

 Karlsruhe Reports in Informatics 2015,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Deductive Verification of Concurrent
Programs

 Daniel Bruns

 2015

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Abstract

Verification of concurrent programs still poses one of the major challenges
in computer science. Several techniques to tackle this problem have been
proposed. However, they often do not scale. We present an adaptation of the
rely/guarantee methodology in dynamic logic. Rely/guarantee uses functional
specification to symbolically describe the behavior of concurrently running
threads: while each thread guarantees adherence to a specified property
at any point in time, all other threads can rely on this property being
established. This allows to regard threads largely in isolation—only w.r.t.
an environment constrained by these specifications. While rely/guarantee
based approaches often suffer from a considerable specification overhead, we
complement functional thread specifications with frame conditions.

We will explain our approach using a simple, but concurrent programing
language. Besides the usual constructs for sequential programs, it caters for
dynamic thread creation. We define semantics of concurrent programs w.r.t.
an underspecified deterministic scheduling function.

To formally reason about programs of this language, we introduce a novel
multi-modal logic, Concurrent Dynamic Trace Logic (CDTL). It combines
the strengthes of dynamic logic with those of linear temporal logic and allows
to express temporal properties about symbolic program traces. We first
develop a sound and complete sequent calculus for the logic subset that uses
the sequential part of the language, based on symbolic execution. In a second
step, we extend this to a calculus for the complete logic by adding symbolic
execution rules for concurrent interleavings and dynamic thread creation
based on the rely/guarantee methodology. Again, this calculus is proven
sound and complete.

Acknowledgement. The author acknowledges financial support by the German
National Science Foundation (DFG) under project “Program-level Specification
and Deductive Verification of Security Properties (DeduSec)”1 within priority pro-
gramme 1496 “Reliable Secure Software Systems (RS3).”2

1http://www.key-project.org/DeduSec/
2http://www.spp-rs3.de/

iii

http://www.key-project.org/DeduSec/
http://www.spp-rs3.de/

Contents

Page

1 Concurrent Programs 1
1.1 Sequential and Concurrent Programs 2
1.2 Approach Overview . 3
1.3 Scheduler Assumptions . 4
1.4 Target Programing Language 6
1.5 Representing Memory and Threads 8
1.6 Trace Semantics for Sequential Programs 10
1.7 Semantics of Concurrent Programs 13

2 Concurrent Dynamic Trace Logic 17
2.1 Syntax of Concurrent Dynamic Trace Logic 18
2.2 Semantics of Concurrent DTL 20
2.3 Discussion . 24

3 Deductive Verification of Concurrent Programs 27
3.1 Concurrent Verification . 27
3.2 Rely/Guarantee Reasoning 29

3.2.1 Relevant Interleavings 30
3.3 Proof Obligations . 31
3.4 A Calculus for Concurrent DTL 36

3.4.1 Reasoning About Environment Steps 36
3.4.2 Reasoning About Thread Creation 37
3.4.3 Soundness . 39
3.4.4 Completeness . 40

4 Related Work 41
4.1 Temporal Behavior of Java Programs 41
4.2 Deductive Reasoning About Concurrent Programs 42
4.3 Rely/Guarantee . 43

Bibliography 45

v

Chapter 1

Concurrent Programs

Today, in the 21st century, software systems are behind almost any process
of everyday life—business or private. With the ever growing amount of
sensitive data they handle, and the connectedness of the world, we are in
need of precise and enforcible security mechanisms. The recent discoveries of
security threats induced by badly designed software, such as the Heartbleed
bug, have demonstrated the demand for a rigorous security assessment in
software development. This does not only concern domains with traditionally
high assurance demands, such as banking or aeronautics, but also private
communication.

At the same time, software systems have become more and more complex.
Established concepts for modularization or information hiding, such as
object orientation, facilitate the designers’/implementors’ work; but raise
the complexity for analyzing such a system. Parallelization has become a
major paradigm in computer development. And many software faults are
linked to an inferior understanding of concurrent program semantics.

In this chapter, we introduce our target concurrent language. Besides
the usual constructs for sequential execution, it features a fork statement to
spawn a fresh thread. We will develop denotational semantics for sequential
programs and subsequently for concurrent programs. Concurrent programs
consist of a set of threads, that each executes a sequential program that is
interleaved by the environment. Concurrent changes to the shared memory
are modeled explicitly in the program code through explicit release points
and an explicit—yet underspecified—scheduling function.

The semantics defined in this chapter is agnostic concerning analysis
techniques. This will serve as the foundation for the dynamic logic to be
introduced in Chap. 2 and for Chap. 3 on modular reasoning about concur-
rent programs using rely/guarantee. We start by reviewing the established
concepts of concurrency and by explaining the foundations of our approach.

1

Chapter 1. Concurrent Programs

1.1 Sequential and Concurrent Programs

Concurrent computer systems have existed for a long time. But it is only
recently (i.e., since the late 2010s) that many end-user systems are concurrent.
Precise semantics-based analysis is justified. We have powerful state of the
art techniques for specification and verification of sequential programs. These
are mature enough to be lifted to the concurrent setting.

Sequential programs run on single processors. Concurrent programs in
general can be modelled as a collection of processes—that may each be
described like sequential programs—some (implicit or explicit) channels.
The central advantage of concurrent programs is that they can be actually
executed in parallel on physically separate processor. This concurrency model
is usually found in distributed systems, where each processor maintains its
own memory and cannot interfere directly with the other processes. Instead,
they communicate asynchronously through message passing using explicit
channels.

Time share parallelism, on the other hand side, runs on one (or more)
shared processors, with the next to-be-dispatched process to be determined
by a scheduler. Processes may be preempted in order for other processes to
be executed in between. In most systems this interleaving can occur at any
point in time during the execution. In some systems the program states in
which interleaving is possible are restricted. An example is the coöperative
scheduling paradigm using explicit release points [Dovland et al., 2005] in the
Abstract Behavioral Specification (ABS) language [Johnsen et al., 2010].

Most time share systems also share memory. This means that the
functional behavior of one process may be influenced by another one (and
the scheduler itself): one process writes a location that another one reads.
These kind of processes cannot be assessed independently. While modern
desktop computers have multiple processor cores, these are not (purely)
distributed, but form a time share system that particularly shares the main
memory.3 Processes that share processors and memory are also called
threads, designating this kind of concurrency as multi-threading. This thesis
is dedicated to the multi-threading paradigm as it is used in the Java language,
amongst others.

All kinds of programs can be described by their observable behavior. For
sequential programs it suffices to describe the relation between initial and
terminal system states (or between a multitude of possible states). Even
for sequential programs, the exact definitions of observable behavior widely
diverge, e.g., regarding termination, exceptions, heap structures, or side
effects, etc. Modules of sequential programs are (public) procedures. The
techniques for modular reasoning about sequential programs are design by
contract, behavioral subtyping, etc.

3Each processor may have private memory in caches, etc.

2

1.2. Approach Overview

Concurrent programs may allow more observations. “The key to formu-
lating compositional proof methods for concurrent processes is the realisation
that one has to specify not only their initial-final state behaviour, but also
their interaction at intermediate points.” [de Roever et al., 2001].

Processes in shared memory systems tend to interfere with each other.
While some interactions are certainly benign—otherwise there would be
little benefit in concurrency—their scope cannot be restricted in general.
Thus, the goal is to harness concurrent modifications. Specifications help to
describe functional behavior. But we also need to ensure that “nothing else
changes.” In sequential programs, this frame problem [Borgida et al., 1993]
is well known.

Computing all possible interleavings for concurrent systems is far from
being feasible. This is known as the global method [de Roever et al., 2001].
Its complexity is clearly exponential in the number of concurrent processes
(with the number of local descision points in each process being the base of
that power). The technique by Owicki and Gries [1976] was the first to be
symbolic and has only linear complexity in the number of processes. It is
based on traditional local correctness proofs in Hoare logic plus additional
noninterference proofs. The rely/guarantee technique [Jones, 1983; Xu
et al., 1997] completely relies on modular specification and is compositional.
Assumption/commitment [Misra and Chandy, 1981] is a similar technique
for distributed systems with message passing.

1.2 Approach Overview

In this thesis we consider a simple concurrent imperative language, that we
call deterministic While-Release-Fork (dWRF). It extends the sequential
language presented by Beckert and Bruns [2013] with interleavings and
dynamic thread creation. It is ‘Java-like’ in the sense that it uses both local
and global variables (aka. fields) and that an arbitrary number of sequential
program fragments4 can be executed concurrently. dWRF distinguishes
between local variables with atomic assignments and global variables with
assignments inducing (local) state transitions. The rationale behind this
is that, in a concurrent setting, only global memory can be observed by
the environment. Expressions do not have side effects. New threads can
be spawned in a simple fork statement, that names the thread to create,
but does not have parameters. Synchronization is not considered at the
moment and will be left to future work. We introduce the syntax of dWRF
in Sect. 1.4.

4Throughout this thesis, we will use the term ‘program’ for sequential program fragments
(or, ‘blocks’ in Java). This is the usual notion of programs in the context of dynamic
logics. We will sometimes use ‘system of (sequential) programs’ to denote entities that are
considered ‘programs’ in other contexts. Since we do not introduce method calls in our
simple language, this distinction is not essential.

3

Chapter 1. Concurrent Programs

Other Java features such as objects, arrays, types, or exceptions are not
of relevance to our discourse. These are largely orthogonal (cf., e.g., [Stärk
et al., 2001]) and could be added without invalidating the central results.
All such features can be added in principle, but we keep the programing
language simple for the presentation in this chapter.

We conjecture that write actions are immediately visible to the envi-
ronment.5 On the other hand side, concurrent changes induced by the
environment only appear in the semantics when they actually may have an
effect, namely upon read actions or termination. In order to extend the
language defined by Beckert and Bruns [2013] in a conservative manner, we
do not alter the semantics of read actions. Instead, we introduce explicit
release points [Dovland et al., 2005]. Release points denote that a thread
voluntarily releases control and the scheduler may select another thread.
We represent this through explicit release statements, which semantics is
defined through the local semantics of the environment threads. All other
program statements are not affected by the environment. While in reality,
interleavings may occur at any point in time, this setup is sufficient to model
such systems, while it greatly reduces the number of program states in which
we must expect interleavings.

For this chapter, we just assume that release statements may appear
in the code. Later, in Sect. 3.2.1, we explain how purely sequential programs
can be explicitly instrumented with release statements at the relevant
interleaving points to model the behavior of actual concurrent programs.

The semantics of dWRF is meant to extend the semantics of the sequential
language by Beckert and Bruns [2013] in a conservative way. However, in
contrast to Beckert and Bruns [2013], we model global memory using an
explicit (ghost) program variable heap, as explained in Sect. 1.5. The
semantics of heap is a mapping from global variable names to values. This
modeling caters both for abstract anonymization (i.e., havocking) on (possibly
underspecified) parts of the heap and for a convenient comparisons of the
entire memory, that we need for the techniques presented in Chaps. 3f.
Program semantics with explicit heap representations have been used in [Weiß,
2011], for instance. We extend Weiß’ approach with a second variable heap’
to denote the heap in the previous state, that we use to represent two-state
invariants in the rely/guarantee approach in Chap. 3.

1.3 Scheduler Assumptions

Our approach is widely scheduler agnostic. Validity of program properties
will be defined in Sect. 1.6 w.r.t. (almost) any scheduler; we only make the
following fundamental assumptions. A formalization of these properties will

5Unfortunately, the Java memory model (JMM) does not guarantee this property.

4

1.3. Scheduler Assumptions

appear in Defs. 1.10 and 1.15 on pages 14ff. A general framework to formalize
scheduler policies is not part of this work.

1. The number of active threads is always finite.

2. In any state in which at least one thread is active, i.e., a thread that is
not yet terminated,6 the scheduler selects an active thread. Without
loss of generality, we assume that there is always an active thread,
at least a synthetic ‘idle’ thread that infinitely loops with ineffective
global writes.

3. The scheduling itself, i.e., selecting an active thread, does not change the
global heap state. This means that a schedule is just a function on states,
and thus deterministic. This should not impose a loss of generality
as any set of nondeterministic schedulers can be simulated through a
set of deterministic schedulers.7 There already are formalizations of
concurrent program semantics using deterministic schedulers in the
literature, e.g., by Beckert and Klebanov [2013]. In fact, indeterminism
does not offer more expressiveness as we only consider properties
that are valid for any deterministic scheduler and any indeterministic
scheduler can be simulated by a set of deterministic schedulers.

4. The scheduler is fair. By ‘fair’ we understand the property that every
thread will be chosen sufficiently often to terminate—or infinitely often.
Given assumption 1, an equivalent phrasing is that any thread is
selected at least once within finite time. This does not seem to ban
us from modeling real world schedulers. As mentioned by Beckert
and Klebanov, Java schedulers are “statistically fair,” which means
effectively fair in almost any practical situation. From a theoretical
point, this assumption makes validity definitions simpler and more
consistent. Taking the possibility into account that an interleaving
may not return, would effectively introduce a kind of indeterminism.8

For information flow, it will be interesting whether the scheduler can
work on high data. We assume an attacker model where the attacker is

6Thread suspension is not yet considered.
7There may be a special thread that does the actual calculations for a schedule and

changes the state accordingly. In particular, we can assume that the exact same program
state cannot be reached twice.

8Dropping fairness would require to relax the semantics of properties on programs,
leading only to partial correctness. An approach would be to introduce a special program
‘state’ that is unreachable and in which any formula is vacuously true. Such a definition
would be very disturbing to our logic as there cannot be a regular program state with this
properties. It would have to be treated explicitly in every definition. The logic of Beckert
and Bruns [2013] is particularly well-behaved because of the (one) modality being dual to
itself (i.e., it is invariant under negation). Such a property would be lost.

5

Chapter 1. Concurrent Programs

in control of threads, but not the scheduler. This means that an attacker
cannot distinguish why/in which state its threads are scheduled or not—even
in case the scheduler schedules using confidential information.

1.4 Target Programing Language

In this section, we introduce our target programing language deterministic
While-Release-Fork (dWRF).9 The sequential language constructs are assign-
ments, conditional branching, and conditional loop statements. Additional
constructs for concurrency are forking and release statements. Programs are
sequences of statements. The (mathematical) integers and boolean are the
only data type for program variables. Expressions can be of types integer
or boolean; they do not have side effects. Integer operators are unary mi-
nus, addition, multiplication, division and modulo. The program language
does not contain features such as functions and arrays; and there are no
object-oriented features. The only special feature is the distinction between
local variables (written in lowercase letters) and global variables (written in
uppercase). We assume that local variable names are unique; in particular,
there are no name clashes between threads.

Program expressions are typed. We use pairwise disjoint types Z (integers)
and B (boolean). We assume disjoint sets LVar of local program variables
and GVar of global program variables to be given.

Definition 1.1 (Program expressions). Program expressions of type Z are
constructed as usual over integer literals, local and global variables, and the
operators +, -, *, /, and %. Program expressions of type B are constructed
using the relations ==, >, and < on integer expressions, the boolean literals
true and false, and the logical operators &&, ||, and !. A program expression
is simple if it does not contain global variables.

As will be explained in Sect. 1.6, we consider assignments to global
variables to be the only program statements that lead to a new observable
state. To ensure that there cannot be a program that gets stuck in an infinite
loop without ever progressing to a new observable state, we demand that
every loop contains an assignment to a global variable.10 Expressions on
the right hand side of global assignments and conditions for if or while
statements must be simple. The right hand side of local assignments may
refer to at most one global variable.

We extend the core language introduced by Beckert and Bruns [2013] with
two additional statements release and fork that represent explicit thread
release and thread creation, respectively. By instrumenting a sequential

9It is pronounced [dwO:ôf].
10This technical restriction can easily be fulfilled by adding ineffective assignments.

6

1.4. Target Programing Language

Table 1.1: Syntax of sequential dWRF programs. Local and global program
variables are represented by rules v and G, respectively.

z ::= z+z | z-z | z*z | z/z | z%z | v | G | 0 | 1 | . . .
b ::= true | false | b && b | b || b | !b | z == z | z > z |

z < z | v | G
x ::= z | b
π ::= G = x | v = x | π;π | if (b) {π} else {π} |

while (b) {π} | release | fork f

program with the release statement, we simulate interleavings in a concurrent
program, as explained in Sect. 3.2.1.

Definition 1.2 (dWRF syntax). A statement is one of the following:

• local assignment: v = x; where v is a local variable and x is an
expression of the same type not containing reference to more than one
global variable

• global assignment: F = x; where F is a global variable and x is a
simple expression of the same type

• conditional: if (b) {π0} else {π1} where b is a simple boolean ex-
pression and π0, π1 are programs

• loop: while (b) {π} where b is a simple boolean expression and π is a
program containing at least one global assignment

• thread release: release;

• thread creation: fork f; where f is a new thread

Definition 1.3. A sequential program, or just ‘program’ for short, is a
finite sequence of statements. The set of sequential programs is denoted by
Prg. Programs not containing release or fork are called noninterleaved. A
concurrent program Π is a finite set of sequential programs, Π ∈ 2Prg

fin .

Table 1.1 displays the syntax of sequential programs. The language
of Beckert and Bruns [2013] is not strictly included in this, as it permits
nonsimple expressions to appear as guards or the right hand side of global
assignments. Nevertheless, any Beckert and Bruns [2013] program can be
transformed into an equivalent program in the intersection by adding local
assignments; see Lemma 1.9.

Example 1.4. The following line shows a small (noninterleaved) program,
that reads two integers from global variables A and B and writes the minimum
to a third global variable C.

7

Chapter 1. Concurrent Programs

x = A; y = B; if (x < y) { C = x; } else { C = y; }

The following, shorter line is not a valid dWRF program since the statements
in the conditional and on the right hand side of the global assignments to C
are not simple. Yet, both are equivalent in the language presented by Beckert
and Bruns [2013].

if (A < B) { C = A; } else { C = y; }

1.5 Representing Memory and Threads

We now lay the foundations for defining a semantics for dWRF. There are
essentially two possibilities of representing computer memory in semantics
and logic:11 1. to represent each memory location by a function symbol12

or 2. to use a dedicated theory of storage and update a special variable
representing the current memory state.

While Hoare logic and classical dynamic logic [Harel, 1979] pursue the
former approach and use function symbols for each memory location,13

the concept of having just one mathematical object to represent the whole
memory of a computer system has been proven to be more convenient in
may regards. It does allow to specify dynamically allocated memory—in
particular recursively defined data structures—in a modular way; and it
allows to specify information flow properties [Scheben and Schmitt, 2012].
Instead of enumerating all the locations that are unchanged, we can just
quantify over them. In Chap. 3, we show that with an explicit heap we
can express two-state invariants conveniently. Such explicit heap modeling
appears in [Poetzsch-Heffter and Müller, 1999; Stenzel, 2005; Barnett et al.,
2005; Smans et al., 2008; Leino, 2010; Leino and Rümmer, 2010; Weiß, 2011].

To represent the heap on the semantical level, we introduce special
program variables heap and heap’, that must not appear in programs.14

Their semantics is a partial function from global variables to values. Upon
every state change, induced by a write action, the values of heap an heap’
are updated.

11The reader may excuse that this section anticipates logic to some extend, that is meant
to appear in Chap. 2. On the other hand side, the logic representation is strongly related
to the modeling issues that are discussed here.

12Although it may sound confusing, program variables are considered (nonrigid) constants,
i.e., 0-ary functions, in this context.

13This approach was also taken in earlier versions of the KeY system, see [Beckert, 2001;
Beckert et al., 2007b].

14They can be described as ghost variables, thus.

8

1.5. Representing Memory and Threads

Reasoning about heaps is provided through the explicit heap theory
of Weiß [2011], that is already implemented in the KeY verification system
from version 2.0 onwards. It compromises of the three data types Field
(representing the syntactical entity of the same name in program code,
denoted by F), LocSet (representing finite sets of locations, denoted by L),
and Heap (representing a mapping from the set of all locations to values,
denoted by H). For most of this dissertation, we identify the terms ‘location’
and ‘field’ with each other, since we do not have the notion of objects.15

The field data type contains only a finite number of constants. The
signature of the location set data type is the same as for standard (finite)
sets; it includes a constructors empty set ∅̇ and singleton {`} (with a
location `), the binary set operators ∪̇ (union), ∩̇ (intersection), and \ (set
minus); as well as the unary set operator ·{ representing the complement
in the set of all locations.16 The predicate ∈̇ indicates whether a field is in
a location set. For convenience, we write {x0, x1, . . . , xn} as shorthand for
{x0} ∪̇ {x1} ∪̇ . . . ∪̇ {xn}.

The heap data type is a coalgebraic data type17 with a single observer (or,
‘destructor’) select and two elementary mutator functions store and anon
whose semantics are given in terms of selects on them, which is based on the
theory of arrays by McCarthy [1962]:

(i) select(h, `) of type >, where h is term of type H and ` (‘location’) of
type F, representing value retrieval from a location;

(ii) store(h, `, v) of type H, where v is a term of any value type (e.g., integer)
and h, ` as above, representing a state change; and

(iii) anon(h, L) of type H, represents a heap that is havocked on all location
in the location set L, but agrees on h otherwise.

We do not give formal semantics for the LocSet and Heap theories here
as they should be intuitively clear; the interested reader is pointed to [Weiß,
2011, Chap. 5]. By abuse of notation, we write logic symbols and their
semantical counterpart functions alike.

Threads are also represented by semantical objects. The state of currently
active threads is recorded in a special variable threads. Like heap, it must
not appear in programs. It is updated whenever a fresh thread is forked. It
is of type T, that is to be understood as finite, nonempty sets of threads.

15 Weiß [2011] defines a location as a pair of a receiver object and a field (which is just
an identifier).

16The set of all locations is a welldefined finite set in this setting since there are only
finitely many field constants. In general, the set of locations may not be finite.

17Confer the introduction to coalgebraic data types by Jacobs and Rutten [1997], for
instance.

9

Chapter 1. Concurrent Programs

We assume set theoretical operators present, equivalent to the ones for L
introduced above, that we denote with the same symbols. Like for the above
theories, we refrain from overloading this section with formal semantics.

1.6 Trace Semantics for Sequential Programs

In this section, we give semantics for noninterleaved sequential dWRF pro-
grams. Instead of defining semantics as a relation between initial and final
states of an abstract execution of the program (like by Beckert [2001], for
instance), we use complete traces of intermediate program states. This will
be extended to concurrent program in Sect. 1.7.

Expressions and formulae are evaluated over traces of states (that give
meaning to program variables) and variable assignments (that give meaning
to logical variables). The domain, denoted by D, contains all semantical
values to which an expression can evaluate. It does not depend on the
program state (constant domain). The domain can be partitioned into DT
for a type T .18 All theories have the usual semantics. In particular the
domain of integer expressions is Z and the domain of location set expressions
consists of sets of locations: DL ⊆ 2DF .

In addition to the sets LVar and GVar , we introduce the disjoint set
of ‘special variables’ SVar := {heap, heap’, threads} that do not appear in
programs, but only in semantics.

Definition 1.5 (Program state). A program state—or simply state for short—
is a function s : LVar ∪ SVar → D assigning values to program variables. It
assigns integer or boolean values to all proper local variables of the appropriate
type (i.e., s|LVar : LVar → DZ ∪DB), a heap function to the special variables
heap and heap’(i.e., s|{heap,heap’} : SVar → DH), and a set of threads to the
special variable threads (i.e., s|{threads} : SVar → DT).

Instead of the usual mathematical notation s(x) for function application,
we will frequently use the notation xs, that is common in logic texts. We
use the notation s{x 7→ d} to denote the state that is identical to s except
that the variable x is assigned the value d ∈ D, formally s{x 7→ d} = {x 7→
d} ∪ {y 7→ s(y) | y ∈ LVar ∪ SVar \ x}. Likewise, we write τ{x 7→ d} (where
τ is a trace, see below) with the obvious semantics. For global program
variables, the special variable heap is updated to a new function using the
(higher order) function store, see Sect. 1.5.

Definition 1.6 (Traces). A computation trace, or just trace for short, τ is
a non-empty, finite or infinite sequence of (not necessarily different) states.
The set of traces is denoted by S∗.

18Remember that we do not have subtypes in dWRF.

10

1.6. Trace Semantics for Sequential Programs

We use the following notations related to traces:

• |τ | ∈ N ∪ {∞} is the length of a trace τ . If τ = 〈s0, . . . sk〉, then
|τ | = k + 1.

• τ1 · τ2 is the concatenation of traces:

– If |τ1| =∞, then τ1 · τ2 = τ1.
– If τ1 = 〈s0, . . . , sk〉 (finite) and τ2 = 〈t0, . . . 〉 (possibly infinite),

then τ1 · τ2 = 〈s0, . . . , sk, t0, . . . 〉.

• τ [i, j) for i, j ∈ N ∪ {∞} is the subtrace beginning in the i-th state
(inclusive) and ending before the j-th state:

– If i ≥ |τ | or i ≥ j, then τ [i, j) = τ

– If i < |τ | < j, then τ [i, j) = τ [i, |τ |)
– If τ = 〈s0, . . . , si, si+1, . . . , sj−1, sj , . . . 〉, then τ [i, j) = 〈si, si+1, . . . , sj−1〉

for j <∞ and τ [i,∞) = 〈si, si+1, . . . 〉.

• τ [i] for i ∈ N is the state at position i in τ (with τ [i] := τ [0] for i ≥ |τ |).
For convenience, we identify singleton traces with their sole element.

Computation traces of programs are defined through small step deno-
tational semantics on observable states. As mentioned above, we consider
assignments to global variables to be the only statements that lead to a
new observable state. By specifying which variables are local and which are
global, the user can thus determine which states are ‘interesting’ and are to
be included in a trace. For the feasibility of proving properties about dWRF
programs, it is important that not too many irrelevant intermediate states
are included in a trace.

Definition 1.7 (Trace of a noninterleaved program). Given an initial state s,
the trace of a noninterleaved program π, denoted trcΣ(s, π), is defined by
(the greatest fixpoint of):

trcΣ(s, ε) := 〈s〉
trcΣ(s, x = a; ω) := trcΣ(s{x 7→ as}, ω)

trcΣ(s, X = a; ω) := 〈s〉 · trcΣ

(
s

{
heap’ 7→ heaps,
heap 7→ heaps{X 7→ as}

}
, ω

)

trcΣ

(
s,

if (a) {π1}
else {π2} ω

)
:=

{
trcΣ(s, π1 ω) if s � a
trcΣ(s, π2 ω) if s 2 a

trcΣ(s, while (a) {π} ω) :=
{

trcΣ(s, π while (a) {π} ω) if s � a
trcΣ(s, ω) if s 2 a

where ε is the empty program and ω is a program.

11

Chapter 1. Concurrent Programs

heap 7→ {A 7→ 5, B 7→ 7, C 7→ −1} (0)
x = A;

heap 7→ {A 7→ 5, B 7→ 7, C 7→ −1}, x 7→ 5 (1)
y = B;

heap 7→ {A 7→ 5, B 7→ 7, C 7→ −1}, x 7→ 5, y 7→ 7 (2)
if (x < y) {

heap 7→ {A 7→ 5, B 7→ 7, C 7→ −1}, x 7→ 5, y 7→ 7 (3)
C = x;

heap 7→ {A 7→ 5, B 7→ 7, C 7→ 5}, x 7→ 5, y 7→ 7 (4)
} else {

C = y; }
heap 7→ {A 7→ 5, B 7→ 7, C 7→ 5}, x 7→ 5, y 7→ 7 (5)

Table 1.2: The intermediate states of a program execution are shown on the
right. The states shown in red are included in the program trace.

The scheduling function Σ (see Sect. 1.7 below) does not have an effect
on this definition. We will omit Σ whenever it is not relevant to the context.
Remark. Typically, program semantics are defined inductively in terms of
(sets of) reachable terminal states (i.e., big step semantics), cf. Beckert et al.
[2007b, Sect. 3.3]. Opposed to this, our definition is coinductive. In it is
based on traces of all reachable states (i.e., small step semantics), which
may be infinite. This is why the semantics are defined through the greatest
fixpoint of trcΣ instead of the least fixpoint.
Example 1.8. We look again on the program from Ex. 1.4, that reads integers
from two global variables and writes the minimum to another global variable:

x = A; y = B; if (x < y) { C = x; } else { C = y; }

Let s be a state with heaps = {A 7→ 5, B 7→ 7, C 7→ −1}. Table 1.2 shows the
concrete intermediate states that the execution passes through when started
in s. Not all these states are included in the trace of the program, but only
the two states before the global assignment (3) and the terminal state (5).
All other states are equivalent to one of them regarding the value of heap.

The following lemma states that the syntactical restrictions regarding
global variables imposed on programs (see Def. 1.2) do not lessen expressivity.

Lemma 1.9. Let π be a noninterleaved ‘program’ with the restrictions on
global variables waved, i.e., a program of Beckert and Bruns [2013]. There is a
proper dWRF program π′ that is equivalent to π, i.e., trcΣ(s, π) = trcΣ(s, π′)
for all s ∈ S.

Proof. We show the lemma by structural induction over π. The base case
is the empty program. For the step case, assume that for any proper
subprogram πi of π, there is an equivalent dWRF program π′i. We have to
distinguish between the different kinds of statements:

12

1.7. Semantics of Concurrent Programs

• π = v = x; π2: Let x be representable as a function fx(G1, . . . , Gn)
where Gj are the global variables in x for some n ∈ N. Let π̃x :=
v1 = G1; . . . vn = Gn; where the vj ∈ LVar are fresh and π′ := π̃x v = fx(v1, . . . , vn); π′2.
Let s̃ := s{vj 7→ Gsj | 0 < j ≤ n}. Since the vj are fresh, for all expres-
sions y that do not contain any vj , it is ys = ys̃. It is obvious to see
that it follows from the definition of trcΣ for local assignments that
the traces of π and π′ are the same.

• π = F = x; π2: as above.
• π = if (b) {π0} else {π1} π2: Let b be representable as a func-
tion fb(G1, . . . , Gn). Then π′ := π̃b if(fb(v1, . . . , vn)){π′0} else {π′1}π′2.
Again, the trace equality is obvious.
• π = while (b) {π0} π2: Let everything be as above. Then π′ :=
π̃b while(fb(v1, . . . , vn)){π′0 π̃b}π′2. We prove the trace equality; it
is trcΣ(s, π′) = trcΣ(s̃, while(fb(. . .)) . . .) and bs = (fb(~v))s̃. If s �
b, then trcΣ(s, π′) = trcΣ(s̃, π′2) and we are done. If s 2 b, then
trcΣ(s, π′) = trcΣ(s̃, π′0π̃b while . . .). Assume trcΣ(s̃, π′0) = trcΣ(s, π′0)
is finite with final state s̄. Then trcΣ(s, π′) = trcΣ(s̄, π̃b while . . .) =
trcΣ(˜̄s, while . . .) and the fixpoint theorem closes the proof. /

1.7 Semantics of Concurrent Programs

Above in Def. 1.7, we have given a semantics for the purely sequential part
of dWRF, i.e., for noninterleaved programs. In this section, we define seman-
tics for interleaved programs and in turn for concurrent dWRF programs.
Remember that interleavings are made explicit in the program code.

At runtime, a concurrent program Π is identified with a set T of threads
that can be created and a (fair) scheduling function Σ. Every thread t ∈ T
has an associated sequential program πt, which syntactically is one of the
members of the concurrent program Π, modulo renaming of local variables.
Without loss of generality, we assume that local variables are unique to
one thread. This means that no two threads have the same program. It
is reasonable that T contains an infinite number of isomorphic copies of
each sequential programs as a reservoir. We can think of the syntactical
appearance of sequential programs as templates for these copies. Keeping a
reservoir from which fresh objects can be selected, instead of actually creating
new ones, is a common modeling technique in the context of dynamic logic
(cf. [Beckert et al., 2007b, Sect. 3.6.6]). We refer to the pair (T ,Σ) as a
concurrent system.

Besides the memory state as introduced above, concurrent programs also
have a thread state. We will refer to the set T ⊆ T ∩ DT of currently alive
threads as the thread pool. Through dynamic thread creation, the thread
pool may change throughout program execution. In any reachable program

13

Chapter 1. Concurrent Programs

state, a thread pool is finite and nonempty. Syntactically, we represent the
thread pool by the special variable threads ∈ SVar .

Following our assumptions in Sect. 1.3, the scheduler Σ is a mathematical
function—deterministic and without side effects. Depending on the state,
it chooses a thread from the thread pool. Without loss of generality, we
assume that any run of a concurrent program never reaches the exact same
state s twice, except for the special case that all threads in threadss have
terminated.19 The axiom of choice [Zermelo, 1904] guarantees that schedulers
do actually exist.

Definition 1.10. A scheduler is a function Σ : S → T such that Σ(s) ∈
threadss for any state s.

To define the big step semantics of concurrent programs, we need to define
a total state transition function σ, that also takes into account dynamic
thread creation. The thread-local transition function σt is equivalent to
the computation trace of the noninterleaved program πt. We assume one
definite trace here since a sequential program is deterministic. We first extend
our definition of program traces for noninterleaved programs in Def. 1.7 to
sequential programs that contain fork statements, but not release.

Definition 1.11 (Computation trace of a forking program; extends Def. 1.7).
Let everything be as in Def. 1.7.

trcΣ(s, fork t; ω) := trcΣ(s{threads 7→ threadss ∪ t}, ω)

We will complete the definition of program traces for interleaved programs
in Def. 1.16, where we add the definition of trcΣ applied to a release
statement, after having developed a semantics for interleavings.

Definition 1.12. Let πt be an interleaved sequential program. Let π′ be the
program obtained by removing all release statements. Let the trace fo π′ be
given as 〈s0, s1, . . . 〉. The thread-local state transition function σt : S → S
maps any nonterminal state si to its successor si+1 and a terminal state to
itself in a single step.

We now take the environment into consideration; we assume that it is also
deterministic (i.e., it contains other deterministic noninterleaved programs
that are executed according to a deterministic scheduler).

Definition 1.13.
19Typically, there is a thread that manages the schedule and performs the necessary

computations. Even though all other threads are not advancing to a different global state,
we can assume that this thread will.

14

1.7. Semantics of Concurrent Programs

1. For a concurrent system (T ,Σ) the system state transition function
σΣ : S → S denotes a single step of the concurrent program, with
σΣ(s) := σt(s) where t = Σ(s).

2. The iterated extension of the transition function σΣ with n ∈ N is
defined inductively as σ0

Σ(s) := s and σn+1
Σ (s) := σΣ (σnΣ(s)).

3. The semantical predicate Ωt(s) indicates that s is a terminal state for
thread t, i.e., s is a fixpoint of σt.20 ΩT (s) means s is terminal for all
threads in a thread pool T .

The following definitions are only welldefined for fair schedulers. We
define fairness as the property that for every point in time, every alive and
not yet terminated thread is called within finite time. For nonterminating
threads this means being called infinitely often. In case all threads have
terminated, any thread may be chosen ad infinitum.

Definition 1.14 (Fairness). A scheduler Σ is fair if for every thread pool T
and every thread t ∈ T there is exists an n ∈ N such that Σ (σnΣ(s)) = t, for
any nonterminal state s ∈ {s′ ∈ S | ¬Ωt(s′)}.

Definition 1.15 (Macro step). Let Σ be a fair scheduler. The state transition
function σ∗Σ : S×T → S describes the macro step between two states in which
a thread t ∈ threadss is active or all threads have terminated: σ∗Σ(s, t) :=
σnΣ(s) where n is the smallest natural number such that Σ (σnΣ(s)) = t, or
ΩT (σnΣ(s)) with T = threadsσ

n
Σ(s).

The state transition function σ∗Σ(s, t) describes the state change that
occurs in between atomic steps of a thread t under investigation. Within
the macro step σ∗Σ, there is no t-transition. But in the final state of σ∗Σ(s, t),
the scheduler selects t again, as displayed in the example in Fig. 1.3 on
the following page. The fairness assumption guarantees that this minimum
actually exists. In the special case that all threads have terminated, the
scheduler may select any thread, but the transition is defined as the identity
function in any case. Note that we do not need to specify program pointers/
active statements in the other threads; this is already encoded in the program
state s.

Following these definitions, the thread pool T has an influence on the
computation trace of a program, and thus on the definition of validity. We
extend Defs. 1.7 and 1.11 with the release statement, effectively providing
a semantics for interleaved sequential programs.

Definition 1.16 (Computation trace of an interleaved program). Let ev-
erything be as in Def. 1.11, but let additionally Σ be a fair scheduler. We
additionally define

trcΣ(s, release; ω) := trcΣ(σ∗Σ(s,Σ(s)), ω) .
20This is sufficient for termination since we assume no state to be repeated.

15

Chapter 1. Concurrent Programs

σt0

σt1

σt2

σt0

σt1

σ∗Σ(t0)

σ∗Σ(t0)

Figure 1.3: A system trace for three threads t0, t1, t2. Two atomic steps σt1

and σt2 are combined into a macro step σ∗Σ(t0). Another macro step points to
the terminal state represented by the dark node on the right.

This definition of a trace is similar to what Xu et al. [1997] call a
“computation,” that distinguishes between component and environment state
transitions, on the one hand. On the other hand, they model concurrency
as indeterminism, allowing any enabled transition to be taken, while our
definition is based on deterministic program semantics.

The above definition of program traces establishes that the special variable
heap’ refers to the previous state heap in a non-trivial trace produced by a
valid program:21

Lemma 1.17. Let π be a sequential program with a trace τ = trcΣ(s, π) of
length |τ | ≥ 2. Then for all i ∈ (0, |τ |), it is heap’τ [i] = heapτ [i−1].

21There are traces that are not induced by a program for which this statement is not
valid.

16

Chapter 2

Concurrent Dynamic Trace
Logic

Dynamic logic is an established instrument for program verification and for
reasoning about the semantics of programs and programing languages. Most
dynamic logics, however, consider only sequential programs. In previous
work, [Beckert and Bruns, 2013], we have defined Dynamic Trace Logic
(DTL), that combines the expressiveness of program logics such as first order
dynamic logic with that of temporal logic.

In contrast to standard dynamic logic, which is entirely state-based,
we use a notion of program semantics based on traces of program states.
In the previous chapter, we have introduced dWRF, a simple programing
language with basic support for multithreading. We have defined a trace-
based semantics for dWRF, including an interleaving semantics w.r.t. a
deterministic scheduler. In this chapter, we define a dynamic logic for dWRF,
extending DTL to Concurrent Dynamic Trace Logic (CDTL). A base calculus
for pure DTL has been presented by Beckert and Bruns [2012, 2013]. It will
be extended to full CDTL in Chap. 3.

The KeY verification system (co-developed by the author) is built on
a calculus for JavaDL, a dynamic logic for sequential Java [Beckert, 2001;
Beckert et al., 2007b]. As these features are mostly orthogonal to those
discussed in this chapter, the JavaDL calculus has been used as a basis to
extend CDTL to Java and implement the CDTL calculus (a prototypical
implementation exists). Additional rules needed to handle full (sequential)
Java can be derived from the KeY rules for the [·] modality by analogy.
Since a language like Java incorporates a lot of features, in particular object-
orientation, and various syntactic sugars, the rule set is quite voluminous
(c. 1600 rules) in comparison to simple while languages. These special cases
can, however, be reduced to a smaller set of base cases. For instance, the

17

Chapter 2. Concurrent Dynamic Trace Logic

assignment x=y++ containing a postincrement operator is transformed into
two consecutive assignments x=y and y=y+1 during symbolic execution.22

2.1 Syntax of Concurrent Dynamic Trace Logic

In this section, we define the syntax of formulae in our target logic, Concur-
rent Dynamic Trace Logic (CDTL). It is a typed first order dynamic logic
with dedicated theories that extends Dynamic Trace Logic (DTL) [Beckert
and Bruns, 2012, 2013]. Programs of the deterministic While-Release-Fork
(dWRF) language, that we introduced in Chap. 1, give rise to modalities in
CDTL.

Signatures and Expressions

In addition to program variables (cf. Sect. 1.4), there is a separate set V of
logical variables. Logical variables are rigid, i.e., they cannot be changed
by programs and—in contrast to program variables—are assigned the same
value in all states of a program trace.23 Logical variables must not occur
in programs. Quantifiers can only range over logical variables and not over
program variables.

Expressions are typed. We use pairwise disjoint types Z (integers),
B (boolean), H (heaps), L (location sets), F (fields), T (thread pools), and
S (sequences); cf. Sect. 1.5. There is a common supertype >. Quantified
formulae have the shape ∀x:U. ϕ where U is one of the above types. If U is
the supertype >, it is ommited. For an expression x, its type is denoted by
type(x).24 Both local and global program variables always have types Z or B.

Functions have signatures A1 × · · · × An → B where all Ai and B are
types. A 0-ary function is called a constant. Predicates have signatures
A1 × · · · × An, where n = 0 is allowed. Both functions and predicates
are rigid. The sets of functions and predicates are denoted by F and P,
respectively. The set S = LVar ∪ GVar ∪ SVar ∪ V ∪ F ∪ P is called the
signature of the logic.

In this chapter, the sets of function and predicate symbols are fixed.
They contain the usual integer and boolean operators with their standard
semantics and the theories of heaps (see Sect. 1.5) and final sequences.

Final sequences (i.e., tuples of arbitrary size) are represented by the
algebraic data type S. The constructors are 〈〉 (empty), 〈·〉 (singleton) and

22This is what actually happens inside the Java Virtual Machine, cf. [Lindholm et al.,
2014, Sect. 3.11].

23Rigid variables are essential to the expressiveness of the logic. Without them it would
be impossible to compare values in different states. E.g., expressing ‘X has increased by 1’
requires to introduce a rigid variable u which in every state evaluates to the prestate value
of X.

24Later, we overload the function type to map semantical objects to their type.

18

2.1. Syntax of Concurrent Dynamic Trace Logic

⊕ (concatenation). We use the two observer functions | · | (length) and
·[i] (random access at position i, where i is an expression of type Z; postfix
operator). For longer sequnces, we write 〈x0, x1, . . . , xn〉 as shorthand for
〈x0〉 ⊕ 〈x1〉 ⊕ · · · ⊕ 〈xn〉.

Definition 2.1 (Logic expressions). Logic expressions of type Z are con-
structed as usual over integer literals, program variables, logical variables,
and the operators +, −, ∗, /, %. Expressions of type B are constructed using
the relations .=, >, < on integer expressions, the boolean literals true and
false, and the logical operators ∧, ∨, ¬.

Expressions of type S are constructed using the operators 〈·〉, ⊕, | · |,
and ·[·]. Expressions of types F, L, H, and T are constructed using the special
variables heap and heap’; and the operators ∅̇, {·}, ∈̇, ∩̇, ∪̇, \, ·{, select,
store, and anon as described above in Sect. 1.5.

Integer and boolean logic expressions are constructed similar to their
program expression counterparts (cf. Def. 1.1). They may additionally
contain logical variables and ‘special’ variables. They must contain not
global program variables. Instead, they may refer to the special program
variable threads. For a concise representation, we pairwise identify the
literals and operators of program and logic expressions, e.g., the symbols &&
and ∧ denote the same operator. We display them in program style (using
typewriter font) when they appear inside of programs and in math style
when appearing outside.

Definition 2.2 (State updates). For i ∈ [0, n], let xi be a local program
variable, and let ai be an expression. Then, {x0 := a0 || . . . ||xn := an} is
a parallel update. Let U0, . . . ,Um be parallel updates, then U0 . . .Um is a
sequential update. Update means parallel or sequential update.

For instance, {x := 4} and {x := x+1} are elementary updates. Applying
these updates sequentially (after each other, from right to left) to the formula
x
.= 5 yields 4 + 1 .= 5. The parallel update {x := 4 ||x := x + 1} behaves

differently. When there are conflicting assignments to variable x, the last
item ‘wins’ in our semantics. Applied to x .= 5, the resulting formula is
x+ 1 .= 5. Although the calculus is complete with just sequential updates,
parallel updates allow ad hoc simplifications where a modality is still present.
We will not go into much more detail; a complete calculus for parallel updates
can be found in [Rümmer, 2006].

Formulae

CDTL formulae have the general appearance UJπKϕ where U is an update,
π is a sequential dWRF program, and ϕ is a formula (that may or may
not contain temporal operators and further sub-formulae of the same form).

19

Chapter 2. Concurrent Dynamic Trace Logic

Intuitively, UJπKϕ expresses that ϕ holds when evaluated over all traces τ
such that the initial state of τ is (partially) described by U and the further
states of τ are constructed by running the program π.

Definition 2.3 (Formula). State formulae and trace formulae are inductively
defined as follows:

0. All boolean expressions (Def. 2.1) are state formulae.

1. All state formulae are also trace formulae.

2. If ϕ and ψ are (state or trace) formulae, then the following are trace
formulae: �ϕ (always), •ϕ (weak next), ϕUψ (until).

3. If U is an update and ϕ a state formula, then Uϕ is a state formula.

4. If π is a sequential program (Def. 1.2) and ϕ a trace formula, then
JπKϕ is a state formulae.

5. The sets of state and trace formulae are closed under the logical
operators ¬,∧, ∀.

In addition, we use the following abbreviations:

♦ϕ := ¬�¬ϕ (eventually), ◦ϕ := ¬•¬ϕ (strong next),
ϕWψ := ϕUψ ∨�ϕ (weak until), ϕRψ := ¬(¬ϕU¬ψ) (release),
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ,
∃x.ϕ := ¬∀x.¬ϕ.

A formula is called non-temporal if it neither contains a temporal operator
nor a program modality JπK. A formula is a strict DTL formula if it contains
only program modalities with noninterleaved programs.

A complete syntactical schema of the logic used in this work can be found
in Tab. 2.1, while the program syntax appears in Tab. 1.1 on page 7.

2.2 Semantics of Concurrent DTL
We extend [Beckert and Bruns, 2013] to concurrent dWRF programs. We use
modalities of the shape JπtK where πt the program associated with a thread
t ∈ T under investigation, where T is the current thread pool state. Below
in Lemma 2.9, we will prove that these extensions are indeed conservative.

We consider assignments to global variables to be the only statements
that lead to a new observable state on the trace. All other statements are
atomic in this sense. For the feasibility of proving CDTL formulae, it is
important that not too many irrelevant intermediate states are included
in a trace. For instance, if a formula such as JπK�ϕ is to be proven valid,
intermediate states require sub-proofs showing that ϕ holds in each of them.

20

2.2. Semantics of Concurrent DTL

Table 2.1: Syntax of Concurrent Dynamic Trace Logic. The program syntax
(rule π) can be found in Tab. 1.1 on page 7.

ϕ ::= ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x:T.ϕ | ∃x:T.ϕ | Uϕ | JπKψ | b
ψ ::= •ψ | ◦ψ | �ψ | ♦ψ | ψUψ | ψWψ | ψ Rψ | ϕ
U ::= {v := e}
T ::= B | Z | H | F | L | T | S
b ::= true | false | e .= e | z < z | . . .
e ::= x | select(h, G) | ifthenelse(b, e, e) | ⊥ | m(e) | S[z] | z | h | L | S
z ::= z + z | z ∗ z | − z | |S| | 0 | 1 | 2 | . . .
h ::= heap | heap’ | threads | store(h, G, e) | anon(h, L)
L ::= ∅̇ | {G} | L ∪̇ L | L ∩̇ L | L \ L | L−1

S ::= 〈e〉 | S ⊕ S

Expression Semantics

Definition 2.4 (Variable assignments). A variable assignment β is a function
assigning integer values to all logical variables, i.e., β : V → D. Similar to
the notion for states, we write β{x 7→ d} for the updated variable assignment.

Definition 2.5 (Interpretation). An interpretation I is a mapping of function
symbols f ∈ F with signature A1 × · · · ×An → B to a semantical function
I(f) : DA1 × · · ·×DAn → DB and of predicate symbols p ∈ P with signature
A1 × · · · × An to a relation I(p) ⊆ DA1 × · · · × DAn with the definitions in
[Weiß, 2011, Def. 5.4] (for dynamic logic with an explicit heap) and [Beckert
et al., 2013, Appendix A] (for the theory of finite sequences).

Semantical functions are always total. Possible gaps, such as division
or modulo by zero, are underspecified [Gries and Schneider, 1995; Hähnle,
2005]. The concurrent dynamic logic of Beckert and Klebanov [2013] also
defines semantics through underspecification.

Remark. The tuple (D, I, s) consisting of the domain, an interpretation, and a
state forms a first-order structure. In most works on classical first-order logic
(and also mostly in general modal logics), the program variable assignment s
forms part of the interpretation, with program variables being 0-ary functions.
In the dynamic logic literature (cf. [Weiß, 2011]), however, it has recently
become customary to separate those in order to distinguish between nonrigid
(i.e., functions and predicates) and rigid (i.e., program variables) entities.

Definition 2.6 (Semantics of expressions). Given a state s and a variable
assignment β, the value aI,s,β of an expression a of type A in a state s is
the value d ∈ DA resulting from interpreting program variables x by xs,
logical variables u by uβ , and using the interpretation I for all functions and
relations.

21

Chapter 2. Concurrent Dynamic Trace Logic

Table 2.2: Defining axioms for location set, heap, and sequence theories

select(store(h,X, a), Y) .= ifthenelse(X .= Y, a, select(h, Y)) (2.1)
select(anon(h, L), X) .= ifthenelse(X ∈̇ L, sk, select(h,X))

where sk is a fresh symbol
(2.2)

x 6∈̇ ∅̇ (2.3)
x ∈̇ {x} (2.4)

x ∈̇ L0 ∩̇ L1 ↔ x ∈̇ L0 ∧ x ∈̇ L1 (2.5)
x ∈̇ L0 ∪̇ L1 ↔ x ∈̇ L0 ∨ x ∈̇ L1 (2.6)
x ∈̇ L0 \ L1 ↔ x ∈̇ L0 ∧ x 6∈̇ L1 (2.7)

x ∈̇ L{ ↔ x 6∈̇ L (2.8)
|〈〉| .= 0 (2.9)

|s0 ⊕ s1|
.= |s0|+ |s1| (2.10)

0 ≤ i < |s0| → (s0 ⊕ s1)[i] .= s0[i] (2.11)
|s0| ≤ i < |s0|+ |s1| → (s0 ⊕ s1)[i] .= s1[i] (2.12)

Since the interpretation I is assumed to be fixed in a structure, with
the standard interpretations for usual function symbols, we usually omit I.
Program expressions that do not contain logical variables are independent
of β, and we write as instead of aI,s,β. If a is a boolean expression, we
write I, s, β |= a resp. s |= a to denote that aI,s,β resp. as is true.

Since the heap and sequence theories are built on (co)algebraic data types,
it is trivial to give standard interpretations, yet not very instructive here. For
reference, we give some of the defining axioms in Tab. 2.2. Complete accounts
are provided by Weiß [2011] (heap) or Beckert et al. [2013, Appendix A]
(sequences), respectively.

CDTL Formula Semantics

In Sects. 1.6f., we have defined semantics for dWRF programs based on
traces of program states. States (Def. 1.5) are functions mapping program
variables to values. Local variables are directly mapped to values of their re-
spective type, the ‘special’ variables heap and heap’ are mapped to functions
themselves, mapping global variables to values. The function trcΣ (Defs. 1.7,
1.11 and 1.16) assigns a trace to an initial state and a sequential program,
w.r.t. a deterministic fair scheduler Σ (cf. Def. 1.14).
Remark. The tuple (D, I,S, ρ) with a transition relation ρ = {(s, π, s′) ∈
S × Prg × S | |trcΣ(s, π)| > 1 ∧ trcΣ(s, π)[1] = s′} forms a standard Kripke
structure [Kripke, 1963]. We do not use this notation here since it only

22

2.2. Semantics of Concurrent DTL

relates initial and final states of an execution, but we are interested in all
intermediate states.

We have now everything at hand needed to define the semantics of
CDTL formulae in a straightforward way. The valuation of a state formula
is given w.r.t. a state s and a variable assignment β; and the valuation of a
trace formula is given w.r.t. a trace τ and a variable assignment β. This is
expressed by the validity relation, denoted by �. For the sake of uniformity,
we do not distinguish between state and trace formulae here.

Definition 2.7 (Validity in CDTL). Given a computation trace τ , variable
assignment β, and fair scheduler Σ; the validity relation � is the smallest
relation satisfying the following.

τ, β,Σ � a iff aτ [0],β = true
τ, β,Σ � ¬ϕ iff τ, β,Σ 2 ϕ
τ, β,Σ � ϕ ∧ ψ iff τ, β,Σ � ϕ and τ, β,Σ � ψ
τ, β,Σ � ∀u:U.ϕ iff for every d ∈ DU : τ, β{u 7→ d},Σ � ϕ
τ, β,Σ � �ϕ iff τ [i,∞), β,Σ � ϕ for every i ∈ [0, |τ |)
τ, β,Σ � ϕUψ iff τ [j, i), β,Σ � ϕ and τ [i,∞), β,Σ � ψ

for some i ∈ [0, |τ |) and all j ∈ [0, i)
τ, β,Σ � •ϕ iff τ [1,∞), β,Σ � ϕ or |τ | = 1
τ, β,Σ �{x1 := a1 || . . .

||xn := an}ϕ
iff τ{x1 7→ a

τ [0]
1 } . . . {xn 7→ a

τ [0]
n }, β,Σ � ϕ

τ, β,Σ � JπKϕ iff trcΣ(τ [0], π), β,Σ � ϕ

A formula ϕ is valid, written � ϕ, if τ, β,Σ � ϕ for all τ , β, and Σ.

In this definition, the scheduler Σ forms part of the validity relation. It
entails an implicit universal quantification over all (fair) schedulers on the
semantical level. A result of that is that our logic still uses only one kind of
modality, that speaks about the deterministic trace. An alternative definition
would be to introduce two modalities, that universally or existentially range
over schedulers,25 respectively.

Example 2.8. Assume that the scheduler is not part of the validity relation,
but the semantics of J·K is defined w.r.t. all schedulers. Let us consider a dual
modality 〈〈·〉〉 that is defined w.r.t. some scheduler. Consider a concurrent
program with thread pool T = {t0, t1} and πt0 = X=0; and πt1 = X=1;.
Depending on the concrete scheduler, the final value of X can be either 0
or 1. Thus the formulae 〈〈πt0〉〉◦X

.= 0 and 〈〈πt0〉〉◦X
.= 1 are both valid, while

neither Jπt0K◦X
.= 0 nor Jπt0K◦X

.= 1 is valid.

25or traces, equivalently

23

Chapter 2. Concurrent Dynamic Trace Logic

On the one hand, this entails the obvious disadvantage that the semantics
of a formula is defined in terms of concrete parallel programs. As a result,
this definition is not modular. However, as we will see in Sect. 3.4.1, the
rely/guarantee approach allows us to reason about interleavings modularly
w.r.t. any environment.

On the other hand, our single modality is dual to itself and therefore
exhibits some good properties. For instance, the formulae ¬JπKϕ↔ JπK¬ϕ
or JπK(ϕ1 ∨ ϕ2)↔ (JπKϕ1 ∨ JπKϕ2) are tautologies.26 This allows to give a
smaller and more efficient calculus as compared to a calculus that would
have to deal with two kinds of modalities,27 as the results of Jeannin and
Platzer [2014] suggest, for instance.
Remark. In this definition, formulae are always of the shape JπKϕ. This
formula is valid if and only if ϕ is valid on any trace of π under any determin-
istic scheduler Σ. This is equivalent to ϕ being valid on any trace under any
indeterministic scheduler. The reason is that any indeterministic scheduler
can be simulated by a set of deterministic schedulers.

The logic CDTL presented here is a semantical conservative extension
of the base DTL logic presented by Beckert and Bruns [2013]. This allows
us to adapt the base DTL calculus to a sound calculus for the sequential
part of CDTL. It follows from Lemma 1.9 that the replacement of program
modalities is welldefined.
Lemma 2.9 (Semantical conservative extension). Let ϕ be a valid formula
according to [Beckert and Bruns, 2013, Def. 9]. Let ϕ′ be the CDTL formula
obtained from replacing all quantifiers by their >-typed equivalent and all pro-
gram modalities by a CDTL equivalent (i.e., restricting to simple expressions).
Then ϕ′ is a valid CDTL formula.

2.3 Discussion
In this chapter, we have defined Dynamic Trace Logic (DTL) and its extension
to concurrent programs, CDTL, that stem from a novel combination of
dynamic logic and first order temporal logic. A complete calculus for DTL
that is proven sound and complete can be found in [Beckert and Bruns, 2013]
(with the proofs in [Beckert and Bruns, 2012]. In contrast to previous work
by Beckert and Schlager [2001]; Platzer [2007], there is no restriction on
the shape of trace formulae. Through this, we have got an expressive logic
allowing to describe complex temporal properties of programs. We present
a proof of a nontrivial DTL formula below; other (smaller) proofs can be
found in [Wagner, 2013].

26Another example of a modality with this property is the update operator of dynamic
logic, if viewed as a modality.

27As already discussed in Sect. 1.3, the possibility of an environment macro step of
infinite length would require such a change.

24

2.3. Discussion

Implementation

The sequent calculus CDTL for the sequential subset of the language has
been prototypically implemented on top of the release version 2.2 of the
interactive KeY prover.28 Instead of the simple toy language introduced in
this paper, the implemented calculus works on actual Java programs. The
implementation benefits from the fact that most complex statement in Java
can be transformed into a sequence of simple statements. This is a key
element of the symbolic execution in the Javadynamic logic (DL) calculus
of the KeY system [Beckert, 2001; Beckert, Klebanov, and Schlager, 2007b].
Most calculus rules dealing with these kind of program normalization can
be adapted straight away from the present rules for the [·] modality in the
JavaDL calculus.

28This version is available on request.

25

Chapter 3

Deductive Verification of
Concurrent Programs

In this chapter, we extend the calculus for the sequential fragment of dWRF,
as presented by Beckert and Bruns [2013], to the full multithreaded language,
including interleavings and thread creation. Our goal is to allow modular
reasoning in open programs, that can be extended with further threads. The
rely/guarantee approach allows to reason modularly about the behavior of
shared memory concurrent programs. We regard one thread (executing a
sequential interleaved program—as defined in Sect. 1.4) in isolation, with
possible spontaneous state transitions induced by the environment. This
means that we still have a deterministic program semantics, with underspeci-
fied (i.e., havocked) heap states. Rely/guarantee uses functional specification
to restrict the effect of these transitions. In this sense, reasoning about
interleavings is similar to reasoning about sequential method invocations
through contracts. We present an implementation in dynamic logic with
‘contracts’ for each heap read access. To reduce the specification overhead,
we complement functional rely/guarantee specifications with framing, that
restricts havoc to defined partitions of the heap.

3.1 Concurrent Verification

There have been several approaches to formally reason about shared memory
concurrent programs since the mid-1970s, such as [Ashcroft and Manna,
1971; Ashcroft, 1975; Keller, 1976; Hoare, 1978; Lamport, 1980]. Widely
known is the one by Owicki and Gries [1976], that is considered the first
practical approach to concurrency verification. They define a Hoare logic for
programs with parallel composition. The major issue with this approach is
that the rule for parallel composition requires isolated threads. This means
that, in addition to prove local correctness of programs, one needs to prove
noninterference of parallel executions. This technique has some limitations:

27

Chapter 3. Deductive Verification of Concurrent Programs

1. the number of concurrent threads is fixed; 2. noninterference proofs tend
to be complicated;29 3. it is not compositional in the sense that parts of
the concurrent program could be verified in isolation, but only the (closed)
composed system as a whole; and 4. most importantly, programs that actually
do interfere can only be verified against very weak specifications. This is not
practical since modularity is a key to feasible verification of sophisticated
software systems.

The rely/guarantee approach [Jones, 1983; Stølen, 1991] (sometimes
also called “assume/guarantee”) attempts to overcome these issues. It
abstracts away from concrete interferences to only consider the effects of
possible interleavings. The main idea is similar to design by contract, though
not on the level of a public interface but of atomic program steps. This
makes it possible to modularly reason about one single thread in isolation,
while there may be an unbounded number of others in an only partially
specified environment. It is, in particular, not of any interest which sequential
program other threads execute or in which (thread local) state they are.
Sequential programs (i.e., single threads) are evaluated over traces of states.
The original paper by Jones sketches this fundamental idea. A comprehensive
account on the rely/guarantee approach can be found in the article by Xu,
de Roever, and He [1997], that includes a Hoare style calculus and proofs of
soundness and completeness for a fixed number of threads. A completeness
proof for a system that is parametric in the number of threads can be found
in [Prensa Nieto, 2002]. Xu et al. further “observe that the rely-guarantee
method is [. . .] a reformulation of the classical non-compositional Owicki &
Gries method.”

Overview

In this chapter, we describe how rely/guarantee can be integrated into our
logical framework. Section 3.2 gives some fundamental definitions regarding
the rely/guarantee approach and the kind of programs that we consider. In
Sect. 3.3, we develop correctness conditions (partly thread-local, partly on
the system level) that—if they hold—assure soundness of a calculus rule to
deal with environment actions, to be introduced in Sect. 3.4.1. We instrument
noninterleaved programs with the special statement release; representing
an environment macro-step. We give a proof of soundness for this rule and a
rigorous argument on why a calculus using it is complete w.r.t. the proposed
target programing language.

29The proofs grows exponentially with the number of threads.

28

3.2. Rely/Guarantee Reasoning

3.2 Rely/Guarantee Reasoning
The central idea of rely/guarantee is to describe the transition functions
from Sect. 1.7, σt (of the thread t under investigation) and σ∗Σ(t) (of the
environment), in specifications using formulas rely and guar . Those are
two-state invariants, i.e., they are preserved throughout the execution and
are evaluated over two succeeding states. The formula rely describes σ∗Σ(t),
i.e., it defines on which properties the execution of t may rely upon. The
formula guar describes σt, i.e., it defines which properties the execution of t
has to guarantee.

Obviously, there always are strongest formulae satisfying these conditions
(if the environment is perfectly known): The strongest rely relation is the
reflexive/transitive closure of the union of guarantee relations. In practice,
this strongest condition will not be necessary. It is sufficient that rely is
strong enough to imply the postcondition in a final state and that guar is
strong enough—in disjunction with the guar specification of other threads—
to imply the rely conditions of a third party thread. Since they describe the
behavior of zero or more atomic environment transitions, rely conditions have
to be always reflexive and transitive. Jones additionally requires guarantees
to be reflexive and transitive. But this restricts the possible specifications
and requires an additional proof obligation, while it does not provide any
advantages since the union of transitive relations is not necessarily transitive
again. Transitive closure of guarantees is not expressible in first order logic
anyway. Xu et al. do not require rely conditions to be transitive. Instead,
they require that pre- and postconditions are stable under environment
transitions. This means that rely conditions are partial equivalence relations.
While this is more liberal on the shape of rely conditions, it severely restricts
pre- and postconditions in practice.

In typical cases, the memory partitions to which different threads write to
are strongly separated and only a few locations are actually shared. Therefore
we combine the well known two state invariant specification of threads with
framing, to specify what locations a thread writes to at most (and what
locations it can rely on not to be changed). Frame specifications alone can
be very expressive, in the dynamic frames approach [Kassios, 2011; Weiß,
2011], location sets describing frames can depend on the program state and
can be constructed through comprehensions. Through framing, we take the
burden of specifying the ‘nonbehavior’ of threads in addition to its behavior.

We also borrow the concept of preconditions from Design by Contract
(DbC), to restrict the states in which fresh threads can be created. Like
framing, this does not increase the expressiveness of the approach, but it is
very effective in reducing the specification overhead. Following the approach
by Weiß, we do not include implicit class invariants in this framework, but
leave it to the specifier to refer to invariants explicitly in postconditions (or
guarantees).

29

Chapter 3. Deductive Verification of Concurrent Programs

3.2.1 Relevant Interleavings

Through instrumentation with the explicit release statement, we construct
sequential programs that simulate the observable runtime behavior of con-
current programs. Although in a real concurrent program the environment
may be active at any point in time, with this definition, we restrict it to
fewer states. The rationale behind this is to already keep to model simple
enough to efficiently reason about. This is justified—on the meta level—by
the observation that only some interleavings are actually observable to the
thread under investigation.

An interleaving is only observable if has an effect on 1. the control flow
or 2. a property stated about the program. Since control statements in our
language have simple conditions, the control flow can only be influenced
in assignments from the global state. that appear immediately before a
read or termination action. Thus it is sufficient to consider the interleaving
before the read action. Note that a write action is never influenced by
environment actions. In the actual concurrent behavior, the order of writes
may be different, but the observable effect of a write action is always the
same. Item 2 is more intricate. ‘Properties’ does not only include the
trace properties that appear after program modalities in formulae, but also
any property stated on subtraces. Fortunately, our calculus does not allow
arbitrary trace decompositions, since program rules do (usually) focus on
active statements. This is in contrast to other program logics, in particular
Hoare logics, that have sequential decomposition rules.30 The only exception
are the invariant rules, that state properties about the subtrace induced by
the loop body.

To simulate the concurrent behavior, we instrument noninterleaved pro-
grams with environment action statements and amend the invariant rules.
A noninterleaved program is instrumented such that environment actions
appear before every heap read and the termination action.

Definition 3.1 (Instrumented program). Let π = 〈stm1, . . . , stmn〉 be a
noninterleaved program. The corresponding instrumented program π is
constructed following: For each statement stmi with i ∈ (0, n],

• if stmi is a local assignment with a nonsimple expression on the right
hand side, the statement release; is inserted before stmi,

• if stmi = while (b) {π′}, it is replaced by while (b) {π′}

• if stmi = if (b) {π1} else {π2}, it is replaced by if (b) {π1} else {π2},

• and the statement release; is inserted after stmn.
30Confer [Beckert et al., 2007b, p. 115] for a discussion on this.

30

3.3. Proof Obligations

Please note that this instrumentation is purely syntactic and independent
of a thread pool. Later, we expect that programs under investigation are
already instrumented.

Like the control flow, invariants can depend on shared locations. This
means that the original invariant rules presented by Beckert and Bruns
[2013] are not sound for concurrent programs. A concurrently executed
thread may influence whether the invariant γ holds. For this reason, we
slightly adapt the invariant rules. They only differ from the original ones by
additional instrumentation. In all rules, in the first premiss the invariant γ
is replaced by J Kγ (i.e., a program modality with the instrumentation of
the empty program). This adds exactly one interleaving point at the end
of the empty program. In the second and the last premiss of all rules, the
loop body π is instrumented, which effectively adds an interleaving point at
the end of π. Further instrumentations (i.e., on the trailing program ω or
the complete loop) are not necessary since the programs are either already
properly instrumented or the same invariant rules apply.

3.3 Proof Obligations
A thread specification is a tuple (pret, relyt, guar t, Rt,Mt) where pret is a
state formula, relyt and guar t are two-state formulae, and Rt and Mt are
terms of type LocSet. The intuitive understanding is that the active thread
can rely on the relation relyt to hold between state transitions induced by
the environment while the locations in Rt never change, and at the same
time, it guarantees only to write to the locations in Mt and to maintain the
relation guar t between all atomic steps. The precondition pret restricts the
states in which fresh threads may be created.

A formal definition of a thread specification being valid is given in Def. 3.10
on page 35. The formulas rely and guar are still state formulae in the sense
that they must not include temporal operators, but they are expected to
refer to the builtin heap variables heap and heap’, for that we justify it as
‘two-state.’ The location set expressions can be nontrivial, e.g., depending
on the state or including if-then-else operators. This makes location set
expressions as expressive the logic itself.

Thread specifications relate only to one thread, not to a complete concur-
rent program. This is important in order to have modular specifications for
reasoning about open systems. The choice of a set Rt of locations that must
not change, instead of the set of locations that may change, may seem coun-
terintuitive at first sight. But in a strictly modular setting, we (consequently)
cannot name the locations that are allowed to change.

Definition 3.2. Let s and s′ be two states and L a location set. The states
s and s′ are L-equivalent, written as s ≈L s′, if heaps(F) = heaps

′(F) for all
global variables F ∈ L. A binary relation A ∈ S2 is L-invariant if A ⊆ ≈L.

31

Chapter 3. Deductive Verification of Concurrent Programs

Lemma 3.3. ≈L is an equivalence relation.

Guarantees

In order to establish that a thread t of a concurrent system (T ,Σ) satisfies
a thread specification (pret, relyt, guar t, Rt,Mt), need to prove that—under
rely condition relyt—it only writes to locations specified in Mt and that it
fulfills the two state invariant guar t. The precondition pret will be used
to relax the ‘guarantee’ proof obligation in a way such that it only needs
to hold for states resulting from the creation of new threads; see below in
Sect. 3.4.2. This relation needs to be proven for any two succeeding states in
the trace. The property that only locations inMt may be changed throughout
the program execution is also known as strict modifies clause. This is in
contrast to weak modifies properties as imposed in standard JavaDL [Beckert
et al., 2007a; Weiß, 2011], that still allow locations outside Mt to be changed
temporarily. A proof obligation can be formulated using the trace modality
as

{hpre := heap}JπtK•�(framet ∧ guar t) (3.1)

where framet stands for the following formula:

∀F :F.
(
F ∈̇ {heap := hpre}(Rt ∩̇M{

t)→ select(heap, F) .= select(heap’, F)
)

(3.2)
The formula framet is similar to the one used in [Weiß, 2011, Sect. 6.4.1] to

formalize weak modifies properties. The values of the location set expressions
are state dependent, but evaluate in the initial state of the trace. This is
assured through the updates, that store the initial heap hpre. A difference
is that not only the very first and the final state are in relation, but every
pair of consecutive states.31 Another difference is that we allow the values of
locations in bothMt andR{t to change, i.e., all locations in Lt :=

(
Rt ∩̇M{

t

)s0
must evaluate to the same value, due to possible concurrent changes. The
second part of the formula entails the two state invariant property. Note that
the proof obligation of (3.1) could be written as two separate ones, since the
formula JπK•�(ϕ1 ∧ ϕ2) is equivalent to JπK•�ϕ1 ∧ JπK•�ϕ2.

Lemma 3.4. Let s0 be a state; let t be a thread and thread specifica-
tion (pret, relyt, guar t, Rt,Mt). Let τ = trcΣ(s0{hpre 7→ heaps}, πt). If
τ � •�(framet ∧ guar t) (as in (3.1)), then

1. guar t describes a relation binary γt ⊇ σt.

2. γt and σt are Lt-invariant.
31Note that we do not have to use a temporal construct to refer to the previous state

(there are no past operators in our logic, anyways), but through the variable heap’ since
we do not need the complete state, but just the heap state.

32

3.3. Proof Obligations

Proof. ♥Ad 1: follows from Lemma 1.17.
Ad 2: The two-state formula framet formalizes s′ ≈(Rt∩̇M{

t)s′′′ s′′ for all states

with heap’s
′ = heaps

′′ and (hpre)s′ = heaps
′′′ . From the assumption, framet

is valid for s′′′ = s0 and s′ = si for any i ∈ [1, |τ |). Lemma 1.17 then gives
s′′ = si−1. Thus it is si−1 ≈Lt si for all i ∈ [1, |τ |). By reflexivity and
transitivity of ≈ (Lemma 3.3), it follows si ≈Lt sj . /

Remark. A slight alteration (i.e., removing ‘next’) of Formula 3.1 to

{heap’ := heap ||hpre := heap}JπtK�(framet ∧ guar t)

requires guar t to describe a reflexive relation. (The formula guar t is true in
the initial state of τ . The only restriction on τ is that heap’τ [0] = heapτ [0],
thus the result is universally valid.)

To restrict the possible initial states in formula (3.1), we relax this formula
using a precondition. The following formula is valid in all states in which
(3.1) is valid or the formula pret is not valid.

pret → {hpre := heap}JπtK•�(∀F : Field. (F ∈̇ {heap := hpre}(Rt ∩̇M{
t)

→ select(heap, F) .= select(heap’, F)) ∧ guar t)
(3.3)

Lemma 3.5. Let everything be as in Lemma 3.4. Let the relation σ̃t be
defined as σt∪{(s, s′) | s 2 pret}. Formula (3.3) is valid if and only if σ̃t ⊆ γt
and σ̃t is Lt-invariant.

Rely Conditions

The idea of rely conditions is that they describe an upper bound on en-
vironment actions. This entails two items: 1. Since a release denotes an
environment macro step (i.e., zero or more atomic steps), rely conditions
must describe reflexive and transitive relations. 2. They must not be stronger
than the combined guarantees that the environment prescribes. These are
formalized in (3.4) and (3.5) below. While (3.4) is a ‘local’ property—i.e.,
it is a property of one rely condition alone—property (3.5) is concerned
with the relation of rely conditions to guarantee conditions in the combined
system.

∀h1, h2, h3:H. ({heap’ := h1 || heap := h1}relyt
∧ ({heap’ := h1 || heap := h2}relyt

∧{heap’ := h2 || heap := h3}relyt)
→ {heap’ := h1 || heap := h3}relyt)

(3.4)

Lemma 3.6 (Reflexivity/transitivity of rely). Let ϕ be the formula in (3.4).
It is a valid formula if and only if relyt describes a binary relation ρt ⊆ S2

that is reflexive and transitive.

33

Chapter 3. Deductive Verification of Concurrent Programs

System Properties

As already mentioned above, rely conditions must not be stronger than the
combined guaratees of the system. This is formalized in the following:

{heap’ := heap || heap := anon(heap, R{t)}

 ∨
t′∈T\t

guar t′

→ relyt

(3.5)

Note that, in general, guarantees are allowed to describe relations that
are neither reflexive nor transitive—while this is required by Jones. The
essential point is that rely conditions are reflexive/transitive, and since the
union of transitive relations is not necessarily transitive again, we still need
(3.4) as a proof obligation anyway. There is always a strongest rely condition
to fulfil obligations (3.4) and (3.5), that is the reflexive/transitive closure of
the union of guarantee conditions. Since, however, transitive closure cannot
be expressed in first order logic, see, e.g., [Ebbinghaus and Flum, 1995], we
require these conditions here explicitly.

Similar to the functional rely condition, also the frame conditions for
threads of a system need to be aligned. ⋃̇

t′∈T\t
Mt′

 ∩̇ Rt ⊆ ∅̇ (3.6)

Lemma 3.7. Let γt, ρt ⊆ S2 be the relations introduced in Lemmas 3.4
and 3.6 for some t ∈ T . If both formulae (3.5) and (3.6) are valid, then⋃
t′∈T\t γt′ ⊆ ρt.

To prove Lemma 3.7, we first need the following definition and lemma.

Definition 3.8. Let ϕ be a formula and L a location set. We say ϕ is
L-invariant if for all states s with s � ϕ, it holds s′ � ϕ for all states s′ with
s ≈L s′.

Lemma 3.9.

1. Let s be state and L a location set. The states s and s{heaps 7→
anon(heaps,L)} are L{-equivalent.

2. Let L be a location set and ϕ an L-invariant formula. Let s be a state
with s � ϕ and L a location set expression with Ls = L. Then it holds
that s � {heap := anon(heap, L)}ϕ.

3. Let L ⊇ L′ be location sets. If a formula ϕ is L-invariant, then it is
L′-invariant.

34

3.3. Proof Obligations

Proof. Ad 1: This follows from the semantics of anon (cf. Sect. 1.5). Ad 2:
This immediately follows from item 1. Ad 3: This follows from the L-
monotonicity of the L-equivalence relation. /

Proof of Lemma 3.7. Lemma 3.4 provides that guar t′ is Lt′-invariant. From
Lemma 3.9 it follows that guar t′ is also Rst -invariant. /

Valid Thread Specifications

For the correctness of the rely/guarantee method, we need to establish the
notion of valid thread specifications w.r.t. a particular thread pool. The
rule for reasoning about interleavings can then be defined in a thread pool
agnostic way.

Definition 3.10 (Valid thread specification). Let t ∈ T be a thread. A
thread specification (pret, relyt, guar t, Rt,Mt) is valid for a thread pool T ∈
2Tfin if the formulae (3.3), (3.4), (3.5), and (3.6) are valid. A thread specifi-
cation is only locally valid if only formulae (3.3) and (3.4) are valid, i.e., t
fulfils its guarantees and the rely condition is reflexive and transitive. We
call the set {(pret, relyt, guar t, Rt,Mt) | t ∈ T} a valid thread specification
for T if all (pret, relyt, guar t, Rt,Mt) are valid thread specifications w.r.t. T .

Note that the thread pool T is independent of the state of evaluation of
the formulae.

In another point, the properties denoted by formulas (3.3) and (3.4) are
thread-local, i.e., if they are valid for a particular environment then they are
also valid for any environment. The properties denoted by formulae (3.5)
and (3.6) refer to the concrete, complete system instead. But they do not
contain any program, only first order formulas over the theories of location
sets and heaps. In contrast to the proof obligations by Jones [1983]; Stirling
[1988]; Xu et al. [1997], we do not include a postcondition here. The reason
is to decouple the proof of well-behaved concurrency from proofs for other
properties, like functional correctness or information flow security.

Theorem 3.11. Let (T ,Σ) be a concurrent system and t ∈ T some thread.
If there is a valid thread specification for T , then it is σ∗Σ(t) ⊆ ρt, where ρt
is the semantical relation represented by relyt.

Proof. σ∗Σ(t) consists of atomic environment transitions σ∗Σ(t) = σti1 ◦· · ·◦σtik

with tij ∈ T \ {t} and k ∈ N as determined by Σ. According to Lemma 3.5,
it is σtij

⊆ σ̃tij
⊆ γtij

and thus σ∗Σ(t) ⊆ γti1 ◦ · · · ◦ γtik
. We can still weaken

the relation by replacing all concrete γtij
by the union

⋃
t′ 6=t γt′ , i.e., σ∗Σ(t) ⊆⋃

t′ 6=t
γt′

k. Since γt′ is Rt-invariant (Lemma 3.7), we obtain σ∗Σ(t) ⊆ ρkt

through Lemma 3.7. Since ρt is reflexive and transitive (Lemma 3.6), i.e.,
ρt = ρkt , we conclude σ∗Σ(t) ⊆ ρt. /

35

Chapter 3. Deductive Verification of Concurrent Programs

3.4 A Calculus for Concurrent DTL

The calulus CCDTL for CDTL consists of the rules of CDTL as defined by
Beckert and Bruns [2013], plus Rules 37 and 38 for release and thread creation,
to be introduced below.

3.4.1 Reasoning About Environment Steps

By assigning a calculus rule to the synthetic release statement, we can
establish that it sufficient for a sequential program π to be correct w.r.t. a
given specification in a concurrent setting if the instrumented program π is.
Rule R37 below can be applied on a program modality where release is the
active statement.

Γ,UVrelyt =⇒ UVJωtKϕ,∆ R37Γ =⇒ UJrelease; ωtKϕ,∆

where V := {heap’ := heap || heap := anon(heap, R{t) || threads := T ′},
T ′ is a fresh symbol of type T, and t is the thread which program appears in
the modality. The relyt formula is inserted under the update U , to specify
environment changes from the state partially specified by U . The heap
variable is anonymized on the complement of Rt.

We follow the usual approach in software verification that specifications
live as background theories and therefore are not part of formulae or sequents.
This has been pursued by, e.g., Beckert et al. [2007a]; Weiß [2011] for method
contracts in sequential programs. For concurrent programs, there is a
similar situation with rely conditions. This means that we cannot assess
the soundness of rule R37 on grounds of the rule itself, but only w.r.t. the
specification framework of thread specifications.

Lemma 3.12 (Conditional soundness of R37). Assume the premiss of
rule R37 to be valid. Let s ∈ S be some state; let s′ be the unique state
that coincides with s except for the effects of the update U . If there exists a
valid thread specification for threadss

′, then the conclusion is valid.

Proof. Following from Thm. 3.11. /

Note that soundness of Rule R37 is independent of the kind of modality
and the formula ϕ. This means that a derived rule using the [·] (‘box’) or
the 〈·〉 (‘diamond’) modality from standard dynamic logic is also sound as
those modalities can be expressed using trace formulae.

The program instrumentation with the synthetic release statement and
this corresponding calculus rule allow to extend the present calculus for
purely sequential DTL conservatively. It seems desirable to overcome this
instrumentation.

36

3.4. A Calculus for Concurrent DTL

3.4.2 Reasoning About Thread Creation

The following theorem states which conditions are necessary to extend a
thread pool while preserving validity of thread specifications. This frees us
from unhandy proof obligations that are stated in terms of ‘for all threads.’
We make use of preconditions in this section.

Theorem 3.13 (Thread pool expansion). Let T be a thread pool and let
ST = {(pret, relyt, guar t, Rt,Mt) | t ∈ T} be a valid thread specification
for T . Let t′′ 6∈ T be another thread with locally valid specification St′′ =
(pret′′ , relyt′′ , guar t′′ , Rt′′ ,Mt′′). If the following formulae are valid for some
t ∈ T , then ST ∪ {St′′} is a valid thread specification for T ∪ {t′′}.

(a) {heap’ := heap || heap := anon(heap, R{t ∪̇ Mt)}((relyt ∨ guar t) →
relyt′′)

(b) {heap’ := heap || heap := anon(heap, R{t)}(guar t′′ → relyt)

(c) (R{t ∪̇Mt) ∩̇ Rt′′ ⊆ ∅̇

(d) Mt′′ ∩̇ (M{
t ∪̇ Rt) ⊆ ∅̇

Following this theorem, we can expand a purely symbolic thread specifi-
cation system. The original thread pool T does not appear in the formulae
to be proven, but only one single thread t.

Proof. It remains to show formulae (3.5) and (3.6) valid. We start with the
latter.

Ad (3.6). From t having a valid thread specification, we get �
⋃̇
t′∈T\tMt′ ⊆

R{t and �
⋃̇
t′∈T\tRt′ ⊆ M{

t . Replacing R{t and M{
t in formulae (c)

and (d), respectively, gives us �
⋃̇
t′∈T Mt′ ∩̇ Rt′′ ⊆ ∅ and � Mt′′ ∩̇⋃̇

t′∈T Rt′ ⊆ ∅, that are equivalent to (3.6) for t or t′′, respectively.

Ad (3.5). For t, this immediately follows from (b). For t′′, the formula (a)
can be weakened according to Lemma 3.9(3). We use the shorthand
notation Lϕ for {heap’ := heap || heap := anon(heap, L)}ϕ. We obtain
� (R{

t relyt ∨R
{
t ∪̇Mt guar t) →R{

t ∪̇Mt relyt′′ by update distributivity and
Lemma 3.9(3) applied on relyt. From the valid thread specification for
t w.r.t. T , we obtain � R{

t (guar t′ → relyt) for some t′ ∈ T . From (c)
in combination with Lemma ??, it follows that this is equivalent to �
R{

t ∪̇Mtguar t′ →R{
t relyt. We then replace R{

t relyt by R{
t ∪̇Mtguar t′ in the

above formula to obtain � (R{
t ∪̇Mtguar t′ ∨R

{
t ∪̇Mt guar t)→R{

t ∪̇Mt relyt′′ .
Pulling out the update and applying Lemma 3.9(3) with formula (c)
finally leads us to � R{

t′′ ((guar t′ ∨ guar t) → relyt′′ , that is what we
needed to prove. /

37

Chapter 3. Deductive Verification of Concurrent Programs

We use this result to cast this into a symbolic execution rule for fork.
The following calculus rule deals with the creation of new threads in the
program modality.

(a) Γ =⇒ UWJωtKϕ,∆
(c) =⇒ V1(guar t′ → relyt)

(e) =⇒ V0((relyt ∨ guar t)→ relyt′)

(b) Γ =⇒ Upret′ ,∆
(d) =⇒Mt′ ∩̇ (Rt ∪̇M{

t) ⊆ ∅̇
(f) =⇒ (R{t ∪̇Mt) ∩̇ Rt′ ⊆ ∅̇

Γ =⇒ UJfork t′; ωtKϕ,∆

R38

where t is the current thread, V0 stands for the update {heap’ := heap || heap :=
anon(heap, R{t ∪̇ Mt)}, V1 stands for the update {heap’ := heap || heap :=
anon(heap, R{t)}, andW stands for the update {threads := threads ∪̇ {t′}};
and (pret, relyt, guar t, Rt,Mt) is a (not necessarily valid) thread specification
for t (same for t′).

Lemma 3.14. Rule R38 is sound.

Proof. Let premiss (a) be valid, then the conclusion follows from Def. 1.11. /

Since soundness of Rule R38 does not depend on premisses (b)–(f), we
could devise a simpler sound rule with only premiss (a). But the interesting
property is the propagation of thread specification validity—otherwise we
could not close a proof except for trivial postconditions. that is guaranteed by
premisses (b)–(f). Since a proof includes proving validity of the precondition
pret′ , the ‘guarantee’ proof obligation for thread t can be relaxed to states
in which pret′ holds.

Lemma 3.15. Let S be a valid thread specification for T .

If the formulas in premisses (c)–(f) in Rule R38, as well as formulae (3.3)
and (3.4) are all valid, then S∪ (pret′ , relyt′ , guar t′ , Rt′ ,Mt′) is a valid thread
pool for T ∪ t′.

Proof. Since the precondition pret′ holds in premiss (b) holds, the thread
specification is valid in this state. Then, the conjecture follows from Thm. 3.13.

/

38

3.4. A Calculus for Concurrent DTL

3.4.3 Soundness

We first observe that most rules for the purely sequential DTL Beckert and
Bruns [2013] are also sound for the concurrent setting.

Lemma 3.16. The CDTL rules R1–R36 are sound w.r.t. CDTL.

Proof. According to Lemma 2.9, CDTL is a semantical conservative extension
of DTL. This means that the soundness result of Beckert and Bruns [2013]
also applies to CDTL. /

Together with the rules R37 and R38, the aforementioned rules constitute
the calculus CCDTL. We have already observed that R37 cannot be considered
sound in general, but only w.r.t. a valid thread specification. The overall
(relative) soundness of the calculus depends on the interplay of rules R38
(i.e., showing that the thread specification can be expanded) and R37 (i.e.,
requiring a valid thread specification to be sound). Thus, proving overall
soundness requires a structural analysis over the complete proof tree.

Theorem 3.17 (Relative soundness of CCDTL). Let Γ =⇒ ∆ be a sequent
that is derivable through applications A1, . . . , An of rule R37. Let for each
rule application Ai the thread pool be Ti. If there is a valid thread specification
for each Ti, then Γ =⇒ ∆ is valid.

Note that we make no assumption about the location of the modalities
within the sequent; they may appear on both sides of the sequent and may
be nested.

Proof. The theorem depends on all rules appearing in the proof tree for Γ =⇒
∆ being valid. All rules except R37 are sound without further prerequisites.
This follows from Lemmas 3.14 and 3.16. Following Lemma 3.12, rule R37 is
only sound if there is a valid thread specifiation for the thread pool appearing
in the conclusion. We show by structural induction over the proof tree that
all thread pool appearing in a sequent have a valid specification. For most
rules, this is trivial since they do not touch the thread pool. (I.e., if thread
pool appears in one of the premisses, it is also present in the conclusion.)
Rule R38 is the only rule to introduce additional threads to the pool in a
premiss. Since the proof tree is closed, it follows from Lemma 3.15 that the
new thread pool has a valid specification. /

39

Chapter 3. Deductive Verification of Concurrent Programs

3.4.4 Completeness

We believe that our calculus is (relatively) complete, although we do not
provide a formal proof here. An argument in favor is the proof by Prensa Ni-
eto [2002] that the original calculus by Jones [1983] is complete w.r.t. the
concurrent program semantics by Owicki and Gries [1976]. We admit that
this is more a theoretical argument, while practical completeness strongly
relies on the precision quality of the provided specifications. A formal proof
of completeness will be part of future work.

40

Chapter 4

Related Work

Temporal reasoning as well as verification of concurrent programs has tra-
ditionally been the domain of model checkers. Verification based on model
checking is never complete, and sometimes not even sound. For concurrent
Java, the tools Java PathFinder [Havelund and Pressburger, 2000] or Bogor
[Robby et al., 2006] are available. There are several others for C and derived
languages; see [D’Silva et al., 2008] for an overview. Other common tech-
niques to make the behavior of concurrent programs more expectable are
permission systems and ownership annotations, that are checked at runtime.
Notable examples are built into the Spec# [Barnett et al., 2005] and Dafny
[Leino and Müller, 2009] languages.

4.1 Temporal Behavior of Java Programs

Bandera [Corbett et al., 2000] was one of the first projects to aim at software
model checking. It is of particular interest that it employs an implementation-
aware temporal specification language called Bandera specification language
(BSL). The major goal of BSL was to avoid formalisms such as Linear
Temporal Logic (LTL), which are deemed to be not comprehesible to software
developers. Therefore, a set of particular specification patterns [Dwyer et al.,
1999] was selected to form the essential syntactical entities.

Inspired by the Bandera specification language, Trentelman and Huisman
[2002] define an extension to Java Modeling Language (JML) with events and
temporal properties. The set of permitted expressions is reduced compared
to Bandera; particularily, scopes can only be triggered by events. Statements
not expressible include, for instance, ‘if ϕ holds, then eventually m is called’,
or ϕ → ♦callm in LTL, where ϕ is a state property. State properties are
regular JML expressions enriched by the ‘enabled’ statement providing
whether a method invoked in that state would terminate normally. Events
in this context are calls to methods and returns from calls (either normal
or exceptional). The semantics for an event to ‘hold’ in a state si of a

41

Chapter 4. Related Work

sequence s̄ is that it represents a transition from si−1 to si. It is however
not clarified in the paper, what is exactly meant by a ‘state,’ in particular,
whether they only consider visible or observed states. There is a runtime
checker implementation for this language called temporaljmlc [Hussain and
Leavens, 2010]. Wagner [2013] provides a translation from temporalJML
style specifications to DTL.

Programs of concrete programing languages like Java are usually reasoned
about in a state based manner. There are a few runtime checking approaches
that check for trace properties using LTL-like specification [Bartetzko et al.,
2001; Stolz and Bodden, 2006]. Hussain and Leavens also check assertions at
runtime, but in addition, they use temporalJML as an extension to the JML
specification language, that allows to write high level temporal properties,
but is not as expressive as LTL.

4.2 Deductive Reasoning About Concurrent
Programs

Abrahamson [1979] presents one of the first works on the issues of dynamic
logic, combining program analysis with temporal properties, and concurrency.
Here an unstructured programming language with parallel composition and
explicit labels gives rise to a branching time temporal structure. Trace
formulae are implicitly evaluated over all possible traces. They resemble LTL
formulae, but modalities may contain path conditions (typically sequences
over labels). The paper does not contain formal semantics or a calculus.

Peleg [1987] introduces Concurrent Dynamic Logic (CDL)— based on
Harel’s original notion—where program modalities contain a parallel com-
position operator ∩. The programs here are linear programs; there is no
shared memory. As Peleg himself acknowledges “processes of CDL are totally
independent and mutually ignorant.” For this reason, the formula 〈π1 ∩ π2〉ϕ
with π1 and π2 executed in parallel is just equivalent to 〈π1〉ϕ ∧ 〈π2〉ϕ.

The book by de Roever et al. [2001] provides a good overview over early
(both compositional and noncompositional) approaches to verification of
shared memory concurrent programs.

A closely related work is [Schellhorn et al., 2011] that Interval Temporal
Logic (ITL) [Cau et al., 2002] with interleaved programs and higher order logic.
They present a calculus based on symbolic execution and rely/guarantee,
that is implemented in the Karlsruhe Interactive Verifier (KIV) theorem
prover.

Another approach using a dynamic logic—named multi-threaded object-
oriented dynamic logic (MODL)—is taken by Klebanov [2009]; Beckert and
Klebanov [2013], that uses a realistic Java-like programing language and ex-
plicitly constructs interleaved programs. Concurrent programs are composed
sequentially into a single program with multiple program pointers. During

42

4.3. Rely/Guarantee

symbolic execution of threads, these pointers are moved in the (unmodified)
program code. This is different to our dynamic logic where we consider
sequential programs executed by some thread; and program statements are
deleted and the one program pointer is implicitly at the beginning of the
remainder. The (deterministic) scheduler is explicitly axiomatized in MODL.
They use a Java-like language, but impose the rather strong requirement
that all loops are atomic. It also includes atomic blocks that are symbolicly
executed in another kind of DL modality. Like our calculus, theirs is imple-
mented in the KeY system, too. Through the vast possibilities of interleaved
executions—it can be seen as an instance of what de Roever et al. [2001] call
the global method for concurrency verification—this approach suffers from a
high complexity (that however can be reduced in parts by making stronger
assumptions about the scheduling process).

4.3 Rely/Guarantee

Prensa Nieto [2002] presents the first thorough formalization of rely/guarantee
that can be machine-checked (in Isabelle/higher order logic (HOL) [Paulson,
1994]). “Surprisingly, it appears that there has been no work on embedding
Hoare logics for shared-variable parallelism in any theorem prover.”

Ahrendt and Dylla [2009, 2012] describe a verification system for concur-
rent programs written in the Creol language. Creol [Johnsen et al., 2006] is
an experimental object-oriented language that features different kinds of con-
currency. On an outer layer, it features distributed objects (i.e., distributed
components that are class instances), which code execute truly in parallel.
Distributed objects communicate through asynchronous message passing.
But intra-object execution is multi-threaded with a shared memory. Ahrendt
and Dylla apply a rely/guarantee approach to reason about this kind of
concurrency. An important difference to our work is that Creol follows a
coöperative scheduling philosopy [Dovland et al., 2005], in which sequential
executions are not arbitrarily interleaved, but threads actively release control
at explicit release points programmatically. Their semantics are based on
the technique by Zwiers [1989] to construct histories of interactions by non-
deterministically ‘guessing’ environment actions. These interactions include
‘yield’ and ‘resume’ events that capture the memory state upon a release,
thus bearing a similarity to our state traces.

Ahrendt and Dylla present a symbolic execution calculus for a dynamic
logic for Creol with an implementation in an experimental version of KeY.
The calculus rule dealing with release uses a special kind of update that
anonymizes the state, through a (deterministic) ε assignment [Hilbert and
Bernays, 1939], such that the rely condition holds in this state.

The Abstract Behavioral Specification (ABS) language [Johnsen et al.,
2010; Hähnle et al., 2011] borrows many concepts, in particular regarding

43

Chapter 4. Related Work

concurrency, from Creol. Din et al. [2012]; Din [2014] describe a verification
system similar to the one of Ahrendt and Dylla [2009] and implementation
in KeY. Threads in both Creol and ABS cannot be created dynamically. The
scope of their shared memory is restricted to class boundaries.

Recently, rely/guarantee has been often considered in combination with
separation logic [Vafeiadis and Parkinson, 2007] since it does not only provide
functional specifications for threads, but also separates the memory on which
threads work. The central idea is similar to our approach to frame possible
write effects. The main difference is that we make our frame annotations
explicit, while in separation logic it is enshrined in the ‘star’ operator. Dodds,
Feng, Parkinson, and Vafeiadis [2009] discuss the inability of rely/guarantee
to specify the behavior of programs that use forking and joining of threads, as
opposed to parallel decomposition (on which rely/guarantee is traditionally
defined). Forking and synchronization (of which joining is a special case)
are the mechanisms used in real world programing languages. With those,
the lifetime of a thread is controlled dynamically. To deal with programs of
this shape, they propose an approach called “deny/guarantee,” building on
the work by Vafeiadis and Parkinson, in which nonbehavior of environments
is specified using separation logic. These specifications are also dynamic,
unlike the staticly defined invariants of rely/guarantee.

Haack and Hurlin [2008] also present a separation logic calculus for fork/
join concurrency, modeling the multi-threading architecture of Java. It is
based on fractional permissions [Boyland, 2003].

[Smans et al., 2014] extend concurrent separation logic by introducing
“shared boxes,” that encapsulate shared variables with a two-state invariant.
This invariant must hold whenever a thread accesses the shared variable.
This is to be checked in VeriFast.

44

Bibliography

Karl R. Abrahamson. Modal logic of concurrent nondeterministic programs.
In Gilles Kahn, editor, Semantics of Concurrent Computation, volume 70
of Lecture Notes in Computer Science, pages 21–33. Springer, 1979. ISBN
3-540-09511-X. URL http://dx.doi.org/10.1007/BFb0022461.

Wolfgang Ahrendt and Maximilian Dylla. A verification system for dis-
tributed objects with asynchronous method calls. In Karin Breitman and
Ana Cavalcanti, editors, Formal Methods and Software Engineering, 11th
International Conference on Formal Engineering Methods, ICFEM 2009,
Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings, volume 5885 of
Lecture Notes in Computer Science, pages 387–406. Springer, 2009. ISBN
978-3-642-10372-8.

Wolfgang Ahrendt and Maximilian Dylla. A system for compositional verifi-
cation of asynchronous objects. Science of Computer Programing, 77(12):
1289–1309, 2012.

Edward A. Ashcroft. Proving assertions about parallel programs. J. Comp.
Sys. Sci., 10:110–135, 1975.

Edward A. Ashcroft and Zohar Manna. Formalization of properties of parallel
programms. Machine Intelligence, 6:17–41, 1971.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: an overview. In Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Post Conference
Proceedings of CASSIS: Construction and Analysis of Safe, Secure and
Interoperable Smart devices, Marseille, volume 3362 of LNCS, pages 49–69.
Springer-Verlag, 2005. URL http://www.springerlink.com/openurl.
asp?genre=article&issn=0302-9743&volume=3362&spage=151.

Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim. Jass
– Java with assertions. Electr. Notes Theor. Comput. Sci, 55(2):103–117,
2001. URL http://dx.doi.org/10.1016/S1571-0661(04)00247-6.

45

http://dx.doi.org/10.1007/BFb0022461
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3362&spage=151
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3362&spage=151
http://dx.doi.org/10.1016/S1571-0661(04)00247-6

Bibliography

Bernhard Beckert. A dynamic logic for the formal verification of Java Card
programs. In I. Attali and T. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, International
Workshop, Cannes, France, volume 2041 of Lecture Notes in Computer
Science, pages 6–24. Springer, 2001.

Bernhard Beckert and Daniel Bruns. Dynamic trace logic: Definition and
proofs. Technical Report 2012-10, Department of Informatics, Karlsruhe In-
stitute of Technology, 2012. URL http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000028184. A revised version replacing an unsound rule
is available at http://formal.iti.kit.edu/~bruns/papers/trace-tr.
pdf.

Bernhard Beckert and Daniel Bruns. Dynamic logic with trace seman-
tics. In Maria Paola Bonacina, editor, 24th International Conference
on Automated Deduction (CADE-24), volume 7898 of Lecture Notes
in Computer Science, pages 315–329. Springer-Verlag, 2013. ISBN
978-3-642-38573-5. doi: 10.1007/978-3-642-38574-2_22. URL http:
//link.springer.com/chapter/10.1007/978-3-642-38574-2_22.

Bernhard Beckert and Vladimir Klebanov. A dynamic logic for deductive
verification of multi-threaded programs. Formal Aspects of Computing, 25
(3):405–437, 2013. ISSN 0934-5043.

Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order
dynamic logic with trace modalities. In R. Goré, A. Leitsch, and T. Nip-
kow, editors, Proceedings, International Joint Conference on Automated
Reasoning, Siena, Italy, volume 2083 of Lecture Notes in Computer Science,
pages 626–641. Springer, 2001.

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach, volume 4334 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2007a.

Bernhard Beckert, Vladimir Klebanov, and Steffen Schlager. Dynamic logic.
In Beckert et al. [2007a], chapter 3, pages 69–178.

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben,
Peter H. Schmitt, and Mattias Ulbrich. Secure information flow for Java
– a dynamic logic approach. Technical Report 2013-10, Department of
Informatics, Karlsruhe Institute of Technology, 2013. URL http://digbib.
ubka.uni-karlsruhe.de/volltexte/1000036786.

Alexander Borgida, John Mylopoulos, and Raymond Reiter. “. . . and nothing
else changes”: The frame problem in procedure specifications. In Victor R.
Basili, Richard A. DeMillo, and Takuya Katayama, editors, Proceedings
of the 15th International Conference on Software Engineering, Baltimore,

46

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028184
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028184
http://formal.iti.kit.edu/~bruns/papers/trace-tr.pdf
http://formal.iti.kit.edu/~bruns/papers/trace-tr.pdf
http://link.springer.com/chapter/10.1007/978-3-642-38574-2_22
http://link.springer.com/chapter/10.1007/978-3-642-38574-2_22
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000036786
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000036786

Bibliography

Maryland, USA, May 17-21, 1993, pages 303–314. IEEE Computer Society
/ ACM Press, 1993. ISBN 0-89791-588-7. URL http://dl.acm.org/
citation.cfm?id=257572.

John Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis (SAS), volume 2694 of Lecture Notes
in Computer Science, pages 55–72, Berlin, 2003. Springer-Verlag. URL
http://dx.doi.org/10.1007/3-540-44898-5_4.

Antonio Cau, Ben Moszkowski, and Hussein Zedan. Interval temporal logic,
September 23 2002. URL http://www.cse.dmu.ac.uk/~cau/papers/
itlhomepage.pdf.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting
finite-state models from Java source code. In Proceedings of the 22nd
International Conference on Software Engineering, pages 439–448, New
York, NY, June 2000. ACM Press.

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification:
Introduction to Compositional and Noncompositional Methods. Number 54
in Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 2001.

Crystal Chang Din. Verification Of Asynchronously Communicating Objects.
PhD thesis, Faculty of Mathematics and Natural Sciences, University of
Oslo, March 2014.

Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe.
Observable behavior of distributed systems: Component reasoning for
concurrent objects. Journal of Logic and Algebraic Programming, 81(3):
227–256, 2012.

Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-
guarantee reasoning. In G. Castagna, editor, Programming Languages
and Systems, number 5502 in Lecture Notes in Computer Science, pages
363–377. Springer-Verlag, 2009.

Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Verification of con-
current objects with asynchronous method calls. In International Con-
ference on Software – Science, Technology and Engineering. SwSTE ’05,
pages 141–150. IEEE Computer Society, 2005. ISBN 0-7695-2335-8. URL
http://doi.ieeecomputersociety.org/10.1109/SWSTE.2005.24.

Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Trans. on

47

http://dl.acm.org/citation.cfm?id=257572
http://dl.acm.org/citation.cfm?id=257572
http://dx.doi.org/10.1007/3-540-44898-5_4
http://www.cse.dmu.ac.uk/~cau/papers/itlhomepage.pdf
http://www.cse.dmu.ac.uk/~cau/papers/itlhomepage.pdf
http://doi.ieeecomputersociety.org/10.1109/SWSTE.2005.24

Bibliography

CAD of Integrated Circuits and Systems, 27(7):1165–1178, 2008. URL
http://dx.doi.org/10.1109/TCAD.2008.923410.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in property specifications for finite-state verification. In Pro-
ceedings of the 1999 International Conference on Software Engineer-
ing, pages 411–420. IEEE Computer Society Press / ACM Press,
1999. URL http://www.acm.org/pubs/articles/proceedings/soft/
302405/p411-dwyer/p411-dwyer.pdf.

Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory, volume 2.
Springer, 1995.

David Gries and Fred B. Schneider. Avoiding the undefined by underspecifica-
tion. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends
and Developments, volume 1000 of Lecture Notes in Computer Science,
pages 366–373. Springer-Verlag, New York, NY, 1995.

Christian Haack and Clément Hurlin. Separation logic contracts for a
Java-like language with fork/join. In José Meseguer and Grigore Roşu,
editors, Algebraic Methodology and Software Technology, 12th Interna-
tional Conference, AMAST 2008, Urbana, IL, USA, July 28-31, 2008,
Proceedings, volume 5140 of Lecture Notes in Computer Science, pages
199–215. Springer, 2008. ISBN 978-3-540-79979-5.

Reiner Hähnle. Many-valued logic, partiality, and abstraction in formal
specification languages. Logic Journal of the IPGL, 13(4):415–433, July
2005.

Reiner Hähnle, Michiel Helvensteijn, Einar Broch Johnsen, Michael Lienhardt,
Davide Sangiorgi, Ina Schaefer, and Peter Y. H. Wong. HATS Abstract
Behavioral Specification: The architectural view. In Bernhard Beckert,
Ferruccio Damiani, Frank S. de Boer, and Marcello M. Bonsangue, editors,
Formal Methods for Components and Objects 2011, volume 7542 of Lecture
Notes in Computer Science, pages 109–132. Springer, 2011. ISBN 978-3-
642-35886-9; 978-3-642-35887-6.

David Harel. First-order dynamic logic, volume 68 of Lecture notes in
computer science. Springer-Verlag, New York, 1979.

Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
using JAVA pathfinder. STTT, 2(4):366–381, 2000. URL http://dx.doi.
org/10.1007/s100090050043.

David Hilbert and Paul Bernays. Die Grundlagen der Mathematik II.
Springer-Verlag, Berlin, 1939.

48

http://dx.doi.org/10.1109/TCAD.2008.923410
http://www.acm.org/pubs/articles/proceedings/soft/302405/p411-dwyer/p411-dwyer.pdf
http://www.acm.org/pubs/articles/proceedings/soft/302405/p411-dwyer/p411-dwyer.pdf
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/s100090050043

Bibliography

C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 583, October 1969.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21:666–677, 1978.

Faraz Hussain and Gary T. Leavens. temporaljmlc: A JML runtime assertion
checker extension for specification and checking of temporal properties.
Technical Report CS-TR-10-08, UCF, Dept. of EECS, Orlando, Florida,
July 2010.

Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the European Association for Theoretical Computer Science,
62:222–259, 1997.

Jean-Baptiste Jeannin and André Platzer. dTL2: Differential temporal
dynamic logic with nested modalities for hybrid systems. In Stéphane
Demri, Deepak Kapur, and Christoph Weidenbach, editors, Int. Joint
Conference on Automated Reasoning 2014, volume tba of LNCS. Springer,
2014.

Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe
object-oriented model for distributed concurrent systems. Theoretical
Computer Science, 365(1-2):23–66, 2006.

Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and
Martin Steffen. ABS: A core language for abstract behavioral specification.
In Bernhard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue,
editors, Formal Methods for Components and Objects 2010, volume 6957 of
Lecture Notes in Computer Science, pages 142–164. Springer, 2010. ISBN
978-3-642-25270-9.

Cliff B. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems, 5
(4):596–619, 1983. URL http://doi.acm.org/10.1145/69575.69577.

Ioannis T. Kassios. The dynamic frames theory. Formal Aspects
Computing, 23(3):267–288, 2011. URL http://dx.doi.org/10.1007/
s00165-010-0152-5.

Robert M. Keller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976.

Vladimir Klebanov. Extending the Reach and Power of Deductive Program
Verification. PhD thesis, Universität Koblenz, 2009.

Saul Kripke. Semantical considerations on modal logic. Acta philosphica
fennica, 16:83–94, 1963.

49

http://doi.acm.org/10.1145/69575.69577
http://dx.doi.org/10.1007/s00165-010-0152-5
http://dx.doi.org/10.1007/s00165-010-0152-5

Bibliography

Leslie Lamport. The ‘Hoare logic’ of concurrent programs. Acta Informatica,
14:21–37, 1980.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Logic for Programming, Artificial Intelligence, and Rea-
soning, 16th International Conference, LPAR-16, volume 6355 of Lecture
Notes in Computer Science, pages 348–370. Springer-Verlag, 2010.

K. Rustan M. Leino and Peter Müller. A basis for verifying multi-threaded
programs. In Giuseppe Castagna, editor, Programming Languages and
Systems, 18th European Symposium on Programming, ESOP 2009, volume
5502 of Lecture Notes in Computer Science, pages 378–393, Berlin, March
2009. Springer-Verlag.

K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate
verification language: Design and logical encoding. In Javier Esparza and
Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, volume
6015 of Lecture Notes in Computer Science, pages 312–327. Springer, 2010.
ISBN 978-3-642-12001-5.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
Virtual Machine Specification, Java SE 8 Edition. The Java Series. Addison-
Wesley, Boston, Mass., May 2014.

John McCarthy. Towards a mathematical science of computation. In Infor-
mation Processing ’62, pages 21–28, Amsterdam, 1962. North-Holland.

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7(4):417–426, July 1981.

Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6(4):319–340, 1976.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

David Peleg. Concurrent dynamic logic. Journal of the ACM, 34(2):450–479,
April 1987.

André Platzer. A temporal dynamic logic for verifying hybrid system invari-
ants. In Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations
of Computer Science, International Symposium, LFCS 2007, New York,
NY, USA, June 4-7, 2007, Proceedings, volume 4514 of Lecture Notes in
Computer Science, pages 457–471. Springer, 2007. ISBN 978-3-540-72732-3.
URL http://dx.doi.org/10.1007/978-3-540-72734-7_32.

50

http://dx.doi.org/10.1007/978-3-540-72734-7_32

Bibliography

Arndt Poetzsch-Heffter and Peter Müller. A programming logic for sequential
Java. In S. D. Swierstra, editor, Programming Languages and Systems
(ESOP), volume 1576 of Lecture Notes in Computer Science, pages 162–176.
Springer-Verlag, 1999.

Leonor Prensa Nieto. Verification of parallel programs with the Owicki-
Gries and rely-guarantee methods in Isabelle/HOL. PhD thesis, Technische
Universität München, 2002. URL http://mediatum.ub.tum.de/doc/
601717/601717.pdf.

Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: A flexible framework
for creating software model checkers. In Phil McMinn, editor, Testing:
Academia and Industry Conference; Practice And Research Techniques
(TAIC PART), Windsor, United Kingdom, pages 3–22. IEEE Computer
Society, 2006.

Philipp Rümmer. Sequential, parallel, and quantified updates of first-order
structures. In Miki Hermann and Andrei Voronkov, editors, Proc. Logic
for Programming, Artificial Intelligence and Reasoning, Phnom Penh,
Cambodia, volume 4246 of LNCS, pages 422–436. Springer-Verlag, 2006.

Christoph Scheben and Peter H. Schmitt. Verification of information flow
properties of java programs without approximations. In Bernhard Beckert,
Ferruccio Damiani, and Dilian Gurov, editors, Formal Verification of
Object-Oriented Software International Conference, FoVeOOS 2011, Re-
vised Selected Papers, volume 7421 of Lecture Notes in Computer Science,
pages 232–249. Springer, 2012.

Gerhard Schellhorn, Bogdan Tofan, Gidon Ernst, and Wolfgang Reif. In-
terleaved programs and rely-guarantee reasoning with ITL. In Carlo
Combi, Martin Leucker, and Frank Wolter, editors, Eighteenth Inter-
national Symposium on Temporal Representation and Reasoning, TIME
2011, Lübeck, Germany, September 12-14, 2011, pages 99–106. IEEE,
2011. ISBN 978-1-4577-1242-5. URL http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=6063703.

Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic
verifier for Java-like programs based on dynamic frames. In Fundamental
Approaches to Software Engineering, volume 4961 of Lecture Notes in
Computer Science, pages 261–275, Berlin, April 2008. Springer-Verlag. doi:
10.1007/978-3-540-78743-3_19. URL https://lirias.kuleuven.be/
handle/123456789/178243.

Jan Smans, Dries Vanoverberghe, Dominique Devriese, Bart Jacobs, and
Frank Piessens. Shared boxes: Rely-guarantee reasoning in VeriFast. Tech-
nical Report CW 662, KU Leuven, Department of Computer Science, May

51

http://mediatum.ub.tum.de/doc/601717/601717.pdf
http://mediatum.ub.tum.de/doc/601717/601717.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063703
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063703
https://lirias.kuleuven.be/handle/123456789/178243
https://lirias.kuleuven.be/handle/123456789/178243

Bibliography

2014. URL http://www.cs.kuleuven.be/publicaties/rapporten/cw/
CW662.pdf.

Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine: definition, verification, validation. Springer-Verlag, 2001.
ISBN 3-540-42088-6.

Kurt Stenzel. Verification of Java Card Programs. PhD thesis, Fakultät für
angewandte Informatik, University of Augsburg, 2005. URL http://www.
informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
dissertations/2005_stenzel_diss/diss-stenzel.pdf.

Colin Stirling. A generalization of Owicki-Gries’s Hoare logic for a concurrent
while language. Theoretical Computer Science, 58(1–3):347–359, July 1988.

Ketil Stølen. A method for the development of totally correct shared-state
parallel programs. In J. C. M. Baeten and J. F. Groote, editors, CON-
CUR ’91: 2nd International Conference on Concurrency Theory, volume
527 of Lecture Notes in Computer Science, pages 510–525, Amsterdam,
The Netherlands, August 1991. Springer-Verlag.

Volker Stolz and Eric Bodden. Temporal assertions using aspectJ. Electr.
Notes Theor. Comput. Sci, 144(4):109–124, 2006. URL http://dx.doi.
org/10.1016/j.entcs.2006.02.007.

Kerry Trentelman and Marieke Huisman. Extending JML specifications
with temporal logic. In Hélène Kirchner and Christophe Ringeissen,
editors, Algebraic Methodology and Software Technology, 9th Interna-
tional Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island,
France, September 9-13, 2002, Proceedings, volume 2422 of Lecture Notes
in Computer Science, pages 334–348. Springer, 2002. ISBN 3-540-44144-
1. URL http://link.springer.de/link/service/series/0558/bibs/
2422/24220334.htm.

Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee
and separation logic. In Luís Caires and Vasco Thudichum Vasconcelos,
editors, Concurrency Theory, 18th International Conference, CONCUR
2007, volume 4703 of Lecture Notes in Computer Science, pages 256–271.
Springer, 2007. ISBN 978-3-540-74406-1.

Andreas Wagner. Trace based reasoning with KeY and JML. Studienarbeit,
Karlsruhe Institute of Technology, 2013. URL http://www.key-project.
org/DeduSec/2013_Wagner_TraceSpecification.pdf.

Benjamin Weiß. Deductive Verification of Object-oriented Software: Dy-
namic Frames, Dynamic Logic and Predicate Abstraction. PhD thesis,
Karlsruhe Institute of Technology, January 2011. URL http://digbib.
ubka.uni-karlsruhe.de/volltexte/documents/1600837.

52

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW662.pdf
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW662.pdf
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/dissertations/2005_stenzel_diss/diss-stenzel.pdf
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/dissertations/2005_stenzel_diss/diss-stenzel.pdf
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/dissertations/2005_stenzel_diss/diss-stenzel.pdf
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://link.springer.de/link/service/series/0558/bibs/2422/24220334.htm
http://link.springer.de/link/service/series/0558/bibs/2422/24220334.htm
http://www.key-project.org/DeduSec/2013_Wagner_TraceSpecification.pdf
http://www.key-project.org/DeduSec/2013_Wagner_TraceSpecification.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1600837
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1600837

Bibliography

Qiwen Xu, Willem-Paul de Roever, and Jifeng He. The rely–guarantee
method for verifying shared variable concurrent programs. Formal Aspects
of Computing, 9(2):149–174, 1997.

Ernst Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann. Mathe-
matische Annalen, 59(4):514–516, 1904.

Job Zwiers. Compositionality, Concurrency and Partial Correctness, volume
321 of Lecture Notes in Computer Science. Springer-Verlag, 1989.

53

	1 Concurrent Programs
	1.1 Sequential and Concurrent Programs
	1.2 Approach Overview
	1.3 Scheduler Assumptions
	1.4 Target Programing Language
	1.5 Representing Memory and Threads
	1.6 Trace Semantics for Sequential Programs
	1.7 Semantics of Concurrent Programs

	2 Concurrent Dynamic Trace Logic
	2.1 Syntax of Concurrent Dynamic Trace Logic
	2.2 Semantics of Concurrent DTL
	2.3 Discussion

	3 Deductive Verification of Concurrent Programs
	3.1 Concurrent Verification
	3.2 Rely/Guarantee Reasoning
	3.2.1 Relevant Interleavings

	3.3 Proof Obligations
	3.4 A Calculus for Concurrent DTL
	3.4.1 Reasoning About Environment Steps
	3.4.2 Reasoning About Thread Creation
	3.4.3 Soundness
	3.4.4 Completeness

	4 Related Work
	4.1 Temporal Behavior of Java Programs
	4.2 Deductive Reasoning About Concurrent Programs
	4.3 Rely/Guarantee

	Bibliography

