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ABSTRACT
During the development of component-based software sys-
tems, it is often impractical or even impossible to include
all development information into the source code. Instead,
specialized languages are used to describe components and
systems on different levels of abstraction or from different
viewpoints: Component-based architecture models and con-
tracts, for example, can be used to describe the system on
a high level of abstraction, and to formally specify compo-
nent constraints. Since models, contracts, and code contain
redundant information, inconsistencies can occur if they are
modified independently. Keeping this information consistent
manually can require considerable effort, and can lead to
costly errors, for example, when security-relevant compo-
nents are verified against inconsistent contracts. In this tech-
nical report, we present details on realizing an approach for
keeping component-based architecture models and contracts
specified in the Java Modeling Language (JML) consistent
with Java source code. We use change-driven incremental
transformations and the Vitruvius framework to automate
the consistency preservation where this is possible. Using
two case studies, we demonstrate how to detect and propa-
gate changes and refactoring operations to keep models and
contracts consistent with the source code.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods; D.2.11 [Software Architectures]: Lan-
guages

Keywords
Model-Driven Engineering, Formal Specification, Co-Evolution

.

1. INTRODUCTION AND MOTIVATION
Component-based software systems are often designed and

realized using heterogeneous development artefacts, because
it is inefficient to perform all development tasks in general-
purpose programming languages. To obtain a more abstract
representation, Architecture Description Languages (ADLs),
for example, can be used to model components and their
relationships while omitting implementation details. If archi-
tecture models or natural language specifications are consid-
ered too informal or too inefficient for a precise description
of component interfaces, formal languages, such as the Java
Modeling Language (JML) can be used to specify contracts.
These special languages can be helpful to design and maintain
component-based software, but they introduce redundancy.
Names and parameters of services that are provided by a
component, for example, may appear in the code, the architec-
ture model, and the contracts. Such redundant information
becomes inconsistent as soon as the code, model, or contracts
are changed in isolation during the development and mainte-
nance of components and systems. If consistency is restored
manually after a change, modifications have to be performed
in each of the three artefacts, requiring manual effort and
possibly still leading to costly inconsistencies that are only
discovered in later phases of the development process. For
security-relevant components that are verified against con-
tracts, such inconsistencies can lead to incorrect verifications
and therefore insecure systems and are therefore intolerable.

In this technical report, we present details on a semi-
automated approach and a tool for component-based software
systems development to keep architecture models, formal
component contracts, and source code consistent. We de-
scribe change detection and propagation by change-driven
incremental transformations. We have used the Vitruvius
framework [12] to implement the change detection and con-
sistency approach in a research prototype1. Our prototype
processes architectural models that use the Palladio Com-
ponent Model (PCM) [3], contracts defined in JML, and
Java source code but it can be adapted to other ADLs and
specification languages.

With two case studies, we have evaluated whether all kinds
of code changes can be detected, and whether contracts and

1sdqweb.ipd.kit.edu/wiki/Vitruvius/Development

https://sdqweb.ipd.kit.edu/wiki/Vitruvius/Development


public class ATM {

public void withdraw(int amount, Account src) {

...

Model

Source Code

/*@ requires amount >= 0;

requires src.balance >= amount;

ensures src.balance == \old(src.balance) - amount; @*/

public void withdraw(int amount, Account src);

Contract

«restricts»

«describes»

AccountManagerATM

Figure 1: Extracts from the contract, source code,
and model for an example banking system

models are kept consistent accordingly. Our evaluation shows
that it is possible to keep models, contracts, and the imple-
mentation of components automatically consistent in most
of the change and refactoring scenarios that we have checked
with our evaluation case studies.

The remainder of this report is structured as follows: After
foundations (section 2) and an overview (section 3), we discuss
change monitoring (section 4). Then, we present our concept,
implementation, and evaluation for code and contract consis-
tency (section 5), followed by related work (section 6), and a
conclusion with a discussion of future work (section 7). This
technical report is an extension of a conference paper [13],
and all code and tests are freely accessible.1

2. BACKGROUND AND FOUNDATIONS
In this chapter, we provide background information that

is fundamental for our approach and tool.

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) [22] is a software de-

velopment paradigm that strives for the use of modelling
languages with precise semantics for all development arti-
facts. In order to be used in automated transformations and
generation steps, all model instances have to conform to a
so called metamodel, which describes static and dynamic
constraints of a modelling language. A metamodel defines
the abstract syntax of a modelling language and plays a
role similar to an abstract syntax tree in a programming
language: The exact graphical or textual representation of
model instances, also called concrete syntax, is separated
from it to ease transformations. The semantics of model in-
stances in MDE can be explicitly defined in a formal way, or
implicitly defined by the transformations into other models
or programming languages. New modelling languages can be
created by defining a new metamodel that itself conforms to
a meta-modelling language or meta-metamodel.

The Eclipse Modeling Framework (EMF) defines the meta-
modelling language Ecore, based on the Meta-Object Facil-
ity (MOF) ISO 19508 standard by the Object Management
Group (OMG). It is built on top of the popular Eclipse IDE
and used in many open-source projects. The Java Model
Printer and Parser (JaMoPP) [10], for example, defines an
Ecore-based metamodel for Java programs. It can be used to
parse Java source code as a regular model instance so that

it can be analyzed and transformed like every other model
before it is printed back to source again.

2.2 Palladio Component Model
The Palladio Component Model [21] is the Ecore-based

metamodel of the component-based ADL that is used in
the Palladio Bench2. It features reusable components, which
provide and require services at interfaces, which are both
defined in a system-independent component repository. A
specific system is modelled by assembling instances of these
components in so-called assembly contexts. These assem-
bly contexts are linked using assembly connectors and are
also used in composite components, which delegate services
internally using delegation connectors.

2.3 Java Modeling Language
The Java Modeling Language (JML) [16] is a behavioral

interface specification language for Java. It can be used to
define contracts for interfaces and classes, which are often
just called specifications. JML contracts can be defined in
usual Java source files, or in a separate JML file that repeats
all Java declarations of the specified interface or class. The
contracts are noted inside Java comments directly before the
declaration of the corresponding Java element.

JML contracts consist of statements and modifiers. A state-
ment starts with a JML keyword and is followed by a regular
or extended Java expression. Extended means that additional
operators and keywords can be used. For instance, \old(expr)
provides the expression result from the time before executing
the method. Essential JML statements are preconditions,
postconditions, and invariants. These statements start with
the keywords requires, ensures, and invariant. Modifiers also
specify elements. For instance, the pure modifier marks a
method side-effect free, which is required when using the
method inside contract specification statements. An example
for a JML contract is shown in the upper box of Figure 1:
It defines two preconditions and a postcondition for a with-
drawal operation of an Automatic Teller Machine (ATM).

JML contract specifications are divided into cases that
must hold in specific contexts. A method can have exactly
one lightweight or at least one heavyweight specification case.
Lightweight specification cases have to hold in all contexts.
Heavyweight specification cases only have to hold if the
precondition holds.

3. FRAMEWORK OVERVIEW
Our monitoring and consistency approach for component-

based code, architecture models, and contracts is part of our
work on the generic Vitruvius framework for multi-view
modeling [12]. The Vitruvius framework is based on the
central idea of Orthographic Software Modeling [2]: all in-
formation of a software system is represented in a single
underlying model and can be accessed solely by views. It
tries to combine the advantages of projective and synthetic
approaches as defined by the ISO 42010 standard by provid-
ing a method for constructing and maintaining a modular,
Virtual Single Underlying Model (VSUM): The VSUM con-
sists of individual models for different modeling languages in
order to support existing languages and tools. The virtual
model instance is dynamically managed by the framework
and restricted by the metamodels that are added to a so-

2http://www.palladio-simulator.com
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Figure 2: Meta repository and possible views for component-based software engineering with contracts

called meta repository. The relations between the individual
metamodels of the meta repository are encapsulated and
expressed using a domain-specific language for mappings,
invariants, and responses (MIR). Therefore, views can fo-
cus on relevant elements and relations and do not have to
consider all internal details of all modeling languages. This
decouples the inner modular structure of the VSUM from its
representation in the views. To make this possible, all views
have to report all changes to the framework so that it can
propagate them within the VSUM to sustain consistency.

The prototype described and evaluated in this paper uses
the concepts and infrastructure of the Vitruvius framework
to implement change monitoring in external editors and inter-
nal consistency using change-driven model transformations.
The VSUM consists of models representing the Java code,
architecture models of the PCM, and JML contracts. To this
end, the metamodels for Java, PCM, and JML are added
to the meta repository as shown in Figure 2. Currently, we
only support the three well-known standard views for Java
(VT1), JML (VT3), and PCM (VT5). In future work, we
will develop and evaluate views that combine information
of several models: a combined view for Java source code
and JML (VT2) that can display contracts of component
services together with their implementation; a fully anno-
tated code view (VT4) to display information of architectural
models and JML contracts as annotations in the Java source
code; and a component/class implementation view (VT6) to
display which classes in the Java code implement which com-
ponents of the architectural models. Our prototype is based
on EMF and processes Java source code, PCM models, and
JML contracts as instances of metamodels that are defined
in Ecore.

4. ARCHITECTURAL MODELS AND CODE
In this section, we describe how Vitruvius can be used

to keep a component-based architectural model consistent
with its source code. The goal of keeping architecture model
and code consistent during the development of a software
system is to avoid architecture drift, and to help developers

to find and reduce architecture erosion [19]. Furthermore, an
up-to-date architecture model has many advantages: it is, for
example, possible to make more accurate decisions for the
further evolution of the software system. In our scenario, the
Palladio Component Model also allows architects to make
performance predictions for the system under development.
To apply the Vitruvius process to architecture models and
code, we have to specify

a) an Ecore-based architecture model, and an Ecore-based
representation of a general purpose language;

b) bidirectional mapping rules for code and architecture;

c) monitors that report atomic architecture and code changes

d) a method to clarify the intent of developers and architects
in the case that ambiguous changes are made.

For our prototype, we chose the EMF-based PCM as the
architectural model because we plan to use the PCMs per-
formance prediction capabilities in future work. However, it
would also be possible to use other component-based archi-
tecture models, for example, UML composite diagrams, as
the architecture model. As an EMF representation of the
source code, we use JaMoPP (Java Model Printer and Parser)
[10]. JaMoPP allows us to treat Java source code like an
EMF model. For instance, it is possible to execute model
transformations on JaMoPP instances and to print the java
source code for the transformed model. For our prototype,
we defined the following mapping rules (cf. [14]) between
PCM elements and code Elements: A PCM repository maps
to 1) a main package that represents the repository, 2) a
contracts package in the main package that will contain all
interfaces, and 3) a data types package in the main package
that contains all data types. Every PCM component maps to
a package within the main package and a public component
realization class within the component package. Every PCM
interface maps to a Java Interface in the contracts package.
PCM Signatures with its parameters and return types map
to Java Methods with corresponding parameters and return
types. A PCM Datatype maps to a class within the datatype
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Figure 3: Simplified architecture of the implementa-
tion for synchronization between code and contracts
and code and architecture.

package that contains getters and setters for the inner types
of the datatype. A required role maps to a member typed
with the required interface and setter for required interface in
the main class of the requiring component. For every PCM
provided role, the main class of the providing component
implements the provided interface. These mapping rules are
a refined version of the mapping rules that we have presented
in [14].

Using Vitruvius, domain experts, e.g., architects, can
create specific mapping rules for their projects. One of our
ongoing research efforts is to complete the development of
a domain-specific language for bidirectional mapping rules,
which can be used inside the Vitruvius framework.

In order to monitor code changes, we implemented a mon-
itor that observes the Eclipse Java code editor (4.1.1). To
monitor changes on components and interfaces, we imple-
mented a monitor that is able to observe changes in arbitrary
EMF and GMF models that can be used for all graphical
and tree-based PCM editors (4.1.2).

4.1 Monitoring and Propagating Changes
In this section, we describe the implemented monitors

for code and architecture that are part of the prototype
that can be used to keep architecture and code consistent.
Two monitors have been implemented: JavaMonitoredEditor
and EMF/GMF MonitoredEditor. Their interaction with the
Synchronization components is depicted in Figure 3.

4.1.1 Code Changes
In order to keep the architecture consistent with archi-

tectural relevant source code changes, we implemented a
mechanism that notifies the Vitruvius framework as soon
as a change in code was made. Since we want to keep the
advantages of a powerful code editor and also leverage devel-
opers’ experience with familiar environments, we decided to
implement our code monitor as an extension of the standard
Eclipse Java code editor. We use the notification mechanism
of the Eclipse AST (Abstract Syntax Tree) to get notified
when a change occurs in the code. This mechanism notifies
our code monitor every time the Eclipse change reconciliation
mechanism is executed and the code is compiled. We use this
notification to build semantic code changes. A semantic code
change can be a simple rename method, but we also support

more complex changes, such as move method. Based on the
semantic changes, we build instances of a change metamodel
and pass them to consistency preservation transformations,
which implement the mapping rules described above.

If developers or architects make ambiguous changes, i.e.,
changes that cannot be propagated automatically to code
or architecture, we have to clarify their intent. The intent
clarification mechanism lets the transformations that keep
the architecture and code consistent interact directly with
the developers or architects, and displays a dialog to clar-
ify the intent [15]. In future work, we plan to implement
more interaction options, e.g., postponing decisions, which
are collected in a task list. Hence, processing of these tasks
can be delayed. This has the advantage that developers who
are unfamiliar with the architecture do not have to make
the decision by themselves. Instead, they can ask the system
architect to get involved in the decision process. Another
advantage is that developer interruption is limited due to
the possibility to postpone changes.

Code change propagation can range from trivial updates
to more sophisticated transformation decisions. Consider
this simple example: A developer changes the name of an
architecturally relevant interface method. According to the
mapping rules defined above, we can automatically rename
the name of the signature of a PCM interface.

However, because arbitrary changes can be made in code,
we have to face the problem that developers can make ambigu-
ous changes that cannot be propagated to the architecture
without getting more information from the developers or
architects. For this scenario, consider the following example:
A software developer creates a new package as well as a
new class within this package. This would lead to the two
changes package created and class created. However, using
the above mentioned mapping rules, it is unclear whether the
new package should become a component at the architectural
level. If the package should be a component, it is also unclear
whether the newly created class should be the component-
realization class of the component. Therefore, we have to ask
the developer whether his or her intent is to create a new
component on architecture level or not. If the answer is yes,
we can create the component on architectural level and ask
whether the class is the component-realization class of the
component. If the second answer again is yes, we can use
the class as the component-realization class. If the answer
is no, we automatically create a new component-realization
class for this component. The intent clarification mechanism
is realized within the mapping transformations and therefore
can be defined project-specific.

Figure 4 illustrates the basic workflow of change prop-
agation from code to architecture. The first step is that
developers edit the source code (1). After the code modifica-
tion, the Monitored Editor is notified (2). The Code monitor
generates and retrieves a JaMoPP Model (3), and submits the
changes to the Change Synchronization component (4). The
Change Synchronization component uses the elements from
the correspondence instance and decides whether the change
was an ambiguous (5a) or unambiguous change. The corre-
spondence instance contains the information which elements
from the JaMoPP model correspond to which elements from
the PCM. If the change was an unambiguous change, the
Palladio Component Model can be updated directly (6). If it
was an ambiguous change, we have to clarify the intention of
the developers. Therefore, the Monitored Editor is notified
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(5a), and the developers are asked for intent clarification
(5b1). After the intent is clarified, the Change Synchroniza-
tion is notified again (5b2). Based on the intent clarification,
the Change Synchronization component can now update the
PCM accordingly (6). The Change Synchronization compo-
nent can also refactor the JaMoPP model respectively the
source code(7).

4.1.2 Architecture Model Changes
In this section, we describe how changes made in an ar-

chitectural model are propagated to the source code. As
mentioned above, we have implemented a change monitor to
track changes in all EMF- or GMF-based PCM editors. We
use the change recorder mechanism of EMF to receive change
notifications. After a save action, all changes are propagated
in the order they were conducted. During the propagation,
the following steps are executed for each monitor change:

1. find the correct transformation for the change

2. execute the transformation

3. create/update/delete the correspondences

4. save/delete the changed models

Consider the following example: An architect adds a new
component in the PCM and changes the component from
the default name of a new component to ATM. Afterwards
he saves the editor. The change monitor records two changes.
The first change is that a new component with the (default)
name aName has been created. The second change is that
the component has been renamed to ATM. These changes are
propagated as soon as the save is triggered. The framework
automatically executes the transformations for creating a
new component and gives it the name aName. Using the
mapping rules explained in section 4, it will create a new
package named aname in the package that corresponds to
the repository. Also a new Java class named aNameImpl will
be created. For the second change the transformation for
renaming a component will be executed. Hence, the package
as well as the class are renamed to atm respectively ATMImpl.

4.2 Code Monitoring Performance
Monitoring of code changes is a background process in the

IDE and therefore does not directly block the developer’s flow
of producing and altering source code. Ambiguous changes,
however, lead to intent clarification requests. Those requests
have to appear before a next change occurs. Therefore, it is
crucial that change monitoring is time-efficient. We measured
performance of our change monitor in terms of time consump-
tion for the creation of change objects, i.e. in-memory repre-
sentations of the detected semantic change. Our monitoring
mechanism has two stages: First, the detection and classifi-
cation of a change in the AST and, second, the conversion of
the AST change object into a description of modifications
of JaMoPP code models. Time performance evaluation was
conducted by applying three different types of changes to
source files of different LLOC sizes, ranging from small files
with limited functionality to very large auto-generated files.
We performed and observed code changes on the open-source
Java code base of the commercially used Apache Hadoop
Distributed File System (HDFS)3.

3hadoop.apache.org

LLOC
Rename
Method

Replace
Method
Modifier

Add
or Remove

Field

28 57 (0.94) 50 (0.34) 57 (0.33)
350 292 (0.22) 278 (0.32) 324 (0.33)
1045 832 (0.09) 856 (0.16) 865 (0.10)
2050 1,776 (0.17) 1,676 (0.16) 1,954 (0.16)
15812 14,683 (0.09) 14,334 (0.09) 14,880 (0.10)

Table 1: Average total monitoring time in ms for
edit operations on different-sized HDFS source files
with the coefficient of variation (in parentheses)

The following three changes were applied to the source
code: 1) Rename a method, 2) replace a method modifier,
3) add or remove a field. Every change was repeated 100
times on each source file, except for the largest source file
where the number of repetitions was 25. The experiments
were conducted on a 3.40 GHz quad-core desktop PC with 8
GB RAM running a 64-bit Eclipse 3.5 on a 64-bit Windows
7 system.

Table 1 shows the average total time consumption per file
and change scenario. In every experiment, the first change
observation took significantly longer than the succeeding
changes, thus we consider the first measurement value an
outlier. Consequently, the cells in Table 1 contain the average
of the second to 100th – or 25th – measurements. The average
is given as the arithmetic mean, and the table’s time unit is
milliseconds. The value in parentheses gives the coefficient of
variation, i.e., the standard deviation divided by the average.

Our performance evaluation indicates a linear increase of
the monitor’s time overhead with the LLOC size of source
code files. It also shows that the time increase is independent
from the change that is conducted (see Figure 5). The sample
correlation coefficient between the average time consumption
in milliseconds and LLOC size is 0.9995. In addition, our mea-
surements showed that the creation of AST change objects
required at maximum only 4% of the combined time consump-
tion for AST and Vitruvius change creation. Therefore, the
creation of JaMoPP-based change objects determines our
monitor’s time performance. The explanation of the observed
linear dependency lies in one implementation detail: After
every change, the affected compilation unit is entirely parsed
into a JaMoPP model. We do not cache JaMoPP models and
instead rely on parsing on-demand due to JaMoPP’s large
memory footprint. Although our monitor needs less than one

Figure 5: Average time overhead per change obser-
vation [ms]. Both axes are logarithmic to base 10.

http://hadoop.apache.org


second for 1045 logical lines of code, a single change may
have side-effects on large, generated files, and thus result in
large delays. The improvement of our code change monitor’s
performance is part of our future work. We plan to build
partial JaMoPP models that only contain change-affected
code elements, and thus decouple the monitor’s processing
work from the compilation unit sizes.

5. COMPONENT CONTRACTS AND CODE
Our overall objective is to support component develop-

ers and system architects by keeping component contracts
written in JML and component implementations written in
Java consistent after changes. We achieve this with a con-
sistency concept in which the overlapping parts of code and
contracts as well as reactions on changes affecting them are
defined. The overlap is described by relations between rele-
vant elements and by constraints for these relations. Change
reactions restore these constraints after a change has occured.
We do not limit changes to refactorings, but consider any
possible change performed by a developer. In the evaluation
of our consistency concept, we show that the implemented
change reactions restore consistency after changes.We cov-
ered identifiers, visibility, types, pure, helper, nullable, default
behaviors regarding null, assignable, generic and exception
specifications. In Table 2 we provide a short overview of the
covered JML constructs.

5.1 Contract Consistency Concept
We have developed a consistency concept for code and

contracts, which defines the overlapping parts between these
artifacts, and describes what reactions are needed for which
changes. We make the following assumptions to focus our
efforts on interesting and common situations:

a) We cover JML elements of language levels 0 and 1, because
they are supported by most JML tools [17, chap. 2.9].

b) We restrict ourselves to constructs that are properly sup-
ported by OpenJML, which is the JML compiler used in
the evaluation.

c) We do not cover change reactions that are already realized
in IDEs, such as updating callers when renaming a method,
but we update the contracts.

d) We assume that every line of code is reachable.

e) We only cover structural code element changes that are
performed in the code and not in the JML files.

We refer to directions in the description of the following
change reactions. A direction A→ B means that a change
occurred in artifact A and has an effect on artifact B. We
consider the artifacts code C and specifications (contracts)
S. Directions that are not mentioned in an element’s concept
have not to be considered because they are already handled
by the IDE or they are not relevant.

We divided our consistency concept into three parts based
on the affected JML elements. For every part, we define the
relevant overlap, constraints, and change reactions.

5.1.1 Basic Syntax Elements
We call identifiers, visibility modifiers, and types Basic

Syntax Elements, because they form the basis for many ex-
pressions and statements and can appear in a large number
of syntactical legal locations.

detect change

createfind
name

clashes
find all oc-
currences

replace

deletecheck syntax
revert

change

[identifier changed] [renamed]

[deleted]

[created]

[has JML]

[clash]
[error]

Figure 6: Reaction on an identifier change in the
direction specification to specification and code to
specification. The dashed elements are only relevant
for the latter.

Identifiers are used in Java and JML to reference elements
within code and specifications and in between. Therefore,
identifiers and their uses have to be kept consistent across
both artifacts: Figure 6 illustrates the necessary reactions for
C → S and S → S. We have to consider the latter, because
there is no refactoring support for JML to our knowledge.
Identifier changes have to be propagated to the other artifacts
by replacing or removing their occurrences, e.g., using static
code analysis and refactorings. If an identifer clash or unre-
solved reference is detected, we simply revert the identifier
change. The handling for S → C is identical to C → S but
we consider specification-only methods and fields only. We
do not consider other elements because structural changes
have to be performed in the code as noted in the restrictions
mentioned above.

Visibility modifiers for structural elements, such as meth-
ods or fields, have to be the same in Java and JML. The
accessibility rules for JML are based on the Java rules. A
referenced element has to be at least as visible as its spec-
ification. For invariants and history constraints, there is a
special requirement: They have to be at least as visible as the
referenced fields. After a visibility change in Java, we have
to copy the new visibility modifier to the JML contract and
execute further reactions based on the change: If the visibility
has been decreased, we have to enforce the old visibility with
specification-only modifiers to keep the element accessible
from existing specifications. Such modifiers override the reg-
ular visibility in specifications but do not affect the visibility
in code. If the visibility of a field has been increased, we have

Element Coverage Evaluation

Identifier C P 1 2
Visibility C
Type C
pure C P 1
helper C P 1
nullable C
null defaults C
assignable C
Generic Specifications C
Exception Specifications C

Table 2: Overview of coverage of JML constructs in
consistency concept C, prototypical implementation
P, and evaluation test suits.
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Figure 7: Reaction on an method change in the di-
rection code to specification with respect to pure.

to increase the visibility of invariants and history constraints
that reference the field to meet the special visibility require-
ment mentioned above. After a visibility change in JML, we
have to block the change if the visibility has been decreased
in such a way that there are syntax errors.

JML elements have to be type-checked in accordance with
the Java type check: The type check of the compiler has to
succeed in each artifact and corresponding elements have
to have the same types. If a return type or a field type is
replaced with a subtype of the original type, the change can
be processed automatically. Any other change can modify
the program behavior and has to be processed manually.

5.1.2 Specification-Only Elements
Elements that are only definable and usable in specifi-

cations are called Specification-Only Elements. We cover
specification-only fields, methods, and imports.

Specification-only fields can be separated into model fields
and ghost fields. The value of a model field is determined
by a typed expression, which is evaluated when accessing
it. Assignments are not possible. The type of the field has
to match the type of the expression. In contrast, the value
of a ghost field is determined by explicit assignments only.
For both field types the constraints for Basic Syntax Ele-
ments have to hold in addition. Hence, the corresponding
change reactions have to be applied. Changes that affect the
semantics have to be processed manually. Such changes can
be type changes to non-subtypes or implementation changes
that affect the assignments to ghost fields.

Model methods have the same syntax as Java methods and
can be used in the same way inside specifications. Therefore,
the same constraints have to hold. Model methods are treated
like Java methods in some change handlings, such as the ones
for pure, assignable, exception specifications, and nullable.

Model imports are equal to Java imports but only have
effects on specifications. Every identifier that is only used
in the specification has to be included into the compilation
using a model import statement so that the specification
can be compiled without syntax errors. After removing a
regular import statement, we have to add a model import
for the same identifier if a syntax error in the specification
occurred. After adding an import statement for an identifier
that has already been imported by a model import, we have
to remove the model import. Additionally, we have to compile
the specification after every change of the specification to
ensure that no additional import is required. If there is a
syntax error, we can either try to find the correct import or
ask the user to provide it.

5.1.3 Method and Type Specifications
Method or Type Specifications are statements and modifiers

that can be used to specify a method or a type. In our context,

detect changes
look for non-

pure statements

block change

[pure added]

[found]

Figure 8: Reaction on a pure change in the direction
specification to code.

the modifiers pure, helper, nullable, and non_null are relevant.
Relevant statements are default behaviors regarding null,
assignable, generic behavior specifications, and exception
specifications.

The pure modifier marks methods as free of side-effects.
Therefore, the modifier may only be added to methods that
neither contain assignments to fields nor calls to methods with
side-effects. Methods used in specifications have to be marked
pure because specifications have to be evaluated without side-
effects. Figure 8 shows the handling for S → C: If a user
adds the modifier to a method that has side-effects, we have
to block the change. C → S is shown in Figure 7: If a user
changes the body of a pure method so that is has side-effects,
we have to remove the modifier. Removing the modifier also
has effects on S → S. As can be seen from Figure 9, if a
method that lost its pure status is used in specifications, we
have to block the change. The same procedure has to be
performed for all methods that call this changed method,
because they also lose the pure status. The whole change
has to be blocked if at least one of the methods that loses
its pure status is used in specifications.

The helper modifier suppresses the invariant and constraint
check when entering and leaving the annotated method.
Otherwise, the evaluation of such specifications can lead
to infinite-loops depending on the implementation. Figure 9
shows a conservative handling of this possiblity: As a pre-
caution, we have to add the helper modifier to a method as
soon as it is mentioned in an invariant or a constraint. The
method cannot break these specifications anymore because
it has to be marked pure by the above change reactions. We
can remove helper if the corresponding method call has been
removed from the expression.

Fields, parameters, and methods can be annotated with
the nullable and non_null modifiers, to specify whether null

can be assigned or returned. The implementation has to
conform to the specified behavior, which can be checked with
verification techniques. For undecidable situations caused by
the halting problem, assistance from the user is necessary,
however. If the implementation does not conform to the
specification, we have to clarify the intention of the user.
If the user did not intend to make an element nullable or
non_null, we have to block the change. Otherwise, we must
add the modifier to the element and keep on checking where
the modifier has to be added until the user does not confirm
additions anymore or until no errors remain. We have to
apply the same reaction after changing the modifier in the
specification explicitly instead of changing it implicitly via
the code.

If neither nullable nor non_null is explicitly specified, the
implicit default is non_null. This default can be changed to
nullable with a statement. After such a change, there are two
options: If the user did not intend to change the semantics



of the specification, we have to add the modifier that is the
opposite of the new default to all elements without modifier.
If the user did intend to change the semantics, the code has
to be fixed manually. We can perform a verification of the
system and suggest changes, which can be used by the user
during manual fixing. In any case, we have to clarify the
user’s intention.

Exception specifications define throwable exceptions as
well as preconditions for throwing them and postconditions
that must hold afterwards. A method with an exception
specification has to throw only exceptions of the specified
types. Changes to the preconditions and postconditions of
throws specifications are covered by the change reactions for
Generic behavior specifications. After removing the last throw

statement for an exception, we have to remove the exception
type and its conditions from the specification. If an exception
specification is removed, we have to ensure that it cannot
be thrown anymore. Using static code analysis for this task
only works for checked exceptions or for projects in that the
source code of all transitively called methods is available. If
a method has an exception specification that is defined using
the signals_only keyword, then all unmentioned exception
types are forbidden. Therefore, we have to add the exception
type to such a specification if a throw statement is added. This
approach only works for lightweight specifications because we
cannot determine the preconditions for a single statement and
match it to a heavyweight specification case reliably. Instead
we suggest verifying the system and asking the user to fix the
issues manually. After changing the exception specifications
in JML, we also have to verify the system and block the
change if an error occurred.

We call specification statements that can take arbitrary ex-
pressions Generic behavior specifications. This group includes
preconditions, postconditions, and invariants. The syntacti-
cal aspects of changes to these elements are covered by the
change reactions of the Basic Syntax Elements. To recover
the semantics after a code change, we have to infer new con-
tracts for the changed implementation and merge it with
the existing ones. Suitable approaches for these two tasks
are subject of current and future research activities [20] but
to our knowledge no technique for specification merging is
ready to be used. After a contract change, we have to apply
approaches for automated fixing of programs, such as [24],
which repairs the code with respect to its specification. Many
of them, however, need too much time or cannot fix complex
situations. Because the necessary techniques are not available
yet, the user has to fix the issues manually after errors are
detected.

A method can only change the locations that are mentioned
in the assignable clause. Here, we only describe how to handle
changes to object field locations: After a change of the method
body, we have to calculate the difference between the specified
set of assignments and the real assignments and modify the
existing specification accordingly. Static code analysis can
determine the assignments by looking for assigned fields
and the assignable clause of called methods. After changing
the clause for a changed method, we have to perform the
same procedure recursively for all methods that call the
changed method. For heavyweight specification cases, we
suggest asking the user for the assignable clauses that shall
be modified. With this handling for method body changes, the
assignable fields are always derived from the implementation
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Figure 9: Reaction on a helper change in the direction
specification to specification.

of the method. Therefore, we have to block changes of the
assignable clause by the user.

5.2 Generalization of Concept
The previously introduced consistency concept is tailored

to JML and Java, because they are mature languages, and
are commonly used. Nevertheless, the concept is applicable
to other concrete representations of code and contracts. As
long as the programming language is object-oriented, most of
the code handling does not have to be changed. In contrast to
programming languages, contract specification languages are
more heterogeneous with respect to features and concepts.
Therefore, we focus on the generalization of our consistency
concept with respect to the contract handling. In general,
handlings become obsolete if elements do not exist or the
handling is already done by an IDE.

Basic syntax elements include identifiers, visibility and
types. The identifier handling remains the same as long as
identifiers are used to reference elements. If the specification
languages use the visibility modifiers of the programming
language, these visibilities have to be adjusted instead of
the not-existing specification visibilities. The type handlings
remain the same for strongly typed languages.

Method and type specifications can be generalized as well.
The concept of query methods is an integral part of con-
tract specification even if no special keyword for them exists.
Therefore, instead of relying on the modifier, we have to
perform static code analysis to detect the query property.
The nullable and non_null modifiers have to be mapped to
equivalent statements such as x != null. The default values
regarding null and helper cannot be mapped because they
are implementation specific.

Generic behavior specifications include preconditions, post-
conditions and invariants - amongst others. The correspond-
ing mappings can be applied as they are because other spec-
ification languages contain the same elements. The same
holds true for languages that support frame rules. Otherwise
these handlings can be ignored. The analysis of the exception
handling remains the same but if the programming handling
does not allow declaring exceptions, all exceptions have to
be treated as runtime exceptions.

Specification-only elements are implementation specific
and cannot be generalized.

5.3 Evaluation
The objective of our evaluation was to show that our devel-

oped concept can be realized to keep component specifications
and implementations consistent after changes. So far, we im-
plemented and evaluated all parts of our concept that have to
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do with identifiers, pure and helper methods. We performed
32 manual tests and 1085 automated tests using a real world
case study to check the semantic and syntactic correctness
of our implementation and the concept behind it.

We embedded our concept in the Vitruvius framework
using the layers of Figure 3. In the monitoring layer, the
change detection mechanism for Java (section 4) reports
code changes. Currently, JML changes are not detected au-
tomatically but injected. The synchronization layer contains
the model-specific parts of the synchronization logic. Model
transformations that realize our consistency concept are the
most important part of Synchronization, which provides the
initialization data for Vitruvius. To support all identifier
modifications, we implemented transformations for the cre-
ate, delete, and rename operations on fields, parameters and
methods. To support pure and helper, we implemented trans-
formations for adding and removing these modifiers and for
changing method bodies and invariants. Vitruvius Initializer
starts the framework. Together with Vitruvius Infrastructure,
e.g., for storing and retrieving model correspondences, it is
located in the synchronization layer. The model printers and
parsers for Java and JML and the PCM metamodel are lo-
cated in the foundations layer. We use the Java Model Printer
and Parser (JaMoPP) to obtain models from Java source
code and to serialize them again. For JML we developed a
model-based printer and parser using Xtext. Appendix A
contains a more detailed description of this model printer
and parser.

With our evaluation, we have answered the following re-
search question: Is our implemented consistency concept
capable of keeping specifications consistent after changes in
code or specifications for a specific case study? As evaluation
case study we used a verified implementation of the JavaCard
API [18], which can be used to program smart cards with
Java. The project is often used as a case study for research
on JML. Our implementation does not support all language
features of JML that are used in the JavaCard API project.
Therefore, we had to modify the original specification in
the following way: We removed all specifications that con-
tained assignable, signals, signals_only, interface constants,
bit operations, casts and nested \forall statements. These
modifications changed the semantics of the specifications. For
our evaluation this is, however, no problem because we only
examined differences between an initial code and specification
state with the state after the synchronization. Only these dif-
ferences and not the question whether the complete program
fulfills the specification is relevant for us. Additionally, we
replaced some syntactic sugar that we do not support in our
prototype without modifying the specifications semantics. A
more detailed description of these moficiations is given in
Appendix B.

Property Test Suite 1 Test Suite 2

Coverage path context
Type system system
Selection manual automatic
Syntax Check yes yes
Semantics Check yes no
Validation Data JavaCard API JavaCard API
# Tests 32 1085

Table 3: Overview of test suits used for evaluating
the synchronization between code and contracts.

We created two test suites to evaluate our prototype and
concept based on the case study. A short overview of them
is given in Table 3. Both suites are implemented as auto-
matic system tests, which makes the tests reproducible and
evaluates the whole process reaching from change detection
to change processing. Appendix B provides a more detailed
description of the test environment. The two test suites are
checked using two test oracles: The first oracle is a semantic
check that compares the delta obtained after change detec-
tion and transformation with a manually checked reference
delta. It is only used for the first test suite. The second oracle
is a syntactic check of the specification after transformation
using a JML compiler. It is used both for the first and the
second test suite. For the first test suite, we manually created
32 tests to improve path coverage. For the second test suite,
we used a selection algorithm to cover all possible contexts
for the implemented rename operations. This led to 1085
tests for all fields, methods, and parameters. We only checked
the syntax because manually creating and checking reference
deltas for all tests would have required too much effort.

All tests of the first test suite succeeded: The syntax and
semantics were correct after each transformation. We missed,
however, some paths in the transformations because not all
JML constructs that we support in our implementation are
used in the case study. For instance, we could not test name
clashes of Java methods with JML model methods because
there are no such methods in the case study. Testing the
remaining paths with another case study is part of our future
work.

In the second test suite, 95 % of the 1085 tests succeeded
with a correct syntax after the transformations. Additionally,
we ensured that the delta between the original and changed
state was not empty. 4.7 % of all tests in the second suite
failed because of limitations of our current implementation.
Contracts for interfaces, for example, are not yet implemented.
Only 0.3 % of all tests in the second suite failed because of im-
plementation errors. These errors, however, do not stem from
our concept or the transformations but revealed an error in
the static code analysis, which resolves references. Therefore,
we consider the transformations and the underlying concept
for rename operations correct in the tested contexts.

Altogether, the JavaCard API case study showed that the
implemented and tested parts of our consistency concept are
correct. We tested all paths of the implemented transforma-
tions that were reachable given the limitations of the case
study. For rename operations, we tested all possible contexts
within the case study. The representative case study covers
most contexts, but not all of them, and the tests did not reveal
errors of the concept for those contexts. Whether our concept



and implementation also works in the remaining possible
contexts has to be investigated in further case studies.

6. RELATED WORK
In the following, we present related work on the coevolution

of code and architectures or specifications.

6.1 Code Architecture Coevolution
De Silva and Balasubranamiam [5] classify approaches

for controlling architecture erosion in a survey. The cate-
gory Architecture to implementation linkage is closest to the
Vitruvius approach. Many linkage concepts merge archi-
tecture and implementation information into a single entity,
which contradicts our notion of separation of concerns. In
addition, information merging becomes more complex and
produces uncomfortably large artifacts when other models
besides architecture specifications are considered. ArchJava
[1] is an example of linkage through information merging. It
introduces new language constructs, such as component and
port to Java to include architectural information directly into
the source code. Our goal, however, is to maintain separate
artifacts and allow the use of existing editors and compilers.

There are also commercial solutions that support model
and code synchronization. IBM Rational Rhapsody4, for
example, supports round-trip engineering of code and UML
as well as other languages, e.g., SysML. Rhapsody’s round-
trip mechanism is based on code annotations that explicitly
associate code elements with model elements. Consequently,
it is possible to maintain unassociated elements, i.e., non-
code-related model elements and non-model-related code
elements. Enterprise Architect5 allows forward and reverse
engineering for initial code or model generation. Enterprise
Architect’s synchronization mechanism enables the user to
add new code elements which are then added to the model
and vice versa through partial generation in contrast to full
file generation. Modification of existing elements is, however,
not reflected on the respective other side. Borland Together6

and UML Lab6 support the round-trip engineering of UML
class diagrams and source code. Both of the approaches use
information in the source code to generate the class diagram.
Hence, information that is not included in the source code
cannot be displayed using these approaches.

Structure1017 is an architecture development environment.
It can be used to organize classes and packages into a hier-
archical compositional model. Refactorings on the composi-
tional model are transferred to the code base. Lattix8 uses
DSM (Design Structure Matrix) to manage software architec-
ture. It calculates and displays dependencies within a software
system and can be used to automatically calculate subsys-
tems based on the dependencies. However, neither Struc-
ture101 nor Lattix, support a fully integrated co-evolution
of component-based architecture and source code.

6.2 Code Specification Coevolution
Feldman [6] gives a high-level overview of code changes

and their effects on contracts. 68 Fowler refactorings [8] are
inspected and grouped into three categories: Refactorings

4ibm.com/software/products/ratirhapfami
5sparxsystems.com
6borland.com/products/together and uml-lab.com
7structure101.com
8http://lattix.com

that a) have only syntactic effects on contracts, b) require ad-
ditional contracts, and c) may violate existing contracts. The
specification effects of code refactorings are described and
three specification refactorings are introduced. It is explained
why some refactorings, such as Extract Method, cannot be pro-
cessed automatically using theorem provers. Unfortunately,
the full analysis and the change handling code are not made
public.

Crepe is a tool based on these findings [9], which uses the
Eclipse refactoring engine for Java to adjust contracts. It
parses contracts defined in JavaDoc comments as Java code
to respond to syntactical refactorings, such as renamings.
JML contracts cannot be processed because they are defined
in regular comments. Crepe simplifies existing contracts,
e.g., for superclasses, using Mathematica and creates new
contracts with Discern [7], for example, when a new method
is added. There is, however, no implementation available.

Feldman et al. [7] presented an approach for inferring
preconditions and postconditions by propagating weakest
preconditions in an iterative semi-automated process. The
goal is that developers are relieved from defining simple con-
tracts that can be inferred. They only provide additional
invariants or complex restrictions. Unfortunately the pro-
totype does not cover postconditions and is not publicly
available. It uses the source code and predefined specifica-
tions of the Java standard library. Postconditions are not
covered by the prototype yet, however. The tool aims for
inferring simple contracts to prevent the the developers from
writing them. They can concentrate on contracts that are
more complex instead. The approach uses the propagation of
weakest preconditions to determine the contracts. Weakest
means that the least restrictive contract is inferred, which
still guarantees that the method returns without errors. For
example, an unchecked access to an object reference leads
to the specification that this reference must not be null.
When a method is called, the specification for it is used to
determine the weakest precondition. The whole process is
iterative: After inferring contracts, the developer can provide
new invariants and restart the whole process, for instance.
This leads to specifications that are more restrictive. The
tool has been evaluated by inferring the specifications for the
Java classes Vector and StringBuffer. Unfortunately, there is
no implementation available.

A proof-preserving approach for the Extract Method refac-
toring was presented by Cousot et al. [4]. It can be used if
the old and the extracted method have to be verified.

The specification refactorings Pull Up Specification and
Push Down Specification were implemented by Hull [11].
The goal is to move specifications before code refactorings
to simplify those. A trial-and-error heuristic is used and
adjustments for callers of changed methods are still an open
issue. The implementation is available as open source.

7. CONCLUSIONS AND FUTURE WORK
In this technical report, we have presented details on a

solution for the problem that redundant information in code,
contracts, and models can become inconsistent during the
development of component-based systems. We have explained
how we monitor changes in the Java source code editor of
the Eclipse workbench to trigger incremental model transfor-
mations on architectural models, which are based on these
changes. We have evaluated the approach in a case study and
have shown that this is an efficient way to keep component

http://ibm.com/software/products/ratirhapfami
http://sparxsystems.com
http://borland.com/products/together
http://uml-lab.com
http://structure101.com


models consistent in the case of source code changes. For
contracts, we have discussed what is necessary and possible
to maintain them if the source code or contract is modified.
We have presented a prototypical implementation, which we
applied successfully to the realistic JavaCard API case study.
Altogether, we have demonstrated that semi-automated con-
sistency can be achieved for redundant information in the
implementation, contracts, and architecture of component-
based software systems. In the future, we will finish our work
on transformations that keep the component implementa-
tion consistent after model changes. We will implement and
test the remaining contract change scenarios with additional
case studies. Finally, we will improve the performance of
our research prototype by employing incremental parsing
techniques.
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Expression \old

\fresh

\result

\forall

Table 4: Summary of JML language features sup-
ported by the newly created model printer and
parser.
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APPENDIX
A. JML MODEL PRINTER AND PARSER

To our knowledge, no model printer and parser for JML
exists except for an Xtext-based implementation mentioned
in a synchronization approach for OCL and JML [23]. Unfor-
tunately, the implementation is not available. Therefore, we
constructed a simple model printer and parser for a subset
of JML.

The objective of the model printer and parser is a fast
and simple conversion from model to JML and vice versa
to be used in our evaluation. Therefore, we did not aim for
soundness, error-checking or extensive supporting techniques.
Instead, we assume that the given JML contracts are syntac-
tically correct.

We implemented the JML model printer and parser us-
ing the Xtext framework. The grammar is based on a user
defined Java 5 grammar9. We replaced the defined expres-
sions with Xbase10 expressions and added Java-style variable
declarations. Xbase is a partial programming language for
Java-like expressions that can be used in Xtext grammars.
Using Xbase allows the user to define illegal syntax with

9www.eclipse.org/forums/index.php/t/251746/
10https://www.eclipse.org/Xtext/documentation/305_xbase.
html#xbase-language-ref-introduction

respect to Java and JML. This is, however, fine with our
assumption of correct JML contracts. We extended the Xbase
expressions and the Java grammar with the JML language
elements show in Table 4. The model printer and parser is
seamlessly integrated in Eclipse and EMF.

B. TEST ENVIRONMENT FOR JML
We use system tests to evaluate the consistency concept

for code and contracts. These tests check the whole process-
ing reaching from change dection to the serialization of the
synchronized artifacts. The tests use an adjusted version of
the JavaCard API project. We had to modify the project
to circumvent limitations of our prototype and test envi-
ronment. The adjustments are separated into syntactic and
semantic changes. The former do not change the meaning
of the contracts or the code while the latter do. Because we
focus on the change from one artifact state to another, this
is no limitation for our tests. An overview of the syntactic
changes is given in Table 5. Table 6 illustrates the semantical
changes.

A evaluation test consists of five steps: First, the frame-
work is initialized with a fresh copy of the JavaCard API
project. Second, the test looks for artifact elements that can
be changed in the test. Third, an editor manipulator opens
the editor and performs the change. Thereby, the code moni-
tor detects a change and propagates it to the synchronization
engine. Changes in JML are injected in the synchronization
engine directly. In the fourth step, the test waits for the
synchronization to finish and performs a syntax check by
compiling the whole project with an OpenJML compiler. In
the last step, the test calculates the differences between the
synchronized and the original project and verifies them with
reference differences.

We separate our tests into two categories based on the test
coverage: Path and context. The former group tries to cover
as much paths as possible. We omit the second step for these
tests, because we select the changed elements manually to
cover a certain path. The context tests try to test one single
path with as much contexts as possible. We omit the last
step for these tests, because creating reference differences for
all of them requires too much effort.

C. OPENJML PITFALLS
We used OpenJML in our code and contract synchroniza-

tion evaluation for checking the syntax of the results. We
encountered the following problems and pitfalls:

• When compiling via command line, we were unable to
change the specification visibility by adding modifiers
to the code element in the JML file. We could change
the visibility only by adding the modifier to the code
element in the Java file. When compiling via a library
call, adding the modifier to JML worked.

• We were unable to declare static final fields in the
JML file, because the compiler requested an initializer.
Unfortunately, initializers are not allowed in JML files
[17, chap. 17.3]. Therefore, we had to remove the fields
completely from the JML files.

www.eclipse.org/forums/index.php/t/251746/
https://www.eclipse.org/Xtext/documentation/305_xbase.html#xbase-language-ref-introduction
https://www.eclipse.org/Xtext/documentation/305_xbase.html#xbase-language-ref-introduction


Change Reason #

converted a =⇒ b to ¬a ∨ b restriction of prototype 46
moved specifications from Java to JML restriction of prototype 43
converted some //@ to /**/ restriction of prototype 23
removed comment specifications restriction of prototype 5
added missing fields assumption of prototype 23
added missing constructors assumption of prototype 14
added missing import statements assumption of prototype 13
added missing methods assumption of prototype 1
adjusted specification visibility in Java bug in OpenJML, Appendix C 28
adjusted specification visibility in JML required [17, chap. 2.4] 24
added missing throws declarations required [17, chap. 17.3] 21
removed implementations from JML not allowed [17, chap. 17.3] 13
converted ghost to regular field simplified handling in prototype 13

sum of all syntactic changes 267

Table 5: Overview of syntactic changes applied to the JavaCard API project to make it usable with our
prototype. The project contained ca. 1410 specification items in total.

Change Reason #

removed assignable restriction of prototype 344
removed static final fields from JML bug in OpenJML, Appendix C 39
removed signals and signals_only restriction of prototype 30
removed specifications from Java assumption of prototype 16
removed bit operations from JML restriction of prototype 8
removed casts from JML restriction of prototype 2
removed \forall in nested expressions restriction of prototype 1

sum of all removed specification items 440

Table 6: Overview of semantic changes applied to the JavaCard API project to make it usable with our
prototype. The project contained ca. 1410 specification items in total.
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