
Guilt-based Handling of Software Performance Antipatterns in
Palladio Architectural Models

Catia Trubiania, Anne Koziolekc, Vittorio Cortellessab, Ralf Reussnerc

aGran Sasso Science Institute, L’Aquila, Italy
bUniversity of L’Aquila, L’Aquila, Italy

cKarlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

Antipatterns are conceptually similar to patterns in that they document recurring solutions to common design prob-
lems. Software Performance Antipatterns document common performance problems in the design as well as their
solutions. The definition of performance antipatterns concerns software properties that can include static, dynamic,
and deployment aspects. To make use of such knowledge, we propose an approach that helps software architects
to identify and solve performance antipatterns. Our approach provides software performance feedback to architects,
since it suggests the design alternatives that allow overcoming the detected performance problems.

The feedback process may be quite complex since architects may have to assess several design options before
achieving the architectural model that best fits the end-user expectations. In order to optimise such process we intro-
duce a ranking methodology that identifies, among a set of detected antipatterns, the “guilty” ones, i.e. the antipatterns
that more likely contribute to the violation of specific performance requirements. The introduction of our ranking pro-
cess leads the system to converge towards the desired performance improvement by discarding a consistent part of
design alternatives. Four case studies in different application domains have been used to assess the validity of the
approach.

Keywords: Software Performance Engineering, Software Performance Antipatterns, Architectural Feedback,
Model-based Performance Analysis, Palladio Architectural Models.

1. Introduction

Software performance is a pervasive quality difficult
to model, because it is affected by many aspects of the
design and execution environment. A promising trend
in this domain is an automatic performance optimisa-
tion of architecture, design and run-time configuration
[1]: the model and measurement information will be
fed back into the software design, so that performance
issues are tackled early in the design process.

Figure 1 schematically represents the typical steps
to run a complete software performance modelling and
analysis process in the software life-cycle. Ellipses in
the figure represent operational steps whereas square
boxes represent input/output data. Dashed lines divide

Email addresses: catia.trubiani@gssi.infn.it (Catia
Trubiani), koziolek@kit.edu (Anne Koziolek),
vittorio.cortellessa@univaq.it (Vittorio Cortellessa),
reussner@kit.edu (Ralf Reussner)

the process in four different phases: in the requirements
phase, a set of performance requirements are defined; in
the modelling phase, software architects build an (anno-
tated1) software model; in the analysis phase, a perfor-
mance model is obtained through model-to-model trans-
formations, and such model is solved to obtain the per-
formance indices of interest; in the refactoring phase,
the performance indices are interpreted and, if neces-
sary, feedback is generated as refactoring actions on the
original software model.

The modelling and analysis phases have been quite
successfully addressed in the last decade by several ap-
proaches that have introduced automation in all steps
(e.g. [2, 3, 4]). There is, instead, a clear lack of au-
tomation in the refactoring phase, which shall improve

1In order to conduct quantitative performance analysis, a software
model must be extended with performance annotations such as the
workload of the system, service demands of operational steps, hard-
ware characteristics, etc.

Preprint submitted to Journal of Systems and Software April 22, 2014

Performance
Indices

Model2Model
Transformation

Performance
Model

Performance
Antipatterns

ModellingRequirements

Performance
Requirements

(Annotated)
Software Model

Model
Solution

Analysis Refactoring

Results Interpretation
& Feedback Generation

Figure 1: Software performance modelling and analysis process.

the software architecture based on the analysis results.
The goal of the refactoring phase, whose core step is
the results interpretation and feedback generation (see
Figure 1), is to look for performance flaws (i.e. not ful-
filled performance requirements) in the software model
and to provide architectural alternatives2. Such activi-
ties are today exclusively based on the analysts’ experi-
ence, and therefore their effectiveness often suffers the
lack of automation.

In this work we intend to support the idea that the lo-
calization and removal of performance flaws can greatly
benefit from an automated detection and solution of per-
formance antipatterns.

Performance antipatterns [5] are descriptions of prob-
lems commonly encountered by performance engineers
in practice and represent promising instruments to in-
troduce automation in the refactoring phase. The bene-
fit of using antipatterns is two-fold: on the one hand, a
performance antipattern identifies a bad practice in the
software model that negatively affects the performance
indices, thus supporting the results interpretation activ-
ity; on the other hand, a performance antipattern defini-
tion includes a solution description that lets the architect
devise refactoring actions, thus supporting the feedback
generation activity.

This paper is an extension of [6], where we presented
the first approach to automatically detect and solve per-
formance antipatterns in a design-level software mod-
elling language. We examined performance antipat-
terns within the Palladio Component Model (PCM) [7],
which is a domain specific modelling language to de-
scribe component-based software architectures.

2It is obvious that if all performance requirements are satisfied then
the feedback simply suggests no change on the software model.

The generic software performance process of Figure
1 is instantiated, for this paper context, in Table 1: the
requirements (e.g. the response time or throughput for
services) are specified using the Quality of service Mod-
eling Language (QML) [8] as described in [9]; the soft-
ware system is modelled with PCM; the transformation
of the software model into the performance model gen-
erates the simulation code for the PCM simulation tool
SimuCom [7]; the performance model is then simulated
to obtain the performance indices of interest (e.g. re-
sponse time, utilisation, throughput).

Table 1: This paper context.
Generic process This paper context

Requirements QML
(Annotated)
Software Model PCM
Model2Model
Transformation PCM2SimuCom
Performance Extended Queueing Network
Model (G/G/n queues + routing + passive resources)
Model
Solution SimuCom simulation
Performance Response time, Utilisation,
Indices Throughput, . . .
Performance
Antipatterns Rules and Actions on PCM model elements
Results Interpretation & Detection, Ranking and Solution
Feedback Generation of Antipatterns in PCM

The bottommost entries of Table 1 highlight the in-
sertion of performance antipatterns knowledge in the
software performance cycle: a set of rules and actions
are defined in terms of the PCM meta-model elements.
On the basis of [10], each rule characterizes the prop-
erties to detect performance antipatterns in the PCM
model under analysis, whereas each action describes the
changes to solve antipatterns in such model.

The set of refactoring actions able to overcome per-

2

formance problems is the result of multiple experimen-
tations. It may happen that several antipatterns are de-
tected and many design options are defined for the solu-
tion of each antipattern. Furthermore, each design op-
tion (e.g. the re-deployment of a software component)
gives rise to an alternative software model that must be
evaluated, and only after the performance analysis has
been conducted it is possible to assess the improvements
of such alternative.

In this paper we introduce a ranking process to sup-
port the antipatterns’ solution step, as reported in the last
row of Table 1. Once a number of performance antipat-
terns has been detected, instead of blindly evaluating,
with a costly performance analysis, all the antipatterns’
solutions, a ranking methodology is applied to decide
which ones have to be solved. Such ranking process is
aimed at estimating the effect of an antipattern solution
thus to only focus on the promising ones for conducting
a detailed performance analysis and quickly converge
towards the desired result of end-users satisfaction.

A first step in this direction was introduced in [11].
Further experimentation conducted in the meanwhile
led to arise additional issues not considered before, that
we include in the ranking process described in this pa-
per. We realized that the effectiveness of solving an-
tipatterns relies on the joint analysis of multiple perfor-
mance indices. The effects of solving an antipattern in-
stance for improving a certain performance index (e.g.
the response time of a service) are influenced by other
performance indices (e.g. the utilisation of processors
providing the service), i.e. the factors that likely con-
tribute to understand the consequences of the antipattern
refactoring actions.

Compared to our previous work [11, 6], the specific
contributions of this paper are: (i) the refinement of the
antipattern ranking described in [11]; (ii) the introduc-
tion of the refined ranking in the antipattern-based pro-
cess described in [6]; (iii) the validation of the whole
process on four case studies in different application do-
mains.

Ultimately, the benefit of using our approach is that
performance analysts can detect and solve performance
problems more easily. Instead of manually analysing
the resulting indices of performance analyses and com-
ing up with possible alternatives, they only have to ap-
ply the refactoring actions generated by our antipattern-
based approach.

The paper is organized as follows. Section 2 com-
pares the related work to our approach. An overview
of detectable/solvable performance antipatterns within
the PCM context is given in Section 3. Section 4 de-
scribes in detail some examples of antipatterns that can

be detected and solved within the PCM modelling nota-
tion: an antipattern is represented as a set of rules for the
identification of the problems (see Section 4.1); the de-
tected antipatterns are ranked in order to give a priority
to their solution (see Section 4.2); and finally antipat-
terns are represented as a set of refactoring actions for
the application of their solution (see Section 4.3). The
advantage of including the ranking activity in the whole
antipattern-based process is discussed in Section 5 and
explained in Section 6 by means of a leading case study.
Section 7 reports the validation of the approach in three
different case studies and motivates the beneficial effects
of introducing the ranking methodology. Assumptions,
limitations, and open issues are discussed in Section 8,
and finally Section 9 concludes the paper and gives di-
rections for future research.

2. Related work

In literature few papers deal with the interpretation
of performance analysis results and the generation of
architectural feedback. Most of them are based on mon-
itoring techniques and therefore are conceived to only
act after software deployment for tuning purposes. We
are instead interested in model-based approaches that
can be applied early in the software lifecycle to support
design decisions.

In the following the main existing approaches for the
automated generation of architectural feedback are sur-
veyed. In particular, we identified three principal cate-
gories: (i) antipattern-based approaches that make use
of antipatterns knowledge to cope with performance is-
sues; (ii) rule-based approaches that define a set of rules
to overcome performance problems; (iii) search-based
approaches that explore the problem space by examin-
ing options to deal with performance flaws.

We considered the work done over the last years by
Smith and Williams [12] that have defined 14 notation-
and domain-independent software performance antipat-
terns. We are particularly interested in technology in-
dependent performance antipatterns [12], because our
goal is to tackle the problem at the modelling level, by
looking at the design of software systems and localizing
the most critical parts from a performance perspective.

In [10] we have introduced a technique based on
first-order logic to specify system-independent rules
that formalize known performance antipatterns. These
rules express a set of system properties under which
an antipattern occurs with a certain degree of notation-
independence. However, for the detection (and conse-
quently the solution) to be applied in practice, we need a
software modelling notation that can capture the defined

3

system properties. In [13] we showed how performance
antipatterns can be defined and detected in UML mod-
els [14] using OCL queries [15]. However, the solution
of antipatterns has not been automated yet, since UML
standard profiling (e.g. MARTE [16]) is only aimed at
enabling the performance analysis, and it does not allow
to specify refactoring actions like the re-deployment of
components. In this paper instead the antipattern solu-
tion (i.e. the model refactoring) is automatically exe-
cuted, since it is supported by the PCM Bench tool.

The approach of this paper somehow belongs to two
categories, that are: antipattern-based and rule-based
approaches. This is because it makes use of antipatterns
for specifying rules that drive towards the identification
of performance flaws.

Antipattern-based approaches. The term antipattern
appeared for the first time in [17] in contrast to the trend
of focus on positive and constructive solutions. Differ-
ently from patterns [18], antipatterns look at the neg-
ative features of a software system and describe com-
monly occurring solutions that generate negative con-
sequences. While architectural and design antipatterns
(and patterns) are generally concerned with software
quality attributes such as reusability and maintainabil-
ity [19], performance antipatterns are solely focused on
performance concerns.

In [20] the PASA (Performance Assessment of Soft-
ware Architectures) approach has been introduced. It
aims at achieving good performance results through a
deep understanding of the architectural features. This
is the approach that firstly introduces the concept of an-
tipatterns as support to the identification of performance
problems in software architectural models as well as in
the formulation of architectural alternatives. However,
this approach is based on the interactions between soft-
ware architects and performance experts, therefore its
level of automation is quite low.

In [21] an automated generation of feedback from
the software performance analysis driven by antipat-
terns has been presented, but performance flaws are de-
tected based on the analysis of Layered Queued Net-
work (LQN) models using informal interpretation ma-
trices. Our approach, instead, aims at systematically
evaluating performance prediction results by joining the
analysis of performance indices (e.g. the utilization of
a hardware resource) with the architectural features of
software systems (e.g. the interaction among software
resources) and, differently from [21], it provides sup-
port to automatically solve the detected antipatterns.

The issue of detecting performance antipatterns has
been addressed in [22], where a performance diagnosis

tool, named Performance Antipattern Detection (PAD),
is presented. However PAD only deals with Component
Based Enterprise Systems, targeting EJB applications.
It is based on monitoring data from running systems,
and it extracts the run-time system design and detects
EJB antipatterns by applying rules to it. Therefore its
scope is restricted to such domain, whereas in our ap-
proach the starting point is an architectural model of the
software system in the early stages of development.

Rule-based approaches. Such approaches encapsulate
the knowledge on how to improve system performance
into executable rules that modify the architecture of the
system.

In [23] a framework (ArchE) to support the software
designers in creating architectures that meet quality re-
quirements has been proposed. It embodies knowl-
edge of quality attributes and the relation between the
achievement of quality requirements and design. How-
ever, only modifiability tactics are supported.

In [24] the problem of software performance diag-
nosis and improvement has been tackled, and rules to
identify patterns of interaction between resources are
defined. Performance flaws are identified before the
implementation of the software system, however only
the bottlenecks (e.g. the “One-Lane Bridge” antipat-
tern in Smith’s classification) and long paths are con-
sidered. Additionally, performance issues are identified
at the level of a LQN performance model and the trans-
lation of these model properties into design changes is
a not trivial task due to the gap between software and
performance model representations, as outlined in [25].
Differently from [24], our approach refers both to per-
formance and design features of the software system in
the feedback generation process in order to keep the in-
formation we need to choose the best design alterna-
tives.

Search-based approaches. Such approaches explore
the architectural space by examining design options that
deal with performance flaws.

In [26] an approach to optimise deployment and con-
figuration decisions has been presented in the context of
distributed, realtime, and embedded (DRE) component-
based systems. Bin packing algorithms have been en-
hanced, and schedulability analyses have been used to
make fine-grained assignments that indicate how com-
ponents are allocated to different middleware contain-
ers, since they are known to impact on the system
performance and resource consumption. However, the
scope of this approach is limited to deployment and con-
figuration features.

4

In [27] an approach to automatically explore the
design space for hardware architectures has been de-
scribed. The multiple design space points are simulated
and the results are used to train a neural network. Such
network can be solved quickly for different architecture
candidates and delivers results with a low prediction er-
ror. However, the approach is limited to hardware prop-
erties, whereas software architectures are more com-
plex, because architectural models spread on a wider
range of features (e.g. static and behavioural proper-
ties).

In [28] a framework for the optimisation of embedded
system architectures has been presented. In particular,
it uses the AADL (Architecture Analysis and Descrip-
tion Language) [29] and provides plug-in mechanisms
to replace the optimisation engine, the quality evalua-
tion algorithms and the constraints checking. Architec-
tural models are optimised with evolutionary algorithms
while considering multiple arbitrary quality criteria.
However, the only refactoring action the framework cur-
rently supports is the component re-deployment.

In [30, 31], meta-heuristic search techniques are used
for improving performance, reliability, and costs of
component-based software systems: evolutionary algo-
rithms search the architectural design space for optimal
trade-offs. The approach is quite time-consuming, be-
cause it mostly uses random changes of the architec-
ture. Some performance knowledge is integrated as per-
formance tactics in [31]. The use of antipatterns can
be complementary to meta-heuristic search, because an-
tipatterns can be used as additional tactics to speed up
the meta-heuristic search process.

3. Overview of Performance Antipatterns in PCM

In this section we provide an overview of the perfor-
mance antipatterns that can be specified in the PCM.
Section 3.1 first provides basic information on the PCM,
then Section 3.2 gives an overview on the detection and
solution of antipatterns in the PCM.

3.1. Palladio Component Model Basics

To quickly convey the concepts of the PCM, Figure 2
shows an example of the PCM model elements that are
important for antipattern detection and solution, in a
simplified UML-like syntax. In the following expla-
nation, the model elements are marked with Courier

font. Note that only features relevant to this paper are
shown here, other PCM features can be found in [7].

A software system in the PCM is modelled as a
set of Basic Components (e.g. C1, C2 in Figure

<<ResourceContainer>> RC1

<<Basic-

Component>> C2

<<ResourceContainer>> RC2

<<Basic-

Component>> C1

Users= 20

Think time = 5.0 s

I2

I1

<<ActiveResource>>

HDD

<<ActiveResource>>

CPU

<<PassiveResource>>

mySemaphore: 1

<<LinkingResource>>

LAN

<<ActiveResource>>

CPU

<<Usage Scenario>>

<<InternalAction>>

calculate

CPU demand = 0.001

<<ExternalCallAction>>

callY

I2.serviceY

(params.BYTESIZE = 3KB)

<<SEFF>> I1.serviceX

<<AcquireAction>>

getLock

mySemaphore

<<ReleaseAction>>

freeLock

mySemaphore

<<implements>>

Figure 2: An example of a PCM model.

2). Components offer Interfaces. In the exam-
ple, Basic Component C1 offers Interface I1, while
Basic Component C2 offers Interface I2. Addition-
ally, components can require interfaces. In the example,
C1 requires the Interface I2.

A PCM model also contains the mapping of soft-
ware components to hardware, called Allocation.
Hardware platforms are modelled as Resource

Containers, which can contain Active Resources,
such as CPU and hard disk (HDD), or Passive

Resources, such as semaphores or thread pools. In Fig-
ure 2 example, a Passive Resource with capacity 1
is modelled in Resource Container RC1. Active

Resources have a Resource Type (such as HDD,
CPU) and additional properties not shown here, such as
a processing rate (how many demand units per second
they process) and scheduling policies (such as FCFS
or processor sharing). The mapping of components to
Resource Containers is visualised by placing com-
ponents inside containers. Resource Containers are
connected by Linking Resources, whose timing be-
haviour is determined by the amount of sent data.

A Service Effect Specification (SEFF) de-
scribes the behaviour of a service offered by a Basic

Component. A SEFF contains a sequence of actions.
An External Call Action models calls to required
interfaces. For example, serviceX of component C1
calls serviceY of interface I2. As C1 is connected to C2
with this interface, the call is directed to C2’s serviceY.
Optionally, the size of the passed data can be specified
with a BYTESIZE characterisation (e.g. 3KB in the ex-
ample), which is used to determine the linking resource

5

load. An Internal Action specifies a resource de-
mand to an Active Resource, such as a CPU or a hard
disk (HDD). In the example, serviceX of component C1
has a CPU demand of 0.001 each time it is called. An
Acquire Action and a Release Action model the
use of Passive Resources.

In the PCM it is possible to specify the Usage Sce-

nario that denotes how many users are expected to re-
quire a service and their thinking time (i.e. the time
a user spends before performing a request). In the ex-
ample, 20 users with a thinking time of 5 seconds are
expected to require the serviceX of the interface I1.

3.2. Performance Antipatterns in the PCM

In general, in a modelling language, there are an-
tipatterns that can be automatically detected and solved,
other ones that can be automatically detected, but not
automatically solved, and finally other ones that are nei-
ther detectable and solvable.

Table 2 lists the performance antipatterns we exam-
ine. From the original list of 14 antipatterns defined
by Smith and Williams in [12], two antipatterns are not
considered for the following reason: the Falling Domi-
noes antipattern refers not only to performance prob-
lems, it includes also reliability and fault tolerance is-
sues, and it is out of our interest; the Unnecessary Pro-
cessing antipattern deals with the semantics of process-
ing, by judging the importance of the application code,
that is an abstraction level not included in software mod-
els.

Table 2 is organized as follows: each row represents a
specific antipattern and it is characterized by three fields
(one per column), that are: antipattern name, and if it is
automatically detectable and solvable in PCM models
(
√

yes, − no).
The list of antipatterns has been enriched with an

additional attribute: Single-value antipatterns are de-
tectable by using only mean, max or min values of per-
formance indices, whereas Multiple-values antipatterns
must be detected by observing the evolution of the per-
formance indices over time (see more details in [10]).

Table 2 points out that the most interesting antipat-
terns in the PCM context are: Concurrent Processing
Systems, Extensive Processing, and One-Lane Bridge,
because they can be automatically detected and solved
(see more details in Section 4). Hence, such antipatterns
can be referred as solvable antipatterns.

Table 2 reveals that there are also five performance
antipatterns (i.e. Blob, Pipe and Filter Architectures,
Circuitous Treasure Hunt, Empty Semi Trucks, and
Traffic Jam) that can be automatically detected, but not

Table 2: Performance Antipatterns in PCM.

Antipattern Detectable Solvable

Blob
√

−

Concurrent
Processing
Systems

√ √

Single-

Unbalanced
Processing

Pipe and
Filter Ar-
chitectures

√
−

value

Extensive
Processing

√ √

Circuitous Treasure
Hunt

√
−

Empty Semi Trucks
√

−

Tower of Babel − −

One-Lane Bridge
√ √

Excessive Dynamic
Allocation − −

Multiple-

Traffic Jam
√

−

values
The Ramp − −

More is Less − −

automatically solved. Such antipatterns can be referred
as semi-solvable ones, since it is only possible to de-
vise some actions to be manually performed (see more
details in Section 4).

Finally, Table 2 indicates that there are four perfor-
mance antipatterns (i.e. Tower of Babel, Excessive Dy-
namic Allocation, The Ramp, and More is Less) neither
detectable nor solvable in the PCM context.

Tower of Babel is an antipattern whose bad practice
is on the translation of information into too many ex-
change formats, i.e. data is parsed and translated into an
internal format, but the translation and parsing is exces-
sive [12]. In the PCM, data flow is more abstract and
does not include information on data formats. However,
it might be possible to replace the current modelling lan-
guage to specify the behavioural description of services,
i.e. the PCM service effect specification (SEFF), with
another behavioural description language that includes
such information.

Excessive Dynamic Allocation is an antipattern
whose bad practice is on unnecessarily creating and de-
stroying objects during the execution of an application
[5]. In the PCM, no object-oriented detail is currently
available, because it is not included in the current ab-
straction level. However, it might be possible to detect
such bad practice in PCM models that are re-engineered
from byte code [32], because constructor invocations
are then stored as special type of resource demands at

6

the modelling layer.
The Ramp is an antipattern whose bad practice is re-

vealed by an increasing value of the response time and
a decreasing throughput over time [12]. It might be de-
tected by introducing the concept of state as suggested
in [33], and it might be possible to inform the architect
that a resource demand increasingly grows due to state
changes.

More is Less is an antipattern whose bad practice is
on the overhead spent by the system in thrashing as
compared to the amount of real work, because there
are too many processes for the available resources [34].
Thrashing cannot currently be modelled in the PCM, but
it might be added by introducing layered execution en-
vironment models, as suggested in [35].

4. Antipattern-based process

Figure 3 details the software performance modelling
and analysis process of Figure 1. In particular, the refac-
toring phase is explicitly represented in three main oper-
ational steps: (i) detecting antipatterns makes use of the
problem descriptions of performance antipatterns [12],
and localizes problems; (ii) ranking antipatterns pro-
vides an order in the list of the detected antipatterns by
assigning them a score on the basis of requirements vio-
lations; (iii) solving antipatterns makes use of the solu-
tion descriptions of performance antipatterns [12], and
suggests the changes to be applied to the software model
under analysis.

The refactoring phase can have multiple iterations, as
illustrated in Figure 3. This is induced by the stochastic
nature of performance antipatterns and, more in general,
of performance modelling and analysis. Performance is
in fact a quite complex non-functional attribute that is
affected by multiple factors. The parameters of models
and antipatterns, as well as the performance indices, are
typed as stochastic in most of cases (e.g. mean values,
probability distribution functions, etc.).
Hence, the detection and solution of one or more an-
tipatterns does not guarantee (by itself) the solution of
performance problems in the whole system model. Any
model obtained by an iteration of the refactoring phase,
where one or more antipatterns have been removed, has
to be solved in order to check whether the performance
indices of the whole model satisfy the performance re-
quirements. In practice, it has to be checked whether
local actions, such as antipattern solutions, sufficiently
improve global performance indices.
In some cases antipattern solutions might even degrade
the system performance, because the refactoring actions
may introduce in the whole model other antipatterns that

(Annotated)
Software Model

Detecting Antipatterns
(i.e. results interpretation)

Performance
Indices

...

(Annotated)
Software Model

Candidate1-1

...

iteration1

...

iteration2

...

...

......

...

...

...

iterationn

...

Ranking Antipatterns

Solving Antipatterns
(i.e. feedback generation)

(Annotated)
Software Model

Candidate1-h

(Annotated)
Software Model

Candidate2-1

(Annotated)
Software Model

Candidate2-k

Performance
Antipatterns

(problem)

(solution)

Performance
Requirements iteration0

Figure 3: Details of the refactoring phase.

cannot be detected only on the basis of action spec-
ifications. For example, an antipattern solution (e.g.
the Blob Antipattern) may require to: (i) split a soft-
ware component in multiple ones to uniformly divide
the work; (ii) redeploy the new software components in
different hardware platforms to uniformly distribute the
load. However it may happen that some of these new
components need to communicate among them, thus the
network can be exposed to an excessive message traffic
(e.g. the Empty Semi Trucks Antipattern).

Hence, if several antipatterns are detected in the ini-
tial model, or several refactoring actions are available
for a detected antipattern, then the solving antipat-
terns step can produce many refactored software mod-
els. Such models come from applying a specific refac-
toring action and represent a candidate to overcome the
model performance problems.
The process can be iteratively applied on each newly
generated candidate, leading to a tree of candidate mod-
els. In Figure 3, Candidatei− j denotes the j-th software
model candidate that is generated in the i-th iteration.

Table 3 lists the performance antipatterns we exam-
ine in this section. It reports their natural language def-
inition of the problem and solution [12]. The list of
the antipatterns we consider have been enriched with an

7

additional attribute: the semi-solvable antipatterns can
be automatically detected but not automatically solved,
whereas the solvable antipatterns can be automatically
detected and solved (see more details in Section 3).

On the basis of [10], we give the performance an-
tipattern specification in terms of rules representing the
problem (see Section 4.1) and actions representing the
solution (see Section 4.3). Both rules and actions refer
to PCM meta-model elements.

The ranking methodology is discussed in Section 4.2
and it is aimed at avoiding the explosion of the model
candidates number. The basic idea is to specify a prior-
ity order for refactoring actions by estimating their ef-
fectiveness.

Process afterthoughts are discussed in Section 5
where we propose a more compact graphical represen-
tation to summarise the process, and where termination
criteria are devised.

4.1. Detecting antipatterns in PCM
Performance antipatterns have been initially defined

in textual form, without any underlying formalism, be-
cause they were representing the result of practical ex-
periences in performance analysis of real systems [12].
In order to make machine-processable this repository of
experience, in [10] we have introduced a formalization
of performance antipatterns as a set of rules based on
first-order logics.
Of course, similarly to any approach aimed at introduc-
ing formalization in an informal domain, these rules re-
sulted from our human interpretation of informal an-
tipattern definitions. Different formalizations could
have been raised by different interpretations, however
the validation that we have performed in [10] and in the
following work gives us a good confidence on the abil-
ity of these rules to correctly represent the correspond-
ing performance antipatterns.
On the basis of the formalization in [10], we introduce
in this section the rules that allow to detect antipatterns
in PCM.

We recall that these rules are aimed at capturing bad
practices. So, in order to quantify how bad a prac-
tice can be, it is necessary to introduce a set of thresh-
olds representing system features (e.g. the upper bound
for the hardware resource utilization). Such thresholds
must be instantiated into concrete numerical values, e.g.
hardware resources whose utilization is higher than 0.8
can be considered critical ones. The binding of thresh-
olds is not an easy task, but some sources can be used,
such as: (i) the system requirements; (ii) the domain ex-
pert’s knowledge; (iii) the evaluation of the system un-
der analysis. Such binding is out of scope of this paper,

however we have initially investigated this issue in [10]
and we have recently conducted sensitivity analysis of
the antipattern detection task to the threshold values in
[36].

Tables 4 and 5 report an excerpt of the thresholds
we need to evaluate software and hardware bound-
aries. In particular, the first columns of the Tables show
the names of the thresholds, the second columns pro-
vide their description, and finally in the third columns
heuristics are proposed to estimate their numerical val-
ues. For example, in Table 4 the ThmaxConnects threshold
represents the maximum bound for the number of usage
relationships a software entity is involved in. It can be
estimated as the average number of usage relationships,
with reference to the entire set of software instances in
the software system, plus the corresponding variance.

Blob is an antipattern whose problem is the excessive
message traffic generated by a single class or compo-
nent [5]. Even though it can be originated by a wrong
distribution of either logics or data, the detection of this
antipattern can be performed by looking for the effects
that are common to both the above cases, i.e. excessive
traffic, as formalized in the following PCM rules.

Usage Rule - a complex Basic Component, e.g. bcx,
depends on many other basic components, i.e. it re-
quires many Interfaces (larger than the ThmaxConnects

threshold, see Table 4). It might mean that bcx needs to
retrieve a lot of information in order to handle incoming
requests.

Interaction Rule - in the behavioural description of
a service, i.e. in the SEFF, the Basic Component

bcx generates excessive message traffic (larger than the
ThmaxMsgs threshold, see Table 4), i.e. its External

Call Actions have a high frequency of execution. It
might mean that resources managing such communica-
tion could suffer from a performance perspective.

Utilisation Rule - if bcx and the surrounding Basic

Components (i.e. the basic components with which bcx

communicates) are deployed on the same Resource

Container, e.g. rcx, then the performance issues
due to the excessive load may come out by evaluating
the utilisation of the ActiveResources of rcx (larger
than the ThmaxHwUtil threshold, see Table 5); other-
wise, if basic components are distributed on different
Resource Containers, then the performance issues
due to the excessive message traffic may come out by
evaluating the network communication links, i.e. the
PCM Linking Resource utilisation (larger than the
ThmaxNetUtil threshold, see Table 5). This rule relays
on extracting the utilisation performance index from the
simulation results.

8

Table 3: Examples of performance antipatterns [12].

Antipattern Problem Solution

Se
m

i-
So

lv
ab

le

Blob Occurs when a single class or component either 1) performs
all of the work of an application or 2) holds all of the appli-
cation’s data. Either manifestation results in excessive mes-
sage traffic that can degrade performance.

Refactor the design to distribute intelligence uniformly over
the application’s top-level classes, and to keep related data
and behaviour together.

Circuitous Treasure
Hunt

Occurs when an object must look in several places to find the
information that it needs. If a large amount of processing is
required for each look, performance will suffer.

Refactor the design to provide alternative access paths that
do not require a Circuitous Treasure Hunt (or to reduce the
cost of each look).

Empty Semi Trucks Occurs when an excessive number of requests is required to
perform a task. It may be due to inefficient use of available
bandwidth, an inefficient interface, or both.

The Batching performance pattern combines items into mes-
sages to make better use of available bandwidth. The Cou-
pling, Session Facade, and Aggregate Entity design patterns
provide more efficient interfaces.

So
lv

ab
le

Concurrent Processing
Systems

Occurs when processing cannot make use of available active
resources.

Restructure software or change scheduling algorithms to en-
able concurrent execution.

Extensive Processing Occurs when extensive processing in general impedes over-
all response time.

Move extensive processing so that it does not impede high
traffic or more important work.

One-Lane Bridge Occurs at a point in execution where only one, or a few,
processes may continue to execute concurrently (e.g., when
accessing a database). Other processes are delayed while
they wait for their turn.

To alleviate the congestion, use the Shared Resources Prin-
ciple to minimize conflicts.

Table 4: Thresholds specification: software characteristics [10].
Threshold Description Heuristics

ThmaxConnects It represents the maximum bound for the num-
ber of usage relationships a software entity is
involved

It can be estimated as the average number of usage relationships per software entity
instance, by considering the entire set of software instances in the software system,
plus the corresponding variance

ThmaxMsgs It represents the maximum bound for the num-
ber of messages sent by a software entity in a
service

It can be estimated as the average number of sent messages per software entity instance,
by considering the entire set of software instances in the software system, plus the
corresponding variance

.

Table 5: Thresholds specification: hardware characteristics [10].
Threshold Description Heuristics

ThmaxHwUtil It represents the maximum bound for the hard-
ware device utilization

It can be estimated as the average number of all hardware devices utilization values,
plus the ε offset

ThmaxNetUtil It represents the maximum bound for the net-
work link utilization

It can be estimated as the average used bandwidth values, with reference to the entire
set of network links in the software system, plus the ε offset

.

9

The output of the detection rules is the set of Basic
Components satisfying the defined rules (e.g. bcx).

Circuitous Treasure Hunt is an antipattern whose
problem is an inadequate organization of data that leads
the system to look in several places to find the informa-
tion it needs [12]. The detection of this antipattern in
PCM can be performed with the following rules.

DBinteraction Rule - there are at least two Basic

Components, e.g. bcx and bcy, such that: a) bcx of-
ten calls bcy, i.e. there is one or more External Call

Actions in bcx’s SEFFs that call Interfaces provided
by bcy and that together have a high frequency of ex-
ecution; and b) bcy is a database (this is modelled by
annotating bcx with a custom mark).

Utilisation Rule - similarly to the rule with the
same name from the Blob antipattern, it is important
to check the utilisation of the Active Resources of
the Resource Container on which the database ba-
sic component bcy is deployed. Such a Resource

Container, e.g. rcy, is considered critical if the utilisa-
tion of any of its Active Resources exceeds a certain
threshold.

DiskMoreUtilised Rule - a database access utilizes
more hard disks resources than CPU ones. In general,
a Resource Container rcy contains several Active
Resources prxt of type t, with t ∈ {CPU,HardDisk}.
This rule matches if the maximum utilisation among all
the hard disk(s) in rcy is higher than the maximum one
among all the CPU(s) in rcy.

The output of the detection rules is a set of Basic

Component pairs satisfying the defined rules (e.g. bcx

and bcy).

Empty Semi Trucks is an antipattern whose problem
is an excessive number of requests to perform a task
[12]. The detection of this antipattern in PCM can be
performed with the following rules.

Interaction Rule - similarly to the Blob antipattern
(see the rule with the same name), there is at least one
SEFF in which a Basic Component, e.g. bcx, gener-
ates excessive message traffic, i.e. it calls many other
services per request. It might mean that resources man-
aging such communication could suffer from a perfor-
mance perspective.

MessageSize Rule - the Basic Component bcx sends
a high number of messages without optimizing the
available bandwidth, i.e. many messages of small size
(a small value in the BYTESIZE Characterisation)
are exchanged. It might mean that the amount of pro-
cessing overhead is required many more times than nec-
essary.

RemoteCommunication Rule - the Basic

Component bcx communicates with a high num-
ber of remote Basic Components (as captured from
the Allocation) that are all deployed on the same
remote Resource Container, without optimizing the
interface.

The output of the detection rules is the set of Basic
Components satisfying the defined rules (e.g. bcx).

Concurrent Processing Systems is an antipattern
whose problem is an unbalanced distribution of work-
load among the available active resources of a resource
type (e.g. CPU) [12]. The detection of the antipattern
can be performed with the following rules.

QueueLength Rule - the system cannot make effec-
tive use of available Active Resources: there is at
least one Active Resource rcxt of Resource Type t
in a Resource Container rcx that has a high average
queue length. This rule is evaluated by extracting the
queue length performance index of rcxt from the simu-
lation results, and checking if it is higher than a thresh-
old value named ThmaxQL(t) (e.g. ThmaxQL(CPU) =50
requests and ThmaxQL(HardDisk) =70 requests) for that
Resource Type t.

Utilisation Rule - the Active Resource rcxt is over
utilised. Note that this rule is evaluated by extracting
the utilisation performance index of rcxt from the sim-
ulation results. The Resource Container rcx is se-
lected if the utilisation of its Active Resource rcxt ex-
ceeds a maximum threshold boundary for its Resource
Type t named, for example, ThmaxHwUtil(t) (e.g.
ThmaxHwUtil(CPU) = 80% and ThmaxHwUtil(HardDisk) =

70%).
UnbalancedLoad Rule - active resources are not used

in a well-balanced way, namely there is at least an-
other Resource Container instance (e.g. rcy) whose
Active Resources of the same Resource Type t are
less utilized in comparison to rcxt. Note that this
rule relays on extracting the utilisation performance
index of the Active Resources rcyt from the simu-
lation results. The Resource Container rcy is se-
lected if the utilisation of rcyt does not exceed a min-
imum threshold boundary for that Resource Type t
named ThminHwUtil(t) (e.g. ThminHwUtil(CPU) = 30%
and ThminHwUtil(HardDisk) = 20%).

The output of the detection rules is a set of tuples with
three elements: two Resource Containers satisfying
the defined rules (e.g. rcx and rcy) and the Resource

Type t (e.g. CPU, HardDisk).

Extensive Processing is an antipattern whose problem
is an inefficient management of requests: “lighter” re-
quests are delayed, since they wait for “heavier” ones
[34]. The detection of this antipattern in PCM can be

10

performed with the following rules.
Structural Rule - there are two SEFFs, i.e. seffa and

seffb, that cannot be executed at the same time, due to
two different reasons: (i) there is a Branch Action

ba in a third SEFF, i.e. seffc, which models that either
seffa or seffb is called from seffc, and ba is protected by
a Passive Resource p of capacity equal to one (i.e.
ba is preceded by an AcquireAction for p and suc-
ceeded by a ReleaseAction for p); or (ii) there is a
FIFO scheduling policy for the Resource Container

hosting seffa and seffb that disables their concurrency.
ResourceDemand Rule - seffa has a high global re-

source demand, i.e. its contained Internal Actions
have high resource demands. For example, many CPU
units are needed to accomplish a certain task or many
bytes are read or written to a hard disk, etc. Such values
are compared to threshold values and considered critical
whenever they exceed such boundaries.

Probability Rule - Branch Action ba in seffc speci-
fies that the probability of calling seffa is lower than one,
i.e. seffa must not be always executed.

UnbalancedResDemand Rule - the resource demands
for seffa and seffb are unbalanced, the former is the
heavy one, the latter is the light one, i.e. their resource
demands differ of a substantial value.

Utilisation Rule - the Resource Container on
which the Basic Component providing seffa is de-
ployed has a heavy computation, i.e. the utilisation of
one of its Active Resources is higher than a threshold
value.

The output of the detection rules is the set of SEFF

pairs satisfying the defined rules (e.g. seffa and seffb).

One-Lane Bridge is an antipattern whose problem con-
sists of processes that are not allowed to be processed
concurrently [5]. The detection of this antipattern in
PCM can be performed with the following rules.

QueueLength Rule - there is at least a Passive Re-

source, e.g. prx, that has a large queue length, i.e. its
queue length is higher than a threshold value.

WaitingTime Rule - the requests incoming to the
Passive Resource prx are delayed, i.e. the time they
hold prx is much smaller than the time they have to wait
for prx. Note that this rule is evaluated by extracting the
holding time and the waiting time performance indices
of prx from the simulation results.

The output of the detection rules is the set of passive
resources satisfying the defined rules (e.g. prx).

Based on these rules, antipattern instances are de-
tected by a search algorithm as follows. For each an-
tipattern, all instances of the main metamodel element
are retrieved in the PCM software model. The main

metamodel element of an antipattern is the first meta-
model element mentioned by the antipattern. For ex-
ample, for the Blob antipattern all Basic Components
are retrieved and for the Concurrent Processing Sys-
tems antipattern all Active Resources are retrieved.
An exception is the Extensive Processing antipattern,
which has two main metamodel elements, Passive

Resource (for the case that a protected branch causes
the extensive processing) and Resource Container

(for the case that the resource container’s scheduling
causes the extensive processing). In this case, all in-
stances of both main metamodel elements are retrieved.

Then, for each retrieved model element instance, the
rules are checked. If any rule evaluates to false, the
model instance is dismissed without evaluating possibly
remaining rules (short-circuit evaluation). If all rules
match, the model element instance is returned together
with additional information specified for the antipattern.

4.2. Ranking Antipatterns

Figure 4 details the software performance modelling
and analysis process of Figure 3. In particular, shaded
boxes of Figure 4 represent the ranking antipatterns op-
erational activity that is object of this section.

We discuss the problem of identifying, among a set
of detected performance antipatterns, the guilty ones,
i.e. the antipatterns that are the actual causes of re-
quirements violations. A process to elaborate the per-
formance analysis results and to score performance an-
tipatterns on the basis of violated requirements is intro-
duced. The cross observation of such scores allows to
classify the level of effectiveness of each antipattern.

We recall that a first step in this direction has been
presented in [11], but in the meanwhile more experience
has been collected and further issues are considered in
the following.

Performance requirements are classified on the basis
of the performance indices they address and the level
of abstraction they apply. Our experience leads us to
focus on the most common types of requirements that
concern: utilisation of active resources, response time
and/or throughput of basic and composed services. “Ba-
sic service” denotes a functionality that is provided by
a component without calling services of other compo-
nents, and “composed service” denotes a functionality
that is provided by a component and involves a combi-
nation of calls to services of other components.

The Violated requirements (see Figure 4) are related
to the performance indices that are not satisfied. Each
requirement is represented by: (i) an identifier (ID), (ii)
the type of requirement (Requirement) that summarizes

11

Detecting Antipatterns
(i.e. Results Interpretation)

...

Solving Antipatterns
(i.e. Feedback Generation)

Performance
Requirements

Violated
Requirements

Complete
Antipatterns List

Ranking Engine

Ranked
Antipatterns List

(Annotated)
Software Model

Candidate

(Annotated)
Software Model

Candidate
...

1 n

R
A

N
K

IN
G

 A
N

T
IP

A
T

T
E

R
N

S

(Annotated)
Software Model

Performance
Indices

Performance
Antipatterns

Figure 4: A step ahead in the antipatterns solution.

the performance index and the target software model el-
ement, (iii) the required value of the index (Required
Value), (iv) the observed value as obtained from the per-
formance analysis (Observed Value). Based on this in-
formation, we can derive (v) the software model entities
involved in the requirement (Involved Entities) from the
software model.

In Table 6 three examples of violated performance
requirements are reported. The first one refers to the
utilisation index (i.e., U): it requires that the Resour-

ce Container rc1 is not utilised more than 70% while
it shows an observed utilisation of 74%. The second
one refers to the response time index (i.e., RT): it re-
quires that the SEFF seff1 has a response time not larger
than 2 seconds, whereas it shows an observed response
time of 3.7 seconds. The third one refers to the through-
put index (i.e., T): it requires that the SEFF seff4 has
a throughput higher than 5 requests/second, whereas it
shows an observed throughput of 1.5 requests/second.

For violated requirements, the involved entities can
be derived from the software model as follows. For
utilisation requirements, we only consider as involved
the Resource Container for which the requirement is
specified. For example, if a utilisation requirement has
been specified for the Resource Container rc1, we

consider only rc1 to be involved. For requirements on
SEFFs (e.g. response time, throughput), all the SEFFs
that participate in the service provisioning are consid-
ered as involved. For example, if a violated requirement
is specified for a SEFF seff1, and seff1 itself calls SEFFs
seff2 and seff3, we consider all these SEFFs to be part of
the requirement. All the Basic Components that pro-
vide seff1, seff2 and seff3 are considered as involved en-
tities (e.g. bc1, bc2 and bc3), as well as all the Resource
Containers hosting them (e.g. bc1 is deployed on rc1,
bc2 is deployed on rc2, and bc3 is deployed on rc3).
The goal is to capture the model entities that most likely
cause the observed performance problems.

The Complete antipatterns list (see Figure 4) groups
all the detected antipatterns. An example is reported in
Table 7, where each antipattern is denoted by: (i) an
identifier (ID), (ii) the type of antipattern (Detected An-
tipattern) as specified in the Smith-Williams classifica-
tion [12], (iii) the software model entities involved in it
(Involved Entities), (iv) the performance indices that do
not likely contribute to the antipattern occurrence (Con-
tributing Indices).

In Table 7 three examples of detected antipatterns are
reported. The first one refers to the Concurrent Process-
ing Systems antipattern (i.e., CPS): the output of the de-
tection (see Section 4.1) is constituted by two Resource
Containers satisfying the defined rules (e.g. rcx and
rcy) and the critical resource type t (e.g. CPU, Hard-
Disk). We insert in the involved entities column only
rcy because it represents the least used active resource
and will be used in the solution of the antipattern. The
performance indices that likely contribute to the antipat-
tern occurrence are the utilisations of both the Resour-
ce Containers. The second example of Table 7 refers
to the Extensive Processing antipattern (i.e., EP): the
output of the detection is constituted by the SEFF pair
satisfying the defined rules (e.g. bca.seffa and bcb.seffb).
The performance indices that likely contribute to the an-
tipattern occurrence are the throughputs of both SEFFs.
The third example of Table 7 refers to the One-Lane
Bridge antipattern (i.e., OLB): the output of the de-
tection is constituted by the Passive Resource sat-
isfying the defined rules (e.g. prx). We insert in the
involved entities column the Basic Components (e.g.
bc1, bc2) using prx. The performance indices that likely
contribute to the antipattern occurrence are the utili-
sations of the Passive Resource and the Resource

Container (e.g. rc1) on which it is deployed on.
The ranking engine (see Figure 4) is aimed at order-

ing the list of the detected antipatterns for each violated
requirement, where highly ranked antipatterns are the
most promising causes for the requirement violation.

12

Table 6: Example of Violated Requirements.
ID Requirement Required Value Observed Value Involved Entities

R1 U(rc1) 0.70 0.74 rc1
R2 RT(seff1) 2 sec 3.7 sec bc1.se f f1, bc2.se f f2, bc3.se f f3, rc1, rc2, rc3
R3 T(seff4) 5 reqs

sec 1.5 reqs
sec bc4.se f f4, rc4

...

Table 7: Example of Complete Antipatterns List.
ID Detected Involved Contributing

Antipattern Entities Indices

PA1 CPS rcy U(rcx),
U(rcy)

PA2 EP bca.seffa, T(seffa),
bcb.seffb T(seffb)

PA3 OLB bc1, U(prx),
bc2 U(rc1)

...

In this context, a performance antipattern PAi is con-
sidered a cause for the violation of the requirement R j if
the intersection set of involved model entities {e1, .., ek}

is not empty, namely if the Involved Entities columns
of Tables 6 and 7 have common entities. Antipatterns
that do not have any entity in common with a violated
requirement will be considered unaffecting for the latter.

Our ranking process starts by considering the model
entities involved in a violated requirement: a score is
assigned to each entity, and all the involved entities will
contribute to the final rank of the antipattern.

In [11] we introduced a set of equations to rank model
entities related to utilisation, throughput, and response
time requirements. Table 8 reports the equations that
we introduced in [11] to assign scores to system entities
involved in utilisation and throughput violated require-
ments. From more recent experiences we deduced that
the violation of the response time requirement can be
refined, as reported in Table 9 and explained in the fol-
lowing after briefly sketching the previous scores.

Utilisation. The violation of an utilisation requirement
can only target (in this paper scope) a processor. For
each violated requirement R j, we introduce a utilisation
score to the involved processor Proci as reported in the
first row of Table 8. scorei, j represents a value between
0 and 1 that indicates how much the Proci observed util-
isation (observedUtili) is higher than the required one
(requiredUtil j).

Throughput. The violation of the throughput in com-
posed services involves all services participating to the
end-user functionality. For each violated requirement
R j, we introduce a throughput score to each involved
service S i as reported in the third row of Table 8. We
distinguish between open and closed workloads here.

For an open workload (isOpen(systemWorkload)), we
can identify bottleneck services S i that cannot cope with
their arriving jobs (workloadi > observedThrpi). To
these services a positive score is assigned, whereas all
other services are estimated as not guilty for this re-
quirement violation and a score of 0 is assigned to them.
For closed workloads (isClosed(systemWorkload)), we
always observe job flow balance at the steady-state
and thus for all services workloadi = observedThrpi

holds. Thus, we cannot easily detect the bottleneck
service and we assign a positive score to all involved
services. For the positive scores, we quantify how
much the observed throughput of the overall composed
service (observedThrp j) is far from the required one
(requiredThrp j). The violation of the throughput in ba-
sic services involves just this one service. We can use
the previous equation as it is, because the only involved
service is the one under stress.

Response time. In [11] the response time requirement
was only assigning scores to the services S i, as reported
in the first row of Table 9. From more recent experi-
ences we deduced that the violation of the response time
in composed services CS j involves not only all services
participating in that functionality (denoted by S ∈ CS j),
but also active resources play an important role. For this
reason we introduce in this paper a response time score
also for the active resources Pk for each violated re-
quirement R j, as reported in the second row of Table 9.
We quantify how far the observed mean response time
of the composed service CS j (observedRespTimeCS j)
is from the required one (requiredRespTimeCS j). Ad-
ditionally, in order to increase the guilt of basic services
and active resources that mostly contribute to the re-
sponse time of the composed service, we introduce the
first multiplicative factor of the equation.

We denote with ownComputationS i the observed
computation time of a service S i participating in the
composed service CS j. If service S i is a basic ser-
vice, ownComputationS i equals the mean response time
RT (S i) of service S i. However, composite services can
also consist of other composite services. Thus, if service
S i is a composite service that calls services S 1 to S n

13

Table 8: Ranking of performance antipatterns for the utilisation and throughput requirements [11].

Requirement Equation

Utilisation scorei, j = (observedUtili − requiredUtil j)

Throughput scorei, j =


requiredThrp j−observedThrp j

requiredThrp j
if workloadi > observedThrpi

or isClosed(systemWorkload)
0 else

Table 9: Ranking of performance antipatterns for the response time requirement.
Requirement Equation

Response time scoreS i ,CS j =
ownComputationS i

maxOwnComputationS CS j

·
observedRespTimeCS j − requiredRespTimeCS j

observedRespTimeCS j

for S i ∈ CS j

scorePk ,CS j =
ownComputationPk

maxOwnComputationPCS j

·
observedRespTimeCS j − requiredRespTimeCS j

observedRespTimeCS j

with frequencies F(S 1)3 to F(S n), ownComputationS i

is defined as the total mean response time of service S i

minus the weighted mean response time of called ser-
vices:

ownComputationS i = RT (S i) −
∑

1≤c≤n

F(S c)RT (S c)

We divide by the maximum own computation over all
the services participating in CS j, which we denote by
maxOwnComputationS CS j :

maxOwnComputationS CS j = max
S i∈CS j

(ownComputationS i)

In this way, services with higher response time will be
more likely retained responsible for the requirement vi-
olation.

We denote with ownComputationPk the observed
computation time of an active resource Pk participating
in the composed service CS j. It is calculated by sum-
ming the own computation(s) of service(s) whose basic
components are deployed on the active resource Pk:

ownComputationPk =
∑

1≤z≤m

ownComputation(S z)

Let PRCS j denote the set of all active resources par-
ticipating in the composed service CS j. We divide
by the maximum own computation over all the active
resources participating in CS j, which we denote by
maxOwnComputationPCS j :

maxOwnComputationPCS j = max
Pk∈PRCS j

(ownComputationPk)

3We denote by F(S 1) how often the service S 1 is invoked within
the execution of the composite service S i on average.

In this way, active resources with higher computation
requests will be more likely retained responsible for the
requirement violation.

Ranking refinement. The ranking described above is
based on the involvement of software model entities in
detected antipatterns and in violated requirements. The
defined scores help to order the detected antipatterns on
the basis of their guilt. However, after having experi-
enced our approach on several examples, we have re-
alized that the feasible refactoring actions available for
a highly ranked antipattern do not necessarily bring to
the best performance improvements, due to limitations
in the antipattern context.
Therefore, we introduce here the concept of semantic
factor that aims at capturing the potential effectiveness
of an antipattern solution by taking into account addi-
tional performance indices that are not directly involved
in the antipattern definition. A semantic factor is intro-
duced to capture the semantic nature of a performance
antipattern, and it represents a quantification of a prop-
erty that is antipattern-specific. Hence, each antipattern
may have its own semantic factor. For example, when
the solution of an antipattern suggests the redeployment
of one component from an over-utilised device to an
under-utilised one, such refactoring action is as more ef-
fective as larger is the gap between the utilization of the
two devices. Hence, this gap must enter the guilt degree
definition for such an antipattern. This would allow to
identify the cases where it is preferrable to act on lower
ranked antipatterns that provide refactoring actions with
higher potential in terms of performance improvement.
Hence, we have defined several semantic factors that,

14

once opportunely combined with the scores introduced
in the previous section, ends up with refined guilt scores
that can more quickly drive the refactoring phase to-
wards the end, as it will be shown in Section 7.

In table 10 a semantic factor is introduced for each
antipattern type (i.e. s fPA).

Table 10: Semantic factors for performance antipatterns.
Antipattern Semantic Factor

CPS s fCPS = |U(rcx) − U(rcy)|

EP s fEP =
|T (se f fa) − T (se f fb)|

max{T (se f fa),T (se f fb)}

OLB s fOLB = |U(rcx) − U(prx)|
... ...

The semantic factor in the first row refers to the Con-
current Processing Systems antipattern (i.e., CPS): it is
defined as the gap among the utilisations of active re-
sources (output of the detection rules), since this an-
tipattern solution aims at moving some computation
from the most utilised active resource toward the less
utilised one. The second row refers to the Extensive
Processing antipattern (i.e., EP): its semantic factor is
calculated as the gap among the throughput of services
(output of the detection rules), since the antipattern so-
lution is aimed at improving the scheduling of such ser-
vices. The third row refers to the One-Lane Bridge an-
tipattern (i.e., OLB): its semantic factor is calculated as
the gap among the utilisations of the passive resource
(output of the detection rules) and the resource container
hosting such resource, since the antipattern solution is
aimed at improving the concurrency on processing re-
quests.

Combining the scores of entities. Finally, we rank the
antipatterns involved for each violated requirement R j.
A guilt degree GDPAx (R j) that measures the effective-
ness of PAx for R j is assigned to each antipattern PAx

that shares involved entities with a requirement R j. We
define the guilt degree as the sum of the scores of all the
involved entities and its corresponding semantic factor:

GDPAx (R j) =
∑

i∈involvedIn(PAx,R j)

scorei, j + s fPAx

The score of each involved entity varies in the in-
terval [0, . . . , 1] as well as the semantic factor. Hence,
the guilt degree of each antipattern varies in the interval
[0, . . . , n+1], where n is the number of involved entities
in the violated requirement.

The ranked antipatterns list (see Figure 4) adds guilt
degrees to all detected antipatterns. Table 11 groups

Table 11: Structure of Ranked Antipatterns List.
Detected Antipatterns

Requirements . . . PAx . . .

. . .

R j . . . GDPAx (R j) . . .
. . .

antipatterns and requirements. A concrete example of
a ranked antipatterns list has been reported in the case
study section (see Table 15).

Different types of analysis can originate from a
ranked list, as it can be analysed by columns or by rows.
Firstly, by rows, we concentrate on a certain require-
ment, for example R j, and we look at the scores of an-
tipatterns. Antipatterns that are more guilty for that re-
quirement violation can thus be identified. Observing
the table by columns, instead, we can distinguish either
the antipatterns that most frequently appear in the vi-
olation of requirements or the ones that sum up to the
highest total degree of guilt.

The solution step of the antipattern-based process in
Figure 4 takes as input the ranked antipatterns list, and
it makes use of ranking estimates to focus on a set of
candidates and to discard some others.

4.3. Solving antipatterns in PCM

Similarly to the antipattern problem definitions, even
antipattern solution actions have been only informally
defined in literature [5]. However, the formalization of
antipattern problems in first-order logics that we have
introduced in [10] has helped us to more precisely de-
fine refactoring actions that can solve an antipattern.
Let us remark that, due to the typical disjoint formula-
tion of antipatterns (i.e. they can be usually expressed as
an AND of predicates), oftenly the available solution is
not unique, because different refactoring actions could
bring to negate one of the predicates in the antipattern
formulation [10]. We will discuss in Section 5, among
other, the issues related to the automation of antipattern
solution and, more in general, of the whole process.
In this section we describe the refactoring actions that
can be applied to solve different antipatterns in PCM.

Note, however, that Blob, Circuitous Treasure Hunt,
and Empty Semi Trucks are antipatterns whose solution
cannot be automated in PCM because components are
considered black-box elements, and the component’s in-
ternal behaviour cannot be restructured. Alternatively,
some actions can be suggested to the architects, and they
can manually specify the alternative component(s) able
to substitute the detected one(s).

15

Blob is an antipattern whose solution can be performed
by delegating the business logics of the Blob basic com-
ponent to the ones with which it communicates, e.g. by
decreasing the number of required interfaces and/or the
number of calls.

Circuitous Treasure Hunt is an antipattern whose so-
lution can be performed with two actions. The first ac-
tion is aimed at decreasing database communications
by restructuring the component interacting with the
database to avoid excessive communication. The sec-
ond action aims at refactoring the database component
in its internal structure by organizing it in such a way
that database requests can be performed without access-
ing too many tables.

Empty Semi Trucks is an antipattern whose solution
can be performed with three actions. The first action
is aimed at avoiding excessive remote communication
by redeploying the component responsible for it, thus
to not overload network resources. The second action
is aimed at optimizing the usage of the bandwidth by
reducing the number of sent messages; it can be per-
formed by batching the messages, i.e. collecting small
messages in fewer messages of larger sizes. The third
action is aimed at optimizing the usage of the interface
by reducing the remote communication; it can be per-
formed by delegating the requests of a component to
another one that is remotely deployed with the other
communicating components.

Concurrent Processing Systems, Extensive Process-
ing, and One-Lane Bridge are antipatterns whose solu-
tion can be automated in the PCM by devising a set of
refactoring actions explained in the following.

Concurrent Processing Systems is an antipattern
whose solution looks at restructuring software or chang-
ing scheduling algorithms [12]. The solution of the an-
tipattern can be performed with one of the following ac-
tions.

BalanceLoad Action - if some of the Basic

Components on the Resource Containers rcx and
rcy

4 offer the same Interfaces, change the scheduling
algorithms and distribute the requests for such services
in a balanced way (from rcx to rcy) by modifying the
probability to be called.

Mirror Action - mirror the Basic Components of
the Resource Container rcx into rcy and balance the
workload, so that the requests incoming to the system

4Note that rcx and rcy represent the instances coming from the
antipattern detection (see Section 4.1).

are distributed to both Resource Containers. Con-
sider the available Active resources (i.e. cpu(s),
hard disk(s)) of the Resource Containers.

MostCritical Action - identify the Basic

Component of the Resource Container rcx that
has the highest resource demand of the critical type t,
and redeploy it in the Resource Container rcy.

Redeploy Action - redeploy some Basic

Components from the Resource Container rcx

to rcy. Such action can be performed by taking into
account a set of system properties or their combination,
as argued in the following.

One option is to equally distribute the resource de-
mand of type t among Resource Containers rcx and
rcy by redeploying some Basic Components from rcx

to rcy. We select those components for which the
Resource Container rcy has sufficient resource ca-
pacity for the other resource type (i.e. CPU or HDD).

A second option is to redeploy components on the
basis of their communication and trying to deploy com-
ponents communicating with each other, possibly on the
same Resource Container.

Extensive Processing is an antipattern whose solution
looks at scheduling requests according to their process-
ing load and/or relevance [34]. The solution of the an-
tipattern can be performed with one of the following ac-
tions, depending on which structural rule of the antipat-
tern was satisfied (see Section 4.1).

IncreaseCapacity Action - increase the capacity of the
Passive Resource that does not allow concurrency
while executing seffa or seffb in the Branch Action (if
case (i) of the structural detection rule was matched).

UnblockExecution Action - change the scheduling
algorithm of the resource and/or redeploy one of the
Basic Components containing seffa or seffb so they do
not queue for the same Active Resource anymore (if
case (ii) of the structural detection rule matched).

One-Lane Bridge is an antipattern whose solution
looks at sharing resources thus to avoid congestion of
requests [5]. The solution of the antipattern can be per-
formed with the following action.

IncreaseCapacity Action - increase the capacity of the
Passive Resources by one. A smarter methodology
can be devised to optimize the capacity by estimating
the minimal multiplicity able to solve performance is-
sues.

5. A deeper look at the whole process

In this section we discuss several issues related to the
whole antipattern-based process, with the aim of clari-

16

fying specific aspects of our approach.
Figure 5 depicts the process we presented in Figure

3 in a graph-like way: each node represents a (anno-
tated) software model and its performance indices; each
arc represents a refactoring action applied to solve a de-
tected antipattern.

Each node additionally stores the requirements un-
der analysis and their observed values, since such re-
quirements represent what end-users expect from the
system for the target performance properties to be ful-
filled. Such graphical representation gives an immediate
overview on the software model(s) that might best fit the
end-users requirements.

(Annotated) Software Model +
Performance Indices

{(requirement, observed value), ...}

iteration1

iteration2

...

...

...
...

Antipattern, Action

(Annotated) Software
Model Candidate +
Performance Indices

{(requirement, observed value), ...}

1-1

...

...

iterationn

...(Annotated) Software
Model Candidate +
Performance Indices

{(requirement, observed value), ...}

n-w

Figure 5: Graph-like representation of our process.

From a given software model, multiple design alter-
natives may be suggested in the light of detected an-
tipatterns. These alternatives can be originated not only
by the decision of solving different antipatterns, but also
by different refactoring actions that may be available to
remove the same antipattern, as mentioned in Section
4.3. Each option results in a child software model, thus
eventually generating a tree of candidates as the antipat-
terns-based approach progresses5.

5Note that we decided to separately consider each antipattern ac-
tion (i.e. a single action gives rise to a software model candidate),
because antipattern actions may overlap each other, e.g. the redeploy-
ment of the same component to different Resource Containers.
Hence, we leave the study of contemporary refactoring actions to fur-
ther investigation.

The whole process has been implemented as an ex-
tension to the PCM Bench tool6. The current imple-
mentation can solve three antipatterns in PCM models,
namely Concurrent Processing Systems, Extensive pro-
cessing and One-lane Bridge. They in fact represent, as
illustrated in Section 3.2, the antipatterns whose solu-
tion can be automated within the PCM syntax bound-
aries. Semi-solvable antipatterns are only detected in
PCM, but they would need a human contribution to be
solved by hand.
This is not true in general, because different modeling
notations could offer different potential to the detection
and solution steps, like we have shown in UML [13] and
in the Æmilia ADL [37].

The tool completely automates the detection, the
ranking, and the solution steps. Therefore, the role of
architects in this context is limited to the design of a
(annotated) software model and to the specification of
performance requirement(s). PCM Bench returns the
whole tree illustrated in Figure 5, where the best ranked
options have been processed.

As mentioned in Section 4, the solution of one or
more antipatterns does not guarantee performance im-
provements in advance, because the entire process is
based on heuristic evaluations and acts within a stochas-
tic domain. Therefore, different termination criteria can
be defined for the process: (i) fulfilment criterion, i.e.
all requirements are satisfied and a software model able
to cope with user needs is found; (ii) no-actions crite-
rion, i.e. no antipatterns are detected in the software
models therefore no refactoring actions can be further
experimented; (iii) #iterations criterion, i.e. the process
can be terminated if a certain number of iterations have
been completed.

Full automation of this process could not be the best
scenario in several cases. Human experience can be use-
ful, between one iteration and the next one, to cut certain
alternatives or to assign high priority to other alterna-
tives, so to drive the whole process. These choices can
be based on domain-specific constraints, budget limits,
legacy constraints, etc. that are hard to codify within the
process to be machine-processable. However, in this pa-
per we aim at describing and validating the correctness
and effectiveness of our approach to solve performance
problems, whereas we leave user interaction aspects for
further investigation.

The representation we propose in Figure 5 allows to
associate the software performance feedback to a path
in the tree of candidates: all the actions specified in the

6PCM Bench and antipattern-based extension can be downloaded
at sdqweb.ipd.kit.edu/wiki/PerOpteryx.

17

path indicate the design alternatives to be assessed in the
software model. It may happen that the best candidate
of one iteration, if any, i.e. the local optimum (repre-
sented with a double circle), is not necessary included
in the path towards the final best candidate (depicted
with shaded arcs), i.e. the global optimum.

The goal of the ranking process is to support the an-
tipatterns’ solution step in order to quickly converge to-
wards the desired performance improvement, but with-
out compromising the path towards the final best can-
didate. On the basis of the ranked antipatterns list, dif-
ferent selection criteria can be devised to decide how
to proceed in the solution step: (i) limit criterion, i.e.
all antipatterns whose guilt degree is lower than a limit
value (e.g. 0.5) are discarded, or (ii) percentage crite-
rion, i.e. a percentage of the detected antipatterns (e.g.
40%) will be discarded, that are the ones with the lowest
guilt degrees. We have used both the above criteria in
our case studies, as it will be illustrated case-by-case.

Once a selection criterion has been defined, the tree
of software model candidates can be pruned. In fact in
Figure 5 we distinguish the nodes with the following
meaning:

√
, i.e. the corresponding antipattern action is

experimented; ×, i.e. the corresponding antipattern ac-
tion is discarded. In this way our guilt-based strategy
operates like a branch and bound algorithm that dis-
cards subsets of fruitless candidates.

6. A leading case study

In this Section we discuss an illustrative case study
to demonstrate the validity of the antipattern-based pro-
cess, and it is organised as follows. First, Section 6.1
describes the PCM model of the system under analy-
sis, the so-called business reporting system. Then, the
stepwise application of the antipattern-based process is
performed. The first iteration is described in Section
6.2, whereas Section 6.3 presents the application of the
whole process across multiple iterations.

The experimentation is conducted as follows. Start-
ing from the system modelled in PCM, for performance
analysis the simulation code has been generated and ex-
ecuted with SimuCom [7]. The simulation results are
interpreted by our tool and may reveal performance is-
sues in the system if the prediction value of one or more
performance indices does not fulfil the requirements.

Then, the antipattern-based process is applied: if
some performance antipatterns are detected in the
model, they are ranked and their solution suggests the
architectural alternatives that lead to obtain new soft-
ware model candidates. In this case study we adopt the

ranking methodology with the percentage selection cri-
terion (see Section 5), hence we discard 40% of the de-
tected antipatterns with the lowest guilt degrees. The
software model candidates (that are not discarded by our
ranking methodology) are iteratively analysed with the
same process until a candidate able to satisfy the per-
formance requirements under study is found, or until no
antipatterns are detected any more.

We demonstrate that the introduction of the ranking
methodology in the solution step leads the system to
converge towards the desired performance improvement
by discarding 34% of design alternatives.

For sake of simplification, our experimentation is fo-
cused on the analysis of the response time of the system
(i.e. the average time a user spends in the system), and it
must not overcome 27.5 seconds, under an expected av-
erage workload of 30 requests per second with thinking
time of 5 seconds.

6.1. Business Reporting System
The system under study is the so-called Business Re-

porting System (BRS), which lets users retrieve reports
and statistical data about running business processes.

Figure 6 shows an overview of the PCM software
model for the BRS system. It is a 4-tier system consist-
ing of several basic components, as described in the fol-
lowing. The Webserver handles user requests for gen-
erating reports or viewing the plain data logged by the
system. It delegates the requests to a Scheduler, which
in turn forwards the requests. User management func-
tionalities (e.g. login, logout) are directed to the User-
Management, whereas report and view requests are for-
warded to the OnlineReporting or GraphicalReporting,
depending on the type of request. Both components use
a CoreReportingEngine for the common report gener-
ation functionality. The latter one frequently accesses
the Database, but for some request types uses an in-
termediate Cache. The allocation of software compo-
nents on resource containers is shown in Figure 6, e.g.
Proc2 deals with the scheduling of requests by host-
ing Scheduler, UserManagement, OnlineReporting and
GraphicalReporting basic components.

The system supports seven use cases: users can lo-
gin, logout and request both reports or views, each of
which can be both graphical or online; administrators
can invoke the maintenance service.

Not all services are inserted in Figure 6 for sake of
readability, however two examples are shown: SEFF
onlineReport of component OnlineReporting imple-
ments the interface IOnlineReporting, and SEFF graph-
icalReport of component GraphicalReporting imple-
ments the interface IGraphicalReporting. Both services

18

<<InternalAction>>
setupReport
demand= 0.001

<<ExternalCallAction>>
IReporting.getReport

<<SEFF>>
IOnlineReporting.onlineReport

<<InternalAction>>

demand= 1.0

<<ExternalCallAction>>
IReporting.getReport

<<InternalAction>>
calculateReport

demand = entries .VALUE * 0.6

<<SEFF>>
IGraphicalReporting.graphicalReport

Proc
4

Proc1

Proc2

Proc3

Core
Reporting
Engine

Cache

Database

Graphical
Reporting

Online
Reporting

Blob

PA6: Circuitous Treasure Hunt

Concurrent Processing Systems

User
Management

Webserver

DBConnection
IReporting

IOnline
Reporting

IGraphical
Reporting

PA1:

PA2:

<<ResourceContainer>>
<<ResourceContainer>>

Scheduler

<<ResourceContainer>><<ResourceContainer>>

<<PassiveResource >>

capacity=1

Extensive ProcessingPA7:

setupReport

<<implements >>

<<implements >>

CPU

CPU

CPU

Concurrent Processing SystemsPA8:

PA3: Empty Semi Trucks

Concurrent Processing SystemsPA9: Concurrent Processing SystemsPA5:

Concurrent Processing SystemsPA10:

PA4: One-Lane Bridge

Figure 6: PCM Software Model for the BRS system.

have an InternalAction to setup the report and then an
ExternalCallAction demands to get the report from the
CoreReportingEngine component. For the graphicalRe-
port service is necessary to additionally calculate the re-
port for each requested entry. Each internal action is
annotated with a resource demand indicating the time
spent for processing such operation, e.g. the setup of
the onlineReport requires 0.001 CPU units.

The PCM software model contains the static struc-
ture, the behaviour specification of each component and
it is annotated with resource demands and resource envi-
ronment specifications. Additionally, the PCM software
model contains the usage model specifying how users
use the system: users login, 25 times the onlineView
service is invoked, 5 times the graphicalView and on-
lineReport services are invoked, and finally the graph-
icalReport and maintain services are performed before
the logout.

For performance analysis, the software model is auto-
matically transformed to simulation code, which is exe-
cuted by the SimuCom simulation [7]. The performance
analysis of the BRS software model reveals that the re-
sponse time of the system is 46.34 seconds (under the
expected workload of 30 requests per second with think-
ing time of 5 seconds), so it does not meet the stated

requirement, i.e. 27.5 seconds. Since the requirement is
not satisfied, we apply our approach to detect, rank and
solve performance antipatterns.

6.2. First iteration of the antipattern-based process

In this section we discuss the first iteration of the
antipattern-based process, in particular we describe the
detection of antipatterns (see Section 6.2.1), the rank-
ing (see Section 6.2.2) and their solution (see Section
6.2.3).

6.2.1. Detecting Antipatterns
The labels in Figure 6 indicate the detected antipat-

terns. Ten instances of antipatterns are found (PA1,
. . . , PA10), e.g. the Concurrent Processing Systems for
Proc1 and Proc2, the Blob is recognized in the Sched-
uler component, the Empty Semi Trucks is associated
to the OnlineReporting component, and so on. Shaded
labels represent the solvable antipatterns, i.e. the ones
that we consider for the ranking and the solution.

Table 12 reports some examples of the detected an-
tipatterns for the BRS software model in the first iter-
ation. The first column contains the antipattern type
according to the Smith and Williams classification [12];

19

Table 12: BRS- examples of detected antipatterns.

Antipattern Problem

PA1 - Con-
current
Processing
Systems

QueueLength Rule - the PCM Active Resource CPU of
Proc2, not shown in Figure 6 for sake of readability,
has a queueLength of 2.2 requests (i.e. greater than the
threshold value, ThmaxQL(CPU) =1.5 requests); Utili-
sation Rule - the PCM Active Resource CPU of Proc2
has an utilisation of 49% (i.e. greater than the thresh-
old value, ThmaxHwUtil(CPU) =40%); UnbalancedLoad
Rule - the PCM Active Resource CPU of Proc1 has an
utilisation of 0.5% (i.e. lower than the threshold value,
ThminHwUtil(CPU) =10%).

PA5 - Con-
current
Processing
Systems

QueueLength Rule - the PCM Active Resource CPU of
Proc2 has a queueLength of 2.2 requests (i.e. greater
than the threshold value, ThmaxQL(CPU) =1.5 requests);
Utilisation Rule - the PCM Active Resource CPU of
Proc2 has an utilisation of 49% (i.e. greater than
the threshold value, ThmaxHwUtil(CPU) =40%); Unbal-
ancedLoad Rule - the PCM Active Resource CPU of
Proc4 has an utilisation of 0.7% (i.e. lower than the
threshold value, ThminHwUtil(CPU) =10%).

.

the second column instantiates the problem by reason-
ing on the PCM model elements. In particular, the ap-
plication of the detection rules (e.g. QueueLength, see
Section 4.1) is shown and the numerical value of some
thresholds is reported (e.g. the upper and lower bounds
for CPU devices are respectively set to 40% and 10%).

Note that several instances of the same antipattern
type can be detected. For example, we found five
instances of the Concurrent Processing Systems (not
shown in Table 12 for sake of space) in the BRS sys-
tem. Such antipatterns instances are not independent
since two of them (i.e. PA1 and PA5) contain the CPU
of Proc2 as the over utilised one, whereas the remain-
ing three instances (i.e. PA8, PA9 and PA10) contain the
HardDisk of Proc3 as the over utilised one.

6.2.2. Ranking Antipatterns
Table 13 contains the performance requirement under

study: it requires that the response time of the system is
not larger than 27.5 seconds, whereas the performance
analysis reveals a response time of 46.34 seconds. The
violated requirement we consider covers the whole soft-
ware model, in fact the involved entities column of Ta-
ble 13 includes all the BRS model elements.

The solvable performance antipatterns, i.e. the ones
that we consider for the ranking and the solution (see
shaded labels of Figure 6), are collected in the complete
antipatterns list, as shown in Table 14.

The ranked antipatterns list is reported in Table 15:
it represents the result of our antipatterns ranking pro-
cess, where numerical values are calculated according
to the equations reported in Section 4.2. Note that the

Table 13: BRS - Violated Requirements.
ID Requirement Required Observed Involved

Value Value Entities

R1 RT(system) 27.5 sec 46.34 sec Webserver,
Proc1, S cheduler,
UserManagement,
OnLineReporting,
GraphicalReporting,
Proc2, Database,
Proc3, Cache,
CoreReportingEngine,
Proc4

Table 14: BRS - Complete Antipatterns List.
ID Detected Involved Contributing

Antipattern Entities Indices

PA1 CPS Proc1 U(Proc1) = 0.05,
U(Proc2) = 0.49

PA4 OLB Database U(DBConnection) = 0.68,
U(Proc3) = 0.45

PA5 CPS Proc4 U(Proc2) = 0.49,
U(Proc4) = 0.07

PA7 EP IOnlineReporting. T(onlineReport) = 1.78,
onlineReport,
GraphicalReporting. T(graphicalReport) = 0.42
graphicalReport

PA8 CPS Proc1 U(Proc1) = 0.05,
U(Proc3) = 0.45

PA9 CPS Proc2 U(Proc2) = 0.49,
U(Proc3) = 0.45

PA10 CPS Proc4 U(Proc3) = 0.45,
U(Proc4) = 0.07

most guilty antipattern for the RT (system) requirement
is PA4 whose guilt degree is 1.105, whereas the least
guilty one is PA9 with a guilt degree of 0.192. The
solution of the detected antipatterns gives rise to soft-
ware model candidates that we progressively numerate
as BRS 1− j because they belong to the first iteration.
Hence, the solution of PA1 gives rise to the software
model candidate BRS 1−1, the solution of PA4 gives rise
to the software model candidate BRS 1−2, and so on up
to the solution of PA10 that gives rise to the candidate
BRS 1−7.

In order to validate the efficiency of our ranking pro-
cess we anticipate the first iteration of the antipattern-
based approach by solving all the detected antipatterns.

The results of the software model candidates (i.e.,
BRS PA1−1 , . . . , BRS PA1−7 , the candidates obtained by
solving all the detected antipatterns) are collected in Ta-
ble 16. It can be noticed that the high guilt degree of
PA4 has provided a relevant information because its re-
moval improves the response time the most (from 46.34
seconds to 33.8 seconds). Similarly, the low guilt degree
of PA9 has provided relevant information too, in fact its
removal makes worse the observed value for the require-
ment (from 46.34 seconds to 73.44 seconds), hence its
solution affects much less the requirement.

In Figure 7 we summarise our experimentation to as-

20

Table 15: BRS - Ranked Antipatterns List.
Detected Antipatterns

Requirement PA1 PA4 PA5 PA7 PA8 PA9 PA10

R1 0.445 1.105 0.539 0.812 0.406 0.192 0.500

Table 16: The requirement RT(system) across different software model candidates.
Observed Values

Requirement BRS BRS 1−1 BRS 1−2 BRS 1−3 BRS 1−4 BRS 1−5 BRS 1−6 BRS 1−7

R1 46.34 sec 44.29 sec 33.8 sec 43.77 sec 44.61 sec 47.91 sec 73.44 sec 47.35 sec

sess the efficiency of the ranking process for the require-
ment under study. The target performance index (i.e.
the response time of the system) is plotted on the y-
axis, whereas on the x-axis the degree of guilt for an-
tipatterns is represented. Single points represent the
response times observed after the separate solution of
each performance antipattern, and they are labeled with
the ID of the antipattern that has been solved for that
specific point. Of course, the points are situated, along
the x-axis, on the corresponding guilt degree of the spe-
cific antipattern.

What is expected to observe in such representation
is that the response time decreases while increasing the
guilt degree of antipatterns, that is while moving from
left to right on the diagram. In fact, in our experimenta-
tion we can observe a correlation of response time and
guilt degree: Figure 7 shows that points with high guilt
degree indeed have a lower response time. This con-
firms that solving a more guilty antipattern helps much
more than solving a less guilty one, thus validating our
guilt metric.

6.2.3. Solving Antipatterns
Table 17 reports some examples of the solved antipat-

terns for the BRS software model in the first iteration.
Two columns are defined: the first one indicates the an-
tipattern type according to the Smith and Williams clas-
sification [12]; the second one instantiates the solution
by reasoning on the PCM model elements. In particular,
the application of the refactoring actions (e.g. Unblock-
Execution, see Section 4.3) is shown.

Note that several instances of the same antipattern
type can be solved. For example, the solution of the
PA1 antipattern suggests to re-deploy the GraphicalRe-
porting component from Proc2 to Proc1, whereas the
solution of the PA5 antipattern suggests to re-deploy the
same component from Proc2 to Proc4. It is for this rea-

Table 17: BRS- examples of solved antipatterns.

Antipattern Solution

PA7 - Exten-
sive Processing

UnblockExecution Action - the scheduling algo-
rithm of Proc2 is changed from FCFS to PROCES-
SOR SHARING.

PA1 - Concur-
rent Processing
Systems

MostCritical Action - the GraphicalReporting com-
ponent is redeployed from Proc2 to Proc1.

PA5 - Concur-
rent Processing
Systems

MostCritical Action - the GraphicalReporting com-
ponent is redeployed from Proc2 to Proc4.

PA4 - One-
Lane Bridge

IncreaseCapacity Action - the capacity of the passive
resource of Proc3 is increased by 5.

.

son that we consider refactoring actions separately, in
order to avoid infeasible architectural alternatives.

Each refactoring action from Table 17 results in a new
software model candidate whose performance analysis
reveals if the action is actually beneficial for the system
under study. We recall that the solution of an antipat-
tern cannot guarantee performance improvements in ad-
vance because the whole process is based on heuristics.

6.3. Further iterations of the antipattern-based process

To validate the efficiency of our approach the experi-
mentation has been conducted as follows. A first analy-
sis has been executed by applying the antipattern-based
process without the ranking step: all the detected an-
tipatterns are solved. A second analysis has been exe-
cuted by introducing the ranking process with the per-
centage criterion (see Section 5), i.e. 40% of the de-
tected antipatterns are discarded, i.e. the ones with the
lowest degrees.

Figure 8 reports our experimentation by applying the
antipattern-based process without the ranking step, and

21

Figure 7: RT(system) vs the guilt degree of antipatterns.

Figure 8: Response time of the system across the iterations of the antipattern-based process.

22

iteration1

iteration2

...

BRS

{(RT(system), 44.29)}
1-1

One-Lane Bridge,
DBconnection:

capacity = 1 -> 6

iteration3

iteration4

Concurrent Processing
Systems, Database:

Proc -> Proc3 4

Concurrent Processing
Systems, OnlineReporting:

Proc -> Proc2 3

Concurrent Processing
Systems, Cache:

Proc -> Proc4 1

BRS

{(RT(system), 43.77)}
1-3

BRS

{(RT(system), 44.61)}
1-4

BRS

{(RT(system), 47.91)}
1-5

BRS

{(RT(system), 73.44)}
1-6

BRS

{(RT(system), 35.33)}
2-6

BRS

{(RT(system), 33.51)}
3-16

BRS

{(RT(system), 47.35)}
1-7

...

...

......

...

BRS
{(RT(system), 46.34)}

BRS

{(RT(system), 33.8)}
1-2

BRS

{(RT(system), 28.54)}
2-31

BRS

{(RT(system), 27.51)}
3-105

BRS

{(RT(system), 27.11)}
4-47

...
...

...

...

...

... ...

...
...

...

Figure 9: Process summary for the BRS system.

Table 18: BRS - reduction of the number of software model candidates by means of the ranking process.

Number of Software Model Candidates

Approach iteration1 iteration2 iteration3 iteration4 TOT

Solution 7 36 123 289 455

Guilt-based Solution 4 25 93 217 339

23

across multiple iterations of the process: the target per-
formance index is the response time of the system and
it is plotted on the y-axis, while the iterations of the
antipattern-based process are listed on the x-axis. Sin-
gle points represent the response times observed after
the separate solution of each performance antipattern.

Figure 8 summarizes the whole experimentation
across the different iterations: the response time of the
system spans from 46.34 seconds (i.e. the initial value)
to 27.11 sec (i.e. the value that fits with the require-
ment). Note that at each iteration a performance im-
provement is achieved up to the fourth iteration, and the
final improvement is roughly of 45%.

Figure 9 reports our experimentation by applying the
antipattern-based process with the ranking step, and the
graph-like notation (see Section 5) summarizes the pro-
cess: each node reports the performance index of our
interest, i.e. RT(system), and its observed value (e.g.
46.34 seconds in the root of the graph represents the ob-
served value for the initial system); each arc represents a
refactoring action (e.g. capacity of the passive resource
DBconnection is increased from 1 to 6) applied to solve
a detected antipattern (e.g. One-Lane Bridge). In our
experimentation we applied the fulfilment criterion (see
Section 5) to terminate the process, since the require-
ment is satisfied at the fourth iteration and a software
model candidate (i.e. BRS 4−47, see Figure 9) able to
cope with user needs is found.

Note that the ranking process has been executed only
on the initial candidate, i.e. BRS software model. Fig-
ure 9 reports all the candidates of the first iteration, i.e.
BRS 1−1, . . . , BRS 1−7, and their observed values for the
requirement under study, as anticipated in Table 16.

According to the defined selection criterion, all the
design alternatives coming from the 40% of detected an-
tipatterns with the lowest guilt degree are discarded. As
shown in Table 15, the lowest guilt degrees come from
the antipatterns PA1, PA8 and PA9, hence the BRS 1−1,
BRS 1−5 and BRS 1−6 software model candidates are dis-
carded, i.e. the nodes with the × symbol in Figure 9.

The experimental results we obtained are finally col-
lected in Table 18 where the two approaches are com-
pared. If we apply the solution step without the support
of the ranking process 455 software model candidates
are generated: 7 in the first iteration, 36 in the second
iteration, 123 in the third iteration, and 289 in the fourth
iteration. When introducing the ranking process the
antipattern-based approach roughly discards the 34% of
design alternatives: if we apply the guilt-based solution
step in the first iteration, only 339 software model can-
didates are analysed.

In our experimentation the ranking process supported

the antipatterns’ solution step by converging towards the
desired performance improvement, and without com-
promising the path towards the final best candidate.
Figure 9 additionally shows that at the second itera-
tion the local optimum is achieved at the 31st candi-
date (i.e. BRS 2−31) whose performance analysis re-
veals a response time for the system equal to 28.54 sec-
onds, whereas at the third iteration the local optimum is
achieved at the 105th candidate (i.e. BRS 3−105) whose
performance analysis reveals a response time for the
system equal to 27.51 seconds. Although both these
candidates do not belong to the global optimum path,
they are not discarded by the applied ranking method-
ology. The fourth iteration produces a candidate whose
response time is equal to 27.11 seconds, hence it satis-
fies the requirement and the process terminates.

The number of necessary iterations obviously de-
pends on the stopping criterion that, in this case, was
the one driven by a requirement (i.e. fullfillment cri-
terion). We have explicitly decided to not considering
the relative improvement of performance between two
iterations as a stopping criterion because, basing on our
experience, the solution of one antipattern can surpris-
ingly improve the system performance even on a sys-
tem where recent actions have not brought substantial
improvements. In fact, by observing the response time
values of candidates in Figure 9, the statistical differ-
ence between one iteration and the next one does not
represent a key factor for the global optimum search.

It is relevant to notice that in our experimentation the
global optimum path includes a candidate node that has
worse performance than its parent, in fact at the sec-
ond iteration the 6th candidate (i.e. BRS 2−6) reveals a
response time for the system equal to 35.33 seconds,
i.e. larger than the one from which it is generated (i.e.
BRS 1−2), and whose response time for the system is
equal to 33.8 seconds.

Note that the selection criterion strongly influences
the advantages of applying the ranking process. Other
considerations can be done if we modify the percent-
age value (currently set to 40%) for discarding all the
detected antipatterns. While discarding one-by-one the
remaining antipatterns, i.e. PA4, PA7, PA5, PA10, (from
the less promising, i.e. PA10, up to the most promis-
ing, i.e. PA4) we can observe the following numbers of
software model candidates: 255, 162, 114. Hence, the
ranking methodology may benefit the whole antipattern-
based process, since we experimented a relevant reduc-
tion in the number of model candidates.

As shown in Figure 9, we can conclude that the soft-
ware model candidate that best fits with user needs is
obtained by applying the following refactoring actions

24

(see the shaded path of Figure 9): (i) the capacity of the
passive resource DBconnection is increased from 1 to 6;
(ii) the Database component is redeployed from Proc3
to Proc4; (iii) the Cache component is redeployed from
Proc4 to Proc1; (iv) the OnlineReporting component is
redeployed from Proc2 to Proc3.

7. The approach at work on other three case studies

In this Section we report our experimentation on three
different case studies to demonstrate the effectiveness of
the antipattern-based process, and it is organised as fol-
lows. Section 7.1 describes the PCM models of the three
systems under analysis. Section 7.2 reports the experi-
mental results and demonstrates that the introduction of
the ranking methodology in the solution step leads the
system to converge towards the desired performance im-
provement while discarding a substantial number of de-
sign alternatives.

7.1. PCM models of case studies

In this Section we describe the models of three sys-
tems used as testbed for our antipattern-based process.
These systems are aimed at consolidating our confi-
dence on the usability of the approach. They have been
modeled by three groups of graduate students of the
Advanced Software Engineering course at the Univer-
sity of L’Aquila, as part of their homeworks. The three
domains represented the cores of the course in the last
three years (one per year). Thus, for sake of our experi-
mentation we have selected the best homework for each
year (hence for each domain). Furthermore, one of these
homeworks has been awarded by a Business-Plan Com-
petition [38]. Even if they are not really implemented
systems, they have been exposed in research projects as
realistic and characteristic for their domains [39].

7.1.1. E-Commerce System
The system under study is the so-called E-Commerce

System (ECS) that is a web-based system managing
business data: customers browse books and movies cat-
alogues and make selections of items that need to be
purchased.

Figure 10 shows an overview of the PCM software
model for the ECS system. The system supports four
use cases: customers can register, login, and request
to browse catalogues and to purchase some products.
The WebServer component is connected to: (i) the Cus-
tomerController component that manages customers’
requests, such as login and registration, together with
the Database component; (ii) the BooksDispatcher and

MoviesDispatcher components that manage the prod-
ucts offered by ECS. In particular, the customers are
managed by the CustomerController component that
communicates with the Database to: (i) store the reg-
istration of new users, i.e. their profile, preferences and
pictures; (ii) verify the login credentials of users already
registered. The BooksDispatcher component communi-
cates with the BooksController component that retrieves
information (such as the availability and the price of
the products) from the Database component. Similarly,
the MoviesDispatcher communicates with the Movi-
esController component that retrieves information from
the Database component. Both BooksController and
MoviesController components communicates with the
BooksCatalog and the MoviesCatalog respectively. The
allocation of software components on resource contain-
ers is shown in Figure 10, e.g. the DispatcherNode
hosts the CustomerController, BooksDispatcher, and
MoviesDispatcher basic components.

The PCM software model additionally contains the
usage model specifying how users use the system:
users make the registration, then they login, 5 times
the browseCatalog service is invoked, and finally the
makePurchase service is executed.

The performance analysis of the ECS software model
reveals that the response time of the system is 76.96 sec-
onds (under the expected workload of 10 requests per
second with thinking time of 5 seconds), so it does not
meet the stated requirement, i.e. 25 seconds. Since the
requirement is not satisfied, we apply our approach to
detect, rank and solve performance antipatterns. Exper-
imental results are discussed in Section 7.2.

7.1.2. E-Health System
The system under study is the so-called E-Health Sys-

tem (EHS) that is a web-based system supporting the
doctors’ and patients’ everyday activities. Doctors are
allowed to retrieve the information of their patients and,
on the basis of such data, they can send an alarm in
case of warning conditions. Patients are allowed to re-
trieve information about the doctor expertise and update
some vital parameters, e.g. heart rate, that are required
to monitor their health status.

Figure 11 shows an overview of the PCM software
model for the EHS system by reporting the software
components and their dependencies. PatientDispatcher
and DoctorDispatcher components are connected to the
Scheduler component that firstly checks the user cre-
dentials by communicating with the UserManagement
component and then forwards users’ requests to the
DataManagement component. This latter component
communicates with DatabaseData component and/or

25

<<InternalAction>>
checkAvailability

demand= 0.01

<<ExternalCallAction>>
BooksRequest .getCatalogue

<<SEFF>>
BooksControl.
getBooksCatalog

<<InternalAction>>

demand= 1.0

<<ExternalCallAction>>

<<InternalAction>>
showMoviesCatalog
demand = entries .VALUE * 0.6

<<SEFF>>

WebServerNode

Database

Movies
Dispatcher

Books
Dispatcher

Blob

Concurrent Processing Systems

Webserver

DBConnection MoviesRequest

Books
Control

Movies
Control

PA1:

PA2:

<<ResourceContainer>>

ResourceContainer>>

Customer
Controller

<<ResourceContainer>>ResourceContainer>>

<<PassiveResource >>

capacity=1

Extensive ProcessingPA7:

<<implements>>

<< implements>>

CPU

CPU

CPU

Concurrent Processing SystemsPA9 :

Concurrent Processing Systems

DispatcherNode

DatabaseNode

checkAvailability

MoviesControl .getMoviesCatalog

MoviesRequest .getCatalogue

<<InternalAction>>
showBooksCatalog
demand = entries .VALUE * 0.6CPU

BooksRequest

Movies
Catalog

BooksCatReq
MoviesCatReq

ProductControl
Node

Movies
Controller

Books
Catalog

Books
Controller

BlobPA3:

BlobPA4:

PA6: Circuitous
Treasure Hunt

PA8: Empty Semi Trucks

PA11 :

PA7: Empty Semi Trucks

Concurrent Processing SystemsPA 10 :

Processing Systems
PA12 : Concurrent

<<ResourceContainer>>
ProductCatalog

Node
PA5: Circuitous

Treasure Hunt

Processing Systems
PA13 : Concurrent

Figure 10: PCM Software Model for the ECS system.

Patient
Dispatcher

CheckUserCredentials

GetPatientInfo

<<ResourceContainer>>
<<ResourceContainer>>

Scheduler

PA5: OLB

PatientRequests SchedulerNode

UpdateVital
Parameters

<< ResourceContainer>>
DBdataNode

RetrievePatient
Data

GetXRay
Images

StorePatient
Data

Doctor
Dispatcher

<<ResourceContainer>>
DoctorRequests

<<InternalAction>>
elaborateRequest

demand= 0.001

<<ExternalCallAction>>
DatabaseData.retrievePatientData

<<SEFF>>
DataManagement.
GetPatientInfo

<<InternalAction>>

demand= 1.0

<<ExternalCallAction>>

<<InternalAction>>
showPatientVitalParameters
demand = entries .VALUE * 0.6

<<SEFF>>

CPU

CPU

CPU

elaborateRequest

<<InternalAction>>
showPatientData

demand = entries .VALUE * 0.2CPU

DatabaseData.storePatientData

<<ResourceContainer>>
UserNode

User
Management

<<ResourceContainer>>
DataMngmtNode

Data
Management

DBimgsConnect
<<PassiveResource >>

capacity=1

<< ResourceContainer>>
DBimgsNode

Database
Images

DataManagement.
UpdateVitalParameters

BlobPA1:
CPSPA3:

CPS:

CPSPA9:

CPSPA6:

CPSPA8: CPS:

CPSPA10:

CPSPA4:

ESTPA2:

PA11

PA12

PA13 : EP

PA7: OLB

DBdataConnect
<<PassiveResource >>

capacity=1
DBdataConnect

Database
Data

Figure 11: PCM Software Model for the EHS system.

26

retrieves images from the DatabaseImages component.
In particular, the DataManagement component provides
two services: (i) the GetPatientInfo service is aimed at
retrieving patient data and send it to the doctor’s appli-
cation; (ii) the UpdateVitalParameters service is aimed
at storing patient data in the database and send back the
acknowledgment of such operation to the patient’s ap-
plication. The allocation of software components on
resource containers is shown in Figure 11, e.g. the
S chedulerNode hosts the Scheduler basic component,
the UserNode hosts the UserManagement basic com-
ponent, etc.

The PCM software model additionally contains the
usage model specifying how users use the system: doc-
tors invoke the Login and the GetPatientInfo services,
and in case of warning conditions (regulated by a prob-
ability of 20%) they send an alarm, whereas patients in-
voke the UpdateVitalParameters service.

The performance analysis of the EHS software model
reveals that the response time of the system is 4.26 sec-
onds (under the expected workload of 30 requests per
second with thinking time of 10 seconds), so it does not
meet the stated requirement, i.e. 3 seconds. Since the
requirement is not satisfied, we apply our approach to
detect, rank and solve performance antipatterns. Exper-
imental results are discussed in Section 7.2.

7.1.3. Bus On Air System
The system under study is the so-called Bus on Air

System (BOA) that is a system aimed at developing a set
of services for public transportation targeting both the
end-users, such as passengers, and the suppliers, such
as transportation agencies.

Figure 12 shows an overview of the PCM software
model for the BOA system. Each request of passen-
gers is represented by the MobileApplication and it is
forwarded to Balancer component. Requests are man-
aged by a Server component that retrieves data from two
Database components and send data back to the mobile
applications. Two services have been specified in the
system: (i) GetConnections, i.e. the potential passen-
ger arrives at the bus stop and has access to informa-
tion on the best path to reach a destination, such as lines
that cover a path, how long to wait, etc.; (ii) GetFacil-
ities, i.e. the potential passenger arrives at the bus stop
and has access to information on the facilities nearby its
current location, such as bars, fast foods, shops, ATMs,
attractions, how far they are located, etc. Two different
databases have been defined to access data information:
(i) the DatabaseConnections component retrieves infor-
mation about the best path to reach a destination place

and the public transportation that can be used by pas-
sengers; (ii) the DatabaseFacilities component retrieves
information about the facilities (e.g. fast foods) nearby
the current location provided by passengers. The allo-
cation of software components on resource containers
is shown in Figure 12, e.g. the BalancerNode hosts the
Balancer basic component, the S erverNode hosts the
Server basic component, etc.

The PCM software model additionally contains the
usage model specifying how users use the system: users
invoke the GetConnections service, and in case they
need to wait for long (regulated by a probability of 70%)
they invoke the GetFacilities service by which they dis-
cover the nearby facilities.

The performance analysis of the BOA software
model reveals that the response time of the GetConnec-
tions service is 9.51 seconds (under the expected work-
load of 15 requests per second with thinking time of 3
seconds), so it does not meet the stated requirement, i.e.
2 seconds. Since the requirement is not satisfied, we ap-
ply our approach to detect, rank and solve performance
antipatterns. Experimental results are discussed in Sec-
tion 7.2.

7.2. Quantifying the benefit of ranking in the
antipattern-based approach

In this Section we discuss the experimental results of
the three different case studies presented in Section 7.1.

The antipattern-based approach is applied by distin-
guish three different methodologies: (i) solution, i.e. no
ranking methodology is considered in the step of solv-
ing antipatterns; (ii) guilt-based solution (without se-
mantic factor), i.e. the ranking methodology does not
consider the ranking refinement; (iii) guilt-based so-
lution (with semantic factor), i.e. the guilt degree of
antipatterns takes into account the specification of our
ranking refinement.

In these case studies we adopt the ranking method-
ology with the limit selection criterion (see Section 5),
hence we discard all the detected antipatterns whose
guilt degree is lower than a numerical limit value. In
particular, the (ii) guilt-based solution (without seman-
tic factor) is evaluated by discarding all antipatterns
whose guilt degree is lower than a 0.4 limit value,
whereas the (iii) guilt-based solution (with semantic
factor) is evaluated by discarding all antipatterns whose
guilt degree is lower than a 0.5 limit value.

This difference in the value of the limit selection crite-
rion is due to the different estimation for the guilt degree
of antipatterns. In fact, as said in Section 4.2, the guilt
degree is calculated giving a score to each involved en-

27

Mobile
Application

DBConnections

GetConnections

<<ResourceContainer>>

<<ResourceContainer>>

Balancer

<<PassiveResource >>

capacity=1

UserPDA

BalancerNode

GetBestPath

Database
Connections

Concurrent Processing SystemsPA5:

Server

<<ResourceContainer>>
ServerNode

<<ResourceContainer>>
DBfacilitiesNode

GetFacilities

<<InternalAction>>
elaborateRequest

demand= 0.001

<<ExternalCallAction>>
DBconnections.getConnections

<<SEFF>>
Server.GetConnections

<<InternalAction>>

demand= 1.0

<<ExternalCallAction>>

<<InternalAction>>
showFacilities

demand = entries .VALUE * 0.6

<<SEFF>>

Extensive ProcessingPA 8:

CPU CPU

CPU

elaborateRequest

Server.GetFacilities

<<InternalAction>>
showConnections

demand = entries .VALUE * 0.2CPU

Concurrent Processing SystemsPA9:

DBfacilities.getFacilities

PA2: Empty Semi Trucks

PA6: One-Lane Bridge

PA7: Circuitous Treasure Hunt

GetPublicTransportation

GetATMs

Database
Facilities

GetFastFoods

BlobPA1:
Concurrent Processing SystemsPA4:

<<ResourceContainer>>
DBconnectionsNode

DBFacilities
<<PassiveResource >>

capacity=1

PA3: One-Lane Bridge

Concurrent Processing SystemsPA10:

Figure 12: PCM Software Model for the BOA system.

tity as well as the semantic factor that varies in the inter-
val [0, . . . , 1]. Hence the guilt degree of each antipattern
varies in the interval [0, . . . , n] (where n is the number
of involved entities in the violated requirement) with-
out the semantic factor and in the interval [0, . . . , n + 1]
when the calculation takes into account the semantic
factor. Overall, the semantic factor is aimed at captur-
ing the potential effectiveness of an antipattern solution
by considering additional information. Hence by mov-
ing the limit from 0.4 to 0.5 we aim at discarding all the
antipatterns whose guilt degree does not embed at least
25% of additional information brought by the semantic
factor.

Table 19 demonstrates the benefit of the ranking pro-
cess by quantifying the reduction of the number of soft-
ware model candidates for each considered case study.
Experimental results are discussed in the following.

E-Commerce System. In our experimentation we found
that after two iterations of the antipattern-based pro-
cess the response time decreases from 76.96 seconds
to 20.73 seconds, thus achieving a performance im-
provement of 73%. The software model candidate that
best fits with user needs is obtained by applying the
following refactoring actions: (i) the scheduling algo-
rithm of DispatcherNode is modified from FCFS to

PROCESSOR SHARING; (ii) the MoviesCatalog com-
ponent is redeployed from ProductCatalogNode to
DispatcherNode.

Table 20 reports additional information about ten ran-
domly chosen software model candidates. For each can-
didate we report: the lower and upper bounds of the
95% confidence interval of the system response time,
the size of the interval, as well as the response time
mean value. The shaded row represents a candidate that
satisfies the user needs.

We remark that the interval size is always well under
the 1% of its lower bound. This implies a very small
variance of these values around their mean value, and
a very high confidence in these simulation results when
they are used within the antipattern-based process. For
sake of completeness, we have also calculated the aver-
age interval size overall the analysed candidates for this
case study, and we have obtained a value of 0.0302 sec.
This consolidates our confidence in the usage of mean
values within the whole process.

Table 19 shows that if we apply the solution step
without the support of the ranking process 225 software
model candidates are generated: 13 in the first itera-
tion, and 212 in the second iteration. When introduc-
ing the ranking process without the semantic factor the
antipattern-based approach roughly discards 45% of de-

28

Table 19: Other case studies - reduction of the number of software model candidates by means of the ranking process.

Number of Software Model Candidates

E-Commerce System E-Health System Bus On Air System
saving saving saving

Approach iteration1 iteration2 TOT (%) iteration1 iteration2 TOT (%) iteration1 iteration2 TOT (%)

Solution 13 212 225 - 19 244 263 - 11 126 137 -

Guilt-based
Solution
(without 12 111 123 45% 11 82 93 64% 8 56 64 53%

semantic factor)
Guilt-based

Solution
(with 6 48 54 76% 9 54 63 76% 5 27 32 77%

semantic factor)

Table 20: E-Commerce System: 95% confidence interval of response
time (in seconds).

Lower Bound Mean Value Upper Bound Interval Size

76.9378 76.9632 76.9845 0.0467
31.9877 32.0027 32.0069 0.0192
25.7303 25.7489 25.7506 0.0203

124.3860 124.4251 124.4662 0.0802
25.7198 25.7357 25.7389 0.0191
54.7712 54.7849 54.7994 0.0282
20.7303 20.7329 20.7406 0.0103
29.3585 29.4107 29.4433 0.0848
25.6793 25.6951 25.6983 0.0190
32.0694 32.0828 32.0898 0.0204

sign alternatives, in that only 123 software model can-
didates are analysed. Furthermore, the usage of the se-
mantic factor leads to roughly discard 76% of original
design alternatives, in that only 54 software model can-
didates are analysed.

E-Health System. In our experimentation we found that
after two iterations of the antipattern-based process the
response time decreases from 4.26 seconds to 2.69 sec-
onds, thus achieving a performance improvement of
37%. The software model candidate that best fits with
user needs is obtained by applying the following refac-
toring actions: (i) the capacity of the passive resource
DBdataConnect is increased by 5 (i.e. from 1 to 6);
(ii) the DatabaseData component is redeployed from
DBdataNode to S chedulerNode.

Similarly to Table 20, Table 21 reports additional in-
formation about ten randomly chosen software model
candidates for the E-Health System. In this case the in-
terval size is under the 3% of its lower bound, and this
implies a small variance around the mean value. Fur-
thermore, the average interval size overall the analysed
candidates is equal to 0.0504 sec. This consolidates our

confidence in the usage of mean values within the whole
process for this case study as well.

Table 21: E-Health System: 95% confidence interval of response time
(in seconds).

Lower Bound Mean Value Upper Bound Interval Size

4.2445 4.2612 4.2953 0.0508
3.9565 4.0345 4.0449 0.0884
3.2203 3.2944 3.3158 0.0955
3.8726 3.9456 3.9735 0.1009
3.9189 3.9846 4.0163 0.0974
2.6801 2.6881 2.6911 0.0110
4.1539 4.2309 4.2711 0.1172
4.0416 4.1184 4.1479 0.1063
3.8372 3.9195 3.9551 0.1179
4.0668 4.1448 4.1697 0.1029

Table 19 shows that if we apply the solution step
without the support of the ranking process 263 software
model candidates are generated: 19 in the first itera-
tion, and 244 in the second iteration. When introduc-
ing the ranking process without the semantic factor the
antipattern-based approach roughly discards 64% of de-
sign alternatives, in that only 93 software model candi-
dates are analysed. Furthermore, the usage of the se-
mantic factor leads to roughly discard 76% of original
design alternatives, in that only 63 software model can-
didates are analysed.

Bus On Air System. In our experimentation we found
that after two iterations the response time decreases
from 9.51 seconds to 1.48 seconds, thus achieving a
performance improvement of 84%. The software model
candidate that best fits with user needs is obtained by ap-
plying the following refactoring actions: (i) the schedul-
ing algorithm of S erverNode is modified from FCFS to
PROCESSOR SHARING; (ii) the capacity of the passive
resource DBConnections is increased by 5 (i.e. from 1
to 6).

29

Similarly to Tables 20 and 21, Table 22 reports ad-
ditional information about ten randomly chosen soft-
ware model candidates for the Bus On Air System. In
this case the interval size is under the 2.5% of its lower
bound, and this implies a small variance of these values
around their mean value, thus to get a high confidence
in these simulation results when they are used within the
antipattern-based process. We have also calculated the
average interval size overall the analysed candidates for
this case study, and it is equal to 0.0498 sec.

Table 22: Bus On Air System: 95% confidence interval of response
time (in seconds).

Lower Bound Mean Value Upper Bound Interval Size

9.4929 9.5134 9.5268 0.0339
2.9917 3.0049 3.0205 0.0288
2.9311 2.9404 2.9507 0.0196
4.0009 4.0224 4.0514 0.0505
1.4647 1.4843 1.4992 0.0345
4.9580 5.0016 5.0718 0.1138
2.7299 2.7471 2.7604 0.0305
2.9915 3.0055 3.0190 0.0275
4.9528 4.9630 4.9740 0.0212
2.7601 2.7797 2.7963 0.0362

Table 19 shows that if we apply the solution step
without the support of the ranking process 137 software
model candidates are generated: 11 in the first itera-
tion, and 126 in the second iteration. When introduc-
ing the ranking process without the semantic factor the
antipattern-based approach roughly discards 53% of de-
sign alternatives, in that only 64 software model candi-
dates are analysed. Furthermore, the usage of the se-
mantic factor leads to roughly discard 77% of original
design alternatives, in that only 32 software model can-
didates are analysed.

Figure 13 reports the guilt degree values of the de-
tected antipatterns for the BOA system, where the x-
axis represents the analysed antipatterns and the y-axis
the guilt degree associated to each antipattern and calcu-
lated without the semantic factor. The horizontal line in
the figure denotes the limit selection criterion (i.e. 0.4)
that splits the figure in two parts: all points below the
line represent the antipatterns whose guilt degree does
not fulfil the selection criterion and are discarded by our
approach, whereas all points above the line represent the
ones that fulfil the criterion. These latter points repre-
sent 64 detected antipatterns that are further evaluated
by our approach (see Table 19).

Figure 14 reports similar results where the semantic
factor is taken into account. The horizontal line in the
figure denotes the limit selection criterion of this case

(i.e. 0.5). Again, the points above the line represent 32
detected antipatterns that are further evaluated by our
approach (see Table 19).

Table 23 reports the number of software model can-
didates while varying the limit values for the selection
criterion associated to the ranking process. Latter values
are reported in the first table row as x / y, where x and
y represent the values used by the guilt-based solution,
without and with semantic factor respectively.

We can notice that obviously, while decreasing the
limit values for the selection criterion, the number of
software model candidates increase. In the Bus On Air
System we found that if we set the limit value to 0.6/0.7
then only one candidate is selected by using the guilt-
based solution (without semantic factor) and no candi-
dates survive to the guilt-based solution (with semantic
factor). On the other end, if we set the limit value to
0.1/0.2 then 103 candidates are selected by using the
guilt-based solution (without semantic factor) and 56
candidates by the guilt-based solution (with semantic
factor).

The shaded values in Table 23 corresponds to the
ones reported in Table 19 where the limit selection cri-
teria were chosen as equal to 0.4 and 0.5, respectively.
This choice, that has been applied to all case studies,
comes from the need of considering sets of candidates,
on one side, sufficiently large to provide enough alter-
natives and, on the other end, not too large to limit the
whole process complexity.

Table 23: Number of selected software model candidates vs. the limit
values of the ranking process for the Bus On Air System.

Limit values 0.6/ 0.5/ 0.4/ 0.3/ 0.2/ 0.1/
for the selection criterion 0.7 0.6 0.5 0.4 0.3 0.2

Guilt-based
Solution
(without 1 17 64 89 96 103
semantic factor)
Guilt-based
Solution
(with 0 11 32 49 56 56
semantic factor)

Summarizing, in our experimentation the ranking
process supported the antipatterns’ solution step by con-
verging towards the desired performance improvement,
and without compromising the path towards the final
best candidate. In the considered case studies we found
that the introduction of the ranking methodology greatly
benefits to the process, between 45% and 64%. Further-
more, the introduction of the semantic factor addition-
ally benefits to the ranking methodology by reducing
the number of software model candidates up to 77%.

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

G
ui

lt
D

eg
re

e
(w

ith
ou

t s
em

an
tic

 fa
ct

or
)

Detected Antipatterns

limit selection criterion

Figure 13: Bus On Air System: Guilt Degree of Detected Antipatterns (without semantic factor).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

G
ui

lt
D

eg
re

e
(w

ith
 s

em
an

tic
 fa

ct
or

)

Detected Antipatterns

limit selection criterion

Figure 14: Bus On Air System: Guilt Degree of Detected Antipatterns (with semantic factor).

31

8. Discussion

The approach presented in this paper highlights the
complexity of the identification and removal of perfor-
mance problems. In this section we focus on assump-
tions, limitations, and open issues that this work raises.

Approach validation. We have applied our approach
to four case studies belonging to different application
domains. The results that we have reported in the pre-
vious sections provide good evidence (by a quantitative
viewpoint) of the process improvement that our rank-
ing methodology, as well as the semantic factors, can
lead. We retain that such an assessment performed on
semantically meaningful case studies supports more ap-
propriately the adequacy (and the transferability) of our
approach with respect to a massive application of the ap-
proach to hundreds of automatically generated models.
In fact, latter ones could not have any similarity to real
domain examples, so weakening the experimentation.

Complexity of the detection algorithm and ranking
benefits. The search algorithm is not geared for opti-
mal performance, and no complexity analysis has been
conducted. In average, the algorithm based on ranking
has returned the list of detected antipatterns in few min-
utes. Of course, the net time saving of our approach
depends on the complexity of the application model. In
fact, the performance model solution could represent a
heavy task to accomplish in case of quite complex mod-
els. This aspect represents an open issue, and we plan
to investigate more on the algorithm complexity in order
to evaluate its scalability.

Correctness of rules and actions. The rules and the
actions we propose for detecting and solving antipat-
terns reflect our interpretation of the natural language
definitions [12]. Other approaches might interpret and
formalize the antipatterns differently. This unavoidable
gap is an open issue in this domain, and certainly re-
quires a wider investigation to consolidate the formal
definition of antipatterns. Beside this, the threshold
binding is another aspect that may affect the detection
process. We have been recently working on this issue
and our first results can be found in [36].

Human contribution. The process of refactoring soft-
ware models cannot be fully automated, since some
decisions are not machine-processable. Obstacles to
the application of the refactoring actions can originate
for different reasons, such as legacy constraints, bud-
get limitations, functional requirements, etc. For exam-
ple, while redeploying software components it may hap-
pen that no hardware machine is sufficiently idle to host
other components. In this case the analysts may decide
to add a new hardware machine (that may be costly) or

try to apply alternative refactoring actions. Hence, we
retain the human role very relevant in the whole process,
because quite often the experience of analysts cannot be
codifies in simple rules. Beside this, since this process is
not aimed at supporting runtime evaluations, the elapsed
time is not a key issue, thus the system stakeholders can
benefit from offline evaluations based on the process re-
sults.

Ranking assumption. A current limitation of the rank-
ing process is that control flow forks are not yet sup-
ported. To account for control flow forks, the compu-
tation of composite services needs to be adjusted: the
equations need to be heuristically approximated because
the computation of services with parallelism cannot be
derived from the response time of the services alone.
Additionally, more experience could lead to refine the
antipattern priorities on the basis of the application do-
main, e.g. the “One-Lane Bridge” antipattern might be
of particular interest in database-intensive systems.

Simulation errors. The proposed antipattern-based
process may be affected by simulation errors. In fact
the antipattern detection and ranking operational steps
are based on performance simulation results obtained
with a certain confidence (i.e., 95% in our case stud-
ies). Confidence intervals of performance indices com-
ing from simulation results obviously induce confidence
intervals on the guilt degrees, thus affecting the rank-
ing and selection of antipatterns to solve. For the case
studies that we have considered (see Section 7) these in-
tervals were very narrow for performance indices, so we
are confident that they cannot heavily affect the decision
process. However, we intend to investigate further this
aspect in future.

9. Conclusion

In this paper we have presented an approach, based
on antipatterns, that aims at identifying performance
flaws and removing them within PCM-based architec-
tural models. We implemented the approach as an ex-
tension of the PCM Bench tool.

The process of solving antipatterns has been im-
proved with respect to [6] by introducing a ranking
methodology that identifies, among a set of detected an-
tipatterns, the ones that mostly contribute to the viola-
tion of specific performance requirements.

Four case studies have been presented to demonstrate
the validity of the approach: the introduction of our
ranking process in the solution step led in all cases the
system to converge towards the desired performance im-
provement with considerable saving of candidate alter-
natives.

32

Using our approach, performance analysts can detect
and solve performance problems more quickly. Instead
of manually analysing the result indices of performance
analyses without coming up with possible design alter-
natives, they only have to assess the refactoring actions
suggested by our antipattern-based approach.

The results we obtained by applying our antipattern-
based approach are very good, however several open is-
sues must be addressed in future within the PCM con-
text as well as in a more general vision.

With regard to PCM, a key question is whether the
automation of the yet unsupported antipatterns is useful
in the PCM context. The introduction of more detailed
modelling constructs to capture the antipattern proper-
ties, such as controller infrastructures, might lead to too
high modelling efforts compared to the expected bene-
fits. An accurate analysis must be conducted in order to
evaluate the pros and cons of supporting the antipatterns
that are currently not automated.

Other software modelling languages can be consid-
ered, too, if the concepts for representing antipatterns
are available; for example, architectural description lan-
guages such as AADL [40] can be also suited to apply
the approach. As future work, we plan to investigate the
representation of antipatterns in different languages in
order to gain experience for a more general framework,
independent of any modelling notation.

We also plan to combine the antipattern-based pro-
cess with multi-criteria evolutionary quality optimisa-
tion approaches, such as the one in [30]. Multi-criteria
evolutionary quality optimisation tries to improve sev-
eral quality attributes (such as performance and reli-
ability) at once by iteratively evolving the software
model, applying random mutation and crossover oper-
ators. Knowledge on performance antipatterns can be
used to evolve candidates more effectively towards bet-
ter performance.

Acknowledgments. This work was partially supported
by the European Office of Aerospace Research and
Development (EOARD), Grant Cooperative Agreement
(Award no. FA8655-11-1-3055), and VISION ERC
project (ERC-240555).

References

[1] C. M. Woodside, M. Franks, D. C. Petriu, The Future of Soft-
ware Performance Engineering, in: Workshop on the Future of
Software Engineering, 2007, pp. 171–187.

[2] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-
based Performance Prediction in Software Development: A Sur-
vey, IEEE Transactions on Software Engineering 30 (5) (2004)
295–310.

[3] S. Bernardi, S. Donatelli, J. Merseguer, From UML sequence di-
agrams and statecharts to analysable petrinet models, in: Work-
shop on Software and Performance, 2002, pp. 35–45.

[4] C. M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Is-
rar, J. Merseguer, Performance by Unified Model Analysis
(PUMA), in: Workshop on Software and Performance, 2005,
pp. 1–12.

[5] C. U. Smith, L. G. Williams, Software Performance Antipat-
terns, in: Workshop on Software and Performance, 2000, pp.
127–136.

[6] C. Trubiani, A. Koziolek, Detection and solution of software
performance antipatterns in palladio architectural models, in:
WOSP/SIPEW International Conference on Performance Engi-
neering, 2011, pp. 19–30.

[7] S. Becker, H. Koziolek, R. Reussner, The Palladio component
model for model-driven performance prediction, Journal of Sys-
tems and Software 82 (2009) 3–22.

[8] S. Frølund, J. Koistinen, Quality-of-Service Specification in
Distributed Object Systems, Tech. Rep. HPL-98-159, Hewlett
Packard, Software Technology Laboratory (Sep. 1998).

[9] Q. Noorshams, A. Martens, R. Reussner, Using quality of
service bounds for effective multi-objective software architec-
ture optimization, in: International Workshop on the Quality
of Service-Oriented Software Systems (QUASOSS), 2010, pp.
1:1–1:6.

[10] V. Cortellessa, A. Di Marco, C. Trubiani, An approach for mod-
eling and detecting software performance antipatterns based on
first-order logics, Journal of Software and Systems Modeling-
DOI: 10.1007/s10270-012-0246-z, 2012.

[11] V. Cortellessa, A. Martens, R. Reussner, C. Trubiani, A Process
to Effectively Identify ”Guilty” Performance Antipatterns, in:
Fundamental Approaches to Software Engineering, 2010, pp.
368–382.

[12] C. U. Smith, L. G. Williams, More New Software Performance
Antipatterns: Even More Ways to Shoot Yourself in the Foot,
in: Computer Measurement Group Conference, 2003, pp. 717–
725.

[13] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, C. Tru-
biani, Digging into UML models to remove performance an-
tipatterns, in: ICSE Workshop Quovadis, 2010, pp. 9–16.

[14] UML 2.0 Superstructure Specification, OMG document
formal/05-07-04, Object Management Group, Inc. (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[15] OCL 2.0 Specification, OMG document formal/2006-
05-01, Object Management Group, Inc. (2006),
http://www.omg.org/cgi-bin/doc?formal/06-05-01.

[16] UML Profile for MARTE beta 2, OMG document
ptc/08-06-09, Object Management Group, Inc. (2008),
http://www.omgmarte.org/Documents/Specifications/08-06-
09.pdf.

[17] W. J. Brown, R. C. Malveau, H. W. McCormick, T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis, 1998.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[19] M. Meyer, Pattern-based Reengineering of Software Systems,
in: Working Conference on Reverse Engineering (WCRE),
IEEE Computer Society, 2006, pp. 305–306.

[20] L. G. Williams, C. U. Smith, PASA(SM): An Architectural Ap-
proach to Fixing Software Performance Problems, in: Inter-
national Computer Measurement Group Conference, 2002, pp.
307–320.

[21] V. Cortellessa, L. Frittella, A framework for automated genera-
tion of architectural feedback from software performance anal-

33

ysis, in: European Performance Engineering Workshop, 2007,
pp. 171–185.

[22] T. Parsons, J. Murphy, Detecting Performance Antipatterns in
Component Based Enterprise Systems, Journal of Object Tech-
nology 7 (3) (2008) 55–90.

[23] J. D. McGregor, F. Bachmann, L. Bass, P. Bianco, M. Klein,
Using arche in the classroom: One experience, Tech.
Rep. CMU/SEI-2007-TN-001, Software Engineering Institute,
Carnegie Mellon University (2007).

[24] J. Xu, Rule-based Automatic Software Performance Diagnosis
and Improvement, in: Workshop on Software and Performance,
2008, pp. 1–12.

[25] A. Sabetta, D. C. Petriu, V. Grassi, R. Mirandola, Abstraction-
raising transformation for generating analysis models, in: MoD-
ELS Satellite Events, 2005, pp. 217–226.

[26] A. Kavimandan, A. S. Gokhale, Applying Model Transforma-
tions to Optimizing Real-Time QoS Configurations in DRE Sys-
tems, in: International Conference on the Quality of Software
Architectures (QoSA), 2009, pp. 18–35.

[27] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. de Supin-
ski, M. Schulz, Efficient architectural design space exploration
via predictive modeling, ACM Transactions on Architecture and
Code Optimization (TACO) 4 (4) (2008) 1–34.

[28] A. Aleti, S. Björnander, L. Grunske, I. Meedeniya,
ArcheOpterix: An extendable tool for architecture opti-
mization of AADL models, in: ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software
(MOMPES), 2009, pp. 61–71.

[29] P. H. Feiler, D. P. Gluch, J. J. Hudak, The Architecture Anal-
ysis and Design Language (AADL): An Introduction, Tech.
Rep. CMU/SEI-2006-TN-001, Software Engineering Institute,
Carnegie Mellon University (2006).

[30] A. Martens, H. Koziolek, S. Becker, R. H. Reussner, Automat-
ically improve software models for performance, reliability and
cost using genetic algorithms, in: WOSP/SIPEW International
Conference on Performance Engineering, 2010, pp. 105–116.

[31] A. Koziolek, H. Koziolek, R. Reussner, Peropteryx: automated

application of tactics in multi-objective software architecture
optimization, in: International ACM SIGSOFT Conference on
the Quality of Software Architectures, 2011, pp. 33–42.

[32] K. Krogmann, M. Kuperberg, R. Reussner, Using genetic search
for reverse engineering of parametric behavior models for per-
formance prediction, IEEE Transactions on Software Engineer-
ing 36 (6) (2010) 865–877.

[33] L. Kapová, B. Buhnova, A. Martens, J. Happe, R. Reuss-
ner, State dependence in performance evaluation of component-
based software systems, in: WOSP/SIPEW International Con-
ference on Performance Engineering, 2010, pp. 37–48.

[34] C. U. Smith, L. G. Williams, New Software Performance An-
tipatterns: More Ways to Shoot Yourself in the Foot, in: Com-
puter Measurement Group Conference, 2002, pp. 667–674.

[35] M. Hauck, M. Kuperberg, K. Krogmann, R. Reussner, Mod-
elling layered component execution environments for perfor-
mance prediction, in: International Symposium Component-
Based Software Engineering, 2009, pp. 191–208.

[36] D. Arcelli, V. Cortellessa, C. Trubiani, Influence of numerical
thresholds on model-based detection and refactoring of perfor-
mance antipatterns, First Workshop on Patterns Promotion and
Anti-patterns Prevention (2013).

[37] V. Cortellessa, M. De Sanctis, A. Di Marco, C. Trubiani, En-
abling performance antipatterns to arise from an adl-based soft-
ware architecture, in: Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software
Architecture, WICSA/ECSA, 2012, pp. 310–314.

[38] I. Malavolta, M. Di Marcello, F. Gallo, L. Iovino, S. Pace, Bus
on Air, Business-Plan Competition (2010).
URL http://bpc.univaq.it/index.php?id=1017

[39] M. Autili, L. Berardinelli, D. Di Ruscio, C. Trubiani, Providing
lightweight and adaptable service technology for information
and communication (plastic) in the mobile ehealth case study,
in: ICSE Workshop Pesos, 2012, pp. 69–70.

[40] SAE, Architecture Analysis and Design Language (AADL),
June 2006, as5506/1, http://www.sae.org.

34

