
Automated Workload Characterization for I/O Performance
Analysis in Virtualized Environments

Axel Busch*, Qais Noorshams*, Samuel Kounev†,
Anne Koziolek*, Ralf Reussner*, Erich Amrehn‡

*Karlsruhe Institute of Technology, Karlsruhe, Germany (email: [lastname]@kit.edu)
†University of Würzburg, Würzburg, Germany (email: samuel.kounev@uni-wuerzburg.de)

‡IBM Research & Development, Böblingen, Germany (email: amrehn@de.ibm.com)

ABSTRACT
Next generation IT infrastructures are highly driven by virtu-
alization technology. The latter enables flexible and efficient 
resource sharing allowing to improve system agility and re-
duce costs for IT services. Due to the sharing of resources and 
the increasing requirements of modern applications on I/O 
processing, the performance of storage systems is becoming 
a crucial factor. In particular, when migrating or consolidat-
ing different applications the impact on their performance 
behavior is often an open question. Performance modeling 
approaches help to answer such questions, a prerequisite, how-
ever, is to find an appropriate workload characterization that 
is both easy to obtain from applications as well as sufficient 
to capture the important characteristics of the application. 
In this paper, we present an automated workload characteri-
zation approach that extracts a workload model to represent 
the main aspects of I/O-intensive applications using relevant 
workload parameters, e.g., request size, read-/write ratio, in 
virtualized environments. Once extracted, workload models 
can be used to emulate the workload performance behavior in 
real-world scenarios like migration and consolidation scenar-
ios. We demonstrate our approach in the context of two case 
studies of representative system environments. We present 
an in-depth evaluation of our workload characterization ap-
proach showing its effectiveness in workload migration and 
consolidation scenarios. We use an IBM System z equipped 
with an IBM DS8700 and a Sun Fire system as state-of-the-
art virtualized environments. Overall, the evaluation of our 
workload characterization approach shows promising results 
to capture the relevant factors of I/O-intensive applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques, 
Modeling techniques; D.2.8 [Software Engineering]: Met-
rics—performance measures

Keywords
I/O; Storage; Workload; Characterization; Virtualized; Per-
formance

1. INTRODUCTION
Today, I/O-intensive applications support major processes
of many organizations in their daily business. Workloads
as mail servers, file servers, and video servers show highly
I/O-intensive workload profiles, cf. [6, 14]. Their huge data
volumes require high-performing dedicated external storage
infrastructures. To reduce hardware costs, energy consump-
tion, and administration costs, applications are increasingly
deployed in virtualized environments. Current forecasts pre-
dict a global virtualized server market growth of 31% until
2016 [20]. At the same time, the amount of stored digital
data will double every two years until 2020 [11]. 40% of
this data will be stored or processed in the cloud. Further,
a consolidation of dedicated storage systems into a shared
storage infrastructure is under way, cf. [28, 21]. Nevertheless,
consolidating several applications on one shared infrastruc-
ture introduces complex performance implications due to
mutual interference.
To allow the consolidation of applications and services

while respecting Service Level Agreements (SLAs), predicting
the performance implications becomes a crucial factor. Such
a prediction, however, requires tailored performance models
that in turn require a significant amount of expertise to
create the models. Even when such performance modeling
approaches are applied, it is unclear which exact workload
parameters are required as input since different approaches
use different parameters [17, 18, 30]. Furthermore, it is often
unclear how to obtain the parameters for given applications
and if they are even sufficient to describe them [10].
To address this discrepancy, in this paper, we develop an

automated workload characterization approach to extract
workload models [16] that are representations of the main
aspects of I/O-intensive applications in virtualized environ-
ments. Using the relevant workload parameters identified
in previous work [23] as basis, we present a formalized and
automated workload characterization approach for running
I/O-intensive workloads in virtualized environments. We
have tailored our approach to enable a non-invasive and
lightweight monitoring, yet with a level of abstraction such
that the parameters are practically obtainable.



To evaluate our approach, we perform a comprehensive
evaluation to demonstrate its workload modeling performance
for common business workloads. We present two case stud-
ies showing how our approach can be used for performance
analysis. In the case studies, we demonstrate how to use the
workload description for measurement-based performance
predictions in two scenarios. Our first case study is focused
on evaluating the quality of the workload characterization.
We execute two representative workloads on a state-of-the
art IBM mainframe system to show the workload model
performance of our approach. The second case study demon-
strates how it can be used in migration and consolidation
scenarios. To draw conclusions on the performance of a given
application, typical approaches involve the installation and
setup of the application to be analyzed. The installation
sequence of complex applications can be very challenging or
even infeasible due to legal constraints. Using our approach,
the migration of complex workloads can be conducted in
a predictable manner. Once the workload is modeled, a
given workload can be emulated on arbitrary hardware. The
installation and setup of the actual application under test
on the target system is not necessary. Thus, characterizing
a workload for performance model generation can be per-
formed with less effort. Two scenarios address this area:
In the migration scenario, we show the prediction of the
performance behavior of a certain workload on a Sun Fire
system by means of the extracted workload data. The second
scenario addresses a consolidation scenario that extends the
migration scenario by considering two different workloads.
In this scenario, we use a second virtual machine to execute
both workloads on one machine in parallel. The consolida-
tion scenario demonstrates the ability of our approach to
predict the performance behavior of consolidated workloads
in a virtualized environment.

In summary, the contribution of this paper is a formalized
and fully-automated methodology for workload characteri-
zation specifically targeted at I/O-intensive applications in
virtualized environments without requiring invasive or pro-
prietary monitoring tools. In contrast to related work, we
perform an extensive validation of this methodology: i) We
perform a detailed evaluation using representative applica-
tion workloads to show the effectiveness of our approach in
different scenarios with state-of-the-art server hardware. ii)
We show that our approach can be used for performance
prediction in a migration scenario. iii) Finally, we show the
use of the approach in a workload consolidation scenario.

This paper is organized as follows: Section 2 describes our
workload characterization approach. We present a formal-
ization of our characterization methodology and introduce
the automation of our approach. Section 3 describes the
experimental setup, i.e., the systems under study as well as
the software environment for our measurements. Section 4
presents the two case studies evaluating our characterization
approach as well as migration and consolidation scenarios.
Section 5 presents related work. We finish with a conclusion
in Section 6.

2. CHARACTERIZATION APPROACH
A high-level view of our workload characterization approach
is shown in Figure 1. The high-level workload, e.g., a file
upload, is processed by a certain I/O-intensive business ap-
plication, e.g., a file server system. From a storage point of
view, this high-level workload is transformed into a low-level
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Figure 1: Workload Characterization Approach

workload comprised of a sequence of read and write requests.
This low-level workload is analyzed by our approach. Using
monitoring tools allow to extract the requests’ properties,
i.e., the workload parameters of the model. The workload
model is described by a set of metrics that quantify the
various workload parameters. In our approach, the workload
model is described by a set of storage-specific metrics that
quantify the workload. Once extracted, the workload prop-
erties are mapped to a reference benchmark. As a reference
benchmark, we use the Flexible File System Benchmark1

[1] (FFSB). Using the reference benchmark, we emulate the
original low-level workload on the target system.
A simple capture-replay mechanism would not be suffi-

cient in terms of flexibility. In contrast to a capture-replay
mechanism, emulating a workload allows to vary the desired
parameters (i.e., file size, workload intensity,. . . ). Therefore,
different scenarios, e.g., scaling scenarios, become possible.
For validation, we calculate the prediction error between

the workload’s response times and the reference benchmark.
Thus, conclusions on the performance of the extraction se-
quence become possible.
The contribution of our approach is the formalized and

fully-automated characterization methodology for I/O-inten-
sive workloads.

2.1 Workload Characterization
In this section, we describe and formalize the set of workload
metrics that we consider for our workload model. In [23], a
set of performance-influencing factors in virtualized storage
environments was identified. Further, in [22, 24] this set
was used as a basis for their performance model. Since our
approach is targeted at virtualized systems, we use a subset of
these factors for our workload characterization. They respect
the limited monitoring possibilities as well as the limited
control on system settings. In addition, they represent an
adequate level of abstraction for our specific goals.
The set of influencing factors can be divided into two

classes, the workload and system factors. In this work,
we concentrate on the basic parameters of a workload mix,

1
http://github.com/FFSB-prime



cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T ], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|Δ|→0

τ∑
k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·Δtk (2)

≈ 1

�

�∑
t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, � is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T ], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
Δtk := tk − tk−1, and |Δ| := maxk(Δtk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed

to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|Δ|→0

τ∑
k=1

∑n(xk)
ι=1 φι(xk)

T
·Δtk (5)

≈ 1

�

�∑
t=1

n(t)∑
ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload
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Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)

T
dt (7)

= lim
|Δ|→0

τ∑
k=1

χ(xk)

T
·Δtk (8)

≈ 1

�

�∑
t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1| (10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0| (11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1| (12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares



Initial
observation

space
t

Search

Sequential Requests
Count

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: Access Pattern Recognition Algorithm Illustration

each request to all following requests and thus detects that
requests 1, 2, 8, and 9 are sequential, as they access consecu-
tive blocks. Additionally, it detects that requests 4, 5, 6, 10,
11, and 12 are sequential.

Algorithm: The algorithm’s input parameter is a list of
n pairs. A pair is defined as Ri := (block start, block end),
where 0 ≤ block start ≤ block end represents the start and
end block number of the i-th request access. The algorithm
compares the end block numbers of one request with the
start block numbers of the following requests to search for
sequential requests. It outputs the proportion of sequential
requests in the observation space.
To improve run time and avoid overestimation of sequen-

tial requests, we enhanced the algorithm’s performance by
dividing the observation space into i subsets Si. Hence, the
complexity of our algorithm results in O(n) at best and
O(ω�n

ω
�2) at worst.

Si :=

{
{Ri·�n

ω
�, . . . , R(i+1)·�n

ω
�−1}, (i+ 1)�n

ω
� ≤ n

{Ri·�n
ω
�, . . . , Rn−1}, else

,

(13)

where i ∈ {0, . . . , ω− 1} and ω is the number of used subsets.
The result access pattern ratio is the average of Algorithm 1’s
result for each subset:

accPatternRatio(R) =
∑

i getAccPat(Si)

ω

accPattern(R) =

{
sequential, accPatternRatio(R) ≥ 0.5

random, else

(14)

Our approach avoids overestimation of sequential requests:
Sequential requests that are far away from each other in the
observation space are not included in the access pattern ratio
accPatternRatio.
Similar request access pattern heuristics do not respect

sequential requests if they are not directly followed up, but in-
terrupted by a non-sequential request, cf. [12]. Our approach
respects this and allows a configuration of the observation
space using an observation window.

2.2 Characterization Automation
To automate the proposed workload characterization ap-
proach, we have extended a tool to automatically execute a
workload and obtain its parameters by observing the set of
relevant metrics. The tool, called Storage Performance Ana-
lyzer (SPA) [3], is a software that supports fully-automatic
systematic performance measurements and monitoring of
storage system properties. Its architecture allows to analyze

Algorithm 1 Access Pattern Recognition Algorithm

Configuration:

R ← Sequence of request pairs
req ← Number of requests
req seq ← 0

Function getAccPat(R):

while i < req do // Iterate through requests
for j such that i < j < req do

block end = Ri2 // End block of request Ri

block start = Rj1 // Start block of request Rj

if block end = block start then
req seq ← req seq + 2 // Count both Ri, Rj

R ← R \ {Ri, Rj}
continue while;

end if
end for
i ← i+ 1

end while
return req seq

req

arbitrary application workloads. Alternatively, it supports
the integration of workload generators, e.g., benchmarks.
Performing manual steps is highly error-prone. SPA sup-

ports automatic measurements and therefore allows a co-
ordinated execution of the original workloads. To enable
the extraction of workload parameters, the benchmark con-

troller was extended to support the synchronized and par-
allel execution of several workloads and to distinguish these
parallel workloads when monitoring. The actual execution,
i.e., execute start and stop commands and gathering of log
files, of the particular workload is realized by the benchmark

driver component. For our monitoring goals, we extended
the tool architecture by adding a monitor component, cf. class
diagram in Figure 4.

The core of the monitor component is the monitor driver.
It controls the monitoring tools to be prepared, started and
stopped on the system under test, as well as processing its
measurement values, i.e., extracting a metrics set. The class
diagram shows several concrete monitor drivers, e.g., File-
sizeMonitorDriver, which is an implementation of the ab-
stract monitor driver class. IndependentVariables stores
the configuration parameters of the monitoring tools. To
extract request block relevant metrics, we use Blktrace [7]
in SPA.
Blktrace is a block layer I/O tracing tool. Since it

collects data on the application layer it is executed on the
system under test. Using Blktrace, we obtain detailed disk
request trace information. The powerful tracing mechanism
of Blktrace allows conclusions about request properties.
The raw data of Blktrace is used to extract the actual
request block relevant workload parameter metrics.
Our experiment setup is shown in Figure 5. A controller

machine starts and coordinates the benchmark and monitor-
ing tools on the system under test (SUT), which is accessed
using an SSH connection. After each successful workload ex-
ecution the controller machine collects the raw measurement
data from the SUT and extracts the workload parameters
from the raw data. Finally, the results are stored in an
SQLite database.

The measurement execution sequence works as follows: i)
a preparation phase that performs an initial warm up, ii) a
workload execution and monitoring phase, iii) a phase that
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stops monitoring and collects the measurement results from
the SUT, vi) a finishing phase that finalizes the workload
and monitors execution.
The parallel execution of several workloads and monitors

further increases the requirements for a coordinated exe-
cution: An overlapping preparation and monitoring phase
would lead to displaced characterization results. Therefore,
the preparation phase must be finished before the monitoring
process is started, which is automatically ensured by SPA’s
coordination process.

3. EXPERIMENTAL SETUP

3.1 Systems Under Study
For our case studies, we use an IBM System z equipped with
an IBM DS8700 storage system and a separate Sun Fire
X4440 server system to evaluate how our approach performs
in migration and consolidation scenarios.

For our experiments, we consider the IBM System z and
the IBM DS8700 storage system as a representative virtu-
alized environment. Both machines represent a high-end
virtualized environment for critical business applications.
Figure 6 shows the conceptual design of both systems.

The Processor Resource/System Manager (PR/SM) allows
a mapping of physical to virtual resources and thus enables
CPU and storage virtualization. The PR/SM hypervisor
manages logical partitions (LPAR) and allocates hardware
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z/Linux
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Figure 6: Conceptual design of IBM System z and DS8700
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Figure 7: Conceptual design of Sun Fire X4440

component classes (e.g. CPU, RAM, I/O) to each LPAR.
An LPAR represents an independent resource container that
runs applications on a Linux operating system or the z/VM
hypervisor. z/VM provides an execution environment for
different operating systems separated from the underlying
hardware. The allocated resource class can be accessed by the
LPARs either exclusively or in a shared manner. System z
itself is connected to the storage system by a Fibre Channel.

The IBM DS8700 storage system manages I/O operations
(e.g., read and write operations) using a processor complex,
which contains both volatile (50GB) and persistent (2GB)
(non-volatile) cache memory. The storage system supports a
set of pre-fetching and destaging algorithms to increase the
I/O performance. Write requests are cached in the volatile
cache as well as in the non-volatile cache, but are destaged
to the underlying RAID system asynchronously. Similar to
write requests, read requests are served and cached in the
volatile cache memory. Thus, recurring accesses are served by
the cache, while others are served by the RAID system. The
system tries to predict further reads and holds data as long
as possible in its cache memory. Each processor complex can
access the disk subsystem via two separate switched Fibre
Channel networks (cf. [27]).
The characterization environment is set up in a z/Linux

LPAR environment with 2 CPUs (more precisely, Integrated
Facilities for Linux ) and 4GiB of memory. The storage sys-
tem’s partition uses the ext4 file system. For I/O scheduling,
we use a first-come, first-served (FCFS) scheduling policy.

For our migration and consolidation scenarios, we use a
Sun Fire X4440 x64 server system. It contains 4 times
2.4GhZ AMD Opteron 6 core processors and 128GB of
memory. The storage back end is a RAID system with 8
Serial Attached SCSI (SAS) devices with 300GB each. It
contains a write cache that allows buffering incoming write



requests. The guest operating system is virtualized using a
Citrix XenServer. Figure 7 shows the Sun Fire design in
detail.
The consolidation scenario runs in two separate virtual

machines on the Sun Fire system. Both of the virtual
machines use six CPU cores and 2GiB of memory each. The
virtual machine instances access a shared RAID system. For
all measurements the ext4 file system is used. Again, for
I/O scheduling, the FCFS scheduling policy is used.

3.2 Software Environment
Our software environment comprises two benchmarks and
one monitoring tool: We use the Filebench benchmark
to generate the original workloads to be analyzed. To this
end, we enhanced SPA adding a benchmark driver to allow
automated execution of Filebench.
Filebench2 [2] is a storage system benchmark and is

widely used in the performance modeling community [17,
4, 9, 19]. It supports emulation of common business work-
loads such as mail server and file server workloads. Its
workload modeling language allows a fine-grained workload
construction. Hence, Filebench achieves a realistic repre-
sentation of the emulated workloads. Furthermore, we use
GNU SOURCE configuration to focus the measurements
on the storage performance and to take caching effects of the
storage system into account.

For validation, we use the open source FFSB benchmark.
FFSB is a file system performance benchmarking tool. Our
set of considered workload parameters can be mapped to
FFSB’s workload configuration parameters. Thus, FFSB
is highly suitable to be used as a reference benchmark in
our methodology. Additionally, we use the response times of
FFSB as a basis to validate the characterization performance.
All benchmarking and measurement steps were executed

20 times for 300 seconds to achieve statistical robust values.
Each run is prepared by a warm up period of 60 seconds.

4. CASE STUDIES
In this section, we present our case studies. In the first case
study, we apply the workload characterization approach to
two different workloads. In the second case study, we perform
a migration scenario followed by a consolidation scenario in
the context of the considered workloads.
To assess the quality of our workload characterization

approach, we compare the response times of the original
Filebench workload with the response time of the reference
benchmark FFSB, which is supposed to emulate the original
workload. As a metric in this comparison, we calculate the
prediction error per run as follows. Let RTi ∈ R be the
average response times of Filebench and FFSB for one
workload in run i, then,

RT err
i =

∣∣∣∣RTFilebench
i −RTFFSB

i

RTFFSB
i

∣∣∣∣ (15)

4.1 Case Study I: Workload Characterization
We show how our approach can be applied in practice and
evaluate its effectiveness. We consider two different types
of workloads: a mail server and a file server workload. The
approach of Section 2 is realized by a four step process,
illustrated in Figure 8.
2
https://github.com/Filebench-Revise/Filebench-Revise (bugfixed

version of [2])
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Figure 8: Execution steps in case study I

In the first step the original workload to be analyzed is
specified, i.e., mail server and file server. In the second step,
SPA is used to execute the original workload and collect
measurements, gathering and aggregating the raw data and
extracting the workload parameters. Additionally, the re-
sponse times per operation are stored to allow validation of
the results.
In step 3, we map the determined workload parameters to
our reference benchmark. Finally, in step 4, SPA runs the
reference benchmark workload configuration and extracts
the response times per operation and we compare them to
the response times of the original workload to assess the
workload model accuracy.

Workload Definition.
Mail server and file server are basically mixed read/write
workloads. They comprise a sequence of composite read and
write operations. The following list gives an overview of the
used operations:

– readwholefile/writewholefile: Both operations process
one randomly chosen file as a whole, i.e., the complete
file is accessed at once.

– appendfilerand: Appendfilerand appends a certain amount
of data to the end of a file chosen randomly from the
target directory.

– openfile: Openfile opens a file for read or write access.
It supports different options to allow a random selection
of a file from the target directory.

– closefile: Closefile simply closes a file.

– createfile: Createfile creates a new file in the target
directory. The initial file size is 0B.

– deletefile: The deletefile operation deletes a randomly
chosen file in the target directory.

– statfile: The statfile operation accesses to the meta
information of a file.



Mail server Std. dev. File server Std. dev.

File Size 16.62KiB 0.74KiB 129.76KiB 3.91KiB
File Set Size 683.68MiB 58.37MiB 1163.49MiB 5.91MiB
Workload Intensity 16Threads 0Threads 50Threads 0Threads
Request Size Read 14 151.17B 31.63B 105 152.00B 166.67B
Request Size Write 15 639.04B 81.59B 80 473.09B 190.77B
Request Mix 55.96% 0.11% 41.85% 0.37%
Access Pattern Ratio (Read) 28.74% 0.52% 97.00% 2.30%
Access Pattern Ratio (Write) 57.24% 1.22% 99.23% 0.27%

Table 1: Obtained metrics and standard deviations for Filebench mail and file server workload

Listing 1: Mail Server Workload

File set:

- number of files = 50000

- mean file size = 16 KiB

- file preallocation = 80%

5 Threads:

- 16 (default)

Operations:

- deletefile

- createfile

10 - appendfilerand , mean req size = 16

KiB

- closefile

- openfile ,

- readwholefile

- closefile

15 - openfile

- appendfilerand , mean req size = 16

KiB

- closefile

- openfile

- readwholefile

20 - closefile

Listing 2: File Server Workload

File set:

- number of files = 10000

- mean file size = 128 KiB

- file preallocation = 80%

5 Threads:

- 50 (default)

Operations:

- createfile

- writewholefile

10 - closefile

- openfile

- appendfilerand , mean req size = 16

KiB

- closefile

- openfile

15 - readwholefile

- closefile

- deletefile

- statfile

Different sequences of these operations are possible. These
define the workload that the thread instance executes in a

Mail server File server

File Size 17.0KiB 130.0KiB
Number of Files 41 201 9 169
Running Threads 16Threads 50Threads
Block Size Read 14 336B 104 960B
Block Size Write 15 872B 80 384B
Read Size 14 336B 104 960B
Write Size 15 872B 80 384B
Read Weight 56% 42%
Write Weight 44% 58%
Access Pt. Read random sequential
Access Pt. Write sequential sequential

Table 2: FFSB configurations for emulated mail server and
file server workload

loop until the run time limit is reached. The mail server and
file server operation sequences are shown in Listings 1 and 2,
respectively.

Workload Parameters Extraction.
In this section, we extract the parameters of the application’s
workloads. Our workload characterization provides stable
results all over our metrics set. Table 1 shows a comparison
between the different metrics and the standard deviations
of both of the considered workload scenarios. The file set
size, file size, workload intensity, request mix and access
pattern metrics exhibit low standard deviations. The request
sizes exhibit low standard deviations in the dimensions of
the actual measurement values. Figures 9, and 10 show the
workload model parameter results graphically.

Workload Parameters Mapping.
The beforehand obtained workload parameters of both work-
loads are used to create corresponding configurations for the
FFSB benchmark. As FFSB does not directly offer our
set of workload metrics, we need to map our metrics to the
FFSB configuration parameters. We round the request size
parameters to a multiple of 512 Bytes. Table 2 shows the
final FFSB parameters.

Response Time Extraction.
In this section, we show the extracted Filebench and FFSB
response times for both the mail server and file server work-
loads. For the mail server workload, we obtain a mean
response time for the read requests of 0.98 ms and 0.83 ms
for the write requests. Here, the read and write response
times each are comprised of two operations. Figure 11 shows
the Filebench response times in detail.

For the file server workload, we observe a mean application
layer response time of 11.21 ms for the read requests and
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11.65 ms for the write requests. Here, the write response time
is comprised of two operations. Emulating the mail server
configuration by FFSB, we obtain a read response time of
0.81 ms, while the mean standard deviation (σ) is 2.78 ms3.
The write response time of the mail server workload is on
average 1.29 ms (σ = 2.94 ms).
The emulated file server configuration exhibits a mean

read response time of 11.67 ms (σ = 21.13 ms). The mean
write response time of the mail server workload is 18.48 ms
(σ = 20.77 ms). The response time’s standard deviations in
both workload scenarios result in about double the height of
the actual response time values. Compare Figure 12 for the
detailed FFSB response times.

Response Time Analysis.
To evaluate the accuracy of our characterization approach, we
compare the response times of Filebench with the response
times of the corresponding FFSB workload configuration.
Figure 13 shows the obtained prediction errors.

3σ averages the standard deviations of each of the 20 runs.

Mail server: In the case of the mail server workload,
the mean read prediction error per run is in the range of
[17.01, 25.87]%. For writes, the error is in the range of
[31.25, 38.54]%. Overall, the mean prediction error over all
runs is 20.82% for read requests and 35.72% for write re-
quests. Considering the very low absolute response times of
this workload, these are stable results.

File server: For the file server workload’s read requests re-
sponse times, we observe errors in the range of [1.18, 9.62]%.
The write request errors are in the range of [33.89, 41.06]%.
Overall, the mean prediction error for read requests is 3.93%,
while the mean prediction error for write requests is 36.96%.

Summary.
Our first case study demonstrates the performance of our
workload characterization approach and its ability to capture
the performance-relevant aspects of the analyzed original
workloads. The slightly higher prediction error for write
operations is caused by a higher standard deviation of the
characterized request sizes. Our reference benchmark FFSB
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Figure 11: Filebench mail server and file server response times

 Read  Write Read Write

0.80

0.81

0.82

1.28

1.29

1.30

11.65

11.70

11.75

18.44

18.48

18.52

18.56

Mail server Mail server File server File server

R
es

po
ns

e 
T

im
e 

[m
s]

Figure 12: FFSB mail server and file server response times
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Figure 13: Filebench mail and file server prediction error

emulates constant request sizes, and therefore we use mean
sizes of the requests as input. Although the prediction errors
for write requests are slightly higher, the errors stay in the
same dimension. Overall, the workload model accuracy is
sufficient for most applications and provides an adequate
characterization of the analyzed workload behavior.

4.2 Case Study II: Migration & Consolidation
In Section 4.1, we extracted the workload parameters of a
mail server and a file server workload. In this case study,
we use the obtained parameters to predict the performance
impact of migrating and consolidating the workloads to a
Sun Fire server system.

Again, we use Filebench as our original workload genera-
tor and FFSB as reference benchmark. Figures 14 and 15
illustrate the considered scenarios.
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Figure 14: Migration scenario procedure

Workload Migration.
In our workload migration scenario, we show how to move a
certain workload to another system. We model the workload
as before and map the workload parameters to the reference
benchmark. Then, we execute the migration step: We emu-
late the modeled workload on the target system using the
reference benchmark, which allows us to evaluate the impact
of the migration on the application response times. Figure 14
illustrates the procedure.
In this scenario, we use the IBM System z as reference

system and the Sun Fire as target system. Like before, we
use Filebench as workload generator and FFSB as reference
benchmark. We use the obtained workload parameters that
are described in Section 4.1. In this scenario, we concentrate
on the file server workload. For evaluation, we additionally
measure the Filebench response times of the file server
workload on the Sun Fire system, so that we can calculate
the prediction error for the workload response times.

Workload Consolidation.
The goal of the consolidation scenario is to predict the per-
formance of two different workloads that are executed on the
same machine at the same time based on workload models
obtained in isolation. To do so, we characterize the workloads
separately and map the obtained workload parameters to
the reference benchmark. Then, both reference benchmark
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Workload Operation Resp. Time Std. dev.

File server

ReadWholeFile 67.21 ms 0.55 ms

AppendFileRand 34.96 ms 0.44 ms

WriteWholeFile 31.68 ms 0.47 ms

FS + MS

AppendFileRand
85.00 ms 2.08 ms
30.57 ms 0.87 ms
29.94 ms 0.69 ms

WriteWholeFile 93.43 ms 2.46 ms

ReadWholeFile
139.48 ms 2.56 ms
47.67 ms 1.22 ms
46.11 ms 1.20 ms

Table 3: Details of Filebench operations response times
averaged the 20 runs. The standard deviation refers to the
20 mean response times of the 20 runs.

instances are migrated to the target systems and are run
consolidated, i.e., at the same time, but in separated VMs.
Figure 15 illustrates this scenario.
In this consolidation scenario, again, we use the IBM

System z as reference system and the Sun Fire as target
system. Here, we use the workload model to predict the
performance behavior when consolidating the two workloads
at the same time on the Sun Fire system. Again, we use
the obtained mail server and file server workload parameters
of Section 4.1. For the FFSB configuration, we use the
same emulated mail server and file server configurations as
in Section 4.1, cf. Table 1. For the evaluation, we again
extract the Filebench response times of the mail server and
file server consolidated workloads on the Sun Fire system.
Again, we calculate the prediction error of the workload
response times.

Response Times.
In our migration scenario, for the Filebench file server
workload, we obtain a mean response time of 67.21 ms,
while the standard deviation (σ) is 0.55 ms for the read and
33.32 ms (σ = 0.45 ms) for the write requests. Here, the
write mean response time is comprised of two operations.

For the consolidated scenario, we obtain a mean response
time of 77.75 ms (σ = 0.95 ms) for the read and 59.71 ms
(σ = 1.02 ms) for the write requests. Here, the read response

time is comprised of three, while the write response time is
comprised of four operations. For response time details of
particular operations, cf. Table 3.
The FFSB mean response times for the file server work-

load is 55.29 ms (σ = 20.61 ms) for the read and 42.21 ms
(σ = 14.49 ms) for the write operations. For the consolidated
scenario, we obtain 89.34 ms for the read and 79.12 ms for
the write operations. Figures 16(a), and 16(b) show the
Filebench and FFSB scenario response times in detail.

Response Time Analysis.
As in Section 4.1, we use Equation (15) to calculate the
prediction error.

Migration scenario: The prediction error of the file
server workload that we used for the migration scenario shows
a read error in the range of [19.12, 28.02]%, and a write error
in the range of [12.77, 24.12]%, respectively. Overall, we
obtain a mean prediction error of 21.59% for read operations
and 20.98% for write operations.

Consolidation scenario: For the consolidation scenario,
we obtain a read error of [9.23, 17.32]%, and a write error
of [21.46, 28.28]%. Overall, we obtain a mean prediction
read error of 12.95%, while the mean write error is 24.51%.
Figure 17 illustrates the prediction error for both scenarios.

Summary.
Both scenarios demonstrate the performance of our auto-
mated workload characterization approach when migrating
and consolidating workloads. Our experiments cover low
response times less than 30 ms, and comparatively long re-
sponse times of more than 140 ms. Still, we obtain stable
measurements and low prediction errors of less than 25% for
both of the considered scenarios.

5. RELATED WORK
The related work presented in this paper can be classified
into three groups. The first group focuses on the area of
workload characterization. Here, Gulati et al. [13], performed
a study about the effects of running several workloads (i.e.,
a set of top-tier enterprise applications) on a shared set of
I/O devices. They used a VMWare ESX server hypervisor
for virtualization. They analyzed the effects of shared I/O de-
vices while observing the behavior of workloads in isolation
and in a consolidated scenario.
For their isolated workload characterization they used iso-
lated RAID systems for each of the workloads. For their
consolidated characterization they merged the isolated RAID
systems into one big array. In contrast to our work, the
set of workload metrics they used is more hardware related.
Their analysis and conclusions concentrate on the impact
of consolidating workloads with different workload access
patterns. Further, they concentrate on consolidation of hard
drives, but not on applications.
Ahmad et al. [5] studied the performance of storage sub-

systems. Here, they modeled native as well as virtualized
machines. For their measurements they used several disk
microbenchmarks (e.g., Iometer, Perfmon). For their charac-
terization they concentrated on the throughput of the storage
system for different block sizes, access patterns and read-
/write ratios. Using the throughput of the applications they
compared the native vs. virtualized performance. In a first
case study, they used a capture-replay mechanism to model a
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Figure 16: Scenarios: Migration and consolidation scenario response times
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Figure 17: Scenarios prediction error

file server workload. In a second case study, they modeled a
commercial mail server system. In a later work [4], they used
online histograms to model several Filebench workloads.
For their characterization approach they used a metrics set
comprising I/O, CPU and workload intensity metrics.
Kavalanekar et al. [15] modeled several workloads, e.g.,

mail server and file server workloads, using the Event Trac-
ing for Windows (ETW) instrumentation. They showed a
metrics set for their characterization and use histograms and
standardized distributions for the metric’s representation.
Their approach is tailored for the ETW instrumentation and
uses long-term traces as input data.
Wang et al. [30] used a machine learning model CART

(Classification And Regression Tree) that uses a binary de-
cision tree to predict the storage device performance for a
particular workload on a particular device. Their first ap-
proach used parameters of each disk request, i.e., its request
description like arrival time differences between two requests
or distances between two consecutive block accesses to pre-
dict the request/response time. The second approach used
workload-level parameters like burstiness, read/write ratio,
locality metrics, arrival rate and request size.
Finally, Tarasov et al. [26] extracted a workload model

using I/O traces. They use their model to transfer the work-
load, captured by the traces, to a benchmark, i.e. Filebench.
Finally, they replayed the captured workload using this bench-
mark.

All works in this group do not consider predicting the
workload behavior on a different system or in consolidation
scenarios.
The second group describes performance-influencing fac-

tors and performance metrics. Wang et at. [29] developed a
statistical model to capture burstiness and spatio-temporal
correlation of disk and memory accesses. They used entropy
plots to represent burstiness and spatio-temporal correlation.
Ruemmler and Wilkes [25] analyze disk access patterns

using disk request traces. In contrast to our work, Ruemmler
and Wilkes do not respect sequential requests that are offset
in time.
The third group concentrates on performance model gen-

eration. Here, Kraft et al. [18, 17] analyzed the influences
of consolidated virtual environments on the response time
behavior of storage systems. They used two approaches to
model the I/O performance of consolidated virtual machines:
First, they used homogeneous workloads in two virtual ma-
chines. In a second approach, they performed measurements
for a consolidation of heterogeneous workloads. To do so,
they used the FFSB benchmark as well as the Filebench
benchmark. They rely on low level response times obtained
by Blktrace.

Benevenuto et al. [8] developed several performance predic-
tion models. They used open queueing models to predict the
performance of applications in a XEN virtualized environ-
ment. For their model creation process they collected metrics
for performance prediction model design and validation.
In contrast to the above, our workload characterization

approach is a formalized and automated methodology that
allows a characterization of I/O-intensive workloads using
relevant parameters and enables a performance behaviour
prediction on a different system and in consolidation scenar-
ios.

6. CONCLUSIONS
We presented a fully-automated workload characterization
approach that allows a systematic derivation of a workload
model by capturing the major performance-relevant workload
parameters. We presented our experimental methodology
and the workload modeling process. We demonstrated the



approach’s quality on an IBM System z mainframe system
equipped with a DS8700 storage system using two differ-
ent workloads. On average, we achieved a prediction error
of 12.38% for the read requests and 36.34% for the write
requests.
Additionally, we studied migration and consolidation sce-

narios using a Sun Fire server system. The migration
scenario demonstrated the ability of migrating an already
modeled workload to a different system. The consolidation
scenario showed the performance of our approach in virtu-
alized environments, when moving two workloads modeled
in isolation to a shared system. The migration scenario ex-
hibits an adequate prediction error of 21.59% for read and
20.98% for write requests, respectively. Consolidating two
prior isolated workloads results in adequate prediction errors
of 12.95% for read requests, and 24.51% for write requests.
Overall, we showed the practical relevance of our workload
characterization approach, as well as its capabilities in mi-
gration and consolidation scenarios. Even though the overall
prediction errors may be higher than with applying standard
performance modeling techniques, the error rates are suf-
ficient for a low-overhead, first estimation of the workload
performance behavior without applying full-blown modeling
formalisms or physically migrating the whole software stack.

In general, our approach is designed as a lightweight tech-
nique to evaluate the workload performance impact of an
I/O-intensive software application on different platforms
without requiring to actually install the whole software ap-
plication. It is especially beneficial in cases that prohibit
creating explicit performance models due to, e.g., time and
budget constraints. As a further application scenario, our
workload characterization can be used as a basis for per-
formance modeling approaches. Existing applications can
be characterized automatically and mapped to the input
of the performance models, thus increasing the applicabil-
ity of the performance models as well as eliminating the
need for specialized performance models for a given software
application.
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