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Abstract 

Shape and structure of a material strongly influences some of its physical and chemical 

properties and also plays an important role in catalysis. Hence, strong research effort has 

recently been spent on the preparation of advanced materials with controlled size, shape 

and composition. Molybdenum oxide based materials find a large variety of applications in 

catalysis. Hydrothermal synthesis is a typical soft chemistry method giving access to 

advanced metal oxides with high crystallinity, controlled morphology and good 

reproducibility. Flame spray pyrolysis is a one-step method leading to homogeneous 

nanoparticles which are non-porous, have a defined crystallinity and typically a high 

surface area. 

In the present work hydrothermal synthesis was applied to prepare MoO3 and mixed 

molybdenum oxides for the application in catalysis. The influence of the synthesis 

parameters on the product properties and their catalytic activity was studied in detail. 

Additionally, flame spray pyrolysis was applied for comparison. The synthesized materials 

were used for selective oxidation of propylene, hydrodesulfurization and related 

hydrotreating reactions as target reactions. 

Orthorhombic molybdenum trioxide (α-MoO3) with various morphologies has been 

successfully synthesized under hydrothermal conditions using MoO3 ∙ 2H2O and 

ammonium heptamolybdate as molybdenum precursors, varying the pH value and adding 

different acids (nitric or acetic acid) to the initial solution. The ammonium containing 

molybdenumoxide-phase resulting from ammonium heptamolybdate and nitric acid at pH 

= 1 – 2 was completely transformed into α-MoO3 after calcination at 550 °C. Direct 

hydrothermal synthesis of α-MoO3-rods from MoO3 ∙ 2H2O was achieved in the presence 

of acetic or nitric acid and from ammonium heptamolybdate with nitric acid at low pH 

values at 180 °C. After calcination all samples consisted of α-MoO3. By applying nitric 

acid during synthesis, the rod-like morphology of the samples could be stabilized during 

calcination and catalytic activity tests, which was beneficial for the catalytic performance 

in propylene oxidation. Those samples, which retained their rod-like morphology during 

the activity tests, yielded the highest propylene conversion, probably due to the large 

exposure of the (100) facets. 
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Although MoO3 is an easy model system, correlation of the particle morphology and the 

catalytic activity and selectivity in propylene oxidation already requires a detailed 

characterization of the materials before and after the catalytic test reaction. Extension of 

the preparation method to mixed transition metal molybdates resulted in a large variety of 

phases and thus direct correlation between the morphology and the catalytic activity was 

not possible. Hydrothermal synthesis and flame spray pyrolysis have been used to prepare 

bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. 

Application of a high Bi/Mo ratio during hydrothermal synthesis afforded γ-Bi2MoO6 as 

the main phase, whereas lower initial bismuth contents led to the formation of α-

Bi2Mo3O12. The product phase was strongly influenced by the pH value of the initial 

solution using Bi/Mo = 1:1 but formation of β-Bi2Mo2O9 could not be detected. At low pH 

values α-Bi2Mo3O12 was the dominant phase, whereas at high pH values γ-Bi2MoO6 was 

formed. All samples displayed a plate-like morphology but their individual aspect ratios 

varied with the reaction conditions. Generally, the catalytic performance in propylene 

oxidation of the samples decreased notably after calcination at 550 °C. The use of nitric 

acid during hydrothermal synthesis enhanced both propylene conversion and acrolein 

yield, possibly due to a change in morphology. Flame spray pyrolysis led to phase pure 

bismuth molybdates with a relatively high surface area, which, however, did not exert a 

positive influence on the catalytic performance of these samples. In contrast to 

hydrothermal synthesis, which led to a phase mixture of α- and γ-bismuth molybdate, 

flame spray pyrolysis provided a single step access to β-Bi2Mo2O9 without thermal post-

treatment. This sample showed high catalytic activity in the oxidation of propylene to 

acrolein at temperatures up to 400 °C. However, deactivation at higher temperatures started 

due to the decomposition into α-Bi2Mo3O12 and γ-Bi2MoO6. The sample synthesized with 

Bi/Mo = 1:1 at pH = 6 under hydrothermal conditions consisted of γ-Bi2MoO6 with a 

relatively high specific surface area and a Bi/Mo ratio of two in the bulk and on the surface 

exhibited the highest propylene conversion (up to 55%) with acrolein selectivities of 80 – 

90% (360 – 400 °C). 

Cobalt molybdates were prepared by hydrothermal synthesis and flame spray pyrolysis as 

oxide precursors for Co-Mo-S by sulfidation and subsequent application in hydrotreating. 

Hydrothermal synthesis from two different molybdenum precursors (ammonium 

heptamolybdate and sodium molybdate) at various pH values and with different Co/Mo 

ratios gave access to a large variety of phases. The pH value of the initial solution had a 
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stronger influence on the product composition than the Co/Mo ratio due to the dependence 

of the solubility of the precursors on the pH value of the solution and the stability of the 

different polymolybdate species in the aqueous solution. Under acidic conditions 

molybdenum rich phases of high crystallinity were obtained and part of the cobalt 

remained in solution. At high pH values the products contained relatively high Co 

concentration in combination with relatively large surface areas. Flame spray pyrolysis 

resulted in the formation of β-CoMoO4 and MoO3 if an excess of molybdenum was 

applied. Characterization of the spent samples, i.e. after sulfidation and subsequent 

application in hydrotreating, by powder X-ray diffraction showed only the presence of 

Co9S8 and no evidence of crystalline MoS2. The hydrothermally synthesized samples at 

high pH value containing relatively high amounts of cobalt along with a relatively large 

surface area exhibited high catalytic activity for hydrodesulfurization, 

hydrodenitrogenation and hydrogenation as well as a high ratio for the pre-hydrogenation 

pathway compared to a commercial reference catalyst. The activity for 

hydrodesulfurization of the most active hydrothermally synthesized catalyst resembled the 

activity of the commercial catalyst whereas the activity for hydrodenitrogenation was 

higher in relation to the reference catalyst. The active samples showed curved MoS2 slabs 

in the transmission electron microscopy images. Variation of the Co/Mo ratio for the flame 

made materials suggested that the optimum activity was achieved with Co/Mo = 1:2. 

In conclusion hydrothermal synthesis is an attractive preparation method for model catalyst 

systems, which gives access to crystalline phases without the application of high 

temperatures (T > 200 °C) and enables the preparation of a large variety of phases with a 

defined morphology. Flame spray pyrolysis resulted in unsupported oxide materials 

exhibiting large surface areas and allows the formation of phases which are stable at high 

temperature and metastable at room temperature (e.g. β-Bi2Mo2O9). The combination of 

hydrothermal synthesis, flame spray pyrolysis and conventional preparation methods is 

well-suited to study structure-activity-relationships. This can be further exploited by in situ 

spectroscopy (e.g. Raman or X-ray absorption spectroscopy) applied during the catalytic 

activity measurements or during catalyst synthesis. 



 Kurzfassung 

Hydrothermal synthesis of Mo based catalysts                                                                 VII  

Kurzfassung 

Die physikalischen, chemischen und katalytischen Eigenschaften von Materialien werden 

sowohl durch ihre Form als auch ihre Struktur beeinflusst. Aus diesem Grund wurden in 

den letzten Jahren im Bereich der gezielten Präparation neuer Materialien mit definierter 

Partikelgröße, Morphologie und Zusammensetzung viele neue Forschungsansätze 

entwickelt. Materialien auf der Basis von Molybdänoxid werden in einer Vielzahl 

katalytischer Prozesse angewendet. Hydrothermale Synthese ist eine typische Methode der 

„sanften Chemie“ („chimie douce“), die zu Materialien mit hoher Kristallinität, definierter 

Morphologie sowie guter Reproduzierbarkeit führt. Mit Hilfe von Flammensprühpyrolyse 

lassen sich weiterhin in nur einem Arbeitsschritt nanokristalline homogene Partikel und 

typischerweise hohe Oberflächen herstellen. 

In der vorliegenden Arbeit wurden MoO3 und gemischte Molybdänoxide mit Hilfe von 

hydrothermaler Synthese dargestellt, die erhaltenen Materialien wurden als Katalysatoren 

eingesetzt. Der Einfluss der Parameter während der Synthese auf die Eigenschaften der 

Oxide und ihre katalytische Aktivität wurden im Detail untersucht. Zum Vergleich wurden 

entsprechende Katalysatoren mit Flammensprühpyrolyse hergestellt. Die synthetisierten 

Proben wurden in der selektiven Oxidation von Propen zu Acrolein, in der Entschwefelung 

sowie vergleichbaren „Hydrotreating“ Reaktionen getestet. 

Mit Hilfe hydrothermaler Synthese war es möglich, orthorhombisches Molybdäntrioxid (α-

MoO3) mit variierender Morphologie herzustellen. Dabei wurden MoO3 ∙ 2H2O und 

Ammoniumheptamolybdat als Molybdänpräkusoren eingesetzt und der pH-Wert variiert. 

Weiterhin wurden verschiedene Säuren (Salpetersäure oder Essigsäure) zur Anfangslösung 

hinzu gegeben. Die ammoniumhaltige Molybdänoxidphase, die sich aus 

Ammoniumheptamolybdat und Salpetersäure bei pH = 1 – 2 bildete, konnte durch 

Kalzinierung bei 550 °C vollständig zu α-MoO3 umgewandelt werden. Stäbchenförmige α-

MoO3-Partikel wurden durch hydrothermale Synthese bei 180 °C aus MoO3 ∙ 2H2O in der 

Gegenwart von Essig- oder Salpetersäure oder aus Ammoniumheptamolybdat mit 

Salpetersäure bei niedrigem pH-Wert hergestellt. Nach der Kalzinierung bestanden alle 

Proben ausschließlich aus α-MoO3. Die Anwendung von Salpetersäure in der 

hydrothermalen Synthese stabilisierte die stäbchenförmige Morphologie der Proben 

während der Kalzinierung und der katalytischen Messungen. Dies steigerte die katalytische 
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Aktivität in der Propenoxidation. Daraus folgt, dass höhere Propenumsätze erzielt werden 

können, wenn die stäbchenförmige Morphologie der Partikel während der Aktivitätstests 

beibehalten wird. Ein relativ hoher Anteil der (100) Flächen der nadelförmigen Partikel 

führt voraussichtlich zu höheren Propenumsätzen.  

Wenngleich es sich bei MoO3 um ein einfaches Modellsystem handelt, erforderte die 

Korrelation der Partikelmorphologie und der katalytischen Aktivität sowie Selektivität in 

der Propenoxidation bereits eine detaillierte Charakterisierung der Materialien - sowohl vor 

als auch nach den Aktivitätsmessungen. Die Erweiterung der Strategie auf gemischte 

Übergangsmetallmolybdate resultierte in einer Vielzahl von Phasen und erschwerte die 

direkte Korrelation der Morphologie und der katalytischen Aktivität. Verschiedene 

Bismutmolybdate wurden mit Hilfe von hydrothermaler Synthese und 

Flammensprühpyrolyse synthetisiert und in der katalytischen Oxidation von Propen zu 

Acrolein eingesetzt. Die Anwendung hoher Bi/Mo-Verhältnisse während der 

hydrothermalen Synthese führte hauptsächlich zu γ-Bi2MoO6, während bei niedrigeren 

Bi/Mo-Verhältnissen bevorzugt α-Bi2Mo3O12 entstand. Der pH-Wert der Anfangslösung 

hatte einen großen Einfluss auf die Phase des Produkts, das mit einer Ausgangsverhältnis 

von Bi/Mo = 1:1 synthetisiert wurde. Die Bildung von β-Bi2Mo2O9 wurde nicht 

beobachtet. Bei niedrigem pH-Wert dominierte α-Bi2Mo3O12, während hohe pH-Werte zur 

Ausprägung von γ-Bi2MoO6 führten. Alle hydrothermal synthetisierten Proben wiesen eine 

plättchenartige Morphologie auf, jedoch mit unterschiedlichen Längenverhältnissen, die 

von den Reaktionsbedingungen abhingen. Nach Kalzinierung der Proben bei 550 °C nahm 

die katalytische Aktivität im Allgemeinen ab. Die Anwendung von Salpetersäure während 

der hydrothermalen Synthese führte zu einer Verbesserung des Propenumsatzes und der 

Acroleinausbeute, was vermutlich auf die geänderte Morphologie zurück zu führen ist. 

Während der Flammensprühpyrolyse entstanden phasenreine Bismutmolybdate mit relativ 

hoher Oberfläche. Die erhöhte Oberfläche alleine hatte jedoch keinen positiven Einfluss 

auf die katalytischen Eigenschaften der Proben. Im Gegensatz zur hydrothermalen 

Synthese, die zu einer Mischung aus α- und γ-Bismutmolybdat führte, ermöglichte die 

Flammensprühpyrolyse bei einem Bi/Mo-Verhältnis von 1:1 den direkten Zugang zu β-

Bi2Mo2O9 ohne thermische Nachbehandlung. Diese Probe zeigte eine hohe katalytische 

Aktivität bis 400 °C. Bei höheren Temperaturen trat eine Deaktivierung aufgrund der 

Zersetzung zu α-Bi2Mo3O12 und γ-Bi2MoO6 auf. Den höchsten Propenumsatz mit bis zu 

55% bei Acroleinselektivitäten von 80-90% (360 – 400 °C) erzielte die Probe, die mit 
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einem Bi/Mo-Verhältnis von 1:1 bei pH = 6 unter hydrothermalen Bedingungen hergestellt 

wurde. Diese Probe enthielt ausschließlich γ-Bi2MoO6 und hatte eine vergleichsweise hohe 

Oberfläche. 

Kobaltmolybdate wurden ebenfalls mit Hilfe von hydrothermaler Synthese und 

Flammensprühpyrolyse präpariert. Die resultierenden Kobaltmolybdänoxide wurden 

sulfidiert und anschließend in der Entschwefelung sowie weiteren „Hydrotreating“-

Reaktionen getestet. Ausgehend von zwei verschiedenen Molybdänverbindungen 

(Ammoniumheptamolybdat und Natriummolybdat) bei unterschiedlichem pH-Wert und 

verschiedenen Co/Mo-Verhältnissen konnte eine Vielzahl von Phasen durch hydrothermale 

Synthese hergestellt werden. Der pH-Wert der Anfangslösung beeinflusste die 

Produktzusammensetzung stärker als das angewandte Co/Mo-Verhältnis, da die 

Löslichkeit der Vorläuferverbindungen in wässriger Lösung stark vom pH-Wert abhängt. 

Saure Bedingungen führten zu kristallinen molybdänreichen Phasen und ein Teil des 

Kobalts verblieb in der Lösung. Bei hohen pH-Werten hingegen wiesen die Produkte hohe 

Kobaltkonzentrationen in Kombination mit hohen Oberflächen auf. 

Flammensprühpyrolyse resultierte in β-CoMoO4 und MoO3 im Falle von hohen Mo-

Anteilen. Die Charakterisierung der verwendeten Katalysatoren mit Hilfe von Pulver-

Röntgendiffraktometrie deutete nur auf die Gegenwart von Co9S8 hin, jedoch nicht auf 

kristallines MoS2. Die Proben, die bei hohen pH Werten durch hydrothermale Synthese 

hergestellt wurden und einen hohen Kobaltanteil sowie hohe Oberflächen aufwiesen, 

zeigten die beste katalytische Aktivität in der Hydrodesulfurierung, Hydrodenitrogenierung 

und Hydrierung. Außerdem wurde im Vergleich zum kommerziellen Referenzkatalysator 

ein relativ hoher Anteil an Dibenzothiophen durch indirekte Entschwefelung über 

vorhergehende Hydrierung umgesetzt und nicht durch direkte Entschwefelung. Die 

Leistung des aktivsten Katalysators in Bezug auf Hydrodesulfurierung ähnelte dem 

kommerziellen Referenzkatalysator, während für die Hydrodenitrogenierung eine höhere 

Aktivität im Vergleich zum Referenzkatalysator erzielt wurde. Die aktiven Katalysatoren 

zeigen eine gekrümmte MoS2-Schichtstruktur im Elektronentransmissionsmikroskop. 

Maximale Aktivität wurde im Falle der Flammensprühpyrolyse für den Katalysator, der 

mit einem Co/Mo-Verhältnis von 1:2 synthetisiert wurde, erreicht.  

Im Rahmen der vorliegenden Arbeit konnte gezeigt werden, dass die hydrothermale 

Synthese eine attraktive Methode für die Präparation von Modellkatalysatorsystemen ist. 
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Sie ermöglicht die Herstellung kristalliner Phasen ohne Nachbehandlung bei hohen 

Temperaturen (T > 200 °C). Mit Hilfe der hydrothermalen Synthese kann eine Vielzahl 

von Phasen mit definierter Morphologie dargestellt werden.  Flammensprühpyrolyse führt 

zu ungeträgerten, oxidischen Materialien mit hoher Oberfläche. Sie ermöglicht die 

Synthese von Phasen, die bei hohen Temperaturen stabil sind, bei Raumtemperatur jedoch 

metastabil. Die Kombination von hydrothermaler Synthese,  Flammensprühpyrolyse und 

konventionellen Präparationsmethoden hat ein hohes Potential, um Struktur-Aktivitäts-

Korrelationen zu untersuchen. In situ Messungen z. B. mit Hilfe von Raman oder 

Röntgenabsorptionsspektroskopie sowohl während der katalytischen Messungen als auch 

während der Synthese können einen tieferen Aufschluss über die aktiven Phasen unter 

Reaktionsbedingungen und die Entstehung der aktiven Zentren geben. 
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1 Introduction 

Molybdenum oxides find a large variety of applications in catalysis. Transition metal 

molybdates are important components of industrial catalysts for selective oxidation of 

hydrocarbons and oxidative dehydrogenation. In their sulfided form they are also applied 

in hydrotreating. The most common method to prepare supported transition metal 

molybdates is impregnation and for unsupported materials solid state reactions at 

temperatures up to 1000 °C, co-precipitation or sol-gel synthesis. In the first part of this 

chapter (1.1) two alternative methods for the preparation of molybdates are introduced, 

namely hydrothermal synthesis and flame spray synthesis, and an overview of different 

aspects and preparation routes from the literature is given. Selective oxidation of propylene 

and hydrotreating reactions are well suited test reactions, their state of the art and current 

trends are described in 1.2. 

1.1. Catalyst synthesis 

Over the past decades, material science research focused amongst others on the controlled 

synthesis of nano- and bulk materials with specific structure and properties paving the way 

for rational design of solid materials. Two methods which have been applied in a large 

variety of applications are hydrothermal synthesis, a typical soft chemical method („chimie 

douce‟), and flame spray pyrolysis, using rather harsh conditions but only for a short time. 
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1.1.1. Hydrothermal synthesis 

Yoshimura and Byrappa 
[1]

 described hydrothermal synthesis as a homogeneous or 

heterogeneous reaction in the presence of an aqueous solvent at temperatures higher than 

room temperature and pressure higher than 1 bar in a closed system. The aqueous 

precursor solutions or suspensions are heated in a sealed vessel to temperatures often 

above 100 °C, so that the solvent (water) evaporates and autogeneous pressure arises in the 

vessel. Under these conditions water can dissolve materials that would be insoluble under 

ordinary conditions and enables crystallization of the product phase. Addition of 

mineralizing agents and templating molecules changes the reaction path and therefore 

hydrothermal synthesis offers a wide flexibility of product phases with different structures 

and morphologies. 
[2-3]

 Gopalakrishnan 
[4]

 defined hydrothermal synthesis as a 

nontopotactic / nontopochemical method i.e. according to him there is no explicit and 

reproducible crystallographic relationship between the precursor and the product phases. 

In 1845 the first hydrothermal synthesis was conducted by E.T. Schafthual who prepared 

fine quartz in a papin´s digester. Since then mainly silicates, clays, hydroxides and oxides 

were prepared. Commercial application began in 1908, when bauxite mineral was leached 

under hydrothermal conditions to obtain aluminum. 
[3]

 Hydrothermal synthesis is used in 

material science to grow single crystals 
[5]

 or for the preparation of open frameworks e.g. 

zeolites 
[2]

. Zeolites are synthesized from alumosilicate gels under hydrothermal conditions 

at temperatures of 100 – 200 °C at appropriate pH and in the presence of certain organic 

additives. 
[4]

 Application of templating agents gives access to a range of pore sizes. 
[2]

 

Nowadays mild hydrothermal synthesis is also used to prepare new metastable transition 

metal oxide structures which cannot be synthesized by conventional methods. Cations in 

solution, which act as templating ions, and the pH of the solution were found to have 

dramatic effects on the product phases and structures. 
[6]

 Hydrothermal synthesis enables 

the preparation of advanced metal oxides of high purity with controlled morphology and 

good reproducibility. The particle size distribution of the products is relatively narrow and 

crystallinity is high. The drawback of this preparation method is that the crystallization and 

growth mechanisms of the crystals are complex and not well understood yet. 
[3]

 Therefore 

several studies have been performed to gain further knowledge and understanding of the 

nucleation, crystallization and growth of the particles under hydrothermal conditions e.g. 

by using in situ cells and observation of the hydrothermal process under reaction condition 
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by energy dispersive X-ray diffraction (EDXRD) and extended X-ray absorption 

spectroscopy (EXAFS). 
[2, 7-8]

 Information on the influence of various process parameters 

on the product phase and the formation of the products and intermediates is essential for 

predictive preparation and rational design of hydrothermally synthesized materials with 

specific properties. In 1995 Gopalakrishnan 
[4]

 reported that rational design of microporous 

solids by hydrothermal synthesis is becoming possible, however for transition metal oxides 

it still remains challenging. Future trends with reference to hydrothermal synthesis are 

alternative soft hydrothermal technologies e.g. microwave assisted hydrothermal synthesis, 

which leads to a reduction in reaction time and cost, combined sol-gel synthesis / 

hydrothermal synthesis and hydrothermal synthesis for nanotechnology. 
[3]

 

In literature a large variety of transition metal oxides were prepared by hydrothermal 

synthesis and also (mixed) molybdenum oxides are accessible by this preparation route. 

The easiest molybdenum oxide is MoO3, which has several polymorphs: the 

thermodynamically stable orthorhombic α-MoO3 (space group Pbmn), metastable 

monoclinic β-MoO3 (P21/c), the metastable high-pressure phase ε-MoO3 (P21/m) and 

hexagonal metastable h-MoO3 (P63/m). 
[9]

 Various preparation routes are known for the 

hydrothermal synthesis of α-MoO3 
[7, 10-17]

 and h-MoO3 
[13, 18-20]

 from different precursors 

and under different reaction conditions. In the present work the focus is on the preparation 

of orthorhombic α-MoO3. In the α-type highly asymmetrical MoO6 octahedra are 

interconnected with their edges along [001] and interlinked with their corners along [100] 

to form a double-layer planar structure. 
[10]

 Lou and Zeng 
[10]

 described the synthesis of 

MoO3 from ammonium heptamolybdate (AHM; (NH4)6Mo7O24 ∙ 4 H2O) and nitric acid. 

Isopolymolybdate anions (Mo7O24
6-

) can react to Mo7O21 (or α-MoO3) in the presence of 

protons (see following equation) and the equilibrium can be shifted to α-MoO3 by high 

concentrations of Mo7O24
6-

 or H
+
. 

Mo7O24
6-

 + 6 H
+
  Mo7O21 + 3 H2O (1.1) 

The products containing a mixture of MoO3 and ammonium molybdates showed a 

hexagonal prismatic morphology. These ammonium molybdates were completely 

converted to α-MoO3 at 420 °C under nitrogen, but the effect of the heating procedure on 

the product properties was not analyzed. An aged ammonium heptamolybdate solution 

gave access to pure α-MoO3 with rod morphology and a width of about 200 nm after 40 h 
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at 180 °C under hydrothermal conditions. According to the authors, the product 

distribution was strongly dependent on acid concentration (pH value) and reaction time. 

The α-MoO3 rods were transformed to 2H-MoS2 in an H2S/H2 flow at 600 °C and the rod-

morphology could be preserved. 
[10]

 In a similar approach the influence of the addition of 

the surfactant cetyltrimethylammonium bromide (CTAB) to ammonium heptamolybdate 

and nitric acid during hydrothermal synthesis was studied, resulting in α-MoO3 with 

spherical or flower like hierarchical structures. 
[17]

 Formation of α-MoO3 instead of h-

MoO3 depends on the temperature: at 90 °C h-MoO3 was obtained from hydrothermal 

synthesis with ammonium heptamolybdate and nitric acid, whereas at 150 °C a mixture of 

orthorhombic and hexagonal MoO3 was formed. Synthesis at 210 °C led to α-MoO3. 
[13]

 

Xia et al. 
[21]

 added different inorganic salts such as KNO3, NaNO3, La(NO3)3 to control 

the morphology of α-MoO3 and investigated the growth mechanism under the applied 

conditions from ammonium heptamolybdate at pH = 1 - 3. They suggest the formation of 

MoO3 ∙ 2H2O, which is then subsequently dehydrated to α-MoO3: 

Mo7O24
6-

 + 6 H
+
 + 11 H2O  7 MoO3 ∙ 2H2O (1.2) 

MoO3 ∙ 2H2O  α-MoO3 ∙ H2O + H2O (1.3) 

α-MoO3 ∙ H2O  α-MoO3 + H2O (1.4) 

Figure 1.1 depicts the structural change of MoO3 ∙ 2H2O (monoclinic symmetry) during 

hydrothermal transformation to α-MoO3 which exhibits two different sorts of chains along 

the a and the c axis and grows preferentially into rods under hydrothermal conditions. 
[21]

 

This agrees well with the process described by Dewangan et al. 
[14]

, who used a nitrosyl-

complex of molybdenum synthesized from molybdic acid, NaOH and NH2OH ∙ Cl as the 

Mo precursor and tested the resulting α-MoO3 for their electrochemical properties. They 

suggest that the product phase strongly depends on the pH value due to the different stable 

molybdenum species in solution, which are summarized as: 

[MoO4]
2-

  [Mo7O24]
6-

      [Mo8O26]
4-

          MoO3 ∙ 2H2O 

Patzke et al. 
[11]

 described the one-step synthesis of MoO3 fibers from bright yellow MoO3 

∙ 2 H2O by dehydration in stainless steel autoclaves with Teflon liners and found that rod 

formation takes place either in water (neutral media) or under acidic conditions. The 

influence of various acids on the rod-morphology was investigated: weak organic acids 

pH 6 pH 1.5-2.9 pH < 1 
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like acetic acid led to diameters in the nanometer range, whereas in strong inorganic acids 

e.g. HNO3, HCl, H2SO4 rods with dimensions in the micrometer range were formed. The 

thickness of the MoO3-rods can be further controlled by temperature variation. The 

nanorods had an average diameter of 100 – 150 nm. Investigation of the effect of alkali / 

alkaline earth halides as additives on the morphology and particle size showed, that LiBr, 

LiCl, CaCl2 and MgCl2 just changed the aspect ratio in the rod-shaped products, whereas 

MX (with M = Na – Cs, X = Cl, Br) participated actively in the reaction with MoO3 ∙ 2H2O 

and led to the formation of hexagonal molybdates forming bundle-like ordered 

arrangements. The structure of these hexagonal molybdates is closely related to the 

structure of AH6x-1Mo6-xO18 (A = Na, K, NH4). In comparison addition of RbBr resulted in 

flower-like hexagonal molybdate particles. 
[11]

 

 

Figure 1.1: Crystal structures of MoO3 ∙ 2H2O and α-MoO3, indicating the tendency toward the 

formation of one-dimensional structure including the preferred orientation of the resulting α-MoO3 

nanorods. 

The crystallization mechanism of MoO3 ∙ 2H2O to MoO3 in water was studied by in situ X-

ray absorption spectroscopy (XAS) in a specially designed batch reactor. 
[7]

 The 

experimental results suggest a quick dissolution-precipitation mechanism without a 

crystalline intermediate phase. The yellow starting material was transferred into a grey-

blue product, which indicates a partial reduction of MoO3. 

Most of the hydrothermally synthesized α-MoO3 samples were tested for their 

electrochemical properties, but hardly any catalytic activity studies were described. Li et 
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al. 
[16]

 tested their synthesized nanobelts and microflowers in ethanol oxidation. They used 

Na2MoO4 ∙ 2H2O and HCl at pH values < 1 and added P123 (EO20PO70EO20, MW = 5800) 

as a surfactant, which directed the assembly of α-MoO3 nanobelts into microflowers. The 

nanobelts yielded higher ethanol conversion at slightly lower acetaldehyde selectivity 

compared to the microflowers. Hydrothermally synthesized molybdenum trioxide was also 

used as precursors for hydrodesulfurization (HDS) catalysts and their morphology 

(nanoribbons) could be preserved during transformation of α-MoO3 to MoS2 with H2S. 
[22]

 

Direct synthesis of MoS2 under hydrothermal conditions was reported using ammonium 

tetrathiomolybdate (ATTM; (NH4)2MoS4), but relatively high temperatures (260 – 350 °C) 

were required and the autoclave needed to be purged with nitrogen, hydrogen or H2S. 
[23-24]

 

With respect to γ-Bi2MoO6 hydrothermal synthesis was mainly used for photocatalytic 

applications 
[25-30]

 and not yet for the preparation of oxidation catalysts. Bismuth nitrate 

(Bi(NO3)3 ∙ 5H2O) and either ammonium heptamolybdate or sodium molybdate were 

applied as precursors. The low-temperature γ-phase is the naturally occurring mineral 

koechlinite. It does not show any cation vacancies and is an example for an Aurivillius 

structure type, which consists of alternating [Bi2O2]
2+

 slabs and layers of corner sharing 

MoO6 octahedra. At temperatures higher than 570 °C the metastable γ”-phase is formed 

and is further transferred to the high-temperature stable γ‟-phase at 640 °C. 
[31]

 The α- and 

the β-phase can be regarded as a defect fluorite structure. α-Bi2Mo3O12 contains elongated 

columns of MoO4 tetrahedra which enclose rectangular tunnels filled with two columns 

composed of Bi
3+

 ions and cation vacancies. In the metastable β-Bi2Mo2O9 columns of 

isolated MoO4 units enclose two types of square tunnels: the smaller one contains only one 

column of Bi
3+

 cations, the larger tunnel incorporates four columns of Bi
3+

, with every 

second site vacant in two of the columns. 
[32]

 The structures of the three different low 

temperature phases are depicted in Figure 1.2. 
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Figure 1.2: Crystalline structures of (a) α-Bi2Mo3O12, (b) β-Bi2Mo2O9 and (c) γ-Bi2MoO6 projected 

along the a axes. 

Pure γ-Bi2MoO6 could be prepared from BiCl3 and ammonium heptamolybdate with NaOH 

or from Bi(NO3)3 ∙ 5H2O and H2MoO4 at 180 °C for 24 h, whereas preparation with 

ammonium heptamolybdate and bismuth nitrate as precursors led to additional phases in 

the hydrothermal product. 
[25]

 Maczka et al. 
[27]

 obtained differently sized γ-Bi2MoO6 

nanoplates using bismuth nitrate and sodium molybdate by variation of the temperatures 

between 120 °C and 300 °C. Increasing the temperature from 155 to 205 °C only slightly 

influenced the thickness of the platelets whereas the lateral dimensions increased 

significantly. In a similar approach the morphology of hydrothermally synthesized γ-

Bi2MoO6 could be controlled by adjustment of the pH with concentrated ammonia solution 

at 180 °C for 24 h. 
[28]

 A decrease of the preparation temperature to 160 °C for 12 h led to 

the formation of Bi3.64Mo0.36O6.55 from bismuth nitrate, ammonium heptamolybdate and 

NaOH at basic conditions (pH ≥ 9), whereas at neutral conditions (pH = 6.6 – 7) mixtures 

of Bi3.64Mo0.36O6.55 and γ-Bi2MoO6 were found. 
[33]

 The application of surfactants such as 

cetyltrimethyl ammonium bromide (CTAB) 
[29]

 or poly(vinyl pyrrolidone) (PVP) 
[26]

 

resulted also in the formation of nanoplates under the applied conditions. In all these cases 

a Bi/Mo ratio of 2:1 was used corresponding to γ-Bi2MoO6. Li et al. 
[34]

 synthesized 

different bismuth molybdate phases and phase mixtures using different initial Bi/Mo ratios 

(Bi/Mo = 2:3, 2:2 and 2:1) from acidic bismuth nitrate solution and ammonium 

heptamolybdate by variation of the pH value. γ-Bi2MoO6 was formed throughout the entire 

pH range at low molybdenum concentration (Bi/Mo = 2:1). At higher molybdenum 

concentration (Bi/Mo = 2:2 and 2:3) the product phase was dependent on the pH value, due 

to the formation of different polymolybdate species in solution. The molybdate anion can 

polymerize forming various isopoly derivatives and the extent of polymerization is 

dependent on the molybdate concentration, the pH value and the temperature of the 
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solution. High pH values led to the formation of γ-Bi2MoO6, under acidic conditions α-

Bi2Mo3O12 was obtained. This can be explained by the following equations: 
[34]

 

2 BiO
+
 + MoO4

2-
  (BiO)2(MoO4)↓ (1.5) 

3 MoO4
2-

 + 4 H
+
 ↔ Mo3O10

2-
 + 2 H2O (1.6) 

2 BiO
+
 + Mo3O10

2- 
 Bi2(MoO4)3↓ (1.7) 

At high pH values MoO4
2-

 is present in solution which reacts with 2 BiO
+
 to the γ-phase 

(1.5), whereas with increasing H
+
 concentration Mo3O10

2-
 forms (1.6) resulting in 

precipitation of α-Bi2Mo3O12 (1.7) at pH = 1 - 3. β-Bi2Mo2O9 could not be prepared 

directly by hydrothermal synthesis but a pure phase was obtained after calcination at 560 

°C. The resulting non-calcined samples exhibited surface areas of 39 m²/g to 57 m²/g, 

which is relatively high for unsupported bismuth molybdates. 
[34]

 Beale and Sankar 
[8]

 also 

prepared all three phases with Bi2O3 ∙ nMoO3 (n = 1, 2, 3) mixing stoichiometric amounts 

of acidified bismuth nitrate solution (Bi2O3 dissolved in HNO3) with ammonium 

heptamolybdate dissolved in ammonium hydroxide. α-Bi2Mo3O12 and γ-Bi2MoO6 could be 

produced in one step, whereas for β-Bi2Mo2O9 calcination at 560 °C was required. In situ 

time resolved energy dispersive X-ray diffraction (EDXRD) during hydrothermal synthesis 

at temperatures between 110 and 140 °C suggested that α-Bi2Mo3O12 and γ-Bi2MoO6 

formed directly from the precursor gel without intermediate phases present. The overall 

reaction rate increases with increasing temperature. Different growth mechanisms for α- 

and γ-bismuth molybdate were observed: α-Bi2Mo3O12 grows 3-dimensionally, whereas γ-

Bi2MoO6 initially grows in 2-dimensions. 
[8]

 A similar study was performed by Kongmark 

et al. 
[35]

, who applied combined in situ high-resolution powder diffraction (HRPD), X-ray 

absorption spectroscopy (XAS) and Raman spectroscopy to observe the formation of γ-

Bi2MoO6 under hydrothermal conditions at 160, 170 and 180 °C. They found that 

independent of the temperature a two step reaction occurs and an intermediate fluorite 

structure was observed. From the precursor gel containing BiO2(NO3)2 and (NH4)4Mo7O24 

a distorted fluorite structure was formed in which MoO4-species were randomly distributed 

[(Bi1-xMox)2O3+δ]. With increasing reaction time [Bi2O2]-type and [MoO4] self-organize in 

a structure related to L-Bi2n+4MonO6(n+1) 
[36]

 consisting of stacked [Bi2n+4O2n+6]
2n+

 layers 

parallel to the (001) plane with n isolated [MoO4] tetrahedra in the interspaces. This 

fluorite structure will be transformed into γ-Bi2MoO6 and the spherical particles observed 
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in the beginning will change into plates. The monomeric molybdate species [MoO4]
2-

 in 

the precursor is needed to form γ-Bi2MoO6, attesting that the pH of the precursor solution 

plays an important role. 
[35]

 In agreement with Beale and Sankar 
[8]

 they also found a 2-D 

growth process determined by diffusion limitations. 

All these preparations were performed in batch reactors, but also continuous hydrothermal 

synthesis of α-Bi2Mo3O12 and γ-Bi2MoO6 was reported. 
[37]

 An acidified bismuth nitrate 

solution and a basic solution of molybdic acid were mixed in a reactor using supercritical 

water at 375 – 450 °C and a pressure of 24.1 MPa as a crystallizing medium. The resulting 

materials were highly crystalline and exhibited high surface areas (8 and 11m²/g 

respectively). With respect to hydrothermal synthesis catalytic studies are rare and bismuth 

molybdates have not yet been synthesized under hydrothermal conditions for the 

application in selective oxidation reactions.  

Cobalt and nickel molybdates were synthesized by hydrothermal synthesis mainly for the 

preparation and detailed characterization of new phases. The group of Eda synthesized the 

hydrate phases of CoMoO4 
[38]

 and NiMoO4 
[39]

 to analyze the structure and the amount of 

coordinated water. In both cases the formula was determined to be MMoO4 ∙ 0.75H2O. 

NiMoO4 ∙ 0.75H2O revealed a rod-like morphology and turned into α-NiMoO4 at 

temperatures above 210 °C. 
[39]

 They also synthesized MMo4O13 ∙ 2H2O (M = Co, Ni) with 

a novel pillared structure from MCl2 and insoluble MoO3 or soluble MoO3 ∙ nH2O with 

M/Mo ratios of 1, 5 and 10. For the preparation of CoMo4O13 ∙ 2H2O an excess of cobalt 

was required (Co/Mo = 5 or 10) at initial pH values < 4. The usage of the soluble precursor 

reduced the hydrothermal treatment time from three to one day. 
[40]

 In another study Eda et 

al. 
[41]

 used various soluble and insoluble Mo and Co precursors to investigate the effects of 

the solubility on the resulting materials. They reported that pH plays a key role in the 

synthesis of CoMo4O13 ∙ 2H2O and suggested that it was formed via a hydrothermal 

dissolution-precipitation process. The formation of the high pressure hp-CoMoO4 was 

dependent on the pH and the nature of the starting material. Strong structural resemblance 

between CoMo4O13 ∙ 0.75H2O and hp-CoMoO4 indicated that solid state transformation 

occurred during hydrothermal synthesis. Hence, Eda et al. 
[41]

 suggested that some 

hydrothermal solution reactions may in fact take place in the solid state, so that the 

structure of the product phase is inherited by the solid intermediate formed under 

hydrothermal conditions. Figure 1.3 displays the crystal structures of low temperature α-
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CoMoO4 (space group C2/m), hp-CoMoO4 (P2/c), CoMoO4 ∙ 0.75H2O and CoMo4O13 ∙ 

0.75H2O. For the high temperature β-CoMoO4 the atomic positions have not been 

presented yet. 
[38]

 For nickel analogue isomorphs exist. Here, Co and Ni are always in 

octahedral sites, whereas the coordination of Mo
6+

 varies from octahedral in the α-phases, 

high pressure phases as well as in MMo4O13 ∙ 0.75H2O and tetrahedral in the β-phases and 

the hydrates. 
[42]

  

 

Figure 1.3: Polyhedral crystal structures of the different cobalt molybdate phases: (a) α-CoMoO4, 

(b) hp-CoMoO4, (c) CoMoO4 ∙ 0.75H2O and (d) CoMo4O13 ∙ 2H2O. 

The influence of the synthesis temperature (40 – 200 °C) on the phase, specific surface 

area and particle size of the hydrothermally prepared materials from Na2MoO4 ∙ 2H2O and 

Co(NO3)2 ∙ 6H2O was investigated after calcination at 500 °C showing that a mixture of α-

CoMoO4 and β-CoMoO4 was obtained at synthesis temperatures < 160 °C, whereas at 

higher temperatures β-CoMoO4 was favored. 
[43]

 Furthermore, the effect of the addition of 

polyethylene glycol (PEG-400, Mw = 380-430) during hydrothermal synthesis at 160 °C 

for 6 h was studied leading to NiMoO4 ∙ nH2O microflowers and CoMoO4 ∙ nH2O rods. 
[44]
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The corresponding rods emerged due to added ethanol as co-solvent and the particle size 

could be controlled by variation of the ethanol concentration. 
[45]

 α-CoMoO4 nanorods or 

nanowhiskers were obtained applying different molar ratios of H2O/CTAB with cobalt 

nitrate and sodium molybdate as Co and Mo precursor at 120 °C for 24 h. 
[46]

 

Despite most of the materials described above were not tested in catalytic reactions, 

Palacio et al. 
[47]

 synthesized various Cu, Mn, and Co molybdates for the oxidative 

dehydrogenation (ODH) of propane by hydrothermal synthesis. The hydrothermally 

synthesized cobalt molybdate catalyst from Na2MoO4 and Co(NO3)2 with H2N(NH2)2NH2 

provided reasonable propylene yield and showed the highest stability during the catalytic 

tests at 600 °C. The same group tested hydrothermally synthesized wolframite type Ni-Mo-

W-O and Co-Mo-W-O in the ODH of propane. 
[48]

 

By analogy with MoS2 (see p. 6), unsupported CoMoS2 and NiMoS2 were prepared by one 

step hydrothermal synthesis from ammonium tetrathiomolybdate (ATTM) and cobalt or 

nickel nitrate adding decalin as organic solvent. The reactor was purged, filled with 

hydrogen and heated to 350 °C for 2 h with subsequent cooling. The samples exhibited 

surface areas of 300 m²/g and higher catalytic activity in the hydrodesulfurization (HDS) of 

dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) under the 

applied test conditions compared to commercial supported Co-Mo/Al2O3 and Ni-Mo/Al2O3 

catalysts. 
[24]

 Furthermore, the effects of the preparation conditions on the activity and 

selectivity of this Ni-Mo sulfide catalyst were studied in detail. 
[49]

 Catalysts prepared at 

higher temperature (variation between 300 – 375 °C) showed higher surface area (121 m²/g 

at 300 °C, 249 m²/g at 375 °C), larger pore volume (0.19 cm³/g at 300 °C, 0.30 cm³/g at 

375 °C) and higher catalytic activity. Similar to the effect of preparation temperature an 

increase in hydrogen pressure (variation between 1.4 MPa and 3.4 MPa) had a positive 

effect on 4,6-DMDBT and DBT conversion and increased the surface area (83 m²/g at 1.4 

MPa, 231 m²/g at 3.4 MPa) and the pore volume (0.17 cm³/g at 1,4 MPa, 0,37 cm³/g at 3.4 

MPa) of the products synthesized at 350 °C. Hydrogen was needed in the decomposition of 

ATTM for the formation of the catalytically active bimetallic sulfide. Application of 

hydrothermal synthesis at suitable conditions led to formation of nanosized Mo sulfide 

clusters and more Ni atoms could be incorporated into smaller Mo sulfide nanocrystallites 

to form more active Ni-Mo-S catalysts. 
[49]

 



1 Introduction 

12                                                                  Hydrothermal synthesis of Mo based catalysts     12 

Transition metal oxides based on molybdenum and vanadium are interesting materials for 

partial oxidation reactions, which have been extensively studied in the literature. Amongst 

other preparation methods they were also synthesized hydrothermally. Ueda and Oshihara 

[50]
 prepared Mo-V-M-O (M = Al, Ga, Bi, Sb and Te) catalysts and tested their catalytic 

performance in the selective oxidation of ethane to ethene and acetic acid as well as in the 

selective oxidation of propane to acrylic acid. For Mo-V-Al-O they first synthesized an 

Anderson-type heteropolymolybdate (NH4)3AlMo6H6O ∙ 7H2O from ammonium 

heptamolybdate and aluminium sulfate and converted it with VOSO4 at 175 °C for 24 h 

under hydrothermal conditions. The other samples were prepared from an aqueous solution 

of ammonium heptamolybdate with bismuth sulfate, antimony sulfate or TeO2 and an 

aqueous solution of VOSO4 mixed in an autoclave at 175 °C for 24 h. The samples with 

the composition Mo6V2Sb1Ox and Mo6V2Te1Ox yielded high ethane conversions at high 

ethene selectivities. Several groups studied the effect of composition and preparation 

procedure of hydrothermally synthesized Mo-V-Nb-Te-O on the structure and morphology 

of the product and on the resulting catalytic activity in selective oxidation of propane and 

propene to acrylic acid. 
[51-55]

 The M1 phase corresponding to Mo6.24V1.41Te1.76Nb2.35Ox is 

considered to be the active phase in light alkane oxidation and is accessible via mild 

hydrothermal synthesis. Furthermore, orthorhombic and trigonal Mo3VOx were 

successfully synthesized at different pH values under hydrothermal conditions and were 

applied in selective oxidation of acrolein to acrylic acid. 
[56]

 

Recently Fe2(MoO4)3/MoO3 nanostructured catalysts were prepared and applied in the 

oxidation of methanol to formaldehyde. 
[57]

 MoO3 nanorods were synthesized from 

commercial MoO3 and H2O2 in a Teflon-lined autoclave at pH = 0 - 1 (adjustment by nitric 

acid) and subsequently impregnated with Fe(NO3)3 ∙ 9H2O. The influence of calcination at 

various temperatures on the product phase and the structure was investigated. Calcination 

at 400 °C resulted in MoO3 nanorods with Fe2(MoO4)3 islands on the surface formed via a 

solid state diffusion mechanism. 
[57]

 Pure Fe2(MoO4)3 could be obtained by one step 

hydrothermal synthesis using iron nitrate nonahydrate and ammonium heptamolybdate 

tetrahydrate with Mo/Fe ~ 1.5 without other additives at 150 °C. If the molybdenum 

content was increased and a ratio of Mo/Fe ~ 3 was applied, a mixed phase iron molybdate 

material resulted and a high surface area was reached compared to surface areas of similar 

materials. The groups discovered that crystalline Fe2(MoO4)3 is required for an active 

catalyst for selective oxidation of methanol and that the high selectivity to formaldehyde is 
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influenced by the presence of octahedral Mo
6+

 containing oxide phases. 
[58]

 These 

examples show that hydrothermal synthesis is an attractive method in catalysis especially 

because nanoparticles with special morphologies can be formed and products with 

controlled compositions and structure can be obtained. 

1.1.2. Flame spray pyrolysis (FSP) 

An alternative preparation method for catalysts is flame aerosol technology that even 

allows large scale production of nanoparticles. 
[59]

 A detailed overview of the development 

of flame aerosol technology and in particular flame spray pyrolysis is given in 
[59]

, whereas 

[60]
 summarizes the use of aerosol flame technology in catalysis. According to the precursor 

state (aqueous-based, solvent-based or vapor-based) and the combustion condition three 

different techniques are distinguished: vapor-fed aerosol flame synthesis (VAFS), flame 

assisted spray pyrolysis (FASP) and flame spray pyrolysis (FSP). 
[60]

 FSP has a self-

sustaining flame in comparison with VAFS and FASP, which use an evaporator or external 

flame respectively. 
[59]

 Industrially flame aerosol techniques are already applied and 

industry leaders such as Cabot, Cristal, DuPont, Evonik and Ishihara manufacture materials 

in millions of tons with a value of more than $ 15 billion/year. 
[61]

 Mainly pigments (TiO2), 

reinforcement materials for polymers (carbon black, SiO2) and other ceramic nanoparticles 

are produced by these techniques. Johnson Mattey Co. a major manufacturer of catalysts 

operates a pilot plant for flame spray pyrolysis of catalysts at its Research Center in the 

UK. 
[59]

  

In flame spray pyrolysis (FSP) a liquid precursor is used, which has a high combustion 

enthalpy and needs to deliver more than 50% of the total combustion enthalpy. 
[62]

 Hence, 

organic solvents are used and the resulting organic precursor solution is dispersed either 

ultrasonically 
[62]

 or by gas convection through a nozzle 
[63-64]

 Due to the fact, that the 

enthalpy to operate the flame is generated by combusting the liquid precursor, control of 

the particle size is feasible by controlling the rate of combustion enthalpy and the metal 

concentration in the precursor solution. 
[64]

 Flame spray pyrolysis enables rapid and 

scalable synthesis of nanomaterials and upscaling of the production can be achieved 

preserving the tailored properties. 
[59]

 The resulting materials are non-porous and exhibit a 

defined crystallinity as well as high thermal stability. 
[60]

 In Figure 1.4 the experimental 

set-up of FSP according to 
[64]

 is depicted, which was used for preparation of fumed silica. 
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The precursor solution is injected with a syringe pump in a capillary placed in the centre of 

a nozzle assisted with high velocity air or oxygen. A pressure drop of at least 1.5 bar over 

the nozzle arises leading to fast, turbulent spray flames. The sprayed precursor droplets are 

ignited with supporting CH4/O2 flamelets and the particles are collected on a vacuum-

assisted filter above the flame. 

 

Figure 1.4: Experimental FSP set-up using an air-assisted nozzle and CH4/O2 for the supporting 

flames, collecting the particles on a filter with the aid of a vacuum pump; with permission from 
[64]

. 

The maximum flame temperature is affected by the composition of the oxidant and the 

dispersion gas. The application of oxygen instead of air led to higher flame temperatures of 

about 1000 K. 
[65]

 Temperatures of up to 2600 – 2700 K have been measured and the 

residence time in the flame is in the millisecond range with a high temperature gradient 

(170 K/min) along the flame axis. 
[59]

 These high temperatures allow the formation of 

homogeneous and crystalline particles; the short residence time generates particles in the 

nanoscale. Due to the rapid quenching, metastable phases can be formed which was 

demonstrated for the example of tetragonal γ-Fe2O3. 
[66]

 In Figure 1.5 the principles of 

particle formation and growth in the flame are illustrated. The particles can form via the 

droplet-to-particle or gas-to-particles route, albeit the gas-to-particle route gives access to 

homogeneous morphologies and particle sizes. The sprayed precursor evaporates and / or 
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decomposes forming metal vapor. Nucleation takes place due to supersaturation and 

coalescence and condensation let the particles grow. They are further aggregated and 

agglomerated and subsequently collected on the filter. 

 

Figure 1.5: Scheme of particle formation and growth according to 
[67]

. 

These steps are influenced by the characteristics of the metal precursor and the solvent. 

Hence, a very important aspect in flame spray pyrolysis is the formulation of the liquid 

precursors. 
[59]

 Properties of the metal precursor and the solvent such as combustion 

enthalpy, melting/decomposition temperature, miscibility and chemical stability determine 

the properties of the resulting particles. Nitrates, acetates and acetylacetonates, which are 

frequently used as metal precursors based on conventional preparation methods, often do 

not provide homogeneous morphologies. Dense and homogeneous fine particles can be 

obtained when the melting temperature of the precursor is below the boiling point of the 

solvent and sufficient heat for the evaporation of the precursor is supplied. Metal alkoxides 

offer high volatilities, high combustion enthalpy, low viscosity and commercial 
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availability. They are also soluble in many organic solvents, but expensive and moisture 

sensitive. A summary of precursors used in the open literature for the preparation of 

various materials is given in 
[59]

.  

Multicomponent materials can be produced with a higher flexibility using more than one 

nozzle (in case of two nozzles: twin nozzle or double flame reactor). Thereby separation of 

the phases can be achieved, core-shell or supported materials can be prepared. Each nozzle 

is controlled independently and the properties of the resulting particles depend on the 

properties of the precursor solutions and the interface angle of the separate nozzles. 
[59]

 

This preparation route was successfully applied for the production of BaCO3/Al2O3 for 

NOx storage catalysts. 
[68]

 

Sokolowski et al. 
[62]

 were the first who applied flame spray pyrolysis. They used it for the 

preparation of γ-Al2O3 from aluminum acetylacetonate and suggested a formation 

mechanism. Later, the rapid insertion and retraction of a transmission electron microscopy 

(TEM) grid made it possible to observe the evolution of particle morphology along the 

flame axis. 
[69]

 The effects of the flame configuration, i.e. fuel and oxidant flow rate as well 

as the position of the flame, on the surface area of titania and the composition of rutile and 

anatase was investigated in detail. Fine anatase titania powder formed at low precursor 

concentration, low residence time in the flame and low flame temperature. 
[70]

 Mädler et al. 

[64]
 synthesized nanostructured silica particles and calculated the droplet lifetime in the 

flame for air or oxygen as dispersion gas. Oxygen led to lower surface areas, due to the 

rapid burning of the droplets and the resulting longer residence time at high temperatures 

compared to air. The temperatures measured in the flame were 2440 K at 5 mm above the 

nozzle and 2000 K at 12 mm above the nozzle for air as dispersion gas and 2620 K at 7 

mm above the nozzle and 2340 K at 12 mm above the nozzle for oxygen as dispersion gas. 

At low oxidant flow rates the specific surface area of the product was increased with 

increasing flow rate. For high oxidant flow rates (turbulent regime) the flame length was 

reduced and the particles had less time to grow and agglomerate. The specific surface area 

of the flame made materials could be controlled systematically through the oxidant flow 

rate and the precursor/fuel composition. 
[64]

 Pratsinis et al. 
[71]

 studied continuous flame 

spray pyrolysis of nanostructured silica particles at high production rates. The oxidant flow 

rate as well as the precursor supply rate influenced the particle size of silica, whereas 

oxygen as the dispersion gas allowed a larger variation of particle size compared to air.  
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Co3O4 and Ru-doped cobalt zirconia applied for Fischer-Tropsch reaction were synthesized 

from Co-2-ethylhexanoate in xylene. 
[72]

 The same group prepared BiVO4 from a Bi 

precursor obtained from bismuth acetate and 2-ethylhexanoic acid mixed with vanadium 

oxytripropoxide in xylene. They observed that the crystallinity of BiVO4 is a function of 

the filter temperature and concluded that the short flame residence time is insufficient to 

cause crystallization within the flame. 
[73]

 Dissolution of bismuth nitrate in a mixture of 

ethanol and nitric acid resulted in hollow particles and sintered dense particles of Bi2O3. 

When glacial acetic acid was used as a solvent homogeneous solid nanoparticles were 

formed. 
[74]

 For the preparation route in acetic acid the influence of the flow rate of the 

dispersion gas and the precursor feed was studied in detail and the results match the results 

found for silica 
[64]

. The flame height and accordingly the residence time in the flame was a 

function of the precursor feed rate and the oxygen flow rate. Shorter residence time in the 

hot zone of the flame resulted in smaller particles and accordingly in higher surface area 

(range 20 – 80 m²/g). 
[74]

 Generally, it can be concluded, that the concentration of the 

precursor, the precursor flow rate and the flow rate of the dispersion gas affects the 

particles size of the flame made products. Suitable precursors need to be applied. 

For the application in catalysis and in sensors, noble metals or alloys were deposited on 

various metal oxides (Al2O3, TiO2, SiO2, etc.). The preparation of these materials is 

possible by flame spray pyrolysis but is limited to thermodynamic properties, i.e. the 

deposits have to nucleate at high temperature (low boiling point). Noble metals have a low 

boiling/sublimation point relative to the oxide support materials and therefore sequential 

nucleation is possible. At higher temperatures the support metal nucleates, whereas the 

noble metals nucleate at cooler temperatures. The particles grow along the concentration 

gradient of the spray flame. Double FSP offers a higher flexibility in the preparation of 

complex oxides. 
[59]

 Debecker et al. 
[75]

 synthesized MoO3 supported on SiO2-Al2O3 for the 

metathesis of propene to ethene and butene in a single flame reactor. At low loadings (1 - 5 

wt.% Mo) amorphous molybdates were formed, whereas at high loading (5 - 15 wt.% Mo) 

crystalline MoO3 was detected in the X-ray diffraction pattern. Flame spray pyrolysis led 

to highly dispersed monomeric molybdates on the support, which was beneficial for olefin 

metathesis. Supported and unsupported cobalt molybdate catalysts for hydrotreating were 

synthesized using a single flame 
[76]

 and double flame 
[77]

 approach. Aluminum 

acetylacetonate, molybdenum 2-ethylhexanoate and cobalt 2-ethylhexanoate in toluene 

were used as precursor. Preparation of the unsupported catalyst resulted in formation of 
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MoO3 and β-CoMoO4. The supported catalysts prepared with one nozzle contained γ-

Al2O3 with unwanted CoAl2O4 and well dispersed MoO3 and the surface area decreased 

with increasing loading (surface areas 90 – 221 m²/g), due to particle sintering and 

aggregation. 
[76]

 Double flame spray pyrolysis allowed reducing the amount of CoAl2O4 by 

variation of the angle between the two nozzles and the mixing distance between the nozzle 

and the mixing point. 
[77]

  

1.2. Target reactions 

1.2.1. Selective oxidation of propylene 

Today 25% of the most important chemicals and intermediates are produced via partial 

oxidation reactions. 
[78]

 Most of the catalysts used in selective oxidation are transition 

metal oxides due to the potential of transition metals to slightly change their oxidation state 

or store oxygen reversible. Oxidation of hydrocarbons on a metallic surface is a dynamic 

process and the catalyst needs to perform multiple functions, thus structural and / or phase 

complexity is required. 
[78-79]

 The organic substrate needs to be activated and therefore 

hydrogen abstraction is required. The resulting intermediate has to be adsorbed on the 

surface followed by oxygen insertion and subsequent desorption of the product from the 

catalyst surface. Medium reducibility, weak Lewis-acid centers and oxygen mobility are 

important properties for a selective oxidation catalyst. 
[79]

 Bettahar et al. 
[80]

 stated, that the 

redox properties and acid-base properties of the catalyst surface need to be in equilibrium 

to permit controlled selective oxidation. Partial oxidation on a metal oxide catalyst 

proceeds via a Mars-van-Krevelen mechanism, where the oxygen source for selective 

oxidation is the oxygen of the catalyst, which is reoxidized by gaseous oxygen 
[81]

 

(illustrated schematically in Figure 1.6). After adsorption of the hydrocarbon molecule on 

the surface, the hydrocarbon is oxidized while the metal cations in the lattice are reduced 

and oxygen vacancies form. The oxygen of the bulk migrates and fills the anion vacancy at 

the surface, while the vacancy moves to another site. Oxygen vacancies are reoxidized by 

gaseous oxygen to regenerate the catalyst closing the catalytic cycle. It is important, that 

the catalyst enables lattice oxygen diffusion and facile flow of electrons. 
[78]

 Several kinds 
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of active oxygen (O
-
, O2

- 
and O

2-
) were detected on the catalyst surface. The role of these 

surface oxygen species in partial versus total oxidation need to be further elucidated. 
[79]

  

 

Figure 1.6: Schematic of a Mars-van-Krevelen mechanism, where the squares represent the anion 

vacancies, the red balls are oxygen and the grey balls the metal. 

Grasselli 
[78]

 summarized seven fundamental principles, which are important for selective 

heterogeneous catalysis in general.  

 Lattice oxygen: The lattice oxygen of a reducible metal oxide may be more 

selective than gaseous oxygen. 
[82]

 

 Metal-oxygen bond: The metal-oxygen bond must be of medium strength under 

reaction conditions e.g. it has to be weak enough to activate the organic substrate 

molecule but strong enough not to cause over oxidation.  

 Host structure: The desired lattice oxygen has to be provided, rapid electron 

transfer and oxygen diffusion through the bulk is required and the structure must be 

stable also after formation of oxygen vacancies in the lattice. 

 Redox: The removal of oxygen from the lattice and the re-oxidation of the catalyst 

by gaseous oxygen are essential. 

 Multifunctionality of active sites: The catalyst needs to perform various functions 

mentioned before. 

 Site isolation: The products are more active than the substrate and therefore re-

adsorption has to be avoided. A selective catalyst provides finite sites and isolated 

oxygen (groupings). 
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 Cooperation of phases: Multifunctionality of the catalyst can be achieved by 

combining different catalyst phases, each offering one function and bringing them 

in intimate contact. 

These principles were also summarized by other authors in a similar manner 
[83-84]

. Most of 

industrial oxidation catalysts consist of more than one phase and each phase fulfills several 

functions. Delmon and Ruiz 
[85]

 studied the interaction of two separate oxide phases in the 

oxidation of isobutylene to methacrolein. They explained the improved catalytic activity of 

these well defined metal oxide phases (A and B), where each phase may already be active 

on its own in the catalytic reaction, by a continuous activation of potential centers on A by 

spill-over oxygen from B (remote control theory). That means an acceptor phase activates 

the hydrocarbon and a donor phase produces activated oxygen at a high rate, which spills 

over to the acceptor phase and accelerates the oxidation reaction. 
[85]

 Some principles such 

as the importance of oxygen mobility are discussed controversially and for example 

according to Wachs and Routry 
[86]

 a correlation between oxygen mobility or the ability of 

oxygen removal from the catalyst lattice and the reaction rates in catalytic selective 

oxidation is missing. They consider the chemical properties of the specific active sites to 

be essential and find that the catalytic performance has to be related to the surface 

characteristics of the catalyst.  

CH3CH=CH2 + O2  CH2=CHCHO + H2O (1.8) 

The selective oxidation of propylene to acrolein (Eq. 1.8) and the ammoxidation of 

propylene to acrylonitrile are important industrial processes. In 1948 Hearns and Adams 

[87]
 patented a process for direct oxidation of propylene to acrolein over a cuprous oxide 

catalyst. Shell applied this process on an industrial scale. The catalyst operated at 370 – 

400 °C albeit low conversion was achieved and a high recycling stream was required. In 

1959 Sohio established bismuth molybdate catalysts for the direct oxidation of propylene 

to acrolein. These bismuth molybdates showed a higher tolerance toward varying reaction 

conditions and provided higher acrolein yields compared with the cuprous oxide catalysts. 

[88-89]
 Nowadays the industrial catalysts consist of at least four transition metals and yield 

more than 90% acrolein. 
[90]

 In industrial practice 5 - 10% propylene in a mixture of air and 

steam or off-gas are applied at 300 – 400 °C and 1.5 – 2.5 kPa. Under reaction conditions 

Bi-Mo-O catalysts are quite stable in the sense that their selectivity and activity remain 

constant. 
[91]

 In the industrial application the oxygen/propylene molar ratio needs to be 
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around 1.6 due to reduction of the catalyst at lower values. Acrolein is mainly oxidized to 

acrylic acid on a catalyst based on Mo and V and acrylic acid or acrylates (esters of acrylic 

acid) are polymerized.  

Since the discovery of these bismuth molybdate catalysts, this type of materials have 

received large attention and several researchers have studied their catalytic properties in 

considerable detail 
[91-100]

. Adams and Jennings 
[101]

 discovered that the first step contains a 

hydrogen abstraction from the methyl group and formation of a symmetric allyl species. 

The fact that 1,5-hexadiene forms in high yield over Bi2O3 and not at all over MoO3 

indicates that the initial α-hydrogen abstraction in the partial oxidation of propylene over 

bismuth molybdates proceeds via oxygen atoms associated with bismuth. The insertion of 

oxygen in the allylic species is associated with molybdenum. 
[92, 102]

 Investigations of α-

Bi2Mo3O12 showed, that the oxygen exchange occurred preferentially on Mo polyhedra 

having neighboring bismuth ions. Ono and Ogata 
[103]

 concluded that oxygen anions 

bridging bismuth and molybdenum are active for hydrogen abstraction. Ueda et al. 
[104]

 

found that two different oxygen species are involved in hydrogen abstraction by the 

application of 
18

O2 tracer studies. The first hydrogen abstraction from propylene occurs on 

Mo
6+

-O-Bi
3+

, whereas oxygen doubly bonded to Mo
6+

 is incorporated into the activated 

allyl species to form acrolein. 
[100, 105]

  

Byproducts mostly reported are acrylic acid, CO, CO2, acetaldehyde, formaldehyde and 

acetic acid, but the formation mechanism of these products is still under investigation and 

there are several speculations. 
[106-107]

 

Based on structural considerations, in situ infrared (IR) and Raman pulsed reduction as 

well as 
18

O2 reoxidation studies, Grasselli and Burrington 
[92, 108]

 proposed a reaction 

mechanism for oxidation and ammoxidation of propylene over bismuth molybdate 

catalysts. It was modified on the basis of ab initio calculations by Jang and Goddard 
[109]

, 

who reported that the first hydrogen abstraction from propylene to form the allylic 

intermediate is most favorable on Bi(V) according to their calculation. Oxygen insertion 

and second hydrogen abstraction occur on two separate but adjacent Mo
6+

 di-oxo sites, 

rather than only one Mo site. Figure 1.7 shows the modified mechanistic cycle of the 

selective oxidation of propylene to acrolein adapted from Grasselli et al. 
[110]

. Instead of 

Bi(V) they suggested that Bi(III) is involved in the first hydrogen abstraction. 
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Figure 1.7: Propylene oxidation mechanism over bismuth molybdate catalysts with permission 

from 
[110]

. The reagents are marked in red, the products in blue. 

The allylic H-abstraction, which is the rate-determining step, occurs on a bismuth site and 

the resulting π-allyl intermediate is adsorbed on a neighboring Mo center. Oxygen attached 

to Mo is inserted into the π-allyl complex, resulting in ζ-O-allyl species and formation of a 

Mo-O-C bond. Subsequently the second hydrogen is abstracted by an adjacent Mo=O, 

acrolein is formed and desorbed from the catalyst surface. Water is eliminated from the 

surface and the reduced site is regenerated by gaseous oxygen. Desorption of the 

oxygenated product from the catalyst surface leaves an oxygen vacancy, which is 

reoxidized via oxygen diffusion through either the near surface layer (nucleophilic surface 

lattice oxygen [O
2-

]SL) or the bulk ([O
2-

]L). The diffusion kinetics of oxygen are strongly 
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affected by the elemental composition of the catalyst and the geometric structure of the 

catalyst phases. 
[111]

  

According to Krenzke and Keulks 
[96]

 the abstraction of the α-hydrogen to form the allylic 

intermediate is the rate determining step at higher temperature (450 °C), whereas at lower 

temperature (350 °C) re-oxidation of the catalyst is rate determining. This agrees well with 

the observation, that above 400 °C and with p(O2) = 0.1atm the reaction order is zero with 

respect to oxygen for all bismuth molybdates. Below 400 °C the reaction order is 

dependent on oxygen and ranges from 0 to 0.5. 
[112-113]

 The reaction orders determined for 

temperatures < 400 °C with respect to propylene and oxygen are influenced by the rate 

limiting step involving the transfer of oxygen between the different functional groups 

within the bismuth molybdates catalyst. 
[91]

 Recently it has been reported that on 

Bi2Mo3O12 catalysts the reaction order in oxygen is zero at 340 °C and 400 °C, i.e. the 

reaction rate for acrolein formation is independent of oxygen partial pressure, indicating 

that the re-oxidation of the catalyst is not the rate determining step at temperatures below 

400 °C. 
[114]

 The influence of the partial pressure of oxygen on the reaction rate may also 

depend on the exact properties of the catalysts 

The bismuth molybdates which are of significance for selective oxidation of propylene to 

acrolein have the general chemical formula Bi2O3 ∙ nMoO3 with n = 3, 2, 1, corresponding 

to α-Bi2Mo3O12, β-Bi2Mo2O9 and γ-Bi2MoO6. They show different crystal structure (see 

Figure 1.2 in section 1.1.1) and are supposed to have different catalytic activity. 
[34]

 

Despite the large number of studies there is still a debate in literature about the relative 

activity of these model catalyst phases. 
[98, 113]

 Krenzke and Keulks 
[112]

 and Monnier and 

Keulks 
[113]

 found the γ-Bi2MoO6-phase to be most active, whereas Brazdil, Suresh and 

Grasselli 
[115]

 stated that the β-phase is the most active phase for propylene oxidation. After 

several reduction-reoxidation cycles there is a phase separation into MoO3-y + Bi2MoO6-x 

and finally to α-Bi2Mo3O12 + γ-Bi2MoO6 showing lower catalytic activity.  

In contrast, Carson et al. 
[116]

 who prepared the different bismuth molybdate phases by co-

precipitation at pH = 7 found that the catalytic activity for propylene oxidation decreases in 

the following order: α > γ > β. They also discovered that a mechanical mixture of α-

Bi2Mo3O12 and γ-Bi2MoO6 is more active and selective in propylene oxidation to acrolein 

than the according pure phases. This synergetic effect could be increased by a close contact 



1 Introduction   

24                                                                    Hydrothermal synthesis of Mo based catalysts   

of the two phases. Calcination of the α+γ-phase catalyst at temperatures > 555 °C led to the 

formation of the β-phase and a loss in activity. 
[97]

 Le et al. 
[99]

 found that the γ-phase is 

essential for the existence of the synergy effect, due to its outstanding ability to transport 

oxygen based on its layered structure. The replenishment of lattice oxygen seems to play 

an important role in the oxidation process. The rate of oxygen transport is increased when 

the γ-phase is in close contact with the α- or the β-phase. This synergy effect was 

confirmed by Bing et al. 
[98]

, who suggested that the γ-phase produces the active oxygen 

species and the α-phase delivers the selective sites for acrolein formation (analogue remote 

control theory 
[85]

). Soares et al. 
[117]

 investigated the existence of a synergy effect between 

the β- and the γ-phase for selective catalytic oxidation of 1-butene. They found that the 

surface composition is always close to the β-phase, but the γ-phase grows around β-

Bi2Mo2O9. Mixed phases always led to higher activity and lower selectivity to CO2 than 

pure phases. They also ascribed the enhanced activity to the high oxygen mobility in the γ-

Bi2MoO6, allowing the migration of the active oxygen species from the γ- to the α-phase.  

Snyder and Hill 
[118]

 studied the stability of bismuth molybdate catalysts under reaction 

conditions normally employed for selective oxidation of propylene to acrolein by in situ 

Raman spectroscopy in a special reactor cell. α-, β- and γ- bismuth molybdate were all 

stable in a gas mixture containing 20% oxygen and 10% propylene in helium at 400 °C. 

The most common method to prepare these catalysts includes co-precipitation at a specific 

pH and thermal treatment at 400 to 700 °C to obtain the crystalline phase. 
[119]

 Aleshina et 

al. 
[120]

 prepared bismuth molybdates by co-precipitation with Bi/Mo = 2 at pH values 

between 0 and 7 and with surface areas of 1 – 3 m²/g and tested them in propylene 

oxidation in the presence of steam. Co-precipitation at pH = 2 – 5 resulted only in γ-

Bi2MoO6 according to X-ray diffraction and the Bi/Mo ratio determined in the product was 

2.0. γ-Bi2MoO6 synthesized at pH = 3 yielded the highest propylene conversion (86%). In 

the sample prepared at pH = 7 they detected Bi2O3 and concluded that with increasing pH 

value molybdenum dissolves and the resulting product is rich in bismuth. This sample 

showed lower propylene conversion (73%) and very low acrolein selectivity. Le et al. 
[99, 

121]
 studied the influence of the phase composition on the activity in propylene oxidation 

and the selectivity for acrolein on catalysts synthesized by spray drying of aqueous 

solutions. 
[99, 121]

 Also solid-state reaction of Bi2O3 and MoO3 
[122]

 at temperatures up to 

1000 °C and sol-gel synthesis 
[123]

 was applied. Studying the influence of the calcination 
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temperature on the catalytic activity of γ-Bi2MoO6 revealed that calcination strongly 

deactivates the catalyst due to bismuth enrichment on the surface. 
[124]

 

The multicomponent catalyst used in the industrial process, which is highly active and 

selective in propylene oxidation to acrolein, shows a complex structure and therefore 

determination of the role of the various components in oxidation of propylene remains 

challenging. The composition of the multicomponent bismuth molybdate catalyst is given 

in Figure 1.8. The alkali promoters alter the oxidation/reduction behavior of the catalyst, 

affect surface acidity and / or cause a synergism between alkali and transition metal oxide 

phase. 
[79]

 

 Atomic %  

Mo
VI

 50 – 55  

Bi
III

 3 – 7  

M
II
 30 – 35 Co, Ni, Fe, Mg, Mn, …. 

M
III

 8 – 15 Fe, Cr, Al 

M
I
 small K, Na, Cs, Tl, …. 

X  Sb, Nb, V, W, Te, … 

Y  P, B 

Figure 1.8: Composition of multicomponent bismuth molybdate catalyst according to 
[90]

. 

The multicomponent metal oxides exhibit higher surface areas than the pure bismuth 

molybdates. 
[90]

 In the presence of iron the surface related activity outperform pure bismuth 

molybdates. 
[125]

 Marooka and Ueda 
[90]

 reported that Mo12Bi0-1Co8Fe3Ox is enriched in 

bismuth and molybdenum on the surface, whereas iron and cobalt are situated in the bulk. 

Oxygen dissociatively adsorbed on Fe-doped cobalt molybdate phases and dissociated into 

the lattice. The replacement of the divalent ions by Fe
3+

 results in anion vacancies which 

facilitates oxygen transport. 
[125]

 Also for the multicomponent propylene oxidation 

catalysts spillover of oxygen was observed (remote control theory): the adsorbed oxygen 

moves from the activating molecular oxygen phase to the second phase, which is 

responsible for the oxidation of hydrocarbons. 
[126]

 Co
2+

 and Fe
3+ 

activate molecular 

oxygen more effectively than bismuth molybdate. Thus on supported Bi2Mo3O12 catalysts 

it could be demonstrated that the active oxygen migrates from cobalt or iron molybdate to 

Bi2Mo3O12 by bulk diffusion through lattice vacancies. 
[127]

 A comparison of the Mo-Bi-

Co
2+

-O and the Mo-Bi-Co
2+

-Fe
3+

-O system showed that for both systems lattice oxygen 
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from bismuth molybdate participated in propylene oxidation, whereas the lattice oxide ions 

from the other transition metal molybdate participate only for iron containing systems. 
[104]

  

MoO3 was applied as a model catalyst to study the structure-activity relationships of 

molybdenum based catalysts. It was stated that α-MoO3 is not active in selective propylene 

oxidation and that bulk nanostructuring and complex surface termination, which is only 

detectable in transition electron microscopy examinations, are required for efficient 

catalysts. 
[128]

 Ressler et al. 
[129]

 demonstrated by in situ X-ray absorption spectroscopy 

(XAS) that under reaction conditions (0 – 500 °C, C3H6/O2 from 1:1 to 1:5) α-MoO3 was 

partially reduced and defects similar to “Mo18O52” were formed. The original layered α-

MoO3 structure was not disturbed and α-MoO3 remained the only crystalline phase 

detected in the XRD. The presence of a number of these defects is essential to make 

orthorhombic MoO3 an active catalyst. The weakening of the Mo-O bonds, the sufficient 

mobility of oxygen ions and the formation of defects was suggested to be crucial for the 

reduction of MoO3 and for its catalytic activity. 
[129]

 During the creation of these defects 

steps, point defects and new sites can be created by the removal of oxygen atoms from the 

catalyst surface as examined by Smith and Rohrer 
[130-131]

 by atomic force microscopy, 

which can influence the catalytic activity. 
[79]

  

Furthermore surface sensitivity of α-MoO3 with regard to catalytic activity and selectivity 

in propylene oxidation was investigated by several groups. Volta and coworkers 
[132-134]

 

applied graphite supported MoO3 prepared from MoCl5 at different temperatures in 

propylene oxidation and claimed the (100) plane to be active for acrolein formation and the 

(010) plane for CO2 production. Hence, they concluded that hydrogen abstraction occurs 

on the (001) and (100) facets, whereas nucleophilic addition of oxygen into the allylic 

species takes place on (010). Testing the catalytic performance of oxidized Mo foils in the 

oxidation of propylene confirmed that total oxidation occurred on the basal (010) planes. 

[135-136]
 In contrast, Ziolkowski 

[137]
 concluded from a theoretical study that acrolein can be 

formed on (101) facets containing isolated oxygen. When oxygen groups were present like 

on the (001) or (100) facets, further oxidation or undesired total combustion, respectively, 

occurred. Brückman et al. 
[138]

 reported the (100) and (101) facets to be responsible for the 

activation of propylene, while oxygen was subsequently inserted into activated propylene 

on the (010) facet.  
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1.2.2. Hydrotreating 

Hydrotreating describes the catalytic removal of heteroatoms from organic compounds 

with hydrogen, whereby the removal of sulfur is called hydrodesulfurization (HDS) and 

the removal of nitrogen hydrodenitrogenation (HDN). Besides the removal of sulfur and 

nitrogen, hydroprocessing leads to partial hydrogenation (HYD) of unsaturated 

hydrocarbons, mainly aromatics. The hydrotreating process is important in the petroleum 

refining industry and has been applied for over 50 years. All fractions of the distillation 

except for the light ends are treated in hydrogen for purification. This treatment is 

important to avoid NOx and SOx emissions, protect the catalyst used in following stages of 

the refining process as well as to improve the properties of the refined product. 
[139]

 

Recently, new legislations regarding the sulfur content of support fuels has resulted in the 

demand for ultra low sulfur diesel (ULSD). Additionally the availability of light crude oil 

decreases and increasingly heavy feedstocks have to be refined, leading to new challenges 

for the refining industry and for catalyst design. 
[140-141]

 

The commercial hydroprocessing catalyst typically used is alumina supported 

molybdenum sulfide promoted with Ni or Co. 
[141-143]

 A pre-shaped alumina support is 

simultaneously impregnated with Mo and Co or Ni. Calcination delivers the oxide form. 

The oxidic catalyst is subsequently activated by in situ sulfidation with H2S/H2 and 

transformed into the sulfide form Co/Ni-Mo-S. The catalyst of choice depends on the 

reaction conditions e.g. temperature, feedstock, space velocity. 
[141]

 Co-Mo-S catalysts are 

more active in hydrodesulfurization, whereas Ni-Mo-S shows better activity for 

hydrodenitrogenation and hydrodeoxygenation. Ni-W-S is highly active in aromatic or 

olefin hydrogenation but is more expensive than the Mo based materials and therefore 

rarely used. 
[139]

 

For further improvement of the catalytic performance it is important to control the 

preparation and activation of the catalyst and to understand the characteristics of the active 

site. By application of various techniques such as extended X-ray absorption fine structure 

(EXAFS), transmission electron (TEM) and scanning tunneling microscopy (STM), 

electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS) and 

infrared (IR) it was demonstrated that the structure of the Co-Mo-S catalyst was identical 

to sulfided Mo/Al2O3, i.e. the active phase consists of slabs of hexagonal MoS2 layers 

(crystal structure depicted in Figure 1.9). The cobalt was analyzed to exist as Co in the 
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alumina subsurface and bulk Co9S8, depending on the catalyst composition and preparation 

conditions. 
[144-149]

 Delmon 
[150-152]

 proposed and developed the “remote control 

mechanism” based on unsupported catalysts, which proceeds analogue to the remote 

control mechanism in selective oxidation reaction. The donor phase produces activated 

hydrogen „HSO‟, which spills over to the acceptor phase, where it can react with a 

heterocyclic compound and e.g. remove the sulfur. Co9S8 can activate hydrogen and 

subsequently this spilled over hydrogen partially reduces the molybdenum sulfide phase. 

Chu and Schmidt 
[153]

 observed by scanning tunneling microscopy (STM) and atomic force 

microscopy (AFM) that the surface of MoS2 is partially destroyed by hydrogen especially 

on the edges of the hexagonal crystallites and sulfur is removed. This effect is strongly 

increased by the presence of Co or Ni. When sulfur is removed an unsaturated coordination 

site (CUS) is created which acts as a hydrogenation (HYD) center. The proposed 

mechanism for hydrodesulfurization of thiophene is depicted in the literature 
[142]

. 

Generally, it is assumed that the sulfur containing heterocyclic compound and hydrogen 

react with different catalytic sites. The heterocyclic compound is adsorbed on a reduced 

metal center (e.g. Mo
4+

), whereas hydrogen is activated by a sulfur site. 
[142]

 

 

Figure 1.9: Crystal structure of layered MoS2 projected along the a or the b axis. 

Investigation of the influence of the Co concentration in Co/MoS2 catalysts on the activity 

for HDS of thiophene showed that there were two increases in activity: At low cobalt 

content the edges of MoS2 are decorated with cobalt ions and the activity increases until 

saturation of the molybdenum sulfide with Co. At higher Co content they suggested the 
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increase in activity could be attributed to formation of Co9S8, which was detected in the X-

ray diffraction pattern. 
[154]

 

It can be concluded that Ni or Co increases the structural disorder of MoS2 or WS2 leading 

to the formation of non-stoichiometric highly active MoS2. The promoter segregates from 

the Co/Ni-Mo/W-S mixed metal sulfide phase creating separated crystals of MoS2 stacks 

and Co9S8. The MoS2 stacking and the promoter segregation play important roles in 

supported industrial catalysts and unsupported model catalysts. 
[155-156]

 

This was not only demonstrated for Co- and Ni-promoted catalysts but also for the Fe-Mo-

S system. Mixed Fe-Mo and Fe-W sulfides indicated similar structural and morphological 

properties to Co/Ni-Mo/W-S. 
[155, 157-159]

 Introduction of a second promoter (Co or Ni) to 

the Fe-Mo/W-S catalyst increased the catalytic activity, which was attributed to contact 

synergy (remote control model): the segregated promoter sulfide (Co9S8, FeS2 or Ni3S2) 

provided spill over hydrogen to the active sites on the edges of the MoS2 structures. 
[160-161]

 

Recently it was demonstrated that the active sites for key catalytic steps are not sulfur 

vacancies but fully sulfur-coordinated sites with metallic character, so called brim sites. 

Application of density functional theory (DFT) and atom-resolved scanning tunneling 

microscopy (STM) provided insight in the electronic structure of promoted and 

unpromoted MoS2 showing that small molybdenum sulfide nanocrystals may have special 

sites at the edges with metallic properties. 
[162-163]

 Model studies using MoS2 supported on 

Au(111) suggested that MoS2 forms triangular platelets of S-Mo-S slabs stacked to 

different degrees. 
[140, 162]

 High-resolution transmission electron microscopy (HRTEM) 

measurements on carbon supported industrial type MoS2 prepared by incipient wetness 

impregnation of high surface area graphitic carbon support confirmed the structure 

estimated for the model systems by STM. Additionally it was possible to determine the 

type (Mo or S) and the concentration of the edge sites. Shortly this structural information 

may be combined with catalytic activity data. 
[164-165]

 Addition of cobalt to MoS2 strongly 

influences the morphology which changes from triangular to hexagonal (cf. Figure 1.10a) 

due to the preference of the promoter atoms to substitute certain sites. 
[140, 166]

 The Co-Mo-

S clusters are terminated by (1010) edges and (1010) edges (see Figure 1.10b), where the 

promoter atoms exclusively occupy the so called S edges [(1010) edges] (see Figure 1.10d) 

as a result of the slightly higher stability which can be calculated for the different edges 

from the surface free energies. 
[163, 166]
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Figure 1.10: (a) Atom-resolved STM image of single layer Co-promoted MoS2 demonstrating the 

metallic-like sites which look brighter; (b) Ball model of Co-Mo-S: top view; (c) Side view of 

MoS2 (1010) edge; (d) Side view of Co substituted MoS2, the Co-Mo-S (1010) edge; with 

permission from 
[166]

. 

Promoter atoms may also be present in the support or as separate promoter sulfide 

structures (see Figure 1.11) but these species are not active and it is important to avoid 

their formation during catalyst preparation and activation. 
[167]

 Generally, preparation 

conditions of the Co-Mo-S materials significantly influence their catalytic activity. 

 

Figure 1.11: Illustration of the various phases in a Co-Mo catalyst after sulfidation. The CoMoS 

phase is required whereas formation of the other phases should be prevented. Adapted with 

permission from 
[166]

. 

During in situ STM studies reaction intermediates associated with brim sites could directly 

be observed. Due to their metallic character brim sites may bind sulfur containing reactants 

and adjacent edge sites in the form of SH-groups may transfer hydrogen, resulting in 

hydrogenation of a C=C double bond and breakage of C-S bonds. 
[168]

 The brim sites 

located on the top of multi-stacked MoS2 structures are considered “open” sites which 

enable the adsorption of sterically hindered molecules such as dialkylated 



  1.2. Target reactions 

Hydrothermal synthesis of Mo based catalysts 31                                                                  

dibenzothiophene (DBT) which are considered the least reactive sulfur compounds in the 

diesel range but need to be removed for ultra low sulfur diesel (ULSD) production. 
[167]

 

These sterically hindered DBTs mainly proceed via pre-hydrogenation (HYD) route rather 

than direct desulfurization (DDS), which dominates for molecules like DBT. After pre-

hydrogenation the alkylated DBTs are not planar anymore and sulfur can be easier 

removed. 
[169]

 H2S inhibits hydrodesulfurization but it mainly inhibits the DDS and not 

HYD pathway, due to the fact that brim sites are not poisoned by H2S. 
[142]

 Basic nitrogen 

compounds are strong inhibitors to the HYD pathway, because these N-containing 

molecules strongly interact with brim sites as well as with their neighboring acidic protons. 

[140]
   

1.3. Motivation 

Over the past decades, the synthesis of inorganic nanomaterials with novel structures and 

designed morphology 
[11, 21]

 as well as a reliable and predictable production has attracted 

considerable interest. It is well known that shape and structure of materials determine their 

properties such as electrochemical activity. 
[170-171]

 They also play a decisive role in 

catalysis 
[172-175]

 and especially selective oxidation reactions are known to be strongly 

structure sensitive 
[134, 176-178]

. Therefore the ability to control particle size, shape and 

composition of transition metal oxides has become an important topic. A detailed 

understanding of the effect of the preparation conditions on the properties of the product 

and the resulting effect on the catalytic activity is essential in rational design of catalysts. 

Conventional preparation methods like co-precipitation or wet impregnation have been 

optimized in the past but they may have drawbacks like the requirement of calcination to 

obtain the desired crystalline phase. Hydrothermal synthesis, which is in catalysis usually 

applied to synthesize zeolites, can give access to a large variety of transition metal oxide 

materials, metastable or novel phases as well as known phases with defined morphologies. 

The aim of this work was to synthesize materials under mild hydrothermal conditions as a 

typical soft chemistry route and to compare them to catalysts prepared by flame spray 

pyrolysis, a novel preparation method giving access to nanostructured materials. 

Nanomaterials exhibit different properties compared to the according bulk materials and 

should be beneficial for catalysis due to the small ratio of bulk material to exposed surface. 

In the present work, molybdenum based catalysts are prepared by hydrothermal synthesis 

and flame spray pyrolysis, the resulting properties are studied in detail and compared to 
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materials synthesized by conventional co-precipitation. Starting from rather simple α-

MoO3, in the next step more complex Bi-Mo-O and Co-Mo-O systems are prepared. The 

catalysts are applied in selective oxidation of propylene and hydrotreating: Two industrial 

relevant processes which have been applied for over 50 years, but always have to face new 

challenges.  
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2 Materials and methods 

In this chapter the general experimental procedures and methods are described with focus 

on the experimental set-ups and characterization methods. A detailed description of the 

catalyst synthesis is given in the different chapters. 

2.1. Catalyst synthesis 

All chemicals applied in this work were analytical grade and used without further 

purification.  

2.1.1. Hydrothermal synthesis 

The precursors were dissolved or suspended in water, a diluted acid or base and the pH 

value was adjusted with the aid of a titrator (TitroLine easy, Schott Instruments). After 

homogenization through magnetic stirring for a certain time the Teflon-Inlays were 

transferred in the 250 ml stainless steel autoclaves (see Figure 2.1) from Berghof, sealed 

and put in a drying cabinet (Binder) for the required time. The autoclaves were taken out of 

the oven, cooled down to room temperature and the resulting solid was filtrated and 

washed. Afterwards, the product was dried at room temperature and ambient pressure for 

several days. 
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Figure 2.1: Schematic presentation of hydrothermal synthesis steps.  

2.1.2. Flame spray pyrolysis (FSP) 

The FSP set up at the Institute for Chemical Technology and Polymer Chemistry, KIT is 

based on previous designs by Mädler and Pratsinis 
[64, 179-181]

 depicted in Figure 1.4 

corresponding to a set-up at DTU 
[76, 182]

. A photograph of the set up with description of the 

various components is shown in Figure 2.2. The capillary has a diameter of 0.413 mm 

(Hamilton KF6 gauge 22) and can be placed in the capillary holder in the nozzle. The 

precursor solution is loaded in a 50 ml syringe, which is placed in a syringe pump (World 

Precision Instruments) and the precursor solution was fed to the capillary tube at 5 ml/min. 

The gas flows of oxygen and methane are controlled by mass flow controllers (Bronkhorst) 

and typically 5 Nl/min of oxygen as well as a mixture of 1.6 Nl/min of oxygen and 750 

Nml/min methane were used as dispersion and supporting gas, respectively. The flame was 

ignited by the oxygen/methane mixture and the product particles were collected on water 

cooled glass fiber filter (Ø 240 mm; Whatman GF6) by means of a vacuum pump (R5, 

Busch). 

 



  2.1. Catalyst synthesis 

 Hydrothermal synthesis of Mo based catalysts 35 

 

Figure 2.2: Photograph of the FSP set-up at Karlsruhe Institute of Technology (KIT) with 

description of the different components. The whole set-up is placed in a fume hood. 

Typically, after 100 ml solution i.e. two syringe loadings the filter was changed and about 

500 mg of catalyst is recovered from the filter by careful scraping with a spatula. The 

recovered powder is sieved to remove large pieces of filter material from the product. 

Smaller filter pieces remaining in the FSP product should be catalytically inactive but 

could influence the weight measurements e.g. for the analysis of the surface area or 

catalytic activity measurements. 

2.2. Characterization 

2.2.1. X-ray diffraction (XRD) 

X-rays are partly scattered on the surface of a crystal and part of the X-rays can pass 

through to the next layer of atoms. For obtaining characteristic X-ray pattern, the sample 

must have a long range order and the spacing between the atoms must be close to the 
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radiation wavelength. If diffracted beams of atoms in a periodic lattice are in phase, 

constructive interference occurs and the diffraction pattern shows a reflection. 
[183]

 Hence, 

reflections in the diffraction pattern only occur if the Bragg equation (2.1) is satisfied: 

n λ = 2 d sinθ (2.1) 

n integer 

λ wavelength 

d  spacing between atom layers 

θ angle of incidence of the X-rays  

In this work the structure of the different samples was determined by powder X-ray 

diffraction (PXRD) using a Bruker D8 Advance diffractometer in the range 2θ = 8 - 80° 

(step size 0.016 °) with Cu Kα radiation (Ni-filter, 45 mA, 35 kV) in Bragg-Brentano 

geometry on rotating sample holders. In the case of Bragg-Brentano geometry the detector 

is always at 2θ of the incident beam, whereas the sample holder is always at θ of the 

incident beam. For characterization of the sulfided cobalt molybdates a PANalytical X´Pert 

PRO was used with Cu Kα radiation (Ni-filter, 40 mA, 45 kV) on rotating sample holders 

in the same 2θ range as the oxidic materials. 

2.2.2. Raman spectroscopy 

Raman spectroscopy relies on inelastic scattering of monochromatic light, usually from a 

laser, which can interact with a molecule. 
[184]

 When energy is transferred between a 

photon and a molecule, the molecule is excited from the ground state to a virtual state. 

After relaxation the molecule returns to a different energy state, not the ground state. The 

difference in the emitted photon energy leads to the Raman shift. This Raman shift is 

independent of the laser used in the measurements. 
[185]

 The resulting Raman bands can be 

assigned to vibrations of different bonds in the molecule, whereas the shortest bonds 

vibrate at the highest energies resulting in high wave numbers for the Raman shift. In this 

work Raman spectra were recorded at Haldor Topsøe A/S with a Horiba Jobin Yvon 

spectrometer (LabRam) attached to an Olympus microscope (BX 40) using a HeNe laser 

with 632.8 nm excitation. Spectra were measured in the 100 - 1100 cm
-1

 range with the 

sample on an object slide without pretreatment. Several spectra from section 4.3.4.1 were 

recorded by Randi Hansen and Dr. Pablo Beato. 
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2.2.3. X-ray absorption spectroscopy (XAS) 

X-ray absorption spectroscopy can provide information about the local atomic structure of 

a material, amorphous phases can be studied and information about promoters as well as 

local distortions of crystal lattices can be obtained. 
[186]

 Monochromatic X-rays are used to 

excite an electron to an unoccupied molecular orbital (MO); the absorbed energy can be 

determined by comparing the intensity of the beam in front of the sample and behind it. X-

ray absorption spectra are measured at an element specific energy edge to provide enough 

energy to excite the electron close to the core on a higher energy level. The excited 

electron can interact with neighboring atoms, leading to backscattering effects. The 

resulting spectra can be divided into two regions: The X-ray absorption near edge structure 

(XANES) and the extended X-ray absorption fine structure (EXAFS). XANES gives 

information about the electronic structure and the oxidation state of the absorber atom, the 

electronegativity of the neighboring atoms and the symmetry of the atomic environment, 

whereas by EXAFS analysis the coordination number, the bond length and the short range 

order can be determined. 
[186-187]

 

XAS was performed at the SNBL beamline (BM01B) at the ESRF synchrotron radiation 

source (Grenoble, France). The samples were diluted with cellulose or boron nitride and 

pressed as a pellet for ex situ measurement in transmission mode at the Mo K edge (20.0 

keV). The spectra were recorded by Dr. Hudson Carvalho and Dr. Dmitry Doronkin. XAS 

data were processed using the IFFEFIT software package. 
[188]

 

2.2.4. Physisorption 

Nitrogen physisorption at the boiling point of nitrogen was used to determine the specific 

surface area (SSA) of the various samples with a Belsorp II mini (BEL Japan Inc.) using 

multipoint BET theory in the p/p0 = 0.05 – 0.3 range. The model according to Brunauer, 

Emmett and Teller (BET) considers multilayer adsorption and the surface area can be 

calculated from the linear part of the adsorption/desorption-isotherm with the following 

equation 
[183]

: 
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 (2.2) 

p equilibrium pressure of adsorbate 

p0 saturation pressure of adsorbate 

nads quantity of adsorbed gas 

nm quantity of a monolayer adsorbed gas 

C BET constant 

2.2.5. Electron microscopy 

Electrons give access to microscopic images with a higher resolution than visible light 

microscopes. Different modes of electron microscopy were used in the present work 

namely scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM). SEM is a straight forward method to determine the size and morphology of 

particles. A narrow electron beam is scanned over the surface of a sample and either 

secondary (low energy) or backscattered electrons in relation to the primary beam are 

detected. Resolutions of 50 – 100 nm can be reached. TEM can be applied for the 

examination of particles in the size range 1 nm – 5 µm. A homogeneous and parallel 

electron beam accelerated with high voltage of 50 - 100 kV penetrates the thin sample 

leading to elastically scattered electrons which provide information about the inner 

structure and morphology of the particles. Energy dispersive X-ray (EDX) spectroscopy 

was used to determine the elemental composition at various spots of the samples. Element 

characteristic X-radiation is generated by the interaction of electrons and matter giving 

information on the composition. 
[183, 186]

 

For scanning electron microscopy (SEM), performed on a Quanta 200 ESEM (FEG) 

microscope at the Centre of Electron Nanoscopy (CEN) at the Technical University of 

Denmark (DTU), samples were deposited on a carbon foil on aluminum stubs and coated 

with carbon to improve the conductivity. 

Bright field transmission electron microscopy (Tecnai T20, DTU-CEN) was measured on 

the as-prepared powders supported on lacey carbon copper grids by Dr. Martin Høj. The 

oxidic catalyst powder was transferred to the grid by dipping it several times in the powder 
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and removing loosely bound excess. Transmission electron microscopy (TEM) was also 

used to examine the spent, sulfided cobalt molybdate catalysts, i.e. the samples after their 

application in the hydrotreating test reaction, using a CM 200 FEG from Philips/FEI at 

Haldor Topsøe A/S. For this purpose, a small amount of the sample was dispersed in 

ethanol in an ultrasonic bath and a drop of the suspension was placed on a Cu-grid coated 

with carbon. 

2.2.6. X-ray photoelectron spectroscopy (XPS) 

XPS was used for the analysis of the surface composition. A sample is irradiated by X-rays 

and surface atoms adsorb photons leading to the ejection of core or valence electrons, 

which have a certain binding energy (Eb) and kinetic energy (Ekin). The number of 

photoelectrons escaping from the surface is continuously detected as a function of the 

kinetic energy, which is translated in the binding energy characteristic for an element. 
[184]

 

EB = hν – Ekin - φ (2.3) 

    φ work function of the spectrometer 

    h Planck´s constant 

    ν frequency of excitation radiation 

XPS measurements require high vacuum and are surface sensitive because the photons 

have only sufficient energy to penetrate the surface layers. 
[186]

 In this work XPS was 

performed by Vanessa Trouillet at IAM-ESS at KIT with a K-Alpha spectrometer 

(ThermoFisher Scientific) using a microfocused Al Kα X-ray source (400 µm spot size). 

Details of the data acquisition and processing using the Thermo Avantage software is 

described elsewhere. 
[189]

 Charge compensation during analysis was achieved using 

electrons of 8 eV energy and low energy argon ions to prevent any localized charging. 

Spectra were fitted with one or more Voigt profiles (binding energy uncertainty: ±0.2 eV). 

[100, 190]
 Scofield sensitivity factors were applied for quantification. 

[191]
 The energy scale 

was shifted to the binding energy of C 1s (C-C, C-H) at 285.0 eV and was calibrated by 

means of the photoelectron peaks of metallic Cu, Ag and Au, respectively.  
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2.2.7. Analysis of bulk composition 

The bulk composition of the catalysts was determined by optical emission spectrometry 

with inductively coupled plasma (ICP-OES, Agilent 720/725-ES) by Herrmann Köhler, 

IKFT at KIT. The plasma was created by a 40 MHz high-frequency generator and argon 

was applied as the plasma gas. For the ICP-OES each sample was dissolved in 6 ml 

concentrated HNO3, 2 ml concentrated HCl and 0.5 ml H2O2 in a microwave (at 600 Watt 

for 45 minutes). Quantitative nitrogen analysis was carried out using hot gas extraction 

method (LECO TC 600) by Dr. Thomas Bergfeldt, IAM-AWP at KIT. The samples were 

heated in a graphite crucible under flowing helium and thermally decomposed. The amount 

of N2 gas was determined by a heat conductivity detector. Each measurement was repeated 

twice and a standard deviation was calculated. 

2.2.8. Temperature programmed reaction methods 

Temperature programmed reduction 

Temperature programmed reduction (H2-TPR) was conducted in a tubular reactor using 

100 mg of sample and a flow of 96 ml/min with a gas composition of 5% H2 in argon. 

Crushing and sieving of the sample did not change the results and TPR was performed 

using the as-prepared powder. The reactor was heated with 5 K/min from room 

temperature to 1000 °C. Reduction led to a decrease in hydrogen concentration which was 

detected by a thermal conductivity detector. The condensation of the produced water in the 

tubes was avoided by using a cold trap, which was cooled with liquid nitrogen.  

Temperature programmed desorption 

The amount of acidic sites on the surface was estimated using temperature programmed 

desorption of ammonia (NH3-TPD) by heating up to 600 °C with 10 K/min and on-line gas 

analysis by FTIR (MultiGas™ Analyzer, MKS instruments). For this purpose 400 mg of 

catalyst (without crushing and sieving) were fixed with glass wool in a tubular glass 

reactor. The reactor was heated up with a rate of 10 K/min and the catalyst was pretreated 

in synthetic air (500 ml/min) at 500 °C for 1 h. After cooling down to room temperature, 

the gas was changed to pure nitrogen and the tubes were flushed to remove oxygen. After 

saturation with ammonia at 50 - 60 °C using 500 ml/min with a composition of 1000 ppm 

NH3 in N2, the excess amount of NH3 was removed (flushing with N2 until steady 

minimum of NH3 in the exit gas).  
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2.3. Catalytic activity measurements 

2.3.1. Selective oxidation of propylene 

Propylene conversion and acrolein / COx selectivity was measured in a continuous flow 

fixed bed micro reactor established at the Technical University of Denmark (DTU) at the 

Department of Chemical and Biochemical Engineering 
[192]

. The test unit was 

commercially built (ChimneyLab Europe) and enabled measurements for 50 - 500 mg of 

sieved catalyst, total gas flow of 30 - 300 Nml/min at 200 - 850 °C near ambient pressure. 

A photograph of the set-up is shown in Figure 2.3 and Figure 2.4 presents a photograph of 

the U-shaped quartz reactor. Gas mixing is performed by four calibrated mass flow 

controllers (MFC, Brooks) and dry air can be supplied by a single MFC for oxidative 

pretreatment of the catalyst (see PI-diagram in Figure 2.5). Three U-shaped quartz reactors 

with 4 mm inner diameter are connected in series configuration and each reactor is placed 

in a 50 mm diameter tubular furnace with individual temperature control (Watlow). A 

thermocouple was placed inside each reactor just touching the catalyst bed to measure the 

reaction temperature and a pressure transducer placed upstream of the reactor monitored 

the actual reaction pressure. Gas analysis was performed using a dual channel GC–MS 

(Thermo Fisher) with a TCD detector to quantify N2, O2, CO and CO2 using Hayesep Q 

and Molsieve 5A packed columns and a FID detector parallel with the MS to identify and 

quantify light hydrocarbons and oxygenated products. 
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Figure 2.3: Photograph of the activity test set-up for selective oxidation reactions at DTU, 

Department of Chemical and Biochemical Engineering. On the left the mass flow controllers can 

be seen and on the right is the GC-MS. On the picture all ovens are lifted up and the reactors are 

covered. 

 

Figure 2.4: Photograph of the quartz reactor loaded with a catalyst connected to the test set-up. 
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Figure 2.5: PI-diagram of the set-up for selective oxidation. The first reactor is disconnected to the 

gases e.g. for loading or unloading of the catalyst, whereas the test gas mixture is running through 

the second reactor and the third reactor has the flow of air for oxidative pre-treatment of the loaded 

catalyst. Propylene can replace propane. 
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The measured concentrations were corrected for expansion of the gas due to combustion 

using the nitrogen signal as internal standard, before calculating the conversion of 

propylene (XPropylene), the selectivity to acrolein (SAcrolein) and the acrolein yield (YAcrolein). 

               
     

     
       

(2.4) 

                     propylene concentration detected in the product stream [vol.%] 

     
      

 propylene concentration detected in the bypass [vol.%] 

           
      

     
      

        
 (2.5) 

                       propylene concentration detected in the product stream [vol.%] 

                                   
      

     
       (2.6) 

In a typical activity test the catalyst powders were crushed and sieved to 150 – 300 µm 

sized particles, 500 mg of sample was loaded in the reactor without dilution and stabilized 

with quartz wool. The catalysts were pre-oxidized in dry air at 550 °C for calcined samples 

and 300 °C for as-prepared samples in the reactor. Activity tests were performed using a 

gas composition of C3H6/O2/N2 = 5/25/70 and flows of 50, 80, 120, 180, 260 Nml/min. 

Part of the activity measurements was performed by Dr. Martin Høj, others during a 

research stay at DTU.  

A blank test without catalyst using a total flow of 100 Nml/min with C3H6/O2/N2 = 5/25/70 

showed that no propylene was converted at temperatures from 400 – 540 °C. The values 

determined for propylene and oxygen conversion varied between 0 – 0.6% indicating that 

the error is below 1%. Repetition of the activity measurement for sample Bi1Mo1_pH8 

(chapter 4.3.4) suggested that the relative error is smaller than 6% for propylene oxidation 

and 10% for acrolein selectivity. Limitations through mass transfer can be neglected 

according to 
[192]

, where higher rates were achieved.  
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2.3.2. Hydrotreating 

The activity measurements were performed at Haldor Topsøe A/S in a vertical fixed-bed 

reactor with 7.5 mm inner diameter (see Figure 2.6). The as-prepared catalyst powder was 

pressed into pellets by means of a hydraulic press with subsequent mechanical granulation 

to achieve the 600 – 850 µm sieve fraction. 300 mg of catalyst were diluted with 200 µm 

Ballotini glass beads and the mixture was loaded into the reactor. Below and above the 

catalyst bed glass beads were placed to secure steady mass and heat transfer. 
[192-193]

 

 

Figure 2.6: Cross section of high pressure reactor for hydrotreating test reaction according to 
[193]

. 

Upon entry into the hot reactor the liquid feed was evaporated and mixed with a hydrogen 

stream. The oxidic precursor was sulfided in situ for 4 h at 350 °C in a feed flow 

containing dimethyldisulfide (DMDS) dissolved in n-heptane with hydrogen at a partial 

pressure of p(H2) = 42 atm resulting in a total pressure of 50 atm. Under these conditions 

all components were in the gas phase and DMDS decomposes to hydrogen sulfide and 

methane. After this activation the liquid feed was switched to a model oil composed of 3.0 

wt.% dibenzothiophene (DBT), 0.5 wt.% indole, 1.0 wt.% naphthalene, 2.5 wt.% DMDS 

and 0.5 wt.% n-nonane in n-heptane. The test was performed at 50 atm (p(H2) = 38 atm) at 

350 °C with a liquid feed rate of 0.5 ml/min and a gaseous hydrogen feed rate of 250 

Nml/min. DMDS decomposed in the presence of H2 and the resulting partial pressure of 

H2S ensured that the catalyst remained fully sulfided. 
[192-194]

 Note that this mixture 
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allowed determination of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and 

hydrogenation (HYD) activity since DBT is a representative sulfur compound, indole 

represents nitrogen containing diesel compounds and naphthalene is a representative 

aromatic compound. The product stream was continuously analyzed by GC-FID analysis 

and n-nonane was added as an internal standard for the gas chromatographic (GC) analysis. 

The conversion was calculated by integration of the peaks in the chromatogram. The 

results were related to a commercial reference catalyst. DBT can be desulfurized via two 

different routes: direct desulfurization to biphenyl (BP) or pre-hydrogenation to cyclohexyl 

benzene (CHB) (see Figure 2.7). Indole was hydrodenitrogenated to ethylbenzene and 

ethylhexane and naphthalene was hydrogenated to tetralene.  

 

Figure 2.7: The reaction pathways of the three model compounds for hydrodesulfurization (a) by 

direct desulfurization or pre-hydrogenation of DBT, hydrodenitrogenation of indole (b) and 

hydrogenation of naphthalene (c). 

For desulfurization, denitrogenation and hydrogenation the pseudo first order rate 

constants were calculated according to the following equation 
[192-193]

: 
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k = -WHSV ∙ ln(1 - X) (2.7) 

WHSV = (Ffeed ∙ ρfeed)/wcatalyst (2.8) 

   X  conversion 

   WHSV  weight hourly space velocity 

   Ffeed  volumetric flow rate 

   ρfeed   density of the feed 

   wcatalyst  catalyst mass 
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3 MoO3 as model catalyst in the selective oxidation of propylene
1
 

3.1. Introduction 

As already mentioned in 1.1.1, hydrothermal synthesis is an ideal method to obtain fine 

powders of controlled morphology, high crystallinity with narrow particle size distribution. 

For the hydrothermal synthesis of molybdenum trioxide in the shape of ribbons, rods or 

nanobelts various preparation routes are known 
[10-13, 15, 21, 171]

 and these MoO3 nanorods 

tolerate temperatures up to 400 °C. 
[11]

  

MoO3 is known to be a structure sensitive catalyst in the oxidation of olefins 
[132-134, 138]

 and 

alcohols 
[178, 195-196]

 as well as the reduction of nitric oxide 
[197]

. However, there is still no 

general agreement on the role of the different facets of MoO3 crystals (cf. 1.2.1) and this 

discussion in the literature corroborates the need for further studies on well characterized 

molybdenum trioxide materials using hydrothermal synthesis for the design of MoO3 with 

various morphologies and thus different preferentially exposed crystal facets. Hence, α-

MoO3 was synthesized under hydrothermal conditions to rationally vary the morphology 

using e.g. different precursors, acids and pH values and to test them in selective propylene 

oxidation. In addition, one-step flame spray pyrolysis 
[75]

 was applied for comparison. 

Beside the structure of the prepared MoO3, also its morphology, acidity, surface area and 

nitrogen content were studied in detail. Finally, the catalysts were also characterized after 

their application in selective oxidation of propylene, to analyze possible changes of the 

applied materials during time on stream.  

                                                 

1
 Part of this chapter will be published as: Systematic study on the influence of particle size and morphology 

of α-MoO3 on the selective oxidation of propylene by Kirsten Schuh, Wolfgang Kleist, Martin Høj, Anker 

Degn Jensen, Pablo Beato, Greta R. Patzke and Jan-Dierk Grunwaldt. 
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3.2. Catalyst preparation 

For the synthesis of pure molybdenum trioxide (MoO3) by hydrothermal synthesis 

different precursors and acids were used. The names are given based on the precursor, the 

acid (HNO3 and HOAc for acetic acid), pH value (adjusted by HNO3), additional 

calcination (at 550 °C) and special methods e.g. FSP for flame spray pyrolysis (detailed 

denotation see further below). The preparation was performed as follows. 

Ammonium heptamolybdate tetrahydrate (AHM; (NH4)6Mo7O24 ∙ 4H2O, VWR AnalaR 

NORMAPUR) was dissolved in 100 ml deionized water under continuous stirring at room 

temperature. The pH value was adjusted to 0 - 2 by using 2.2 M nitric acid (prepared from 

nitric acid 65%, VWR AnalaR NORMAPUR), the resulting colorless solution was stirred 

for 30 minutes and subsequently heated in sealed autoclaves with Teflon inlays (cf. chapter 

2.1.1) at 180 °C for 24 h in an oven.  

MoO3 ∙ 2H2O (synthesized according to a literature procedure 
[198]

) and diluted nitric acid 

(2.2 M) or acetic acid (25 vol.%; prepared from 100% glacial acetic acid, Merck p.a.) were 

added to the Teflon liners as reported in literature 
[11]

 and the resulting suspensions were 

heated in the autoclaves at 180 °C for 48 h in an oven (details see chapter 2.1.1). 

After the autoclaves were cooled down to room temperature, the solid product was 

separated by filtration, washed with water, ethanol and finally acetone. The resulting 

powder was dried at room temperature and ambient pressure. Afterwards all samples were 

calcined at 550 °C for 4 h, to exclude a possible influence of the temperature treatment on 

the catalyst performance 
[124]

. These samples are denoted here as followed: 

Precursor_pH_synthesis time or Precursor_acid. 

In addition, MoO3 was prepared by one-step flame spray pyrolysis (FSP). The precursor 

solution was prepared by dissolving 9.6 g Mo(VI)-2-ethylhexanoate (15% Mo; Strem 

Chemicals) in 100 ml xylene. The sample collected from the filter was calcined at 550 °C 

for 4 h (FSP_MoO3). Details of the preparation by FSP were already described in chapter 

2.1.2. 

1 g of the non-calcined flame made MoO3 was also treated hydrothermally in 2.2 M nitric 

acid for 24 h at 180 °C (FSP_MoO3_HNO3). For comparison with the hydrothermally 

synthesized and flame made samples ammonium heptamolybdate was calcined for 10 h at 

550 °C to prepare pure α-MoO3 (AHM_calcined). 
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To analyze the influence of nitrogen incorporation into α-MoO3 on the catalytic 

performance of the hydrothermally synthesized materials, the sample prepared from MoO3 

∙ 2H2O and acetic acid was also treated in ammonia. The sample was dried in synthetic air 

at 110 °C for 2 h and then treated in 5% NH3 in N2 for 10 h using a flow of 500 ml/min at 

250 °C. This resembles the procedure described by Kuehn et al. 
[199]

 Afterwards the 

resulting material was calcined at 550 °C for 4 h like all the other samples. 

The synthesized samples were characterized by powder X-ray diffraction (PXRD), Raman 

spectroscopy, H2-TPR and NH3-TPD as described in chapter 2.2. The surface area was 

determined by nitrogen physisorption, the nitrogen content of the samples was analyzed 

(see 2.2.7) and the particle morphology was determined by SEM for the hydrothermally 

synthesized samples and TEM in case of the flame made samples. Ex situ XAS 

measurements were performed using pellets of the samples diluted with cellulose. Details 

of the characterization are described in chapter 2.2. Catalytic activity measurements for 

selective oxidation of propylene were performed according to chapter 2.3.1. 

3.3. Results and Discussion 

3.3.1. Structural characterization and composition 

Ammonium heptamolybdate was treated with nitric acid under hydrothermal conditions at 

180 °C for 24 h. The product phases and morphologies were strongly dependent on the pH 

value, which is shown in Figure 3.1a and Figure 3.2. At pH = 2 a phase corresponding to 

hexagonal (NH4)0.944H3.304Mo5.292O18 
[200]

 (JCPDS no. 83-1175), showing a hexagonal 

prismatic morphology, was formed. Decreasing the pH value to 1 resulted mainly in 

(NH4)0.944H3.304Mo5.292O18 but also traces of α-MoO3 were found in the diffraction pattern 

as indicated by the diffraction reflections at 23.3, 27.3 and 39.0 °. The particles were also 

prismatic and hexagonal but more agglomerated and additionally some needles were 

present, according to SEM (Figure 3.2). Synthesis at pH = 0 led to the formation of pure α-

MoO3 
[201]

 (JCPDS no. 5-508) with rod-like morphology. After calcination at 550 °C for 4 

h the diffraction pattern of all three samples (see Figure 3.1b) showed solely α-MoO3 but 

the relative intensities of the reflections characteristic for orthorhombic molybdenum 
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trioxide were different, indicating different morphologies. This is confirmed by the SEM 

images shown in Figure 3.2. The hexagonal prismatic particles obtained from ammonium 

heptamolybdate and HNO3 at pH = 2 were transformed into randomly shaped particles, 

proving that the morphology could not be conserved after calcination. The sample prepared 

at pH = 1 still showed a hexagonal prismatic morphology and the sample prepared at pH = 

0 maintained its rod-like morphology after calcination.  

 

Figure 3.1: X-ray diffraction pattern of differently prepared samples from ammonium 

heptamolybdate and nitric acid by variation of the pH value before (a) and after calcination (b). 

Note that (NH4)0.944H3.304Mo5.292O18 is one of the possible ammonia-containing Mo-phases that may 

be formed. 

The different phases of the hydrothermally synthesized products can be explained by the 

various polymolybdate species present in the solution depending strongly on the pH value. 

In an acidic solution [Mo7O24]
6-

 and [Mo8O26]
4-

 can be found, while at very low pH (< 1) 

[Mo36O112]
8-

, [HMoO3]
+
, [H2Mo2O6]

2+
 and [H3Mo2O6]

3+
 are formed. Further decrease of 

the pH value leads to MoO3 ∙ 2H2O (cf. 1.1.1). 
[14]

 The isopolymolybdate anions [Mo7O24]
6- 

are transformed to neutral Mo7O21 (α-MoO3). 
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Figure 3.2: Morphology represented by SEM images of different samples from ammonium 

heptamolybdate and nitric acid by variation of the pH value and after calcination at 550 °C. 

 

 

Figure 3.3: Preparation of different samples from MoO3 ∙ 2H2O by variation of the acid. X-ray 

diffraction pattern indicating α-MoO3 (a), SEM images of MoO3∙2H2O_HNO3 (b) and 

MoO3∙2H2O_HOAc (c). 
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In an alternative preparation route, MoO3 ∙ 2H2O was prepared according to a literature 

procedure 
[198]

 and then hydrothermally treated with nitric and acetic acid, respectively at 

180 °C for 48 h. The X-ray diffraction pattern of the two obtained products showed the 

characteristic reflections of α-MoO3 (see Figure 3.3a). They both also exhibited a rod-like 

morphology, as can be seen in Figure 3.3b and c. Using nitric acid led to longer and thicker 

rods than preparation with acetic acid and consequently MoO3∙2H2O_HNO3 had a smaller 

surface area than MoO3∙2H2O_HOAc (7 m²/g and 11 m²/g respectively, cf. Table 3-1). 

Table 3-1: Characterization of the as-prepared, calcined and used samples by BET, NH3-TPD, H2-

TPR and quantitative nitrogen analysis. 

Sample 
Specific surface area 

(BET) 
NH3-TPD H2 consumption 

during H2-TPR 
Amount 

of N  

[m² / g] [µmol NH3 / gcat] [mmol H2 / gcat] [wt.%] 

as-

prep. 
calc. used as-

prep. 
calc. used as- 

prep. 
calc. calc. 

AHM_calcined - < 1 
 

- 2.8 
   

0.024 ± 

0.003 

FSP_MoO3 43 16 
 

45.6 1.6 
   

n.d. 

FSP_MoO3_HNO3 
        

< 0.01 

MoO3∙2H2O_HOAc

_treated in NH3         
0.049 ± 

0.001 

MoO3∙2H2O_HOAc 11 9 2 
 

8.4 1.4 13 16 < 0.01 

MoO3∙2H2O_HNO3 7 4 
 

11.7 12.0 2.1 16 18 < 0.01 

AHM_pH2_24h < 1 < 1 
  

4.7 
   

n.d 

AHM_pH1_24h < 1 < 1 
  

3.0 
 

16 17 
0.011 ± 

0.001 

AHM_pH0_24h 
 

10 4 
 

10.2 8.1 
 

16 < 0.01 

This is in agreement with literature 
[11]

, reporting that weak organic acids leads to particles 

of nanoscale diameter, whereas strong inorganic acids support the formation of rods in the 

microscale. The rod-like morphology (Figure 3.4a and b) and α-MoO3 phase could again 

be retained after calcination but for both samples the surface area decreased (4 m²/g and 9 

m²/g respectively, cf. Table 3-1). Flame spray pyrolysis also led to the formation of pure α-



3 MoO3 as model catalyst in the selective oxidation of propylene 

54                                                                  Hydrothermal synthesis of Mo based catalysts  

MoO3. Calcination at 550 °C in air did not have an influence on the phase composition 

(Figure 3.5), but the surface area decreased from 43 m²/g to 16 m²/g for the as-prepared 

and calcined sample, respectively. The flame made sample featured a relatively large 

surface area also after calcination (16 m²/g), compared to the other unsupported 

molybdenum trioxides (≤ 10 m²/g). The particles were relatively small (25-50 nm length) 

and showed a slab-like morphology (Figure 3.4c). 

 

Figure 3.4: SEM images of a) MoO3∙2H2O_HOAc_calc, b) MoO3∙2H2O_HNO3_calc and d) 

AHM_calcined. TEM images of the flame made sample FSP_MoO3 (c). 

Ammonium heptamolybdate was completely decomposed to α-MoO3 after calcination at 

550 °C for 10 h according to the diffraction pattern and Raman spectrum shown in Figure 

3.5, but quantitative nitrogen analysis indicated relatively high nitrogen content in this 

sample. Only α-MoO3 prepared by hydrothermal synthesis from MoO3 ∙ 2H2O and acetic 

acid treated in ammonia (MoO3∙2H2O_HOAc_treated in NH3_calc) contained more 

nitrogen than AHM_calcined.  
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Figure 3.5: X-ray diffraction patterns (a) and Raman spectra (b) of the differently prepared 

samples after calcination at 550 °C. All samples showed pure α-MoO3 but with distinct intensity 

variation of the reflections. 

All calcined samples consisted of pure α-MoO3 and no contributions of other crystalline 

phases such as β-MoO3 or impurities could be detected in the diffraction pattern or the 

Raman spectra (Figure 3.5). All the Raman spectra (Figure 3.5b) show the characteristic 

bands at 992, 817, 288, 280, 154, 126 and 112 cm
-1

 (attribution see 
[202]

). Comparing the X-

ray diffraction pattern of the prepared samples with the reference pattern (JCPDS no. 5-

508) evidenced, that the relative intensities of the different reflections varied for the 

different samples. Each reflection can be assigned to an exposed lattice plane. In the 
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reference pattern (JCPDS no. 5-508) the reflection at 27.3° (021) had the highest intensity 

and also the reflection at 23.3° (110) was relatively intense.  

Table 3-2: Morphology, particle size and calculated ratios of the intensities of the reflections in the 

X-ray diffraction pattern in Figure 3.5a. 

Sample Morphology Particle size I(020)/ 
∑I(hkl)

a 
I(040)/ 

∑I(hkl)
a 

I(021)/ 
∑I(hkl)

a 

 
 

width length % % % 

AHM_calcined stacked plates 1-2 µm 1-2 µm 17 10 31 

AHM_calcined_used stacked plates 1-2 µm 1-2 µm 13 13 40 

FSP_MoO3 
rods and 

plates 
10-25 

nm 
25-50 

nm 
18 36 12 

FSP_MoO3_used n.d.  
 

8 26 6 

FSP_MoO3_HNO3_calc n.d.  
 

14 40 7 

FSP_MoO3_HNO3_calc_used n.d.  
 

7 32 14 

MoO3∙2H2O_HOAc_treated in 

NH3_calc 
n.d.  

 
9 27 22 

MoO3∙2H2O_HOAc_treated in 

NH3_used 
n.d.  

 
21 38 7 

MoO3∙2H2O_HOAc_calc rods 200 nm 
up to 1 

µm 
33 33 16 

MoO3∙2H2O_HOAc_calc_used plates 2-5 µm 4-8 µm 32 32 15 

MoO3∙2H2O_HNO3_calc rods 600 nm 
10-20 

µm 
43 34 8 

MoO3∙2H2O_HNO3_calc_used 
rods and 

plates 
600-800 

nm 
10 µm 45 36 3 

AHM_pH2_24h_calc irregular 2 µm 7 µm 14 15 41 

AHM_pH2_24h_calc_used stacked plates 1 µm 2 µm 20 20 30 

AHM_pH1_24h_calc 
hexagonal 

prismatic rods 
d = 9-11 

µm 
50-60 

µm 
18 17 36 

AHM_pH1_24h_calc_used stacked plates 2-3 µm ~3 µm 29 16 34 

AHM_pH0_24h_calc rods 200 nm 1-2 µm 37 34 12 

AHM_pH0_24h_calc_used rods 300 nm 2-3 µm 32 31 17 

a: ∑I(hkl) was calculated for the reflections between 10 and 50°; ∑I(hkl) = I(020) + I(110) + I(040) + I(021) + 

I(111) + I(060) + I(021) 
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This is in line with the samples prepared from ammonium heptamolybdate by calcination 

or by hydrothermal synthesis at pH = 1 and pH = 2. All other samples showed a rod-like 

morphology in the SEM images and consequently in the diffraction pattern the (0k0) 

reflections (12.7, 25.7 and 38.9°) were more intense than the other reflections. 

In Table 3-2 the particle morphology of the calcined samples are summarized as well as 

the relative intensities for different reflections ((020) at 12.7°, (040) at 25.7° and (021) at 

27.3°). The intensity of the corresponding reflections was divided by the sum of the 

intensities of all reflections between 10 and 50°. High values for I(020)/∑I(hkl) and 

I(040)/∑I(hkl) imply the preferred exposure of the (0k0) facets and the presence of α-MoO3 in 

the form of rods/fibers or plates. All other samples, which had a irregular, stacked plate-

like or hexagonal prismatic morphology, reached additionally high values for I(021)/∑I(hkl), 

whereas only in the diffraction pattern of the calcined ammonium heptamolybdate the 

reflection at 27.3° (021) showed the highest intensity, which agrees well with the reference 

pattern. Comparison of the different X-ray diffraction pattern already gives an insight into 

the product morphology of the corresponding α-MoO3. Higher intensities of (0k0) planes 

compared to other (hkl) planes are an indication for the anisotropic growth of MoO3 as 

well as the preferred orientation of the rods. 
[14]

 This can also be seen in the Raman spectra.  

 

Figure 3.6: Raman spectra of the calcined samples in the energy range 790 – 840 cm
-1

 and 980 – 

1000 cm
-1

. The spectra are normalized to the highest intensity band at 817 cm
-1

 and the relative 

intensity of the band at 992 cm
-1

 of the various samples is given in the table. 
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According to Dieterle et al. 
[202]

 the bands at 992 cm
-1 

and 817 cm
-1

 can both be assigned to 

terminal Mo=O stretching vibrations, whereas the band at 992 cm
-1

 corresponds to the 

asymmetric stretching vibrations along the a axis and the band at 817 cm
-1

 is attributed to 

the Mo=O bond vibrations along the b axis. The Raman intensities were normalized to the 

band with the highest intensity at 817 cm
-1

 and the normalized spectra are depicted in 

Figure 3.6 in the energy range 790 – 840 cm
-1 

and 980 – 1000 cm
-1

. A low normalized 

intensity for the band at 992 cm
-1

 and a low value for the calculated relative intensity 

I(992)/I(817) indicates the preferred growth along the b axis ([010]), which is typical for 

MoO3 rods.  

In addition to X-ray diffraction and Raman spectroscopy the three samples, which showed 

the rod-like morphology (AHM_pH0_24h_calc, MoO3∙2H2O_HNO3_calc, 

MoO3∙2H2O_HOAc_calc), were analyzed by X-ray absorption spectroscopy (XAS). 

Strong backscattering of the Mo second shell neighbors in the Fourier-transformed 

Extended X-ray Absorption Fine Structure (EXAFS) spectra confirmed, that exclusively α-

MoO3 was prepared which has an almost linear Mo-O-Mo geometry (“focusing effect” for 

backscattering see Figure 3.7 and 
[7]

). 

 

Figure 3.7: Fourier transformed k³-weighted EXAFS spectra measured at the Mo K edge of 

differently prepared α-MoO3 supporting PXRD and Raman spectroscopy results that the samples 

are structurally the same. 
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3.3.2. Reducibility and acidity of α-MoO3 samples 

Since both redox-activity of α-MoO3 and its acidity play an important role for the catalytic 

performance 
[203]

, temperature programmed reduction (TPR) and ammonia adsorption were 

used for further characterization. In Figure 3.8a the TPR results are displayed plotting the 

H2 consumption as a function of the temperature. The spectra can be divided in two 

regions: a low temperature region showing the reduction of MoO3 to MoO2 and a high 

temperature region, where MoO2 is further reduced to Mo. At 1000 °C all samples were 

completely reduced to metallic Mo, which was proven by X-ray diffraction measurements 

(cf. Figure 3.8b). The samples synthesized from MoO3 ∙ 2H2O were reduced at lower 

temperature than the samples prepared from ammonium heptamolybdate. Calcination of 

the sample prepared from MoO3 ∙ 2H2O and HNO3 led to a shift in reduction temperature 

by 30 K to higher temperature (704 °C) compared to the as-prepared sample (674 °C). The 

amount of hydrogen consumed per catalyst mass (n(H2)/m(cat)) (Table 3-1) was the same 

for all measured samples (13 – 18 mmol H2 /gcatalyst), showing that the as-prepared samples 

were completely oxidized.  

 

Figure 3.8: H2-TPR of differently prepared α-MoO3 (100 mg catalyst, 5 K/min from room 

temperature to 1000 °C, flow of 96 ml/min, 5% H2 in argon) (a) and the X-ray diffraction pattern of 

AHM_pH1_24h_calc after reduction, which showed only the presence of Mo. 
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Figure 3.9: NH3-TPD of differently prepared α-MoO3 (400 mg catalyst, 1000 ppm NH3 in N2, 500 

ml/min). The dotted lines indicate the results for the as-prepared samples, full lines belong to 

calcined samples. 

Temperature programmed desorption of ammonia was performed for different as-prepared 

and calcined samples and the desorbed NH3 concentration was plotted as a function of the 

temperature in Figure 3.9. All samples showed relatively low acidity. The calculated 

amounts of desorbed ammonia per gram of catalyst (Table 3-1) were lower than the values 

for supported MoO3-catalysts or potassium doped unsupported MoO3 studied by Bian et al. 

[204]
. The only exception was the flame made sample, which showed a large amount of 

ammonia adsorption sites; however, the acidity strongly decreased after calcination at 550 

°C. One of the reasons for the decrease in acidity is probably the decrease in surface area 

(from 43 m²/g to 16 m²/g) but the amount of ammonia desorption sites decreased stronger 

than the surface area (cf. Table 3-1). Calcination of MoO3∙2H2O_HNO3 did not reduce 

the amount of NH3 adsorption sites on the catalyst surface (Table 3-1), but the as-prepared 

sample showed two desorption peaks whereas the calcined sample showed only one. In 

contrast to our results, Oyama 
[205]

 reported that MoO3 needles had a single desorption 

peak and two desorption peaks were found for powders. Generally, NH3 is also completely 

desorbed at temperatures below 350 °C, indicating exclusively the presence of weak acidic 

sites (Lewis-acid sites). AHM_pH0_24h_calc was more acidic than the samples 
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synthesized at pH = 1 and pH= 2 and showed similar acidity as MoO3∙2H2O_HNO3_calc. 

Using acetic acid led to less acidic materials compared to the sample synthesized from 

MoO3 ∙ 2H2O and HNO3. 

3.3.3. Effect of morphology on the catalytic activity and selectivity 

All samples, except the flame made sample FSP_MoO3_calc and the hydrothermally 

prepared sample MoO3∙2H2O_HOAc_calc, revealed significant catalytic activity towards 

the partial and total oxidation of propylene under the applied conditions. Figure 3.10 

demonstrates that all samples exhibited different catalytic activity and selectivity although 

they contained the same phase (α-MoO3). Calcined ammonium heptamolybdate showed 

low propylene conversion (maximum 5% at 50 Nml/min), whereas the hydrothermally 

synthesized samples AHM_pH1_24h_calc and AHM_pH2_24h_calc reached a propylene 

conversion of 15%. AHM_pH0_24h_calc converted more propylene (10 – 40%) than the 

other catalysts. MoO3∙2H2O_HNO3_calc converted between 8% and 30% propylene 

under the applied conditions at 460 °C. For the four most active catalysts in Figure 3.10 the 

selectivity to acrolein was higher than 15%, the main undesired product for all samples 

was CO2, followed by CO, acetaldehyde and propanal. The selectivity to acetaldehyde and 

propanal was about 1 - 9% and 0 - 2%, respectively, where selectivity decreased with 

increasing propylene conversion. Also at low propylene conversion the selectivity to 

acrolein did not exceed 32%.  
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Figure 3.10: Catalytic performance of α-MoO3 prepared by different methods and with various 

morphologies at 460 °C: propylene conversion as a function of contact time w/F, which was 

calculated at reaction temperature and pressure (a) and acrolein selectivity as a function of 

propylene conversion (b). (C3H6/O2/N2 = 5/25/70, flows 50, 80, 120, 180, 260 Nml/min, 500 mg of 

catalyst). 

Comparison of the results in Figure 3.10 with Table 3-2 and the SEM images in Figure 3.2, 

Figure 3.3 and Figure 3.4 reveals that the catalytic performance of the catalysts may be 

determined by the morphology considering the low activity of FSP_MoO3_calc and 

AHM_calcined. The two samples, which exhibited the highest propylene conversion, both 

showed a rod-like morphology suggesting that rods were more active than the hexagonal 

prismatic particles (AHM_pH1_24h_calc) or particles with an irregular morphology 

(AHM_pH2_24h_calc or AHM_calcined). However, the sample prepared by hydrothermal 
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synthesis from MoO3 ∙ 2H2O and acetic acid also showed a rod-like morphology, but the 

activity for propylene oxidation was negligible (Figure 3.10a, maximum 2% propylene 

conversion). Also the surface area and the acidity of MoO3∙2H2O_HOAc_calc and 

AHM_pH0_24h_calc differed only slightly as well as the particle size.  

 

Figure 3.11: X-ray diffraction patterns (a) and Raman spectra (b) of differently prepared samples 

after the use in propylene oxidation at 420 - 520 °C. 

Generally, the surface area did not have a strong influence on the catalytic activity of α-

MoO3: the flame made material exhibiting the highest surface area was completely 

inactive, whereas the hydrothermally synthesized samples from ammonium 
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heptamolybdate at pH = 1 and pH = 2 showed a medium activity compared to the other 

tested samples in Figure 3.10, although their surface areas were low (< 1m²/g). 

To understand, why the hydrothermally synthesized sample prepared from MoO3 ∙ 2H2O 

and acetic acid showed lower catalytic activity than the other rod-like materials and 

whether a change in phase or morphology during time on stream occurred, the catalysts 

were also characterized after application in propylene oxidation up to 520 °C. According to 

X-ray diffraction measurements (Figure 3.11a) and Raman spectroscopy (Figure 3.11b) the 

phases did not change during the catalytic test reaction and all the samples still consisted of 

pure α-MoO3 after use. The relative intensities of the reflections in the diffraction pattern 

were hardly altered for the respective samples (compare Figure 3.5 and Figure 3.11).  

Figure 3.12 shows the SEM images of these MoO3-samples after use in propylene 

oxidation and in Table 3-2 morphologies and particle sizes before and after use are 

compared. For ammonium heptamolybdate after calcination (AHM_calcined) the particles 

did not grow during time on stream and also the steps and edges on the surface of the plate-

like particles are still visible in Figure 3.12a. The samples synthesized from ammonium 

heptamolybdate at pH = 1 and pH = 2, which exhibited a medium catalytic activity (5-16% 

propylene conversion) both strongly changed their morphology and agglomerated plates 

formed during propylene oxidation (Figure 3.12d, e). This may be due to the fact that 

MoO3 under reaction conditions is slightly reduced 
[129]

 and – if catalytically active – also 

prone to structural changes. The particles formed for AHM_pH1_24h_calc_used were 

slightly larger (thicker and longer) than AHM_pH2_24h_calc_used. 

MoO3∙2H2O_HOAc_calc, MoO3∙2H2O_HNO3_calc and AHM_pH0_24h_calc all 

showed a rod-like morphology (Figure 3.2, Figure 3.3b, c), but of different particle size. 

The particles of the sample prepared with acetic acid were thinner and shorter than the 

particles of MoO3∙2H2O_HNO3_calc. MoO3∙2H2O_HOAc_calc and 

AHM_pH0_24h_calc formed particles of similar size with a width of 200 nm and up to 2 

µm length (see Table 3-2). 
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Figure 3.12: SEM images of different MoO3-samples after use in propylene oxidation at 420 - 520 

°C a) AHM_calcined_used, b) MoO3∙2H2O_HOAc_calc_used, c) 

MoO3∙2H2O_HNO3_calc_used, d) AHM_pH2_24h_calc_used, e) AHM_pH1_24h_calc_used and 

f) AHM_pH0_24h_calc_used. 

The aspect ratio of the particles of MoO3∙2H2O_HOAc_calc changed during the time on 

stream and plate-like particles were formed from the α-MoO3-rods (Figure 3.12b), growing 

in the [001] and [100] direction. MoO3∙2H2O_HNO3_calc partly preserved its 

morphology (Figure 3.12c) and only a few of the particles grew to plates, whereas 

AHM_pH0_24h_calc completely maintained its rod-like morphology (Figure 3.12f) 

slightly increasing in width and length (Table 3-2). Nitric acid seemed to stabilize the 

morphology of α-MoO3 during catalytic application or heat treatment compared to acetic 

acid. In this way, a correlation of morphology of the samples after use (Figure 3.12) and 

the catalytic performance of the samples (Figure 3.10) can be established: α-MoO3 reached 

the highest propylene conversion if the rod-like morphology was preserved during the 
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activity measurement (AHM_pH0_24h_calc and MoO3∙2H2O_HNO3_calc), while all the 

other samples had lower activity for propylene oxidation (Figure 3.10a). A morphology 

change from rod-like particles to plate-like particles led to lower propylene conversion. 

Although the rate was dependent on the average morphology throughout the catalytic 

activity measurements, the selectivity to acrolein was not influenced by the particle 

morphology (Figure 3.10b). Rods feature relatively large (100) and (010) facets whereas 

plates only contain large (010) facets. If the (010) facet was responsible for propylene 

activation, plates would be as active as rods. These results suggest that propylene 

activation preferentially took place on the (100) facet, which means that propylene is 

adsorbed, hydrogen is abstracted and a surface complex of an allylic intermediate is 

formed 
[138, 206]

. Brückman et al. 
[138]

 also found that the (100) facet was responsible for 

propylene activation, testing four MoO3 samples synthesized at different temperatures. So 

far, this has been demonstrated as well for two commercial samples with needle or plate 

crystals 
[207]

 and for MoO3 supported on silica 
[206]

. Propylene activation (α-H abstraction 

and formation of an allyl intermediate) was observed to be the rate limiting step. 
[206]

 The 

(100) facets of α-MoO3 consist of a double layer of oxygen atoms bound to molybdenum 

atoms, thus containing the highest Mo density. The C=C double bond is attracted by these 

electrophilic centers and propylene is adsorbed on the superficial molybdenum. 
[133]

 These 

Mo-centers on the (100) facet act as Lewis-acid sites 
[135-136]

, which were mostly preserved 

for AHM_pH0_24h_calc. Hence, NH3-TPD measurements were not only performed on the 

fresh catalysts (Figure 3.9) but also on the used samples (see Figure 3.13). The number of 

NH3 desorption sites for MoO3∙2H2O_HOAc_calc, MoO3∙2H2O_HNO3_calc and 

AHM_pH2_24h_calc strongly decreased after catalytic activity measurements (Table 3-2). 

Only AHM_pH0_24h_calc, which showed the best catalytic performance, still showed 

relatively high acidity after use in propylene oxidation.  
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Figure 3.13: Temperature programmed desorption of ammonia of various MoO3 after application 

in propylene oxidation at temperatures up to 520 °C. 

3.3.4.  Effect of nitrogen incorporation on the catalytic activity and selectivity 

The results of the catalytic performance tests in Figure 3.10 also indicate that samples 

prepared using HNO3 were more active than the other samples, which may suggest that 

nitrogen incorporation into α-MoO3 occurred during hydrothermal synthesis, thus 

increasing the catalytic activity for propylene oxidation. Therefore the hydrothermally 

prepared sample from MoO3 ∙ 2H2O and acetic acid, which did not contain nitrogen, was 

treated in ammonia. Additionally the flame made sample was treated hydrothermally in the 

presence of nitric acid. Quantitative nitrogen analysis of the samples implied that no 

nitrogen was incorporated from HNO3 into the samples during hydrothermal synthesis with 

nitric acid. For FSP_MoO3_HNO3_calc, AHM_pH0_24h_calc and 

MoO3∙2H2O_HNO3_calc no nitrogen was detected, whereas 0.01 wt.% N was found for 

AHM_pH1_24h_calc. In this case ammonium heptamolybdate could be the nitrogen 

source and thermal transformation of the hydrothermally prepared ammonium 

molybdenum oxide phase led to α-MoO3 with remaining traces of nitrogen not detected by 

X-ray diffraction or Raman spectroscopy. MoO3∙2H2O_HOAc treated in NH3 showed the 
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highest concentration of nitrogen followed by calcined ammonium heptamolybdate (see 

Table 3-1).  

 

Figure 3.14: Propylene conversion as a function of contact time, w/F (a) and acrolein selectivity as 

a function of propylene conversion (b) for various samples to determine the influence of the 

nitrogen incorporation into MoO3 (C3H6/O2/N2 = 5/25/70, flows 50, 80, 120, 180, 260 Nml/min, 

460 °C, 500 mg of catalyst). 

The measurements of the catalytic performance depicted in Figure 3.14 indicate that 

nitrogen incorporation into MoO3 slightly increased the catalytic activity for propylene 

oxidation. Treatment of MoO3∙2H2O_HOAc_calc in NH3 resulted in a nitrogen content of 

0.049 wt.% and increased the propylene conversion from 2% to 6% at 50 Nml/min (Figure 

3.14a) as well as the acrolein selectivity (Figure 3.14b). A similar experiment was 
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performed by Kuehn et al. 
[199]

, who treated commercial α-MoO3 at 275 °C in ammonia 

resulting in a nitrogen content of 0.41 wt.%. However, in this study α-MoO3 and α-MoO3 

after ammonolysis (treatment in NH3) showed similar catalytic activity in propylene 

oxidation. Hydrothermal treatment of FSP_MoO3 in HNO3 also improved the catalytic 

activity (Figure 3.14) of α-MoO3, although no nitrogen was detected in both samples and 

FSP_MoO3_HNO3 achieved similar propylene conversion as calcined ammonium 

heptamolybdate containing 0.024 wt.% N.  

Generally the activities displayed in Figure 3.14 were low and the values measured for 

propylene conversion below 5% including the corresponding acrolein selectivity are 

relatively inaccurate. This implied only a minor enhancement of the catalytic performance 

as consequence of the nitrogen incorporation into α-MoO3. Nitrogen incorporation could 

thus be excluded as the reason for the differing activities found for the distinct samples 

prepared by hydrothermal synthesis and flame spray pyrolysis. 

3.3.5.  Catalyst deactivation 

The reusability as well as the deactivation of the MoO3 model catalysts was also tested. 

The samples synthesized from ammonium heptamolybdate and nitric acid at pH = 0 and 

pH = 2 were used three times in the same cycle i.e. after the catalyst was tested in 

propylene oxidation at 420 – 520 °C using flows of 50, 80, 120, 180, 260 Nml/min it was 

applied at the same temperatures and flows again. Figure 3.15 depicts the propylene 

conversion as a function of the contact time w/F at 460 °C indicating the deactivation for 

both samples during each cycle. The sample synthesized at pH = 0 with the rod-like 

morphology deactivated stronger than the sample synthesized at pH = 2 (40% propylene 

conversion in first cycle to 22% in the third cycle and 16% propylene conversion in first 

cycle to 13% in the third cycle, respectively). However, also in the third cycle 

AHM_pH0_24h_calc exhibited higher activity than AHM_pH2_24h_calc in the first cycle.  
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Figure 3.15: Testing the reusability of the catalysts: Propylene conversion at 460 °C of 

AHM_pH0_24h_calc (a) and AHM_pH2_24h_calc (b) tested three times in the same cycle at three 

different temperatures (420 - 520 °C) and five different flows (50, 80, 120, 180, 260 Nml/min) with 

a gas composition of C3H6/O2/N2 = 5/25/70. 

To analyze the deactivation of α-MoO3 at a certain temperature MoO3∙2H2O_HNO3_calc 

was tested for 70 hours at 500 °C using 50 Nml/min and a gas composition of C3H6/O2/N2 

= 5/25/70. Propylene conversion as well as oxygen conversion decreased strongly from 

44% after 39 h to 27% after 70 h and 26% after 39 h to 15% after 70 h, respectively. 

Acrolein selectivity slightly increased from 16% to 20% as depicted in Figure 3.16. 

 

Figure 3.16: Catalytic performance of MoO3∙2H2O_HNO3_calc during 70 hours at 500 °C with 

C3H6/O2/N2 = 5/25/70 and 50 Nml/min. 
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3.4. Conclusions 

A variety of morphologically different α-MoO3 samples could be prepared by 

hydrothermal synthesis, well-suited as model systems for the selective oxidation of 

propylene to acrolein. Variation of the pH value of the initial solution strongly influenced 

the product phase obtained from ammonium heptamolybdate and nitric acid under 

hydrothermal conditions, due to the dependence of the present polymolybdate species 

present in the solution at different pH values. After calcination all samples were 

transformed into pure α-MoO3. MoO3 ∙ 2H2O in the presence of acetic acid or nitric acid at 

180 °C or ammonium heptamolybdate with nitric acid at pH = 0 directly resulted in α-

MoO3 rods in one step. The different relative intensities of the characteristic reflections in 

the diffraction pattern confirmed the anisotropic growth of these MoO3 rods preferentially 

growing along the [010] direction. For comparison high surface area α-MoO3 was 

successfully prepared by flame spray pyrolysis and plate-like α-MoO3 was obtained by 

calcination of ammonium heptamolybdate. They were catalytically inactive and, obviously, 

rod-like structures with a relatively high amount of (100) facets seem to be important for 

the catalytic activity. 

The study shows, however, that additional factors have to be considered: The morphology 

of the samples needs to be stabilized during the catalytic activity measurements, which was 

particularly observed for the samples prepared with nitric acid during synthesis. This 

preservation of the rod-like morphology during heat treatment and propylene oxidation 

resulted in high propylene conversion (10-40% conversion depending on the contact time). 

A morphology change to plates or stacked plates during propylene oxidation resulted in 

lower propylene conversion. This suggested, that the (100) facet was responsible for 

propylene activation due to a high Mo density. These electrophilic centers attract the C=C 

double bond, so that propylene is adsorbed and oxygen can be inserted forming acrolein. If 

the adsorption of propylene is too strong, C-C and/or C=C bond cleavage and CO2 

formation is favored. On the (100) plane each active Mo-site is surrounded by two active 

lattice oxygen atoms 
[137]

 so that the selectivity for the total combustion products is higher 

(~60%) than the selectivity for acrolein (~20%). The morphology of the samples did not 

have a significant effect on the selectivity to acrolein, but on the propylene conversion. 

Incorporation of nitrogen slightly improved the catalytic performance of α-MoO3, but was 

not a decisive factor.  
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Although MoO3 is an easy model system correlation of the particle morphology and the 

catalytic activity and selectivity in propylene oxidation already requires a detailed 

characterization of the materials before and after the catalytic test reaction. This may be 

further developed by extending the present study to operando characterization studies as 

performed previously by Ressler et al. 
[129]

 on samples comparable to AHM_calcined. The 

catalytic activity in propylene oxidation and especially the selectivity for acrolein was low 

on α-MoO3 and more realistic information will be obtained by extension of the strategy of 

this study to mixed transition molybdates resulting in higher propylene conversion and 

improved selectivity. Thus bismuth molybdates were prepared by hydrothermal synthesis 

leading to various phases and phase mixtures, which exhibited higher activity and 

selectivity in propylene oxidation to acrolein. 
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4 Bismuth molybdates for selective oxidation of propylene
2
 

4.1. Introduction 

Since the development of bismuth molybdate catalysts for the oxidation and ammoxidation 

of propylene to acrolein or acrylonitrile 
[88-89]

 by Sohio in 1959, this type of materials have 

received large attention and various researchers have studied their catalytic properties in 

considerable detail 
[91-100]

 (cf. 1.2.1). Despite extensive preceding studies, there is an 

ongoing debate in literature about the relative catalytic activity of the different bismuth 

molybdate phases. 
[98, 113]

 In the previous chapter the influence of the morphology of α-

MoO3 on the catalytic activity in propylene oxidation was studied in detail and the (100) 

facets were suggested to be responsible for propylene activation. The investigation of the 

influence of the particle morphology along with the relative activity of the different phases 

is also of great interest for more realistic systems like bismuth molybdates. According to 

the study in chapter 3 bismuth molybdates were prepared by mild hydrothermal synthesis 

applying nitric and acetic acid, variation of the pH value and variation of the Bi/Mo ratio. 

In addition, flame spray pyrolysis (FSP) was applied as an alternative novel method. The 

influence of calcination on the phase composition and the catalytic activity for propylene 

oxidation to acrolein has been studied in detail. Phase composition, particle morphology, 

surface Bi/Mo ratio and overall surface area were correlated to the catalytic performance in 

propylene oxidation to acrolein. The controlled preparation of unsupported bismuth 

molybdates exposing high surface area by flame spray pyrolysis or under mild conditions 

                                                 

2
 4.3.1, 4.3.2, and part of 4.3.3 is planned to be published: Selective oxidation of propylene to acrolein by 

hydrothermally synthesized bismuth molybdates by Kirsten Schuh, Wolfgang Kleist, Martin Høj, Vanessa 

Trouillet, Pablo Beato, Anker Degn Jensen, Greta R. Patzke and Jan-Dierk Grunwaldt; 4.3.4 will be 

published as: Influence of the pH value during hydrothermal synthesis on the catalytic performance in 

selective oxidation of propylene by Kirsten Schuh, Wolfgang Kleist, Martin Høj, Vanessa Trouillet, Pablo 

Beato, Anker Degn Jensen and Jan-Dierk Grunwaldt. The FSP part in 4.3.3 is going to be published as a 

short communication. 
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by hydrothermal synthesis seems very attractive for selective oxidation of olefins and in 

the following, we compare the properties of catalysts emerging from these flexible 

synthetic routes to samples synthesized by conventional co-precipitation.  

 

4.2. Catalyst preparation 

The bismuth molybdate materials were synthesized by hydrothermal synthesis and flame 

spray pyrolysis, while reference samples were obtained from conventional co-precipitation.  

In a typical hydrothermal synthesis 10 mmol Bi(NO3)3 ∙ 5H2O (Sigma Aldrich, ACS 

reagent ≥ 98.0%) and the stoichiometric amount of (NH4)6Mo7O24 ∙ 4H2O (VWR AnalaR 

NORMAPUR) with Bi/Mo ratios in the range of 0.5 – 3 were dissolved in 100 ml 

deionized water. These samples will be referred to here as HT_BixMoy with x/y being the 

Bi/Mo-molar ratio. Additionally for a ratio of Bi/Mo = 1:1 the pH was adjusted from 0.9 to 

4 by addition of ammonium nitrate solution (HT_Bi1Mo1_pH4). 5 ml of nitric acid was 

added to the solution containing a Bi/Mo ratio of 1:1 and 2:1 referred to as 

HT_BixMoy_HNO3. Precursors with a Bi/Mo = 2:1 ratio were moreover dissolved in 80 

ml of 25 vol.% acetic acid to lower the pH value from 0.8 to 0.2 (HT_Bi2Mo1_HOAc). 

The resulting solutions were heated at 180 °C for 24 h in an oven (details of the 

preparation and description of equipment see chapter 2.1.1). After cooling to room 

temperature, the solid product was separated by filtration, washed with water, ethanol and 

finally with acetone. The resulting powder was dried at room temperature and ambient 

pressure. The samples prepared with a Bi/Mo ratio in the range 0.5 – 2 in water were also 

calcined at 550 °C for 4 h. 

Bismuth molybdate materials exhibiting relatively high surface areas were synthesized 

under hydrothermal conditions adapting a procedure of Li et al. 
[34]

, who synthesized 

relatively small amounts of sample for photocatalysis. Therefore, 10 mmol Bi(NO3)3 ∙ 

5H2O and stoichiometric amounts of (NH4)6Mo7O24 ∙ 4H2O were dissolved in 20 ml 2.0 M 

nitric acid solution and 20 ml deionized water respectively (for Bi/Mo = 1:1). The two 

solutions were mixed under vigorous stirring and the pH of the resulting mixture was 

adjusted to values from 1 to 9 with an aqueous solution of 25 vol.% ammonia. For all 

samples addition of ammonia solution was necessary due to the low initial pH value. After 
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stirring for 30 minutes the resulting solutions were heated in sealed autoclaves at 180 °C 

for 24 h in an oven. After cooling to room temperature, the solid product was separated by 

filtration, washed with 100 ml deionized water, 40 ml ethanol and finally with 40 ml 

acetone. The resulting powder was dried at room temperature and ambient pressure. 

Additionally, the Bi/Mo ratio was changed from Bi/Mo = 1:1 to 2:3 and 2:1. The resulting 

products are referred to as BixMoy_pH. 

To obtain high surface area samples bismuth molybdates with Bi/Mo ratios of 1:1, 2:1 and 

2:3 were prepared by one-step flame spray pyrolysis (FSP) from Bi(III)- and Mo(VI)-2-

ethylhexanoate dissolved in xylene (total concentration of 0.15 mol/l). The precursor 

solution was pumped with a speed of 5 ml/min (for details see 2.1.2). The resulting 

powders were used as-prepared and are denoted as followed: FSP_Bi1Mo1, FSP_Bi2Mo1 

and FSP_Bi2Mo3. 

For comparison, co-precipitated samples were synthesized according to Carrazán et al. 
[208]

 

using (NH4)6Mo7O24 ∙ 4H2O dissolved in ammonia solution and Bi(NO3)3 ∙ 5H2O dissolved 

in nitric acid at pH = 7. The resulting solid material was calcined at 450 °C to yield the α-

Bi2Mo3O12 and γ-Bi2MoO6 and at 680 °C to obtain the β-Bi2Mo2O9. Experiments are 

referred to as CP_BixMoy_CT where CT is the calcination temperature in °C. 

The structure of the samples was characterized by PXRD, Raman spectroscopy and ex situ 

XAS. The surface area was determined by nitrogen physisorption, the particle morphology 

was identified by SEM and TEM (for the hydrothermally synthesiezed and flame made 

samples, respectively). The composition in the bulk and on the surface was analyzed by 

ICP-OES, quantitative nitrogen analysis and XPS. Details are given in chapter 2.2. The 

samples were tested in selective oxidation of propylene as described in chapter 2.3.1. 

 

4.3. Results and Discussion 

4.3.1. Hydrothermal synthesis in water with Bi/Mo = 0.5 – 3 

4.3.1.1. Characterization of the as-prepared bismuth molybdates 

At first, several samples were prepared under hydrothermal conditions in pure water with 

Bi/Mo ratios from 0.5 – 3 and their phase composition was analyzed by powder X-ray 
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diffraction (PXRD) and Raman spectroscopy. Only two different bimetallic phases could 

be found in the five different samples with varying Bi/Mo ratio summarized in Table 4-1: 

α-Bi2Mo3O12 and γ-Bi2MoO6.  

Table 4-1: Characterization of hydrothermally prepared samples with different Bi/Mo ratios before 

and after the catalytic tests by PXRD, Raman spectroscopy and BET (main phases in bold letters). 

Sample Phases according to PXRD Phases according to 

Raman 

spectroscopy 

Specific 

surface 

area (BET) 

[m²/g] 

as-prepared after use as-prepared after use as-prepared 

HT_Bi3Mo1 
γ-Bi2MoO6, 

cubic BiO2-x 

γ-

Bi2MoO6, 

Bi8Mo3O21 
γ-Bi2MoO6 

γ-

Bi2MoO6, 

γ´-Bi2MoO6 

30 

HT_Bi2Mo1 

γ-Bi2MoO6, α-

Bi2Mo3O12, 

Bi6O6(OH)3(NO3)3∙ 

1.5H2O 

γ-Bi2MoO6 

γ-Bi2MoO6, 

presence of 

NO3
-
 

γ- 

Bi2MoO6 
6 

HT_Bi1Mo1 
γ-Bi2MoO6 and α-

Bi2Mo3O12 

γ-Bi2MoO6 

and α-

Bi2Mo3O12 

α-Bi2Mo3O12 n.d. 8 

HT_Bi2Mo3 

α-Bi2Mo3O12, cubic 

H0.68(NH4)2Mo14.16O4.34

∙6.92H2O 

α-

Bi2Mo3O12 

α-

Bi2Mo3O12, 

MoO3 

α-

Bi2Mo3O12 
7 

HT_Bi1Mo2 

α-Bi2Mo3O12, 

hexagonal 

NH3(MoO3)3 

α-

Bi2Mo3O12, 

α-MoO3 

α-

Bi2Mo3O12, 

NH3(MoO3)3 

α-

Bi2Mo3O12, 

MoO3 

6 

Application of a high Bi/Mo ratio led to the formation of the bismuth-rich phase, γ-

Bi2MoO6. Decreasing the initial bismuth contents increased the amounts of α-Bi2Mo3O12 in 

the as-prepared samples. The diffraction pattern of the sample prepared with a high excess 

of bismuth (Bi/Mo = 3:1) displays characteristic reflections at 2θ = 28.3, 23.7 and 46.9 ° 

which can be assigned to γ-Bi2MoO6 (PDF 21-102 
[209]

) 
[210]

 and cubic BiO2-x (PDF 47-

1057) 
[211]

. The crystallinity of HT_Bi3Mo1 was lower than the crystallinity of the other 

four samples, as indicated by the broader reflections in the diffraction pattern (Figure 4.1a). 

This goes hand in hand with a significantly higher surface area than observed for the other 

four samples (30 m²/g compared to 6 - 8 m²/g).  
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Figure 4.1: Characterization of the samples prepared with different Bi/Mo ratio under 

hydrothermal conditions without calcination by X-ray diffraction (a) and Raman spectroscopy (b). 

The different phases in the diffraction pattern (a) are indicated as follows: α-Bi2Mo3O12 (triangles), 

γ-Bi2MoO6 (circles), NH3(MoO3)3 (squares), BiO2-x (diamond). 

The diffraction pattern of the sample synthesized with Bi/Mo = 2:1 (Figure 4.1a) indicates 

γ-Bi2MoO6 as the main phase and additionally the presence of α-Bi2Mo3O12 (low intensity 

reflection at 27.9°) and Bi6O6(OH)3(NO3)3 ∙ 1.5H2O (10.3° and 31.3°, PDF 53-1038) 
[212]

. 

The corresponding Raman spectrum of this sample depicted in Figure 4.1b confirmed the 

presence of γ-Bi2MoO6 as the main phase in this sample. The observed Raman bands at 

848, 808, 792 and 714 cm
-1

 were assigned as Mo-O stretching frequencies of the distorted 

MoO6 octahedra of the Aurivillius layered structure 
[210, 213]

. Additionally, bands at 352, 
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323, 294 and 282 cm
-1

 were also found, which correspond well to those reported for γ-

Bi2MoO6 in the literature. 
[214]

 The presence of α-Bi2Mo3O12 was evident from the band at 

901 cm
-1

. The band at 1031 cm
-1 

could be assigned to a nitrate containing phase. This 

nitrate containing phase also led to a broader band at 782 – 808 cm
-1

. 
[215]

 Quantitative 

nitrogen analysis yielded 0.36 wt.% (± 0.02 wt.%) N in this sample, which agrees well 

with the presence of a nitrate phase. The ICP-OES measurement of HT_Bi2Mo1 showed 

that the product contained bismuth and molybdenum in the ratio 2:1, which equals the 

applied ratio. 

Whereas distinction of the three different phases may be difficult with PXRD methods due 

to their adjacent main reflections (α: 27.9 °, β: 27.8 °, γ: 28.3 °) and the formation of the β-

phase is easily overlooked, Raman spectra permit a better identification of these three 

different bismuth molybdate phases. 

The sample prepared with Bi/Mo = 1:1 contained a mixture of γ-Bi2MoO6 and α-

Bi2Mo3O12 according to PXRD measurements, whereas the Raman spectrum only 

displayed the α-phase. While X-ray diffraction measurements provide information of 

quantitative phase composition of larger particles, Raman spectra often only show the 

strongest bands which may overlap with bands of other phases. The Raman spectrum of α-

Bi2Mo3O12 exhibited six bands between 1000 – 800 cm
-1

 which can be attributed to the 

Mo-O stretching modes of different tetrahedral species, i.e. 955 cm
-1

 (a3), 925 cm
-1

 (a1), 

906 cm
-1

 (a2), 856 cm
-1

 (a1), 840 cm
-1

 (a2) and 816 cm
-1

 (a3). All of these six bands were 

present in the spectra of HT_Bi1Mo1 as well as in the spectra of the samples synthesized 

with a Bi/Mo ratio below 1:1 (Figure 4.1b). The X-ray diffraction pattern and the Raman 

spectrum of the sample with an initial Bi/Mo ratio of 2:3 showed the characteristic features 

of α-Bi2Mo3O12 and indicated in addition the presence of a bismuth-free molybdenum 

oxide side phase (reflection at 25.7 °, Raman shift: 993 cm
-1

). Calculation of the Bi/Mo 

ratio from the values obtained from ICP-OES measurements yielded to 0.7 (± 10%), 

corresponding to the Bi/Mo ratio in the α-phase. This indicates that, additionally to α-

Bi2Mo3O12 and an ammonium-containing molybdenum oxide phase, another bismuth oxide 

phase should be present which could not be detected by PXRD or Raman spectroscopy. 

Generally, such small amounts of bismuth oxides are difficult to identify from diffraction 

patterns due to the overlap of some of their reflections with those of bismuth molybdates. 

van Well et al. 
[124]

 also claimed that excess bismuth in form of β-Bi2O3 or β-Bi2Mo2O9 
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cannot be seen by X-ray diffraction when the samples were calcined at temperatures lower 

than 500 °C.  

 

Figure 4.2: SEM images of hydrothermally synthesized samples with different Bi/Mo ratio without 

further calcination a-b) HT_Bi3Mo1, c) HT_Bi2Mo1, d) HT_Bi1Mo2, e-f) HT_Bi1Mo1, g-h) 

HT_Bi2Mo3. 

The Raman spectrum of the sample synthesized with a high excess of molybdenum 

(HT_Bi1Mo2) illustrates the presence of the main γ-phase along with a band at 973 cm
-1

 

which corresponds well to NH3(MoO3)3 in agreement with PXRD data (reflections at 19.4 

and 25.7°).  
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SEM images of all samples showed a plate-like morphology (Figure 4.2) with variations in 

aspect ratio and size. Synthesis with a large excess of bismuth led to the smallest particle 

size (Figure 4.2a and b), resulting in a relatively high specific surface area (30 m²/g). The 

particles of sample HT_Bi2Mo1 were rectangular with a side length of 1 - 2.5 µm and a 

thickness of ca. 200 nm (Figure 4.2c). Synthesis with Bi/Mo = 1:1 led to smaller plates 

(500 nm) with rounded edges (Figure 4.2e and f). SEM images of HT_Bi2Mo3 (Figure 

4.2g and h) revealed a mixture of plates with a side length around 1 µm and larger needles 

/ rods. HT_Bi1Mo2 (Figure 4.2d) also displays two types of morphology: the plate-like α-

Bi2Mo3O12 (400 nm – 1 µm in size) and the wedge-like / rod-like ammonium molybdenum 

oxide phase visible at the bottom of the image. 

4.3.1.2. Catalytic performance of the as-prepared bismuth molybdates 

The catalytic activity measurements for propylene oxidation of the as-prepared samples are 

depicted in Figure 4.3. At 360 °C all samples showed very similar activities resulting in a 

propylene conversion between 10% and 22% depending on the flow and accordingly on 

the contact time. Besides acrolein (60 - 90%) only COx (mainly CO2) and traces of 

acetaldehyde were formed. The sample prepared with a large excess of bismuth 

(HT_Bi3Mo1) converted less propylene than the other four samples at 360 °C and was 

almost inactive for propylene oxidation. This sample was also not selective for acrolein 

and mainly produced hexadiene and COx. This agrees well with previous literature reports 

on the formation of hexadiene in the presence of Bi2O3. 
[102, 216]

 HT_Bi2Mo1 also 

contained a bismuth oxide phase but its concentration may be too low to influence the 

catalytic activity of the sample. The presence of γ-Bi2MoO6 as main product goes hand in 

hand with a slightly higher selectivity at lower conversion compared to the samples 

synthesized with lower Bi/Mo ratio. 
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Figure 4.3: Catalytic performance of hydrothermally prepared samples with different Bi/Mo ratios 

at 360 °C (a) and 400 °C (b) without calcination. 500 mg of the as-prepared samples (150 – 300 

µm) were pre-treated in the reactor in synthetic air at 300 °C and the catalytic performance was 

measured using a gas composition of C3H6/O2/N2 = 5/25/70 and flows of 50, 80, 120 Nml/min. 

At higher temperature (400 °C) the propylene conversion increased up to 32% and the 

difference between the measurement points for each sample at similar conditions also 

raised (Figure 4.3b). The sample prepared with Bi/Mo = 1:1 was slightly more active than 

HT_Bi2Mo1 and their catalytic activity deteriorated with decreasing Bi/Mo ratio. The 

selectivity for acrolein was never below 60% and stayed relatively constant with increasing 

propylene conversion indicating that acrolein further reacted to COx only very slowly on 

these catalysts.  
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Note that as for most transition metal oxide catalysts the initial phase probably changed 

during the catalytic activity measurements from 320 – 520 °C, so that the phases 

summarized in the second column of Table 4-1 (“as-prepared”) are not those actually 

present in the reactor during propylene conversion. We thus investigated the phase 

composition after the catalytic process as well. 

 

Figure 4.4: PXRD pattern of hydrothermally synthesized samples after propylene oxidation at 

temperatures up to 520 °C, illustrating that no major changes occurred in the main phase after 

catalysis; α-Bi2Mo3O12 (triangles), γ-Bi2MoO6 (circles), α-MoO3 (squares) and Bi8Mo3O21 

(diamond). 

Figure 4.4 shows the powder diffraction pattern of the hydrothermally synthesized samples 

after catalytic tests at temperatures up to 520 °C. Comparison of the diffraction pattern and 

also of the Raman spectra of fresh and used catalysts indicate that the main phase of the 

catalysts did not change during the application in selective oxidation of propylene. After 

application in propylene oxidation, HT_Bi3Mo1 consisted of γ-Bi2MoO6 and Bi8Mo3O21, 

which is orthorhombic and presents a basic fluorite-type structure. 
[217-218]

 The minor 

phases in samples HT_Bi2Mo1 and HT_Bi2Mo3 indicated by only one or two low 

intensity reflections disappeared, whereas for the sample synthesized with a high excess of 

molybdenum (HT_Bi1Mo2) the hexagonal NH3(MoO3)3-phase was transformed into α-

MoO3. SEM images in Figure 4.5 revealed that the plate-like morphology of the samples 
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could not be preserved during the application for selective oxidation of propylene at 320 – 

520 °C. Only the sample synthesized with the Bi/Mo ratio 2:1 partly retained its plate-like 

morphology (Figure 4.5d). All samples exhibited similar morphologies after the catalytic 

tests, whereas their particle sizes decreased with increasing bismuth content. Generally, 

thermal treatment led to particle agglomeration and a significant loss of surface area (< 1 

m²/g). The used samples only contained α-Bi2Mo3O12 and / or γ-Bi2MoO6, except for 

sample HT_Bi1Mo2, where an excess of Mo led to the additional formation of α-MoO3. 

 

Figure 4.5: SEM images of a) HT_Bi3Mo1, b) HT_Bi2Mo3 and c-d) HT_Bi2Mo1 after catalytic 

propylene oxidation at temperatures up to 520 °C. 

4.3.2. Influence of the calcination procedure on catalyst properties and activity 

4.3.2.1. Characterization of the calcined samples 

Hydrothermally synthesized samples with Bi/Mo ratios 0.5 – 2.0 (pure water) were 

calcined at 550 °C for 4 h to increase the phase purity of the products and to evaluate the 

transformation of the phases at elevated temperatures. Figure 4.6a depicts the PXRD 

patterns of the four calcined samples, and the corresponding phase composition as well as 

the Bi/Mo ratios determined by ICP-OES and XPS are summarized in Table 4-2.  
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Table 4-2: Characterization of hydrothermally prepared samples before and after calcination at 550 

°C for 4 h. Phases were identified by PXRD, the ratio of bismuth to molybdenum in the bulk and 

on the surface were calculated from ICP-OES (atom %) and XPS analysis. 

For the sample synthesized with a Bi/Mo ratio of 2:1 additionally to γ-Bi2MoO6 the β-

phase was formed during calcination at 550 °C. The presence of β-Bi2Mo2O9 is indicated 

by characteristic reflections at 27.9° and 31.8° in the diffraction pattern in Figure 4.6a and 

by the band at 885 cm
-1

 in the Raman spectrum (Figure 4.6b). As the β-phase is considered 

stable between 540 and 665 °C, formation of β-Bi2Mo2O9 was also expected for the 

calcined sample emerging from Bi/Mo = 1:1. Surprisingly, calcination of HT_Bi1Mo1 

only improved the crystallinity of the α- and γ-bismuth molybdate mixture, but did not lead 

to the formation of β-Bi2Mo2O9. This suggests that higher calcination temperatures or 

longer treatment times should have been applied. Li et al. 
[34]

 could not synthesize the β-

phase directly by hydrothermal synthesis but after calcination at 560 °C. Beale and Sankar 

[8]
 showed by combined EDXRD/XAS that phase-pure β-Bi2Mo2O9 could be produced 

Sample Phases according to PXRD Bi/Mo ratio 

bulk
 

Bi/Mo ratio 

surface
 

as-prepared Calcined at 

550 °C for 4 h 

Calcined 

and used 

as-

prep 

calc as-

prep 

calc 

HT_Bi2Mo1 

γ-Bi2MoO6, α-

Bi2Mo3O12, 

Bi6O6(OH)3(NO3)3∙ 

1.5H2O 

γ-Bi2MoO6, 

some β-

Bi2Mo2O9 

γ-Bi2MoO6 2.0 2.0 3.0 1.9 

HT_Bi1Mo1 
γ-Bi2MoO6 and α-

Bi2Mo3O12 

γ-Bi2MoO6 

and α-

Bi2Mo3O12 

γ-Bi2MoO6 

and α-

Bi2Mo3O12 

n.d. n.d. 1.3 n.d. 

HT_Bi2Mo3 

α-Bi2Mo3O12, 

cubic 

H0.68(NH4)2Mo14.16

O4.34∙6.92H2O 

α-Bi2Mo3O12 
α-

Bi2Mo3O12 
0.7 0.7 0.8 0.7 

HT_Bi1Mo2 

α-Bi2Mo3O12, 

hexagonal 

NH3(MoO3)3 

α-Bi2Mo3O12, 

MoO3 

α-

Bi2Mo3O12, 

MoO3 

0.5 n.d. n.d. n.d. 
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from a hydrothermally synthesized precursor material by heat treatment at temperatures 

above 500 °C. 

 

Figure 4.6: Characterization of the hydrothermally synthesized samples after calcination at 550 °C 

by X-ray diffraction (a) and Raman spectroscopy (b). γ-Bi2MoO6 (circles), β-Bi2Mo2O9 (diamond), 

α-Bi2Mo3O12 (triangle) and α-MoO3 (993 cm
-1

, squares). 

After calcination at 550 °C for 4 h the sample synthesized from a Bi/Mo ratio 2:3 only 

contained α-Bi2Mo3O12. HT_Bi1Mo2_calc containing a larger excess of molybdenum 

additionally showed characteristic features of α-MoO3 in the diffraction pattern (Figure 

4.6a; reflections at 23.3°, 25.7°, 27.3°, 33.7°) and in the Raman spectra (Figure 4.6b; 993 

cm
-1

). Bi/Mo ratios found in the bulk of the products synthesized with Bi/Mo = 2:1 and 2:3 
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was consistent with the applied ratio and did not change during calcination (Table 4-2), 

thereby indicating that no molybdenum or bismuth losses occurred during thermal 

treatment. Comparison of the metal ratio in the bulk determined by ICP-OES and on the 

surface (XPS) showed both values were practically identical after calcination. The surface 

composition of the catalyst was determined from the peak areas of Mo 3d5/2 = 232.7 eV 

and Bi 4f7/2 = 159.4 eV. A representative spectrum is shown in Figure 4.7. 

 

Figure 4.7: Representative XPS of a hydrothermally synthesized sample with Bi/Mo = 2:1 at 180 

°C for 24 h without further heat treatment.  

XPS measurement of the as-prepared HT_Bi2Mo1 revealed enrichment with bismuth on 

the surface, which might be due to the presence of Bi2O3.96. However, the activity for 

propylene conversion was sufficiently high and no formation of hexadiene due to the 

presence of Bi2O3 could be observed. 
[102, 216]

 Hence, it is more likely that the γ-bismuth 

molybdates have an excess of superficial bismuth, which is in line with literature. 
[121, 219]

 

Bing et al. 
[98]

 also observed a decrease of the surface Bi/Mo ratio for γ-Bi2MoO6 prepared 

by co-precipitation during calcination at 420 °C. van Well et al. 
[124]

 calcined spray dried 

and co-precipitated samples with a theoretical Bi/Mo ratio of 2.0 at 550 °C and determined 

similar surface ratios to the values found for our hydrothermally synthesized samples: the 
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high Bi/Mo ratio of 3.0 determined for the as-prepared HT_Bi2Mo1 and the value of 1.9 

for the calcined sample diluted by the β-phase (see Table 4-2). 

4.3.2.2. Catalytic performance before and after calcination 

Next, the four calcined samples HT_Bi2Mo1_calc, HT_Bi1Mo1_calc, HT_Bi2Mo3_calc 

and HT_Bi1Mo2_calc were applied in the catalytic oxidation of propylene where they 

exhibited a lower propylene conversion and, accordingly, a lower acrolein yield than the 

non-calcined samples under the same conditions (flow range 50 – 260 Nml/min, 460 – 520 

°C). Figure 4.8 compares the acrolein yield and the propylene conversion of the as-

prepared and calcined catalysts at 480 °C and 80 Nml/min. The acrolein yield for the 

calcined samples decreased with increasing molybdenum content to 1.0% at corresponding 

propylene conversion of 1.7% for HT_Bi1Mo2_calc.  

 

Figure 4.8: Catalytic performance of the hydrothermally synthesized samples with Bi/Mo ratios 

2.0 – 0.5 at 480 °C with 80 Nml/min and a contact time of 0.16 (g∙s)/ml (calculated at reaction 

temperature and pressure); black squares: propylene conversion, bars: acrolein yield (as-prepared 

materials = blue, calcined samples = grey). For each sample the propylene conversion and the 

acrolein yield decreased after calcination. 

For HT_Bi2Mo3 propylene conversion decreased from 19.2% to 6.2% due to calcination 

and the acrolein selectivity decreased from 82% to 51%. Comparing the phase composition 
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of this sample before and after calcination suggests that the phase change was responsible 

for the deactivation. During calcination the ammonium molybdenum oxide phase in 

HT_Bi2Mo3 disappeared and phase pure α-Bi2Mo3O12 was obtained (Table 4-2). This 

ammonium molybdenum phase should have a lower catalytic activity in propylene 

oxidation and a lower selectivity to acrolein than α-Bi2Mo3O12. 
[220]

 Therefore the mixture 

of ammonium molybdenum oxide and α-Bi2Mo3O12 should be less active and less selective 

than pure α-Bi2Mo3O12. But also for the other three samples, calcination led to a 

deactivation in propylene oxidation. For HT_Bi2Mo1 the β-phase was formed and for 

HT_Bi1Mo2 hexagonal NH3(MoO3)3 was changed to orthorhombic MoO3. HT_Bi1Mo1 

did not undergo phase changes during calcination but the deactivation by calcination was 

more significant than for the other three samples. Although propylene conversion 

decreased for the calcined samples compared to the as-prepared materials, the selectivity 

decreased as well for all samples except HT_Bi2Mo1. Here, acrolein selectivity increased 

due to thermal treatment from 69.2% to 85.2% at a propylene conversion of 22.3% and 

8.7% respectively. van Well et al. 
[124]

 reported that calcination time and temperature 

strongly influenced the activity of the bismuth molybdenum catalysts. They suggested that 

this was due to a surface enrichment with bismuth after calcination at higher temperature 

or longer time. This could not be confirmed here, as the bismuth concentration on the 

surface decreased during calcination (see Table 4-2). But a possible explanation could be 

the decrease of the surface area, which was ≤ 1 m²/g for all calcined samples. The surface 

area of the calcined samples was very low and therefore propylene conversion was also 

low.  

Comparison of SEM images in Figure 4.9 and Figure 4.2 revealed that the particles sinter 

and agglomerate during calcination. Only the sample prepared from an initial Bi/Mo ratio 

2:1 retained a plate-like morphology, but the thickness increased during calcination and the 

aspect ratio changed from rectangular to quadratic (Figure 4.9a). In summary only 

HT_Bi2Mo1 partially preserved its morphology during calcination and this sample showed 

the best catalytic performance compared to the other three calcined materials. 



  4.3. Results and Discussion 

 Hydrothermal synthesis of Mo based catalysts 89 

 

Figure 4.9: SEM images of samples synthesized with different Bi/Mo ratio after calcination at 550 

°C a) HT_Bi2Mo1_calc, b) HT_Bi1Mo1_calc, c) HT_Bi2Mo3_calc and d) HT_Bi1Mo2_calc. 

4.3.3. Comparison of hydrothermally synthesized catalysts with flame made 

materials 

4.3.3.1. Characterization of the samples synthesized by different preparation methods 

The diffraction pattern of the bismuth molybdates prepared with different Bi/Mo ratios by 

flame spray pyrolysis, hydrothermal synthesis or co-precipitation are shown in Figure 4.10. 

All samples prepared with a Bi/Mo ratio 2:1 contained mainly γ-Bi2MoO6 except for the 

co-precipitated sample calcined at 680 °C, which consisted of γ”-Bi2MoO6, whereas α-

Bi2Mo3O12 was the main phase for Bi/Mo = 2:3. The majority of the samples prepared with 

Bi/Mo = 1:1 consisted of a mixture of the α-phase with either β- or γ-bismuth molybdate. 

Flame spray synthesis led to the formation of β-Bi2Mo2O9. 
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Figure 4.10: X-ray diffraction pattern of different samples prepared by flame spray pyrolysis 

(FSP), co-precipitation (CP) and hydrothermal synthesis (HT) synthesized with Bi/Mo = 2:1 (a), 

Bi/Mo = 1:1 (b) and Bi/Mo = 2:3 (c). 

As already discussed in chapter 4.3.1., hydrothermal synthesis at 180 °C with Bi/Mo = 2:1 

prepared in pure water led to the formation of γ-Bi2MoO6 with some other Mo- or Bi-
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containing phases as impurity. Addition of acetic acid did also result in γ-Bi2MoO6, but 

with α-Bi2Mo3O12 as a side product. This sample featured agglomerates of flat plates with 

round-shaped edges illustrated in Figure 4.11a and b. Phase pure γ-Bi2MoO6 was obtained 

from synthesis in the presence of nitric acid. The plates of HT_Bi2Mo1_HNO3 (Figure 

4.11c) were rectangular with well defined steps and edges on the surface, which may be 

beneficial for the selectivity of the catalytic reaction.  

 

Figure 4.11: SEM images of a-b) HT_Bi2Mo1_HOAc and c) HT_Bi2Mo1_HNO3, TEM images 

of the three different flame made materials: d) FSP_Bi2Mo3, e-f) FSP_Bi2Mo1, g-h) 

FSP_Bi1Mo1. 
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Table 4-3: Characterization and catalytic data of the differently prepared samples. All samples are 

as-prepared and non-calcined except the co-precipitated samples (calcination temperature is 

included in the sample name). 

a: The calculated error accounts to around 10%. 

b: Average of two XPS measurements at different spots. 

c: Maximum test temperature 400 °C for HT_Bi2Mo1_HOAc. 

d: pH value adjusted with NH3. 

Co-precipitation followed by calcination at 450 °C yielded pure γ-Bi2MoO6 as well, 

whereas during calcination at 680 °C γ”-Bi2MoO6 (PDF No. 33-208 
[209]

) 
[31]

 was formed 

as indicated by the reflections at 27.4, 31.1, 31.9 and 45.1° (cf. Figure 4.10a). Similarly the 

flame made material FSP_Bi2Mo1 exclusively contained the γ-phase according to its 

diffraction pattern. Hydrothermal synthesis with Bi/Mo = 1:1 did not lead to the formation 

of the β-phase but to a mixture of α- and γ-phase for all three samples. Co-precipitation of 

bismuth molybdates with Bi/Mo = 1:1 and calcination at 680 °C resulted in a mixture of β-

Sample 

 

Max. 

yield 

(C3H4O) 

Correspon-

ding 

conversion 

(C3H6) 

T Specific 

surface 

area 

(BET) 

Bi/Mo 

ratio bulk 
a
 

Bi/Mo 

ratio 

surface 
b
 

 % % °C [m²/g] [at.%/ 

at.%] 

[at.%/ 

at.%] 

FSP_Bi2Mo1 22.2 26.1 484 45 1.9 2.3 

CP_Bi2Mo1_450 25.3 33.9 491 6 2.0 2.3 

CP_Bi2Mo1_680 5.8 7.3 482 < 1 n.d. n.d. 

HT_Bi2Mo1_HNO3 33.6 41.2 450 6 1.8 2.8 

HT_Bi2Mo1_HOAc 20.1 26.8 405 
c 

5 n.d. n.d. 

HT_Bi2Mo1 23.1 33.3 445 6 2.0 3.0 

FSP_Bi1Mo1 30.3 37.4 451 19 n.d. 1.1 

CP_Bi1Mo1_680 3.6 4.3 521 < 1 n.d. n.d. 

HT_Bi1Mo1_HNO3 38.4 43.8 486 9 n.d. 1.2 

HT_Bi1Mo1_pH4 
d 

36.6 45.5 489 7 n.d. n.d. 

HT_Bi1Mo1 31.0 39.9 493 8 n.d. 1.3 

FSP_Bi2Mo3 6.1 7.4 484 18 n.d. n.d. 

CP_Bi2Mo3_450 15.3 18.8 483 1 0.7 
n.

d. 

HT_Bi2Mo3 21.9 28.9 443 7 0.7 0.8 
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Bi2Mo2O9 and α-Bi2Mo3O12. As mentioned above, only flame spray pyrolysis afforded 

pure β-Bi2Mo2O9 at a Bi/Mo ratio of 1:1. The flame made material synthesized with Bi/Mo 

= 2:3 was highly amorphous. In Table 4-3 the results of the N2 physisorption 

measurements are summarized. The co-precipitated samples and the hydrothermally 

synthesized samples had similar surface area (6 - 9 m²/g) whereas the flame made 

materials always exhibited higher surface areas (18 – 45 m²/g). FSP_Bi2Mo1 (45 m²/g) 

reached the highest specific surface area. Whereas the spherical particles of this sample 

were approximately 25 nm in size (Figure 4.11e-f), FSP_Bi2Mo3 and FSP_Bi1Mo1 

retained larger particles with smaller spherical particles with a diameter < 10 nm on top 

(TEM images in Figure 4.11). The obtained surface area of these two samples was 

identical (Table 4-3). 

To identify the coordination number of Mo and the structure of the materials, the samples 

were also analyzed by X-ray absorption spectroscopy (XAS) at the Mo K edge. The X-ray 

absorption near edge structure (XANES) spectra are depicted in Figure 4.12. Na2MoO4 ∙ 

2H2O (tetrahedral Mo) and α-MoO3 (octahedral Mo) were used as references. According to 

Reilly et al. 
[221]

 the features A and B correspond to 1s-4d (A) and 1s-5p (B) transitions, 

respectively. 
[222]

 The pre-edge feature A is larger for sodium molybdate containing 

tetrahedrally coordinated Mo(VI) compared to orthorhombic MoO3, which incorporates 

Mo(VI) in an octahedral environment, because the 1s-4d transition is more allowed in 

tetrahedral symmetry. XANES spectra of FSP_Bi1Mo1 agreed well with those of 

Na2MoO4 ∙ 2H2O indicating that β-Bi2Mo2O9 was formed by flame spray pyrolysis, given 

that the β-phase contains tetrahedral Mo(VI) species. For comparison the spectra measured 

for FSP_Bi2Mo1, HT_Bi2Mo1 and HT_Bi2Mo1_HNO3 (Figure 4.12) exhibited a stronger 

peak in the B region sensitive for octahedral Mo(VI) and lower intensity for A. The 

remaining spectra agreed well with reference data for octahedrally coordinated Mo 

(reference here α-MoO3). This hints at the presence of γ-Bi2MoO6 for these three samples. 

Extended X-ray absorption fine structure (EXAFS) spectra mainly constituted the Mo-O 

backscattering. Due to the corner shared octahedra in γ-Bi2MoO6 also some Mo-Mo 

contribution was found for these samples (lowest for FSP_Bi2Mo1 because of the small 

particle size). 
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Figure 4.12: Mo K-edge XANES spectra of two flame made and two hydrothermally synthesized 

samples as well as two standards: Na2MoO4 ∙ 2H2O and α-MoO3. The pre-edge feature A dominates 

the spectra of tetrahedrally coordinated Mo(VI) centers whereas the B-region is more prominent for 

symmetric six-fold coordinated Mo. 

X-ray diffraction and absorption measurements both confirmed that flame spray pyrolysis 

led to the formation of β-Bi2Mo2O9 and γ-Bi2MoO6 applying the corresponding Bi/Mo 

ratios. The β-phase is only considered stable at temperatures between 540 and 665 °C. A 

recent study 
[223]

 showed that the located maximum flame temperature is generally above 

700 °C at 20 mm above the nozzle with oxygen as the dispersion gas, and continuously 

decreases with increasing distance from the nozzle. Studies on SiO2 synthesis suggested 

that all reaction and particle formation processes take place in the gas phase. 
[64]

 Kho et al. 

[73]
 found that the residence time in the flame (millisecond range) is insufficient to induce 

crystallization within the flame. They suggested that the degree of crystallization is a 

function of the filter temperature (cf. chapter 1.1.2). In the present work the temperature of 

the filter did not exceed 200 °C, which is insufficient for the formation of β-Bi2Mo2O9 so 

that phase formation probably occurred in the flame. For FSP_Bi2Mo1 the presence of the 

high temperature form γ´-Bi2MoO6, which is stable at temperatures higher than 640 °C, 

was detected neither by PXRD nor by XAS. 
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Figure 4.13: PXRD analysis of the stability of FSP_Bi1Mo1 after calcination at different 

temperatures. The formation of γ-Bi2MoO6 from β-Bi2Mo2O9 sets in at 440 °C. At 480 °C and 500 

°C α-, β- and γ- phase were present, whereas at 520 °C β-Bi2Mo2O9 was below the detection limit. 

As the β-phase is a metastable phase and thus raises questions about the true catalyst phase 

present in the reactor, the stability of the flame made material synthesized with Bi/Mo = 

1:1 (FSP_Bi1Mo1) was analyzed. Fresh FSP_Bi1Mo1-samples were calcined at various 

temperatures for 4 h and after cooling down to room temperature they were analyzed by X-

ray diffraction. Figure 4.13 displays the diffraction pattern of fresh, used and stepwise 

calcined FSP_Bi1Mo1. The formation of γ-Bi2MoO6 set in at 440 °C and is indicated by its 

characteristic reflection with the highest intensity at 28.3°. The decomposition into α-

Bi2Mo3O12 and γ-Bi2MoO6 was completed at 520 °C, when no more β-bismuth molybdate 

could be detected by X-ray diffraction. This suggested that at 360 °C, where the catalytic 

activity of the different samples was compared, FSP_Bi1Mo1 still consisted only of β-

Bi2Mo2O9.  

The Bi/Mo ratios determined by ICP-OES and XPS are summarized in Table 4-3. For all 

three preparation methods the applied ratio corresponded to the bulk concentration actually 

present in the prepared catalyst. A loss of molybdenum, which was found by van Well et 

al. 
[124]

 during precipitation, could not be confirmed here, probably because higher pH 

values were applied in the present study. Comparison of the ICP-OES results with the 
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corresponding ratios calculated from XPS evidenced, that the samples containing γ-

Bi2MoO6 exhibited an excess of bismuth on the surface. HT_Bi2Mo1 displayed the highest 

Bi excess, whereas heat treatment (e.g. calcination of the co-precipitated samples) or the 

use of a high temperature method like flame spray pyrolysis led to a reduced Bi/Mo ratio 

on the surface (Table 4-3). FSP_Bi1Mo1 composed of β-Bi2Mo2O9 resulted in Bi/Mo = 1.1 

which agrees well with the results reported for β-Bi2Mo2O9 by Matsuura et al. 
[224]

 and 

Soares et al. 
[117]

. 

4.3.3.2. Catalytic performance of differently synthesized bismuth molybdates 

The catalytic performance of all materials during the selective oxidation of propylene to 

acrolein at 360 °C is summarized in Figure 4.14. Comparison of the samples synthesized 

with the ratio Bi/Mo = 2:1 (Figure 4.14a) evidenced that the samples HT_Bi2Mo1_HNO3 

and CP_Bi2Mo1_450, both synthesized using nitric acid and consisting of pure γ-Bi2MoO6 

showed the highest activity, whereas the co-precipitated sample was less selective than the 

hydrothermally synthesized sample. This difference in selectivity could be associated with 

the morphology, which was well defined for HT_Bi2Mo1_HNO3 but random for co-

precipitated samples 
[117, 225]

. Despite of a high surface area, the flame made sample of pure 

γ-Bi2MoO6 was less active than HT_Bi2Mo1_HNO3 and CP_Bi2Mo1_450. The samples 

synthesized under hydrothermal conditions with acetic acid, which partially led to the 

formation of α-Bi2Mo3O12, showed relatively low activity in propylene oxidation and low 

selectivity for acrolein. In general the γ-phase was more active than the α-phase, which can 

be seen comparing Figure 4.14a and c.  

Both samples calcined at 680 °C (CP_Bi2Mo1_680 and CP_Bi1Mo1_680) were inactive 

for propylene oxidation, due to the high temperature treatment and the very low surface 

area (< 1 m²/g). As calcination at 550 °C strongly decreased the surface area and the 

activity of the prepared samples without affording β-Bi2Mo2O9, prolonged calcination at 

higher temperatures would probably not exert a productive influence either. Whereas direct 

hydrothermal synthesis of β-Bi2Mo2O9 without calcination was not possible, the obtained 

mixtures (HT_Bi1Mo1, HT_Bi1Mo1_HNO3, HT_Bi1Mo1_pH4, see Table 4-3) still 

exhibited relatively high activity at 360 °C. 
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Figure 4.14: Catalytic performance of samples prepared by different methods with various Bi/Mo 

ratios (Bi/Mo = 2:1 (a), 1:1 (b) and 2:3 (c)) at 360 °C with C3H6/O2/N2 = 5/25/70 applying total 

flows of 50, 80 and 120 Nml/min. HT_Bi2Mo1_HNO3, HT_Bi1Mo1_HNO3 and FSP_Bi1Mo1 

were comparably active and selective. 

According to Table 4-3, where the maximum acrolein yield for each sample and the 

corresponding propylene conversion are summarized, HT_Bi1Mo1_pH4, 

HT_Bi1Mo1_HNO3 and HT_Bi2Mo1_HNO3, i.e. the samples synthesized under 
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hydrothermal conditions with nitric acid or ammonia, were the most active catalysts. One 

reason could be the incorporation of nitrogen in the catalyst, but the analysis of the 

nitrogen content of the samples HT_Bi2Mo1, HT_Bi2Mo1_HOAc and 

HT_Bi2Mo1_HNO3 resulted in 0.4 wt.%, 0.1 wt.% and 0.1 wt.% N and does not correlate 

with the catalytic performance. The highest nitrogen content was found for the sample 

synthesized in the absence of acid, probably due to the presence of a nitrate phase, which 

disappeared during calcination. HT_Bi2Mo1_HOAc, which is composed of γ-Bi2MoO6 

and α-Bi2Mo3O12, also contained nitrogen. This indicated that either the Mo or the Bi 

precursor or both acted as main nitrogen source instead of HNO3 or NH3. The increased 

activity of the samples synthesized with nitric acid could not be explained in terms of 

nitrogen incorporation. This agrees well with the results for α-MoO3 reported in chapter 

3.3. 

Comparison of the samples HT_Bi2Mo1_HNO3 and HT_Bi1Mo1_HNO3 demonstrated 

that the catalytic performance of these two samples was identical at 360 °C although they 

showed different phase composition. A synergistic effect between the α- and the γ-phase 

could not be confirmed comparing HT_Bi1Mo1_HNO3 to HT_Bi2Mo1_HNO3, which 

only contained γ-Bi2MoO6. The flame made material with Bi/Mo = 1:1 which gave access 

to β-Bi2Mo2O9 showed higher activity at 360 °C than the phase mixtures synthesized by 

hydrothermal synthesis (Figure 4.14b). FSP_Bi1Mo1 was also more active and led to a 

higher acrolein yield than FSP_Bi2Mo1 and FSP_Bi2Mo3 (Table 4-3). Comparison of the 

catalytic performance of the co-precipitated samples calcined at 450 °C showed that γ-

Bi2MoO6 (CP_Bi2Mo1_450) converted more propylene and yielded more acrolein than α-

Bi2Mo3O12 (CP_Bi2Mo3_450). Generally, comparison of catalysts prepared under the 

same conditions shows that the activity decreased in the following order: β-Bi2Mo2O9 > γ-

Bi2MoO6 > α-Bi2Mo3O12. However, a different order of activity has been suggested in 

preceding studies, namely: β-Bi2Mo2O9 ≥ α-Bi2Mo3O12 > γ-Bi2MoO6. 
[92, 115, 224, 226]

 

Krenzke and Keulks 
[96]

 as well as Batist et al. 
[227]

 observed yet another trend (γ-Bi2MoO6 

≥ β-Bi2Mo2O9 > α-Bi2Mo3O12), confirming the α-phase as the least active phase. For 

FSP_Bi1Mo1 the acrolein yield did not exceed 30% at a propylene conversion of 37% at 

450 °C, whereas HT_Bi1Mo1_HNO3 and HT_Bi1Mo1_pH4 enhanced propylene 

conversion up to 44% and 46%, respectively. The fact that FSP_Bi1Mo1 showed the 

highest propylene conversion of the tested samples at 360 °C suggested a deactivation of 

the flame made material due to decomposition of the β-phase. 
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Figure 4.15: Comparison of the PXRD pattern before (black) and after (red) application in 

catalytic oxidation of propylene at temperatures from 320 °C to 520 °C with Bi/Mo = 2:1 (a) Bi/Mo 

= 1:1 (b) and Bi/Mo = 2:3 (c). Characterization of the flame made samples by X-ray absorption 

spectroscopy (d). 

Characterization of the used samples by PXRD confirmed that the majority of the samples 

did not change their phase composition during the application in propylene oxidation at 

temperatures up to 520 °C (cf. Figure 4.15). One exception was CP_Bi2Mo1_680, which 

changed its phase composition from metastable γ”-Bi2MoO6 to a mixture of orthorhombic 

γ´-Bi2MoO6 and γ-Bi2MoO6. This transformation usually occurs between 550 and 640 °C. 

[31, 228]
 During phase transformation of β-Bi2Mo2O9 in FSP_Bi1Mo1 into α-Bi2Mo3O12 and 

γ-Bi2MoO6 the Bi/Mo ratio on the surface did not change and remained around 1.1 

according to XPS measurements. Figure 4.15d shows XANES obtained after normalization 

of FSP_Bi2Mo1, which contained γ-Bi2MoO6 (i.e. octahedral Mo(VI)) resulting in a 

spectra with high intensity in region B but low intensity in region A. The spectrum for 

FSP_Bi1Mo1 is more dominant in the region A but the intensity is less in the region B, 

which is in well agreement with β-Bi2Mo2O9, containing tetrahedral Mo(VI) species. The 

spectrum of the used sample (FSP_Bi1Mo1_used) lies in between, which fits well with the 

results obtained from the powder X-ray diffraction pattern suggesting the presence of a 

mixture of α- and γ-bismuth molybdate. This observation on FSP_Bi1Mo1 agrees well 
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with studies of Batist et al. 
[227]

 and Jung et al. 
[229]

, who reported that 55% of the co-

precipitated β-Bi2Mo2O9 was decomposed into α- and γ-bismuth molybdate after 24 h at 

420 °C. The results in Table 4-3 suggest that the transformation occurred between 440 and 

460 °C. However, calcination and analysis by X-ray diffraction discussed earlier (Figure 

4.13) showed that the decomposition in air already starts at temperatures between 400 and 

440 °C. Except for FSP_Bi1Mo1, CP_Bi2Mo1_680, HT_Bi2Mo1 and HT_Bi2Mo3 all 

other samples were stable during the activity measurements up to 520 °C. 

4.3.4. Hydrothermally synthesized bismuth molybdates at various pH values 

The samples synthesized with Bi/Mo = 1:1 and addition of nitric acid or ammonia solution 

exhibited high catalytic activity in selective oxidation of propylene, although the formation 

of β-Bi2Mo2O9 was not observed. Bismuth molybdates with relatively high surface areas 

could be prepared by hydrothermal synthesis using nitric acid and ammonia solution by 

variation of the pH value. 
[34]

 High surface areas in combination with the application of 

nitric acid and ammonia may result in improved catalytic activity. Therefore bismuth 

molybdates were synthesized with Bi/Mo = 1:1 varying the pH value from 1 to 9. 

4.3.4.1. Characterization of the samples synthesized with Bi/Mo = 1:1 

The X-ray diffraction pattern and Raman spectra of the samples synthesized with Bi/Mo = 

1:1 at pH = 1 – 9 in Figure 4.16 show the effects of the pH on the structure under 

hydrothermal conditions. At high pH values (pH ≥ 6) γ-Bi2MoO6 was formed, which is 

indicated by the reflections at 2θ = 28.3, 32.6, 33.1, 36.1, 46.7, 47.2° in the PXRD pattern 

(Figure 4.16a; JCPDS card no. 77-1246). The corresponding Raman spectra showed bands 

at 848 cm
-1

 and 807 cm
-1

 as well as at 719 cm
-1

 which were ascribed to γ-bismuth 

molybdate. 
[34, 214]

 Analysis of the bismuth and molybdenum concentration of the products 

by ICP-OES led to a Bi/Mo bulk ratio of 1.8 – 2.1 for pH = 6 – 9 (Table 4-4) suggesting 

that molybdenum partly remained in solution and did not completely precipitate at high pH 

values. At pH > 6 the molybdenum anion assumed to be present in solution is (MoO4)
2-

. 
[35]

 

In weakly acidic or basic aqueous solutions bismuth nitrate is “hydrolyzed” resulting in the 

formation of BiO
+
. 

[230]
 These bismuthyl subunits react with (MoO4)

2-
 and precipitate as γ-

Bi2MoO6. 
[34, 231]
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Figure 4.16: PXRD pattern (a) and Raman spectra (b) of the samples synthesized with ratio Bi/Mo 

= 1:1 at different pH values. 

With decreasing pH value additionally to the γ-phase a bismuth free molybdenum oxide 

phase was formed at pH = 5 indicated by the reflections at 26.9 and 27.5°, which could be 

assigned to MoO3 ∙ 2H2O (JCPDS no. 39-363), and by the Raman band at 947 cm
-1

 

pointing out the presence of Mo7O24
6-

. At pH = 3 – 6 the stable polymolybdate species in 

aqueous solution is Mo7O24
6- [14, 35] 

which agrees well with the Raman spectrum for the 

sample synthesized at pH = 5. Bi1Mo1_pH5 exhibited a Bi/Mo ratio of 1.1, which equaled 

the applied ratio (see Table 4-4) and α-Bi2Mo3O12 could not be detected by X-ray 

diffraction (main reflection at 27.9°) or Raman spectroscopy (main band at 904 cm
-1

).  
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Table 4-4: Characterization of samples prepared by hydrothermal synthesis with different Bi/Mo 

ratios and at various pH values by X-ray diffraction measurements and Raman spectroscopy as well 

as nitrogen physisorption measurements (BET), ICP-OES and XPS. 

Sample Phases according to 

PXRD 

Phases 

according to 

Raman 

Surface 

area 

(BET) 

[m²/g] 

Bi/Mo 

ratio 

bulk
a 

Bi/Mo 

ratio 

surface
b 

initial ratio Bi/Mo = 2:1 
    

Bi2Mo1_pH7 γ-Bi2MoO6 
 

13 
  

Bi2Mo1_pH8 γ-Bi2MoO6 
 

7 
  

initial ratio Bi/Mo = 1:1 

Bi1Mo1_pH1 
α-Bi2Mo3O12, Mo4O11, 

Bi2O3 
α-Bi2Mo3O12 3 1.0  

Bi1Mo1_pH4 
γ-Bi2MoO6, α-

Bi2Mo3O12, Bi2O3, 

Bi26Mo10O69 

α-Bi2Mo3O12, 

γ-Bi2MoO6, β-

Bi2O3 

18 0.9 1.1 

Bi1Mo1_pH5 
γ-Bi2MoO6, 

MoO3∙2H2O 

γ-Bi2MoO6, 

Mo7O24
6-

 or 

MoO3(H2O)2 

32 1.1 1.1 

Bi1Mo1_pH6 γ-Bi2MoO6 γ-Bi2MoO6 26 1.8 1.7 

Bi1Mo1_pH7 γ-Bi2MoO6 γ-Bi2MoO6 17 1.8 1.8 

Bi1Mo1_pH8 γ-Bi2MoO6 γ-Bi2MoO6 10 1.9 2.5 

Bi1Mo1_pH9 γ-Bi2MoO6 γ-Bi2MoO6 4 2.1  

initial ratio Bi/Mo = 2:3     

Bi2Mo3_pH1 
α-Bi2Mo3O12, 

H0.68(NH4)2 

Mo14.16O4.34∙ 6.92H2O 

α-Bi2Mo3O12 5   

Bi2Mo3_pH4 
γ-Bi2MoO6, 

MoO3∙2H2O, Bi5O7NO3 

γ-Bi2MoO6, 

Mo7O24
6-

 or 

MoO3(H2O)2, 

NO3
- 

17   

Bi2Mo3_pH9 γ-Bi2MoO6 γ-Bi2MoO6 5   

a: The calculated error accounts to around 10%.  

b: Average of two XPS measurements at different spots. 

The formation of the α-phase was observed at pH ≤ 4 and additionally to α- and γ-bismuth 

molybdate minor contributions of other phases were detected. Further decrease in pH to 1 

led to the disappearance of γ-Bi2MoO6 in the product and α-Bi2Mo3O12 was the main phase 

found in the X-ray diffraction pattern (Figure 4.16a). Additionally to the reflections at 
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14.1, 18.1, 25.9, 27.9 and 29.2° assigned to α-Bi2Mo3O12 (JCPDS no. 21-103) two 

reflections at 22.7° and 26.5° were observed in the diffraction pattern of the sample 

synthesized at pH = 1. The reflection at 22.7° could be assigned to Mo4O11 (JCPDS no. 86-

1269), whereas the correlation of the reflection at 26.5° was not possible. The 

corresponding Raman spectra (Figure 4.16b) showed the characteristic bands of α-

Bi2Mo3O12 (928, 904, 861, 843 and 817 cm
-1

). For all samples synthesized with a Bi/Mo 

ratio 1:1 β-Bi2Mo2O9 was detected neither by X-ray diffraction (27.8°) nor Raman 

spectroscopy (884 cm
-1

), which agrees with literature 
[8, 34]

 where calcination at 560 °C was 

required to form the β-phase. The samples synthesized at pH = 1 - 5 contained bismuth and 

molybdenum in the ratio 1:1 in the bulk (Table 4-4), corresponding to the initially applied 

ratio.  

 

Figure 4.17: XP spectra of Bi1Mo1_pH7 and Bi1Mo1_pH5 with the corresponding Voigt fits 

around the Mo 3d and Bi 4f region. For a better visualization all spectra are normalized to 

maximum intensity. 

In addition to the characterization of the phase composition and the resulting Bi/Mo ratio 

in the bulk, the specific surface area and the Bi/Mo ratio on the surface of the products 

were determined (see Table 4-4). The surface composition of the catalyst was calculated 

using the peak areas of Mo 3d5/2 = 232.7 eV and Bi 4f7/2 = 159.4 eV in the XPS 

(representative spectra see Figure 4.17). At pH = 4 - 7 the Bi/Mo ratio on the surface 
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equaled the ratio in the bulk (Bi/Mo ≈ 1 for pH = 4 and 5, Bi/Mo ≈ 2 for pH = 6 and 7), 

whereas at pH = 8 a surface enrichment of bismuth (Bi/Mo = 2.5) was detected by XPS. 

High Bi/Mo surface ratios were also reported in the literature for γ-Bi2MoO6 prepared by 

different methods (spray dried: 2.4 
[121]

, co-precipitated: 2.6 
[98, 219]

) and for the samples 

synthesized by hydrothermal synthesis and co-precipitation in chapter 4.3.3 (Bi/Mo = 2.3 - 

3.0). The presence of surface Bi2O3 was not found neither in literature nor in the present 

work. The sample synthesized at pH = 5 featured the highest specific surface area (32 

m²/g), whereas with increasing and decreasing pH value the surface area of the resulting 

product was reduced (Table 4-4) to 4 m²/g and 3 m²/g for pH = 9 and pH = 1, respectively. 

The product composition does not seem to be a determining factor for the specific surface 

area, as the two samples with the highest surface area showed different phases resulting in 

a different Bi/Mo ratio in the bulk and on the surface (Bi/Mo =1.1 for pH = 5 with 32 m²/g 

and Bi/Mo =1.8 for pH = 6 with 26 m²/g). 

 

Figure 4.18: SEM images of the products obtained from hydrothermal synthesis with Bi/Mo = 1:1 

at pH = 1 (a) and pH = 4 (b). 

SEM images of the samples prepared at pH = 1 and pH = 4 are shown in Figure 4.18. The 

sample synthesized at lower pH value (pH = 1) evidenced a plate-like morphology (400 - 

650 nm x 700 – 800 nm) with defined steps on the surface (Figure 4.18a). At pH = 4 sheets 

are seen in the image (Figure 4.18b), which agrees well with the particles prepared by Li et 

al. 
[34]

, although the particle size of their samples is smaller than the particles obtained here 

(700 nm x 2 µm). Accordingly, the surface areas obtained for our samples in the present 
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work were lower (compare Table 4-4 with 39 m²/g for α-Bi2Mo3O12 and 58 m²/g for γ-

Bi2MoO6). 

4.3.4.2. Influence of the pH at lower and higher Bi/Mo ratio 

To elucidate the influence of the applied Bi/Mo ratio on the phases the amount of 

molybdenum was increased to Bi/Mo = 2:3. At pH = 9 only γ-Bi2MoO6 with a high 

crystallinity was formed as proven by X-ray diffraction (Figure 4.19a) and Raman 

spectroscopy (Figure 4.19b). This indicated that also at low Bi/Mo ratio (i.e. with an excess 

of molybdenum) bismuth-rich γ-Bi2MoO6 was formed at high pH values, which agrees 

with the results of Li et al. 
[34]

. The specific surface areas of the two samples synthesized at 

pH = 9 (Bi1Mo1_pH9 and Bi2Mo3_pH9) were similar (4 m²/g and 5 m²/g). Decreasing the 

pH to 4 led to the same phase composition as in sample Bi1Mo1_pH4 (γ-Bi2MoO6 and 

MoO3 ∙ 2H2O), but additionally a nitrate containing phase was found as indicated by the 

Raman band at 1047 cm
-1

 (Figure 4.19b). The reflections in the X-ray diffraction pattern 

(Figure 4.19a) at 27.6°, 30.7° and 45.7° could be assigned to Bi5O7NO3 (JCPDS no. 51-

525). Further decrease of the pH to 1 did not result in the formation of pure α-Bi2Mo3O12, 

but additionally an ammonium containing molybdenum oxide phase was formed (see 

Figure 4.19 and Table 4-4). The applied pH value and therefore the different 

(poly)molybdate anions in the aqueous solution seems to have a stronger impact on the 

resulting phase than the applied Bi/Mo ratio. For all three samples synthesized with Bi/Mo 

= 2:3 the surface area determined by nitrogen physisorption was identical to the samples 

synthesized with Bi/Mo = 1:1 at the same pH value (Table 4-4). 
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Figure 4.19: PXRD patterns (a) and Raman spectra (b) of the samples with ratio Bi/Mo = 2:3 at 

different pH values. 

Using an excess of bismuth and applying the initial ratio Bi/Mo = 2:1 at pH = 7 and pH = 8 

led to the formation of highly crystalline γ-Bi2MoO6 (see PXRD pattern in Figure 4.20). Li 

et al. 
[34]

 and Zhang et al. 
[28]

 already reported that hydrothermal synthesis with Bi/Mo = 

2:1 always resulted in γ-Bi2MoO6 independent of the pH value (pH = 1 – 13). 
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Figure 4.20: PXRD pattern of γ-Bi2MoO6 prepared with Bi/Mo = 2:1 at pH = 7 and 8. 

4.3.4.3. Catalytic performance in propylene oxidation to acrolein 

The samples synthesized with Bi/Mo = 1:1 were tested in propylene oxidation at 320 – 520 

°C to study the influence of the preparation parameters such as the pH value and the 

corresponding structural properties on the catalytic performance of the hydrothermally 

synthesized bismuth molybdates. Figure 4.21 depicts the acrolein selectivity as a function 

of the propylene conversion at three different flows (50, 80 and 120 Nml/min) leading to 

different catalyst contact times and therefore to a different propylene conversion and / or 

acrolein selectivity. At 320 °C (Figure 4.21a) the sample synthesized at pH = 6 showed the 

highest propylene conversion (19 and 31% propylene conversion, 73 and 79% acrolein 

selectivity for 120 Nml/min and 50 Nml/min respectively), followed by the samples 

synthesized at pH = 7 (27% Xpropylene and 73% Sacrolein for 50 Nml/min) and pH = 8 (25% 

Xpropylene and 60% Sacrolein for 50 Nml/min). The samples synthesized at pH = 4 and pH = 5, 

which additionally to γ-Bi2MoO6 contained minor phases, converted less propylene (6-16% 

Xpropylene and 10-21% Xpropylene respectively).  



4 Bismuth molybdates for selective oxidation of propylene 

108                                                                  Hydrothermal synthesis of Mo based catalysts  

 

Figure 4.21: Catalytic performance of samples prepared with Bi/Mo = 1:1 at 320 °C (a), 360 °C 

(b) and 400 °C (c). The samples were dried in air at room temperature, crushed and sieved and pre-

treated in the reactor in synthetic air at 300 °C. Reaction conditions: 500 mg catalyst; C3H6/O2/N2 = 

5/25/70; 50, 80 and 120 Nml/min. 
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This indicates that the samples which contained only γ-Bi2MoO6 were more active than the 

other samples. However, the sample synthesized at pH = 9 also composed of γ-Bi2MoO6 

but with smaller surface area reached propylene conversions of only 2-4% at acrolein 

selectivities of 70-50%. The sample synthesized at pH = 1 exhibiting small surface area (3 

m²/g) was also nearly inactive, where the propylene conversion remained around 3% for 

120 – 50 Nml/min total flow, but acrolein selectivity strongly decreased from 80% to 40% 

with increasing flow. The main by-products were CO2 (selectivities around 10-20%), 

acetaldehyde (7-8%) and CO (1-5%). Ethylene and hexadiene were only detected in very 

small amounts for sample Bi1Mo1_pH9 at temperatures above 440 °C. 

 

Figure 4.22: Correlation between the pH value in the initial solution, the Bi/Mo ratio determined in 

the bulk and on the surface and the catalytic performance at 360 °C using a flow of 50 Nml/min 

with a composition of C3H6/O2/N2 = 5/25/70. 

At 360 °C the difference in activity between the various samples decreased, but the 

samples synthesized at pH = 6 and pH = 7 still showed the best catalytic performance 

(propylene conversion of 40-56% and 37-54% respectively) followed by the sample at pH 

= 8, which was slightly less selective (acrolein selectivity of 72-79% compared to 79-

83%). In general all the samples synthesized at pH = 4 – 8 yielded relatively high 

propylene conversion compared to the hydrothermally synthesized samples presented in 

section 4.3.1 and 4.3.3 (cf. Figure 4.14 and Figure 4.21b) along with acrolein selectivities 
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of 70–85%. In Figure 4.22 the propylene conversion as well as the acrolein yield measured 

at 360 °C was correlated to the pH values during hydrothermal synthesis. Propylene 

conversion and acrolein yield showed volcano-like curves with respect to pH with a 

maximum at pH = 6. The samples at pH = 6 and pH = 7 featured a Bi/Mo ratio of ca. 2 

both in the bulk and on the surface (Figure 4.22) and Bi1Mo1_pH6 additionally exhibited a 

relatively large surface area (26 m²/g, Table 4-4). Comparison of Table 4-4 with Figure 

4.22 evidenced that a combination of the right bismuth molybdate phase (γ-Bi2MoO6) and 

a high surface area are important for high propylene conversion. The sample synthesized at 

pH = 8 showing a smaller surface area (10 m²/g) and bismuth excess on the surface led to 

lower acrolein selectivity at 360 °C (Figure 4.21b). Also at 360 °C propylene conversion of 

the bismuth molybdates prepared at pH = 1 and pH = 9 did not exceed 6%. The sample 

synthesized at pH = 9 showed low propylene conversion at 400 °C (5-9%) at acrolein 

selectivities below 50% and CO2 selectivities of around 50% (Figure 4.21c), whereas the 

catalytic performance of the sample synthesized at pH = 1 increased strongly to propylene 

conversions of 22-35% at acrolein selectivities of 75-80%. For all the other samples the 

catalytic performance in propylene oxidation was only slightly increased when the 

temperature changed from 360 °C to 400 °C. The three samples synthesized at pH = 6 – 8 

still exhibited the highest propylene conversion (35-58%) of the tested samples at acrolein 

selectivities up to 92% and acrolein yields of 46-49% at 400 °C. The sample synthesized at 

pH = 8, which was slightly less selective at 360 °C, gave the same acrolein selectivity as 

the samples synthesized at pH = 6 – 7 at 400 °C (Figure 4.21c). A further increase in 

process temperature above 400 °C did not result in an improvement of the catalytic activity 

(cf. Figure 4.23), where propylene conversion and acrolein selectivities are displayed for 

process temperatures from 320 °C to 520 °C using the samples synthesized at pH = 5 

(highest surface area) and pH = 6 (highest activity) as representative examples. An increase 

in temperature from 320 °C to 400 °C resulted in a better catalytic performance, whereas 

the activity at 440 °C was very similar to the one at 400 °C. At temperatures higher than 

440 °C the catalytic activity started to decrease and at 520 °C propylene conversion was 

similar to the values at 320 °C but with higher acrolein selectivities. The decrease in 

activity at temperatures higher than 440 °C was probably caused by a decrease in surface 

area for all samples. After application in propylene oxidation at 320 - 520 °C the surface 

area of all used samples was ≤ 1 m²/g, whereas after 8 h of calcination at 360°C the 

samples synthesized at pH = 5 and pH = 6 still exhibited surface areas of 15 m²/g and 16 
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m²/g, respectively. The decrease in surface area already started at 360 °C but the decrease 

was more significant between 400 and 440 °C when catalyst deactivation started. Figure 

4.24 shows the X-ray diffraction pattern of the samples after their application in the 

selective oxidation of propylene at 320 – 520 °C. According to PXRD the phase 

composition of the samples synthesized at pH = 6 – 9 (γ-Bi2MoO6) did not change during 

the catalytic activity tests, but the hydrothermally prepared materials synthesized at pH = 1 

– 5 were all composed of a mixture of α-Bi2Mo3O12 and γ-Bi2MoO6 after use. This 

indicates that rather the reduced surface area instead of the phase change was the reason 

for the decreasing propylene conversion at temperatures above 440 °C. Consequently a 

combination of the desired phase and a high surface area seemed to be crucial for 

propylene oxidation. 

 

Figure 4.23: Catalytic performance of the high surface area sample synthesized at pH = 5 (a, c) 

and the highly active sample synthesized at pH = 6 (b, d) at various temperatures between 320 °C 

and 520 °C at 50, 80 and 120 Nml/min and with C3H6/O2/N2 = 5/25/70. 
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Figure 4.24: PXRD patterns of the samples synthesized with Bi/Mo = 1:1 at different pH values 

after application in catalytic oxidation of propylene at temperatures up to 520 °C. 

Jung et al. 
[232]

 tested the influence of the pH value during co-precipitation of γ-Bi2MoO6 

(initial ratio Bi/Mo = 2:1) on the oxidative dehydrogenation of n-butene and discovered 

that the sample synthesized at pH = 3 showed both the highest butene conversion and 1,3-

butadiene yield due to a high oxygen mobility of this sample. According to the group of 

Keulks 
[96, 113]

 re-oxidation of the catalyst is the rate-determining step at temperatures 

below 400 °C whereas abstraction of an α-hydrogen atom to form an allylic intermediate is 

the rate determining step at higher temperatures (> 400 °C). This could be confirmed by 

testing HT_Bi2Mo1_HNO3 (contains γ-Bi2MoO6) and changing the oxygen concentration 

from C3H6/O2 = 1:5 to C3H6/O2 = 1:1 (see Figure 4.25). At T ≥ 440 °C propylene 

conversion as well as acrolein selectivity is independent of the O2 concentration, whereas 

at 400 °C a higher oxygen concentration slightly improved the acrolein selectivity but not 

the propylene conversion. The hydrothermally synthesized samples at pH = 4 – 8 exhibited 

high propylene conversion and also relatively high acrolein selectivities already at 360 °C. 

Therefore, oxygen mobility is considered not to be the decisive factor for the varying 

catalytic performance of the different samples depicted in Figure 4.21. The oxygen 

concentration used for the catalytic activity tests in this study was relatively high (C3H6/O2 

= 1:5) to guarantee a complete re-oxidation of the bismuth molybdate catalysts. 
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Figure 4.25: Influence of the oxygen concentration during propylene oxidation at different 

temperatures representative for sample HT_Bi2Mo1_HNO3 (cf. 4.3.3.1). 

Aleshina et al. 
[120]

 prepared bismuth molybdates by co-precipitation with Bi/Mo = 2 at pH 

values between 0 and 7 and with surface areas of 1 – 3 m²/g and tested them in propylene 

oxidation in the presence of steam. They detected Bi2O3 in the sample prepared at pH = 7 

and claimed that with increasing pH value molybdenum dissolved and remained in solution 

leading to a bismuth rich product (mixture of Bi2O3 and γ-Bi2MoO6), which showed lower 

propylene conversion (73% compared to 86%) and very low acrolein selectivity compared 

to the sample containing only γ-Bi2MoO6. In contrast to that in the present work, Bi2O3 

was not detected in the samples containing mainly γ-Bi2MoO6 neither by PXRD nor by 

Raman spectroscopy and also the formation of hexadiene during propylene conversion was 

hardly observed, although in the literature it was reported that hexadiene is formed in the 

presence of Bi2O3 
[102, 216]

. Thus, the reason for the low activity of Bi1Mo1_pH9 and the 

lower selectivity of Bi1Mo1_pH8 is not contamination of the product with bismuth oxide 

but rather the lower surface area compared to the samples synthesized at pH values of 6 

and 7. 

 

4.4. Conclusions 

The catalytic performance of bismuth molybdates strongly depends on the crystalline 

phases present in the catalysts, their specific surface areas and their morphologies which 

emerge from the selected synthetic method. During hydrothermal synthesis application of a 

high Bi/Mo ratio led mainly to the formation of γ-Bi2MoO6, while applying a Bi/Mo ratio 

< 1 resulted in α-Bi2Mo3O12 as the main phase. A mixture of α- and γ-phase was obtained 
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with precursor ratios of Bi/Mo = 1:1. As hydrothermal synthesis did not provide access to 

the one-step formation of β-Bi2Mo2O9 under the parameters applied in the present study, 

the materials synthesized in pure water were furthermore calcined at 550 °C. Even these 

harsh conditions resulted only in partial formation of the β-phase, and the process can 

probably be driven to completion only at the expense of considerable loss of surface area 

and catalytic performance. Generally, the plate-like morphology of the as-prepared 

hydrothermal samples could only partly be retained during calcination. Applying Bi/Mo in 

the ratio 1:1 along with variation of the pH value from 1 to 9 gave access to bismuth 

molybdates with a relatively large surface area (at pH = 4 – 7) compared to unsupported 

bismuth molybdates reported in the literature (1 – 4 m²/g), which was beneficial for the 

catalytic activity in selective oxidation of propylene under the applied conditions. At high 

pH values γ-Bi2MoO6 was formed and the Bi/Mo ratio in the product was 2, indicating that 

molybdenum partly stayed in solution in the form of [MoO4]
2-

 and did not precipitate. With 

decreasing pH values the amount of α-Bi2Mo3O12 in the product increased additionally to 

the presence of bismuth free and molybdenum free phases. At pH values below 6 the 

products obtained a ratio of Bi/Mo = 1, which equaled the applied Bi/Mo ratio. The 

samples synthesized at pH = 6 – 7, which according to PXRD and Raman spectroscopy 

contained only γ-Bi2MoO6 and which exhibited high specific surface areas, yielded high 

propylene conversion at high acrolein selectivities. 

The catalytic activity of the freshly hydrothermally prepared catalysts was significantly 

higher than after their calcination at 550 °C. Furthermore, the obtained acrolein yield 

decreased regardless of the phase composition. Generally, for the investigation of the 

relative activities of the different bismuth molybdate phases, catalysts should be prepared 

under the same conditions including pre-conditioning of the precursor materials. Therefore 

we used as-prepared materials or applied the same thermal treatment to compare the 

catalytic performance of the different bismuth molybdate phases.  

Strikingly, one-step flame spray pyrolysis for Bi/Mo = 1:1 resulted in the formation of pure 

β-Bi2Mo2O9. This catalyst was stable at temperatures up to 400 °C and exhibited good 

activity and selectivity. This selective one-step synthetic access to the Bi-Mo-oxide system 

nicely illustrates the great potential of flame spray pyrolysis for catalyst synthesis. At 

temperatures above 400 °C decomposition into α-Bi2Mo3O12 and γ-Bi2MoO6 started, 
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leading to deactivation of the catalyst. The activity of the different bismuth molybdate 

phases prepared by flame spray pyrolysis decreased in the following order: β > γ > α.  

Although the β-phase was not observed during hydrothermal synthesis under the 

parameters applied in the present study, highly active catalysts could be prepared under 

hydrothermal conditions applying initial Bi/Mo ratios of 1:1 or 2:1 with nitric acid or 

ammonia as additives. The hydrothermally synthesized samples containing mainly α- or γ-

bismuth molybdate were more active than the according flame made materials, whereas 

direct synthesis of β-Bi2Mo2O9 under hydrothermal conditions without further calcination 

still remains a challenge and may require much higher temperatures during synthesis. An 

increase in process temperature between 320 °C and 400 °C resulted in improved catalytic 

performance (propylene conversion and acrolein selectivity), whereas at temperatures 

above 440 °C the catalyst started to deactivate probably due to a reduction in surface area. 

Hydrothermally synthesized bismuth molybdates with high surface area showed high 

potential in the selective oxidation of propylene, but stabilization of the surface area during 

catalytic tests especially at higher temperatures remains a key issue. Therefore, the 

incorporation of further elements, which are also included in industrial multicomponent 

bismuth molybdates e.g. Co, Fe or V, during hydrothermal synthesis, could be beneficial 

for the stability of the prepared catalysts relating their surface area and the overall catalytic 

performance.  
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5 Cobalt molybdates as hydrotreating catalysts 

5.1. Introduction 

Mo-oxide based materials synthesized by novel preparation routes such as hydrothermal 

synthesis or flame spray pyrolysis are not only attractive in selective oxidation reactions 

which was the topic of chapter 3 and 4 but also in other areas e.g. hydrotreating. The 

preparation method for hydrotreating catalysts based on Co-Mo or Ni-Mo strongly 

influence their catalytic performance. 
[140]

 Alternative preparation methods such as 

chemical vapor deposition (CVD) was applied to synthesize designed catalysts and to 

understand the nature of the support and the active site. 
[233]

 A lot of research effort was 

spent to understand the nature of the active sites in sulfided hydrotreating catalysts, due to 

the need to improve industrial hydrodesulfurization (HDS) catalysts (see also 1.2.2). Bulk 

MoS2 has a layered structure in which S-Mo-S layers so called slabs are stacked on top of 

each other. Based on studies of structural-reactivity relationships, the catalytic activity was 

associated with the edges of these MoS2 nanoclusters. The promoter atoms (e.g. Co) 

decorate the edges of MoS2 and form the CoMoS phase. An increase in edge atoms leads 

to higher HDS activity. Therefore a higher number of edge and corner sites due to small 

slabs are beneficial for hydrotreating activity. 
[142]

 In the past, it has been suggested that 

coordinative unsaturated sites (CUS) are created in a reaction with hydrogen at the MoS2 

edges and that these sulfur vacancies have a high affinity to form bonds with the hetero-

atoms in the organic molecules. Incorporation of transition metal atoms leads to a lower 

metal-sulfur binding energy and thereby provides more active sites. 
[234-236]

 The dispersion 

and the degree of stacking were considered to be important in the activity and selectivity of 

hydrodesulfurization. According to the “rim-edge” model the top and the bottom of the 

stacked MoS2 crystallites can perform hydrogenation and C-S cleavage whereas the edges 
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in the intermediate slabs are only active in direct desulfurization. 
[237]

 Scanning tunneling 

microscopy (STM) of MoS2 supported on Au(111) revealed the presence of the so called 

“brim” sites at the edges of the MoS2 clusters having metallic character 
[162-163]

 and in 

combination with DFT calculation it was demonstrated that these sites can adsorb 

thiophene 
[168, 238]

. Addition of cobalt changes the shape of the MoS2 slabs from triangular 

to hexagonal. 
[166]

 

Unsupported molybdenum sulfide catalysts have often been used as model catalysts for 

hydrotreating reactions to exclude the influence of a support effect on the activity and to 

study the nature of the catalytic function in the sulfide systems. 
[239-241]

 These model 

systems were mainly prepared by homogeneous sulfide precipitation (HSP) 
[161, 242-243]

 and 

impregnated-thiosalt decomposition (ITD) 
[240-241, 244]

 but also hydrothermal synthesis 

starting from sulfur containing molybdenum precursors e.g. ammonium tetrathiomolybdate 

(ATTM) was applied 
[23-24, 245]

. The preparation methods strongly influenced the catalytic 

properties of bulk sulfides. 
[23, 244]

 Hydrothermal synthesis of MoS2 from ATTM led to the 

formation of needle like MoS2 and this morphological difference compared to the samples 

obtained from thermal decomposition of the same precursor influenced the ratio of activity 

in hydrogenation of tetralene to hydrodesulfurization of thiophene. 
[23]

 Commercial 

catalysts are obtained by in situ sulfidation of the oxidic precursor prepared by 

impregnation of pre-shaped alumina support with aqueous solutions of molybdenum and 

cobalt compounds with subsequent calcination. The conditions during activation of 

unsupported HDS catalysts strongly influenced the catalytic properties. 
[246]

 Therefore in 

this work Co-Mo-oxides were prepared under hydrothermal conditions as precursors for 

unsupported Co-Mo-S model systems in hydrotreating reactions. The influence of the 

preparation conditions (pH, Mo precursor, synthesis time, Co/Mo ratio) on the phase 

composition of the product and on the surface area was studied in detail. Flame spray 

pyrolysis and co-precipitation were applied for comparison. Selected materials were 

sulfided in situ before they were tested in hydrotreating of a model oil. To elucidate 

preparation-structure-activity correlations they were characterized after catalytic 

application. 



5 Cobalt molybdates as hydrotreating catalysts 

118                                                                  Hydrothermal synthesis of Mo based catalysts  

5.2. Catalyst precursor preparation 

Similar to the high surface area bismuth molybdates synthesized under hydrothermal 

conditions at various pH values with Bi/Mo = 1:1 (cf. 4.2 and 4.3.4), a series of cobalt 

molybdates was prepared by hydrothermal synthesis from cobalt nitrate and ammonium 

heptamolybdate or sodium molybdate. The influence of pH value, preparation time and 

applied Co/Mo ratio were studied in detail. For comparison four unsupported cobalt 

molybdates were prepared by flame spray pyrolysis with Co/Mo = 1:1 – 1:4 and two co-

precipitated samples with Co/Mo = 1:1 and 1:3 were synthesized. 

Hydrothermal synthesis with ammonium heptamolybdate: Typically 1.77 g ammonium 

heptamolybdate (AHM; (NH4)6Mo7O24 ∙ 4H2O, VWR AnalaR NORMAPUR) and 2.9 g 

cobalt nitrate (10 mmol Co; Co(NO3)2 ∙ 6H2O, Fluka, > 99.0%, p.a.) were dissolved in 100 

ml deionized water. The precursors dissolved completely and the pH value of the resulting 

solution was 4.4 - 4.5. The pH of the solution was adjusted either with nitric acid (2.2 M 

HNO3) or an ammonia solution (25 vol.%) to values between 1 and 10. The resulting 

solution was stirred with a magnetic stirrer for 30 minutes and subsequently transferred 

into the Teflon-lined stainless steel autoclave. The autoclave was sealed and heated for 24 

h at 180 °C in an oven. During hydrothermal synthesis of the cobalt molybdates the pH 

value of the solution decreased. After cooling to room temperature the solid product was 

separated by filtration, washed with water, ethanol and acetone. The resulting powder was 

dried at room temperature and ambient pressure. The resulting samples are referred to as 

Co1Mo1_AHM_pHx where x indicated the pH value (see Table 5-1). 
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Table 5-1: Hydrothermally synthesized samples at various pH values (10 mmol Co and 10 mmol 

Mo). All samples were prepared at 180 °C for 24 h. 

Sample Co 

precursor 

Mo precursor Acid or 

base 

pH Phases acc. to 

PXRD 

BET 

[m²/g] 

Co/Mo 

ratio 

Co1Mo1_AHM_pH1 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

7.7 ml 

2.2M 

HNO3 

1 

α-MoO3, 

NH4Mo5O15(OH) 

∙ 2H2O 

7 0.01
a 

Co1Mo1_AHM_pH2 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

3.83 ml 

2.2M 

HNO3 

2 
CoMo4O13 ∙ 

2H2O 
1 0.3

a 

Co1Mo1_AHM_pH3 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

2.09 ml 

2.2M 

HNO3 

3 
CoMo4O13 ∙ 

2H2O 
< 1 0.3

a 

Co1Mo1_AHM_pH4 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

0.56 ml 

2.2M 

HNO3 

4 

CoMo4O13 ∙ 

2H2O, (CoMoO4 

∙ 0.75H2O) 

1 0.4
a 

Co1Mo1_AHM_pH5 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

0.17 ml 

25% 

NH3 

5 

CoMo4O13 ∙ 

2H2O, CoMoO4 ∙ 

0.75H2O 

1 0.7
b 

Co1Mo1_AHM_pH6 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

0.92 ml 

25% 

NH3 

6 CoMoO4 11 n.d. 

Co1Mo1_AHM_pH7 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

1.02 ml 

25% 

NH3 

7 
Co1.2MoO4.2 ∙ 

1.3H2O 
11 n.d. 

Co1Mo1_AHM_pH8 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

1.49 ml 

25% 

NH3 

8 unknown n.d. 2.0
a 

Co1Mo1_AHM_pH9 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

2.66 ml 

25% 

NH3 

9 unknown 37 2.0
a 

Co1Mo1_AHM_pH10 
Co(NO3)2∙ 

6H2O 

(NH4)6Mo7O24∙ 

4H2O 

3.65 ml 

25% 

NH3 

10 unknown 23 n.d. 

a: determined by ICP-OES 

b: average value from EDX 

Hydrothermal synthesis with sodium molybdate: Alternatively, cobalt molybdates were 

prepared from 2.4 g sodium molybdate (10 mmol Mo; Na2MoO4 ∙ 2H2O, Alfa Aesar, 99.5 

– 103.0%) and 10 mmol cobalt nitrate resulting in an aqueous solution (100 ml deionized 

water) with pH = 5.9 – 6.0. The obtained samples are denoted Co1Mo1_NaMo_pHx. A 

full list of samples is given in Table 5-2.  
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Table 5-2: Hydrothermally synthesized samples at various pH values (10 mmol Co and 10 mmol 

Mo). All samples were prepared at 180 °C for 24 h. 

Sample Co 

precursor 

Mo 

precursor 

Acid or 

base 

pH Phases acc. to 

PXRD 

BET 

[m²/g] 

Co/Mo 

ratio 

Co1Mo1_NaMo_pH1 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

12.73 ml 

2.2M 

HNO3 

1 α-MoO3 18 0.01
a 

Co1Mo1_NaMo_pH2 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

6.95 ml 

2.2M 

HNO3 

2 CoMo4O13 ∙ 2H2O n.d. n.d. 

Co1Mo1_NaMo_pH3 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

6.03 ml 

2.2M 

HNO3 

3 CoMo4O13 ∙ 2H2O 1 n.d. 

Co1Mo1_NaMo_pH4 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

5.14 ml 

2.2M 

HNO3 

4 
CoMoO4 ∙ 0.75H2O, 

(CoMo4O13 ∙ 2H2O) 
3 n.d. 

Co1Mo1_NaMo_pH5 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

3.45 ml 

2.2M 

HNO3 

5 CoMoO4 ∙ 0.75H2O  6 n.d. 

Co1Mo1_NaMo_pH6 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

0.09 ml 

2.2M 

HNO3 

6 CoMoO4  15 0.8
b 

Co1Mo1_NaMo_pH7 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

0.07 ml 

25% NH3 
7 

NaCo2(OH)(MoO4)2 

∙ 2H2O 
16 1.1

a 

Co1Mo1_NaMo_pH8 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

0.55 ml 

25% NH3 
8 

NaCo2(OH)(MoO4)2 

∙ 2H2O 
n.d. 1.3

a 

Co1Mo1_NaMo_pH9 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

1.34 ml 

25% NH3 
9 unknown 36 n.d. 

Co1Mo1_NaMo_pH10 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

2.06 ml 

25% NH3 
10 unknown 22 n.d. 

Co1Mo1_NaMo_pH11 
Co(NO3)2∙ 

6H2O 

Na2MoO4∙ 

2H2O 

6 ml 25% 

NH3 
11 unknown 42 1.7

b 

a: determined by ICP-OES 

b: average value from EDX 

In addition the preparation procedure was varied: Ammonium heptamolybdate and cobalt 

nitrate were dissolved in 50 ml deionized water and the pH was adjusted to pH = 7 and pH 

= 8 with 5 vol.% ammonia solution. This procedure is denoted as P1, whereas preparation 

from two separate solutions is denoted as P2, which is described in the following: 

Ammonium heptamolybdate was dissolved in 40 ml 5 vol.% ammonia solution and cobalt 

nitrate was dissolved in 40 ml nitric acid. The cobalt solution was added slowly to the 
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molybdenum solution and the pH was adjusted with 5 vol.% ammonia solution. The 

resulting liquid was transferred into a Teflon-lined autoclave and heated at 180 °C for 24 h. 

One-step flame spray pyrolysis (FSP): As an alternative route Co-Mo samples were 

prepared by FSP. Precursor solutions were prepared by dissolving the required amounts of 

Co(II)-2-ethylhexanoate (Co[OOCCH(C2H5)C4H9]2; Sigma Aldrich, 65 wt.% in mineral 

spirits) and Mo(VI)-2-ethylhexanoate (Mo[OOCCH(C2H5)C4H9]x; Strem Chemicals, 15% 

Mo) in xylene to a total concentration of 0.4 mol/l, applying Co/Mo ratios of 1:1, 1:2, 1:3 

and 1:4. Details of the preparation and the equipment were already described in chapter 

2.1.2. The flame made samples are denoted as follows: FSP_Co1Mo1, FSP_Co1Mo2, 

FSP_Co1Mo3 and FSP_Co1Mo4. 

Conventional co-precipitation: For comparison, co-precipitated Co-Mo samples (Co/Mo = 

1:1 and 1:3) were synthesized according to Carrazán et al. 
[208]

 using (NH4)6Mo7O24 ∙ 4H2O 

and Co(NO3)2 ∙ 6H2O in deionized water. After heating the solution to 80 °C the resulting 

precipitate was filtrated, dried at 100 °C and subsequently calcined at 500 °C for 2 h. 

These materials are referred to as CP_Co1Mo1_500 and CP_Co1Mo3_500. 

 

The samples were characterized by PXRD, Raman spectroscopy, nitrogen physisorption 

measurements, SEM and ICP-OES. Details of the characterization have already been 

described in 2.2. Catalytic activity measurements for hydrotreating were performed at 

Haldor Topsøe A/S using the experimental set-up described in 2.3.2. The used samples 

were analyzed by TEM measurements at Haldor Topsøe A/S according to 2.2.5. 

 

 

5.3. Results and Discussion 

5.3.1. Influence of the pH value during hydrothermal synthesis using two different 

Mo precursors 

Cobalt molybdates were prepared hydrothermally at 180 °C and 24 h from cobalt nitrate 

and either ammonium heptamolybdate or sodium molybdate as Mo precursors in a Co/Mo 

ratio of 1. The synthetic parameters along with the product phases identified by PXRD, the 

specific surface area and the Co/Mo ratio in the product determined by ICP-OES or EDX 
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are summarized in Table 5-1 and Table 5-2. Figure 5.1 shows the powder X-ray diffraction 

pattern and selected Raman spectra of the solid products obtained from ammonium 

heptamolybdate and cobalt nitrate at pH = 1 – 10. The pH value has a strong influence on 

the phase formed during hydrothermal synthesis. At low pH value (pH = 1) only 

orthorhombic α-MoO3 (JCPDS no. 05-508) and an ammonium molybdenum oxide phase 

was found in the diffraction pattern (Figure 5.1a), which could be hexagonal 

NH4Mo5O15(OH) ∙ 2H2O (JCPDS no. 40-671) or cubic H0.68(NH4)2Mo14.16O4.34 ∙ 6.92H2O 

(JCPDS no. 46-100) both assigned to the reflections at 16.8° and 19.4°. No cobalt 

containing phase was observed. The ICP-OES measurements revealed a cobalt content of 

only 0.6 mol% (Co/Mo = 0.01) in sample Co1Mo1_AHM_pH1 in accordance with the 

Raman spectrum in Figure 5.1b which showed the characteristic features of α-MoO3 (995, 

820, 667 and 292 cm
-1

)
[247]

. Under acidic conditions cobalt remained in solution and did 

not precipitate. The product composition corresponds well to the composition found in the 

sample synthesized without cobalt nitrate (see 3.3.1). With increasing pH value the cobalt 

content of the products increased (see Table 5-1). At pH = 2 and pH = 3 a red/brown 

precipitate was formed, which could be identified as CoMo4O13 ∙ 2H2O, a molybdenum 

rich phase with a pillared structure recently discovered by Eda et al. 
[40]

. Especially the 

sample at pH = 2 was highly crystalline as shown by PXRD (Figure 5.1a) and accordingly 

exhibited a very small surface area (< 1 m²/g; see Table 5-2). The Raman spectrum of 

CoMo4O13 ∙ 2H2O has not yet been measured and analyzed; hence it was measured here 

and is shown in Figure 5.1b. It revealed several bands between 800 and 1000 cm
-1

. In this 

region the bands attributed to stretching modes of Mo-O vibrations are typically observed 

[247]
, whereas features arising from the shorter Mo-O bonds appear at relatively high wave 

numbers 
[248]

. CoMo4O13 ∙ 2H2O forms a pillared layer structure, where corner-sharing Z-

shaped units, which consist of two MoO6 and two MoO5OH2 octahedra sharing edges, built 

ribbons, which are connected to sheets. 
[40]

 The band at 817 cm
-1

 is related to asymmetric 

vibration of Mo-O-Mo bridges in the octahedra 
[249]

, whereas the band at 928 cm
-1

 can be 

ascribed to Mo-O-Co stretching vibrations 
[249-250]

. The band at 955 cm
-1

 arises from the 

presence of terminal Mo=O in MoOx clusters and the band at 989 cm
-1

 can be assigned to 

MoO5OH2 octahedra 
[248]

. It was also suggested that the band at 985 cm
-1

 corresponds to a 

loss of oxygen in octahedral molybdenum oxide 
[251]

 or to polymolybdate aggregates 
[252-

253]
. 
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Figure 5.1: Powder X-ray diffraction pattern (a) and selected Raman spectra (b) of hydrothermally 

prepared samples from cobalt nitrate and ammonium heptamolybdate with Co/Mo = 1 at pH = 1 - 

10. The Raman spectra indicate the presence of α-MoO3 (pH = 1) and β-CoMoO4 (pH = 9). At pH 

= 3 pure CoMo4O13 ∙ 2H2O was obtained. 

Here we successfully prepared chlorine and alkali free CoMo4O13 ∙ 2H2O from ammonium 

heptamolybdate, cobalt nitrate and nitric acid, whereas Eda et al. 
[40]

 used cobalt chloride 

as a precursor, which can lead to chlorine residues in the product. The applied pH values 

leading to CoMo4O13 ∙ 2H2O were similar (pH = 1.5 to 4 in 
[40]

 and pH = 2 – 4 in the 

present work), indicating the importance of the pH value during hydrothermal synthesis. 

The formation of CoMoO4 ∙ 0.75H2O (CSD no. 415282)
[38]

 started at pH = 4, as indicated 

by the reflection at 13.4° in the PXRD. Preparation at pH = 5 resulted in a mixture of 
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CoMo4O13 ∙ 2H2O
[40]

 and CoMoO4 ∙ 0.75H2O
[38]

, whereas at pH = 6 CoMoO4 was 

obtained. The reflections in the powder X-ray diffraction pattern of Co1Mo1_AHM_pH6 

could be attributed to the strongest reflections in the diffraction pattern of α-CoMoO4 (2θ = 

26.5°; JCPDS no. 21-868) and β-CoMoO4 (2θ = 14.2°, 28.4°; JCPDS no. 25-1434). At or 

above pH = 7 the intensity of the reflections in the diffraction pattern was low. For 

Co1Mo1_AHM_pH7 the reflections at 2θ = 27.1°, 29.2° may indicate the presence of 

Co1.2MoO4.2 ∙ 1.3H2O (JCPDS no. 14-087). Under more basic conditions none of the 

diffraction pattern could be matched with cobalt molybdate phases, although the Raman 

spectrum of Co1Mo1_AHM_pH9 showed the characteristic features of β-CoMoO4
[254]

. 

However, the Co/Mo ratio determined from ICP-OES in this sample synthesized at pH = 9 

was 2.0, indicating that β-CoMoO4 could not be the only phase present in the product. Ding 

et al. 
[44]

 synthesized cobalt molybdate from ammonium heptamolybdate and cobalt nitrate 

at pH = 9 and obtained Co(OH)2 at 140 °C after 12 h. The presence of a cobalt hydroxide 

phase in Co1Mo1_AHM_pH9 could not be detected by powder X-ray diffraction or 

Raman spectroscopy and ICP-OES measurements indicated the presence of molybdenum 

excluding the formation of pure cobalt hydroxides at high pH values. Interestingly the 

specific surface area increased at higher pH value (Table 5-1). 

An increase in the applied pH value from 1 to 9 increased the cobalt content from Co/Mo = 

0.01 at pH = 1 to Co/Mo = 2.0 at pH = 9 (Table 5-1) indicating that cobalt partly remained 

in solution under acidic conditions, in accordance with the red color of the filtrate. Under 

basic conditions molybdenum did not completely precipitate. At low pH values mainly 

layered structures containing octahedrally coordinated molybdenum were formed (α-

MoO3, CoMo4O13 ∙ 2H2O), whereas at higher pH values also phases with tetrahedral 

molybdenum were found (CoMoO4 ∙ 0.75H2O, β-CoMoO4). This agrees well with the 

stability of molybdenum species in an aqueous ammonium heptamolybdate solution at 

different pH values, which was discussed in 1.1.1 and in literature 
[14]

 (Mo7O24
6- 

at pH = 

2.9 – 6 and MoO4
2-

 at pH > 6). 

Figure 5.2 depicts the powder X-ray diffraction pattern of the samples synthesized from 

sodium molybdate and cobalt nitrate under hydrothermal conditions at pH = 1 – 10 and 

180 °C for 24 h. Analog to the samples prepared from ammonium heptamolybdate there is 

no evidence for a cobalt containing phase in the sample synthesized at pH = 1 and very low 
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cobalt content (Co/Mo = 0.01, 0.6 mol% Co, see Table 5-2) with α-MoO3 (JCPDS no. 05-

508) were identified by ICP-OES and PXRD.  

 

Figure 5.2: Powder X-ray diffraction pattern of hydrothermally synthesized samples from 

Na2MoO4 ∙ 2H2O and Co(NO3)2 ∙ 6H2O at various pH values at 180 °C for 24 h (applied Co/Mo in 

solution equaled 1). 

At pH = 2 and pH = 3 highly crystalline CoMo4O13 ∙ 2H2O
[40]

 was detected by PXRD (see 

Figure 5.2), which agrees with the samples synthesized from ammonium heptamolybdate. 

In contrast to preparation with ammonium heptamolybdate, already at pH = 4 CoMoO4 ∙ 

0.75H2O was detected beside some residual CoMo4O13 ∙ 2H2O. At pH = 5 only CoMoO4 ∙ 

0.75H2O
[38]

 is found and the sample was violet. The diffraction pattern of sample 

Co1Mo1_NaMo_pH6 (Figure 5.2) resembled the diffraction pattern of sample 

Co1Mo1_AHM_pH6 (Figure 5.1a) indicating the presence of α- and β-CoMoO4. Cobalt 

molybdates were also prepared from sodium molybdate and cobalt nitrate in deionized 

water by Rico et al. 
[43]

 without the addition of an acid or base, which should correspond to 

a pH value around 6. Their hydrothermal route at 160 °C and 200 °C for 15 h and 

subsequent calcination at 500 °C for 5 h resulted in β-CoMoO4. Note that phase 

identification was performed without a calcination step here. A similar approach without 

calcination yielded CoMoO4 ∙ nH2O after hydrothermal synthesis at 180 °C for 15 h. 
[45]
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The shorter reaction time compared to this work (24 h) could be the reason that the hydrate 

instead of α- and β-CoMoO4 was obtained. 

 

Figure 5.3: Raman spectrum of Co1Mo1_NaMo_pH8 consisting of NaCo2(OH)(MoO4)2 ∙ 2H2O 

according to PXRD in Figure 5.2. 

According to powder X-ray diffraction measurements the sample synthesized at neutral 

conditions (pH = 7) contained NaCo2(OH)(MoO4)2 ∙ 2H2O (JCPDS no. 74-2876)
[255]

, 

which consists of tetrahedral MoO4 and octahedral CoO6. In contrast to the samples 

synthesized from ammonium heptamolybdate at pH = 8, where phase identification by 

PXRD was not possible, Co1Mo1_NaMo_pH8 contained crystalline NaCo2(OH)(MoO4)2 ∙ 

2H2O which could easily be detected in the diffraction pattern. In the corresponding 

Raman spectrum of sample Co1Mo1_NaMo_pH8 in Figure 5.3 two strong bands at 931 

cm
-1

 and 914 cm
-1

 as well as weaker bands at 849 cm
-1

, 806 cm
-1

 and 336 cm
-1 

were 

detected. The only reference spectrum for NaCo2(OH)(MoO4)2 ∙ 2H2O found in the 

literature was of lower quality, but showed bands with shifts at 925, 804 and 673 cm
-1 

assigned to different Mo-O bonds 
[47]

. The two bands at 931 and 914 cm
-1

 in Figure 5.3 

may correspond to the band at 925 cm
-1

, which is split due to a shift of the Mo-O bond in 

the presence of water or sodium. Under basic conditions the PXRDs of the hydrothermally 

synthesized products could not be analyzed but they were identical to the according 
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diffraction pattern of the samples synthesized with ammonium heptamolybdate at pH = 9 

and 10. For sodium molybdate the pH value was increased to pH = 11 but the PXRD 

equaled the diffraction pattern of the samples prepared at pH = 9 and 10, thus it was not 

depicted in Figure 5.2. 

The samples synthesized from Na2MoO4 ∙ 2H2O followed the same trend as the samples 

prepared from (NH4)6Mo7O24 ∙ 4H2O: The cobalt content increased with increasing pH 

value and the sample prepared at pH = 9 exhibited the highest surface area (36 m²/g for 

sodium molybdate and 37 m²/g for ammonium heptamolybdate). 

 

Figure 5.4: SEM images of the hydrothermally synthesized samples synthesized from ammonium 

heptamolybdate or sodium molybdate with cobalt nitrate at various pH values: a) 

Co1Mo1_AHM_pH2, b) Co1Mo1_AHM_pH4, c) Co1Mo1_AHM_pH5 and d) 

Co1Mo1_NaMo_pH6. 

Figure 5.4 displays the SEM images of several samples prepared from ammonium 

heptamolybdate and sodium molybdate showing a rod-like morphology for all samples but 

with different particle sizes and aspect ratios. The particles of sample Co1Mo1_AHM_pH2 

were of inhomogeneous size and ranged from 5 µm x 100 µm to 30 µm x 150 µm with a 

height of 1.5 – 3 µm. The samples synthesized at pH = 4 and pH = 5 were smaller with a 

particle size of 2 µm x 25 µm - 4 µm x 50 µm and 1.2 - 1.3 µm x 10 - 15 µm, respectively. 
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The sample synthesized with sodium molybdate at pH = 6 (Figure 5.4d) formed relatively 

small rods which were around 500 nm x 5 µm in size. 

 

Figure 5.5: Powder X-ray diffraction pattern (a) and Raman spectra (b) of hydrothermally 

synthesized samples from ammonium heptamolybdate and cobalt nitrate at 180 °C for 7 h and 24 h. 

5.3.2. Effect of synthesis time during hydrothermal synthesis 

In a next step the influence of the synthesis time on the product phase was studied at pH = 

3 and pH = 4. Hydrothermal synthesis from ammonium heptamolybdate and cobalt nitrate 

was performed for only 7 h and the resulting powder X-ray diffraction patterns of the 
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products are depicted in Figure 5.5. The diffraction pattern of the products prepared for 7 h 

and their corresponding samples synthesized for 24 h matched the reference pattern of 

CoMo4O13 ∙ 2H2O 
[40]

. The sample synthesized at pH = 3 for 7 h additionally contained 

impurities of MoO3, which was only detected by PXRD and not by Raman spectroscopy 

(see Figure 5.5b). The Co/Mo ratios of these two samples were identical (Co/Mo = 0.3) 

according to ICP-OES. The sample synthesized at pH = 4 for 7 h did not contain any 

additional phases compared to the sample synthesized for 24 h. This indicates that already 

after 7 h crystalline materials with relatively high phase purity can be obtained. 

Additionally three samples from sodium molybdate and cobalt nitrate were synthesized for 

72 h to analyze the influence of synthesis time on the crystalline products as well as on the 

Co/Mo ratios in the resulting samples. The powder X-ray diffraction pattern in Figure 5.6 

suggest that an increase in synthesis time from 1 day to 3 days did not influence the phase 

composition at low pH value (pH = 1 – 2). According to ICP-OES the sample synthesized 

at pH = 1 contained slightly more cobalt after 72 h compared to the sample synthesized for 

24 h (0.9 mol% Co and 0.6 mol% Co), which indicated that longer reaction times led to an 

increase in cobalt under acidic conditions. At higher pH value (pH = 5) the product was 

composed of CoMoO4 ∙ 0.75H2O after 24 h and contains a mixture of CoMoO4 ∙ 0.75H2O 

and CoMo4O13 ∙ 2H2O after 72 h. A high concentration of protons during hydrothermal 

synthesis or a relatively long synthesis time was beneficial for the formation of CoMo4O13 

∙ 2H2O, which was already indicated by the results of Eda et al. 
[40]

 who obtained pure 

CoMo4O13 ∙ 2H2O at pH = 3.5 – 3.7 after 3 days from an insoluble Mo source or at pH = 

1.5 - 1.6 after 1 day from a soluble Mo source, respectively. They suggested that this was 

due to solubility of the different precursors but the main reason could be the different 

acidity of the Mo source as in the present study initially the precursors were all completely 

dissolved at pH < 7. 
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Figure 5.6: Powder X-ray diffraction pattern of samples prepared from sodium molybdate and 

cobalt nitrate at 180 °C for 24 h and 72 h at pH = 1, pH = 2 and pH = 5. The darker line 

corresponds to 24 h and the lighter colored line to 72 h. 

5.3.3. Influence of the Co/Mo ratio and synthesis procedure 

The influence of the Co/Mo ratio on the product phase and surface area were studied to 

enable the preparation of pure phases with relatively high surface area. The cobalt to 

molybdenum ratio was varied between Co/Mo = 1:1 to 1:3 using ammonium 

heptamolybdate and cobalt nitrate as precursors, which were dissolved in 100 ml water. 

The pH value was adjusted to pH = 6 or pH = 7 with diluted ammonia solution (5 vol.%). 

Additionally at pH = 7 and pH = 8 the samples were prepared by two different procedures: 

Dissolving the precursor in 50 ml deionized water and adjustment of pH value with 5 

vol.% ammonia solution (P1) and separate dissolution of the cobalt and the molybdenum 

precursor in nitric acid and ammonia solution, respectively, with subsequent mixing (P2). 

The details of the preparation as well as the product phases determined by PXRD and the 

specific surface areas are summarized in Table 5-3. 
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Table 5-3: Hydrothermally synthesized samples prepared from ammonium heptamolybdate and 

cobalt nitrate at different pH values and with various Co/Mo ratios. 

Sample Preparation Co 

[mmol] 

Mo 

[mmol] 

pH Phase 

according to 

PXRD 

BET 

[m²/g] 

Co1Mo1_pH6 100 ml deionized water 10 10 6 
CoMoO4 ∙ 

0.75H2O 
7 

Co1Mo2_pH6 100 ml deionized water 10 20 6 
CoMoO4 ∙ 

0.75H2O 
n.d. 

Co1Mo3_pH6 100 ml deionized water 10 30 6 

CoMoO4 ∙ 

0.75H2O, α-

MoO3 

3 

Co1Mo1_pH7 100 ml deionized water 10 10 7 
CoMoO4 ∙ 

0.75H2O 
11 

Co1Mo2_pH7 100 ml deionized water 10 20 7 
CoMoO4 ∙ 

0.75H2O 
n.d. 

Co1Mo3_pH7 100 ml deionized water 10 30 7 
CoMoO4 ∙ 

0.75H2O 
16 

Co1Mo1_pH7_P2 

Co(NO3)2∙6H2O in 40 ml 

HNO3 and (NH4)6Mo7O24∙ 

4H2O in NH4OH; mixing 

10 10 7 

β-CoMoO4, 

Co1.2MoO4.2 ∙ 

1.3H2O, 

Mo17O47 

< 1 

Co1Mo3_pH7_P2 

Co(NO3)2∙6H2O in 40 ml 

HNO3 and (NH4)6Mo7O24∙ 

4H2O in NH4OH; mixing 

10 30 7 

β-CoMoO4, 

Co1.2MoO4.2 ∙ 

1.3H2O, 

Mo17O47 

< 1 

Co1Mo1_pH7_P1 50 ml deionized water 10 10 7 
CoMoO4 ∙ 

0.75H2O 
9 

Co1Mo3_pH7_P1 50 ml deionized water 10 30 7 
CoMoO4 ∙ 

0.75H2O 
8 

Co1Mo1_pH8_P2 

Co(NO3)2∙6H2O in 40 ml 

HNO3 and (NH4)6Mo7O24∙ 

4H2O in NH4OH; mixing 

10 10 8 

β-CoMoO4, 

Co1.2MoO4.2 ∙ 

1.3H2O, 

Mo17O47 

2 

Co1Mo3_pH8_P2 

Co(NO3)2∙6H2O in 40 ml 

HNO3 and (NH4)6Mo7O24∙ 

4H2O in NH4OH; mixing 

10 30 8 

β-CoMoO4, 

Co1.2MoO4.2 ∙ 

1.3H2O, 

Mo17O47 

1 

Co1Mo1_pH8_P1 50 ml deionized water 10 10 8 
CoMoO4 ∙ 

0.75H2O 
1 

Co1Mo3_pH8_P1 50 ml deionized water 10 30 8 

β-CoMoO4, 

Co1.2MoO4.2 ∙ 

1.3H2O, 

Mo17O47 

9 

According to PXRD all three samples synthesized with Co/Mo = 1:1 to 1:3 at pH = 6 

contained CoMoO4 ∙ 0.75H2O (see Figure 5.7) except the sample with the highest 

molybdenum content (Co/Mo = 1:3), where additionally α-MoO3 (JCPDS no. 05-508) was 
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found (additional reflection at 2θ = 12.7° and reflections with increased intensity at 25.7° 

and 27.3°). 

 

Figure 5.7: Powder X-ray diffraction pattern of samples synthesized from ammonium 

heptamolybdate and cobalt nitrate at pH = 6 with Co/Mo = 1:1, 1:2 and 1:3. 

The corresponding Raman spectrum of Co1Mo3_pH6 in Figure 5.8 showed the 

characteristic features of β-CoMoO4 with bands at 935, 851, 815, 358 and 331 cm
-1 

indicating tetrahedral MoO4. 
[254]

 The Raman spectrum of the sample synthesized at pH = 6 

with Co/Mo = 1:1 resembled the spectrum of the material synthesized from sodium 

molybdate and cobalt nitrate at pH = 8 (compare Figure 5.3), which contained 

NaCo2(OH)(MoO4)2 ∙ 2H2O according to X-ray diffraction measurements. The band at 930 

cm
-1

 could be assigned to Co-O-Mo stretching vibrations, which are similar in α- and β-

CoMoO4 as well as CoMoO4 ∙ 0.75H2O and NaCo2(OH)(MoO4)2 ∙ 2H2O. The band at 912 

cm
-1

 could result from an elongation of the Mo-O bond due to the presence of coordinated 

water. The band at 848 cm
-1

 is characteristic for asymmetric deformation vibrations of Mo-

O-Mo polymolybdate species, whereas the band at 807 cm
-1

 could be assigned to Mo-O 

stretching vibrations and the band at 333 cm
 -1 

to Mo-O bending vibrations. 
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Figure 5.8: Raman spectra of hydrothermally synthesized samples from ammonium 

heptamolybdate and cobalt nitrate at pH = 6 and pH = 7 with different Co/Mo ratios. 

All Raman spectra of the samples synthesized at pH = 7 with Co/Mo = 1:1 to 1:3 (Figure 

5.8) were similar to the Raman spectra of Co1Mo3_pH6 and indicate the presence of 

CoMoO4 ∙ 0.75H2O, which has the β-CoMoO4 structure (“hydrated β-CoMoO4”). The 

corresponding X-ray diffraction pattern in Figure 5.9 matched the reference pattern of 

CoMoO4 ∙ 0.75H2O 
[38]

. This implied that CoMoO4 ∙ 0.75H2O could easily be prepared 

from ammonium heptamolybdate and cobalt nitrate at pH = 6 and pH = 7. In contrast to 

Eda et al. 
[38]

 who used CoO and MoO3 as precursors for the preparation of CoMoO4 ∙ 

0.75H2O and added NaCl to increase the ionic strength, this route allows preparation of a 

chlorine free cobalt molybdate. If cobalt nitrate and ammonium heptamolybdate were 

dissolved separately in diluted nitric acid and diluted ammonia solution, respectively, and 

the pH value was subsequently adjusted to pH = 7, a mixture of phases was obtained 

according to PXRD in Figure 5.9 (Mo17O47, β-CoMoO4 and Co1.2MoO4.2 ∙ 1.3H2O). 

Furthermore the specific surface area of these samples was low (< 1 m²/g; Table 5-3) 

compared to the samples prepared at pH = 7, where both precursors were dissolved in 

water (11 m²/g for Co1Mo1_AHM_pH7, 9 m²/g for Co1Mo1_pH7_P1). 
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Figure 5.9: Powder X-ray diffraction pattern of hydrothermally synthesized samples from 

ammonium heptamolybdate and cobalt nitrate at pH = 7 with different Co/Mo ratios. In the 

preparation procedure P2 cobalt nitrate was dissolved in nitric acid solution and ammonium 

heptamolybdate in ammonia solution and the two separate solutions were mixed. 

The diffraction pattern of the samples synthesized from two separate precursor solutions at 

pH = 8 could be assigned to the same phase mixture and showed the same reflections as 

Co1Mo1_pH7_P2 and Co1Mo3_pH7_P2 (see Figure 5.10). The surface areas of these 

samples were also relatively low (2 m²/g and 1 m²/g for Co:Mo = 1:1 and 1:3 respectively). 

Figure 5.10 shows the diffraction pattern of the samples synthesized by dissolving 

ammonium heptamolybdate and cobalt nitrate in the ratio Co/Mo = 1:1 or 1:3 in 50 ml 

deionized water and adjusting the pH value with 5 vol.% ammonia solution to pH = 8. The 

PXRD of Co1Mo3_pH8_P1 resembled the diffraction pattern of Co1Mo3_pH8_P2 and 

Co1Mo1_pH8_P2, whereas the application of Co:Mo = 1:1 in 50 ml water (P1) led to the 

formation of CoMoO4 ∙ 0.75H2O. ICP-OES measurements of Co1Mo1_pH8_P1 and 

Co1Mo3_pH8_P1 resulted in a product Co/Mo ratio of 1.2 and 1.0, respectively, indicating 

that the cobalt and molybdenum content depended rather on the pH value than on the 

initial Co/Mo ratio. The pH value determined the solubility of cobalt and molybdenum as 

well as the stability of different species in the aqueous solution. Comparison with sample 

Co1Mo1_AHM_pH8 for which a Co/Mo ratio of 2.0 was found by ICP-OES suggested 
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that a concentrated ammonia solution was required to achieve high cobalt content in the 

hydrothermally synthesized product. 

 

Figure 5.10: Powder X-ray diffraction pattern of hydrothermally synthesized samples from 

ammonium heptamolybdate and cobalt nitrate at pH = 8 at 180 °C for 24 h by different preparation 

routes. 

5.3.4. Characterization of the samples prepared by flame spray pyrolysis and co-

precipitation 

For comparison four Co-Mo-oxides with Co/Mo = 1:1, 1:2, 1:3 and 1:4 were prepared by 

flame spray pyrolysis and the corresponding X-ray diffraction pattern are depicted in 

Figure 5.11. In contrast to the hydrothermally synthesized samples which contained a large 

variety of different phases and formed mainly cobalt molybdate hydrate (as described in 

5.3.1, 5.3.2 and 5.3.3), flame spray pyrolysis led to the formation of β-CoMoO4 and also α-

MoO3 in the case of the samples synthesized with an excess of molybdenum. Flame spray 

pyrolysis gives access to nanocrystalline particles and the powder X-ray diffraction pattern 

in Figure 5.11 suggest the formation of small particles or an amorphous phase. The 

reflection with the highest intensity for β-CoMoO4 (JCPDS no. 21-868) is at 2θ = 26.5°, 

which is also the most intense reflection in the diffraction pattern of the four flame made 

samples. The sample synthesized with Co/Mo = 1:2 showed also reflections at 12.8° and 
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23.3°, where the reflections of β-CoMoO4 and α-MoO3 overlap. The shoulder at 27.3° 

clearly indicated the presence of α-MoO3 and the intensity of this reflection at 27.3° 

increased for the samples prepared with higher molybdenum content. 

 

Figure 5.11: Powder X-ray diffraction pattern of flame made samples with different Co/Mo ratios. 

In comparison with the hydrothermally synthesized samples the unsupported cobalt 

molybdates prepared by FSP exhibited relatively high specific surface areas, which 

decreased with increasing molybdenum content from 92 m²/g (Co/Mo = 1:1) to 68 m²/g 

(Co/Mo = 1:4). Recently unsupported cobalt molybdate was synthesized with Co/Mo = 1:3 

by flame spray pyrolysis and the product had a specific surface area of 90 m²/g, which is in 

the same range as for the sample obtained in this work (74 m²/g) despite a different solvent 

(toluene instead of xylene), feed flow and gas flow. 
[76]
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Figure 5.12: Powder X-ray diffraction pattern of co-precipitated samples with Co/Mo = 1:1 and 

1:3. 

Co-precipitation was used to prepare cobalt molybdates with Co/Mo ratios of 1:1 and 1:3. 

In the literature impregnated-thiosalt decomposition was mainly used for the preparation of 

unsupported Co-Mo-S 
[239-241, 244]

 but co-precipitation resembles hydrothermal synthesis 

using S-free precursors and obtaining an oxidic product. The PXRD of the sample 

synthesized with Co/Mo = 1:1 showed the characteristic features of β-CoMoO4, whereas 

preparation with an excess of molybdenum (Co/Mo = 1:3) resulted also in the formation of 

α-MoO3 (Figure 5.12). The surface area of both co-precipitated samples was low with 6 

m²/g for Co/Mo = 1:1 and 8 m²/g for Co/Mo = 1:3. An increase of the pH value during co-

precipitation to pH = 9 did not result in a change of the product phase. 

5.3.5. Performance in hydrotreating and characterization of the spent catalysts 

A selection of the hydrothermally synthesized samples at various pH values as well as the 

four flame made samples and the two co-precipitated materials were tested in 

hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrogenation (HYD) after 

in situ sulfidation with dimethyldisulfide (DMDS) at 350 °C. 
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Figure 5.13: Experimentally determined pseudo first order rate constants in relation to an industrial 

Co-Mo reference catalyst (k/kreference) for conversion of dibenzothiophene (HDS), indole (HDN) and 

naphthalene (HYD) for the hydrothermally synthesized samples (a) as well as the flame made and 

co-precipitated samples (b) (Reference: kreference(HDS) = 90 h
-1

, kreference(HDN) = 44 h
-1

 and 

kreference(HYD) = 32 h
-1

). The error bars are calculated from the standard deviation determined from 

several k-values for the reference catalyst. The catalytic activity tests were performed at 350 °C at 

p(total) = 50 atm and p(H2) = 38 atm with a hydrogen flow rate of 250 Nml/min and 300 mg 

catalyst. 

For comparison of the rates for HDS, HDN and HYD a model diesel feed containing 

dibenzothiophene, indole and naphthalene in n-heptane was used. The resulting 

performance for each reaction was compared to an industrial reference catalyst based on 

cobalt and molybdenum. The results of the activity measurements for the three reactions 

are reported relative to the reference (k/kref) and are depicted in Figure 5.13. The standard 
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deviation of the calculated pseudo first order rate constants was determined from several 

catalytic activity measurements of the reference and is given by the error bars. In Figure 

5.13a the relative rate coefficients for the hydrothermally synthesized samples are shown 

and the samples are arranged according to the pH value during synthesis with low pH 

value and accordingly low Co-content on the left side. The samples synthesized at pH 

values below 6 were inactive for HDS, HDN and HYD, as well as the sample 

Co1Mo1_NaMo_pH8, Co1Mo1_AHM_pH8_P1. Co1Mo1_NaMo_pH6, 

Co1Mo1_AHM_pH7 and Co1Mo3_AHM_pH8_P1 showed medium activity with 16 - 

20% activity for hydrodesulfurization, 40 - 50% activity for hydrodenitrogenation and 16 - 

20% activity for hydrogenation compared to the industrial reference catalyst. The samples 

synthesized from ammonium heptamolybdate and cobalt nitrate at pH = 8 and from sodium 

molybdate and cobalt nitrate at pH = 11 reached almost the same activity for HDN as the 

reference catalyst but only 50% and 40% for HDS, respectively. Co1Mo1_AHM_pH9 

obtained around 75% HDS activity related to the industrial reference catalyst, whereas the 

relative rate coefficient for HDN was higher and reached 140%.  

In Table 5-4 the phase composition of the as-prepared and the spent catalysts according to 

X-ray diffraction are summarized. The samples are arranged according to their catalytic 

activity. In general, it was not possible to correlate the initial phases of the Co-Mo-O 

materials and the relative catalytic activity. For example Co1Mo1_AHM_pH7 and 

Co1Mo1_AHM_pH8_P1 consisted of CoMoO4 ∙ 0.75H2O, but the corresponding 

hydrotreating activity was different (relative rate coefficients: 16.2% and 3.6% respectively 

with a standard deviation of 11%). However, the samples prepared at low pH value 

containing a low Co content exhibited significantly lower catalytic activity than those 

prepared at neutral or basic pH values. Of particular interest are some of the samples 

synthesized at pH > 7 where the phase of the as-prepared materials could not be identified 

in the PXRD. The diffraction pattern of the spent catalysts (Figure 5.14) showed almost all 

the characteristic features of Co9S8 (JCPDS no. 56-002) and no evidence of MoS2 with 

reflections at 2θ = 14.4°, 32.7°, 39.5°, 49.8° or any mixed phase. The hydrothermally 

synthesized samples with the highest catalytic activities exhibited relatively high surface 

areas (37 m²/g for Co1Mo1_AHM_pH9, 39 m²/g for Co1Mo1_AHM_pH8 and 42 m²/g for 

Co1Mo1_NaMo_pH11) along with a high cobalt content (Co/Mo = 2.0, 2.0 and 1.7 

respectively). This supports the proposal in the literature that Co can not only act as a 

promoter in MoS2 hydrotreating catalysts but Mo can also act as a promoter in Co9S8. 
[245, 
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256-257]
 Supported hydrotreating catalysts usually consist mainly of MoS2 on alumina and 

cobalt is added as a promoter decorating the edges of MoS2 and increasing catalytic 

activity. It was demonstrated, that the promotion effect increases with increasing Co 

content until a maximum is reached, which lies typically between Co/Mo ratios of 0.1 – 0.3 

for supported catalysts. Further addition of cobalt results in Co9S8 segregation leading to 

coexistence of both bulk phases, Co9S8 and MoS2. This region was called “synergy by 

contact region“ by the group of Chianelli 
[245, 257]

 and these two immiscible phases interact 

by forming surface phases or surface complexes 
[256]

. However, in the region with excess 

molybdenum a Mo-Co-S phase can exist where Mo promotes the HDS activity of Co9S8. 

Bulk Co9S8 can be surface enriched with MoS2 and the extent of this enrichment depends 

on the surface area of the material. 
[257]

 

 

Figure 5.14: X-ray diffraction pattern of the sulfided catalysts after test reaction, where the stars 

indicate reflections which could not be assigned to a phase from the database. 
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Table 5-4: Phase composition of the oxidic precursor and the spent sulfidic catalyst as detected by 

powder X-ray diffraction, specific surface area of the as-prepared, crushed and spent catalysts and 

Co/Mo ratio of the oxidic material determined by ICP-OES or EDX. The catalytic hydrotreating 

activity was demonstrated by the relative rate coefficient (k/kreference) for hydrodesulfurization 

(HDS) of DBT with kreference(HDS) = 90 h
-1

 as well as the ratio of pre-hydrogenation (HYD) 

pathway (k(CHB)) to direct desulfurization (DDS) pathway (k(BP)) for the unsupported cobalt 

molybdate catalysts (cf. Figure 2.7). 

Sample Phases according to PXRD Surface area [m²/g] Co/Mo 

ratio as-

prep. 

k/ 

kref 

(HDS) 

k(CHB)/

k(BP) 

as-prepared spent as-

prep. 

crushed spent % 

Co1Mo1_NaMo

_pH8 

NaCo2(OH)(MoO4)2 

∙ H2O 

Co9S8 (+ 

27.2°, 

32.6°) 

n.d. 11 2 1.3 1.0 0 

Co1Mo1_AHM

_pH4 

CoMo4O13 ∙ 2H2O, 

(CoMoO4 ∙ 0.75H2O) 
Co9S8 1 n.d. 3 0.4 1.0 0 

Co1Mo1_AHM

_pH5 

CoMo4O13 ∙ 2H2O, 

CoMoO4 ∙ 0.75H2O 
n.d. 1 n.d. n.d. 0.7 1.3 0 

Co1Mo1_AHM

_pH3_7h 
CoMo4O13 ∙ 2H2O Co9S8 < 1 n.d. 2 0.3 1.3 0.08 

CP_Co1Mo1_ 

500 
β-CoMoO4 Co9S8 6 8 1 0.4 1.3 0.03 

Co1Mo1_AHM

_pH1 

α-MoO3, 

NH4Mo5O15(OH) ∙ 

2H2O 

n.d. 7 8 n.d. 0.01 2.3 0.03 

FSP_Co1Mo4 β-CoMoO4, α-MoO3 
Co9S8 (+ 

26.1°) 
68 n.d. 7 0.3 2.4 0.07 

Co1Mo1_AHM

_pH8_P1 
CoMoO4 ∙ 0.75H2O Co9S8 < 1 n.d. 1 1.2 3.6 0.24 

CP_Co1Mo3_ 

500 
β-CoMoO4, α-MoO3 

Co9S8 (+ 

23.7°, 

27.9°) 

8 7 7 0.3 4.2 0.07 

Co1Mo1_NaMo

_pH7 

NaCo2(OH)(MoO4)2 

∙ 2H2O 
Co9S8 16 11 3 1.1 6.9 0.15 

FSP_Co1Mo1 β-CoMoO4 Co9S8 92 n.d. 27 1.1 11.9 0.28 

Co1Mo1_AHM

_pH7 
CoMoO4 ∙ 0.75H2O n.d. 11 n.d. n.d. n.d. 16.2 0.25 

Co1Mo3_AHM

_pH8_P1 

Co1.2MoO4.2 ∙ 

1.3H2O, β-CoMoO4, 

Mo17O47 

Co9S8 9 10 6 1.0 16.3 0.19 

FSP_Co1Mo3 β-CoMoO4, α-MoO3 Co9S8 74 n.d. 5 n.d. 18.4 0.16 

Co1Mo1_NaMo

_pH6 
CoMoO4 (α+β) n.d. 15 n.d. n.d. 0.8 20.6 0.24 

Co1Mo1_NaMo

_pH11 

Not identified 

reflections 
n.d. 42 n.d. n.d. 1.7 41.2 0.30 

Co1Mo1_AHM

_pH8 

Not identified 

reflections 
Co9S8 n.d. 39 17 2.0 52.3 0.38 

FSP_Co1Mo2 β-CoMoO4, α-MoO3 
amor-

phous 
81 n.d. 42 n.d. 63.4 0.25 

Co1Mo1_AHM

_pH9 

Not identified 

reflections 
Co9S8 37 n.d. 10 2.0 76.1 0.37 
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Inamura and Prins 
[240]

 studied unsupported Co-Mo-S catalysts prepared by impregnation 

of MoS2 with cobalt nitrate and reported that Co situated at MoS2 crystallites promote the 

activity in HDS. Further addition of cobalt resulted in the segregation of Co9S8 during the 

catalytic activity tests, which can act as a support for Co-promoted MoS2 crystallites 

resulting in better accessibility of these MoS2 crystallites and thus improved catalytic 

activity. This segregation of Co from CoMoS followed by formation of Co9S8 was also 

observed by Karroua et al. 
[161]

, who prepared unsupported Co-Mo-S materials by 

homogeneous sulfide precipitation. This CoMoS decomposition was accompanied by 

sintering of the MoS2 crystallites. In the early works of the group of Topsøe 
[146]

 it was 

demonstrated that Co-Mo-S catalysts showed maximum activity when segregated CoSx 

was detected. Furthermore it has been observed for unsupported Ni/MoS2 or Ni/WS2 

systems, which have similar structural properties than Co-Mo-S materials, that active 

catalysts for HDS were obtained when MoS2 or WS2 slabs are dispersed on nickel sulfide 

bulk particles (NiS or Ni7S6). 
[258-259]

 Farag et al. 
[260]

 showed for unsupported MoS2 

catalysts that the sample with the highest surface area also exhibited the highest activity for 

hydrodesulfurization of DBT. 

The oxidic precursors Co1Mo1_NaMo_pH11, Co1Mo1_AHM_pH8 and 

Co1Mo1_AHM_pH9 leading to highly active unsupported hydrotreating catalysts 

contained an excess of cobalt combined with a relatively high specific surface area (~40 

m²/g). On the one hand, the high Co-content could result in segregated Co9S8 supporting 

active Co-promoted MoS2. On the other hand, the unknown phase or phase mixture of the 

as-prepared materials may be beneficial for the formation of a close contact between Co9S8 

and MoS2 during sulfidation. The presence of MoS2 was not detected by X-ray diffraction 

(cf. Figure 5.14) neither for the samples with a high cobalt content nor for the samples with 

a high amount of molybdenum. This could be explained by an amorphous character of 

MoS2 and MoS2 acting as a support for Co9S8 for the samples containing small amounts of 

cobalt. It has been demonstrated that MoS2 can support Co9S8 
[261-263]

 and maximum 

activity results when Co9S8 is optimally dispersed on MoS2. 
[261]

 In this work the Co9S8 

crystallites are large enough to be detected in the diffraction pattern resulting in low 

catalytic activity. In the cobalt rich samples Co9S8 can act as support for highly dispersed 

MoS2, which cannot be detected in PXRD. 
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For comparison, unsupported cobalt molybdates prepared by co-precipitation and flame 

spray pyrolysis were tested in hydrotreating and the results of the activity measurements 

are depicted in Figure 5.13b. The co-precipitated sample synthesized with a ratio of Co/Mo 

= 1:1 was inactive with respect to HDS, HDN and HYD, whereas an increase in 

molybdenum content from Co/Mo = 0.4 to 0.3 for CP_Co1Mo3_500 resulted in very low 

catalytic activity with relative rate coefficients for HDS, HDN and HYD of 4%, 7% and 

5%, respectively. This indicates that the co-precipitated samples follow the opposite trend 

compared to the hydrothermally prepared samples where a higher cobalt content led to 

higher activity. However, the overall hydrotreating activity of the co-precipitated samples 

as well as their surface areas were low (< 10 m²/g). The flame made samples exhibiting 

relatively high surface areas (92 – 68 m²/g) reached maximum activity for HDS, HDN and 

HYD with Co/Mo = 1:2 (relative rate coefficients 63%, 96% and 57%), whereas the flame 

made sample with Co/Mo = 1:4 was almost inactive and hardly showed the formation of 

cobalt sulfides in the diffraction pattern of the spent catalysts (Figure 5.14). The activity 

results of the flame made Co-Mo-O samples assist the conclusion for the hydrothermally 

synthesized samples that low cobalt content (Co/Mo < 0.3) leads to inactive unsupported 

hydrotreating catalysts. Obviously the ratio Co/Mo = 1:2 is beneficial for the hydrotreating 

activity of unsupported flame made cobalt molybdates. The effect of different Co/Mo 

ratios on the hydrotreating activity of unsupported and supported catalysts was studied 

before. 
[146, 243, 264]

 Wivel et al. 
[146]

 found that maximum activity can be achieved with 

Co/Mo = 1.0 for supported Co-Mo/Al2O3. In general they detected three different Co-

species: Co located in the alumina support, Co9S8 and cobalt in the Co-Mo-S surface (cf. 

Figure 1.11), whereas Co9S8 was only present in catalysts with Co/Mo > 0.4. Unsupported 

Co-Mo-S samples prepared by homogeneous sulfide precipitation showed maximum 

activity with Co/Mo = 0.5 
[243]

 which agrees with the flame made samples studied in the 

present work. Zabala et al. 
[264]

 demonstrated for reduced and sulfided mixtures of Co3O4 

and MoO3 that their catalytic activity in HDS depends on the sulfidation temperatures with 

H2S: sulfidation at 800 °C resulted in a maximum activity for Co/(Co+Mo) = 0.5 whereas 

at 400 °C the sulfided samples exhibited maximum activity with Co/(Co+Mo) = 0.67. 

After the catalytic test all samples with Co/(Co+Mo) = 0.05 – 0.85 contained MoS2 and 

Co9S8 according to the X-ray diffraction measurements, whereas in the present work only 

Co9S8 was detected by PXRD (cf. Figure 5.14). In a previous study unsupported cobalt 

molybdate with Co/Mo = 1:3 and supported Co-Mo-oxides prepared by flame spray 
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pyrolysis were studied. 
[76]

 The unsupported catalyst with a surface area of 90 m²/g 

composed of a mixture of β-CoMoO4 and MoO3 exhibited higher activity than the 

corresponding sample synthesized in the present work (FSP_Co1Mo3) but lower activity 

than FSP_Co1Mo2. The supported catalysts were prepared with Co/Mo = 1:3 by FSP and 

it may be worth to study these supported flame made catalysts with Co/Mo = 1:2 in the 

future.  

Hydrodesulfurization can proceed via two different routes: the direct desulfurization route 

(DDS) and the pre-hydrogenation route (see Figure 2.7). The selectivity of HDS to 

biphenyl (BP) or cyclohexyl benzene (CHB) provides information about the favored 

pathway on the corresponding catalysts and on its hydrogenation ability, which was 

additionally determined by HYD of naphthalene. Industrial Co-Mo/Al2O3 catalysts 

typically yield a ratio of k(CHB)/k(BP) of 0.15 
[194]

 showing that the direct desulfurization 

pathway is favored. The commercial Co-Mo-S catalyst tested in the present study exhibited 

a selectivity of k(CHB)/k(BP) = 0.19. For all catalysts the selectivity for BP was higher 

than for CHB and the direct desulfurization pathway was preferred (Table 5-4), but the 

ratios for the active catalysts Co1Mo1_NaMo_pH11, Co1Mo1_AHM_pH8 and 

Co1Mo1_AHM_pH9 were relatively high compared to the commercial Co-Mo-S reference 

catalyst and resembled the values for supported nickel catalysts (NiMo/Al2O3: 

k(CHB)/k(BP) ≈ 0.35 
[194]

). MoS2 particles are organized into stacked slabs consisting of 

Mo sandwiched between two S, which appear as dark lines in TEM images. It is generally 

accepted that the active sites on external layers of these stacked slabs perform both DBT 

hydrogenation steps and desulfurization, whereas the edge sites located on internal slabs 

will only be able to perform direct desulfurization. Therefore stacking height can directly 

influence HDS selectivity. 
[237]

 Hence, high selectivity towards CHB implies the presence 

of a high ratio of external slabs due to a low amount of stacking. Herbst et al. 
[194]

 observed 

that short single layered MoS2 showed the highest activity in hydrotreating. 

Co1Mo1_AHM_pH9 and Co1Mo1_AHM_pH8 resulted in k(CHB)/k(BP) = 0.37 and 0.38 

compared to 0.19 for the industrial reference catalyst suggesting that these materials show 

MoS2 layers of low stacking degree giving access to the pre-hydrogenation route and to a 

relatively high overall activity. Therefore, three hydrothermally synthesized samples with 

different activity were characterized by transmission electron microscopy (TEM) after 

application in hydrotreating i.e. after sulfidation and the distribution of number of slabs 

and slab length were determined. TEM characterization of Co1Mo1_NaMo_pH11, 
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Co1Mo1_NaMo_pH6 and Co1Mo1_NaMo_pH11 (k/kref(HDS) = 41.2%, 20.6% and 

16.2%, respectively) revealed the characteristic dark lines indicating the presence of MoS2 

(see Figure 5.15).These MoS2 slabs formed also curved morphologies leading to defect 

sites on these curved basal planes which are considered to be active in HDS. 
[239, 265]

 Figure 

5.15 c, f and i show the statistical distribution of the number of slabs and slab length 

obtained from various TEM images, which suggest a small shift to single, double and triple 

layered slabs along with shorter length for Co1Mo1_NaMo_pH11. This may explain the 

higher catalytic activity in combination with the increased cobalt content. 

For hydrodenitrogenation (HDN) the direct denitrogenation pathway is inhibited by H2S 

[266]
, which is formed during hydrodesulfurization, hence pre-hydrogenation takes place i.e. 

in the first step indole is hydrogenated and in the second step N is removed 
[267-268]

. 

Therefore a low stacking degree of MoS2 slabs is also crucial for the activity in HDN and 

sample Co1Mo1_AHM_pH9 which exhibited relatively high activity for hydrogenation of 

naphthalene also showed high HDN activity. Jian and Prins 
[269-270]

 found that 

hydrogenolysis for HDN requires highly unsaturated molybdenum atoms, which could also 

be present in Co1Mo1_AHM_pH9. 

Preparation of cobalt molybdates by different methods led to sulfided hydrotreating 

catalysts, which showed different activity. Characterization of the sulfided, spent samples 

did not clearly elucidate the reason for the differing catalytic performances. Therefore, it is 

important to identify the initial phase composition of the more active samples synthesized 

by hydrothermal synthesis under basic condition e.g. by means of X-ray absorption 

spectroscopy. X-ray absorption spectroscopy could also be used to analyze the state of 

molybdenum in the sulfided samples, because the X-ray diffraction pattern gave no 

information about the molybdenum phase. For a detailed understanding of the formation of 

the active sites and their characteristics, the sulfidation process needs to be investigated 

e.g. by in situ Raman spectroscopy. 
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Figure 5.15: Transmission electron microscopy (TEM) images of three sulfidic catalysts after 

catalytic activity measurements with corresponding statistical distributions of the MoS2 slab 

number and length a – c) Co1Mo1_NaMo_pH11, d – f) Co1Mo1_NaMo_pH6 and g – i) 

Co1Mo1_AHM_pH7. 

 

5.4. Conclusions 

The hydrothermal synthesis of cobalt molybdates was systematically studied as a function 

of pH and Co/Mo ratio applying two molybdenum precursors. This gave access to a large 

variety of phases mainly influenced by the pH value and the precursor. Under acidic 

conditions cobalt was not sufficiently incorporated and molybdenum rich phases such as α-

MoO3 or CoMo4O13 ∙ 2H2O were formed. At pH = 5 – 7 NaCo2(OH)(MoO4)2 ∙ 2H2O, 

CoMoO4 and CoMoO4 ∙ 0.75H2O were obtained. At high pH values (pH = 8 – 10), higher 

cobalt contents were detected in the products but the determination of the phase 

composition was not possible by means of X-ray diffraction. The solubility of the 
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precursors under ambient and under hydrothermal conditions was strongly dependent on 

the pH value, thus a change in the initial Co/Mo ratio only slightly influenced the phase 

composition and Co/Mo ratio of the product. 

The Mo-rich phases of the samples synthesized at low pH values under hydrothermal 

conditions were inactive for hydrotreating. A higher Co-concentration in the product 

applying higher pH values in combination with a relatively high surface area (for 

unsupported catalysts) resulted in much higher HDS, HDN and HYD activity, probably 

due to the promotion effect of Co9S8 with Mo or Co9S8 serving as a support for highly 

dispersed Co-promoted MoS2. The catalyst with the best catalytic performance additionally 

exhibited relatively high selectivity for the pre-hydrogenation pathway, suggesting the 

presence of MoS2 slabs with low degree of stacking and short length exhibiting mainly 

external slabs. Hence, hydrothermal synthesis is a very interesting route for the preparation 

of unsupported hydrotreating catalysts.  

Flame spray pyrolysis led to β-CoMoO4 and additionally to MoO3 when an excess of 

molybdenum was applied showing relatively high surface areas. The hydrotreating activity 

for the flame made materials could be optimized by using a variation of Co/Mo ratios and 

was found to be best for the sample synthesized with Co/Mo = 1:2. 

Cobalt molybdates are also attractive in selective oxidation reactions e.g. in oxidative 

dehydrogenation of propane. They could also be studied in connection with bismuth 

molybdates for example by mechanical mixing of cobalt and bismuth molybdate and 

application in propylene oxidation. 
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6 Final remarks and Outlook 

The present work shows that hydrothermal synthesis is a well suited method for the 

preparation of model catalysts for various applications. As an example for a relatively easy 

model system α-MoO3 with different morphologies could be successfully prepared and 

correlations of the reactivity with the exposed surface were found using propylene 

oxidation as a model reaction. Extension of this study towards more complex mixed 

molybdates resulted in a large variety of phases. Hence, the correlation between the 

morphology and the catalytic activity is more challenging in this case. On the other hand 

the preparation of different phases under comparable reaction conditions offers new 

possibilities giving access to a variety of model systems.  

The pH value during hydrothermal synthesis strongly influences the phase composition, 

the morphology and the surface area. Variation of the pH value results in a change of the 

polymolybdate species in the aqueous solution and therefore different phases are formed. 

At low pH values molybdenum rich phases were found, whereas at high pH values phases 

with a high amount of the other transition metal (Bi, Co, ..) were obtained. The pH value of 

the initial solution also influenced the surface area and the composition at the surface.  

Addition of nitric acid and / or ammonia solution during hydrothermal synthesis resulted in 

higher catalytic activity probably due to the stabilization of the morphology. The influence 

of nitrogen incorporation could be excluded. Calcination of the bismuth molybdates had a 

negative effect on the catalytic performance in propylene oxidation independent of the 

phase change. These results indicate the importance to prepare catalysts under the same 

conditions or applying the same thermal treatment to compare their catalytic performance. 
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In the selective oxidation of propylene a relatively large amount of (100) facets seems to 

be crucial for high propylene conversion, whereas the morphology had no influence on the 

selectivity to acrolein. The relative activity of bismuth molybdates decreased in the 

following order: β > γ > α. One-step flame spray pyrolysis enabled the preparation of β-

Bi2Mo2O9 which however decomposed into α-Bi2Mo3O12 and γ-Bi2MoO6 at temperatures 

above 400 °C thereby deactivating. Hydrothermal synthesis gave access to γ-Bi2MoO6 with 

relatively high surface area which showed high propylene conversion at high acrolein 

selectivity but deactivated at T ≥ 400 °C probably due to a loss in surface area. γ-Bi2MoO6 

with different morphologies using Bi/Mo = 2:1 was successfully synthesized in literature at 

various pH values 
[28]

 and similar samples could be tested in selective oxidation of 

propylene investigating the influence of the particle morphology on the catalytic activity 

and selectivity of γ-Bi2MoO6. Hydrothermal synthesis of more complex systems e.g. 

addition of Co or Fe may result in more stable catalysts especially at higher temperatures 

and may also result in higher surface area. However, addition of other transition metals 

will also lead to a larger variety of phases along with more complex phases so that phase 

identification will be a great challenge. The catalytic performance of these complex 

materials could be compared to the performance of samples synthesized by physically 

mixing the corresponding bi-metallic oxides e.g. hydrothermally synthesized Bi-Co-Mo-O 

could be compared to a physical mixture of hydrothermally synthesized Bi-Mo-O and 

hydrothermally synthesized Co-Mo-O. All structures and compositions should be studied 

in detail before and after the catalytic activity measurements. A corresponding study 

should be performed for flame made samples. 

Hydrothermal synthesis of cobalt molybdates at high pH values gave access to Co-rich 

products with a relatively high surface area resulting in relatively high activity for 

hydrodesulfurization, hydrodenitrogenation and hydrogenation. The precursor phases of 

these hydrothermally synthesized samples at high pH value should be identified e.g. by X-

ray absorption spectroscopy (XAS). This will help to understand the nature of the varying 

activities. Additionally to cobalt molybdates the corresponding nickel molybdates can be 

synthesized by hydrothermal synthesis although their preparation is more challenging and 

for several pH values in first preparation experiments only small amounts of product were 

formed. Several samples based on nickel and molybdenum have already been synthesized 

but the preparation needs to be optimized. Flame spray pyrolysis of nickel molybdates 

should be avoided due to the toxicity of nickel. 
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One selected hydrothermally synthesized sample of each cobalt molybdate and nickel 

molybdate was additionally tested in selective oxidation of propylene but the resulting 

pressure drop over the catalyst bed was too high. High temperatures arose due to the 

exothermic reaction and high activity of these samples. Adequate test conditions need to be 

identified and the cobalt and nickel molybdates should be diluted in the reactor for the 

selective oxidation of propylene. Both materials, cobalt and nickel molybdate, are also 

attractive materials for oxidative dehydrogenation of propane, as propane is more difficult 

to activate than propylene. 

As a next step, in situ methods e.g. in situ Raman spectroscopy, X-ray diffraction or X-ray 

absorption spectroscopy should be applied to elucidate the active phase in selective 

oxidation of propylene under reaction conditions. Observation of the sulfidation process of 

the active cobalt molybdate catalysts e.g. by Raman spectroscopy will give new insight in 

the formation of the active sites and the reorganization in the structure during reduction 

and sulfur incorporation. 

The crystallization and growth mechanism of bismuth molybdates during hydrothermal 

synthesis were already studied in the literature but hydrothermal synthesis of cobalt and 

nickel molybdates has not yet been investigated by in situ methods. In situ X-ray 

absorption spectroscopy (XAS) measurements could be applied to study the nucleation, 

crystallization and particle growth during hydrothermal synthesis of cobalt and nickel 

molybdates under various reaction conditions. Thereby knowledge of the processes inside 

the autoclave can be generated which will lead one step further towards the rational design 

of hydrothermally synthesized materials. The information on the particle growth and 

crystallization of bismuth molybdates and cobalt molybdates can be further applied to the 

preparation of more complex multicomponent molybdates and the preparation of Bi-Co-

Mo-O should also be followed by in situ XAS measurements. 

With respect to flame spray pyrolysis bismuth, cobalt and molybdenum precursors as well 

as spray conditions should be varied to synthesize samples with different particle size, 

surface area and possibly also phase composition. Maybe more stable β-Bi2Mo2O9 or β-

Bi2Mo2O9 with a higher surface area resulting in increased catalytic performance can be 

prepared. Stabilization of β-Bi2Mo2O9 e.g. by addition of cobalt or iron should be 

investigated to obtain highly active and selective catalysts for the selective oxidation of 

propylene. 
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