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Abstract

Modern sequencing technology now allows biologists to collect the entirety of molecular evidence for reconstructing
evolutionary trees. We introduce a novel, user-friendly software package engineered for conducting state-of-the-art
Bayesian tree inferences on data sets of arbitrary size. Our software introduces a nonblocking parallelization of
Metropolis-coupled chains, modifications for efficient analyses of data sets comprising thousands of partitions and
memory saving techniques. We report on first experiences with Bayesian inferences at the whole-genome level using
the SuperMUC supercomputer and simulated data.
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The task of resolving the tree of life of extant species remains
one of the grand challenges in evolutionary biology. As the
number of trees grows superexponentially with the number of
species for which an evolutionary tree is reconstructed, tree
inference is considered a hard problem in computer science.
The plethora of algorithmic challenges associated with phylo-
genetic trees and their efficient computation gave rise to the
discipline of “phyloinformatics.” Likelihood-based statistical
methods are highly popular because they can incorporate
complex evolutionary models. Popular likelihood-based
tools comprise methods for maximum-likelihood (ML) esti-
mation, such as RAxML (Stamatakis 2014) and PhyML

(Guindon et al. 2010), as well as Bayesian inference packages,
such as MrBayes (Ronquist et al. 2012) and BEAST

(Drummond et al. 2012). Likelihood-based methods can, in
fact, unravel the true evolutionary tree given enough data and
the appropriate model (Yang 1994b). Although the ML ap-
proach strives to optimize the likelihood of the tree and model
given the data, Bayesian inference uses Markov chain Monte
Carlo (MCMC) (Hastings 1970) sampling to integrate over the
entire parameter space (e.g., model parameters and tree to-
pologies) given the data and subjective prior assumptions.

Inexpensive wet-lab sequencing technologies allow amas-
sing molecular evidence from hundreds of genes (DellAmpio
et al. 2014). This amount of data is often required for resolving
ancient radiations (Dunn et al. 2008). Hence, so-called phylo-
genomic data sets are being increasingly used to disentangle
evolution. Collaborative efforts such as the 1K Insect
Transcriptome Evolution (http://1kite.org, last accessed
August 13, 2014) project aim at assembling the entirety of
molecular sequence data to infer accurate phylogenies.
Conducting such phylogenomic analyses is challenging due
to exorbitant runtime and memory requirements. In a recent
study (Rinke et al. 2013) with more than 2,000 microbial

species and more than 8,000 amino acid alignment charac-
ters, the authors did not complement ML trees by Bayesian
tree inferences. The reason for this was the limited ability of
current Bayesian inference software to leverage supercom-
puter resources (often several CPU-months or CPU-years
are required) and to accommodate the excessive main
memory requirements which for this example are in the
order of 10–20 GB.

Novel Approaches and Software Features
We resolve these computational limitations of Bayesian infer-
ence tools by introducing ExaBayes, a software package
engineered for efficient Bayesian tree inference on data sets
of almost arbitrary size. ExaBayes can conduct Bayesian
analyses for the most widely used priors, models, and input
data types. These comprise Dirichlet, exponential and uni-
form priors, the general time-reversible (GTR) model of nu-
cleotide substitution (Tavar�e 1986), the G model of rate
heterogeneity (Yang 1994a), and unconstrained branch
length sampling. For protein data, we offer 18 commonly
used fixed-rate substitution matrices as well as a GTR
model. We also implemented a comprehensive set of topo-
logical proposals that assure rapid convergence and adapted
these for massively parallel execution.
ExaBayes is a self-contained software package, that is, it

comprises several postprocessing methods such as stand-
alone tools for building consensus trees, for assessing topo-
logical convergence among independent runs (Lakner et al.
2008), and for extracting sample statistics. The output format
is compatible with popular visualization tools, such as
FigTree (Rambaut 2014) or Tracer (Rambaut and
Drummond 2007).

Runtime as well as memory requirements of Bayesian
inference is largely dominated by evaluating the
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phylogenetic-likelihood function. In ExaBayes, we deploy
the efficient-likelihood kernel developed for RAxML

(Stamatakis 2014) that allows fully leveraging the computa-
tional power of SSE and AVX vector units on modern CPUs.
The sequential AVX version of ExaBayes outperforms
MrBayes for DNA data, whereas for protein data
MrBayes is faster (see Supplementary Material online, for
detailed discussions on this and further results). The central
contribution of ExaBayes lies in its scalability.
ExaBayes implements three layers of parallelism (see

fig. 1). For instance, the parallel version of ExaBayes

allows to distribute the likelihood calculations across several
processors and across several computing nodes in a cluster.
Thus, the resources of an entire cluster or supercomputer can
be used to accommodate the runtime and memory require-
ments of large-scale alignments. Parallel execution reduces
runtimes almost linearly to the number of CPUs used. For a
single chain and on a simulated data set with 200 species and
500,000 DNA characters, using the parallel version of
ExaBayes reduces runtimes from 1 day and 4 h on one
core to only 43.5 s on 8,192 cores, achieving a speedup of
2,368-fold. If we increase the number of characters by a
factor of 10, ExaBayes scales from 256 up until at least
32,768 cores and improves runtime even faster than theoret-
ically expected for up to 4,096 cores because of increased
cache efficiency (see fig. 2).
ExaBayes implements Metropolis-coupling (Geyer

1992), a fundamental mechanism to accelerate convergence
on “difficult” data sets. Heated chains with increased accep-
tance probabilities are coupled to the chain that is being
sampled. Swaps between chains are accepted proportional
to the posterior probability of chain states. As memory re-
quirements increase linearly with each additional chain, large
data sets require chains to be distributed across several CPUs
or computing nodes in a cluster (second layer of parallelism).
To this end, we modified the state-of-the-art parallel algo-
rithm for Metropolis-coupled MCMC (Altekar et al. 2004) to
use faster, nonblocking communication among processes (see
supplementary material, Supplementary Material online, for a
detailed description). Thus, when a set of processors propose
a swap through a nonblocking message, they can immediately
continue doing useful work by conducting calculations on a
different chain that will not be swapped. This reduces run-
times by up to 19% and thus avoids wasting hundreds of CPU

hours for large-scale analyses. Finally, independent analyses
can be executed concurrently using a third layer of parallelism
(see fig. 1).

Moreover, ExaBayes adapts two orthogonal memory
saving techniques. The so-called subtree equality vector ap-
proach allows to save memory proportional to the fraction of
unknown or missing data. At the same time, it can also accel-
erate likelihood calculations on data sets with a large propor-
tion of missing data. This strategy was designed for
phylogenomic data sets (Izquierdo-Carrasco et al. 2011),
where unknown orthologs can lead to a large fraction of miss-
ing data exceeding for instance 75% (DellAmpio et al. 2014).
Our second technique allows discarding memory-intensive
partial results by recomputing these on demand. Three set-
tings trade varying amounts of runtime for additional memory
savings by means of recomputation. Specifically, when cou-
pled chains are distributed, this reduces memory requirements
by a factor of up to 2, while we observe a slow-down of less
than 1.5-fold. As the size of data sets that can be computed
by ExaBayes is merely constrained by available hardware,
our memory saving techniques allow conducting ambitious
analyses on small and less expensive computer clusters.

For improved model fit, it is often desirable to sample
distinct model parameters (e.g., substitution rates) for each
gene or partition of an alignment. We have tested ExaBayes
using simulated alignments with 1,000–10,000 partitions. All
parameters (including branch lengths, but excluding the to-
pology) can be flexibly linked or unlinked across partitions.
We observed a performance decrease with an increasing
number of partitions. To alleviate this issue, we modified
our MCMC algorithm and data-to-processor assignment
scheme. This modification induces a runtime improvement
of up to 22 times for runs in which branch lengths are linked
across all partitions. ExaBayes runs up to 87 times faster,
when each partition has distinct branch lengths (i.e., branch
lengths are unlinked across partitions).

Inference from a Whole-Genome Data set
To demonstrate the capabilities of ExaBayes, we executed
a Bayesian inference on a “difficult” complete simulated

#processes

500 1000 2000 5000 10000 20000

1

2

5

10

20

50

●

●

●
●

●

●

●

●

0

20

40

60

80

100

120

sc
al

in
g 

pe
rfo

rm
an

ce
 [%

]

sc
al

in
g 

fa
ct

or

FIG. 2. Scaling factor (sequential runtime divided by parallel runtime)
and efficiency (scaling factor divided by number of processes) for exe-
cuting ExaBayes on 256 cores up to 32,768 cores on a 200 species
alignment with 500,000 characters.
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FIG. 1. The three layers of parallelism employed by ExaBayes
(distributed likelihood evaluation, distributed Metropolis-coupled
chains, and distributed independent analyses).
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genome (for which the “true” evolutionary history is known)
comprising 100 partitions with 1,000,000 characters each
(inspired by a per-chromosome partitioning). To simulate
the alignment, we used a tree with 200 species. The tree
is bush-like and contains many long, outer branches and
short, hard-to-resolve, inner branches. As the RAM require-
ments of this data set exceed 5 TB, we employed the
SuperMUC supercomputer, which is currently among the
ten fastest supercomputers in the world. A total of four
independent runs with one chain each seeded by reasonable
(i.e., nonrandom) parsimony starting trees (Fitch and
Margoliash 1967) rapidly converged to the true tree topology
within less than 20,000 generations (total chain length:
100,000 generations; a sample was extracted every 500 gen-
erations). All branches showed 100% certainty (posterior
probability). Using over 4,096 CPU cores, the slowest run
took 1 h 40 min. Thus, the accumulated CPU-time over all
four runs is 3 years and 45 days. To avoid potential biases
induced by the parsimony starting trees, we also ran two
independent chains starting from random trees. Here,
the chains converged to the true tree topology after
&60,000 generations. With random starting trees, we
have to discard substantially longer burn-ins, before we
attain an accurate sampling of the posterior probability of
the trees.

We examined how the posterior probability of the trees
changes as we reduce the amount of data in steps of 2 orders
of magnitude. If we discard 33% of samples as burn-in, we
obtain 1) 100% confidence for all splits in the tree inferred
from 100,000,000 characters, 2) only one split with 98.5%
certainty for 1,000,000 characters, and 3) nine splits with a
posterior probability between 61.2% and 99.2% for
10,000 characters. For 10,000 characters we do not attain
maximum confidence in the true tree, even if the burn-in
phase is substantially extended. Thus, we conclude that this
amount of data is insufficient for inferring a reliable tree on
this data set. As illustrated in figure 3, the chain instead jumps
between several trees of high posterior probability after
burn-in.

Finally, we examined how confidence intervals for branch
lengths change as we increase the amount of data. We find
that, with only 10,000 characters, we mostly do not obtain
accurate branch length estimates and that confidence
intervals cover a wide spectrum specifically for short
branch lengths. Branch lengths can be determined more
accurately with more data; however, increasing the data set
size from 1,000,000 characters to 100,000,000 characters
does not substantially decrease the standard deviation
in branch length samples (see supplementary material,
Supplementary Material online). We observed that
genome-scale data allow for high certainty about the “true”
(here simulated) branch length; however, even this amount
of data does not guarantee small confidence intervals for
branch lengths in the range of 10�3 � 10�4. Nevertheless,
we expect that with chromosome- and genome-size data,
extremely precise estimations of divergence times can be
performed.

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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