. For each
noise level 1000 MC runs are simulated, where each run consists of
100 measurement steps.

The initial state at time step k = 0 has zero mean and covariance C0 =
10·I6. The sampling time is T = 0.1s. The process noise covariance
matrix comprises the elements σ2

c,x =σ2
c,y = 0.01, and σ2

c,z = 0.0001.

In Figure 5.2a, the average rmse is depicted. For small noise, all three
filters perform similar. If the noise increases, the rmse of the EKF
increases much stronger compared to the other two filters. For a high
noise level, the UKF and the proposed approach present comparable
results, where the average rmses and the standard deviations of the
AMC are slightly smaller.
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The average determinant of the covariance matrix of the position
estimate t k of all test runs is shown in Figure 5.2b. Due to the lin-
earization based on first-order Taylor-series expansions, the deter-
minant of the EKF is too small and thus the EKF is too certain about
its estimate. Hence, the estimation results are inconsistent, which
is often a problem when using an EKF. On the other hand, LRKFs
or analytic approaches as the AMC overcome this problem. The
determinant of the AMC is smaller compared to the determinant of
the UKF. Furthermore, as described before, the rmse of the AMC is
smaller as well. All together, the AMC is more informative compared
to the UKF.

The computational complexity of the above closed-form measurement
update is in O

(
M 3 +M 2 · N

)
for the mean µd

k
, in O

(
M 2 · N 3) for the co-

variance Cd
k , and O

(
M 2 · N

)
for the cross-covariance Cxd

k , where typically
M ¿ N . For calculating the required moments in (5.10), only vector-
matrix products and no additional matrix inversions or roots are required.
For comparison, already the computational complexity of calculating the
matrix square root required for an LRKF is in O

(
N 3 · M 3).

5.1.2 Position and Orientation Estimation

In the following, the previous localization problem is generalized in order
to allow the estimation of the pose—position and orientation—of an
extended object in 3D. Hence, the object state is given by

x ,
[

t T ṫ T r T ωT
]T

where t and ṫ are the position and velocity in 3D, respectively, and ω is
the angular velocity in 3D . The orientation vector r ∈R3 is a so-called
rotation vector with norm ‖r‖ =π. Alternatives for describing the orien-
tation are quaternions [108] or Euler angles [130]. Quaternions however



170 5 Applications

are not minimal as they consist of four elements and the unit quaternions
constraint can lead to inaccurate state estimates. Euler angles suffer from
singularities and are not intuitive in usage. Rotation vectors instead are
a minimal state representation. A further advantage of rotation vectors
is that the dynamic behavior can be described by means of a nonlinear
differential equation [22].

Dynamic Model

As the state now also comprises orientation related quantities, the dy-
namic model consists of two separate motion models: one for the trans-
lation and the second for the rotation. The translation model coincides
with (5.1) and (5.2), respectively. The temporal evolution of the rotation
vector r k is described by means of a nonlinear equation [17, 22]

r k+1 = r k +T ·
(
I+0.5·R

(
r k

)+a
(
r k

)
·R

(
r k

)
·R

(
r k

))︸ ︷︷ ︸
,Λ

(
r k

) ·ωk , (5.11)

with

a
(
r k

)
,

1−0.5 ·‖r k‖
‖r k‖2 ·cot

( ‖r k‖
2

)
.

The system model for the angular velocityωk is assumed to be

ωk+1 =ωk +wω
k , (5.12)

where w w
k is the process noise that affects the angular velocity. The pro-

cess noise has zero mean and is Gaussian distributed with covariance Cω.

By combining (5.2), (5.11) and (5.12), the system model for the pose esti-
mation scenario can be written as

xk+1 =
A 0 0

0 I Λ
(
r k

)
0 0 I

 · xk +w k , (5.13)
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where the covariance of the process noise w k comprises the covariances
of the process noises from the translation model Ct and the rotation
model Cω according to

Cw =
Ct 0 0

0 0 0
0 0 Cω

 .

Measurement Model

As depicted in Figure 5.1b, in range-based pose estimation the measured
ranges depend on known landmarks located on the extended object and
on known landmarks in a global coordinate system. Thus, the ranges
depend on both the unknown translation and rotation of the object with
respect to the global coordinate system.

Example 25: Telepresence

An example application where knowing the pose is of interest is
large-scale telepresence [153]. Here, the pose of a human has to be
tracked for steering a robot. For tracking the pose of the user or the
pose of several body parts, several emitters are located at known
positions in a global coordinate system. They are emitting signals
that are received by several sensors attached to the user, e.g., at a
head-mounted display (see Figure 5.3a) or at gloves (see Figure 5.3b).
Based on the emitted and received signals, ranges between emitters
and sensors can be determined.

The relationship between measured ranges, translation, and rotation is
given by

ρk,i j =
∥∥∥L j −D

(
r k

)
· M i − t k −v k,i j

∥∥∥
2

, (5.14)

which resembles the noise before non-linearity range measurement model
as in (5.5). Here, L j is the position of the j th landmark with respect to the
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(a) Sensors at a head-
mounted display.

(b) Sensors mounted
at a glove.

Figure 5.3: Deployment of sensors (marked by blue circles) for tracking the
pose of a user or of body parts in telepresence applications. Images taken
from [111].

global coordinate system and M i is the position of the i th landmark with
respect to the object coordinate system. v k,i j is the measurement noise
between landmark L j and landmark M i . The term ρk,i j is the measured
range between these two landmarks, while d k comprises all possible mea-
surements between global and object landmarks. The term D( · ) is the
rotation matrix parametrized by the rotation vector r k

D
(
r k

)= I+ sin
(∥∥r k

∥∥)∥∥r k

∥∥ ·R
(
r k

)+ 1−cos
(∥∥r k

∥∥)∥∥r k

∥∥2 ·R
(
r k

)
·R

(
r k

)
,

known as Rodrigues formula, with

R
(
r k

)=
 0 −r z r y

r z 0 −r x

−r y r x 0


being a skew-symmetric matrix.

Semi-Analytic Moment Matching

The system model (5.13) is conditionally linear, i.e., if the rotation vector
is set to a fixed value, the system model becomes linear and the predic-
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tion for each value can be performed by using the well-known Kalman
predictor equation.

To facilitate an analytical solution of the measurement update in closed
from, the measurement equation (5.14) is squared as in Section 5.1.1,
which yields

d k,i j ,
(
ρk,i j

)2 =
(
g

i j

(
r k

)− t k −v k,i j

)T
·
(
g

i j

(
r k

)− t k −v k,i j

)
, (5.15)

with

g
i j

(
r k

)
, L j −D

(
r k

)
· M i . (5.16)

But in contrast to the previous section, squaring the measurement model
alone is not sufficient due to the nonlinear term (5.16). By condition-
ing on r , however, (5.16) becomes affine and the entire measurement
model becomes quadratic. Thus, the measurement model is condition-
ally integrable and the nonlinear-nonlinear decomposition proposed in
Section 2.5.2 can be applied. The analytically integrable system state

comprises xT
a ,

[
t T ṫ T w T

]
, while the sampled state is x s , r . For the

latter, sampling via LRKFs can be employed. In doing so, for every fixed
sample value of the rotation vector, the closed-form solutions in (5.10) for
the moment integrals can be used with some minor modifications: the
state dimension is now nine instead of six and the number of measured
ranges is significantly higher as pair-wise measurements between object
landmarks and global landmarks are incorporated.

Example 26: Two-dimensional Localization

A two-dimensional coordinate system is considered containing four
sensors (global landmarks) and four emitters (object landmarks)
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with positions
M T

1
M T

2
M T

3
M T

4

=


−0.2 −0.2
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m ,


LT

1
LT

2
LT

3
LT

4

=


−2 −2
−2 2
2 −2
2 2

m

with respect to the object coordinate system and the global coor-
dinate system, respectively. At different noise levels ranging from
[0.000001, . . . ,0.3] m, 1000 random trajectories are generated, where
the sampling time was T = 0.1s. The noise process is assumed as
isotropic.

The proposed SAGF is compared to the UKF. For the UKF a decom-
position into directly observed states t , r and indirectly observed
states ṫ , ω as proposed in Section 2.5.1 is used. Furthermore, due
to the fact that the measurement noise is mapped through the non-
linear transformation, it has to be approximated with samples as
well. In total 71 sample points are required for the UKF. On the other
hand, the proposed approach only has to approximate the rotation
by sample points.

For the 2D case, the system equation (5.13) becomes linear and thus,
the Kalman filter prediction can be using directly. The entries of the
continuous process noise covariance are set to be Ct

c = diag([0.1 0.1])
and Cω

c = 0.1. The initial state has zero mean and its covariance
matrix comprises Ct

0 = diag([10 10]), Cṫ
0 = diag([10 10]), σ2

r,0 = 0.001,

and σ2
ω,0 = 0.0001.

The estimation performance in terms of the rmse of both estimators
is almost identical. Regarding the computational effort, the proposed
approach only has to determine sample points for one dimension,
which can be implemented very efficiently. On the other hand, the
UKF calculates a matrix square root of the covariance of the noise
and the directly observed state. This operations is computationally
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involved considering the size of the combined covariance matrix,
which is 35×35. In the simulation, the proposed approach is three
times faster than the standard approach.

5.2 Gas Dispersion Source Estimation

If a hazardous gas has been released—either accidentally or deliberately—
into atmosphere, it is of paramount importance to gain knowledge of this
event at an early stage in order to increase the effectiveness of counter
measures for protecting the public and for mitigating the harmful effects.
By means of so-called atmospheric dispersion models (ADMs), it is possi-
ble to predict the concentration spread of the released gas in space and
time. These models, however, merely provide reliable predictions, if the
characteristics of the gas source are known precisely. To determine or esti-
mate the source characteristics it necessary to solve an inverse problem,
where one has to infer the location and strength of the gas release from
concentration measurements of spatially distributed sensors.

In general, solution methods of the source estimation problem can be
classified into forward and backward methods [143]. Forward methods
employ an forward-running ADM multiple times in order to find an esti-
mate of the source that best describes the given concentration measure-
ments. Here, the mostly used techniques are based on Bayesian inference
in combination with Monte Carlo sampling. Sequential Monte Carlo
methods as described in [179, 217] employ a set of samples or particles
that forms the posterior probability distribution of the source parameters.
This distribution is updated by means of Bayes’ rule whenever new con-
centration measurements from sensors are available. In contrast to this
online procedure, Markov chain Monte Carlo (MCMC) methods process
all acquired concentration measurements in a batch in order to determine
the posterior distribution. For this purpose, samples are drawn from the
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posterior distribution by simulating a Markov chain that has the desired
posterior distribution as its stationary distribution. Given a properly con-
structed Markov chain it can be shown that MCMC reaches the stationary
distribution after a typically large number of sampling steps, which is
known as the burn-in phase. Application of MCMC to source estimation
can be found for instance in [23, 80, 170].

Backward methods instead perform only one model run in the reverse
direction from the sensors to the source. Commonly used techniques
are backtracking, where an inverse version of an ADM is utilized (see
e.g. [82]), and variational methods, where a cost function between model
predictions and concentration measurements is optimized (see e.g. [155,
185]). The backward approach is preferred over forward methods, when
the number of sources is larger than the number of sensors [143].

Most of the above state-of-the-art methods allow merely an off-line batch
source estimation. The AGMF proposed in Section 3.4.2, however, fa-
cilitates an on-line estimation, where concentration measurements are
processed continually. In doing so, timely information about the source
location and strength can be provided allowing fast responses. For the
AGMF, the so-called Gaussian plume dispersion model is utilized as a for-
ward model, which facilitates predicting the gas dispersion in closed-form
with low computational overhead.

5.2.1 Atmospheric Dispersion Models

In the following, c(x, t) is the concentration of the substance at posi-
tion x = [x y z]T ∈R3 and at time t ≥ 0. The concentration follows the
advection-diffusion equation

∂c
(
x, t

)
∂t

=∇ ·
(
D ·∇c

(
x, t

)− v ·c
(
x, t

))+ s
(
x,t

)
(5.17)

with ∇ , [∂/∂x ∂/∂y ∂/∂z]T (see e.g. [81]). The term D ·∇c(x, t) describes
the diffusion according to Fick’s law with diffusion matrix D

(
x,t

)
and the
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term v ·c(x, t ) represents linear advection due to wind with velocity v
(
x,t

)
.

Finally, s
(
x,t

)
is a source or sink term.

Analytical solutions of (5.17), i.e., functions c(x,t ) satisfying the equation,
exist merely for some special cases. One such special case employed
for source estimation in the following is the Gaussian plume dispersion
model. In order to obtain a closed-form solution, the Gaussian plume
model requires several assumptions:

1. The substance is emitted at a constant rate q > 0 from a single
point source at location xs , [0 0 zs]T. Thus, the source term s

(
x,t

)
in (5.17) becomes

s
(
x,t

)= q ·δ(x) ·δ(y) ·δ(z − zs) .

2. The wind is constant with velocity v ≥ 0 and the wind direction is
along the x-axis. Hence, the velocity in (5.17) becomes v = [v 0 0]T.

3. The diffusion is a function of the downwind distance (positive x-
axis) only. Furthermore, it is assumed that the advection dominates
the diffusion in wind direction. Thus, the diffusion along the x-axis
can be neglected and D = diag

([
0 Ky (x) Ky (x)

])
with eddy diffu-

sion coefficients Ky ,Kz .

4. The terrain is flat and the ground cannot be penetrated by the
substance.

5. The solution is steady state, i.e., time independent.

Based on these assumptions and additional boundary conditions that
force vanishing concentrations at infinite distance from the source and at
upwind distances, (5.17) has the time-invariant solution

c
(
x
)= q

2π ·v ·σyσz
· exp

(
− y2

2σ2
y

)
·
[

exp
(
− (z−zs )2

2σ2
z

)
+exp

(
− (z+zs )2

2σ2
z

)]
, (5.18)
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Figure 5.4: Ground level concentrations according to the Gaussian plume
model, where black indicates the highest concentration level. The dotted
lines indicate the profile of the plume when cutting through the plume in
parallel with the x y-plane and y z-plane.

which is the well-known Gaussian plume dispersion model (for a detailed
derivation see [185]). Here, σy and σz are the so-called standard devia-
tions of the Gaussian concentration distribution. They depend on the sta-
bility of the atmosphere and are both functions of x. They can be obtained
via integrating Ky and Kz in downwind direction or—more practically—
can be determined via the Pasquill-Gifford stability classification scheme
[38, 138].

Example 27: Gaussian Gas Plume

Consider a source emitting a gas contaminant from a height of
zs = 4m. The wind velocity is v = 2 m/s. The atmospheric stability is
of class D, which is “neutral” according to the Pasquill-Gifford classi-
fication. The corresponding ground level concentration is depicted
in Figure 5.4. The gas plume spreads along the x-axis (downwind)
and its shape is that of a Gaussian in planes normal to the x-axis.
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The Gaussian plume model (5.18) is employed as it is widely used and
suitable for describing short range substance releases. Furthermore, being
an analytical model, it allows for an on-line and computationally light-
weight estimation of the unknown parameters. It can be extended for
arbitrary wind directions φ and arbitrary source location xs = [xs ys zs]T

by means of straightforward translation and coordinate rotation, which
yields the model

c
(
x
)= q

2π ·v ·σyσz
· exp

(
− (1+2sin(φ)cos(φ)) · (y−ys )2

2σ2
y

)
·[

exp
(
− (z−zs )2

2σ2
z

)
+exp

(
− (z+zs )2

2σ2
z

)]
,

(5.19)

where σy and σz are now functions of xs , x, y , and φ. This model is
employed in the following.

5.2.2 Parameter Estimation

Estimating the source rate q and source location xs is a so-called pa-
rameter estimation problem. That is, the quantities of interest are time-
invariant; there is no dynamical model driving the parameters over time.
Instead, only data in form of concentration measurements from a set of
spatially distributed sensors is available to determine the parameters. It is
assumed that the measurements become available sequentially over time,
i.e., batch or off-line estimation is impractical. Additional parameters like
wind speed or direction are assumed to be known, as they can be provided
reliably from external sources like weather stations.

In order to apply the AGMF, an appropriate measurement model is re-
quired that relates the concentration measurements to the unknown
source parameters θT,

[
xT

s q
]
. The Gaussian plume model reflects this

relations. Thus, suppose that the measurement ẑk is acquired by a sensor
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at location xr ,
[
xr yr zr

]T at time step k, the resulting measurement
models is given by

ẑk = c
(
xr ;θ

)+v k , v k ∼N
(
0,σ2

v

)
, (5.20)

where c
(
xr ;θ

)
is the true concentration value according to (5.19) and v k is

the sensor’s noise, which is assumed to be independent in time and space.
It is worth mentioning that in case of multiple sources, the concentration
measurement can be written as

ẑk =
L∑

i=1
ci

(
xr ;θi

)+v k , (5.21)

where the superposition of the concentration values ci
(
xr ;θi

)
of the

sources i = 1. . .L is exploited (see [185]).

Example 28: Indianapolis Field Study

To demonstrate the performance of the AGMF in estimating the
source parameters θ, the data acquired during the EPRI Indianapolis
field study is considered, where SF6 tracer gas was released from a
zs = 83.8m stack at a power plant in Indianapolis, Indiana, USA. Data
was recorded by 160 ground-level sensors over 19 days in September
and October 1985 for 8 to 9 hours every day. Details about the field
study and the data can be found in [79].

In Figure 5.5, the locations of the sensors and the sensors’ concentra-
tion measurements of the 19th September 1985 are depicted. Even
though all sensor measure at a hourly rate, the measurements are
processed sequentially to demonstrate the on-line estimation capa-
bility of the AGMF.

The source is located at the origin and the emission rate of the tracer
gas is q = 0.0041 g/s. Information about wind speed, wind direction,
and atmospheric stability was made available by meteorological
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Figure 5.5: Trajectory of the estimated source location (red, dashed) and the
true location of the source (black cross). Circular markers denote the sensor
locations colored with the measured concentration in parts per trillion (ppt).
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Figure 5.7: Bivariate posterior densities of the AGMF source estimate. The
diagonal plots are the univariate marginal densities. Red crosses indicate
the true value, while white and black circles, respectively, denote the mean
of the respective density.

observations. The initial estimate of the source at time step k = 0 is
given by a single Gaussian with mean vector and covariance matrix

θ̂0 = [2000 3000 102 0.033]T , C0 = diag
([

106 106 500 0.001
])

respectively. Figure 5.5 and Figure 5.6 show the convergence of the
source estimate towards the true source location over time and with
increasing number of concentration measurements, respectively.
It is important to note that many sensor measurements (typically
60%-70%) provide a concentration measurement of almost zero as
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most of the sensor are outside the gas plume, as can be seen in
Figure 5.5. This explains the step-wise convergence of the estimate
and reduction of the variance in Figure 5.6.

The posterior density f e
k

(
θ
)

after all k = 1200 measurements is de-
picted in Figure 5.7. It can be seen that the mean of the estimate is
close to the true source parameters. Slight deviation from the ground
truth is only observed for the emission rate, but still the true parame-
ters are within the high confidence region of the estimate. Thus, the
AGMF is not overconfident.

5.3 Active Object Recognition

Research on computer vision mostly focuses on the object or scene ob-
served by the camera system. It is assumed that the parameters of the
camera (e.g., position, illumination, or focus) are given or determined
off-line in a time-consuming trial-and-error process involving human
interaction. Particular operations are then applied on the acquired im-
ages in order to solve the considered vision task like recognizing an object.
In such passive vision systems, the camera parameters are not adapted
on-line. This is in contrast to an active vision system, where the next
camera observation is carefully planned based on the previously acquired
images and prior information about the considered scene.

While various approaches for passive object recognition exist (see e.g.
[190] and references therein), active object recognition still is in its early
stages. One of the first approaches to active object recognition can be
found in [21], where the object models are learned via the eigenspace
approach introduced in [127]. The planning algorithm greedily chooses
the view that leads to the maximum entropy reduction of the object hy-
potheses. In [56], from a finite set of views the one maximizing the mutual
information between observations and classes is selected. The approach
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Learning — Section 5.3.2

Planning — Section 5.3.4

Estimation — Section 5.3.3
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Figure 5.8: Flow chart of the active object recognition system.

is designed for arbitrary features, but requires approximate mutual in-
formation calculation via Monte Carlo sampling, which prevents a direct
extension to continuous views. An upper bound of the Jeffrey divergence
is employed in [112]. Again, merely a finite set of viewpoints is consid-
ered. Reinforcement learning approaches for active object recognition are
proposed in [51, 135]. Here, learning the object models and planning is
performed simultaneously. A comparison of some of the aforementioned
approaches can be found in [50].

The active object recognition method proposed in this thesis consists of
two parts as depicted in Figure 5.8. In the off-line learning part for each
object a so-called object model is created. For varying camera parame-
ters, e.g., focus or position, 2D images of each 3D object are generated.
GP regression is then applied on the sample images to learn the object
models.

In the on-line recognition part, planning the next-best camera view and
Bayesian state estimation are performed alternately. For planning, mutual
information is maximized with respect to the camera parameters. Based
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on the chosen parameter, the object estimate is updated via Bayesian
estimation under consideration of the learned object models.

In contrast to prior art, the proposed method is very general as it is not
restricted to specific image features. Furthermore, camera parameters
can be arbitrary and continuous valued. All derivations hold for arbitrary
GP covariance functions.

5.3.1 Object Classification

Object recognition can be considered a classification task where the state
corresponds to the object class x ∈ X ,

{
x1, x2, . . . xN

} ⊂N, with N be-
ing the finite number of possible object classes. For classification pur-
poses, the state is represented by means of discrete random variable
x ∈X . Based on a feature vector zk ∈Z ⊆Rnz acquired from images at
time/stage k = 0,1, . . ., the goal is to estimate the true latent object class.
The measurement model

zk = h
(
x , ak

)+v k (5.22)

relates the feature vector with the object class. The quantity ak ∈A⊆Rna

is the camera parameter that allows actively driving the classification
process. Potential camera parameters are position, orientation, focal
length, or exposure time, just to name a few. For active object recognition,
an appropriate camera parameter has to be chosen at every stage k in
order to improve the recognition performance and speed.

5.3.2 Learning

An analytical expression of the measurement model (5.22) is not available
in general as it describes a complex transformation of a potentially high-
dimensional feature vector to an abstract object class. To overcome this
issue, a GP model is learned to represent (5.22). As the feature is typically
multi-dimensional, for each dimension e = 1. . .nz of zk a separate GP
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is learned independently using the same training inputs X but different
training outputs ẑe ,

[
ẑe

1 . . . ẑe
n

]T. An alternative to this procedure are
so-called multi-output GPs [25].

Furthermore, learning the GPs for each feature vector dimension has to be
performed independently for each object class xi , i = 1. . . N . This results
in N multi-variate GPs hi (.) ∼GP of dimension nz named object models
in the following. To learn an object model hi , samples al , l = 1. . .n of the
parameter space A are used as training inputs X. For each input sample
al , an object of the class xi ∈X is observed by the camera resulting in the

feature vector ẑ l =
[
ẑ1

l ẑ2
l . . . ẑnz

l

]T
acting as training output. In total, for

nz output dimensions and N object classes, nz ×N GPs are learned. Since
learning these measurement models is an off-line task (see Figure 5.8), the
required computation time is independent of the computation time for
object recognition. Furthermore, for high-dimensional features, which
may be obtained for instance by means of the scale-invariant feature
transform (SIFT, [116]), dimensionality reduction techniques like prin-
cipal component analysis [2] or GP latent variable models [200] can be
employed in order to reduce the number of GPs to be learned.

5.3.3 Estimation

To estimate the object class for a given camera parameter ak and fea-
ture vector ẑk the Bayesian measurement update step (1.7) is employed2,
where the density f e

k (x) in the given object recognition task corresponds
to a discrete distribution modeled as a mixture of Kronecker deltas ac-
cording to

f e
k (x) =

N∑
i=1

ωk,i ·δx,i . (5.23)

2 Due to the implicit assumption that the feature vectors zk for k = 0,1, . . . are condition-
ally independent given x , this form of Bayesian classification/object recognition is
known as naive Bayes classifier [61]. Even though this assumptions might not be true,
naive Bayes classifiers showed a good classification performance in practice [58].
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As the state is static—the object does not change its class over time—
no prediction is performed and thus it holds that f p

k (x) ≡ f e
k−1(x). The

weight ωk,i represents the probability that object x belongs to class i . The
weights are non-negative and sum up to one. The measurement update
boils down to updating the weights whenever a new feature vector ẑk is
available. Before providing the weight update equation, it is first necessary
to investigate the structure of the likelihood.

Likelihood

In contrast to (1.7), the likelihood in the considered recognition task also
depends on the camera parameter. In case of a given object class x = i ,
the likelihood f

(
ẑk | x = i , ak

)
corresponds to the GP hi . If in addition the

camera parameter ak is given, the likelihood becomes a Gaussian density
N

(
ẑk ;µz

k,i
,Cz

k,i

)
with mean vector and covariance matrix according to

µz
k,i

=
[
µ1

k,i µ
2
k,i . . . µnz

k,i

]T
,

Cz
k,i = diag

((
σ1

k,i

)2
,
(
σ2

k,i

)2
, . . . ,

(
σ

nz

k,i

)2)
,

(5.24)

respectively. The elements in (5.24) corresponding to dimension e =
1. . .nz are calculated according to (4.6) and (4.7), respectively, with ak act-
ing as test input x and ẑe being the training output vector y

D
. Overall, the

likelihood for a fixed ak can be characterized by means of the conditional
density

f
(
ẑk | x, ak

)= N∑
i=1

δx,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)
. (5.25)

It is important to note that for a fixed feature vector ẑk —as required
for solving Bayes’ equation—the conditional density in (5.25) becomes
a weighted sum of Kronecker deltas as in (5.23), because all Gaussian
components are evaluated at ẑk and thus, become scalar weighting coeffi-
cients.



188 5 Applications

Posterior Weights

Given the likelihood in (5.25), the measurement update can be evaluated
analytically resulting in a weight update at stage k according to

ωk,i = ck ·ωk−1,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)
for object class i = 1. . . l , where ck =

(∑
i ωk−1,i ·N

(
ẑk ;µz

k,i
,Cz

k,i

))−1
is a

normalization constant and ωk−1,i are the weights of f e
k−1(x).

5.3.4 Planning

So far, the camera parameter ak was assumed to be given. But in active
object recognition, an action is chosen automatically by the imaging
system itself for acquiring high informative observations. For this purpose,
the optimization problem

a∗
k = arg max

ak

I
(
x , zk | ak

)
(5.26)

is formulated to determine the optimal action a∗
k to be applied at stage k.

Since solving (5.26) results in the camera parameters to be applied next, it
is often referred to as next-best-view planning (see e.g. [154]). As objective
function in (5.26), the mutual information

I
(
x , zk | ak

)=Ï
f
(
x, zk

)
· log

f
(
x, zk

)
f
(
x
)

· f
(
zk

) dx dzk (5.27)

between state and feature vector given a camera parameter is considered.
This measure quantifies the amount of information the knowledge of an
observation reveals about the state and vice versa. It is closely related to
Shannon’s entropy and zero only iff both variables are independent [46].

Unfortunately, an analytical calculation of the mutual information is not
possible as it requires evaluating the logarithm of a Gaussian mixture
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Figure 5.9: Cups with different labels.

representing zk . To obtain a computationally cheap and robust approxi-
mation, the alternative formulation of the mutual information according
to

I
(
x , zk | ak

)= H
(
zk | ak

)−H
(
zk | x , ak

)
(5.28)

is employed, where H(x) is the differential entropy

H(x) =−
∫

f (x) · log f (x) dx .

The second term in (5.28) has an analytical expression, while the first term
can be bounded from below as shown in [86].

The optimization problem in (5.26) neither is convex nor possesses it a
closed-form solution. To increase the probability of finding the optimal
camera parameter or at least to ensure finding a parameter that is very
close to the optimal one, so-called multi-start optimization is performed
(see e.g. [180]). Here, optimization is repeated from varying initial points.
To cover the camera parameter space A uniformly, the initial points form
a regular grid on A.

Example 29: Recognizing Cups

The object to be recognized in this example are synthetically gen-
erated cups as depicted in Figure 5.9. Eight different cups exist, all
being identical except for a label that is cut through the surface. The



190 5 Applications

labels of six cups are visible from the same perspective, one is visible
from the opposite point of view and one cup is not labeled at all.

For learning and recognition, 100×100 pixel normalized grayscale
images are generated from the cups, where zero-mean Gaussian
noise with variance 14.7 is added. 1D and 2D features are extracted
from the images. In the 1D case, the mean gray value is considered.
The eigenspace or principal component decomposition approach
proposed in [127] is used for extracting 2D features, where the two
largest eigenvalues are taken into account.

By means of the camera parameter, the position can be changed
in one or two dimensions. In the 1D case, the camera moves on
a circle that is parallel to the horizontal plane and centered at the
object. In the 2D case, the camera position can be varied on a sphere
centered at the object. Here, the actions correspond to the azimuth
and elevation angles.

To learn the GPs, each dimension of the action space is sampled
regularly in 10 decimal degree steps, i.e., for the one-dimensional
circular action space, this leads to 36 sample images.

For comparison, the following active object recognition approaches
are considered:

Planner The proposed approach, where 5 and 15 initial points
for optimization are exploited for the 1D and 2D action
space, respectively.

Grid An approach similar to [56], where at each stage the ac-
tion maximizing the mutual information is taken from
a finite set. Here, this finite set coincides with the set of
initial points of the Planner.

Random Actions are selected uniformly at random.

For each combination of feature and action space, 50 MC simulation
runs are performed, where the true cup is selected uniformly at
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Figure 5.10: (a) Lower bound of mutual information with optimal view/ac-
tion (red circle). (b)–(d) View of three of the cups corresponding to the
optimal action.

random. The initial distribution f e
0 (x) is uniform. A decision about

the object type is made if either the probability (weight) of one object
class exceeds 0.95 or after eight stages.

For the 2D action space, the mutual information surface for three
cups is plotted in Figure 5.10a. Here, the optimal action is indicated
by the red circle, which corresponds to an elevation angle of approx-
imately 45o . For this action, the corresponding views on the three
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Table 5.1: Cup recognition. (a) recognition rate in percent, (b) average
number of views, (c) average maximum object probability.

Dim.
A /Z

Planner Grid Random
(a) (b) (c) (a) (b) (c) (a) (b) (c)

1 / 1 66 6.06 0.74 62 6.1 0.71 50 7.32 0.53
1 / 2 88 3.08 0.97 74 4.96 0.89 94 6.88 0.81

2 / 1 92 2.5 0.99 62 4.1 0.95 76 6.34 0.70
2 / 2 100 1.88 0.99 88 2.5 0.97 68 6.92 0.74

cups are depicted in Figure 5.10b–d. It can be seen that this view facil-
itates to look inside the cups and thus, allows an easy discrimination
of all three cups.

The average values over the 50 simulation runs in terms of recog-
nition rate, number of views, and maximum object probability are
listed in Table 5.1. It can be seen that the Planner performs best
with respect to almost any performance indicators. In comparison
to Random, the number of stages after which a recognition decision
is made is significantly lower. Simultaneously, the certainty in this
decision is much higher as the average maximum object probability
indicates. The performance of the Grid approach is often close to
the proposed approach. But the significantly lower number of views
of the Planner shows the benefits of performing a continuous opti-
mization for next-best-view planning. In contrast to both Grid and
Random, the proposed Planner can take advantage of an increasing
feature and action dimension, i.e., with an increasing dimension the
recognition rate increases as well and the number of views decreases.

A high object probability not necessarily coincides with the best
recognition rate as seen in the case of the 1D action space and
2D feature space. While Random merely relies on the GP object
models for estimation, Grid and Planner additionally use the models
for planning. Thus, a bootstrapping effect can cause the decision
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maker to get stuck in a repetitive pattern. The quality of the GP
models is essential for the recognition process and thus, under- and
over-fitting require special attention.

5.4 Summary

For the applications considered in this chapter, not only the novel algo-
rithms proposed in the previous chapters of this thesis have been turned
into practice. Also several additional contributions have been suggested:

• (Semi-)Analytical measurement updates for position estimation and
pose estimation: By considering a squared range measurement
equation a novel computationally efficient closed-form position
estimation is derived. In case of pose estimation, this analytical
solution can be exploited thanks to the nonlinear-nonlinear decom-
position proposed in Section 2.5.2.

• On-line source estimation based on Gaussian plume model: The
state-of-the-art focuses on off-line MCMC methods for source esti-
mation. By employing the Gaussian plume dispersion model as a
measurement model and by modeling the unknown source param-
eters as state vector with Gaussian mixture density representation
facilitates a computationally light-weight but highly accurate source
estimation.

• Gaussian process object models for active object recognition: Instead
of a discretization of the camera parameter space, which is common
in the state-of-the-art, the mapping from the latent object class
to the feature vector is learned by means of GP regression. This
approach can be applied in various recognition scenarios as it is
not restricted to specific features, camera parameters, or covariance
functions.
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• Efficient next-best-view planning based on lower bound approxima-
tion of mutual information: The GP object models together with a
novel lower bound on the mutual information allow optimizing the
camera parameters on a fine-grained level and with low computa-
tional overhead.



6
Concluding Remarks

6.1 Conclusions

Gaussian filtering lays the foundation to all contributions made in this the-
sis. In many real-world applications, the Gaussian assumption is valid and
thus, sufficient for accurate filtering. In addition, thanks to its algebraical
simplicity, Gaussian filtering can be performed in an efficient and scalable
manner. The contributions in this thesis exploit closed-form solutions
that exist for particular nonlinear models, which leads to a further im-
provement of the estimation performance and computational efficiency.
By means of the proposed decomposition techniques and polynomial
approximation, these benefits can even be utilized for problems that are
not fully covered by any of the closed-form cases. The experiments and
simulations performed for position and pose estimation provide evidence
that the proposed Gaussian filtering techniques lead to an improvement
compared to state-of-the-art approaches like the EKF or the UKF.

195
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For more complex filtering problems, where the Gaussian assumption
no longer holds, the contributions made for Gaussian filtering are not
necessarily inapplicable. Quite the contrary, embedding Gaussian filter-
ing into a Gaussian mixture framework turns out to be a very powerful
estimation tool. Most of the simplicity of Gaussian filtering remains by
this migration. Merely some additional “management” tasks have to be
performed for Gaussian mixture filtering. The contributions in this thesis
serve these tasks, which are mainly concerned with controlling the num-
ber of mixture components. Especially for the proposed adaptive splitting
scheme there is experimental evidence that by exploiting the linearization
error for introducing components leads to a significant improvement of
the estimation performance, while the number of additional components
can be kept on a low level. It has been shown that continually adding
and removing components is better than filtering with a constantly high
number of mixture components. Furthermore, all computations can be
performed on-line, which is beneficial over other accurate estimation
techniques like MCMC, which only allows off-line or batch processing.

In case of missing mathematical models that describe the system dynam-
ics and sensor characteristics, Gaussian process regression is suggested to
learn probabilistic models from data. Given such a GP model, filtering and
smoothing can be performed in closed form when restricting to Gaussian
distributions. By means of simulations it has been shown that the ob-
tained estimation performance is superior compared to state-of-the-art
Gaussian filters, even in cases where these filters utilize the exact model.
To bound the computational complexity with a growing data set, a recur-
sive GP regression algorithm has been proposed in addition. Here, the
hyperparameters of the GP are learned by means of utilizing the proposed
Gaussian filtering techniques, which facilitates on-line learning.

Besides aiming for computationally efficient Bayesian filtering, the con-
tributions made in this thesis lead to a lower user involvement. That is,
many of the proposed algorithms can be operated in a black-box fash-
ion. Examples are the automatic Chebyshev series expansion by means
of the discrete cosine transform (Section 2.5.3), adaptive Gaussian mix-
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ture splitting (Section 3.4.1), automatic model selection in the mixture
reduction (Section 3.4.3), or the on-line hyperparameter optimization for
GPs (Section 4.5.4). In doing so, the application of these algorithms to a
given problem can be simplified, which reduces deployment time and
operational costs.

6.2 Future Work

In all three pillars considered in this thesis there is enough room for further
improvements and extensions. In the following, an outlook on future work
is provided.

Gaussian Filtering

One of the contributions in this thesis that currently requires a significant
amount of manual inspection is the nonlinear-nonlinear decomposition
in Section 2.5.2. An expert has to investigate manually which parts of
the state are analytically integrable and which are not. To facilitate an
automatic decomposition, one idea is to utilize Risch’s algorithm1 [150,
151] together with a decomposition exploration algorithm similar to the
one proposed in [103].

The moment homotopy for polynomial nonlinearities in Section 2.5.5
is a first step towards removing the joint Gaussian assumption between
state and measurement. In general, it is desirable to perform Gaussian
filtering without this assumption for arbitrary nonlinearities to improve
the robustness and to reduce the estimation error. First approaches in
this direction can be found in [75, 106].

The measurement update of the Gaussian filter for polynomial nonlin-
earities can naturally output a full exponential density representation.

1 More precisely, a realization of this algorithm in modern computer algebra systems.
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Maintaining this representation also over the prediction, however, is more
difficult as neither the predicted density nor even the predicted moments
can be expressed analytically. Even if the predicted moments were avail-
able, determining an exponential density that matches the moments is
also not possible in closed form. See [148] for a first step to solve this
issue.

The CPKF proposed in Section 2.5.3 is operational for one-dimensional
states so far. The next step is to extend it to multiple dimensions. While
this is straightforward in terms of the Chebyshev series expansion, closed-
form moment calculation for Gaussians mapped through multi-dimen-
sional polynomials is still computationally demanding. The results in
[98] already lowered the computations significantly compared to previous
approaches, but the moment recursion proposed in Section 2.5.4 might
offer a way to a further reduction.

Gaussian Mixture Filtering

Thanks to the individual processing of the Gaussian components con-
sidered in this thesis, Gaussian mixture filters directly benefit from any
improvement achieved for Gaussian filters. Thus, the outlook on future
work for mixture filters is mainly focused on the refinement and reapprox-
imation operations of Algorithm 3.

The SGMR algorithm proposed in Section 3.4.3 so far is only applicable
for one-dimensional and two-dimensional mixtures due to the use of the
curvature as roughness penalty. Thus, future work is dedicated to explore
and propose curvature measures for higher dimensions.

Splitting a Gaussian component into many as discussed in Section 3.4.2
takes the linearization error into account. This procedure is generally
applicable, but can be enhanced by application-specific criteria. For
instance, for the source estimation application considered in Section 5.2,
it might be beneficial to also take the distance between sensor location
and component mean into account. This avoids situations where no
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component is split due to large distances—the Gaussian plume model is
then approximately linear. In this case, the AGMF degenerates to a simple
Gaussian mixture filter with a fixed number of components.

The source estimation application gives room for further improvements.
Currently it is assumed that the number of sources is known a priori, but
actually new sources might appear spontaneously or an existing source
might disappear over time. Such birth and death processes being common
in multiple target tracking (see e.g. [186]) should be incorporated.

Gaussian Process Filtering

For the GP-ADF and GP-RTSS proposed in Section 4.5.1 and Section 4.5.2,
respectively, it is assumed that training data of the state is given, but as this
state is hidden, this assumption is impractical for many applications. The
GP for the system and the measurement model has to be learned without
the need of direct access to the hidden states. This can be achieved by
means of Expectation Maximization since both GP-ADF and GP-RTSS
allow for gradient-based parameter optimization.

The number and placement of the basis vectors required for the RGP in
Section 4.5.3 has not been discussed. The algorithm supports adding and
removing basis vectors on-line, which allows correcting an insufficient
initial selection of basis vectors. However, a criterion that facilitates a
good choice of new basis vectors is left for future work. Techniques used
in active learning [110] or sensor planning [83] for instance can be utilized
for this purpose.

Rather straightforward to extend is the on-line hyperparameter learning
proposed in Section 4.5.4. Instead of restricting to a Gaussian represen-
tation of the hyperparameters, also Gaussian mixtures can be used by
means of exploiting the techniques proposed in Chapter 3.





A
Particle Filtering

Monte Carlo (MC) methods for solving the integrals appearing in Bayesian
filtering became popular from the 1980s on, with the advent of cheap but
powerful micro-processors. In contrast to the previously popular Kalman
filtering methods and its derivatives, MC methods make no assumptions
regarding the models or density functions. In the following, a brief in-
troduction to particle filters is given, which are a popular form of MC
approximations to Bayesian filtering.

A.1 Perfect Monte Carlo Sampling

MC methods rely on a non-parametric representation of the density func-
tion f

(
x | ẑ0:k

)
by means of a set of n independent and identically dis-

tributed samples x(i ), i = 1. . .n. These samples are often named particles,
which led to the naming particle filters. Given the sample set, the den-
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sity function can be approximated as a sum of Dirac delta distributions
according to

f
(
x | ẑ0:k

)≈ 1
n

n∑
i=1

δ
(
x −xi

)
. (A.1)

For an arbitrary nonlinear function g
(
x
)

:Rnx →Rny , this representation
leads to a perfect MC approximation of the expectation calculation

E
{

g
(
x
)}=

∫
g
(
x
)

· f
(
x | ẑ0:k

)
dx

(A.1)≈ 1
n

n∑
i=1

g
(
x(i )) . (A.2)

The central limit theorem guarantees that the MC approximation con-
verges with an increasing number of particles, regardless of the dimension
of x . This dimensionless property is unique to MC methods compared
to other (deterministic) numerical integration methods, at least from a
theoretical point of view [59]. However, practice shows that the number of
required particles also grows exponentially with the dimension of x (see
e.g. [49]).

Despite the nice theoretical properties of MC approximation, sampling
from f

(
x | ẑ0:k

)
is often very difficult as the density typically has a compli-

cated functional form and is only known up to a normalization constant.
A solution to this issue is importance sampling.

A.2 Importance Sampling

The key idea of importance sampling is to use an approximation density
π
(
x | ẑ0:k

)
called importance function instead of f

(
x | z1:k

)
. Samples can

be drawn much easier from the importance function [184]. If it holds that
π
(
x | ẑ0:k

)> 0 whenever f
(
x | ẑ0:k

)> 0 then the expectation in (A.2) can be
decomposed to

E
{

g
(
x
)}=

∫ (
g
(
x
) f

(
x | ẑ0:k

)
π

(
x | ẑ0:k

))
π
(
x | ẑ0:k

)
dx = E

{
g
(
x
)

·ω
(
x
)}

,
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with weight ω
(
x
)
,

f (x|ẑ0:k )
π(x|ẑ0:k ) . By now drawing samples xi from the impor-

tance function and not from the density f
(
x | ẑ0:k

)
, the expectation in (A.2)

can be approximated as

E
{

g
(
x
)}=

n∑
i=1

ω(i ) · g
(
x(i ))

with normalized weights

ω(i ) = ω
(
x(i )

)∑n
i=1ω

(
x(i )

) (A.3)

Thus, the set of particles now comprises the particles itself and the cor-
responding weights (A.3). Accordingly, the density is approximated by
means of a weighted sum of Dirac delta distributions

f
(
x | ẑ0:k

)≈ n∑
i=1

ω(i ) ·δ
(
x −x(i )) .

A.2.1 Sequential Importance Sampling

Importance sampling as introduced above does not allow for recursive
filtering as required for models of the form

xk ∼ f
(
xk | xk−1

)
,

zk ∼ f
(
zk | xk

)
,

where the state xk varies with the time k. Instead, one would have to recal-
culate the weights whenever new measurements become available, which
leads to a growing computational demand with an increasing number of
measurements and time, respectively. The main reason of this drawback
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lays in the definition of the importance function. For recursive processing,
the importance function itself has to follow a recursion according to

π
(
x0:k | ẑ0:k

)=π(
xk | x0:k−1, ẑ0:k

)
·π

(
x0:k−1| ẑ0:k−1

)
,

which leads to a recursive expression for the weights

ω(i )
k ∝

f
(
ẑk | x(i )

k

)
· f

(
x(i )

k | x(i )
k−1

)
π

(
x(i )

k | x(i )
0:k−1, ẑ0:k

) ·
f
(
x0:k−1| ẑ0:k−1

)
π

(
x(i )

0:k−1| ẑ0:k−1

)
︸ ︷︷ ︸

∝ω(i )
k−1

. (A.4)

This recursion follows from the observation that the samples x(i )
0:k−1 have

already been drawn from the importance function π
(
x0:k−1| ẑ0:k−1

)
and

the weights ω(i )
k−1 have already been calculated in the time step k − 1.

Thus, the samples x(i )
0:k can been obtained from π

(
x0:k | ẑ0:k

)
by drawing

x(i )
k from π

(
xk | x(i )

0:k−1, ẑ0:k

)
. This efficient MC approximation of drawing

samples and calculating the weights according to (A.4) is called sequential
importance sampling (SIS), which leads to the approximation

f e
k

(
xk

)≈ n∑
i=1

ω(i )
k ·δ

(
xk −x(i )

k

)
(A.5)

of the posterior density of the state xk .

A.2.2 Choice of Importance Function

The SIS is still formulated quite generally as the concrete choice of the
importance function leaves many degrees of freedom. A common further
very practical restriction made is to apply the Markov assumption, which
leads to

π
(
xk | x0:k−1, ẑ0:k

)=π(
xk | xk−1, ẑ0:k

)
.
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In doing so, it is no longer necessary to store the whole particle trajectory
x(i )

0:k , but only the current particles x(i )
k . It can be shown, that the optimal

importance function minimizing the variance of the weights ω(i )
k is given

by
π
(
xk | xk−1, ẑ0:k

)= f
(
xk | xk−1, ẑk

)
,

but unfortunately the optimal importance function is typically not given
in analytic form and drawing samples from it is not possible [60]. One
approximation often applied to circumvent this issue is it utilize Gaussian
filtering techniques like linearization (see Section 2.2.3) or linear regres-
sion (see Section 2.2.5), which leads for instance to the extended particle
filter or unscented particle filter [201].

Another variation of SIS is the employ the transition density f
(
xk | xk−1

)
as

importance function. This choice leads to the bootstrap filter [71] allowing
a very simple implementation as drawing the particles x(i )

k corresponds

to evaluating the system function ak (.) on the given particles x(i )
k−1 and

samples from the system noise w k . The drawback of the bootstrap filter is

that no measurement information is used for drawing x(i )
k , which typically

leads to a very large number of particles for accurate estimates.

A.2.3 Resampling

By applying SIS it easily happens that over time almost all particles have a
weight of (nearly) zero, which effectively reduces the number of particles.
To overcome this sample degeneration problem a so-called resampling
step has to be applied in addition. Here, after performing the weight
update according to (A.4), n new particles are drawn from the posterior
(A.5) that replace the current particle set. The new particles all have the
same weight 1/n.

Over the years many resampling methods have been proposed (see e.g.
[37, 102, 115]). The key idea of any resampling is to remove particles with
small weights and duplicate those with a large weight. MC methods with
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i = 1. . .n = 10 particles {
x(i )

k−1, 1/n

}

{
x(i )

k−1,ω(i )
k−1

}
{

x̃(i )
k−1, 1/n

}
{

x(i )
k , 1/n

}

{
x(i )

k ,ω(i )
k

}

Update

Resampling

Prediction

Update

Figure A.1: SIR starts with a particle set
{

x(i )
k−1, 1/n

}
at time step k −1. The

weight of each particle is updated given the current measurement value ẑk−1,

which results in the particle set
{

x(i )
k−1,ω(i )

k−1

}
representing the posterior

f e
k−1

(
xk

)
. The resampling step duplicates the particles with high weights.

The resulting particle set
{

x̃(i )
k−1, 1/n

}
still represents the posterior f e

k−1

(
xk

)
.

Drawing the particles x(i )
k from the importance function, which corresponds

to the prediction step, leads to the particle set
{

x(i )
k , 1/n

}
representing the

predicted density f p
k

(
xk

)
. (Image adapted from [59])

an additional resampling step are called sequential importance resam-
pling (SIR), which are more known under the term particle filter (PF). In
Figure A.1 the steps of a PF are depicted.



B
Performance Measures

In this chapter, some measures quantifying the estimation performance
of Bayesian filtering algorithms are briefly introduced.

B.1 Root Mean Square Error

Generally, the error between the estimated mean µx
k

and the true state xk
is defined as

ek , xk −µx
k

, (B.1)

which is a vector of dimension-wise errors ek,i = xk,i −µx
k,i for i = 1. . .nx .

A standard performance measure for Bayesian filters depending on the
error (B.1) is the root mean square error (rmse) defined by

rmsei ,

√√√√ 1

K

K∑
k=1

e2
k,i
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for dimension i = 1. . .nx , where K is the number of time steps.

In this thesis, MC simulations are used besides real data in order to eval-
uate the performance of a filter. In case of MC simulations, the rmse for
each time step over the different simulations can be evaluated. Hence,
the rmse for time step k and dimension i is given by

rmseMC
i ,

√
1

nMC

nMC∑
m=1

(
em

k,i

)2

where em
k,i is the estimation error of dimension i for the mth MC simula-

tion run and nMC is the number of MC simulation runs.

B.2 Mean Absolute Error

A performance measure very similar to the rmse is the mean absolute
error (mae), which is defined as

maei ,
1

K

K∑
k=1

∣∣ek,i
∣∣ (B.2)

for dimension i = 1. . .nx .

B.3 Normalized Estimation Error Square

The rmse and mae merely takes the mean of the estimated state into
account. The normalized estimation error square (nees) considers the
uncertainty of the estimation in addition. It is defined as

neesk ,
(
xk −µx

k

)T (
Cx

k

)−1
(
xk −µx

k

)
,

which corresponds to a weighted Euclidean distance of the state errors
at time step k, where the weight is given by the inverse state covariance
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matrix. Due to incorporating the inverse covariance matrix, a large es-
timation error has a small contribution to the nees if the covariance is
large and conversely, a large estimation error contributes more in case
of a small covariance. Thus, this measure allows indicating a consistent
filter.

In contrast to the rmse, the nees is a dimensionless quantity. It is χ2-
distributed with nx degrees of freedom if the state estimate is Gaus-
sian [72]. The nees is also known as Mahalanobis distance.

B.4 Negative Log-Likelihood

An alternative to the nees that is often used in machine learning is the
negative log-likelihood (nll)

(filtering) nllk ,− log f x
k

(
xk

)
,

(learning) nll,−
n∑

i=1
log f

(
ẑi | x

)
,

(B.3)

where the first term is used for performance measurement in filtering,
while the second term is used in a model learning context e.g. via GPs
in this thesis. The dependence of the latter definition on the likelihood
f
(
ẑ| x

)
explains the naming of this performance measure. In general, the

nll quantifies how well a realization (true state or measurement value) can
be explained by the given (estimated or learned) density function.

In case of a Gaussian state density, the first nll term in (B.3) can be formu-
lated to

nllk = log
√∣∣2πCx

k

∣∣+ 1
2

(
xk −µx

k

)T (
Cx

k

)−1
(
xk −µx

k

)
.

The second term in (B.3) can be resolved similarly. It can be see that the
nll consists of the nees and a term that penalizes a too large covariance
matrix, which allows discovering of overestimation.





C
�adratic Programming

Optimization problems with quadratic objective function and affine con-
straints are called quadratic programs (QPs). Hence, a quadratic program
is defined as

min
x

1
2 · xTQx +qT · x + c

s.t. G · x ¹ h

A · x = b ,

(C.1)

where Q is a symmetric matrix and c is a constant. Solving a QP generally
is NP-hard [157]. However, if the matrix Q is in addition positive definite,
a QP becomes a special case of a convex optimization problem and thus,
any locally optimal solution to (C.1) is also globally optimal. This optimal
solution can be determined in polynomial time for instance by means of
an ellipsoid method. For further reading on QP and convex optimization
in general see [24].
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Paper A
Gaussian Filtering using State

Decomposition Methods
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Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck

Published in:

Proceedings of the 12th International Conference on Information
Fusion (Fusion), pages 579–586, Seattle, WA, USA, July 2009.

Link to:

http://isif.org/fusion/proceedings/fusion09CD/
data/papers/0371.pdf

Abstract:

State estimation for nonlinear systems generally requires approxi-
mations of the system or the probability densities, as the occurring
prediction and filtering equations cannot be solved in closed form.
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For instance, Linear Regression Kalman Filters like the Unscented
Kalman Filter or the considered Gaussian Filter propagate a small
set of sample points through the system to approximate the poste-
rior mean and covariance matrix. To reduce the number of sample
points, special structures of the system and measurement equation
can be taken into account. In this paper, two principles of system
decomposition are considered and applied to the Gaussian Filter.
One principle exploits that only a part of the state vector is directly
observed by the measurement. The second principle separates the
system equations into linear and nonlinear parts in order to merely
approximate the nonlinear part of the state. The benefits of both
decompositions are demonstrated on a real-world example.



Paper B
Semi-Analytic Gaussian Assumed

Density Filter

Authors:

Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck

Published in:

Proceedings of the 2011 American Control Conference (ACC),
pages 3006–3011, San Francisco, CA, USA, June 2011.

Link to:

http://dx.doi.org/10.1109/ACC.2011.5991332

Abstract:

For Gaussian Assumed Density Filtering based on moment match-
ing, a framework for the efficient calculation of posterior moments
is proposed that exploits the structure of the given nonlinear system.
The key idea is a careful discretization of some dimensions of the
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state space only in order to decompose the system into a set of non-
linear subsystems that are conditionally integrable in closed form.
This approach is more efficient than full discretization approaches.
In addition, the new decomposition is far more general than known
Rao-Blackwellization approaches relying on conditionally linear
subsystems. As a result, the new framework is applicable to a much
larger class of nonlinear systems.



Paper C
Chebyshev Polynomial

Kalman Filter

Authors:

Marco F. Huber

Published in:

Digital Signal Processing, vol. 23, no. 5, pages 1620–1629, Septem-
ber 2013.

Link to:

http://dx.doi.org/10.1016/j.dsp.2013.06.005

Abstract:

A novel Gaussian state estimator named Chebyshev Polynomial
Kalman Filter is proposed that exploits the exact and closed-form
calculation of posterior moments for polynomial nonlinearities. An
arbitrary nonlinear system is at first approximated via a Chebyshev
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polynomial series. By exploiting special properties of the Chebyshev
polynomials, exact expressions for mean and variance are then
provided in computationally efficient vector-matrix notation for
prediction and measurement update. Approximation and state
estimation are performed in a black-box fashion without the need of
manual operation or manual inspection. The superior performance
of the Chebyshev Polynomial Kalman Filter compared to state-of-
the-art Gaussian estimators is demonstrated by means of numerical
simulations and a real-world application.



Paper D
Gaussian Filtering for

Polynomial Systems Based on
Moment Homotopy

Authors:

Marco F. Huber and Uwe D. Hanebeck

Published in:

Proceedings to the 16th International Conference on Information
Fusion (Fusion), pages 1080–1087, Istanbul, Turkey, July 2013.

Link to:

http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=6641116
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248 Paper D Gaussian Filtering for Polynomial Systems

Abstract:

This paper proposes Gaussian filters for polynomial systems with
efficient solutions for both the prediction and the filter step. For the
prediction step, computationally efficient closed-form solutions
are derived for calculating the exact moments. In order to achieve
a higher estimation quality, the filter step is solved without the
usual additional assumption that state and measurement are jointly
Gaussian distributed. As this significantly complicates the required
moment calculation, a homotopy continuation method is employed
that yields almost optimal results.



Paper E
(Semi-)Analytic

Gaussian Mixture Filter

Authors:

Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck

Published in:

Proceedings of the 18th IFAC World Congress, pages 10014–10020,
Milano, Italy, August 2011.

Link to:

http://dx.doi.org/10.3182/20110828-6-IT-1002.03359

Abstract:

In nonlinear filtering, special types of Gaussian mixture filters are a
straightforward extension of Gaussian filters, where linearizing the
system model is performed individually for each Gaussian compo-
nent. In this paper, two novel types of linearization are combined
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with Gaussian mixture filters. The first linearization is called ana-
lytic stochastic linearization, where the linearization is performed
analytically and exactly, i.e., without Taylor-series expansion or ap-
proximate sample-based density representation. In cases where a
full analytical linearization is not possible, the second approach de-
composes the nonlinear system into a set of nonlinear subsystems
that are conditionally integrable in closed form. These approaches
are more accurate than fully applying classical linearization.
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Adaptive Gaussian Mixture Filter

Authors:

Marco F. Huber

Published in:

Proceedings of the 14th International Conference on Information
Fusion (Fusion), Chicago, Illinois, July 2011.

Link to:

http://isif.org/fusion/proceedings/Fusion_2011/
data/papers/075.pdf

Abstract:

Gaussian mixtures are a common density representation in non-
linear, non-Gaussian Bayesian state estimation. Selecting an ap-
propriate number of Gaussian components, however, is difficult as
one has to trade of computational complexity against estimation
accuracy. In this paper, an adaptive Gaussian mixture filter based
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on statistical linearization is proposed. Depending on the nonlin-
earity of the considered estimation problem, this filter dynamically
increases the number of components via splitting. For this pur-
pose, a measure is introduced that allows for quantifying the locally
induced linearization error at each Gaussian mixture component.
The deviation between the nonlinear and the linearized state space
model is evaluated for determining the splitting direction. The pro-
posed approach is not restricted to a specific statistical linearization
method. Simulations show the superior estimation performance
compared to related approaches and common filtering algorithms.
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Mixture Reduction
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Published in:

INFORMATIK 2011 - the 41th Annual Conference of the Gesellschaft
für Informatik e.V. (GI), 6th Workshop Sensor Data Fusion: Trends,
Solutions, Applications (SDF), Berlin, Germany, October 2011.

Link to:

https://www.user.tu-berlin.de/komm/CD/
paper/100147.pdf

Abstract:

Many information fusion tasks involve the processing of Gaussian
mixtures with simple underlying shape, but many components.
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This paper addresses the problem of reducing the number of com-
ponents, allowing for faster density processing. The proposed ap-
proach is based on identifying components irrelevant for the overall
density’s shape by means of the curvature of the density’s surface.
The key idea is to minimize an upper bound of the curvature while
maintaining a low global reduction error by optimizing the weights
of the original Gaussian mixture only. The mixture is reduced by
assigning zero weights to reducible components. The main ad-
vantages are an alleviation of the model selection problem, as the
number of components is chosen by the algorithm automatically,
the derivation of simple curvature-based penalty terms, and an
easy, efficient implementation. A series of experiments shows the
approach to provide a good trade-off between quality and sparsity.



Paper H
Analytic Moment-based

Gaussian Process Filtering

Authors:

Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck

Published in:

Proceedings of the 26th International Conference on Machine Learn-
ing (ICML), Montreal, Canada, June 2009.

Link to:

http://dx.doi.org/10.1145/1553374.1553403

Abstract:

We propose an analytic moment-based filter for nonlinear stochas-
tic dynamic systems modeled by Gaussian processes. Exact ex-
pressions for the expected value and the covariance matrix are
provided for both the prediction step and the filter step, where
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an additional Gaussian assumption is exploited in the latter case.
Our filter does not require further approximations. In particular,
it avoids finite-sample approximations. We compare the filter to a
variety of Gaussian filters, that is, the EKF, the UKF, and the recent
GP-UKF proposed by [1].

References

[1] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Haehnel. Gaussian
Processes and Reinforcement Learning for Identification and Con-
trol of an Autonomous Blimp. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 742–747,
Rome, Italy, April 2007.



Paper I
Robust Filtering and Smoothing

with Gaussian Processes

Authors:

Marc P. Deisenroth, Ryan D. Turner, Marco F. Huber, Uwe D. Hanebeck,
and Carl E. Rasmussen

Published in:

IEEE Transactions on Automatic Control, vol. 57, no. 7, pages 1865–
1871, July 2012.

Link to:

http://dx.doi.org/10.1109/TAC.2011.2179426

Abstract:

We propose a principled algorithm for robust Bayesian filtering and
smoothing in nonlinear stochastic dynamic systems when both the
transition function and the measurement function are described
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by non-parametric Gaussian process (GP) models. GPs are gain-
ing increasing importance in signal processing, machine learning,
robotics, and control for representing unknown system functions
by posterior probability distributions. This modern way of “sys-
tem identification” is more robust than finding point estimates of
a parametric function representation. In this article, we present a
principled algorithm for robust analytic smoothing in GP dynamic
systems, which are increasingly used in robotics and control. Our
numerical evaluations demonstrate the robustness of the proposed
approach in situations where other state-of-the-art Gaussian filters
and smoothers can fail.



Paper J
Recursive Gaussian Process

Regression

Authors:

Marco F. Huber

Published in:

Proceedings of the 38th International Conference on Acoustics,
Sound, and Signal Processing (ICASSP), pages 3362–3366, Vancou-
ver, BC, Canada, May 2013.

Link to:

http://dx.doi.org/10.1109/ICASSP.2013.6638281

Abstract:

For large data sets, performing Gaussian process regression is com-
putationally demanding or even intractable. If data can be pro-
cessed sequentially, the recursive regression method proposed in
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this paper allows incorporating new data with constant computa-
tion time. For this purpose two operations are performed alter-
nating on a fixed set of so-called basis vectors used for estimating
the latent function: First, inference of the latent function at the
new inputs. Second, utilization of the new data for updating the
estimate. Numerical simulations show that the proposed approach
significantly reduces the computation time and at the same time
provides more accurate estimates compared to existing on-line
and/or sparse Gaussian process regression approaches.



Paper K
Recursive Gaussian Process:

On-line Regression and Learning

Authors:

Marco F. Huber

Published in:

Pattern Recognition Letters, vol. 45, pages 85–91, August 2014.

Link to:

http://dx.doi.org/10.1016/j.patrec.2014.03.004

Abstract:

Two approaches for on-line Gaussian process regression with low
computational and memory demands are proposed. The first ap-
proach assumes known hyperparameters and performs regression
on a set of basis vectors that stores mean and covariance estimates
of the latent function. The second approach additionally learns
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the hyperparameters on-line. For this purpose, techniques from
nonlinear Gaussian state estimation are exploited. The proposed
approaches are compared to state-of-the-art sparse Gaussian pro-
cess algorithms.
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Optimal Stochastic Linearization

for Range-Based Localization
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Published in:

Proceedings of the 2010 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 5731–5736, Taipei, Taiwan,
October 2010.

Link to:

http://dx.doi.org/10.1109/IROS.2010.5649076

Abstract:

In range-based localization, the trajectory of a mobile object is es-
timated based on noisy range measurements between the object
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and known landmarks. In order to deal with this uncertain informa-
tion, a Bayesian state estimator is presented, which exploits optimal
stochastic linearization. Compared to standard state estimators
like the Extended or Unscented Kalman Filter, where a point-based
Gaussian approximation is used, the proposed approach consid-
ers the entire Gaussian density for linearization. By employing the
common assumption that the state and measurements are jointly
Gaussian, the linearization can be calculated in closed form and
thus analytic expressions for the range-based localization problem
can be derived.
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Published in:
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Link to:
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Abstract:

In range-based pose tracking, the translation and rotation of an
object with respect to a global coordinate system has to be esti-
mated. The ranges are measured between the target and the global
frame. In this paper, an intelligent decomposition is introduced in
order to reduce the computational effort for pose tracking. Usu-
ally, decomposition procedures only exploit conditionally linear
models. In this paper, this principle is generalized to conditionally
integrable substructures and applied to pose tracking. Due to a
modified measurement equation, parts of the problem can even be
solved analytically.
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Gaussian Mixture Filter
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Marco F. Huber

Published in:

Proceedings of the 19th IFAC World Congress, pages 1059–1066,
Cape Town, South Africa, August 2014.

Link to:

http://dx.doi.org/10.3182/20140824-6-ZA-1003.00795

Abstract:

The reconstruction of environmental events has gained increased
interest in the recent years. In this paper, the focus is on estimating
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the location and strength of a gas release from distributed measure-
ments. The estimation is formulated as Bayesian inverse problem,
which utilizes a Gaussian plume forward model. A novel recursive
estimation algorithm based on statistical linearization and Gaus-
sian mixture densities with adaptive component number selection
is used in order to allow at the same time accurate and computation-
ally efficient source estimation. The proposed solution is compared
against state-of-the-art methods via simulations and a real-word
experiment.
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Authors:

Marco F. Huber, Tobias Dencker, Masoud Roschani, and Jürgen
Beyerer

Published in:

Proceedings of the 15th International Conference on Information
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Link to:
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Abstract:

This paper is concerned with a Bayesian approach of actively select-
ing camera parameters in order to recognize a given object from a
finite set of object classes. Gaussian process regression is applied to
learn the likelihood of image features given the object classes and
camera parameters. In doing so, the object recognition task can be
treated as Bayesian state estimation problem. For improving the
recognition accuracy and speed, the selection of appropriate cam-
era parameters is formulated as a sequential optimization problem.
Mutual information is considered as optimization criterion, which
aims at maximizing the information from camera observations or
equivalently at minimizing the uncertainty of the state estimate.
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Estimating a hidden quantity from noisy measurements and incomplete 
information is typical for many technical applications like positioning, object
classifi cation, or forecasting. In order to deal with the resulting uncertain-
ties, it is common to rely on probabilistic modelling, where inference and 
reasoning can be performed by means of Bayesian fi ltering. Although be-
ing a generally applicable framework, optimal Bayesian fi ltering is often 
only of conceptual value, especially if one is confronted with nonlinearities.

In this work the focus is on processing Gaussian distributions for approxi-
mate Bayesian fi ltering. This restriction transforms the fi ltering problem to 
an algebraically simple form and thus, allows for computationally effi cient
algorithms. Three problem settings with increasing complexity are dis-
cussed: (1) Gaussian distributions are a suffi cient representation of the 
hidden quantity, (2) mixture of Gaussians are necessary due to strong 
nonlinearities or multi-modalities, (3) mathematical models describing 
the dynamics and sensors are no longer available and thus, have to be 
learned from data by means of Gaussian processes. For each problem set-
ting, effi cient algorithms are derived and applied to real-world problems.
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