
Optimal Constrained Investment

and Reinsurance in Lundberg insurance models

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für

Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Math. Alireza Edalati Nozadi

Tag der mündlichen Prüfung: 15.07.2014
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Abstract.

An insurance company with start capital s is considered. This company can buy dynam-

ically, in time, reinsurance as well as invest into risky or riskless assets. It is assumed

that the insurance risk model is the Cramér-Lundberg model and the price of a risky

asset is governed by geometric Brownian motion. The investment strategy is restricted

by a set of constraints and a general form of reinsurance is considered.

The ultimate ruin probability, i.e. the probability that the surplus process drops below

zero in infinite time, can be considered as the solvency measure for an insurance busi-

ness. Now the question arises: is there any investment and reinsurance control process

such that the ruin probability takes its minimum value? This thesis deals with this

question.

The dynamic programming approach is used to characterize the optimal investment and

reinsurance controls via the Hamilton-Jacobi-Bellman (HJB) equation. The optimal

strategies are computed via a recursive finite di↵erence solution to the corresponding

discretized HJB equation. The concept of viscosity solution is used to derive conver-

gence of the numerical method. The uniqueness of the viscosity solution is obtained

through a comparison theorem.

A collection of examples with di↵erent analytical properties is presented which demon-

strates the importance of the concept of viscosity solutions. With the help of adjust-

ment coe�cient, for some examples the asymptotic optimal investment and reinsurance

strategy is calculated when s goes to infinity.

This thesis is supervised by Prof. Dr. Christian Hipp at the institute of insurance

science and it is written in English.
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CHAPTER 1

Introduction

Dynamic optimization is beginning to play an increasingly important technique in

di↵erent fields of studies like operational research, physics and economics. For example,

insurance companies face the problem of allocating their resources dynamically across

di↵erent financial tools in order to achieve a particular goal. One of the most important

goals of them is to be solvent over time, i.e. its capital and income exceed its costs.

The ultimate ruin probability, the probability that the surplus process drops below zero

in infinite time, can be considered as the solvency measure for an insurance business.

An optimization problem is then the problem of finding the optimal strategy and the

minimum ultimate ruin probability.

The classical stochastic model of ruin theory was introduced by Lundberg in his

thesis in 1903. This model, known as Cramér-Lundberg model, describes the evolution

of the insurer’s surplus with incoming premiums and outgoing claims. Beside these two

opposing cash flows, however, the insurer has a collection of possible actions such as

investment, reinsurance, dividend payment, and the combination of all these actions.

Controlling these actions in order to achieve insurance company’s goal is a challenge of

the insurance management.

In this script, we assume an insurance company whose goal is to minimize its ruin

probability. To accomplish this objective, the insurer has the possibility to invest in

a risky asset as well as to buy reinsurance. We model the risky asset price dynam-

ics through geometric Brownian motion. The investment strategy is restricted by a

constraint set A (s) ⇢ R which must be taken into account as the insurer manages its

portfolio. We use a general form of reinsurance, and assume that the insurance com-

pany can dynamically buy reinsurance as well as invest into a risky asset. By dynamic

we mean that the actions are selected and changed at each point in time according to

the risk position of the company.

The mathematical model used in this dissertation is the subject of chapter 2. We

first introduce the classical Cramér-Lundberg model, state its most important concepts
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6 1. INTRODUCTION

and review some well-known premium principles. The geometric Brownian motion

model for the price of a risky asset is considered in section 2.2. Next, the possible rein-

surance forms are introduced in a general setup as in [42]. Particularly, the two types

of reinsurance: proportional reinsurance and excess of loss reinsurance, are discussed.

In section 2.4, the risk process with dynamic investment and reinsurance strategy is

formulated. Both the Cramér-Lundberg model and the di↵usion model are Markovian

and hence we may restrict our attention to the case where the strategies are Markovian,

too. This chapter is ended by defining the optimization problem and presenting the

value function.

In chapter 3, stochastic control theory is used to derive the optimal dynamic in-

vestment and reinsurance strategies. We start this chapter by describing the dynamic

programming principle which was first introduced by Bellman (1957). In section 3.1,

we use this principle to find the so-called Hamilton-Jacobi-Bellman (HJB) equation.

Assuming that the value function is smooth enough, the corresponding HJB equation

is a second-order non-linear integro-di↵erential equation. If there exists a twice con-

tinuously di↵erentiable solution to the HJB equation, then one needs to verify that

this solution is indeed the value function. However, the value function is not always

di↵erentiable and one has to rely on a weak notion of solution called viscosity solution.

We discuss the concept of viscosity solutions in section 3.2 and show that the value

function is a solution of the associated HJB equation in a viscosity sense. We then de-

rive the uniqueness of the viscosity solution through a comparison theorem. In section

3.3, we present a recursive numerical method and prove its convergence to the viscosity

solution for the problem optimal investment. It should be pointed out that there are

many excellent books on stochastic control and viscosity solution for the reader to learn

more on the subject. Two books particularly worth mentioning here are [15] and [34].

Chapter 4 is dedicated to the numerical calculation of the value function and its

associated optimal strategy. Most of the numerical examples provided in this script

are for two well-known types of claim size distributions, namely the light- and heavy-

tailed distributions. We begin this chapter with the optimal investment problem. A

number of di↵erent operators have been proposed for dealing with this problem, each

solving it for a certain set of constraints. In section 4.1, we review these operators and

show how our numerical method can solve the optimal problem for a general set of
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constraints. Specifically, we present a collection of examples with di↵erent analytical

properties which show the importance of the concept of viscosity solutions. In the next

three sections, we assume that in addition to investment, the insurer can transfer part

of its risk to a reinsurance company. The reinsurance contract types considered here

are proportional, excess of loss and limited excess of loss reinsurance. In each section,

the optimal strategy is studied through examples.

In chapter 5, we change the setup of the previous chapter by taking the risk free

bond into account. The optimal investment problem is the topic of the first section. In

particular, we consider the problem of optimal investment under borrowing and short

selling constraints which was studied by Belkina et al. (2011). In section 5.2, the

reinsurance is added to the set of possible actions. It is noticed that for su�ciently

large start capital, the first insurer can have a positive rate of income from the riskfree

bond without bearing any risks.





CHAPTER 2

Mathematical Model

In this chapter, we introduce the optimization problem to be solve. We model the

insurance risk process via the classical Lundberg model which was firstly introduced

by F. Lundberg in 1903. The insurance company has the possibility to invest in some

risky asset (whose dynamics is modeled by a geometric Brownian motion) as well as

buy reinsurance. The insurance risk model with investment and reinsurance is derived

in section (2.4). We finish this chapter by presenting the value function.

2.1. Insurance risk model

Here we consider the development in time of the surplus R
t

of an insurance company

at time t with initial surplus s := R0. One can interpret the initial surplus s as

the amount of capital which is required to cover the costs of the claims higher than

the premium. In this research we modeled the surplus process by classical Cramér-

Lundberg model.

In this script we work on a complete probability space (⌦, F, P ) with a filtration

F = {F
t

} which is a family of increasing �-fields, F
t

⇢ F . We assume that the filtration

F is right continuous, that is, for all t � 0, F
t

= F
t+. A reference for stochastic calculus

is [30].

2.1.1. Cramér-Lundberg model. An important question for insurance com-

pany is how to model the development in time of insurance capital R
t

. This is a

stochastic process which contains earning premium and paying claims. In this research

we assume a classical Carmér-Lundberg model for surplus process as follow:

R
t

= s+ ct�X
t

, t � 0,

where R
t

, s and c are the insurer’s capital at time t, initial capital R0 = s and constant

premium income, respectively. Also X
t

=
P

N

t

i=1 Yi is the aggregate claim amount which

is assumed to be a compound Poisson process, that is,

9



10 2. MATHEMATICAL MODEL

(1) The claim arrival process {N
t

} is a Poisson process with rate �, i.e.

Pr [N
t

= k] = e��t

(�t)k

k!
, k = 0, 1, 2, ...,

(2) Individual claims Y
i

are independent and identically distributed, and

(3) The two processes {N
t

} and {Y
i

} are independent.

It is obvious that X
t

= 0 if N
t

= 0.

Let T
i

be the occurrence time of the ith claims. The random variables defined by

⇠
n

:= T
n

�T
n�1, , n � 1, are called the inter-occurrence times in between successive

claims which are independent, exponentially distributed random variables with mean

��1 > 0.

The first time point when the risk reserve process becomes negative is called ruin,

and the point in time at which this occurs is denoted by ⌧ . So

⌧ = inf {t � 0 : R
t

< 0} .

The probability of ruin for the initial capital s is then given by

 (s) = Pr {⌧ < 1 | R0 = s} .

A typical realization of the risk process is depicted in Figure (1). At time point t = 0

due to initial capital s = 3 of insurer, R0 = 3. The random variables T1, T2, ... denote

the occurrence times of claims. Insurance premiums are collected at the constant rate

c. At times t = T
i

for some i, the ith claims with severity Y
i

occurs, and there the

capital drops. At time T3 the risk reserve is less than 0 since the total of the incurred

claims Y1+Y2+Y3 is larger than the initial capital s plus the earned premium cT3. So

the ruin happens at time T3 with severity �2.

We will assume that Y
i

has a cumulative distribution function F
Y

with expected

value µ := E [Y ].

Remark 1. When modeling the claims severity Y
i

, insurers are usually concerned

with the two following types of distributions:

1- Light tails distributions. This class of distributions consists of those distri-

butions F with an exponentially bounded tail, i.e. 1 � F (y)  Ke�↵y < 1, for some

positive ↵ > 0 and K and all y � 0. The condition means that large claims are very
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Figure 1. A realization of the Cramér-Lundberg process R
t

.

unlikely. That is, the probability of their occurrence decreases exponentially fast to

zero as the threshold y converges to 1.

2- Heavy tails distributions. This class of distributions contains those distri-

butions not having such exponential bound and huge claims are getting more likely.

A well known class of heavy-tailed loss distributions is the class of subexponential

distributions. 4

2.1.2. Premiums. For an insurance company exposed to a liability X
t

, a pre-

mium P (X
t

) is the cost of risk transfer that the insurer must raise from the insured.

For an insurance portfolio, the premiums are usually paid once at the beginning of

insurance cover. But in this script we assume that the premiums are continuously paid

to the insurance company. The premiums should be determined in such a way that

the resolvability of the portfolio can be guaranteed. This means that the insurance

premium P (X
t

) should create an adequate insurance fund necessary to cover its lia-

bilities at time t > 0. The reader must also note that a very high premium may result

in lost customers, because other insurance companies might attract clients by o↵ering

lower premiums while covering the same risk.

A first reasonable estimate for a risk premium of policyholder would be the expected

value of X
t

. However, the insurer typically needs to charge premiums su�cient which

cover the part of claims higher than expected value. In actuarial terminology, the
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positive amount P (X
t

) � E [X
t

] is called safety loading and usually denoted by

safety loading factor ⌘ > 0.

Mathematically, a premium principle P is a map from the set P of all possible

distribution function of risk X to R, i.e. P : P ! R. The well-known premium

principles are:

(1) Net premium principle

P (X
t

) = E [X
t

] .

(2) Expected Value Principle

P (X
t

) = (1 + ⌘)E [X
t

] .

(3) Variance Principle

P (X
t

) = E [X
t

] + ⌘V ar [X
t

] .

(4) Standard Deviation Principle

P (X
t

) = E [X
t

] + ⌘
p

V ar [X
t

].

(5) Exponential Principle

P (X
t

) =
1

⌘
log
�

E
⇥

e⌘Xt

⇤�

.

2.2. Investment

In practice, an insurer invests part of its capital in a financial market. We assume

that the financial market consists of a risk-free asset like a bank account as well as a

risky security, such as a stock or other risky asset.

We first consider the risky security and denote its price at time t by Z
t

. Assume

that {Z
t

} is an {F
t

}-adapted stochastic process which satisfies the stochastic di↵erential

equation

dZ
t

= rZ
t

dt+ �Z
t

dW
t

, Z0 > 0,

where {W
t

} is a standard Brownian motion W
t

⇠ N (0, t), and is adapted with respect

to {F
t

}. The filtration {F
t

} is generated by the two processes W
t

and X
t

, t � 0. We
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assume that X and W are independent. The drift r and di↵usion � are strictly positive

and constant.

Moreover, the insurer has the possibility to invest some part of its capital into a

risk-free bond with price B
t

satisfying

dB
t

= r0Bt

dt,

for some constant r0 � 0.

Let A denotes the set of all possible investment strategies at time t, then the insurer

can invest amount A
t

2 A ⇢ R from its capital R
t

into the risky asset and what is left

is on the bank account earning (costing) interest r0 if R
t

� A
t

> 0 (if R
t

� A
t

< 0).

We shall neglect transaction costs and allow for shares of any (up to infinitesimal) size.

We also assume 0 2 A, that is the insurer can always stop investing in risky asset.

The risk process of an insurance company with a constant investment strategy

A 2 A over time satisfies the stochastic di↵erential equation

dR
t

= r0Rt

dt+ cdt+ (r � r0)Adt+ �AdW
t

� dX
t

.

To simplify the setup and the notation we consider in chapters 3 and 4 that all the

monetary quantities are discounted by inflation, so r0 = 0. In the last chapter we

consider the e↵ect of risk-free bond in the optimization problem.

2.3. Reinsurance

An insurance company often transfers part of its risk to another insurance company

(the reinsurance company). With the surplus, reinsurance is bought, and a premium

has to be paid by the cedent insurer (the primary insurance company having issued

the reinsurance contract) to the reinsurer. At any time the cedent can choose a rein-

surance from a compact set U ⇢ Rn. Here we assume that reinsurance contract acts

on individual claims. Let h (u) and g (Y, u) denote reinsurance premium and part of

the claim Y paid by the insurer. The function g (Y, u) is called risk sharing function

and must satisfy 0  g (Y, u)  Y for each reinsurance strategy u. We assume that

insurance company is not forced to buy reinsurance; that is, there exist u0 2 U which

h (u0) = 0 and g (Y, u0) = Y .

Well-known reinsurance types are:
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(1) Proportional reinsurance: g (Y,↵) = ↵Y , 0  ↵  1 is called proportional

reinsurance with proportion ↵. The reinsurer’s share of claim is (1� ↵)Y .

(2) Excess of loss (XL) reinsurance: In excess of loss reinsurance each claim of

size Y is split between the first insurer and the reinsurer according to a priority

0  M  1: the insurer pays g (Y,M) = min {Y,M}, and the reinsurer pays

(Y �M)+ = max {Y �M, 0}.
(3) Limited Excess of loss reinsurance: As special case of non-proportional

reinsurance, limited excess of loss reinsurance will also charge the first insurer

when the claims are larger than some barrier L > 0. The first insurer will

pay g(Y, (M,L)) = min {Y,M} + (Y �M � L)+ of a claim of size Y and

the reinsurer will pay min
�

L, (Y �M)+
 

. So in the limited XL reinsurance,

the first insurer has two dimensional control process u = (M,L) where U =

[0,1]⇥ (0,1].

We assume that the reinsurance premium function h (u) is nonnegative, and reinsurance

is expensive in the following sense: g (Y, u) = 0 implies h (u) > c. Otherwise the

insurance company will get rid of all his risks by a full reinsurance and receive a positive

return without any risk.

Depending on reinsurance strategy u chosen by the first insurer, reinsurance pre-

mium h (u) can be calculated by the same premium principles presented in subsection

(2.1.2). As an example, in case of proportional reinsurance with proportion level ↵, i.e.

g (Y,↵) = ↵Y , and reinsurer safety loading ✓ > ⌘, where ⌘ � 0 is first insurance safety

loading, if an expected value principle is used, we have h (↵) = (1 + ✓)�E [Y � ↵Y ]. If

the variance principle is used, then h (↵) = �E [Y � ↵Y ] + ✓�V ar [Y � ↵Y ].

Assume now that the insurer in addition to invest a constant amount of its capital

A into risky asset, can buy reinsurance with constant strategy u. The risk process is

then given by

R
t

= s+ (c� h (u) + rA) t+ �A

ˆ
t

0
dW

x

�
N

t

X

i=1

g (Y
i

, u) .

2.4. The optimization problem

Insurers are always searching for opportunities to develop their business, increase

revenues and improve profitability. The challenge is to maximize profitability and sta-

bility by achieving the optimal risk/reward relationship among reinsurance, investment
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and dividend payments. Portfolio optimization (for example, in a set of simultaneous

reinsurance, investment and paying dividends) is a key to success in writing insurance,

allowing a company to reduce its costs and solvency margin, and maximize profitability.

On the other hand, the solvency of an insurance company is one of the main concerns

to the regulatory bodies. An insurer is solvent if its capital and expected income exceed

its costs. In order to investigate solvency of an insurance company, regulators use some

risk measures to determine the minimum capital that bears the risks and pays the

claims. As a risk measure example for the risk process R
t

, a regulator can uses ruin-

consistent Value-at-risk (VaR), %
✏

[R], which is the capital required to ensure that the

ruin probability is bounded by some constant ✏ > 0, i.e. %
✏

[R] = inf {s :  (s)  ✏}
(see [41]). Hence, minimizing the ruin probability leads to a lower solvency capital

requirement.

Here we consider the problem of minimizing the probability of ruin when an in-

surance company can dynamically invest into a risky asset as well as buy reinsurance.

By dynamic we mean that the actions are selected and changed at each point in time

according to the risk position of the company.

2.4.1. Dynamic investment and reinsurance. In section (2.3) we considered

the risk reserve with the constant investment A and reinsurance u. We now assume

that the insurance company can adjust his strategy (A, u) at each time point t � 0

based on revealed information before time t. We denote the dynamic investment and

reinsurance strategy by {⇡
t

} = {A
t

, u
t

}.
In the following considerations, we assume that ⌦ is the set of cadlag paths and

(⌦,F , (FX,W

t

)
t�0, P ) is a complete probability generated by the process {(X

t

,W
t

)}.
Here (FX,W

t

)
t�0 is the smallest right continuous filtration such that, {(X

t

,W
t

)} is

measurable. An adapted process ⇡
t

, t � 0, is called predictable, if it is the pointwise

limit of left continuous processes. The control strategies are predictable processes ⇡
t

,

t � 0, which take values in ⇧ (s) = (A (s) , U (s)) ⇢ Rn+1. The sets A (s) ⇢ R and

U (s) ⇢ Rn are closed. Moreover, due to fluctuations in the Brownian motion, we need

to let A (0) = {0}. We will come back to this restriction in section 3.1 when we derive

the corresponding HJB equation and discuss properties of the optimization problem.

Because the process (X
t

,W
t

) is a Markov process, we may restrict ourselves to the

set of strategies which are not path-dependent, that is, it depends just on the actual
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surplus R⇡

t� where R⇡

t

is given by

(2.1) R⇡

t

= s+ ct�
ˆ

t

0
h (u

x

) dx+

ˆ
t

0
rA

x

dx+

ˆ
t

0
�A

x

dW
x

�
N

t

X

i=1

g (Y
i

, u
T

i

�) .

We suppose for feedback functions ↵1,↵2, ...,↵n+1, the set of strategies are given in

feedback form:

⇡
t

= (A
t

, u
t

) =
�

↵1
�

R⇡

t�
�

,↵2
�

R⇡

t�
�

, ...,↵
n+1

�

R⇡

t�
��

, t � 0.

Let � be the set of all piecewise left continuous functions ↵ : [0,1) ! R. A function

↵ : [0,1) ! R is said to be piecewise left continuous, if for a finite number of points

0 < s1  s2  ...  s
m

, the function ↵ (s) is continuous on each subinterval (s
i�1, si) ,

and at the endpoints of each subinterval has left and right limits with ↵ (s�) = ↵ (s).

For ↵
i

(s) 2 �, i = 1, 2, ..., n+1, we call ⇡ (s) = (↵1 (s) ,↵2 (s) , ...,↵n+1 (s)), admissible

if ⇡ (s) 2 ⇧ (s), s � 0.

The constraint sets ⇧ (s) must be time consistent to allow for predictable strate-

gies. For arbitrary ⇡ = (⇡1,⇡2, ...,⇡n+1) 2 ⇧ (s), and s � 0, the family ⇧ (s) =

(A (s) , U (s)), is called time consistent if for any ⇡
i

, i = 1, 2, ..., n + 1, there exists a

function ↵
i

(x) 2 �, x � 0, such that ⇡ (x) = (↵1 (x) ,↵2 (x) , ...,↵n+1 (x)) 2 ⇧ (x),

x � 0, and ⇡ (s) = ⇡.

Lemma 1. Let a
i

(s), b
i

(s) 2 �, i = 1, ..., n + 1, with finite values a
i

(s)  b
i

(s),

s � 0, and a1 (0) = b1 (0) = 0. Then the set of constraints

⇧ (s) = ([a1 (s) , b1 (s)] , ..., [an+1 (s) , bn+1 (s)]) , s � 0,

is time consistent.

Proof. Fix s and choose ⇡ = (⇡1,⇡2, ...,⇡n+1) 2 ⇧ (s), then we must show that

for any ⇡
i

, i = 1, ..., n + 1, there exists ↵
i

(x) 2 � such that ↵
i

(x) 2 [a
i

(x) , b
i

(x)],

x � 0, and ↵
i

(s) = ⇡
i

. If ⇡
i

= a
i

(s), then we can choose the function ↵
i

(x) = a
i

(x),

x � 0; a similar argument applies for ⇡
i

= b
i

(s).

Now assume that a
i

(s) < ⇡
i

< b
i

(s). Left continuity of a
i

(x), b
i

(x) implies that for

some " > 0 we have ⇡
i

2 [a
i

(x) , b
i

(x)] for x 2 [s� ", s]. Let ↵
i

(x) = ⇡
i

for these values

x, and let the function ↵
i

(x) jump to a
i

(s� ") at s�". For x > s define ↵
i

(x) = a
i

(x).
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Then ↵
i

(x) is a piecewise continuous function with ↵
i

(x) 2 [a
i

(x) , b
i

(x)], x � 0, and

↵
i

(s) = ⇡
i

. ⇤

As an example let’s assume that at time t � 0 the insurer can invest A
t

in risky

asset with constraint set A (s) = [0, s] (no short-selling and no leverage), as well as

proportional reinsurance with dynamic proportion ↵
t

2 U = [0, 1]. Furthermore, as-

sume that the reinsurer calculates its premium using the Expected value principle with

reinsurance safety loading factor ✓. The set of constraint is then ⇧ (s) = [0, s]⇥ [0, 1].

The corresponding risk reserve process is then

R⇡

t

= s+ ct� (1 + ✓)�E [Y ]

ˆ
t

0
(1� ↵

x

) dx+

ˆ
t

0
rA

x

dx+

ˆ
t

0
�A

x

dW
x

�
N

t

X

i=1

Y
i

↵
T

i

�.

2.4.2. The objective. The objective of this research is to find an optimal in-

vestment policy and reinsurance that minimize the probability of ruin. Indeed, if

⌧⇡ = inf {t � 0 : R⇡

t

< 0} and  ⇡ (s) = Pr {⌧⇡ < 1 | R⇡

0 = s} denotes the ruin time

and ruin probability of risk reserve process (2.1), then our goal is to determine the

minimal value  (s) = inf
⇡2⇧  

⇡ (s) and the optimal control process {⇡⇤
t

}, i.e. the

control process leading to the value function  (s) =  ⇡

⇤
(s).

It is possible that ruin never occurs and ⌧⇡ = 1, i.e. that (2.1) never becomes

negative. The probability that this event happens known as survival probability

and is

(2.2) �⇡ (s) = 1�  ⇡ (s) .

It is obvious that the problem of minimizing ruin probability  ⇡ (s) is equivalent to

maximizing survival probability �⇡ (s). Then our value function is

(2.3) �(s) = sup
⇡2⇧

�⇡ (s) .

We solve the optimality problem with help of the dynamic programming principle

and the resulting Hamilton–Jacobi–Bellman (HJB) equation. In order to derive HJB

equation for the risk process (2.1), we first assume that the value function is twice

continuously di↵erentiable. Under this assumption, the HJB equation of our optimiza-

tion problem is a second-order integro-di↵erential equation. Since we apply dynamic

programming principle to our optimization problem and as the risk process (2.1) is

a Markov process, we look for optimal investment and reinsurance strategies among
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markovian strategies, that is, the strategies depend just on the actual surplus and not

on the history of the process.

Typically, after showing the existence of solution of this HJB equation, one uses

the verification theorem to show that the solution to the HJB equation is the value

function of the optimization problem (see for example [23, 22, 5, 38]). All this is done

under the assumption that the value function (or the solution of the HJB equation)

is twice di↵erentiable. However this is not generally true and sometimes one has to

rely on a weak (viscosity) solution concept that allows solution and its derivatives to

be discontinuous. In the next chapter, we characterize the value function as a viscosity

solution of the associated HJB equation.



CHAPTER 3

Stochastic Control

In this chapter we consider an insurance company with initial capital s whose risk

model is Cramér-Lundberg process with mean number of claims � and random claim

size Y . At time t this company has two possibilities:

• Take reinsurance with strategy u
t

. That is, the cedent pays 0  g (Y, u
t

)  Y

and the premium h (u
t

) has to be paid by cedent insurer to reinsurer.

• Invest amount A
t

into risky asset modeled as a Black–Scholes model with drift

r > 0 and di↵usion � > 0.

We denote the set of all possible investment and reinsurance strategies respectively with

A 2 R and U ⇢ Rn. We then denote the combined set of all admissible investment

and reinsurance controls by ⇧ = (A, U) ⇢ Rn+1 and restrict ourselves to the set of

strategies which are not path-dependent.

Furthermore, we assume that the insurer is not forced, neither to buy reinsurance,

nor to invest in risky asset. For an arbitrary admissible strategy ⇡ 2 ⇧ the surplus

process R⇡

t

satisfies the stochastic equation below

(3.1) R⇡

t

= s+ ct�
ˆ

t

0
h (u

x

) dx+

ˆ
t

0
rA

x

dx+

ˆ
t

0
�A

x

dW
x

�
N

t

X

i=1

g (Y
i

, u
T

i

�) .

The corresponding ruin time is ⌧⇡ = inf {t � 0 : R⇡

t

< 0}, the ultimate ruin prob-

ability is  ⇡ (s) = Pr {⌧⇡ < 1 | R⇡

0 = s}, and the survival probability is �⇡ (s) =

1 �  ⇡ (s). We maximize �⇡ (s) over all admissible strategy ⇡ 2 ⇧ and let the value

function be defined as � (s) = sup
⇡2⇧ �

⇡ (s).

An important approach dealing with finding optimal control is based on the dynamic

programming principle. This principle relates the survival probability at time t to its

expected value at time t + ✓ for ✓ > 0. From the definition of survival probability we

can write

�⇡ (s) = E
s

⇥

1{⌧⇡=1}
⇤

= E
s

h

1{R⇡

t

�0 8 t�0}

i

,

19
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where E
s

[.] = E [ .|R⇡

0 = s]. For all stopping times ✓,

E
s

h

1{R⇡

t

�0 8 t�0}

i

= E
s

h

1{R⇡

t

�0 8 t2[0,✓]}1{R⇡

t

�0 8 t�✓}

i

= E
s

h

1{⌧⇡>✓}E
h

1{R⇡

t+✓

�0 8 t�0} | R⇡

✓

ii

.

According to the principle of dynamic programming

(3.2) � (s) = sup
⇡2⇧

E
s

⇥

1{⌧⇡>✓}� (R
⇡

✓

)
⇤

.

This principle says that “an optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision” (see [6] Chap. III.3.). Applying

the dynamic programming principle, we derive the so-called Hamilton-Jacobi-Bellman

(HJB) equation in the next section. For the risk process (3.1), the HJB equation is a

second-order non-linear integro-di↵erential equation.

If there exists a twice di↵erentiable solution for HJB equation, one can verify that

this solution is indeed the value function. This part of the problem is called verification

argument and often done by using martingale arguments (see for example [22, 27, 39]).

However, sometimes, the value function is not twice continuously di↵erentiable to satisfy

the HJB equation in a classical sense. In fact, for the general set of admissible strategies

⇧, we can not even show the existence of a first continuously di↵erentiable solution to

the corresponding HJB equation and must use the concept of viscosity solutions. In

section (3.2) we characterize � (s) as the solution of (2.3) in the sense of viscosity

solution. Then in section (3.2) we show that the value function is the unique viscosity

solution of the associated HJB equation.

3.1. Hamilton-Jacobi-Bellman equation

The HJB equation can be derived heuristically by considering dynamic program-

ming principle (3.2). Extensive discussion of HJB equation can be found in [39]. Let

⇧ = (A, U) be the set of all admissible investment and reinsurance strategies and con-

sider a short time interval [0, ✓], in which a constant strategy (A, u) 2 ⇧ is used. Then

there will be no claim in [0, ✓] with probability 1� �✓ + o (✓) and if this happens, the

reserve of the company at time ✓ is given by

R
✓

= s+ (c� h (u) + rA) ✓ + �AW
✓

.
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If a claim occurs with claim size Y ⇠ F
Y

in the time interval, then the reserve can be

written as:

R
✓

= s+ (c� h (u) + rA) ✓ + �AW
✓

� g (Y, u) ,

and this happens with probability �✓ + o (✓).

Taking expectations and averaging over all possible claim sizes, we arrive at the

equation

�⇡ (s) = (1� �✓ + o (✓))E [�⇡ (s+ c✓ � h (u) ✓ + rA✓ + �AW
✓

)]

(3.3) + (�✓ + o (✓))E [�⇡ (s+ c✓ � h (u) ✓ + rA✓ + �AW
✓

� g (Y, u))] .

The first term on the right-hand side represents the expected survival probability, if

there is no claim. The second term gives the expected survival probability, if there is a

claim. For ✓ > 0 we have

E



�⇡ (s+ c✓ � h (u) ✓ + rA✓ + �AW
✓

)� �⇡ (s)

✓

�

�
✓

�� o (✓)

✓

◆

E [�⇡ (s+ c✓ � h (u) ✓ + rA✓ + �AW
✓

)]

+

✓

�+
o (✓)

✓

◆

E [�⇡ (s+ c✓ � h (u) ✓ + rA✓ + �AW
✓

� g (Y, u))] = 0.

Let C2 (0,1) be the set of continuous functions on [0,1), which are twice continuously

di↵erentiable on (0,1) and assume that �⇡ (s) 2 C2 (0,1). Letting ✓ ! 0, we obtain

with Itô’s lemma

1

2
�2A2�

00
⇡ (s) + (c� h (u) + rA) �

0
⇡ (s) + �E [�⇡ (s� g (Y, u))� �⇡ (s)] = 0.

Finally by maximizing over all possible values ⇡ 2 ⇧, the Hamilton-Jacobi-Bellman

equation for our optimization problem is

(3.4) sup
⇡2⇧

⇢

1

2
�2A2�

00
(s) + (c� h (u) + rA) �

0
(s) + �E [� (s� g (Y, u))� � (s)]

�

= 0,

where � (s) = sup
⇡2⇧ �

⇡ (s). The term in the bracket is related to the infinitesimal

generator. For smooth enough function � (s) and Markov process R
t

, the infinitesimal

generator L is defined as the following operator:

L
t

� (s) = lim
✓&0

1

✓
E [� (R

t+✓

)� � (s) | R
t

= s] ,
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where the function � must be in the domain of L for which this limit exists.

For the state dependent claims intensity, the probability that no claim reported in

small time interval [0, ✓] is � (R
✓

) ✓ + o (✓) and the probability that one claim occurs

in [0, ✓] is 1 � � (R
✓

) ✓ + o (✓). Replacing these probabilities in (3.3), with the same

argument like above the corresponding HJB equation can be written as

sup
⇡2⇧

⇢

1

2
�2A2�

00
(s) + (c� h (u) + rA) �

0
(s) + � (s)E [� (s� g (Y, u))� � (s)]

�

= 0.

The proof of the following lemma is similar to the proof of Lemma 2.3 in [39], p. 35.

Lemma 2. The objective function � (s) = sup
⇡2⇧ �

⇡ (s) is an increasing function of

s for all s � 0.

Proof. Let u0 denote the no-reinsurance strategy and choose two initial capitals

0  x  y . For an arbitrary strategy ⇡ = {⇡
t

} let ⌧⇡
x

be the ruin time of the risk

process (3.1) with initial capital x. Since ⇡0 = (0, u0) 2 ⇧, we may define the strategy

⇡̃
t

as follow: ⇡̃
t

= ⇡
t

for t  ⌧⇡
x

and ⇡̃
t

= ⇡0 for t > ⌧⇡
x

. If ⌧⇡
y

denotes the ruin time for

the risk process with initial capital y, then

�⇡̃ (y) = E
h

1{⌧ ⇡̃
y

=1}
i

= E
h

1{⌧ ⇡̃
y

=1}
�

�

�

1{⌧⇡
x

=1}

i

E
⇥

1{⌧⇡
x

=1}
⇤

+ E
h

1{⌧ ⇡̃
y

=1}
�

�

�

1{⌧⇡
x

<1}

i

E
⇥

1{⌧⇡
x

<1}
⇤

= �⇡ (x) + E
h

1{⌧ ⇡̃
y

=1}
�

�

�

1{⌧⇡
x

<1}

i

(1� �⇡ (x))

� �⇡ (x) .

Since ⇡ was chosen arbitrary, by taking suprimum over all possible strategies ⇡, we

thus have the desirable result, i.e. � (x)  � (y). ⇤

Since

(3.5) � (s) = 1�
ˆ 1

s

�
0
(x) dx,

we can maximize survival probability by minimizing �
0
(s) for all s � 0.

Remark 2. Assume c > �E [Y ] and let �0 (s) be the survival probability without

investment and reinsurance. Then �0 (s) satisfies

(3.6) �
0
0 (s) =

�

c
E [�0 (s)� �0 (s� Y )]
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(see for example [35, 9]). Integrating (3.6) over the interval (0, x] yields

c

�
(�0 (x)� �0 (0)) =

ˆ
x

0
�0 (s) ds�

ˆ
x

0

ˆ
s

0
�0 (s� y) dF (y) dx

(3.7) =

ˆ
x

0
�0 (x� s) (1� F (x)) dx.

Letting x ! 1, (3.7) implies

(3.8) �0 (0) =
c� �E [Y ]

c
.

4

At point s = 0, A (0) = 0, otherwise the fluctuation of the Wiener process would

lead to immediate ruin, i.e. � (0) = 0, which can not be optimal, since without invest-

ment we have �0 (0) = 1� �E[Y ]/c if �E [Y ] < c. Thus, the natural boundary conditions

for value function � (s) are

(3.9) � (s) = 0, s < 0, � (1) = 1 and �
0
(0) = �� (0) inf

u2U

⇢

1� Pr (g (Y, u) = 0)

c� h (u)

�

.

Note that for arbitrary constant ↵ > 0, the function V (s) = ↵� (s) is also a solution to

(3.4). Hence, we set V (0) = 1 and look for a solution of the following equation

(3.10)

sup
⇡2⇧

⇢

1

2
�2A2V

00
(s) + (c� h (u) + rA)V

0
(s) + �E [V (s� g (Y, u))� V (s)]

�

= 0.

3.2. Viscosity solution

Generally, not only a twice continuously di↵erentiable solution of (3.4) cannot be

always expected but also we do not even know whether the value function is once

continuously di↵erentiable. An appropriate notion of solution in this case is that of a

viscosity solution which is introduced by Crandall and Lions. In section 4.1, we present

examples with jumps in the functions �
00
(s) and �

0
(s). For an extensive discussion

about viscosity solution see [10] and [15]. To define this concept, consider the following

second-order non-linear integro-di↵erential equation:

H
⇣

s, w,w
0
, w

00
⌘

=

sup
⇡2⇧

⇢

1

2
�2A2w

00
(s) + (c� h (u) + rA)w

0
(s) + �E [w (s� g (Y, u))� w (s)]

�

= 0,
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in which H is a continuous function of R ⇥ R ⇥ R ⇥ R. Furthermore, let Cm [0,1)

be the set of monotone non-decreasing continuous functions satisfying the boundary

conditions (3.9).

Definition 3. A function w (s) 2 Cm [0,1) is said to be a viscosity subsolution

of (3.4) at s 2 (0,1) if for any function ' (s) 2 C2 (0,1) with ' (s) = w (s) for which

w (x)� ' (x) reaches the local maximum at s, satisfies

(3.11) H
⇣

s, w,'
0
,'

00
⌘

� 0,

and a function w (s) 2 Cm [0,1) is said to be a viscosity supersolution of (3.4) at

s 2 (0,1), if for any function ' (s) 2 C2 (0,1) with ' (s) = w (s) for which w (x)�' (x)

reaches the local minimum at s, satisfies

(3.12) H
⇣

s, w,'
0
,'

00
⌘

 0.

A viscosity solution to (3.4) is a function w (s) 2 Cm [0,1), if it is both a viscosity

subsolution and a viscosity supersolution at any s 2 (0,1).

Proposition (4) gives an equivalent formulation for viscosity solutions which is

needed to prove the theorem (6) later.

Proposition 4. Let w (s) 2 Cm [0,1), then

i) w is a viscosity subsolution of (3.4) at s 2 (0,1), if and only if

H
⇣

s,','
0
,'

00
⌘

� 0,

whenever ' (s) 2 C2 (0,1) with ' (s) = w (s) and w (x)  ' (x), for x > 0.

ii) w is a viscosity subsolution of (3.4) at s 2 (0,1), if and only if

H
⇣

s,','
0
,'

00
⌘

 0,

whenever ' (s) 2 C2 (0,1) with ' (s) = w (s) and w (x) � ' (x), for x > 0.

For the proof that the value function � (s) is a viscosity solution of (3.4), we need

the following lemma.

Lemma 5. Let ⇡ = (A, u), an admissible strategy where A = ↵ (s) , ↵ (s) 2 �, with

↵ (0) = 0. For start capital s > 0, denote R⇡

t

, t � 0 the corresponding risk process with
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investment A and reinsurance u and let ⌧ be the ruin time of R⇡

t

. Then for 0 < ✓ ! 0

(3.13) Pr {⌧  ✓&R⇡

✓

� 0} = o (✓) .

Proof. First we consider that there is no claim in [0, ✓]. The risk process without

claim is

R⇡

✓

= s+ c✓ �
ˆ

✓

0
h (u

x

) dx+

ˆ
✓

0
rA

x

dx+

ˆ
✓

0
�A

x

dW
x

.

Since the dynamics

dM
t

:= (c� h (u
t

) + rA
t

) dt, M0 = 0,

has bounded variation we can just look at the process N
t

:= s � R⇡

t

+M
t

. Note that

the process N
t

starts at zero and is a martingale. The function ↵ (x) is bounded with

↵ (0) = 0. From martingale inequality 7.31 in [30], p. 200, we have

Pr

⇢

max
0t✓

|N
t

| > s

�

 s2E

ˆ
✓

0
↵2 (N

t

) dt

�

which has order o (✓).

Next, consider that a single claim Y at time ⌧ 2 [0, ✓] occurs and let D be the set on

which this is true. We need to study the case where this single claim causes ruin at time

⌧ . If R⇡

⌧� denotes the insurance capital before ruin, then we have R⇡

⌧� < g (Y, u
⌧�).

For s  0 we let A (s) = 0 and define

t1 = inf {⌧ < t < ✓ : R⇡

t

= 0} .

Therefore, on t 2 [⌧, t1] we have no investment and the process R⇡

t

can grow at most

by premium income rate c. Hence at t1, R⇡

⌧�� g (Y, u
⌧�)+ c (t1 � ⌧) � 0 and for ⌧ < ✓

we obtain R⇡

✓

� 0 if

R⇡

⌧� < g (Y, u
⌧�)  R⇡

⌧� + c✓.

Letting ✓ ! 0 we get Pr
�

R⇡

⌧� < g (Y, u
⌧�)  R⇡

⌧� + c✓
� ! 0. Since a single claim

occurs with probability �✓ + o (✓), we have

Pr {⌧  ✓&R⇡

✓

� 0&D}  Pr
�

R⇡

⌧� < g (Y, u
⌧�)  R⇡

⌧� + c✓&D
 

 (�✓ + o (✓)) Pr
�

R⇡

⌧� < g (Y, u
⌧�)  R⇡

⌧� + c✓
�

= o (✓) .

For more than one claim in [0, ✓], we obtain a set with probability o (✓) and therefore

we come to the desired result (3.13). ⇤
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In the following theorem 6 on the viscosity subsolution part of the proof, due to

technical di�culties, we need to assume that the set of constraints is of the form

⇧ (s) = ([a1 (s) , b1 (s)] , ..., [an+1 (s) , bn+1 (s)]) , s � 0,

where a
i

(s) and b
i

(s), i = 1, ..., n+ 1 are continuous functions on s 2 (0,1). We also

assume that the reinsurance premium h (u) is a continuous function. Throughout the

proof of this Theorem, for s > 0 and functions w (s) 2 Cm [0,1) and ' (s) 2 C2 [0,1),

and (A, u) 2 ⇧ (s), we use the following notation:

K (s,', A, u)

=
1

2
�2A2'

00
(s) + (c� h (u) + rA)'

0
(s) + �

ˆ 1

0
' (s� g (Y, u)) dF

Y

� �' (s) .

Theorem 6. Let a
i

(s) and b
i

(s), i = 1, ..., n + 1 be continuous functions on

s 2 (0,1) and ⇧ (s) = (A (s) , U (s)) = ([a1 (s) , b1 (s)] , ..., [an+1 (s) , bn+1 (s)]) be the

constraint set of investment and reinsurance. Furthermore assume that the reinsur-

ance premium h (u) is a continuous function of u 2 U (s). Then the value function

� (s) = sup
⇡2⇧ �

⇡ (s), is a viscosity solution of ( 3.4).

Proof. Let us first show that � (s) is a viscosity supersolution of (3.4). Let ' :

(0,1) ! R be any twice continuously di↵erentiable function with ' (s) = � (s) such

that � � ' reaches the minimum at s. We need to show that

(3.14) H
⇣

s,','
0
,'

00
⌘

= sup
⇡2⇧(s)

{K (s,', A, u)}  0.

We use the same argument in [12]. Choose an arbitrary admissible strategy ⇡ :=

⇡
t

= (A
t

, u
t

) 2 ⇧ (R⇡

t

), with the risk process R⇡

t

and let ⌧ = inf {t � 0 : R⇡

t

< 0}. For

stopping time ✓, the dynamic programming principle (3.2), together with Lemma (5),

yields

� (s) � E
s

⇥

1{⌧>✓}' (R⇡

✓

)
⇤

� E
s

[' (R⇡

✓

)]� Pr {⌧  ✓&R⇡

✓

� 0}

(3.15) � ' (s) + ✓K (s,', A0, u0) + o (✓) .

The last inequality holds because K (s,', A
t

, u
t

) is the infinitesimal generator of the

stochastic process R⇡

t

. Because � (s) = ' (s), dividing the (3.15) by ✓ and letting ✓ ! 0,
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we obtain

K (s,', A0, u0)  0.

Since ⇡ 2 ⇧ (R⇡

t

) was arbitrary , we conclude the desired inequality (3.14).

We now show that � (s) is a viscosity subsolution of (3.4). To this end, let '0 2
C2 (0,1) be a test function such that

0 = (� � '0) (s) = max
x

(� � '0) (x) .

Similar to the contradiction argument used in the proof of proposition 4.3.2 in [34],

assume H
⇣

s,'0,'
0
0,'

00
0

⌘

< 0. That is for some " > 0

K (x,'0, A, u) < �",

for all (A, u) 2 ⇧ (s). We may replace '0 (x) by a function ' (x) 2 C2 (0,1) satisfying

' (x) � � (x), ' (s) = � (s), '
0
(s) = '

0
0 (s), '

00
0 (s) = '

00
0 (s) and

|E [� (s� g (Y, u))� ' (s� g (Y, u))]| < "

2
.

Therefore K (x,', A, u) < � "

2 for all (A, u) 2 ⇧ (s). Since the function H, is a contin-

uous function of s, A and u, and since a
i

(s) and b
i

(s), i = 1, ..., n + 1 are continuous

for some ⌘ > 0 we have

K (x,', A, u) < �"
2
for all s� ⌘ < x < s+ ⌘ and all (A, u) 2 ⇧ (s) .

Let 0 < �
m

! 0 and ⇡
m

(x) = (A
m

(x) , u
m

(x)) be feedback function such that the

strategy ⇡
mt

= ⇡
�

R⇡

t�
�

is admissible and satisfies

Pr {⌧⇡m = 1|R⇡

m

0 = s} � � (s)� "�
m

4
,

where ⌧⇡m is the ruin time of R⇡

m

t

with R⇡

m

0 = s. Then for any stopping time ✓  ⌧⇡m

we have

Pr {⌧⇡m = 1|R⇡

m

0 = s} = E
⇥

Pr
�

⌧⇡m = 1|R⇡

m

✓

 ⇤

 E
⇥

�
�

R⇡

m

✓

�⇤  E
⇥

'
�

R⇡

m

✓

�⇤

.

Let ⌧
m

be the first exit time from [s� ⌘, s+ ⌘] and ✓
m

= min (⌧
m

, �
m

). Notice that for

su�ciently small ⌘ we have ⌧
m

 ⌧⇡m which yields ✓
m

 ⌧⇡m . Thus

' (s) = � (s)  Pr {⌧⇡m = 1|R⇡

m

0 = s}+ "�
m

4
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E
⇥

'
�

R⇡

m

✓

m

�⇤

+
"�

m

4
= ' (s) + E

ˆ
✓

m

0
K (R⇡

m

t

,', A
mt

, u
mt

) dt

�

+
"�

m

4

 ' (s) +
"�

m

4
� "E [✓

m

]

2
.

Since the probability of one or more claims in [0, �
m

] goes to zero for m ! 1, and the

without claims process is continuous, we have Pr {⌧
m

 �
m

} ! 0 for m ! 1. On the

othe hand, Tchebyshev’s inequality gives us

Pr {⌧
m

� �
m

}  1

�
m

E [✓
m

]  1.

By letting m goes to infinity we come to the contradiction

0  "

✓

1

4
� 1

2

◆

.

⇤

We have shown, that � (s) is a viscosity solution to (3.4). Next we are going to

characterize the optimal survival probability as the unique viscosity solution of the

HJB equation (3.4). The uniqueness of the value function can be derived through a

comparison principle, which we present in the next proposition. The proof technique

used here is as the same as that developed in [10]. Throughout the next Proposition,

for two symmetric matrices M,N 2 Rn⇥n, we write M � N if for any vector z 2 Rn,

ztMz � ztNz.

Proposition 7. Let v (s), w (s) be continuous, uniformly Lipschitz, increasing

functions, w (s) a super- and v (s) a subsolution to (3.4). Assume that the constraint

set, ⇧ (s) = (A (s) , U (s)), satisfies

(3.16) ⇧ (x) ⇢ ⇧ (y) , for x < y.

Moreover, assume that for all reinsurance strategy u 2 U (s) either Pr {g (Y, u) < s} < 1

for all s, or g (Y, u) has a positive density on an interval (a, b).

If it holds v (0)  w (0) and v (1)  w (1), then v (s)  w (s) on [0,1).

Proof. We use contradiction argument. Assume there is s0 2 (0,1) such that

v (s0) � w (s0) > 0. Let m be a common Lipschitz constant for v (s) and w (s). For

k > 1 the function

w
k

(s) = kw (s) , s � 0,
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is also a supersolution which is also increasing and uniformly Lipschitz with constant

km. Fix k > 1 such that v (s0) � w
k

(s0) > 0. Because v and w
k

are Lipschitz

continuous, there exists an interval D := [", L], ", L > 0 and � > 0 such that for s /2 D,

v (s)� w
k

(s)  ��.

Define furthermore

M := sup
s�0

(v (s)� w
k

(s)) ,

which is positive. Continuity of v (s), w
k

(s) and v (1) � w
k

(1)  0 imply that for

some 0 < s⇤ < 1 we have M = v (s⇤)� w
k

(s⇤).

For ⇠ > 0 and x, y > 0, define

f
⇠

(x, y) := v (x)� w
k

(y)� ⇠

2
(y � x)2 +mk

y � x

⇠ (y � x)2 + 1
.

Because f
⇠

is continuous, there exists (x
⇠

, y
⇠

) � 0 maximizing f
⇠

(x, y). It is easy to

see that
|x� y|

⇠ (x� y)2 + 1
 ⇠�

1
/2.

Therefore, we obtain

M  f
⇠

(x
⇠

, y
⇠

)  M � ⇠

2
(x

⇠

� y
⇠

)2 + ⇠�
1
/2,

and so ⇠ (x
⇠

� y
⇠

)2 ! 0, as ⇠ ! 1. Defining

� (x, y) =
⇠

2
(x� y)2 �mk

y � x

⇠ (y � x)2 + 1
,

we have

f
⇠

(x, y) = v (x)� w
k

(y)� � (x, y) .

Note that

�
x

(x, y) :=
@

@x
� (x, y) = ⇠ (x� y) +

mk

⇠ (x� y)2 + 1
� 2mk

⇠ (x� y)2
⇣

⇠ (x� y)2 + 1
⌘2 ,

and �
x

(x, y) = ��
y

(x, y). Thus for large ⇠ we have

m � lim sup
✓&0

v (x
⇠

)� v (x
⇠

� ✓)

✓
� �

x

(x
⇠

, y
⇠

) � ⇠ (x
⇠

� y
⇠

) +m,
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which yields x
⇠

 y
⇠

and �
x

(x
⇠

, y
⇠

) < 0. Furthermore, y
⇠

 L and x
⇠

� "/2.

We also have �
xx

(x
⇠

, y
⇠

) := @

@x@x

� (x, y) = �
yy

(x
⇠

, y
⇠

) =: Q
⇠

, where

Q
⇠

= ⇠

2

6

4

1 +
6mk (x

⇠

� y
⇠

)
⇣

⇠ (x
⇠

� y
⇠

)2 + 1
⌘2 � 8mk⇠ (x

⇠

� y
⇠

)3
⇣

⇠ (x
⇠

� y
⇠

)2 + 1
⌘3

3

7

5

.

The bracket converges to 1 for ⇠ ! 1, hence for su�ciently large ⇠ we have 0  Q
⇠


2⇠. Since �

xy

(x
⇠

, y
⇠

) = ��
xx

(x
⇠

, y
⇠

), the Hessian matrix Q of � (x, y) is

Q = Q
⇠

0

@

1 �1

�1 1

1

A ,

which satisfies Q2 = 2Q
⇠

Q.

For the continuous function f (x), the set J +f (x0) is called the superjet of the function

f (x) at point x0, if for all numbers (p, d) 2 J +f (x0),

f (x)  f (x0) + p (x� x0) +
1

2
d (x� x0)

2 + o (x� x0) .

Similarly, the set J �f (x0) is called the subjet of the function f (x) at point x0, if for

all numbers (p, d) 2 J �f (x0),

f (x) � f (x0) + p (x� x0) +
1

2
d (x� x0)

2 + o (x� x0) .

If J +f (x0) \ J �f (x0) = Ø, then f
0
(x0) and f

00
(x0) exist and

J +f (x0) \ J �f (x0) =
n⇣

f
0
(x0) , f

00
(x0)

⌘o

.

From Crandall and Ishii maximum principle there exists d1, d2 in the closure of J +v (x
⇠

)

and J �w
k

(y
⇠

), respectively, such that

(3.17)

0

@

d1 0

0 �d2

1

A  3Q
⇠

0

@

1 �1

�1 1

1

A .

Hence we have d1  d2.

The viscosity sub- and super-solution properties imply that for (�
x

(x
⇠

, y
⇠

) , d1) 2
J +v (x

⇠

) and (��
y

(x
⇠

, y
⇠

) , d2) 2 J �w
k

(y
⇠

), there exists
�

A
x

⇠

, u
x

⇠

� 2 ⇧ (x
⇠

) with

(3.18)

�E
⇥

v
�

x
⇠

� g
�

Y, u
x

⇠

��� v (x
⇠

)
⇤

+
�

c� h
�

u
x

⇠

�

+ rA
x

⇠

�

�
x

(x
⇠

, y
⇠

) +
1

2
d1�

2A2
x

⇠

� 0,
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and for all
�

A
y

⇠

, u
y

⇠

� 2 ⇧ (y
⇠

) we have

(3.19)

�E
⇥

w
k

�

y
⇠

� g
�

Y, u
y

⇠

��� w
k

(y
⇠

)
⇤

+
�

c� h
�

u
y

⇠

�

+ rA
y

⇠

�

�
x

(x
⇠

, y
⇠

) +
1

2
d2�

2A2
y

⇠

 0.

Since x
⇠

 y
⇠

, we have ⇧ (x
⇠

) ⇢ ⇧ (y
⇠

) and so we can choose
�

A
y

⇠

, u
y

⇠

�

=
�

A
x

⇠

, u
x

⇠

�

.

The assumption g
�

Y, u
x

⇠

�

> 0, together with the inequalities (3.18) and (3.19), yield

E
⇥

v
�

x
⇠

� g
�

Y, u
x

⇠

��� v (x
⇠

)
⇤� E

⇥

w
k

�

y
⇠

� g
�

Y, u
x

⇠

��� w
k

(y
⇠

)
⇤ � 0.

For a sequence ⇠
n

! 1 as n ! 1, since ⇠
n

(x
⇠

n

� y
⇠

n

)2 ! 0, we get that |x
⇠

n

� y
⇠

n

| !
0, that is for some x̄ > 0, (x

⇠

n

� y
⇠

n

) ! (x̄, x̄). Choose a sequence ⇠
n

! 1, such that

u
x

⇠

n

converges to some ū 2 U (x̄). Then with

M � E [v (x̄� g (Y, ū))� w
k

(x̄� g (Y, ū))] � v (x̄)� w
k

(x̄) = M

we have a contradiction in the case Pr {g (Y, ū)  x̄} < 1. In case Pr {g (Y, ū)  x̄} = 1,

since g (Y, ū) has a positive density on an interval (a, b), we can find some intervals

(z1, z2) ⇢ (0, x̄) with positive length on which the v (x)� w
k

(x) is constant and equal

to M . Since the set of possible values for k > 1 is uncountable, these intervals cannot be

disjoint. Thus, there exists a non void interval (s1, s2) and constants k1 < k2, such that

v (x) � w
k

i

(x) is constant and equal to some constant M
i

> 0 on (s1, s2) for i = 1, 2.

Therefore, v (s1) = v (s2) and w (s1) = w (s2), which contradict the fact that the v (x)

and w (x) are increasing functions. ⇤

All examples, presented in the next chapter, satisfy the constraints condition 3.16,

except example 19. For the case of example 19, one can repeat the above argument

with

� (x, y) =
⇠

2
(x� y)2 �mk

x� y

⇠ (y � x)2 + 1
,

for which the maximizers satisfy x
⇠

� y
⇠

.

In the next section we will present a stable recursive numerical method which can

solve the HJB equation (3.10) in general sense, i.e. it works even when there is no

smooth solution to the equation (3.4).
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3.3. Existence of solution and numerical algorithm

Di↵erent operators have been proposed to prove the existence of solutions of integro-

di↵erential equation (3.10). See for example [3, 27, 23, 22, 26, 36, 38]. In this section

we shall present a numerical method which can be used to solve the problem of optimal

reinsurance and investment with or without constrained.

In order to obtain recursive numerical algorithm we discretize the state space with

some small step size � and recursively define a family of function V (s) = V� (s),

starting with

(3.20) V (0) = 1 and V
0
(0) = inf

u

⇢

�
1� Pr (g (y, u) = 0)

c� h (u)

�

.

For s = i� > 0, we use the approximations and notations

(3.21) V� (s) = V� (s��) +�V
0
� (s) ,

(3.22) V
0
� (s) =

V� (s)� V� (s��)

�
,

(3.23) V
00
� (s) =

V
0
(s)� V

0
(s��)

�
.

We approximate E [V (s� g (Y, u))] by

G�,u

(s)

=
X

{g(j�,u)(i�1)�}

V�

✓

(i� 1)��
�

g (j�, u)

�

⌫

�

◆

Pr {(j � 1)� < Y  j�} ,

where j = 0, 1, 2, ... and b.c maps a real number to the largest previous integer.

Starting from the initial values for V� (0) and V
0
� (0), we define for s = i� the

functions V� (s), i = 1, 2, ..., by

(3.24) V
0
� (s) = inf

⇡2⇧

�� (V� (s��)�G
u

(s)) + 1
2�

2A2V
0
� (s��)

� (c� h (u) + rA� ��) + 1
2�

2A2
.

This recursion is equivalent to the following equation

(3.25) V
00
� (s) = inf

⇡2⇧

� (V� (s��)�G
u

(s))� (c� h (u) + rA� ��)V
0
� (s��)

� (c� h (u) + rA� ��) + 1
2�

2A2
.
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This implies in particular that the minimizer in (3.24) is equal to the minimizer in

(3.25). Since we are interested to the positive values of (3.24), we can restrict our

admissible strategy to the set ⇧̄� =
�

(A, u) 2 ⇧ : � (c� h (u) +A� ��) + 1
2A

2 > 0
 

.

It is obvious that (0, u0) 2 ⇧̄�. The function G�,u

(s) takes its maximum V� (s��),

when g (Y, u) = 0, i.e. full reinsurance.

For notational convenience we denote the discretizations again by V (s) and G
u

(s)

whenever this causes no confusion.

Remark 3. Let �0 (s) be the survival probability without investment and reinsur-

ance. Then the function

V (s) =
c

c� �E [Y ]
�0 (s) ,

satisfies V (0) = 1, V
0
(0) = �/c. Using the approximation method in (3.22), we have

V
0
� (s) =

�

c
(V� (s��)�G�,u0 (s)) ,

where u0 denotes the no-reinsurance strategy, i.e. g (Y, u0) = Y . Note that from (3.21),

for s = i�, we have

V� (s��) = V� (0) +�
i

X

j=1

V
0
� (j�) ,

and

G
u0 (s) =

i

X

j=1

 

V (0) +�
i�k

X

k=1

V
0
(k�)

!

Pr {(j � 1)� < Y  j�} .

We obtain then

(3.26) V (s��)�G
u0 (s) = V (0) Pr {Y � j�}+�

i�1
X

j=1

V
0
(j�) Pr {Y � (i� j)�} .

4

Lemma 8. Let 0 < � < c/(�+1
/2) be arbitrary and let D = {0,�, 2�, ...} . Define

V (s), s 2 D with V (0) = 1, V
0
(0) = �/c together with recursion (3.24), for 0 < s 2 D.

Then V
0
(s) � 0, for all s 2 D.
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Proof. Assume that i is a positive integer with V
0
(k�) � 0, k = 1, ..., i�1. Then

the numbers V (0)  V (�)  ...  V ((i� 1)�) are non-decreasing and thus

G
u

(s) =
X

{g(j�,u)(i�1)�}

V�

✓

i��
�

g (j�, u)

�

⌫

�

◆

Pr {(j � 1)� < Y  j�}

 V� ((i� 1)�) , j = 0, 1, 2, ....

So for s = i� the numerator of

(3.27)
�� (V� (s��)�G

u

(s)) + 1
2�

2A2V
0
� (s��)

� (c� h (u) + rA� ��) + 1
2�

2A2

is nonnegative for all A. Since the denominator of (3.22) is positive for all A, the

infimum of (3.22) over ⇡ 2 ⇧̄ must be non-negative, so V
0
(s) � 0. ⇤

Lemma 9. Assume 0 < � < c/(�+1
/2) and that for all s 2 D there exist a strategy

(A, u) 2 ⇧ with A � 0 and g (Y, u0) = Y . Then for all k � 0

(3.28) V (k�) 
✓

1� �

c
�

◆�k

 e
�

c

k�,

and

(3.29) V
0
(k�)  �

c
V (k�) .

Proof. For k = 0 the two assertions holds. Assume now that s = k� > 0 and the

assertion (3.29) is true for s��. If V
00
(s)  0, then

V
0
(s)  V

0
(s��)  �

c
V (s��)  �

c
V (s) .

If V
00
(s) � 0, then for 0  A and no-reinsurance strategy u0, we obtain from (3.4)

0 � (c+A)V
0
(s) + �E [V (s� Y )� V (s)]

� ��V (s) + cV
0
(s)

which gives us (3.29), for s. This implies

V (s) 
✓

1� �

c
�

◆�1

V (s��) ,

and thus we obtain (3.28) for s from (3.29) for s��. ⇤
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Beside inequality (3.29) we can show that V
0
(s)  V

0
0 (s) where V

0
0 (s) is the result

of our recursion for admissible strategy restricted to no-reinsurance without investment,

i.e. ⇧0 (s0) = (0, u0). To this end let ⇧ (s0) � ⇧0 (s0) and consider their corresponding

schemes V0 (s), V (s), s 2 D, with a common � > 0 and norming V0 (0) = V (0) = 1.

Set V
0
0 (0) =

�

c

, and

V
0
(0) = inf

u2⇧(0)

⇢

�
1� Pr (g (Y, u) = 0)

c� h (u)

�

.

We can show by induction that for s 2 D, V
0
0 (s) � V

0
(s). It is clear that V

0
0 (0) �

V
0
(0). Assume that s > 0 is such that for all s0 2 D, s0  s��,

V
0
0 (s0) � V

0
(s0) .

Let u0 denotes the no-reinsurance strategy, then from (3.22) and (3.26) we have

(3.30) V
0
(s) = inf

⇡2⇧̄

�� (V (s��)�G
u

(s)) + 1
2�

2A2V
0
(s��)

� (c� h (u) + rA� ��) + 1
2�

2A2
.

 � (V (s��)�G
u0 (s))

c

=
�

c

0

@V (0) Pr {Y � j�}+�
i�1
X

j=1

V
0
(j�) Pr {Y � (i� j)�}

1

A

 �

c

0

@V0 (0) Pr {Y � j�}+�
i�1
X

j=1

V
0
0 (j�) Pr {Y � (i� j)�}

1

A  V
0
0 (s) ,

which completes the induction.

In the next Theorem we use the same argument as in [15], Chapter IX, section 4,

to show that the function V (s) is the unique viscosity solution to (3.10). To this end,

however, we need to assume that ⇧ (s) ⇢ ⇧+ where

⇧+ = {(A, u) : c� h (u) +A � 0} .

Theorem 10. Let V� (s) be the solution to (3.24) and define

V ⇤ (s) = lim sup
�!0,i�!s

V� (i�) ,

and

V⇤ (s) = lim inf
�!0,i�!s

V� (i�) .
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If ⇧ ⇢ ⇧+, then the functions V ⇤ (s) and V⇤ (s) are respectively, sub- and supersolution

of (3.10).

Moreover, if V ⇤ (1)  V⇤ (1) or if V ⇤ (s)�V⇤ (s) has a local maximum s 2 (0,1)

where V ⇤ (s) > V⇤ (s), then the sequence V� (s) converges to the unique viscosity solu-

tion V of (3.10) which is continuous on [0,1).

Proof. We start by showing that V ⇤ (s) is a viscosity subsolution of (3.10), while

V⇤ (s) is a viscosity supersolution of (3.10). We only prove the subsolution case V ⇤ (s).

The proof for the supersolution case is analogous. Let s > 0 and ' (s) 2 C2 (0,1) with

' (s) = V ⇤ (s) for which V ⇤ (x)�' (x) has strict local maximum at x = s. We want to

show that

(3.31) H
⇣

s, V,'
0
,'

00
⌘

� 0.

To show this, note that for � su�ciently small we can find � < s� 2 D� such that

V� (s�)� '� (s�) � V� (x)� '� (x) , x 2 {s� � 2�, s�} .

This implies that

V
0
� (s�)  '

0
� (s�) , V

00
� (s�)  '

00
� (s�) .

Take a sequence �
n

! 0 as n ! 1 for which V�
n

(s�
n

) ! V ⇤ (s). Then by Fatou’s

lemma

lim sup
n!1

G�
n

,u

(s�
n

)  E [V ⇤ (s� g (Y, u))] , lim
n!1

V�
n

(s�
n

) = V ⇤ (s) ,

lim sup
n!1

V
0
�

n

(s�
n

)  '
0
(s) , and lim sup

n!1
V

00
�

n

(s�
n

)  '
00
(s) ,

which imply (3.31). Now from the comparison results Proposition (7) if V * (1) 
V⇤ (1), we have that V ⇤  V⇤. Since V ⇤ � V⇤ by definition, we have convergence. If

V * (s) � V⇤ (s) has a local maximum s⇤ 2 (0,1) where V ⇤ (s⇤) > V⇤ (s⇤), then with

the same argument used in the proof of Proposition (7), we have V ⇤  V⇤ and therefore

we conclude the convergence.

It remains to prove that V (s) = V ⇤ (s). Since V (s) is the viscosity supersolution

of (3.10), from Proposition (7) we have V ⇤ (s)  V (s). Because V (s)/V (1) is the value

function of (2.3) with the boundary values (3.9), for all " > 0 there exists a predictable

strategy ⇡ such that V ⇡ (s) > V (s)� ". The function V ⇡ (s) is also a viscosity solution
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for HJB equation (3.10) with the strategy ⇡. Because V ⇤ (s) is a viscosity supersolution

too, we obtain from Proposition 7, V ⇡ (s)  V ⇤ (s) and therefore V ⇤ (s) > V (s) � ".

Since " can be made arbitrarily small, we come to the desired results, i.e., V = V⇤. ⇤

For the general admissible set ⇧ (s) ⇢ Rn+1, we define the following notations

V
0
+ (s) =

V (s+�)� V (s)

�
, V

0
� (s) =

V (s)� V (s��)

�
,

V
00
� (s) =

V (s��) + V (s+�)� 2V (s)

�2
.

These are respectively called the forward and backward first order di↵erence quotient

approximations, and the second order di↵erence quotient approximation in s. Using

these notations, we can approximate the HJB equation (3.10) as

H�

⇣

s, V, V
0
+, V

0
�, V

00
�

⌘

= sup
(A,u)2⇧

{� (G�,u

(s)� V (s))

(3.32) + (c� h (u) + rA)+ V
0
+ (s) + (c� h (u) + rA)� V

0
� (s) +

1

2
�2A2V

00
� (s)} = 0.

With a similar method used in the proof of Theorem 10, we can show the above HJB-

scheme also converges to the unique viscosity solution of HJB (3.10). For instance, in

the subsolution case,

V� (s� ��)� '� (s� ��) � V� (x)� ' (x) , x 2 {s� � 2�, s�} ,

implies

'
0
+ (s�) � V

0
+ (s�) , '

0
� (s�)  V

0
� (s�) , '

00
(s�) � V

00
(s�) .

Note that the HJB-scheme (3.32) does not produce a simple recursion like (3.24) and one

must apply iterative method for numerical purposes. In numerical Examples presented

in the next two chapters, we did not observe a di↵erence between the solutions to (3.24)

and (3.32) after a few iterations.

Note that the lemma 9 implies indeed that the two functions V ⇤ (s) = lim supV� (k�)

and V⇤ (s) = lim infV� (k�) are continuous and locally Lipschitz on [0,1). To show

this let 0  s2 < s1 be arbitrary and k
(1)
n

, k(2)
n

, �
n

be sequences such that

k(i)
n

�
n

! s
i

, V�
n

⇣

k(1)
n

�
n

⌘

! V ⇤ (s1) .
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From

lim supV�
n

⇣

k(2)
n

�
n

⌘

 V ⇤ (s2)

we obtain

V ⇤ (s1)� V ⇤ (s2)  limV�
n

⇣

k(1)
n

�
n

⌘

� lim supV�
n

⇣

k(2)
n

�
N

⌘

 lim sup
⇣

V�
n

⇣

k(1)
n

�
n

⌘

� V�
n

⇣

k(2)
n

�
n

⌘⌘

 lim supK
�

�

�

k(1)
n

�
n

� k(1)
n

�
n

�

�

�

= K (s1 � s2) ,

where K is a common Lipschitz constant for the function V�
n

(x), 0  x  s1.

In the Theorem 10 we used comparison results Proposition (7), without studying

the necessary condition V ⇤ (1)  V⇤ (1). We now verify this condition for the problem

of optimal investment without reinsurance, that is ⇧ = (A, u0), where g (Y, u0) = Y .

The proof method used here is as the same as the one in [21].

Theorem 11. Let V� (s) be the solution to (3.24) and define

V ⇤ (s) = lim sup
�!0,i�!s

V� (i�) ,

and

V⇤ (s) = lim inf
�!0,i�!s

V� (i�) .

If ⇧ = (A, U) = (A, u0), then V ⇤ (s) = V⇤ (s) for all s 2 [0,1).

Proof. If V * (1)  V⇤ (1) or if V * (s)�V⇤ (s) has a local maximum s⇤ 2 (0,1)

where V ⇤ (s⇤) > V⇤ (s⇤), then with the same argument used in the proof of Proposition

(7), we have V ⇤  V⇤. Because V ⇤ � V⇤ by definition, we have V ⇤ (s) = V⇤ (s).

It remains to show that V ⇤ (s) = V⇤ (s), 0  s < 1 for the case that V ⇤ (s)�V⇤ (s)

is increasing on [s0,1), where

s0 = max {s : V ⇤ (x) = V⇤ (x) , 0  x  s} .

With the help of Proposition (7), we first show that the functions V ⇤ (s) and V⇤ (s) are

pointwise limits, i.e. for some s1 > 0 there exists sequences �⇤
n

! 0 and �n

⇤ ! 0 such

that for 0  s  s1

limV�⇤
n

(k
n

�⇤
n

) ! V ⇤ (s) as k
n

�⇤
n

! s,
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and

limV�n

⇤ (kn�
n

⇤ ) ! V⇤ (s) as kn�
n

⇤ ! s.

Select k
n

and �⇤
n

such that V�⇤
n

(k
n

�⇤
n

) ! V ⇤ (s1) when k
n

�⇤
n

! s1. From lemma 9,

for arbitrary k
0
n

satisfying k
0
n

�⇤
n

! s1, we have V�⇤
n

⇣

k
0
n

�⇤
n

⌘

! V ⇤ (s1). The function

V0 (s) = lim inf V�⇤
n

(s), is a viscosity super-solution of our HJB equation and Lipschitz

which V0 (0) = V ⇤ (0), V0 (s1) = V ⇤ (s1). With the Propostion (7) we have V ⇤ (x) 
V0 (x) for 0  x  s1. Since by definition V ⇤ (x) � V0 (x), we have V ⇤ (x) = V0 (x) for

0  x  s1. Moreover,

lim inf V�⇤
n

(x) = lim supV�⇤
n

(x) , 0  x  s1.

Since any pointwise limit of a sequence of discretizations is both lim sup and lim inf, the

functions V0 (x) and V ⇤ (x) for 0  x  s1 are viscosity solutions of the HJB equation

(3.10). The proof for the function V⇤ (s) can be done with the same argument with

choosing a sequence of k
n

�n

⇤ converging to s1 and derive V⇤ (x) = lim supV�n

⇤ (x) =

limV�n

⇤ (x).

Second, we let s1 > s0 and with the contradiction argument show that V ⇤ (x) =

V⇤ (x), x 2 [0, s1). To this end, let V ⇤ (s1) > V⇤ (s1). Choose an arbitrary s 2 [s0, s1]

and define two discretization schemes;

�⇤
n⇤, with step-size �⇤

n

for k  k⇤ (s) and step-size �n

⇤ for k > k⇤ (s), where

k⇤ (s) = max {k : k�⇤
n

 s}, and
�n⇤

⇤ , with step-size �n

⇤ for k  k⇤ (s) and step-size �⇤
n

for k > k⇤ (s), where

k⇤ (s) = max {k : k�n

⇤  s}.
For 0  x  s1, set

V̄ ⇤ (x) = lim supV�⇤
n⇤ (x) ,

and

V̄⇤ (x) = lim inf V�n⇤
⇤ (x) .

At the change points s⇤ = k⇤ (s)�⇤
n

and s⇤ = k⇤ (s)�n

⇤ we modify the discretization

scheme (3.23) respectively by

V
00
�⇤

n⇤
(s⇤) = 2

V
0
�n

⇤
(s⇤)� V

0
�⇤

n

(s⇤ ��⇤
n

)

�⇤
n

+�n

⇤
,
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and

V
00
�n⇤

⇤
(s⇤) = 2

V
0
�⇤

n

(s⇤)� V
0
�n

⇤
(s⇤ ��n

⇤ )

�⇤
n

+�n

⇤
.

With this modification and the same argument used at the Theorem 10, we can show

that the functions V̄ ⇤ (x) and V̄⇤ (x) are the viscosity sub- and supersolution of HJB

equation (3.10) for 0  x  s1, respectively. We now find an upper bound for V̄ ⇤ (s1).

Define Ṽ (x) as V̄ ⇤ (x) with the constraint (A, U) = (0, u0) for s0  x  s. Notice

that the discretization step-sizes has no influence in the limit for the range 0  x  s.

Therefore, we can use the discretizations Ṽ�⇤
n

(x) for 0  x  s which are defined as

V�⇤
n

(x) but with (A, U) = (0, u0) for s0  x  s. Using (3.29), for s0  x  s we have

Ṽ�n

⇤ (x)  V�n

⇤ (s0)

✓

1 +�
�

c

◆

K

n

⇤ (s0,x)

 V�n

⇤ (s0)

✓

1 +�
�

c

◆

K

n

⇤ (s0,s)

,

where

Kn

⇤ (x, y) = # {k � 0 : x < k�n

⇤  y} .

Recalling recursion (3.24) and using (3.26) for constraint set (A, U) = (A, u0) and

s = k� we obtain

(3.33)

V
0
� (s) = inf

A2A

��
⇣

V (0) Pr {Y � j�}+�
P

k�1
j=1 V

0
(j�) Pr {Y � (k � j)�}

⌘

+ 1
2�

2A2V
0
� (s��)

� (c+ rA� ��) + 1
2�

2A2
.

Now by induction, it is easy to see that for x � s

Ṽ
0
�n

⇤
(x)  V

0
�n

⇤
(x)

✓

1 +�
�

c

◆

K

n

⇤ (s0,s)

.

The above inequality with V̄ ⇤ (x)  Ṽ (x), for n ! 1 yields

V̄ ⇤ (s1)  V⇤ (s1) exp

✓

�

c
(s� s0)

◆

.

A lower bound for V̄⇤ (s1) can be found as well. Define V̂ (x) as V̄⇤ (x) with the in-

vestment constraint A (x) = (�1,1) for s0  x  s. Notice that the discretization

step-sizes has no influence in the limit for the range 0  x  s. Therefore, we can use

the discretizations V̂�n

⇤ (x) for 0  x  s which are defined as V�n

⇤ (x) but with the

investment constraint A (x) = (�1,1) for s0  x  s, i.e. (A, U) = ((�1,1) , u0).
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From (3.29), for s0  x  s we obtain

V�⇤
n

(x)  V�⇤
n

(s0)

✓

1 +�
�

c

◆

K

⇤
n

(s0,s)

,

where

K⇤
n

(x, y) = # {k � 0 : x < k�⇤
n

 y} .

So

V̂�⇤
n

(x) � V�⇤
n

(s0) � V�⇤
n

(x)

✓

1 +�
�

c

◆�K

⇤
n

(s0,s)

.

Using (3.33), by induction we can show that

V̂
0
�⇤

n

(x)  V
0
�⇤

n

(x)

✓

1 +�
�

c

◆�K

⇤
n

(s0,s)

.

This inequality with V̄⇤ (x) � V̂ (x) yields

V̄⇤ (s1) � V ⇤ (s1) exp

✓

��
c
(s� s0)

◆

,

when n ! 1.

Notice that the functions V̄⇤ (x) and V̄ ⇤ (x) are Lipschitz and increasing viscosity

super- and subsolutions of HJB equation (3.10), respectively, and for value s close to

s0 the conditions V̄⇤ (0) = V̄ ⇤ (0) and V̄ ⇤ (s1)  V̄⇤ (s1) are satisfied. Hence from the

Proposition 7, V̄ ⇤ (x)  V̄⇤ (x) for 0  x  s1 which contradicts V̄⇤ (x) = V⇤ (x) �
V ⇤ (x) = V̄ ⇤ (x) for s0  x  s. ⇤

We finish this chapter by showing that the limit of discretization schemes V (s) for

the optimal investment problem without investment is equal to its value function. The

proof is as the same as that in [21].

Theorem 12. Let V (s) be the value function of the HJB equation (3.10) for the

optimal investment problem without investment, i.e. ⇧ = (A, u0) and W (s) be the limit

solution of the discretization scheme (3.24) for this problem. Then V (s) = W (s).

Proof. Note that if V (1) = W (1), then one can use the comparison results

Proposition (7). For V (1) 6= W (1) one can apply an extended version of functions

used in previous theorem. Here we only consider the case W (1) > V (1). The case

W (1) < V (1) can be proved with the same argument. Assuming W (1) > V (1) we

have W (x) � V (x) for all x � 0 and we need to show that W (x)  V (x) for all x � 0.
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First note that both functions are semi-concave and thus almost everywhere twice

di↵erentiable on (0,1) (see [4] Remark 3.4, p.54, and Proposition 3.3, p. 55). Assume

that for some s > 0 we have W (s) > V (s). For some " > 0, choose s0 < s1 < s0 + "

such that W (x) and V (x) are twice di↵erentiable at s1 and W (s1) > V (s1), where

s0 = max {s � 0 : V (x) = W (x) , 0  x  s} .

Consider the following HJB equation:

0 = sup
A2A(s)

{1
2
�2A2V

00
(s) + (c+ rA)V

0
(s) + �E [V (s� Y )� V (s)]

(3.34) +�E
⇥

V (s� Y ) 1{Ys�s1} + p (s� Y ) 1{Y >s�s1} � V (s)
⇤}, s � s1,

where p (x) is a continuous monotone function on �1 < x < s1 and is left di↵erentiable

at s1. We first construct a sub-solution W̄ (x) for the HJB equation (3.10) satisfying

W̄ (x) = W (x), 0  x  s1, and W̄ (1)  V (1) exp
�

�

c

(s1 � s0)
�

. To this end let

W� (x), x � s1be the discretization scheme for the equation (3.34) with

W� (s1) = p (s1) , V
0
(s1) = p

0
(s1) ,

and denote its limsup by V p (x). Notice that V p (x) is a sub-solution of equation (3.34)

and for p (x) = W (x), 0  x  s1, we have

V p (x) = V (x) , x � s1,

and for ↵ > 1 and p (x)  p1 (x), it holds

(3.35) V p (x)  V p1 (x) and V ↵p (x)  ↵V p (x) , x � s1.

If p (x) = V (x), x  s1, define

W̄ (x) =

8

>

<

>

:

W (x) x  s1

V p (x) x > s1,

which is a subsolution of equation (3.10) for s > 0. Proving this is easy in the case

0  s < s1. For s > s1 one must notice that for any s � s1 and with p (x) = W (x) it
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holds

E
⇥

W̄ (s� Y )
⇤

= E
⇥

W (s� Y ) 1{Y >s�s1}
⇤

+ E
⇥

V p (s� Y ) 1{Ys�s1}
⇤

.

At the point s = s1 one can use the initial values for the discretization W� (s). Let

' (x) 2 C2 (0,1) be a test function such that W̄ (x) � ' (x) has a strict maximum at

x = s1. We want to show

H
⇣

s1, W̄ ,'
0
,'

00
⌘

� 0.

From [15], p. 334, there is a sequence � ! 0 such that W� (x)�' (x) has its maximum

on {x = k� : x � s1} in some x� with x� ! s1 and W� (x�) ! W (s1). If x� = s1

infinitely often then for these �’s we have

W� (s1 +�)� ' (s1 +�)  W� (s1)� ' (s1)

and so '
0
(s1) � W

0
(s1). From ' (x) > W (x) for x < s1 we obtain '

0
(s1) 

W
0
(s1)which yields '

0
(s1) = W

0
(s1). Thus for 0 < � ! 0 we get

' (s1 � �) � W (s1)� �W
0
(s1) +

�2

2
W

00
(s1) + o

�

�2
�

,

and this leads to '
00
(s1) � W

00
(s1). This gives us to the desired result, i.e. H

⇣

s1, W̄ ,'
0
,'

00
⌘

�
0.

If x� > 0 for a subsequence of �’s, then

W
0
� (x�)  ' (x� +�)� ' (x�)

�
! '

0
(s1) , � ! 0,

W
00
� (x�)  ' (x� +�)� 2' (x�) + ' (x� ��)

�2
! '

00
(s1) , � ! 0,

and therefore H
⇣

s1, W̄ ,'
0
,'

00
⌘

� 0.

Inequalities (3.35) and W (x)  V (x) exp
�

�

c

(s1 � s0)
�

, x  s1, yields

W̄ (x)  V (x) exp

✓

�

c
(s1 � s0)

◆

, x � 0.

Now we built a supersolution V̄ (x) for HJB equation (3.10) such that V̄ (x) = V (x),

for 0  x  s1 and V̄ (1) � W̄ (1). Since for x � 0, 0 2 A (x) it holds for all � > 0

W (x+ �)�W (x)  �

c
W (x) .
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Choose an admissible strategy A
t

, t � 0 with the value function

p (x) = Pr
�

⌧A = 1��RA

0 = x
 

, x � 0,

such that for ⌘ > 0, we have p (x) � V (x)
V (1) � ⌘ for x � 0. Let ⌧A1 be the first exit time

of the stochastic process RA

t

from the set [s,1) and

 = V (s1)� E
h

V
⇣

RA

⌧

A

1

⌘

1{⌧A1 <1}
�

�

�

RA

0 = s1

i

.

Let p1 (x) = Pr
�

⌧A1 = 1��RA

0 = x
 

and define

q (x) = E
h

V
⇣

RA

⌧

A

1

⌘

1{⌧A1 <1}
�

�

�

RA

0 = s1

i

+ 
p1 (x)

p1 (s1)
, x � 0.

We obtain q (x) = V (x), 0  x  s1, q (s1+) = q (s1), q (1) = /p1(s1), and q (x) is a

supersolution of (3.10) for 0 < x < s1 andx > s1. At point s1 we change the constant

premium c with a continuous function c (s1) = �V (s1)/V 0
(s1) in the range [s1, s1 + "] and

c (x) = c for x � s1 + ". Thus

lim sup
l!0

q (s1 + l)� q (s1)

l
 V

0
(s1) ,

which gives us the supersolution property. Note that the p1 (s1) will change a bit by

choosing " small enough. The inequality

W (s1)� V (s1)  V (s1)

✓

1� exp

✓

�

c
(s1 � s0)

◆◆

= I1,

leads to

 � W (s1)� E
h

W
�

RA

⌧1

�

1{⌧A1 <1}
�

�

�

RA

0 = s1

i

� I1

� p (s1)W (1)� E
h

p
�

RA

⌧1

�

1{⌧A1 <1}
i

W (1)� 2⌘ � I1

= p1 (s1)W (1)� 2⌘ � I1.

Because p1 (s1) � p (s1) � ⌘ � (1� �µ/c) � ⌘, by choosing " and ⌘ small enough, we

obtain q (1) = /p1(s1) larger than W̄ (1).

Now by applying the Proposition (7) on the two functions W̄ (x) and V̄ (x) we come

to the contradiction. ⇤



CHAPTER 4

Optimal Dynamic reinsurance and investment with

constraints

In the previous chapter we showed that the HJB equation has a continuous solution

� (s). Because this solution is not always twice continuously di↵erentiable or even once

di↵erentiable, we consider it as a weak solution to HJB equation within the framework

of viscosity solutions. We showed under some assumptions that the value function is

the viscosity solution of our HJB equation (3.4). We developed a numerical algorithm

in section 3.3 and proved that for the optimal investment problem, our numerical

algorithm converges to the value function.

In this chapter, we apply our numerical method in section 3.3 and present a number

of numerical examples showing di↵erent analytical properties. Here must be mentioned

that there are still some technical gaps to prove the convergence of our numerical

method to the value function of HJB equation (3.4) in the optimal investment and

reinsurance problem.

In the first section, we consider the problem of optimal investment without reinsur-

ance. Using our numerical method for the case optimal investment without constraint

A (s) = (�1,1), in subsection 4.1.1, we can represent the corresponding HJB equa-

tion in the form of a quadratic equation. In subsection 4.1.2, we see that the proposed

numerical method is able to solve the problem of optimal investment even when the

solution � (s) is not smooth.

The problem of optimal reinsurance has been extensively considered in [42]. There-

fore, in this chapter we skip the problem of optimal reinsurance without investment and

just consider the combined optimization of investment and reinsurance. In sections 4.2,

4.3 and 4.4 we solve the problem optimal investment and reinsurance for three kinds

of reinsurance defined in section 2.3. Here we assume that the reinsurance company

calculates its premium via the expected value principle with safety loading ✓ > 0.

45
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During this chapter, we calculate the optimal strategies and survival probabilities

for the following two claim size distributions:

(1) An exponential claim size with parameter m and distribution function

F (y) = 1� e�my, m > 0, y 2 (0,1) .

This distribution is a typical case of light tails distributions.

(2) A Pareto claim size with parameter p and distribution function

F (y) = 1� (1 + y)�p , p > 1, y 2 (0,1) .

The Pareto distribution is a example from the family of subexponential dis-

tributions.

For the case of an exponential claim size distribution, the survival probability without

reinsurance and investment �0 (s), can be given explicitly:

(4.1) �0 (s) = 1� �

mc
exp

✓

�
✓

m� �

c

◆

s

◆

.

In fact, the analytical solution for �0 (s) exists only for claims distributions that are mix-

tures and combinations of exponential distributions (see [1]). For other distributions,

the formula (3.6) is so complicated and it should rather be viewed as basis for numerical

algorithms. However, it is common that instead of looking for survival probability �0 (s),

often one just look at its Cramér-Lundberg lower bound 1��0 (s) =  0 (s) � e�ls,

where l > 0 is the so-called adjustment coe�cient of risk process without investment

and reinsurance R0
t

, t � 0. Let ⇠ be the exponentially distributed random variable of the

inter-occurrence times between successive claims with mean ��1 > 0. The adjustment

coe�cient of risk process R0
t

is the positive solution of

(4.2) M
Z

(l) = 1,

where M
Z

(l) = E [exp (lZ)] is the moment generating function of random variable

Z = Y � c⇠. The equation (4.2) has just one positive solution l > 0 (see [35]). Since ⇠

has an exponential distribution, the equation (4.2) writes

�+ lc = �M
Z

(l) .
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The details of calculation formula (4.1) as well as Cramér-Lundberg inequality can

be found for example in [35] and [1]. With the help of adjustment coe�cient, for some

examples we calculate the asymptotic optimal investment and reinsurance strategy

when s ! 1.

Theorem 13. Let  0 (s) be the ruin probability of the risk process without invest-

ment and reinsurance. If the corresponding adjustment coe�cient l exists, then there

exists a constant k > 0, such that

(4.3) lim
s!1

 0 (s) e
ls = k.

Proof. The proof can be found, for instance, in [35], p.172. ⇤

Remark 4. The adjustment coe�cient does not exist for all claim size distribution

F
Y

. In order that the adjustment coe�cient exists, it is needed that the claim size

distribution F
Y

is light tailed in the sense of Remark 1. 4

4.1. Optimal investment

In this section we consider two cases: optimal unconstrained investment i.e. A (s) =

(�1,1) and optimal constrained investment without reinsurance. Di↵erent iterative

operators have been used by di↵erent authors [3, 23, 22] to solve certain special cases

of the problem of optimal investment. Here we briefly review each of these operators

and compare them with the numerical method presented in section (3.3). In the sequel

of this section we denote the no-reinsurance strategy by u0, that is g (u0, Y ) = Y and

h (u0) = 0, and use the norming V (0) = 1 and V
0
(0) = �/c.

4.1.1. Optimal investment without constraint. Let us first consider the un-

constrained case with A (s) = (�1,1). The HJB equation (3.10) is then simplified

to

(4.4) sup
A

⇢

1

2
�2A2V

00
(s) + (c+ rA)V

0
(s) + �E [V (s� Y )� V (s)]

�

= 0.

A maximizing A exists only if V
00
(s)  0 and is

(4.5) A (s) = � rV
0
(s)

�2V 00 (s)
.



48 4. OPTIMAL DYNAMIC REINSURANCE AND INVESTMENT WITH CONSTRAINTS

Since at point s = 0, A (0) = 0, we have V
00
(0) = �1. If we plug in the optimal

investment, then equation (4.4) reads

0 = �

ˆ 1

0
[V (s� Y )� V (s)] dF (y) + cV

0
(s)� 1

2

r2V
0
(s)2

�2V 00 (s)
.

For the reason of simplicity we shall substitute � and c by ��

2

r

2 and c�
2

r

2 , respectively,

and rewrite the HJB with this new notations as

(4.6) 0 = �

ˆ 1

0
[V (s� Y )� V (s)] dF (y) + cV

0
(s)� 1

2

V
0
(s)2

V 00 (s)
.

With integration by parts

(4.7) �

ˆ 1

0
[V (s� Y )� V (s)] dF (y) = �V (0) F̄ (s)�

ˆ
s

0
V

0
(s� y) F̄ (y) dy.

Plugging (4.7) into (4.6) and using transformation v (s) = V
0 �
s2
�

, we have

v
0
(s)

✓

1

s

�

cv (s)� �F̄
�

s2
��� 2�s

ˆ 1

0
xv (sx) F̄

�

s2
�

1� x2
��

dx

◆

= v (s)2 .

Using a contraction argument, Hipp and Plum (2000) showed that there exists a unique

solution v (s) for the above equation with

v (s) =
�

c
� �

c

sp
c
+ o

�p
s
�

as s ! 0.

But this contraction method does not generate a stable numerical algorithm for the

computation of optimal survival probability, since for the small amount of capital the

singularity of V
00
(0) is disturbing. For computational purpose, Hipp and Plum (2003)

introduced the function U (s) = A (s)2 and rewrite (4.6) as

(4.8) �

ˆ 1

0
[V (s� Y )� V (s)] dF (y) + cV

0
(s) = �1

2
V

0
(s)
p

U (s), s � 0,

where
p

U (s) denotes the positive root of U (s). If we assume that the distribution

function F (y) is smooth, we are able to di↵erentiate equation (4.8) and get for s � 0,

�

✓

V (0) f (s) +

ˆ
s

0
V

0
(s� y) f (y) dy � V

0
(s)

◆

+ cV
0
(s)

= �1

2
V

00
(s)A (s)� 1

2
V

0
(s)A

0
(s) .
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Using V
00
(s)A (s) = �V

0
(s) we arrive at

p

U (s)

✓✓

�+
1

2

◆

V
0
(s)� �V (0) f (s)� �

ˆ
s

0
V

0
(s� y) f (y) dy

◆

+ cV
0
(s)

(4.9) =
1

4
U

0
(s)V

0
(s) , s � 0.

The two interaction di↵erential equation (4.8) and (4.9) are equivalent to the equation

(4.6). Using this system of equation, we get rid of the problem of singularity at zero

and the result gives a stable numerical method. This approach can only be used in the

problem of optimal unconstrained investment, where one can easily insert the optimal

investment (4.5) into HJB equation (4.4).

Let us now return to the numerical approach introduced in section 3.3. Using the

approximations (3.23), (3.22) and (3.21), the equation (4.6) can be simplified into the

following quadratic equation

(4.10) ↵1V
0
(s)2 + a1 (s)V

0
(s) + b1 (s) = 0,

where

↵1 = c� 1

2
(�+ 1)�,

a1 (s) = � (G
u0 (s)� V (s��))� (c� ��)V

0
(s��) ,

b1 (s) = ��V 0
(s��) (G

u0 (s)� V (s��)) ,

and

G
u0 (s) =

i

X

j=1

V ((i� j)�) Pr {(j � 1)� < Y  j�} .

Notice that (for small �) ↵1, b1 (s), �a1 (s) > 0, and since V
0
(s) is minimized we

obtain

(4.11) V
0
(s) = �a1 (s)

2↵1
�
s

a1 (s)
2

4↵2
1

� b1 (s)

↵1
.

If in (4.6) we approximate V
0
(s) by V

0
(s��)+�V

00
(s) and solve for V

00
(s) we derive

the following quadratic equation

(4.12) ↵2V
00
(s)2 + a2 (s)V

00
(s) + b2 (s) = 0, 0 < s 2 D,
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where

↵2 = c�� 1

2
(�+ 1)�2,

a2 (s) = � (G
u0 (s)� V (s��)) + cV

0
(s��)� (�+ 1)�V

0
(s��) ,

b2 (s) = �1

2
V

0
(s��)2 .

For small �, we have ↵2,�b2 (s) > 0, and from (4.6) a2 (s)  0, we get

(4.13) V
00
(s) = �a2 (s)

2↵2
�
s

a2 (s)
2

4↵2
2

� b2 (s)

↵2
.

At s = �, the equation (4.12) reads

0 = ↵V
00
(�)2 + V

00
(�)

✓

�F (�)� (�+ 1)�
�

c

◆

� �2

2c2
.

Letting � ! 0, we have

a2 (�)

2↵2
! �

c

✓

f (0)� �

c
� 1

c

◆

.

Hence from (4.13)

(4.14) lim
�!0

p
�V

00
� (�) =

�

c
p
2c

,

which is the same results as in Hipp and Plum 2000.

Remark 5. For s = �, the relation (3.25) writes

V
00
(�) = inf

A

��F (�)�A�

c

+ �

2

c

�

� (c+A� ��) + 1
2A

2
.

Di↵erentiating with respect to A, the optimal A must satisfy

1

2
A2 +A

✓

�F (�)� �

c
�

◆

�� (1� F (�)) = 0.

This yields A ! p
2c� when � ! 0 which corresponds to (4.14). 4

Hipp and Schmidli [24] studied the asymptotic behavior of optimal survival proba-

bility for the light tail claim distribution. They first considered a constant investment

strategy A, and defined random variable Z := Y � (c+ rA) ⇠ � �AW (⇠) where the

random variables ⇠ and W (⇠) are, respectively, exponentially distributed with mean

��1 > 0 and normally distributed with mean 0 and variance ⇠. The adjustment coef-

ficient of risk process with constant investment strategy, A, is the positive solution of
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equation

M
Z

(l) = 1,

for l. Since ⇠ ⇠ exp (�) and W (⇠) ⇠ N (0, ⇠), the above equation reads

(4.15)
1

2
�2A2l2 � (c+ rA) l + �M

Y

(l)� � = 0.

Note that the above equation corresponds to the HJB equation (4.4) with V (s) =

1 � e�ls and a constant strategy A. Let l (A) be the solution of equation (4.15). In

order to obtain an asymptotically optimal constant strategy, A⇤, among all constant

strategies, we need to find l⇤ = sup
A�0

l (A). Since at l⇤, the left hand side of equation

(4.15) is nonnegative, the equation (4.15) gets its minimum at the optimal constant

strategy. Therefore, A⇤ = r

l

⇤
�

2 which is the minimizer of

inf
A

⇢

1

2
�2A2l2 � (c+ rA) l + �M

Y

(l)� �

�

= 0.

By inserting the optimal constant strategy, A⇤, into the above equation we have

(4.16)
1

2

r2

�2
+ cl⇤ + �� �M

Y

(l⇤) = 0.

Comparing l⇤ with the corresponding adjustment coe�cient l (0) without investment,

we have l⇤ = sup
A�0

l (A) � l (0). Moreover, the solution of (4.16) exists even if the

adjustment coe�cient l (0) does not exist. Similar to the theorem 13, Hipp and Schmidli

(2004) showed that, if the claim distribution is light tailed, then there exists a constant

k 2 (0,1) such that  (s) els ! k as s ! 1. Furthermore, they proved that the

optimal strategy A (s) converges to the optimal constant strategy A⇤ = r

l

⇤
�

2 as s ! 1.

In the following examples we choose � = 0.0001, � = 1, c = 2.

Example 14. For the first numerical example we consider the exponential claim

size with mean 1. The premium income is c = 2 and the survival probability without

investment at s = 0 is then �0 (0) = 0.5. In figure (1) the optimal survival probability

as well as survival probability without investment is depicted. For start capital zero

the survival probability increases by about one third and reaches 0.64 due to optimiza-

tion. Since the exponential distribution is a light tail distribution, the optimal ruin

probability goes to zero exponentially fast for s ! 1.
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Figure 1. � (s) for exponential distribution claim size Y .
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Figure (2) gives the optimal amount of investment A. For small s the optimal

investment strategy is highly leveraged. For s ! 1, the asymptotic optimal investment

can be computed by solving (4.15). For the exponential distribution with mean 1, we

obtain

M
Y

(l) =
1

1� l
.

Thus from (4.15), we have lim
s!1

A (s) ⇡ 1.562.

Example 15. Consider Pareto distributed claim sizes with parameter p = 2. The

premium income is c = 2 and from (3.8), the survival probability without investment

at point s = 0 is �0 (0) = 0.5. Figure (3) depicts the optimal survival probability as well

as survival probability without investment for s 2 [0, 30]. It is obvious that the optimal

investment gives a considerably higher survival probability; specifically for start capital

zero the optimal survival probability growth to 0.65.

Figure (4) shows the optimal investment strategy A (s) divided by s for s 2 [0, 30];

for s  1.395 the optimal strategy is to invest more than the surplus, that is A(s)/s > 1.

For s ! 1 we have A(s)/s ! 0.342. Gaier and Grandits (2002) showed that if the claim

size Y with the distribution function F (y) satisfies

lim
x!1

F (tx)

F (x)
= tp,
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Figure 2. A (s) for exponential distribution claim size Y .
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Figure 3. � (s) for Pareto distributed claim size Y .
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then for s ! 1,
A (s)

s
! r

�2 (1� p)
.

Using the parameters in this example we obtain p = �2 and for s ! 1, A(s)
s

! 1
3 .



54 4. OPTIMAL DYNAMIC REINSURANCE AND INVESTMENT WITH CONSTRAINTS

Figure 4. Optimal ratio of investment to initial capital, A(s)/s, for
Pareto distributed claim size Y .
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4.1.2. Optimal investment with constraint. Azcue and Muler 2009 solved the

problem of optimal investment under the investment constraint set A (s) = [0, as] for

a > 0. The maximizer of HJB equation

(4.17) sup
A2A(s)

⇢

1

2
�2A2V

00
(s) + (c+ rA)V

0
(s) + �E [V (s� Y )� V (s)]

�

= 0,

is either A (s) = � rV

0
(s)

�

2
V

00 (s)
or A (s) = as or A (s) = 0. The HJB equation (4.17) can be

rewritten as

0 = sup
A2A+

✓

V
0
(s)A2 (s)H

A

(s) + 2�

ˆ
s

0
H

A

(x)E [V (x� Y )� V (x)] dx

◆

,

where A+ is the set of all piecewise continuous functions satisfying

0  A (s)  as and inf
s

A (s)

s
> 0,

and the function H
A

(s) is specified by

H
A

(s) =
1

A2 (s)
exp

✓ˆ
s

1

2 (c+ rA (x))

�2A2 (x)
dx

◆

.
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Define operator T in [0,1) as

(4.18) Tw (s) = inf
A2A+

2�
´
s

0 H
A

(x)E [W (x� Y )�W (x)] dx

�2A2 (s)H
A

(s)
,

where W (x) = 1 +
´
x

0 w (t) dt. Azcue and Muller proved that there exists a unique

twice di↵erentiable solution to (4.17). They also showed that

(4.19) lim
s!0

V
00
(s) =

�

c

✓

�

c
� ar

c
� f (0)

◆

,

and found an interval [0, "), " > 0 where A (s) = as, s 2 [0, ").

For the numerical purpose, one can rewrite the HJB equation (4.17) as

(4.20) V
00
(s) = inf

A2A(s)

2�E [V (s)� V (s� Y )]� 2 (c+ rA)V
0
(s)

�2A2
, s > 0,

and use it for s > 0 (see [5]). The equation (4.20) is formally true for s  ", but it

results to V
00
(0) = �1, also in the case with constraint which from (4.19) can not be

true. The operator (4.20) also fails in case without smooth value functions.

Consider now a general constraint set A (s) which is time consistent in the sense of

subsection 2.4.1 and return to the numerical method defined in section 3.3, that is

V
0
� (s) = inf

A2A(s)

�� (V� (s��)�G
u0 (s)) +

1
2�

2A2V
0
� (s��)

� (c+ rA� ��) + 1
2�

2A2
,

with norming V (0) = 1 and V
0
(0) = �/c. For s = �, from (3.25) we have

(4.21) V
00
(�) = inf

A2[0,a�]

��F (�)� rA�

c

+ �

2

c

�

� (c+ rA� ��) + 1
2�

2A2
.

From the Remark (5), the optimal investment is A = as. Inserting the optimal invest-

ment into (4.21) and letting � ! 0 we obtain (4.19).

Example 16. As a numerical example, we first calculate the optimal survival prob-

abilities for constraints a = 0.2, 1 when the claim sizes are exponentially distributed

with mean 1. We choose � = 0.0001, � = 1, c = 2 and for the sake of comparison, we

plot in figure 5 the corresponding two optimal survival probabilities as well as the op-

timal survival probabilities in the unconstrained case (a = 1) and survival probability

without investment (a = 0).

The optimal amount of investments for a = 0.2, 1 and1 are depicted in Figure 6.

As it is shown in [3], for small " > 0, the optimal investment strategy with constraint
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Figure 5. � (s) for exponential claim size distribution Y .
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Π (s) = ([0, s ], [0, 1])

Π (s) = ([0, 0.5s ], [0, 1])

is to invest A (s) = as, s 2 [0, "). It can be seen that the smaller the a, the larger the ".

Here " = 7.8 for a = 0.2 and " = 1.5 for a = 1. Similar to the Example 14, for s ! 1
the optimal strategies for all values of a tends to be constant at A (s) = 1.561. Similar

to the theorem 6 in [24], we can deduce that for large s, the asymptotic behavior of

� (s) in the constrained cases coincides with the one in the unconstrained case (see

Figure 5).

Example 17. We assume that Y is Pareto distributed with parameter p = 2. We

choose the same parameters as in Example 16. We calculate the optimal amount of

investment with two di↵erent constraints a = 0.2 and 1 and compare it with the case

investment without constraint (see Figure 7). In the case A (s) = [0, s], the optimal

ratio of investment A(s)/s converges to 1/3 as s ! 1, and so the survival function for this

constrained case coincides with the one for the unconstrained case for s large enough

(see Figure 8). For the constraint set A (s) = [0, 0.2s], however, the optimal ratio of

investment is A(s)/s = 0.2 for s > 0.

In the next example we see that �
00
(s) is not continuous.

Example 18. Assume that Y is exponentially distributed with mean 1 and let

A (s) = [0, 0.2s], for 0 < s < 0.5 and A (s) = (�1,1), for s � 0.5. Note that this
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Figure 6. A (s) for exponential claim size distribution Y .
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Figure 7. A (s) for Pareto distributed claim size Y .
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set of constraint is not satisfying the assumption in the theorem 6. Set the parameters

� = 1, c = 0.5, r = �2 = 1 and choose � = 0.0001. There is a jump in the function

�
00
(s) as well as A (s), at the point where the feedback function jumps (see Figure 9
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Figure 8. � (s) for Pareto distributed claim size Y .
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and 10). Note that the equation (4.19) yields

lim
s!0

�
00
(s) = lim

s!0

V
00
(s)

V (1)
=

1

V (1)

1

0.5

✓

1

0.5
� 0.2

0.5
� 1

◆

=
1.2

V (1)
> 0.

Here we have �
00
(s) = V

00
(s)

V (1) = 0.1749V
00
(s).

The solution of HJB equation under the constraint set A (s) = [0, 0.2s], s � 0, is

twice continuously di↵erentiable (see [3]). Thus we can find an interval [0, "), " > 0, on

which �
00
(s) � 0. On the other hand, for the constraint set A (s) = (�1,1), it holds

�
00
(s) < 0, for s � 0. Hence, for the constraint sets of the form

A (s) =

8

>

<

>

:

[0, 0.2s] 0 < s < "

(�1,1) s � ",

by choosing small enough " > 0, we have �
00
("�) 6= �

00
("+).

In the following example we construct the admissible set of strategy A (s) in such

a manner that �
0
(s) is not continuous. Notice that the constraint set below does not

fulfill the assumptions in the theorem 6 and Proposition 7.

Example 19. We use the same parameters as in Example 16, but we redesign the

set of admissible strategy as A (s) = (�1,1), 0 < s < 0.5, A (s) = {0}, s � 0.5. The
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Figure 9. �
00
(s) for A (s) = [0, 0.2s], for 0 < s < 0.5 and A (s) =

(�1,1), for s > 0.5.
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Figure 10. A (s) for A (s) = [0, 0.2s], for 0 < s < 0.5 and A (s) =
(�1,1), for s > 0.5.
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function �
0
(s) for s 2 [0, 4] is drawn in figure 11. There is a jump at s = 0.5 where the

feedback function jumps. In fact, from (4.6) for s < s0 where A (s) = (�1,1) we can
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Figure 11. �
0
(s) for A (s) = (�1,1), 0 < s < 0.5, A (s) = {0}, s � 0.5.
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write

�
0
(s0�) = �

� (s0)�G
u0 (s0)

c+ 1/2A (s0)
,

while

�
0
(s0+) =

�

c
(� (s0)�G

u0 (s0)) 6= �
0
(s0�) ,

if for s � s0, A (s) = {0}.

Next, we present an example that does not have optimal strategy for no s � 0. The

reader must notice again that the constraint set below does not satisfy the assumptions

in the theorem 6 and Proposition 7.

Example 20. We let A (s) = (�1, s], s > 0, A (0) = {0} and assume that the

risky asset governed by geometric Brownian motion with drift r = 0.02 and volatility

� = 0.1. Moreover, we assume that Y is exponentially distributed with mean 1 and

choose c = 0.05, � = 0.09 and � = 0.001. For small value of s say 0 < s  s0, we have

�
00
(s) = 0 and optimal strategy in this interval is A (s) = �1. For s  s0 we have

�
0
(s) = �

0
(0) = � (0) �

c

and � (s) = � (0)
�

1 + s�
c

�

, and therefore s0 can be computed by

s0 = inf

⇢

s > 0 : �E [� (s)� � (s� Y )]� (c+ rs) � (0)
�

c
< 0

�

= 1.593.

The function �
00
(s) and A (s) are given in figure 12 and figure 13, respectively.
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Figure 12. �
00
(s) for exponential claims with A (s) = (�1, s].
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A (s) = (−∞, s ]

Figure 13. A (s) for exponential claims with A (s) = (�1, s].
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In the next example we solve the optimal investment problem for distribution having

isolated point with positive mass.

Exercise 21. We let the claim size probability mass function be Pr {Y = 1} = 1

and set the parameters as follows: � = 1, c = 2, r = 1, � = 1. We select� = 0.0005 and
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use our numerical method to solve the optimal investment problem for two constraint

sets A1 (s) = (�1,1) and A2 (s) = [0, s].

The optimal investment A (s), and the function �
00
(s), for the two constraint sets

A1 and A2, are plotted in figure 14 and 15, respectively. In the interval [0, 1), the

optimal investment is highly leveraged for the unconstrained case A1, and A (s) = s

for the constrained set A2. This is because, in this interval the insurer gets ruined with

probability one if a claim occurs, that is E [� (s� Y )] = 0. Thus, for s 2 [0, 1) the

insurer’s goal is to achieve capital one as fast as possible.

In the constrained set A2 (s) = [0, s], for s 2 [0, 1), �
00
(s) = 0 and therefore � (s) =

� (0) (1 + s/c). This can be seen by inserting A (s) = s and applying the operator 4.18.

Note that in the operator 4.18 for the parameters � = r = � = 1 and A (s) = s, we

obtain

H
A

(s) = exp

✓

2c� 2c

s

◆

, s 2 [0, 1) ,

and hence

w (s) =
1

c
.

At point s = 1, �
00
(1) tends to minus infinity and therefore the optimal investment

is A (1) = 0, for both constraint sets A1 and A2. Note that for A (1) 6= 0, the ruin

probability is one if a claim happens because of the fluctuation of the Wiener process.

So, if c is considerably larger than �, then the optimal is to be risk averse and not to

invest in risky asset.

As s ! 1 the optimal investments for the two constrained sets tends to be constant.

Again, with the same argument used in Example 14 by solving equation (4.16), we can

find the asymptotic optimal investment. The adjustment coe�cient l⇤ for this example

is 1.507 and the asymptotic optimal strategy is lim
s!1

A (s) = 0.663.

4.2. Optimal proportional reinsurance with investment

In this section we assume that the part of claim paid by insurer is g (Y,↵) = ↵Y ,

0  ↵  1 and the rest of it, i.e. (1� ↵)Y , will be paid by reinsurance. For this,

insurer pays reinsurance premium based on expected value principle, i.e. h (↵) =

(1� ↵) (1 + ✓)�E [Y ] where ✓ is the reinsurance safety loading. Notice that the rein-

surance safety loading ✓ must be always more than the first insurance safely loading
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Figure 14. A (s) for claim size probability mass function Pr {Y = 1} = 1.
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A (s) = (−∞,∞)

A (s) = [0, s ]

Figure 15. �
00
(s) for claim size probability mass function Pr {Y = 1} = 1.
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A (s) = (−∞,∞)

A (s) = [0, s ]

⌘, otherwise the insurance company can transfer the whole risk to the reinsurance

company and still receive a positive return without any risk.
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The set of admissible strategy is ⇧ (s) = (A (s) , [0, 1]) 2 R2 and the HJB equation

to be solve for s � 0 is

(4.22) sup
(A,↵)2(A(s),[0,1])

{1
2
�2A2V

00
(s) + (c� (1� ↵) ⇢�E [Y ] + rA)V

0
(s)

+�E [V (s� ↵Y )� V (s)]} = 0,

where ⇢ = (1 + ✓). We use again the norming V (0) = 1 and from (3.20), V
0
(0) = �/c.

Consider now the unconstrained investment, i.e. ⇧ (s) = ((�1,1) , [0, 1]). If we

plug in the optimal investment A (s) = � rV

0
(s)

�

2
V

00 (s)
into (4.22), we get for s � 0,

(4.23)

sup
↵2[0,1]

(

�1

2

r2V
0
(s)2

�2V 00 (s)
+ (c� (1� ↵) ⇢�E [Y ])V

0
(s) + �E [V (s� ↵Y )� V (s)]

)

= 0.

Rearranging above equation we have

(4.24)
V

00
(s)

V 0 (s)2
=

r2

2�2
1

sup
↵

{(c� (1� ↵) ⇢�E [Y ])V 0 (s) + �E [V (s� ↵Y )� V (s)]} .

Integration yields

(4.25)

V
0
(x) =

 

r2

2�2

ˆ
x

0

1

inf
↵

{�E [V (s)� V (s� ↵Y )]� (c� h (↵))V 0 (s)}ds+
c

�

!�1

.

Schmidli (2002) applied iterative operator theory in order to prove that there exists a

smooth solution to (4.25). He also showed that there is always an interval [0, "), " > 0,

on which the optimal is not buying reinsurance. So, on this interval, one can use the

system of equation (4.8) and (4.9) and numerically calculate the optimal solution. For

s � ", the numerical solution can be iterated using (4.25). This numerical method can

only be applied if A (s) = (�1,1).

Let A and ↵ be respectively, an arbitrary constant investment and reinsurance

strategy. Define Z := ↵Y � (c� h (↵) + rA) ⇠ � �AW (⇠), where the random variables

⇠ and W (⇠) are, respectively, exponentially distributed with mean ��1 > 0 and nor-

mally distributed with mean 0 and variance ⇠. If M
↵Y

(l) exists, then the adjustment

coe�cient l = l (A,↵) > 0 satisfies

(4.26)
1

2
�2A2l2 � (c� h (↵) + rA) l + �M

↵Y

(l)� � = 0.
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For the problem of optimal constant investment and reinsurance strategies, the ad-

justment coe�cient l⇤ must satisfy l⇤ = sup
A�0,1�↵�0

l (A,↵). Since the left hand side

of equation (4.26) is nonnegative for l, finding l is equivalent to solving the following

equation

inf
A�0,1�↵>0

⇢

1

2
�2A2l2 � (c� h (↵) + rA) l + �M

↵Y

(l)� �

�

= 0.

By inserting the optimal constant strategy, A⇤ = r

l

⇤
�

2 , into the above equation we have

(4.27) inf
1�↵>0

⇢

1

2

r2

�2
+ (c� h (↵)) l⇤ + �� �M

↵Y

(l⇤)

�

= 0.

Di↵erentiating above relation with respect to ↵, for h (↵) = (1� ↵) ⇢�E [Y ] we have

(4.28) l⇤⇢�E [Y ] = �

ˆ 1

0
l⇤yel

⇤
↵ydF (y) .

For
´1
0 l⇤yerl

⇤
�

�2
↵ydF

Y

< 1, the above equation has a solution ↵⇤. Comparing l⇤

with the corresponding adjustment coe�cient l (0) without investment, we have l⇤ =

sup
A�0

l (A,↵) � l (0, 1).

Let  (s) be the optimal ruin probability. With the exact same argument used in

[24], one can show that there exists a constant k 2 (0,1) such that lim
s!1

 (s) el
⇤
s = k.

A direct result of this is that the optimal investment and reinsurance strategies converge

to the optimal constant investment and reinsurance strategies, i.e. lim
s!1

A (s) = A⇤ and

lim
s!1

↵ (s) = ↵⇤.

Recalling the approximation defined in section (3.3), for s = i�, i = 1, 2, ..., we

have

(4.29) V
0
� (s) = inf

⇡2⇧

�� (V� (s��)�G
↵

(s)) + 1
2�

2A2V
0
� (s��)

� (c� h (↵) + rA� ��) + 1
2�

2A2
,

where

G
↵

(s) =
X

{↵ji}

V�

✓

(i� 1)��
�

↵j

�

⌫

�

◆

Pr {(j � 1)� < Y  j�} , j = 0, 1, 2, ....

Note that G
↵

(s) ! 0 as s ! 0. So, for small s the optimal reinsurance strategy is

buying no-reinsurance which maximizes the denominator in (4.29).



66 4. OPTIMAL DYNAMIC REINSURANCE AND INVESTMENT WITH CONSTRAINTS

We now illustrate the result of using our numerical method (4.29). In the following

examples we choose � = 0.001, � = 1, c = 2, ⇢ = (1 + ✓) = 2.5, r = � = 1 and

calculate the survival probabilities for the following scenarios:

(1) ⇧1 (s) = ({0} , [0, 1]): optimal reinsurance without investment,

(2) ⇧2 (s) = ((�1,1) , {1}): optimal investment without constraint,

(3) ⇧3 (s) = ((�1,1) , [0, 1]): optimal reinsurance and investment without con-

straint,

(4) ⇧4 (s) = ([0, s] , [0, 1]): optimal reinsurance and investment with constraint

A (s) = [0, s], and

(5) ⇧5 (s) = ([0, 0.5s] , [0, 1]): optimal reinsurance and investment with constraint

A (s) = [0, 0.5s].

We also denote the optimal investment and reinsurance for each above scenarios with

A
i

(s) and ↵
i

(s), i = 1, ..., 5, respectively.

Example 22. Consider exponentially distributed claim size with mean 1. The

optimal strategies for di↵erent above sets of constraints are given in Figures 16 and 17.

As we expected, there always exists an interval [0, "), where the optimal reinsurance

strategy is no-reinsurance. In this interval the optimal investment strategies are as the

same as Example 16.

In the case reinsurance and investment (scenarios i = 3, 4 and 5), from certain point

s0,i > 0, the optimal is to buy reinsurance. In this example s0,3 = 0.19, s0,4 = 0.485,

s0,5 = 0.725. From point s0,i, i = 3, 4, 5, the insurer must reduce its investment in risky

asset in order to finance its reinsurance costs (see Figure 16).

For exponential distribution with mean 1/m, the equation (4.28) reads

l⇤⇢
1

m
=

ˆ 1

0
l⇤mye(l

⇤
↵�m)ydy.

This equation, for ↵ < m

l

, has the solution

(4.30) ↵⇤ = m
⇢�p

⇢

l⇤⇢
.

Hence, the equation (4.27) at ↵⇤ reads

(4.31)
1

2

r2

�2
+

✓

c� (1� ↵⇤) ⇢�
1

m

◆

l⇤ + � =
�m

m� l⇤↵⇤ .
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Figure 16. A (s) for exponential claim size distribution Y .
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Figure 17. ↵ (s) for exponential claim size distribution Y .
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Using the parameters in this example, by solving the system of two equations (4.30)

and (4.31), we obtain for i = 3, 4, 5, A
i

(s) ! 0.6 and ↵
i

(s) ! 0.22 as s ! 1. For

the optimal constant reinsurance without investment ↵⇤
1, instead of equation (4.31), we
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Figure 18. � (s) for exponential claim size distribution Y .
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have
✓

c� (1� ↵⇤
1) ⇢�

1

m

◆

l⇤ + � =
�m

m� l⇤↵⇤
1

.

Thus we can deduce from the above equation and (4.30), ↵1 (s) ! 0.55 as s ! 1.

Figure 18 depicts the survival probabilities for s 2 [0, 5]. It is clear that the com-

bination of investment and reinsurance for s � 0 significantly increase the survival

probability.

Example 23. Consider Pareto distributed claim size distribution with parameter

p = 2, so E [Y ] = 1. Figure 21 shows the optimal reinsurance strategies ↵
i

(s) for the

scenarios i = 1, 3, 4, 5. As we expected, for given constraint set ⇧
i

(s), there exists

an interval [0, s0,i) where the optimal reinsurance strategy is no reinsurance. Here

s0,1 = 1.77, s0,3 = 0.53, s0,4 = 0.68 and s0,5 = 1. For given scenario i, from the point

s0,i the insurer can a↵ord reinsurance and, to compensate the reinsurance cost, the

insurer must invest less than A2 (s), the optimal investment without reinsurance (see

figure 19). The interesting fact for the combined set of investment and reinsurance, is

that the proportion after a slight increase, gradually decreases and then jumps to zero

(see figure 20). Thus, from some point s1,i > s0,i, i = 3, 4, 5, the whole insurance risk

is transferred to the reinsurer and the insurance premium rate left to the insurer is
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then �1/2. Since for s > s1,i the insurer is left with the investment risk, from the HJB

equation (4.22) as s ! 1 we get

(4.32) c� �⇢E [Y ] +
1

2
A = 0,

and thus for i = 3, 4, 5, A
i

(s) ! 1 as s ! 1. In this example s1,3 = 7.18, s1,4 =

7.21 and s1,5 = 7.34. We can also conclude that under the optimal investment and

reinsurance the survival probabilities goes to one exponentially fast (see [38], Example

5.2, where a di↵erent numerical method has been used).

For the case optimal reinsurance without investment, since E
⇥

el↵Y
⇤

is not bounded

for l,↵ > 0, the equation

(c� (1� ↵⇤
1) ⇢�E [Y ]) l⇤ + � = M

↵

⇤
1Y

(l⇤)

does not have a solution. However, we can still compute the asymptotic optimal reinsur-

ance strategy for subexponential distribution by applying the following approximation

for ruin probability  (s) (see [14] and [42]):

(4.33) lim
s!1

 (s)

H̄ (s)
=

q

1� q
,

where q = �E[Y ]
c

and H̄ (s) = 1
E[Y ]

´1
s

F̄ (y) dy.

Let ↵1 2 [0, 1] be a constant proportional reinsurance strategy, then the ruin hap-

pens if Y > s/↵1. Therefore, from (4.33) we have

lim
s!1

1� �1 (s)
1

E[Y ]

´1
s

/↵1
F̄ (y) dy

=
�↵1E [Y ]

c� ⇢� (1� ↵1)E [Y ]
.

For the Pareto distributed claim size with parameter p = 2, holds 1/E[Y ]
´1
s

/↵1
F̄ (y) dy =

↵1/(↵1+s). Hence for the large values of s, we yield

�1 (s) ⇡ 1� ↵1

(c� ⇢ (1� ↵1))
⇣

1 + s

↵1

⌘ .

The survival probability is maximum when ↵1

(c�⇢(1�↵1))
⇣
1+ s

↵1

⌘ is minimum, so

↵1 =
2 (✓ � ⌘) s

✓s� ✓ � ⌘
,
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Figure 19. A (s) for Pareto distributed claim size Y .
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Figure 20. ↵ (s) for Pareto distributed claim size Y .
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and for s ! 1 we find the asymptotic optimal reinsurance

↵1 = min

⇢

2 (✓ � ⌘)

✓
, 1

�

.

Hence, in this example, ↵1 (s) ! 0.55 as s ! 1.
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Figure 21. � (s) for Pareto distributed claim size Y .
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4.3. Optimal XL reinsurance with investment

Recall that in the XL reinsurance with priority 0  M  1, if a claim Y happens,

then the first insurer pays g (Y,M) = min {Y,M}, and the rest i.e. (Y �M)+ =

max {Y �M, 0}, will be payed by the reinsurer. The set of admissible strategy is then

⇧ (s) = (A (s) ,R+) 2 R2 and the HJB equation to be solve for s � 0 is

(4.34) sup
(A,M)2(A(s),R+)

{1
2
�2A2V

00
(s) + (c� h (M) + rA)V

0
(s)

+�E [V (s�min {Y,M})� V (s)]} = 0.

We consider that the reinsurance premium is calculated using the expected value prin-

ciple, i.e. h (M) = �⇢E
⇥

(Y �M)+
⇤

, ⇢ = (1 + ✓) > 1. With integration by part

h (M) = �⇢

ˆ 1

M

(1� F (y)) dy.

Consider now the three following cases:

(1) M > s: Since the term E [V (s�min {Y,M})] does not depend on M , the

optimal is no-reinsurance, i.e. M = 1.

(2) M = s: This strategy can be interpreted as the cheapest reasonable reinsur-

ance, since for M > s optimal is buy no-reinsurance.
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(3) M  s: Here with integration by parts we have

(4.35) E [V (s�min {Y,M})� V (s)] = �
ˆ

M

0
V

0
(s� y) (1� F (y)) dy.

Di↵erentiating argument (4.34) respect to M , we also have the following nor-

mal equation

(4.36) ⇢V
0
(s) = V

0
(s�M) .

Therefore, we can restrict ourselves to the set ⇧ (s) = (A (s) , [0, s] [+1). For small

s, since for M  s the term in (4.35) varies slowly whereas h (M) varies quickly, there

exists a neighborhood of zero such that optimal is no-reinsurance, i.e. M = 1.

We now study the optimal constant investment and reinsurance strategies. Choose

arbitrary constant investment and reinsurance strategiesA andM . Let Z := min {Y,M}�
(c� h (M) + rA) ⇠ � �AW (⇠), where the random variables ⇠ and W (⇠) are, respec-

tively, exponentially distributed with mean ��1 > 0 and normally distributed with

mean 0 and variance ⇠. If Mmin{Y,M} (l) exists then the adjustment coe�cient l =

l (A,M) > 0 satisfies

(4.37)
1

2
�2A2l2 � (c� h (M) + rA) l + �Mmin{Y,M} (l)� � = 0.

This equation corresponds to the HJB equation (4.34) with the solution V (s) = 1�e�ls

and constant strategies A and M . The adjustment coe�cient l⇤ = sup
A,M

l (A,M) is then

the solution of our optimal problem. The left hand side of equation (4.37) is nonnegative

for l⇤, thus finding l⇤ is equivalent to solving the following equation

inf
A,M

⇢

1

2
�2A2l2 � (c� h (M) + rA) l + �Mmin{Y,M} (l)� �

�

= 0.

Plugging in the optimal constant strategy, A⇤ = r

l

⇤
�

2 , into the above equation, it holds

(4.38) inf
M

⇢

1

2

r2

�2
� (c� h (M)) l⇤ + �� �

ˆ
M

0
el

⇤
ydF (y)� �

ˆ 1

M

el
⇤
MdF (y)

�

= 0.

Di↵erentiating above relation with respect to M , for h (M) = �⇢
´1
M

(1� F (y)) dy, we

have

(4.39) M⇤ =
ln (⇢)

l⇤
.
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With a similar argument used in [24] (see also [42]), for the optimal ruin probability

 (s) = 1 � � (s), one can show that there exists a constant k 2 (0,1) such that

lim
s!1

 (s) el
⇤
s = k. Moreover, lim

s!1
A (s) = A⇤ and lim

s!1
M (s) = M⇤.

Letting V (0) = 1, (3.20) yields V
0
(0) = �/c. The numerical method in section (3.3)

reads

V
0
� (s) = inf

⇡2⇧

�� (V� (s��)�G
M

(s)) + 1
2�

2A2V
0
� (s��)

� (c� h (M) + rA� ��) + 1
2�

2A2
,

where for M = k�  s, we have

G
M

(s) =
k

X

j=1

V� ((i� j)�) Pr {(j � 1)� < Y  j�}+ V ((i� k)�) F̄ (M) .

We now present some numerical examples with the similar scenarios provided in Ex-

ample 22, which are

(1) ⇧1 (s) = ({0} , [0,1]): optimal reinsurance without investment,

(2) ⇧2 (s) = ((�1,1) , {1}): optimal investment without constraint,

(3) ⇧3 (s) = ((�1,1) , [0,1]): optimal reinsurance and investment without con-

straint,

(4) ⇧4 (s) = ([0, s] , [0,1]): optimal reinsurance and investment with constraint

A (s) = [0, s] and

(5) ⇧5 (s) = ([0, 0.5s] , [0,1]): optimal reinsurance and investment with constraint

A (s) = [0, 0.5s].

In the following examples we choose � = 0.001, � = 1, c = 2. We denote the optimal

investment and reinsurance for each above scenarios by A
i

(s) and M
i

(s), i = 1, ..., 5,

respectively.

Example 24. We let Y be exponentially distributed with mean 1 and set ⇢ = 4.

The survival probabilities for the above mentioned sets of constraints are given in figure

22. Because of the light tail property of exponential distribution, the ruin probabilities

for all above scenarios go to zero exponentially fast.

The optimal retention level M
i

(s), i = 1, 3, 4, 5, are given in figure 23. As we

expected, there is always an interval [0, s0,i) , for which the optimal is to keep the

whole risk, i.e. M
i

(s) = 1 for given scenarios i = 1, ..., 5. This interval is longer for

those scenarios with more restricted constraint. In some interval [s0,i, s1,i), s1,i > s0,i,

the optimal reinsurance strategy is M
i

(s) = s. For the constraint sets ⇧1, ⇧3, ⇧4
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Figure 22. � (s) for exponentially distributed claim size Y .
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and ⇧5, these intervals are respectively [1.389, 2.3), [0.644, 1.298), [0.799, 1.405) and

[0.945, 1.508). From the point s1,i, the insurer can a↵ord more expensive reinsurance,

that is M
i

(s) < s, and for s ! 1 the optimal M
i

(s) tends to be constant. For

exponential distribution with mean 1/m, the reinsurance premium is h (M) = �⇢

m

e�Mm

and for r 6= m,

Mmin{Y,M} (l) =
l

l �m
e(l�m)M � m

l �m
.

The equation (4.38) at M⇤ reads

(4.40)
1

2

r2

�2
� (c� h (M⇤)) l⇤ + � = �

ˆ
M

⇤

0
el

⇤
ydF (y) + �

ˆ 1

M

⇤
el

⇤
M

⇤
dF (y) .

Note that for optimal reinsurance without investment (scenario 1) the above equation

turns to

(4.41) c� �⇢

ˆ 1

M

⇤
F̄ (y) dy + � = �

ˆ
M

⇤

0
el

⇤
ydF (y) + �

ˆ 1

M

⇤
el

⇤
M

⇤
dF (y) .

Solving the system of two equations (4.40) and (4.39) under the optimal invest-

ment and reinsurance (scenarios 3, 4 and 5), we can calculate the asymptotic optimal

investment and reinsurance when s ! 1. So the asymptotic optimal investment and

reinsurance in this example for i = 3, 4, 5, are A
i

(s) ! 0.924 and M
i

(s) ! 1.28 (see
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Figure 23. M (s) for exponentially distributed claim size Y .
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Figure 24. A (s) for exponentially distributed claim size Y .
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also figure 24). For the case optimal reinsurance without investment, ⇧1, from the

equations (4.41) and (4.36), we get M1 (s) ! 2.07 as s ! 1.

Example 25. We let Y be Pareto distributed with the parameter p = 2 and set

⇢ = 3 and use our numerical method to calculate the optimal survival probabilities for
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the five given scenarios. Figure 25 gives the optimal reinsurance strategies for di↵erent

scenarios. As expected, there is an interval [0, s0,i) for the scenario i, i = 1, ..., 5, on

which optimal is buying no-reinsurance. Under the combined set of investment and

reinsurance, the constraint sets ⇧
i

, i = 3, 4, 5, for s 2 [s0,i, s1,i), s1,i > s0,i, we have

M
i

(s) = s and for s ! 1 the optimal reinsurance tends to be constant. In this

example, in the constraint sets ⇧3, ⇧4, and ⇧5, we obtain [0.515, 0.755), [0.625, 0.79)

and [0.815, 0.9), respectively.

Figure 26 gives the optimal survival probabilities. Having the possibility to invest

and reinsurance at the same time (scenarios 3-5) causes that the optimal investment

strategies A
i

(s), i = 3, 4, 5, converge to a constant for s ! 1. Hence, the optimal

survival probabilities for these scenarios goes to one exponentially fast (See Figure 27).

For these scenarios by solving the system of two equations (4.40) and (4.39) we can

calculate the optimal asymptotic investment and reinsurance strategies. For the Pareto

distribution with parameter p we have

Mmin{Y,M} (l) =
elM

(1 +M)p
+

ˆ
M

0
elyp (1 + y)�(p+1) dy

and

E [max {Y �M, 0}] = 1

(1 +M)p�1 (p� 1)
.

The given parameters in this example for i = 3, 4, 5, yield A
i

(s) ! 0.65 and M
i

(s) !
0.88. For the optimal reinsurance, scenario 2, from equations (4.41) and (4.39) we get

M1 (s) ! 2, as s ! 1.

4.4. Optimal limited XL reinsurance with investment

The XL reinsurance may become too expensive for those portfolio with heavy tail

severity distributions. Limited XL reinsurance as a special case of the XL reinsurance,

will retain the tail part of claim severity by some barrier L. A claim of size Y is divided

in the first insurer’s payment with g (Y, (M,L)) = min {Y,M}+(Y �M � L)+ and the

reinsurer’s payment min
�

L, (Y �M)+
 

. As a return, we assume that the insurance

company pays reinsurance premium h(M,L) according to the expected value principle,

i.e.

h(M,L) = �⇢E
⇥

min
�

L, (Y �M)+
 ⇤

, ⇢ = (1 + ✓) > 1.
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Figure 25. M (s) for Pareto distributed claim size Y .
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Figure 26. A (s) for Pareto distributed claim size Y .
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Applying integration by parts we have

h(M,L) = �⇢

M+Lˆ

M

1� F (y) dy.
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Figure 27. � (s) for Pareto distributed claim size Y .
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So in the limited XL reinsurance, the first insurer has two dimensional reinsurance

control process u = (M,L) where u 2 U = [0,1]⇥ (0,1]. The case no-reinsurance is

described by M = L = 1. The HJB equation (3.10) is now for s � 0

(4.42) sup
(A,M,L)2(A(s),U)

{1
2
�2A2V

00
(s) + (c� h (M,L) + rA)V

0
(s)

+�E [V (s� g(Y, (M,L)))� V (s)]} = 0.

The optimal dynamic limited XL reinsurance was studied by Vogt (2003). He

showed that having extra control variable L in limited XL reinsurance could bring

higher survival probability just in some cases.

For s > 0 we divide initial capital into three cases as follows:

(1) M (s) > s: In this case we have

E
⇥

V
�

s�min {Y,M}+ (Y �M � L)+
�⇤

=

ˆ
s

0
V (s� y) dF (y) .

So the optimal strategy is no-reinsurance i.e. M = L = 1 and h (1,1) = 0.

(2) M (s) = s: We can rewrite E [V (s� g (Y, (M,L)))] as

sˆ

0

V (s� y) dF (y) + (F (s+ L)� F (s))V (0) .
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and from normal equation for L < 1 we have

(4.43) ⇢V
0
(s) = V (0)

f (s+ L)

1� F (s+ L)
.

(3) M (s) < s: we can rewrite E [V (s� g (Y, (M,L)))] as

Mˆ

0

V (s� y) dF (y) + (F (M + L)� F (M))V (s�M) +

s+Lˆ

M+L

V (s� y + L) dF (y) .

From normal equation we have

(4.44) ⇢V
0
(s) = V

0
(s�M) ,

and for L < 1

(4.45) ⇢F (M + L)V
0
(s) = V (0) f (s+ L) +

s+Lˆ

M+L

V
0
(s� y + L) dF (y) .

Remark 6. At s = 0, the HJB equation (4.42) becomes

(4.46)

0 = sup
L

⇢

�V (0)F (L)� �V (0) + cV
0
(0)� V

0
(0) ⇢

✓ˆ
L

0
yf (y) dy + L (1� F (L))

◆�

.

The optimal reinsurance strategy is then either M⇤ (0) = L⇤ (0) = 1 (no-reinsurance),

which gives

V
0
(0) = V (0)

�

c
,

or M⇤ (0) = 0 and L⇤ (0) < 1, which gives

V
0
(0) = V (0) inf

L

⇢

�
1� F (L)

c� h (0, L)

�

< V (0)
�

c
.

From (4.43) and (4.46), for L⇤ := L⇤ (0) < 1 we obtain

(4.47) 0 = F (L⇤)� 1 +
cf (L⇤)

⇢ (1� F (L⇤))
� f (L⇤)

´
L

⇤

0 yf (y) dy

(1� F (L⇤))
� f (L⇤)L⇤.

4

Lemma 26. Assume that the HJB equation (4.42) has a solution V (s) which is

continuously di↵erentiable on (0, x), x > 0. If the reinsurance premium calculate via

expected value principle with fixed safety loading ⇢ > 1, then there exists an interval

[0, "), " > 0, on which the optimal retention is either M⇤ (s) = s or M⇤ (s) = 1.
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Proof. We already know that for M (s) > s, optimal is buying no-reinsurance

that is M⇤ (s) = 1. Assume by way of contradiction that for all " > 0 there exists

s < " such that M⇤ (s) < s. Then from normal equation we have for ⇢ = (1 + ✓) > 1,

⇢V
0
(s) = V

0
(s�M⇤) .

The term V

0
(s�M

⇤)

V

0 (s)
can be made arbitrary close to one by choosing s small enough

which is a contradiction to the fact that ⇢ > 1. ⇤

Similar to the Theorem 6.1.8 in [42], we can show that for exponentially distributed

claim sizes Y , the optimal barrier is L⇤ (s) = 1, s � 0 and consequently the solution

of the HJB equation (4.42) corresponds to the solution of the HJB equation (4.34).

Theorem 27. Consider the HJB equation (4.42) and assume that the claim size

distribution F
Y

is exponential with mean 1/m. If the reinsurance premium is given by

expected value principle with safety loading ✓ > 0, then for all s � 0 the solution of the

HJB equation (4.42) corresponds to the solution of the HJB equation (4.34).

Proof. We first show that for an arbitrary start capital s � 0, the optimal barrier

is L⇤ (s) = 1. Let M⇤ (s) 2 [0,1) be the optimal priority strategy and choose an

arbitrary investment strategy A 2 A (s). Then, for M⇤ (s) > s, it is obvious that

M⇤ (s) = L⇤ (s) = 1. If M⇤ (s) = s, then for the exponential claim size F
Y

, from the

normal equation (4.43), if L < 1, then we must have ✓ = 0, which is contradiction. If

M⇤ (s) < s, then from (4.45), for the exponential claim size distribution with mean 1/m

we get

V
0
(s) =

mV (s�M⇤ (s))� ´ s
M

⇤(s) V (s� y)m2e�m(y�M

⇤(s))dy

1 + ✓
.

The right hand side of the above equation does not depend on L, so the optimal L⇤ (s)

is 1. Because s and A (s) were chosen arbitrarily, we conclude that for the optimal

values A⇤ (s) and M⇤ (s) it holds L⇤ (s) = 1 and the solution of HJB equations (4.42)

and (4.34) correspond to each other. ⇤

Example 28. Let the claim size Y be Pareto distributed with parameter p = 2 and

assume that the reinsurance premium calculated via the expected value principle with

safety loading ✓ = 2.5, so ⇢ = (1 + ✓) = 3.5. Choose � = 1, c = 2 and set the step size

� = 0.005. We calculate numerically the optimal investment and reinsurance strategies
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Figure 28. L (s) for Pareto distributed claim size Y .
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for investment constraints sets A (s) = (�1,1), A (s) = [0, 0.3s] and A (s) = {0}.
The optimal barrier L⇤ (s) for given scenarios is plotted in figure 28. Since for the start

capital zero the optimal investment strategies for all set of investment constraints are

equal to zero, with the same argument in [42] by solving (4.47) the optimal barrier is

L⇤ (0) = exp

0

@

ln
⇣

� 1+✓

p(⌘�✓)

⌘

p� 1

1

A� 1,

if ✓ < 1+p⌘

p�1 . For ✓ � 1+p⌘

p�1 the optimal is to buy no-reinsurance, that is M⇤ (0) =

L⇤ (0) = 1. In this example, we have ⌘ = 1, and so L⇤ (0) = 0.1667. For s > 0, the

optimal barriers are increasing and tends to infinity.

Figure 29 shows the optimal priority strategies M⇤ (s) for di↵erent scenarios. As

expected from the theory, there is an interval [0, s0), s0 > 0, on which M⇤ (s) = s.

For s > s0, the optimal priority increases slowly and converges to a constant. Letting

L⇤ (s) ! 1 for s ! 1, similar to the example 24, by solving the equations (4.40)

and (4.39) for the combined set of investment and reinsurance we get M⇤ (s) ! 1.24

and A⇤ (s) ! 1 (see figure 30). We can therefore conclude that the optimal survival

probability goes exponentially fast to one as s ! 1 (see figure 31).

In the problem of optimal reinsurance without investment, from (4.41) and (4.39),

we find the asymptotic optimal priority M⇤ (s) ! 3 for s ! 1. So, in this case
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Figure 29. M (s) for Pareto distributed claim size Y .
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Figure 30. A (s) for Pareto distributed claim size Y .
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the optimal survival probability goes also exponentially fast to one for s ! 1. This

result was expected, because from the previous section , example 25, we know that the

survival probability for the optimal XL reinsurance goes also exponentially fast to one.

The survival probabilities for the given scenarios as well as �0 (s), the survival

probability without investment and reinsurance, are given in figure 31. It is obvious
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Figure 31. � (s) for Pareto distributed claim size Y .
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that the combination of investment and reinsurance significantly increases the survival

probabilities.

Example 29. We let the claim size Y follows the mixture of exponential and Pareto

distributions with distribution function

F
Y

(y) = 1� 0.1e�
1
2y � 0.9 (1 + y)�30 , y � 0.

We choose c = 0.4621, ⇢ = 3.5, � = 1 and � = 0.001. The optimal strategies are

calculated for the following constraint sets: ⇧1 (s) = ({0} , U), ⇧2 (s) = ((�1,1) , u0),

⇧3 (s) = ((�1,1) , U) and ⇧4 (s) = ([0, 0.3s] , U).

The optimal priorities, M (s), are plotted in figure 32. As expected from the lemma

26, for small initial capital, M⇤ (s) = s. Then, the optimal priority jumps to infinity at

some point s0. Hence for small values of s, insurer tries to eliminate the occurrence of

ruin due to the small claims. For the constraint sets ⇧1 and ⇧4, in which investment

is not allowed or, respectively, restricted by A (s) = [0, 0.3s], from s0 to some point

s1 > s0, the optimal is taking no-reinsurance, that is M (s) = L (s) = 1. This is

because, the insurer has enough capital to bear the small claims by itself and can save

money by not buying expensive reinsurance. The optimal priority then drops to some

M (s1) < 1 and tends to be constant as s ! 1. In this example, for constraint
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Figure 32. M (s) for mixture of exponential and Pareto distributed
claim size Y .
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set ⇧1 (respectively, ⇧4), s0 = 0.25, s1 = 1.83, M (s1) = 1.83 and lim
s!1

M (s) = 2.84

(respectively, s0 = 0.28, s1 = 0.57, M (s1) = 0.57 and lim
s!1

M (s) = 0.5).

In the unconstraint investment and reinsurance case, ⇧3, the optimal is always to take

reinsurance into account for s > 0, since the insurer can fully gain from investing in

risky asset and can a↵ord the reinsurance costs. As s goes to infinity, the optimal

priority converges to 0.5. It must be mentioned that the convergence values can be

obtained with the same method as in the previous example.

Figure 33 depicts the optimal barriers L (s). At s = 0 the optimal barrier is

L (0) = 0.218 for all sets of constraint with reinsurance. For the constraint set ⇧1

(respectively, ⇧4), as the start capital s grows, L (s) shrinks towards zero. Then at

point s0, in which the optimal priority M (s0) jumps to infinity, the optimal barrier

L (s0) jumps to infinity and never comes back.

In the unconstraint investment and reinsurance case, ⇧3, the optimal barrier L (s), for

the small initial capital stays at about 0.21. It, but, then suddenly increases and goes

to infinity and never returns back.

The optimal amount of investments, A (s), are shown in figure 34 for di↵erent

constraint sets. For s close to zero, it appears that the optimal investment in the case

⇧3, is more than the optimal investment in the case ⇧2. Thus for small initial capital,
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Figure 33. L (s) for mixture of exponential and Pareto distributed
claim size Y .
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insurer should take more investment risk in order to get away from zero as fast as

possible. As s ! 1, in the two cases ⇧3 and ⇧4, the optimizer function A (s) ! 0.4,

while, in the case ⇧2, the optimizer function A (s) ! 2.3. We can, therefore, deduce

that the the optimal survival probabilities go to one exponentially fast (See figure 35). It

must be mentioned that the convergence values can be obtained with the same method

as in the previous example.
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Figure 34. A (s) for mixture of exponential and Pareto distributed
claim size Y .
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Figure 35. � (s) for mixture of exponential and Pareto distributed
claim size Y .
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CHAPTER 5

The model with risk-free bond

In this chapter we take the risk free-bond, r0 > 0, into account. The risk process

(2.1) turns to

R⇡

t

= s+ ct+

ˆ
t

0
r0R

⇡

x

dx�
ˆ

t

0
h (u

x

) dx+

ˆ
t

0
(r � r0)Ax

dx

+

ˆ
t

0
�A

x

dW
x

�
N

t

X

i=1

g (Y
i

, u
T

i

�) .

Considering the general constraint set ⇧, the optimal dynamic survival probability,

� (s), satisfies the following HJB equation

sup
⇡2⇧

{1
2
�2A2�

00
(s) + (c� h (u) + r0s+ (r � r0)A) �

0
(s)

+�E [� (s� g (Y, u))� � (s)]} = 0.

We first study the problem of optimal investment without reinsurance that is

⇧ (s) = (A (s) , u0), where g (Y, u0) = Y and h (u0) = 0. W begin with the opti-

mal unconstraint investment problem, i.e. A (s) = (�1,1). In this case, the HJB

equation can be solved numerically through a quadratic equation. Next, we consider

constraint set A (s) = [�bs, as], a, b � 0, and see that although optimal investment

strategy has jumps for some cases, the value function is surprisingly always continuous.

In section 5.2, we bring the reinsurance into the set of possible action and deal with

the optimal investment and reinsurance problem. The risk free bond and reinsurance

give the first insurer this chance to get rid of all his risks for su�ciently large initial

capital, s0, and achieve � (s) = 1, s > s0.

87
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5.1. Optimal constrained investment

Consider a time consistent constraint set of investment A (s) ⇢ R. The HJB equa-

tion to be solved is

(5.1)

sup
A2A(s)

⇢

1

2
�2A2V

00
(s) + (c+ r0s+ (r � r0)A)V

0
(s) + �E [V (s� Y )� V (s)]

�

= 0.

We use the norming V (0) = 1 and V
0
(0) = �

c

and solve the above equation for two

special cases A (s) = (�1,1) and A (s) = [�bs, as], a, b > 0.

If A (s) = (�1,1), then the optimizer function is A (s) = � (r�r0)V
0
(s)

�

2
V

00 (s)
. Inserting

the optimal investment into (5.1), we get

(c+ r0s)V
0
(s) + �E [V (s� Y )� V (s)] =

1

2

(r � r0)
2 V

0
(s)2

�2V 00 (s)

Applying the approximations (3.23), (3.22) and (3.21) to the above equation, one ob-

tains the following quadratic equation

(5.2) ↵1 (s)V
0
(s)2 + a1 (s)V

0
(s) + b1 (s) = 0,

where

↵1 = (c���+ r0s)�
2 � 1

2
(r � r0)

2�,

a1 (s) = �2
⇣

�G
u0 (s)� �V (s��)� (c+ r0s� ��)V

0
(s��)

⌘

,

b1 (s) = ���2V 0
(s��) (G

u0 (s)� V (s��)) ,

and

G
u0 (s) =

i

X

j=1

V ((i� j)�) Pr {(j � 1)� < Y  j�} .

For � small enough we have ↵1, b1 (s), �a1 (s) > 0. Since we are looking for minimum

V
0
(s), we obtain

(5.3) V
0
(s) = �a1 (s)

2↵1
�
s

a1 (s)
2

4↵2
1

� b1 (s)

↵1
.

Now let A (s) = [�bs, as]. This means that the insurance company can not borrow

more than bs, b > 0 and his investment in risky asset should be smaller than as, a > 0.

Using Proposition 4.2 in [3], Belkina et al. [5] proved that there exists a unique solution

V (s), s > 0, to the HJB equation (5.1) which is twice continuously di↵erentiable on
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(0,1) with V
0
(0) = �

c

. They showed that for small enough start capital, the optimal

investment is either a if r > r0, or �b if r < r0. Using this fact we obtain

(5.4) V
00
(0) =

�

c

✓

�

c
� f (0)� r0 + � (r � r0)

c

◆

,

where � 2 {a,�b}.
Recall the numerical method with the initial value V� (0) = 1. For s = i� the

function V� (s), i = 1, 2, ..., is defined via

(5.5) V
0
� (s) = inf

A2[�bs,as]

�� (V� (s��)�G
u0 (s)) +

1
2�

2A2V
0
� (s��)

� (c+ r0s+ (r � r0)A� ��) + 1
2�

2A2
,

which is similar to

V
00
� (s)

= inf
A2[�bs,as]

� (V� (s��)�G
u0 (s))� (c+ r0s+ (r � r0)A� ��)V

0
� (s��)

� (c+ r0s+ (r � r0)A� ��) + 1
2�

2A2
.

At s = �, we have

(5.6) V
00
(�) = inf

A2[�b�,a�]

��F (�)� r0
�

c

�� (r � r0)A
�

c

+ �

2

c

�

� (c+ r0�+ (r � r0)A� ��) + 1
2�

2A2
.

If r > r0, then the coe�cient of A is positive and consequently the optimal investment

is A = as. The contrary holds if r < r0, which makes A = �bs the optimal investment.

Note that by letting � ! 0 in (5.6), we obtain again (5.4).

Example 30. Consider the exponential distributed claim size Y with mean 1.

Choose parameters as follow: �2 = 0.01, r = 0.02, r0 = 0.015, � = 0.09, c = 0.02. The

numerical method is applied with � = 0.001 in order to find the optimal investment

for the constraint sets A1 (s) = [�2s, 0.5s], A2 (s) = [�2s, s] and A3 (s) = (�1,1).

Figure 1 denotes the optimal investments for di↵erent sets of constraints. Since

r > r0, the optimal investment for small initial capital is 0.5s for constraint set A1 (s)

and is s for constraint set A2 (s). For the constraint set A1 (s) = [�2s, 0.5s], it then

at s = 0.431 drops to �2s and then at s = 2.057 jumps to 0.5s again. This strange

behavior is because the insurer tries to get quickly away from zero where a small claim

can causes ruin. To achieve this, since b is su�ciently larger than a, from some point

s1, the insurer must take the largest possible risk of gambling on the e↵ect of volatility

and switch from the maximal long position to the maximal short position in the risky

asset. Surprisingly, despite the fact that the optimal investment has two jumps, the
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Figure 1. A (s) for exponential distributed claim size Y .
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�
00
(s) is still continuous on (0,1) (see figure 2). A simple argument for the continuity

of �
00
(s) is as follows: Let �

00
(s) piecewise continuous, and assume at s0 the optimal

investment, A (s), jumps from as to �bs. Then

1

2
a2s20�

2�
00
(s0�) + (c+ r0s0 + ars0) �

0
(s0) + �E [� (s0 � Y )� � (s0)] = 0,

1

2
b2s20�

2�
00
(s0+) + (c+ r0s0 � brs0) �

0
(s0) + �E [� (s0 � Y )� � (s0)] = 0.

Since as0� and �bs0+ are the maximizer of HJB equation, we obtain

�brs0�
0
(s0) +

1

2
b2�2s20�

00
(s0�)  ars0�

0
(s0) +

1

2
a2�2s20�

00
(s0�) ,

ars0�
0
(s0) +

1

2
a2�2s20�

00
(s0+)  �brs0�

0
(s0) +

1

2
b2�2s20�

00
(s0+) .

Hence �
00
(s0�) = �

00
(s0+). For more details about this proof, we refer the interested

reader to [5].

The function �
00
(s), for the constraint A1 (s) = [�2s, 0.5s], is shown in figure 2. We

remind the reader that using the norming V (0) = 1, from (5.4) one obtains V
00
(s) =

11.81. Here we have �
00
(s) = V

00
(s)

V (1) = 0.0046V
00
(s).

In the constraint set A2 (s) = [�2s, s], as b is not enough larger than a, the insurer

has to relies on the highest possible rate of return and stays on the long position for
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Figure 2. �
00
(s) for exponential distributed claim size Y .
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the small initial capital. As s ! 1, the optimal investment for all set of constraints

converges to a constant 0.6.

The optimal survival probabilities, � (s), are shown in figure 3. Note that without

possibility of investment in the risky asset, the ruin probability is one, since c  �E [Y ].

In fact, the investment gives us the possibility to reduce premium even less than net

premium. The optimal survival probability in the unconstraint investment case is sig-

nificantly more than the optimal survival probabilities in the two constraint investment

cases A1 (s) and A2 (s).

5.2. Optimal constrained investment and reinsurance

Here we consider that the insurer, beside investment, can dynamically transfer

part of its claim Y to the reinsurer by choosing a reinsurance strategy u 2 U . The risk

sharing function is then g (Y, u) and the reinsurance premium of this risk transformation

is h (u). The HJB equation to be solved is

sup
⇡2⇧

{1
2
�2A2�

00
(s) + (c� h (u) + r0s+ (r � r0)A) �

0
(s)

+�E [� (s� g (Y, u))� � (s)]} = 0,

where ⇧ = (A, U) is the set of possible investment and reinsurance strategies.
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Figure 3. � (s) for exponential distributed claim size Y .
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With the risk free bond r0 > 0, from some initial capital s̄ > 0, the first insurer

has the possibility to get rid of its whole insurance and investment risks and still earns

positive income rate. Let ū be the full-reinsurance strategy, that is g (Y, ū) = 0. Setting

u = ū and A = 0, the risk process of insurer with initial capital s, increases constantly

over time with factor c� h (ū) + r0s which is positive for s > s̄, where

s̄ =
1

r0
(h (ū)� c) .

Hence � (s) = 1 for s > s̄.

If we use the norming V (0) = 1, then

V
0
(0) = � inf

u2U

⇢

1� Pr (g (y, u) = 0)

c� h (u)

�

.

Return to the numerical method in section (3.3), we have a family of function V� (s)

which is defined via

(5.7) V
0
� (s) = inf

(A,u)2⇧

�� (V� (s��)�G
u

(s)) + 1
2�

2A2V
0
� (s��)

� (c� h (u) + r0s+ (r � r0)A� ��) + 1
2�

2A2
,

where

G
u

(s)
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=
X

{g(j�,u)(i�1)�}

V�

✓

(i� 1)��
�

g (j�, u)

�

⌫

�

◆

Pr {(j � 1)� < Y  j�} .

Let s̄ = 1
r0

(h (ū)� c+ ��), then for s > s̄ by setting the strategies u = ū and A = 0,

the denominator of (5.7) is positive while the numerator of (5.7) equals to zero. So

V
0
(s) = 0 for s > s̄.

Example 31. We assume that that the claims Y are exponentially distributed with

mean 1 and let � = 1 and c = 1.5. The insurer can invest in risky asset with drift

and volatility equal to 1 as well as risk free bond with r0 = 0.2. At the same time,

the insurer can buy XL reinsurance whose premium is calculated using the Expected

value principle with reinsurance safety loading ✓ = 2.5. The risk sharing function is

g (Y,M) = min {Y,M} and the full reinsurance is achieved by letting M = 0. The

full reinsurance premium is h (0) = (1 + ✓)�E [Y ] = 3.5. We choose � = 0.001 and

solve the optimal problem for the constraint sets ⇧1 (s) = ({0} , [0,1)), ⇧2 (s) =

((�1,1) , {1}), ⇧3 (s) = ([0, 0.5s] , [0,1)) and ⇧4 (s) = ((�1,1) , [0,1)).

The optimal investment functions, A (s), for the di↵erent cases, are shown in Figure

4. For small s, the optimal investment is highly leveraged for the constraint sets ⇧2

and ⇧4. In the case ⇧3, there is an interval [0, s0) on which the optimal investment is

A (s) = 0.5s. In this example, s0 = 1.555. If the reinsurance is allowed, the cases ⇧3

and ⇧4, then the optimal investment is gradually decreases and for s > 10, we have

A (s) = 0.

In figure 5, we show the optimal reinsurance strategies for the constraint sets ⇧1, ⇧3

and ⇧4. As we expected, for small initial capital s, since the reinsurance is expensive,

optimal is no-reinsurance, i.e. M (s) = 1. From some point s1, the insurer can a↵ord

the reinsurance cost and we have an interval [s1, s2) on which the optimal reinsurance

is M (s) = s. In this example for the constraint sets ⇧1, ⇧3 and ⇧4, those intervals

are respectively [1.64, 2.143), [1.176, 1.581) and [0.948, 1.415). For s > s2, the optimal

priority, M (s), slowly decrease and for s > 10, M (s) = 0. In fact, for s > 10, the

insurer can get rid of the investment and insurance risks, i.e. A (s) = 0 and M (s) = 0,

and still have a positive income from riskless asset. So for the constraint sets ⇧1, ⇧3

and ⇧4 , we can deduce that the optimal survival probability is � (s) = 1, s > 10 (see

figure 6).
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Figure 4. A (s) for exponential distributed claim size Y .
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Figure 5. M (s) for exponential distributed claim size Y .
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Figure 6. � (s) for exponential distributed claim size Y .
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Summary.

The stochastic dynamic control of the ruin probability is studied in a variant of the

Cramer Lundberg model with di↵erent sets of possible actions. Di↵erent authors have

presented di↵erent iteration operators to deal with the optimal problem. See for ex-

ample [3, 27, 23, 22, 26, 36, 38]. In this thesis we studied the optimal dynamic

investment and reinsurance problem. We considered a general set of constraints on

investment which gave us a variety of optimal policies and value functions.

We presented a numerical method based on Euler type discretization to solve the op-

timal problem. This numerical method has the advantages of being universal, fast and

stable. It is universal because it solves the optimal problem with or without constraints.

It also works on di↵erent types of claim distributions, either continuous or discrete or

mixed, and can be applied even when the value function is not smooth. See examples

16, 19 and 21. It is fast because it is recursive. Moreover, since we use the Euler ap-

proximation for the second derivative of the value function, we get rid of the singularity

problem at the point s = 0 in the case of optimal investment without constraint and

reinsurance. This makes our numerical method stable.

An important result of this thesis is showing the importance of the viscosity solution

concept through some examples in section 4.1.2. In chapter 3, we showed that the value

function is the viscosity solution of the obtained HJB equation 3.4 and then proved the

comparison Principle 7. These two proofs are done with a few assumptions and one

can try to prove these theorems under a more general setting. In section 3.3 we have

presented our numerical method and shown that it converges to the value function

for the optimal investment problem. It remains, however, to show that our numerical

algorithm for the optimal investment and reinsurance problem converges to the value

function of the HJB equation 3.4. This is still an important open question and requires

further research.

Along with these questions one can consider a more general set of possible actions, for

example optimal investment, reinsurance and new business. See [25]. Another inter-

esting research area is the problem of optimal dividend under constraints on the ruin

probability (see e.g. Hipp [19]). This problem appears to be di�cult for a risk reserve

process with jumps.

96



Bibliography

[1] S. Asmussen. Ruin Probabilities. World Scientific Publishing Company, 2000.

[2] P. Azcue and N. Muler. Optimal reinsurance and dividend distribution poli-

cies in the Cramer-Lundberg model. Math. Finance., (15(2)):261–308, 2005.

[3] P. Azcue and N. Muler. Optimal investment strategy to minimize the ruin

probability of an insurance company under borrowing constraints. Math.

Finance., (44):26–34, 2009.

[4] P. Azcue and N. Muler. Stochastic Optimization in Insurance: A Dynamic

Programming Approach. Springer, 2014.

[5] T. Belkina, C. Hipp, Sh. Luo, and M. Taksar. Optimal constrained

investment in the Carmer-Lundberg model. Cornell University Library,

arXiv:1112.4007, 2011.

[6] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[7] F. Benth, K.H. Karlsen, and K. Reikvam. Optimal portfolio selection with

consumption and nonlinear integro-di↵erential equations with gradient con-

straint: A viscosity solution approach. Finance and Stochastics, 5 (3):275–

303, 2001.

[8] S. Browne. Optimal investment policies for a firm with a random risk process:

exponential utility and minimizing the probability of ruin. Math Operations

Res, (20):937–958, 1995.
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