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Abstract 

 

This PhD thesis focuses on the process of aerosol-photopolymerization for the generation of 

various polymeric particles. Such structures are most often prepared by liquid-based methods 

via the well-established thermal initiation step, and aerosol-photopolymerization is presented 

as an alternative, aerosol-based technique which employs photoinitiated polymerization. To 

the starting point of this thesis, aerosol-photopolymerization had not been researched in detail. 

Therefore, the advantages and drawbacks of this process, and its broad aspects are discussed 

within this thesis. 

As an initiating step, a photoreactor with a XeCl* excimer irradiation source was designed 

and constructed. It consists of concentric quartz glass tubes with the UV source at the center. 

Water circulation served for temperature control in the most outer shell. The first experiments 

were performed by employing the excimer photoreactor for the generation of spherical, 

nanoscale polymer particles. A monomer formulation was prepared by dissolving the solid 

photoinitiator Irgacure 907 in the liquid monomer without using any other solvent. This step 

was a proof of concept for testing the experimental setup under which conditions successful 

polymerization takes place. Methyl methacrylate (MMA) and butyl acrylate (BA) were 

chosen as the monofunctional monomers. MMA was either photopolymerized in the presence 

of the multifunctional monomer 1,6-hexanediol diacrylate (HDDA) or could be 

copolymerized with BA. The low propagation rate coefficient of MMA restricted its 

polymerization during a photoreactor passage of about 1 min whence it required a 

comonomer. BA possesses a much higher propagation rate coefficient than MMA and could 

be polymerized with and without a comonomer during the same aerosol residence time in the 

photoreactor.  

After polymer nanospheres had been successfully obtained, the aim was to get more 

sophisticated particles via the same experimental setup. Zinc oxide (ZnO) was chosen as the 

model inorganic substance for the production of organic-inorganic hybrid nanoparticles in the 

form of polymer-matrix nanocomposites. ZnO nanoparticles were suspended in the monomer 

formulations which were used for polymer particle synthesis. Upon the same experimental 

procedure, polymer spheres containing the pre-dispersed ZnO nanoparticles were obtained. 

Since ZnO is capable of absorbing UV photons, practically the same hybrid particles were 

generated by preparing the same monomer formulation but without any conventional 

photoinitiator. In other words, ZnO nanoparticles themselves assisted the polymerization 

process as the photoinitiator. 

Since the excimer photoreactor required time-intensive cleaning, it was not efficient for the 

trial of new monomer formulation recipes. A second photoreactor was arranged for a faster 

clean-up. This photoreactor consists of a single quartz glass tube surrounded by UV 

fluorescent tubes, and is operated at ambient temperature. Practically all of the particles 

resulting from this PhD thesis could be generated by both of the employed photoreactors, the 

excimer photoreactor and the photoreactor equipped with UV fluorescent tubes.  

The third particle type resulting from this thesis are nanocaps which represent an example 

of non-spherical polymeric particles. For the production of nanocaps, additives were required 

in the monomer formulation. Apart from the solution consisting of liquid monomer, 

crosslinker, and the dissolved photoinitiator, a second solution was prepared by dissolving 
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glycerol in ethanol or another similar solvent. This solvent has to dissolve the first solution, 

the monomer solution, upon mixing. The prepared final solution is then processed via aerosol-

photopolymerization for the synthesis of nanocaps. During photoreactor passage, ethanol 

evaporates and the presence of glycerol delays the gelation while a three-dimensional polymer 

network is formed within each particle. After a certain point, glycerol is no longer soluble 

within each polymerizing droplet upon the evaporation of ethanol and conversion of 

monomers. This leads to a controlled collapse of each sphere and cap-shaped particles are 

formed. The same particles were also formed with ZnO nanoparticles distributed in the 

polymer matrix. 

Porous spherical particles possessing rough surface characteristics were obtained via 

aerosol-photopolymerization as well. A porogen, solvent miscible with monomer but 

immiscible with the obtained polymer afterwards, was employed for this. For successful pore 

formation, the porogen should be less volatile than ethanol, for example like 2-ethylhexanol. 

Nanospheres, nanocaps, and mosaic particles were loaded with caffeine for drug release 

experiments. Caffeine represents a molecularly distributed substance in the polymer matrix in 

comparison to ZnO nanoparticles, and the results revealed release rates depending on the 

degree of crosslinking, particle shape, and the employed additives. 

An integrated, aerosol-based process was realized for the generation of core-shell particles 

in cooperation with another working of JointLab, the joint initiative between BASF and KIT. 

Two aerosol streams were prepared, one having monomer droplets and the other one having 

core particles as the dispersed phase. The aerosols were electrostatically charged with 

opposite signs and mixed for bipolar coagulation to take place. Each core particle had to 

collide with a monomer droplet in order to become coated by the liquid monomer after a 

certain residence time for coagulation. Once wetted core particles were obtained, aerosol-

photopolymerization served for the polymerization of the monomer coating into a solid shell. 

Various core materials such as gold, silica, and salt particles were encapsulated via this 

technique by the same polymers prepared as nanoscale polymer spheres, either poly(HDDA) 

or poly(HDDA-crosslinked MMA). Bipolar coagulation, which is based on physical charging, 

enabled the coating process to be independent of material choice provided that the core 

particle surface can be completely wetted by the liquid monomer, and aerosol-

photopolymerization served for the rapid solidification of the liquid shell surrounding each 

core particle. 

Although this PhD thesis is based on an experimental work, basic modeling and simulation 

has been performed to estimate the time for the photopolymerization of monofunctional 

monomers. Propagation and termination rate coefficients were defined as functions of 

monomer conversion and parameters such as initiation and propagation rate coefficient were 

varied to simulate the conversion of photoinitiator and monomer for 1 min of 

photopolymerization. The results revealed strong dependency of monomer conversion on the 

propagation rate coefficient. For high photoinitiator conversion, high initiation rates are 

required which can be realized by either choosing a photoinitiator with high UV absorptivity 

and high quantum yield, using more amounts of photoinitiator, or increasing the UV 

irradiance in the photoreactor.  
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Zusammenfassung 

 

Die vorliegende Doktorarbeit beschäftigt sich mit dem Prozess der Aerosol-

Photopolymerisation zur Generierung von verschiedenen polymerbasierten Partikeln. Solche 

Materialien werden am häufigsten durch flüssigkeitsbasierende Methoden hergestellt, wobei 

fast ausschließlich thermische Initiierung für den Polymerisationsprozess eingesetzt wird. 

Daher wird die Technik der Aerosol-Photopolymerisation als Alternativverfahren unter 

Anwendung von photochemischer Initiierung vorgestellt. 

Als erstes wurde ein Photoreaktor, basierend auf einem XeCl* Excimer-Strahler, ausgelegt 

und konstruiert. Er bestand aus konzentrischen Quarzglasrohren mit dem Strahler im 

Zentrum. Wasserumlauf in einem Außenmantel diente zur Temperaturkontrolle. Die ersten 

Experimente wurden mit diesem Photoreaktor durchgeführt, um kugelförmige, nanoskalige 

Polymerpartikel herzustellen. Dazu wurde eine Monomerlösung vorbereitet, in dem der feste 

Photoinitiator im flüssigen Monomer gelöst wurde, ohne zusätzliches Lösungsmittel zu 

verwenden. Dies sollte als Test dienen, um herauszufinden, unter welchen Bedingungen eine 

erfolgreiche Polymerisation durchgeführt werden kann. Als monofunktionelle Monomere 

wurden Methylmethacrylat (MMA) und Butylacrylat eingesetzt (BA). MMA wurde entweder 

in Anwesenheit des multifunktionellen Monomers (Vernetzer) 1,6-Hexandioldiacrylat 

(HDDA) verwendet oder mit BA copolymerisiert. Der niedrige Kettenwachstumskoeffizient 

von MMA erlaubte keine vollständige Polymerisation dieses Monomers ohne Zugabe eines 

schnelleren Comonomers während der Aerosolverweilzeit von etwa 1 Minute im 

Photoreaktor. 

Nach der erfolgreichen Generierung von kugelförmigen, nanoskaligen Polymerpartikeln, 

waren komplexere Strukturen von Interesse, die mit demselben experimentellen Aufbau 

hergestellt werden sollten. Für die Herstellung von organisch-anorganischen 

Hybridnanopartikeln wurde Zinkoxid als anorganische Modellsubstanz eingesetzt. Hierfür 

wurden kommerziell erhältliche ZnO-Nanopartikeln verwendet, um Polymer-Matrix 

Nanokomposite zu erzeugen. Ähnliche Hybridpartikel wurden ebenfalls generiert ohne einen 

konventionellen Photoinitiator in der Monomerformulierung zu lösen, da ZnO-Nanopartikeln 

selbst im UV-Bereich absorbieren und den Polymerisationsprozess initiieren können. 

Der Excimer-Photoreaktor war zeitintensiv bezüglich Reinigung und hat sich als nicht 

praktisch erwiesen für das schnelle Austesten von neuen Monomerformulierungen. Daher 

wurde ein zweiter, einfacherer Photoreaktor konstruiert. Er bestand aus einem Quarzglasrohr 

umgeben von Fluoreszenzstrahlern, die im UV-Bereich emittieren. Dieser Photoreaktor wurde 

ausschließlich bei Umgebungstemperatur betrieben. Alle Partikelstukturen aus dieser 

Doktorarbeit konnten sowohl mit dem ersten Photoreaktor als auch mit dem zweiten 

Photoreaktor hergestellt werden.  

Die dritte Generation von Polymerpartikeln dieser Doktorarbeit waren die „Nanocaps“. 

Diese nicht-kugelförmigen Polymerpartikel wurden mit Zusatzstoffen in der 

Monomerformulierung hergestellt. Außer der Monomerlösung, bestehend aus Monomer, 

Photoinitiator und Vernetzer, wurde eine zweite Lösung vorbereitet, in dem Glycerol in 

Ethanol oder einem ähnlichen Lösungsmittel gelöst wurde.  Dieses Lösungsmittel musste 

nach dem Mischen beider Lösungen alle Bestandteile lösen können. Während der Aerosol-
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Photopolymerisation der finalen Monomerformulierung wurden Nanocaps erzeugt. Die 

Ausbildung dieser Strukturen beruht auf der Verdampfung von Ethanol im Photoreaktor und

der Wirkung von Glycerol, das als Weichmacher die Gelbildung verzögert, währenddessen 

ein dreidimensionales Polymernetzwerk in den jeweiligen Tröpfchen gebildet wird. Das führt 

zum kontrollierten Kollabieren der polymerisierenden Tröpfchen, die dabei von Kugelgestalt 

in capstrukturierte Partikeln übergehen. Dieselben strukturierten Partikel konnten wie bei den 

kugelförmigen Nanopartikeln auch mit ZnO-Nanopartikeln, verteilt in der Polymermatrix, 

generiert werden. 

Poröse, kugelförmige Partikeln mit rauen Oberflächen wurden ebenfalls mit der Aerosol-

Photopolymerisation erzeugt. Dazu wurde ein Porogen als Lösungsmittel verwendet, das 

mischbar mit dem Monomer ist, allerdings nicht mit dem gebildeten Polymer. Weniger 

flüchtige Porogene wie z.B. 2-Ethylhexanol bewirkten Porenbildung während der 

Polymerisation. Nanokugeln, Nanocaps und Mosaikpartikeln wurden mit Coffein beladen, um 

Freisetzungsversuche durchzuführen. Im Gegensatz zu ZnO-Nanopartikeln, wird Coffein in 

der Polymermatrix molekulardispers verteilt. Die Experimente zeigten, dass die 

Freisetzungskinetik durch den Vernetzungsgrad, der Partikelform und verwendeten 

Zusatzstoffen beeinflusst werden kann. 

Ein integrierter, aerosolbasierter Prozess wurde für die Generierung von Kern-Schale-

Partikeln in Kooperation mit einer anderen Arbeitsgruppe innerhalb des JointLabs, die 

Kooperation zwischen BASF und KIT, realisiert. Zwei Aerosolströme, einer mit 

Monomertröpfchen als disperser Phase und einer mit Kernpartikeln, wurden erzeugt. Die 

Aerosole wurden jeweils elektrostatisch mit gegensätzlicher Polarität geladen und 

anschließend gemischt. Nach einer gewissen Koagulationsverweilzeit sollten bevorzugte 1-

zu-1 Kollisionen zwischen Tröpfchen und Kernpartikeln zustande kommen, sodass die 

Kernpartikeln mit der Monomerflüssigkeit umhüllt werden. Die flüssigen Hüllen wurden im 

nachgeschalteten Photoreaktor zu festen Schalen polymerisiert. Verschiedene Kernmaterialien 

wie Gold-, Silica- und Salzpartikeln wurden mit den Polymeren poly(HDDA) und 

poly(HDDA-vernetztes MMA) verkapselt. Die bipolare Koagulation ermöglichte 

materialunabhängige Beschichtung solang die Monomerlösung die Kernpartikel komplett 

benetzen kann, und die Aerosol-Photopolymerisation sorgte für die rapide Umwandlung der 

flüssigen Monomerhülle in die feste Polymerschale. 

Obwohl diese Dissertation vorwiegend experimentell ausgerichtet war, sind auch 

grundlegende Modellierungen und Simulationen durchgeführt worden um die Dauer der 

Polymerisation von monofunktionellen Monomeren abzuschätzen. Kettenwachstums- und 

Kettenabbruchskoeffizienten wurden als Funktion des Monomerumsatzes definiert und 

Parameter wie der Initiierungs- und Kettenwachstumskoeffizient variiert, um den 

Monomerumsatz während 1 Minute Photopolymerisation zu simulieren. Die Ergebnisse 

zeigten, dass der Kettenwachstumskoeffizient der entscheidende Faktor ist. Darüber hinaus 

werden hohe Initiierungsraten benötigt, die nur mittels photoinitiierter Polymerisation 

möglich sind. Dies kann entweder durch Wahl geeigneter Photoinitiatoren mit hohen UV 

Absorptionen und hohen Quantenausbeuten für die Radikalbildung, durch höhere 

Photoinitiatorkonzentrationen in der Formulierung oder durch Erhöhung der 

Bestrahlungsstärke im Photoreaktor realisiert werden. 
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1. Introduction 

 

Photopolymer technology is a huge scientific area dealing with the application of 

electromagnetic radiation to form polymers or initiate reactions in polymeric materials. 

Between 1990 and 1995, over 4000 distinct references to some aspect of photopolymer 

technology were reported per year as a result of tremendous patent and open literature 

activities in this field. The applications are widespread and photopolymers are used in 

electronic materials, printing materials, optical and electro-optical materials, fabrication of 

devices and polymeric materials, adhesives and coating materials (Peiffer, 1997).  

Photoinitiated polymerization, or photopolymerization, is a subdivision of photopolymer 

technology and was used as early as in the beginning of 1900 when Berthelot and Gaudechon 

(Berthelot and Gaudechon, 1910) polymerized ethylene by UV radiation. 

Photopolymerization has played a decisive role in the early development of polymer 

chemistry. It has been applied for various purposes such as detection and identification of 

photochemically produced free radicals, study of non-steady state polymerization kinetics, 

and electrophoresis where biological compounds are involved since no elevated temperatures 

are required (Oster and Yang, 1968). More recent and common applications of 

photopolymerization are its use for producing photoactive polymer-based systems for the 

coatings industry, paints and printing inks, adhesives, composite materials, and dental 

restorative formulations (Andrzejewska, 2001). Further applications are in photolithography, 

optoelectronics, stereolithography, and holography (Decker, 1996). Light sensitive poly(vinyl 

cinnamate) was developed as the first synthetic photopolymer material at Kodak for imaging 

(Minsk et al., 1954). Upon the development of free radical chain polymerization at DuPont 

(Plambeck, 1956), the utilization of photopolymer technology extended. In 1997, a yearly 

worldwide market of more than 10 billion dollars was estimated (Peiffer, 1997). Tough, new 

applications of photopolymer systems have still been developing such as 3D imaging for the 

direct construction of solid plastic objects from computer-drawn images (Crivello and 

Reichmanis, 2014). 

Photopolymerization is generally accepted as the photoinitiated polymerization of 

monomers and oligomers to obtain crosslinked polymers although it is possible to 

photopolymerize monofunctional vinyl monomers (Crivello and Reichmanis, 2014). 

Therefore, a tremendous amount of published work about photoinitiated free radical and 

cationic polymerization report on the photopolymerization of multifunctional monomers, also 

called radiation curing (Andrzejewska, 2001; Bowman and Kloxin, 2008; Decker, 1992, 

1996; Decker et al., 2001; Decker and Moussa, 1990; Peiffer, 1997). Upon the development 

of systems that efficiently undergo facile homolytic photocleavage or electron transfer 

reactions, free radical generation has been realized with high quantum yields. Hence, 

photoinitiators covering almost the whole UV spectrum were rapidly developed between 1960 

and 1970 by companies such as Ciba-Geigy, BASF, AKZO, and Cray-Valley (Crivello and 

Reichmanis, 2014). Radiation curing offers substantial advantages such as very rapid reaction 

rates, spatial resolution by irradiating certain polymerization domains, operation at ambient 

temperature (Decker, 1996), very low energy requirements, elimination of organic volatile 

solvents (Crivello and Reichmanis, 2014), solvent-free formulations, and production of 

polymers possessing tailor-made properties. These points make photopolymerization quite 
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attractive for ultrafast drying of protective coatings, varnishes, printing inks and adhesives 

and high-definition images required in the manufacture of microcircuits and printing plates 

(Decker, 1996). Due to the very fast nature of photoinitiated crosslinking polymerization, 

calorimetric studies requiring a few seconds could not reveal kinetic results with high 

resolution (Tryson and Shultz, 1979). At first, this limited the performed research to be 

carried out at low intensities for monitoring in real-time. On the other side, industrial 

applications prefer intense UV radiation for thin film (thickness < 10 µm) polymerizations in 

the presence of air (Decker, 1996). Upon the application of spectroscopic methods such as IR 

(Decker, 1992; Decker and Moussa, 1990), UV (Decker, 1992), and FTIR spectroscopy (Li et 

al., 2006) for thin film photopolymerization, real-time results could be obtained. Thin films 

both possess diverse applications and allow the utilization of the mentioned real-time 

spectroscopic methods during photopolymerization (Decker, 1996). Applications of 

photopolymerization mostly cover UV curing in which the photons are delivered from a 

stationary irradiation source onto a flat surface substrate which is passed under the irradiation 

source by a conveyor or a moving web. Aside from this in-line processing, robot-guided 

movable irradiation sources have recently been applied to complex geometries as well.  

Photocurable automotive finishes or curing of coatings on completely assembled furniture are 

some examples (Crivello and Reichmanis, 2014).  

Apart from thin films, particulate micron-sized and submicron polymeric materials also 

attract a broad range of industry areas ranging from optics and photonics to nanomedicine. 

Depending on the purpose of application, the particles can be spherical or non-spherical. The 

latter can possess specific or random shapes. In addition, the particles can be composed of 

polymeric part only or different materials can be integrated to fulfill multifunctionality within 

the particle. Shielding of UV radiation via transparent materials (Althues et al., 2007; 

Yuwono et al., 2004), multicomponent magnetic nanoparticles (Zeng and Sun, 2008), 

nanocomposites for color switching (Caseri, 2010), needle-free particle delivery into skin 

(Michinaka and Mitragotri, 2011), imaging and treatment in medicine (Berry and Curtis, 

2003), and targeted drug delivery (van Vlerken and Amiji, 2006) are some of these examples. 

Various techniques exist for the production of polymer particles or polymeric composites. 

Most common are the methods which are based on the liquid phase such as suspension (Shim 

et al., 2002) or emulsion polymerization (Hecht et al., 2012) from which the former is suitable 

for larger particle generation whereas the latter is more appropriate for the synthesis of 

smaller particles (Odian, 2004). Nanoparticles can be synthesized by employing special kinds 

of emulsion polymerization, the microemulsion polymerization (particle size of 1 nm – 100 

nm) or the miniemulsion polymerization (particle size of 50 nm – 1 µm), upon the 

polymerization of nanoscale monomer droplets which most often are stabilized by surfactants 

(Landfester et al., 1999). An overview of the common polymer and polymeric particle 

preparation methods is presented in the subsequent sub-chapter. 

 

1.1 Polymerization Processes 

Polymerization reactions can be realized by employing different processes. Bulk (mass) and 

solution polymerization are carried out as homogeneous polymerizations whereas 

precipitation, suspension, and emulsion polymerization fall below the category of 

heterogeneous polymerization. 
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Bulk or mass polymerization is the simplest process and results in polymers with as low 

contamination as possible. However, its implementation for radical chain polymerization is

difficult regarding the temperature control because the reactions are highly exothermic in 

nature, possess high activation energies, and tend toward the gel effect. Strong stirring is 

required for a better temperature control due to the rapidly increasing viscosity of the reaction 

medium. Local hot spots may occur, and these may lead to runaway reactions. Such 

drawbacks reduce the interest for bulk polymerization in industrial use. To overcome the heat 

dissipation and viscosity difficulties, bulk chain polymerizations are usually carried out to low 

conversions with subsequent separation and recycling of unreacted monomer. If favored, thin 

layer polymerization can be carried out for up-conversion once the low-converted polymer is 

obtained in a larger, upstream reactor. 

Solution polymerization occurs if the monomer is dissolved in a solvent, resulting in easier 

handling of stirring due to the lower medium viscosity and a more efficient heat transfer. 

However, the presence of a solvent may both enhance transfer reactions to the solvent and 

reduce polymer purity. 

Precipitation polymerization is homogeneous at the beginning and becomes heterogeneous 

during the progress of monomer conversion. A monomer is polymerized either in bulk or in 

solution, and the formed polymer is insoluble in the reaction medium. Examples are bulk 

polymerization of vinyl chloride and solution polymerization of acrylonitrile in water. 

Suspension polymerization is carried out with monomer droplets having diameters of 50-

500 µm. Initiators which are soluble in the monomer are referred to as oil-soluble initiators. In 

suspension polymerization, each monomer droplet constitutes a miniature bulk 

polymerization system. Monomers such as styrene, acrylic and methacrylic esters, vinyl 

chloride, vinyl acetate, and tetrafluoroethylene are used for suspension polymerization. The 

amount of suspension stabilizers is less than 0.1 wt.-%. If the droplet diameter is about 1 µm, 

the suspension polymerization is called microsuspension polymerization. 

Emulsion polymerization is employed for radical chain polymerizations and is similar to 

suspension polymerization, but is quite different in mechanism and reaction characteristics. 

The monomer droplets to be polymerized are smaller and the dependence of polymer 

molecular weight on reaction parameters differs too. It is utilized for a variety of industrial 

products such as paints, coatings, finishes, and floor polishes. The product of an emulsion 

polymerization process is referred to as a latex. In contrast to other methods, emulsion 

polymerization is unique in increasing the polymer molecular weight without decreasing the 

polymerization rate. Its reaction mechanism allows to attain both high molecular weights and 

high reaction rates. The amount of stabilizers is much higher than in suspension 

polymerization. The higher surface area of monomer droplets is stabilized with surfactant as 

high as 1-5 wt.-% in concentration. By polymerizing smaller monomer droplets in emulsion 

polymerization, miniemulsion or microemulsion polymerization can be performed (Odian, 

2004).  

Aerosol-based processes can be employed as alternative – and relatively new – techniques 

for the generation of polymeric particles. After spraying the liquid monomer to form gas-

carried monomer droplets, the droplets were contacted with initiator vapor for the generation 

of micrometer-sized polystyrene particles (Shin et al., 1996). The “contact challenge” 

between monomer and initiator was overcome by spraying a multiacrylate monomer mixture 
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containing the photoinitiator with the help of a volatile solvent using a vibrating-orifice 

aerosol generator (Esen and Schweiger, 1996). The produced droplet aerosol was 

photopolymerized to a particle aerosol with monodisperse polymer particles being 5-50 µm in 

diameter. A similar work with a modified vibrating-orifice aerosol generator resulted in 

monodisperse polymer particles having 5-100 µm diameter (Gao et al., 2007). Apart from 

these free radical initiated polymerization, cationic photopolymerization in aerosols was 

employed for preparing microbeads as well (Vorderbruggen et al., 1999). 

 

1.2 Polymerization Mechanisms 

Polymerization reactions can be classified into two groups regarding the reaction mechanism, 

step polymerization and chain polymerization. 

In step-growth polymerization, functional groups of educts react with each other and 

polymer molecular weight increases rather slowly. A monomer can react with another 

monomer to a dimer, or with a dimer to a trimer in a step-wise manner. The characteristic 

feature of this mechanism is that reaction occurs between any species, e.g. a tetramer can also 

react with a trimer to form a heptamer.  

In chain-growth polymerization, an initiator is required to produce a species having a 

reactive center which is capable of further chain growth. This species may be a free radical, a 

cation, or an anion. Propagation via this active center by the successive addition of a large 

number of monomer molecules results in polymer chains with high molecular weights at 

relatively fast rates. Once a monomer is added to an active center, the active center is moved 

towards the new chain end. A monomer can react with a reactive center only, no reaction 

occurs between a monomer and another monomer or any different-sized species.  

 

1.3 Free Radical Polymerization 

The following part focuses on the free radical polymerization which is subcategory of the 

chain-growth polymerization. 

Radical chain polymerization consists of a sequence of three steps – (i) initiation, (ii) 

propagation, and (iii) termination. Two reactions are involved in the initiation step. The first 

reaction produces free radicals, usually by the homolytic scission of the initiator I to free 

radicals    with kd as the dissociation rate coefficient: 

      
                      
→                

The free radical    arising from initiator cleavage is called the primary radical or the initiator 

radical. This is added to a monomer molecule M during the second reaction of the initiation 

step and forms a monomer radical   
 : 

                  
                      
→              

  

Above,   
  represents the chain-initiating radical (monomer radical) and ki the rate coefficient 

for this initiation reaction. Propagation reactions start upon the addition of a monomer 

molecule to   
  and proceed via the successive addition of monomer molecules as represented 

below: 
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→              

  

  
                 

                      
→              

  

  
                 

                      
→              

 

etc., and the propagation step can be generalized as shown below: 

  
                 

                      
→                

  

where kp stands for the propagation rate coefficient and   
  is the radical chain having n 

monomeric units. Most monomers have a propagation rate coefficient between 10
2
 and 10

4
 L 

mol
-1

 s
-1

 (Beuermann et al., 1997; Buback et al., 1995) or even above (Beuermann et al., 

1996), which makes free radical polymerization much faster than step-growth polymerization. 

The growing radical chains terminate after a certain time of polymerization. Bimolecular 

radical-radical termination reactions stop the growth of the concerned radical species, either 

by combination (coupling) or by disproportionation. Larger dead polymer chains are formed 

upon combination reaction as illustrated below. Dead polymers are no longer capable of 

growing to larger chains. 

  
             

      
                       
→                  

with ktc as the rate coefficient for termination by combination and Pn+m as the dead polymer 

chain of length n+m. The probability of termination by disproportionation is less than the 

combination reaction (Odian, 2004). A hydrogen radical being beta to one radical center is 

transferred to the other radical center so that two polymer molecules, one being saturated and 

one unsaturated, are formed: 

  
             

      
                       
→                            

 

Initiation 

Thermal, photochemical, and redox methods can be applied to generate free radicals. No 

matter which technique is used, an initiator system has to be readily available, stable under 

ambient or refrigerated conditions, and possess a practical rate of radical generation at 

temperatures ideally below 150 °C. 

In photoinitiated polymerization, radicals are generated by ultraviolet (UV) or visible light 

irradiation. Either some compound in the system undergoes excitation by absorbing radiation 

and subsequently decomposing into radicals (Norrish type I), or the excited species interacts 

with a second compound for radical formation (Norrish type II). The former method (Norrish 

type 1) is used throughout this doctoral thesis by working with photoinitiators capable of 

forming radical species upon absorption. 
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Photoinitiated Free Radical Polymerization 

During this PhD project, a crosslinker (multifunctional) monomer was most often employed 

during photopolymerization. Methyl methacrylate (MMA) was never used as the sole 

monomer to produce PMMA. The short process residence time does not allow MMA to 

polymerize to PMMA completely. Nevertheless, the following discussion on photoinitiated 

polymerization is for simplicity illustrated for the polymerization of MMA. 

The ongoing reactions in photoinitiated free radical polymerization do not differ from 

thermally initiated free radical polymerization except in the initiation step. Once an initiator 

molecule is decomposed to its radical fragments, the subsequent reactions proceed in the 

identical manner. The discussion of this sub-chapter is exemplarily shown on the 

photoinitiated free radical polymerization of MMA with Irgacure 907
®

 employed as the 

photoinitiator. 

Figure 1 represents the molecular structures of the photoinitiator Irgacure 907 and the 

monomer methyl methacrylate (MMA). 

 

 
Figure 1   Chemical structures of (a) the photoinitiator Irgacure 907

®
 and (b) the monomer 

methyl methacrylate (MMA). 

 

Upon UV irradiation, Irgacure 907 decomposes into its radical fragments which are called 

primary radicals:  

 

 
. 

Figure 2   Decomposition reaction of Irgacure 907 by UV radiation upon homolytic bond 

dissociation into two primary radical fragments. 

 

The generated primary radicals are capable of reacting with the carbon-carbon double bonds 

of the monomer molecules to initiate chain growth. The next figure shows the addition of one 

of the primary radical fragments to an MMA molecule: 

 
 

Figure 3   Initiation reaction of a primary radical fragment with MMA. 
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As mentioned earlier, the reaction above constitutes the second step of the initiation reactions. 

The reaction coefficient of this reaction where the first MMA unit is added to a primary 

radical is denoted as k1. Similarly, the second primary radical fragment originating from 

photoinitiator cleavage as well also reacts with a monomer molecule. For simplicity, the 

reaction rate coefficient of this reaction, as represented below, can be assumed as k1 too. In 

reality, however, they can differ to some orders of magnitude (Lalevee et al., 2006). 

 

 

 
Figure 4   Reaction of the other primary radical fragment with MMA. 

 

The radical chains consisting of one monomeric unit each can grow to larger polymer chains 

via further addition reactions of monomer molecules. In the following figure, one more MMA 

molecule adds to one of the growing chains where kp,2 denotes the propagation rate coefficient 

of the reaction in which the second MMA molecule is added to the radical molecule having 

one monomeric unit: 

 
Figure 5   First propagation step. 

 

Propagation reactions proceed sequentially via the addition of single monomeric units. The 

addition of a third monomer is illustrated below: 

 

 
 

Figure 6   Propagation reaction via the addition of the third monomer to the growing chain. 

 

The propagation rate coefficient for the reaction where 3
rd

 monomer is added onto a chain is 

kp,3. Since the propagation rate coefficients of each propagation step are nearly equal to each 

other, a single propagation rate coefficient kp can used for each chain growth step: 
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Figure 7   Generalized propagation reaction. 

 

Each radical polymer chain can grow until it terminates, which can take place by  termination 

reaction with another radical chain, by chain transfer reaction resulting in termination of this  

chain but formation in another radical molecule usually being not as reactive as the terminated 

chain, or by combination with a primary radical. The last one is rather improbable since 

typical initiator concentrations are low in polymerization systems. The probability for chain 

transfer is also not much if no chain transfer agents are present in the mixture. Therefore, the 

most probable case for a radical polymer chain termination is the classical termination 

reaction between two radical chains. This most often occurs by combination where the 

corresponding radicals combine two form a larger dead polymer chain. The next figure 

illustrates the combination reaction between radical polymer chains consisting of 3 and 4 

monomeric units: 

 

 
  

Figure 8   Termination by combination between two radical polymer chains to form a dead 

polymer chain. 

 

Whether the radical chain ends originating from the photoinitiator molecules are the same at 

the ends of a dead chain is a matter of statistics. In a real polymerization system, both cases 

will appear. Since dead polymer chains are usually thousands of grams per mole in molecular 

weight, chain end molecules do not have an impact on the properties of the final polymer 

product. Apart from combination, termination can occur by disproportionation as well. Two 

polymer molecules will be formed during this reaction, hence leading to lower molecular 

weights of the polymer. One of the chains will be saturated and the other one unsaturated due 

to hydrogen atom transfer from one radical molecule to the second one. Termination by 

disproportionation is usually less probable compared to combination. 
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Initiation, propagation, and termination occur sequentially. A fourth kind of reaction, chain 

transfer, can result in termination of a growing radical chain too. Chain transfer can occur to 

chain transfer agents, to monomer, to polymer, or to solvent. In chain transfer agents, at least 

one weak chemical bond is present which is responsible for chain transfer reactions. Upon the 

transfer of e.g. a hydrogen atom to a radical species, the radical reactive center is transferred 

from the growing polymer chain. This results in termination of this chain but forms another 

radical species, mostly less active than the previously growing chain. Chain transfer agents 

can be employed specifically for branching. 

 

 

 
 

Figure 9   Chain transfer reaction via abstraction of a hydrogen atom from a chain transfer 

agent XH. 

 

The addition of monomeric units to each growing polymer chain usually continues until 10
3
-

10
6
 monomer units are covalently bonded within this chain. 

 

1.4 Rate of Photopolymerization 

The rate expression for chain polymerization initiated by free radicals can be derived by 

assuming steady-state conditions where the change of radical concentration maintains zero as 

a result of the equality between the initiation rate and the termination rate. 

The monomer in the reaction system disappears according to the following equation: 

  [ ]

  
       

with Ri and Rp as the rates of initiation and propagation, respectively. Since the concentration 

of a monomer is far higher than the free radical concentration in a reaction mixture, the 

expression can be simplified to 

  [ ]

  
    

Hence, the rate of polymerization can be regarded as the propagation rate which is the sum of 

a number of individual propagation steps: 

     [ 
 ][ ] 

Above, [  ] represents the total concentration of all radical chains which are of the size [  
 ] 

and larger. This term can be eliminated by the mentioned steady-state assumption where the 

initiation rate equals the termination rate. Bimolecular termination mechanism is assumed so 

that termination occurs between 2 chain radicals of any size: 

         [ 
 ]  
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Transformation of the equation above to 

[  ]  (
  
   
)
   

 

and substituting into the propagation rate expression containing the sum of radical chains 

results in the following polymerization rate expression: 

     [ ] (
  
   
)
   

 

The initiation rate expression depends on the type of initiation. In the case of photoinitiation, 

the rate expression can be represented as  

        

where  is the quantum yield for initiation (fraction of the radicals produced in the homolysis 

reaction that initiated polymer chains) and Ia is the volumetric intensity of absorbed 

irradiation in moles (Einsteins in photochemistry) of light quanta per liter-second. The factor 

of 2 indicates that two radical species are produced upon the photolysis of a photoinitiator 

molecule. Then the rate expression for polymerization becomes: 

     [ ] (
   
  
)
   

 

The absorbed irradiation Ia can be expressed by means of further parameters with the help of 

the Beer-Lambert law: 

  
        

  [  ]  

where   
  is the surface area absorbed intensity of radiation, α the absorption coefficient of the 

photoinitiator PI, d the distance for radiation absorption, and I0 the incident radiation 

intensity. 

 

1.5 Photopolymerization of Multifunctional Monomers 

Apart from the steady-state assumption which actually does not suit the aerosol-

photopolymerization experiments possessing an average aerosol residence time of about 1 

min in this work, the aforementioned rate expressions are not powerful enough for describing 

the photopolymerization kinetics of multifunctional monomers which is a highly challenging 

task. 

Crosslinker (multifunctional) monomers such as multiacrylates and multimethacrylates 

display kinetic phenomena that differ from the polymerization of monofunctional monomers. 

In contrast to linear polymerization, the existence of more than one carbon-carbon double 

bond in a molecule results in a crosslinked, three-dimensional molecular network. First, one 

of the double bonds reacts with a growing radical polymer chain. Reactions proceed 

afterwards either via further monomer addition, via the attack on the pendant double bond by 

an intramolecular reaction, or via intermolecular reaction with the double bond of another 

chain. Intramolecular reactions can cause extensive cyclization and formation of microgels 
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which are compact structures (Andrzejewska, 2001). The absence of cyclization can result in 

a higher degree of crosslinking when crosslinker monomers are copolymerized with 

monofunctional monomers (Elliott and Bowman, 2001). Microgelation delays the gel point, 

leading to many unreacted pendant double bonds entrapped in the microgel regions. These 

microgels also cause heterogeneities within the built network, which becomes glassy and 

prevents the attainment of a maximum conversion beyond which no significant double bond 

conversion occurs due to the viscous, crosslinked environment upon vitrification 

(Andrzejewska, 2001). Radicals can be entrapped in linear systems and cause heterogeneity as 

well (Zhu et al., 1990), but it may become pronounced in radiation curing as functions of 

crosslinking density and initiation rate (Anseth et al., 1996). These entrapped radicals can 

remain present in the crosslinked polymer for months or even years (Bowman and Kloxin, 

2008).

 

Rapid formation of a three-dimensional network restricts the mobility of chains, especially 

of the larger ones which are supposed to terminate each other. Therefore, center-of-mass 

diffusion reduces drastically, and polymer radicals mainly approach each other via segmental 

diffusion or by propagation. Nevertheless, further crosslinking also limits segmental diffusion 

and reaction diffusion becomes dominant for termination (Andrzejewska, 2001) and the 

overall kinetics gets diffusion-controlled resulting in network formation which depends on 

monomer conversion (Lovell et al., 2001). Diffusion limitations reduce the rate coefficient of 

termination dramatically, which leads to the phenomenon called autoacceleration (also called 

gel effect or Trommsdorf-Norrish effect) (Andrzejewska, 2001). Apart from that, the 

polymerizing medium usually does not have enough time for volume relaxation as 

crosslinking reactions proceed due to the very rapid chemical reaction rates. This results in a 

density difference between monomer and the formed polymer and is overcome during a 

certain time period after the polymerization has taken place. However, the formation of this 

excess volume allows for further reactions, increasing the overall carbon-carbon double bond 

conversion upon the addition reaction of rest monomer molecules (Anseth et al., 1995). 

For aerosol-photopolymerization experiments in this thesis, crosslinked polymeric 

nanoparticles were prepared most often, either via the polymerization of a multifunctional 

monomer only or in the presence with a monofunctional monomer. Depending on the 

monomer propagation rate coefficient, some monofunctional monomers were also 

polymerized without a crosslinker within the short average aerosol residence time of about 1 

min. 

Various published work can be found on the experimental investigations on radiation 

curing (Decker, 1992; Decker and Moussa, 1990; Johnson et al., 2007; Li et al., 2006; 

Scherzer and Decker, 1999; Tryson and Shultz, 1979; Ye et al., 2011) and a number of 

models have been proposed to overcome the challenges arising during multivinyl free radical 

photopolymerization (radiation curing) and accurately predict the polymerization kinetics 

(Lovestead et al., 2002; Lovestead et al., 2005; Lovestead et al., 2003) 

 

1.6 Aerosol Generation Techniques 

Although classical wet chemistry or lithographic methods are traditionally most often 

employed for particle generation, aerosol-based routes represent alternative techniques upon 
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the advancement of aerosol technology. The main drawbacks of liquid methods are the batch 

processing routes and the incorporation of impurities such as surfactants which contaminate 

the product. In contrast, aerosols represent a platform for the preparation of highly pure 

nanoparticles via continuous processes. Nanostructured materials of well-defined morphology 

and chemical composition can be obtained by aerosol routes (Biskos et al., 2008). 

There are two main ways for the generation of aerosol nanoparticles.  The first one is the 

atomization (spraying) of a solution of specific composition to form droplets which become 

solid particles via crystallization upon subsequent evaporation of the solvent (Biskos et al., 

2008) or via photopolymerization (Akguen et al., 2013). The second strategy for aerosol 

nanoparticle manufacturing is the gas-to-particle conversion via nucleation and growth by 

condensation and coagulation controlled via saturation degree (Schenkel and Schaber, 1995). 

Solutions can be atomized either by mechanical methods such as nebulization or by the 

application of an electrostatic potential between the solution and a counter electrode such as 

electrohydrodynamic atomization (electrospraying). The methods involved for the gas-to-

particle synthesis are furnace, flame, plasma, or laser reactors, glowing wires (Biskos et al., 

2008) and spark discharges (Seipenbusch et al., 2003). 

 

1.7 Atomization of Liquid Solutions 

This part deals with the atomization of solutions which is also called spraying. Different 

atomizers can be employed depending on the forces applied to break up the liquid solution 

into small gas-carried droplets. The most common methods are pneumatic, ultrasonic, and 

electrospray atomization for nanoparticle preparation. In contrast, methods such as spinning-

disk atomizers produce larger particles in lower concentrations. 

In ultrasonic atomization, the air-liquid interface is vibrated for droplet formation. 

Mechanical energy is applied from a piezoelectric crystal to the system, agitating the solution 

surface and creating capillary waves which break up to micron-sized droplets. Air stream 

passing over the solution takes the droplets for the formation of the droplet aerosol. 

In electrohydrodynamic atomization, monodisperse droplets can be generated. Control of 

the liquid flow and the applied electrostatic potential between the solution and the counter 

electrode enable the production of droplets within a narrow size range having mean diameters 

from nanometers up to several micrometers. 

In pneumatic atomization, pressurized gas is required which is introduced via an orifice, 

expanding perpendicularly to the end of a tube connected to the liquid reservoir. The low 

pressure at the tube end draws the liquid from the reservoir to the gas stream as a result of the 

Bernoulli effect. High forces at the gas-liquid interface break up the solution into small 

droplets which become gas-carried afterwards. The produced droplet aerosol is directed to an 

impactor plate for the separation of coarse droplets from the main aerosol stream (Collision-

type atomizers). The isolated, coarse droplets can either be directed back to the reservoir or 

break up into smaller droplets and exit the atomizer with the aerosol stream (Biskos et al., 

2008). Pneumatic atomization was realized throughout this thesis. 

In their aerosol-photopolymerization setup, Esen and Schweiger (Esen and Schweiger, 

1996) employed a vibrating-orifice aerosol generator (Berglund and Liu, 1973) and Gao et al. 

(Gao et al., 2007) utilized a modified version of it. Such aerosol generators fall within the 

category of ultrasonic atomization where monodisperse droplet aerosols with average 
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geometric standard deviation of almost 1 can be generated by the uniform break-up of liquid 

jets. Although a broad size of the dispersed phase between 1 and 50 µm diameter can be 

obtained, a major drawback of these employed aerosol generators is the limiting droplet 

concentrations of only up to 500 droplets cm
-3

. This low value limits its industrial use. 

 

1.8 Aerosol-Photopolymerization 

Once the aerosol with monomer droplets is produced, it is passed through the photoreactor 

where the gas-carried monomer droplets become gas-carried polymer particles. Nitrogen is 

chosen as the carrier gas due to free radical polymerization reactions which would be 

inhibited by oxygen. 

As the photoinitiator, Irgacure 907
®
 was used throughout this thesis except for some 

experiments where other photoinitiators were tested for comparison. Irgacure 907 possesses a 

high molar extinction coefficient  of 16000 L mol
-1

 cm
-1

 at the emission wavelength of 313 

nm which is comparable to 308 or 312 nm. This value is e.g. 6500 L mol
-1

 cm
-1

 for Irgacure 

819 or 194 L mol
-1

 cm
-1

 for Irgacure 651 (Scherzer and Decker, 1999). As the multifunctional 

monomer, 1,6-hexanediol diacrylate (HDDA) was used most often, the monofunctional 

monomers employed mostly were methyl methacrylate (MMA) and butyl acrylate (BA).  

As UV sources, an excimer irradiation source and UV fluorescent tubes were employed. 

The former is a quasi-monochromatic irradiation source (Kogelschatz, 1990). Such UV 

sources are based on excited rare gas dimers such as Ar2
*
 (126 nm), Kr2

* 
(146 nm), Xe2

* 
(172 

nm), F2
*
 (157 nm) or their chlorides, fluorides and bromides such as ArCl

* 
(175 nm), KrCl

*
 

(222 nm), XeCl
*
 (308 nm), ArF

* 
(193 nm), KrF

* 
(248 nm), XeF

* 
(351 nm), XeBr

* 
(282 nm). 

Depending upon the choice, emission can be realized between wavelengths of 120 and 360 

nm. A distinct advantage of this type of UV sources is their flexibility in geometry and 

operation conditions, e.g. their emission intensity can be tuned. XeCl* excimer source was 

utilized during this thesis for irradiation at 308 nm wavelength. In comparison to excimer 

sources, UV fluorescent tubes emit polychromatic radiation (270-360 nm) but possess an 

emission maximum at 312 nm being close to the value of the employed XeCl* excimer source 

so that the same photoinitiator, Irgacure 907
®
, was used for both kind of photoreactors. 

 

1.9 Experimental Setup of Aerosol-Photopolymerization 

The process of aerosol-photopolymerization consists of two main devices, an aerosol 

generator (atomizer) and a photoreactor. The aerosol generator sprays the monomer 

formulation with the help of nitrogen gas to produce a droplet aerosol with nitrogen as the 

continuous, carrier phase and the monomer formulation droplets as the dispersed, carried 

phase. In the simplest case, a photoinitiator (PI) is dissolved in a liquid monomer (M). More 

complex formulations can be prepared by mixing or suspending additional substances such as 

solvents, solutes, and inorganic nanoparticles, or by preparing a comonomer system. The 

produced droplet aerosol is then passed through the photoreactor where nitrogen-carried 

monomer droplets are photopolymerized to nitrogen-carried polymeric particles. The particle 

aerosol leaving the photoreactor is either passed through a liquid for obtaining a suspension or 

through a filter membrane for dry particle collection. The process flow is depicted in the 

Figure 10: 
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Figure 10   Schematic process flow of aerosol-photopolymerization. M: monomer, PI: 

photoinitiator. 

 

An aerosol generator utilizing a two-component nozzle was used throughout this thesis 

(ATM 220, Topas). Such nozzles produce polydisperse droplets, but mainly in the submicron 

range and with a concentration as high as 10
7
-10

8
 cm

-3
. The most critical part of this aerosol 

generator is its two-component (two-stream) nozzle based on the injection principle, 

producing a highly concentrated polydisperse droplet aerosol. This aerosol generator 

(atomizer) is so designed that the formed droplet aerosol is directed towards the glass wall of 

the vessel, and the wall acts as a baffle for separating the coarse spray droplets from the 

aerosol and keeps the droplet size mainly below 1 µm. The smaller droplets follow the 

nitrogen stream while the larger ones flow down the vessel wall back to the formulation. The 

volumetric aerosol flow rate can be changed between 1 and 5 L min
-1

 s by adjusting the 

nozzle inlet pressure between 1 and 6 bars. 

The produced monomer droplet aerosol is directed to the photoreactor possessing an 

average aerosol residence time of about 1 min or shorter depending on the aerosol volumetric 

flow rate or photoreactor length. One of the photoreactors is equipped with a XeCl* excimer 

irradiation source emitting quasi-monochromatic at 308 nm (width of half height ≈ 3 nm) and 

consists of concentric, cylindrical quartz glass tubes. The UV irradiation source is placed at 

the center where nitrogen is circulated for temperature control. The UV source is enclosed by 

the aerosol zone, which is surrounded by the most outer space where water is circulated for 

temperature control. A cross-section of the excimer photoreactor is illustrated in Figure 11(a): 

 
Figure 11   XeCl* excimer photoreactor: (a) schematic cross-section view, (b) photo. 

 

Effective irradiation length of this photoreactor is 32 cm and its radiant exitance 10 mW cm
-2

. 

The average aerosol residence time can be varied between 15 and 60 s by applying different 

pressures at the nozzle inlet of the aerosol generator.  

A second photoreactor consisting of a quartz glass tube and UV fluorescent tubes is 

employed as well. The quartz tube can be surrounded by 1 to 4 of such irradiation sources 

consisting of 2 to 3 tubes each. UV fluorescent tubes emit polychromatic radiation between 
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270 and 360 nm, but possess an emission maximum at 312 nm being comparable to the 

excimer source emitting at 308 nm. 6 UV fluorescent tubes being 41 cm long correspond 

approximately to 5 mW cm
-2

 irradiance. The quartz glass tube possessing an average aerosol 

residence time of about 1 min is 44 cm long and has an inner diameter of 52 mm. The aerosol 

residence time in this photoreactor can be changed either by nozzle inlet pressure or by using 

a shorter quartz glass tube. Figure 12 illustrates the setup for this photoreactor. 

 
Figure 12   Photoreactor equipped with UV fluorescent tubes 

 

Once polymeric particles are formed, the particle aerosol leaving the photoreactor is passed 

through a gas-washing bottle or a filter membrane. The former is performed via particle 

transfer from the aerosol into liquid via the surface area of bubbles. Usually, water is chosen 

as the liquid. However, this method is not effective regarding particle collection efficiency 

since the smaller particles follow the gas stream out of the washing bottle. By employing the 

latter method, nearly all of the particles can be collected on a PTFE filter membrane having an 

average pore diameter of 50 nm. A drawback of this collection method is the clogging of 

membrane with experimental time. Therefore, particle collection method strongly depends on 

the performed experiment and on the subsequent characterization techniques for the generated 

particles.  

 

1.10 Polymer Reaction Engineering 

Polymerization kinetics for aerosol-photopolymerization is simulated with Predici
®
 to 

estimate the required time for the sufficient conversion of monomer double bonds during 

photoreactor passage. Predici
®
 is a simulation package for the modeling and dynamic 

simulation of macromolecular processes by using the Galerkin h-p method. It can rigorously 

treat e.g. complete molecular weight distributions in arbitrary polymerization processes, chain 

length-dependent reactions, copolymerization reactions, and heterogeneous systems. See 

Wulkow (Wulkow, 2008) for the mathematical details of this software. 

A monofunctional monomer was chosen for the simulations, and the chain transfer step 

was neglected. The simulations were performed for a batch process lasting for 60 s of 

polymerization time. This batch reactor should represent a monomer droplet (of 150 nm 
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diameter) at isothermal conditions of 50 °C. Although the system in whole is heterogeneous, 

the polymerization of a single monomer droplet constitutes bulk polymerization. The kinetic 

coefficients were so chosen that the monomer is butyl acrylate, representing a “fast” 

propagating monomer. The initial species considered in the formulation were the dissolved 

photoinitiator and the monomer representing the main, continuous phase. 

The termination rate coefficient of butyl acrylate is described dependent on monomer 

conversion according to the trend given by Buback (Buback, 1990). However, as the initial 

termination rate coefficient, a higher value of 2x10
8
 L mol

-1
 s

-1
 is selected (Beuermann et al., 

1996). Upon calculation of the ratio of initial values, a factor has been determined for 

multiplying the lower values given by Buback with this factor. Both combination and 

disproportionation rate coefficients are described in this way and are identical to each other. 

The initial propagation rate coefficient of butyl acrylate at 50 °C is selected to be 2x10
4
 L 

mol
-1

 s
-1

 (20700 L mol
-1

 s
-1

 in Beuermann et al.) and a linear decrease with the conversion of 

monomer until becoming zero at complete conversion was assumed. The progress of these 

two coefficients is described as follows: 

 

Figure 13   Termination and propagation rate coefficients as functions of butyl acrylate 

conversion. 

 

Implementing the termination and propagation rate coefficients along with the initiation rate 

coefficient of 0.03 s
-1

 and an initiation efficiency of 1 (100 %), “standard” simulations have 

been performed. The obtained conversion profiles of the monomer butyl acrylate and the 

photoinitiator Irgacure 907 are illustrated below: 
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Figure 14   Monomer (M) and photoinitiator (PI) conversion profiles for butyl acrylate 

polymerization under “standard” conditions. 

 

According to Figure 14, butyl acrylate can be converted to polymer very fast, practically 

within 40 s. In contrast, the photoinitiator dissociates at a rather constant rate. It dissociated 

more than 80 % after 1 min. This “standard” simulation resulted in the following dead 

polymer chain distributions: 

 
Figure 15   Polymer chain distributions: (a) chain length distribution, and (b) mole mass 

distribution. 

 

The obtained polymer chains showed a broad distribution with a polydispersity of about 3.7. 

For the illustration of the effect of initiation rate on the overall polymerization rate, the 

initiation rate coefficient of 0.03 s
-1

 was varied between two limits, 0.001 and 0.5 s
-1

. The 

obtained photoinitiator (Irgacure 907) and monomer (butyl acrylate) conversion profiles are 

shown below: 
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Figure 16   Conversion profiles of (a) photoinitiator and (b) monomer for different initiation 

rate coefficients. 

 

The profiles for photoinitiator conversion in Figure 16(a) show that an irradiation time of 60 s 

results in total conversion if the initiation rate coefficient is higher than 0.05 s
-1

. The 

monomer, in contrast, reaches practically total conversion even with an initiation rate 

coefficient of 0.01 s
-1

. This is due to the “fast-propagating” nature of butyl acrylate. 

Regardless of the initiation rate, this monomer can polymerize within a short time. Whether 

fast or slow initiation takes place reflects itself on the final molecular weight distribution of 

the obtained poly(butyl acrylate) (PBA) as shown in the next figure: 

 
Figure 17   Polymer chain distribution as function of the initiation rate coefficient. 

 

As expected, a smaller rate coefficient for initiation (0.01 s
-1

 instead of 0.05 s
-1

) leads to a 

lower number of radicals generated per unit of time which results in longer polymer chains for 

complete conversion of butyl acrylate. However, even fast reacting monomers have their 

limits regarding complete conversion during certain time periods. If the initiation rate 

coefficient is considerably lower than 0.01 s
-1

, e.g. 0.001 s
-1

, less than 80 % of butyl acrylate 

will be polymerized after 1 min. Performing very high initiation rates via high initiation rate 
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coefficients such as 0.5 s
-1

 does not result in a complete conversion of the monomer as well. 

Such initiation rates can form radicals extremely fast, but only short dead chains will be 

formed so that no more photoinitiator is present for radical formation, leading to the presence 

of unreacted, rest monomer molecules which corresponds to lower overall monomer 

conversion. Therefore, a good agreement between the initiation and propagation rates is 

decisive and is a matter of optimization. Since not only the initiator concentration but also the 

irradiance of the UV source can be adjusted for obtaining the favored initiation rate, 

photoinitiated polymerization exhibits great power and potential for polymerization 

optimization. 

Taking the “standard” value of 0.03 s
-1

 as the initiation rate coefficient, the initial 

propagation rate coefficient of the polymerization system was varied. Again a linear decrease 

with monomer conversion was assumed: 

 
Figure 18    Selected initial propagation rate coefficients as function of monomer conversion. 

 

Implementing the propagation rate coefficient profiles of Figure 18 resulted in monomer 

conversion profiles presented in Figure 19, illustrating the dependence of the monomer 

conversion profiles on the propagation rate coefficient. 
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Figure 19   Monomer conversion profiles for different initial propagation rate coefficients. 

 

In Figure 19, the curve represented by kp,0 = 2x10
4
 L mol

-1
 s

-1
 constitutes the “standard” 

monomer conversion profile as in Figure 16(b) with BA as the reference system, whereas the 

remaining curves are the simulations for faster or slower chain growth reactions. It is obvious 

that a minimum initial propagation rate coefficient of 1x10
4
 L mol

-1
 s

-1
 is required for a 

monomer conversion of at least 80 % after 60 s of polymerization time. This example 

illustrates that not all kind of monofunctional monomer systems can be photopolymerized 

within a minute of aerosol residence time in the aerosol-photopolymerization setup with 1 min 

of irradiation time, but high optimization potential is hidden especially regarding the initiation 

step. 
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2. Research Proposal 

 

Aerosol-photopolymerization was a research project within the broader research initiative IP3 

JointLab, aiming at integrated processes for nanostructured functional materials. JointLab is 

incorporated in Karlsruhe at KIT with the support of BASF. IP3 stands for innovative 

products, intelligent particles, and integrated processes, highlighting the main foci of JointLab 

as integration of the know-hows of the involved research groups for the shared development 

of functional materials. Both organic and inorganic particles and their composites were of 

interest by either liquid or gas processing routes. Within this perspective, aerosol-

photopolymerization represented a gas phase route for the generation of polymeric 

nanoparticles – polymer nanoparticles and hybrid nanoparticles. 

Polymeric particles attract various industrial and research fields including the emerging 

applications such as optics and photonics, nanomedicine, and functional smart coatings. They 

have most often been prepared by techniques based on the liquid phase such as suspension 

polymerization or emulsion polymerization. Especially emulsion polymerization has been 

gaining more attractiveness for radical polymerization due to its capability of producing 

quasi-monodisperse particles in a wide size range. Various sophisticated particles such as 

composites or non-spherical particles have readily been prepared by this technique. Upon the 

employment of the special kinds of emulsion polymerization – miniemulsion or 

microemulsion polymerization – nanoscale polymeric particles can be synthesized. These 

techniques have a major drawback of surfactant usage which decreases the polymer purity. In 

addition, liquid-based techniques mostly require intensive downstream process steps 

regarding cost and time. Free radical polymerization reactions are frequently started via the 

decomposition of thermal initiators. This requires elevated temperatures disallowing 

processing of thermally sensitive materials such as biomolecules.  

Aerosol-photopolymerization represents an alternative, novel technique for the generation 

of polymeric particles. It combines an aerosol-based process with photoinitiated 

polymerization and possesses characteristic advantages. Aerosols are attractive for continuous 

processing leading to highly pure materials and eliminate downstream steps. The advantages 

of photoinitiated polymerization are also numerous. Photopolymerization is capable of 

instantaneously starting the chain reactions and facilitates the treatment of thermally sensitive 

materials via operation at ambient temperature. Preventing higher temperatures both 

minimizes monomer evaporation which would be quite challenging in thermally initiated 

systems and thermodynamically favors the exothermic chain reactions.  

Published work about the preparation of polymer microspheres by UV-initiated radical 

polymerization in aerosols had been available prior to this PhD thesis. Insofar, apart from 

fundamentals, there was a lack of detailed, comprehensive understanding of the process 

limiting the generation of precisely defined particle structures. A deeper understanding of the 

physical and chemical phenomena underlying the aerosol-photopolymerization could open 

pathways either for existing polymeric particles with improved properties or even could lead 

to novel, complex particulate matter.  

Disregarding its potential as an effective unit operation, aerosol-photopolymerization is 

also flexible in terms of integration with various process units. The continuous aerosol 

processing 
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route enables the arrangement of photopolymerization step with other unit operations in 

series, or in other words, in flight. Such an integrated process can reduce operational time and 

cost. Furthermore, the contribution of each single process step can yield particles possessing 

tailor-made properties at the end. Also the aforementioned advantages of the photochemical 

technology make aerosol-photopolymerization flexible and attractive for integrated processes.  

Integrated, continuous processes combining particle generation, surface modification, and 

integration within the polymeric material represent a challenge for the preparation of 

functional hybrid particles. Cross-cutting methods are needed for specific requirements of 

size, composition, porosity, functionality, and morphology of particles. Therefore, IP3 

JointLab was aiming at integrated, aerosol-based processes for such materials - incorporation 

of drugs into a polymer matrix, coating of drugs with a polymer film to obtain nanocapsules, 

and generation of organic carrier particles for a subsequent coating. All these phenomena had 

not been adopted by aerosol-photopolymerization yet and a fundamental, detailed knowledge 

was missing. 

This PhD project about aerosol-photopolymerization should seek for a deeper 

understanding of the process to prepare particles with favored properties. First of all, a 

photoreactor had to be designed and built. This reactor then had to be employed for the 

generation of spherical polymer particles. In a next step, composite (hybrid) particles were to 

be prepared which should rely on the basic knowledge to be gained in the previous step by 

pure polymer particle synthesis. Further particulate structures could be tried to be generated 

by the variation of formulation and process parameters. Finally, all the gained knowledge on 

the aerosol-photopolymerization would contribute for the application of integrated, aerosol-

based processes to prepare tailor-made particles. Aside from process integration, there is also 

the possibility of presenting aerosol-photopolymerization as a versatile single-step process for 

the generation of different particle structures, representing the perspectives of this process and 

PhD thesis. 
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__________________________________________________________________________ 

Patent Application 1 

Aerosol Photopolymerization 

 

Ertan Akgün, Wolfgang Gerlinger, Michael Wörner 

___________________________________________________________________________ 

 

 

Abstract 

The present invention relates to a process for producing nanoparticles comprising at least one 

polymer and/or copolymer by providing an aerosol comprising droplets of at least one 

monomer and at least one photoinitiator in a gas stream, irradiating this aerosol stream with 

light such that the monomers present polymerize, and removing the nanoparticles formed 

from the gas stream, to nanoparticles producible by this process and to the use of these 

inventive nanoparticles in optical, electronic, chemical or biotechnological systems, or for 

active ingredient administration. 
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Patent Application 2 

Finely Divided Particles of Core-Shell Structure 

 

Ertan Akgün, Stephanie Sigmund, Wolfgang Gerlinger, Bernd Sachweh, 

Gerhard Kasper, Michael Wörner 

________________________________________________________________ 

 

 

Abstract 

The invention provides a process for producing finely divided particles of core-shell structure 

where the shell comprises at least one polymer, said process comprising the steps of: i. 

providing a first aerosol stream of droplets in a carrier gas stream wherein the droplets 

comprise at least one monomer and charging droplets of the first aerosol with electric charge; 

ii. providing a second aerosol stream of solid particles in a carrier gas stream and charging the 

solid particles of the aerosol with an electric charge opposite to the electric charge on the 

droplets of the first aerosol stream; iii. mixing the first aerosol stream with the second aerosol 

stream to form a mixed aerosol stream; iv. initiating a polymerization of the monomers by 

irradiating this mixed aerosol stream with electromagnetic radiation. The invention also 

provides the finely divided particles of core-shell structure which are obtainable by this 

process. 
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Abstract 

 

Photoinitiated polymerization is employed to produce submicron polymer particles in 

aerosols. By ultraviolet (UV) irradiation of the aerosol monomer solution droplets, produced 

with the help of an atomizer, polymerization is initiated by free radical generation. The 

aerosol process allows the production of surfactant-free polymer particles without any solvent 

required, while photochemistry results in instantaneous formation of free radicals by cleavage 

of excited photoinitiator molecules. Furthermore, the initiation can take place independent of 

temperature, which provides polymerization at ambient temperature. A continuous 

experimental setup with a flow-through photoreactor is developed, which is characterized by a 

sub-minute aerosol residence time. The experiments reveal that spherical nanopolymers can 

be formed as 1-to-1 copy from the monomer droplets. 

 

Keywords:  Nanoparticle; Polymers; Aerosol; Photochemistry; Particle formation; 

Polymerization 
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1. Introduction 

 

Polymeric (nano)particles have increasingly been raising interest for a number of applications 

ranging from optics and photonics to nanomedicine. They are used, for example, in 

combination with inorganic nanofillers for transparent polymers [1, 2], or in life sciences as 

controlled drug release agents [3]. Different production methods are available to obtain 

polymer particles. Emulsion polymerization is one of the most often established techniques, 

where the use of surfactants is required and mostly thermally initiated polymerization is 

applied. These surfactants may be incorporated in the polymer structure and decrease the 

product purity [4]. After polymerization in wet methods, the particles might have to be 

separated by downstream processes like centrifugation or filtration, washed and dried under 

vacuum [5]. These process operations consume time and cost. 

Polymers as functional materials can also be prepared by photochemical technologies. The 

use of photons for polymer preparation goes back to the beginning of the 20
th

 century, when 

Klatte converted vinyl chloride into PVC by light-induced polymerization [6]. Photoinitiated 

dispersion polymerization was successfully applied in aqueous alcohol media to produce 

submicron polymer particles on a lab-scale [7]. As an alternative to liquid process routes, 

polymer particles can also be produced by processes based on aerosols. Aerosol techniques 

avoid the need of surfactants and downstream processes, permitting integrated processes. 

Different aerosol-based methods were employed so far. Nebulization-polymerization was 

performed for producing micrometer-sized polystyrene particles. After nebulization of the 

liquid monomer to monomer droplets, the droplets were brought into contact with initiator 

vapor [8]. Esen and Schweiger [9] combined the aerosol technique with photopolymerization 

to produce micrometer-sized polymer particles. A multiacrylate monomer mixture containing 

photoinitiator and binding agents was dissolved in a volatile solvent and dispersed using a 

vibrating-orifice aerosol generator with the help of nitrogen gas. The generated aerosol 

droplets were irradiated with black light fluorescent strip lamps (wavelength ≈ 360 nm) to 

produce highly monodisperse spherical polymer particles with diameters between 5 and 50 

μm and smooth surfaces. In a similar work, where the aerosol generator was a modified 

vibrating-orifice aerosol generator, monodisperse polymer microspheres with diameters 

between 5 to 100 μm were generated by photopolymerization via UV irradiation as well [10]. 

A drawback of the use of a vibrating-orifice aerosol generator is the limited droplet generation 

rate, leading to low polymer particle concentrations. The photopolymerization kinetics of a 

multiacrylate monomer droplet being a few micrometers in diameter was investigated on-line 

with Raman spectroscopy, revealing that a time period of nearly 100 s is required for the 

complete polymerization [11]. A number of publications can be found on the 

photopolymerization kinetics of very fast crosslinking reactions, where polymerization is 

completed within a few seconds [12-21]. 

In this work, photoinitiated free radical polymerization of submicron monomer droplets for 

the generation of spherical polymer nanoparticles is presented. The particles were produced 

from monomer solution droplets consisting of liquid monomer and dissolved photoinitiator. 

The size of the polymer particles can be pre-adjusted by the diameter of the monomer droplets 

since the polymerization process is restricted to the volume of each monomer droplet. No 

surfactants and any additional solvent were used for the preparation of the monomer droplet 
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aerosol, leading to highly pure polymer particles. The employed aerosol generator produces 

high concentrations of monomer droplets and has the potential of up-scale. The subsequent 

photoreactor of this continuous experimental setup can be operated with a sub-minute average 

aerosol residence time. Such a short reaction time necessitated fast overall polymerization 

kinetics. This can be accomplished by different combinations of initiation and propagation 

rates. The initiation rate in photochemical systems can be adjusted by photoinitiator 

concentration, photon exitance, and photophysical properties of the photoinitiator. 

Photochemistry also permits a continuous aerosol process. Fast propagating monomers could 

be polymerized with and without a crosslinker, but monomers exhibiting a low propagation 

rate coefficient required the addition of a crosslinker or a comonomer to accelerate the overall 

polymerization rate. A quasi-monochromatic UV excimer irradiation source [22] allowed 

instantaneous generation of free radicals and avoided the need of higher reaction 

temperatures, which would be required for thermally initiated systems. Lower reaction 

temperatures favor thermodynamically the polymerization process and lead to less droplet 

evaporation rates as well. Aerosol-photopolymerization also offers the potential of producing 

multicomponent materials. 

 

 

2. Experimental 

 

2.1. Chemicals and Materials 

Methyl methacrylate (MMA, Sigma-Aldrich, 99 % purity) and butyl acrylate (BA, Sigma-

Aldrich, 99 % purity) were employed as monomers. Irgacure 907 (Methyl-1[4-

(methylthio)phenyl]-2-morpholinopropan-1-one, Sigma-Aldrich, 98 % purity) and 1,6-

hexanediol diacrylate (HDDA, Alfa Aesar, 99 % purity) were chosen as the photoinitiator and 

crosslinker, respectively. All chemicals were used as received except for copolymerization 

experiments. Pre-packed columns (Sigma-Aldrich) were used for inhibitor removal. 

 

2.2. Process 

The continuous experimental setup consists of two main components, an aerosol generator 

and a flow-through photoreactor, as depicted in Figure 1(a). The monomer solution was 

prepared by dissolving the photoinitiator (PI) in the liquid monomer (M) without using any 

additional solvent. The monomer solution was sprayed with nitrogen gas in an atomizer to 

generate the droplet aerosol. This droplet aerosol was passed through the photoreactor, where 

free radicals are generated upon UV irradiation for the polymerization process. The 

cylindrical flow-through photoreactor with negative irradiation geometry is in-house 

constructed and consists of concentric HSQ 300 quartz glass tubes. The cross-section of this 

photoreactor is schematically presented in Figure 1(b). The custom-made XeCl excimer 

irradiation source (Radium Lampenwerk, Wipperfürth, Germany) is placed in the center and 

surrounded by the inner quartz glass tube. The annular gap in between is flushed with 

nitrogen as cooling gas. Photopolymerization reactions take place in the annular gap between 

the inner and outer quartz tubes. A water jacket serves for the temperature control in the outer 

zone.  The outer envelope is made of Plexiglas. 
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The aerosol generator consists of a two-component nozzle. Depending on the nozzle inlet 

pressure of nitrogen, which can be varied between 1 and 6 bars, the average aerosol residence 

time in the photoreactor can be varied between 15 and 60 s. In contrast, the time scale of 

aerosol generation lies within milliseconds. Therefore, the process residence time can be 

regarded as that in the photoreactor. 

 
Fig. 1. (a) Scheme of the continuous experimental setup for aerosol-photopolymerization, 

(b) schematic cross-section view of the photoreactor. 

 

The employed XeCl excimer irradiation source emits quasi-monochromatic at 308 nm 

(width of half height ≈ 3 nm) with a radiant exitance of 10 mW/cm
2
 at the envelope surface. 

The effective irradiation length of the photoreactor is 32 cm. Polymer particles leaving the 

photoreactor were collected either dry on a PTFE filter membrane with 50 nm average pore 

diameter or wet by transfer into water. 

 

2.3. Particle characterization 

For scanning electron microscopy images, Hitachi S-4500 and LEO 1530 were employed. 

The values of acceleration voltage can be found on the corresponding SEM images. A drop of 

the particle suspension was dropped onto a membrane (Whatman, Nucleopore Track-Etch 

Membrane, 200 nm pore width) or onto a silicium wafer. After drying, the particles were 

coated with a platinum-palladium mixture or platinum. Dry collected particles could be coated 

directly without the drying process. The coating thickness was 1-2 nm.  

Fourier transform infrared spectrometry utilizing attenuated total reflectance (FTIR-ATR, 

Equinox 55, Bruker Optics) was employed for the determination of carbon-carbon double 

bond conversion of the monomer solution. The solution spectra were obtained by measuring a 

droplet of the corresponding monomer solution to be sprayed, and the polymer spectra after 

collecting the particles in the aerosol dry on a filter after aerosol-photopolymerization. 

Scanning mobility particle sizer (SMPS consisting of electrostatic classifier 3080, 

differential mobility analyzer 3081, and condensation particle counter 3775, TSI Corp.) was 

used for the online characterization of droplet and particle size distributions in aerosols. 
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3. Results and Discussion 

 

For the homopolymerization of methyl methacrylate, the monomer solution consisting of 

methyl methacrylate and photoinitiator did not result in successful photopolymerization. The 

aerosol residence time in the photoreactor was not long enough considering the low 

propagation rate coefficient of this monomer of about 300 L mol
-1 

s
-1

 at room temperature 

[23]. Therefore, crosslinker or comonomer was required in order to polymerize methyl 

methacrylate. As a first strategy, a methyl methacrylate solution containing HDDA (1,6-

hexanediol diacrylate) as crosslinker was prepared. In a typical recipe, the photoinitiator was 

1 wt.% in methyl methacrylate and HDDA was 5 vol.% with respect to methyl methacrylate. 

Figure 2(a) shows a SEM image of HDDA crosslinked, agglomerated poly(methyl 

methacrylate) particles. Polymer particle aerosol leaving the photoreactor was either collected 

on a filter membrane or passed through an aqueous phase free of stabilizers, resulting in 

particle agglomeration. The nanoscale polymer particles were spherical and the aerosol 

process allowed the production of these particles without incorporation of impurities, e.g. 

surfactants.   

 

Conversion of carbon-carbon double bond was analyzed by FTIR-ATR. The spectra of methyl 

methacrylate solution before aerosol generation and of crosslinked PMMA particles resulting 

from aerosol-photopolymerization are compared in Figure 2(b). The peaks in the range 1700 

to 1800 cm
-1

 correspond to carbon-oxygen double bond valence vibration, which exist in the 

monomer solution and polymer particles. Carbon-carbon double bonds of acrylic monomers 

possess valence vibration between 1620 and 1680 cm
-1

, clearly observed in the spectrum of 

methyl methacrylate monomer solution. The peak depleted in the spectrum of crosslinked 

PMMA particles, revealing a complete monomer conversion. 

Irgacure 907 was chosen as the photoinitiator due to its strong UVB absorption 

characteristics matching the emission spectrum of the XeCl excimer irradiation source, 

resulting in high quantum yields [24]. Another decisive point concerning the photoinitiator 

selection was its solubility in the monomer. Hence, an oil-soluble photoinitiator is required. 

Blank experiments performed without any photoinitiator did not result in successful 

photopolymerization revealing that the presence of a photoinitiator is essential. The 

photoinitiator concentration of 1 wt.% was chosen according to literature recommendations 

[12] and led to monomer-free polymer particles by employing 5 wt.% HDDA as crosslinker, 

see above. Lower photoinitiator concentrations, e.g. 0.1 wt.%, resulted in similar spherical 

polymer particles containing rest monomer, detected by FTIR-ATR analysis. On the other 

hand, photoinitiator concentration of 5 wt.% resulted in completely polymerized particles, but 

slight deformations from spherical shape could be observed for a few particles by SEM 

analysis. In order to generate highly pure polymeric particles, 5 wt.% is a rather high 

photoinitiator concentration and not desired in the final product since initiator molecules 

(moieties) are potential impurities for polymers. Based on the experimental results for the 

photopolymerization of MMA, a photoinitiator concentration of 1 wt.-% was selected for 

subsequent experiments, being aware that initiator type and concentration dependency have to 

be examined more in detail. 
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Experiments with HDDA-crosslinked MMA confirmed that 5 vol.-% crosslinker is 

required to polymerize the monomer droplets completely during photoreactor passage. 

Keeping the photoinitiator concentration at 1 wt.%, crosslinker concentration of 2 vol.% led 

to liquid rest monomer on the filter membrane, implying an insufficient overall 

polymerization rate. Incomplete polymerization was proved by FTIR-ATR measurements 

again. For HDDA concentrations of 10 and 20 vol.%, polymer particles were produced which 

showed complete acrylate conversion. In contrast, crosslinker concentration of 30 vol.% 

resulted in incomplete photopolymerization with rest monomer. This might be explained by 

the preferential fast crosslinking polymerization of HDDA while too much MMA molecules 

remained unpolymerized.  

 

 
Fig. 2. (a) SEM image of PMMA particles produced by aerosol-photopolymerization, (b) 

FTIR-ATR spectra of MMA solution and PMMA particles, (c) particle size distributions of 

aerosol monomer droplets and PMMA particle aerosol. 

 

The particle size distribution of HDDA crosslinked PMMA particles was measured on-line 

by a scanning mobility particle sizer (SMPS). The droplet size distribution before 

polymerization was also measured and compared to the particle size distribution after 

polymerization, see Figure 2(c). The one-to-one match of the two size distributions implies no 

significant droplet evaporation. Unfortunately, there is no information about the density of 

HDDA-crosslinked PMMA. Polymerization of pure MMA would lead to an approximate 

volume shrinkage of 20 %. The aerosol generator inlet pressure during SMPS analysis was 1 

bar. Most of the polymer particles in the polydisperse aerosol were less than 300 nm in 

diameter, and a smaller fraction was larger than 500 nm. Total polymer particle concentration 

in the aerosol was measured to be 1.7x10
7
 cm

-3
. The size distribution of polymer particles 

determined by SMPS analysis also matches well with the primary particle sizes obtained by 

SEM analysis. Droplet size (distribution) strongly depends on the monomer of choice, 

especially on its viscosity and surface tension. For a specific monomer solution, the droplet 

size can be adjusted e.g. by adding a highly volatile solvent to the monomer solution so that 

droplet sizes can be reduced via solvent evaporation before photopolymerization. 

 

For the aerosol-photopolymerization of butyl acrylate, which is a highly reactive monomer 

possessing a high propagation rate coefficient of about 15000 L mol
-1 

s
-1

 at room temperature 

[25], no addition of crosslinker was necessary. Spherical submicron polymer particles free of 

additives could be produced with and without crosslinker since the aerosol residence time in 

the photoreactor was long enough for the successful photopolymerization of this monomer. In  
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a typical recipe, butyl acrylate solution was prepared with 1 wt.% photoinitiator and no 

crosslinker. For SEM characterization, the poly(butyl acrylate) particles leaving the 

photoreactor were collected dry on a filter. A SEM image of the resulting PBA particles is 

presented in Figure 3(a). PBA possesses a glass transition temperature of about -49 °C, which 

prevented these particles to be collected properly in liquids without any stabilizer due to their 

“sticky” character. 

 

 
Fig. 3. (a) SEM image of PBA particles produced by aerosol-photopolymerization (indicated 

by arrows), (b) FTIR-ATR spectra of BA solution and PBA particles.  

 

The FTIR spectra of butyl acrylate solution to be sprayed and PBA particles are compared 

in Figure 3(b). The two small peaks of the butyl acrylate monomer solution are characteristic 

for the butyl acrylate carbon-carbon double bond. The absence of an absorption peak between 

1600 and 1700 cm
-1 

for collected PBA particles revealed also for butyl acrylate a complete 

conversion to polymer particles.  

 

Copolymer particles were also produced by aerosol-photopolymerization. The monomer 

combination served as an alternative strategy to increase the overall polymerization rate in the 

photoreactor. Equal volumes of methyl methacrylate and butyl acrylate were mixed. The 

concentration of photoinitiator was 1 wt.% in the monomer mixture and no crosslinker was 

employed. Methyl methacrylate, as the slow propagating monomer, could be successfully 

copolymerized with the fast propagating monomer butyl acrylate for the generation of 

poly(MMA-co-BA) copolymer particles. The resulting, in water collected particles, are 

visualized in Figure 4(a). As evidenced by FTIR analysis, Figure 4(b) depicts a complete 

conversion of monomers for the copolymerization system as well. 
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Fig. 4. (a) SEM image of poly(MMA-co-BA) particles produced by aerosol-

photopolymerization, (b) FTIR-ATR spectra of monomer solution and copolymer particles. 

 

Currently, the production rate of polymer particles via aerosol-photopolymerization is mainly 

limited by the relatively low droplet concentration. By photopolymerizing HDDA as the sole 

monomer using 1 wt.% photoinitiator, approximately 150 mg/h polymer could be generated 

with the presented experimental setup which has not been optimized yet. Scaling up aspects 

are going to be investigated more intensively in the next future. After optimizing the aerosol 

generation device and the photochemical reaction system, numbering up could be taken into 

consideration to increase the production rate further. However, our interest is more focused on 

nanostructured functional materials as highly attractive emerging products rather than on mass 

production of polymers. Aerosol-photopolymerization can serve as a fundamental part in 

integrated continuous aerosol-based processes for the generation of such multifunctional 

particles. 

 

 

4. Conclusions 

 

To our knowledge, the production of nanoscale (submicron) spherical polymer particles by 

aerosol-photopolymerization has been presented for the first time. Utilizing photochemical 

techniques, instantaneous initiation of free radical chain reactions can be accomplished in the 

monomer droplets via UV irradiation. As a substantial advantage, polymerization reactions 

can be conducted at thermodynamically favored ambient temperatures, minimizing droplet 

evaporation and permitting 1-to-1 copies of monomer droplets to polymer particles. The 

aerosol-based process enables in combination with photochemical methods the realization of a 

continuous experimental setup. Compared to liquid routes, no surfactants are required, leading 

to highly pure materials. Furthermore, downstream processes may be avoided. Different 

strategies were developed to conduct photopolymerization of different monomers within the 

subminute aerosol residence time in the flow-through photoreactor. Fast propagating 

monomers can be polymerized with and without crosslinker. Even if the propagation rate 

coefficient of a monomer is not large enough, the overall polymerization rate can be increased 

by the addition of a crosslinker or a fast comonomer.  

Aerosol generation and parameters affecting the photopolymerization kinetics should be 

investigated more in detail to increase the small production rate. Nevertheless, aerosol-

photopolymerization bears great potential for integrated processes as a fast and flexible unit 
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operation for the generation of smart particles possessing multifunctional properties. To 

establish this, the generation of organic-inorganic hybrid nanoparticles by aerosol-

photopolymerization is under progress by our team.  
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Abstract 

 

The technique of aerosol-photopolymerization is employed for the generation of organic-

inorganic spherical polymer matrix nanocomposites (PMNCs). The loading amount of well-

distributed ZnO nanoparticles in polymer networks is varied in a broad range up to 40 wt.-%. 

Similar hybrid particles are produced without the addition of a conventional photoinitiator by 

making use of the UV absorptivity of ZnO nanoparticles only. Highlights of the process are 

the continuous, aerosol-based setup with a flow-through photoreactor operated at ambient 

temperature and atmospheric pressure. Aerosol-photopolymerization possesses great potential 

of incorporating various materials in situ into a polymer matrix, resulting in hybrid materials 

for diverse applications. Furthermore, the process can be integrated with further unit 

operations for the design of smart materials. 

 

Keywords:  Hybrid materials; Nanocomposites; Photochemistry; Aerosols 
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1. Introduction 

 

Integration of inorganic nanoparticles into polymeric materials may result in flexible, 

multifunctional composites exhibiting outstanding electrical, optical, and mechanical 

properties [1]. Unique combinations of material properties can be obtained for optoelectronic 

and magneto-optic applications [2]. Such hybrid materials possess promising (future) 

applications as functional smart coatings, fuel and solar cells, catalysts, sensors, separation 

materials for chemical and biotechnology [3], and imaging, treatment and drug delivery 

systems in medicine [4]. 

In traditional polymer composites, micron-sized particles or agglomerates cause light 

scattering hampering optical applications. On the other side, nanocomposites with particle 

dimensions small enough result in highly transparent materials [5, 6]. Such materials exhibit 

optical functions such as luminescence and UV-shielding while remaining transparent. The 

organic part of such hybrid materials enables cost-effective processing while the inorganic 

part fulfills specific functionality depending on the material.  

A variety of methods exist for the synthesis of organic-inorganic hybrid materials. Some of 

them are more appropriate for the preparation of concentrated composites, and several are 

suitable regarding (the) process simplicity. Among other methods, composites can be 

generated by bulk chain polymerization [7, 8], by simple mixing or blending [9-11], and by 

more sophisticated methods leading to particulate products [12]. For the generation of 

organic-inorganic hybrid materials, the main challenge to be overcome is the absence of an 

integrated process combining particle generation, surface modification, and integration within 

the polymeric material [5]. Therefore, cross-cutting synthetic methods are required to achieve 

complex systems with specific requirements of size, composition, porosity, functionality, and 

morphology [13]. Most often, liquid-based processes are employed for the production of such 

materials. For nano- and microscale organic-inorganic hybrid particle synthesis, emulsion-

based methods are applied most frequently [14, 15]. 

In this contribution, aerosol-photopolymerization is presented as an alternative route for 

the production of spherical organic-inorganic hybrid nanoparticles. The process has been 

introduced for the generation of highly pure nanoscale, spherical polymer particles [16]. As a 

step further, aerosol-photopolymerization was employed for the generation of submicron 

polymer-matrix nanocomposites (PMNCs), and zinc oxide has been chosen as the model 

inorganic compound. Apart from UV absorbance due to its bulk band-gap energy of about 3 

eV [2], nanoscale ZnO particles possess physical and chemical properties like high chemical 

stability, low dielectric constant, large electromechanical coupling coefficient, high luminous 

transmittance, high catalytic activity, and intense infrared absorption [10]. Aerosol-

photopolymerization can be conducted at ambient temperature and atmospheric pressure 

without using any solvent. It is possible to incorporate thermally sensitive materials into the 

monomer droplets. In fact, once the inorganic nanoparticles are stabilized in the monomer 

solution, any material could be incorporated into the monomer nanodroplets to be 

photopolymerized. Besides operation at ambient temperature, photopolymerization offers 

further numerous advantages over thermal systems as well. Photochemistry allows 

instantaneous generation of free radicals in the nanoscale monomer droplets, initiating the 

polymerization reactions. The possibility of tuning the initiation rate by the variation of 
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photoinitiator concentration, photon exitance, and photophysical properties of the 

photoinitiator is an excellent strategy for optimization. The aerosol-based experimental setup 

enables the implementation of a continuous process with a flow-through photoreactor. 

Furthermore, the aerosol route facilitates the realization of integrated processes by applying 

less downstream unit operations, saving time and cost for multifunctional hybrid nanoparticle 

synthesis. 

 

 

2. Experimental Section  

 

2.1 Materials 

Methyl methacrylate (MMA, Sigma-Aldrich, 99 % purity) and butyl acrylate (BA, Sigma-

Aldrich, 99 % purity) were used as monomers. Irgacure 907 (Methyl-1[4-

(methylthio)phenyl]-2-morpholinopropan-1-one, Sigma-Aldrich, 98 % purity) and 1,6-

hexanediol diacrylate (HDDA, Alfa Aesar, 99 % purity) were chosen as photoinitiator and 

crosslinker, respectively. Zinc oxide nanoparticles (Sigma-Aldrich, 40 wt.-% in ethanol, 30 

nm average diameter and IBU-tec, 40 wt.-% in HDDA, 12 nm average diameter) and iron 

oxide nanoparticles (Sigma-Aldrich, 20 wt.-% in ethanol, 30 nm average diameter) were 

employed as the source of inorganic component of hybrid nanoparticles. All chemicals were 

used as received. 

 

2.2 Process 

The experimental setup consists of two main components, an aerosol generator and a 

photoreactor, and has been described [16]. The employed aerosol generator utilizes a two-

stream nozzle which is based on the injection principle (ATM 220, Topas GmbH). Nozzle 

inlet pressure of this aerosol generator can be varied between 1 and 6 bars. 1 bar is the 

standard value for the experiments performed and corresponds to an average nitrogen 

volumetric flow rate of about 1 L min
-1

. One of the photoreactors is equipped with a quasi-

monochromatic XeCl excimer UV irradiation source emitting at 308 nm wavelength and 

possessing width of half height of about 3 nm. This UV source can be tuned up to a radiant 

exitance of 10 mW cm
-2

 (experimental standard value) at the envelope surface. The average 

aerosol residence time in the photoreactor corresponding to the nozzle inlet pressure of 1 bar 

is almost 1 min and can be reduced by increasing the aerosol volumetric flow rate via 

adjusting the nozzle inlet pressure of the aerosol generator. The reactor tube length is 425 mm 

and it is mounted in vertical alignment. An alternative photoreactor equipped with UV 

fluorescence tubes possesses the same average aerosol residence time as the excimer 

photoreactor. UV fluorescence tubes emit polychromatic UV radiation in the range 270-360 

nm with a maximum at 312 nm. This photoreactor is built up by a cylindrical quartz glass 

tube (440 mm long, 52 mm inner diameter) surrounded by 6 UV fluorescence tubes (410 mm 

long) resulting in an irradiance of 5 mW cm
-2

 at the quartz glass tube surface. The aerosol 

residence time in this reactor can be varied by adjusting the nozzle inlet pressure of the 

aerosol generator or by selecting a shorter photoreactor tube. 
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A monomer formulation is required for the generation of the droplet aerosol. Such a 

formulation consists of at least one monomer, a photoinitiator, and inorganic nanoparticles. If 

such a formulation is not a commercial obtained one, it is prepared by dissolving the 

photoinitiator in the liquid monomer or monomer mixture, and adding the inorganic 

nanoparticles during stirring for obtaining a stable suspension called “monomer suspension”. 

Upon preparing a stable monomer suspension, it is sprayed with the help of nitrogen in the 

aerosol generator. Once the nitrogen-carried, nanoparticle-loaded monomer droplets are 

formed, they are passed through the photoreactor for the generation of organic-inorganic 

hybrid nanoparticles upon UV-initiated free radical polymerization. Fig. 1 illustrates 

schematically the process flow diagram. After droplet aerosol generation, 

photopolymerization of a single-phase (a) and a hybrid monomer droplet (b) result in a 

polymer nanoparticle (a) and in a hybrid nanoparticle (b), respectively. Since inorganic 

nanoparticles are brought into monomer droplets during the aerosol generation process, in situ 

aerosol-photopolymerization results in the formation of organic-inorganic hybrid 

nanoparticles which are in the form of polymer-matrix nanocomposites (PMNCs). 

 

Fig. 1. Scheme of the process flow of aerosol-photopolymerization: (a) A monomer solution 

droplet containing the dissolved photoinitiator (PI) before photopolymerization and the 

produced polymer nanoparticle after photopolymerization. (b) A hybrid monomer suspension 

droplet containing the dissolved photoinitiator (PI) and nanoparticles (small spherical dots) 

before photopolymerization and the produced hybrid nanoparticle after photopolymerization. 

 

Hybrid nanoparticles in aerosol leaving the photoreactor are collected either dry on a PTFE 

filter membrane with 50 nm average pore diameter or wet by transfer into a liquid for 

obtaining a suspension. 

 

2.3 Particle Characterization 

Transmission electron microscopy (TEM) was performed on a Philips CM 12 and a Zeiss 

TEM 912. The particles were brought on a TEM grid (Plano, S160-3, carbon film on 300 

mesh Cu grid) directly from the aerosol phase. 

Microtome cuts were prepared for the visualization of the inorganic nanoparticle 

distribution in the polymer matrices. The dry sample was embedded in acrylate dispersion for 

fixation, and the samples were cut at minus 140 °C into pieces of 100-150 nm thickness. 

Fourier transform infrared spectroscopy (FTIR-ATR, Equinox 55, Bruker Optics) was 

employed for the examination of residual monomer in hybrid particles. 
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   Scanning mobility particle sizer (SMPS consisting of electrostatic classifier 3080, 

differential mobility analyzer 3081, and condensation particle counter 3775, TSI Corp.) was 

used for the on-line measurement of droplet and particle size distributions in aerosols. 

 

3. Results and Discussion 

 

Variation of ZnO Nanoparticle Loading 

The generation of spherical nanoscale polymer particles by aerosol-photopolymerization has 

been introduced before [16]. In this work, inorganic nanoparticles were incorporated into the 

spherical polymer particles as a step further. The monomer formulations for hybrid particle 

generation were based on the results of the established technique for polymer particle 

production via aerosol-photopolymerization. Therefore, a typical recipe for the monomer 

system consisting of methyl methacrylate (MMA) and 1,6-hexanediol diacrylate (HDDA) 

contained 1 wt.-% Irgacure 907 in MMA and 10 vol.-% HDDA with respect to MMA. Zinc 

oxide has been chosen as the model inorganic compound and its loading in the formulation 

was varied. Organic-inorganic hybrid nanoparticles, specifically polymer-matrix 

nanocomposites (PMNCs), with varying loadings of zinc oxide nanoparticles were generated 

by aerosol-photopolymerization.  

For the monomer system consisting of MMA and HDDA, the suspension with 40 wt.-% 

ZnO (30 nm mean diameter) in ethanol was used. Zinc oxide nanoparticles were mixed and 

suspended in the monomer solution for preparing the monomer suspension to be sprayed. The 

40 wt.-% concentrated suspension of ZnO in ethanol enabled the addition of zinc oxide 

nanoparticles to the monomer solution while the added amount of ethanol was kept very low. 

Zinc oxide loadings in the hybrid nanoparticles were calculated according to zinc oxide 

concentration in the initial monomer suspensions. Fig. 2 illustrates TEM images of these 

hybrid particles with increasing concentration of zinc oxide nanoparticles indicated by the 

increase in darker proportion within the spheres. ZnO concentrations in the formulation were 

0.6, 1.5, and 3.0 wt.-%. Since hybrid droplets were formed during spraying of the monomer 

suspension before photopolymerization, in situ generation of organic-inorganic hybrid 

nanoparticles in the photoreactor was realized. The average aerosol residence time in the 

photoreactor was 52 s. The size distribution of the hybrid particles was submicron and 

polydisperse, as it was for the nanoscale polymer particles generated by the same technique of 

aerosol-photopolymerization presented before [16]. A crosslinker concentration of 20 vol.-% 

resulted in similar hybrid nanoparticles. Alternative to hybrid particles consisting of HDDA-

crosslinked PMMA as the polymeric part, aerosol-photopolymerization was also applied for 

polymerizing a butyl acrylate monomer suspension without employing a crosslinker.  
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Fig. 2. TEM images of PMMA-ZnO hybrid nanoparticles with different loadings of ZnO 

generated by aerosol-photopolymerization: (a) 0.6 wt.-%, (b) 1.5 wt.-%, and (c) 3.0 wt.-%. 

The scale bars represent 200 nm. (d) TEM image of moderately-loaded (1.5 wt.-%) hybrid 

particles after microtoming. The scale bar represents 1 µm. 

 

TEM images of Fig. 2a-c are quite helpful to visualize the hybrid structure of the 

nanoparticles resulting from aerosol-photopolymerization, but they do not yield sufficient 

information about the distribution of zinc oxide nanoparticles within the polymer matrix or 

their location at the polymer surface. Therefore, microtome cuts of moderately-loaded hybrids 

with 1.5 wt.-% ZnO were prepared to visualize the location of inorganic nanoparticles with 

respect to the polymer matrix. The image shown in Fig. 2d represents PMNCs after 

microtoming. Although zinc oxide nanoparticles were well-distributed within the polymer 

matrices, some agglomerates can be observed. These might originate from the monomer 

suspension before spraying or might be secondary agglomerates which have developed during 

droplet formation by aerosol generation. Unfortunately, it is difficult to give a reliable number 

of ZnO nanoparticle fraction being individually present in the hybrid particles, especially for 

the considerably loaded ones. However, the particles prepared with ZnO in HDDA, as 

presented below, seem to contain a larger fraction of ZnO nanoparticles that did not 

agglomerate, which is explained by the different surface functionalization of the ZnO 

nanoparticle dispersions in HDDA and ethanol. As a consequence, the ZnO-loaded monomer 

formulation prepared by mixing the monomer solution with ZnO nanoparticles in ethanol is 

less stable and results in more agglomerates in the hybrid particles. Therefore, the preparation 

of a stable dispersion is crucial for the production of PMNCs with uniform particle 

distribution. Apart from agglomerates present, TEM analyses revealed basically uniform ZnO 

distributions in the nanocomposites. There is no evidence of ZnO nanoparticles accumulated 

at specific sites such  
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as on the surface or in the center of the polymeric particles. Nevertheless, SEM images of 

highly loaded (15 wt.-% ZnO), HDDA-crosslinked PMMA particles revealed ZnO 

nanoparticles at the surface or immediate vicinity of the polymer surface as well, as illustrated 

in Fig. 3a. The same polymer particles without ZnO are depicted in Fig. 3c and possess 

smoother surface characteristics than those where the inorganic nanoparticles were 

incorporated into polymers.  

 

 

Fig. 3. (a) SEM image of PMMA-ZnO hybrid nanoparticles with 15 wt.% loading of ZnO 

generated by aerosol-photopolymerization, (b) FTIR-ATR spectra of the monomer suspension 

before spraying and hybrid nanoparticles, (c) SEM image of PMMA nanoparticles without 

ZnO incorporation generated by aerosol-photopolymerization, and (d) particle size 

distributions of monomer droplets and hybrid nanoparticles (SMPS analysis). The scale bars 

represent 1.5 µm. 

 

For the examination of residual monomer amount in hybrid nanoparticles, FTIR-ATR 

measurements were performed. The monomer spectrum was obtained by measuring the 

formulation to be sprayed (15 wt.-% ZnO) and that of the hybrid particles after collecting 

them on a filter membrane upon photoreactor passage. The results shown in Fig. 3b indicate 

practically no rest monomer in the hybrid particles due to the depletion of the carbon-carbon 

double bond valence vibration peak upon polymerization. Particle size distributions of the 

droplets and hybrid nanoparticles (0.6 wt.-% ZnO loading) in the aerosol before and after 

photopolymerization, respectively, were determined by SMPS analysis. In general, there is a 

match of these two size distributions, but not as good as for the measurements performed 

during development of the aerosol-photopolymerization technique for unloaded polymer 
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particle preparation revealing 1-to-1 copies [16]. Furthermore, the SMPS analysis of droplet 

aerosols is experimentally challenging. 

Organic-inorganic PMNCs were synthesized with HDDA as the sole monomer as well. 

Hence, a highly crosslinked polymer network can be formed [17]. For these experiments, a 

commercial suspension of 40 wt.-% ZnO nanoparticles in HDDA was used. ZnO particles of 

this suspension were 12 nm in diameter. By diluting this HDDA-ZnO mixture with HDDA, 

variations in loading of polymer with ZnO were realized. Fig. 4a shows a particle with 10 wt.-

% ZnO loading and the particles of Fig. 4b contain 40 wt.-% ZnO. Higher loadings might also 

be possible by this technique provided that the medium viscosity does not hinder proper 

spraying. Shim et al. [12] filled their PMMA-ZnO microspheres with 30 wt.-% ZnO in situ by 

suspension polymerization, and deformations from sphericity were observed after reaching a 

loading level of 50 wt.-%. 

 

Fig. 4. PHDDA-ZnO hybrid nanoparticles containing generated by aerosol-

photopolymerization: (a) 10 wt.-% ZnO, (b) 40 wt.-% ZnO, (c) 40 wt.-% ZnO without a 

conventional photoinitiator. The scale bars represent 200 nm. 

 

The production rate of PHDDA particles loaded with 10 wt.-% ZnO was 180 mg/h when 

the average aerosol residence time was 52 s. However, the photopolymerization time required 

for HDDA was expected to be considerably shorter than 52 s. Multifunctional monomers such 

as HDDA can be converted to a three dimensional network within a few seconds by 

photopolymerization provided that a certain amount of photoinitiator and incident radiation 

exist in the system [18]. Indeed, decreasing the aerosol residence time from 52 to 21 s by 

shortening the photoreactor tube resulted in the same particles, confirming that this short 

residence time is enough for a complete photopolymerization of HDDA in the droplets 

consisting of Irgacure 907, HDDA, and ZnO nanoparticles. Moreover, this measure increased 

the production rate to about 300 mg/h. 

 

Semiconductor-Assisted (Induced) Photoinitiation 

Photopolymerization can also be performed without using a conventional photoinitiator like 

Irgacure 907. Semiconductors such as ZnO [19-21] and CdS [21] have been used to initiate 

polymerization reactions. Hoffman et al. [20] reported about photoinitiated polymerization of 

MMA in presence of quantum-sized ZnO colloids. They proposed an anionic initiation step 

followed by free radical propagation reactions. The possibility of employing semiconductors 
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as photoinitiators for radical polymerization reactions was discussed even earlier by means of 

MMA polymerization at ZnO surfaces [19]. 

For the generation of hybrid nanoparticles discussed so far in this work, the monomer 

suspensions were prepared by dissolving a conventional photoinitiator, Irgacure 907. For 

implementing photoinitiator-free photopolymerization in our aerosol-photopolymerization 

setup, Irgacure 907 was not added into the formulation to be sprayed for taking advantage of 

the photocatalytic activity of zinc oxide nanoparticles present in the aerosol monomer droplets 

upon spraying. Except the photoinitiator, the content of the monomer suspension was kept the 

same. Fig. 4c shows HDDA-crosslinked PMMA-ZnO hybrid nanoparticles produced by 

aerosol-photopolymerization without any conventional photoinitiator employed. ZnO loading 

was 40 wt.-% and the average aerosol residence time in the photoreactor was 52 s. It should 

be noticed that UV absorption measurements revealed that a suspension containing 40 wt.-% 

ZnO nanoparticles (30 nm) absorb in the range of the emission maxima of the irradiation 

sources (308-312 nm) about 20 times stronger than a solution with 1 wt.-% Irgacure 907. 

Nevertheless, hybrid nanoparticles with lower ZnO loadings of 5.8 and even 0.6 wt.-% could 

also be synthesized without using Irgacure 907. 

Apart from the experiments where the crosslinker HDDA was employed as the monomer 

exclusively, PMMA-based ZnO hybrid particles could also be generated in the absence of a 

conventional photoinitiator by aerosol-photopolymerization of a MMA-HDDA monomer 

mixture. Similarly, butyl acrylate was photopolymerized for PBA-ZnO hybrid particle 

production without an added photoinitiator and without employing the crosslinker HDDA. It 

should be noticed that a blank experiment without ZnO did not yield polymer nanospheres 

under identical irradiation conditions. Alternative to ZnO, a monomer suspension consisting 

of Irgacure 907 and MMA-HDDA mixture prepared with 1.2 and 2.4 wt.-% Fe2O3 as the 

inorganic content resulted in successful generation of hybrid nanoparticles. In contrast, no 

hybrid particles could be generated for the monomer formulation containing 1.2 wt.-% Fe2O3 

in the absence of Irgacure 907, revealing the difference in photocatalytic activities of zinc 

oxide and iron oxide nanoparticles for the initiation of free radical polymerization by UV 

irradiation.  

 

 

4. Conclusions    

 

Organic-inorganic spherical hybrid nanoparticles have been produced via aerosol-

photopolymerization. The inorganic content in the polymer particles could be varied in a 

considerable range up to 40 wt.-%. Well-distribution of ZnO nanoparticles within the polymer 

spheres resulted in polymer-matrix nanocomposites (PMNCs). Similar particles were 

generated without using a conventional photoinitiator by making use of the photocatalytic 

activity of ZnO nanoparticles. The process highlights are the continuous setup with a flow-

through photoreactor operated at ambient temperature and atmospheric pressure. 

Apart from its potential as a unit operation, aerosol-photopolymerization is also highly 

promising especially as a part of an integrated process where smart materials are aimed for 

diverse emerging applications. Its characteristic features like low (ambient) temperature 

processing and fast reactions permit a mild, continuous process which can be integrated into 
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complex units. By surface functionalization, almost any kind of organic or inorganic 

nanoparticles, nanoplatelets, nanorods etc. could be stabilized in a liquid which in the most 

ideal case would be the liquid monomer itself, and aerosol-photopolymerization can be 

employed for the in situ generation of hybrid nanoparticles with favored loading of the 

dispersed phase. This offers numerous material combinations depending on the desired 

functionality and application. 

 

 

Acknowledgements 

 

This project is part of a joint initiative of KIT and BASF SE. Financial support by the 

Ministry of Science, Research and the Arts of Baden-Württemberg (Az. 33-729.61-3) is 

gratefully acknowledged. We thank to BASF for microtoming, Institute of Mechanical 

Process Engineering and Mechanics at KIT for providing the SMPS equipment, and Mr. 

Almstedt in our working group for his efforts on photoreactor construction. 

 

 

References 

 

1. Balazs, A.C., T. Emrick, and T.P. Russell, Nanoparticle polymer composites: Where 

two small worlds meet. Science, 2006. 314(5802): p. 1107-1110. 

2. Li, S., et al., Nanocomposites of polymer and inorganic nanoparticles for optical and 

magnetic applications. Nano reviews, 2010. 1. 

3. Sanchez, C., et al., Applications of hybrid organic-inorganic nanocomposites. Journal 

of Materials Chemistry, 2005. 15(35-36): p. 3559-3592. 

4. Berry, C.C. and A.S.G. Curtis, Functionalisation of magnetic nanoparticles for 

applications in biomedicine. Journal of Physics D-Applied Physics, 2003. 36(13): p. 

R198-R206. 

5. Althues, H., J. Henle, and S. Kaskel, Functional inorganic nanofillers for transparent 

polymers. Chemical Society Reviews, 2007. 36(9): p. 1454-1465. 

6. Yuwono, A.H., et al., Controlling the crystallinity and nonlinear optical properties of 

transparent TiO2-PMMA nanohybrids. Journal of Materials Chemistry, 2004. 14(20): 

p. 2978-2987. 

7. Anzlovar, A., Z.C. Orel, and M. Zigon, Poly(methyl methacrylate) composites 

prepared by in situ polymerization using organophillic nano-to-submicrometer zinc 

oxide particles. European Polymer Journal, 2010. 46(6): p. 1216-1224. 

8. Demir, M.M., et al., PMMA/zinc oxide nanocomposites prepared by in-situ bulk 

polymerization. Macromolecular Rapid Communications, 2006. 27(10): p. 763-770. 



Perspectives of Aerosol-Photopolymerization: Organic-Inorganic Hybrid Nanoparticles 

 

58 

 

9. Khrenov, V., et al., Surface functionalized ZnO particles designed for the use in 

transparent nanocomposites. Macromolecular Chemistry and Physics, 2005. 206(1): 

p. 95-101. 

10. Xiong, M.N., et al., Preparation and characterization of poly(styrene butylacrylate) 

latex/nano-ZnO nanocomposites. Journal of Applied Polymer Science, 2003. 90(7): p. 

1923-1931. 

11. Sun, D., N. Miyatake, and H.-J. Sue, Transparent PMMA/ZnO nanocomposite films 

based on colloidal ZnO quantum dots. Nanotechnology, 2007. 18(21). 

12. Shim, J.W., et al., Zinc oxide/polymethylmethacrylate composite microspheres by in 

situ suspension polymerization and their morphological study. Colloids and Surfaces 

a-Physicochemical and Engineering Aspects, 2002. 207(1-3): p. 105-111. 

13. Nicole, L., L. Rozes, and C. Sanchez, Integrative Approaches to Hybrid 

Multifunctional Materials: From Multidisciplinary Research to Applied Technologies. 

Advanced Materials, 2010. 22(29): p. 3208-3214. 

14. Hecht, L.L., et al., Miniemulsions for the Production of Nanostructured Particles. 

Chemical Engineering & Technology, 2012. 35(9): p. 1670-1676. 

15. Qi, D.-m., et al., Preparation of acrylate polymer/silica nanocomposite particles with 

high silica encapsulation efficiency via miniemulsion polymerization. Polymer, 2006. 

47(13): p. 4622-4629. 

16. Akguen, E., J. Hubbuch, and M. Woerner, Perspectives of aerosol-

photopolymerization: Nanoscale polymer particles. Chemical Engineering Science, 

2013. 101: p. 248-252. 

17. Anseth, K.S., C.N. Bowman, and N.A. Peppas, Polymerizaiton kinetics and volume 

relaxation behavior of photopolymerized multifunctional monomers producing highly 

cross-linked networks. Journal of Polymer Science Part a-Polymer Chemistry, 1994. 

32(1): p. 139-147. 

18. Decker, C., Kinetic study and new applications of UV radiation curing. 

Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093. 

19. Kuriacose, J. and M.C. Markham, Mechanism of photo-initiated polymerizaiton of 

methyl methacrylate at zinc oxide surfaces. Journal of Physical Chemistry, 1961. 

65(12): p. 2232-&. 

20. Hoffman, A.J., et al., photoinitiated polymerization of methyl-methacrylate using Q-

sized ZnO colloids. Journal of Physical Chemistry, 1992. 96(13): p. 5540-5546. 



Perspectives of Aerosol-Photopolymerization: Organic-Inorganic Hybrid Nanoparticles 

 

59 

 

21. Hoffman, A.J., et al., Q-sized CDS - Synthesis, characterization, and efficiency of 

photoinitiaiton of polymerization of several vinylic monomers. Journal of Physical 

Chemistry, 1992. 96(13): p. 5546-5552. 

 



 

60 

 

__________________________________________________________________________ 

Perspectives of Aerosol-Photopolymerization: 

Nanostructured Polymeric Particles 

 

Ertan Akgün, Jürgen Hubbuch, Michael Wörner* 

 

___________________________________________________________________________ 

Process Engineering in Life Sciences, Karlsruhe Institute of Technology 

* Corresponding author: Michael Wörner (michael.woerner@kit.edu) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Macromolecular Materials and Engineering, 299, 11, 1316, 2014 

 

The final publication is available on: 

http://onlinelibrary.wiley.com/doi/10.1002/mame.201400032/abstract?deniedAccessCustomis

edMessage=&userIsAuthenticated=false 

mailto:michael.woerner@kit.edu
http://onlinelibrary.wiley.com/doi/10.1002/mame.201400032/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false
http://onlinelibrary.wiley.com/doi/10.1002/mame.201400032/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false


Perspectives of Aerosol-Photopolymerization: Nanostructured Polymeric Particles 

61 

 

Abstract 

 

Nanostructured non-spherical (named nanocaps) and spherical porous particles (named 

mosaic nanoparticles) are generated by aerosol-photopolymerization. Nanocaps exhibit well-

defined shapes independent of their diameter and are formed by employing a softening agent 

and a volatile non-solvent in the formulation, combining non-solvent evaporation and retarded 

gelation. Mosaic nanoparticles are produced by the addition of a non-volatile non-solvent into 

the monomer formulation, provoking phase separation. Both particle structures are generated 

in situ in the presence of zinc oxide nanoparticles. Similarly, they are loaded with caffeine for 

release experiments and feature potential for applications in emerging technologies such as 

optics, functionalized coatings and nanomedicine. 

 

Keywords:  Photopolymerization; Nanocomposites; Nanostructuring; Non-spherical 

nanoparticles; Porous particles 
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1. Introduction 

 

Besides crucial importance of spherical particles, a strong potential exists towards a broad 

range of applications of non-spherical particles [1]. The anisotropy of such nanostructured 

particles can be utilized for specific responses under electric [2] and magnetic [3] fields. They 

can pack more densely than their spherical counterparts [4] and might be employed in 

biotechnology [5], nanomedicine [6], structural materials [7], assembly into complex 

structures [8], three-dimensional photonic crystals [9], particle-cell interaction studies [10], 

and drug delivery [11]. Microfluidics is a well-established technique for the generation of 

micron-sized non-spherical particles [1, 12-18]. Alargova et al. [19] presented a technique 

which is also based on liquid-liquid dispersions for the production of rod-like microstructures. 

For submicron-sized anisotropic materials, miniemulsion-based methods can be employed. 

Florez et al. [10] discussed the effect of anisotropy for cellular particle uptake. First, they 

generated spherical nanopolymers via the miniemulsion process, and shape deformation was 

performed subsequently in a mechanical process. Yang et al. [20] reported on the formation of 

high-aspect-ratio ellipsoidal polymer nanoparticles of controlled diameter using 

miniemulsions. Staff et al. [21] reported also anisotropic nanoparticle generation via a 

miniemulsion method leading to semicrystalline polymers without defined shapes. Park et al. 

[22] employed two-step seeded emulsion polymerization for dumbbell-shaped polymer 

nanoparticles. 

Nanostructured spherical or quasi-spherical particles are also of great industrial interest. 

They can be employed in energy conversion and storage devices [23], and sensors for 

improving biomolecular capture efficiency [24]. Lewandowski et al. [25] presented the 

synthesis of macroporous styrene-divinylbenzene copolymer particles by suspension 

polymerization and discussed the effect of porogen (non-solvent provoking pore formation) 

volume. Particles having larger pores could only be obtained after the amount of porogen 

reached a certain threshold value, which depended on the nature of the monomer. Different 

porogens were tested for controlling the porous morphology of poly(divinylbenzene) particles 

prepared by suspension polymerization [26]. Experiments with toluene resulted in particles 

having a large dry state area while oligomeric porogens led to particles with macropores. 

Sherrington [27] reports about gel-type resins and macroporous resins, and how they are 

formed. Comprehensive information about the synthesis, characterization, functionalization 

and applications of porous polymer particles is available by Gokmen and Du Prez. [28] They 

discuss e.g. about different porogen types for suspension polymerization, multistage methods 

and microfluidic tools. Wu et al. [29] reported about the preparation and design of porous 

polymers as well. Different methods such as layer-by-layer assembly or self-assembly are 

mentioned. 

Particulate materials loaded with substances (encapsulation) are applied in a variety of 

areas such as pharmaceuticals, cosmetics, biotechnology, chemical production, electrical 

engineering, graphics, printing, and provide benefits in agrochemical formulations [30], 

cancer therapy [31], and cellular drug delivery [32]. Particle shape might have a strong impact 

on the performance of drug delivery systems [33]. Different methods exist for the preparation 

of drug-loaded polymeric nanoparticles such as emulsion polymerization, interfacial 
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polymerization, emulsification/solvent evaporation, solvent displacement and interfacial 

deposition [34]. 

The generation of non-spherical polymer particles (nanocaps) and nanostructured, porous 

polymer particles (mosaic particles) by aerosol-photopolymerization is presented in this 

contribution. The process has already been introduced for the generation of spherical, 

submicron polymer particles [35]. Nanocaps and mosaic particles are produced by 

photoinitiated free radical polymerization of submicron aerosol monomer droplets by using 

additional components in the formulation. Several strategies were employed to realize 

different nanostructures. A volatile solvent was used in combination with a soft-maker to 

generate nanocaps. For mosaic particle generation, a porogen (non-solvent) responsible for 

pore formation within the particles is essential. In contrast to nanocap generation, this porogen 

has to be non-volatile to prevent its evaporation to the carrier gas atmosphere. 

The structure of nanocaps and mosaic particles could be changed to a certain extent by the 

variation of process and formulation parameters. In addition, hybrid nanocaps and hybrid 

mosaic particles were generated in situ by producing the caps and mosaic particles in the 

presence of zinc oxide nanoparticles. ZnO nanoparticles possess unique physical and 

chemical properties such as high chemical stability, low dielectric constant, large 

electromechanical coupling coefficient, high luminous transmittance, high catalytic activity, 

and intense infrared absorption [36]. The incorporation of such inorganic “nanofillers” can 

result e.g. in functional, transparent polymers [37] or in multifunctional, flexible composites 

with outstanding electrical, optical, and mechanical properties [38]. Hybrid mosaic particles 

were also generated without a conventional photoinitiator by making use of the photocatalytic 

activity of ZnO nanoparticles. Nanostructured polymeric particles were loaded in situ also 

with caffeine for release experiments. Their release profile was compared to that of spherical 

polymer particles loaded with caffeine also. 

Photoinitiated polymerization enabled very high initiation rates which both contributes to 

the overall polymerization rate and plays a decisive role for nanostructuring. Moreover, the 

process of aerosol-photopolymerization can be driven at ambient temperature, which permits 

processing of temperature-sensitive materials. Aerosol-photopolymerization can be used as a 

single-step process or as a part of an integrated process for smart, functionalized nanoparticle 

generation for emerging applications. 

 

 

2. Experimental Section 

 

2.1 Chemicals and Materials 

Methyl methacrylate (MMA, Sigma-Aldrich, 99 % purity) and butyl acrylate (BA, Sigma-

Aldrich, 99 % purity) were employed as monomers. Irgacure 907 (Methyl-1[4-

(methylthio)phenyl]-2-morpholinopropan-1-one, Sigma-Aldrich, 98 % purity) and 1,6-

hexanediol diacrylate (HDDA, Alfa Aesar, 99 % purity) were chosen as the photoinitiator and 

crosslinker, respectively. Further materials involved are: Glycerol (Carl Roth GmbH Co. KG, 

> 99.5 purity), 2-ethylhexanol (Sigma-Aldrich, 99.6 % purity), absolute ethanol (Carl Roth 

GmbH Co. KG, > 99.9 purity), and zinc oxide nanoparticles (Sigma-Aldrich, 40 wt% in 
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ethanol, 30 nm average diameter and IBU-tec, 40 wt% in HDDA, 12 nm average diameter). 

Caffeine (Sigma-Aldrich, > 99 % purity) and ultrapure water (0.055 µS cm-1, Purelab Ultra) 

were used for caffeine release experiments from particles. All chemicals were used without 

further purification. 

PTFE filter membranes with 50 nm average pore diameter were employed for dry particle 

collection from the aerosol. For caffeine release experiments, Spectra/Por
®
 dialysis 

membranes (MWCO 25000) were used. 

 

2.2 Setup 

The continuous experimental setup consisting of two main components, an aerosol generator 

and a photoreactor in series, has been described before
 
[35], and a schematic of the process 

flow is presented in Figure 1. The figure illustrates the generation of a droplet aerosol which 

is passed through the photoreactor where aerosol-photopolymerizaiton converts the monomer 

droplets containing additives to nanostructured polymeric particles. In addition to the 

photoreactor equipped with a XeCl excimer UV irradiation source (λmax = 308 nm) at the 

center, an alternative photoreactor with positive radiation geometry consisting of a cylindrical 

quartz glass tube (HSQ 300, 55 mm outer diameter, 490 mm length) surrounded by UV 

fluorescent tubes (λmax = 312 nm) has been employed as well. Radiant exitance of the XeCl 

excimer irradiation source can be changed between 10 and 100% (100% corresponds to 10 

mW cm
-2

 at the envelope surface) by tuning the duty cycle, whereas radiant exitance for the 

photoreactor equipped with UV fluorescent irradiation sources (5 mW cm
-2

 at the envelope 

surface for 3 tubes) is adjustable by varying the number of irradiation tubes. 

 

 

Fig. 1. Schematic of the process flow for aerosol-photopolymerization. 

 

 

2.3 Characterization 

Scanning electron microscopy (SEM) was performed on Hitachi S-4500 and LEO 1530. A 

droplet of the particle suspension was dropped onto a membrane (Whatman, Nucleopore 

Track-Etch Membrane, 200 nm pore width) or onto a silicium wafer. After drying, the 

particles were coated with a platinum-palladium mixture or platinum. Dry collected particles 

could be coated directly without the drying step. The coating thickness was 1-2 nm. 

Transmission electron microscopy (TEM) was performed on a Philips CM 12 and a Zeiss 

TEM 912. The particles were brought on a TEM grid (Plano, S160-3, carbon film on 300 

mesh grid). Particle collection was either dry from the aerosol phase onto a TEM grid or a 
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droplet of the suspension was brought onto a TEM grid after particle transfer from aerosol 

into water. 

For microtoming, the dry sample was embedded in an acrylate dispersion for fixation, and 

the samples were cut at minus 140 °C. The pieces were 100-150 nm thick. 

High pressure liquid chromatography analysis was used for the determination of caffeine 

concentration in water and glycerol concentration in ethanol employing an Agilent 1100 

chromatographic system. 

Scanning mobility particle sizer (SMPS, consisting of Electrostatic Classifier 3080, 

Differential Mobility Analyzer 3081, and Condensation Particle Counter 3775, TSI Corp.) 

was employed for the on-line measurement of particle size distributions in aerosols. 

For BET characterization, the samples were first degased for 3h at 70 °C. Afterwards, the 

samples were filled up with helium at normal pressure and let to cool down to ambient 

temperature. Liquid nitrogen was used for the measurements during which an isothermal 

jacket served for the constant level of nitrogen.  

 

 

3. Results and Discussion 

 

3.1. Generation of Nanocaps 

After establishing the aerosol-photopolymerization process for the generation of spherical, 

nanoscale polymer particles [35], the same setup has been employed for the generation of 

nanostructured polymer particles. Both, nanocaps as non-spherical particles and mosaic 

particles as spherical, porous particles possessing nanostructured surface properties, were 

produced by this method. 

The formulations for the production of spherical polymer particles did not require a 

solvent. The liquid monomer served as a solvent for the photoinitiator and crosslinker if 

added. More components were involved for nanocap synthesis. Apart from the monomer, 

crosslinker and photoinitiator, glycerol and a volatile solvent were employed for nanocap 

generation. For each experiment, two solutions were prepared and mixed to obtain the final 

solution to be sprayed via the aerosol generator. The first solution consisted of liquid 

monomer methyl methacrylate (MMA), photoinitiator (PI) Irgacure 907
®
, and the crosslinker 

1,6-hexanediol diacrylate (HDDA). A second solution was prepared by dissolving glycerol in 

absolute ethanol. The two solutions were then mixed during stirring to obtain the final 

solution for the aerosol-photopolymerization experiments. Figure 2 illustrates SEM and TEM 

images of nanocaps produced. The particles were collected dry on a glass slides [Figure 2(a)] 

and wet in water containing no stabilizer [Figure 2(b)], which consequently leads to 

agglomeration. These nanocaps were generated by a formulation consisting of 5 wt% Irgacure 

907 in MMA (1.4841 g Irgacure 907 / 30 mL MMA) and a HDDA amount of 10 vol% with 

respect to MMA (3 mL HDDA). Absolute ethanol was 31.6 wt% and glycerol 16.0 wt% in the 

final monomer formulation to be sprayed. This formulation was based on our preliminary 

results considering component solubility in ethanol (25 mL) and the intended use of glycerol 

(10 g) as a soft-maker [39]. The relatively high concentration of photoinitiator Irgacure 907 of 

5 wt% was required to ensure a certain initiation rate, and HDDA amount was chosen such 
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that the overall polymerization rate would be sufficiently high for polymer formation during 

an aerosol mean residence time of about 1 min in the photoreactor. This solution to be sprayed 

is referred to as “standard formulation” for distinguishing in the following part from nanocaps 

synthesized with differing formulation compositions. The caps resulting from the “standard 

formulation” are named “standard nanocaps”. 

MMA was polymerized in the presence of HDDA as a crosslinker during 

photopolymerization. Crosslinking affected the overall polymerization rate strongly so that 

the aerosol mean residence time during photoreactor passage was sufficient for the formation 

of stable, cap-shaped submicron particles. Due to the polydisperse droplet aerosol generation 

[35], the resulting particles possessed a polydisperse particle size distribution as well. All the 

particles possessed the same cap shape independent of their size, as visualized best by the 

agglomerate shown in Figure 2(b). 

 

 

Fig. 2. Electron microscope images of “standard” nanocaps produced by aerosol-

photopolymerization: (a) SEM image of nanocaps collected dry on glass, (b) SEM image of 

nanocaps collected wet in water, (c) TEM image of nanocaps collected wet in water, (d) TEM 

image of microtome cuts of nanocaps collected wet in water (dashed lines are drawn by us to 

focus on the longitudinal sliced pieces). The scale bars represent 2 µm. 

 

The selection of this MMA-HDDA monomer system was based on our previous results 

where different strategies were discussed for the polymer particle generation via aerosol-

photopolymerization [35]. Depending on the crosslinking degree and monomer choice, 

various applications can be of interest such as polymer matrix preparation of adjusted 

mechanical stability or high swellability upon the use of different monomer ratios of the 
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comonomer system. Aerosol-photopolymerization can also be expanded for the generation of 

further polymeric matrices provided that a certain propagation rate coefficient is ensured, 

either by a highly reactive monomer or by a comonomer system possessing a high overall 

polymerization rate. Since the initiation rate can be varied by both the irradiance of the UV 

source and the photoinitiator concentration, there is the possibility of adjusting the overall 

polymerization rate. 

The particle size distribution of nanocaps produced is polydisperse due to two-component 

nozzle employed in the aerosol generator. Figure 3 represents their distribution determined 

on-line in the aerosol phase via SMPS analysis. Being aware that the determined size 

distribution belongs to nanocaps which are non-spherical, it should be mentioned that the 

nanocap size distribution matches well to the size distribution of spherical nanoparticles 

produced with aerosol-photopolymerization as well [35]. Although monodisperse particles are 

usually favored for specific applications, the polydisperse character of the prepared nanocaps 

shows well that all of the particles in the produced size range possess indeed the same shapes 

disregarding their size. For monodisperse particles, there is the possibility of either generating 

monodisperse droplet aerosols with an appropriate aerosol generator or the polydisperse 

nanocaps can be classified “in flight” to quasi-monodisperse particles, e.g. by a differential 

mobility analyzer (DMA). 

 
 

Fig. 3. Particle size distribution of “standard” nanocaps determined in the aerosol. 

 

A TEM image of “standard nanocaps” collected in water is presented in Figure 2(c), and 

Figure 2(d) illustrates the same sample after microtoming. These cuts bear the idea that the 

nanocaps can be imagined as soccer balls from which the air has been sucked out leading to 

indentation. Upon a closer look at the image, a central line along the particle curvature can be 

observed, supporting the idea of controlled collapse of a polymeric shell. 

For the formation of nanocaps by aerosol-photopolymerization, we propose a mechanism 

which is governed by the interplay of kinetic and thermodynamic phenomena. Spherical 

droplets are formed immediately after spraying the monomer solution. Such a droplet 

consisting of monomers and a highly evaporative solvent (e.g. ethanol), and photoinitiator and 

glycerol as the dissolved components, is homogeneous below the solubility limit of glycerol. 
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During the photoreactor passage, evaporation of the volatile solvent results in oversaturation 

of glycerol while (photo)polymerization leads to phase separation. Phase separation is thought 

to result in a polymer-rich phase within the outer sphere of the droplets whereas an ethanol-

rich phase is concentrated in the inner part. Glycerol acts as a soft-maker for each sphere, 

enabling them to collapse in a controlled way before gelation results in a stable polymeric 

network. In other words, the presence of glycerol delays gelation during ethanol (non-solvent) 

evaporation. Polyols such as glycerol are plasticizers [39] that increase the plasticity or 

fluidity of a material for improved processing by enhancing flexibility and durability. They 

increase the free volume within the polymer chains and are responsible for lowering the glass 

transition temperature. In summary, the type of polymerization can be regarded as 

precipitation polymerization and the formation of caps can be described as an interplay 

between the rates of solvent evaporation and (photo)polymerization while glycerol acts as a 

softening agent enabling controlled collapse. This process bears great potential for the 

generation of various polymeric nanocaps regarding particle shape and properties by 

employing different plasticizers and solvents, optimization of polymerization initiation rate, 

polymerization kinetics, non-solvent evaporation rate, and the amount of plasticizer.  

Once photopolymerization occurs and the nanocaps containing glycerol are formed, they 

preserve their shapes even after glycerol extraction due to the already formed three 

dimensional molecular network within each particle. This was proven by suspending the dry 

collected nanocaps in ethanol and stirring at 25 °C for 70 h. HPLC measurements revealed 

glycerol extraction from nanocaps. About 60 % of the glycerol content of the original solution 

to be sprayed could be washed out in a single extraction step. The treated particles are 

visualized via SEM in Figure 4(a). 

 

Fig. 4. SEM images of polymeric particles generated by aerosol-photopolymerization: (a) 

nanocaps after glycerol extraction, (b) spherical particles produced without employing 

glycerol, and (c) particles with HDDA as the sole monomer employed. The scale bars 

represent 2 µm. 

 

Formulations without glycerol resulted in spherical polymer particles, pointing out the 

necessity of a soft-maker to obtain cap-shaped structures. Figure 4(b) illustrates the resulting 

particles of the control experiment. The agglomerate consists of a number of spherical 

primary particles exclusively. Importance of the interplay between evaporation and 

photopolymerization can be illustrated by conducting the aerosol-photopolymerization 

experiments with the crosslinker HDDA as the sole monomer instead of using the established 

“standard” MMA-HDDA monomer mixture. Nanocaps were expected due to the presence of 

glycerol, however with varied shapes as a consequence of very fast crosslinking 
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polymerization reactions under consideration of the aforementioned mechanism proposed. As 

the SEM image of Figure 4(c) visualizes, the particles possess almost spherical shapes in 

contrast to standard nanocaps. However, all particles are nanostructured as evidenced by one 

lacuna in each sphere. 

Further variations in formulation composition were also investigated to verify the proposed 

mechanism on cap formation. Increasing the glycerol concentration from 16.0 to 27.6 wt% 

(doubling glycerol mass in the solution to be sprayed) and decreasing it from 16.0 to 8.7 wt% 

(halving) led to caps too, but with slightly changed structures. Especially the larger caps from 

the experiment with less glycerol possessed more spherical shape in contrast to the “standard 

caps” where particles of all sizes had the same shape. Similarly, increasing the concentration 

of HDDA to 20 and 30 vol% with respect to methyl methacrylate resulted in caps having 

more spherical shapes as well. A possible explanation is the faster polymerization process 

which overcompensates the effect of ethanol (non-solvent) evaporation. The interim 

formation of nanocaps is suppressed by the fast development of a three dimensional polymer 

network. Therefore, a well-defined phase separation is a prerequisite for cap formation, in a 

way that polymer chains precipitate and stabilize the polymerizing droplet by accumulation in 

the outer sphere. The presence of glycerol contributes to moderate crosslinking and holds the 

polymeric shell elastic while ethanol evaporates. We conclude that all these concomitant 

processes account for cap formation. This complex mechanism depends on non-solvent 

evaporation, photoinitiation rate, overall polymerization rate, effect of retarded gelation, and 

phase separation via polymer formation. 

Aerosol-photopolymerization experiments for nanocap generation were also conducted 

with different monomer and other volatile solvents. SEM images obtained after processing a 

formulation with the monomer butyl acrylate (BA) and ethanol as the solvent visualized 

“soft” poly(butyl acrylate) caps (not shown), most probably due to the sticky character of this 

polymer as a consequence of its low glass transition temperature. The glass transition 

temperature of PBA is -49 °C while that of PMMA is around 100 °C. 1-propanol and acetone 

were employed as alternative volatile solvents. The former possesses a higher and the latter a 

lower boiling point than ethanol. Basically, all experiments resulted in nanocaps without 

significant shape modifications. 

Nanocaps consist of the polymeric part and glycerol if this is not removed from the caps 

afterwards. In order to bring more functionalities together, zinc oxide nanoparticles were 

incorporated into the nanocaps. ZnO has been chosen as a model inorganic compound with 

interesting properties as outlined in the Introduction. Therefore, combining multifunctionality 

with anisotropy (non-spherical particles, e.g. nanocaps) possesses potential applications for 

smart materials for emerging applications. A small amount of a commercial ZnO nanoparticle 

suspension (30 nm diameter, 40 wt% in ethanol) was added to the standard formulation for 

nanocap production. Zinc oxide nanoparticle concentrations in the formulation to be sprayed 

were 0.24, 0.70, and 1.40 wt%. The ZnO-loaded monomer formulation was sprayed by the 

aerosol generator. Afterwards, this generated droplet aerosol was passed through the 

photoreactor for in situ hybrid particle production via aerosol-photopolymerization. The 

resulting hybrid nanocaps possessed shapes like their non-hybrid pairs, as visualized in Figure 

5(b). For comparison, spherical hybrid nanoparticles produced by the same technique of 
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aerosol-photopolymerization [40] is illustrated in Figure 5(a) as well. Neither glycerol nor 

ethanol were employed for spherical particle generation. 

 

 
Fig. 5. TEM images of hybrid particles produced by aerosol-photopolymerization: (a) 

Spherical nanoparticles produced with 0.6 wt% ZnO in the formulation to be sprayed, (b) 

nanocaps produced with 0.7 wt% ZnO in the formulation to be sprayed. The scale bars 

represent 300 nm. 

 

Unfortunately, no quantitative comparison has been done yet about the ZnO amounts in the 

prepared particles and formulations to be sprayed. Since the employed aerosol generator can 

spray particles having diameters up to 1-3 µm, ZnO nanoparticles with 30 or 12 nm diameter 

are expected to follow the monomer stream practically free of inertia. This excludes a non-

uniform spraying process and prevents ZnO accumulation within the formulation to be 

sprayed. Therefore, ZnO amount in both the formulation and generated particles is expected 

to be the same disregarding monomer evaporation during spraying and photoreactor passage. 

We expect that aerosol-photopolymerization offers the generation of nanocaps with a 

variety of incorporated materials. Like in the case of zinc oxide, nanoparticles can be 

incorporated into the polymer matrix once they are homogeneously dispersed and stabilized in 

the monomer solution to be sprayed. Non-particulate substances which can be dissolved in the 

monomer solution can also be incorporated into the polymer matrix to create multiple 

functionalities. As an example, caffeine-loaded nanocaps were generated successfully by 

employing aerosol-photopolymerization. Also, spherical polymer nanoparticles loaded with 

caffeine were produced. For polymer particle loading and release, caffeine has been chosen as 

a non-toxic substance being a central nervous system stimulant for humans warding off 

drowsiness and restoring alertness. Due to its high recovery from molecularly imprinted 

polymers (MIPs) produced via free radical polymerization [41], it does not covalently bind to 

polymers and probably gets not modified. Therefore, polymer particles loaded with this 

substance via aerosol-photopolymerization represent a model system for controlled release 

experiments. A well-distribution of caffeine within the polymer particles is expected similar 

to the work of Mallikarjuna et al. [42] deducting molecularly dispersed distribution of the 

drug in the polymer matrix via free radical polymerization for in situ loading. SEM images of 

caffeine-loaded spheres and nanocaps are illustrated in Figure 6(a) and (b). After the particles 
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were collected dry on a filter membrane, 20 mg of caffeine-loaded polymer particles were 

placed into a dialysis membrane which was immersed in 200 mL water to determine the 

caffeine evolution in water with time. Both, nanocaps and spherical particles, were loaded in 

situ with caffeine upon spraying monomer formulations with 0.5 wt% caffeine. Since the 

nanocaps can be imagined in a first approximation as quasi-2-dimensional discs, they were 

expected to release caffeine faster than the spherical nanoparticles. HPLC analyses revealed 

contrary results. A faster caffeine release profile for spherical particles was obtained, as 

depicted in Figure 6(c). Also the total amount of caffeine released was higher from spherical 

polymers. Under the consideration of equally loaded particles, the different caffeine release 

behavior can be related to the presence of glycerol. It appears that glycerol is able to retain 

caffeine in the polymeric phase. This gives the idea of manipulating drug release behavior by 

the addition of auxiliaries.  

 
Fig. 6. Caffeine-loaded polymeric nanoparticles generated by aerosol-photopolymerization: 

(a) SEM image of spherical nanoparticles, (b) SEM image of nanocaps, (c) caffeine release 

profiles of nanocaps, nanospheres and mosaic nanoparticles, (d) caffeine release profiles of 

nanospheres with different crosslinking degrees. The scale bars represent 2 µm. 

 

The degree of crosslinking in polymer particles can affect the duration of drug release [43]. 

Spherical PMMA particles loaded with caffeine but with different amounts of the crosslinker 

HDDA in the formulation to be sprayed were generated by aerosol-photopolymerization in 

order to compare their caffeine release profiles. Crosslinker amount is the volume percent of 

HDDA related to MMA. Figure 6(d) depicts the different release profiles. The higher the 

crosslinker amount, the slower the release of caffeine from the polymeric material. This is 
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explained by higher degrees of crosslinking, which corresponds to a smaller mesh size and 

retarded drug (caffeine) percolation through the polymer. This is in agreement with the 

observations of Rokhade et al. [44] who illustrated this by means of the controlled release of 

theophylline, which is a de-methylated (position 7) derivative of caffeine, and also with the 

observations of Mallikarjuna et al. [42] who demonstrated that drug release slows down with 

increasing amount of crosslinking agent. 

 

3.2 Generation of Porous Nanoparticles (Mosaic Nanostructures) 

Apart from non-spherical particles, spherical porous nanoparticles which we named mosaic 

particles were generated by aerosol-photopolymerization as well. The crosslinker HDDA was 

employed as the sole monomer in which the photoinitiator Irgacure 907 was dissolved. Only a 

single additional component was added to this monomer-photoinitiator mixture to introduce 

nanostructuring. In contrast to the experiments where nanocaps were formed, a non-volatile 

solvent instead of ethanol was employed.  This non-solvent has to be miscible with the 

monomer solution before spraying but should be immiscible with the formed polymer 

afterwards. 

Aerosol-photopolymerization experiments were conducted by employing a photoinitiator 

concentration of 1 wt% in a solution consisting of HDDA and Irgacure 907. Volume ratio of 

the crosslinker HDDA to the non-solvent 2-ethylhexanol in the formulation to be sprayed was 

varied first. Figure 7(a) illustrates a TEM image of particles produced with a 2-ethylhexanol-

to-HDDA ratio of 1:6, leading to expected spherical particles. Such an amount of non-solvent 

is insufficient to provoke phase separation [27]. Increasing the volume ratio to 1:3 (non-

solvent : monomer) still resulted in spherical particles possessing smooth surface properties, 

as visualized in Figure 7(b). Slightly structured particles (with moderate surface roughness) 

were obtained by spraying a formulation with a ratio of 2:3 [(Figure 7(c)] which can be 

regarded as a threshold value for surface nanostructuring, and by increasing this further to 1:1, 

nanostructured mosaic particles [(Figure 7(d)] were obtained after photoreactor passage. The 

particles look like consisting of an assembly of polymer globules interconnected to each 

other. The change of specific surface area with the volume ratio of non-solvent to the 

crosslinker monomer is illustrated in Table 1. 
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Fig. 7. TEM images of polymeric particles generated with varying volume ratios of 2-

ethylhexanol to HDDA by aerosol-photopolymerization: (a) 1:6, (b) 1:3, (c) 2:3, (d) 1:1. The 

scale bars represent 200 nm. 

 

The specific surface area of the spherical polymer particles produced with HDDA and 

photoinitiator in the formulation to be sprayed, but without any non-solvent (porogen), is 

practically the same as that of the particles prepared with a porogen-to-HDDA ratio of 1:6. A 

substantial increase in the specific surface area can be observed when the amount of porogen 

is further increased. Depending on their specific surface area and pore size distribution, 

mosaic particles might find applications e.g. as column material for separation techniques or 

as supports for active catalyst materials. Due to their nanostructured surface, they can be 

employed for obtaining controlled wetting properties for coatings industry, microelectronics, 

biotechnology, and medicine.  

 

Table 1. Variation of specific surface area with porogen amount. 

 

Volume ratio of 2-ethylhexanol to HDDA Specific surface area 

mL mL
-1

 m
2
 g

-1
 

0:6 3.6 

1:6 3.5 

2:6 7.1 

3:6 19.0 

6:6 34.9 
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An SEM image of the “mosaic particles” generated with the non-solvent 2-ethylhexanol 

(volume of non-solvent : volume of HDDA = 1:1) is depicted in Figure 8(a). The particles 

were collected in water where no stabilizing agent was employed, which resulted in 

physically loosely connected particles forming agglomerates. The nanostructured mosaic 

particles were obtained independent of their size within the size distribution produced by the 

aerosol generator, as in the case of polydisperse nanocaps. 

 
Fig. 8. SEM images of nanostructured mosaic particles generated with different non-solvents 

by aerosol-photopolymerization: (a) 2-ethylhexanol, (b) hexadecane. The scale bars represent 

2 µm. 

 

As an alternative non-solvent to 2-ethylhexanol, hexadecane was tested by keeping the 

volume ratio of 1:1, required for phase separation, constant. Figure 8(b) shows the resulting 

porous particles looking quite similar to those generated with 2-ethylhexanol [(Fig. 8(a)]. This 

is in agreement with Sherrington [27] where the amount of non-solvent (porogen) is stated to 

be crucial. A phenomenon to be mentioned might be the effect of non-solvents on the 

polymerization rate. Morrison et al. [45] reported that solvents such as ethanol or methanol 

have no observable effects on the propagation rate coefficient (kp) of methyl methacrylate 

(MMA). They increased the solvent amount until phase separation took place. In our case, 

phase separation is required for pore/domain formation. Therefore, the amount of 2-

ethylhexanol or hexadecane has to be considerable to adjust the onset of phase separation, 

which might indeed effect the polymerization rate. On the other hand, the employed monomer 

HDDA is a multifunctional monomer whose kp is accordingly high [46] and might remain 

practically unaffected by the presence of a non-solvent. 

Mosaic nanoparticles are composed of interconnected polymer globules which are 

proposed to originate from primary radicals upon photoinitiator cleavage. To verify this, 

photoinitiator concentration in the formulation to be sprayed was varied. The experiments 

were performed with the porogen 2-ethylhexanol (volume of non-solvent : volume of HDDA 

= 1:1) and photoinitiator concentrations of 9 and 0.11 wt%. Both of the experiments resulted 

in nanostructured particles, but with different morphologies as depicted in Figure 9. The 

particles produced with 9 wt% photoinitiator possess not as much macroporous voids as the 

ones generated with 0.11 wt% photoinitiator. This supports our hypothesis that photoinitiator 

cleavage starts the polymerization of each domain. Fewer photoinitiator molecules can start 

fewer number of chains, leading to larger globules among which larger voids are present 

within each particle. Therefore, by adjusting the number of initiating spots disregarding 
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termination and chain transfer reactions, particles with favored porosity or specific surface 

area can be obtained via manipulating the size of the globules in an assembly (particle). It is 

of importance to mention that a photoinitiator concentration of 9 wt% is relatively high and 

demonstrates an upper limit due to the formation of oligomeric species by chain termination. 

Similarly, a photoinitiator concentration of 0.11 wt% exhibits roughly a lower limit for the 

production of a stable polymeric assembly within the average aerosol residence time of about 

a minute.  

 
Fig. 9. SEM images of nanostructured mosaic particles generated with different photoinitiator 

concentrations in the formulation to be sprayed: (a) 9 wt%, (b) 0.11 wt%. The scale bars 

represent 500 nm. 

 

Experiments performed with a monomer mixture consisting of MMA and HDDA (10 vol% 

with respect to MMA), and 2-ethylhexanol as the non-solvent (volume of non-solvent : 

volume of monomer = 1:1) did not result in “mosaic” particles, pointing out the importance of 

very fast crosslinking reactions. Therefore, it is not only the amount of non-solvent which 

contributes to the structured, mosaic particle formation. Nevertheless, higher amounts of 

HDDA in the MMA-HDDA mixture may lead to porous particles. Preliminary results on the 

aerosol-photopolymerization of butyl acrylate with HDDA (30 vol%) revealed nanostructured 

particles, which may be attributed to  the high propagation rate coefficient of butyl acrylate 

[47] being in the order of the propagation rate coefficient of HDDA [48]. Copolymerization of 

monofunctional monomers and crosslinkers with regard to porous particle synthesis will be 

further investigated by our group. A formulation combining a crosslinking monomer only and 

a significant amount of non-solvent results in nanostructured particles by aerosol-

photopolymerization. The large amount of non-solvent is required for fast phase separation 

and crosslinking reactions lead to a three dimensional polymer network formation in a 

monomer droplet within the corresponding time domain of aerosol-photopolymerization 

which is shorter than 1 min. It should be mentioned that photopolymerization of 

multifunctional monomers can occur even within a few seconds [49]. 

Caffeine-loaded porous mosaic particles were generated in situ by aerosol-

photopolymerization. 0.5 wt% caffeine was dissolved in the formulation to be sprayed, and 

the release profile from the obtained particles was compared to that of spherical nanoparticles 

and  
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nanocaps. Figure 6(c) depicts a slower release from mosaic particles than from both nanocaps 

and spherical nanoparticles. However, mosaic particles are prepared by the crosslinker HDDA 

as the sole monomer. The delay of caffeine release may be attributed to suppressed 

percolation. 

For a comprehensive understanding of the caffeine release profiles, glass transition 

temperatures of the three different structured particle collectives were compared. HDDA-

crosslinked PMMA spheres possess a glass transition temperature of 98 °C, porous mosaic 

particles 94 °C, and nanocaps 91 °C. These close values suggest that not only the 

microstructure (crosslinking) of the particles, but also the macrostructure (nanoparticle 

geometry) and additives if employed can play a decisive role for drug release. While the 

slowest release profile belonging to mosaic particles can be explained by the use of the 

crosslinker monomer HDDA as the sole monomer, less crosslinked caps and spheres can be 

compared by means of glycerol. Although nanocaps have a higher surface-to-volume ratio in 

comparison to nanospheres, the presence of glycerol is expected to slow down the release rate 

of caffeine. Additives can contribute to the solubility of drugs within the polymer particle 

which would alter the release profile. Further research may help to clarify these issues more in 

detail, which is why we intensified collaborations with NMR research groups. 

Since the release rate of caffeine from spherical nanoparticles, nanocaps, and mosaic 

nanoparticles can be varied by both the degree of crosslinking and particle structure, these can 

contribute to secondary functionalization of such particles. For instance, anisotropic particles 

like nanocaps could be employed for responses under flow conditions during which a specific 

cargo can be discharged. Substance-loaded porous particles might have attractive applications 

as well. Soaking of solutions into these particles can be manipulated via pore size 

adjustments, and the pre-incorporated materials within the porous particles could react or 

interact with the soaking substances. 

As in the case of nanocaps, mosaic particles were also generated in the presence of zinc 

oxide nanoparticles. A formulation with 1 wt% Irgacure 907 and 1 wt% ZnO nanoparticles 

resulted in hybrid mosaic particles by aerosol-photopolymerization, as presented in Figure 

10(a). The ratio of 2-ethylhexanol to HDDA was again 1:1. The inorganic nanoparticles were 

well-dispersed in the formulation to be sprayed and photopolymerization resulted in in situ 

generation of hybrid porous particles. Since any stable suspension consisting of crosslinker, 

photoinitiator, non-solvent, and nanoparticles can be processed by aerosol-

photopolymerization, this technique bears great potential for the production of mosaic 

particles with a variety of material combinations. 
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Fig. 10. SEM images of nanostructured mosaic particles generated in the presence of ZnO 

nanoparticles by aerosol-photopolymerization: (a) 1 wt% ZnO and 1 wt% Irgacure 907, (b) 1 

wt% ZnO and without Irgacure 907. The scale bars represent 1 µm. 

Hybrid mosaic particles were also generated without employing the conventional 

photoinitiator Irgacure 907 in the formulation to be sprayed by making use of the 

photocatalytic activity of zinc oxide nanoparticles under UV irradiation. This represents a 

strategy for the preparation of particles containing less impurities considering photoinitiator 

residues. Zinc oxide nanoparticles were capable of starting photopolymerization reactions 

upon excitation.[40] Since the spray solutions of all experiments with ZnO as photoinitiator 

were containing alcohol (2-ethylhexanol as porogen), a mechanism is expected as proposed 

by Hoffman et al. [50] for MMA polymerization. They suggest that the reaction pathway 

appears to involve hole scavenging by the alcohol and anionic initiation via conduction band 

electrons followed by free radical propagation steps. In addition, it should be noticed that the 

oxidized alcohol (hole scavenger) might initiate the polymerization as well, either by addition 

to the vinyl double bond or by redox reaction with the monomer.  Figure 10(b) shows an SEM 

image of hybrid mosaic particles produced without a conventional photoinitiator. The image 

visualizes that most of the particles are nanostructured and a few possess smoother surface 

characteristics. This observation might be explained by different initiation mechanisms on 

ZnO nanoparticles which can arise from non-uniform aerosol droplet trajectories. The control 

experiment with a formulation containing only HDDA and 2-ethylhexanol did not produce 

any particles, pointing out that ZnO nanoparticles are capable of initiating the polymerization 

reactions. Consequently, they are incorporated into the produced polymeric mosaic particles. 

The production rate of aerosol-photopolymerization depends on the choice of substances 

and the adjusted process parameters. Though, 400 mg h
-1

 can be given as an average, 

representative value for the preparation of nanostructured particles. However, aerosol-

photopolymerization both as a unit operation which is fast and flexible and as a part of an 

integrated process chain, bears great potential for the generation of various nanostructures for 

emerging applications. Especially the integration of inorganic materials into nanostructured 

polymer particles possessing different shapes offers a wide spectrum of product application. 

The advantages of the aerosol processing route combined with photoinitiated aerosols are the 

generation of highly pure materials in a continuous process which can be conducted at 

ambient temperature. 
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4. Conclusions 

 

To our best knowledge, the generation of nanoscale non-spherical polymer particles 

(nanocaps) and spherical porous polymer particles (mosaic nanoparticles) by aerosol-

photopolymerization has been introduced for the first time. Both structures were synthesized 

independent of the particle size within the size distribution resulting from the aerosol 

generation process. Nanocap formation has been discussed on the basis of an interplay 

between the rates of photopolymerization and evaporation of the volatile solvent, and the 

onset of phase separation while glycerol acts as the softening agent. Variations in the solution 

to be sprayed resulted in structure modifications of the produced nanocaps. Aerosol-

photopolymerization is unique for nanocap production due to the possibility of controlled 

non-solvent evaporation to the gas phase in a continuous process. Porous, mosaic 

nanoparticles have also been generated and discussed to result from an interplay between 

polymer network formation rate and onset of phase separation within the polymerizing 

droplets. The presence of a non-volatile non-solvent (porogen) is essential and its amount is 

crucial for phase separation. As the reactions proceed and polymeric domains are formed, 

they are crosslinked eventually to each other through the polymerization of the rest monomer 

dissolved in the porogen-rich phase. 

Photochemistry in an aerosol-based system is shown to be a suitable tool for 

nanostructured particle synthesis via efficient and fast initiation reactions. It is a flexible and 

efficient tool for the polymerization within the time domain of aerosol-photopolymerization. 

Furthermore, the aerosol-based experimental setup can be driven as a continuous process at 

ambient temperature. 

For the generation of multifunctional nanostructured particles, in situ hybridization of 

nanocaps and mosaic particles with zinc oxide nanoparticle as model compound was 

successfully tested. In addition, the conventional photoinitiator can be substituted by ZnO 

nanoparticles for the preparation of hybrid mosaic particles. Caffeine-loaded nanocaps and 

mosaic particles were also in situ generated to compare their caffeine release profiles with 

caffeine-loaded spherical nanoparticles which are also produced by aerosol-

photopolymerization. The results give an insight of the effect of glycerol and crosslinking 

degree on the caffeine release behavior. Incorporation of ZnO or caffeine into nanostructured 

polymeric particles represents an example for combining different functionalities. The process 

of aerosol-photopolymerization offers authentic potential for the incorporation of further 

inorganic nanoparticles and molecularly dissolved compounds into the nanostructured 

polymeric particles to create smart materials. 
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Abstract 

 

A continuous, aerosol-based process is described for the encapsulation of nanoparticles with a 

thin polymer shell. The process is essentially based on directed, binary collisions between 

gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, 

followed by photo-initiated polymerization. Once the two streams are mixed together, the 

process runs to completion on a time scale of about 2 minutes or less, required for coagulation 

and polymerization.  

 

Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique 

with PHDDA (poly(hexanediol diacrylate)) and/or crosslinked PMMA (poly(methyl 

methacrylate)). It was found that all core materials as well as agglomerates were wettable at 

room temperature and that the spreading kinetics of the monomer were fast enough to cover 

the core particles uniformly within the time scale provided for coagulation. The shell 

thickness depends on the volume ratio between core particles and monomer droplets. This 

was demonstrated for a combination of monodisperse silica spheres (d = 241 nm) and 

polydisperse methyl methacrylate (MMA) droplets, resulting in a theoretical shell thickness of 

18 nm. There was very good agreement between measurements by TEM and electrical 

mobility spectroscopy. The results revealed that about 90 % or more of the core-shell 

structures were formed from 1:1 collisions between a core particle and a single monomer 

droplet. 

 

 

Keywords:  Surface coating; Electrostatically enhanced coagulation; Aerosol processing; 

Photopolymerization 
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1. Introduction 

 

Numerous applications for nanostructured polymer composites have evolved during the past 

decade to obtain materials with interesting combinations of electrical, optical, mechanical or 

chemical functions [1]. Of special interest are core-shell structures, mostly composed of an 

inorganic core particle encapsulated by a polymeric shell. The polymer shell may act as a kind 

of spacer to prevent agglomeration of the core particles and thus loss of functionality [2]; it 

may preserve the mechanical and chemical stability of the core [3], may encapsulate the core 

particles completely to reduce their toxicity, to create vehicles for diagnostic purposes [4] or 

for medical treatment [5, 6]. Certain other applications actually require an empty core to 

obtain thermal insulators, gloss enhancers [7], drug carriers or dye dispersants [6]. 

Core-shell structures with an outer polymer layer are most often prepared in the liquid 

phase via emulsion polymerization [8, 9]. Hollow shells can be obtained in the same way, by 

first encapsulating template particles and then leaching out the core [10]. Various aerosol-

based process routes have also been described, including chemical vapor deposition (CVD) to 

form inorganic shell structures via metal-organic precursors, to deposit organic layers such as 

PMMA onto inorganic particles in a low-pressure microwave plasma [2], or by photoinduced 

CVD using various carbon-containing precursors [11]. One can also deposit thin liquid layers 

onto gas-borne particles via physical vapor deposition [12] in preparation for subsequent 

polymerization. Each of these process routes has advantages and drawbacks. Emulsion 

polymerization most often employs surfactants and post-processing with costly separation 

techniques while CVD requires suitable precursors with decomposition kinetics to match the 

substrate material. On the other hand, physical vapor condensation leaves behind a significant 

amount of vapor in the carrier gas which may lead to downstream problems. In addition, 

wettability of the core particles is known to play a critical role during physical vapor 

deposition [13].  

Here, we present yet another process route to coat nanoparticles with a very thin polymer 

shell. It is based on an electrostatic technique to cover substrate particles with a defined layer 

of liquid monomer, which is then solidified “in flight” by photopolymerization. For this 

purpose, separate streams of gas-borne substrate particles and monomer droplets – both 

submicron and of defined size - are at first charged electrically with opposite polarities and 

then mixed. In the combined aerosol stream, bipolar coagulation causes rapid preferential 

collisions between substrate particles and droplets, thereby forming a monomer layer of 

defined thickness around each substrate particle which is then polymerized by UV irradiation. 

By adjusting the volume ratio between substrate particles and monomer droplets, one can in 

principle generate core-shell structures of defined but variable shell thickness. The entire 

process operates continuously in the aerosol phase; it runs to completion on time scales of 

about a minute, is largely independent of the substrate material (with the exception of 

wettability, which is not a major limitation), and the carrier gas is not loaded with large 

amounts of monomer vapor. 

The underlying theory of coagulation between aerosols of opposite or like electrical charge 

is not at all new (e.g. [14, 15]). Selective agglomeration between oppositely charged aerosol 

particles has been used e.g. to achieve stoichiometric combination of two substances which 
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triggers chemical reactions inside the combined droplets [16], to obtain doublets composed of 

two different solids [17], and most recently to “decorate” carrier particle surfaces evenly with 

a large number of catalytically active nanoparticles [18]. Photochemistry on aerosol particles 

has also been explored before, e.g. to functionalize their surface [19], to generate polymer 

nanoparticles from monomer droplets [20], and to prepare organic-inorganic polymer matrix 

nanocomposites from pre-mixed particle-monomer suspensions [21]. Widmann et al. [22] 

succeeded in creating a polymer shell on individual, levitated particles in an electrodynamic 

balance. 

Despite all this prior work, it was challenging whether a continuous coating process would 

actually work as described above. Continuous, integrated processes in the aerosol phase are 

always challenging in practice because different “desirable” and “undesirable” kinetics have 

to be matched, including electrical charging of nanoparticles vs. particles losses in the 

charger, charge selective vs. purely Brownian coagulation, sufficiently fast spriting of a 

viscous liquid on solid core particles of different materials, potential evaporation of monomer 

during mixing, and finally the kinetics of aerosol-photopolymerization. This article provides 

details on the process sequence. Different core-shell combinations including HDDA-

crosslinked PMMA and PHDDA on silica, gold, and sodium chloride are presented. 

Monodisperse silica particles were used to perform accurate measurements of the shell 

thickness and to compare these data with the theoretical shell thickness. 

 

 

2. Experimental 

 

2.1 Particle Materials 

Three core particle materials were used for coating experiments, namely silica, gold and 

sodium chloride. Silica and gold particles were aerosolized from commercial suspensions 

with a concentration of about 1 mg/ml each. Silica particles were spherical and highly 

monodisperse with a manufacturer-stated size range of 235 nm ± 10 nm (Microparticles 

GmbH) and a measured mean mobility size of 241 nm in the aerosol. Gold particles were 

polydiperse with an approximate size of 100 nm (Postnova Analytics) and not perfectly 

spherical. Sodium chloride particles were generated by spraying a solution of 3,75 g/l sodium 

chloride in water, resulting in a mean mobility equivalent diameter of 65 nm.  

The monomers selected as shell materials were methyl methacrylate (MMA, Sigma-

Aldrich, 99 % purity), a monofunctional monomer, and 1,6-hexanediol diacrylate (HDDA, 

Alfa Aesar, 99 % purity) which is multifunctional. The photoinitiator added to the monomer 

was Irgacure 907® (Methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, Sigma-

Aldrich, 98 % purity), dissolved in the monomer in a concentration of 1 wt.-%. All chemicals 

were used without further purification. The monomers methyl methacrylate and hexanediol 

diacrylate have viscosities of 0.6 mPa s (at 20 °C) and 9 mPa s (at 25°C), respectively. 
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2.2 Experimental Setup and Coating Process 

The complete experimental setup is shown in Figure 1. The core particle aerosol was 

generated by atomization of the respective suspension or solution with a Collision-type 

aerosol generator (Topas GmbH) into a flow of 2 l/min pure nitrogen followed by a diffusion 

dryer (Topas GmbH) to remove water vapor. In parallel, a second Collision-type atomizer was 

used to generate monomer droplets in a carrier gas of nitrogen at a flow rate of 1 l/min. 

Immediately following the atomizer, this second aerosol was diluted in a by-pass diluter 

where part of the flow was split off, filtered and then returned to the main aerosol stream in 

order to adjust the concentration ratio between core particles and monomer droplets. 

 

 
 

Fig. 1. Schematic of the experimental setup 

 

The two aerosols then each passed through a high-voltage corona charger, built according 

to well-known design principles [23]. In this device, the discharge takes place between a 

needle-like HV electrode and a grounded annular counter-electrode, all enclosed in a PVC 

body (Fig. 2). The aerosol flows directly through the discharge zone where the concentration 

of unipolar ions is sufficient to impart a relatively high charge on the particles in a short time. 

This type of charger is easy to clean but known to have relatively high losses. However, this 

was immaterial for the present purposes. 

 

 
 

Fig. 2. Sketch of corona charger 

 

The voltage applied to the discharge electrode was –5 kV or +5 kV, which imparted an 

average of +37 elementary charge units to the carrier particles and about -15 units to the 

droplets. The average charge was determined by comparing the physical diameters of the 
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respective particles - which were either known accurately (in case of silica) or measured 

separately as described below - with their mobility equivalent diameter distribution measured 

via conventional Scanning Mobility Particle Sizer (SMPS) technique but without prior 

particle neutralization. Note in this context that the droplets and particles entered the chargers 

with a negligible net charge.  

These two aerosols were mixed immediately after charging and then introduced to a flow 

tube with an average residence time of 70 s (at 3 l/min) to allow bipolar coagulation. This 

amount of time was sufficient for the electrostatically enhanced coagulation to run to 

completion, according to an estimate made on the basis of well-known coagulation kinetic 

models (not discussed here in detail, for reference see e.g. [23] or [24]). For a mixture of 

uncharged particles and droplets on the other hand, the residence time of 70 s does not 

produce a measurable amount of coagulation, as confirmed by independent experiments. 

Once a monomer droplet comes into contact with a core particle, the liquid spreads evenly 

around the core particle and forms a sphere-like meniscus, provided the core is wettable and 

the monomer viscosity low enough to permit complete coating within the time frame of the 

experiment. These assumptions are revisited in the results section. However, it can be said at 

this point, that all core particle materials used for this study were enclosed completely and 

uniformly after 70 s of residence time, and that the coagulation kinetics was therefore most 

likely the rate-determining step. For more viscous monomers, this would have to be 

reconfirmed, or the process step would need to be run at an elevated temperature which may 

increase monomer evaporation rate. The experiments described here were all performed at 

room temperature.  

Monomer-coated particles were finally introduced to the photoreactor for aerosol-

photopolymerization, a flow reactor where UV irradiation generates free radicals upon 

photoinitiated cleavage of photoinitiator molecules, thus permitting free radical 

polymerization to take place. The photoreactor consists of a cylindrical quartz glass tube (440 

mm long, 52 mm inner diameter) surrounded by 6 UV fluorescent tubes (each 410 mm long) 

which produce a combined irradiance of about 5 mW/cm
2
 measured at the surface of the 

quartz tube. This radiation is polychromatic with wavelengths between 270 and 360 nm and a 

maximum at 312 nm. The average aerosol residence time in the photoreactor was 20 or 60 s 

depending on the aerosol volumetric flow rate adjusted according to the monomer used.  

Since the monomer droplet size distribution resulting from atomization was not known a 

priori, it was measured by electrical mobility spectrometry (SMPS). Preliminary experiments 

had raised some concern that the semi-volatile droplets may decrease in size while passing 

through the mobility spectrometer due to mixing with completely monomer-free sheath air. 

The droplets were therefore solidified first by polymerization in the photoreactor. An 

additional concern was the potential for some droplet evaporation during the mixing and in 

the residence time volume. Comparative size measurements were therefore performed before 

and after the residence time volume. For this purpose, monomer droplets were mixed with 2 

l/min of particle-free air to simulate the addition of the core particle aerosol. No significant 

change in mean size was observed however. Figure 3 shows the size distribution of monomer 

droplets measured via the usual SMPS technique after neutralization. The size distribution is 

roughly log-normal with a median of 170 nm and a geometrical standard deviation of 1,9. 

This gives a count mean mobility equivalent diameter of 195 nm.  
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Fig. 3. Cumulative size distribution of monomer droplets directly after the nebulizer  

 

If the mean particle sizes of core particles dcore and monomer droplets ddrop are known, one 

can readily calculate the resulting diameter of the coated particle: 

      (1) 

For example, when 241 nm silica particles are coated with 195 nm droplets, the resulting 

diameter of the hybrid particle should be 277 nm provided that one core particle is covered by 

only one monomer droplet. For two monomer droplets, the size would grow to 306 nm. Note 

that we have used the count mean sizes for this exercise, based on the argument that the most 

frequently occurring core-shell particle size is determined by the size classes of core particles 

and droplets which collide most frequently – i.e. those with the highest number concentration. 

The SMPS measurement technique was employed to determine the thickness of the polymer 

shell by comparing the mean sizes before and after the photoreactor assuming that the shell 

thickness corresponds to that of the liquid monomer. In addition, the layer thickness was also 

measured by transmission electron microscopy after collecting encapsulated particles onto 

carbon-coated copper grids. 

 

 

3. Results and Discussion 

 

3.1 Encapsulation of Spherical Monodisperse Silica Particles 

For the first experiments, silica core particles possessing spherical and highly monodisperse 

properties were employed, thus permitting a relatively accurate determination of the coating 

thickness according to Eq. (1). Silica particles had a mobility equivalent diameter of 241 nm ± 

4 % and carried a mean charge of +37 units at a number concentration of 3∙10
3
 particles per 

cm
3
 at the point of mixing. The monomer droplets consisted of HDDA with 1 wt.-% of 

3 3
core

3
drophybrid ddd 
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photoinitiator dissolved in it. Their count mean size was 195 nm, with a mean charge of -15 

units, at a concentration about 3 times that of the core particles. After passing the residence 

time volume, the aerosol was polymerized within 20 s in the photoreactor.  

Figure 4 shows the size distributions of the two aerosols before and after mixing (and 

photopolymerization). Before mixing (Figure 4a), the monomer droplet size distribution is 

evidently much wider than that of the silica particles. (The multiple peaks of the silica 

particles correspond to single, double and triple charged particles in the mobility spectrum. 

Relevant for the current discussion is the peak corresponding to 241 nm.) After mixing and 

passing the residence time volume (Figure 4b), a double peak appears with a maximum at 270 

nm and another one at 195 nm. (For the third peak around 30 nm see below.) The peak at 270 

nm agrees well with the value of 277 nm expected according to Eq. 1. It can therefore be 

assigned to core-shell particles resulting from a 1:1 combination of core particles and 

monomer droplets. The resulting shell thickness after polymerization is about 15 nm.  

 

 
 

Fig. 4. Size distribution of oppositely charged core particles and monomer droplets before (a) 

and after mixing (b); these mobility based spectra were obtained after electrical neutralization 

of the aerosols  

 

The second peak around 195 nm corresponds to monomer droplets which did not find a 

collision partner. The appearance of this second maximum is not entirely surprising, given 

that the initial droplet concentration exceeded that of the substrate particles by a factor of 

three. Unexpected was the absence of a peak around 306 nm, where core-shell particles 

formed with two monomer droplets per core particle should appear. However, one has to keep 

in mind that 306 nm is still within the one-sigma range of combinations between monomer 

droplets and core particles. Returning to Figure 3, a value around 270 nm for the diameter 

corresponding to the 84 percentile of the monomer droplet size distribution can be observed, 

which gives a combined diameter around 322 nm according to Eq. 1. One can thus estimate 

that the number of 1-core+2-droplet particles must be significantly less than about 10% of the 

1-core+1-droplet particles. Apparently, coagulation rate between droplets and silica particles 

decreases sufficiently after the first collision to become undetectable in the measurements 

even though the silica particles still carry about half of their original charge.  

The size distribution in Figure 4b shows a third peak around 30 nm which is far too small 

to be associated with any of the modes expected from the coating process. Instead, this mode 

may  
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contain particles formed by reaction of monomer vapor with ozone generated by the corona 

discharge. The formation of secondary organic particles via this route is well known [23]. It 

underlines that the optimization of the charger would be a critical step toward industrialization 

of this coating process.  

Figure 5 provides a visual impression of a silica core particle encapsulated by a polymer 

layer. It was obtained by transmission electron microscopy from a sample of particles 

collected via impaction onto carbon-coated copper grids. A population of 60 randomly 

selected core-shell particles was analyzed on TEM grids in order to determine the geometrical 

particle size distribution (Figure 5a). The distribution is reasonably well represented by a 

monomodal log-normal function with a median diameter of 270 nm and a geometric standard 

deviation of 1.1. This results in a calculated count mean diameter of 270 nm, which is in good 

agreement with SMPS measurements and the calculated hybrid particle size.  

The TEM images were also analyzed for the presence of larger core-shell particles formed by 

collision of a core particle with two monomer droplets, which should appear around 306 nm 

in the particle size spectrum as indicated in Figure 5a. The resulting shell thickness of 33 nm 

would be readily distinguishable in a TEM sample. However, as before in the SMPS spectra, 

no significant population with such a thick polymer layer was found. Based on the sample 

size, this fraction cannot represent more than a few percent of the total population revealing 

the significance of 1:1 coagulation. 

 
 

Fig. 5. (a) Cumulative size distribution of core-shell particles determined from transmission 

electron micrographs; (b) TEM image represents a typical particle 

 

3.2 Encapsulation of Other Materials and Non-spherical Geometries 

A feasibility study of the process of charge-controlled particle encapsulation requires tests 

with a few combinations of particulate materials and monomers in order to obtain a first 

estimate of the influence of wettability and non-ideal particle structures. The experimental 

procedures remained basically the same as before: Core particle and monomer aerosols were 

generated and charged separately, mixed and left to coagulate for 70 s, and finally irradiated 

for 20 or 60 s in the photoreactor depending on the monomer type. The resulting structures 

were investigated qualitatively by transmission electron microscopy analysis mainly for the 
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uniformity of coating. Quantitative measurements of the shell thickness were not considered 

meaningful due to the polydispersity of both populations. 

Polydisperse gold particles with an average size of about 100 nm were generated from an 

aqueous suspension and then encapsulated using MMA (methyl methacrylate) containing 10 

vol.-% HDDA (hexanediol diacrylate) with respect to MMA as crosslinking agent and 1 wt.-

% photoinitiator (Irgacure 907) in MMA to enable polymerization within the time frame of 60 

s in the photoreactor. The TEM images showed different degrees of polymer surface 

coverage, of which three characteristic images are represented in Figure 6. While most gold 

particles were uniformly enclosed by a polymer shell as in Figure 6c, some were not 

completely centered (Figure 6b), while a few rare particles were only partly enclosed. In 

Figure 6a only about 2/3 of the particle surface had been covered by liquid monomer prior to 

photopolymerization. However, the contact angle between monomer and particle surface was 

well below 90°. These images might represent “late” collisions in the residence time volume 

with insufficient time for spreading of the monomer. The monomers used appear to wet the 

gold particles completely and generally produce spherical and even HDDA-crosslinked 

PMMA shells as shown in Figure 6c. This confirms the observations by Zhang et al. (2004).  

 

 
Fig. 6. Polymer encapsulated gold particles photopolymerized after different states of surface 

wetting 

 

Polydisperse sodium chloride particles with a mean diameter of 65 nm were formed by 

atomization of a NaCl solution and coated with HDDA containing 1 wt.-% photoinitiator. The 

monomer shell was polymerized within 20 s in the photoreactor. A micrograph of sodium 

chloride encapsulated by PHDDA (poly(hexanediol diacrylate)) is shown in Figure 7a. 

Silica agglomerates were formed by letting the primary spheres coagulate before initiating the 

charging process, and then coated with monomer consisting of MMA with 10 vol.-% HDDA 

with respect to MMA and 1 wt.-% photoinitiator in MMA. The polymerization time in the 

photoreactor was 60 s. Figure 7b shows an agglomerate of 3 primary spheres encapsulated in 

HDDA-crosslinked PMMA. According to a rough estimate, the shell in this particular 

instance must have also been formed from a single droplet, and is therefore much thinner than 

the 15 nm observed for a single core particle. Apparently, the monomer spreads fast enough 

around the entire agglomerate at room temperature to form a uniform layer. 
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Fig. 7. Polymer-encapsulated particles of different core materials and/or shape: (a) sodium 

chloride and (b) silica agglomerate 

 

The uniformity of the polymer shell observed in practically all cases suggests that all these 

core particle materials were completely wettable, that the monomer viscosities were 

sufficiently low at room temperature to allow for a uniform spread (with the exception of very 

“late” collisions), and that the surface tension had formed the expected minimum surface. 

Interestingly, the core particles were mostly positioned at the center of the droplets as far as 

electron microscopy could tell. Indirectly, this implies that the coagulation kinetics were the 

rate-determining step. This would have to be reconfirmed for more viscous monomers, or the 

process step would need to be run at elevated temperatures. However, this would increase 

monomer evaporation rate which could enhance secondary nucleation. 

 

 

4. Conclusions 

 

A continuous process has been described for the encapsulation of wettable nanoparticles with 

a thin polymer shell. The process is essentially based on selective collisions between gas-

borne, oppositely charged core particles and monomer droplets with a subsequent photo-

initiated polymerization. Once the two streams of charged aerosols were mixed together at 

concentrations ≤10
5
 particles per cm

3
 and particle charge levels on the order of 20 e, particles 

and droplets collide and monomer wets the surface to form a liquid shell within a time scale 

of 70 s. Photopolymerization of the liquid shell requires 60 s or less.  

Using the presented technique, gold, silica, and sodium chloride nanoparticles were 

successfully encapsulated with thin layers of PHDDA and HDDA-crosslinked PMMA. It was 

found that all material surfaces as well as all kind of particle structures were wettable at room 

temperature and that the spreading kinetics of the monomers were fast enough to cover the 

core particles uniformly within the time scale provided for coagulation. 

The shell thickness depends on the size of core particles and monomer droplets. For 

spherical, monodisperse silica core particles (d = 241 nm), the coating thickness was 

determined in combination with polydisperse HDDA droplets (dmean = 195 nm), resulting in a 

theoretical shell thickness of about 18 nm. The measurements by TEM and electrical mobility 

spectroscopy revealed very good agreement. At concentrations and particle charge levels used 

in these experiments, an estimated 90% or more of the core-shell structures were formed by 

1:1 combinations of core particles and monomer droplets.  

To summarize, the process of charge-controlled encapsulation of arbitrary core materials with 

various polymers is thus effective and versatile.  
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Abstract 

 

Photoinitiated polymerization in aerosols is employed for the preparation of spherical polymer 

particles via cationic polymerization. The UV irradiation of aerosol monomer droplets starts 

the cationic curing process without the employment of any solvent or additives such as 

stabilizers, resulting in highly pure polymers. Crosslinked polymer spheres with a high gel 

content are obtained by processing vinyl ether and epoxy monomers via this aerosol-

photopolymerization technique, which exhibits great potential for the development of 

multifunctional materials. 

 

 

Keywords:  Cationic photopolymerization; Aerosol processing; Particle formation 
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1. Introduction 

 

Polymer micro- and nanoparticles are widely attractive from a scientific and industrial point 

of view, especially in the form of polymer-filler composites, ranging from transparent 

polymers [1] and magneto-optical applications [2] to biotechnology [3] and controlled drug 

release agents [4]. The recent research has allowed the development of many different 

synthetic procedures to prepare polymer particles with a wide range of properties under 

controlled conditions [5]. These particulate systems are characterized by a size ranging from a 

few nanometers to micron-sized dimension.  

The proposed methods reported in literature for the preparation of polymeric particles 

include two main steps [6]. First, the preparation of an emulsified system, and the second step 

is the synthesis of polymer particles. This second step is achieved either by the precipitation 

or the gelation of a polymer, or by polymerization of monomers; it is also possible to obtain 

polymer particles at the time of emulsification. Suitable emulsified systems can be emulsions, 

mini-emulsions, nano-emulsions and micro-emulsions where surfactants are used frequently 

and decrease product purity [7]. Employing these emulsions suffers from additional 

drawbacks such as time and cost consumption. In fact, after wet polymerization, the particles 

might have to be separated by downstream processes such as centrifugation or filtration 

followed by washing and drying steps [8].  

As an appealing alternative to liquid processes, aerosol techniques can be used for polymer 

particle production as well. Different aerosol-based methods have been proposed so far: 

micrometer-sized polystyrene particles were obtained by aerosol-polymerization via contact 

of monomer droplets with initiator vapor [9] and aerosol-photopolymerization of acrylic 

formulations was proposed by Esen et al. for the generation of microspheres of diameters 

within 5 to 100 µm [10, 11]. Similar results were obtained with the same technique by Gao et 

al. [12]. Smaller polymer particles were generated by Akguen et al. [13], who also reported on 

the preparation of acrylic organic-inorganic hybrid particles via aerosol-photopolymerization 

in which ZnO nanoparticles were well distributed resulting in polymer-matrix 

nanocomposites [14]. While radical aerosol-photopolymerization seems therefore to be a 

well-established technique and cationic photopolymerization itself well-known as well [15], 

we could find, to the best of our search, only one report regarding the cationic 

photopolymerization in aerosols. Starting from a bis-epoxy silicone monomer in the presence 

of a diaryliodonium salt photoinitiator and a template, silicone microbeads were prepared 

[16]. It was found that photopolymerization occurred fast enough to polymerize the droplets 

of an aerosol spray in flight.  

In this work, for the first time, we report a preliminary investigation of the reactivity of 

epoxy monomer and vinyl ether as cationically UV-curable monomers via aerosol-

photopolymerization. Spherical polymer particles were produced from monomer solution 

droplets consisting of liquid monomer and dissolved cationic photoinitiator. No surfactants 

and any additional solvent were used for the formation of the monomer droplets and polymer 

particles obtained afterwards. 
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2. Experimental 

 

2.1 Materials 

The monomers tri(ethylene glycol) divinyl ether (DVE2), cyclohexene oxide (CY) and 3,4-

epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (CE), and the cationic 

photoinitiator triarylsulfonium hexafluoroantimonate were purchased from Sigma-Aldrich and 

used without any purification. 

 

2.2 Aerosol-photopolymerization 

Two main components are involved for the continuous experimental setup of aerosol-

photopolymerization. A Collision-type aerosol generator sprays the monomer solution, which 

is prepared by dissolving the photoinitiator in the liquid monomer without the addition of any 

solvent, and a flow-through photoreactor is responsible for the conversion of gas-carried 

monomer droplets to gas-carried polymer particles. The photoreactor consists of a cylindrical 

quartz glass tube (440 mm long, 52 mm inner diameter) surrounded by 6 UV fluorescent 

tubes (410 mm long each) emitting polychromatic UV radiation between 270 and 360 nm, 

with a maximum at 312 nm. The irradiance at the quartz surface is approximately 5 mW cm
-2

. 

The average aerosol residence time in this photoreactor can be varied by varying the nozzle 

inlet pressure of the aerosol generator or by selecting a shorter quartz glass tube. The 

experiments reported in this contribution were performed at an average aerosol residence time 

of about 50 s in the photoreactor. 

 

The monomer solution is sprayed with nitrogen gas in the aerosol generator to generate the 

droplet aerosol. This droplet aerosol is passed through the photoreactor where reactive species 

are generated upon UV irradiation for the polymerization process. Polymer particles leaving 

the photoreactor were collected dry at the exit of the quartz tube onto PTFE filter membranes 

with 50 nm average pore diameter. 

 

2.3 Particle Characterization 

Fourier transform infrared spectroscopy utilizing attenuated total reflectance (FTIR-ATR, 

Thermo-Nicolet 5700, Bruker Optics) was employed for the determination of carbon–carbon 

double bond or epoxy group conversion. The solution spectra were obtained by measuring a 

droplet of the corresponding monomer solution to be sprayed, and the polymer spectra after 

dry particle collection upon aerosol-photopolymerization.  

The gel content of the crosslinked polymer powder was determined by measuring the 

weight loss after 24 h of monomer extraction with chloroform at room temperature according 

to the standard test method ASTM D2765-84. 

DSC measurements of UV-crosslinked powder were performed using a Mettler DSC 30 

apparatus equipped with a low-temperature probe and a heating rate of 10 °C min
-1

. 

For scanning electron microscopy imaging, LEO 1530 was employed. Dry collected 

particles were brought onto a silicium wafer and coated with platinum being 1–2 nm in 

thickness. 
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3. Results and Discussion 

 

As a first step, the vinyl ether (DVE2) monomer was investigated taking into account its high 

reactivity towards cationic UV curing process as well as its low viscosity. 1 wt.-% of cationic 

photoinitiator was added to the monomer on the basis of previous investigations [17]. 

Polymer particles in the aerosol leaving the photoreactor were collected at a production rate of 

almost 300 mg h
-1

, which could be increased above 300 mg h
-1 

upon dissolving 2 wt.-% of the 

same photoinitiator. This value is comparable to the production rate for particles obtained via 

free radical initiated aerosol-photopolymerization [18]. Vinyl ether double bond conversion 

was measured via FTIR-ATR analysis after collecting the polymer powder. The spectra of 

DVE2 before aerosol generation and of poly(DVE2) particles resulting from aerosol-

photopolymerization are compared in Figure 1. The disappearance of the typical vinyl ether 

bands centered at around 1620 cm
-1

 indicates the completeness of the photopolymerization 

reaction during the residence time of the aerosol in the photoreactor. The polymeric particles 

were fully crosslinked, resulting in a gel content of 100% and a glass transition temperature 

(Tg) of about 38 °C as illustrated in Figure 2.  

 

 
Fig. 1. FTIR-ATR spectra (shown only between 1300-2100 cm

-1
 of spectral range) of DVE2 

before aerosol generation and of crosslinked poly(DVE2) particles resulting from cationic 

aerosol-photopolymerization. 
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Fig. 2. DSC trace of the crosslinked poly(DVE2) particles produced by cationic aerosol-

photopolymerization. 

 

The morphology of the prepared particles was investigated by SEM. Figure 3 presents the 

images of dry collected, crosslinked poly(DVE2) particles possessing smooth surface 

characteristics. 

 

 
 

Fig. 3. SEM images of crosslinked poly(DVE2) particles produced by cationic aerosol-

photopolymerization. 

 

Investigation of the cationic aerosol-photopolymerization process was pursued using the 

3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (CE) as photocurable 

monomer. Because of its higher viscosity compared to divinyl ether monomer, the epoxy 

monomer was mixed with 50 vol.-% of cyclohexene oxide (CY). The monofunctional 

monomer CY will both strongly reduce the viscosity of the dicycloaliphatic epoxy resin and 

accelerate the cationic UV curing process by a strong delay of vitrification during network 

build-up. The spectra of CE/CY 50:50 formulation before aerosol generation and of 

crosslinked polymer particles resulting from aerosol-photopolymerization are compared in 

Figure 4. The complete disappearance of the typical epoxy bands centered around 800 cm
-1

 is 

evident, indicating practically complete conversion of the photopolymerization medium. Also 

in this case completely crosslinked polymer particles with a gel content of 100% and a Tg 

value of about 42 °C were achieved. The low Tg value for the epoxy crosslinked particles is 

due to the high content of the monofunctional monomer which was used to adjust the 
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viscosity of the formulation and to delay vitrification in order to obtain fully cured polymeric 

particles. As a drawback, the crosslinking density is reduced and a low Tg value is obtained in 

comparison to the pure epoxy system.  

The morphology of the achieved particles was characterized by SEM analysis. Figure 5 

shows the images of dry collected, crosslinked polymer particles.  

 

 

 
 

Figure 4: FTIR-ATR spectra of the CE/CY 50:50 formulation before aerosol generation and 

of crosslinked particles resulting from cationic aerosol-photopolymerization. 

  

 

 

 
 

Figure 5: SEM images of crosslinked particles obtained from the CE/CY 50:50 formulation 

produced by cationic aerosol-photopolymerization. 

 

 

4. Conclusions 

 

We report the very first preliminary results of cationic aerosol-photopolymerization of vinyl 

ether and epoxy monomer systems. This is an interesting alternative to the production of  
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polymer particles via liquid processing routes and free radical initiated photopolymerization. 

We have demonstrated the very fast UV curing process allowing the complete crosslinking of 

both vinyl ether and epoxy monomer during the residence time of the droplets in the 

photoreactor. While the high reactivity of DVE2 monomer is well known and its low viscosity 

is suitable for aerosol applications, epoxy monomer was mixed with 50 vol.-% of 

cycloaliphatic epoxy resin in order to reduce the monomer formulation viscosity, enhance the 

rate of photopolymerization, and to induce a complete epoxy group conversion delaying 

vitrification.  

We could get fully crosslinked polymeric particles with high gel content values and glass 

transition temperature tunable as a function of the starting formulation. SEM images of the 

dry collected polymer particles revealed the formation of homogeneous, micrometer-round 

particles with smooth surfaces.  

We have demonstrated the potential of cationic aerosol-photopolymerization as a fast and 

flexible generation technique which could be further investigated for the generation of smart 

polymeric particles such as polymer-matrix nanocomposites and nanostructured particles 

obtained by free radical initiated aerosol-photopolymerization.  
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4. Conclusions & Outlook 

 

This PhD thesis presents a spectrum of various polymeric particles generated via the process 

of aerosol-photopolymerization. Spherical polymer nanoparticles, spherical organic-inorganic 

polymer-matrix nanocomposites, non-spherical nanocaps, and spherical porous particles were 

successfully produced and have been published in the first three papers within the concept of 

“Perspectives of Aerosol-Photopolymerization” to introduce this relatively young technique 

as a promising tool. In addition, core-shell nanoparticles were prepared by an integrated 

aerosol-based process as well. These particles have been discussed in the fourth paper 

resulting from this thesis. 

As a first step, polymer nanoparticles were generated as a proof of concept for the 

experimental setup upon photoreactor construction. Molecularly crosslinked and non-

crosslinked polymer particles were obtained by aerosol-photopolymerization. A major 

observation was the necessity of a minimum monomer propagation rate coefficient due to the 

short aerosol residence time in the photoreactor of about 1 min. Although this limited the 

monomer selection, slow-propagating monofunctional monomers still could be polymerized 

in the presence of faster copolymerization partners. Multifunctional monomers or fast-

propagating monofunctional monomers were able to homopolymerize within the limited 

polymerization time. The resulting polymer particles served as a proof of concept and 

demonstrated the potential of aerosol-photopolymerization. 

More complex particle structures were formed by spraying monomer formulations with 

specific additives. Inorganic nanoparticles suspended in the monomer solution were used for 

the preparation of organic-inorganic hybrid nanoparticles. Upon the employment of the same 

experimental setup and procedure, hybrid monomer droplets were obtained by aerosol 

generation, and these droplets were photopolymerized into hybrid polymeric particles online 

in the subsequent photoreactor. Hybrid particles were composed of inorganic content and the 

same polymer as produced in the “proof of concept” step. 

Apart from the spherical particle shape resulting naturally due to in-flight polymerization 

of aerosol droplets, non-spherical polymeric particles which we named “nanocaps” were 

synthesized by aerosol-photopolymerization too. Specific additives were employed in the 

monomer solution to realize concomitant processes which are assigned as evaporation of a 

volatile solvent and retardation of gelation via a softening agent during the course of 

photopolymerization. Hybrid nanocaps were also prepared similar to hybrid spheres. 

Disregarding the polydisperse size distribution, every particle size within the atomization 

range of the aerosol generator possessed the shape of a “cap”. All of the particle structures up 

to this point – spherical polymers, spherical hybrids, and nanocaps – have been summarized 

within the first patent application “aerosol photopolymerization”. 

Porous spherical polymer particles possessing rough surface characteristics, which we 

named mosaic nanoparticles, were prepared with the help of a porogen. This solvent had to be 

miscible with the liquid monomer but immiscible with the polymer formed afterwards. 

Furthermore, it had to be low volatile in comparison to the solvent employed for nanocap 

generation. As for the spheres and caps, mosaic particles were produced in the presence of 

ZnO nanoparticles as well. These particles, along with the nanocaps, can be found in the third 
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paper where nanostructured particle synthesis by aerosol-photopolymerization has been 

presented.

Organic-inorganic hybrid nanoparticles with ZnO as the inorganic part represented 

polymer-matrix nanocomposites (PMNCs) containing nanofillers distributed in the polymer 

matrix of spheres and caps. Similar PMNCs, but with molecularly dispersed distribution of 

the inorganic content in the polymer matrix, were also produced by employing caffeine. 

Caffeine-loaded spheres, caps, and mosaic particles were synthesized by aerosol-

photopolymerization, and drug release experiments were performed. Release kinetics not only 

depended on the degree of molecular crosslinking in the polymer particles, but also on the 

particle shape offering controlled drug release. 

Apart from composites where a number of inorganic nanoparticles are distributed within 

the polymer matrix, polymer spheres containing a single inorganic core were also successfully 

produced. These core-shell structures resulted from an integrated process – bipolar 

coagulation with subsequent photopolymerization – all in an aerosol-based process. Two 

aerosol streams, one with monomer droplets and the other one with core particles to be 

encapsulated as the dispersed phase, were electrostatically charged with opposite signs and 

mixed. A certain coagulation time for this aerosol allowed 1-to-1 bipolar coagulation of 

monomer droplets and core particles. Once each core particle got wetted and encapsulated by 

the liquid monomer, aerosol-photopolymerization solidified the liquid layer to a solid polymer 

shell around each core particle. The coagulation process, which is based on electrostatic 

effects, allowed the coagulation of various combinations of monomer droplets and core 

particles provided that the core material can be wetted by the liquid monomer. The synthesis 

of these core-shell particles has been submitted as a patent which is the second patent 

application resulting from this PhD thesis. 

The entire particle structures of this work were produced by both an excimer photoreactor 

and a simpler photoreactor equipped with UV fluorescent tubes. The latest results verified that 

this process is not only suitable for radical photopolymerization but also cationic 

photopolymerization as presented in the last manuscript. Aside from the experimental work 

which constituted the main part of this thesis, simulations were performed to estimate the time 

for complete monomer conversion under different conditions. The photopolymerization 

reactions occurring within the monomer droplets were simulated by selecting suitable kinetic 

parameters and varying them within certain ranges. 

The obtained widespread particle structures prepared by aerosol-photopolymerization 

illustrate the power of this technique. By selecting the proper particle type along with the 

“correct” material combination, multifunctional smart materials can be obtained. Aerosol-

photopolymerization has been proven to be a promising tool for specialty material 

preparation. Its scale-up issues and particle production for direct applications as specific 

products should be considered for future work. 
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