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D E U T S C H E Z U S A M M E N FA S S U N G

Die Menschheit hat schon seit geraumer Zeit Karten zur Visualisierung der Umgebung
genutzt. Die frühesten manuell erstellten Karten sind mehrere tausend Jahre alt, wiesen
aber noch viele geographische Ungenauigkeiten auf. Durch Integration von Kartographie
und Geographische Informationssysteme und anderer moderner Hilfsmittel (wie zum Bei-
spiel Satelliten) ist das Erstellen von geographisch exakten Karten bedeutend einfacher
geworden. Neben geographisch möglichst exakten Karten besteht aber auch ein großes
Interesse daran, Karten zu erstellen, die es Menschen erleichtern spezielle Aufgaben durch-
zuführen. In solchen Karten werden bestimmte Eigenschaften hervorgehoben während
andere Eigenschaften vernachlässigt werden; solche Karten geben also ein verzerrtes Bild
der Realität wieder. Obwohl Straßenkarten typischerweise geographisch sehr exakt sind,
wird oft die Breite der Straßen selbst übertrieben dick dargestellt. Eine besondere Art von
geographischen Karten sind schematische Karten. Obwohl es keine allgemeine Definition
von schematischen Karten gibt, so teilen die meisten schematischen Karten gewissen Eigen-
schaften: geometrische Details werden durch Glättung beseitigt, und Richtungen werden
nur annähernd korrekt dargestellt. Typischerweise werden schematische Karten für eine
spezielle Aufgabe hergestellt. Ein Paradebeispiel für solch schematische Karten sind U-Bahn
Pläne. Für solche Karten kann die geographische Genauigkeit vernachlässigt werden (aber
nicht vollständig) um genug Freiheit zu haben den Fokus auf die Entscheidungspunkte
(hier: die U-Bahn Stationen) zu setzen. Eine solche Karte erlaubt es dem Kartenleser nun
leicht eine Verbindung zwischen zwei Stationen zu finden.

 

U-Bahn Plan von Barcelona (http://www.metrobarcelona.es/en/maps.html ©Vilarubla,
Creative Commons).

Neben Karten denen geographischen Daten zu Grunde liegen gibt es auch eine andere
Art von Karten, oft auch abstrakte Karten oder manchmal Diagramme genannt (zum Beispiel:
tree maps, oder UML Diagramme). Solche abstrakten Karten haben also keine räumlichen
Informationen, die eine klare Struktur vorgeben.

Das Erstellen von Karten umfasst viele wichtige Entscheidungen, die essentiell für die
Qualität des Endprodukts sind. Es gibt aber einen Schritt, der von sehr großer Wichtigkeit
ist: Das Platzieren von Text und Piktogrammen auf einer Karte. Eine Karte vollständig ohne
Text ist normalerweise völlig nutzlos. Für Straßenkarten sind Informationen wie Ortsnamen,
Straßennamen, aber auch Piktogramme wie Symbole für Tankstellen, oder Rastplätze sehr
wichtig. Dieser Schritt im Prozess des Erstellens einer Karte wird als “Positionierung von
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Beschriftungen” bezeichnet (und im englischen oft als: label placement). Dass dieser Schritt
in der Erstellung einer Karte große Wichtigkeit besitzt wurde vom Kartographen Imhof
bemerkt: “Good name position aids map reading considerably and enhances the esthetics of
the map. [...] Poor, sloppy, amateurish type placement is irresponsible; it spoils even the best
image and impedes reading.” [123] (frei übersetzt etwa: Eine gute Anordnung von Namen
unterstützt das Verstehen einer Karten und trägt zur ihrer Gesamtästhetik bei. [...] Schlechte
und ungenaue Platzierung von Text ist unverantwortlich; es verdirbt sogar das beste Bild und
behindert das Verstehen.”) Dieser Schritt ist nicht nur besonders wichtig, sondern benötigt
er auch einen signifikanten Anteil des gesamten Karten Herstellungsprozesses [69]. Diese
Eigenschaften zeigen, dass das automatisierte Beschriften von Karten aus algorithmischer
Sicht ein interessantes Thema ist mit vielen praktischen Anwendungsmöglichkeiten.

In dieser Arbeit werden wir uns mit zwei Teilproblemen der Visualisierung von Karten
und Diagrammen befassen. Zum Einen werden wir uns aus algorithmischer Sicht mit
Problemen befassen bezüglich des Erzeugens von schematischen und abstrakten Karten.
Zum Anderen werden wir uns mit dem Problem der Positionierung von Texten (oder
Symbolen) auf Karten und Diagrammen befassen. Dabei liegt ein Hauptteil der untersuch-
ten Problemstellungen bei dynamischen Karten. Eine dynamische Karte ist eine Karte die
bestimmte kontinuierliche Operationen unterstützt (wie zum Beispiel stufenloses Vergrö-
ßern/Verkleinern oder Rotieren). Durch die wachsende Verbreitung von Smartphones in
den letzten Jahren auf denen Programme dynamische Karten bereitstellen (z. B. Google
Maps, iOS Maps) bieten sich hier viele neue Fragestellungen die aus algorithmischer Sicht
nicht ausreichend beantwortet wurden. Die Arbeit ist nach diesen zwei Teilproblemen in
zwei Hauptteile unterteilt.

In dieser Arbeit versuchen wir immer ein Gleichgewicht zwischen Theorie und Praxis
zu finden, indem wir die betrachteten Probleme erst aus Sicht der Komplexitätstheorie
betrachten (z.B. durch Zeigen der NP-Schwere), und dann Algorithmen zum lösen dieser
Probleme entwerfen (z.B. Approximationsalgorithmen), diese implementieren und anschlie-
ßend experimentell evaluieren.

teil 1: das zeichnen von karten und diagrammen

Der erste Teil der Arbeit befasst sich mit der konkreten Zeichnung von Karten. Die erste
betrachtete Problemstellung behandelt dabei räumliche Karten, während in der zweiten
eine spezielle Art von abstrakten Karten betrachten wird (die Ähnlichkeit mit UML Klassen-
diagrammen aufweisen).

Erstellen von Routenskizzen

Das erste Problem, welches in der Arbeit betrach-
tet wird ist das automatisierte Erstellen von Rou-
tenskizzen. Im nebenstehenden Bild ist eine Route
von Karlsruhe nach Dortmund auf Google Maps dar-
gestellt. Allerdings ist das Bild der Route von Google
Maps allein keine Hilfe, da viele Entscheidungspunk-
te (Abbiegungen) nicht sichtbar sind. Diese Entschei-
dungspunkte sind dagegen alle sichtbar auf der per
Hand angefertigten Routenskizze. Da die Eigenschaf-
ten die U-Bahn Pläne auszeichnen, gut geeignet sind
den Fokus einer schematischen Karte auf Entscheidungspunkte zu legen untersuchen wir
in diesem Abschnitt der Arbeit wie man automatisiert Routenskizzen erstellen kann, die
ähnlich schematisch sind wie U-Bahn Pläne, und zugleich die mentale Karte des Benutzers
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erhalten. Wir untersuchen das Problem zunächst aus Sicht der Komplexitätstheorie, und ge-
hen anschließend dazu über algorithmische Ansätze zur Lösung des Problems vorzustellen
und experimentell zu evaluieren. Schließlich stellen wir auch ein Webinterface für unsere
Algorithmen zur Verfügung.

Zeichnen von Argumentkarten

Das zweite Problem, welches in dieser Arbeit betrachtet wird befasst sich mit der au-
tomatisierten Berechnung der Darstellung von Argumentkarten. Argumentkarten sind
ein Werkzeug um die logische Struktur von Argumenten visuell darzustellen. Dabei
werden Argumente in ihre Komponenten zerlegt (z.B. Prämisse, Aussage), und als Box
dargestellt. Zwei Komponenten (bzw. ihre zugehörigen Boxen) sind durch einen Pfeil
verbunden, wenn sie in einer Relation stehen (z.B. unterstützend). Solch eine Struktur
lässt sich gut mit dem mathematischen Konzept eines gerichteten Graphen beschreiben.

Beispiel einer Argumentkarten (per Hand er-
zeugtes Layout).

Wir besprechen in diesem Teil der Arbeit
ein algorithmisches Verfahren zum Layou-
ten solcher Graphen. Es gibt bereits diverse
Ansätze zum Zeichnen von Graphen, die
von der Struktur her so sind wir die Gra-
phen von Argumentkarten. Allerdings ba-
sieren diese meist auf einem schichtbasier-
ten Verfahren. Wir verfolgen einen anderen
Ansatz, der die Knoten des Graphs in Spal-
ten einteilt. Das mag auf den ersten Blick
kein großer Unterschied zu einem schicht-
basierten Verfahren zu sein, aber bei einem
schichtbasierten Verfahren ist es nicht möglich zwei Knoten in derselben Schicht miteinander
zu verbinden. Das ist bei zwei Knoten in derselben Spalte sehr wohl möglich (und auch zu
erwarten). Für unseren Ansatz entwickeln wir verschiedene algorithmische Lösungsstrategi-
en, und zeigen, wenn uns möglich, NP-Schwere von einzelnen Teilproblemen. Das Kapitel
wird mit einer kurzen experimentellen Analyse abgeschlossen.

Da Argumentkarten einige Ähnlichkeiten zu UML Klassendiagrammen aufweisen besteht
die Möglichkeit, dass unser Verfahren durch Modifikation auch für UML Klassendiagramme
anwendbar ist. Unser Verfahren wurde in das Softwareprojekt argunet, ein Tool zum
Erstellen von Argumentkarten, integriert.

teil 2: das beschriften von karten und diagrammen

Im zweiten Teil der Arbeit befassen wir uns mit dem Beschriften von Karten und Diagram-
men. Dabei liegt der Fokus auf dem Beschriften von dynamischen Karten, also Karten, die
kontinuierliche Operationen, wie Zoomen oder Rotieren, erlauben.

Beschriften von dynamischen Karten: Rotation

Im ersten Abschnitt betrachten wir das Problem eine Karte zu beschriften die rotiert werden
kann. Wir schlagen zunächst ein Modell vor, das eine konsistente visuelle Darstellung
der Beschriftungen sicherstellt. Dabei stützen wir uns auf Publikationen die sich mit dem
Beschriften von dynamischen Karten, die stufenloses Zoomen erlauben, befassen. Das von
uns vorgeschlagene Modell schreibt unter anderem vor, dass eine Beschriftung während
einer 360◦ Rotation nicht mehrmals den Zustand zwischen sichtbar und unsichtbar wechseln
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darf, sondern maximal ein einziges mal. Diese Eigenschaft verhindert, dass die Darstellung
unter viel “flackern” leidet.

Label 3

Label 5
Label 4

Label 2
Label 1

Label 5Label 4

Label 2Label 3
Label 1

Wir betrachten in diesem Kontext zwei Optimie-
rungsprobleme und zeigen deren NP-schwere. Da-
nach befassen wir uns mit algorithmischen Ansät-
zen zur Lösung der Probleme. Dabei schlagen wir
für eines der Probleme umfassende algorithmische
Ansätze vor: darunter fallen Heuristiken, Approxi-
mationsalgorithmen, sowie exakte Lösungsverfah-
ren, die auf ganzzahliger linearer Programmierung basieren. Alle Verfahren wurden imple-
mentiert und wir schließen diesen Abschnitt der Arbeit mit einer umfassenden experimen-
tellen Evaluation des vorgeschlagenen Modells, sowie der entwickelten algorithmischen
Ansätze, auf real Welt Daten (extrahiert aus dem OpenStreetMap Projekt).

Beschriften von dynamischen Karten: Zoom

Im zweiten Abschnitt im zweiten Teil der Arbeit betrachten wir das Beschriften von dynami-
schen Karten die kontinuierliches vergrößern/verkleinern (zoomen) eines Kartenausschnitts
zulassen. Von der geometrischen Struktur ist das Problem stark unterschiedlich zum Pro-
blem aus dem vorherigen Abschnitts. Deshalb lassen sich die dort gefundenen Ansätze
nicht auf die Problemstellung übertragen.

Wir gehen deshalb zunächst davon aus, dass die Karte die wir beschriften wollen nur
ein-dimensional ist (z.B. eine Zeitleiste). Unter dieser Annahme zeigen wir, dass sich das
Problem mit Hilfe eines effizienten Algorithmus schnell lösen lässt. Wir nutzen dann
Erkenntnisse aus diesem Ansatz um Approximationsalgorithmen für das Beschriften von
zwei-dimensionalen Karten herzuleiten.

Beschriften von Panoramen

Das letzte Problem mit dem wir uns in dieser Arbeit beschäftigen ist das Beschriften von
Panoramen. Der grundlegende Unterschied zu den bisherigen Problemen liegt darin, dass
die Beschriftungen nun nicht mehr innerhalb der Karte bzw. des Diagramms liegen, sondern
außerhalb platziert werden. Solch ein Ansatz ist besonders dann sinnvoll, wenn die zu
beschriftenden Objekte sehr dicht aneinander liegen, oder wenn möglichst wenig Inhalt
der Karte/des Diagramms durch die Beschriftungen verdeckt werden soll (sinnvoll z.B. bei
medizinischen Illustrationen).

Beschriftetes Panorama der Skyline von Chi-
cago. Foto: ©J. Crocker.

Wir betrachten das Problem des Beschrif-
tens von Panoramabildern. Solche Bilder
zeichnen sich dadurch aus, dass sie beson-
ders breit sind. Bisher existierende Verfah-
ren sind nicht in der Lage diese Eigen-
schaft sinnvoll auszunutzen. Wir untersu-
chen diverse Optimierungsprobleme in die-
sem Kontext, geben entweder effiziente Al-
gorithmen an, oder zeigen die NP-Schwere
der Probleme. Wir schließen die Untersu-
chung dieser Problemstellung mit einer experimentellen Analyse der vorgeschlagenen
Algorithmen ab.
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Computer science is no more about computers
than astronomy is about telescopes.

– unknown origins
(often misattributed to Edgar Dijkstra)
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1
I N T R O D U C T I O N A N D T H E S I S O U T L I N E

Since prehistoric times humans have produced maps (e. g., from stone and clay [42, 184])
to convey spatial information based on their personal mental conceptualizations of their
surroundings. While such old maps suffer from many geographic inaccuracies, nowadays,
with the aid of modern technology (e. g., satellites, GPS) and with the integration of the
map making process (also referred to as cartography) with geographic information science
(GIS) producing maps of high geographical precision has become much easier. However,
there is a demand for task specific maps that aid humans to process information much more
efficiently. Such maps show a distorted representation of the spatial information, where
certain features are exaggerated. Note that this is already not uncommon for road maps
since there the width of the roads is usually increased beyond their true representation.

 

Figure 1.1: Metro map of Barcelona (http://www.metrobarcelona.es/en/maps.html
©Vilarubla, Creative Commons).

A certain kind of spatial map is called schematic map. Schematic maps are produced by
schematizing certain spatial information to emphasize certain features of the map and de-
emphasizing others. Although there is no general theory of schematization [133] schematic
maps usually share the following characteristics: geometric line details are removed by
smoothing and directions are only approximately preserved [8]. Usually, schematic maps
are made with a certain task in mind and show only essential information [145]. A prime
example for these kinds of maps are metro maps1, where the goal usually is to create maps
such that a reader is able to easily find a connection between two stations. For such maps,
spatial correctness can be relaxed (although not completely) which allows to set the focus
on the decision points of the transportation network [118].

Besides maps that depict geographical and spatial information. There are other types of
maps that are non-spatial and also referred to as abstract maps or diagrams, e. g., tree maps,

1 Metro map of the London underground http://www.tfl.gov.uk/assets/downloads/standard-tube-map.pdf

1
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Figure 1.2: Picture of the on-board entertainment systems during a United Airlines flight.
The dynamic map labeling algorithm produces multiple label overlaps.

and UML-diagrams. Although they have not necessarily any relation to geographical data
they have a spatial component: “Another way of dealing with space is by use of diagrams.
This is an interesting case because diagrams are intermediate to language and physical
environments. A diagram is representational, inteded to convey spatial information about
a place that is not physically present, just as in language. A diagram, however, is also a
physical object having its own spatial properties, just as do real sketches, pictures, and
so on are commonly used to provide spatial information” [43]. Contrary to the spatial
maps, where, even when schematized spatial correctness can be relaxed but not completely
omitted, for diagrams usually no spatial information is provided at all. Hence, the structure
to display the information the diagram aims to provide is much less clear.

While drawing a map or a diagram entails many important decisions, one is of most
critical importance to convey information: the annotation of point-, line-, or area features.
Depicting a map without any textual information is usually of no use. For road maps this
usually entails the placement of names of towns, cities, rivers, states, countries, but also plac-
ing highways symbols and other non-textual labels. This part of the map making process is
usually referred to as the “placement of names on the maps” or as the “labeling of the map”.
This step in the map making process is of tremendous importance. As the Cartographer
Imhof put it “Good name position aids map reading considerably and enhances the esthetics
of the map. [. . .] Poor, sloppy, amateurish type placement is irresponsible; it spoils even
the best image and impedes reading.” [123]; see Figure 1.2 for an example. While it is not
only important it also requires a significant portion of time necessary for the whole map
making process [69]. This makes the problem of label placement on maps and diagrams an
interesting area for algorithmic research with practical applications. The Computational
Geometry Impact Task Force determined that map labeling is one of the import areas of
research in Discrete Computational Geometry [53], and hence, there has been considerable
amount of work done to automate the process of placing text on a map. Researchers in the
field of computational geometry have been proposed algorithm to produce map labelings of
high quality under certain restrictions. However, the recent popularity of hand held devices
such as smart phones, which feature map applications, opened a new field of research that
focuses on label placement on dynamic maps, i. e., maps that allow interactive operations
such as zooming or rotation.
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While the work in this thesis comes from the view of a theoretical computer scientist, we
still aim to provide a balance between theoretical analysis (i. e., proving NP-hardness of
investigated problems, time complexity and correctness of newly developed algorithms) and
practical evaluation (i. e., implementation of the proposed algorithmic approaches and thor-
ough experimental evaluation). In all but one of the chapters (excluding Introductions, and
Preliminaries) we provide additional to the theoretical analysis an experimental evaluation.
The evaluated algorithms range from heuristics, to approximation algorithms, and where
possible to fast, exact algorithms. Since many of the investigated problems are NP-hard
we often also include integer linear programming formulations producing exact solutions
in our experimental analysis, either to take their results as benchmark, or to provide a
viable alternative to non-exact algorithms, for problems with typically small problem size
instances.

overview and contribution

This thesis is concerned with algorithmic approaches for visualizing maps and diagrams.
The problem of visualizing maps and diagrams can be divided into two parts, and we
structure this thesis along this division. In the first part of this thesis we consider certain
types of maps and diagrams and how to generate a drawing that adheres to certain quality
requirements. The second part of this thesis is concerned with labeling of maps and
diagrams. More specifically, we consider the problem of labeling dynamic maps, that
support either contiguous rotating or that support contiguous zooming. We also consider a
problem which can be seen as both labeling of maps, or labeling of diagrams.

Chapter 2: Preliminaries

In this chapter, we give a very brief introduction to notation and terms that are relevant in
the field of theoretical computer science and are used throughout this thesis.

Part I: Drawing Maps and Diagrams

Chapter 3: Introduction

We give a brief introduction to the topic of drawing maps and diagrams, as well as a short
list of related work.

Chapter 4: On d-regular Schematization of Route Sketches

Motivated from generating route sketches, or sketch
maps, we consider the problem of schematizing a
given shortest route in a road network. The challenge
in this problem lies in the difficulty maintaining the
user’s mental map while emphasizing certain parts
of the route and reducing the route’s drawing com-
plexity. We first show NP-hardness of the problem,
give an integer linear programming (ILP) formula-
tion for obtaining solutions, and show that under
certain restrictions the problem is solvable in polyno-
mial time with a dynamic programming algorithm. This dynamic programming algorithm
is then extended towards an heuristic approach for solving the problem. We conclude this
chapter of the thesis with an experimental evaluation of the proposed ILP and heuristic.

This chapter is based on joint work with Daniel Delling, Martin Nöllenburg, Thomas
Pajor, and Ignaz Rutter. Preliminary results have been published in [64, 102, 63, 101].
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Chapter 5: Column-based Graph Drawing

Example of an argument map (manually cre-
ated layout).

One way to structure and visualize argu-
mental debates is to draw them as an argu-
ment map. An argument map is a diagram
consisting of a box for each component of
an argument, e. g., premises, objections, re-
buttals. These boxes (i. e., the representation
of the components of an argument) are con-
nected by arrows when their corresponding
components are in a relationship (e. g., sup-
port). Automatically generating layouts for
such diagrams is a prime candidate for al-
gorithms from the field of graph drawing.

In this part of the thesis, we discuss an
approach to automatically layout argument maps. Although there already exists numerous
approaches for layouting graphs that are in their structure similar, our approach differs
from the standard approach that would employ a layering strategy. However, we assume
that the boxes have uniform width, which allows us to position the nodes into columns. We
combine this approach with several newly developed algorithms to obtain an approach to
compute compact layouts of argument maps. We note that argument maps share certain
characteristics with UML diagrams and that our approach may also find applications there.
The approach has been implemented into the software argunet which is an open source
software for managing and layouting argument maps.

This chapter is based on joint work with Gregor Betz, Christof Mathies, Ignaz Rutter, and
Dorothea Wagner. Preliminary results have been published in [27, 26, 71].

Part II: Labeling Maps and Diagrams

Chapter 6: Introduction

In this chapter we give an introduction to the problem of labeling a map. We mainly focus
on models and algorithmic results concerned with labeling of point features. This part
builds the basis for the following three chapters.

Chapter 7: Labeling of Rotating Maps

Label 3

Label 5
Label 4

Label 2
Label 1

Label 5Label 4

Label 2Label 3
Label 1

Rotation is one of the basic operations that most
dynamic maps support. This chapter deals the
problem of labeling a rotating map. We describe
a model based on conistency requirements for dy-
namic maps proposed by Been et al. [9], and we
show NP-hardness of the problem of finding an op-
timal labeling in this model. However, we describe
an efficient polynomial-time approximation scheme based on the well-known stabbing
technique by Hochbaum and Maass [117]. Further, we give two (mixed) integer linear
programming formulation to obtain optimal solutions, and provide several simple heuristics.
We conclude this part of the thesis with an experimental evaluation of the model and the
proposed algorithmic approaches.

This chapter is based on joint work with Martin Nöllenburg, and Ignaz Rutter. Preliminary
results have been published in [103, 104, 106].
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Chapter 8: Labeling of Zooming Maps with Sliding Labels

Besides Rotation, one of the other basic operations for dynamic maps is zooming. For
two-dimensional maps this has already been explored by Been et al. [10], but only under the
assumption that for each label there is only one possible label position relative to its point
feature. We focus on labeling one-dimensional maps (i. e., lines) in the slider-model where
the label can have any position relative to its point feature as long as it touches it. While
we can neither show NP-hardness of the problem nor are able to give a polynomial-time
algorithm, we give an algorithm that solves the problem in the k-position labeling model,
where each label can have one of k specified positions relative to its point feature, optimally.
We extend this algorithm to a fully polynomial-time approximation scheme for the slider
model. We briefly discuss the two-dimensional problem and give simple approximation
algorithms for the k-position labeling problem in the two-dimensional case.

This chapter is based on joint work with Martin Nöllenburg, and Ignaz Rutter. Preliminary
results have been published in [105].

Chapter 9: Labeling Panoramas

Labeled Panorama of Chicago’s skyline.
Photo: ©J. Crocker.

In the last chapter of this thesis we discuss
the problem of labeling panoramas. This
problem differs from the previously dis-
cussed labeling problems in that we do not
want to place the labels close to the point
features but rather place them outside of
the panorama and connect the point feature
with a line (called leader). Existing algorith-
mic approaches are unsuitable because they
either place the labels to the right (or left)
of the panorama, but do not exploit the fact that panoramas are usually very wide. Or,
they place the labels on top (or below) perpendicular to the panorama. We propose several
algorithmic approaches for placing labels above (and below) the panorama such that they
remain horizontally aligned, no two leader intersect, and no leader intersects a label. The
chapter is concluded by an extensive evaluation of the proposed approaches.

This chapter is based on joint work with Jan-Henrik Haunert, and Martin Nöllenburg.
Preliminary results have been published in [99, 98].





2
P R E L I M I N A R I E S

In this chapter we introduce basic terminology that is used throughout this work. Most
of the introduced terms and notation is widely used in the field of graph theory and
other fields of theoretical computer science. For a more detailed overview and description
on many specific terms and approaches we refer the reader at the appropriate places to
well-known literature. In the following we assume that the reader is well-versed in the
basic mathematical concepts, like the big-O-notation and set theory, if not we suggest the
following reading material [61, 90].

2.1 graph theory

We begin by introducing standard terminology used in graph theory. The definitions are
commonly used in the literature. For a more detailed description, as well as a broader
overview of graph theory we refer the reader to [31, 67].

An undirected graph G is a pair (V, E), where V is a set of vertices, and E ⊆ V ×V is a setundirected graph

of unordered pairs of vertices, called edges. We denote an edge between two vertices u, v ∈ V
by {u, v}, and say that u and v are connected or adjacent. A directed graph G = (V, E) is alsoadjacent

directed graph a pair of sets, where V is a set of vertices and E ⊆ V ×V is a set of ordered pairs, which we
also refer to as (directed) edges. We denote a directed edge from a vertex u ∈ V to a vertex
v ∈ V by (u, v). Further, for an edge (u, v) we call u the source vertex and v the target vertex.
We usually refer to the number of vertices of an undirected/a directed graph as n := |V|,
and to the number of edges as m := |E|. If, from the context, it is clear whether a graph
is undirected or directed or it is unimportant, we omit the qualifier and simply call the
(un)directed graph a graph.graph

A path in a graph G = (V, E) is a sequence (v1, . . . , vk) of distinct vertices v1, . . . , vk suchpath

that {vi, vi+1} ∈ E. Similarly, a directed path in a directed graph G = (V, E) is a sequence
(v1, . . . , vk) of distinct vertices v1, . . . , vk ∈ V such that (vi, vi+1) ∈ E.

We call a directed graph G = (V, E) acyclic if there exists no vertex v ∈ V for which thereacyclic graph

is a directed path from v to a vertex u ∈ V with (u, v) ∈ E.
We say that a drawing of a graph G is a function Γ that maps the vertices of G to distinctdrawing

points in the two-dimensional plane, and maps the edges of G to simple Jordan curves
connecting their vertices. We say a drawing of a graph is a straight-line drawing if each edge
of G is mapped by Γ to a straight line segment. We say that a drawing is planar if no twoplanar

edges in a the drawing intersect, except at common endpoints. We say that a graph G is
planar if G admits a planar drawing.

The intersection graph of a set O of geometric objects in the plane is defined to be the
undirected graph G = (V, E) where for each o ∈ O there is a corresponding vo ∈ V. An edge
between vi, vj ∈ V exists if and only if the intersection of geometric shapes corresponding
to vi and vj is non-empty.

7
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2.2 algorithms and complexity

Although we want to find for every problem we have considered efficient algorithms,
sometimes, we did not succeed in doing so. However, in those cases we were usually able
to show that the considered problem is very difficult in some sense, and that it is unlikely
that an efficient algorithm exists to solve it. In this section we give a short introduction to
complexity theory. For a more detailed description and introduction to this important part
of theoretical computer science we refer the reader to [91, 155, 61]

the classes p and np. Both P and NP are sets or classes of decision problems. A
decision problem is a problem which can be answered with a yes-or-no answer. Contrary to decision problem

decision problems there are also optimization problems. Typically, an optimization problem
asks to maximize or minimize an optimization function. Those problems do not belong
to either P or NP. There exists a wide literature regarding the complexity classes PO and
NPO , which are similarly defined as P and NP but for optimization problems; see [183] for
a detailed characterization of those classes.

The class P contains all problems for which a deterministic Turing machine requires only
polynomial time to verify its solution. We say that such problems (i. e., problems in P) can be
solved efficiently, or that an efficient algorithm exists that solves the problem. An algorithm
is considered to be efficient if it solves the problem, and if its running time is bounded by
a function that is a polynomial of its input. In other words, an algorithm is efficient, if
for input of size n the running time is in O(nc) for some fixed constant c. Note that the
term efficient may be misleading and does not imply that an algorithm is useful from a
practical point of view. For one, the constant c can be arbitrarily large (e. g., an algorithm
with worst-case running time Θ(n1104) is considered to be efficient). The other reason why
even an algorithm with Θ(n) worst-case running time might be irrelevant from a practical
point of view is that the big-O-notation hides large constants. For an example of an efficient
algorithm with large constants, we refer the reader to the publication by Robertson and
Seymour [163] in which they give a O(n3) algorithm for graph minor testing. Although it
seems difficult to obtain a more or less exact bound for this constant (there is a very rough
estimation given in [124]) we quote David Johnson who said that: “Unfortunately, for any
instance G = (V, E) that one could fit into the known universe, one would easily prefer |V|70

to even constant time, if that constant had to be one of Robertson and Seymour’s” [124].
For an example of an algorithm with large exponent and large constant we refer the reader
to [47]1.

The class NP contains all decision problems for which a deterministic Turing machine
requires only polynomial time to verify a given solution. To understand the difference
between both classes consider the problem SubsetSum. A SubsetSum instance has as input a
set M of integers and asks whether there exists a non-empty subset S ⊆ M whose elements
add up to zero. For example: Is there a subset S for the set M = {−3, 4,−12, 7, 8}, such
that the sum of all of S’s elements is 0? The answer is “yes” since the elements of the set
S = {−3,−12, 7, 8} add up to 0. While determining such a solution appears to be difficult2,
verifying a solution is simple (check if the sum of all elements is 0 and whether all elements
are contained in M). While it is easy to see that P ⊆ NP, it is still unknown whether P = NP
or P 6= NP. This question—also called the “P versus NP” problem—is widely considered to
be one of the most interesting open problems in theoretical computer science [87].

np-completeness . Here, we discuss decision problems with a special property called
NP-completeness. Consider two arbitrary decision problems Π1 and Π2. A polynomial-time
reduction ≤p from Π1 to Π2 is a polynomial-time algorithm that computes for each instance poly-time reduction

1 The running time of the algorithm is bounded by 1752484608000 · n79(`max/dmin(Θ0)).
2 there is no known algorithm that has polynomial worst-case running time
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I1 of Π1 an instance I2 of Π2 such that I2 is a yes-instance of Π2 if and only if I1 is a
yes-instance of Π1. This means that if we find a polynomial-time algorithm that solves the
problem Π2, then we have automatically found a polynomial-time algorithm that solves Π1.
We can also conclude that the problem Π2 is at least as hard as Π1.

We say that a problem Π2 is called NP-hard, if for every problem Π1 ∈ NP there existsNP-hard

a polynomial-time reduction to Π2. Further, a problem Π2 is called NP-complete if it isNP-complete

NP-hard and belongs to the class NP itself. The class of NP-complete problems is denoted
by NPC. At this point we can infer that any problem in NP can be reduced, in polynomial
time, to any problem that is in NPC. Hence, NP-complete problems can be considered the
“most difficult” problems in NP and any polynomial-time algorithm for any problem in NPC
directly implies that P = NP.

At this point there is still an open question. It is unclear if there are problems in NP for
which there is a polynomial-time reduction from any other problem in NP. Or, more bluntly,
“do NP-hard problems exist?”. This was answered by Cook in his seminal paper “The
Complexity of Theorem Proving Procedures“[60] in which he showed that any problem in
NP can be encoded as a Sat instance of polynomial size. The Satisfiability (Sat) problem
asks whether a given Boolean formula in conjunctive normal form (CNF) has a variable
assignment that satisfies all its clauses. Based on this result Karp [127] provided a list
of 21 problems he proved to be NP-complete. For an extensive overview of NP-hard and
NP-complete problems we refer the reader to [91].

Although NP-complete problems are, in some sense, the most difficult problems in NP,
we can make a distinction between two types of NP-complete problems for which the
input consists of numerical parameters. We say an NP-complete problem is weakly NP-
complete if there exists an algorithm that is polynomial in the length of the input and inweakly NP-c

the value of the numerical parameters of the input. We call such an algorithm a pseudo
polynomial-time algorithm. At first it might seem as though the existence of such an algorithmpseudo poly-time

would resolve the P vs. NP question, but integers are represented in binary, and hence
require only logarithmic space with respect to their value. Hence, an algorithm that is
polynomial with respect to the value of the integers of the input has exponential running
time with respect to the size for storing the integers, and thus, in the size of the input.
Nevertheless, pseudo polynomial-time algorithms can be used in practice if the numbers
in the input are small. One problem that is only weakly NP-complete is the already
mentioned SubsetSum problem [91]. There is a dynamic programming algorithm that
solves SubsetSum with running time that is polynomial in the length of the input and in
the values of the numerical parameters. This might imply that the inherent difficulty of
weakly NP-complete problems lies in the possibility that very large numbers are permitted
as input and not in the fundamental structure of the problem. The counter-part to weakly
NP-complete problems are strongly NP-complete problems. An NP-complete problem isstrongly NP-c

said to be strongly NP-complete if the problem remains NP-complete if the values of all
numerical parameters are bounded by the length of the problems input. Hence, the existence
of a pseudo polynomial-time algorithm for a strongly NP-complete problem directly implies
P = NP.

Although by definition there cannot be an optimization problem that is NP-complete, there
are optimization problems which are NP-hard. Such a problem can be used to determine
the answer to a decision problem. For example, a valid optimization problem is to ask for
a given set of integers, the maximum number of subsets whose elements add up to 0. It
is obvious that an efficient algorithm which solves this problem can be used to solve the
above mentioned SubsetSum problem.

selection of np-complete problems . In the following chapters of this thesis we
show several NP-hardness proofs. To give a the reader a place to find all the problems we
give here the formal definitions of the problems used for our reduction. We have introduced
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x1 x2 x3 x4

x1 ∨ x2 ∨ x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

C1

C2

C3

Figure 2.1: A Planar Monotone 3-Sat instance with four variables and three clauses.

several problems already in this section and will reference them when we need them later.
Among the introduced problems is Sat. A somewhat “simpler” variant is 3Sat whose
formal definition is as follows.

Problem: 3Sat

Instance: m clauses, n variables, in each clause at most 3 literals
Question: Is there a variable assignment that satisfies all m clauses?

This problem was shown to be NP-complete by Karp [127] and belongs to the already
mentioned list of 21 NP-complete problems. Interestingly enough, the problem 2Sat whose
definition is analogous to 3Sat but requires that in each clause there are at most two literals
is known to be in P [137].

We discuss now a variant of 3Sat called Planar 3Sat. Consider any 3Sat instance I . We
can construct from I a graph G by adding for each variable and for each clause in I a vertex
to G and connecting a variable-vertex with a clause-vertex if and only if the corresponding
variable is contained in the corresponding clause. We call such a graph the clause graph.
As it turns out, even if we restrict 3Sat to instances where the clause graphs is planar, the
problem still remains NP-complete [139].

Problem: Planar 3Sat

Instance: m clauses, n variables, in each clause at most 3 variables, clause graph is planar
Question: Is there a variable assignment that satisfies all m clauses?

In fact the clause graph is not only planar, but it has a planar drawing where all variable-
vertices are placed on the x-axis, and all clause variables are placed either above or below
the x-axis, such that the edges connecting variable-vertices and clause vertices consist of
only a vertical and a horizontal segment (the horizontal segment may have length 0). An
example for this can be seen in Figure 2.1.

There are even more restricted variants of 3Sat which are still NP-complete. One of such
problems is Planar Monotone 3Sat [22].

Problem: Planar Monotone 3Sat

Instance: m clauses, n variables, in each clause at most three variables, in each clause are
either only positive or only negative literals, the clause graph can be drawn planar, such
that the variable-vertices are placed on the x-axis and the clause-vertices containing only
negative literals are placed above the x-axis and all clause-vertices containing only positive
literals are placed below the x-axis.
Question: Is there a variable assignment that satisfies all m clauses?

Another well-studied NP-hard problem is the problem Maximum Independent Set.
The problem is defined for a graph G = (V, E) and asks for a set V′ ⊆ V of maximum
cardinality such that for no two vertices u, v ∈ V′ there is an edge in E. For general graphs
its corresponding decision problem is NP-complete [91]. Although there are approximation
algorithms (e. g., [33]), no constant factor approximation algorithm for Maximum Inde-
pendent Set is known. For some restricted graph classes efficient optimal algorithms are
known; see e. g., [96].
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Problem: Maximum Independent Set

Instance: Given a graph G = (V, E).
Question: Determine a set V′ ⊆ V of vertices with maximum cardinality such that no two
vertices in V′ are adjacent in G.

models of computation. In theoretical computer science the most commonly used
model of computation is the Random Access Machine (RAM). We omit a formal definitionRandom Access

Machine (RAM) here and refer the reader to standard reference books in the field of computational complex-
ity [81]. However, the reason why we are discussing this lies in the problem of using it for
computations with geometry. Recall that even for problems with rational numbers as input
it is easy to ask for questions where the answer is an irrational number3. Unfortunately, in
the RAM model of computation we cannot deal with irrational numbers4 since they have
an infinite length. To avoid this problem for the field of computational geometry the Real
RAM was proposed [39]5. The Real RAM is the same as the RAM with the exception thatReal RAM

operations on all real numbers are possible. Algorithms considering geometry are often
given in this model. Unfortunately, this model is not uncontroversial, since Schönhage
proved that when using the Real RAM and allowing the floor operation it is possible to solve
PSPACE problems6 in polynomial time [167]. This, of course, requires that the designer of
an algorithm heavily abuses the model. We refrain from allowing the floor operation and
we will use no such tricks to improve the performance of our algorithms.

approximation algorithms . Although we cannot expect to find a polynomial-time
algorithm for an NP-complete problem, unless P = NP, we are usually still interested
in finding solutions to optimization problems. There are different ways to cope with
the difficulty of NP-hard problems. For some problems it might be feasible to do an
exhaustive search on the solution space, or to use more advanced techniques. However,
often, especially if computational time or power is limited, using such approaches is
infeasible. An alternative is to find algorithms with polynomial-time running time, which
do not necessarily find the optimal solution to a problem instance but for which it is possible
to prove a quality guarantee. More specifically, let Π be a maximization problem and let
OPT denote the optimal solution for a given instance of Π. Then, we say an algorithm A
is a ρ-approximation algorithm if for every instance I of Π the result of A(I) is within ρOPTρ-approximation

algorithm of OPT, i. e., ρOPT ≤ A(I) ≤ OPT. The analogous definition holds for approximation
algorithms for minimization problems, only that for A(I) the equation OPT≤ A(I) ≤ ρOPT
holds. We call ρ the approximation ratio or approximation factor.approximation ratio

In this thesis we also discuss a certain, special type of approximation algorithms called
polynomial-time approximation scheme (PTAS). A PTAS is an approximation algorithm thatPTAS

takes, additionally to the problem instance, another parameter ε > 0. The PTAS com-
putes then a solution to the problem instance that is within (1− ε)OPT for maximization
problems and within (1 + ε)OPT for minimization problems. The running time of a PTAS
is polynomial in n for every fixed ε. From a practical point of view, however, a PTAS
might still require an prohibitive amount of computational power. It is possible to be a bit
more fine-grained with respect to the time complexity of a PTAS. PTASes with a running
time that is polynomial in O(nc) for a constant c that is independent of ε are called efficient
polynomial-time approximation schemes (EPTAS). An even more restrictive definition applies toEPTAS

fully polynomial-time approximation schemes (FPTAS). Every FPTAS is a PTAS, but the runningFPTAS

3 Q: What is the diameter of a unit square? A:
√

2.
4 There are exceptions (e. g., when the irrational numbers are all algebraic we can store them in finite space and can

operate on the numbers in finite time or when dealing with irrational numbers is unnecessary [51])
5 sometimes it is also referred to as the Blum-Shub-Smale machine which is an equivalent model [29]
6 PSPACE is the complexity class that contains all decision problems which can be solved with polynomial space in

the size of the input. This implies that PSPACE is a superset of NP.
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time is required to be polynomial in n and 1/ε.
We want to mention another form of approximation scheme, the quasi-polynomial time

approximation scheme (QPTAS). A QPTAS is an approximation-scheme with quasi-polynomial QPTAS

quasi-polynomialtime complexity. An algorithm with quasi-polynomial time complexity has a time complexity
that is larger than a polynomial, but not quite large enough to have exponential time
complexity. An algorithm with quasi-polynomial time complexity may have time complexity
2O((log n)c), for some constant c. Hence, a QPTAS has time complexity O(nO(polylog(n))) for
every fixed ε.

For an more detailed overview of approximation algorithms, as well as some standard
techniques for constructing such algorithms, we refer the reader to [179].

2.3 linear programming

A general tool that allows to formulate and solve a problem is linear programming, which
is a mathematical method for solving optimization problems. Linear programs can be
expressed in the so called canonical form. A linear program consists of a linear objective
function, and a set of constraints which are either linear equality constraints or linear
inequality constraints.

algorithms . The most well-known and in practice very well-performing algorithm to
solve linear programs is the simplex algorithm by Dantzig [62]. Unfortunately, the algorithm simplex algorithm

is not a polynomial-time algorithm as there are instances which require the algorithm to
take an exponential number of steps [132]. The first algorithm that broke the polynomial-
time barrier was the ellipsoid algorithm given by Shor [170]. However, it was Haĉijan who ellipsoid algorithm

showed that this approach has a polynomial-time complexity for linear programs [109].
More specifically, this algorithm has a running time of O(n4L), where n is the number of
variables and L is the length of the input encoded in bits. Unfortunately, this algorithm
performs usually worse than the simplex algorithm in practice [52]. A combination of
an algorithm that performs well in practice and has a good theoretical worst-case time
complexity was proposed by Karmarkar [126]. The algorithm by Karmarkar has a worst-case
time complexity of O(n3.5L).

Note that the above mentioned polynomial-time algorithms are only weakly polynomial-
time algorithms, i. e., their running time depends on the values of the input numbers.
Or, in other words, there are no known linear programming algorithms that are strongly-
polynomial in general. This particularly means that there is no known polynomial-time
algorithm that solves linear programs where the coefficients are irrational numbers. There
are, however, exceptions: Should the coefficients be in R but algebraic numbers, then there is
an algorithm that is based on the ellipsoid algorithm which can solve such linear programs
in polynomial time [17]. We want to remind the reader that an algebraic number is a number
that is a root of a non-zero polynomial with only rational coefficients. Numbers which are
not algebraic are called transcendental numbers.

For some decision or optimization problems a formulation as linear program is only
possible with the additional requirement that all variables have only integer values. This
is known as integer linear programming and was shown to be NP-complete [127]7. However, integer linear

programmingthere are commercial ILP solvers8 that can be used to solve integer linear programs in a
reasonable amount of time. This approach can be used to obtain a solution of instances of
NP-hard problems.

7 In this paper Karp proves that this problem is already NP-hard if all variables are binary, i. e., either 0 or 1.
8 In this thesis we give ILP formulation for several problems. For those ILPs we evaluate experimentally we use the

commercial ILP solver Gurobi (http://www.gurobi.com/)
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I N T R O D U C T I O N – D R AW I N G M A P S A N D D I A G R A M S

In the first part of this thesis we discuss two approaches to draw maps and diagrams. The
first approach deals with spatial information, and the second approach considers a special
class of non-spatial maps, called argument maps. Since both problems use very different
approaches we omit a detailed description of related work here and report it only in their
respective chapters. Here, we give only a brief summary on the problems discussed in the
following two chapters.

For the first topic which is described in Chapter 4 we consider the problem of schematizing
a single route in a road network (e. g., as a supplement to the output of a shortest path
query by a service such as Google or Bing Maps). Consider the example in Figure 3.1
that depicts a route from Bremen to a destination in Cuxhaven. This picture alone is of
no use for a person trying to drive from Bremen to this destination in Cuxhaven as many
important decision points along the way cannot be seen since the scale of the map is too
small. Since the visual representation of metro maps is well-known among the general
population we investigate how to automatically generate route sketches that resemble

Figure 3.1: Route from
Bremen to Cux-
haven (Bing
Maps).

in their appearance the layout used for metro maps [153]. This
enables us to generate a visualization of a route where the
focus is on its decision points. However, in comparison to
metro maps we need to be more strict with respect to the po-
sition of the decision points in the visualization to ensure that
the user’s mental map is maintained. More specifically, we re-
quire that the left-right/top-bottom relationship between any
two decision points remains unchanged. This is not necessar-
ily the case for metro maps, where the left-right/top-bottom
relationship between any two non-adjacent stations is usually
of less importance. We consider the computational complexity
of the underlying problem (and show NP-hardness), propose
several algorithmic approaches to solve the problem (although
not necessarily optimal), and conclude the chapter with an
experimental evaluation on real-world data. We have also im-
plemented a web interface for our algorithm to allow an easy
access to the functionality of the algorithms; see Figure 3.2.

The second problem we consider is the drawing of argu-
ment maps. Argument maps are used to visualize arguments
in, e. g., a debate, which then allows user afterwards, or in
real-time, to analyze the structure of the whole argumentation
and their relationships. An argument comprises of typically
of several components (e. g., premises, objects). Each compo-
nent of an argument is usually represented in an argument
map by a box, and two such boxes are connected if their cor-
responding components are in a relationship (e. g., support); see Figure 3.3. The underlying
structure of an argument map can be captured by the concept of a graph. More specifically,

15



16 introduction – drawing maps and diagrams

Figure 3.2: Web interface. Visualization uses Google Maps. The route from “A” to “B” is
from Enschede to Eindhoven.

Premise 1 Premise 2

Conclusion

Support Objection

Figure 3.3: Example of a visual representation of a simple argument map.

an argument map can be seen as a directed graph and we can even assume that the graph is
acyclic, since the structure of an argument should (usually) not contain any cycles.

For drawing hierarchical (directed and acyclic) graphs there have been many different
approaches considered. However, they mainly focus on producing layered drawings, with,
e. g., the Sugiyama framework [175]. The Sugiyama framework consists of three individual
steps, which are executed sequentially. In the first step, the algorithm assigns each node
to a layer, then—to reduce the number of crossings—a node ordering within each layer is
computed, and as a last step, the final coordinates are computed. We propose a completely
different approach towards drawing hierarchical graphs. For this we assume that all nodes
have the same width, but may have individual heights. This allows us to divide the plane
into equally sized columns, and position each node within a column. Note that at first
glance this seems like the Sugiyama approach and we only switch layers with columns.
However, the main difference lies in that in the Sugiyama framework, nodes inside the
same layer cannot be connected by an edge, while nodes in the same column can (and most
often are) connected by an edge. We propose an approach that follows the topology-shape-
metric framework proposed by Tamassia [177]. We look at each step of the framework
separately, consider the computational complexity (although we are not always successful in
determining if the problem considered in the step is NP-hard), and give algorithms that can
be used in practice to solve the problem (not always optimally). We conclude the chapter
with an experimental evaluation of real-world argument maps. Our approach has been
integrated in the argument map drawing software argunet1.

1 http://www.argunet.org/

http://www.argunet.org/


4
PAT H S C H E M AT I Z AT I O N

Motivated by drawing route sketches, we consider the d-regular path schematization
problem. For this problem we are given an embedded path P (e.g., a route in a road
network) and a positive integer d. The goal is to find a d-schematized embedding of P in
which the orthogonal order of all vertices in the input is preserved and in which every edge
has a direction that is an integer multiple of (90/d)◦. We show that deciding whether a
path can be d-schematized is NP-complete for any positive integer d.

Despite the NP-hardness of the problem we still want to be able to generate route sketches
and thus need to solve the d-regular path schematization problem. We explore two different
algorithmic approaches, both of which consider two additional quality constraints: We
require that every edge is drawn with a user-specified minimum length and we want to
maximize the number of edges that are drawn with their preferred direction. The first
algorithmic approach restricts the input paths to be axis-monotone. Although there is
already an efficient algorithm that solves this problem [97] but it has a time complexity of
O(n5 log n). We propose a different, much simpler algorithm, that has a time complexity of
only O(n2). Further, we extend this approach by a heuristic such that it can handle arbitrary
simple paths (this also has been done before [97] but with worse time complexity). However,
for the second step we cannot guarantee that the orthogonal order of the input embedding
is maintained. The second approach is a formulation of the d-regular path schematization
problem as a mixed-integer linear program. Finally, we give an experimental evaluation
which shows that both approaches generate reasonable route sketches for real-world data.

This chapter is based on joint work with Daniel Delling, Martin Nöllenburg, Thomas
Pajor, and Ignaz Rutter. Preliminary results have been published in [64, 102, 63, 101].

4.1 introduction

Angular or C-oriented schematizations of graphs refer to a class of graph drawings, in
which the admissible edge directions are limited to a given set C of (usually evenly spaced)
directions. This includes the well-known class of orthogonal drawings and extends more
generally to k-linear drawings, e.g., octilinear metro maps. Applications of schematic draw-
ings can be found in various domains such as cartography, VLSI layout, and information
visualization.

In many schematization scenarios the input is not just a graph but a graph with an initial
drawing that has to be schematized according to the given set of directions. This is the
case, e.g., in cartography, where the geographic positions of network vertices and edges
are given [46], in sketch-based graph drawing, where a sketch of a drawing is given and
the task is to improve or schematize that sketch [34], or in dynamic graph drawing, where
each drawing in a sequence of drawings must be similar to its predecessor [38]. For such
a redrawing task it is crucial that the mental map [144] of the user is preserved, i.e., the
output drawing must be as similar as possible to the input. Misue et al. [144] suggested
preserving the orthogonal order of the input drawing as a simple criterion for maintaining a
set of basic spatial properties of the input, namely the relative above/below and left/right
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18 path schematization

positions of all pairs of input vertices. The orthogonal order has been used successfully as a
means for maintaining the mental map [113, 73, 36, 63].

The motivation behind the work presented here is the visualization of routes in road
networks as sketches for driving directions. An important property of a route sketch is
that it focuses on road changes and important landmarks rather than exact geography and
distances. Typically the start and destination lie in populated areas that are locally reached
via a sequence of relatively short road segments. On the other hand, the majority of the
route typically consists of long highway segments with no or only few road changes. This
property makes it difficult to display driving directions for the whole route in a single
fixed-scale map since some areas require much larger scales than others in order to be
readable. The strength of route sketches for this purpose is that they are not drawn to scale
but rather use space proportionally to the route’s complexity.

related work . Geometrically, we can consider a route to be an embedded path in the
plane. The simplification of paths (or polylines) in cartography is well studied and the
classic line simplification algorithm by Douglas and Peucker [72] is one of the most popular
methods. Two more recent algorithms were proposed for C-oriented line simplification [143,
148]. These line simplification algorithms, however, are not well suited for drawing route
sketches since they keep the positions of the input points fixed or within small local regions
around the input points and thus edge lengths are more or less fixed. On the other hand,
Agrawala and Stolte [3] presented a system called LineDrive that uses heuristic methods
based on simulated annealing to draw route sketches. A problem similar to drawing route
sketches is generating destination maps, where given a destination (e.g. a restaurant) the
aim is to produce a schematized map that helps anyone within a given region around
the destination to reach it. Kopf et al. consider this problem [134] and give a a heuristic
algorithm based on the continuation method. The methods of both of these approaches
allow distortion of edge lengths and angles. However, they do not restrict the set of
edge directions and do not give hard quality guarantees for the mental map such as the
preservation of the orthogonal order.

A graph drawing problem that has similar constraints as drawing route sketches is the
metro-map layout problem, in which an embedded graph is to be redrawn octilinearly.
The problem is known to be NP-hard [150] but it can be solved successfully in practice by
mixed-integer linear programming [153]. The existing methods, covered in a survey by
Wolff [185], do aim to keep the mental map of the input, but no strict criterion like the
orthogonal order is applied. Brandes and Pampel [36] studied the path schematization
problem in the presence of orthogonal order constraints in order to preserve the mental
map. They showed that deciding whether a rectilinear schematization exists that preserves
the orthogonal order of the input path is NP-hard. They also showed that schematizing
a path using arbitrarily oriented unit-length edges is NP-hard. Recently, the authors have
published more simplified version of both proofs [37]. In [173] Speckmann and Verbeek
consider the problem of finding a rectilinear, homotopic schematization of a collection of
paths with a minimum number of path segments. The problem turns out to be NP-hard,
but the authors give an approximation algorithm. Verbeek extends the approach in [180] to
C-oriented paths, where the path segments in the schematization can have only orientations
that are contained in C. However, besides the homotopy requirement, no special emphasis
is placed on maintaining the user’s mental map. Another type of C-oriented schematization
that has applications in generating schematized maps is studied by Buchin et al. [45]. There,
the authors give an algorithm that finds a C-oriented schematization of a polygon, where
the polygon’s edges must have directions that are contained in C and where the schematized
polygon preserves the area of the input polygon.
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contributions . Motivated by drawing route sketches, we investigate the problem of
generating C-oriented orthogonal-order preserving drawings. In this chapter we prove
that deciding whether a C-oriented orthogonal-order preserving drawing of an embedded
input path exists is NP-complete, even if the path is simple. This is true for every d-regular
set C of directions that have angles that are integer multiples of 90◦/d for any integer d.
This extends the result of Brandes and Pampel [36, 37] who showed NP-completeness for
the case d = 1. However, their proof relies on the absence of diagonal edges and hence
does not extend to larger values of d. We show the NP-completeness in the octilinear case
d = 2 in Section 4.3 and, subsequently in Section 4.4, how this result extends to the general
d-regular case for d > 2. In Section 4.5 we show that if we restrict the input to axis-monotoneaxis-monotone

paths, i.e., x- or y-monotone paths, the d-regular path schematization problem can be solved
in polynomial time. We present an efficient algorithm that finds, for a given embedded
axis-monotone path, an embedding that uses only d-regular directions and maintains the
orthogonal order of the input path. The algorithm maximizes the number of edges that
are embedded with their preferred direction, i. e., the d-regular direction that is closest
to the direction in the input embedding. We also heuristically extend this approach to
non-monotone paths. In Section 4.6 we design a mixed integer-linear program (MIP) for
solving the d-regular path schematization problem for arbitrary paths. Finally, in Section 4.7
we give an experimental evaluation of both the MIP approach and the heuristic simple path
schematization algorithm. The source code of our proof-of-concept implementation in C++
is made available1. We summarize our results in Section 4.8.

4.2 preliminaries

A plane embedding of a graph G = (V, E) is a mapping that maps every vertex v ∈ V toplane embedding

a distinct point π(v) = (xπ(v), yπ(v)) and every edge e = uv ∈ E to the line segment
π(e) = π(u)π(v) such that no two edges e1, e2 cross in π except at common endpoints.
For simplicity we also use the terms vertex and edge to refer to their images under an
embedding, and, unless stated otherwise, we assume every embedding to be a plane
embedding. We denote the length of an edge e in π as |π(e)|.

Let π and ρ be two embeddings of the same graph G. We say that ρ preserves the
orthogonal order [36] of π if for any two vertices u and v ∈ V it holds that xπ(u) ≤ xπ(v)⇒orthogonal order

xρ(u) ≤ xρ(v) and yπ(u) ≤ yπ(v) ⇒ yρ(u) ≤ yρ(v). In other words, the orthogonal order
defines the relative above-below and left-right positions of any two vertices.

For an input embedding π we measure the direction απ(uv) of an edge uv as the
counterclockwise angle formed between the horizontal line through π(u) and the line
segment π(uv). For a set of angles C we say that a drawing is C-oriented if the direction ofC-oriented

every edge e ∈ E is contained in C. A set of directions C is called d-regular for an integer dd-regular

if C = Cd = {(i · 90◦/d) mod 360 | i ∈ Z}. Note that it appears that the orientation of an
edge is for our problem irrelevant with the implication that the direction 45◦ and 225◦ are
in principle identical. This is true for the NP-completeness proofs in Sections 4.3 and 4.4,
but for our efficient algorithm for schematizing axis-monotone paths (see Section 4.5) this
is different. Assuming the axis-monotone path is x-monotone, then the set C can contain
arbitrary directions, as long as it also contains 0◦, 90◦, 270◦ as well as at least one diagonal
direction strictly between 0◦ and 90◦ and at least one diagonal direction strictly between 270◦

and 360◦.
Let (G, π) denote a graph G with a plane input embedding π. For brevity we may refer

to the tuple (G, π) as (embedded) graph. A d-regular schematization (or d-schematization) ofd-schematization

(G, π) is a plane embedding ρ that is Cd-oriented, that preserves the orthogonal order of π

1 http://i11www.iti.kit.edu/_media/projects/routesketch.zip

http://i11www.iti.kit.edu/_media/projects/routesketch.zip
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x1 x2 x3 x4

x1 ∨ x2 ∨ x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

C1

C2

C3

Figure 4.1: A Planar Monotone 3-Sat instance with four variables and three clauses.

and where no two vertices are embedded at the same coordinates. We also call ρ valid if it is
a d-schematization of (G, π).

We denote by ωC(e) the preferred direction γ ∈ C of an edge e, i. e., the direction in C preferred direction

that is closest to απ(e). For a C-oriented embedding ρ of P and an edge e ∈ P there is
a direction cost cρ(e) that captures by how much the direction αρ(e) deviates from ωC(e). direction cost

More specifically, we say the direction cost of an edge is 1 if it is not embedded with its
preferred direction and 0 otherwise. Note that there are edges which need to be embedded
horizontally (vertically) to respect the orthogonal order of the input. The schematization cost schematization cost

c(ρ) is then defined as c(ρ) = ∑e∈P cρ(e).
Finally, a monotone path decomposition for a given embedded path (P, π) is a decompo-

sition P = {(P1, π1), . . . , (Pk, πk)} of (P, π) into consecutive axis-monotone embedded
subpaths (Pi, πi) for 1 ≤ i ≤ k, where πi equals π restricted to the subpath Pi.

4.3 np-completeness of 2-regular path schematization

In this section we show that the problem of deciding whether there is a 2-schematization
for a given embedded graph (G, π) is NP-complete, even if G is a simple path. In the latter
case we denote the problem as the (d-regular) Path Schematization Problem (PSP). We fix
d = 2. To prove that 2-regular PSP is NP-complete we first show hardness of the closely
related 2-regular Union of Paths Schematization Problem (UPSP), where (G, π) is a set P
of k disjoint embedded paths P = {P1, . . . , Pk}. We then extend this proof to a single path
and conclude with a proof that the problem is in NP.

We show that 2-regular UPSP is NP-hard by a reduction from Planar Monotone 3-Sat,
which is known to be NP-hard [22]. Planar Monotone 3-Sat is a special variant of
Planar 3-Sat where each clause either contains exactly three positive literals or exactly
three negative literals and additionally, the variable-clause graph admits a planar drawing
such that all variables are on the x-axis, the positive clauses are embedded below the x-axis
and the negative clauses above the x-axis. An example instance of Planar Monotone

3-Sat is depicted in Figure 4.1. In a second step, we show how to augment the set of paths
P to form a single simple path P that has the same properties as P and thus proves that
PSP is NP-hard. This two-step approach is similar to the way Brandes and Pampel proved
NP-hardness for the case d = 1 [36]. They also first proved NP-hardness for a set of paths
and then extended the proof to show hardness for a union of paths. However, it seems
highly unlikely that it is possible to adapt the gadgets in their proof (neither from the
original proof [36] nor from the simplified version [37]) to our version of the problem. Their
gadgets rely on being able to force with the embedding of a single edge another edge to
be embedded either vertically or horizontally. This seems very difficult to achieve when
allowing diagonal directions.

In the following, we assume that ϕ is a given Planar Monotone 3-Sat instance with
variables X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}.
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Bv
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v1 = v′1

v2

v3
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v5

v′2v′3

v′4v′5

Figure 4.2: Border gadget B that is rigid and rational. The horizontal component is denoted
by Bh and the vertical one by Bv.

s
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(a) input

s
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(b) e pulled up

s e

(c) e pulled down

Figure 4.3: The switch s is linked with edge e; (a) shows the input embedding, in (b) e is
pulled up and in (c) it is pulled down.

4.3.1 Hardness of the Union of Paths Schematization Problem

We begin by introducing the different types of required gadgets and then show how to
combine them in order to prove the hardness of UPSP.

border gadget. For all our gadgets we need to control the placement of vertices on
discrete positions. Thus our first gadget is a path whose embedding is unique up to scaling
and translation. This path will induce a grid on which we subsequently place the remaining
gadgets.

Let ∆x(u, v) denote the x-distance between the two vertices u and v. Likewise, let ∆y(u, v)
be the y-distance between u and v. We call a simple path P with embedding π rigid if arigid

2-schematization of (P, π) is unique up to scaling and translations. Further, we call an
embedding π of P rational if there exists a length ` > 0 such that for any two vertices u, v ofrational

P it holds that ∆x(u, v) = zx · ` and ∆y(u, v) = zy · ` for some zx, zy ∈ Z. Thus in a rational
embedding of P all vertices are embedded on a grid whose cells have side length `. For our
border gadget we construct a simple path B of appropriate length with embedding π that is
both rigid and rational. Hence, π is essentially the unique 2-schematization of (B, π), and
after rescaling we can assume that all points of B lie on an integer grid. The border gadget
consists of a horizontal component Bh and a vertical component Bv which share a common
starting vertex v1 = v′1; see Figure 4.2. The component Bh alternates between a 45◦ edge
to the upper right and a vertical edge downwards. The vertices are placed such that their
y-coordinates alternate and hence all odd, and all even, vertices have the same y-coordinate,
respectively. The vertical component consists of a copy of the horizontal component rotated
by 90◦ in clockwise direction around v1. To form B, we connect Bv and Bh by identifying
their starting points v1 and v′1.
Lemma 4.1 The border gadget B with its given embedding π is rigid and rational.
Proof. First note that in Bh due to the orthogonal order all vertices vi with i odd and all
vertices vi with i even have the same y-coordinates, respectively, in any valid schematization.
Hence ∆y(vi, vi+1) is the same for all i. We show that vi and vi+1 for i odd, also have the
same x-distance ∆x(vi, vi+1) = ∆y(vi, vi+1).
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Since the edge v1v2 connects two vertices with different y-coordinates and since v2v3
must be embedded vertically, v1v2 must be embedded with an angle of 45◦. And hence we
have ∆x(v1, v2) = ∆y(v1, v2). The same argument holds for all edges vivi+1 with i odd and
hence Bh is both rational and rigid.

Since the vertical border gadget Bv is a copy of Bh it is also rational and rigid. Moreover,
we have that ∆x(v′1, v′2) = ∆x(v1, v2), i.e., the distances between vertices of Bv that lie on the
same horizontal or vertical lines are the same as for Bh. Hence the border gadget B is rigid
and rational. �

In the following we define the length of a grid cell induced by B as 1 so that we obtain
an integer grid. We choose B long enough to guarantee that any vertex of our subsequent
gadgets lies vertically and horizontally between two pairs of vertices in B.

The grid in combination with the orthogonal order gives us the following properties:

1. If we place a vertex v with two integer coordinates, i.e., on a grid point, its position in
any valid embedding is unique;

2. if we place a vertex v with one integer and one non-integer coordinate, i.e., on a grid
edge, its position in any valid embedding is on that grid edge;

3. if we place a vertex v with two non-integer coordinates, i.e., in the interior of a grid cell,
then its position in any valid embedding is in that grid cell (including its boundary).

basic building blocks . We will frequently make use of two basic building blocks that
rely on the above grid properties.

The first one is a switch, i.e., an edge that has exactly two valid embeddings. Let s = uv be switch

an edge within a single grid cell where u is placed on a grid point and v on a non-incident
grid edge. We call u the fixed and v the free vertex of s. Assume that u is in the lower left
corner and v on the right edge of the grid cell. Then in any valid d-schematization s has
one of only two possible embeddings, either s is embedded horizontally or diagonally. This
property justifies the name switch; see Figure 4.3 for an example.

The second basic concept is linking of vertices. We can synchronize two vertices in different linking

and even non-adjacent cells of the grid by assigning them the same x- or y-coordinate. We
call two vertices u and v linked, if in π either xπ(u) = xπ(v) or yπ(u) = yp(v). Then the
orthogonal order requires that u and v remain linked in any valid embedding. This concept
allows us to transmit information on local embedding choices over distances. Two edges
ei = uu′ and ej = vv′ are linked if there is a vertex of ei that is linked to a vertex of ej. We
use linking of edges in combination with switches. Namely, we link a switch s via its free
vertex with another edge e, as illustrated in Figure 4.3. Then the choice of the embedding
of s determines one of the two coordinates of the linked vertices in e. In the case depicted
in Figure 4.3 the switch s determines the y-coordinate of both vertices of e; we say that s
pulls e up (Figure 4.3(b)) or down (Figure 4.3(c)). Such a switch is called a vertical switch.
Analogously, edges can be pulled to the left and to the right by a horizontal switch.

In the following, if we say that an edge or vertex can only be embedded in a certain
way, we always mean that the edge or vertex can only be embedded this way in any valid
schematization. Now that we have the switches and the concept of linking available, we
will combine them to high-level constructions that model variables and clauses of a Planar

Monotone 3-Sat formula.

variable gadgets . The variable gadget for a variable x is a simple structure consisting
of a horizontal switch and a number of linked connector vertices on consecutive grid lines connector vertices

below the switch, one for each appearance of x or ¬x in a clause of ϕ. We denote the
number of appearances as t(x). All connector vertices share the same x-coordinate in π.
Each one will be connected to a clause with a diagonal connector edge. A connector edge connector edge
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Figure 4.4: (a) The input embedding of a variable gadget with three connector vertices, (b)
the state true, and (c) the state false.

spans the same number of grid cells horizontally and vertically and hence can only be
embedded at a direction of 135◦. Since both vertices of a connector edge are placed on grid
lines the connector edge can only have correct direction if the positions of both vertices
within their respective grid cells is the same. The upper connector vertices of the variable
gadget connect to the gadgets of the negative clauses and the lower connector vertices to
the gadgets of the positive clauses. The variable gadget has two states, one in which the
switch pulls all vertices to the left (defined as true), and one in which it pulls them to the
right (defined as false). Figure 4.4 shows an example. A variable gadget gx for a variable
x takes up one grid cell in width and t(x) + 1 grid cells in height, one grid cell for each
connector vertex and an additional grid cell for the horizontal switch.

clause gadgets . The general idea behind the clause gadget is to create a set of paths
whose embedding is influenced by three connector edges. Each of these edges carries the
truth value of the connected variable gadget. The gadget consists of three diagonal edges
e2, e3, e4, two vertical edges e1 and e5 and four switches s1, s2, s3, s4; see Figure 4.5. For
positive clauses, we want that if all its connector edges are pulled to the right, i.e., all literals
are false, there is no valid embedding of the clause gadget. This is achieved by placing the
edges of the gadget in such a way that there are certain points, called critical points, wherecritical points

in a valid embedding two different non-adjacent edges can possibly have a vertex. Further,
we ensure with the help of switches that each of the three diagonal edges of the clause
gadget has exactly one vertex embedded on a critical point in a valid embedding.

Key to the gadget is the critical edge e3 that is embedded with one fixed vertex on a gridcritical edge

point and one loose vertex inside the grid cell A to the top left of the fixed vertex. Edge e3 is
linked with the vertical switch s2 and the horizontal switch s4. These switches ensure that
the loose vertex must be placed on a free corner of the grid cell A. The three free corners
are all critical points. It is clear that there is a valid embedding of e3 if and only if at least
one of the three critical points is available.

We use the remaining edges of the gadget to block one of the critical points of A for each
literal that is false. The lower vertex of the middle connector edge is placed just to the
left of the upper left corner of A such that it occupies a critical point if it is pulled to the
right. Both, the left and right connector edges have another linked vertical edge e1 and
e5 appended. Now, if e1 is pushed to the right by its connector edge, then the edge e2 is
pushed upward since e1 and e2 share a critical point. Due to switch s1 edge e2 blocks the
lower left critical point of A in that case. Similarly, edge e4 blocks the upper right critical
point of A if the third literal is false.

The clause gadget for a negative clause works analogously such that a critical point
is blocked for each connector edge that is pulled to the left instead of to the right. It
corresponds basically to the positive clause gadget rotated by 180◦.
Lemma 4.2 A clause gadget has a valid embedding if and only if at least one of its literals is true.

Proof. To see this we note that there are five critical points in the gadget and the connector
edge of each literal that is false blocks one of the critical points. The three edges e2, e3, e4



24 path schematization

e2

e4

e3

e1

e5

s1

s2

s3

s4

x1 x2 x3 x4

C1

C2

C3

Figure 4.5: Sketch of a clause gadget.
Critical points are marked as
white disks.

Figure 4.6: Sketch of the gadgets for the
instance ϕ from Figure 4.1.

must also occupy one critical point each. So if all literals are false, there are only two
critical points remaining for three edges and hence there is no valid embedding of the
gadget. Conversely, if there is a valid embedding, then one of the connector edges does not
block a critical point and hence the literal that it represents is true. �

The size of a clause gadget (not considering the switches) depends on the horizontal
distances ∆1, ∆2 between the left and middle connector edge and between the middle and
right connector edge, respectively. The width of a gadget is 6 and its height is ∆1 + ∆2 − 5.

gadget placement. The top and left part of our construction is occupied by the border
gadget that induces the grid. The overall shape of the remaining construction is similar to a
slanted version of the standard embedding of an instance of Planar Monotone 3-Sat as in
Figure 4.1.

We place the individual variable gadgets horizontally aligned in the center of the drawing.
Since variable gadgets do not move vertically, there is no danger of accidentally linking
vertices of different variable gadgets by placing them at the same y-coordinates. For the
clause gadgets to work as desired, we must make sure that any two connector edges to
the same clause gadget have a minimum distance of seven grid cells. This can easily be
achieved by spacing the variable gadgets horizontally so that connector edges of adjacent
variables cannot come too close to each other.

To avoid linking between different clause gadgets or clause gadgets and variable gadgets,
we place each of them in its own x- and y-interval of the grid with the negative clauses
to the top left of the variables and the positive clauses to the bottom right. The switches
of each clause gadget are placed at the correct positions just next to the border gadget.
Figure 4.6 shows a sketch of the full placement of the gadgets for a Planar Monotone

3-Sat instance ϕ. Since the size of each gadget is polynomial in the size of the formula ϕ, so
is the whole construction. The above construction finally yields the following theorem.
Theorem 4.1 The 2-regular Union of Paths Schematization Problem is NP-hard.
Proof. For any given Planar Monotone 3-Sat instance ϕ with variables X = {x1, . . . , xn}
and clauses C = {c1, . . . , cm} we construct and place the paths for the border, variable and
clause gadgets as in Section 4.3.1. From Lemma 4.2 we know that a clause gadget has a
valid embedding if and only if it contains a true literal. So the whole construction has a
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Figure 4.7: Augmented gadget versions. Additional path edges are highlighted in blue.

valid embedding if and only if every clause gadget has a valid embedding. This is the case
if and only if ϕ is satisfiable.

Both the size of the construction and the time to create it are polynomial in n and m, the
number of variables and clauses in ϕ. �

4.3.2 Hardness of the Path Schematization Problem

To prove that 2-regular PSP is also NP-hard we have to show that we can augment the union
of paths constructed above by adding additional vertices and edges to form a single simple
path that still has the property that it has a valid embedding if and only if the corresponding
Planar Monotone 3-Sat formula ϕ is satisfiable.

The general idea is to start the path at the lower end of the border gadget and then collect
all the switches next to the border gadget. From there we enter the upper parts of the
variable gadgets and walk consecutively along all the connector edges into the negative
clause gadgets. Once all negative connectors have been traversed, the path continues along
the positive connectors and into the positive clauses. The additional edges and vertices
must be placed such that they do not interfere with any functional part of the construction.

The only major change is that we double the number of connector vertices in each
variable gadget and add a parallel dummy edge for each connector edge. That way we
can walk into a clause gadget along one edge and back into the variable gadget along the
other edge. We also need a clear separation between the negative and positive connector
vertices, i.e., the topmost positive connector vertices of all variable gadgets are assigned the
same y-coordinate and we adjust the required spacing of the variable gadgets accordingly.
Figure 4.7(a) shows an example of an augmented variable gadget with one positive and two
negative connector edges.

The edges e1–e3 and e4, e5 of each clause gadget are inserted into the path in between the
leftmost connector edge and its dummy edge and in between the rightmost connector edge
and its dummy edge, respectively. The details are illustrated in Figure 4.7(b). It is clear that
by this construction we obtain a single simple path P that contains all the gadgets of our
previous reduction. Moreover, the additional edges are embedded such that they do not
interfere with the gadgets themselves. Rather they can move along with the flexible parts
without occupying grid points that are otherwise used by the gadgets. We conclude:
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Figure 4.8: Possible relative positions of vertices vj and vk with respect to a vertex vi. The
eight sectors are shaded in gray.

Lemma 4.3 The 2-regular Path Schematization Problem is NP-hard.

4.3.3 Membership in NP

To show that the Path Schematization Problem for d = 2 is NP-complete it remains to argue
its membership in NP. For this we sketch a non-deterministic polynomial-time algorithm,
which guesses a solution that can subsequently be verified in polynomial time. More
precisely, we guess a combinatorial structure for an input instance which we then verify in
a section step with a linear program (LP).

First, we guess for each pair of vertices their relative position. We distinguish between 16
different relative positions for a vertex pair. More specifically, for a vertex vi another vertex
vj lies either in one of the eight sectors (shaded in gray) or on one of the eight half lines
with origin at vi (black lines); see Figure 4.8. Further, to help us ensure that the resulting
path is not self intersecting, we guess additionally for each pair of path edges which edge is
completely contained in one of the half planes induced by the line obtained by extending
the other edge. Finally, we also guess on which side of the line the other edge lies. Note
that two line segments do not intersect if and only if one segment is fully contained in one
of the half planes induced by the other segment’s extension to a line.

To verify that the structure guessed as above induces a valid 2-schematization we need
to determine whether there exists a schematization that (i) conforms to the structure, (ii)
maintains the orthogonal order of the input, (iii) is 2-regular, and (iv) is not self intersecting.
Checking whether all path edges have a direction in C2 can be done straightforwardly as it
follows directly from the relative vertex positions. Next we sketch an LP that enables us to
check if there exists a valid 2-schematization which conforms to the remaining requirements.

For each vertex vi of the path we maintain its coordinates in variables xi and yi. The first
set of constraints for our LP follows directly from the orthogonal order. For all remaining
constraints we need to find a way to ensure that a vertex lies to the left/on/to the right of
a line. For lines that are horizontal or vertical this is trivial. For the diagonal directions
we need to be more careful. To ensure that a vertex vj lies to the left/on/to the right of a
line ` through vi with direction α ∈ C2 we make use of the dot product. This yields that
(yj − yi)− tan(α)(xj − xi) is larger than 0/equal to 0/smaller than 0 if the vertex vj lies to
the left/on/the right of the line `. With this observation we can easily add constraints that
ensure that the relative position of each vertex pair is maintained and the path is intersection
free.

We do not need an objective function since any feasible solution for our linear program
induces a valid 2-schematization of the input. This is sufficient for our purposes. Note that
the coefficients in some constraints are tan(α) which is potentially irrational. However, for
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Figure 4.9: (a) A meta cell with its three minor cells for d = 4; (b) input embedding of
a vertical switch; (c)+(d) the two possible output embeddings of the vertical
switch.

the special case d = 2 those numbers are rational, and hence, we can use standard linear
programming algorithms (e. g, Vaidya’s LP algorithm [178]) to check in polynomial time
whether the LP admits a feasible solution. Hence, PSP is in NP for d = 2.

We can conclude that in combination with Lemma 4.3 the following.
Theorem 4.2 The 2-regular Path Schematization Problem is NP-complete.

4.4 np-completeness of d-regular psp for d > 2

In Section 4.3 we established that the 2-regular Path Schematization Problem is NP-complete.
Here we show that d-regular PSP is NP-complete for all d > 2 by modifying the gadgets of
our reduction for d = 2.
Theorem 4.3 The d-regular Path Schematization Problem is NP-complete for any d > 2.

Proof. An obvious problem for adapting the gadgets is that, due to the presence of more
than one diagonal direction, the switches do not work any more for uniform grid cells. In a
symmetric grid, we cannot ensure that the free vertex of a switch is always on a grid point
in any valid d-schematization. This means that we need to devise a different grid in order
to make the switches work properly. We construct a new border gadget that induces a grid
with cells of uniform width but non-uniform heights. We call the cells of this grid minor
cells and form groups of d − 1 vertically consecutive cells to form meta cells. Then all metaminor cells

meta cells cells again have uniform widths and heights. For an example of a meta cell and its minor
cells see Figure 4.9(a).

The d − 1 different heights of the minor cells are chosen such that the segments connecting
the upper left corner of a meta cell to the lower right corners of its minor cells have exactly
the directions that are multiples of (90/d)◦ and lie strictly between 0◦ and 90◦ . This
restores the functionality of switches whose fixed vertex is placed on the upper left corner
of a meta cell and whose free vertex is on a non-adjacent grid line of the same meta cell.
See Figure 4.9(b) for an example of a vertical switch.

border gadget. The main purpose of the border gadget is to provide a way to control
the placement of vertices on discrete positions. In Section 4.3 we used for this a simple
gadget, which induced a regular grid. However, since for d > 2 there are more than
one possible diagonal directions, the grid induced by the simple gadget might be highly
irregular. Thus, we need to find a new border gadget that provides a similar functionality
as the simple border gadget of Section 4.3 and which can also handle multiple diagonal
directions. As for the simple case, the border gadget in this section consists also of a
horizontal part Bh and a vertical part Bv . However, the horizontal part Bh of the border
gadget consists of two new gadgets, the spiral- and the stairs-gadget, which we describe
next.

The spiral gadget consists of a path and its main property is that in any valid d-schema-
tization the first edge of this path must be drawn with the steepest non-vertical direction.
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Figure 4.10: The spiral gadget Sk . (a) the spiral gadget S3 and (b) the construction of
Sk+1 from Sk for k ≥ 3. The gadget Sk+1 is rotated by 180◦ degrees to better
highlight the construction. In (c) two spirals in their correct orientation placed
on top of each other and connected by the bold edge.

This yields that the width and height of this edge have a fixed ratio. We use this later to
ensure that certain vertices have the same distances.

The spiral gadget Sk, where k ≥ 3, is constructed inductively. All its vertices are contained
in the bounding box spanned by the vertices vk−1 and vk. Each gadget Sk has an entry
vertex vk and an exit vertex uk which has the same y-coordinate as vk−1. The base case S3 is
depicted in Figure 4.10(a). The gadget Sk+1 is constructed by adding to Sk the vertex vk+1
and the edge vkvk+1 as well as a path ukxk+1yk+1zk+1uk+1; the construction is illustrated
in Figure 4.10(b). The vertex xk+1 has the same x-coordinate as uk and is above it. The
vertex yk+1 has the same y-coordinate as xk+1 and is to the left of vk−1 and to the right
of vk+1. The vertices yk+1, zk+1 and uk+1 share the same x-coordinate. The vertex yk+1 is
vertically aligned with xk+1, the vertex zk+1 is vertically aligned with uk, and the vertex
uk+1 is vertically aligned with vk. Note that all vertices are contained in the bounding box
spanned by vk and vk+1. Finally, we rotate the result by 180◦ degrees.

We now discuss the size of a single spiral gadget. We denote the width of a spiral gadget
Sk by wk and its height by hk. In each step of iterative construction we position the new
vertex vk+1 such that the edge vkvk+1 spans a box with width 2 · wk and height 4 · hk. This
directly induces a grid on which we can place the vertices and it implies that we require
coordinates in O(4k) to describe a gadget Sk; see Figure 4.10(b). However, to ensure that we
can construct a path that can leave the spiral gadget we need to increase the size of the grid
by a factor of 4 both vertically and horizontally. With this increase, vertex coordinates in
O(16k) are sufficient to describe a gadget Sk. Although this might seem problematic, please
note that the size of our spiral gadget Sd does only depend on d which is not part of the
input and thus the coordinates to describe the spiral gadget are in O(1).
Lemma 4.4 For any k ≥ 2 and any valid d-schematization of Sk+1, the edge vk+1vk is steeper than
vkvk−1.

Proof. For k = 2 the statement follows since u3 and v1 must be embedded above the edge
v2v3. Now let k > 2 and let (Sk+1, ρ) be a valid d-schematization. For simplicity we consider
the drawing that is obtained by a rotation of 180◦ degrees. Then the construction looks as
depicted in Figure 4.10(b). Observe that this preserves the directions of the edges. Hence,
the statement of the lemma holds if vk−1 is embedded below the edge vkvk+1. Otherwise,
vk−1 is embedded above vkvk+1. Since uk is to the right of vk−1, it follows that uk is also
embedded above vkvk+1. Since uk+1 is vertically aligned with vk, it is embedded below
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Figure 4.11: Substructures of the border gadget for d = 4. (a) The stairs gadget; (b) stairs
gadget with additional vertices; (c) non-path vertical border gadget; (d) trans-
formation of (c) into a union of paths.

vkvk+1. The path starting at vk−1 and consisting of Sk, uk, xk+1, yk+1, zk+1 and uk+1 is
completely contained in the bounding box spanned by vkvk+1. On the other hand, this path
connects uk with uk+1, which lie on different sides of vkvk+1. This contradicts the planarity
of ρ. �

Lemma 4.5 For any d ≥ 3 the spiral gadget Sd has a valid d-schematization. In any valid d-
schematization of Sd the edge vdvd−1 has the steepest non-vertical direction.

Proof. For any d ≥ 3, the gadget S3 has a valid d-schematization such that the edge v1v2
has direction 90◦/d and v2v3 has direction 2 · 90◦/d. To construct a drawing for Sk+1 we use
a drawing of Sk which uses the directions 90◦/d, . . . , (k− 1) · 90◦/d. Again, for simplicity we
consider the rotated drawing as in Figure 4.10(b). We draw vk+1vk with direction k · 90◦/d
such that vk+1 is strictly to the left of vk−1. The path from uk to uk+1 is drawn orthogonally.
This proves the first statement of the lemma.

We now prove the second statement. Let d ≥ 3 and let ρ be a valid d-schematization of Sd.
Since ρ contains a valid d-schematization of Sk for k = 3, . . . , d, it follows from Lemma 4.4
that vkvk−1 is steeper than vk−1vk−2 for k = 3, . . . , d. Hence, v1v2, . . . , vd−1vd is a sequence
of d− 1 edges that must be embedded with increasing directions. Since v1v2 cannot be
embedded horizontally (overlap with u3) and vdvd−1 cannot be embedded vertically (overlap
with uk+1) and since there are only d− 1 diagonal directions, the claim follows. �

We can place two copies of a spiral vertically above each other such that corresponding
vertices have the same x-coordinates and join them by adding a horizontal edge between
the last vertex of the lower copy and the first vertex of the upper copy; see Figure 4.10(c).
The fact that the direction of the first edge e1 is fixed shows that this structure is in a sense
regular; both spirals have the same width and height.

The spiral provides us with a simple way of creating a construction that contains evenly
spaced points. Although, at a first glance, it seems that we might be able to use the spiral
gadgets directly to form a grid, this is not the case since the vertices in the interior of the
gadget would influence the embedding of the remaining gadgets. Hence, we need another
gadget, the stairs gadget, which overcomes this drawback, but is not rigid by itself.

A stairs gadget consists of d− 1 diagonal edges placed in a zig-zag pattern from bottom
to top in such a way that per gadget only two x-coordinates are used; see Figures 4.11(a)
and 4.11(b). We wish that in any valid schematization the edges ei = vivi+1, i = 1, . . . , d− 1
are all embedded diagonally with increasing directions.

To ensure that the first edge cannot be embedded horizontally, we add an additional
vertex u1 that shares its y-coordinate with v1 and its x-coordinate with v2. For each i with
2 ≤ i ≤ d− 1, we construct two spirals that are joined as described above and such that the
starting point of the first spiral has the same y-coordinate as vi and its endpoint has the
same y-coordinate as vi+1. We then place an additional point ui vertically between vi−1 and
vi+1 that has the same y-coordinate as the endpoint of the upper spiral.
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Figure 4.12: Sketch of the border gadget for d = 4.

The properties of the spirals imply that the vertical distance between ui and vi is the same
as the vertical distance between vi−1 and vi in any valid d-schematization. Since vi+1 must
be embedded strictly above ui the edge ei+1 must be embedded steeper than ei. As we have
only d− 1 diagonal directions the fact that the stairs gadget has d− 1 edges shows that each
of them is used exactly once and in increasing order along the path.

Placing k identical stairs directly next to each other yields k unit-width grid rows. If we
link the corresponding vertices of the stairs gadgets with each other we need to place the
vertices ui only in one of the stairs gadgets. Since we want to combine all gadgets to a path
in the end, we use this observation and create a single stairs gadget with the additional
vertices to the left of all other stairs gadgets. We can now create a path starting in this
leftmost stairs gadget and then connecting the remaining k− 1 stairs gadgets.

Now that we have established the horizontal part Bh of the border gadget we can
assume that all grid columns are of equal width 1. Hence the meta grid cells have height
tan((d− 1)/d · 90◦). We want to choose the heights of the minor cells such that the line
segments from the upper left corner of the meta cell to all grid points on the right side
of the meta cell have a direction in Cd; see Figure 4.11(c). This property is necessary for
constructing switches as explained later.

Unfortunately, the gadget in Figure 4.11(c) is not a path and hence we cannot use it to
induce the required grid structure directly. Instead, we “stretch” the structure and use the
concept of linking in order to yield the same result. We use d− 1 grid columns—one for
each diagonal direction—with one “empty” grid column between any two non-empty grid
columns; see Figure 4.11(d). To induce ` grid rows we repeat this structure ` times.

The horizontal and vertical parts of the border gadget are combined by placing the vertical
parts such that all vertices are placed on grid lines. A sketch of the complete border gadget
for d = 4 is shown in Figure 4.12.
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Figure 4.13: Sketch of a clause gadget for d = 4.

switches . Since the border gadget induces a non-regular grid, the switches must be
adjusted. Each switch starts at the upper left corner of a meta cell. For a horizontal switch
the free vertex is placed on the lower edge of the meta cell. For a vertical switch the free
vertex is placed on the right edge of the meta cell in between two horizontal grid lines.

variable and clause gadgets . The variable gadget is unchanged, given that all its
vertices are placed on meta grid lines. The overall structure and functionality of the clause
gadgets remains unchanged as well. However, we need to do some slight modifications;
see Figure 4.13. The critical edge e3 is placed in the topmost minor cell of a meta cell. Due
to the nature of our border gadget and the induced grid the diagonal edge e2 starts at the
second-to-top minor cell of a meta cell and the diagonal edge e4 starts at the bottommost
minor cell of a meta call. The edge e1 must have its upper vertex on the lower grid line of
the second-to-top minor cell. The edge e5 must have its lower vertex on the top grid line of
the bottommost cell in a meta cell.

gadget placement and single path . The placement of the gadgets is identical as
for d = 2. The variable gadgets are placed sufficiently spaced at the same height along the
x-axis. The negative clauses are to their upper left and the positive clauses to their lower
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right. The border gadget is chosen large enough to induce a grid that covers all the gadgets.
Combining the gadgets to a single simple path works analogously to the case d = 2 and the
size of all gadgets is polynomial.

membership in np . It remains to argue that the Path Schematization Problem is in NP
for d > 2. We use the same idea described in Section 4.3.3. First, we guess the relative vertex
positions and the constraints which ensure that the path is not self-intersecting and then
formulate the LP. Note that the constraints are essentially the same with the minor difference
that coefficients in the constraints can be of the form tan(i/(2d) · π). Those numbers might
be irrational which poses a problem for standard LP algorithms. However, since i/(2d) is
a rational number and tan(r · π) with r ∈ Q is an algebraic number [17, 138] we can use
the LP algorithm by Beling [17] to test for feasibility in polynomial time. Hence, we can
conclude that the Path Schematization Problem is in NP for d > 2. This concludes the proof
of Theorem 4.3. �

Corollary 4.1 The d-regular Path Schematization Problem is NP-complete for any d ≥ 1.
Proof. From Theorem 4.2, Theorem 4.3, and the result of Brandes and Pampel [37] for

d = 1 it follows that the d-regular Path Schematization Problem is
NP-complete for any d ≥ 1. �

discussion. We have shown that the d-regular Path Schematization Problem is NP-
complete for d ≥ 2. However, the gadgets in our proofs heavily rely on the concept of
linking, which requires vertices to either have the same x- or the same y-coordinates. This is
contrast to the proof by Brandes and Pampel [36, 37] which does not rely on this. In fact the
authors argue that the proof for d = 1 remains valid for points in general position, i. e., no
three points lie on the same line. Unfortunately, it seems to be highly non-trivial to adapt
our gadgets for this case. It is unclear whether or not it is possible to construct a gadget
that is similar to our border gadget in that it produces a regular grid (for d = 2). Hence,
we cannot make a statement on the complexity of the Path Schematization Problem under
the assumption that the input points are in general position. This is an interesting open
question which requires additional research.

4.5 monotone path schematization

In the previous sections we considered the problem of deciding for a given embedded
path if it admits a d-regular schematization. For the practical application of generating
route sketches, we are not only interested if there is such an embedding but we want to
determine an embedding with minimum schematization cost, i.e., a d-regular schematization
where a maximum number of edges have their preferred direction. Since we know from
Corollary 4.1 that the Path Schematization Problem is NP-complete, even if we do not
consider schematization cost we cannot hope for an efficient algorithm that determines a
d-regular embedding of a given input path, unless P = NP. Hence, in this section we explore
the complexity of a more restricted variant of the problem.

We show that, if we restrict the input to an axis-monotone, i.e., paths that are x- or
y-monotone, embedded path, the d-regular path schematization problem can be solved
efficiently. We devise an algorithm that solves this problem while simultaneously minimizing
the schematization cost, and guaranteeing that each edge has length larger than some given
minimum length. Moreover, we present a heuristic to extend this approach to general
simple paths by first splitting the input path into a minimum number of axis-monotone
paths, then applying the algorithm for each path separately, and finally concatenating the
paths such that the resulting path is intersection-free.

We begin by stating the exact definition of the problem:
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Problem 1 (Monotone-Path Schematization Problem (MPSP)) Given an embedded and axis-
monotone path (P = (V, E), π), an integer d ≥ 1, a minimum length `min(e) for each edge e ∈ E,
find a valid d-schematization ρ such that:

(i) the schematization cost c(ρ) is minimum,

(ii) for every edge e ∈ E the length |ρ(e)| is at least `min(e), and

As a practical requirement we want to find a path with minimum schematization cost
and with minimal total path length. Note that schematization cost and total path length
are two potentially conflicting optimization criteria. Primarily, we want to find a d-regular
schematization that minimizes the schematization cost.

4.5.1 Solving the Monotone-Path Schematization Problem

In the following we describe an efficient two-step algorithm that solves MPSP optimally for
x-monotone paths. The algorithm can be adapted to handle y-monotone paths straightfor-
wardly. In the first step the algorithm computes a valid d-schematization ρ of the input path
(P, π) with minimum schematization cost. In the second step we adjust the embedding ρ

that was computed in the first step to ensure the minimum edge length requirement is met
and the total path length is minimized.

4.5.1.1 Minimizing the Schematization Cost

The goal in the first step of the algorithm is to find a valid d-schematization ρ of (P, π)

with minimum schematization cost. To this end we argue that a given special order on the
y-coordinates of vertices of (P, π) induces a valid d-schematization of (P, π) with minimum
schematization cost among all valid d-schematization of (P, π) that respects this order. We
then use this insight to give a dynamic programming algorithm that computes such an
order by assigning integer value between 1 and n to the y-coordinate of every vertex of P to
generate the output embedding ρ with minimum schematization cost. But first we explain
the direction cost considered in this section.

We begin by assigning the preferred direction ωC(e) = γ to each edge e ∈ P, where
γ ∈ Cd is the direction closest to απ(e). We now group all edges e = uv of P into four
categories according to their preferred direction ωC(e):

1. if ωC(e) = 0◦ and yπ(u) 6= yπ(v), then e is called horizontal edge (or h-edge);h-edge

2. if yπ(u) = yπ(v), then e is called strictly horizontal edge (or sh-edge);sh-edge

3. if ωC(e) 6= 0◦ and xπ(u) 6= xπ(v), then e is called vertical edge (or v-edge);v-edge

4. if xπ(u) = xπ(v), then e is called strictly vertical edge (or sv-edge).sv-edge

Using these categories, we define the direction cost for an edge as follows. All edges e
with ωC(e) = αρ(e) are drawn according to their preferred direction and we assign the cost
cρ(e) = 0. For all edges e with ωC(e) 6= αρ(e) we assign the cost cρ(e) = 1. An exception are
the sh- and sv-edges, which must always be assigned their preferred direction due to the
orthogonal ordering constraints. Consequently, we set cρ(e) = ∞ for any sh- or sv-edge e
with ωC(e) 6= αρ(e).

Note that assigning each edge its preferred direction might result in the following conflict.
Consider two subsequent edges e1, e2 with {ωC(e1), ωC(e2)} = {90◦, 270◦}. Assigning such
preferred directions would result in an overlap of e1 and e2. In this case, we either set
ωC(e1) or ωC(e2) to its next best value, depending on which edge is closer to it. This neither
changes the solution nor creates new conflicts since in a plane embedding not both edges
can have their preferred direction.
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In the following we show that for a special kind of order, we call y-order, on the y- y-order

coordinates of the vertices of (P, π) we can always find a valid d-schematization. Moreover,
we show that for a given y-order we can easily construct a valid d-schematization with
minimum schematization cost among all valid d-schematizations respecting this order. A
y-order for a given path (P, π) is an order on the y-coordinates of the vertices of P that (i)
respects the orthogonal order of (P, π) and (ii) for every pair of vertices v, w in P the order
tells us if the vertices share the same y-coordinate or if one lies strictly above the other. We
are now ready to state the lemma.
Lemma 4.6 Let (P, π) be a path with x-monotone embedding, and let Y be a y-order for (P, π).
Then, we can construct a valid d-schematization that respects Y with minimum schematization cost
among all valid d-schematizations of (P, π) that respect Y .

Proof. Since we assume the input embedding to be x-monotone, the output embedding ρ

must be x-monotone, too, as it preserves the orthogonal order of π. So we can assume that
P = (v1, . . . , vn) is ordered from left to right in both embeddings. Let ρ′ be any orthogonal-
order preserving embedding of π. We start with the observation that in ρ′ every edge
e = vivi+1 with ωC(e) 6= 0◦ and yρ′(vi) 6= yρ′(vi+1) can be embedded with its preferred
direction αρ′(e) = ωC(e). This is achieved by horizontally shifting the whole embedding ρ′

right of xρ′(vi+1) (including vi+1) to the left or to the right until the direction of e satisfies
αρ′(e) = ωC(e). Due to the x-monotonicity of P no other edges are affected by this shift.

Now, to see how to obtain a valid d-schematization with minimum schematization cost
consider the following. Assume ρ is a valid d-schematization of (P, π) that respects Y . For
any edge e = vivi+1 in P that is an h-edge (sh-edge) the direction cost induced by Y is 1 (∞)
if and only if Y implies yρ(vi) 6= yρ(vi+1); otherwise the direction cost is 0. Likewise, if e is
a v-edge (sv-edge) then the direction cost induced by Y is 1 (∞) if and only if Y implies
yρ(vi) = yρ(vi+1); otherwise, by the above shifting argument, we can assign e its preferred
direction and hence, its direction cost is 0. Obviously, there can be no valid d-schematization
of (P, π) that respects Y with less schematization cost.

It remains to prove that there exists a valid d-schematization ρ that respects Y . We
give a constructive proof. Start by determining y-coordinates according to Y . We assign
from bottom to top (according to Y) integer values between 1 and n to the vertices as
y-coordinates. Note that two vertices, that according to Y share the same y-coordinate, get
assigned the same y-coordinate. Since we have now assigned each vertex a y-coordinate,
and as we have seen, the y-order already determines for which edges we can assign their
preferred direction and for which edges this is not possible, it remains to determine the
x-coordinates xρ of the vertices of P. Note that the x-coordinate of each vertex vi ∈ P,
0 < i < n in ρ depends only on the y-coordinate of its predecessor vi−1 and the assigned
direction αρ(vivi+1). Hence, we are now able to obtain a valid d-schematization ρ of (P, π)

solely based on a given y-order Y . �
Recall that the aim for the first step of our two-step approach was to determine a valid

d-schematization of a given x-monotone embedded input path (P, π). Note that Lemma 4.6
implies we only need to compute a y-order that induces a valid d-schematization with
minimum schematization cost to obtain such a schematization ρ.

In the following we give a dynamic programming algorithm that implicitly computes a
y-order for an input path (P, π) such that it induces a d-regular schematization of (P, π)

with minimum schematization cost. The algorithm assigns each vertex a y-coordinate
between 1 and n. The complete valid d-schematization can then be obtained according to
the proof of Lemma 4.6.

In order to assign each vertex a y-coordinate between 1 and n, we define m ≤ n− 1 closed
and vertically bounded horizontal strips s1, . . . , sm induced by the set {y = yπ(vi) | 1 ≤ i ≤
n} of horizontal lines through the vertices of (P, π). Let these strips be ordered from top to
bottom as shown in Figure 4.14(a). Furthermore we define a dummy strip s0 above s1 that
is unbounded on its upper side. We say that an edge e = uv crosses a strip si and conversely
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(a) Horizontal strips for (P, π)
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(b) Strip height assignment and induced output path (P, ρ).

Figure 4.14: Example of (a) an x-monotone embedded input path (P, π) and (b) a 2-regular
schematization (P, ρ).

that si affects e if π(u) and π(v) lie on opposite sides of si. In fact, to determine the cost of
an embedding ρ it is enough to know for each strip whether it has a positive height or not
since this induces a y-order on the vertices. The algorithm will assign a symbolic height
h(si) ∈ {0, 1} to each strip si, such that the resulting y-order of the vertices induces a valid
d-schematization of the input path with minimum schematization cost. Note that sh-edges
do not cross any strip but rather coincide with some strip boundary. Hence all sh-edges are
automatically drawn horizontally and have no direction costs. We can therefore assume
that there are no sh-edges in (P, π).

Let S[i, j] =
⋃j

k=i sk be the union of the strips si, . . . , sj and let I(i, j) be the subinstance
of the path schematization problem containing all edges that lie completely within S[i, j].
Note that I(1, m) corresponds to the original instance (P, π), whereas in general I(i, j) is
not necessarily a connected path but may consist of a collection of edges. The following
lemma is key to our algorithm.
Lemma 4.7 Let I(i, j) be a subinstance of the monotone-path schematization problem and let sk ⊆
S[i, j] be a strip for some i ≤ k ≤ j. If we assign h(sk) = 1, then I(i, j) decomposes into the two
independent subinstances I(i, k− 1) and I(k + 1, j). The direction costs of all edges affected by sk
are determined by setting h(sk) = 1.
Proof. We first show that the cost of any edge e = uv that crosses sk is determined by setting
h(sk) = 1. Since u and v lie on opposite sides of sk we know that yρ(u) 6= yρ(v). So if e is
a v- or sv-edge, it can be drawn with its preferred direction and cρ(e) = 0 regardless of
the height of any other strip crossed by e. Conversely, if e is an h-edge it is impossible to
draw e horizontally regardless of the height of any other strip crossed by e and cρ(e) = 1.
Recall that sh-edges do not cross any strips. Assume that k = 2 in Figure 4.14(a) and we
set h(s2) = 1; then edges v3v4 and v5v6 cross strip s2 and none of them can be drawn
horizontally.

The remaining edges of I(i, j) do not cross sk and are either completely contained in
S[i, k− 1] or in S[k + 1, j]. Since the costs of all edges affected by sk are independent of the
heights of the remaining strips in S[i, j] \ {sk}, we can solve the two subinstances I(i, k− 1)
and I(k + 1, j) independently; see Figure 4.14(a). �

our algorithm . We are now ready to describe our algorithm for assigning symbolic
heights to all strips s1, . . . , sm, and thereby determining the integer y-coordinates for the



36 path schematization

vertices of P, such that the induced embedding ρ has minimum schematization cost. The
main idea is to recursively compute an optimal solution for each instance I(1, i) by finding
the best k ≤ i such that h(sk) = 1 and h(sj) = 0 for j = k + 1, . . . , i. By using dynamic
programming we can compute an optimal solution for I(1, m) = (P, π) in O(n2) time.

Let C(k, i) for 1 ≤ k ≤ i denote the schematization cost of all edges in the instance I(1, i)
that either cross sk or have both endpoints in S[k + 1, i] if we set h(sk) = 1 and h(sj) = 0
for j = k + 1, . . . , i. Let C(0, i) denote the schematization cost of all edges in the instance
I(1, i) if h(sj) = 0 for all j = 1, . . . , i. We use an array T of size m + 2 to store the minimum
schematization cost T[i] of the instance I(1, i). Then T[i] is recursively defined as follows

T[i] =

min0≤k≤i(T[k− 1] + C(k, i)) if 1 ≤ i ≤ m

0 if i = 0 or i = −1.
(4.1)

Together with T[i] we store the index k that achieves the minimum value in the recursive
definition of T[i] as κ[i] = k. This allows us to compute the actual strip heights using
backtracking. Note that T[m] < ∞ since, e. g., the solution that assigns height 1 to every
strip induces cost 0 for all sv-edges (recall that we can assume that there are no sh-edges
in (P, π) and hence assigning height 1 to every strip is a valid solution). Obviously, we
need O(m) time to compute each entry in T assuming that the schematization cost C(k, i) is
available in O(1) time. This yields a total running time of O(m2).

The next step is to precompute the schematization cost C(k, i) for any 0 ≤ k ≤ i ≤ m such
that it can be accessed in O(1) time. Two sources contribute to the schematization cost. The
first source is the schematization cost of all edges that are affected by sk. As observed in
Lemma 4.7, all v- and sv-edges crossing sk have no cost. On the other hand, every h-edge
that crosses sk has cost 1. So we need to count all h-edges in I(1, i) that cross sk. The
second source is the cost of all edges that are completely contained in S[k + 1, i]. Since
h(sk+1) = . . . = h(si) = 0, we observe that any h-edge in S[k + 1, i] is drawn horizontally at
no cost. In contrast, no v- or sv-edge e in S[k + 1, i] attains its preferred direction ωC(e) 6= 0◦.
Hence every v-edge in S[k + 1, i] has cost 1 and every sv-edge has cost ∞. So we need to
check whether there is an sv-edge contained in S[k + 1, i] and if this is not the case count all
v-edges contained in S[k + 1, i].

In order to efficiently compute the values C(k, i) we assign to each strip si three sets of
edges. Let H(i) (resp. V(i) or SV(i)) be the set of all h-edges (resp. v-edges or sv-edges)
whose lower endpoint lies on the lower boundary of si. We can compute H(i), V(i), and
SV(i) in O(n) time for all strips si. Then, for k ≤ i, the number of h-edges in H(i) that cross
sk is denoted by σH(k, i) and the number of v-edges in V(i) that do not cross sk is denoted
by σV(k, i). Finally, let σSV(k, i) be the number of sv-edges in SV(i) that do not cross sk.

This allows us to compute the values C(k, i), 0 ≤ k ≤ i ≤ m, recursively as follows

C(k, i) =


∞ if σSV(k, i) ≥ 1

C(k, i− 1) + σH(k, i) + σV(k, i) if k ≤ i− 1

σH(k, k) if k = i.

(4.2)

Since each edge appears in exactly one of the sets H(i), V(i), or SV(i) for some i, it is
counted towards at most n− 1 values σH(·, i), σV(·, i), or σSV(·, i), respectively. Thus, for
computing all the values C(i, k), we need O(n2) time and require a table size of O(n2).
However, the space requirement can be reduced to O(n) as follows. We compute and store
the values T[i] in the order i = 1, . . . , n− 1. For computing the entry T[i] we use only the
values C(·, i). To compute the next entry T[i + 1], we first compute the values C(·, i + 1)
from C(·, i) and then discard all C(·, i). This reduces the required space to O(n). We can
summarize the results in the following lemma.
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Lemma 4.8 There exists an algorithm that computes the array T of schematization costs in O(n2)

time and O(n) space.
It remains to determine the strip height assignments corresponding to the schematization

cost in T[m] and show the optimality of that solution. We initialize all heights h(si) = 0 for
i = 1, . . . , m. Recall that κ[i] equals the index k that minimized the value T[i] in (4.1). To
find all strips with height 1, we initially set j = m. If κ[j] = 0 we stop; otherwise we assign
h(sκ[j]) = 1, update j = κ[j]− 1, and continue with the next index κ[j] until we hit κ[j] = 0
for some j encountered in this process. Let ρ be the d-regular schematization of (P, π)

induced by this strip height assignment; see Figure 4.14(b). We now show the optimality of
ρ in terms of the schematization cost.
Theorem 4.4 Given an x-monotone embedded path (P, π) and a set C of d-regular edge direc-
tions, our algorithm computes a a valid d-schematization ρ of (P, π) with minimum schematization
cost c(ρ).
Proof. As we have already shown in Lemma 4.6, a given y-order for the vertices of an
input path (P, π) induces a valid d-schematization ρ and with minimum schematization
cost among all valid d-schematizations respecting the y-order. Since the input path is
x-monotone and by construction there are no two adjacent edges with preferred directions
90◦ and 270◦ the embedding ρ is plane. The embedding ρ also preserves the orthogonal
order of π since ρ does not alter the x- and y-ordering of the vertices of P; see Figure 4.14(b).

We show that ρ has minimum schematization cost by structural induction. For an instance
with a single strip s there are only two possible solutions of which our algorithm chooses
the better one. The induction hypothesis is that our algorithm finds an optimal solution for
any instance with at most m strips. Consider an instance with m + 1 strips and let ρ′ be any
optimal d-regular schematization for this instance. If all strips s in ρ′ have height h(s) = 0,
then by the recurrence relation (4.1) it holds that c(ρ) = T[m + 1] ≤ C(0, m + 1) = c(ρ′).
Otherwise, let k be the largest index for which h(sk) = 1, in ρ′. When computing T[m + 1]
our algorithm also considers the case where sk is the bottommost strip of height 1, which has
a cost of T[k− 1] + C(k, m + 1). If h(sk) = 1 we can split the instance into two independent
subinstances to both sides of sk by Lemma 4.7. The schematization cost C(k, m + 1) contains
the cost for all edges that cross sk and this cost is obviously the same as in ρ′ since
h(sk) = 1 in both embeddings. Furthermore, C(k, m + 1) contains the cost of all edges in
the subinstance below sk, for which we have by definition h(sk+1) = . . . = h(sm+1) = 0.
Since k is the largest index with h(sk) = 1 in ρ′ this is also exactly the same cost that this
subinstance has in ρ′. Finally, the independent subinstance above sk has at most m strips
and hence T[k− 1] is the minimum cost for this subinstance by induction. It follows that
c(ρ) = T[m + 1] ≤ T[k− 1] + C(k, m + 1) ≤ c(ρ′). This concludes the proof. �

alternative costs . In this section we have assumed that the cost for an h-edge (a
v-edge) is 1 if it is not embedded with its preferred direction. However, our dynamic
programming allows us to have different types of cost, even edge specific cost. Recall that
the schematization cost for C(k, i − 1) depends on σH(k, i) and σV(k, i) where σH(k, i) is
the number of h-edges in H(i) that cross sk, and σV(k, i) is the number of v-edges in V(i)
that do not cross sk. The sum of the numbers σH(k, i) and σV(k, i) is the cost of setting the
strip sk to have height 1 and setting all strips below sk to have height 0. To enable edge
specific cost we can do the following. First, we compute, as before, the sets H(i) and V(i).
But when we determine the values for σH(·, i) and σV(·, i) we do not simply count the edges
in H(i) and V(i), respectively, but we set σH(·, i) (σV(·, i)) to be the sum of the weights of
the edges in H(i) (V(i)). Since this is done in a preprocessing step and requires only O(n)
time the total time complexity of the algorithm does not change.

In Theorem 4.4 we have shown that our algorithm works for x-monotone paths, and a
generalization to axis-monotone paths is trivial. Further, we have argued that we can have



38 path schematization

edge-specific cost as schematization cost. We conclude this subsection with the following
corollary.
Corollary 4.2 The monotone path schematization problem (Problem 1) for an axis-monotone input
path of length n can be solved by an O(n2)-time algorithm that computes a valid d-schematization
ρ of minimum schematization cost.

4.5.1.2 Minimizing the Path Length

In the first step of our algorithm we obtained a valid d-schematization ρ of (P, π) with
minimum schematization cost in O(n2) time. However, this does not account for the
edge lengths induced by ρ. So in the second step, we adjust ρ such that the total path
length is minimized and |ρ(e)| ≥ `min(e) for all e ∈ P. We make sure, however, that the
orthogonal order and all directions αρ(e)—and thus also the schematization cost c(ρ)—
remain unchanged.

Note that we can immediately assign the minimum length `min(e) to every horizon-
tal edge e in the input (P, ρ) by horizontally shifting the subpaths on both sides of
e. For any non-horizontal edge e = uv the length |ρ(e)| depends only on the verti-
cal distance ∆y(e) = |yρ(u) − yρ(v)| of its endpoints and the direction αρ(e). In fact,
|ρ(e)| = ∆y(e)/ sin(αρ(e)). So in order to minimize the path length we need to find y-
coordinates for all strip boundaries such that ∑e∈P |ρ(e)| is minimized. These y-coordinates
together with the given directions for all edges e ∈ P (as computed in the previous step)
induce the corresponding x-coordinates of all vertices of P.

For each strip si (i = 0, . . . , m) let yi denote the y-coordinate of its lower boundary. For
every edge e ∈ P let t(e) and b(e) denote the index of the top- and bottommost strip,
respectively, that is crossed by e. Then ∆y(e) = yt(e)−1 − yb(e). We propose the following
linear program (LP) to minimize the path length of a given C-oriented embedded path
(P, ρ).

Minimize ∑
e∈P, αρ(e) 6=0◦

[ 1
sin αρ(e)

· (yt(e)−1 − yb(e))
]

subject to yt(e)−1 − yb(e) ≥ sin αρ(e) · `min(e) ∀e ∈ P, αρ(e) 6= 0◦

yi−1 − yi > 0 ∀si with h(si) = 1

yi−1 − yi = 0 ∀si with h(si) = 0

We assign to all vertices their corresponding y-coordinates from the solution of the LP. In
a left-to-right pass over P we compute the correct x-coordinates of each vertex vi from the
vertical distance to its predecessor vertex vi−1 and the direction αρ(vi−1vi). This yields a
modified embedding ρ′ that satisfies all our requirements: the path length is minimized;
the orthogonal order is preserved due to the x-monotonicity of P and the constraints in the
LP to maintain the y-order; by construction the directions of all edges are the same in ρ and
ρ′; no edge e is shorter than its minimum length `min(e). Hence, ρ′ solves Problem 1 and
together with Lemma 4.8 and Theorem 4.4 we obtain

Linear programs can be solved efficiently in O(n2.5L) time using a method of Vaidya [178],
where n is the length of the path P and L is the number of input bits. Unfortunately, our
linear program potentially contains irrational numbers as constant factors and standard LP
algorithms cannot efficiently solve such linear programs. One might be tempted to use the
linear program algorithm by Beling [17] since all coefficients are either rational or algebraic
numbers [138, 176] which at first glance implies a polynomial running time. However, the
algorithm has a running time that is polynomial (among other things) in the degree of
the algebraic numbers which, in our case, is in O(d). This, however, means that since the
space required for representing d is O(log d) bits, the algorithm requires exponential time
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in the input size. For practical applications we can simply round those irrational values to
an appropriate precision. However, then we cannot make any claims with respect to the
optimality of the resulting solution.

4.5.2 Extension to General Simple Paths

In the previous section, we showed how to schematize a monotone path. Unfortunately,
some routes in road networks are not axis-monotone, however, they can be decomposed
into a usually small number of axis-monotone subpaths. So, we propose the following
three-step heuristic to schematize general simple paths, which we call the simple path
schematization (SPS) algorithm: We first split the input path (P, π) into a minimum number
of axis-monotone subpaths (Pi, πi), where πi equals π restricted to the subpath Pi. We
embed each (Pi, πi) separately according to Section 4.5.1. Then, we concatenate the subpaths
by adding at most three path-link edges between the subpaths such that the resulting pathpath-link

(P′, ρ) is a simple C-oriented path. Note that this heuristic does not guarantee to preserve
the orthogonal order between vertex pairs of different subpaths.

Splitting an embedded simple path P = (v1, . . . , vn) into the minimal number k of
subpaths Pi, 1 ≤ i ≤ k with the property that each Pi is an axis-monotone path can be done
in a straightforward greedy fashion, starting from v1. We traverse P until we find the last
vertices v′ and v′′ that are not violating the x- and y-monotonicity, respectively. If v′ appears
later than v′′ on P, we set P1 = (v1, . . . , v′), otherwise P1 = (v1, . . . , v′′). We continue this
procedure until we reach the end of P. This algorithm runs in O(n) time and returns the
minimal number k of axis-monotone subpaths, indicated by Proposition 1.
Proposition 1 The greedy path splitting algorithm divides the input path P into a minimal number
of axis-monotone subpaths in linear time.

Proof. Assume (L1, . . . , L`) is an optimal solution that divides P into ` x- or y-monotone
subpaths, and let (P1, . . . , Pk) be the solution obtained by the above algorithm. Observe
that due to the greedy approach the following two statements hold: (i) the path Li for the
smallest i such that Li differs from Pi contains fewer vertices than Pi; (ii) there cannot be any
path Lm that fully contains some path Pj = (vp, . . . , vq) and also vq+1 ∈ Lm. This implies
that if there is a path Lm that contains Pj they both share the same last vertex. Combined, we
get that there is no sequence of paths L1, . . . , Li containing more vertices than the sequence
P1, . . . , Pi and hence k ≤ `. �

After splitting the input path, we schematize each subpath (Pi, πi) according to the
approach described in Section 4.5.1. We obtain a d-regular schematization ρi with minimum
schematization cost and minimum path length for each (Pi, πi). For concatenating these
subpaths, we must solve the following problem.
Problem 2 Given a sequence of k embedded axis-monotone paths (Pi, ρi) with 1 ≤ i ≤ k, find an
embedding ρ of P′ = P1 ⊕ · · · ⊕ Pk, where ⊕ denotes the concatenation of paths, such that

(i) for each subpath (Pi, ρi), the embedding ρ restricted to Pi is a translation of ρi and

(ii) (P′, ρ) is a simple d-regular path.

Our approach is based on iteratively embedding the subpaths P1, . . . , Pk. We ensure
that in each iteration i the embedding of P1 ⊕ · · · ⊕ Pi remains conflict-free, i. e., it has no
self-intersections. We achieve this by adding up to three new path-link edges between any two
adjacent subpaths Pi and Pi+1. For each 1 ≤ i ≤ k let Bi denote the bounding box of (Pi, ρi).
We show how to construct an embedding ρ of P′ such that for any i 6= j we have Bi ∩ Bj = ∅.
Consequently, since each individual (Pi, ρi) is conflict-free, (P′, ρ) is conflict-free as well. A
key operation of the algorithm is shifting a subpath Pi (or equivalently a bounding box Bi) by
an offset ∆ = (∆x, ∆y) ∈ R2. This is done by defining the lower left corner of each bounding
box Bi as its origin oi and storing the coordinates of Pi relative to oi, i. e., ρ(v) = oi + ρi(v).
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Figure 4.15: Two examples for attaching Pi to Pi−1 by inserting path-link edges.

Note that shifting preserves all local properties of (Pi, ρi), i. e., the orthogonal order as well
as edge lengths and orientations.

Each iteration of our algorithm consists of two steps. First, we attach the subpath Pi to
its predecessor Pi−1. To this end, we initially place (Pi, ρi) such that the last vertex u of
Pi−1 and the first vertex v of Pi coincide. Then we add either two path-link edges (if the
monotonicity directions of Pi−1 and Pi are orthogonal) or three path-link edges (if Pi−1 runs
in the opposite direction of Pi) between u and v and shift Bi by finding appropriate lengths
for the new edges such that Bi−1 ∩ Bi = ∅. Paths Pi−1 and Pi are now conflict-free, but
there may still exist conflicts between Pi and paths Pj(j < i− 1). These are resolved in a
second step that, roughly speaking, “inflates” Bi starting at v until it has reached its original
size. Any conflicting bounding boxes are “pushed” away from Bi by stretching some of the
path-link edges. In the following, we explain our procedures for attaching a subpath and
resolving conflicts in more detail.

attaching a subpath . Without loss of generality, we restrict ourselves to the case
that Pi−1 is an x-monotone path from left to right. Let u be the last vertex of Pi−1 and
v be the first vertex of Pi. If Pi is y-monotone we add a horizontal edge e1 = uu′ with
αρ(e1) = 0◦ connecting u to a new vertex u′. Then we also add a vertical edge e2 = u′v with
αρ(e1) = 90◦ if Pi is upward directed and αρ(e1) = 270◦ if it is a downward path. Otherwise,
if Pi is x-monotone from right to left, we add two vertices u′ and u′′ and three path-link
edges e1 = uu′, e2 = u′u′′, and e3 = u′′v with αρ(e1) = 0◦, αρ(e2) = 90◦ if Pi is above Pi−1
in π or αρ(e2) = 270◦ otherwise, and αρ(e3) = 180◦. Note that technically we treat each
path-link edge as having its own bounding box with zero width or height. It remains to
set the lengths of the path-link edges such that Bi ∩ Bi−1 = ∅ by computing the vertical
and horizontal overlap of Bi−1 and Bi. Figure 4.15 illustrates both situations. Setting the
lengths of the path-link edges leaves us with some degree of freedom. Consider the example
depicted in Figure 4.15(a). To resolve the conflict we could set the length of e2 to 0 and the
length of e1 to the appropriate length. Since in general we want to add as few edges as
possible we propose to set the length of the path link edges to 0 whenever possible. Note
that this is not always possible. Then, we compute the minimum lengths of e1 and e2 that is
necessary to resolve the conflict. The edge with the smaller minimum length gets assigned
this length, while the other edge length is set to a minimum value. The case depicted in
Figure 4.15(b) can be handled similarly.

resolving conflicts . After adding Pi we have Bi−1 ∩ Bi = ∅. However, there may
still exist conflicts with any previously placed box Bj, 1 ≤ j < i− 1. In order to free up the
space required to actually place Bi without overlapping any other bounding box, we push
away all conflicting boxes in three steps. For illustration, let Pi be x-monotone from left to
right, and let v be the first vertex of Pi.
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Figure 4.16: Example for iteratively resolving conflicts induced by attaching Pi. First, we
shift everything right of Lx to the right by ∆x. Then, we shift everything below
Ly1 by ∆y1 downward, and finally, we shift everything above Ly2 upward.

Each bounding box B is defined by its lower left corner ll(B) = (llx(B), lly(B)) and its
upper right corner ur(B) = (urx(B), ury(B)). In the first step we identify the leftmost box
B′ (if any) that is intersected by a line segment that extends from ρ(v) to the right with
length equal to the width of Bi. For this box B′ we have lly(B′) ≤ yρ(v) ≤ ury(B′) and
llx(Bi) ≤ llx(B′) ≤ urx(Bi). If there is such a B′ let the offset ∆x be ∆x = urx(Bi)− llx(B′).

Now we shift all bounding boxes B that lie completely to the right of llx(B′) to the
right by ∆x. All horizontal path-link edges (which are also considered bounding boxes by
themselves) that connect a shifted with a non-shifted path are stretched by ∆x to keep the
two paths connected. Note that there is always a horizontal path-link edge between any
two subsequent paths. Since Pi is an x-monotone path from left to right, the bounding Box
Bi is currently a horizontal line segment.

Next, we inflate Bi downwards: we first determine the topmost conflicting box B′′ (if any)
below a horizontal line through ρ(v), i. e., a box B′′ whose x-range intersects the x-range of
Bi and for which lly(Bi) ≤ ury(B′′) ≤ yρ(v). If we find such a B′′ we define the vertical offset
∆y1 = ury(B′′)− lly(Bi). We shift all bounding boxes B that lie completely below ury(B′′)
downwards by ∆y1. All vertical path-link edges that connect a shifted with a non-shifted
box are stretched by ∆y1 in order to keep the two boxes connected. Again, there is always a
vertical path-link edge between any two subsequent paths. Finally, we inflate Bi upwards,
which is analogous to the downward inflation. Figure 4.16 shows an example.

The approach explained above first inflates the box to the right, then downwards, and
finally upwards. Of course, we could use any strategy of inflating the box. In fact, since
different strategies yield different results, we could test a fixed number of strategies and
keep the result that minimizes the overall increase in edge lengths.

In the following, we show that our algorithm indeed solves Problem 2.
Lemma 4.9 Our algorithm computes a conflict-free embedding ρ of P′ = P1 ⊕ · · · ⊕ Pk.

Proof. We prove the theorem by induction. By definition, the first path P1 has a conflict-
free embedding. Now, assume that P1 ⊕ · · · ⊕ Pi−1 is already embedded conflict-free. We
attach Pi to Pi−1, such that Bi ∩ Bi−1 = ∅ holds. Thus, Pi and Pi−1 do not have a conflict.
Next, we shift all Bj with j < i such that Bi ∩ Bj = ∅ in the end.

What remains to be shown is that our shifting-operation does not create new conflicts
between any two boxes Bj and Bj′ with j, j′ < i. Consider, e. g., a shift to the right and
assume that after the shift Bj and Bj′ intersect, while they did not intersect before the shift.
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Clearly, if none of the boxes has been moved, they cannot intersect. So either the shift
moved both boxes by the same offset ∆x, or it moved only the rightmost of the two boxes to
the right by ∆x. There is no vertical movement. So in both cases the horizontal distance of
the boxes does not decrease and it is impossible that Bj and Bj′ intersect after the shift. The
same observation holds for the vertical shifts. �

Theorem 4.5 Our algorithm computes a solution (P′, ρ) to Problem 2 by adding at most 3(k− 1)
path-link edges to P, where k is the number of given embedded axis-monotone subpath. It can be
implemented with a running time of O(k2 + n).

Proof. The correctness of the algorithm follows from Lemma 4.9 and due to the fact that
the embeddings (Pi, ρi) within the bounding boxes Bi remain unchanged. Clearly, we add
at most three edges between any two consecutive paths, which shows the bound on the
number of path-link edges.

It remains to show the running time of O(k2 + n). For the position of each bounding
box we maintain the coordinates of its lower left and upper right corners. In each iteration,
attaching a new subpath requires constant time since it depends only on the overlap of the
new bounding box and its immediate predecessor. Resolving all conflicts requires O(k) time
per iteration. When adding path Pi we need to check for each box Bj (j < i− 1) and the
boxes of their respective path-link edges if and how they conflict with Bi. Once the required
offset is computed, we shift O(k) boxes by updating their lower left and upper right corners,
as well as their origins. This is done in constant time per box and O(k) time in total per
iteration. So for all k iterations the running time is O(k2). Finally, we obtain the embedding
ρ of P′ by computing the absolute coordinates of all vertices in O(n) time. �

We can now conclude the running time for our simple path schematization algorithm by
combining the results from Corollary 4.2 and Theorem 4.5.
Corollary 4.3 The time complexity of the simple path schematization algorithm is in O(k2 + n2).

Since for practical purposes minimizing the total path length is sensible we additionally
need to solve the linear programs described in Section 4.5.1.2. However, for the stated
reasons in that section we cannot make any guarantees with respect to the quality of the
solution.

Note that if the total number I of conducted shift operations by the algorithm, is suffi-
ciently small, we can do better than O(k2 + n2) with the help of more sophisticated data
structures. More specifically, if I < k2/ log k we can use fully dynamic data structures
to achieve a time complexity of O((I + k) log k + n2) for the part of the algorithm that is
independent of the linear program.

As before we store for each bounding box its lower left and upper right coordinates.
Additionally, we maintain in total four fully dynamic data structures; two for answering
orthogonal line segment intersection queries, and the remaining two for answering orthogo-
nal range reporting queries. One of each two stores the horizontal and the other the vertical
segments of all already placed bounding boxes. During the step in which all conflicts are
resolved, we use the those data structures to determine only those bounding boxes (and
path-link edges) that really intersect a newly placed bounding box. Since this also changes
the position of the horizontal and vertical segments of some the already bounding boxes we
need to update the data structures accordingly.

We can use data structures proposed by Mortensen [146] to achieve this. Those data
structures support insertions and deletions with worst-case time complexity in O(log n)
and queries with worst-case time complexity in O(log n + Ji), where Ji is the total number
of reported segments. In total we need to shift a number Ii ≥ Ji of boxes, each of which can
be done in O(log n) time by updating the appropriate data structures. Hence, each iteration
requires O(Ii log n + log n) time. The total time complexity is O((I + k) log k + n2), and the
total space requirement for the data structures is O(n log n/ log log n).
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4.6 a mixed integer program for path schematization

From Corollary 4.1 we know that the Path Schematization Problem is
NP-complete for every d ≥ 1. So, unless P = NP, we cannot hope for an efficient exact
algorithm to solve the problem. In Section 4.5 we showed that for a restricted class of paths,
namely axis-monotone paths, the problem can be solved efficiently. However, the extension
of this approach to general paths does not guarantee that the orthogonal order of the whole
path is preserved. Thus, first we formulate the problem as a mixed integer linear program
(MIP) and then justify our approach through an experimental study by showing that for
the application of drawing sketches for real-world driving directions our MIP yields good
results in reasonable time frames. The formulation of our MIP is similar to a MIP model for
drawing octilinear metro maps [153].

Modeling

Let (P, π) be a given embedded graph, and let d be a positive integer. Recall that for an
embedding π of P and an edge e of P we denote by απ(e) the direction of e in π. Besides
deciding whether I admits a valid d-schematization, we transform PSP into the following
optimization problem in order to find a valid d-schematization that is as similar to the input
path as possible.
Problem 3 (General-Path Schematization Problem) Given a simple and embedded path (P =

(V, E), π), an integer d ≥ 1, and a minimum length `min(e) for each e ∈ E, find a valid d-
schematization ρ such that

(i) for every edge e ∈ E the deviation of αρ(e) from απ(e) is minimal,

(ii) for every edge e ∈ E the length `(e) is at least a minimum length `min(e) > 0, and

(iii) the total length of the path ∑e∈E `(e) is minimized.

In the following, we introduce our MIP that solves Problem 3 optimally.

coordinate system . In order to handle the valid directions of each edge with respect
to Cd, we extend the standard Cartesian coordinate system to include one axis for every
direction contained in Cd similarly to [153]. Therefore, we introduce continuous variables
pos : V × Cd → R for every vertex and every possible direction. The value for each
coordinate axis γ ∈ Cd is then defined by pos(v, γ) = cos γ · x(v) + sin γ · y(v). Note,
that these are linear constraints, as the values of sin γ and cos γ are constants for fixed d.
Moreover, our coordinate system allows us to introduce binary variables dir : E× Cd →
{0, 1} for deciding whether in the output embedding ρ an edge e ∈ E is schematized
with direction γ ∈ Cd, namely, if and only if dir(e, γ) = 1. To enforce that every edge is
schematized according to exactly one direction γ ∈ Cd, we add ∑γ∈Cd

dir(e, γ) = 1 as a
constraint for every edge e ∈ E.

orthogonal order . To maintain the orthogonal order between all pairs of vertices
vi, vj ∈ V, we can make use of the following observation: Let v1 ≺ . . . ≺ vn be the input
sorted with respect to the x-coordinates of the vertices (with ties broken arbitrarily). Then we
introduce a linear number of orthogonal order constraints as follows. We set pos(vi, 0◦) ≤
pos(vi+1, 0◦) if xπ(vi) < xπ(vi+1) and pos(vi, 0◦) = pos(vi+1, 0◦) if xπ(vi) = xπ(vi+1).
Analogously, the same constraints are independently introduced for the y-coordinates of
the vertices and the values pos(v, 90◦) for all v ∈ V.
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Figure 4.17: Example where edge order is violated

edge directions and lengths . To ensure that every edge e ∈ E is embedded
according to the direction γ for which dir(e, γ) = 1 holds, we make use of our extended
coordinate system in the following way. The edge e = uv is embedded according to γ ∈ Cd
if and only if u and v have the same coordinate on both orthogonal axes γ + 90◦ and
γ + 270◦. Thus, for every e = uv ∈ E and every γ ∈ Cd we add the constraints pos(v, γ +

90◦)−pos(u, γ+ 90◦) ≤ M(1−dir(e, γ)) and pos(v, γ+ 270◦)−pos(u, γ+ 270◦) ≤ M(1−
dir(e, γ)). Here, M is a sufficiently large constant, which we choose to be the maximum
possible distance in our coordinate space. This has the effect that the constraints are trivially
satisfied for dir(e, γ) = 0 and that they enforce the correct direction for dir(e, γ) = 1.
Additionally, we set the minimum length for every edge by adding constraints pos(v, γ)−
pos(u, γ) ≥ −M(1− dir(e, γ)) + `min(e). Again, if M is sufficiently large, these constraints
are relevant only if dir(e, γ) = 1. In order to minimize the total path length, we define
variables len : E → R+

0 as an upper bound on the length of each edge e = uv ∈ E
by introducing for every γ ∈ Cd a constraint pos(v, γ) − pos(u, γ) ≤ len(e). Note that
minimizing len(e) through the objective function will result in tight upper bounds on the
actual edge lengths, i. e., len(e) = `(e).

To minimize the deviation of the schematized direction of every edge e ∈ E to its
input direction, we add continuous variables dev : E → R+

0 that represent the deviation
cost of e according to its embedding in ρ. We set dev(e) = ∑γ∈Cd

c(e, γ)dir(e, γ), where
c : E× Cd → R+

0 is some user-defined deviation cost function. In our implementation we
set c(e, γ) to the distance in terms of the number of directions in Cd between the selected
direction and the direction in Cd that is closest to the input direction απ(e).

edge order . Although the orthogonal order usually maintains the user’s mental map
appropriately, there can be cases where the orthogonal order alone is not sufficient. Consider
the example displayed in Figure 4.17. The path in Figure 4.17(b) is a valid d-schematization
of the input path for d = 4, but the order of the edges at vertex v has changed. For route
sketches this would mean that instead of a left turn, the schematized path depicts a right
turn. This is clearly undesirable. To avoid this problem we iterate over all inner-path vertices
and add constraints where necessary. For simplicity we disregard in the following the
orientation of the path’s edge and assume that each edge incident to a vertex is oriented
away from the vertex. First, observe that an edge e incident to a vertex v must lie, in every
valid d-schematization, in the same quadrant as in the input with respect to v. Hence,
to avoid the discussed problem it is sufficient to consider only those vertices where its
incident edges lie in the same quadrant. Now, consider an inner-path vertex v with incident
edges e1 and e2. Without loss of generality we assume that both edges lie in the first
quadrant (to v’s upper right) and e1 has, in the input, the larger direction. Then, for each
of smallest the d − 2 diagonal directions γ in the first quadrant we add the constraint
dir(e2, γ) ≤ ∑90◦≥γ′>γ dir(e1, γ′). Finally, since e2 must not be assigned the largest diagonal
direction we also require that dir(e2, 90◦/d · (d− 1)) = 0.

Further, to avoid overlapping of edges that are incident to the same vertex, we use a
similar approach. Note that for edges e1 and e2 incident to the same vertex v to overlap
both edges are either in the same quadrant with respect to v or in adjacent quadrants. For
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simplicity we assume again that for each vertex that we consider, both incident edges are
oriented away from it. If both edges lie in the same quadrant with respect to v, then the
constraints above already ensure that no overlap can occur. If the edges are in adjacent
quadrants with respect to v, then we only require dir(e1, γ) + dir(e2, γ) = 0 for the direction
γ ∈ Cd that is contained in both quadrants.

planarity. In the output embedding ρ, edges may be stretched and embedded with
directions different from the input embedding. Thus, we have to ensure that the output
embedding is still crossing-free. Hence, we introduce two types of planarity constraints.
First, for two adjacent edges ei = uv and ej = vw we observe that ei and ej only intersect, if
γ(ei) = γ(ej) + 180◦. Thus, for every pair of adjacent edges ei, ej and every γ ∈ Cd we add a
constraint dir(ei, γ) + dir(ej, γ + 180◦) ≤ 1.

For the remaining non-adjacent pairs of edges ei = uivi, ej = ujvj we make use of
the following observation. The edges ei and ej do not intersect if there is at least one
coordinate axis γ ∈ Cd according to which both uj and vj lie beyond ui and vi. Thus,
we introduce binary variables sep : E × E × Cd → {0, 1} selecting for each pair of non-
adjacent edges the axis γ for which the previous observation needs to be true. We can now
enforce planarity by adding four constraints for every pair ei, ej and every γ ∈ Cd. We set
pos(X, γ)− pos(Y, γ) ≥ −M(1− sep(ei, ej, γ)) + δ, where X ∈ {ui, vi}, Y ∈ {uj, vj}, and
δ ∈ R+

0 is a user-defined minimum distance to be kept between non-adjacent edge-pairs.
Note that this approach to enforce planarity requires O(|E|2) binary variables and con-

straints. However, in our experiments on real-world driving directions, we observe that
most of the planarity constraints seem to be unnecessary in the sense that the optimal
solution without planarity constraints already yields a crossing-free path. Thus, we may
add planarity constraints in a lazy fashion by an iterative process: We start by computing a
solution without planarity constraints. Then, we test whether the solution has any inter-
sections and add planarity constraints for these specific conflicting edge pairs. We then
recompute a solution with the new set of constraints until we finally obtain a crossing-free
embedding ρ.

objective function. Subject to all the constraints described above we minimize the
following objective function:

Minimize ∑
e∈E

dev(e) +
1
M ∑

e∈E
len(e).

Note that the coefficient 1/M ensures that our primary goal is to minimize the total angular
deviation as modeled by ∑e∈E dev(e), while minimizing the total path length becomes the
secondary goal.

4.7 experiments

In this section we give a brief experimental evaluation of both approaches we discussed in
Sections 4.5 and 4.6. For the MIP approach we generated 1, 000 shortest paths (with respect
to the travel time metric) in the German road network by selecting source and target vertices
uniformly at random. Although our approach requires planar input graphs and a quickest
path in a road network is not necessarily planar, we can simply planarize the input path
by adding for each intersection of the path a vertex at the intersection point. However, our
heuristic approach described in Section 4.5.2 can only handle simple input paths. Hence, we
generate a second data set that contains quickest paths without intersections. For the second
data set we again select source and target vertex in the German road network uniformly at
random, discard a path if it is self-intersecting, and stop when we have 1, 000 quickest paths
without self-intersections.
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The average number of vertices of a path is between 995.2 and 998.3 vertices for both data
sets, hence, a schematization would yield a route sketch with far too much detail. Therefore,
in a preprocessing step, we simplify each path using the Douglas-Peucker algorithm [72] but
keep all important vertices such as points of road category changes. Moreover, we shortcut
self-intersecting subpaths whose lengths are below a threshold. We set this threshold to
200m in our experiments. For the SPS algorithm we used the linear program described in
Section 4.5.1.2 to reduce the total path length of each axis-monotone path individually.

This is to remove over- or underpasses near slip roads of highways, which are considered
irrelevant for route sketches or would be depicted as an icon rather than a loop. Figure 4.18
illustrates an example of a route sketch obtained by our MIP and as comparison a route
sketch generated by the heuristic described in Section 4.5.2. It clearly illustrates how a
schematic route sketch, unlike the geographic map, is able to depict both high-detail and
low-detail parts of the route in a single picture.

We performed our experiments on a single core of an AMD Opteron 2218 processor
running Linux 2.6.34.10. The machine is clocked at 2.6 GHz, has 16 GiB of RAM and
2× 1 MiB of L2 cache. Our implementation is written in C++ and was compiled with
GCC 4.5.0 using optimization level 3. As MIP solver we use Gurobi 5.0.2.We performed our
experiments on a single core of an AMD Opteron 2218 processor running Linux 2.6.34.10.
The machine is clocked at 2.6 GHz, has 16 GiB of RAM and 2× 1 MiB of L2 cache. Our
implementation is written in C++ and was compiled with GCC 4.5.0 using optimization
level 3. As MIP solver we use Gurobi 5.0.2. We have published the source code as a proof
of concept implementation at http://i11www.iti.kit.edu/_media/projects/routesketch.
zip under the GPL 3.0 License2.

4.7.1 Case Study

Comparing Figures 4.18(c) and 4.18(d) indicates that using the parameter d = 2 for the
schematization process yields route sketches with a very high level of abstraction while
using d = 3 results in route sketches which approximates the overall shape of the route
much better. For example, the route sketch in Figure 4.18(c) seems to suggest that there is a
90◦ turn while driving on the highway but this is not the case. The route sketch depicted in
Figure 4.18(c) resembles the original route much better. Generally, we found that using the
parameter d = 3 yields route sketches with a high degree of readability. See Figure 4.18(d)
for an example.

For comparison, we show the output computed by the heuristic method described in
Section 4.5.2 in Figure 4.18(e). Recall that the heuristic subdivides a simple input path into
maximal axis-monotone subpaths that are subsequently merged into a single route sketch.
In order to avoid intersections of the bounding boxes of the monotone subpaths, additional
edges of appropriate length are inserted into the path; the orthogonal order is preserved
only within the monotone subpaths. This may lead to undesired effects in sketches of
non-monotone routes.

further examples . In Figures 4.19 and 4.20 are two example routes as displayed
in Bing Maps (a), simplified route determined by the Douglas-Peucker algorithm (b),
schematized by our MIP (c), and schematized by our SPS algorithm (d). Figure 4.19(d)
shows an example of where the SPS algorithm resolved the intersection between the
bounding boxes of both axis-monotone paths by adding a long horizontal path link edge.
In Figure 4.20 we observe little difference between the optimal solution computed by our
MIP and the solution obtained by the SPS algorithm. In this case no path link edge is
necessary. Note that in this example the path computed by the SPS algorithm is shorter

2 http://www.gnu.org/licenses/gpl-3.0

http://i11www.iti.kit.edu/_media/projects/routesketch.zip
http://i11www.iti.kit.edu/_media/projects/routesketch.zip
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Figure 4.18: A sample route from Bremen to Cuxhaven in Germany: (a) output of Bing
Maps, (b) simplified route after preprocessing, using ε = 2−4 (with manually
highlighted start and destination), (c) output of our MIP for d = 2 (time to
compute solution: 193 ms), (d) output of our MIP for d = 3 (time to compute
solution: 126 ms), and (e) output of the heuristic from Section 4.5 (time to
compute solution: 5.6 ms). Different colors depict different road categories.
Note that in contrast to our solution, details at the beginning and the end of
the route cannot be seen in the geographically accurate drawings.

than the path computed by the MIP. This is due to the orthogonal order that here requires
the grey horizontal line segment to have the same (or a larger) y-coordinate than the vertex
connecting the two yellow line segments in the destination area of Konstanz.

4.7.2 Experimental Evaluation

In this section we evaluate hard facts about two suggested approaches. We begin with the
mixed integer linear program.

mixed integer linear program . In the first experiment we examine the performance
of our MIP for d = 3 subject to the amount of detail of the route, as controlled by the
distance threshold ε between input and output path in the path simplification step. We
also set the threshold for removing self-intersecting subpaths to ε. Tables 4.1(a) and 4.1(c)
reports our experimental results for values of ε between 2−1 and 2−5.

For the first data set with decreasing ε, the lengths of the paths increase from 19.4
vertices to 30.6 vertices on average. This correlates with the running time of our MIP
which is between 141.77 ms and 373.96 ms for the instances. We observe that a value of
ε = 2−3 is a good compromise between computation time and amount of detail in practice.
Further, adding planarity constraints in a lazy fashion pays off since we need less than 1.14
iterations on average. Thus, most of the paths admit a planar schematization without any
planarity constraints at all. The number of infeasible instances, i. e., paths without a valid
3-schematization, is 0.4 %. Finally, there is very little difference between the results for the
first data set reported in Table 4.1(a) and for the second data set reported in Table 4.1(c).

The second experiment evaluates the performance of our MIP when using different values
of d, see Table 4.1(b) and Table 4.1(d). We fix ε = 2−3. While for rectilinear drawings with
d = 1 we need 32.62 ms to compute a solution, the running time increases to 723.84 ms
when using d = 5. Interestingly, more than half of the paths do not have a valid rectilinear
schematization. By allowing one additional diagonal direction (d = 2), the number of
infeasible instances significantly decreases to roughly 1.5 %. Adding further diagonal
directions, i. e., increasing d to a value larger than 2, does not seem to have a significant
impact on the percentage of infeasible instances. We observe that in terms of infeasible
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(a) Bing Maps (b) Simplified input

(c) MIP (d) SPS algorithm

Figure 4.19: Route from Bochum to Karlsruhe. Parameters used: ε = 2−4, and d = 3.
Time to compute solutions with MIP and SPS algorithm are 262ms and 5.8ms,
respectively.
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(a) Bing Maps (b) Simplified input

(c) MIP (d) SPS algorithm

Figure 4.20: Route from Karlsruhe to Konstanz. Parameters used: ε = 2−3 and d = 3. Time
to compute MIP solution: 262ms. Time to compute with heuristic: 5.23ms.
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Table 4.1: Results obtained by running 1, 000 random queries in the German road network
and schematizing the simplified paths with our MIP. The tables reports average
path lengths (number of vertices), percentage of infeasible instances, average
number of iterations, and average running times. The Tables (a) and (b) shows the
result for the data sets where self-intersecting input paths are planarized, while
Tables (c) and (d) shows the result for the data sets where input paths are non
self-intersecting.

ε ∼length % inf ∼iter ∼time [ms]

2−1 19.4 0.40 1.06 141.77

2−2 19.8 0.40 1.06 156.14

2−3 20.8 0.40 1.07 165.76

2−4 23.4 0.40 1.06 206.60

2−5 30.6 0.40 1.06 373.96

(a) Varying ε with d = 3 (intersections).

d % inf ∼iter ∼time [ms]

1 56.20 1.21 32.62

2 1.50 1.11 125.56

3 0.40 1.07 165.76

4 0.40 1.05 291.47

5 0.40 1.05 723.84

(b) Varying d with ε = 2−3 (intersections). The
average path length after simplifying with
is 20.8 vertices.

ε ∼length % inf ∼iter ∼time [ms]

2−1 19.3 0.00 1.05 132.29

2−2 19.7 0.00 1.05 142.73

2−3 20.7 0.00 1.05 155.69

2−4 23.2 0.00 1.05 186.04

2−5 30.4 0.00 1.05 358.77

(c) Varying ε with d = 3 (no intersections).

d % inf ∼iter ∼time [ms]

1 52.40 1.24 35.49

2 1.00 1.09 121.04

3 0.00 1.05 155.69

4 0.00 1.04 176.15

5 0.00 1.04 188.05

(d) Varying d with ε = 2−3 (no intersections).
The average path length after simplifying
with is 20.7 vertices.

instances and average number of iterations there is little difference between the two tested
data sets. However, the running time for d = 5 for the first data set is 723.84 ms while it is
only 188.05 ms for the second data set. This is most likely caused by more difficult instances
that are not included in the second data sets because of self-intersections.

It seems surprising that for d = 1 there roughly half of all paths in the evaluation do
not have a valid rectilinear schematization. This is due to the very limited schematization
options coupled with the constraints posed by maintaining the orthogonal order. There are
many examples of even very short paths which do not have a valid rectilinear schematization.
One such example is depicted in Figure 4.21. If the edge e1 is assigned direction 90◦, then all
vertices must share the same x-coordinate, but w must be below v which forces e1 and e2 to
overlap. Otherwise, if e1 is assigned 0◦, then all vertices must share the same y-coordinate.
By similar argumentation as before, the edges e1 and e2 must overlap yielding a non-valid
rectilinear schematization. Adding only one diagonal direction to the set C resolves this
problem. Hence, it seems that the problem of finding a valid schematization becomes
significantly easier when diagonal directions are permitted.

sps algorithm . Similar to the first experiment, in the third experiment we examine
the performance of our heuristic approach described in Section 4.5.2, the simple path
schematization (SPS) algorithm. Again, we set d = 3 and vary the value of ε. Note that
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Table 4.2: Results obtained by running 1, 000 simple paths obtained by random quickest
path queries in the German road network and schematizing the simplified paths
with our SPS algorithm. The table reports the average number of axis-monotone
paths per quickest path, the average number of added path link edges to the path,
the average part of the total path length that is contributed by the path link edges,
average percentage of vertex pairs for which the orthogonal order is maintained,
and average running time. We consider varying values for ε with d = 3.

∼mon. ∼add. ∼add. edge ∼orth.

ε path. edges length[%] order[%] ∼time [ms]

2−1 3.35 0.55 8.1 92.51 5.16

2−2 3.40 0.56 8.1 92.48 5.22

2−3 3.46 0.57 7.6 93.12 5.89

2−4 3.57 0.57 7.5 93.94 5.87

2−5 4.01 0.60 6.0 95.69 6.57

contrary to the MIP, which always computes an optimal solution (if there exists one),
for our heuristical approach there are no infeasible instances (given that the input paths
are simple). However, there are two possible problems by the output generated with
the algorithm. First, there is no guarantee that the orthogonal order of the input path is

e1

e2

u

v
w

Figure 4.21: Path that has
no valid recti-
linear schema-
tization.

preserved. Second, during the process we may need to add
several edges to the path. Hence, we report additionally
to average running time of the algorithm two parameters:
average percentage of vertex-pairs for which the orthogonal
order is violated and the average number of edges that is
added to the path. Table 4.2 reports our experimental results
for values of ε between 2−1 and 2−5.

We observe that with decreasing values of ε there is a slight
increase in the average number of monotone paths per quick-
est paths from 3.35 to 4.01. This correlates with a slight in-
crease in the average number of added path link edges by our
algorithm, which increases from 0.55 to 0.60. Note that this number may seem surpris-
ingly low since our algorithm adds at least two edges to connect two axis-monotone paths.
However, in our experimental analysis we observed that often the bounding boxes of the
axis-monotone paths do not overlap, which means the path link edges have length 0 and
thus we can omit them completely. On the other hand, we observe that if path link edges
are added that they contribute a non-negligible portion to the total path length (between 6%
and 8.1%). Further, we note that the number of vertex pairs for which the orthogonal order
is preserved also increases slightly with decreasing values of ε from 92.51% to 95.69%. This
is most likely due to the increased number of vertices in the input path which decreases the
effect of a single vertex that violates the orthogonal order of the input. Finally, we observe
that the running time also increases slightly with decreasing values of ε from 5.16 ms to
6.57 ms which is caused by the increased number of vertices in the input.

We have seen that with our MIP formulation, which guarantees an optimal result, we can
obtain good schematizations in a reasonable time frame. Further, the number of infeasible
instances (i.e., instances for which there exists no solution) is relatively small. If a fast
execution time is more important than optimality, the SPS algorithm presents a viable
alternative that produces good results, and in our experiments had an average running time
between 5 ms and 7 ms, while the MIP required for the same routes between 132.29 ms and
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Figure 4.22: Web interface for our algorithms. Background provided by Google Maps. The
route from “A” to “B” is from Enschede to Eindhoven.

358.77 ms. However, the SPS algorithm can only be used for simple input paths. Another
downside of the SPS algorithm is the proportion of the total path length that is contributed
by the path link edges. To avoid this it may be a good alternative to use an approach to
resolve conflicts that is not solely based on the bounding boxes of the axis-monotone paths.

4.7.3 Web Interface

While we conducted all experiments with a command line interface, this is for our applica-
tion not user-friendly at all. This is why we implemented (mainly done by student helper
Philipp Loewner) a web interface, i. e., a web server that provides a simple interface to
interact with the map and the algorithms. An example is depicted in Figure 4.22, where a
route from Enschede (NL) to Eindhoven (NL) is shown. The background tiles (i. e., the map)
are provided by Google Maps, while the computation of the shortest path, as well as the
remaining interface is provided by our program. The user can simply set a route by inter-
acting with the map as usual (dragging and zooming are supported operations by Google
Maps), and then use a left-click to determine start and destination on the map. The web
server then immediately computes a shortest path by using Dijkstra’s algorithm [61], and
displays it on the map. In the right column there are several options for the user to modify
the resulting schematization. The value of epsilon influences the degree of simplification
(this is the ε used for the Douglas-Peucker algorithm), and the angle is the smallest non-zero
angle that is permissible as edge direction, i. e., the value of angle is 90◦/d. For the web
interface we also have an option called maintain length order. When activated it ensures that
no edge in the final output embedding can be longer than another edge if it was not already
longer in the input embedding. This might lead to more visually appealing results. When
clicking Schematize route the MIP is started and the output is generated (the web interface
can also produce the output generated by the SPS algorithm).

4.8 conclusion

Motivated by drawing route sketches in road networks, we studied the problem of d-regular
schematization of embedded paths (PSP). In our problem definition we aimed for two
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main goals: In order to preserve the user’s mental map we used the concept of orthogonal
order, and to reduce the visual complexity we restricted the valid edge directions to integer
multiples of (90/d)◦. We analyzed the complexity of the problem and showed that PSP is
NP-complete for d ≥ 2. In combination with a previous result of Brandes and Pampel [36,
37] it follows that PSP is NP-complete for every integer d ≥ 1. Unfortunately, our proof
does not work anymore when the input points are in general position. This is in contrast
to the proof by Brandes and Pampel. Hence, the complexity of the Path Schematization
Problem for d > 1 when all input points are in general position is open, but in general the
problem is NP-complete.

Nonetheless, we presented two approaches to generate route sketches. The first one is a
polynomial-time algorithm that computes for axis-monotone paths and arbitrary integer d
a valid d-schematization with minimum schematization cost, for any d. We used this
algorithm to derive a heuristic to generate d-schematizations for arbitrary simple paths. An
experimental evaluation showed that this approach can very quickly generate outputs with
only limited violations of the orthogonal order. However, it is restricted to simple input
paths. Our second practical approach to generate route sketches uses mixed integer linear
programming (MIP). To generate readable drawings, we minimized the total path length
in the objective function of our MIP while ensuring a certain minimum length for each
individual edge. Finally, we conducted an experimental evaluation on real-world data in
the German road network for both approaches. They revealed that we are indeed able to
compute visually appealing solutions of the PSP within approximately 1 sec for reasonable
values of d ≤ 5.

Although maintaining the orthogonal order of the vertices is a common way to preserve
the mental map of the user, the orthogonal order has some downsides. It makes it difficult
to find valid schematizations (it is NP-complete to decide whether or not a path has a
schematization that maintains the orthogonal order) and sometimes the orthogonal order
prohibits schematizations which appear to be sensible. To overcome this problem it might
make sense to investigate relaxed variants of the orthogonal order, in which a vertex only
affects vertices that are “close” to it. Thus, the orthogonal order is locally maintained, which
might be sufficient to preserve a global mental map. Since we use the orthogonal order
only for maintaining the mental map, an interesting direction is to study alternative ways to
model mental map preservation.





5
C O L U M N - B A S E D G R A P H L AY O U T S

We consider orthogonal upward drawings of directed acyclic graphs with nodes of uniform
width but node-specific height. One way to draw such graphs is to use a layering technique
as provided by the Sugiyama framework [175]. To overcome one of the drawbacks of
the Sugiyama Framework, namely, unnecessary edge crossings caused by an unfortunate
layer assignment of the nodes, Chimani et al. integrated their layer-free upward crossing
minimization algorithm [55] into the Sugiyama framework [56]. However, one drawback of
the Sugiyama framework still remains. If the heights of the nodes are non-uniform, the result
of the approach can be a non-compact layout. In contrast, we avoid both of these drawbacks
by integrating layer-free upward crossing minimization into the topology-shape-metrics
(TSM) framework introduced by Tamassia [177]. Our approach, in combination with an
algorithm by Biedl and Kant [28] lets us generate column-based layouts, i. e., layouts where
the plane is divided into uniform-width columns and every node is assigned to a column.

We study the complexity of the individual steps of the layout process systematically
and propose efficient algorithms with provable guarantees. We show that our column-
based approach allows generating visually appealing, compact layouts with few edge
crossing and at most four bends per edge. Furthermore, the resulting layouts exhibit a high
degree of symmetry and implicitly support edge bundling. We justify our approach by an
experimental evaluation based on real-world examples.

This chapter is based on joint work with Gregor Betz, Christof Mathies, Ignaz Rutter, and
Dorothea Wagner. Preliminary results have been published in [27, 26, 71].

5.1 introduction

One of the most well-known approaches for drawing directed acyclic graphs (DAGs) is
the Sugiyama framework [175]. It consists of three steps, each of which can be solved
individually: (i) layer assignment, (ii) determining relative positions within each layer to
reduce edge crossings and (iii) positioning the vertices and edges. In the first step, the
nodes are assigned to layers such that the target of each edge is in a layer above its source.
The second step reduces the number of edge crossings by changing the order of the nodes
within each layer. Finally, coordinates are assigned to the nodes as well as to bend-points of
the edges.

The Sugiyama framework suffers mainly from two drawbacks. First, computing an
unfortunate layering of the nodes in step (i) can enforce many crossings in step (ii) which
would not be necessary if another layering was chosen. Second, when applied for drawing
graphs where the nodes are depicted as two-dimensional shapes (e. g., rectangles), a single
node with large height can lead to non-compact layouts due to the way layers are defined;
see Figure 5.1(a) for an example. One approach that resolves the first problem is the
layer-free upward crossing minimization approach by Chimani et al. [55]. However, its
integration into the Sugiyama framework [56] leaves the second problem.

The motivation for the problems investigated in this paper stems from the application
Argunet [166] that is used to create, display, and edit so called argument maps. Argument

55
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(a) A layer-based layout (computed by yEd). (b) A column-based layout (our approach).

Figure 5.1: A layer-based layout and a column-based layout of the same graph.

maps are used to visualize the structure of debates or argumentational analyses [48], and
usually depicted as directed graphs with nodes of uniform width but node-specific height.
Thus, we focus on orthogonal upward drawings of DAGs whose nodes are represented
as rectangular boxes of uniform width. Graph drawing with given node sizes has been
explored by Di Battista et al. [65]; they consider planar graphs with a fixed embedding
and arbitrary node sizes. We deal with non-planar graphs without a given topology but
with the restriction that the nodes have uniform width. For minimizing the number of
crossings we use the algorithm by Chimani et al. [55] but, instead of integrating it into
the Sugiyama framework [56], we integrate it into topology-shape-metrics framework (TSM)
invented by Tamassia [177]. The TSM framework can be seen as a three-phase-method for
orthogonal graph drawing: (i) fixing a planar embedding, (ii) computing an orthogonal
description and (iii) compaction of the layout and coordinate assignment.

The integration of layer-free upward crossing minimization into the TSM framework lets
us construct column-based graph layouts. In a column-based layout the plane is divided into column-based graph

layoutsdisjoint columns of uniform width that corresponds to the uniform width of the boxes.
The boxes and edges are then assigned to these columns. Thereby, vertical edge segments
always run within a column, whereas horizontal edge segments may span several columns.
Due to the columns the final layouts have a clear look, which is exemplified in Figure 5.1(b).
The same graph with a layer-based layout computed by the graph editor yEd is shown in
Figure 5.1(a).

However, our approach differs from the usual TSM based approach in one important
detail. While we compute in the first step the topology, we relax it already in the second
step and consider only the left-to-right order of each node’s outgoing edges and disregard
crossing dummy nodes. Because of the relaxation of the topology, the final layout can have
a higher number of crossings than the topology computed in the first step. However, this
allows us to better optimize the vertical edge length in order to obtain more compact layouts.
Thus, by relaxing the topology, we increase the significance of minimizing the number of
bends and the total edge length as opposed to minimizing the number of edge crossings.
This is reasonable since it has been established that crossings where edges cross at large
angles (in this case right angle crossings) are only a minor obstacle for humans to understand
the relationship between nodes in graphs [119].

We consider the following drawing style for our graph layouts: The drawings we generate
are orthogonal drawings of DAGs whose nodes are represented by boxes of uniform width
and individually prescribed heights. We require that edges leave their sources at the bottom
and enter their targets at the top, and we further require that each edge is a monotonic
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sbox
box

(a) Spacing between boxes.

sedge
box

(b) Spacing between an edge and a box.

sport
corner

(c) Spacing between the ports of a box
and its corners.

sedge
edgeŝedge

edge

(d) Spacing between two edges.

Figure 5.2: Illustration of the five types of spacing constraints.

downward polyline (we call the points where the edges enter/leave the boxes ports). Weports

refer to such a drawing as an upward drawing. Note that upward drawings usually requires
strict monotonicity, we however, lessen this restriction in this chapter to simple monotonicity,
thus allowing also horizontal segments on the edges. We also include minimum spacing
constraints that ensure that there is a minimum space between two boxes, a box and an edge,minimum spacing

constraints and between ports and corners of boxes, respectively. We denote the values of these space
constraints by sbox

box, sedge
box , and sport

corner, respectively. We allow to specify two different spacing
constraints for the case of two parallel edge segments: one for the distance between two
edge segments whose edges have a common source or target and one for the remaining
cases. We denote the former by sedge

edge and the latter by ŝedge
edge. By using these two different

minimum spacings we enable edge bundling. For an illustration of the different types of
minimum spacing constraints see Figure 5.2.

Besides the mentioned drawing style, our approach guarantees certain properties that are
aimed at creating visually appealing drawings. When looking at a single box of the layout,
it is important that its predecessors can be found quickly. In order to give them a unifying
look, we want as many predecessors as possible of each box to be vertically aligned at their
bottom, which is similar to the requirement for an approach for layered graph drawing
by Brandes and Köpf [35]. Additionally, we show how to assign nodes into columns such
that, for each node v, its assigned column is the median of the columns assigned to the
incoming edges of v as well as the median of its outgoing edges. We call this property local
symmetry. Local symmetry makes it easy to identify a node’s predecessors and successors,
and provides well-structured looking layouts. Finally, we guarantee that each edge of the
resulting layout will have at most four bends.

While satisfying these properties, we optimize the following three criteria, which are
frequently employed as optimization goals in graph drawing [66]: (i) minimize the number
of edge crossings, (ii) minimize the number of bends and (iii) minimize total edge length.

A different approach to generate drawings of graphs that can be used to produce hi-
erarchical or layered layouts is constrained graph layout [114], which is a general approach
for drawing graphs. An input to constrained graph layout consists of the graph, a set of
constraints for the coordinates of the vertices, and as third parameter suggested values
for the variables corresponding to the coordinates of the vertices [75]. Constraints on the
coordinates of the vertices can be used to model requirements similar to those we have for
the drawings in this paper (e. g., minimum spacing constraints, columns). There have been
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several practical applications based on this general approach to layout different kind of
graphs, e. g., dynamic biological networks [168], or engineering diagrams [74].

We note that, although our motivation stems from generating layouts for argument maps,
our approach appears to be applicable to other kinds of diagrams such as the UML class
diagrams. UML class diagrams depict the internal structure of a software system and are
used extensively in software engineering [32]. A UML class diagrams has for each class a
node, which is depicted as a box with height that usually depends on the number variables
and methods of the class. Each class node may have an individual prescribed width, but it
is not unreasonable to set a uniform value for the width of all boxes (which we require for
our approach to work).

There have been several approaches to automatically layout UML diagrams already.
However, they are mainly an adaption of layering approaches [169, 79], and thus may suffer
from the same problems all such layered drawings may suffer. However, Eiglsperger et
al. [80] propose two algorithms, both based on the TSM framework, to draw UML class
diagrams with orthogonal edges. They generate a mixed-upward planarization of the input
graph. For their algorithm they do not need to restrict the width of the boxes to some
uniform value which is necessary for our approach to work.

We note that our approach does not directly support the drawing of UML class diagrams
as there additional requirements compared to argument maps, (e. g., labeling of edges,
hyperedges). Including these requirements might be an interesting problem for further
research.

contribution and outline . Our main result is an algorithmic approach to generate
column-based graph layouts for directed acyclic graphs. This approach is based on the
topology-shape-metric framework and utilizes Chimani et al.’s layer-free upward crossing
minimization. Contrary to the standard approach of the TSM framework, we do not fix
the topology computed in the first step but use it only as a basis for computing a column-
assignment of the nodes in the second step. In the last step we only use this column
assignment and ignore the topology from the first step. This lets us focus on optimizing
other criteria than the number of edge crossings.

Note that we use the “upward” terminology throughout this chapter, because it is estab-
lished in the graph drawing community. Nevertheless, since this drawing style originates
from a particular application—which requires that all edges are directed downwards—all
figures in this work have downward directed edges.

The remainder of the chapter is structured as follows. In the next section we give a short
introduction to the TSM framework and our approach. Sections 5.3–5.5 are structured along
the TSM framework. In these sections we present our complexity results and give a detailed
description of the algorithmic approaches we use in each step of the framework. Finally, in
Section 5.6, we present a brief experimental evaluation of our approach.

5.2 preliminaries

The TSM framework consists of the three basic steps topology, shape, and metrics. In the first TSM

step an embedding of the input graph is computed with the goal of minimizing the number
of crossings in the final layout. For non-planar graphs, crossings are replaced by dummy
nodes of degree 4, which we refer to as crossing dummies. The planarization together with
its embedding is called topology. Generally, the topology is fixed throughout the remaining
steps of the algorithm. In the second step, the shape of the final layout is optimized with
respect to the fixed topology. The shape is the assignment of bends to edges (and the
angles of these bends). Usually, the goal of this step is to minimize the number of bends.
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Finally, in the step metrics, the edge lengths, the node dimensions, and the node positions
are determined.

Our approach to compute column-based graph layouts is based on the TSM framework.
This lets us split the problem of generating a graph layout into smaller subproblems and
either solve them optimally or apply heuristics if they are NP-hard. In the topology step,
we minimize the number of crossings while enforcing that all edges are directed upwards.
The result of this step is a so-called upward planar representation, which prescribes the
left-to-right order of the edges incident to each node separately for in- and outgoing edges.
During the shape computation we build upon this upward planar representation in order
to compute a column assignment of the nodes and edges, i. e., we divide the plane into
disjoint columns of uniform width and assign each node and each edge to a column. The
column assignment induces four different properties—namely local symmetry, orthogonal
edges, at most four bends per edge, and the port distribution. In the last step of the
topology-shape-metrics-framework we only rely on the column assignment computed in the
second step to compute the final coordinates of the boxes and edge bends. Our approach
here differs to the common usage of the topology-shape-metrics-framework in that we do
not fix the topology computed in the first step. We found out that during the shape and
metrics phase, minor changes to the topology can improve the aesthetics of the final layout.
This lets us assign higher significance to bend and total edge length minimization than in
usual applications of this framework.

The main result of this chapter is stated in the following theorem.
Theorem 5.1 For a given connected directed acyclic graph G = (V, A) a locally-symmetric,
column-based layout with at most four bends per edge can be computed in O(|A|3|V|) time and
O(|A||V|2) space.

In the next sections we study the complexity of each step and give detailed descriptions our
algorithmic approaches. Combining the main theorems of each section proves Theorem 5.1.

5.3 topology

In this section we deal with the first step of the TSM framework, which aims to find a
topology of the input graph with few crossings. Before we come to the main part of the
topology-step, we conduct a preliminary step in which the input graph G = (V, A) (which is
directed and acyclic) is transformed into an s-t-graph Ĝ = (V̂, Â). An s-t-graph is a directeds-t-graph

graph having a single source and a single sink. The transformation is done by adding a
super source ŝ and a super sink t̂ to G and connecting them with all of its original sources
and sinks, respectively. In the end, when converting the layout of Ĝ to G, we simply omit ŝ
and t̂ as well as all their incident edges. Note that for the algorithm by Chimani et al. [55],
which our approach is based on, it is sufficient to consider s-T-graphs (which in contrast
to s-t-graphs may have several sinks). The reason why we consider s-t-graphs instead is
due to the special requirement of layouting argument maps that there are no nodes placed
above sources and below sinks. We refer to this as the free sources/sinks property. For otherfree sources/sinks

applications, this requirement can be ignored, possibly resulting in more compact layouts.
While planarity of arbitrary graphs can be tested efficiently, testing upward planarity

is NP-complete for general graphs [94]. Therefore, upward crossing minimization is NP-
complete as well. However, for s-t-graphs, the test for upward planarity can be done in
polynomial time [24], and thus upward crossing minimization might be efficiently solvable
for s-t-graphs. We refer to this problem as s-t-Upward Crossing Minimization. However,
there is an easy reduction from Bipartite Crossing Number to s-t-Upward Crossing

Minimization, which is a minor modification of the original NP-hardness proof by Garey
and Johnson [92] that showed hardness of Bipartite Crossing Number. The problem
Bipartite Crossing Number is known under a variety of names. Eades et al. refer to it
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as Left Optimal Drawing [77] and it is also often denoted by 2-Layer Straight Line

Crossing Minimization [125, 142].
Theorem 5.2 ([92]) s-t-Upward Crossing Minimization is NP-hard.

Layer-free Upward Crossing Minimization

In this section we describe our algorithmic approach to finding a topology of our modified
input graph Ĝ. Note that Ĝ may be non-planar and, thus, we cannot directly compute an
upward planar embedding.

Since we know that s-t-Upward Crossing Minimization is NP-complete, we cannot hope
to find an efficient algorithm that solves s-t-Upward Crossing Minimization, unless P =

NP. We are nevertheless interested in finding some reasonably good solution to the problem.
For this we now describe an algorithm for which we cannot give any quality guarantee.
We build on an algorithmic approach called “layer-free upward crossing minimization" by
Chimani et al. [55]. They developed an upward crossing minimization method that works
without a prescribed layer assignment of the nodes. Their approach is based upon two steps:
(i) Find a large subgraph U = (V̂, A′) of Ĝ = (V̂, Â) that is upward planar and feasible, i. e.,
the deleted edges can be reinserted such that the resulting drawing is an upward drawing.
(ii) Reinsert the deleted edges one by one. For each edge insertion at first a crossing-minimal
reinsertion is conducted. However, a crossing-minimal reinsertion of an edge can prohibit
the reinsertion of the remaining edges in an upward planar way. In this case, the reinsertion
is undone and the edge is reinserted using a simple heuristic. Note that when reinserting
edges, we do not count the crossings with edges incident to ŝ or t̂ since these edges are only
used for technical reasons.

After applying this algorithm we obtain an upward planar representation of the input upward planar
representationgraph. An upward planar representation (U , Γ) of a DAG G is an upward planar graph

U = (VU , AU ) together with an upward planar embedding Γ of U . Crossings in the original
graph have been replaced by crossing dummies.

the algorithm . We omit details regarding the algorithm for computing a feasible
upward planar representation by Chimani et al. but give only a sketch of the approach. For
details we refer the reader to the work by Chimani et al. [55].

To obtain the upward planar representation, we first compute a feasible upward planar
subgraph U = (V̂, A′) of Ĝ = (V̂, Â) that contains all edges incident to ŝ and t̂ and an
upward planar embedding Γ of U such that ŝ and t̂ are on the outer face. This is required for
the free sources/sink property of the resulting layout. We start with U containing only the
incident edges of ŝ and t̂. The neighbors of ŝ, ŝ itself and t̂ are marked as visited. Afterwards,
we start directed depth first searches at all neighbours of ŝ. We add the encountered edges
to U if the target has not been marked as visited yet.

Note that, by construction, the subgraph U must be an upward planar s-T-graph. Com-
bining this insight with the Feasibility Lemma [55, Lemma 3.6], leads to the conclusion that
U is a feasible upward planar subgraph of Ĝ.

After computing the intermediate feasible upward planar subgraph U, we try to increase
the number of edges U contains. To this end, we try to add the edges of Â that are not in
U one by one and check after each insertion whether it remains a feasible upward planar
subgraph. If this check fails we undo the insertion and postpone inserting the edge to
the second phase. In the second phase of this approach, we compute the upward planar
representation (U , Γ) of Ĝ. We begin by setting U = U. Then, we add the edges of Â
that are in Ĝ but have not yet been added to U . In this step also the crossing dummies
are inserted to U . As in [55] we reinsert the missing edges in a crossing minimal way. If
reinserting an edge in a crossing minimal way leads to an embedding which prohibits
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inserting all remaining edges in an upward planar way, we remove the edge and use a
heuristic proposed by Chimani et al. to insert this edge. This heuristic guarantees a valid
upward planar embedding but may produce more crossings.

The algorithm that computes a subgraph that is upward and feasible requires O(|Â|2)
time. The algorithm for crossing minimal insertion of an edge ai requires O(|V̂|+ r) time,
where r is the number of edges that have to be inserted after ai, whereas the heuristic
requires O(|V̂|2 + r|V̂|) time. The value of r is in O(|Â|2) since per insertion step at
most O(|Â|) edges (along with O(|Â|) dummy nodes) can be inserted. We need to repeat
the insertion step O(|Â|) times, hence the worst-case running time is O(|Â|3 · |V̂|). We
summarize the results in the following theorem.
Theorem 5.3 The above algorithm computes the upward planar representation of an s-t-graph Ĝ =

(V̂, Â) in O(|Â|3 · |V̂|) time.
Chimani et al. suggest to randomize the algorithm for the computation of the feasible

upward planar subgraph by changing the order in which the edges are considered during
the depth first searches, and the order in which the remaining edges are reinserted. Among
several runs the crossing minimal upward planar representation is chosen as the overall
result. We will take up this idea in the evaluation of our algorithm in Section 5.6.

5.4 shape

In this section we explain the second step of the topology-shape-metrics framework, i. e.,
how to compute the shape of a layout for a given upward planar representation (U , Γ) of Ĝ.
In this context, shape describes the number of bends on each edge and their bend directions.

The algorithm we present takes up the idea of Biedl and Kant on how to draw a graph
with few bends in linear time [28] and adapts it to orthogonal upward drawings with at
most four bends per edge. This approach leads to column-based drawings. Since there are
at most four bends per edge and ports are at the bottom and the top of the source and
target, respectively, an edge can have at most three vertical segments. The column of the first
(last) vertical segment is already determined by the column assigned to the source (target,
respectively). The position of the middle vertical segment is determined by assigning it
to some column. A column assignment of a DAG G = (V, A) is a mapping col : V ∪ A→ Zcolumn assignment

that assigns each node v ∈ V and each edge e ∈ A a column.
Note that a column assignment already induces the shape, i. e., which edges contain

bends in which direction. In the metrics step we will realize the column assignment, i. e.,
we compute a layout that respects the column assignment. Let L be a valid layout of a
DAG G = (V, A), i. e., L satisfies the local symmetry and four bends per edge constraints.
Layout L is a realization of a column assignment col, if we can divide the plane into disjoint
columns of uniform width and number the columns from left to right such that each
node v ∈ V and each vertical edge e ∈ A is positioned within column col(v) and col(e),
respectively.

Our algorithm positions the nodes beginning from the topmost node to the bottommost
node. Hence, we require an order of the nodes for our algorithm that ensures that when
placing a node that all its predecessors have been placed already. To do this we can simply
compute a topological order for all vertices beginning with ŝ. This can be done in linear
time.

Now, the column assignment algorithm works as follows: The nodes of Ĝ are treated
according to the computed topological order given by ŝ = v0, . . . , vn+1 = t̂. Thus, the
algorithm that computes the column assignment starts with the super source ŝ and assign it
to column 0. Afterwards, we assign the outgoing edges of ŝ according to the left-to-right
order prescribed by (U , Γ) such that they are distributed evenly to the left and right of
column 0 without introducing gaps.
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Algorithmus 1 : 4-Bend Column Assignment

Input : Graph Ĝ, Upward planar representation (U , Γ),
topological order v0, . . . , vn−1 of the nodes of Ĝ

Output : Column assignment for each node and each edge of Ĝ

1 col(v0) = 0
2 For i from 1 to n− 1 do
3 I ← column indices assigned to incoming edges of vi
4 m← median of I
5 col(vi)← m
6 shiftLeft(Ĝ, m, bout-degree(vi)/2c)
7 shiftRight(Ĝ, m, b(out-degree(vi)− 1)/2c)
8 j← m− bout-degree(vi)/2c
9 For outgoing edge e of vi from left to right according to (U , Γ) do

10 col(e)← j
11 j← j + 1

The invariant of our algorithm is that, when processing vertex vi, all incoming edges
of vi are already assigned to columns. Then we assign vi to column m—the column of
the median incoming edge—and assign the outgoing edges of vi to columns according to
their left-to-right order induced by (U , Γ). However, the columns to the left and right of m
are possibly already occupied by other edges. Therefore, we shift all columns left (right)
of m to the left (right) such that there are out-degree(vi)− 1 empty columns to which the
outgoing edges of vi can be assigned, according to the left-to-right order prescribed by the
upward planar representation (U , Γ). For a pseudo-code description of this algorithm see
Algorithm 1. We now prove that the column assignment computed by our algorithm is
realizable.
Theorem 5.4 The above algorithm computes a realizable column assignment for a given DAG
Ĝ = (V̂, Â) in O(|Â|) time and space.

Proof. A layout of Ĝ can be constructed inductively during the execution of our shape
algorithm. Since the x-coordinates are fixed by the column assignment, we only need to
deal with the y-coordinates.

Initially, we set the y-coordinate of ŝ to 0 and draw the first vertical and horizontal
segments belonging to the outgoing edges of ŝ as high as possible. When treating vi, we
draw the middle vertical segments of all incoming edges of vi such that they reach farther
down than any other edge or box in the intermediate layout. Then we append the second
horizontal segments of these edges and position the box vi. Afterwards, we draw the first
vertical and horizontal segment of the outgoing edges of vi as high as possible. Thus, no
box can be intersected by an edge, and hence, this approach always yields a valid layout.

Since we assign nodes and edges to columns, each edge can contain at most two horizontal
edge segments—one spanning from the source’s column to the edge’s column and one
spanning from the edge’s column to the target’s column. Thus, there are at most four
bends per edge. Furthermore, the shape algorithm positions the nodes and edges such that
incoming and outgoing edges of each node vi are symmetrically distributed to the columns
left and right of the column assigned to vi. Thus, the layout satisfies the local symmetry
property.

We now turn towards the runtime analysis. The algorithm that computes the topological
order of the nodes in U runs in linear time. The time complexity of the shape algorithm
itself depends on the implementation of the two methods shiftleft and shiftright that
shift the already existing columns to the left or to the right. These methods are called
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|VU | times in total. Biedl and Kant suggest an approach that yields an overall runtime of
O(|V̂|) [28]. They represent the columns by a doubly linked list. Each box and edge has a
pointer to the column to which it is assigned. Since the position at which the new columns
are going to be inserted are known shiftleft and shiftright can then be implemented to
run in constant time. We also need to compute the median m of the incoming edges for a
node. This can be done in O(in-degree(vi)) time [30]. We sum up over all iterations:

n−1

∑
i=0

in-degree(vi) = |Â|

Thus, the shape algorithm can be implemented as an O(|V̂|+ |Â|) = O(|Â|)-algorithm.
Of course, we need O(|V̂|+ |Â|) space in order to store the assigned columns. Addition-

ally, we need O(|Â|) space in order to store the doubly linked listed that represents the
columns. Thus, in total the shape algorithm needs O(|V̂|+ |Â|+ |Â|) = O(|Â|) space. �

Note that if the upward planar representation (U , Γ) contains no crossing dummies, then
the realization constructed in the proof of Theorem 5.4 is upward planar as well.
Observation 5.1 The realizations of the column assignments of an upward planar representa-
tion (U , Γ) that contains no crossing dummies are upward planar layouts.

As we already have mentioned, during the construction of the column assignment, we
only respect the left-to-right order of the outgoing edges at each node of Ĝ that is prescribed
by (U , Γ). We do not consider the crossing dummies in U . Thereby, we relax the topology
that we computed in the first step. Because of the relaxation of the topology, the final layout
can have a higher number of crossings than the topology. On the other hand, this lets us
focus on producing more compact layouts. Since we still maintain parts of the result of
the first step, which minimized the number of crossings, we expect only a small increase
in the number of crossings. Moreover, the crossings in our drawings are only right-angle
crossings, and thus do not hinder readability that much.

5.5 metrics

In the last phase of the approach, we compute the final coordinates of boxes and edges
while minimizing the total edge length. The topology that we originally computed in the
first step has no direct influence anymore. Instead, we only rely on the column assignment
computed by the shape algorithm.

The metrics step consists mainly of two substeps. First, we focus on minimizing the
vertical edge length. Since we can show that this problem is NP-complete, we suggest a
simple heuristic in order to solve it. Afterwards, we minimize the horizontal edge length.
Note that all operations are performed with respect to the columns so that the final result is
a column-based layout.

5.5.1 Vertical Edge Length Minimization

We begin by showing that finding a realization of a column-assignment with minimum total
vertical edge length (or, equivalently, minimum total height) is NP-complete. Since we are
still interested in finding a solution (albeit possibly a not optimal solution) we propose after
the NP-completeness proof a simple greedy heuristic to tackle this problem.

5.5.1.1 Computational Complexity

We call the problem of finding a realization of a column assignment with minimum total
vertical edge length the Vertical Edge Length Minimization problem. The formal
definition of the problem is as follows.
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Instance: An s-t-graph Ĝ = (V̂, Â), a column assignment for each node in V̂ and each edge
in Â, a set of spacing constraints and an integer k ≥ 0.
Question: Is it possible to assign y-coordinates to the boxes and edge bends of Ĝ such that
the resulting layout is valid and the total vertical edge length is at most k?

We prove NP-completeness of Vertical Edge Length Minimization by reduction from
3-Partition, which is defined as follows [91].

Instance: A finite set A = {a1, . . . , a3m} of 3m elements, a bound B ∈ Z+ and a “size"
s(a) ∈ Z+ for each a ∈ A, such that each s(a) satisfies B/4 < s(a) < B/2 and such that the
equation ∑a∈A s(a) = mB holds.
Question: Can A be partitioned into m disjoint sets S1, S2, . . . , Sm such that for 1 ≤ i ≤ m
the equation ∑a∈Si

s(a) = B holds? (Note that the above constraints on the item sizes imply
that every such Si must contain exactly three elements from A.)

Garey and Johnson proved that this problem is NP-complete in the strong sense. This
means that 3-Partition remains NP-complete if the numeric values encoded in the input
data are polynomially bounded by the length of the input.

In the following, we describe how to transform a 3-Partition instance to a Vertical

Edge Length Minimization instance. This means we need to describe how to construct an
s-t-graph and a corresponding column assignment of all vertices and edges of the s-t-graph
in polynomial-time such that a solution of Vertical Edge Length Minimization of this
instance induces a solution of 3-Partition.

The key idea behind our reduction is to use a single column that we divide into m areas,
which we call cells, and we want that the each of the m cells corresponds to one of the
m sets in a solution to a 3-Partition instance. The elements in A are represented in our
reduction by nodes in the same column as the cells and whose heights is their “size” in the
3-Partition instance. Ultimately, we want that in an optimal solution of Vertical Edge

Length Minimization (in our reduction) from a 3-Partition instance I there are exactly
three nodes in each cell whose heights add up to exactly B if and only if I is a Yes-instance.

H

c1 c2

ai

aj

a`

B

B cell

separating edges

Figure 5.3: Sketch of the
cells.

For ease of argumentation we set all minimum spacing con-
straints to 0, but we note that the reduction itself does not
strictly require that all minimum spacing constraints are 0, and
only minor modifications are necessary for the reduction still
to work for arbitrary spacing constraints. However, setting the
minimum spacings constraints to 0 has the unfortunate side-
effect that the drawings are not visually appealing. For the
figures in this section we assume that all minimum spacing
constraints are set to a small positive value.

In our reduction all nodes are placed within |A|+ 3 adjacent
columns, which we denote by c1, . . . , c|A|+3. All cells will be
inside column c2. Unless stated otherwise, nodes in our graph
have the same height h, where h is a small but fixed value.

We now discuss the construction of the cells. For each cell
we add two nodes with height B to our graph, one assigned to
column c1 and one assigned to the rightmost column c|A|+3 (we
need the columns between c1 and c|A|+3 for additional nodes,
which we describe later). For the i-th cell we denote the node placed in column c1 by `i, and
the node placed in column c|A|+3 by ri. Now, we divide column c2 by adding a directed
edge (`i, ri+1) for every i, 0 ≤ i ≤ m + 1. We call these edges separating edges; for a sketch
see Figures 5.3 and 5.4. Note that we require nodes `i and ri for i = 0, . . . , m + 1 in order to
achieve that each of the m cell is bounded by a separating edge from above and from below.
Finally, we connect the nodes `0, . . . , `m+1 such that they form a directed path from `0 to
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Figure 5.4: Sketch of the Hardness Proof

`m+1 and do the same for the nodes r0, . . . , rm+1. Since the topmost and bottommost nodes
of each path do not themselves span a cell, we set their heights to h.

For each ai ∈ A we add a node vi, which we refer to as element node, with height s(ai) to
our graph. Since the cells are meant to correspond to the sets in the 3-Partition instance,
we must be able to position any of the element nodes vi in any of the cells. On the other
hand, we must be sure that placing a node outside of the cells increases the total vertical
edge length. To ensure this we make use of anchor nodes. For each element node vi we
add two anchor nodes, a top anchor ti and a bottom anchor bi, both assigned to column ci+2,
along with directed edges (ti, vi) and (vi, bi) to our graph. To ensure that the anchor nodes
themselves stay above/below the cells we add for each top anchor ti a directed edge (ti, r1)

and for each bottom anchor a directed edge (`m, bi).
Since the top (bottom) anchors stay above (below) the cells, moving the element nodes

upwards or downwards is cost neutral, because the sum of the vertical edge lengths on the
two edges incident to the anchors remains unchanged. Further, note that there are no edges
between the different element nodes, i. e., their vertical ordering is not constrained. Since
a element node vi has height s(ai), finding three nodes whose total height sums up to B
means we can place them in the same cell without increasing the total vertical edge length.

We are nearly finished with the construction of our graph, the only thing left is to ensure
that the graph we constructed is an s-t-graph. This can easily be achieved as follows. Add
two nodes S and T to the graph, assign them both to column c1 and add directed edges
from S to all top anchors, as well as `0 and r0, and add directed edges from all bottom
anchors, as well as `m+1 and rm+1 to T. Further, to obtain a complete column assignment
we assign each edge to the column of its source. We have now finished the construction
of the graph and the column assignment. It remains to compute the total vertical edge
length k in an optimal solution to our Vertical Edge Length Minimization instance if
the corresponding 3-Partition is solvable. Since we have chosen all spacing constraints to
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be 0, and each element ai contributes mB− s(ai) to the vertical edge length, the minimum
possible vertical edge length of the edges incident to the element nodes is 3m2B−mB. All
remaining edges may have vertical edge length 0. We set k = 3m2B−mB.

correctness . We now show, that the 3-Partition instance has a solution if and only if
the Vertical Edge Length Minimization instance is solvable. Obviously, if the 3-Partition

instance has a solution, then it can be transformed to a solution of the Vertical Edge

Length Minimization instance by vertically ordering the element nodes. If the Vertical

Edge Length Minimization instance is solvable, we need to show that the 3-Partition

instance has a solution as well. If the solution of Vertical Edge Length Minimization

contains nodes that are not placed inside one of the cells, then this increases the total vertical
edge length since there is no possibility of decreasing the total edge length elsewhere.
Further, should there be more than three nodes in one cell, then, the sum of the heights
of those nodes must add up to more than B (recall that B/4 < s(ai) < B/2). Since the
minimum height of each cell is B this increase in vertical edge length cannot be compensated
elsewhere. Hence, we can conclude that in an optimal solution to Vertical Edge Length

Minimization of a Yes-instance of 3-Partition there are exactly three nodes in each cell.
This directly induces a solution to the corresponding 3-Partition instance.

Hence, we can conclude that Vertical Edge Length Minimization is NP-hard. Since
it is easy to see that Vertical Edge Length Minimization is contained in NP, Vertical

Edge Length Minimization is NP-complete. We summarize this result in the following
theorem.
Theorem 5.5 Vertical Edge Length Minimization is NP-complete.

In the following we suggest a three-step approach for how to cope with the problem of
vertical edge length minimization.

5.5.1.2 Greedy Algorithm

Since Vertical Edge Length Minimization is NP-complete, we propose a greedy algorithm
to minimize the vertical edge length. Recall that we want each node to have as many
predecessors as possible vertically aligned at their bottom. We integrate this requirement
into our vertical edge length minimization approach. In the first step we determine a
partition of the nodes into sets which we call groups, each of which contains only nodes that
can be aligned at their bottom. Hence, we need to be careful which nodes belong to the
same group. It is easy to see that there must not be a directed path between any two nodes
belonging to the same group. Further, it is necessary that the groups can be topologically
ordered, i. e., the graph that we obtain by contracting each group to a single node must
remain acyclic. In the second step, we compute a reverse topological order of these groups
and finally, in the third step, we position the groups according to this order.

grouping . . We call a set of pairwise disjoint groups of nodes g1, . . . , gk feasible if the
graph that is obtained from Ĝ by contracting each group to a single node is acyclic. A
node s ∈ V̂ is an immediate predecessor of another node s′ ∈ V̂ if there is an edge (s, s′) ∈ Â,
and there is no other directed path from s to s′ in Ĝ. We denote the set of immediate
predecessors of a node s that have not been assigned to a group by Pred(s).

The algorithm works in several iterations, each of which greedily computes a feasible
set groups. We describe the ith iteration. If all nodes have been assigned to a group, the
algorithm terminates. Otherwise, the algorithm creates a group gi that contains an arbitrary
node of Ĝ that has not yet been assigned to a group. The algorithm then tries to increase
the size of gi as much as possible by determining nodes that are potential candidates for
inclusion in gi. Because we want the nodes in each group to be vertically aligned at their
bottom, potential candidates are nodes that share the same successor with a node already
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contained in gi. More specifically, the algorithm determines for each node v in g the set Succ

of their successors. For each node s ∈ Succ the algorithm determines the set of immediate
predecessors Pred(s) that are not yet assigned to a group, and whether adding Pred(s) to gi
yields a feasible set of groups, i.e., whether g1, . . . , gi−1, gi ∪ Pred(s) is feasible. If this is the
case, then we replace gi by gi ∪ Pred(s); otherwise the algorithm continues with the next
successor s′ ∈ Succ. Note that adding new nodes to gi can require adding new nodes to
Succ. When no new nodes can be added to gi in this way, the ith iterations finishes. For a
pseudo-code description of this algorithm see Algorithm 2.

Algorithmus 2 : Grouping Algorithm

Input : Graph Ĝ = (V̂, Â)

Output : Groups g1
.∪ g2

.∪ . . .
.∪ gk = V̂ of the nodes in Ĝ

1 For 1 ≤ i ≤ n do
2 gi = ∅
3 i← 1
4 while ∃n ∈ V̂ : n 6∈ gj for 1 ≤ j < i do
5 Insert v into gi
6 Succ← successors of v
7 while Succ 6= ∅ do
8 For s ∈ Succ with Pred(s) do
9 If g1, . . . , gi−1, gi ∪ Pred(s) is feasible

10 gi = gi ∪ Pred(s)
11 Succ← successors of nodes added to gi in this iteration that have not been

treated yet
12 i← i + 1

Lemma 5.1 The grouping algorithm can be implemented to run inO(|V̂|2 · |Â|) time andO(|V̂|+
|Â|) space.

Proof. In each iteration i of the algorithm, the key operation is to determine whether
g1, . . . , gi−1, gi ∪ Pred(s) is a feasible set of groups. To check this, we maintain the DAG that
is obtained from Ĝ by contracting each group gi to a single node Gi. Including Pred(s) into
gi introduces a cycle in this graph if and only if there is a path from a node in Pred(s) to Gi
and a path from Gi to a node in Pred(s). This can be easily checked with two breadth-first
searches. Note that the contracted graph has size O(|V̂|+ |Â|), and hence the test can be
performed in time O(|V̂|+ |Â|). When we include a set Pred(s) into gi, we immediately
contract the nodes in Pred(s) into Gi. Clearly such a contraction is performed only once per
node, and hence this takes total time O(|V̂|+ |Â|) over all iterations.

The running time of the algorithm is dominated by lines 4-11 by the two nested loops and
the feasibility check. The outer loop can be executed O(|V̂|) times since there are O(|V̂|)
groups. We can also bound the number of iterations for the inner while loop by O(|V̂|) if
we can bound the number of elements that are added to Succ by O(|V̂|). We can guarantee
this if we store during each iteration for each node if it has already been added to Succ

before. Then, before adding a node to Succ (l. 10) we first check whether we have added
the node before already. If this is the case we do not add it to Succ again. Finally, for the
feasibility check we require two breadth-first searches that require O(|V̂|+ |Â|) time each.
Since O(|V̂|) ⊆ O(|Â|) the running time of our algorithm is O(|V̂|2 · |Â|). �

computing the order . After computing the grouping, we compute an order of the
groups in the second step. Since we draw the layout bottom-up in the third step, when
positioning a group gi, all successors of nodes in gi need to be already positioned. To do
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this we contract each group and sort them topologically from bottom to top. Recall that our
algorithm ensures that when adding new nodes to a group the group remains feasible, i. e.,
there is no directed path in the graph from one node in the group to another in the same
group. This directly implies that we can always order the groups topologically.

coordinate assignment. In the last step of the greedy approach the actual coordinate
assignment takes place. We treat the groups according to the order computed in the previous
step. The y-coordinates of the ports and the bends of an edge are computed in two parts.
When the target of an edge is positioned, we compute the y-coordinates of the target port
and the first two bends. The first bend is in the target’s column, whereas the other one is in
the column assigned to the edge. The two last bends and the source port are computed,
when its source is positioned.

First, we compute the smallest possible y-coordinate ŷ for the lower boundary of the
nodes in gi by setting it to the maximum of the smallest possible y-coordinate for each node
vj ∈ gi. When computing this y-coordinate for a node vj ∈ gi, we need to consider that we
have not yet routed the second part of the edges whose targets are in gi. For this, we need
to compute the smallest possible y-coordinate for the horizontal edge segment of the edges
we still need to draw. In particular, we need to find the smallest possible y-coordinate such
that all minimum spacing constraints are respected. This can be done straightforwardly.

After determining ŷ, we position the boxes in gi such that their lower boundary is aligned
at ŷ and draw the second part of the outgoing edges. We draw the horizontal segments as
high as possible. Afterwards, we draw the incoming edges as low as possible. To this end,
we process the nodes vj ∈ gi in an arbitrary ordering and draw their incoming edges such
that all spacing constraints hold.

The running time of this step is O(|V̂|+ |Â| · b), where b is the number of columns used
by the assignment. Note that since every column contains a vertex it follows that b is in
O(|V̂|). Each node in V̂ is considered only once, i. e., when it is positioned. The edges are
treated twice. Once when the target is positioned and its first part is drawn and a second
time when its source is positioned, i. e., the second part of the edge is drawn. Both times the
smallest possible y-coordinate needs to be determined, which requires as many operations
as the drawn horizontal segment spans columns. We simply bound this number of columns
by |V̂|.
Theorem 5.6 The vertical edge length minimization heuristic can be implemented to run inO(|V̂|2 ·
|Â|) time and O(|V̂|+ |Â|) space.

Proof. The computation of the groups in step one takes O(|V̂|2 · |Â|) time, afterwards the
groups can be ordered in O(|V̂|+ |Â|) time. For the final y-coordinate assignment we need
O(|V̂|+ |Â| · |V̂|) time. Thus, the greedy approach runs in O(|V̂|2 · |Â|) time in total.

For the computation of the groups O(|V̂|+ |Â|) space is required. Furthermore, we need
O(|V̂|+ |Â|) space for storing the y-coordinates assigned to the boxes and the edge ports
and bends. Additionally, we store for each of the at most V̂ columns the highest object that
is already drawn. Thus, in total our algorithm requires O(|V̂|+ |Â|) space. �

5.5.2 Horizontal Edge Length Minimization

There has been some research into improvement of orthogonal drawings which is related
to the approaches used in this section. Six et al. [171] discuss several refinement steps for
orthogonal drawings. They propose heuristics to remove U-Turns (which we refer to as bows;
see Figure 5.5), superfluous bends, self-crossings, and several other unappealing structures.
However, we encounter, due to the way our algorithm works, only few of the problems
described in this. The only structure we remove are bows, by using a simple linear time
algorithm. However, there are other examples of structures that are not visually appealing



5.5 metrics 69

Figure 5.5: An edge that is a bow (left) and the edge after bow reduction (right).

(a) (b) (c)

Figure 5.6: Visually unappealing parts of a drawing which can be resolved in a post-
processing step.

and that can easily be resolved but which we did not consider for the implementation; see
Figure 5.6 for some examples.

In the second step, we employ a heuristic approach to minimize the width of the whole
layout. Due to the shifting in each iteration of the shape algorithm, we introduce new
columns. Some of them are necessary while others will be partly empty in the final layout
and may be removed while maintaining a valid layout. Thus, the final layout is possibly
wider than actually necessary. In Figure 5.7(a) we depict a layout that can be compacted by
two columns. Our approach to width compaction is column based, i. e., the resulting layout
again consists of disjoint columns.

Our approach is somewhat similar to the moving part of the 4M-algorithm proposed to
improve orthogonal drawings [88]. For this moving part of the 4M-algorithm a moving line
is defined which is directed through the drawing and used to identify empty space in the
drawing that can be removed safely. However, the approach requires the node heights to be
a multiple of a certain base value and the nodes must be aligned on a grid. We perform
width compaction along so-called compaction paths. A compaction path is an axis-parallelcompaction paths

y-monotone path passing through a layout from the top to the bottom. It may cut horizontal
edge segments but neither vertical edge segments nor nodes. Furthermore, its vertical
segments need to run within columns such that no vertical edge segment is allowed to
run through the same part of these columns. Each compaction along a compaction path
decreases the number of columns by one.

In Figure 5.7(b) we illustrate how compaction along a compaction path is performed.
First, we split the path into its vertical segments. Then we delete the y-range of a column
that contains a vertical path segment. Thus, in total we gain one column of free space. We
move everything that has been to the right of the compaction path one column to the left
and, thereby, fill the free space again. Thus, in total the number of columns is decreased by
one.

A seemingly obvious approach to compute a maximum set of compaction paths would
be by using a flow algorithm. Traditionally, flow algorithms have been used in graph
drawing to solve compaction problems [93, 177]. However, in our case there are examples
of compaction paths where each path by itself is valid, but compacting two such paths
at the same time yields a layout where an edge-edge spacing constraint is violated; see
Figure 5.8. Although it might be possible to avoid this problem when using flow networks
by increasing the size of the drawing, the flow network itself is very complicated (see [71] for
a description) and a simpler approach appears to be reasonable. We propose an approach
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(a) A layout that can be compacted by two columns and two compaction
paths.

(b) How to perform compaction along the left compaction path.

Figure 5.7: Compaction paths and compaction along a compaction path.

(a) The set of compaction paths along which we
compact. Both compaction paths are valid.

(b) After the compaction the spacing
constraint between the two edges
can be violated.

Figure 5.8: An invalid set of compaction paths.

that iteratively removes columns instead of removing multiple columns at once. This helps
us to avoid the problem stated above.

In the following, we describe an approach that computes a cardinality-maximal valid set
of compaction paths using right-first search. We call a set P of compaction paths valid if
there is no pair of paths Pi, Pj for i 6= j in P = {P1, . . . , Pk} that cross each other, or overlap.
Since the paths do not cross or overlap, we can order them from right to left as P1, . . . , Pk.
We also require that for i = 1, . . . , k− 1 there is no path P′ distinct from P1, . . . , Pi+1 whose
nodes lie to the right of, or on Pi+1 such that {P1, . . . , Pi, P′} is a valid set of compaction
paths. For the first path P1 this means that no subpath of it can be replaced by a path that is
right of P1 such that the resulting path is a valid compaction path. We call a valid set of
compaction paths that has these properties rightmost. In Figure 5.9 we depict a rightmost
valid set of compaction paths for the example of Figure 5.7(a). Note that since all paths
are directed downwards, a right-first search yields paths that are as left as possible in the
drawing.

It remains to argue that by using right-first search we actually find a cardinality-maximal
valid set of compaction paths. In the following we show that we can transform any valid set
of compaction paths P = {P1, . . . , Pk} to a rightmost set of compaction paths of the same
cardinality. First, we remove all crossings by swapping the suffixes of any two paths in
the set that cross. Note that by doing this we cannot introduce a new crossing. Since the
resulting paths P1, . . . , Pk do not cross, we can order them from right to left. We treat the
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paths Pi in increasing order of their indices (from right to left) and try to move each path
rightwards. More specifically, for each treated path P` we a replace a subpath (pi, . . . , pj) of
it with a path (q1, . . . , ql) that is right of P` and does not overlap or cross a path P`′ in the
set P with `′ < `.

After these normalization steps, we obtain a rightmost valid set of compaction paths.
Note that we do not change the number of paths during the normalization. Thus, there
exists a unique maximum set of compaction paths that is rightmost, which can be found by
the right-first approach we present in the following paragraph.

Figure 5.9: A rightmost valid set of compaction paths.

the algorithm . In this paragraph we present the algorithm that performs the width
compaction. Before we run the algorithm, we remove the super source ŝ and the super
sink t̂. As already mentioned, this algorithm finds compaction paths by using a right-first
search. Initially, we build up the compaction network in which we search for compaction
paths using the right-first search. After we found a compaction path, we need to slightly
modify the compaction network in order to ensure that the computed set of compaction
paths is valid.

First, we describe the initialization of the graph D, which we refer to as the compaction
network. The compaction network depends on empty regions in the columns, i. e., wecompaction network

need to find the empty rectangles in each column. Therefore, we create a list per column
which will contain the boxes and edge segments that are contained in the corresponding
column. Afterwards, we iterate over all boxes and edges. We add the boxes to the list
of the column to which they are assigned. The edges are treated more fine-grained. All
three vertical segments are added to the list of the corresponding column. Furthermore, we
add the horizontal segments to all columns between the source’s column and the edge’s
column and the edge’s column and the target’s column, respectively. Thus, in total we have
O(|V̂|+ |Â| · b) entries in the lists. Since Ĝ is connected and, therefore, O(|V̂|) ⊆ O(|Â|),
we can simplify the number of entries to O(|Â| · b). Each of these entries is associated with
two y-coordinates that determine the y-range that is occupied by the box or edge segment,
respectively. We sort these entries according to their y-coordinates in O(|Â| · b · log(|Â| · b))
time.

Afterwards, we detect the free rectangles in the columns, i. e., the gap between two entries
in the list whose y-ranges do not touch. Furthermore, we assume that on the top and on the
bottom of each column is a large free rectangle. For each free rectangle we add a node to D.
For ease of notation we identify each node of D with its corresponding free rectangle.

Since we have at most O(|Â| · b) entries that bound the free rectangles, there can be at
most O(|Â| · b) rectangles, i. e., at most O(|Â| · b) nodes in D.

We create the edges of D in two ways: For two rectangles in the same column, we add
an edge between them if they are only separated by a single horizontal edge segment.
Furthermore, we create edges between rectangles in neighboring columns if their y-ranges
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(a) Overlap of both boxes is smaller than sedge
edge.

(b) Overlap of both boxes is larger than sedge
edge.

Figure 5.10: Edges between overlapping boxes of neighboring columns.

(a) The compaction network D and a com-
paction path p.

(b) The modified network after the com-
paction along p.

Figure 5.11: The compaction network D and how it is modified.

overlap. Consider two overlapping rectangles in neighboring columns as depicted in Fig-
ure 5.10(b). If a compaction path p runs through these rectangles as shown in Figure 5.10(a),
compacting along p would move the right box under the left one. Then the distance between
the two edges needs to be at least sedge

edge or ŝedge
edge, respectively. Note that this distance after the

compaction equals the overlap of the y-ranges of the two rectangles. Therefore, we only
add an edge from the right to the left rectangle, if the overlap of the y-ranges of the two
rectangles is at least the minimum spacing sedge

edge or ŝedge
edge, respectively; see Figure 5.10(a).

As the final step of the construction of D, we add two nodes to D which we denote by s
and t. We connect s to all rectangles on the top of the columns and connect all rectangles on
the bottom of the columns with t.

Obviously, D is a planar graph, i. e., it has at most O(|Â| · b) edges. However, the number
of rectangle pairs we need to consider to find all edges is small. In fact this number is
in O(|Â| · b) since by construction edges are either completely contained in a column or
connect nodes in two neighboring columns. Since we have sorted the nodes of D already
in a previous step, we find all edges of D in O(|Â| · b) with a simple sweep line algorithm
from top to bottom. In Figure 5.11(a) we depict a clipping of a layout and the corresponding
compaction network D.

We use the compaction network D in order to find compaction paths using a right-first
depth-first search starting at s. Since we need to ensure that the computed compaction path
is y-monotone, we always keep track of the current y-coordinate. We are only allowed to
move to a horizontally neighboring rectangle if this requires no upward movement of the
compaction path. If the search reaches t, we have found a compaction path.
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After a compaction path has been found, we need to slightly modify the compaction
network. The part of the compaction network that is right of the compaction path cannot
be part of a further compaction path, because we use a right-first search. Therefore, we
do not need to consider this part. However, we need to treat the part through which the
compaction path cuts (see Figure 5.11): We split rectangles that contain (a part of) a vertical
segment of the compaction path such that there is one rectangle that is cut from top to
bottom and one or two rectangles that are not cut by the compaction path. Rectangles that
are crossed horizontally are split into two rectangles as well.

For all rectangles that are cut from top to bottom by a vertical path segment we delete the
corresponding nodes in D. Afterwards, we need to create edges between the newly created
rectangles on the left side of the compaction path and their surrounding rectangles. In
Figure 5.11(b) we illustrate the modification of D after the compaction along a compaction
path. After the modification of D we continue the right-first search in order to find more
compaction paths. The set of compaction paths we compute is (i) rightmost, because we use
a right-first search and (ii) valid due to the construction of D and its modifications.
Theorem 5.7 The width compaction algorithm can be implemented to run inO(|Â| · b2 · (log(|V̂|)+
b)) time and O(|Â| · b2) space.

Proof. We already argued that D has at most O(|Â| · b) nodes and it is planar. However,
the size of D can increase due to the modifications after the compaction along a path. Recall
that we are dealing with rightmost compaction paths. Thus, each horizontal segment of a
compaction path coincides with the upper or lower boundary of a rectangle. Otherwise,
we can replace a subpath of the compaction path with a path that is right of it, i. e., the
compaction path was not rightmost. We now estimate the number of rectangles we need to
create at most.

Note that a compaction path cannot split a rectangle at any point, but rather it can only
split it at a y-coordinate at which a compaction path leaves a column and enters a new one.
These y-coordinates are the y-coordinates of the upper and lower boundaries of nodes in D.
This insight allows us to find an upper bound on the number of nodes the compaction
network can have. As we have argued, initially the number of nodes in D is in O(|Â| · b).
To obtain a worst-case upper bound for the number of new nodes, assume we split all
rectangles at the y-coordinates of the upper and lower boundary of a single node. This
can create at most two additional rectangles per column which means O(b) additional
rectangles in total. When we repeat this for all of the original nodes in D this leads to a
total of O(|Â| · b2) nodes in D. Note that we do not need to do this for the newly created
nodes, because the y-coordinate of either their upper or lower boundary was already used
to cut other nodes. Since D remains planar, the number of edges is also in O(|Â| · b2). In
order to analyze the time complexity of the right-first depth-first search that operates on a
changing graph, we assume that it is directly executed on the final graph D. Thus, it runs
in O(|Â| · b2) time.

When all compaction paths are found, we need to compact along them. Compacting along
one path can easily be performed in O(|V̂|+ |Â| · b2) = O(|Â| · b2) time. Thus, compacting
along all paths needs O(|Â| · b3) time.

Summing up the running time of the initial construction of D, the computation of the
compaction paths and the compaction itself, we get O(|Â| · b · (log(|Â| · b) + b2)) as total
runtime. Since we deal with simple graphs, |Â| ≤ |V̂|2 holds. Thus, we can further simplify
the time complexity to O(|Â| · b2 · (log(|V̂|) + b)).

We need O(|V̂|+ |Â|) space to store the column assignment, but this term is dominated
by the potential size of D which is in O(|Â| · b2). �

Note that in the case that the node sizes do not differ too much, and should all of them
be integer, the time complexity of the algorithm can be reduced to O(|Â| · b3) by employing
a linear-time sorting algorithm for this case.
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We have now all results required to prove our main result which we stated in Theorem 5.1,
and which we repeat here for the reader’s convenience. The proof follows by combining the
main theorems of each section, namely, Theorems 5.3, 5.4, 5.6, and 5.7. The running time is
dominated by the first step of our approach (see Theorem 5.3), and the space consumption
is dominated by the last step (see Theorem 5.7).

Theorem 5.1. For a given connected directed acyclic graph G = (V, A) a locally-symmetric,
column-based layout with at most four bends per edge can be computed in O(|A|3|V|) time and
O(|A||V|2) space.

5.6 evaluation

The drawing style used here stems from a particular application for drawings of so-called
argument maps. Argument maps present the arguments given in a debate or a book
together with two binary relations among them, i. e., support and attack. They originate
from argumentation theory but are used in many more fields like philosophy and politics.
For detailed background information about argument maps we refer the reader to [25,
166]. As we mentioned at the beginning of Section 5.3, for layouts of argument maps, we
have the additional constraints of free sources and sinks. Recall that, by this, we denote the
property that above a source and below a sink no other box is positioned. We can enforce
this constraint by not removing the edges incident to ŝ and t̂ before the width compaction.
Then, these avoid that another box is shifted above a source or below a sink. Further,
argument maps may contain cycles (although they rarely do). In a preprocessing step we
remove cycles by reversing the direction of edges in G such that it becomes cycle-free. Since
computing a cardinality minimal set of such edges is NP-complete [127], we use the Open
Graph Drawing Framework (OGDF)1 implementation of a well-known heuristic by Eades et
al. [76] to solve this problem. In the last step, when we remove the nodes ŝ and t̂, we need
to correct the direction of those edges we have reversed in the preprocessing step.

As already mentioned in Section 5.3, we randomize the computation of the topology,
which we do using OGDF. We do this at two points: (i) for the construction of the feasible
upward planar subgraph and (ii) we randomize the order in which the deleted edges are
reinserted. Each of these two steps is performed ten times, i. e., we execute the computation
of a feasible upward planar subgraph 100 times in total. Over all runs we take the crossing
minimal upward planar representation as the result. We implemented the algorithms in
C++. All experiments were performed on a single core of an Intel Xeon E5-2670 processor
that is clocked at 2.66 GHz. The machine is running Linux 3.4.28-2.20 and has 64 GiB of
RAM. We compiled our C++ implementation with GCC 4.7.1, using optimization level 3.

The basis of this evaluation is a set of 51 argument maps differing in size, purpose of
usage and experience of the creator (uploaded to http://www.graph-archive.org). For a
more detailed analysis of these input graphs we refer to [71]. First, we present statistics
about measurable quality criteria, and then discuss the æsthetic qualities of these layouts.

statistics . We start by analyzing the number of crossings in the final layout as well as
in the upward planar representation (U , Γ). Although it is theoretically possible that the
final layout contains fewer crossings than (U , Γ), for all instances there are at least as many
crossing in the final layout as in the upward planar representation (U , Γ). However, if (U , Γ)
is free of crossings, then the final layout is planar as well (compare to Lemma 5.1).

We note that, in our experiments, on average there are 69% more crossings in the final
layouts than in the upward planar representations. Although this number may seem high,
this is only because most of our input drawings have little or even no crossings. Then, even
a slight increase in the number of crossings yields a high relative increase of crossings.

1 http://www.ogdf.net

http://www.ogdf.net
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Figure 5.12: Instance D-2.5. Figure 5.13: Instance D-5.3.

Due to the shape algorithm there can be at most four bends per edge. Except for three
bend-free layouts, the average number of bends per edge is between 0.4 and 1.5. Only 13 of
51 layouts have edges with four bends. Taking the average over all layouts, we have 1.06
bends per edge.

Finally, we turn towards the runtime analysis. The maximum running time for the
51 input instances is 10.25s for an instance having 134 nodes and 158 edges, whereas
the average is 0.32s. The average running time is strongly influenced by the few large
instances. For instances with at most 30 nodes, the running time is 0.02s on average while
the maximum runtime is 0.19s.

It is interesting to note the contribution of the three phases topology, shape and metrics
to the overall runtime. Shape and metrics make only insignificant contributions of less than
0.01% and 0.2%, respectively, whereas the topology step needs 99.6% of the overall runtime.
Thus, the topology step is the bottleneck.

We repeated our experiments with a decreased number of randomized runs in the
topology step from 100 to 9. The maximum and average running time for the topology
step decreased from 10.25s to 0.98s and from 0.32s to 0.03s, respectively. This decrease
to roughly 1/10 in running time is not surprising as it simply reflects the fact that the
topology step requires nearly 100% of the time for computing the layouts. Nevertheless,
this is a significant improvement in running time while the average number of bends per
edge increases only slightly from 1.05 to 1.07, and the average number of crossings increases
from 2.64 to 2.76 for our instances.

case studies . Here, we present three layouts that are created by the algorithms de-
scribed in Section 5.2–5.5. Using these layouts as examples, we discuss the benefits and
the disadvantages of our algorithms. Figure 5.12 shows a layout for which we have no
suggestions for improvement. The layout is free of crossings, the number of bends are
close to the minimum, it is compact and locally symmetric. Beside the hard facts, it is well
structured and gives a good impression of the internal structure. The other two layouts,
while looking good in general, have minor drawbacks, which we discuss in the following.

In Figure 5.13 on the left side there is a configuration that is similar to a bow which we
treated in Section 5.5. However, this time, we have a bow containing a box. We could expand
our concept to paths in Ĝ that contain only nodes whose in-degree and out-degree equals
one. Such a scenario is not treated in our algorithm. Since there can be many different special
cases which might be resolved easily, we propose to investigate and integrate additional
algorithms for optimizing orthogonal drawings into our approach.

In Figure 5.14 there is a set of boxes on the right side of the layout that is positioned
quite high. It seems as it might be possible to move these boxes downwards. However,
these boxes are aligned with boxes that are some columns apart, i. e., they need to be
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Figure 5.14: Instance D-2.7. Circle added to highlight the effect of different edge-edge
spacings.

positioned that high. One could reconsider the drawing style, such that alignment of
boxes is only required if the number of columns between the boxes is small. Note that
we can easily integrate such a modification by adapting the computation of the groups
in Section 5.5. Besides this drawback, the example gives a good impression of the edge
bundling enabled by the minimum edge-edge spacings. The effect the two different edge-
edge spacing constraints have on the final layout can be seen inside the red circle. The
two edges that have the same target have a small distance between them while the third
horizontal edge-segment belonging to the third edge is placed at a greater distance to the
other horizontal edge-segment.

Overall, we conclude that the computed layouts are of high quality from an æsthetic point
of view as well as regarding the objective quality measures.

5.7 conclusion

Our main result is an algorithmic approach to generate column-based graph layouts for di-
rected acyclic graphs. Our approach integrates the layer-free upward crossing minimization
technique by Chimani et al. [55] into the well-known topology-shape-metrics framework.
We showed that several of the arising subproblems are NP-complete and devised efficient
algorithms, many with provable quality guarantees, for all steps. In the first step we
minimize the number of crossings as well as the total source/sink distance using layer-free
upward crossing minimization. Afterwards, we use a modified graph drawing heuristic
by Biedl and Kant [28] such that there are at most four bends per edge. Thereby, nodes
and edges are assigned to columns. In the last step, we first minimize vertical edge length
using a greedy approach and then horizontal edge lengths based on iteratively removing
rightmost compaction paths. During the edge length minimization we remain true to the
columns such that the resulting layouts are column based.

Unconventionally, we do not fix the topology computed in the first step throughout the
remaining phases. When computing the column assignment in the second step, we relax
some of the decisions we made before, and hence, the focus of the algorithm is shifted
away from minimizing the number of edge crossings. We fix the edge crossings again when
minimizing the vertical edge length. In usual applications of the topology-shape-metrics
framework crossing minimization is the first aspect that is considered and all remaining
optimization criteria are treated afterwards and therefore must handle the choices made in
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the first step. This is not the case for our approach, where we increase the significance of
bend and total edge length minimization.

The layouts we compute are of high quality. They have a clear, well-structured look and
are compact. Input instances that have a typical size for argument maps can be layouted
quickly. Thus, our algorithm is feasible for practical purposes. In fact, the algorithm has,
in the meantime, been integrated into the tool argunet2, which is used for creating and
manipulating argument maps, and is now available as a plugin.

Although the generated layouts are of high quality, certain unappealing features remain
and as a next step it may be worthwhile to explore if it is possible to adapt algorithms to
optimize the layout of orthogonal drawings to our drawings; e. g., the 4M algorithm [88].
Coming from the practical application another interesting step is to investigate how to
handle dynamic argument maps, i. e., generate drawings of argument maps that change
over time while maintaining the user’s mental map.

2 http://www.argunet.org, argunet is open source and published under the GPL

http://www.argunet.org
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6
I N T R O D U C T I O N

In this chapter we give a general introduction to the problem of map labeling. We begin
by discussing the beginnings of map labeling in the algorithmic community and, then,
in the then following section we proceed to give a more detailed description of the main
algorithmic results. After we have covered this, we turn towards the problem of labeling
dynamic maps. We call a map dynamic if it allow continuous dynamic operations, e. g.,
zooming. Due to the increased popularity of hand held devices such as smart phones there
are now many applications which support dynamic maps (e. g., the vector based Google
Maps for Android). There have been significantly fewer algorithmic results that deal with
labeling dynamic maps. After we have discussed results dealing with dynamic map labeling
we look briefly into the problem of boundary labeling. In this problem setting the goal is
still to place text, but not on the map, but on the boundary of it. The feature we want to
label is connected to the label by a leader. A leader is usually a combination of multiple
straight-line segments. Although boundary labeling certainly has applications in the field
of labeling maps, more often can this style be observed for labeling diagrams (e. g., medical
illustrations), or panoramas. Finally, in the last section of this chapter, we give a detailed
description of the contribution in the following three chapters of this thesis.

Figure 6.1: Google Maps. The la-
bel for one of Germany’s
largest cities Stuttgart is
missing. Screenshot:
©Fabian Fuchs.

One of the many important aspects of creating
maps is the placement of labels, be it text (e. g., names
of towns or cities), or symbols (e. g., highway shields).
This part of the map making process is usually re-
ferred to as the “placement of names on the maps”
or as the “labeling of the map”. Although at first
glance this might seem to be a not so difficult task it
still requires more than 50% of the time necessary for
the whole creation of a map [69]. Not only is it time
consuming, but it is also of tremendous importance.
As the cartographer Imhof put it “Good name posi-
tion aids map reading considerably and enhances the
esthetics of the map. [. . .] Poor, sloppy, amateurish
type placement is irresponsible; it spoils even the
best image and impedes reading.” [123]. The Com-
putational Geometry Impact Task Force determined
that map labeling is one of the import areas of re-
search in Discrete Computational Geometry [53], and
hence, a considerable amount of work has been done
to automate the process of placing text on a map. Be-
sides the attention from the algorithmic community
there are several professional software products from
the field of geographic information science (GIS) that
support map labeling. The software company esri
has published MAPLEX [83] a commercial ArcGis
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Figure 6.2: Picture of the on-board entertainment systems during a United Airlines flight.
The dynamic map labeling algorithm exhibits multiple label overlaps.

extension that supports automatic map labeling. But there are also open source alternatives
such as Mapertive [40] to do this. However, despite the progress in the automatization of
map labeling there are still many unresolved questions concerning generating map labelings
of high quality. This is especially true for the field of dynamic map labeling; see Figures 6.1
and 6.2 for two examples.

6.1 preliminaries

Still today one of the most highly regarded publications concerned with the question of
how to place text on a geographic map is “Die Anordnung der Namen in der Karte” [122]
by Imhof. This publication was later translated from German into English and subsequently
published in 1975 under the name “Positioning Names on Maps” [123]. In this work Imhof
specifies several basic rules that cartographers should follow when designing the labeling
of a map. Among those rules are:

• Legibility. “The names should [. . .] be easily read, easily discriminated, and quickly
located."

• Clear graphic association. “The name and the object to which it belongs should be easily
recognized.”

Further, he distinguishes between three types of map elements which can be labeled.

1. “Position designations, or names for point-like objects and concepts.”

2. “Linear designations, i. e., names for objects [...] with linear [...] extent.”

3. “Areal or surface designations”

One of the first publications in which map labeling was considered from an algorithmic
point of view (i. e., in the sense that the labeling is considered to be a process which can be
done automatically) was published in 1972 by Yoeli [188]. In it the author discusses “the
logic of automated map lettering”, i. e., the author gives a general overview of an approach
to automatically label a map. He discusses the necessary prerequisites (e. g., aquiring data,
deciding what to label and in which font) for this problem, the challenges and he gives a
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(a) 1P (b) 2PH (c) 2PV (d) 4P

Figure 6.3: Depicted are the most common variants of the fixed-position model.

brief description of an algorithm to label a map (although the description is lacking some
depth). Like Imhof, he distinguishes between the same types of map elements but denotes
them differently:

1. “Names of points or items which cover a small area.”

2. “Names of lines or bands (e. g., rivers, boundaries, etc.).”

3. “Names of areas.”

Yoeli also describes the general process of lettering a map in three steps:

a. “The choice of the name contents and its classification (settlements, rivers, etc.).”

b. “Determination of type characters and sizes”

c. “Placement.”

In the algorithmic community the first two steps are usually omitted, and it is assumed
that the labels, i. e., the text and font type, are part of the input and are not subject to
optimization. Further, most research in the algorithmic community is concerned with
labeling “Position Designations”/“Names of points or items which cover a small area.”.
The problem is most often called the Point-Feature Labeling Problem (PFLP). In the
following section we give a broader overview of the PFLP, its variations and well-known
results, relevant to this thesis.

the point-feature labeling problem (pflp). In the following we discuss the
point-feature labeling problem as it is the most common variant of the map labeling problem
investigated in the algorithmic community.

For the PFLP we are given a set of points (also called anchors), and a corresponding set
of labels (usually rectangles) and the goal is to place the labels on the map. The allowed
positions of the labels on the map (i. e., in the two-dimensional plane) are restricted. The
most common models used (in the algorithmic community) are the fixed-position model,
and the slider model.

In the fixed position model there are for each point-feature certain fixed positions in thefixed position model

plane the label can be placed at. Usually, the positions are such that a corner of the label
coincides with its own anchor. In the 1P model the label’s lower left corner is placed on
its anchor point. There are two different 2P models, 2PV and 2PH. In the 2PV model
the label must be positioned such that either its lower-, or its upper-left corner coincides
with its anchor. Finally, the 4P model requires that one of the label’s corner is positioned
on the label’s anchor. For an illustration of these models see Figure 6.3. Although the
mentioned fixed-position models are the most commonly used, there are other variants of
the fixed-position model that have been considered.

In the slider model, which was originally proposed by van Kreveld et al. [136], there areslider model

no fixed positions for the labels, but instead of requiring that a certain corner of the label
coincides with the anchor, it is required that the label is positioned such that the anchor
lies on the border of the label. One might argue that the slider model is based on the
fixed-position model in the sense that the fixed positions are the “extreme” positions for
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(a) 1SH (b) 1SV (c) 2SH (d) 2SV (e) 4S

Figure 6.4: Depicted are the most common variants of the slider model.

labels in the slider model. In the 1SV (1SH) model the label’s anchor must lie on its lower
(left) boundary, respectively. In the 2SV model the label’s anchor must lie on the lower
or upper boundary of the label. Similarly, in the 2SH model, the label’s anchor must lie
on the left or right boundary of the label. Finally, in the 4S model requires the label’s
anchor be on one of the four boundaries of the label; see Figure 6.4 for an illustration of the
aforementioned models.

In a recent publication Reimer and Rylov [161] propose a multi-criteria model for the
PFLP which summarizes rules and constraints for label placement that can be found in the
literature. The constraints (slightly reformulated) by Reimer and Rylov are

• C1 Names must not overlap point feature symbols.

• C2 No two names may overlap.

• C3 No two point features may overlap.

The authors note that most research has been focused on these constraints. We note that
many of the given rules (see below) concern the actual content of the map (e. g., coastal
lines) which we did not consider in this work. Therefore, we omit quoting the rules at length
but focus on the ones we feel are important for the problems considered in this thesis.

• R1 Type arrangement should reflect the classification, importance and hierarchy of
objects.

• R2 Labels should be placed horizontally.

• R3 The lettering to the right and slightly above the symbol should be prioritized.

• R6 Names should not be too close to each other.

• R7 Labels should not be excessively clustered nor evenly spread out.

• R8 Each label should be easily identified with its point feature. Ambiguous relation-
ships between symbols and their names must be avoided.

The authors assert that rule R6 and R8 are the most important ones. We will come back to
this classification at the beginning of Chapter 7.

Now we are ready to give a brief overview of the known algorithmic approaches to tackle
the map labeling problem. We will not give a detailed description of every publication on
this topic, but we discuss those publications, we feel, are important to the results in this
thesis. For a list of publications concerned with map labeling we refer the reader to the
Map Labeling Bibliography [186] was maintained until 2009 by Alexander Wolff and Tycho
Strijk. Please note that we distinguish between static maps and dynamic maps in this thesis
and thus we use the qualifier static or dynamic for maps where applicable. Hence, the map
labeling problem considered by most researchers is here the static map labeling problem.
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6.2 static map labeling

There are mostly three variants of the Point-Feature Labeling Problem for labeling static
maps. The input to the problem consists of a set P of n anchor points in the plane, and a
set L of axis-aligned, rectangular labels where one label in L corresponds to one anchor in P.
The problem then asks for a valid labeling L : L′ ⊂ L→ R2 that assigns each label in the setvalid labeling

L′ ⊆ L a position in R2 which is permissible in the model used (fixed-position or slider
model). The decision problem is (usually) asking whether a labeling for all labels in L exists,
such that no two labels overlap (and hence requires L′ = L. Unfortunately, this problem
is NP-complete [141] even for simple models (but not for the 1P fixed-position model; the
decision problem is in P). There have been several optimization problems proposed which
are based on the PFLP. Those problems consists of two parts, that, unfortunately cannot be
considered separately. One part is to determine the set L′ ⊆ L of labels that belong to the
optimal solution, while the other part consists of determining the position of those labels
contained in L′. We discuss in the following the most common optimization problem for
PFLP in static map labeling.

6.2.1 The (Weighted) Label Number Maximization (LNM)

One of the standard problem in algorithmic map labeling is the label number maximiza-
tion (LNM) problem. This problem is a selection and placement problem. The optimization
goal is to determine a labeling where the set L′ ⊆ L is maximum among all valid labelings
where no two labels overlap. Note that a labeling where two labels do overlap may violate
the requirement put forth by Imhof that the labeling should be legible and clear graphic
association should be possible; see Figure 6.2 for a real-word example where the labeling is
not legible because of overlapping labels. Unfortunately, the label number maximization
problem is NP-hard, even in the 1P fixed-position model, and even when the labels are
unit-squares already [121, 89].

We discuss first algorithmic results for this problem in the fixed-position model, and
afterwards turn towards results in the slider model. At the core of LNM in the fixed-position
model lies a maximum independent set problem [1]. To see this, place for each anchor
copies of its label on all its permissible positions, and compute the intersection graph I
of this set of rectangles. Since all rectangles that share the same anchor have (at least)
this point in common, at most one label per anchor can be selected. Now, an optimal
solution of an LNM instance corresponds to a Maximum Independent Set on I. For an
illustration of this concept see the example depicted in Figure 6.5. Since the actual text of
the labels is, from an algorithmic point of view, irrelevant the problem has been called the
Maximum Independent Set of Rectangles (MISR) problem. The natural extension to
weighted rectangles has been considered also which is known as the Maximum Weighted

Independent Set of Rectangles (MWISR) problem.
While it is known that approximating Maximum Independent Set within n1−ε on general

graphs is NP-hard [112], for the restricted graph class of rectangle intersection graphs
better results are known. Agarwal et al. [1, 2] proposed an O(n log n) time and O(log n)
factor approximation algorithm. Berman et al. [23] provided a dlogk ne-approximation
with time complexity O(nk+1) for any integer k ≥ 2, upon which Chan [50] improves
by proposing two algorithms with time complexities O(n log n + n∆k−2) and nO(k/ log k),
respectively. In 2009 Chalermsook and Chuzhoy [49] published a paper taking the next step
towards a constant-factor approximation for MISR. In their publication, the authors provide
a O(log log n) approximation algorithm. Recently, Adamaszek and Wiese have shown that
there exists a QPTAS with quasi polynomial running time of O(2poly(log n/ε)) for MWISR.
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(a) 2PH instance. (b) Intersection graph.

(c) Optimal solution. The chosen label positions marked in bold black lines, while the
chosen vertices of the MIS instance are not grayed out.

Figure 6.5: A 2PH instance is depicted, along with its intersection graph and the optimal
solution to the LNM problem and the corresponding MIS of the intersection
graph.

At the time this thesis was written, it is still unknown whether there exists a PTAS or a
constant factor approximation algorithm for M(W)ISR.

For map labeling there can be sensible restrictions on the shape of the rectangles used,
which then can be exploited to obtain better approximation algorithms. Often it is assumed
that the labels all have the same height, which is not unreasonable since the labels might
depict text with the same font size. We refer to the problem of finding a maximum
independent set of unit-height rectangles as unit-height MISR (uhMISR)). There is also
the case that the labels are not used to depict text, but rather to show pictograms, which
can be assumed to be squares. Then, it is not unreasonable to assume that the dimensions
of all labels is the same. Similar to the uhMISR we refer to the problem of finding a
maximum independent set of unit-squares as unit-square MISR (usMISR). Note that if the
all rectangles have the same dimensions, but are not squares, we can transform the entire
instance by stretching the plane appropriately, such that the rectangles become squares.
Both problems, the uhMISR and usMISR, can also be adapted for the weighted case.

In contrast to the general MISR problem, the existence of a PTAS is for the uhMISR prob-
lem is well-known. Agarwal et al. [2] showed this by describing a (1 + 1/k)-approximation
algorithm with time complexity O(n log n + n2k−1), for any k ≥ 1. The basis for their PTAS
is the so-called shifting technique proposed by Hochbaum and Maass [117]. The PTAS
proposed by Agarwal et al. [2, 1] has been extended such that it can also handle weighted
labels [160] in O(n log n + n2k−1) time. In 2004 Chan gave a PTAS with a time complexity in
O(n log n + n∆k−1) for the unweighted case [50], where ∆ is the maximum degree of the
intersection graph.

We now turn towards the algorithmic results in for the Point Feature-Labeling Problem

in the slider-model. In the publication in which the slider model was introduced, the authors
already provided an NP-hardness proof for the LNM in the 4-slider model even if all labels
are unit squares. Furthermore, they gave approximation algorithms for the different models
under the assumption that all labels have the same height, but may have label-specific
widths. However, the authors did not provide any solution for the case that the labels
have a weight and the goal is to maximize the total weight of all displayed labels. This
problem was considered by Poon et al. [160]. The authors analyze bounds for the ratios
between optimal solutions in the nine different models (fixed-position and slider). They
show that label number maximization problem for unit-height rectangles in the slider
model is NP-hard even in the one dimensional case. However, their main contribution is a
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(1/2− ε)-approximation algorithm for the weighted label number maximization problem
for unit-height rectangles in the slider model. The algorithm’s time complexity is O(n2/ε)

and its space complexity is O(n/ε). The existence of a PTAS for the weighted 1SH model
for unit-height rectangles was one of the open questions posed in this paper. With a novel
approach for constructing polynomial-time approximation schemes Erlebach et al. [82] were
able to answer the open question positively. The authors give PTASes for various models
for the uhMSR problem and even for the variant where the ratio between the maximum
and minimum height of the rectangles is bounded by some constant c ≥ 1.

Besides the numerous approximation algorithms for the Label Size Maximization

problem in various models there have also been many attempts at finding algorithm that
perform well in practice, but for which no quality guarantee can be made. One way to
tackle the problem is by using meta-heuristics, which has been done quite extensively [116,
68, 187, 5], and by heuristics which are specifically developed for this problem [70, 164]. For
an overview of performance of many different LNM algorithms we refer the reader to [59].

6.2.2 Other Point-Feature Labeling Problems

Although maximizing the number of displayed labels seems to be the most natural opti-
mization problem for static map labeling, other variants of the PFLP have been considered.
We mention some of them here briefly along with important results.

Formann and Wagner [86] introduced the Label Size Maximization Problem (LSM)
that asks for the largest stretch factor φ by which all labels can be stretched such that no
two labels intersect. The authors prove NP-hardness for the 4P fixed-position model, and a
polynomial time algorithm for the 2P fixed-position model based on 2Sat (recall that 2Sat

is in P [137]). On the basis of this polynomial-time algorithm Formann and Wagner give
an optimal 1/2-approximation algorithm for the 4P fixed-position model. The algorithm
is optimal with respect to its time complexity of O(n log n) and to its approximation ratio
(unless P = NP). In the paper [136] in which the slider-model was introduced, an NP-
hardness proof for the LSM in the slider-model was provided, along with PTASes and simple
1/2-approximation algorithms. As with the LNM problem, there have also been publications
that explore the quality performance of meta-heuristics [78]. For an experimental evaluation
of several label size maximization algorithms see [57].

Another problem where all points must be labeled, but the labels sizes cannot be altered, is
the Label Overlap Minimization (LOM) problem that asks for minimizing the number of
label overlaps [130, 58, 162]. Motivated by the problem of displaying planes with additional
information (e. g., height, velocity) on a radar screen Gerrits et al. [20] investigated the Free-
Label Maximization (FLM) problem. The FLM problem has the same requirement as the
LOM but the goal is to maximize the number of non-overlapped labels. The authors show
NP-hardness and give approximation algorithms for all the nine labeling models. In another
publication the authors give a heuristic and evaluate its performance experimentally [21].

6.3 dynamic map labeling

While the static map labeling has been investigated quite thoroughly, as we have seen in
the last section of this chapter, there has been comparatively little work regarding dynamic
map labeling, an area which has become more important with the increased popularity of
mobile navigation devices, smart phones, or desktop applications for maps (e. g., Google
Maps, or Google Earth).

In this thesis we say a map is dynamic if it supports one or more of the following three
continuous operations:

1. zooming in/out
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2. rotating

3. panning

Since dynamic maps are characterized by continuous operations (e. g., panning) a certain
sense of consistency in the visual depiction of the map is desirable. Although there is some
literature regarding concepts called frame coherency [4] or temporal continuity [18], Been et
al. [9] were the first to introduce the concept of consistency for displaying dynamic maps.
They identified four important concepts for consistency: “(D1) Except for sliding in or out
of the view area, labels should not vanish when zooming in or appear when zooming out.
This captures the usual expectation that strictly more features get labeled as we zoom in,
and strictly fewer features get labeled as we zoom out. It ensures that labels do not appear,
disappear and then re-appear under monotonic zooming. [...] In some cases we prefer a less
restricted version of this desideratum, where we might want, for example, a country label to
disappear as we zoom in to street level detail. (D2) As long as a label is visible, its position
and size should change continuously under the pan and zoom operations. (D3) Except for
sliding in or out of the view area, labels should not vanish or appear during panning. If
(D2) is satisfied, then (D3) can be satisfied by making the decision to select a label a function
of scale. (D4) The placement and selection of any label is a function of the current map state
(scale and view area).” [9]. The authors further conclude that the displayed view is only a
function of the scale and thus does and should not depend on the history of the operations
used before. We note here that the authors focused their analysis only on the operations
panning and zooming. However, it is straightforward to adapt this to rotating.

Since maps are solely generated for humans, it would be interesting to investigate how
dynamic maps should be designed so that they benefit users the most. Although there
are several studies that are concerned with interactive maps [115, 135, 149], to the best of
our knowledge there is only one publication [154] which considers the problem of how to
design dynamic maps for humans. However, this paper focuses on panning which we do
not discuss in this thesis.

Besides the question of what a consistent labeling actually is, the optimization function
is not obvious. Been et al. [10] gave an in-depth analysis of the dynamic map labeling
problem for the zooming operation. They consider only a 1P fixed-position model. In their
paper, the authors define an active range, that is the scales for which the label is visible.
Due to their consistency requirement each label has at most one contiguous active range.
The optimization function is then to maximize the total length of all active ranges of an
instance. Note that this is very similar to the Label Number Maximization problem in that
it maximizes the number of visible labels over all scales. This problem is, unsurprisingly,
NP-hard, but the authors give approximation algorithms.

The problem of labeling zooming maps has been considered before by Poon and Shin [159].
They propose an algorithm that precomputes solutions for a number of scales and interpo-
lates between them. However, the solutions for the scales are obtained independently and
thus there is no guarantee for consistency (at least in the sense proposed by Been et al. [9]).
Petzold et al. [158, 156] also use a preprocessing step and apply this approach to labeling of
dynamic maps that allow panning. Mote [157] discuss the same problem but proposes an
algorithm that omits a preprocessing step completely. However, both approaches cannot
guarantee that the solution is consistent.

The problem of labeling rotating maps was first discussed by us in a previous publica-
tion [104] which contains the preliminary results that are the basis for Chapter 7. Since
then there have been two new publications which also look into the problem of labeling
rotating maps. Yokosuka and Imai [189] consider the problem of label size maximization for
the 1P fixed-position model for rotating maps. They show that the problem can be solved
efficiently in this model (as in the case for static maps). An interesting open question would
be to consider different fixed-positions models, or even the slider model and apply it to
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this problem. Gemsa et al. [100] looked into the problem of labeling dynamic maps for
small screen devices such as GPS navigation devices. These usually allow the three opera-
tions panning, rotating, and zooming. Besides an NP-hardness proof and approximation
algorithms they look into the problem of displaying not too many labels at the same time
which is an important feature for small screen devices. Further, they describe a very general
labeling model which allows to be adapted to other variants of dynamic labeling.

At the end of this section we want to point out that the term dynamic in the context
of labeling applies to many different scenarios and other authors have used it for other
meanings [6, 84]. Recently, Buchin and Gerrits have, motivated by air traffic controlling,
investigated the case of dynamic point labeling. In this context the word ’dynamic’ means
that the points are allowed to move. As it turns out this problem is even in simple cases
PSPACE-complete [44]. However, de Berg and Gerrits proposed a heuristic for this problem
that performs well in practice [21].

6.4 boundary labeling

In this section we give a brief discussion of a different concept of labeling called boundary
labeling which can be seen as a variant of static map labeling. The reader might wonder
why we chose to separate this problem from Section 6.2 in which we discussed several static
map labeling problems. Although this problem is in the literature often motivated by map
labeling, we feel that this problem is much more suited to labeling diagrams (e. g., medical
diagrams), and thus should belong into a distinct category. To conform to the established
terminology, we will however, also say we label a map.

The labeling models we covered in the preceding sections required that all labels are
placed such that their boundary touches the point feature it is supposed to label. This
requirement, however, can have detrimental effects on the visual appearance if, for example,
we are dealing with dense point sets, or if the labels are large compared to the map/diagram
(which is a typical problem encountered when illustrating diagrams). To overcome this
problem Freeman et al. [108], and Zoraster [190] suggested to place labels not directly at the
anchor but at sensible places removed from the actual anchor and then connect each label
with its corresponding anchor with a line (called leader). This idea was taken up on by Bekos
et al. in their paper “Boundary labeling: Models and efficient algorithms for rectangular
maps" [15] in which the authors introduced boundary labeling.

map R
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Figure 6.6: Different types of leaders for boundary labeling.

For boundary labeling it is
assumed that the input con-
sists of an axis-aligned, rect-
angular map M, and a set P
of points inside the map. Fur-
ther, for each point in P there
is a corresponding rectangu-
lar label given. The goal is
then to find positions for the
labels that are placed outside
of M such that no two labels
intersect, and then to connect the points with their corresponding labels without having
intersections between the leaders. The boundary labeling models differ in three aspects: i)
the type of leader, ii) the sides of the map where labels may be placed, and iii) whether
there are fixed positions for the labels (and the points where the labels connect with the
leaders), or if the labels can be positioned freely.

The different types of leaders are identified by a string consisting of one ore more of
the following letters: p – parallel, o – orthogonal, d – diagonal, s – straight. A po-leader,
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Figure 6.7: GPS navigation devices usually depict the map in such way that the driver
always drives “up”. Hence, the device needs to rotate the map.

for example, is a leader that consists of a parallel line (parallel with respect to the side of
the map the leader connects to), and a subsequent second line that is orthogonal (to the
side of the map the leader connects to); for an example with different types of leaders see
Figure 6.6.

Contrary to the previously discussed static map labeling problems, many problems in
the boundary model can be solved efficiently, i. e., they can be solved by polynomial-time
algorithms. Often, but not always, those algorithms are dynamic programming algorithms
and exploit that the solution must not contain crossing leaders. This means that when
connecting a point with a label by a leader this, when choosing the leader in the “right
way”, separates the input instance into two independent subinstances—which is usually a
sign that a dynamic programming approach might work.

For a comprehensive introduction for boundary labeling algorithms, as well as a detailed
description of the model and its application we refer the reader to the journal paper by
Bekos et al. [15].

6.5 overview of the following chapters

We have now laid the basis for the following chapters. Here, we give brief summary of what
we discuss there.

In the following chapter, we discuss a dynamic map labeling problem that arises in the
context of modern mobile devices, such as GPS car navigation systems; see Figure 6.7. But it
also occurs with applications for modern desktops that support dynamic maps, e. g., Google
Earth. As we have stated before there are three basic operations that dynamic maps may
allow. For this chapter we discuss the problem of labeling maps that can be continuously
rotated. We begin by proposing a model for labeling rotating maps, which is based on
the consistency requirements proposed by Been et al. [9] for labeling dynamic maps. We
investigate complexity (and show NP-hardness), develop exact ILP formulations, efficient
approximation algorithms, as well as simple but fast heuristics. The chapter is concluded by
an evaluation of i) the model, and ii) the proposed algorithmic approaches on real-world
data. To the best of our knowledge, this research was the first to consider this problem from
a theoretical computer science point of view.
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Figure 6.8: Timeline of important historical events in the 20th century.

Long Label
Really Long Label

Label A
Label B

Label X

(a) po-labeling.

R
ea

lly
Lo

ng
La

be
l

La
be

lA

La
be

lB
La

be
lX

Lo
ng

La
be

l
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Figure 6.9: Labeling of a panorama with different approaches.

After we have discussed labeling of rotating maps, we turn, in Chapter 8, towards the
second basic operations allowed for dynamic maps: zooming. Contrary to the problem
of labeling maps which allow rotation, labeling maps that allow zooming has already
been considered, e. g., by Been et al. [10]. However, previous publications in the field of
theoretical computer science only considered the fixed-position model. We improve on
this by investigating the dynamic map labeling problem for zooming maps in the slider
model. We begin by investigating the labeling of one-dimensional dynamic maps, i. e.,
lines. Although at first glance this seems only like a purely academic problem with no real
application value, we see applications, e. g., in the labeling of time lines. In Figure 6.8 we
present a timeline of important historical events in the 20th century. Since not all events
can be shown (there are simply way too many) “zooming” into the timeline (i. e., looking at
decades/years more closely) frees up space to show more events. We extend our results for
one-dimensional maps to the two-dimensional case and discuss the algorithms with a brief
experimental evaluation.
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In the last chapter of this part of the thesis we discuss the problem of labeling panoramas
in the boundary model. Panoramas distinguish themselves from the usual objects of
illustration by their property that they are unusually wide; see Figure 6.10. Most boundary
labeling approaches position the labels to the right of the map; see Figure 6.9(a). However,
for panoramas this quickly leads to visually unpleasing layouts, since the labels cannot
exploit the large width of the panorama but need to be stacked at the right border. To deal
with this problem one might propose to simply rotate the labels by 90◦ and position the
labels at the top; see Figure 6.9(b). While such a layout can exploit the width of the panorama
it might lead to non-compact drawings, since labels might be very long. We propose a
different model, in which the labels are placed either above or below the panorama 6.9(c).
As common for boundary labeling models the anchors and their labels are connected by a
leader, however, contrary to most algorithmic approaches for boundary labeling, we restrict
the type of the leaders to straight lines. More specifically, we allow only vertical lines as
leaders. In this chapter we propose several algorithms (most of them are polynomial-time
algorithms, but some investigated problems are NP-hard, and we either provide an ILP
formulation, or when possible, a pseudo-polynomial time algorithm) and investigate their
performance.

Figure 6.10: Panorama labeling for the skyline of Chicago. Photography: ©J. Crocker.
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L A B E L I N G O F R O TAT I N G M A P S

Dynamic maps that allow continuous map rotations, e.g., on mobile devices, encounter new
issues unseen in static map labeling before. We study the following dynamic map labeling
problem: The input is a static, labeled map, i.e., a set P of points in the plane with attached
non-overlapping horizontal rectangular labels. The goal is to find a consistent labeling of P
under rotation that maximizes the number of visible labels for all rotation angles such that
the labels remain horizontal while the map is rotated. A labeling is consistent if a single
active interval of angles is selected for each label such that labels neither intersect each other
nor occlude points in P at any rotation angle.

We first introduce a general model for labeling rotating maps and derive basic geometric
properties of consistent solutions. We show NP-hardness of the active interval maximization
problem even for unit-square labels. We then present a constant-factor approximation
for this problem based on line stabbing, and refine it further into an efficient polynomial-
time approximation scheme (EPTAS). Further, we extend the EPTAS to the more general
setting of rectangular labels of bounded size and aspect ratio. For the case that we want
to compute solutions quickly (e. g., real-time application on mobile devices) we propose
several heuristics.

This chapter is based on joint work with Martin Nöllenburg, and Ignaz Rutter. Preliminary
results have been published in [103, 104, 106].

7.1 introduction

Dynamic maps, in which the user can navigate continuously through space, are becoming
increasingly important in scientific and commercial GIS applications as well as in personal
mapping applications. In particular GPS-equipped mobile devices offer various new
possibilities for interactive, location-aware maps. A common principle in dynamic maps
is that users can pan, rotate, and zoom the map view. Despite the popularity of several
commercial and free applications, relatively little attention has been paid to provably good
labeling algorithms for dynamic maps.

Been et al. [9] identified a set of consistency desiderata for dynamic map labeling. Labels
should neither “jump” (suddenly change position or size) nor “pop” (appear and disappear
more than once) during monotonous map navigation; moreover, the labeling should be a
function of the selected map viewport and not depend on the user’s navigation history.
Previous work on the topic has focused solely on supporting zooming and/or panning
of the map [9, 151, 10], whereas consistent labeling under map rotations has not been
considered prior to this work.

Most maps come with a natural orientation (usually the northern direction facing upward),
but applications such as car or pedestrian navigation often rotate the map view dynamically
to be always forward facing [107]. Still, the labels must remain horizontally aligned for
best readability regardless of the actual rotation angle of the map. A basic requirement in
static and dynamic label placement is that labels are pairwise disjoint, i.e., in general not all
labels can be placed simultaneously. For labeling point features, it is further required that
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Figure 7.1: Input map with five points (a) and three rotated views with some partially
occluded labels (b)–(d).

each label, usually modeled as a rectangle, touches the labeled point on its boundary. It is
often not allowed that labels occlude the input point of another label. Figure 7.1 shows an
example of a map that is rotated and labeled. The objective in map labeling is usually to
place as many labels as possible. Translating this into the context of rotating maps means
that, integrated over one full rotation from 0 to 2π, we want to maximize the number of
visible labels. The consistency requirements of Been et al. [9] can immediately be applied
for rotating maps.

our results . Initially, we define a model for rotating maps and show some basic
properties of the different types of conflicts that may arise during rotation. Next, we prove
that consistently labeling rotating maps is NP-hard, for the maximization of the total number
of visible labels in one full rotation and NP-hard for the maximization of the visibility range
of the least visible label. Finally, we present a new 1/4-approximation algorithm and an
efficient polynomial-time approximation scheme (EPTAS) for unit-height rectangles. A
PTAS is called efficient if its running time is O( f (ε) · poly(n)). Both algorithms can be
extended to the case of rectangular labels with the property that the ratio of the smallest
and largest width, the ratio of the smallest and largest height, as well as the aspect ratio
of every label is bounded by a constant, even if we allow the anchor point of each label
to be an arbitrary point of the label. This applies to most practical scenarios where labels
typically consist of few and relatively short lines of text. For the case that a guaranteed
optimal solution is preferred over the approximation produced by the EPTAS we propose
an integer linear program (ILP) and a mixed integer linear program (MIP), both of which
find the optimal solution. On the other hand, if there is only limited computing power
available and the solution needs to be computed quickly, simple heuristics may provide
solutions with sufficient quality. We propose three greedy heuristics, where one of them is a
1/8-approximation for the case that only unit squares are used as labels. We conclude this
chapter by giving an experimental evaluation of the proposed algorithms and models. First,
we discuss the impact of the limitations which we have introduced by our model and then
evaluate the performance of our algorithms.
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related work . Most previous algorithmic research efforts on automated label place-
ment cover static labeling models for point, line, or area features. For static point labeling,
fixed-position models and slider models have been introduced [86, 136], in which the label,
represented by its bounding box, needs to touch the labeled point along its boundary. The
label number maximization problem is NP-hard even for the simplest labeling models,
whereas there are efficient algorithms for the decision problem that asks whether all points
can be labeled in some of the simpler models (see the discussion by Klau and Mutzel [131]
or the comprehensive map labeling bibliography [186]). Approximation results [136, 2],
heuristics [182], and exact approaches [131] are known for many variants of the static label
number maximization problem. Additionally, to the label number maximization problem,
there is also the label size maximization problem, where all labels need to be placed and the
optimization goal is to find the largest factor by which all labels can be stretched such that
not two labels overlap each other. The corresponding decision problem is NP-hard in the
fixed-position model with four different positions [86], but is in P if only two positions per
label are allowed[86]. As for the label size maximization problem, there are approximation
algorithms [182, 86].

In recent years, dynamic map labeling has emerged as a new research topic that gives
rise to many unsolved algorithmic problems. Petzold et al. [156] used a preprocessing
step to generate a reactive conflict graph that represents possible label overlaps for maps
of all scales. For any fixed scale and map region, their method computes a conflict-free
labeling using heuristics. Mote [147] presents another fast heuristic method for dynamic
conflict resolution in label placement that does not require preprocessing. The consistency
desiderata of Been et al. [9] for dynamic labeling (no popping and jumping effects when
panning and zooming), however, are not satisfied by either of the methods. Been et al. [10]
showed NP-hardness of the label number maximization problem in the consistent labeling
model and presented several approximation algorithms for the problem. Nöllenburg et
al. [151] studied a dynamic version of the alternative boundary labeling model, in which
labels are placed at the sides of the map and connected to their points by leaders. They
presented an algorithm to precompute a data structure that represents an optimal one-sided
labeling for all possible scales and thus allows continuous zooming and panning. None of
the existing dynamic map labeling approaches supports map rotation. Recently, Gemsa
et al. [100] discussed the problem of labeling a rotating map when only a small part of
the map can be seen. This is a problem the manufacturers of modern GPS navigation
devices face when implementing the algorithms for displaying the map. They present an
NP-hardness proof as well as an approximation algorithm for unit squares. Finally, a recent
paper investigated the label size maximization problem for rotating maps [189]. They show
that the problem is in P if they consider unit height rectangles in the equivalent of the fixed
position model with only one allowed position.

7.2 preliminaries

In this section we describe a general labeling model for rotating maps with axis-aligned
rectangular labels and give a formal definition of the problem we investigate in this chapter.

Let M be an (abstract) map, consisting of a set P = {p1, . . . , pn} of points in the plane
together with a set L = {`1, . . . , `n} of pairwise disjoint, closed, and axis-aligned rectangular
labels in the plane. Each point pi must coincide with a corner of its corresponding label `i;
we denote that corner (and the point pi) as the anchor of label `i. Since each label has fouranchor

possible positions with respect to pi this widely used model is known in the literature as
the 4-position model (4P) [86].

As M rotates, each label `i in L must remain horizontally aligned and anchored at pi.
Thus, new label intersections form and existing ones disappear during the rotation of M.
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We take the following alternative perspective on the rotation of M. Rather than rotating the
points, say clockwise, and keeping the labels horizontally aligned we may instead rotate
each label counterclockwise around its anchor point and keep the set of points fixed. It is
easy to see that both rotations are equivalent in the sense that they yield exactly the same
intersections of labels and occlusions of points.

We consider all rotation angles modulo 2π. For convenience we introduce the interval
notation [a, b] for any two angles a, b ∈ [0, 2π]. If a ≤ b, this corresponds to the standard
meaning of an interval, otherwise, if a > b, we define [a, b] := [a, 2π] ∪ [0, b]. For simplicity,
we refer to any set of the form [a, b] as an interval. We further define the length of an
interval I as |I| = b− a if I = [a, b] with a ≤ b and |I| = 2π − a + b if I = [a, b] with a > b.

A rotation of L is defined by a rotation angle α ∈ [0, 2π). We define the rotated label rotation

set L(α) of all labels, each rotated by an angle of α around its anchor point. A rotation
labeling of M is a function φ : L× [0, 2π) → {0, 1} such that φ(`, α) = 1 if label ` is visible rotation labeling

or active in the rotation of L by α, and φ(`, α) = 0 otherwise. We call a labeling φ valid if, active

for any rotation α, the set of labels Lφ(α) = {` ∈ L(α) | φ(`, α) = 1} consists of pairwise
disjoint labels. If two labels ` and `′ in L(α) intersect, we say that they have a (soft) conflict conflict

at α, i.e., in a valid labeling at most one of them can be active at α. We define the set
C(`, `′) = {α ∈ [0, 2π) | ` and `′ are in conflict at α} as the conflict set of ` and `′. Further,
we call the begin and end of a maximal contiguous conflict range in C(`, `′) conflict events. conflict events

For a label ` we call each maximal interval I ⊆ [0, 2π) with φ(`, α) = 1 for all α ∈ I an
active range of label ` and define the set Aφ(`) as the set of all active ranges of ` in φ. We active range

call an active range where both boundaries are conflict events a regular active range. Our regular

optimization goal is to find a valid labeling φ that shows a maximum number of labels
integrated over one full rotation from 0 to 2π. The value of this integral is called the total
activity t(φ) and can be computed as t(φ) = ∑`∈L ∑I∈Aφ(`) |I|. total activity

A valid labeling is not yet consistent in terms of the definition of Been et al. [9, 10]: for
given fixed anchor points, labels clearly do not jump and the labeling is independent of
the rotation history, but labels may still flicker multiple times during a full rotation from
0 to 2π, depending on how many active ranges they have in φ. In the most restrictive
consistency model, which avoids flickering entirely, each label is either active for the full
rotation [0, 2π) or never at all. We denote this model as 0/1-model. However, this model 0/1-model

is from our perspective too restrictive and we therefore propose a model where we say a
rotation labeling is consistent if each label has only a single active range, which we denote
here as the 1R-model. We note that this can be immediately generalized to the kR-model that 1R-model

kR-modelallows at most k active ranges for each label for k ≥ 2. We denote the model that has no
restrictions on the number of active ranges per label as ∞R model. However, only the 0/1-,
and the 1R model follow the consistency criteria proposed by Been et al. [9, 10].

We apply another restriction to our consistency model, which is based on the occlusion
of anchors. Among the conflicts in set C(`, `′) we further distinguish hard conflicts, i.e., hard conflicts

conflicts where label ` intersects the anchor of label `′. (In our definition every hard conflict
is also a soft conflict.) If a labeling φ sets ` active during a hard conflict with `′, the anchor
of `′ is occluded. This may be undesirable in some situation in practice, e.g., if every point
in P carries useful information in the map, even if it is unlabeled. Thus we require that
φ(`, α) = 0 during any hard conflict of a label ` with another label `′ at angle α.

We distinguish the models further based on the way label-anchor conflicts are handled.
We say a labeling model is a hard-conflict model, when no label may occlude an anchor
point of another label, and otherwise (i. e., when a label may occlude any anchor) we denote
it as soft-conflict model. This property of a labeling model is independent of the number
of allowed active ranges per label, i. e., any combination of those two types of model is
possible (e. g., 1R hard-conflict model, 3R soft-conflict model).

The objective in static map labeling is usually to find a maximum subset of pairwise
disjoint labels, i. e., to label as many points as possible. Generalizing this objective to rotating
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maps means that integrated over all rotations α ∈ [0, 2π) we want to display as many labels
as possible. This corresponds to finding the rotation labeling φ with maximum t(φ) over all
rotation labelings in; we call this optimization problem MaxTotal. An alternative objective
is to maximize over all rotation labelings φ the minimum length min{|I| ∈ Aφ(`) | ` ∈ L}
of all active ranges in the 1R model; this problem is called MaxMin.

Although any combination of kR and hard/soft-conflict model is conceivable, we argue
that there are only few sensible ones. We are mainly interested in the 1R hard-conflict model
since it provides a middleground between the 0/1 model and the ∞R model, while keeping
all anchor points on display during the full rotation. For the 1R hard-conflict model, we
give complexity results, and approximation algorithms, as well as algorithmic approaches
to obtain optimal solutions. In the experimental evaluation we compare the 1R model with
other kR models, to assess the “cost” of restricting the maximum number of active ranges
to 1 per label, and also evaluate the difference between the soft-conflict and hard-conflict
model.

We note that our problem follows the constraints C1-C3 and rules R2 and is easily
extended to follow the rule R3 proposed by Reimer and Rylov [161].

7.3 properties of rotation labelings

In this section we show basic properties of rotation labelings. If two labels ` and `′ intersect
in a rotation of α they have a (regular) conflict at α, i.e., in a consistent labeling at most one
of them can be active at α.

We show the following lemma in a more general model, in which the anchor point p of
a label ` can be any point within ` and not necessarily a point on the boundary ∂` of the
label `:
Lemma 7.1 For any two labels ` and `′ with anchor points p ∈ ` and p′ ∈ `′ the set C(`, `′)
consists of at most four disjoint contiguous conflict ranges.

Proof. The first observation is that due to the simultaneous rotation of all initially axis-
parallel labels in L, ` and `′ remain “parallel” at any rotation angle α. Rotation is a
continuous movement and hence any maximal contiguous conflict range in C(`, `′) must be
a closed “interval” [α, β], where 0 ≤ α, β < 2π. Here we explicitly allow α > β by defining,
in that case, [α, β] = [α, 2π) ∪ [0, β]. At a rotation of α (resp. β) the two labels ` and `′

intersect only on their boundary. Let l, r, t, b be the left, right, top, and bottom sides of ` and
let l′, r′, t′, b′ be the left, right, top, and bottom sides of `′ (defined at a rotation of 0). Since `

and `′ are parallel, the only possible cases, in which they intersect on their boundary but
not in their interior are t ∩ b′, b ∩ t′, l ∩ r′, and r ∩ l′. Each of those four cases may appear
twice, once for each pair of opposite corners contained in the intersection. Figure 7.2 shows
all eight boundary intersection events. Each of the conflicts defines a unique rotation angle
and obviously at most four disjoint conflict ranges can be defined with these eight rotation
angles as their endpoints. �

In the following we look more closely at the conditions under which the boundary
intersection events (the conflict events) occur and at the rotation angles defining them. Let
ht and hb be the distances from p to t and b, respectively. Similarly, let wl and wb be the
distances from p to l and r, respectively; see Figure 7.3. By h′t, h′b, w′l , and w′r we denote
the corresponding values for label `′. Finally, let d be the distance of the two anchor
points p and p′. To improve readability of the following lemmas we define two functions
fd(x) = arcsin(x/d) and gd(x) = arccos(x/d).
Lemma 7.2 Let ` and `′ be two labels anchored at points p and p′. Then the conflict events
in C(`, `′) are a subset of C = {2π − fd(ht + h′b), π + fd(ht + h′b), fd(hb + h′t), π − fd(hb +

h′t), 2π − gd(wr + w′l), gd(wr + w′l), π − gd(wl + w′r), π + gd(wl + w′r)}.



98 labeling of rotating maps

`
`′

t

l b

r
b′

r′t′

l′

(a) r ∩ l′

` `′
t

l b

r

b′

r′t′

l′

(b) b ∩ t′

` `′
t

l

br
b′r′

t′ l′

(c) b ∩ t′

`
`′

t
l

br b′
r′

t′
l′

(d) l ∩ r′

`
`′

t

lb

r

b′

r′ t′

l′

(e) l ∩ r′

`
`′

t

lb

r

b′

r′ t′

l′

(f) t ∩ b′

`
`′

tl

b r b′ r′

t′l′

(g) t ∩ b′

`
`′

tl

b r b′
r′

t′l′

(h) r ∩ l′

Figure 7.2: Two labels ` and `′ and their eight possible boundary intersection events. Anchor
points are marked as black dots.
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Figure 7.3: Parameters of label ` anchored at p.

Proof. Assume without loss of generality that p and p′ lie on a horizontal line. First we show
that the possible conflict events are precisely the rotation angles in C. We start considering
the intersection of the two sides t and b′. If there is a rotation angle under which t and
b′ intersect then we have the situation depicted in Figure 7.4 and by simple trigonometric
reasoning the two rotation angles at which the conflict events occur are 2π − arcsin((ht +

h′b)/d) and π + arcsin((ht + h′b)/d). Obviously, we need d ≥ ht + h′b. Furthermore, for
the intersection in Figure 7.4(a) to be non-empty, we need d2 ≤ (wr + w′l)

2 + (ht + h′b)
2;

similarly, for the intersection in Figure 7.4(b), we need d2 ≤ (wl + w′r)2 + (ht + h′b)
2.

From an analogous argument we obtain that the rotation angles under which b and
t′ intersect are arcsin((hb + h′t)/d) and π − arcsin((hb + h′t)/d). Clearly, we need d ≥
hb + h′t. Furthermore, we need d2 ≤ (wr + w′l)

2 + (hb + h′t)
2 for the first intersection and

d2 ≤ (wl + w′r)2 + (hb + h′t)
2 for the second intersection to be non-empty under the above

rotations.
The next case is the intersection of the two sides r and l′, depicted in Figure 7.5. Here

the two rotation angles at which the conflict events occur are 2π− arccos((wr + w′l)/d) and
arccos((wr + w′l)/d). For the first conflict event we need d2 ≤ (wr + w′l)

2 + (ht + h′b)
2, and

for the second we need d2 ≤ (wr + w′l)
2 + (hb + h′t)

2. For each of the intersections to be
non-empty we additionally require that d ≥ wr + w′l .
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Figure 7.4: Boundary intersection events for t ∩ b′.
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Figure 7.6: Conflict ranges of two labels ` and `′ marked in bold on the enclosing circles.

Similar reasoning for the final conflict events of l ∩ r′ yields the rotation angles π −
arccos((wl + w′r)/d) and π + arccos((wl + w′r)/d). The additional constraints are d ≥
wl + w′r for both events and d2 ≤ (wl + w′r)2 + (hb + h′t)

2 for the first intersection and
d2 ≤ (wl + w′r)2 + (ht + h′b)

2. Thus, C contains all possible conflict events. �
One of the requirements for a valid labeling is that no label may contain a point in P

other than its anchor point. For each label ` this gives rise to a special class of conflict
ranges, called hard conflict ranges, in which ` may never be active. The rotation angles at
which hard conflicts start or end are called hard conflict events. Every angle that is a (hard)
conflict event is called a label event. Obviously, every hard conflict is also a regular conflict.
Regular conflicts that are not hard conflicts are also called soft conflicts. We note that by
definition regular conflicts are symmetric, i.e., C(`, `′) = C(`′, `), whereas hard conflicts are
not symmetric. The next lemma characterizes the hard conflict ranges.
Lemma 7.3 For a label ` anchored at point p and a point q 6= p in P, the hard conflict events of `
and q are a subset ofH = {2π− fd(ht), π + fd(ht), fd(hb), π− fd(hb), 2π− gd(wr), gd(wr), π−
gd(wl), π + gd(wl)}.
Proof. We define a label of width and height 0 for q, i.e., we set h′t = h′b = w′l = w′r = 0.
Then the result follows immediately from Lemma 7.2. �

A simple way to visualize conflict ranges and hard conflict ranges is to mark, for each
label ` anchored at p and each of its (hard) conflict ranges, the circular arcs on the circle
centered at p and enclosing `. Figure 7.6 shows an example.

In the following we show that the MaxTotal problem can be discretized in the sense that
there exists an optimal solution whose active ranges are defined as intervals whose borders
are label events. An active range border of a label ` is an angle α that is characterized by the
property that the labeling φ is not constant in any ε-neighborhood of α. We call an active
range where both borders are label events a regular active range.
Lemma 7.4 (Discretization Lemma) Given a labeled map M there is an optimal rotation labeling
of M consisting of only regular active ranges.
Proof. Let φ be an optimal labeling with a minimum number of active range borders that
are no label events. Assume that there is at least one active range border β that is no label
event. Let α and γ be the two adjacent active range borders of β, i.e., α < β < γ, where α

and γ are active range borders, but not necessarily label events. Then let Ll be the set of
labels whose active ranges have left border β and let Lr be the set of labels whose active
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ranges have right border β. For φ to be optimal Ll and Lr must have the same cardinality
since otherwise we could increase the active ranges of the larger set and decrease the active
ranges of the smaller set by an ε > 0 and obtain a better labeling.

So define a new labeling φ′ that is equal to φ except for the labels in Ll and Lr: define the
left border of the active ranges of all labels in Ll and the right border of the active ranges of
all labels in Lr as γ instead of β. Since |Ll | = |Lr| we shrink and grow an equal number of
active ranges by the same amount. Thus the two labelings φ and φ′ have the same objective
value ∑`∈L |Aφ(`)| = ∑`∈L |Aφ′(`)|. Because φ′ uses as active range borders one non-label
event less than φ this number was not minimum in φ—a contradiction. As a consequence φ

has only label events as active range borders. �

7.4 complexity considerations

In this section we show that finding an optimal solution for MaxTotal (and also MaxMin)
is NP-hard in the 1R hard-conflict model even if all labels are unit squares and their anchor
points are their lower-left corners. We present a gadget proof reducing from the NP-complete
problem planar Planar 3Sat [139]. Before constructing the gadgets, we show a special
property of unit-square labels.
Lemma 7.5 If two unit-square labels ` and `′ whose anchor points are their lower-left corners have
a conflict at a rotation angle α, then they have conflicts at all angles α + i · π/2 for i ∈ Z.

Proof. Similar to the notation used in Section 7.3, let fd = arcsin(1/d) and further let
gd = arccos(1/d). From Lemma 7.2 we obtain the set C = {2π − fd, π + fd, fd, π − fd, 2π −
gd, gd, π− gd, π + gd} of conflict events for which it is necessary that the distance d between
the two anchor points is 1 ≤ d ≤

√
2. Since arccos x = π/2− arcsin x the set C can be

rewritten as C = { fd, π/2− fd, π/2+ fd, π− fd, π + fd, 3π/2− fd, 3π/2+ fd, 2π− fd}. This
shows that conflicts repeat after every rotation of π/2. �

For every label ` we define the outer circle of ` as the circle of radius
√

2 centered at the
anchor point of `. Since the top-right corner of ` traces the outer circle we will use the locus
of that corner to visualize active ranges or conflict ranges on the outer circle. Note that due
to the fact that at the initial rotation of 0 the diagonal from the anchor point to the top-right
corner of ` forms an angle of π/4 all marked ranges are actually offset by π/4.

The general idea behind the reduction is as follows. We describe how to transform a
Planar 3Sat formula into an instance of MaxTotal that has a solution with value K if and
only if the corresponding Planar 3Sat formula has a satisfying variable assignment. To do
this we describe how to build gadgets that correspond to the variables and clauses of the
Planar 3Sat formula. Since the gadgets need to properly correspond to Boolean variables
the gadgets can have, in an optimal MaxTotal solution, only two possible states; one which
corresponds to true, and the other to false. Similarly, the clause gadgets should contribute
the same value to the total value of the optimal solution if and only if at least one of the
variable gadgets is in the state true. Obviously, we need also some kind of connection
between the variable gadgets and the clause gadgets to transmit the state of the variable
gadgets. Those should contribute to the value of the optimal solution of MaxTotal the
same value regardless of the state of the connected variable’s state. If this is the case then we
only need to choose the appropriate value K for which the value of the optimal solution of
the instance indicates that the corresponding Planar 3Sat formula has a satisfying variable
assignment. Hence, an exact polynomial time algorithm that solves MaxTotal can decide
Planar 3Sat, which would imply NP = P.

We begin by describing basic building blocks from which we construct all our gadgets.
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inner chainterminal terminal

(a) Chain. The two outermost labels (grey circles) on each
side are a terminal. A terminal can have several different
states in an optimal solution.

3/4 ·
√
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5 ·
√

2

(b) Inverter.

Figure 7.7: Depicted are the two basic building blocks chain and inverter. Each of them
has only two states in any optimal solution of MaxTotal. One of those states is
marked by the solid blue arcs, while the other is marked by the dotted red arcs

7.4.1 Basic Building Blocks

We base all our later gadgets on the following three basic structures.

chain. A chain consists of at least four labels anchored at collinear points that are evenlychain

spaced with distance
√

2. Hence, each point is placed on the outer circles of its neighbors.
We call the first and last two labels of a chain terminals and the remaining part inner chain,terminals

inner chain see Figure 7.7(a). We denote an assignment of active ranges to the labels as the state of the
chain. The important observation is that in any optimal solution of MaxTotal an inner
chain has only two different states, whereas terminals have multiple optimal states that are
all equivalent for our purposes; see Figure 7.7(a). In particular, in an optimal solution each
label of an inner chain has an active range of length π and active ranges alternate between
adjacent labels. We will use the two states of chains as a way to encode truth values in our
reduction.
Lemma 7.6 In any optimal solution, any label of an inner chain has an active range of length π.
The active ranges of consecutive labels alternate between (0, π) and (π, 2π).

Proof. By construction every label has two hard conflicts at angles 0 and π, so no active
range can have length larger than π. From Lemma 7.5 we know that every label has conflicts
at π/2 and 3π/2. These conflicts are soft conflicts and can be resolved by either assigning
all odd labels the active range (0, π) and all even labels the active range (π, 2π) or vice
versa. Obviously both assignments are optimal and there is no optimal assignment in which
two adjacent labels have active ranges on the same side of π. �

For inner chains whose distance between two adjacent points is less than
√

2 the length
of the conflict region changes, but the above arguments remain valid for any distance
between 1 and

√
2.

inverter . The second basic building block is an inverter. It consists of five collinear
labels that are evenly spaced with distance 3/4 ·

√
2 as depicted in Figure 7.7(b). This means

that the five labels together take up the same space as four labels in a usual inner chain.
Similar to Lemma 7.6 the active ranges in an optimal solution also alternate. By replacing
four labels of an inner chain with an inverter we can alter the parity of an inner chain.

turn. The third building block is a turn that consists of four labels; see Figure 7.8. The
anchor points pa and pb are at distance

√
2 and the pairwise distances between pb, pc, and
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Figure 7.8: Turn. A turn that splits one inner chain into two inner chains. Like the chain,
the turn has only two possible states in an optimal solution. One is marked by
the solid blue arc, while the other is marked by the red dotted arc.

pd are also
√

2 such that the whole structure is symmetric with respect to the line through
pa and pb. The central point pb is called turn point, and the two points pc and pd are called
outgoing points. Due to the hard conflicts created by the four points we observe that the
outer circle of pb is divided into two ranges of length 5π/6 and one range of length π/3.
The outer circles of the outgoing points are divided into ranges of length π, 2π/3, and π/3.
The outer circle of pa is divided into two ranges of length π. The outgoing points serve as
connectors to terminals, inner chains, or further turns. Note, by coupling multiple turns we
can divert an inner chain by any multiple of 30◦.
Lemma 7.7 A turn has only two optimal states and allows to split an inner chain into two equiv-
alent parts in an optimal solution.

Proof. We show that the optimal solution for the turn is 21/6π and that there are only
two different active range assignments that yield this solution. Note that for the label `a the
length of its active range is at most π. For `b it is at most 2/3π and for `c and `d it is at
most π.

We first observe that `c and `d cannot both have an active range of length π since by
Lemma 7.5 they have a soft conflict in the intersection of their length-π ranges. Thus at
most one of them has an active range of length π and the other has an active range of length
at most 5π/6. But in that case the same argumentation shows that the active range of `b is
at most π/2. Combined with an active range of length π for `a this yields in total a sum of
20π/6.

On the other hand, if one of `c and `d is assigned an active range of length 2π/3 and the
other an active range of length π as indicated in Figure 7.8, the soft conflict of `b in one of
its ranges of length 5π/6 is resolved and `b can be assigned an active range of maximum
length. This also holds for `a resulting in a total sum of 21π/6.

Since the gadget is symmetric there are only two states that produce an optimal solution
for the lengths of the active ranges. By attaching inner chains to the two outgoing points
the truth state of the inner chain to the left is transferred into both chains on the right. �

7.4.2 Gadgets of the Reduction

The reduction is based on three different kinds of gadgets. One type for the variables, one
for the clauses, and a gadget, which we call pipe, that connects the variable gadgets with the pipe

clauses. We now describe those gadgets and conclude this section by explaining how to
position them.

variable gadget. The variable gadget consists of an alternating sequence of two
building blocks: horizontal chains and literal readers. A literal reader is a structure that literal readers
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Figure 7.9: Literal Reader.

allows us to split the truth value of a variable into one part running towards a clause and
the part that continues the variable gadget; see Figure 7.9. The literal reader consists of
four turns, three terminals, and one modified inverter. The first turn connects to a literal
pipe and the other three are dummy turns needed to lead the variable gadget back to our
grid. Note that some of the distances between anchor points in the literal reader need to be
slightly less than

√
2 in order to reach a grid point at the end of the structure. We can use

an appropriately modified inverter to achieve this.
In order to encode truth values we define the state in which the first label of the first

horizontal chain has active range (0, π) as true and the state with active range (π, 2π) as
false.

clause gadget. The clause gadget consists of one inner and three outer labels, where
the anchor points of the outer labels split the outer circle of the inner label into three equal
parts of length 2π/3; see Figures 7.10 and 7.11. Each outer label further connects to an
incoming literal pipe and a terminal. These two connector labels are placed so that the outer
circle of the outer label is split into two ranges of length 3π/4 and one range of length π/2.
Note that the terminals can be placed such that they cannot have a conflict with the other
pipes or terminals; see Figure 7.10(b).

The general idea behind the clause gadget is as follows. The inner label obviously cannot
have an active range larger than 2π/3. Each outer label is placed in such a way that if it
carries the value false it has a soft conflict with the inner label in one of the three possible
active ranges of length 2π/3; see Figure 7.11(a) for an illustration of this (for simplicity only
the left outer label and the inner label are depicted). In this example the pipe coming from
the left side transmits the truth value false. This forces the outer label `a with anchor pa to
have the active range indicated by the red dotted arc. This splits the arc from pa to pc of
the inner label’s outer circle into two arcs where one arc has length π/2 and the other π/6.
The functionality of the other outer labels is identical. Hence, if all three pipes transmit the
value false then every possible active range of the inner label of length 2π/3 is affected by
a soft conflict. Consequently, its active range can be at most π/2.

On the other hand, if at least one of the pipes transmits true, the inner label can be
assigned an active range of maximum length 2π/3. As can be seen in the Figures 7.11(b)
and 7.11(c), when the outer label `a with anchor pa has the active range indicated by the
solid blue line (i. e., the attached pipe transmits the truth value true), no arc of the inner
label is affected. The inner label can have active range that is corresponds to the arc from pa
to pb of length 2π/3.
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(a) Clause gadget with one inner and
three outer labels.
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(b) Clause gadget with terminal the left inner label
and attached pipe for the lower inner label. The
labels of the terminal and the labels of the pipe
are cannot intersect.

Figure 7.10: Illustration of the clause gadget.
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(a) Soft Conflict.
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(d) Hard Conflict.

Figure 7.11: Illustration of the four conflicts of the left outer label with the inner label. The
only soft conflict is depicted in (a). All remaining conflicts are hard conflicts.

Lemma 7.8 There must be a label in a clause or in one of the incoming pipes with an active range
of length at most π/2 if and only if all three literals of that clause evaluate to false.

Proof. The active range for the lower-right outer label that is equal to the state false is
(3π/4, 3π/2). For the two other outer labels the active range corresponding to false is
rotated by ±2/3π. Note that the outer clause labels can have an active range of at most
3/4π and the inner clause label can at most have an active range of at most 2/3π. For every
literal that is false one of the possible active ranges of the inner clause label is split by a
conflict into two parts of length π/2 and π/6. This conflict is either resolved by assigning
an active range of length π/2 to the inner clause label or by propagating the conflict into
the pipe or variable where it is eventually resolved by assigning some active range with
length at most π/2.

Otherwise, if at least one pipe transmits true, the inner label of the clause can be active
for 2π/3 while the outer clause labels have an active range of length 3π/4 and no chain or
turn has a label that is visible for less than 2π/3. �

pipes . Pipes propagate truth values of variable gadgets to clause gadgets. We use three
different types of pipes, which we call left arm, middle arm, and right arm, depending on
where the pipe attaches to the clause.

One end of each pipe attaches to a variable at the open outgoing label of a literal reader.
Initially, the pipe leaves the variable gadget at an angle of 30◦. By using sequences of turns,
we can route the pipes at any angle that is an integer multiple of 30◦. Thus we can make
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variables

clause

Figure 7.12: Sketch of the gadget placement for the reduction.

sure that for a clause above the variables the left arm enters the clause gadget at an angle of
150◦, the middle arm at an angle of 270◦, and the right arm at an angle of 30◦ with respect
to the positive x-axis. For clauses below the variables the pipes are mirrored.

In order to transmit the correct truth value into the clause we first need to place the
literal reader such that the turn point of the first turn corresponds to an even position in
the variable chain. Next, for a positive literal we need a pipe of even length, whereas for a
negative literal the pipe must have odd length. Note that we can always achieve the correct
parity by making use of the inverter gadgets.

gadget placement. We place all variable gadgets on the same y-coordinate, and all
clause gadgets and pipes lie below and above the variables and form three-legged “combs”.
The overall structure of the gadget arrangement is sketched in Figure 7.12.

At first glance it seems as if we might have a problem in describing the anchor coordinates
with polynomially bounded precision, since, for example, each variable gadget requires
us to place anchors with distance

√
2. By encoding the anchor coordinates with algebraic

numbers, however, we can avoid this problem. It can be verified that all our constructed
gadgets are either aligned with the coordinate axes directly or they are sloped by 15◦, 30◦,
45◦, or 60◦ with respect to an axis-parallel line through a reference point. Now it is well
known that the sine and cosine values of these angles can all be expressed as algebraic
numbers in the number field Q(

√
2,
√

3). Hence, if we choose, say, the leftmost anchor
of the leftmost variable gadget as the origin, we can express the coordinates of any other
anchor with respect to this origin as an algebraic number in Q(

√
2,
√

3).
Theorem 7.1 MaxTotal is NP-hard in the 1R hard-conflict model even if all labels are unit
squares and their anchor points are their lower-left corners.

Proof. For a given planar 3-SAT formula ϕ we construct the MaxTotal instance as
described above. For this instance we can compute the maximum possible sum K of active
ranges assuming that each clause is satisfiable. By Lemma 7.8 every unsatisfied clause forces
one label to have an active range of only π/2. Thus we know that ϕ is satisfiable if and
only if the MaxTotal instance has a total active range sum of at least K. Constructing and
placing the gadgets can be done in polynomial time and space and the value of the optimal
solution is a rational multiple of π.

There is one point left to argue. Recall that we require a MaxTotal instance to be an
already labeled map, i. e., on the map no two labels intersect. We need to show that an
instance of planar 3-Sat converted into a MaxTotal instance as described above fulfills this
requirement. To see that this holds when all labels are placed in their initial position (i. e.,
at rotation angle 0) consider the following. Note that two labels of any gadget (except the
inverter which we address later) intersect at exactly four rotation angles. Further, recall
that the distance between two anchor points of any two labels in our construction that have
an intersection is

√
2. This means that for two such labels to have an intersection when

placed in their initial position it would require the anchor points to lie on a diagonal with
slope 1. However, in our construction this does not exist. By simple calculations it is easy
to see that that also the inverter gadget has no conflict when the labels are placed in their
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initial position. We can conclude that the constructed instance is a valid MaxTotal instance.
Finally, we can conclude that MaxTotal is NP-hard. �

We note that the same construction as for the NP-hardness of MaxTotal can also be
applied to prove NP-hardness of MaxMin. The maximally achievable minimum length of
an active range for a satisfiable formula is 2π/3, whereas for an unsatisfiable formula the
maximally achievable minimum length is π/2 due to Lemma 7.8. This observation also
yields that MaxMin cannot be efficiently approximated within a factor of 3/4. We conclude
the results in the following corollary.
Corollary 7.1 MaxMin is NP-hard in the 1R hard-conflict model even if all labels are unit squares
and their anchor points are their lower-left corners. Moreover, there exists no efficient approximation
algorithm with an approximation factor larger than 3/4 for this problem, unless P = NP.

In the conference version of this chapter [104] (where we published preliminary results)
we erroneously claimed that MaxTotal is contained in NP and thus the (corresponding
decision) problem is NP-complete. Although it seems that due to the discretization lemma
we can simply guess and verify a solution in polynomial time, we encounter the problem
that in order to find the value of the guessed solution we potentially need to sum up
irrational numbers. This, unfortunately, cannot be done in polynomial time on a Turing
machine, and hence, we fail to show membership in
NP of MaxTotal.

7.5 approximation algorithms for maxtotal

In the previous section we have established that MaxTotal is NP-hard. Unless P = NP
we cannot hope for an efficient exact algorithm to solve the problem. In the following we
devise a 1/4-approximation algorithm for MaxTotal and refine it to an EPTAS. For both
algorithms we initially assume that labels are congruent unit-height rectangles with constant
width w ≥ 1 and that the anchor points are the lower-left corners of the labels. Let d be the
length of the label’s diagonal, i.e., d =

√
w2 + 1.

Before we describe the algorithms we state four important properties that apply even to
the more general labeling model, where anchor points are arbitrary points within the label
or on its boundary, and where the ratio of the smallest and largest width and height, as
well as the aspect ratio are bounded by constants:

(i) the number of anchor points contained in a rectangle is proportional to its area,
(ii) the number of conflicts a label can have with other labels is bounded by a constant,

(iii) any two conflicting labels produce only O(1) conflict regions, and finally,
(iv) there is an optimal MaxTotal solution where the borders of all active ranges are

events.

Properties (i) and (ii) are proved in Lemmas 7.9 and 7.10 using a simple packing argument.
Property (iii) follows from property (ii) and Lemma 7.1. Property (iv) follows immediately
from Lemma 7.4.
Lemma 7.9 For any rectangle R with width W and height H, the number of anchor points in the
interior or on the boundary of R is proportional to the area of R.
Proof. Recall that by assumption all labels in the initial labeled map M are visible. Let the
smallest label height be hmin, the smallest label width be wmin and the smallest label area
be amin. There can be at most d2W/wmine+ d2H/hmine independent labels intersecting the
boundary of R such that their anchor points are contained in R. All remaining labels with an
anchor point in R must be completely contained in R, i.e., there can be at most dW ·H/amine
such labels. Hence, the number of anchor points in R is bounded by a constant. �

Lemma 7.10 Each label ` has conflicts with at most a constant number of other labels.
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Proof. For two labels ` and `′ to have a conflict their outer circles need to intersect and
thus the maximum possible distance between their anchor points is bounded by twice the
maximum diameter of all labels in L. By the assumption that the height ratio, width ratio,
and aspect ratio of all labels in L is bounded by a constant this diameter is constant. Hence
we can define for each label ` a constant size area around its anchor point containing all
relevant anchor points. By Lemma 7.9 this area contains only a constant number of anchor
points. �

7.5.1 A 1/4-approximation for MaxTotal

The basis for our algorithm is the line stabbing or shifting technique by Hochbaum and
Maass [117], which has been applied before to static labeling problems for (non-rotating)
unit-height labels [2, 136]. Consider a grid G where each grid cell is a square with side
length 2d. We can address every grid cell by its row and column index. Now we can
partition G into four subsets by deleting every other row and every other column with either
even or odd parity. Within each of these subsets we have the property that any two grid
cells have a distance of at least 2d. Thus no two labels whose anchor points lie in different
cells of the same subset can have a conflict. For an illustration see Figure 7.13.

For a cell c we call the area that is not contained in c but within distance of at most d to c
the border of c. To compute an optimal solution for the labels contained in c we must also
consider anchor points that lie in this area since during a full rotation a label may intersect
such an anchor point. We have depicted border of the cell in row 2 and column 3 in blue in
Figure 7.13.

We say that a grid cell c covers a label ` if its anchor point lies inside c. By Lemma 7.9
only O(1) labels are covered by a single grid cell. Combining this with Lemma 7.10 we see
that the number of conflicts of the labels covered by the same cell is constant. It remains to
determine the number of conflict events that are due to anchors in the border of the cell. It
is easy to see that all anchors contained in the border of a cell lie inside a rectangle with
dimensions 4d× 4d centered at the cells center. By Lemma 7.9 we know that the number of
anchor points is bounded by some constant and hence we can conclude that the number
of conflict events contributed by these anchor points is also constant. This implies that the
total number of conflict events per cell (cf. Lemma 7.4) is also constant.

The four different subsets of grid cells divide a MaxTotal instance into four subinstances,
each of which decomposes into independent grid cells. If we solve all subsets optimally,
at least one of the solutions is a 1/4-approximation for the initial instance due to the
pigeon-hole principle.

Determining an optimal solution for the labels covered by a grid cell c works as follows.
We compute, for the set of labels Lc ⊆ L covered by c, the set Ec of label events (conflict
events due to the soft/hard conflicts with labels covered by c and the conflict events due
to hard conflicts with the anchors in the border of c ). Due to Lemma 7.4 we know that
there exists an optimal solution where all borders of active ranges are label events. Thus,
to compute an optimal active range assignment for the labels in Lc we need to test all
possible combinations of active ranges for all labels ` ∈ Lc. For a single cell this requires
only constant time.

We can precompute the non-empty grid cells by simple arithmetic operations on the
coordinates of the anchor points and store those cells in a binary search tree. Since we have
n anchor points there are at most n non-empty grid cells in the tree, and each of the cells
holds a list of the covered anchor points. Building this data structure takes O(n log n) time
and then optimally solving the active range assignment problem in the non-empty cells
takes O(n) time.
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Figure 7.13: Example for the 1/4-approximation. Depicted are all grid cells and one of the
four different subinstances (the even numbered rows and the odd numbered
columns are selected). The blue area depicts the area in which the anchor points
lie which may be important for the labels in the cell the blue area surrounds.

Theorem 7.2 There exists an O(n log n)-time algorithm that yields a 1/4-approximation of Max-
Total for congruent unit-height rectangles with their lower-left corners as anchor points.

7.5.2 An Efficient Polynomial-Time Approximation Scheme for MaxTotal

We extend the technique for the 1/4-approximation to achieve a (1− ε)-approximation. Let
again G be a grid whose grid cells are squares of side length 2d. For any integer k we can
remove every k-th row and every k-th column of the grid cells, starting at two offsets i and
j (0 ≤ i, j ≤ k− 1). This yields collections of meta cells of side length (k− 1) · 2d that are
pairwise separated by a distance of at least 2d and thus independent. In total, we obtain k2

such collections of meta cells. For an illustration see Figure 7.14.
For a given ε ∈ (0, 1) we set k = d2/εe. Let c be a meta cell for the given k and let again Lc

be the set of labels covered by c, and Ec the set of label events for Lc. Then, by Lemmas 7.9
and 7.10, the number of labels |Lc| inside c is in O(1/ε2) and thus, the number of conflicts
events |Ec| for the all labels inside c is in O(1/ε4). The same number of conflict events is
due to anchor points in the border of the meta cell c. Hence, for each label there are O(1/ε8)

possible combinations of conflict events. Since we need to test all possible active ranges
for all labels in Lc, it takes O(2O(1/ε2 log 1/ε8)) time to determine an optimal solution for the
meta cell c.

For a given collection of disjoint meta cells we determine (as in Section 7.5.1) all O(n)
non-empty meta cells and store them in a binary search tree such that each cell holds a list of
its covered anchor points. This requires again O(n log n) time. So for one collection of meta
cells the time complexity for finding an optimal solution is O(n2O(1/ε2 log 1/ε8) + n log n).
There are k2 such collections and, by the pigeon hole principle, the optimal solution for
at least one of them is a (1− ε)-approximation of the original instance. This yields the
following theorem.
Theorem 7.3 There exists an EPTAS that computes a (1− ε)-approximation of MaxTotal for
congruent unit-height rectangles with their lower-left corners as anchor points. Its time complexity
is O((n2O(1/ε2 log 1/ε) + n log n)/ε2).

We note that this EPTAS basically relies on properties (i)–(iv) and that there is nothing
special about congruent rectangles anchored at their lower-left corners. Hence we can
generalize the algorithm to the more general labeling model, in which the ratio of the label
heights, the ratio of the label widths, and the aspect ratios of all labels are bounded by
constants. Furthermore, the anchor points are not required to be label corners; rather they
can be any point on the boundary or in the interior of the labels. Finally, we can even ignore
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Figure 7.14: Illustration for our EPTAS for k = 4. The blue area is the border of the meta
cell spanning columns and rows 4-6.

the distinction between hard and soft conflicts, i.e., allow that anchor points of non-active
labels are occluded. Properties (i)–(iv) still hold in this general model. The only change in
the EPTAS is to set the width and height of the grid cells to twice the maximum diameter of
all labels in L.
Corollary 7.2 There exists an EPTAS that computes a (1− ε)-approximation of MaxTotal in
the general labeling model with rectangular labels of bounded height ratio, width ratio, and aspect
ratio, where the anchor point of each label is an arbitrary point in that label. The time complexity of
the EPTAS is O((n2O(1/ε2 log 1/ε) + n log n)/ε2).

7.6 heuristics for maxtotal

In this section we describe three greedy algorithms for solving MaxTotal. These algorithms
are conceptually simple, and easy to implement. However, in general we cannot give quality
guarantees for the solutions obtained by the algorithms.

All proposed algorithms follow the same principle. Throughout its execution, the algo-
rithm maintains a set L′ of label candidates that contains all labels it can still choose to assign
an active range to. Further, for each label in L′ the algorithm maintains the label’s maximum
active range. The maximum active range of a label ` is the single longest contiguous interval
in [0, 2π) (which may span over 2π) that ` can have as active range such that i) it does
not overlap an anchor of another label in the instance (hard conflict), and ii) the label’s
maximum active range does not include a rotation angle α that is included in the active
range of another label (already considered by the algorithm) that has a conflict with ` at α

(soft conflict).
The algorithm initializes the set L′ with all labels of the instance and computes each

label’s maximum active range (at initialization it only needs to consider hard conflicts).
In each step of the algorithm it first selects and removes a label ` from L′, assigns it its
maximum active range, and finally updates those labels in L′ whose active range is affected
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by assigning ` its maximum active range. The three algorithms differ only in the criteria
that determines which label is selected from L′.

The first algorithm we propose is called GreedyMax. In each step the algorithm selects the
label with the longest maximum active range among all labels left in L′. Ties are broken
arbitrarily. The second algorithm, GreedyLowCost, determines for the maximum active range
for each label the cost of adding it to the solution. This means that while considering a
label `i ∈ L with maximum active range A(`) the algorithm determines for all labels in L′

that are in conflict with `i during A(`) by how much their maximum active range would
shrink. The sum of this is the cost of choosing `i with its active range A(`). Among all
labels GreedyLowCost chooses the label which has the lowest cost associated with it. Finally,
the last algorithm, GreedyBestRatio is a combination of the two preceding ones. In each
step the algorithm chooses the label `i with maximum active range A(`) whose ratio of the
length |A(`)| to its cost is maximum among all remaining labels in L′.
Theorem 7.4 In the 1R-model the algorithm GreedyMax has time complexity O(cn(c + log n))
and the algorithms GreedyLowCost and GreedyBestRatio have time complexity O(cn(c2 + log n)),
where n is the number of labels and c is the maximum number of conflicts per label in the input
instance. The space consumption of all algorithms is in O(cn).
Proof. We begin by describing the time complexity for GreedyMax and sketch how to adapt
the proof for GreedyBestRatio and GreedyLowCost.

In each step of the algorithm it first selects the label ` with maximum active range still
left in L′. Then, it needs to update the maximum active range of those labels in L′ that have
a conflict with `. To do this efficiently we maintain a maximum heap H that contains all
labels in L′ with the length of their maximum active range as key. This allows us to find
and remove the label with maximum active range in O(log n) time. To determine the new
maximum active ranges for those labels in L′ that are in conflict with `, we conduct a simple
linear sweep over [0, 2π). Note that there are at most O(c) conflict events and hence a single
sweep requires O(c) time. Finally, we need to update the value of the maximum active
ranges in the global heap. This requires O(c log n) time. Thus, a single step in the algorithm
requires O(c2 + c log n) time. Since there are n steps, the claimed running time follows.

For GreedyLowCost and GreedyBestRatio we use the same approach, but we store the labels
with their cost and gain-cost ratio as key, respectively. The main difference compared to
GreedyMax is the necessity to compute the cost of selecting a maximum active range, which
can be done straightforwardly in O(c2) time per label. After selecting a label and assigning
it its maximum active range as active range, the maximum active range of at most O(c)
labels still left in L′ may change. For these labels, the algorithm needs to recompute the cost
of selecting their maximum active ranges and update these values in the maximum heap. In
total a single step for GreedyLowCost or GreedyBestRatio requires O(c3 + c log n) time. The
claimed time complexity follows. The required space is dominated by the storage required
to store for each label its relevant conflict events. This takes O(cn) space. �

By using a more efficient encoding of the maximal disjoint intervals that can be assigned
to label `i in a heap, the running time of GreedyMax can be further improved to O(cn log n).
Theorem 7.5 GreedyMax can be implemented with time complexity O(cn log n) and space require-
ment in O(cn).

Proof. Similar to the proof of Theorem 7.4, we maintain a global heap that contains the
maximum possible active range for each label. In the following we describe the modified
representation of the possible active ranges for the individual labels.

We maintain for each label `i ∈ L a maximum heap Hi that maintains all maximal disjoint
intervals the label `i can be assigned as active range. Further, each label also maintains a
balanced binary tree Ti on the same set of intervals, i. e., we store the left and right endpoints
of the intervals in Ti. Should one of the intervals span over 2π, we split it into two intervals
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at 2π. Since there are O(c) conflict events per label, both Ti and Hi can contain at most O(c)
elements.

Now, when the algorithm has chosen a label ` with maximum active range A(`) with left
and right endpoints a and b, respectively, it needs to update the maximum active range
of each label `i that is in conflict with `. So, for each label `i in conflict with `, we query
`i’s binary search tree Ti with a and b. This allows us to obtain all k maximal intervals of
`i that partly overlap with, or are completely contained in A(`). The intervals completely
contained in A(`) need to be removed from Ti and Hi, while the intervals (at most two) that
are only partly contained in A(`) are shrunk or split.

The query on the binary search tree requires O(k + log c) time, where k is the number of
reported intervals. Updating both Ti and Hi requires then O(log c) time for the intervals
that get shrunk (or split). Deleting the elements is more costly, but since in both the binary
tree as well as the heap there can be at most O(c) elements, and we insert and remove each
element at most once, we can conclude that inserting and deleting requires per binary tree
and heap each in total at most O(c log c) time. Since there are O(n) heaps and trees, this
requires in total O(cn log c) time.

We now summarize these results. In each step we require O(log n) time to determine
and remove the label ` with maximum active range from the global heap. Then, we shrink
or split the intervals of labels that are in conflict with ` in O(c log c) time. We need to
update the global heap since the maximum active range of the O(c) labels that are in
conflict with ` might have changed. This update requires O(c log n) time. Finally, we need
to repeat this step O(n) times, yielding O(cn(log c + log n)) = O(cn log n) time. As stated
above, the insertion and deletion into the label’s own binary trees and maximum heaps
requires in total O(cn log n) time, yielding a total time complexity of O(cn log n). The space
consumption is dominated by the O(n) trees, each of size O(c). We conclude that the
algorithm requires O(cn) space. �

approximation for unit square labels . While we claimed at the beginning of the
section that in general we cannot prove any quality criteria for the presented algorithms for
the special case that labels are unit squares we can show that GreedyMax is an approximation
algorithm with approximation ratio 1/8. This is due to a result by Gemsa et al. [100, Lemma
1 and Lemma 2] in which the authors consider a similar problem. The results of both
Lemmas imply the following.
Lemma 7.11 ([100]) For any unit square label ` there is no rotation angle α ∈ [0, 2π) for which
there are more than eight unit square labels that overlap with ` and that are pairwise do not overlap.

Since in each step of the GreedyMax we select the label ` with maximum active range
we can conclude by Lemma 7.11 that the cost of choosing ` is at most eight times of its
maximum active range. We summarize this in the following.
Corollary 7.3 For the special case that we restrict the input of MaxTotal to consist only of unit
square labels, the algorithm GreedyMax is a 1/8-approximation algorithm.

7.7 finding optimal solutions

In this section we describe two approaches to solve MaxTotal and one approach to solve
MaxMin optimally by using (mixed) integer linear program formulations. The first integer
linear program (ILP) described in Section 7.7.1 is conceptually simple and relies on the
discretization lemma (Lemma 7.4). Unfortunately, the formulation does not allow an easy
adaption such that it can solve MaxMin. The second approach (see Section 7.7.2) is a
mixed integer linear program (MIP), i. e., a linear program with both integer and continuous
variables, that we can use (with minor adjustments) to solve both MaxTotal and MaxMin.
However, it is also significantly more complicated.
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7.7.1 An Integer Linear Program for MaxTotal

In Section 7.9 we have seen how to construct an efficient polynomial-time approximation
scheme for MaxTotal. One key ingredient for the EPTAS was to consider only small square
sections in the plane in which (due to the requirement on the input) only few labels can
be contained. Although from a theoretical point of view, finding the optimal solution for
such a small instance requires only constant time by simply trying all possible combinations
of possible solutions, the running time of such a brute force algorithm is, in practice,
prohibitively high. Since we ware still interested in finding solutions to the problem we
propose a formulation of the problem as integer linear program (ILP). This formulation is
very similar to that of Gemsa et al. [100] but simpler in some respects.

The key idea of the ILP presented here is to determine regular active ranges induced by
the ordered set of all conflict events. Our model contains for each label ` and each interval
I a binary decision variable, which indicates whether or not ` is active during I. We add
constraints to ensure that (i) no two conflicting labels are active at the same time within
their conflict range and (ii) at most k disjoint contiguous active ranges can be selected for
each label as required in the kR-model.

model . For simplicity we assume in this section that the length of each conflict range is
strictly larger than 0. This assumption is not essential for our ILP formulation, but makes a
description much easier.

Let E be the ordered set of conflict events that also contains 0 and 2π, and let E[j] be the
interval between the j-th and the (j + 1)-th element in E. We call such an interval E[j] an
atomic interval and always consider its index j modulo |E| − 1. For each label `i ∈ L and
for each atomic interval E[j] we introduce two binary variables xj

i and bj
i to our model. We

refer to the variables of the form xj
i as activity variables. The intended meaning of xj

i is that

its value is 1 if and only if the label `i is active during the j-th atomic interval; otherwise xj
i

has value 0. We use the binary variables bj
i to indicate the start of a new active range and to

restrict their total number to 1. This is achieved by adding the following constraints to our
model.

xj
i − bj

i ≤ xj−1
i ∀`i ∈ L ∀j ∈ {0, . . . , |E| − 2} (7.1)

∑
0≤j≤|E|−2

bj
i ≤ 1 ∀`i ∈ L (7.2)

The effect of constraint (7.1) is that it is only possible to start a new active range for label `i

with atomic interval E[j] (i.e., xj−1
i = 0 and xj

i = 1) if we account for that range by setting

bj
i = 1.

Due to constraint (7.2) this can happen at most k times per label. We can also allow
arbitrarily many active ranges per label as in the ∞R-model by completely omitting the
variables bj

i and the above constraints.
It remains to guarantee that no two labels can be active when they are in conflict. This can

be done straightforwardly since we can compute for which atomic intervals two labels are
in conflict and we ensure that not both activity variables can be set to 1. More specifically,
for every pair of labels `i, `k and for every atomic interval j during which they are in conflict,
we add the constraint

xj
i + xj

k ≤ 1. (7.3)

Incorporating hard conflicts can also be done easily as a hard conflict simply excludes
certain atomic intervals from being part of an active range. We determine for each label all
such atomic intervals in a preprocessing step and set the corresponding activity variables
to 0.
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Among all feasible solutions that satisfy the above constraints, we maximize the objective
function ∑`i∈L ∑0≤j≤|E|−2 xj

i · |E[j]|, which is equivalent to the total activity t(φ) of the
induced labeling φ.

This ILP considers only regular active ranges, since label activities change states only
at conflict events. However, by Lemma 7.4, there always exists an optimal solution that is
regular, and hence we are guaranteed to find a globally optimal solution.

We have now given a complete description of our ILP model, and now turn towards the
analysis of the number of variables and constraints necessary for our model. Let e and c be
the number of conflict events and the maximum number of conflict events per label in a
MaxTotal instance, respectively. In the worst case the number of constraints that ensure
that the solution is conflict-free (i. e., constraint (7.3)) is in O(c · e) per label, whereas we
require only O(e) constraints of the other two types of constraints per label.
Theorem 7.6 The ILP (1)–(3) solves MaxTotal and has at most O(e · n) variables and O(c · e · n)
constraints, where n is the number of labels, e the number of conflict events, and c the maximum
number of conflicts per label.

extensions . In Section 7.2 we explained that, in order to reduce flickering, we require
that each label has at most one active range. However, we might be able to reduce flickering
even more by finding the among all optimal solutions one that has the fewest active ranges.
We can modify our ILP to accommodate for this by modifying the objective function slightly.
Let s > 0 denote the length of a shortest atomic interval (recall that all atomic intervals
are assumed to have positive length). Thus, whenever a label is active during an atomic
interval, the total activity increases by at least s. To minimize the number of active ranges,
we substract s/2 from the objective function for each active range. In this way, a solution
with larger total activity is always preferred over a solution with less total activity, while
among two solutions with the same total activity the one with fewer active ranges has the
greater objective value. Hence, to minimize the number of active ranges while maintaining
optimality, we modify the objective function to ∑`i∈L ∑0≤j≤|E|−2

(
xj

i · |E[j]| − bj
i · s/2

)
. To

ensure that if label `i is active at any time, then at least one of the variables bj
i is 1, we also

add the following constraints.

(|E| − 1) ·
|E|−2

∑
j=0

bj
i ≥

|E|−2

∑
j=0

xj
i ∀`i ∈ L (7.4)

Without this constraint, it would be possible to have a label `i active for the whole range
[0, 2π) but with bj

i = 0 for all j ∈ {0, . . . , |E| − 2}. We note that it follows from the proof of
Lemma 7.4 that also for the modified problem there always exists an optimal solution that
is regular. Hence an optimal solution to the above ILP is indeed a global optimum.

As stated before we argued that to reduce flickering we require that each label is active in
at most one contiguous range (1R model). However, it might be worthwhile to explore the
optimal solution for the case that each label may be active for k active ranges, where k ≥ 2.
This can be easily included in the ILP by changing constraint (7.2) to

∑
0≤j≤|E|−1

bj
i ≤ k ∀`i ∈ L. (7.5)

Finally, we can adapt this formulation such that it can handle weighted labels when we
make the reasonable assumption that the weight of a label is the length of its activity
multiplied with a label specific constant w`. To allow this we only need to make a minor
modification to the objective function.
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7.7.2 A Mixed Integer Linear Program for MaxTotal and MaxMin

In Section 7.7.1 we have already given a simple integer linear programming formulation
with which we can obtain an optimal solution to a MaxTotal instance. This formulation
relied heavily on the discretization lemma, which we cannot use for MaxMin and hence,
we fail to solve MaxMin with this approach.

In the following we give a mixed integer linear programming (MIP) formulation, that
allows us to find an optimal solution for MaxTotal, and with only a minor modifications, it
allows us to find an optimal solution for MaxMin. We begin by describing the general idea
behind our approach, and proceed by describing the necessary variables and constraints for
our model.

7.7.2.1 Preliminaries

The general idea behind this approach is somewhat more intuitive than the one presented
before. In this model, we will determine the endpoints of each label’s active range directly.
For simplicity, we “unroll” the interval [0, 2π) to [0, 4π). This allows us to have active ranges
that are “proper” intervals, in that the active range’s left endpoint is always smaller than its
right endpoint. To allow this we need to modify the definitions of Section 7.2 slightly. The
domain of the rotation labeling function φ is extended to L× [0, 4π), and accordingly the
set Aφ(`). For simplicity we refer in the following the active range of the label `i by A(`i),
and we denote the left endpoint of its active range A(`i) by ai and the right endpoint by bi.
For this section we assume that the active ranges are open intervals, i. e., A(`i) = (ai, bi). We
discuss the implication of this at the end of this section. Finally, we assume in this section
that when we talk about conflict ranges that these conflict ranges are maximal.

For this mixed integer linear programming formulation we will treat each conflict range
between two labels separately. Conflict ranges that span over 2π are split into two separate
conflict ranges at 2π. Since we have unrolled the interval [0, 2π) to [0, 4π) each conflict
range appears twice. More specifically, a conflict between two labels with conflict range
[l, r] appears again at [l + 2π, r + 2π]. We refer to the conflict range contained in [0, 2π) as
left conflict range and its copy in [2π, 4π) as right conflict range.

The critical part of this formulation is to avoid that two labels are active while they are
in conflict, i. e., handling soft conflicts. The general idea behind the approach is to detect
whenever the active range of any label `i has a non-empty intersection with the conflict set
C(`i, `j) for any `j. When this is detected certain constraints are “activated” which ensures
that the intersection of `j’s active range with C(`i, `j) ∩ A(`i) is empty, i. e., not both `i and
`j are active during a rotation for which both labels are in conflict with each other. In the
following we discuss how to handle soft conflicts between two labels. This description is
somewhat decoupled from the actual MIP formulation, but it is necessary to understand
the constraints we require for the MIP formulation which we give later.

soft conflicts . Consider a label `i with active range A(`i) = (ai, bi). Further, let `i be
in conflict with another label `j during the conflict range [l, r]. If the intersection of A(`i)

with [l, r] (or the corresponding right conflict range [l + 2π, r + 2π]) is non-empty we can
distinguish between three cases:

I) ai < r and bi > l,
II) ai < r and bi > l + 2π,

III) ai ≥ r and bi > l + 2π.

At first glance it seems strange that we distinguish between three cases, since case II) directly
implies that case I) is true. We come back to this seemingly obvious flaw in our formulation
in Section 7.7.2.2 after we have given a full description of our ILP formulation. However, to
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0 2πl r

ai bi

(a) Case I.

0 2πl r

aibi

(b) Case II.

0 2πl r

aibi

(c) Case III.

Figure 7.15: Illustration of the three different cases for non-unrolled intervals. The interval
shaded in light-red is a conflict interval between two labels `i and `j.

Table 7.1: Cases and the constraints under which they pose no problem.

Case Constraints

I E1 E2 E3 E4 E5 E6

II E1 E5

III E1 E5 E7

give a first hint that these cases really are different in some respect we refer the reader to
Figures 7.15 where we show examples for the three cases.

We observe that if and only if one of the above cases applies, the intersection of (ai, bi)

with [l, r] (or its corresponding right conflict interval) is non-empty. We now describe for
each case which conditions must be met by the active range of the second label `j such
that not both `i and `j are active when they are in conflict. For a examples for all cases see
Figures 7.16(a)–7.16(d).

Should case I) apply, i. e., ai < r and bi > l then not both labels `i and `j are active while
in conflict if (at least) one of the following conditions applies to `j’s active range (aj, bj).

E1) `j’s active range ends before the left conflict range begins (i. e., bj ≤ l)
E2) `j’s active range ends before `i’s active range begins (i. e., bj ≤ ai)
E3) `j’s active range begins after the end of `i’s active range and it ends before the right

conflict range (i. e., aj ≥ bi and bj ≤ l + 2π)
E4) `j’s active range begins after the end of `i’s active range and it ends before the begin of

`i’s conflict range mirrored into the second part of [0, 4π) (i. e., aj ≥ bi and bj ≤ ai + 2π)
E5) `j’s active range begins after the end of the conflict range and it ends before the right

conflict range (i. e., aj ≥ r and bj ≤ l + 2π)
E6) `j’s active range begins after the end of the conflict range and it ends before the begin of

`i’s conflict range mirrored into the second part of [0, 4π) (i. e., aj ≥ r and bj ≤ ai + 2π)

We further observe that should case II) apply, it is necessary and sufficient if either E1 or
E5 is true. Finally, should case III) apply, both labels `i and `j cannot be active at a rotating
angle under which they are in conflict if and only if E1 or E5 or the following condition E7
is true:

E7) `j’s active range begins after the end of `i’s active range mirrored into the first part
of [0, 4π) and ends before the begin of the right conflict range (i. e., aj ≥ bi − 2π and
bj ≤ l + 2π).

We have compiled an overview which cases may be resolved by which constraints in
Table 7.1. We are now ready to discuss our model in more detail, i. e., the necessary variables
and constraints which we need to add to solve MaxTotal/MaxMin.
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0 2π l + 2π r + 2πl r 4π

ai bi a′i b′i

(a) ai < l and bi > l (Case I). The parts of the interval shaded in gray correspond to E1 or E3.

0 2π l + 2π r + 2πl r 4π

ai bi a′ib′i

(b) ai ≥ l, ai ≤ r and bi > l (Case I). The parts of the interval shaded in gray correspond to E2 or E4.
bi

0 2π l + 2π r + 2πl r 4π

aib′i a′i

(c) ai < r and bi > l + 2π (Case II). The parts of the interval shaded in gray correspond to E1 or E5.

0 2π l + 2π r + 2πl r 4π

ai bib′i a′i

(d) ai ≥ r and bi > l + 2π (Case III). The parts of the interval shaded in gray correspond to E1 or E7.

Figure 7.16: Illustration for the MIP. Shown is the interval [0, 4π), and the left and right
conflict range for two labels `i and `j (shaded in light red). The active range
[ai, bi) of the label `i is indicated above the interval [0, 4π). The parts of the
interval shaded in gray are the parts of the interval where the label `j can be
active without causing a conflict.

7.7.2.2 Model

We have already stated at the beginning of the preceding section that in this model we want
to directly compute the active range endpoints. Therefore, we maintain for each label `i
two continuous variables ai and bi that represent the beginning and the end of its active
range, i. e., the active range of `i is (ai, bi). Also, recall that we have “unrolled” the interval
[0, 2π) to [0, 4π) to obtain proper intervals as active ranges. Hence, we add two continuous
variables ai and bi for each label `i to our model along with the following constraints:

0 ≤ ai ≤ 2π (7.6)

0 ≤ bi ≤ 4π (7.7)

ai ≤ bi (7.8)

bi − ai ≤ 2π (7.9)

We can already state the objective function as this is straightforward. To solve MaxTotal

we want to maximize ∑1≤i≤n(bi − ai).
To change the result of our MIP formulation such that it finds the optimal solution to

MaxMin we add a continuous variable z to our model, and for every label `i we add the
following constraint.

z ≤ (bi − ai) (7.10)

We use the MIP then to solve MaxMin optimally by setting the objective function to z and
maximizing it, i. e., maximize z.

Since the constraints (7.6)–(7.9) already ensure that we have a single contiguous active
range per label, to guarantee that the solution is valid, we only need to ensure that no



7.7 finding optimal solutions 117

two labels are active when they are in conflict. In Section 7.7.2.1 we have given a detailed
description how to determine when the intersection of an active range of a label with a
conflict range is non-empty; see cases I)–III). In the following we discuss how to handle
a single soft conflict between two labels `i and `j with active ranges (ai, bi) and (aj, bj),
respectively. The conflict range of the conflict we consider is the interval [l, r]. We need to
repeat the steps described in the following for every conflict range between any two labels
of the instance. Each time we need to add new variables and new constraints.

Next we describe the solution to handle soft conflicts. Afterwards we proceed by describ-
ing how to handle hard conflicts (which is significantly easier).

soft conflicts – high-level idea . The high-level idea of the approach to handle
soft conflicts, is that we first add a single binary variable for each of the cases I)–III). Further,
we add constraints such that should one of the cases apply, the corresponding binary
variable, which we refer to as the indicator variable, has value 1. We also add all constraints
E1–E7 to our model, but slightly modified such that they can be “activated” or “deactivated”
(this is done with a standard technique used in the formulation of MIPs. We explain how
this works later on.). Should one of the indicator variables have value 1, we ensure that
at least one of the constraints among E1–E7 is “activated” that is necessary to ensure the
solution remains valid; see Table 7.1.

As next step we describe how to add constraints such that the indicator variables actually
indicate whether a case applies. Then, we describe how to add the constraints E1–E7 such
that they can be “activated” or “deactivated” when necessary.

soft conflicts – determine if a case applies . We now want add three indicator
variables I1, I2, I3 to our model that indicate whether a case applies. More specifically, we
want that should case I) apply I1 = 1, should case II) apply I2 = 1, and should case III)
apply I3 = 1. We observe that for a case to be true exactly two conditions must be met.
The idea now is to add a binary variable for each of these conditions, and add constraints
that ensure that the binary variable has value 1 if its corresponding condition is met. For
example, consider case I) for which ai < r and bi > l must be true. We add for ai < r the
binary variable X1 and the constraint X1 > (r− ai)/(4π) to our model. It is easy to see that
(r− ai) > 0 if and only if ai < r and in this case X1 > 0. Since X1 is a binary variable and
the value of (r− ai)/(4π) is at most 1 the value of X1 must be set to 1. Similarly, we add
the binary variable X2 and the constraint X2 ≥ (l − bi)/(4π). Finally, we add the constraint
I1 ≥ X1 + X2 − 1 to the list of constrains. Now, should case I) apply, both X1 and X2 have
value 1 and thus also I1 = 1. We note, however, that it if I1 = 1 it does not necessarily
mean that case I) applies. At the end of this section, after we have introduced the remaining
constraints and variables, we discuss this and argue why this poses no problem for finding
the optimal solution.

We proceed in a similar fashion with the other constraints. Since some of the con-
straints in the cases I)–III) are identical we need to add only the following six variables
X1, . . . , X3, I1, . . . , I3 to our model along with the following constraints:

X1 ≥ (r− ai)/(4π) (7.11)

X2 ≥ (bi − l)/(4π) (7.12)

X3 ≥ (bi − l − 2π)/(4π) (7.13)

I1 ≥ X1 + X2 − 1 (7.14)

I2 ≥ X1 + X3 − 1 (7.15)

I3 ≥ (1− X1) + X3 − 1 (7.16)
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soft conflicts – adding the constraints e1–e7. We are now ready to introduce
the remaining constraints which help us to handle soft conflicts. For this we can use
the constraints E1–E7 which we described earlier. However, we need to ensure that the
constraints can be “activated” or “deactivated” when necessary. This must be done based
on the values of the indicator variables I1, I2, I3. Activating or deactivating a constraint can
be done by using a large constant, usually referred to as M in the literature, in combination
of a binary variable. This is a well-known trick used for modelling MIPS. For our purposes
we set M = 5π.

To model all constraints for case I), we begin by adding six binary variables A1, . . . , A6,
one for each of the constraints E1–E6 to our model. The idea now is that a constraint Ei
(1 ≤ i ≤ 6) is activated when its corresponding binary variable Ai has value 1; otherwise it
has no effect. We can model with the variables Ai the logical OR, by adding the following
constraint to our model:

A1 + A2 + A3 + A4 + A5 + A6 ≥ I1 (7.17)

This ensure that if case I) applies, and hence I1 = 1, at least one of the variables Ai (i ≤ i ≤ 6)
has value 1, which in turn means that Ai’s corresponding constraint is activated. We now
add the following constraints that correspond to the resolving constraints E1–E6.

bj ≤ l + (1− A1)M (7.18)

bj ≤ ai + (1− A2)M (7.19)

aj ≥ bi − (1− A3)M and bj ≤ l + 2π + (1− A3)M (7.20)

aj ≥ bi − (1− A4)M and bj ≤ ai + 2π + (1− A4)M (7.21)

aj ≥ r− (1− A5)M and bj ≤ l + 2π + (1− A5)M (7.22)

aj ≥ r− (1− A6)M and bj ≤ ai + 2π + (1− A6)M (7.23)

Note that the constraints 7.18–7.23 correspond to the constraints E1–E6 with an additional
term which guarantees that the constraint has an effect on the variables only when the
binary variable it contains has been set to 1. Otherwise, the large constant M negates the
effect of the constraint.

Modeling the constraints for the other two cases (cases II and III) follows the same
principle. For the second case we require only two binary variables, and for the third, we
require three. This step is straightforward and we omit it here. We have now added all
variables and constraints necessary to handle soft conflicts between labels.

hard conflicts . It remains to add constraints that ensure that no label is active during
a hard conflict. For a label `i with a hard conflict with a conflict range [l, r] the label’s active
range must not be active during [l, r]. This means that either both ai and bi are to the left of
l or they are both in between r and l + 2π. So, for each hard conflict [l, r] of a label `i we
add a binary variable H and the following constraints to our model.

bi ≤ l + (1− H)M (7.24)

ai ≥ r− HM and bi ≤ l + 2π + HM (7.25)

correctness . Here we discuss the correctness of our approach. It is easy to verify that
the active range of a label `i has a non-active intersection with a given conflict range [l, r] if
one of the cases I)–III) applies. Further, the possible resolutions (E1–E7) to each case are the
only possible resolutions.

While it is easy to see then, that applying the constraints corresponding to E1–E7 works
as intended for our approach, the indicator variables might pose some problems. More
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0 2πl r

aibi

aj bj

Figure 7.17: Example to show that case II) is necessary.

specifically, an indicator variable might be set to 1 even if the corresponding case does not
apply. However, this does not invalidate solution found the MIP nor allows this to find
better solutions since setting an indicator variable to 1 only “activates” constraints which
restrict the active range of another label.

We note one possible problem with constraint (7.16). We use (1− X1) to indicate whether
ai ≥ r. Unfortunately, we can only be sure that if ai < r then X1 = 1. Otherwise, for ai ≥ r
either X1 or 1− X1 has value 1. However, consider both constraints (7.15) and (7.16) (i. e.,
I2 ≥ X1 + X3 − 1 and I3 ≥ (1− X1) + X3 − 1). Should bi > l + 2π (which is a necessary
condition for case II) or case III) to apply), then X3 = 1. However, in this case either I2
or I3 must be set to 1 (since either X1 = 1 or 1− X1 = 1). Further, to resolve case II) we
can use only either E1 or E5, while to resolve case III) we can additionally to E1 and E5,
we can use E7. This means that should ai ≥ r setting X1 = 0 (i. e., (1− X1) = 1) can only
have beneficiary influence on the solution obtained by the MIP. Further, even setting X1 = 1
should ai ≥ r hold does not produce invalid solutions.

As we have stated in the beginning, we assume here that all active ranges are open
intervals. Note that this does not change the value of the optimal solution. It has, however,
unfortunate side effects. For example, consider two labels `i and `j with conflict ranges
(ai, bi) and (aj, bj), where bi = aj and where the labels are in conflict at rotation angle bi.
Since both active ranges are open intervals, none of the two labels is active at bi. However,
we can detect those cases in a post-processing step and simply change some of the active
ranges to half-closed/closed intervals.

Finally, when we introduced the three different cases in Section 7.7.2.1 we pointed towards
an obvious flaw in our approach. Namely, that case II) is a special case of case I) and seems
to be, because of that, unnecessary. This is also reflected in constraints (7.14) and (7.15). If
I2 = 1 it directly implies that I1 = 1 (since X3 ≥ X2). It is tempting to just remove case II)
and argue that this computes the same solutions. However, this might (and will) lead to
incorrect solutions. The issue here is that we have not “normal” intervals but circular ones.
First, note that, should case II) apply and be resolved (i. e., by constraint E1 or E5) case I)
is automatically resolved to. Hence, this cannot lead to incorrect solutions. On the other
hand, suppose we would remove case II) entirely. Further, imagine an instance where ai < r
and bi > l + 2π (i. e., case I) applies). We then can resolve this conflict for example by E2
which requires bj ≤ ai and we explained it as “`i’s active range ends before `i’s active range
begins”. However, bj ≤ ai is not sufficient to avoid conflicts, since the intervals may overlap;
see Figure 7.17 for an example.

result. As a last step we need to retranslate the intervals that span over 2π to active
ranges valid for our model; see description in Section 7.2. This can be done straightforwardly.
We can conclude that the given MIP formulation obtains the optimal solution to either
MaxTotal or MaxMin (depending whether or not the modification for MaxMin has been
applied).

Since we have now given a full description of our MIP we can analyze the number of
constraints and variables necessary for this model. It is easy to see that we require per label
O(1) variables and constraints, as well as O(1) variables and constraints per conflict in an
instance. We summarize this in the following corollary.



120 labeling of rotating maps

Corollary 7.4 The MIP formulation solves MaxTotal/MaxMin optimally and requires O(cn)
variables and constraints, where n is the number of labels, and c is the maximum number of conflicts
per label in the input instance.

The obvious advantage of this approach compared to the one presented in Section 7.7.1 is
that the number of constraints and variables for a single label does not depend on the total
number of conflict events, but rather only on the number of conflicts it has with other labels
during a full 360◦ rotation. Further, this approach allows us to solve both MaxTotal and
MaxMin. However, it is also more complicated and relies heavily on using the concept of
activating/deactivating constraints when necessary with a large constant M. This usually
has a significant negative effect on the time necessary to solve the MIP. Moreover, while it is
trivial to extend the ILP formulation from Section 7.7.1 such that it can find the solution in
any kR model, this, while certainly possible, is not at all easy to achieve with the formulation
presented in this section.

7.8 experimental evaluation

In this section we present the experimental evaluation of different labeling strategies based
on the consistency models and algorithms introduced in Sections 7.2 and 7.5– 7.7. We
implemented our algorithms in C++ and compiled with GCC 4.7.1 using optimization level
-O3. As ILP solver we used Gurobi 5.61. The running time experiments were performed on
a single core of an AMD Opteron 2218 processor running Linux 2.6.34.10. The machine is
clocked at 2.6 GHz, has 16 GiB of RAM and 2× 1 MiB of L2 cache. Before we discuss our
results we introduce the benchmark instances.

7.8.1 Benchmark Instances

Since our labeling problem is immediately motivated by dynamic mapping applications,
we focus on gathering real-world data for the evaluation. As data source we used the
publicly available data provided by the OpenStreetMap project2. We extracted the latitudes,
longitudes, and names of all cities with a population of at least 50 000 for six countries
(France, Germany, Italy, Japan, United Kingdom, and the United States of America) and
created maps at three different scales.

To obtain a valid labeling instance several additional steps are necessary. First, the width
and height of each label need to be chosen. Second, we need to map latitude and longitude
to the two-dimensional plane. Third, recall that the input is a statically labeled map, and
hence we need to compute such a static input labeling. For the first issue we used the
same font that is used in Google Maps, i. e., Roboto Thin3. The dimensions of each label
were obtained by rendering the label’s corresponding city name in Roboto Thin with font
size 13, computing its bounding box, and adding a small additional buffer. For obtaining
two-dimensional coordinates from the latitude and longitude of each point, we use the
popular Mercator projection. For the map scales we again wanted to be close to Google
Maps. Hence, we used the Mercator projection (where we approximate the ellipsoid with
a sphere of radius r = 6371km) for three different scales (65 pixel =̂ 20km, 50km, 100km)
for each country. For simplicity we refer to the scale of 65 pixel =̂ 20km only by 20km
(and likewise for the remaining scales). The last remaining step was to compute a valid
input labeling. For this we used the 4P fixed-position model [86] and solved a simple ILP
model to obtain a weighted maximum independent set in the label conflict graph, in which
any two conflicting label positions are linked by an edge and weights are proportional to

1 Gurobi is a commercial ILP solver www.gurobi.com
2 OpenStreetMap www.osm.org
3 Roboto Font www.google.com/fonts/specimen/Roboto

http://www.gurobi.com
http://www.osm.org
http://www.google.com/fonts/specimen/Roboto
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Table 7.2: Country instances. Number of labels in each benchmark instance, the number
of labels in the largest connected component (lcc) in the conflict graph, and the
number of connected components (cc) in the conflict graph.

countries

FR DE GB IT JP US

scales #labels (#labels in lcc / #cc)

20km 86 (12/51) 52 (20/26) 99 (73/19) 131 (28/48) 99 (12/34) 403 (26/203)

50km 80 (39/9) 43 (39/4) 68 (66/2) 111 (87/5) 80 (69/7) 359 (88/89)

100km 69 (69/1) 33 (33/1) 37 (37/1) 68 (68/1) 49 (44/3) 288 (213/16)

Table 7.3: City instances. Number of labels for each of our city instances, the number of
labels in the largest connected component in the conflict graph, and the number
of connected components in the conflict graph.

cities

Berlin London New York Paris

scales #labels (#labels in lcc / #cc)

20m 2744 (13/2205) 1661 (40/1044) 629 (9/445) 2367 (39/1560)

50m 2739 (77/1329) 1620 (175/569) 621 (50/279) 2325 (244/703)

100m 2628 (416/634) 1457 (371/289) 602 (88/143) 2141 (952/230)

the population. Table 7.2 shows the characteristics of our benchmark data, which can be
downloaded from our website4.

For the first problem we followed the example set forth by Google Maps and chose as
font Google’s own Roboto5 Font with font size set to 13. For the dimension we then chose
the bounding box of the cities name rendered in Roboto Thin with a small additional buffer.
For obtaining two-dimensional coordinates from the latitude and longitude we use the
Mercator projection [172] (similar to the projection used by Google Maps). For the scales
used we again wanted to be close to Google Maps depiction. Hence, we used the Mercator
projection for three different scales (65 pixel =̂ 20km, 50km, 100km) for each country. For
simplicity we refer to the scale of 65 pixel =̂ 20km only by 20km (and likewise for the
remaining scales). The last remaining step was to compute from this data a valid labeling
input instance. We took all anchor points and allowed for each label four positions. In
each position the a labels corner coincides with its anchor point (this model is known as
the 4P fixed-position model [86]). Then, we computed a maximum weighted independent
set of the intersection graph of all those labels. As weight we chose the population of the
city it corresponds to. This problem is well-known to be NP-hard [86] but it can be solved
optimally with a straightforward ILP formulation.

In Table 7.2 we report the number of labels for each of our input instances. In the
following we refer to the input instances by a combination of their ISO code names and the
scale. For example, the instance of France with a scale of 20km is referred to by FR20.

To obtain instances that are much larger than the country instances described in Table 7.3
we chose Berlin, London, New York, and Paris and extracted the names, as well as longitude

4 Benchmark data set i11www.iti.kit.edu/projects/dynamiclabeling/
5 Roboto Font http://www.google.com/fonts/specimen/Roboto

http://i11www.iti.kit.edu/projects/dynamiclabeling/
http://www.google.com/fonts/specimen/Roboto
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(a) Original instance. Red crosses are the anchor
points.

(b) Rotated instance with optimal solution. The
red circle around the anchor points indicate
for which angles the label is active.

Figure 7.18: Germany with scale 50km as displayed by our GUI.
Background picture is in public domain. Retrieved from http://commons.wikimedia.org/wiki/

File:Germany_localisation_map_2008.svg

and latitude, of all restaurants in each city from OpenStreetMap. To obtain valid input data
we conducted the same steps as described for the country instances with Roboto Thin but
with font size 8 and the three scales 65pixel =̂ 20m, 50m, 100m. We report the number of
labels for these instances in Table 7.3.

Unfortunately, the city instances are too large to obtain optimal solutions in either the
1R soft-conflict or 1R hard-conflict model in a reasonable time frame. We therefore do not
include these instances in the evaluation of the labeling models. However, we use these
instances later when evaluating the performance of the proposed algorithmic approaches.

7.8.2 Evaluation the Model

In this section we evaluate the different consistency models introduced in Section 7.2. The
models differ by the admissible number of active ranges per label and the handling of hard
conflicts. We begin by analyzing the effect of limiting the number of active ranges and
consider the five models 0/1, 1R, 2R, and ∞R, all taking hard conflicts into account. As
discussed in Section 7.2, the 0/1-model is flicker-free but expected to have a low total activity,
especially in dense instances. On the other hand, the ∞R-model achieves the maximum
possible total activity in any valid labeling, but is likely to produce a large number of
flickering effects. Still, it serves as an upper bound on the total activities of the other models.
The two most important quality criteria in our evaluation are (i) the total activity of the
solution, and (ii) the average length of the active ranges. Unfortunately, it proved too time
consuming for our ILP to solve the city instances in a reasonable time frame. Thus, we
chose to restrict ourselves in this analysis to the country instances described in Table 7.2.

In Table 7.4(a) we report the total activity of the optimal solution for the tested models
relative to the solution in the ∞R-model. The results of the instances are aggregated by
scale. For a more detailed description we refer the reader to Table 7.5. We observe that the
total activity of the 0/1-model drops to less than 55% compared to the optimal solution in

http://commons.wikimedia.org/wiki/File:Germany_localisation_map_2008.svg
http://commons.wikimedia.org/wiki/File:Germany_localisation_map_2008.svg
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Table 7.4: Average total activity of the optimal solutions for the country instances with
respect to the maximum possible objective value with standard deviation in
brackets. Instances grouped by scale. Additionally we report the average interval
length normalized to one full rotation, and for the ∞R-model the average number
of intervals per label.

model 0/1 1R 2R 3R ∞R

scale tot. act. tot. act. ∼len tot. act. ∼len tot. act. ∼len ∼len ∼intervals

20km 54.04% 94.56% 0.76 99.36% 0.56 99.92% 0.47 0.08 19.13

50km 22.42% 87.79% 0.58 97.69% 0.35 99.54% 0.26 0.01 79.23

100km 6.19% 81.01% 0.44 95.83% 0.27 99.24% 0.19 0.01 128.40

(a) Hard-conflict model.

model 0/1 1R 2R 3R ∞R

scale tot. act. tot. act. ∼len tot. act. ∼len tot. act. ∼len ∼len ∼intervals

20km 69.18% 98.17% 0.83 99.79% 0.64 99.98% 0.59 0.54 1.80

50km 49.47% 94.80% 0.69 99.27% 0.44 99.86% 0.37 0.27 5.09

100km 42.41% 91.67% 0.58 98.57% 0.34 99.76% 0.24 0.07 9.55

(b) Soft-conflict model.

the ∞R-model even for the least dense instance at scale 20km and to only 6% for a scale of
100km. Hence this model is of very little interest in practice.

We see a strong increase in the average total activity values already for the 1R-model
compared to the optimal solution in the 0/1-model. For the large-scale instance 20km
1R reaches almost 95% of the ∞R-model, which has more than 19 times the number of
flickering effects and active ranges of average length shorter by a factor of 1/9. For map
scales of 50km and 100km, the total activities drop to 88% and 81%, respectively, but at
the same time the number of flickering effects and the average active range lengths in the
∞R model are extremely poor. Thus the 1R-model achieves generally a very good labeling
quality by using only one active range per label.

Finally, we take a look at the middle ground between the 1R- and the ∞R-models. It turns
out that total activity of the 2R-model is off from the ∞R-model by less than 1% at scale
20km and less than 5% at scale 100km, but this increase in activity over the 1R model comes
at the cost of producing twice as many flickering effects and decreasing the average active
range length by 30–40%. If we allow three active ranges per label, the total activity increases
to more than 99% of the upper bound in the ∞R-model at all three scales, while having
significantly fewer flickering effects and longer average active ranges. The activity gain by
considering the kR-model for k > 3 is negligible and the disadvantage of increasing the
number of flickering effects dominates.

When we conduct the same analysis for the 0/1, 1R, 2R, and ∞R model in the soft-conflict
model, similar trends can be observed. We report in Table 7.4(b), analogous to Table 7.4(a),
the total activity of the optimal solution for the tested models relative to the solution in the
∞R-model. We observe that the trend in both tables is similar. However, the 0/1-model
performs in general significantly better than in the hard-conflict model, but the results are
still not suitable from a practical point of view. Already the 1R model produces results
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Table 7.5: Total activity normalized by 2π of the optimal solutions for each of the country
instances. We also report the average length of each interval (also normalized by
2π), and the average number of intervals, where it makes sense to do so. The
instances are named by a combination of country ISO code and scale.

model 0/1 1R 2R ∞R

scale tot. act. tot. act. ∼len tot. act. ∼len ∼len ∼intervals

FR20 53 72.37 0.84 73.45 0.67 0.19 4.54

FR50 15 53.59 0.67 58.32 0.42 0.03 23.02

FR100 2 28.74 0.42 35.40 0.26 <0.01 129.29

DE20 29 41.33 0.79 43.00 0.60 0.06 15.23

DE50 11 28.47 0.66 31.01 0.38 0.01 56.32

DE100 1 15.27 0.46 17.74 0.28 0.01 71.12

GB20 28 67.30 0.68 74.05 0.43 0.01 62.25

GB50 2 29.45 0.43 34.79 0.26 <0.01 139.38

GB100 0 14.02 0.38 16.84 0.23 <0.01 82.83

IT20 50 102.59 0.78 107.10 0.54 0.06 14.54

IT50 8 57.04 0.51 65.09 0.30 0.01 116.26

IT100 1 27.73 0.41 32.85 0.24 <0.01 124.75

JP20 32 68.26 0.69 72.67 0.49 0.08 9.24

JP50 9 42.80 0.53 47.51 0.31 <0.01 94.70

JP100 2 22.81 0.46 26.36 0.28 0.01 72.14

US20 195 322.18 0.80 336.82 0.61 0.09 8.97

US50 100 241.66 0.67 260.46 0.45 0.02 45.66

US100 29 148.60 0.52 173.35 0.32 <0.01 290.28

which are close to the maximum possible solution in the ∞R-model, while the difference in
the optimal solutions in the 2R and 3R-model to the ∞R-model are negligible.

We conclude that the 1R-model achieves the best compromise between total activity value
and low flickering, at least for maps at larger scales with lower feature density. For dense
maps the 2R- or even the 3R-models yield near-optimal activity values while still keeping
the flickering relatively low. Going beyond three active ranges per label only creates more
flickering but does not provide noticeable additional value.

It remains to investigate the impact of hard conflicts. For this we apply the 1R-model
and compare the variant where all conflicts are treated equally (soft-conflict model) with
the variant where hard conflicts are disallowed (hard-conflict model). We consider for
each map scale the average relative increase in activity value of the soft-conflict model
over the stricter hard-conflict model. For 20km instances the increase is on average 8.51%
(standard deviation 2.91), for the intermediate scale 50km it is on average 19.25% (standard
deviation 7.86), and for the small-scale map 100km the increase reaches on average 31.9%
(standard deviation 4.72). We report these results in detail in Table 7.6(a), and give the
summary in Table 7.6(b). They (the results) indicate that, unsurprisingly, the soft-conflict
model improves the total activity at all scales, and in particular for dense configurations of
point features, where labels usually have several hard conflicts with nearby features. As
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Table 7.6: Comparison of the total activity of the optimal solution for the country instances in
the 1R hard-conflict and the 1R soft-conflict model. The total activity is normalized
by 2π.

hard-conflict soft-conflict

instance tot. act. tot. act. ∆ (+%)

FR20 72.37 75.71 4.61

FR50 53.59 60.39 12.67

FR100 28.74 39.14 36.14

DE20 41.33 44.51 7.69

DE50 28.47 31.99 12.34

DE100 15.27 19.33 26.62

GB20 67.30 75.95 12.85

GB50 29.45 39.49 34.10

GB100 14.02 19.19 36.81

IT20 102.59 109.29 6.53

IT50 57.04 70.33 23.30

IT100 27.73 38.06 37.27

JP20 68.26 76.35 11.85

JP50 42.80 51.48 20.28

JP100 22.81 29.60 29.74

US20 322.18 346.47 7.53

US50 241.66 272.51 12.76

US100 148.60 185.42 24.77

(a) Results per instance.

scale tot. act. (std)

20km +8.51% (2.91)

50km +19.25% (7.86)

100km +31.90% (4.72)

(b) Results aggregated by scale.

discussed before, this improvement comes at the cost of temporarily occluding unlabeled
but possibly important points. It is an interesting open usability question to determine user
preferences for the two models and the actual effect of temporary point occlusions on the
readability of dynamic maps, but such a user study is out of scope of this evaluation and
left as an interesting direction for future work.

7.8.3 Evaluation of the Algorithms

In this section we evaluate the quality (total activity) and running time of the 1/4-approxi-
mation algorithm (Section 7.5.1) and the three greedy heuristics GreedyMax, GreedyLowCost,
and GreedyBestRatio (Section 7.6), which we abbreviate as QAPX, GM, GLC, and GBR,
respectively. Additionally, we include the ILP, and the MIP (Sections 7.7.1 and 7.7.2) as
exact method in the evaluation. The ILP is also applied to optimally solve the independent
subinstances in the grid cells created by QAPX. In our implementation we heuristically
improve the running time of the ILP/MIP by partitioning the conflict graph of the labels
into its connected components and solving each connected component individually; see
Table 7.2 for the number of labels in the largest connected component and the number of
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(a) 1R hard-conflict model
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(b) 1R soft-conflict model

Figure 7.19: Plot of the runtime (log scale) and quality results of the algorithm evaluation
for all city instances in the 1R hard-conflict and the 1R soft-conflict model.

connected components in the conflict graph of each instance. For the ILP/MIP we set a
time limit of 1 hour and restrict the ILP solver to a single thread. The same restrictions are
applied to the ILP when solving the small subinstances in algorithm QAPX. By the design
of the algorithm, a solution obtained by QAPX will consist of many labels that have no
active range, although they could be assigned one (all labels that are discarded to obtain
independent cells have active range set to length 0). To overcome this drawback, we propose
a combination of QAPX with the greedy algorithms. More specifically, we apply one of our
greedy algorithms to each of the four solutions computed by the 1/4-approximation and
determine among the four resulting solutions the best one. In the following we refer to
the combination of the 1/4-approximation with a greedy algorithm by adding a Q in front
of the greedy algorithm’s name (e. g., QGLC). We report the results of the 1R-soft-conflict
model and the 1R-hard-conflict model, since both the hard- and the soft-conflict model seem
to be sensible models.

evaluation. We give a general overview of the performance of all evaluated algorithms
as a scatter plot in Figure 7.19. In this scatter plot each disk represents the result of an
algorithm (indicated by color) applied to a single country instance. The size of the circle
indicates the scale of the instance (the smaller the circle, the smaller the scale). We omitted
the algorithms QGM and QGLC in this plot to increase readability, because the difference in
running time and quality of the solutions between the three algorithms QGM, QGLC, and
QGBR is negligible and would create overplotting.

We observe that for both the hard-conflict and the soft-conflict model the performance
characteristics are very similar. Tthe performance of the greedy algorithms is very good
with respect to running time as well as quality of the solutions. As expected, the total
activity of QAPX is always better than 25%, but generally much worse than for the remaining
algorithms. It never gets close to the solutions produced by the greedy algorithms while
being considerably slower. However, combining QAPX with a greedy algorithm achieves
better solutions than greedy algorithms and QAPX alone, while the increase in running time
over QAPX is negligible. Finally, we observe that the ILP solves the tested instances in a
reasonable time frame.

A brief comparison of the two optimal algorithmic approaches (i. e., the ILP and MIP
described in Sections 7.7.1 and 7.7.2) clearly demonstrates that the ILP approach is far
superior to the MIP based approach on the evaluated instances. To obtain an optimal
solution the ILP required on average 114s in the 1R-hard-conflict model, and 758s in the
soft conflict model, while the MIP required on average 2777s in the 1R hard-conflict model,
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(b) Runtime (log scale) of the algorithms.

Figure 7.20: Performance of the greedy algorithms and QAPX with greedy postprocessing
for the city instances in the 1R soft-conflict model.

and for the solver did not finish in the set time limit of one hour for any of the instances in
the 1R soft-conflict model. However, one redeeming quality of the MIP approach is that
it was nearly always able to find the optimal solution, it merely lacked the proof that the
solution found was indeed optimal. The average quality of each solution was 99.96% of the
optimal solution. We note that since the number of constraints for the MIP is significantly
lower than for the ILP there was no instance in the set of instances we evaluated where the
MIP was faster than the ILP.

We now turn to a more detailed analysis of the two most promising approaches (i) using
the greedy algorithms, and (ii) combining QAPX with the greedy algorithms. We begin
by discussing the results in the 1R soft-conflict model. For a detailed depiction of the
performance of the algorithms with respect to the quality of the solution see the diagrams in
Figure 7.20. We observe that in the 1R soft-conflict model among the three greedy algorithms
GBR performs best with respect to quality with an average of 93.7%, but the difference to
the other greedy algorithms is small. Even the greedy algorithm GM with the lowest total
activity produces solution with an average of 91.8% of the optimal solution. Each of the
combinations of QAPX with subsequent execution of a greedy algorithm outperforms each
of the greedy algorithms alone in terms of quality. However, since the solutions produced
by the greedy algorithms are already very close to the optimal solution, we observe only
a slight increase in total activity for QGM, QGLC, and QGBR over the greedy algorithms.
The difference between both approaches becomes much more visible when considering
the running time. While the average running time for the three greedy algorithms is
between 2.5ms and 3.9ms, the average running time for the 1/4-approximation algorithms
is roughly 46s. However, we note that this large difference is mostly caused by one instance,
which required over 664s to find the solution. The median running time for the enriched
1/4-approximation algorithms is about 1.08s.

The results for the 1R hard-conflict model are similar to those in the soft-conflict model;
see the diagram in Figure 7.21. Among the three greedy heuristics the simplest algorithm
(i. e., GM) performs best with respect to quality with an average of 96%, but as a whole the
greedy algorithms perform similarly well. Even the worst greedy algorithm GLC produces
solutions of high quality (average is 95%). Again, each of the combinations of the 1/4-
approximation with subsequent execution of a greedy algorithm outperforms each of the
greedy algorithms alone. However, since the solutions produced by the greedy algorithms
are so close to the optimal solution (even closer than in the soft conflict model), we observe
only a slight increase in the quality of the solution for QGM, QGLC, and QGBR. Again,
the difference is much more noticeable when considering the running time. While the
average running time for the three greedy algorithms is between 7ms and 13ms, the average
running time for the 1/4-approximation is roughly 1.8s with a median of 0.96s. We note an
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Figure 7.21: Performance of the greedy algorithms and QAPX with greedy postprocessing
for the city instances in the 1R hard-conflict model.

increase in the running time of the greedy algorithms compared to the soft-conflict model.
However, all three algorithms are still very fast and suitable for real-time applications. For
the combination of the 1/4-approximation and the greedy algorithms, with the exception of
one instance, the running time of the 1/4-approximation in the 1R hard-conflict model is
very similar to the running time in the 1R soft-conflict model. This might be surprising since
the running time of the 1/4-approximation is dominated by obtaining optimal solutions
for all of the subinstances by the ILP, which performs better in the hard-conflict model.
However, the subinstances required for the 1/4-approximation are very small and we
conjecture that this is the reason why the performance increase is not that noticeable.

city instances . As stated in the beginning of this section, we were not able to obtain
optimal solutions of the city instances in either the 1R soft-conflict or 1R hard-conflict model.
We therefore cannot compare the quality of the obtained solutions by the greedy algorithms,
and by the combination of 1/4-approximation and greedy algorithms with the optimal
solution. Instead, we chose to compare the results of the algorithms with the optimal
solution in the ∞R-model, which serves as an upper bound on the optimal solution in the
1R-, and 2R-model; see Table 7.7.

We observe that the results for all algorithms in all models are very close to the maximal
achievable total activity in the ∞R model. Even in the most dense instance in the 1R
hard-conflict model, the worst greedy algorithm achieves still on average about 86% of the
maximal achievable total activity with a running time of about .8s. The quality of the greedy
algorithms is slightly better in the 1R soft-conflict model and the running time is much
smaller (around 30-40ms). The combination of 1/4-approximation and greedy heuristic
does perform slightly better, but the difference is minuscule. However, the running time
differs drastically. While in the city instances before, the average running time was about
1s in both the 1R hard-conflict and the 1R soft-conflict model, here, the running time is
in the most dense instances on average about one minute in the soft-conflict model, and
in the hard-conflict model about 20 minutes on average. For the 2R-model we note that
the running time of the 1/4-approximation based algorithm decreases significantly in both
models (but most noticeable in the soft-conflict model), but the algorithms still require
several seconds to find a solution. The running time of the greedy algorithms is about .04s
in the soft-conflict model and about 0.8s in the hard-conflict model but this seems to be
independent from the kR model used.

The results indicate that the greedy algorithms in the 1R model produce solutions that
are very close to the maximum possible total activity while the algorithms require only
few milliseconds in running time. This strengthens our conclusion that the 1R model in
combination with any of the three greedy algorithms is the best strategy for labeling rotating
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Table 7.7: Evaluation of the three greedy algorithms, and the combination of 1/4-
approximation with the greedy algorithms for the city instances; see Table 7.3.
We compare the total activity of the solutions with the optimal solution in the
∞R-model. The average performance of the greedy algorithms given under “G”,
while the performance of the QAPX and subsequent greedy algorithms is given
under “Q”.
(a) 1R hard-conflict model

algorithms

G Q

scales time tot. act. time tot. act.

20m 0.78s 97.39% 4.29s 97.58%

50m 0.84s 92.53% 16.93s 92.92%

100m 0.83s 86.61% 54.55s 87.17%

(b) 1R soft-conflict model

algorithms

G Q

scales time tot. act. time tot. act.

20m 0.03s 98.58% 1.30s 98.70%

50m 0.04s 95.52% 238.51s 95.82%

100m 0.05s 91.39% 1124.27s 92.02%

(c) 2R hard-conflict model

algorithms

G Q

scales time tot. act. time tot. act.

20m 0.72s 99.67% 3.88s 99.77%

50m 0.79s 98.65% 5.90s 98.86%

100m 0.80s 97.04% 11.02s 97.31%

(d) 2R soft-conflict model

algorithms

G Q

scales time tot. act. time tot. act.

20m 0.03s 99.69% 1.02s 99.76%

50m 0.04s 98.34% 14.65s 98.73%

100m 0.06s 96.17% 29.84s 96.87%

maps. Whether to use the soft-conflict model or the hard-conflict model is a design choice
that should depend on the requirements of the actual application.

In order to give a final recommendation for an algorithm, it is necessary to make a choice
on the time-quality trade-off that is acceptable in a particular situation. If running time is
not the primary concern, e.g., for offline applications with high computing power available,
we can recommend the ILP, which ran reasonably fast in our experiments, at least for the
smaller country instances. On the other hand, if computing power is limited, instances are
large, or real-time labeling is necessary, e.g., on a mobile device, all three greedy heuristics
can be recommended as the methods of choice; a slight advantage of GBR was observed in
our experiments. All three algorithms run very fast (a few milliseconds) and empirically
produce high activities of more than 90% of the optimum solution. If one wants to invest
some extra running time, the combination of QAPX with a greedy algorithm may be of
interest as it produces slightly better solutions than the stand-alone greedy algorithms and
is much faster than the ILP.

7.9 conclusion

We have introduced a new model for consistent labeling of rotating maps and proved
NP-hardness of the active range maximization problem. We could, however, show that there
is an EPTAS for the MaxTotal problem that works for rectangular labels with arbitrary
anchor points and bounded height ratio, width ratio, and aspect ratio. An interesting
open question and an important challenge in practice is to combine map rotation with
zooming and panning and study the arising algorithmic labeling problems. Besides the
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EPTAS we presented three simple greedy heuristics and two different (mixed) integer linear
programming models to takle the presented problems and generate high-quality labelings
in the 1R hard-conflict model.

In the second part of this chapter, we evaluated different strategies for labeling dynamic
maps that allow continuous rotation. A labeling strategy consists of a consistency model
and a labeling algorithm. We compared the optimal solutions in the 0/1-, 1R-, and 2R-
models with the optimal solution in the ∞R-model on several real-world instances. We
concluded that the most promising results are obtained in the 1R-, and 2R-models, since the
optimal solutions in these models reduce flickering significantly, while still being close to
the maximum objective value. However, since one of our main goals is to reduce flickering
and the 1R-model performs even in dense instances quite well we chose to investigate the
1R-model further. The comparison of the 1R hard-conflict and the 1R soft-conflict model
indicated that the 1R soft-conflict model allows solutions to have much higher objective
value than in the 1R hard-conflict model. This concluded one part of our analysis of labeling
strategies. For the next part we chose to investigate the 1R soft-conflict model further.

Finally, we evaluated the proposed algorithmic approaches. All three greedy heuristics
performed very well in both running time and total activity. The solutions achieve on
average a total activity of well above 90% of the optimal solution, while requiring only few
ms in running time. The 1/4-approximation itself performs much worse than any of the
greedy heuristics. However, the combination of 1/4-approximation and greedy algorithms
performs with respect to quality slightly better than the greedy heuristics alone, but the
running time can be several seconds. In conclusion, we argue that the 1R soft-conflict model
in combination with any of the three greedy algorithms is, in most cases, the best labeling
strategy for labeling rotating maps.

Although we have shown NP-hardness for MaxTotal and MaxMin for the 1R hard-
conflict model the proof presented in Section 7.4 does not work for the 1R soft-conflict model,
nor does it work in the kR hard-conflict model for any k ≥ 2. As an open problem we propose
to investigate the computational complexity of MaxTotal and MaxMin in these models.
Further, we did not propose any algorithms (besides the MIP) that produce solutions for
MaxMin. The 1/4-approximation can obviously not be used and the greedy algorithms do
not take special care to maximize the minimum active range length. Developing algorithms
for MaxMin may be a new interesting research topic. Another, interesting modification to
our approach is to reduce unwanted flickering by requiring that if a label is active it stays
active for a certain fraction of the full rotation (this ensures that a label is not only briefly
visible during a rotation) and if a label gets invisible at some point, it stays invisible for a
certain fraction of a full rotation.



8
L A B E L I N G O F Z O O M I N G M A P S W I T H S L I D I N G L A B E L S

We study a dynamic labeling problem for points on a line that is closely related to labeling
of zoomable maps. Typically, labels have a constant size on screen, which means that, as
the scale of the map decreases during zooming, the labels grow relatively to the set of
points, and conflicts may occur due to overlapping labels. Our algorithmic problem is a
combined dynamic selection and placement problem in a sliding-label model: (i) select for
each label ` a contiguous active range of map scales at which ` is displayed, and (ii) place
each label at an appropriate position relative to its anchor point by sliding it along the point.
The active range optimization (ARO) problem is to select active ranges and slider positions
so that no two labels intersect at any scale and the sum of the lengths of active ranges is
maximized. We present a dynamic programming algorithm to solve the discrete k-position
ARO problem optimally and an FPTAS for the continuous sliding ARO problem.

This chapter is based on joint work with Martin Nöllenburg, and Ignaz Rutter. Preliminary
results have been published in [105].

8.1 introduction

With the increasing practical importance of dynamic maps that allow continuous operations
like zooming, panning, or rotations, dynamic labeling of map features becomes a critical
aspect of the visual quality of a map. Examples of dynamic maps range from maps on
small-screen mobile devices to professional desktop GIS applications. The map dynamics
add new dimensions to label placement, which result in challenging geometric optimization
problems that are quite different from static labeling problems. Changes in dynamic maps
due to continuous map movements need to be smoothly animated in order to preserve
a coherent context and minimize the user’s cognitive load for re-orientation [154]. This
requirement is also known as “frame coherency” [4] or “temporal continuity” [18]. Hence
we cannot simply solve the arising labeling problems independently for each intermediate
map view during the animation; rather we need to solve the labeling problem globally such
that the animations of all possible trajectories using the given set of navigation operations
satisfy the quality constraints.

In order to avoid distraction and irritation of the user a dynamic map should—according
to Been et al. [9]—adhere to the following quality constraints or consistency desiderata for
dynamic map labeling: During monotone map movement labels should neither “jump”
(non-continuously change position or size) nor “pop” (vanish when zooming in or appear
when zooming out); moreover, the labeling should be a function of the selected map
viewport and not depend on the navigation history. In this chapter we are only interested
in dynamic labelings that are consistent in that sense. Of course each static map view in
a dynamic map also needs to satisfy the quality standards for static maps [123], i.e., all
labels—usually modeled as rectangles—are pairwise disjoint, each label is close to its anchor
point, and, globally over all possible map views, the number of visible labels is maximum.

Been et al. [10] presented a first extensive study of algorithms for dynamic map labeling
in several different models for one- and two-dimensional input point sets. However, they

131
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focused on the dynamic label selection problem, i.e., which set of labels to select at which
scale, and assumed that for each label a single, fixed position relative to the anchor point is
given in the input. They left dynamic label placement as an open problem, i.e., the problem
where to place each label relative to its anchor point. One model for label placement is
the k-position or fixed-position model, where each label can be placed at a position from a
set of k (usually 4 or 8) possible positions [2, 181, 86]. Another more general model is the
slider model, where the finite-position assumption is dropped and each label can take any
position such that the anchor point coincides with a point on the label boundary [136, 174].
In this chapter we present labeling algorithms in a dynamic scenario that allows continuous
zooming for the visualization of a one-dimensional input point set. To the best of our
knowledge our algorithms are the first to combine the dynamic label selection problem with
label placement in both the fixed-position and the slider model, thus answering (partially)
an open question of Been et al. [10]. Although this problem seems purely artificial zooming
of time lines can be seen as an application for this kind of problem; see Figure 6.8.

related work . Most previous algorithmic research on automated label placement deals
with static fixed-position or slider models for point, line, or area features. The problem
of maximizing the number of selected labels is NP-hard even for the simplest labeling
models, whereas there are efficient algorithms for the decision problem that asks whether
all points can be labeled in some of the simpler models (see, e.g., the discussion by Klau
and Mutzel [131] or the comprehensive map labeling bibliography [186]). Approximation
results [136, 2], heuristics [182], and exact approaches [131] are known for many variants of
the static label number maximization problem.

More recently, dynamic map labeling has emerged as a new research topic that gives rise
to many unsolved algorithmic problems. Petzold et al. [156] used a preprocessing step to
generate a reactive conflict graph that represents possible label overlaps for maps of all
scales. For any fixed scale and map region, their method computes a conflict-free labeling
in the slider model using heuristics. Poon and Shin [159] described algorithms for labeling
one- and two-dimensional point sets that precompute a hierarchical data structure storing
solutions for a number of different scales; this allows them to answer adaptive zooming
queries efficiently. Mote [147] presented another fast heuristic method for dynamic conflict
resolution in label placement that does not require preprocessing and assumes a 4-position
model. The consistency desiderata of Been et al. [9] for dynamic labeling, however, are
not satisfied by any of these three methods. Been et al. [10] showed NP-hardness of the
label number maximization problem in the consistent labeling model and presented several
approximation algorithms for labeling two-dimensional point sets and an exact algorithm
for one-dimensional point sets. They focused on dynamic label selection, i.e., assumed a
1-position model for label placement. Nöllenburg et al. [151] recently studied a dynamic
version of the alternative boundary labeling model allowing continuous zooming and
panning, where labels are placed at the sides of the map and connected to their points by
leaders. Algorithms and complexity results for dynamic label selection in fixed-scale rotating
maps that satisfy similar consistency desiderata were presented by Gemsa et al. [104].

contribution. In this chapter we present algorithms for labeling a set of points on
a line with labels of arbitrary, non-uniform length in a dynamic scenario that supports
continuous zooming of the points’ visualization. Unlike previous efforts [10] we consider
label placement in a k-position and slider model: we must select both an interval of scales
at which each label is selected (dynamic selection problem) and an admissible label position
for each label relative to its anchor point (dynamic placement problem). We require that
the label position remains the same for all scales. In Section 8.2 we introduce a model for
dynamic point labeling with sliding labels in the framework of Been et al. [9]. Section 8.3
presents a dynamic programming algorithm for dynamically labeling points in the k-position
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model. Our main contribution is the fully polynomial-time approximation scheme (FPTAS)
described in Section 8.4 for the more general sliding model. Since the time complexity
of our proposed algorithms might be too large for large values of n, we briefly describe
approximation algorithms and how they can be extended to the two-dimensional case in
Section 8.5. Finally, we conclude in Section 8.6 with several remaining open questions that
arise from our results.

8.2 preliminaries

In this section we describe our model for dynamic labeling in the general framework of
Been et al. [9, 10].

model . Let P = {p1, . . . , pn} be a set of points on the x-axis (also called the base line)base line

together with a set L = {`1, . . . , `n} of labels. The point pi is called the anchor point of theanchor point

label `i. Each label `i is a rectangle of (target) width wi modeling the bounding box of the
text describing the point pi. Since we focus on labeling a one-dimensional point set, we can
think of each label `i as actually being a line segment of width wi. During zooming of the
points’ visualization we wish to keep the label size constant on screen, which means that
if we scale the map by a factor of 1/s we need to increase the label size by a factor of s in
order to maintain its width on screen constant. This is the label size invariance property of
Been et al. [9]. So the width of `i on the base line required for a map of scale 1/s is given by
the linear function wi(s) = wis.

The label proximity constraint in map labeling says that each label must be close to its
anchor point [123], i.e., we require for each label that the anchor point coincides with a point
of the label. We consider sliding labels and define the shift position ti ∈ [0, 1] of a label `i
as the fraction of `i that is to the right of pi. For ti = 0 the label is in its leftmost position,
and for ti = 1 it is in its rightmost position. In the fixed-position model only a finite subset
of positions from [0, 1] is allowed. In this chapter we consider invariant point placements [9],
i.e., once a shift position t is selected for a label `, ` maintains that position relative to its
anchor point. This immediately prevents the labels from jumping. Figure 8.1 shows a set of
five points with labels zoomed to four different scales. Note that as the scale decreases, the
points move closer together and some labels must be removed to avoid conflicting labels.

GeometryCanadian

GeometryComputationalCanadian

GeometryComputationalonConferenceCanadian

GeometryComputationalonConferenceCanadian

Figure 8.1: Five (partially) labeled points on a line zoomed from smaller (top) to larger
scales (bottom).

Following Been et al. [10, 9] we define an extended two-dimensional coordinate system
defined by the x-axis, which models the positions of the points P, and the y-axis, which
models the inverse s of the scale 1/s. We denote s as the scale factor that is used to enlargescale factor

the labels before the whole base line (including the labels) is scaled down by the target
scale 1/s to produce the actual visualization. We say a label is active at scale factor s if itactive

is selected as being visible at s; otherwise it is inactive. The (static) placement of an active
label ` with target width w and anchor point p at scale factor s is determined by a shift
position t ∈ [0, 1], i.e., the label is represented by the interval [p− (1− t)ws, p + tws]. A
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Figure 8.2: Triangular truncated extrusions (shaded blue) induced by the example of Fig-
ure 8.1.

dynamic placement of ` is a placement of ` for each scale factor s at which ` is active. Since
we consider invariant point placements, the shift position is the same for all scales. If we
extrude the growing label segment with its constant shift position t along the y-axis from
y = 0 to some maximum scale factor smax we obtain a triangle whose apex is placed at the
point p and whose top side is parallel to the x-axis, see Figure 8.2. We call this triangle the
extrusion E of `. The shift position t determines the slant of E, but for a label ` of width w extrusion

the width of E at any fixed scale factor s is ws independent of t. Let the trace trs(E) of E trace

at scale factor s be the intersection of E with the horizontal line y = s. By definition trs(E)
corresponds to the placement of ` at s if ` is active at s.

If the extrusions E and E′ of two labels intersect at some scale factor s this means that the
two labels ` and `′ overlap at scale 1/s. A standard requirement in point labeling, however,
is that all labels must be pairwise disjoint [123]. Accordingly, at most one of ` or `′ can be
active at scale factor s. Since one of the desiderata for consistent dynamic map labeling is
that labels do not ‘pop’ during monotonous zooming in order to avoid flickering effects [9]
we require that labels never vanish when zooming in and never appear when zooming
out. This lets us define the active range of a label `i as an interval of scale factors [1, ai) for active range

which `i is active. This active range implies that when zooming in the label `i appears
exactly once at scale factor ai and then remains active, or, conversely, when zooming out
it disappears exactly once at scale factor ai and remains inactive. The truncated extrusion truncated extrusion

Ti is the restriction of the extrusion Ei of `i to its active range [1, ai), see Figure 8.2 for an
example. Now a consistent dynamic labeling for the points P corresponds to an assignment
of a scale-independent shift position ti and an active range [1, ai) for each label `i such
that the truncated extrusions T = {T1, . . . , Tn} are pairwise disjoint. Hence we need to
solve both a dynamic selection problem and a dynamic placement problem according to
Been et al. [9]. Informally speaking, we can adjust the slant and the height of the truncated
extrusions as long as they do not intersect each other.

objective . A common objective in point labeling is to maximize the number of labeled
points, and accordingly our goal is to maximize the total active range length, which is defined total active range

lengthas the sum H = ∑n
i=1 ai of all active range lengths. Maximizing H corresponds to displaying

a maximum number of labels integrated over all scale factors s ∈ [1, smax]. This problem
is known as the active range optimization problem (ARO) [10]. We consider two one-
dimensional variants of ARO: In the discrete k-position 1d ARO problem the set of admissible
shift positions is restricted to a subset Si ⊂ [0, 1] of cardinality |Si| ≤ k. In the general
sliding 1d ARO problem any shift position in [0, 1] is admissible.

8.3 a dynamic program for k-position 1d aro

In this section we give a dynamic program for computing an optimal solution for the
k-position version of the 1d ARO problem. For ease of notation we define two dummy
points p0 and pn+1 , where p0 = min{ p i − smax w i | 1 ≤ i ≤ n} and pn+1 = max{ p i +
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Ti TjTl

∆(i, l, ki, kl)

∆(l, j, kl , k j)

h
i,j,ki ,kj
l,kl

Figure 8.3: The subinstance induced by ∆(i, j, ki, k j) is split into two smaller independent
subinstances by Tl .

smax w i | 1 ≤ i ≤ n}. The only shift position of `0 is S0 = {0} and the only shift
position of `n+1 is Sn+1 = {1}. Both labels have width 1. It is easy to see that in any
optimal solution the height of T0 and Tn+1 must be smax since none of the extrusions Ti
can intersect T0 or Tn+1 .

For a pair of points pi and pj with i < j and shift positions ki ∈ Si and k j ∈ Sj we define
the free space ∆(i, j, ki, k j) as the polygon bounded by the line s = 0, the supporting line
of the right edge of Ti in shift position ki, the supporting line of the left edge of Tj in shift
position k j, and, if the two supporting lines of Ti and Tj do not intersect below smax, the
line s = smax. See Figure 8.3 for an example. Let A[i, j, ki, k j] be the maximum total active
range height for the points pi+1, . . . , pj−1, where all truncated extrusions Ti+1, . . . Tj−1 are
contained in ∆(i, j, ki, k j).

We observe that the tallest truncated extrusion Tl (i < l < j) in any optimal solution
of the subinstance I induced by ∆(i, j, ki, k j) must touch the left, right, or top boundary
of ∆(i, j, ki, k j), otherwise we could improve the total active range height. We use Tl in
order to split I into two smaller independent subinstances I′ and I′′ induced by ∆(i, l, ki, kl)

and ∆(l, j, kl , k j); see Figure 8.3. For each l = i + 1, . . . , j− 1 let h
i,j,ki ,kj
l,kl

denote the height
at which Tl at shift position kl ∈ Sl first hits a non-bottom edge of ∆(i, j, ki, k j). We
initialize A[i, i + 1, ·, ·] = 0 for all i = 0, . . . , n and then recursively define A[i, j, ki, k j] =

max{A[i, l, ki, kl ] + h
i,j,ki ,kj
l,kl

+A[l, j, kl , k j] | i < l < j and kl ∈ Sl}. By definition of A the
solution to the ARO problem is A[0, n + 1, 0, 1]. We can compute the value A[0, n + 1, 0, 1]
by dynamic programming in O(n3k3) time: each of the O(n2k2) values in A is defined as the
maximum of a set of O(nk) values, each of which can be computed by two table look-ups
and two O(1)-time line intersection queries.

The correctness of the above dynamic program follows by induction on the number of
points in a subinstance. Clearly for an empty subinstance ∆(i, i + 1, ki, ki+1) the maximum
total active range height A[i, i + 1, ki, ki+1] is 0. Let’s consider a subinstance induced by
∆(i, j, ki, k j), where j− i = r and assume by induction that the values in A are correct for all
subinstances ∆(i′, j′, ki′ , k j′), where j′ − i′ < r. Let B be an optimal active range assignment
of the labels `i+1, . . . , `j−1 within the free space ∆(i, j, ki, k j) and let H(B) be its value. Let
further Tl be a tallest truncated extrusion with shift position kl in B. Obviously Tl must

have height h
i,j,ki ,kj
l,kl

if B is optimal. Since our algorithm explicitly considers all labels and
all shift positions as candidates for the tallest truncated extrusion, it also considers Tl and
its shift position kl , which splits the given instance into two independent subinstances
with free spaces ∆(i, l, ki, kl) and ∆(l, j, kl , k j). Since l − i < r and j− l < r we know that

A[i, j, ki, k j] ≥ A[i, l, ki, kl ] + h
i,j,ki ,kj
l,kl

+A[l, j, kl , k j] = H(B).
Since the free space ∆(0, n + 1, 0, 1) is chosen such that none of the truncated extrusions

T1, . . . , Tn can touch T0 or Tn+1, A(0, n + 1, 0, 1) indeed contains the value of an optimal
solution to the k-position ARO problem. We can easily augment the algorithm to keep track



136 labeling of zooming maps with sliding labels

of the pair (l, kl) that achieved the maximum value in order to reconstruct the solution by
backtracking from A(0, n + 1, 0, 1). We summarize this result in the following theorem.
Theorem 8.1 Given n points P = {p1, . . . , pn} on the x-axis, a label `i of base width wi for each
point pi, and a set Si ⊂ [0, 1] of at most k shift positions for each label `i, we can compute an
optimal solution to the k-position 1d ARO problem in O(n3k3) time and O(n2k2) space.

We note that this algorithm generalizes the O(n3)-time algorithm of Been et al. [10] for
the 1-position 1d ARO problem, where each label has only a single available shift position.

8.4 an fptas for general 1d sliding aro

In this section we present an FPTAS for approximating the optimal solution of the sliding
1d ARO problem within a factor of (1− ε). The idea of the FPTAS is based on uniformly
discretizing the interval [0, 1] of shift positions. Let k > 0 be an integer and define the
set of shift positions Sk = {i/k | i ∈ Z, 0 ≤ i ≤ k}. For an instance I of the sliding 1d
ARO problem consisting of a point set P = {p1, . . . , pn} and corresponding label set L, we
consider instead the (k + 1)-position 1d ARO problem for the instance I′ consisting of P, L,
and the shift position sets Si = Sk for 1 ≤ i ≤ n. By Theorem 8.1 this instance I′ can be
solved in O(n3k3) time and O(n2k2) space using the dynamic programming algorithm of
Section 8.3. In the following theorem we show that this approach gives an FPTAS for the
original sliding 1d ARO problem.
Theorem 8.2 Given n points P = {p1, . . . , pn} on the x-axis and a corresponding label set L =

{`1, . . . , `n}, where label `i has base width wi, we can compute a (1− ε)-approximate solution to
the sliding 1d ARO problem in O(n3(1/ε)3) time and O(n2(1/ε)2) space.

Proof. We need to show that for a suitably chosen parameter k = k(ε) the optimal solution
for the (k+ 1)-position 1d ARO instance I′ as defined above is actually a (1− ε) approximate
solution for the sliding 1d ARO instance I. Let us assume that we know an optimal solution
A? for I, i.e., a shift position ti ∈ [0, 1] and an active range [1, ai) ⊆ [1, smax] for each label `i.
Since A? is optimal, each truncated extrusion Ti has either height ai = smax or touches the
left or right supporting line of another, taller, truncated extrusion Tj. In the latter case ai is
the smallest scale factor, where the extrusions Ei and Ej intersect.

For proving the approximation factor we derive a discretized solution A′ from A?, where
each shift position t′i ∈ Sk and the active ranges are shortened to [1, a′i) ⊆ [1, ai) as to satisfy
the label disjointness property. For every shift position ti in A? we define the new shift
position t′i in A′ as follows

t′i =

bktic/k if ti < 1/2

dktie/k if ti ≥ 1/2.

In other words, we tilt Ti towards its “heavier” side until it reaches a shift position in the
set Sk. Due to the tilting the truncated extrusions are no longer necessarily disjoint and we
need to shorten the active ranges for some labels. Figure 8.4 shows an example.

Let T′i and T′j be two tilted truncated extrusions that intersect in their interior. Without
loss of generality let T′i be the smaller one such that, before the tilting, its top right corner
was touching the left edge of T′j as in Figure 8.4(a). We first consider the case that T′i and
T′j are tilted towards each other. Then the right edge of T′i , the left edge of T′j , and the
horizontal line y = ai define a triangle D as in Figures 8.4(b) and 8.5. We decrease the active
range of label `i to [0, a′i), where a′i = ai − h for the height h of D. Obviously the truncated
extrusions T′i and T′j no longer intersect in their interior for the new active range [0, a′i).

Next, we bound the height h of D. Let α be the angle between the right edge of T′i and
the x-axis. The same angle α is found at the top right corner of D. From Figure 8.4(b) we
obtain that tan(α) = ai/(wit′iai) = 1/(wit′i) and from Figure 8.5 that tan(α) = h/x, where x
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Figure 8.4: Discretizing the shift positions of two labels for k = 4.
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Figure 8.5: Intersection triangle D.

is distance between the base point of the height h on the top side c and the top right corner.
Since T′i is tilted to the right and T′j to the left we have t′i ≥ 1/2 and (1− t′j) ≥ 1/2. By
definition of the new shift positions t′i and t′j we know that the length of the top side c of
D is at most (wiai + wjai)/k. This is because at scale factor s the tilt moves each truncated
extrusion with base width w horizontally by at most a 1/k fraction of its width ws at s. With
x ≤ c this yields

h =
x

wit′i
≤ c

wi/2
≤ 2ai

k
wi + wj

wi
. (8.1)

Similar reasoning for the angle β in Figures 8.4(b) and 8.5 yields tan(β) = ai/(wj(1− t′j)ai) =

h/(c− x) and subsequently h ≤ 2ai/k · (wi + wj)/wj. Again without loss of generality we
assume that wi ≥ wj and obtain min{(wi + wj)/wi, (wi + wj)/wj} = (wi + wj)/wi ≤ 2. So
we can finally bound the height of D by h ≤ 4ai/k.

We still need to consider the case that both truncated extrusions are tilted in the same
direction, say to the left (the case that both are tilted to the right is symmetric). A conflict
can still occur if T′j is tilted further to the left than T′i . The triangle D is defined as before,
but now we know that the length of the side c is at most wjai/k. Since T′j is tilted to the left
we still have (1− t′j) ≥ 1/2. Now we argue about the angle β using the same identities as
before and obtain h ≤ c/(wj(1− t′j)) ≤ 2ai/k.

In the case that T′i and T′j are tilted away from each other obviously no conflict can occur.
Furthermore, the analysis still holds for conflicts involving the top left corner of T′i instead
of the top right corner.

So each truncated extrusion Ti of height ai is shortened by at most 4ai/k due to the
discretization of the shift positions, or, equivalently, a′i ≥ (1− 4/k)ai. If we set k = 4/ε we
arrive at ∑n

i=1 a′i ≥ (1− ε)∑n
i=1 ai. �

8.5 approximation algorithms

We have discussed the k-position model and given an optimal algorithm for this case which
has a running time that is cubic in n, the number of labels, and k. Since this time complexity
may be unsuitable for large instance we propose two approximation algorithms with better
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Figure 8.6: Illustration of the proof for Theorem 8.3.

time complexity. We begin with a simple approximation algorithm for the case k = 1 for
unit-width labels where the shift position of all labels is the same.

In previous work by Been et al. [10] an approximation algorithm, called top-to-bottom
fill down sweep, for the case k = 1 with running time O(n2) has been proposed. In the
following we describe how to improve the running time to O(n log n) for the 1-position 1d
ARO problem. The algorithm by Been et al. for this case is a simple greedy algorithm.
It iteratively selects the label (or cone) which can be assigned the maximum active range
starting at s = 1 among all labels. Ties are broken arbitrarily. A naive implementation yields
a O(n2) time complexity. In the following we describe a modification of the algorithm with
O)(n log n) time complexity.

First, note that in this scenario the y-coordinates of the intersections of the extrusions of
all labels is independent of the shift position chosen for the labels, since changing the shift
position can also be seen as a simple a horizontal shearing of the extrusions. Hence, in the
following we assume that the shift position t = 0.5 has been chosen.

We now describe the algorithm. It begins by setting the active range of the leftmost label
to [1, smax], and the active range of the rightmost label either to [1, min{smax, y1n}], where
yab is the y-coordinate of the first intersection point of the extrusion of `a with the extrusion
of `b. Now, the algorithm selects then the label `i whose anchors lies closest to the midpoint
between p1 and pn and assigns `i its maximum active range which is [1, min{smax, y1i, yin}].
This separates the instance into two smaller subinstances, namely `1, . . . , `i and `i, . . . , `n.
In both subinstances we follow the same idea: select the label that is closest the midpoint
between the anchors of the subinstance’s left- and rightmost label; set the active range of
this label to the minimum of smax, and the y-coordinates of the intersection of the labels
extrusion with the truncated extrusion of the left- and rightmost label in the subinstance.
The algorithm repeats until all labels have been assigned an active range.
Theorem 8.3 There is an O(n log n)-time approximation algorithm for 1-position 1d ARO for
unit-width labels and with approximation ratio 1/2.

Proof. We begin by proving the claimed time complexity. First, we observe that after
initially sorting of the anchors (which requires O(n log n) time), we can set the active ranges
of `1 and `n in O(1). Then, for each subinstance we need to find the label whose anchor is
closest to the midpoint between the anchor of the left- and rightmost label. Since the set of
anchors is sorted, we can do this with binary search in O(log n) time. In each step of the
algorithm we set the active range of one label, hence, we require O(n) such steps, which
yields a total time complexity of O(n log n).

It remains to show the correctness of the algorithm. Note that the algorithm always
considers subinstances `i, . . . , `j that are sorted from left to right. In the following we
assume that the algorithm correctly computed the step before the subinstance was created.
It is easy to see that the algorithm computes a valid solution for the first three labels it
considers (the leftmost and rightmost labels of the instance, as well as the label closest to
the middle point between those two). Further, we assume w.l.o.g. that the active range of `i
is at least as long as the active range of `j; see Figure 8.6.
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Figure 8.7: Illustration showing that the approximation ratio of 1/4 is tight.

First, it is easy to see that should the active ranges of `i and `j have active ranges that
end at smax choosing `m and assigning it [1, min{smax, yim, ymj}] as active range selects the
label that can have the longest active range and produces no overlap with labels already
assigned an active range. Further, the same argument holds should the truncated extrusion
of `i intersect the truncated extrusion of `j. Hence, we assume that at least `j has an active
range that is strictly shorter than smax − 1 (but also `i may have a shorter active range) and
that the truncated extrusions of both `i and `j do not intersect. Now, we need to argue that
`m’s active range must be ymj.

Assume that `m’s active range can be [1, ymz] for some label `z to the right of `j without
creating an invalid solution. We know that the truncated extrusion of `j must intersect
the truncated extrusion of a label `k to its right (k might be z but also `z might also lie
to the right of `k). Let the distance between pj and pk be denoted by ∆. Since `m’s active
range is longer than the active range of `j the distance between pm and pj must be ∆ + ε

for some ε > 0. Further, since the truncated extrusion of `i and `m do not intersect the
distance between both their anchors must also be at least ∆ + ε. Now, we take a step back
and consider the subinstance that was considered by the algorithm before, from which
the current subinstance was created. It was either {`a, . . . , `i, . . . , `j} or {`i, . . . , `j, . . . , `k}.
However, in both subinstances the label `m lies closer to the midpoint between the left- and
rightmost label than `i, and `j, respectively. Hence, the algorithm would not have chosen
either of them which is a contradiction to the initial assumption. Applying this argument
iteratively yields the proof of correctness.

Finally, since the algorithm operates in principle exactly as the algorithm proposed by
Been et al. the approximation ratio follows directly from their proof.

�
Restricting ourselves to k = 1 is very limiting. In the next step we propose an approx-

imation algorithm for any k ≥ 1 for label’s that have unit width (are unit squares). This
approximation algorithm is a straightforward extension of the already mentioned algo-
rithm by Been et al. in their previous publication. Recall that in the algorithm the label
is selected that can have the longest active range among all remaining labels. To adapt it
for the k-position case, we simply consider for each label all k different positions, when
determining the label with longest active range. The correctness argument by Been et al.
still applies, and the running time is O(k2n2). We further note that this also directly applies
to the two-dimensional case with the exception that the approximation ratio is 1/4. We
summarize these results in the following theorem.
Theorem 8.4 There are approximation algorithms with time complexity O(k2n2) for the k-position
1d ARO (for labels with unit width) and k-position 2d ARO (for labels that are unit squares) with
approximation ratios 1/2 , and 1/4 respectively.

This approximation ratio is tight in the 4P fixed-position model, where the anchor
coincides with one of the labels corners; see Figure 8.7(a) depicted is an instance consisting
of four anchors which are very close together (their x-/y-coordinates differ by at most a
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small ε). If the algorithms selects the lower left point first and selects the extrusion to the
anchor’s upper right, the remaining anchors can have active ranges with length close to 0.
In the optimal solution each label has an active range of [1, smax); see Figure 8.7(c).

8.6 discussion

In this chapter we studied an extension of the initial ARO problem, introduced by Been
et al. [10], where we additionally allow to slide the labels. Our dynamic programming
approach for discrete k-position 1d ARO is a generalization of their approach to solve
simple 1d ARO with proportional dilation. It shows that k-position 1d ARO can be solved
in polynomial time.

Based on the dynamic program for k-position 1d ARO, we further derived an FPTAS
for sliding 1d ARO by suitably discretizing the set of allowed shifts for the labels. While
this shows that we can approximate the optimal value arbitrarily closely in polynomial
time, the complexity of sliding 1d ARO is still open. The main difficulty in devising an
NP-hardness proof is that the problem becomes efficiently solvable when every label has
only a polynomial number of relevant sliding positions. It thus seems difficult to encode
binary decisions as label positions.

Note that in our model the shift position of each label, once selected, remains fixed for
all scales. For the k-position model this is actually required in order to avoid jumping
labels, whereas in a more general sliding model we leave as an open problem to determine
a continuous function that defines the label position for every scale. Here we might require
that this function is monotone or that its slope is bounded.

In practice it is common that some points are more important than others and hence
the active ranges of their labels should be more influential in the objective function. More
precisely, let γi > 0 be a weight for each point pi. We can then optimize the weighted total
active range length Hγ = ∑n

i=1 γiai instead of H. It is easy to see that both the dynamic
programming algorithm and the FPTAS remain valid for optimizing Hγ.

Another problem variant is to use a non-linear objective function, motivated by the
observation that H favors active labels at large values of s, i. e., in maps with small scales
1/s. It might be reasonable in practice to choose a logarithmic function over a linear function
for measuring the active ranges. Using the objective function Hlog = ∑n

i=1 log ai instead of
H has the effect that doubling the scale range at which a label is active has a fixed impact on
the objective function regardless of the actual scale. The dynamic programming algorithm
can immediately deal with Hlog. Even the approximation scheme of Section 8.4 remains an
FPTAS under the mild additional assumptions that the minimum scale factor is 1 (instead
of 0), that each ai ≥ 2, and that ε ≤ 1/2.

Although we have briefly touched the subject of 2d dynamic map labeling by giving an
approximation algorithm for unit-square labels in the k-position model, this field is still
widely unexplored. One of the main challenges there is to consistently support multiple
modes of interaction (zooming, panning, rotations) using a slider model for the labels. In
this sense, our results are a first step towards consistent dynamic labeling of 2d zoomable
maps with sliding labels. Unfortunately, our dynamic programming based algorithms do
not easily generalize to 2d point sets. In fact, it can be easily seen that k-position 2d ARO
and sliding 2d ARO are both NP-hard [10]. However, the simple extensions from Section 8.5
of the approximation algorithm by Been et al. [10] to handle the k-position model in the 1d
and 2d case for unit square labels. For the sliding 2d ARO problem deciding whether all
labels may be active at all scales amounts to deciding whether all labels can be placed at
scale smax. A slight modification of the NP-hardness proof for map labeling in the four-slider
model [136] shows that this problem is NP-hard, even if all labels are unit squares.



9
L A B E L I N G PA N O R A M A S

Boundary labeling deals with placing annotations for objects in an image on the boundary
of that image. This problem occurs frequently in situations where placing labels directly
in the image is impossible or produces too much visual clutter. Examples are annotating
maps, photos, or technical/medical illustrations. Previous algorithmic results for boundary
labeling consider a single layer of labels along some or all sides of a rectangular image. If,
however, the number of labels is large or the labels are too long, multiple layers of labels are
needed.

In this chapter we study boundary labeling for panorama images, where n points in
a rectangle R are to be annotated by disjoint unit-height rectangular labels placed above
R in K different rows (or layers). Each point is connected to its label by a vertical leader
that does not intersect any other label. We present polynomial time algorithms based on
dynamic programming that either minimize the number of rows to place all n labels, or
maximize the number (or total weight) of labels that can be placed in K rows for a given
integer K. For weighted labels, the problem is shown to be (weakly) NP-hard, and we give
a pseudo-polynomial algorithm to maximize the weight of the selected labels. We have
implemented our algorithms; the experimental results show that solutions for realistically-
sized instances are computed instantaneously. Further, we have also investigated two-sided
panorama labeling, where the labels may be placed above or below the panorama image. In
this model all of the above-mentioned problems are NP-hard. For solving them we propose
mixed integer linear program formulations.

9.1 introduction

Annotating features of interest in images by textual labels or icons is an essential aspect of
information visualization. Depending on application and image content these labels are
either placed directly next to the features within the image or, if partial occlusion of the
image by labels is unacceptable or if feature density is too high, on the image boundary.
In the first, so-called internal labeling model, which is common, for example, for placing
object names in topographic maps, the association between feature and label should be clear
from the spatial proximity between them. This is no longer the case in the latter boundary
labeling model and hence features and associated labels are connected to each other using
simple arcs. In this chapter we consider a new and practically important boundary labeling
variant, motivated by labeling features in panorama images of, for example, skylines or
mountain ranges. Such labeled illustrations are frequently used for describing landmarks
and buildings at lookout points or in tourist guide books. Moreover, very wide panorama
photographs of streets of houses as used in popular commercial digital road maps are
often annotated by information about local businesses or other points of interest. Another
application in the area of augmented reality is the GeoScope [41] system that augments
camera images by textual information and thereby allows a user to explore a panorama,
for example, the skyline of a city. A common aesthetic requirement in all these examples is
that the labels are placed above a horizon line, for example, in the area taken up by the sky

141



142 labeling panoramas

Figure 9.1: Panorama labeling for the skyline of Chicago. Photography: ©J. Crocker.

or simply above the actual image. In other cases, for example, when annotating events on
a time line, a similar labeling scheme is used, where labels can be placed either above an
upper horizon line or below a lower horizon line.

In this chapter we present efficient algorithms for computing optimal boundary labelings
of such panorama images. Figure 9.1 shows a labeling in our model: we are given a set of n
anchor points (or sites) in a rectangle R and for each point a variable-width but unit-height
open rectangular label (think of the bounding box of the object name written as a single
line of text). In order to achieve at least a horizontal proximity between points and labels,
every label must be placed vertically above its associated anchor point. Each label and its
associated site are connected by a vertical line segment, called leader. Our labeling model, in
which the lower edge of a label can slide horizontally along the upper leader endpoint, can
be seen as an extension of the so-called 1-slider model [136] (in contrast to fixed-position
models). The algorithmic problem is to select a subset of the labels and for each selected
label compute a label position (that is, a row index and a horizontal slider position) such
that no two labels overlap and no leader intersects any label other than its own. We consider
two basic optimization goals: (i) minimize the number of rows required to place all labels,
and (ii) maximize the number of labels that can be placed in K rows.

We start with a review of related work on boundary labeling and point out our main
contributions.

9.1.1 Related Work

Algorithmic label placement problems have been studied in computational geometry for
more than 20 years now [86]; a vast body of literature is collected in the map-labeling bibli-
ography [186]. Most of the literature, however, is concerned with internal label placement
as traditionally used in cartography. Boundary labeling as an alternative labeling model
was first introduced as an algorithmic problem by Bekos et al. [15] and has subsequently
been studied in various flavors; see also the recent survey by Kaufmann [128]. We note that
in most boundary labeling problems all labels are placed in only a single row/column.

Different boundary labeling models can be classified by (a) the shape of the leaders, (b)
the sides of R at which labels can be placed, and (c) further restrictions about the labels
such as variable or uniform size, placement in multiple layers etc. Leaders are usually
represented as polygonal lines; we argue that for readability, the leader shape should be
as simple as possible, but also have a contrast high enough to be distinguishable from the
background. Aiming for leader simplicity can be observed as a design goal in most manually
created boundary labelings in practice and it also follows the unambiguity criterion for
external labels proposed by Hartmann et al. [111]. Leaders of arbitrary orientation without
bends are called straight or type-s leaders. To reduce visual clutter axis-parallel leaders are
often preferred over arbitrary type-s leaders. The shape of an axis-aligned polygonal leader
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starting from the anchor point is described by a string over the alphabet {p, o}, where p and
o denote, respectively, leader segments parallel and orthogonal to the side of R containing
the label. If a segment is diagonal at a fixed angle (for example, 45◦), we use the letter d
to refer to its orientation. The letters in the string correspond to the sequence of leader
segments, starting from the feature point and ending at the label port.

Bekos et al. [15] presented efficient labeling algorithms in the one-, two-, and four-sided
model using type-s, type-po and type-opo leaders. Their main objective was to minimize
the total leader length, but they also presented an algorithm for minimizing the number
of bends in one-sided opo-labeling. Benkert et al. [19] studied algorithms for one- and
two-sided po- and do-labeling with arbitrary leader-dependent cost functions (including
total leader length and number of bends); the algorithms were implemented and their
performance was evaluated experimentally. Nöllenburg et al. [152] presented a po-labeling
algorithm for placing boundary labels that can slide along one side of the boundary so
that the total leader length is minimized. Recently, Kindermann et al. [129] presented
an algorithm that finds a crossing-free po-labeling where the labels are placed on two
adjacent sides of R. In the same paper the authors also extend the algorithm such that
it can handle three and four-sided labelings. Bekos et al. [11] presented algorithms for
combinations of more general octilinear leaders of types do, od, and pd and labels on one,
two, and four sides of R. For uniform labels the algorithms are polynomial, whereas the
authors showed NP-hardness for a variant involving non-uniform labels. Recently, Huang
et al. [120] considered the problem of computing boundary labelings with flexible label
positions. They gave several polynomial-time algorithms for computing one- and two-sided
boundary labelings with minimum leader length or minimum total number of bends.

Extensions of the basic static point-feature model include algorithms for labeling area
features [13], and a dynamic one-sided po-model, in which the user can zoom and pan the
map view while the label size on the boundary remains fixed [152]. Relaxing the property
that each label is connected to a unique site leads to the many-to-one model. In this model
NP-hardness results, approximations and heuristics for crossing minimization with type-opo
and -po leaders are known [110]; Lin [140] presented an approach using duplicate labels and
opo-hyperleaders to avoid crossings. Bekos et al. [16] extended the work in the many-to-one
model and gave algorithms and complexity results for using po-hyperleaders, so-called
backbones. Fink et al. [85] consider the problem of labeling focus regions on a map by using
either straight lines or Bézier curves as leaders.

The only previous work using multiple layers of labels on the boundary presented
O(n4 log H)-time algorithms for label size maximization in a one-sided model with two
or three “stacks” of labels on a vertical side of R and type-opo leaders [12] (here H is
the height of the rectangle R). In the algorithms all labels are assumed to be of uniform
size and a maximum scaling factor is determined such that all labels can be placed in the
available stacks. The authors further gave NP-hardness results for some two-stack variants
of non-uniform labels and opo- or po-leaders.

9.1.2 Contribution

In this chapter we study a one-sided multi-row labeling problem with type-o leaders and
variable-width labels. Note that for comparison with the results of Bekos et al. [12], the
same model can be transformed into an equivalent multi-stack labeling problem with
variable-height labels; since for textual annotation variable-width labels are more relevant,
we describe the multi-row model. However, we argue that using a multi-stack (or multi-row)
model with opo-leaders exhibits the risk of cluttered drawings. For example, multiple
leaders may squeeze through a narrow gap between two labels and thus correspondences
between points and labels may become unclear. In contrast, by restricting the leaders to
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vertical straight-line segments we try to compensate for the relatively high visual complexity
of a multi-row model and to maintain the visual association.

In Section 9.2 we introduce our labeling model, in which we place all labels above the
horizon, in more detail and define three optimization problems: MinRow, which aims to
find a labeling with all n labels in the minimum feasible number K? of rows, MaxLabels,
which maximizes the number of labels placed in K given rows, and MaxWeight, which
considers labels with integer weights, weighted by importance (with total weight wtotal)
and computes a maximum-weight subset of labels for K rows. Section 9.3 describes an
O(K?n3)-time algorithm for MinRow, an O(Kn3w2

total)-time algorithm for MaxWeight,
and an O(Kn3)-time algorithm for MaxLabels. Additionally, we discuss the problem of
generating two-sided panorama labelings, where labels may be placed above and below the
respective horizons. In this context, all of the above mentioned problems are NP-hard and
we cannot give efficient algorithms. Instead, we present mixed-integer linear programming
formulations to solve each problem. In Section 9.4 we present extensions of the algorithms
for practically interesting variations of the basic problems. We have implemented our
algorithms and report results of an experimental evaluation in Section 9.5.

9.2 panorama labeling model

We aim to label a set P = {p1, . . . , pn} of points in the plane, where pi = (xi, yi) ∈ R2 with
corresponding labels L = {l1, . . . , ln}. A label is an open, axis-parallel rectangle of given labels

width Wi ∈ R+
0 and height 1. We assume that the points in P have distinct x-coordinates

and the points are ordered from left to right, that is, xi < xi+1 for i = 1, . . . , n− 1. Moreover,
we assume yi < 0 for i = 1, . . . , n meaning that pi lies below the horizontal line y = 0,
which we denote as the horizon. For our problems, the y-coordinates of the points in P horizon

are irrelevant and we can assume that all points lie on the horizontal line y = −1. By
Pi,j = {pi, . . . , pj} ⊆ P we denote the set of all input points between pi and pj.

The task of labeling P comprises two subproblems: selecting the labels that are to be
displayed and placing them above the horizon. More formally, we define a (panorama)
labeling L to be the tuple (S, π) where S ⊆ L and π : S→ R×N is a mapping that assigns panorama labeling

each label li in S a coordinate (Xi, Yi) where Xi is the real-valued x-coordinate of the label’s
right border and Yi is an integer which allows us to say that the label is placed in row Yi row

above the horizon.
In order to connect each label li ∈ S with its corresponding point pi ∈ P, we draw a

vertical line segment from (xi, Yi) to (xi, yi); we call this line segment the leader of label li leader

and point pi.
We say that a labeling L = (S, π) is feasible if it satisfies requirements (F1)–(F3): feasible

(F1) For every label li ∈ S the leader of li actually connects li with pi, that is, Xi −Wi ≤
xi ≤ Xi.

(F2) For every label l ∈ S the leader of l does not intersect any label in S other than l.
(F3) The labels in S do not intersect each other.

For a pair (i, j) of indices 1 ≤ i ≤ j ≤ n and a row index k, we define an (i, j, k)-labeling as (i, j, k)-labeling

a feasible labeling of Pij with S = {li, . . . , lj} satisfying
(R1) Yi = Yj = k, that is, both li and lj are in row k, and
(R2) Y` ≤ k for ` = i + 1, . . . , j− 1, that is, the labels for all points between pi and pj are in

row k or below.
We say that an (i, j, k)-labeling L is compact if there is no (i, j, k)-labeling where label lj has a compact

(i, j, k)-labelingsmaller x-coordinate than in L; we denote the x-coordinate of lj in a compact (i, j, k)-labeling
L as the x-value Xi,j,k of L. If no (i, j, k)-labeling exists we set Xi,j,k = ∞. For an example of
(non-)compact (i, j, k)-labelings see Figure 9.2.
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(a) A non-compact (2, 5, 3)-labeling.
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(b) A compact (2, 5, 3)-labeling.

Figure 9.2: Examples for a compact and a non-compact (i, j, k)-labeing
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Figure 9.3: A feasible labeling for n = 5 labels using dn/2e = 3 rows.

For multi-row boundary labeling there are several possible optimization criteria. Generally,
we want to display as many labels as possible, decrease unused space but also ensure good
readability. Note that these criteria might be conflicting, for example, putting many labels
as close together as possible decreases unused space, but may also be detrimental for the
readability (or more specifically, it may be harder to find the label corresponding to a specific
feature point). Hence, we might want to limit the number of rows used for displaying
labels. However, this may come at the price of fewer displayed labels than possible. In the
following we introduce three optimization problems that we investigate in this paper.

As a first, and probably most basic, problem we want to find a solution that selects all
labels and uses as few rows as possible.
Problem 4 (MinRow) Given a set P of n points below the horizon and a set L of corresponding
labels, find a feasible labeling with all labels that requires the minimum number of rows.

A solution to this problem contains all provided information, but might be hard to read if
too many features with corresponding labels are supplied. Nevertheless, there exists for
every instance such a labeling.
Lemma 9.1 For each MinRow instance with n points there exists a feasible labeling with dn/2e
rows and for each n ∈N there exists a MinRow instance with n points that requires dn/2e rows.

Proof.
We begin by showing the first part of Lemma 9.1, that is, we show that for each MinRow

instance with n points, there exists a feasible labeling with dn/2e rows. We label all
points in P as in Figure 9.3, that is, for i = 1, . . . , dn/2e we set Yi = i and Xi = xi; for
i = dn/2e+ 1, . . . , n we set Yi = n− i + 1 and Xi = xi +Wi. Clearly, requirement (F1) holds.
Requirement (F2) holds since for i = 1, . . . , n− 1 and j = i + 1, . . . , n label lj lies above Yi if
j ≤ dn/2e and to the right of xi if j > dn/2e. Requirement (F3) holds since each row either
contains a single label or two labels li, lj with i ≤ dn/2e < j. In the latter case li lies to the
left of lj since the right boundary of li is Xi = xi, the left boundary of lj is Xj −Wj = xj, and
i < j implies xi < xj. To show that dn/2e rows may be required let pi = (i,−1) and Wi = n
for i = 1, . . . , n. Since the distance between p1 and pn is n− 1 at most two labels fit in one
row. �

Obviously, solutions as the one in Figure 9.3 are rather useless in practice—placing no
more than two labels in a single row the required space to display all labels becomes huge.
If the horizontal distances between the points are small and the labels are wide, however, we
will fail to find a better solution. Therefore, a natural alternative to MinRow is to discard
some labels if the available space is limited. If we are restricted to a certain number of rows,
then a sensible optimization goal is to maximize the number of displayed labels.
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Problem 5 (MaxLabels) Given a set P of n points below the horizon, a corresponding set L of
labels, and a positive integer K, determine a feasible labeling that displays the maximum number of
labels in at most K rows.

However, by simply maximizing the number of labels we might fail to measure the quality
of a labeling appropriately. We should account for the fact that often some objects are more
important than others and thus should have a higher priority to become labeled. This can
be expressed with weighted points and yields our third optimization problem.
Problem 6 (MaxWeight) Given a set P of n points below the horizon, a corresponding set L of
labels, a positive integer K, and a positive integer weight wi for each point pi ∈ P, find a feasible
labeling L = (S, π) that maximizes the total weight ∑li∈S wi among all feasible labelings that use
at most K rows.

9.3 algorithms

In this section we describe our algorithms to solve the problems MinRow, MaxWeight, and
MaxLabels. For MinRow and MaxLabels we give polynomial-time algorithms, while we
show that MaxWeight is weakly NP-hard by a reduction from the Partition problem; we
give a pseudo-polynomial time algorithm in this case.

We begin this section with a simple algorithm that decides for a given panorama labeling
instance whether there exists a valid labeling in a single row, that is, whether MaxLabels

has a solution with n labels for K = 1.

9.3.1 Single-Row

Before we describe our algorithm for MinRow in Section 9.3.2, we briefly discuss the
following single-row label placement problem, which serves as a base case for MinRow.
Problem 7 (SingleRow) Given a set P of n points below the horizon and a label for each point,
decide whether there is a feasible labeling for P with all labels in a single row above the horizon.

Bekos et al. [14] considered a similar problem, more specifically, they considered the
problem of computing a boundary labeling of points on a horizontal line. However, they
allow that the leaders have bends and optimize the total leader length or the number of
total bends, where we require that the leaders are connected with the labels with a single
vertical line.

The SingleRow problem is closely related to a single-machine job scheduling problem,
where n ordered jobs J1 < · · · < Jn with processing times zi and release and due times ri
and di are to be non-preemptively scheduled in the given order such that all jobs finish
before their due times. The weighted version of this problem is known as single-machine
throughput maximization [7] and has been related to one-dimensional weighted point
labeling problems before [160]. Note that for our problem the property that the scheduling
is non-preemptive (that is, no job is interrupted) is crucial since each job corresponds to a
label, and each label is displayed either completely or not at all.

SingleRow can be solved with a simple greedy algorithm, which we denote as Sin-
gleRowAlg. The algorithm processes the points in increasing x-order and places the next
label li in the leftmost possible position such that it does not intersect the previous label,
that is, Xi = max{Xi−1 + Wi, xi}. If for any i we have Xi > xi + Wi, then obviously no
feasible single-row labeling exists (requirement (F1) violated), the algorithm reports failure
and returns ∞. Otherwise it reports success and returns the position Xn of the last label.
The correctness of SingleRowAlg is immediate and for sorted points it takes linear time.
Corollary 9.1 If the input points are sorted by their x-coordinates, SingleRow can be solved in
O(n) time.
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Using SingleRowAlg we can compute the x-positions Xi,j,1 of all compact (i, j, 1)-labelings
in O(n2) time by running it n times, once for every set Pi,n, where i = 1, . . . , n. If there is a
feasible position for placing label lj (j ≥ i) in the instance Pi,n, we store its x-position Xj as
the x-position Xi,j,1. If there is no feasible position we set Xi,j,1 = ∞.

9.3.2 Row Number Minimization

We now show how to solve MinRow efficiently using dynamic programming. Our idea
is to construct compact (i, j, k)-labelings for all 1 ≤ i ≤ j ≤ n and successively increasing
values of k until a feasible labeling for all points is found. Recall that by Lemma 9.1 the
value of k is upper bounded by dn/2e.

To ease notation we introduce two dummy points p0 and pn+1 to the left of p1 and to
the right of pn that do not influence the feasibility of labeling P, regardless of the position
of l0 and ln+1. We set W0 = Wn+1 = 0, x0 = x1 − 2Wmax, and xn+1 = xn + 2Wmax, where
Wmax = max1≤i≤n Wi is the maximum label width.

Our algorithm MinRowAlg computes a three-dimensional table T , where each entry
T [i, j, k] for 0 ≤ i ≤ j ≤ n + 1 and 1 ≤ k ≤ dn/2e stores the x-position Xi,j,k of a compact
(i, j, k)-labeling as well as some backtracking information in order to reconstruct the compact
(i, j, k)-labeling. With these semantics it is clear that there is a solution to MinRow with k
rows if and only if there is a feasible (0, n + 1, k)-labeling, that is, T [0, n + 1, k] < ∞.

We compute T in a bottom-up fashion with respect to the row index k. First, we compute
T [·, ·, k] for k = 1 and if T [0, n + 1, 1] = ∞ proceed to computing T [·, ·, k] for k = 2 and
so on until eventually T [0, n + 1, k] < ∞. The entries of T [·, ·, k] for k = 1 are computed
by the algorithm SingleRowAlg described in Section 9.3.1. For k > 1 the entries T [i, i, k] for
i = 0, . . . , n + 1 are set to T [i, i, k] = Xi,i,k = xi. We use the recurrence T [i, j, k] = min Θk

i,j

for all i < j and k > 1, where Θk
i,j for i < j and k > 1 is defined as the set

Θk
i,j =

{
max{xj, T [i, `, k] + Wj} | i ≤ ` < j, T [i, `, k] ≤ xj, T [`, j, k− 1] < ∞

}
. (9.1)

Note that Θk
i,j can be empty. For this case we define min ∅ := ∞ and obtain T [i, j, k] = ∞.

For the pseudo code of MinRowAlg see Algorithm 3.

Algorithmus 3 : MinRowAlg

1 initialize T
2 compute T [·, ·, 1] using SingleRowAlg
3 for k = 2 to dn/2e do
4 for j = 1 to n + 1 do
5 for i = 0 to j− 1 do
6 T [i, j, k] = min Θk

i,j

7 T [j, j, k] = xj

8 if T [0, n + 1, k] < ∞ then break;
9 reconstruct solution from T [0, n + 1, k]

Theorem 9.1 MinRowAlg solves MinRow in O(K? · n3) time, where K? is the number of rows in
the optimal MinRow solution.

Proof. The running time of MinRowAlg follows immediately. The outer loop is iterated
K? times, and in each iteration of the outer loop we perform O(n2) iterations of the nested
inner loops. In each iteration it takes linear time to find the minimum of the set Θk

i,j, which
contains O(n) elements.
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pi p` pj

(a) Xj = xj

pi p` pj

Wj

X`

(b) Xj = X` + Wj

Figure 9.4: Two `-compact (i, j, 3)-labelings.

It remains to prove the correctness of MinRowAlg by showing T [i, j, k] = Xi,j,k for all
0 ≤ i ≤ j ≤ n + 1 and 1 ≤ k ≤ K?. The proof is by induction over k and for each k by
induction over j− i.

For k = 1 we use SingleRowAlg described in Section 9.3.1 and it follows immediately that
the entries T [·, ·, 1] are correct.

Next we prove correctness for k > 1. In the base case i = j the algorithm sets T [i, i, k] = xi,
which is the x-value Xi,i,k of a compact (i, i, k)-labeling that simply consists of the single
label li placed in its leftmost possible position Xi = xi in row Yi = k.

Now let’s assume i < j and let L be an (i, j, k)-labeling. By definition li and lj are in row
k. This implies that there is a well-defined predecessor l` of lj in row k for i ≤ ` < j; we say predecessor

that l` precedes lj in row k. We call a label l` a feasible predecessor of lj if there exists an precedes

feasible(i, j, k)-labeling, where l` precedes lj. Let F(i, j, k) be the set of all feasible predecessors of lj
in an (i, j, k)-labeling. Now we define an (i, j, k)-labeling L to be `-compact if l` precedes lj `-compact

and there is no other (i, j, k)-labeling with predecessor l` where the position of lj is further
to the left. Figure 9.4 shows two `-compact (i, j, 3)-labelings.

Every compact (i, j, k)-labeling L is also `-compact for the predecessor l` of lj in L since by
definition of a compact (i, j, k)-labeling, there is no other (i, j, k)-labeling where the position
of lj is further to the left. On the other hand the `-compact (i, j, k)-labeling with the leftmost
position of lj over all feasible predecessors l` ∈ F(i, j, k) is a compact (i, j, k)-labeling, since
there is no other (i, j, k)-labeling where the position of lj is further to the left. For every
`-compact (i, j, k)-labeling the leftmost x-position of lj is X`

j = max{xj, X` + Wj}, since lj
must be Wj to the right of its predecessor but cannot be left of xj, see Figure 9.4. Hence
the x-position of a compact (i, j, k)-labeling Xi,j,k = min{X`

j | l` ∈ F(i, j, k)}. Note that if

F(i, j, k) = ∅ we obtain Xi,j,k = ∞. We claim that Θk
i,j = {X`

j | l` ∈ F(i, j, k)} and thus

MinRowAlg correctly computes T [i, j, k] = min Θk
i,j = Xi,j,k.

Let L be an `-compact (i, j, k)-labeling and let Lleft be the (i, `, k)-labeling formed by
labels li, . . . , l` of L. We can assume that Lleft is compact since otherwise we can replace
Lleft in L by a compact (i, `, k)-labeling that actually constrains the position of lj less than
Lleft. Hence X`

j = max{xj,Xi,`,k +Wj}. Since ` < j we obtain from the induction hypothesis

that Xi,`,k = T [i, `, k], that is, the values in Θk
i,j are actually X`

j = max{xj, T [i, `, k] + Wj}.
It remains to show that a value X`

j is in Θk
i,j if and only if l` is a feasible predecessors in

F(i, j, k). For the only-if-part, let l` be a feasible predecessor in F(i, j, k). Then obviously
i ≤ ` < j. Moreover, Xi,`,k = T [i, `, k] ≤ xj since otherwise lj would be pushed too far to the
right for being part of an (i, j, k)-labeling. Finally, we observe that any `-compact (i, j, k)-
labeling induces a labeling Lright of the labels l`+1, . . . , lj−1, in which they are restricted
to lie to the right of x`, to the left of xj and below row k. We can extend Lright to an
(`, j, k− 1)-labeling by placing l` at X` = x`, Y` = k− 1 and lj at Xj = xj + Wj, Yj = k− 1;
see Figure 9.5. This implies T [`, j, k− 1] < ∞.

For the if-part, let i ≤ ` < j such that T [i, `, k] ≤ xj and T [`, j, k− 1] < ∞. We combine
a compact (i, `, k)-labeling Lleft (exists because T [i, `, k] ≤ xj < ∞) and labels l`+1, . . . , lj−1
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pi p` pjp`

Lleft
Lrightk

k− 1

pi p` pj

k

Figure 9.5: (De-)composition of an `-compact (i, j, k)-labeling into an (i, `, k)-labeling and
an (`, j, k− 1)-labeling.

from a compact (`, j, k− 1)-labeling with the label lj at position Xj = xj + Wj in row k as
illustrated in Figure 9.5. This yields a feasible (i, j, k)-labeling L since Lleft is feasible and
labels l`+1, . . . , lj−1 lie below row k, to the right of x`, and to the left of xj. We know that
T [i, `, k] < xj and hence lj can be placed at xj + Wj without overlapping l`. Furthermore,
both li and lj are in row k and l` precedes lj, that is, l` is a feasible predecessor in F(i, j, k).
This concludes the proof of correctness. �

Note that K? is in O(n), hence the worst-case time complexity of MinRowAlg is O(n4).

9.3.3 Weight Maximization

In this section we first show NP-hardness of MaxWeight. Then, we present a pseudo-
polynomial time algorithm showing that MaxWeight is actually only weakly NP-hard.
Recall that for a MaxWeight instance we are given, in addition to the set P of anchor points
and the set L of corresponding labels, for each point pi in P a positive integer weight wi,
and we are also given a positive integer K. The problem then asks for a feasible labeling
L = (S, π) that maximizes the total weight ∑li∈S wi among all feasible labelings that use at
most K rows.
Theorem 9.2 MaxWeight is NP-hard, even for K = 1.

Proof. Our proof is inspired by an NP-hardness proof for an internal 4-slider point labeling
problem by Garrido et al. [95, Theorem 3]. It is by reduction from the following NP-hard
variant of Partition [91]: Given a set A = {a1, a2, . . . , a2m} and a size s(a) ∈ Z+ for each
a ∈ A, is there a subset A′ ⊆ A such that ∑a∈A′ s(a) = ∑a∈A\A′ s(a) and A′ contains
exactly one of a2i−1, a2i for every 1 ≤ i ≤ m? For each Partition-instance I we construct
a MaxWeight-instance J such that the weight of an optimal solution to J allows us to
decide whether or not I is a yes-instance of Partition. We specify the set P of points,
their weights, and the widths of their labels in J as illustrated in Figure 9.6. More precisely,
we define a large constant C = 1000 ∑a∈A s(a). Next we define (from left to right) points
pL, p1, . . . , p2m, pR on a horizontal line and their distances as |pL p1| = |p2m pR| = C/2,
|p2i−1 p2i| = (s(a2i−1) + s(a2i))/2, and |p2i p2i+1| = C. The corresponding labels have
widths WL = WR = |pL pR| and Wi = C + s(ai). Furthermore, we define wL = wR = WL
and wi = Wi, that is, the weight of a point is equal to the width of its label.

A solution to the Partition instance I exists if and only if a feasible labeling in a single
row with total weight 3 pL pR exists. To see why, we first assume that we are given such a
labeling. Clearly, this labeling contains the label for pL and the label for pR. Moreover, the
space between pL and pR is completely filled with labels for other points. Since the labels
are extremely wide (compared to the distances p2i−1 p2i) exactly one of the labels l1, l2 has
to be selected and its leader has to lie roughly in the center of the label. This again implies
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w2i = C + s(a2i)
pL p1 p2 p2i−1 p2i pR

C
2 C

s(a2i−1)+s(a2i)
2

C
2

Figure 9.6: Reducing Partition to MaxWeight.

that exactly one of the labels l3, l4 has to be selected, and so on. By induction, it follows that
for i = 1, . . . , m exactly one of the labels l2i−1, l2i has to be selected. Since pL pR is exactly
half the total width of labels l1, . . . , l2m the labeled points correspond to a feasible partition.
If, however, we are given a solution A′ ⊆ A to the Partition instance, we can construct
the labeling by selecting labels pL, pR plus the labels for the points corresponding to the
elements in A′. It is easy to see that by applying algorithm SingleRowAlg from Section 9.3.1
to the selected labels, we obtain a feasible labeling. �

Since MaxWeight is NP-hard, we cannot hope for a polynomial-time algorithm that
solves it, unless P = NP. But our reduction uses labels with extremely large weights. Hence,
we propose a pseudo-polynomial time algorithm, that is, an algorithm whose running time
is polynomial in n, k, and the numeric value of ∑n

i=1 wi, but exponential in the length of the
encoding of ∑n

i=1 wi. If the label weights are small integer numbers such an algorithm can
still be fast in practice.

pseudo-polynomial time algorithm for maxweight . We first extend our no-
tation from Section 9.3.2. Recall that for a labeling L the set S contains all labels selected
for display. For a pair of indices 0 ≤ i ≤ j ≤ n + 1, a row index k, and a weight c we
define an (i, j, k, c)-labeling as a feasible labeling of Pi,j such that li, lj ∈ S and Yi = Yj = k,
all other labels l` ∈ S are placed in row k or below (i. e., Y` ≤ k), and the total weight of
the labels in S is c. Analogously, we say an (i, j, k, c)-labeling is compact if there is no other
(i, j, k, c)-labeling where lj has a smaller x-position. Again, we call the x-position of lj in a
compact (i, j, k, c)-labeling L the x-position of L. Note that this definition generalizes our
definition of a compact (i, j, k)-labeling, since an (i, j, k, c)-labeling is an (i, j, k)-labeling if
c = ∑

j
`=i w`.

In our algorithm MaxWeightAlg for MaxWeight we add a fourth dimension to the table
T that allows us to distinguish labelings of different weights. Let wtotal = ∑n

i=1 wi be
the total weight of all points in P. Then, each entry T [i, j, k, c] stores the x-position of a
compact (i, j, k, c)-labeling, where 0 ≤ i ≤ j ≤ n + 1, 1 ≤ k ≤ dn/2e, and 0 ≤ c ≤ wtotal.
The maximum-weight labeling using K rows can be constructed by backtracking from
T [0, n + 1, K, cmax], where cmax = max{c | T [0, n + 1, K, c] < ∞}.

As before, we compute T in a bottom-up fashion with respect to the topmost row k, the
weight c, and the distance j− i. We set T [i, i, k, wi] = xi for all k and T [i, i, k, c] = ∞ for all k
and c 6= wi. In all other cases we use the recurrence T [i, j, k, c] = min Θk,c

i,j , where Θk,c
i,j for

k = 1 is defined as the set

Θ1,c
i,j =

{
max

{
xj, T [i, `, 1, a] + Wj

}
| i ≤ ` < j, T [i, `, 1, a] ≤ xj, a = c− wj

}
(9.2)

and for k > 1 as the set

Θk,c
i,j =

{
max

{
xj, T [i, `, k, a] + Wj

}
| i ≤ ` < j, T [i, `, k, a] ≤ xj,

T [`, j, k− 1, b] < ∞, a = c− b + w`

}
. (9.3)

We give the pseudo code for MaxWeightAlg in Algorithm 4.
Theorem 9.3 MaxWeightAlg solves MaxWeight in O(Kn3w2

total) time.
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Algorithmus 4 : MaxWeightAlg

1 initialize T
2 for j = 1 to n + 1 do
3 for i = 0 to j− 1 do
4 for c = 0 to wtotal do
5 T [i, j, 1, c] = min Θ1,c

i,j

6 for k = 2 to K do
7 for j = 1 to n + 1 do
8 for i = 0 to j− 1 do
9 for c = 0 to wtotal do

10 T [i, j, k, c] = min Θk,c
i,j

11 reconstruct solution from T [0, n + 1, K, cmax]

Proof. The algorithm MaxWeightAlg is similar to MinRowAlg, but uses four instead of
three nested loops to compute the O(Kn2wtotal) entries of T . Each entry is computed as the
minimum of a set Θk,c

i,j containing O(nwtotal) elements. This yields an overall running time

of O(Kn3w2
total).

We now show the correctness of the algorithm analogously to the proof of Theorem 9.1
but taking the weight constraints into account. For the case i = j and arbitrary k it is easy to
see that the x-value of a compact (i, i, k, c)-labeling is the leftmost possible position xi of li if
c = wi and ∞ otherwise.

Before we consider the general case, we extend the notion of `-compact as introduced
in Section 9.3.2. For given weights a, c ∈ N with a ≥ c, we call a pair (l`, a) a feasible
predecessor pair of (lj, c) if there exists an (i, j, k, c)-labeling (i < j), where l` precedes
lj and the total weight of the selected labels S ∩ {li, . . . , l`} is a. We define F(i, j, k, c) as
the set of all feasible predecessors pairs of (lj, c) in an (i, j, k, c)-labeling. We then define
an (i, j, k, c)-labeling L to be (`, a)-compact if (l`, a) precedes (lj, c) and there is no other
(i, j, k, c)-labeling L′ where (l`, a) precedes (lj, c) and which has smaller x-position than
L. As before it is clear that every compact (i, j, k, c)-labeling L is also (`, a)-compact for
the predecessor pair (l`, a) of (lj, c). Conversely, the (`, a)-compact (i, j, k, c)-labeling with
smallest x-position over all feasible predecessor pairs (l`, a) ∈ F(i, j, k, c) is compact. For
every (`, a)-compact (i, j, k, c)-labeling L the x-position of L is X`,a

j = max{xj, X` + Wj}.
Note that the value X` depends implicitly on a since the value of X` depends on L which
directly depends on a. To ease notation we omit this parameter in the description of X`.
The x-position of a compact (i, j, k, c)-labeling is min{X`,a

j | (l`, a) ∈ F(i, j, k, c)}. Our claim

is that Θk,c
i,j = {X`,a

j | (l`, a) ∈ F(i, j, k, c)} and thus the algorithm is correct.
Now, let3 L be an (`, a)-compact (i, j, k, c)-labeling and let Lleft be the induced (i, `, k, a)-

labeling. As in the proof of Theorem 9.1 we can assume that Lleft is compact and hence
by the induction hypothesis X`,a

j = max{xj, T [i, `, k, a] + Wj}, that is, the values in Θk,c
i,j are

actually X`,a
j for some pairs (`, a).

It remains to show that X`,a
j ∈ Θk,c

i,j if and only if the pair (l`, a) ∈ F(i, j, k, c). We start with
the case k = 1. If (l`, a) ∈ F(i, j, 1, c), then obviously i ≤ ` < j and also T [i, `, 1, a] ≤ xj since
otherwise lj cannot be in a feasible position. Moreover, for the total weight of the labeling
to be c, the weight of the labels in S ∩ {li, . . . , l`} must be c− wj, since in a single row lj is
the only label to the right of l`. If, on the other hand, the three constraints for the set Θ1,c

i,j
hold, we can combine a compact (i, `, 1, a)-labeling (which exists because T [i, `, 1, a] < ∞)
with weight a and the label lj with weight wj placed in row 1 at position Xj = xj + Wj into
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an (i, j, 1, c)-labeling for c = a + wj. Therefore, (l`, a) is indeed a feasible predecessor pair in
F(i, j, 1, c).

In the general case for k > 1 the argument is similar to k = 1. Let first (l`, a) ∈ F(i, j, k, c)
be a feasible predecessor pair. Then i ≤ ` < j and T [i, `, k, a] ≤ xj as before, but additionally
any (`, a)-compact labeling induces a labeling Lright of labels S ∩ {l`+1, . . . , lj−1} that is
strictly below row k, to the right of x` and to the left of xj. Furthermore, Lright has weight
c − a − wj. Again, we extend Lright to an (`, j, k − 1, b)-labeling by placing l` and lj in
row k− 1 with x-positions X` = x` and Xj = xj + Wj, similar to the situation depicted in
Figure 9.5. Note that the weight b of this labeling is b = c− a− wj + w` + wj so that all
constraints put on set Θk,c

i,j are satisfied.

Conversely, if all constraints for Θk,c
i,j are satisfied we can compose a feasible (i, j, k, c)-

labeling L from a compact (i, `, k, a)-labeling Lleft and a compact (`, j, k − 1, b)-labeling
Lright as sketched in Figure 9.5. The labels in S ∩ {li, . . . , l`} are placed as in Lleft, the labels
in S ∩ {l`+1, . . . , lj−1} as in Lright and lj at xj + Wj. The weights of the sub-labelings are
chosen such that the weight of L correctly adds up to c. �

9.3.4 Label Number Maximization

In this section we present an algorithm to solve MaxLabels, that is, to place as many labels
as possible in K given rows. Note that Theorem 9.3 of the previous section directly yields a
polynomial time algorithm if we set wi = 1 for all 1 ≤ i ≤ n. However, this would result
in a running time of O(Kn5). Here we show that there is a faster algorithm which uses an
exchange argument based on the fact that all labels have the same weight.

We first introduce an adapted notation for cardinality-maximal labelings. We define a
cm-(i, j, k)-labeling to be a feasible labeling of a subset P̂ ⊆ Pi,j in rows 1 to k with both li cm-(i, j, k)-labeling

and lj placed in row k such that there is no feasible labeling of another subset P̄ ⊆ Pi,j with
the same properties but |P̄| > |P̂|. We say a cm-(i, j, k)-labeling L is cm-compact if there is cm-compact

no other cm-(i, j, k)-labeling with smaller x-position.
We will compute two three-dimensional tables T and K. An entry T [i, j, k] for 0 ≤ i ≤

j ≤ n + 1 and 1 ≤ k ≤ K stores the x-position of a cm-compact cm-(i, j, k)-labeling. We
note that T can no longer contain the value ∞ since for any triple (i, j, k) there is always
a feasible labeling with P̂ = {pi, pj} and their labels placed disjointly in row k. An entry
K[i, j, k] stores the actual cardinality of a cm-(i, j, k)-labeling.

The recursive definitions of T and K are as follows:

T [i, j, k] =

xi if i = j

min Θk
i,j otherwise

, (9.4)

with

Θk
i,j =

{
max

{
xj, T [i, `, k] + Wj

} ∣∣∣∣∣ i ≤ ` < j, T [i, `, k] ≤ xj,

K[i, j, k] = K[i, `, k] +K[`, j, k− 1]− 1

}
, (9.5)

K[i, j, k] =

1 if i = j

max κk
i,j otherwise

, (9.6)

with

κk
i,j =

{
K[i, `, k] +K[`, j, k− 1]− 1 | i ≤ ` < j, T [i, `, k] ≤ xj

}
. (9.7)

The dynamic programming algorithm MaxLabelsAlg for MaxLabels computes K and T
in a bottom-up fashion analogously to our previous algorithms. Note that for each triple
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i, j, k we first compute K[i, j, k] and then based on that T [i, j, k]. The final solution contains
K[0, n + 1, K]− 2 labels and can be obtained by backtracking from T [0, n + 1, K]. We give
the pseudo code for MaxLabelsAlg in Algorithm 5.

Algorithmus 5 : MaxLabelsAlg

1 initialize T
2 for i = 0 to n + 1 do
3 T [i, i, k] = xi
4 K[i, i, k] = 1
5 for k = 1 to K do
6 for j = 1 to n + 1 do
7 for i = 0 to j− 1 do
8 K[i, j, k] = max κk

i,j

9 T [i, j, k] = min Θk
i,j

10 reconstruct solution from T [0, n + 1, K]

Theorem 9.4 MaxLabels can be solved by dynamic programming in O(Kn3) time.
Proof. The running time of the dynamic programming algorithm follows from the fact

that the tables are both of size O(Kn2) and computing each entry consists of finding the
minimum or maximum of a set of O(n) elements.

The correctness proof follows exactly the same arguments about the decomposition of a
cm-(i, j, k)-labeling L into two labelings Lleft and Lright by splitting L at the predecessor l`
of lj in row k (Figure 9.5). The definition of Θk

i,j implies that a value X`
j = max{xj, T [i, `, k] +

Wj} is contained in the set if and only if it leads to a cm-(i, j, k)-labeling; this is achieved
by requiring K[i, j, k] = K[i, `, k] +K[`, j, k− 1]− 1. Note that here we need to subtract 1
because label l` is counted twice otherwise. The set κk

i,j contains the cardinalities of all
feasible (T [i, `, k] ≤ xj) compositions of a cm-compact cm-(i, `, k)-labeling and a cm-compact
cm-(`, j, k− 1)-labeling. Entry K[i, j, k] is then simply the maximum value in κk

i,j.
The interesting aspect for showing the correctness is the following exchange argument.

Assume that there is a cm-(i, j, k)-labeling L with predecessor l` of lj but T [i, `, k] > xj, that
is, the x-position of this labeling is not contained in Θk

i,j. Since T [i, `, k] > xj it follows that
the sub-labeling L′ for Pi,` induced by L is not cardinality-maximal (recall that T [i, `, k]
stores the smallest x-position among all cm-(i, j, k)-labelings). So in order to have l` as the
predecessor of lj some other label left of l` in row k must be removed from the selected
labels, that is, we lose at least one label from S. But since all labels are worth the same,
we can just as well remove l` itself from S and use label l`′ , the predecessor of l` in a
cm-compact cm-(i, `, k)-labeling, as lj’s predecessor. Since l`′ is the predecessor of l` in that
labeling we know T [i, `′, k] ≤ x` < xj, so that the x-position X`′

j is in fact contained in Θk
i,j.

pi p`′ pj

k

p`Lmid LrightLleft

Figure 9.7: Construction of a labeling for Theorem 9.4.
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It remains to argue that this labeling with predecessor l`′ is at least as good as L, that is,
K[i, j, k] ≥ |L|. By the arguments presented above, we know that there is an (i, j, k)-labeling
where l`′ is the predecessor of lj. Combining this with the definition of κk

i,j we obtain:

K[i, j, k] ≥ K[i, `′, k] +K[`′, j, k− 1]− 1 (9.8)

Next, we consider the (i, `, k)-labeling with l`′ as predecessor of l` and ignore the label l`
from it. We split this labeling into two parts. We denote the labeling for the points from
pi to p`′ by Lleft, and the labeling for the points from p`′+1 to p`−1 by Lmid; see Figure 9.7.
Finally, there is a labeling Lright for the points from p`+1 to pj−1. It is easy to see that |Lright|
is at most K[`, j, k− 1]− 2. Now, consider both Lmid and Lright. By removing the leader of
p` separating Lmid from Lright we obtain

K[`′, j, k− 1] ≥ K[`′, `, k− 1] +K[`, j, k− 1]− 2 (9.9)

Combining equations (9.8) and (9.9) yields

K[i, j, k] ≥ K[i, `′, k] +K[`′, `, k− 1] +K[`, j, k− 1]− 3 (9.10)

Recall that `′ is the label in the (i, `, k)-labeling that is the predecessor of l` in row k.
Hence, by definition of K[i, `, k] it follows that K[i, `′, k] + K[`′, `, k − 1] − 1 ≤ K[i, `, k].
Plugging this into equation (9.10) yields:

K[i, j, k] ≥ K[i, `, k]− 1 +K[`, j, k− 1]− 1 (9.11)

As we have already argued, the labeling that is induced by L for the points pi to p` cannot be
cardinality maximal. Hence, the labeling for those points can contribute at most K[i, `, k]− 1
labels to L. The labeling induced by L for the remaining points can contribute at most
K[`, j, k− 1]− 1 labels. Finally, we can conclude

K[i, j, k] ≥ |L| (9.12)

This means that our algorithm indeed finds a labeling that has at least as many labels
as L. �

9.3.5 Two-sided Panorama Labeling

In this section we consider the two-sided panorama labeling problem. In this variation of
panorama labeling we allow rows above and below the panorama we want to label; for
an example see Figure 9.8. Unfortunately, by a result of Garrido et al. [95, Theorem 3] it
follows directly, that MinRow, MaxLabels, and MaxWeight are NP-hard in the two-sided
panorama labeling model, even if the problems are restricted to one row per side.
Corollary 9.2 For two-sided panorama labeling the problems MinRow, MaxLabels, and Max-
Weight are NP-hard.

For still finding a two-sided panorama labeling we propose in the following a mixed-
integer linear (MILP) program formulation that can handle MinRow, MaxLabels, and
MaxWeight.

mixed-integer linear programming . In the following we give a MILP formulation
that solves a given instance of two-sided panorama labeling. We begin by describing a MILP
formulation for MaxLabels, and proceed by sketching how to extend this formulation such
that it can handle MaxWeight and MinRow. For simplicity we assume, without loss of
generality, that the x-coordinates of the input points are all non-negative. We can transform
an instance with negative x-coordinates to an instance with strictly positive x-coordinates
by simply shifting all points sufficiently far to the right.
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Figure 9.8: Example for a two-sided panorama labeling

Recall that for MaxLabels we need to find the maximum number of labels which can be
placed into K rows. For the two-sided case we denote the number of rows that are above
the horizon by Ka and the number of rows below the panorama by Kb.

For each label li and each row 1 ≤ r ≤ Ka above the horizon we introduce a binary
variable ar

i , and for each row 1 ≤ r′ ≤ Kb we introduce a binary variable br′
i . The desired

meaning of the variables is that, if a variable ar
i (br′

i ) has value 1, then the label li is placed
in row r (r′), and ar

i (br′
i ) has value 0 if the label li is not placed in this row. Further, we

introduce for every label li a continuous variable Xi that stores the x-position of li, if li is
selected.

We are now ready to introduce the constraints of the MILP. First we introduce a constraint
that ensures that a label is placed in at most one row. Then, we give two constraints which
in combination guarantee that each label is connected to its leader; see requirement (F1) in
Section 9.2. For each label li we require:

∑
1≤r≤Ka

ar
i + ∑

1≤r′≤Kb

br′
i ≤ 1 (9.13)

Xi ≥ xi (9.14)

Xi ≤ xi + Wi (9.15)

To generate a valid panorama labeling, we need to ensure that no two labels intersect (see
requirement (F3)), that is, we require Xi ≤ Xj −Wj for every pair of labels li and lj placed
in the same row with i < j. However, this constraint must not influence the position of pairs
of labels in different rows. To ensure this we introduce a large constant M which we use
to “activate” or “deactivate” the constraint. This is a common trick used in formulating
MILPs [54]. In the following, we set M to be the largest x-coordinate of the input points
plus the largest width of all labels among the input. Since there is in principle no difference
between placing labels above the horizon or below it we explicitly introduce the constraints
only for placing labels above the horizon in the following (constraints 9.16–9.18). The
constraints for placing labels below the horizon are obtained by replacing each occurrence of
ar

i , a`j , and Ka with br
i ,b`

j , and Kb, respectively.
We introduce for each pair of labels li, lj with i < j and for every r, 1 ≤ r ≤ Ka, the

following constraint:

Xi ≤ Xj −Wj + (1− ar
i )M + (1− ar

j )M (9.16)

Note that this constraint has only an effect on Xi and Xj if both ar
i and ar

j are set to 1, that is,
both li and lj are placed in the same row (then the constraint is the desired Xi ≤ Xj −Wj).
Otherwise, the value on the right-hand side of the equation is always larger than the value
of the left-hand side.

We also need to guarantee that no label can intersect a leader; see requirement (F2). First,
we introduce a constraint that ensures that no label can intersect the leader of a label to
its right. For a label li placed in row r we need the constraint Xi ≤ xj for all labels lj,
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i < j whose labels are placed in rows above r. Making use of the constant M as above we
introduce for every pair of labels li, lj with i < j and for every r, 1 ≤ r ≤ Ka, the following
constraint:

Xi ≤ xj + (1− ar
i )M +

(
1− ∑

r<`≤Ka

a`j

)
M (9.17)

Similarly, to ensure that the label li does not intersect the leader of a label lj to its left
(j < i) that is placed in a row above li we need the constraint Xi −Wi ≥ xj. We introduce
for every pair of Labels li, lj with j < i and for every r, 1 ≤ r ≤ Ka, the following constraint:

Xi −Wi ≥ xj − (1− ar
i )M−

(
1− ∑

Ka≥`>r
a`j

)
M (9.18)

The constraints 9.17 and 9.18 influence Xi only if both ar
i = 1 (that is, the label li is placed

in row r) and the sum of all a`j , ` > r is 1 (that is, the label lj is placed in a row above li).
Subject to all introduced constraints we maximize the objective function:

∑
1≤i≤n

(
∑

1≤r≤Ka

ar
i + ∑

1≤r′≤Kb

br′
i

)

Extending the above formulation such that it can handle MaxWeight can be done
straightforwardly by modifying the objective function slightly to ∑1≤i≤n((∑1≤r≤Ka ar

i +

∑1≤r′≤Kb
br′

i ) · wi).
We can extend the above formulation such that it can solve MinRow by adding additional

constraints and modifying the objective function. Recall that for MinRow the number of
rows necessary to find a solution is bounded by dn/2e. Hence, we can set Ka = Kb = dn/2e.
Since for this problem all labels need to be placed we need to modify constraint 9.13 to the
following.

∑
1≤r≤Ka

ar
i + ∑

1≤r′≤Kb

br′
i = 1 (9.19)

Further, we add a binary variable zr for each row above the horizon and a binary variable
z′r for each row below it. The desired meaning of the newly added variables is that if a
row r contains at least one label, then, the corresponding variable zr is 1. For each label li
we require

zr ≥ ar
i 1 ≤ r ≤ Ka (9.20)

z′r ≥ br′
i 1 ≤ r′ ≤ Kb (9.21)

Finally, the objective function we want to minimize is ∑r≤Ka zr + ∑r≤Kb
z′r. Since we

minimize the objective function, we ensure that every zr is set to 0 if it is possible, that is,
if the row r does not contain a label. Note that although this formulation minimizes the
number of rows in which the labels are placed, it might contain empty rows which can be
removed in a post-processing step.

9.4 extensions

In this section we sketch several extensions to our algorithms. With some extensions we
aim at handling additional aesthetic constraints, for example, to ensure that two labels or a
label and a leader of another label do not come too close. With this particular constraint
the problem MinRow can become infeasible if the distance between two input points is too
small. Similar problems can arise with other extensions. We do not address these problems
in detail; often they can be revealed and possibly resolved in a pre-processing step.
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(a) Result of MaxLabelsAlg.
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(b) Result of MaxLabelsAlg with label spacing.

Figure 9.9: Result of MaxLabelsAlg of a MaxLabels instance for two rows with and without
label spacing.

9.4.1 Label Spacing

Our dynamic programming algorithms ensure that no two labels intersect and that no label
intersects a leader other than its own. It is possible, however, that two labels (or a label and
a leader) get arbitrarily close to each other. At first glance there seems to be an obvious
solution to the problem: simply enlarge the labels by an arbitrary buffer amount. However,
this can result in labels that are disconnected from their leaders. To see this consider a
label that is in its leftmost/rightmost position. Since we increased the width of the label its
x-position may be to the left of its own leader, which results in a label that is disconnected
from its leader. Hence, we propose a different approach. To avoid this problem, we add the
requirement that the horizontal distance between two labels in the same row (or between a
label and the leader of a label in a higher row) must not be smaller than a user-defined value
ε ≥ 0; see Figure 9.9. MinRowAlg ensures this requirement if we add +ε to the definition of
equation (9.1) at the appropriate positions. We need it to ensure that no label l` is considered
for which the distance between the right border of li and the anchor of l` has distance less
than ε. This is ensured by requiring T [i, `, k] + ε ≤ xj. Further, we need that if a label l` is
placed right of li in the k-th row, it has distance of at least ε. We obtain this by requiring
max{xj, T [i, `, k] + Wj + ε}. This modification of equation (9.1) yields

Θk
i,j =

{
max{xj, T [i, `, k] + Wj + ε} | i ≤ ` < j, T [i, `, k] + ε ≤ xj, T [`, j, k− 1] < ∞

}
.

For MaxWeightAlg similar modifications are necessary. We modify equations (9.2) and
(9.3). The first equation is for the recurrence relation for the first row (that is, k = 1)

Θ1,c
i,j =

{
max

{
xj, T [i, `, 1, a] + Wj + ε

}
| i ≤ ` < j, T [i, `, 1, a] + ε ≤ xj, a = c− wj

}
and for k > 1

Θk,c
i,j =

{
max

{
xj, T [i, `, k, a] + Wj + ε

}
| i ≤ ` < j, T [i, `, k, a] + ε ≤ xj,

T [`, j, k− 1, b] < ∞, a = c− b + w`

}
.

Finally, the modifications required for MaxLabelsAlg are in principle identical to those
desribed before. We need to modify the equations (9.5) and (9.7) yielding:

Θk
i,j =

{
max

{
xj, T [i, `, k] + Wj + ε

} ∣∣∣∣∣ i ≤ ` < j, T [i, `, k] + ε ≤ xj,

K[i, j, k] = K[i, `, k] +K[`, j, k− 1]− 1

}
,

κk
i,j =

{
K[i, `, k] +K[`, j, k− 1]− 1 | i ≤ ` < j, T [i, `, k] + ε ≤ xj

}
.

9.4.2 Horizontal Space Constraints

In Section 9.3 we gave algorithms to compute labelings that use a small number of rows but
we did not care about space consumption in the horizontal direction. If we want to ensure,
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Figure 9.10: Example of 360◦-panoramas before (a) and after (b) transformation.

for example, that no label intersects the left or right border of the panorama, we have to
restrict the sliding of labels. This can be done by changing the definition of the two dummy
points p0 and pn+1 in Section 9.3.2, that is, we set x0 = xmin and xn+1 = xmax, where xmin
(xmax) is the smallest (largest) allowed x-coordinate for the left (right) boundary of a label.
Then, a (0, n + 1, k)-labeling with the minimum feasible value for k is an optimal solution to
the horizontally constrained version of MinRow.

Note that in this case Lemma 9.1 is not true anymore. There are MinRow instances
for which more than dn/2e rows are necessary, and there are even instances for which no
solution is possible. However, it is easy to see that no MinRow instance that has a solution
requires more than n rows. Hence, the worst-case time complexity of MinRowAlg is still
in O(K?n3), where K? is in O(n). If an instance of MinRow has no valid solution, then
T [0, n + 1, n] = ∞. The algorithms MaxLabelsAlg and MaxWeightAlg can be adapted by the
same technique.

9.4.3 360◦-panoramas

We consider a 360◦-panorama as an image curved around the inside of a cylinder, thus it
does not have a left or right boundary. We can extend our algorithm for MinRow to handle
such images. Our extension is based on the following observation: if there is a solution to
MinRow with k rows, there is also a solution with k rows that contains one of the labels li
at position Xi = xi, Yi = k. A trivial approach is thus to solve the problem for i = 1, 2, . . . , n,
each time splitting the cylindric image at xi to obtain a conventional image. Since we have to
solve the problem n times the asymptotic running time increases by one order of magnitude.
With a simple change, however, one execution of our MinRow-algorithm suffices.

Our idea is to extend table T , which so far contained values T [i, j, k] only for i ≤ j. The
new version of the algorithm computes values T [i, j, k] for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ K?,
where K? is the smallest feasible number of rows. If j < i, a labeling corresponding to
T [i, j, k] simply contains labels li+1, . . . , ln and l1, . . . , lj. To ensure that the solutions for
li+1, . . . , ln and l1, . . . , lj are compatible we need to transform the x-coordinates of points
p` with ` > i to x` − xmax, where xmax is the width of the panorama. This transformation
essentially moves the points p` to the left of x = 0; see Figure 9.10. We also need to
transform the appropriate values in T by the same method.

We compute T [i, j, k] as before, ignoring the fact that in a 360◦-panorama li and lj may
intersect in the interval bounded to the left by xj and to the right by xi. If our algorithm
determines T [i, j, k] < ∞ we need to ensure that there exists a feasible solution where li and
lj do not intersect. This, however, can be done by a simple sweep over all labels that are
placed in row k in the solution. With this change, MinRowAlg still needs O(K?n3) time. The
algorithms MaxLabelsAlg and MaxWeightAlg can be adapted the same way.
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9.4.4 Elite Labels

For the most important sites, for example, the Willis Tower in the panorama of Chicago (see
Figures 9.1 and 9.12), we may want to guarantee that the solution contains the corresponding
labels. We term such a label an elite label. Now we can ask for a feasible labeling that contains
all elite labels plus as many other labels as possible in a given number k of rows. Assuming
that such a solution exists, we can apply our algorithm for MaxWeight. We simply have
to set the weight of each elite label to a large enough number (for example, n + 1) and the
weight of each non-elite label to one. With this approach we have wtotal ∈ O(n2), thus the
algorithm requires O(kn7) time. With the following simple modifications of recurrences (9.6)
and (9.4), however, we can reuse our O(kn3)-time algorithm for MaxLabels.

Each (i, j, 1)-labeling with j > i contains a label l` preceding lj. We have to avoid that we
omit an elite label between li and lj. To do so, we exchange the condition i ≤ ` < j in the
definitions of κ1

i,j and Θ1
i,j with e ≤ ` < j, where le is the last elite label among li+1, . . . , lj−1.

Obviously, we do not lose any feasible solution with this. Moreover, the modification suffices
since our algorithm always constructs a solution based on feasible one-row solutions for
smaller (sub-)instances. Similarly we can extend our algorithm for MaxWeight to find a
labeling in k rows containing all elite labels plus other labels of maximum total weight.

9.4.5 Optimizing Label Positions

A secondary criterion for aesthetically pleasing panorama labelings is that the labels are as
close as possible to being centered above their respective sites. So far we did not consider
this criterion in our problem definitions. In fact, the dynamic programming algorithms
described in Section 9.3 place all labels at their leftmost feasible positions. We can remedy
this unwanted side effect by subsequently fine-tuning the horizontal label positions. We
traverse each row k of a given feasible labeling from right to left. Let Sk be the set of labels
in row k. The general idea is that during the traversal, we shift a label to the right if it
decreases the overall cost Hk = ∑li∈Sk

|∆i|, where ∆i = xi − (Xi −Wi/2), which means that
|∆i| is the horizontal distance between the center Xi −Wi/2 of label li and the anchor point
pi. Note that a right shift of a label l might require a right shift of the label directly to the
right of l.

Since this approach does not change the row assignment of the labels we only need
to ensure that while shifting the labels no label intersects another label or leader. This
suffices to guarantee that the labeling remains valid. In the following we describe a simple
O(n2)-time algorithm that minimizes Hk by centering the labels as much as possible above
their respective anchor points. The general idea is to identify maximal sets of touching
labels in the same row called chains and to repeatedly move subsets of the chains to thechains

right.
In the first step of the algorithm we assign each label to a chain. Two labels that are in the

same row are assigned to the same chain if their borders touch each other. If a label touches
no other label it defines a singleton chain. We say that the suffix of a label li consists of lisuffix

and all labels in its chain that are to the right of li.
The general idea behind our algorithm is to iteratively move one suffix at a time to the

right in order to improve the value of the objective function Hk. We distinguish between
four types of events which may occur while moving a suffix: (i) a label in the suffix becomesevents

centered above its anchor, (ii) a label in the suffix is moved to its rightmost position, (iii) the
right border of the rightmost label in the suffix touches the leader of another label in a row
above, or (iv) the rightmost label in the suffix touches a label that belongs to another chain.
The first type of event occurs when a positive ∆i becomes 0, and the second type occurs
when the horizontal distance mi between a label’s left border and its anchor becomes 0, that
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(a) Before applying our post-processing algo-
rithm.
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(b) After applying the post-processing algo-
rithm.

Figure 9.11: Illustrations for our post-processing algorithm. In both illustrations two chains
are shown.

is, mi = xi − (Xi −Wi) = 0. Since the row assignment of the solution is fixed we can easily
determine in a pre-processing step for each label whether it has to its right a label, a leader
or nothing. This allows us to determine in a later step the distance fi that the suffix of li
can be moved until an event of the third or fourth type occurs. For an illustration of these
concepts see Figure 9.11.

Now, in a single row, the algorithm traverses the chains from right to left beginning with
the rightmost chain. In each chain it performs a second-level traversal from right to left. In
this second-level traversal our algorithm determines for each label li the values for ∆i, mi,
and the difference di between the number of positive and non-positive offsets ∆j in its suffix.
Note that if di of a suffix is positive, it means moving the suffix to the right decreases H.
The algorithm also computes for each label li how far its suffix can be moved to the right
until the first event occurs by determining Mi = min{∆j, mj, fi | ∆j > 0, lj in suffix of li}.

Finally, we need to select the suffix of the currently considered chain that we actually
move to the right. After determining the value of di for each label we choose the label
with maximum positive di. If there is more than one label with maximum di we choose
the left-most label among them. If no label has a positive di we move on to the next chain
since a shift to the right would increase Hk. Now, consider we have selected a label li with
maximum positive di in its chain. We move the whole suffix of li by Mi to the right. Note
that if li is not the leftmost label in its chain, this splits the chain into two separate chains.
Further, if after moving the suffix of li the rightmost label of the suffix touches the left-most
label of another chain (that is, an event of the fourth type has occurred) we have merged
two independent chains into a new one. If, after moving li’s suffix, the suffix cannot be
moved further to the right (that is, an event of type (ii) or (iii) has occurred) we move on
to the next chain directly left of the current chain. Otherwise, we repeat the second-level
traversal for the current chain.

Note that the output of our dynamic programming algorithms described in Section 9.3
ensures that no label can initially be moved to the left. Now, to see that the algorithm
minimizes H = ∑li∈S |∆i| consider a single row. It is clear that after a chain has been
considered by the algorithm it does no longer contain a suffix that would decrease H if
moved further to the right. Since this is true for all chains of a each row the correctness of
the algorithm follows. It remains to argue that the running time is O(n2). Consider again a
single row, say the k-th row (which contains |Sk| labels). Determining the values of ∆i, di, mi
and Mi for each label li ∈ Sk can be done in constant time per label. Every time we move a
label at most O(|Sk|) labels in its suffix are moved with it. Since for each label at most three
events can occur there are at most 3|Sk| move operations, each of which requires O(|Sk|)
time. Hence, for the k-th row our algorithm requires O(|Sk|2) time. The total running time
of our algorithm is thus O(∑k |Sk|2) which is in O(n2).
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9.4.6 Minimizing the Total Leader Length

Since long leaders produce visual clutter we may want place all labels while minimizing
the total length of their leaders. Our algorithm for MaxWeight can be modified to solve
this problem. We simply have to define the weight wi for a label li depending on the row in
which we place li. We define wi = n + 1−Yi, which implies that a larger weight is assigned
to positions closer to the horizon. Our setting ensures wi > 0 since n is an upper bound on
the number of rows required for an optimal solution. Using our algorithm for MaxWeight

we can solve the problem in O(n5w2
total) = O(n9) time.

9.4.7 Fixed Order k-position Feature Labeling

Sometimes we do not want to label one distinct point, but we rather want to label a feature
that is represented by an area (for example, a building) where each point inside this area
is equally representative of the feature we want to label. The flexibility of choosing a
representative anchor point might help increase the quality of the labeling (for example,
fewer rows are required to display all labels). Since in our setting the problem is defined
only by the x-coordinates of the anchor points, each area feature reduces to a horizontal
line segment or interval spanning the horizontal width of the area. Note that these intervals
may overlap. However, in most labeling instances the objects to be labeled have a natural
fixed order (for example, the order of buildings is implicitly given by their centroids), and a
labeling should reflect this order. Hence, we may assume that there is a given total order on
the anchor points.

Unfortunately, it is difficult to adapt our algorithms to handle anchors that can freely
move along a horizontal line segment. We can, however, solve a slightly less general variant
of this problem. If instead of line segments, we restrict the possible positions of each anchor
to z distinct points we can solve MinRow, and MaxLabels in polynomial time with respect
to n and z.

More specifically, for each label li we are given a set of z points p1
i = (x1

i ,−1),
p2

i = (x2
i ,−1), . . . , pz

i = (xz
i ,−1) with x-coordinates x1

i , x2
i , . . . , xz

i (for simplicity we as-
sume that all y-coordinates are set to −1). Further, to reflect the order of the features we
aim to label, we are also given a total order on the anchors of the labels. More specifically,
the anchor of a Label li is always placed to the left of lj’s anchor for all j > i. Now, we are
ready to describe how to adapt MinRowAlg. First, we extend the definition of a compact
(i, j, k)-labeling to a compact (i, g, j, h, k)-labeling, where 1 ≤ g, h ≤ z, pg

i and ph
j are the

two anchors for li, and lj, respectively. The definition of Xi,g,j,h,k can be extended the same
way. We increase the size of the table T by two dimensions. An entry T [i, g, j, h, k] stores
the x-value Xi,g,j,h,k of a compact (i, g, j, h, k)-labeling, and some additional backtracking
information. Each entry T [i, g, j, h, k] is obtained by computing min Θk

i,g,j,h, where Θk
i,g,j,h for

1 ≤ i < j ≤ n, 1 ≤ g, h ≤ z, and k ≥ 1 is defined as the set

Θk
i,g,j,h =


max{xh

j , T [i, g, `, f , k] + Wj}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i ≤ ` < j,

T [i, g, `, f , k] ≤ xh
j ,

T [`, f , j, h, k− 1] < ∞,

1 ≤ f , g, h ≤ z,

xg
i ≤ x f

l < xh
j


.

The correctness follows by the same argumentation as in the proof of Theorem 9.1. The
running time of this algorithm is O(K?n3z3). For small values of z the factor z3 can still be
considered a constant.
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The extension of MaxLabelsAlg, and MaxWeightAlg to handle multiple possible positions
can be done by following the same basic idea.

9.5 experimental results

In this section we evaluate our algorithms, which we implemented in C++ using GTK+ and
Cairo for the visual output. We tested the algorithms both for real-world instances as well
as randomly generated instances. For a discussion of a case study with the Chicago skyline
see Figure 9.12.

We executed the experiments on a single core of an Intel Xeon E5-2670 processor that is
clocked at 2.66 GHz. The machine is running Linux 3.4.28-2.20 and has 64 GiB of RAM. We
compiled our C++ implementation with GCC 4.7.1, using optimization level 3.

For each set of test parameters we generated 1,000 test instances with a width of 1280
pixels. All input points have integer x-coordinates between 0 and 1279. These coordinates
were chosen uniformly at random. The label widths were randomly chosen from a Gaussian
distribution with mean 115 and standard deviation σ = 20. These values stem from
real-world experience with geographic place names.

Table 9.1: Running time results
of our implementation
of MinRow for in-
stances with 10–150 la-
bels.

Input running time [ms]

#labels min. avg. max.

10 < 1 < 1 < 1

25 < 1 < 1 < 1

50 1 4 5

75 6 12 17

100 21 33 44

125 68 91 97

150 165 198 204

minrow . The first set of our experiments focuses on
our implementation of MinRowAlg. Table 9.1 reports the
minimum, average, and maximum running time for label-
ing instances with varying numbers of labels. We observe
that even for instances where the points lie unreasonably
dense (for example, instances with 150 labels where the
average distance between points is roughly 8 pixels) our
algorithm solves all instances in less than 0.25s. Inter-
estingly, the vast majority of instances with 75 or more
labels is formed by worst-case instances for MinRow,
that is, they require dn/2e rows. Thus for reasonable
real-world instances we can expect that our algorithm
generates an optimal solution near-instantaneously.

maxlabels . In the second set of experiments we in-
vestigate the running times of our implementation of
MaxLabelsAlg. We believe that in most practical applica-
tion no more than four rows of labels are used and hence
ran the first part of experiments for K = 4. We observe
from the data in Table 9.2 that our algorithm performs again very well, even for large
instances. In this case it even outperforms the previous MinRow algorithm. This is mainly
due to the fact that many instances are worst-case instances for the MinRow algorithm.

Our algorithm is also able to quickly generate solutions for less realistic instances where
we allow the labels to be placed in at most 50 rows, see Table 9.2. We observe that even in
the worst-case scenario, that is, placing 150 labels in at most 50 rows, the execution time is
less than 260ms.

maxweight . Next, we evaluate our MaxWeight algorithm. For this we use two different
weight distributions. In some use cases it might be useful to define a ranking of the label
importance. Then, for a set of n labels, we assign each label a distinct integer weight
between 1 and n. In all generated instances the weights were distributed uniformly at
random. A different way of determining label weights is to group labels into classes of
equal importance. Generally, we can expect that there is only a limited number of such



9.5 experimental results 163

Table 9.2: Running time results of our implementation of MaxLabels with K = 4 and
K = 50 rows for instances with 10–150 labels.

Input running time [ms]

K = 4 K = 50

#labels min. avg. max. min. avg. max.

10 < 1 < 1 < 1 < 1 < 1 < 1

25 < 1 < 1 < 1 < 1 1 3

50 < 1 < 1 2 7 8 13

75 2 3 7 24 25 29

100 5 6 12 63 66 83

125 10 11 20 125 133 150

150 17 18 28 214 238 260

Table 9.3: Running time results of our implementation of MaxWeight for instances with 10–
75 ranked labels and with 10–100 labels in four importance classes with weights
{1, 2, 4, 8}.

Input running time [s]

ranked labels grouped labels

#labels min. avg. max. min. avg. max.

10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

25 0.23 0.26 0.28 0.05 0.10 0.14

30 0.74 0.82 0.91 0.14 0.23 0.31

40 4.51 5.27 5.89 0.53 0.84 1.18

50 21.49 23.25 26.00 1.47 1.92 2.46

75 306.47 327.42 363.60 12.55 15.00 17.63

100 - - - 51.34 58.12 62.70

classes. In the experiment we defined four classes and the labels were assigned to the classes
uniformly at random. Labels in class i have weight 2i.

We report the running times of our implementation of MaxWeightAlg for both types of
weight distributions in Table 9.3. These results were again generated using K = 4 rows.
Note that the measured execution times in these tables are reported in seconds and not
milliseconds as before.

Since the algorithm has a pseudo-polynomial running time the higher execution times
compared to our other algorithms were expected. Although the results reported in both
tables confirm this expectation, we observe that for small and medium numbers of rows and
labels, the algorithm still runs within an acceptable time frame. However, if we raise the
number of available rows substantially or increase the total number of labels, the execution
time grows quickly and may become unacceptable in practice.

two-sided panorama labeling . Finally, we have also implemented the MILP for-
mulation for MaxLabels for the two sided case in C++ using the MILP solver Gurobi 5.10.
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We set the number of rows above the panorama Ka = 3 and the number of rows below
the panorama to Kb = 1 since in most visual depictions of such panorama labelings, the
majority of labels is above the horizon and only a minority is placed below the picture.

For small instances (at most 25) labels, the optimum solution can be obtained quickly,
such that it is sufficient for real-time applications, most of the time. However, increasing the
number of labels to 30 already requires several seconds on average. Increasing the number
of labels to 40 yields running times well above the 10 minute mark, which we set as timeout
and which are, unfortunately, impractical; see Table 9.4 for detailed results.

Table 9.4: Running time results of
our MILP-implementation
for the two-sided MaxLa-
bels problems for instances
with 10–40 labels and Ka = 3
and Kb = 1.

Input running time [s]

#labels min. avg. max.

10 < 0.01 0.01 0.01

25 0.02 0.16 1.10

30 0.02 8.86 38.74

40 > 600 > 600 > 600

extensions . Here, we give a brief evaluation
of some of the extension to our algorithms which
we described in Section 9.4.

Unsurprisingly, the label spacing extension has
no significant impact on the running time of the
algorithms. For sensible values (for example, ε =

10) the impact on the number of displayed labels,
or rows necessary to display all labels is negligibly.

Since we aim to produce visually appealing
panorama labelings, we also implemented the al-
gorithm that tries to optimize the position of each
label in a post-processing step described in Sec-
tion 9.4.5. The implementation is straightforward
and for the tested instances the running time is
even on the largest instances consisting of 150 la-
bels less than 1ms. Since this step requires only
little time we recommend to automatically apply this algorithm after computing a solution
by one of our algorithms.

The last extension we implemented is the fixed order k-position feature labeling described
in Section 9.4.7. We have implemented this extensions for both MinRowAlg as well as
MaxLabelsAlg and we call the respective algorithms kPosMinRowAlg and kPosMaxLabelsAlg.
For MinRowAlg and kPosMinRowAlg we compare the number of rows necessary to display all
labels, and the time required for the algorithms to obtain the solution. For kPosMaxLabelsAlg
we consider the number of labels the algorithm was able to place into K = 4 rows compared
to the standard MaxLabelsAlg. We used the same generated instances as before, but added
for each label four additional possible anchor points evenly spaced at 5 pixels. Two of
the new possible anchor point positions were to the left and two wejo to the right of the
initial anchor point position. Please note that we do not claim that the instances we tested
resemble real-world data, but are only used to give a rough intuition on the algorithm’s
performance. We report the result of both implementations in Table 9.5. For convenience
we also repeat the results of the original MinRowAlg and the MaxLabelsAlg.

Unfortunately, the results of the of the k-position MinRowAlg are not promising. The
algorithm requires significantly more time than the original MinRowAlg algorithm and the
number of rows necessary to display all labels decrease on average only slightly.

The results of kPosMaxLabelsAlg are slightly more promising. We observe that the number
of labels the algorithm is able to place in ‘the 4 rows is between 3% and 8% higher than in
the standard MaxLabelsAlg algorithm (except for the small instances consisting of only 10
labels, where all labels can be always placed). Unfortunately, this comes with a significant
increase in running time, but the algorithm might still be suitable for real-time applications
for realistic instances. Usually, we expect less than 50 labels in a realistic instance which
yields running times between 10 and 60ms.
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311 South Wacker

Willis Tower

Chicago Board of Trade Building

111 South Wacker

AT&T Corporate Center

Kluczynski Federal Building

CNA Center

Chase Tower

Three First National Plaza

Mid-Continental Plaza

Richard J. Daley Center

Buckingham Fountain

The Legacy at Millennium Park

77 West Wacker

Pittsfield Building

Leo Burnett Building

The Heritage at Millennium Park

Smurfit-Stone Building

IBM Plaza

One Prudential Plaza

Trump International Hotel and Tower

Two Prudential Plaza

Aon Center

Blue Cross Tower

340 on the Park

Park Tower

Olympia Center 900 North Michigan

John Hancock Center

Water Tower Place

Harbor Point

The Parkshore

North Pier Apartments Lake Point Tower

(a) Solution of a MinRow instance that requires ten rows. We observe that the solution is aesthetically
not appealing. In the center of the panorama the arrangement of labels is reminiscent of the
worst-case scenario illustrated in Figure 9.3.
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(b) Solution of a MaxLabels instance in three rows. Due to restricting the number of label rows, the
result is much more pleasing than the MinRow solution (a). Of all 33 labels 23 are displayed. This
indicates that only a few labels of densely placed points are responsible for the visually unpleasing
MinRow result.
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(c) Solution of a MaxWeight instance in three rows. We divided the buildings into four equal-size
classes based on their height, that is, the dn/4e tallest buildings have weight 8, and the other classes
have weights 4, 2, and 1 accordingly. This yields the maximum total weight of all labels wtotal = 128.
Of the 33 labels 23 labels are displayed and they have a total weight of 114. Although the two
labelings in (b) and (c) look similar at first sight, note that for instance the MaxWeight solution
contains a label for “Trump International Tower”, the third tallest building in the panorama, while
the MaxLabels solution misses that label. The MaxLabels solution achieves a total weight of 98.

Figure 9.12: A case study with the Chicago skyline using three of our algorithms. The input
data for all three figures is the same. It consists a total of 33 labels. On a laptop
clocked at 2.4 Ghz it took roughly 1ms to compute the panorama labelings
in Figures (a), (b) and about 160ms to compute the labeling shown in (c). We
used ε = 10px as label spacing, and applied the optimize label position ex-
tension. Photography: ©J. Crocker (http://en.wikipedia.org/w/index.php?
title=File:2010-02-19_16500x2000_chicago_skyline_panorama.jpg).

http://en.wikipedia.org/w/index.php?title=File:2010-02-19_16500x2000_chicago_skyline_panorama.jpg
http://en.wikipedia.org/w/index.php?title=File:2010-02-19_16500x2000_chicago_skyline_panorama.jpg
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Table 9.5: Evaluation of our implementation of kPosMinRowAlg and kPosMaxLabelsAlg algo-
rithms with instances consisting of 10–150 labels. The average time in ms and the
average number of rows/labels is reported.

Input kPosMinRowAlg MinRowAlg kPosMaxLabelsAlg MaxLabelsAlg

#labels ∼time ∼rows ∼time ∼rows ∼time ∼labels ∼time ∼labels

10 < 1 2.21 < 1 2.28 1 10 < 1 10

25 2 6.01 < 1 6.04 10 24.10 < 1 23.36

50 36 19.71 4 19.76 60 36.73 2 34.09

100 662 50.18 33 50.29 472 45.02 13 41.38

150 3769 75.61 198 75.70 1641 48.78 28 44.84

9.6 conclusion

We have presented polynomial time and practically fast algorithms for label placement using
a new boundary-labeling model that allows multiple rows of sliding unit-height rectangular
labels. In this model, each label is connected with its associated point by a vertical line
segment. We have presented an O(K?n3)-time algorithm for the basic problem MinRow,
which minimizes the number of rows needed to place all labels. If the labeling is restricted
to use at most K rows, however, we cannot generally place all labels. Therefore, we have
investigated the problem MaxLabels, which aims at maximizing the total number of labels
in K rows, and the problem MaxWeight, which aims at maximizing the total weight of
labels in K rows. While MaxLabels can be solved in O(Kn3) time, MaxWeight turned out to
be weakly NP-hard, yet can be solved by a pseudo-polynomial O(Kn3w2

total)-time algorithm,
where wtotal is the total weight of all input labels. For the case of two-sided panorama
labeling, we have proposed simple mixed-integer linear programming formulations.

According to our experiments, the algorithms for MinRow and MaxLabels are very
fast for instances typically arising in practice, that is, they solve instances with up to 150
labels in less than one second. The algorithm for MaxWeight is fast if the weights are
not too large. For example, with integer weights between 1 and 8, we can solve instances
with 50 labels in less than two seconds. We think that our setting is realistic, since labeled
images already with more than 50 labels quickly appear visually cluttered and more than
150 labels seems unrealistic in most cases. Similarly, if sites are assigned importance levels,
there are usually few of them (for example, main landmarks, distinctive buildings, public
buildings, other). We conclude that our dynamic programming algorithms can quickly
produce visually pleasing labelings of real-world panorama images. For the two-sided
panorama labeling our MILP formulation is fast only for relatively small instances. An
interesting open question is how to handle labels of different heights that would take up
more than one row or to investigate how to deal with area sites instead of point sites further
than we did.

Although we considered several optimization problems in the context of panorama
labeling, there are still many unanswered questions. For some applications it is of interest
to investigate panorama labeling with labels that take up more than one row, which may be
relevant for features with long names. As argued in Section 9.4.7, it is interesting to consider
labelings of area features instead of point features, which do not have a unique horizontal
order. In this paper we focused on point feature labeling and more research on other feature
types is necessary. We have also discussed the two-sided panorama labeling problem and
showed NP-hardness of the problem, but our proof (which is a simple reduction of a proof
by Garrido et al. [95]) requires that the labels have non-uniform width. The computational
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complexity of two-sided panorama labeling problem with uniform width-labels is left open
for future research. Finally, the vertical position of labels may have an influence on which
features are observed first. In many cases higher features (mountain peaks, tall buildings)
are more important and thus should have their labels in the top rows, while smaller features
should use the lower rows. Minimizing leader length (Section 9.4.6) implicitly incorporates
this idea, but it is interesting to find faster algorithms that optimize vertical positions
explicitly, for example, taking weights of features into account as priorities to place their
labels in higher rows.
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C O N C L U S I O N

This is the last chapter of this thesis, and we will briefly recapitulate the problems we
considered and describe some open problems and next steps.

In the first part of thesis we discussed abstract maps and in particular schematiza-
tions. First, we investigated how to construct route sketches; see Chapter 4. We showed
NP-hardness, gave an ILP formulation for optimal solutions and presented a dynamic
programming approach for a restricted type of input paths. The experimental evaluation
indicated that the approaches are fast enough for real-world applications and the resulting
route sketches appear to be suitable for practical use. An interesting next step is to examine
in, e. g., a user study, how these route sketches are perceived by users. Feedback there
would be valuable and would possibly lead to a (hopefully small) modification of the model
(this approach is similar to a concept called algorithm engineering [165]) where instead
of performance guarantees (usually running time) we would give quality guarantees or
æsthetic guarantees. Another extension that is interesting to examine would be the problem
of creating destination maps which are another form of abstract maps and related to route
sketches. Consider the following scenario: you are the owner of a restaurant and you want
to display a simple picture on your website that shows how to get to your restaurant. This
problem differs from the generation of route sketches in that only the destination is known
and not the start. However, similarly to route sketches, the displayed part of the road
network should be simplified and (probably) schematized. Although, there has been work
done on this subject already, it has not been finally solved.

In the context of generating abstract maps we also considered the problem of generating
the layouts for argument maps; see Chapter 5. We extended the topology-shape-metrics
framework to generate column-based graph layouts. Although this topic is closely related to
the field of graph drawing, which has enormous potential for new and useful algorithms for
drawing graphs (and by that displaying information) we omit this since it is beyond the scope
of this section. Instead we focus on the given problem of layouting argument maps. The
approach we presented can only be seen as a first step for a sensible argument map layouter.
Since argument reconstruction is a difficult process, a fully automatic layout solution seems
to be very difficult to produce and maybe not even desireable. It is conceivable that a person
analyzing arguments would want to have algorithms that are semi-automatic in that they
allow the user to, say, fix some vertices to a position, or to give the algorithms hints on
which arguments should be close to each other. Maybe a user would not want to have the
same drawing style for the whole layout, e. g., some parts may be drawing with orthogonal
edges, some parts may be better drawn using a radial layout, while still others may be
best represented by a completely different structure. Besides this a more context aware
drawing is also necessary. As stated in the introduction of this chapter there are mainly
two types of arrows: support and attack. The layout algorithm in its current form does
not use this information in any way. Finally, user interaction (adding/removing vertices or
edges) should be supported by the layout algorithm such that the mental map of the user is
maintained.

The other main topic of this thesis was labeling of maps or diagrams. We considered two
dynamic scenarios, where dynamic means that continuous interactions with the map are
possible, namely zooming and rotating, but viewed them separately. First, we discussed
labeling of rotating maps (see Chapter 7), and evaluated the proposed methods. Then,
we considered the sliding label model for zooming maps, but restricted ourselves to one-
dimensional maps (e. g., timelines); see Chapter 8. These two approaches may serve only
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as a first step towards a more complete algorithmic approach for labeling dynamic maps.
Real dynamic maps allow usually to rotate, zoom, pan and possibly tilt the map. These
operations can usually be done completely independent from each other and how to
incorporate labeling algorithms into a framework that supports all of these operations in a
sound algorithmic manner has not yet been done, and, in my opinion is still far from being
finished. Even how to properly model this problems is not entirely clear. Until then, either
heuristic or meta heuristics need to be applied. Besides the problem of labeling dynamic
maps, we briefly want to consider labeling of static maps here. Although we did not discuss
this problem in this thesis we feel that since labeling dynamic maps is a more difficult case
than labeling static maps, we also need to point out some future work in this area. At
first glance much has been done in terms of algorithmic solutions for labeling static maps.
However, most approaches focus only on point-feature labeling, while there is little work
for line-feature or area labeling. This is unsatisfactory, since a properly labeled map usually
consists of all three of those types. Even more problematic is that a combination of all three
types of labeling (which is necessary for a properly labeled map) is also not in sight, and to
my mind, there is also a significant amount of work to be done before this can be achieved.
A first step, in my mind, is to properly label streets and combine this with point-feature
labeling. However, labeling should not be done without the user of a map in mind. As with
the route sketches, conducting a user study is of great importance to assess the quality of
the output of the algorithms, and more importantly, the modeling. Finally, what is usually
omitted when researching this problem from the theoretical computer science point of
view is the actual context (besides point-features), e. g., ocean, and rivers. A context-aware
labeling model (and algorithms based on this model) should also be one of the next steps in
static map labeling.

Finally, we considered the problem of labeling panoramas and discussed several opti-
mization problems in Chapter 9. For those we either proved NP-hardness and give ILP
formulations to solve those problems optimally, or gave polynomial-time algorithms. This
problem was done withing the framework of boundary labeling, which has been applied
in the post in several different variations. However, we feel that a proper justification for
some of the proposed models is still missing and more research into this is necessary. As
basis for this we propose to research real-world applications of boundary labeling. One
such example is the illustration of medical diagrams. There, mainly straight line leaders are
used and not the (in the algorithmic community) popular po- or opo-leaders. A user study
comparing these models seems to be an interesting subject.

All in all this thesis combines the work of several years of research into the topic of
drawing and labeling maps. As can be seen by the above description the general topic is far
from being fully researched and there are a lot of open problems that are yet to be solved.
We hope that this thesis and some of the ideas presented in here can serve as basis for an
inspiration of algorithmic approaches for computing better drawings of maps or diagrams,
or produce better labeled maps.
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