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Vorwort 

Wir werden fast täglich überrascht von Ideen für die Autos der Zukunft: sie werden 

smart und kontrollieren und steuern viele relevante Funktionen selbständig und 

automatisch. Die Arbeit von Frau Brzeska fügt sich in diese Entwicklung ideal ein. Sie 

entwirft und optimiert ein Reifendruck-Messsystem zur automatischen und 

kontinuierlichen Messung des Druckzustandes in den Reifen. Drei Schwerpunkte 

ergeben sich hieraus für die Arbeit: Messung des Reifendrucks, Übertragung der 

Information drahtlos aus dem Reifen und simultanes Empfangen der gesendeten 

Informationen aller Reifen zur zentralen Kontrolle und Verwertung. 

Aus diesen Aufgaben resultieren die neuen Beiträge der Arbeit von Frau Brzeska: 

Integration des Drucksensors mit dem Sender zu einem Modul mit hoher 

mechanischer Stabilität und langer Lebensdauer; Bestimmung der 

Übertragungseigenschaften vom Inneren des Reifens nach außen für alle Reifen 

unabhängig vom jeweiligen Material des Gummis und des integrierten Stahlmantels; 

Optimierung des Empfängerposition zur Sicherung des Empfangs der 

Reifendruckinformation auch bei schwierigen Bedingungen wie Schmutz oder Nässe. 

Frau Brzeska hat diese mit hohem Forschungsaufwand verbundenen Aufgaben und 

das Designs des Reifendruck-Messsystem  hervorragend gelöst. Ihre Ergebnisse 

werden in die Reifendruck-Messsysteme der Zukunft einfließen. 

Ich wünsche Frau Brzeska auf Ihrem weiteren Weg, dass ihre wissenschaftliche 

Kreativität und ihr Ideenreichtum sie zu technischen und wirtschaftlichen Erfolgen 

führt. 

 

Prof. Dr.-Ing. Dr. h.c. Dr.-ing. E.h. mult. Werner Wiesbeck 
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1 Introduction

Core topics of the underlying work are the vehicle access systems such as PAssive Start

and Entry (PASE) and Remote Keyless Entry (RKE) as well as Tyre Pressure Monitoring

System (TPMS).

The focus is on the two following goals. The first is the development of antennas and fun-

ctionality analysis of the mentioned systems from RF (Radio Frequency) point of view. It

is accompanied by an analysis and improvement of system parts. The requirements for the

performance of the above mentioned systems are growing. These result in higher demands

on antennas. Though proper functionality of the systems relies upon reliable communica-

tion between the transmitter and the receiver, antennas are very often an overlooked compo-

nent in vehicle systems. As also aesthetic and physical aspects call for innovative antenna

design, developed to address specific requirements, simple wire antennas as monopoles

are not anymore sufficient to support future systems. Therefore antennas become a very

important part in modern vehicle development. Crucial is the examination and the deve-

lopment of the Wheel Unit antennas for TPMS as well as of the receiver for both TMPS

and RKE. Also the analysis of the electrical properties of the tyres and the classification of

the on-market available tyres is of high importance. These investigations form the funda-

mentals for the second goal, which is the modeling of both systems as well as utilization of

the simulation processes. In addition to diverse antenna models and an appropriate vehicle

model, also a novel, scalable tyre simulation model is developed within this work.

The overall objective of this work is to advance the state-of-the-art vehicular electromag-

netic simulation taking into account the vehicle body and nearest surroundings.

1.1 Motivation

Motivation for extended investigation on the access systems and the tyre pressure moni-

toring is first of all the enhancement of the vehicle and passengers safety but also comfort

improvement. The importance of the research is argued in the following paragraphs and

the link to the very significant RF thread for the systems is shown.

The development of the vehicle to the stage as it is well known now (Fig. 1.1a) took place

in steps. The first four-wheeler was introduced and sold by Karl Benz in 1893 (Fig. 1.1b

[19]). Almost sixty years later, beginning in 1950s, the first RF application, namely AM

radio broadcasting was available for personal use in cars [20].

Since then the amount of electronics being implemented in the modern car has grown

tremendously over the years, it has penetrated almost every vehicle function. Today an ever
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increasing number of radio services has become available. Multifunction antenna systems

are required. The antennas have to be assembled not only to meet the RF requirements

but they have to satisfy the vehicle design and have minimum impact on the aesthetics

and aerodynamics. Very often, when considering electromagnetic specification and small

available space, the mechanical and electrical requirements are in opposition. Therefore a

trade-off has to be achieved and it is a major challenge in design of an automotive antenna.

(a) Contemporary vehicle: Volvo S80 (b) Karl Benz’s "Velo" model (1894)

Figure 1.1: Comparison of the first and contemporary vehicle

Meanwhile the implementation of antennas supports not only comfort but also the most

important safety related functions in a vehicle. Both of the systems PASE and RKE con-

tribute to the driver convenience in accessing the vehicle. With the help of these systems

unauthorized car entrance may be omitted. One of the functions that contribute solely to

the safety is the possibility to monitor the tyre pressure. In fact, various statistics show

how important properly inflated tyres are. The US National Highway Traffic Safety Ad-

ministration (NHTSA) estimates that 23.000 accidents and 535 fatalities per year involve

flat tyres or blowouts, both of which can result from improperly inflated tyres [17]. Ac-

cording surveys in France showed that nine percent of all fatal road accidents are the result

of under-inflated tyre. The German DEKRA (Deutscher Kraftfahrzeug-Überwachungs-

Verein) found that tyre problems are linked to an estimated 41% of all injury accidents,

75% of vehicles on the road had at least one under-inflated tyre [21]. These statistics are

a very strong argument and show the importance of the introduction of fully automated

TPMS to future vehicles.

This was recognized and TPMS is already mandatory starting from September 2007 in all

newly certified vehicles in the USA. The European Union also supports the development

with various research programmes and tyre pressure sensors are expected to become stan-

dard equipment in vehicles within the next ten years. Thus, TPMS will belong to standard

equipment of a vehicle in the future. For such a system, an increased confidence of ope-

ration is necessary.
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Market growth is accompanied by an increased necessity to get a better understanding and

to optimize the system development. Until now automobile antenna design relied only on

the experience and designer intuition as well as numerous measurements. Considering the

variety of different vehicle bodies, diverse tyre sizes, types and manufacturers, varied an-

tenna solutions, the time investment and directly related cost for the system analysis is very

high. In order to reduce the number of measurements together with the expenses, simu-

lation process for system performance testing should be established used for prediction of

the system behaviour. It would be advantageous to develop both a TPMS as well as access

system (PASE, RKE) simulator with the help of a virtual environment for a certain num-

ber of different experimental scenarios including exchangeable vehicle bodies, tyres, rims,

sensor antennas and receivers and possibly reduce the number of actual physical tests. To

the author’s knowledge, simulations of such complexity have not yet been conducted.

Summing up the arguments for the development of the system simulation are apart from

technical advancement, also the economic and the safety reasons.

1.2 Market Situation

In order to show the importance of the vehicle access and tyre pressure monitoring systems,

it is worth to analyse the automotive market situation in passenger vehicle sector.

From the origin of typical vehicle access system that involves a conventional mechani-

cal key for locking and unlocking each door separately, the central locking technology

emerged. Remote Keyless Entry (RKE) was introduced and has become a standard feature.

Next generation is the Passive Start and Entry System (PASE). Each produced vehicle is

equipped with one of these systems. Mechanical key exists only as a backup for radio con-

trolled systems. Worldwide the number of new cars fitted with RKE is reaching saturation

point. Fitment rates are far above 90% [22]. PASE as a more comfortable and innovative

system is still an option. This means that practically all manufactured vehicles, in year

2010 over 70 millions according to Fig. 1.2 [18], are equipped with antenna based access

systems.

TPMS system has been relatively lately introduced to the market in year 2002 and became

already mandatory in USA. European countries and the rest of the world also show an

increased interest. The statistics show that in 2010 more than 30 million vehicles had the

system implemented (Fig. 1.3a) and the implementation rate is growing. This introduces an

opportunity for the OEMs (Original Equipment Manufacturers) and after market suppliers.

New part of market opens, where shares have still to be divided and will stabilize in the

next few years. The market value reached 1.300 million Euros in 2010 (Fig. 1.3b).
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Figure 1.2: Global production of motor vehicles (passenger and commercial)

(a) Size (million systems)

(b) Market value (million USD)

Figure 1.3: Worldwide direct TPMS market
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The predictions show that within the next few years the percentage of applied systems will

grow and then it will stay roughly constant year after year and will be only dependent from

the number of manufactured vehicles.

1.3 Thesis Overview

Due to the complexity of the considered topics and their mutual dependence, in order to

keep the thesis well structured it is divided into Chapters and belonging Appendixes. The

explanation of the structure follows beneath and is additionally illustrated in Fig. 1.4 .

Following the introduction in Chapter 1, Chapter 2 gives an overview about the function-

ality of all three considered systems: TPMS, RKE and PASE. The architecture of the

systems is introduced with special attention to RF relevant parts and the nearest surround-

ing. This has an essential influence on the antenna functionality. The Wheel Unit antennas

positioning is prescribed by the functional assignment. For the system receiver, however

different positioning scenarios are taken into account. The optimal solution for the place-

ment is presented.

Simulation and evaluation procedure for optimal receiver antenna position within the vehi-

cle structure is explained in Appendix C. Final placement is proposed.

Not only the receiver but each antenna design is dedicated to the environment where the

antenna is deployed. Therefore also the rim and the tyre influence is analyzed. Regarding

the vast variety of tyres that are available on the market, their influence has to be inspected.

As it is impossible for time and cost reasons to measure each tyre, a way to classify the

tyres and the final classification results are presented in Chapter 3. It is explained how the

tyres are built. Mechanical classification criteria are listed. A selection of popular and most

representative tyres is made for further investigation.

Additional information about the tyres, partial results and steps essential for final state-

ments in Chapter 3 are gathered in Appendix A.

Before determining tyre influence on the antenna radiation pattern, the tyre structure is

analyzed from electromagnetic point of view in Chapter 4. For each tyre region: tread

and sidewalls as well as for each layer the electric material properties such as electrical

permittivity and loss factor are investigated and a method to measure these is presented.

The accuracy of the mentioned measurements is verified. Also embedding materials for

the Wheel Units are characterized. All obtained values will be used for antenna and tyre

simulation models.

Results of tyre rubber material measurements are listed in Appendix D. Chapter 4 compre-

hends the final result values.
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In order to know what influences the tyre radiation pattern mostly, several Wheel Unit an-

tennas are designed, measured and compared. The radiation pattern measurement setup

is described in Appendix B. Also achieved characteristic values are listed in the same

Appendix. Chapter 5 deals with small antenna development, both for the Wheel Units as

well as for the receiver.

Chapter 6 gives an overview of the automotive electromagnetic simulation. The advantages

and disadvantages of the Method of Moments for large-scale problems are discussed. An

equivalent vehicle model is presented and the simulation results for PASE, RKE and TPMS

are analyzed and obtained.

The schematic overview in Fig. 1.4 presents the thesis structure in a clear, well arranged

way. It is depicted that Chapter 1 and Chapter 2 open the Thesis and introduce the reader

the the considered topics. Chapters 3, 4 and 5 are parallel and may be considered by the

reader in alternative order - the boundaries between these Chapters are not strictly confined

and the reviewed topics refer to each other. In this way with accompanying Appendixes a

base is formed for Chapter 6, which describes the final results.

Chapter 7 closes the Thesis with a brief summary.
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Figure 1.4: Thesis structure





2 Vehicle Access and Tyre Pressure Monitoring Systems

The aim of Chapter 2 is to introduce the reader to the basics of the Vehicle Access (VA)

and Tyre Pressure Monitoring topics. An overview of the possible system types and their

functionality is presented with special care and reference to RF (Radio Frequency) theme,

covering in this regard the relevant system parts.

Vehicle Access Systems and Tyre Pressure Monitoring Systems have got two main

common advantages. They build not only convenience related functions, but contribute

to the travelers and traffic safety.

From technical point of view, VAS as RKE or PASE and TPMS may be separate, fully

autonomous. In such case all the parts are individually designed for each system. This

means that all systems work independently from each other and have components dedi-

cated solely for one application use. However, if a vehicle comprises more than one of the

mentioned systems, such solution is not optimal. For a number of reasons it is favourable

to combine these systems in order to share electronics and utilize some electronic parts

as common. Among the reasons are the reduction of vehicle network complexity, cable

routing, simplification of assembly processes, reduction of space demanded for electronics

implementation and therewith weight reduction and resulting from all of these cost opti-

mization. For all the noted points vehicle manufacturers are incorporating more and more

functions into integrated parts and linked systems. Regarding TPMS, RKE and PASE,

the most favourable solution is to merge the systems - the cross link is to be realized via

shared RF-receiver. The functionality of each of the systems as well as their composition

is described in the following subchapters.

2.1 Remote Keyless Entry

RKE is an abbreviation for Remote Keyless Entry. Remote Entry means that the system

guarantees remote access to the automobile. The word "Keyless" is actually a misnomer

since an electronic key fob duplicates all the features of a standard mechanical car key with

the added convenience of operating the power door locks and further functions from a cer-

tain distance. A small traditional mechanical key is usually still included for unexpected

cases (e.g. when the key fob is out of charge because of a flat battery) see Fig. 2.1. The

need to physically manipulate a key into a door lock is eliminated.

An electrical key fob is equipped with several buttons dedicated to locking and unlocking

the vehicle. Additional functions such as opening the trunk, closing the windows and sun-
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roof etc. may also be included. Some remote keyless fobs also offer an additional panic

button which activates the car alarm as a standard feature. Whenever a driver pushes one

of the buttons and therewith induces a signal, the data is encoded and sent by the transmit-

ter to the receiver positioned in the vehicle. In the next step data is decoded in order to

determine what the demanded function is. Most of the systems imply only simplex (one

way) communication and when the vehicle releases the door locks the operation is over.

In other cases when duplex (bi-directional) communication is foreseen, the vehicle trans-

mitter sends an acknowledgement signal back to the key fob. In such a case confirmation

possibility of performed function is given - usually either blinking LEDs or a small key

display serve as an interface for the user as in [23].

Figure 2.1: Electronic key fob

The installation rate for RKE systems in new vehicles is more than 80% in North America

and more than 70% in Europe [24], [25], [1].

2.2 Passive Start and Entry System

PASE stands for PAssive Start and Entry and describes an innovative vehicle access and

start system. The word "Passive" refers to the fact that a user does not have to act in any

way in order to unlock the car nor to start the engine. This is contrary to the common access

systems as for example RKE and therefore this is the most significant difference from the

user point of view.

PASE allows automatic locking, unlocking the vehicle doors or trunk without pressing any

key button nor even taking the key out of a bag or pocket. The engine is started by just

pushing the ignition button. The car owner has only to carry the key, which has got the

function of identifying the right user. Therefore it is very often called an Identification De-

vice (ID), Identification Card (IC) or Access Card (AC). As the user approaches the vehicle

and is within less than few metres distance, the vehicle automatically recognizes the iden-

tification device. In the next step the driver has to pull simply the door handle to access the
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vehicle. Only when IC is detected to be in the vehicle interior, the engine may be started

by pushing an ignition button. ID card is authenticated; immobilizer and steering column

lock are automatically released so that the engine can start. The vehicle is locked when the

owner walks away.

Communication between the vehicle and the ID is realised at 125 kHz, leading to a high

penetration and virtually no reflections, due to the large wavelength λ > 2000 m. As the

communication between the LF-transmitter (Low Frequency) in the car and the identifi-

cation provider (card owner) can only take place within the coverage range without any

particular actions of the car owner, it is very important that the coverage range around the

vehicle is well limited and controlled. The car access should be ensured only if the owner

is within a few metres distance, typically about 1.5 m around the car.

2.3 Basic Approaches to Tyre Pressure Monitoring

TPMS stands for Tyre Pressure Monitoring System. As to derive from the system name, it

is an electronic system designed to monitor the apparent air pressure inside all pneumatic

tyres on a motor vehicle. The system is sometimes simply called a run flat indicator as it

indicates if any tyre is lacking pressure. Argument for this system is the fact that pressure

drops even to 30% are not remarkable for human eye. The difference between properly

inflated (Fig. 2.2b) and underinflated tyre (Fig. 2.2a) is very difficult to state. Comparing

however the cross sections of under inflated (Fig. 2.2c) and properly inflated tyre (Fig. 2.2d)

it becomes very remarkable that the adhesion is strongly decreased.

(a) Underinflated tyre (b) Properly inflated tyre (c) Cross section of
underinflated tyre,
road contact

(d) Cross section of pro-
perly inflated tyre,
road contact

Figure 2.2: Difference between properly inflated and underinflated tyre

For this reason drivers are very often not aware of possible danger and hazard they are

exposed to, which is associated with tyres. These are designed for use at their specific rec-

ommend pressure. In case of under inflation, the tyre is exposed to increased deformation

in the wall region as it concentrates the load upon the tread shoulders. In the end effect tyre
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looses proper contact with the ground, and therewith the vehicle can get out of the drivers

control. Further disadvantages and dangers are: increased tyre wear, higher fuel consump-

tion, longer braking distance and also higher probability of a sudden tyre puncture.

Knowing all the dangers linked with under inflation, it is very important to stress that pres-

sure loss is a natural and continuous process. On average, a car tyre loses about 0.1 bar

air pressure per month [26]. Most of the motorists are not aware of this fact. They never

or very seldom check the tyre pressure with one exception this is when changing winter

to summer tyres. Therewith an automatic pressure measurement system is of very high

importance for individual and traffic safety.

TPMS offers the following features:

• Tyre pressure measurement, ablility to detect under-inflation of less than 25 %.

• Continuous pressure monitoring both during vehicle movement and at the standstill.

• Early warning (< 5 s) for the driver, in case of pressure loss or tyre failure.

• Prevention of error while setting nominal pressure value.

• Automatic identification of location of wheels (left / right -font and rear).

From functional point of view, TPMS is divided into indirect and direct systems [27], [28].

Fig. 2.3 [29] shows the main components and data transmission paths of both systems.

2.3.1 Indirect Tyre Pressure Monitoring System

Indirect TMPS (ITPMS) uses information from other in vehicle integrated systems in order

to determine the actual tyre pressure. Physical pressure sensor is inexistent in this type of

TPMS. The information on pressure in all tyres is gained through the analysis of the wheel

speed. Hardware parts such as wheel speed sensors as well as control unit are shared with

ABS (Anti-lock Braking System). The only dedicated part of the system is the appropriate

software.

The operation method of an indirect TPMS is based on the fact that under-inflated tyres

have a slightly smaller diameter than a correctly inflated tyre. The difference between pro-

perly and insufficiently inflated tyres is optically very difficult to state. Nevertheless, few

physical parameters may be easily estimated as for example the angular wheel velocity. In

order to overcome the same distance an under-inflated tyre has to rotate at a higher angular

velocity.

Main advantage of this system type is the moderate cost due to no need of applying any

additional hardware except from user interface. Disadvantages, however, such as low sen-

sitivity of the system and no information which wheel drops pressure unless intricate wheel
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localization, make this system to be of minor interest. As there is no need of radio based

communication between system parts, it is not in the focus of this work.

(a) Indirect Tyre Pressure Monitoring System (b) Direct Tyre Pressure Monitoring System

Figure 2.3: Comparison of Indirect and Direct Tyre Pressure Monitoring Systems

2.3.2 Direct Tyre Pressure Monitoring System

The name for the Direct TPMS derives from the fact that the pressure sensor is integrated

directly in the wheels of the vehicle. This sensor, often named Wheel Unit (WU), is solely

devoted and specially designed for TPMS with the functions of direct pressure and tem-

perature measurement, contrary to ITPMS. The functionality of the system is depicted in

Fig. 2.3b. The key component is the Wheel Unit located in the tyre cavity. The major

design challenge is bound with this part. Detailed description of the WU will follow in

subsequent chapters.
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Radio Frequency transmission is of most importance for the overall performance of the

whole system. The data is transmitted via wireless channel to the Control Unit (CU). Due

to positioning within the vehicle body the CU is less demanding in its design as the WU.

There are two options for the RF reception antenna. It is either integrated in the CU body or

it is an external antenna and a connection to the CU is provided. Because of the cost of the

parts and also the cost of assembly process, the internal antenna is the preferred solution.

The CU processes the received information.

Finally, the warning messages and optionally the quantities measured in the tyres are for-

warded via wiring harness to the display unit. Depending on the vehicle OEM, a variety

of devices and user interface strategies may be employed. From a simple acoustic or light

signal to very advanced combination of a display.

2.4 Functional Architecture and Frequency Allocation

The functional architecture describes main system components along with their mutual in-

teraction. From structural point of view it was already mentioned that it is advantageous

to merge VAS and TPMS. Resulting core and peripheral system components are described

underneath. Joined VAS and TPMS system diagram is presented in the Fig. 2.4.

The most important logical blocks of each interacting system component are depicted.

Central - core part in which the functionality of all systems is merged is the RF-receiver

with Control Unit (CU). It comprehends electronic hardware as well as software function-

ality blocks for all three systems. Connectivity to distant, peripheral units specific for each

of the systems is assured with the help of RF and LF Interfaces with equivalent antennas,

receivers / transmitters and microcontrollers. Systems communicate both in LF and RF

range. LF communication takes place at the frequency of 125 kHz, whereas RF transmis-

sion takes place at higher frequencies in ISM (Industrial Scientific Medical) bands.

Peripheral units are respectively for VAS either PASE Identification Device or RKE key,

and for TPMS the Wheel Unit. In this thesis described system is determined for ope-

ration within European countries and so between CU and VAS peripheral components the

frequency of 868 MHz is used. Data transfer from TPMS WU is carried out at 433.92 MHz.

Further frequencies dependent on the implementation region are respectively 315 MHz,

912 MHz for Japan and USA.

The CU receives WU information as well as RKE key information by means of the RF sub-

system comprising antenna and RF receiver. In the second step, the received data frames are

processed by microcontroller, the information is forwarded accordingly to further system

blocks, either for TPMS or RKE. When the content of the information is approved, corre-
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sponding signals are send to the User Interface (UI). For TPMS last block is the UI where

the information about tyre pressure is displayed and for RKE the power door locks.

Figure 2.4: Integration of Tyre Pressure Monitoring System, PAssive Start and Entry and

Remote Keyless Entry

Both in RKE and TPMS the information signal originates from external transmitters. These

are in the first case the hand-held key fob and in the second the Wheel Unit inside the tyre

cavity. From RF point of view both devices have similar hardware architecture. The only

difference is that the transmitted signal is a carrier for another kind of information and it

is initiated in a different way. Holding a key fob person approaching the vehicle is the

decision taker whether and when to command the door opening. To emit the order signal

one of the buttons on a key fob have to be pushed. Depending on a number of functions

the key fob has got one or more push-buttons and optionally a display. On the contrary the
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WU is initialized via the motion sensor, from now on it transmits the information in regular

time intervals.

Some of the vehicles may be equipped with a more advanced and comfortable vehicle entry

system PASE (PAssive Start and Entry), where driver may enter the vehicle without any

explicit action. Authorization is granted by carrying an appropriate Identification Device

(ID). In this case RKE key fob is extended with additional operational blocks such as LF

transmitter and related antenna. LF communication that occurs between the vehicle and ID

is unidirectional.

Described above system functional architecture entails advantages for further hardware

parts, which have to build in the vehicle only once. These are housing, connector, power

supply, car bus, micro-controller, LF drivers and RF antenna. All the devices that are

relevant from RF point of view will be described further on.

2.5 RF Relevant Parts of the Systems

Relevance describes to what extent objects are important for a solution of a defined prob-

lem. With RF relevant parts such vehicle and system parts are meant which influence

functioning of the antennas to be installed and modify wave propagation. Moreover, under

RF relevant parts of the system not only the integral hardware parts of RKE, TPMS, and

PASE are to be understood but also the parts that have influence on the system performance

dependent on the mounting position of the transmitter and receiver.

Summing up and following this logic, RF relevant parts of VAS and TPMS may be di-

vided into two groups: firstly system integral parts, secondarily further elements, which do

not belong directly to the described systems but are vehicle or environment specific. Both

metallic and dielectric elements have to be taken into account.

Integral, RF relevant merged system parts are:

• RF receiver with adequate antenna.

The antenna may be integrated into the receiver module as in [2], or it may be for

example an external antenna like a film antenna integrated into the windshield as

in [30]. There might be one or more receiver positioned within the vehicle. The

developed antenna will be in depth discussed in Chapter 4 dealing with antenna

development.
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• Tyre pressure sensor unit already before described as Wheel Unit (WU).

The positioning of the Wheel Units is determined by their functionality. It has to be

within the wheel cavity. Additionally it precisely defines further RF relevant but not

system integral parts.

• RKE key and / or PASE ID

RKE key or PASE ID is a hand-held device. During the development process the

influence of human hand is always analysed. The design of the key module falls

beyond the intent of this thesis. A functional RF key module is assumed.

Indirect, RF relevant system parts that influence system functioning are:

• Vehicle body and equipment
• Rim
• Tyre (materials, construction, motion)
• Ground (ground type and condition)

It is important to mention the reason why all listed elements affect the functionality of

the parts that directly belong to and build VAS and TPMS systems and in which way this

occurs. Electromagnetic interactions between integral and indirect system parts have to be

understood. following issues are necessary for the optimization process of RF properties:

• Simulations of the influence of tyre components on the wave propagation help

choosing adequate antenna structures for best performances of the RF systems.

• Rims and tyres influence the antenna integrated within the WU, in such a way

that the electrical antenna parameters such as impedance and radiation pattern are

modified.

• The vehicle body together with the car equipment considerably affect the wave

propagation channel from the tyre pressure sensor to the receiver depending on the

location of the receiver inside the vehicle [9], [15].

• The ground as asphalt, concrete and gravel likewise affect the wave propagation.

Consequently, the hardware parts as well as the next environment of the hardware compo-

nents are important for a correct RF analysis. All these elements were taken into account

whilst design process. Based on the simulation and measurements a high system reliability

and robustness may be achieved with high accuracy of RF behaviour prediction. Further

Chapters will give a deep insight in this problematic, especially concerning the simulation

process and element mutual influence.





3 Passenger Vehicle Tyre Classification

Goal of Chapter 3 is to introduce an approach how to classify tyres. In order to find out

which mechanical and material properties influence tyre RF properties, knowledge about

different tyre types and their structure is needed. Chapter 3 together with Appendix A

deals with the tyre classification from mechanical and RF point of view. It has to be de-

fined which parts or layers of the tyres have to be examined. Therefore, firstly tyre types

and geometry are introduced. Following assignment based on market overview was made

with emphasis on most popular tyres with highest sale quotas. All information, gained in

this manner, forms the base for the first simplified RF simulative tyre models described in

detail in Chapter 6.

Tyre (AE tire) is an elastic shock absorbing, ring-shaped covering that is assembled around

the wheel surface. Tyres feature very complex structure. They have to withstand very harsh

environmental conditions, rapid temperature changes, high loads, stress, mechanical shock

and deformation. Moreover exposed to these terms tyres have to show long life cycle.

First tyres, however, were bands of iron or steel placed on wooden wheels, used mostly on

carts. Pneumatic tyres, as they are known nowadays, were introduced relatively lately, in

the 19th century. These consist of a flexible elastomer material such as rubber reinforced

by fibre and wires. Growth of tyre market is strictly bound to the automobile industry and

so the first companies manufacturing tyres in big scale aroused in the early 20th century.

Demand on tyres and their development increased together with vehicle success and popu-

larity. Today over one billion tyres are produced annually [31].

The variety of tyres present on the worldwide market in huge and therefore also the dif-

ferences between the tyres. There are however only less than ten leading manufacturers

commanding most of the global market share. Big suppliers deliver very high quality

products, support vehicle OEMs, whereas the smaller ones address mostly low price after-

market segment. In order to be competitive and increase safety, tyre manufacturers vie for

preparing new tyre designs. There are multiple parameters upon which tyres are described.

Important constraints are rolling resistance, durability, ride comfort, steering precision, sta-

bility, weight, life expectancy and behaviour on wet and icy roads. It is important to notice

that all these parameters are related to mechanical tyre performance and properties.

Dependent on the deployment rubber compounds with different chemical additives are used

in the manufacturing process. Generally for winter tyres more elastic rubber than for sum-

mer tyres is used, however exact material components are unknown. This information is of

highest secrecy and confidentiality for each tyre manufacturer.
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Summing up tyres are very well characterized from mechanical performance point of view,

whereas material properties, especially electric properties such as permittivity and loss fac-

tor were until now to the authors knowledge unknown.

3.1 Overview of Tyre Types

Before discussing tyre structure in detail, different tyre types have to be shortly presented.

There are three major construction types: (1) Slick tyres, (2) Conventional tyres, (3) Self

Supporting Runflat (SSR) tyres.

Slick tyres are very well known to ones who have interest in racing sports. The main

optical difference to conventional tyres is the lack of profiled tread. Slick is another word

for smooth, slick tyres have very smooth tread (Fig. 3.1a).

(a) (b) (c) (d)

Figure 3.1: Comparison of tyre type and comparison of reinforcement construction (a) -

Example of slick tyre, (b) - Example of conventional tyre, (c) - Diagonal tyre

construction, (d) - Radial tyre construction

The aim is to provide the largest possible contact patch to the road and maximize traction

for any given tyre dimension and very fast speeds. The drawback is, that this kind of tyres

are not suitable for usage on common road vehicles. In case of wet, icy or snowy road these

tyres loose good ground contact.

Contrary, conventional tyres (Fig. 3.1b) must be able to operate in all weather conditions

and usually requirement for extreme velocities over 200 km / h is not demanded. In or-

der to drain off water, snow and sand tread is grooved. This is a very important feature

and therefore manufacturers examine different profile geometries. Further difference is an

additional reinforcement. Tyres are strengthened by fibre web. Fibres may be arranged

in two ways: diagonally and radially with respect to tyre centre line. In both cases this

reinforcement is placed over the whole tyre structure from the inside to the outside bead.

Diagonal tyres have net (Fig. 3.1c) where fibres are directed diagonally at angle of 30 ◦ to
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40 ◦ to tyre centre line. There are two layers of in this way formed carcass. The superim-

posed layers run in opposite direction to form a cross pattern. In radial tyres (Fig. 3.1d) the

carcass layers run at angle of 90 ◦ to tyre centre line. Additionally directly over the carcass

under the tyre tread there is a multilayered cord or steel belt. Wires in the belt are oriented

between 15 ◦ and 25 ◦ to the tyre centre line. Most of the nowadays implemented tyres are

radial tyres.

Another tyre type that has grown in popularity are Self Supporting Runflat tyres, often

called in short Runflats or Zero Pressure tyres. SSR tyres have got, in comparison to con-

ventional tyres, an additional side wall strengthening (Fig. 3.2a). When tyre is punctured

- flat, these side walls support the whole tyre structure (Fig. 3.2b). SSRs are designed to

resist the effects of deflation and to enable the vehicle to continue to be driven at reduced

speeds for limited distance [33], [34].

(a) SSR tyre with reinforced sidewall (b) Comparison of conventional and SSR tyre in
case of puncture

Figure 3.2: Distinction between conventional and SSR tyre

Summing up, there are two basic types of conventional tyres, however due to advancement

in vehicle technology and higher reachable speeds, tyres with radial construction dominate

the market. The slick tyres in comparison to conventional tyres are of relatively simple

construction. It is important to mention that SSR tyres do not have yet a very big market

share but in all vehicle were they are implemented a TPMS is demanded.

3.2 Geometrical Tyre Structure - Main Components

Years of development and research brought tyres to be products with a very high complex-

ity level. Standardized tyre classification criteria upon markings on tyre side, are described

in Appendix A.1. Chapter 3.2 gives insight to the tyre build up and components, which

being part of the complex structure influence the electromagnetic tyre properties.
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Main compound - natural and synthetic rubber is mixed with such additives as sulphur,

carbon black and other solvents to form base for tyre structure [36]. Following the most

modern tyre development progression, up to 25 different tyre parts and up to 13 different

rubber mixtures may be used [37]. Never though, tyre components are usually set in a

predefined way, they are different (contain diverse ingredients in differing amounts) for

each manufacturer.

Tyres are composite products. The tyre consists of up to 9 different layers - depicted in

Fig. 3.3. Each of the depicted layers is of high importance for an overall mechanical but

also RF tyre performance. It is shown how much each of these components influences the

WU radiation characteristic.

(a) Tyre structure 3D (b) Tyre cross section

Figure 3.3: Tyre structure: (1) tread, (2) wire belt, (3) carcass first layer, (4) carcass second

layer, (5) inner liner, (6) side wall, (7) bead reinforcement, (8) apex, (9) bead

core

Besides the chosen materials, specific vulcanization procedure and tyre construction, the

capabilities and performance of each tyre depend strongly on the inflation pressure. For

this reason TPMS grows in importance. Representative tyres are chosen for the RF inves-

tigations, therefore a market overview in necessary.

3.3 European Market Players / European Tyre Manufacturers

The European passenger car tyre market represents 33% [38] of the world total market. Ma-

nufacturers with biggest market shares are: Bridgestone, Continental, Dunlop, Goodyear,

Michelin and Pirelli. These are taken into account for the analysis within the scope of this

work.
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In order to realize a merged classification for tyres of different brands, knowledge has to be

gained upon which characteristics this classification should be realized. Therefore firstly

general tyre description will be expound and consequently tyres classified upon mechanical

and geometrical parameters.

3.4 Tyre Classification and Overview

For tyre classification conventional and SSR tyres are taken into account. An over-

view of summer and winter tyres existent on the market (in year 2007) was made (see

Appendix A.3).

Tyres of the manufactures with the biggest market shares described in Chapter 3.3 were

taken into account. All manufactured tyres were compiled within tables from Fig. A.2,

Fig. A.3, Fig. A.4 and Fig. A.5. Resulting in 1732 conventional summer tyres, 817 con-

ventional winter tyres, 202 SSR summer tyres and 91 SSR winter tyres. Products of each

manufacturer were coded with different pattern / colour. In all graphics tyres are arranged

upon speed index (horizontal table direction, rising order) and size (vertical table direction,

rising order).

The structure of tyre market is very well depicted with the realized and presented classifica-

tion. It is noticeable that smaller tyres have lower speed index, whereas larger tyres feature

higher speed indexes. Moreover with the help of this study it is easy to conclude which

tyres are most popular, of which size and which speed index. A brief extract is presented

in Fig. 3.4 and Fig. 3.5.

Figure 3.4: Market share of conventional and SSR tyres in respect to speed index
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The above shows how many tyres of different rim diameters are offered on the market.

Most popular conventional tyres have the diameter of 15 to 18 inch. In segment of SSR

tyres diameters smaller than 16 inch are not available.

(a) Conventional tyres

(b) SSR tyres

Figure 3.5: Market share of summer and winter tyres in respect to rim diameter
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Additionally comparing tyre types it becomes very transparent that most tyres offered on

the market are conventional summer tyres followed by conventional winter tyres. Market

share of SSR tyres is still rather small. Interpreting the dependency of speed index it is

remarkable that summer tyres, independent whether conventional or SSR, are allowed to

run faster than all winter tyre types. In order to hold further investigation representative

(not to investigate rare parts), the decision was taken to analyse most popular tyre segment

with the following size:

• 195/65 R15 (further called small tyres)
• 245/40 R18 (further called big tyres)

Both summer and winter tyres in above listed sizes were chosen to be analysed, as well as a

selection of SSR tyres. Full table with exact tyre names, brands is available in Appendix A,

Table A.4.

Though, before constructing appropriate tyre model for simulation purposes, below men-

tioned goals have to be fulfilled in order to gain necessary knowledge about differences

between tyres from RF point of view. Chosen tyre selection is optimal in order to follow

proximate goals in further paragraphs. Understanding differences and similarities between:

• Tyres from diverse manufacturers.
• Summer and winter tyres.
• Tyres of various speed indexes.
• Conventional and SSR tyres.
• Different tyre sizes.

Moreover it is important to investigate the tyre geometry having on target the simplification

of its electromagnetic model. This may be undertaken after gaining the knowledge about

RF relevance of each tyre component from Fig. 3.3.

3.5 RF Tyre Classification upon Radiation Pattern

The radiation pattern is a graphical representation of the antenna radiation properties as

a function of space. The depicted value is the relative field strength transmitted from or

received by the antenna. It refers to the directional (angular) dependence of radiation from

an antenna or other source [39], [40], [41].

For complete, full description of antenna radiation properties a 3D representation is de-

manded. Unfortunately 3D measurements have some drawbacks as they are very time

consuming, require special equipment and big anechoic chambers. Therefore it is common

to describe the radiation pattern with three principal plane patterns. These are obtained by

making three cuts through the 3D pattern.
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Typically radiation pattern is characterised in one horizontal and two vertical planes.

Accordingly xy (θ = 90◦), xz (ϕ = 0◦) and yz (ϕ = 90◦) plane. Corresponding rect-

angular and spherical coordinate system is presented in Appendix B (Fig. B.1a).

For description of antenna performance in form of radiation pattern C many different quan-

tities may be used. These are for example electrical field strength E, radiated power Prad,

efficiency η and directivity D. Another useful measure describing antenna performance is

the antenna gain G. It takes into account both the efficiency as well as directional capabil-

ities of radiating structure (Eq. 3.1).

G = ηD (3.1)

Contrary, directivity D (Eq. 3.2) is defined as a measure that takes into account only the

directional radiation properties of the antenna and therefore it is only influenced by the

antenna pattern C.

D =
4π

2π∫
ϕ=0

π∫
θ=0

C2(θ, ϕ) sinθ dθ dϕ

(3.2)

Radiation pattern C (Eq. 3.3) is defined with ratio of electrical ( �E) or magnetical ( �H) field

strength on sphere surface and there occurring maxima ( �Emax, �Hmax):

C(θ, ϕ) =

∣∣∣ �E(θ, ϕ)
∣∣∣∣∣∣ �E(θ, ϕ)

∣∣∣
max

∣∣∣∣∣∣∣
r=const
r→∞

=

∣∣∣ �H(θ, ϕ)
∣∣∣∣∣∣ �H(θ, ϕ)

∣∣∣
max

∣∣∣∣∣∣∣
r=const
r→∞

(3.3)

Efficiency (Eq. 3.4) expresses the relationship between radiated Prad and input power Pin.

It is a purely inherent property of the antenna [39], impedance and polarization mismatches

do not contribute to efficiency. However, as antenna specific losses cause the fact that

radiated power is always lower than input power, efficiency may be seen as attenuation

factor for the input signal.

η = Prad/Pin (3.4)

There are two basic methods to perform efficiency measurement:

• Wheeler cap [42].

• 3D far field radiation pattern measurement.
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The first of the above mentioned methods is suitable for small antenna modules, the second,

as already mentioned before, is very time consuming.

Therefore in order to characterise the radiation pattern properties from different tyres, gain

measurement was conducted with Two-Antenna-Method [39]. Block diagram of the mea-

surement setup is depicted in Fig. B.4. Measurement of 2D radiation pattern was the

most optimal as well the most accurate way to determine whether there are any differ-

ences between tyres from RF point of view.

Unknown gain of Device Under Test Gt, here tyre, is calculated according to Friis Equa-

tion [43]. It is expressed with following Formula 3.5, where λ is the wavelength, d is the

distance between DUT and test antenna, respectively Gr and Pr are the gain and received

power by the test antenna.

Gt =
Pr

PinGr

(
4πd

λ

)2

(3.5)

Friis equation describes the propagation behaviour of a signal transmitted by one and re-

ceived by second antenna. This Link Budget may be expressed in dB with Eq. 3.6.

Gt = Pr − Pin −Gr + 10log (4πd/λ)2 (3.6)

All tyres were oriented during the measurement in the same way. Positioning of the tyre in

respect to the coordinate system is depicted in Fig. 3.6. Measured values are expressed in

dBi related to the isotropic radiator (Fig. B.1b).

Figure 3.6: Tyre orientation for radiation pattern measurement

At this stage of the investigations, the WU, that actually originates the electromagnetic ra-

diation, is to be treated as a black box. Tyre together with the WU is to be considered as one

radiating entity under test. The influence of different WUs will be discussed in Chapter 5.
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Classification criteria for the comparison of radiation pattern plots are the radiation pat-

tern form, amplitude and eventually possible polarization dominance. For this purpose all

graphs are depicted with the same scale.

3.5.1 Radiation Pattern Influenced by Conventional Tyres

The aim of the radiation pattern measurement influenced by conventional tyres is to see

whether tyres of different brands influence the radiation characteristics in the same way.

For this purpose WU with IFA antenna is positioned on the rim within each tyre cavity as

in Fig. B.2.

Further questions for which an answer is required is whether there is any difference in the

influence of winter and summer tyres as well as tyres of smaller and bigger size.

In order to answer the above queries, radiation pattern of chosen representative tyres with

the same electromagnetic wave source within tyre cavity (test WU) was measured. Numer-

ous characteristic curves and figures resulted from this investigation and therefore detailed

results of this investigation are gathered in the Appendix B.2.

Chosen four tyre groups under test are:

• small (195/65 R15) summer tyres.
• small (195/65 R15) winter tyres.
• big (245/40 R18) summer tyres.
• big (245/40 R18) winter tyres.

It appeared that independent on the tyre manufacturer the radiation characteristic is influ-

enced in a very similar way with similar radiation pattern characteristic. Therefore beneath

only average values of the the achieved results are presented.

An average over all inspected summer and winter tyres was calculated. This in order to

ease proving whether and to what extent winter and summer tyres differ.

Fig. 3.7 presents the comparison between small summer and winter tyres and accordingly

Fig. 3.8 presents the comparison between big summer and winter tyres.
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Figure 3.7: Comparison of average measured gain for conventional small

(195/65 R15) summer and winter tyres
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Figure 3.8: Comparison of average measured gain for conventional big

(245/40 R18) summer and winter tyres

It is observed that there is small (of 1 dB to 2 dB) to no difference between the average

values of the measured radiation pattern of small summer and winter tyres. The results for

big summer and winter tyres show the same behaviour. In both cases it is clear that there

is no difference between radiation pattern resulting from summer and winter tyres.
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3.5.2 Radiation Pattern Influenced by Self Supporting Runflat Tyres

The comparison of all analysed SSR summer tyres is depicted in Fig. 3.9 and all SSR

winter tyres in Fig. 3.10.

Figure 3.9: Measured radiation pattern of SSR summer tyres (245/40 R18)
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Concerning summer tyres, the best tyre with highest gain values is the Dunlop SP Sport01.

The worst tyre is the Continental Conti Sport Contact. The biggest difference between the

average gain values is 3.4 dB (Table B.6).

Figure 3.10: Measured radiation pattern of SSR winter tyres (245/40 R18)

Concerning winter tyres, the best tyre is Pirelli Sottozero, and worst is Goodyear Eagle

Ultra Grip. The highest difference between the average gain values is 2.6 dB (Table B.5).
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Summing up alike the case of conventional tyres, also all SSR tyres reveal the same radia-

tion pattern form independent from the manufacturer and brand. Differences appear in the

amplitude of the patterns.

3.5.3 Conclusions of RF Tyre Classification

Conducted RF tyre classification based on radiation pattern measurement, gain calculation

and comparison of all measured tyres showed that:

• All measured conventional summer tyres show similar radiation pattern shape.
• All measured conventional winter tyres show similar radiation pattern shape.
• All measured SSR summer tyres show similar radiation pattern shape.
• All measured SSR winter tyres show similar radiation pattern shape.
• In each of above mentioned tyre classes, tyres of different manufacturers show dis-

crepancy in radiation pattern amplitude. Therefore, it was possible to choose always
the best and worst tyre candidate (taking into account radiation pattern amplitude).

• Radiation patterns of conventional summer and conventional winter tyres do not
differ.

• Conventional and SSR tyres show different radiation pattern characteristics.

Above conclusions are meaningful both for characterization of tyres electrical properties

as well as for tyre modelling. If measured radiation patterns of entities such as tyres with

the same WU do not differ, this means, that also tyre electrical properties should not differ

much. Consequently the same tyre simulation model may be used and only selected tyres

will undergo material characterization process (Chapter 4).

In this sense conventional summer as well as conventional winter tyres will be represented

in Chapter 6 with one common tyre model. SSR tyres due to another geometry (Fig. 3.2a)

and therefore different radiation pattern require a separate tyre simulation model.

3.6 Influence of each Tyre Component on the Radiation
Pattern

Having already the knowledge about tyre radiation characteristics and differences between

different tyre types and brands, it would be favourable to analyse theoretically with means

of simulation (further information in Chapter 6), which parts of tyre geometrical structure

(Fig. 3.3) have most influence on radiation pattern and overall RF tyre performance.

For the investigation, variables of interest are permittivity εr and loss tangent tanδ. In each

step of the simulation process only one chosen parameter of interest was varied, whereas

all further parameters were fixed. This resulted in numerous simulations. The advantage of

such simulation procedure was that influence of each tyre layer and parameter was isolated.
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At this stage of the investigations, when exact values of electrical parameters have not been

measured yet, the range of values to be varied was chosen upon general knowledge in this

field and some literature sources [44], [45]. Such choice guarantees plausibility of aimed

investigation.

Electrical permittivity of air is close to that of vacuum, which is assigned to εr = 1. For

pure rubber materials the value is expected in the range of 6 < εr < 10. Tyres are however

compound materials with different additional substances. One of the most popular additives

is the carbon black with εr = 30. Therefore, theoretical assumption for the investigations

were values of 5 < εr < 30, simulation step of 5.

As rubber is a lossy dielectric material, apart from dielectric constant also the losses in the

material have to be taken into account. These are expressed with help of loss tangent tanδ.

For the first estimations extreme values of this parameter were taken into account, ranging

from tanδ = 0.001 up to tanδ = 1. The very low parameter value symbolises low loss

materials.

Initial variables values are listed in underneath Table 3.1. Tyre under test is in size of

245/40 R18, naturally all simulations were conducted with the same electromagnetic wave

source, this is the WU with IFA antenna. The influence of relative permittivity and of loss

tangent is investigated.

Tyre Layer εr tanδ

Tread 5 0.05

Inner liner 10 0.05

Sidewall 5 0.05

Bead reinforcement and Apex 12 0.05

Table 3.1: Initial values of εr and tanδ

Fig. 3.11 depicts the influence of the permittivity values and Fig. 3.12 of the loss tangent

for the tread rubber layer.

With the help of the above simulation it may be observed that the variation of εr of the

tyre tread, does not cause any change in the radiation pattern. Differing loss tangent values

tanδ in the tread, does not cause any change in the radiation pattern, neither the shape nor

the amplitude change. This is due to the separation of this layer from the radiator (WU)

with metallic wire belt (Fig. 3.3).
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Figure 3.11: Radiation pattern simulation of 245/40 R18 tyre - variation of relative

permittivity values of tread
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.

Figure 3.12: Radiation pattern simulation of 245/40 R18 tyre - variation of loss

tangent values of tread
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Fig. 3.13 shows the influence of the permittivity values for the inner liner.

Figure 3.13: Radiation pattern simulation of 245/40 R18 tyre - variation of rela-

tive permittivity values of inner liner
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Contrary to the tread of a tyre, the inner liner takes actively part in the radiation of the

entity of WU and tyre. It is noticeable that the higher the values of relative permittivity are,

the lower the amplitude of the radiation pattern. Change in the amplitude of the radiation

pattern amounts max. 5 dB for lowest and highest simulated εr values. The radiation di-

rection does not change significantly.

Fig. 3.14 shows the influence of the loss tangent values for the inner liner.

The variation of tanδ affects the radiation characteristics in similar way as for variation of

εr . The higher the value of the simulated parameter, the lower the gain (Fig. 3.14). Though,

maximum notable difference in the amplitude is of 3 dB.

Fig. 3.15 shows the influence of the permittivity values for the side walls.

The influence of tyre sidewall parameters is very remarkable. Variation of εr results in big

changes of the radiation amplitude (changes up to 15.7 dB) as well as in radiation pattern

shape. The lower the value of εr the stronger and more omnidirectional radiation charac-

teristic.

Fig. 3.16 shows the influence of the loss tangent values for the side walls.

Variation of tanδ of the tyre side wall influences the radiation amplitude but not the direc-

tivity. First influence on the radiation pattern is observed with tanδ = 0.5. 5 dB are lost.

Further 5 dB (dependent on the polarization and plane) are lost with tanδ = 1. This is a

very important remark for the further tyre modelling.

Due to very small volume and thin layer, apex and bead reinforcement were analyzed

simultaneously. Fig. 3.17 shows the influence of the permittivity values for the bead rein-

forcement together with apex.

Fig. 3.18 shows the influence of the loss tangent values for the bead reinforcement together

with apex.

It appeared that neither εr nor tanδ have any influence on the radiation pattern. This is due

to the fact that these rubber parts are positioned on the rim inner side.
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Figure 3.14: Radiation pattern simulation of 245/40 R18 tyre - variation of loss

tangent values of inner liner
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Figure 3.15: Radiation pattern simulation of 245/40 R18 tyre - variation of rela-

tive permittivity values of sidewall
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Figure 3.16: Radiation pattern simulation of 245/40 R18 tyre - variation of loss

tangent values of sidewall
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Figure 3.17: Radiation pattern simulation of 245/40 R18 tyre - variation of rela-

tive permittivity values of bead reinforcement and apex
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Figure 3.18: Radiation pattern simulation of 245/40 R18 tyre - variation of loss

tangent values of bead reinforcement and apex





4 Material Characterization

Chapter 4 provides essential information on electric material parameter characterization.

Firstly relevant parameters and therms are introduced, followed by discussion on the choice

of appropriate material measurement methods especially applicable for tyre rubber (coaxial

line method). Preparation of material under test samples is presented and finally followed

by a discussion of the achieved results. Measured values are verified with the help of

a second measurement method (loop resonator) accompanied by numerical curve fitting

(HFSS simulation). All tyre types were measured and also embedding materials for WU

were characterized. Detailed results for each tyre probe are gathered in Appendix D and

Chapter 4 presents only the final results.

All objects and materials in the nearest proximity of an antenna play a crucial role in the

radiation performance. Antennas radiate electromagnetic (EM) waves that interact with

resonant and absorbing materials nearby, including the enclosure or package in which they

are mounted [81]. In automotive domain this influence is of high importance. Therefore

this is to be carefully considered whilst antenna design. Usually the available space for

an antenna is very confined. The radiating element [82] is often very close or lies directly

upon, above or aside of further vehicle parts. These may be metallic surfaces of the vehicle

body, wiring harnesses, ECUs (Electronic Control Unit), plastic or as in a tyre rubber parts.

It is not only important to know the distance and exact orientation of the antenna module

in respect to such objects but also electrical properties of the surroundings are of interest.

Metallic surfaces will cause reflection (in order to satisfy the boundary conditions [83])

or coupling problems and rubber like materials will be the cause for damping [84], [85] or

frequency shift effects because of dielectric loading. Knowledge about the material proper-

ties from electromagnetic point of view builds an essential input data for the sophisticated

design and electromagnetic modelling of complex systems [86]. Of special interest for this

work are the properties of tyre rubber material, which influence the functionality of TPMS.

4.1 Choice of Appropriate Dielectric Material Measurement
Method

Material measurement methods differ from the application point of view and measurement

requirements. Factors taken into account during measurement method choice are [96]:

• Frequency or frequency range of interest.
• Expected value of permittivity.
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• Required measurement accuracy.
• Material properties (e.g., homogeneous, isotropic).
• Form of material (e.g., liquid, powder, solid, sheet).
• Sample size restrictions.
• Destructive or non-destructive method.
• Contacting or non-contacting the probe.
• Temperature range.

Appropriate measurement method was chosen upon underneath considerations:

• The frequency range of interest for material characterization during this thesis was

determined by operation frequencies of the automotive systems (TPMS and RKE).

All materials were measured in frequency range between 300 MHz and 3 GHz.

• It was assumed that the dielectric losses of the MUT are high.

• The measurement accuracy is of high importance for further accurate system simu-

lation. The values received form dielectric measurements may be approved by mea-

surement repeatability and second measurement method for certain chosen material

probes. On the other hand, the verification for the measured values will be mirrored

in good correlation between measured and simulated radiation patterns of different

tyres (Chapter 6).

• Form of material, material properties and sample availability are very interesting

topics. Apart from characterization of antenna module embedding materials, further

goal of this thesis was the characterization of tyre material parameters. Rubber in

all layers of a tyre had to be examined. Due to very complex tyre manufacturing

process including vulcanization [97], the process, which establishes the material pa-

rameters, the samples must derive directly from manufactured tyres. Preparation of

single, measurement dedicated rubber samples is not possible as this would influ-

ence the material properties. The material probes have to be chosen very carefully

and accurately in order to receive samples of even surface without rills and curva-

ture (Chapter 4.3).

• Adequate probe preparation (see point above) is also important for contacting the

MUT.

• Temperature range of interest is determined by the automotive application, all probes

were characterised in temperature range between -40 ◦C and 120 ◦C.

Taking into consideration the above demands, measurement method applicability was re-

viewed in the Table 4.1 and Table 4.2 [98], [99].
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Non resonant methods are applied when a general knowledge of electromagnetic properties

over a wider frequency range is asked. Resonant methods are used to get accurate know-

ledge of dielectric properties at single frequency point or several discrete frequencies [95].

As a proper and efficient measurement method is acquired as well as certainty and mea-

surement repeatability, different measurement methods were combined.

After brief analysis of the method’s advantages and disadvantages it was decided to apply

primarily one of the non resonant methods. This in order to gain general knowledge of

electromagnetic properties over a wider frequency range of MUT. The chosen method was

the coaxial line method (see Chapter 4.2 a).

Measured parameter values were confirmed at few frequency points with the help of a res-

onant method (planar loop resonator - Chapter 4.2 b) combined with EM simulation of the

samples. Accurate knowledge was gained on electric tyre properties.
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4.2 Description of the Chosen Dielectric Material
Measurement Method

In the following Chapter the chosen methods and measurement methodology is briefly

described. The overall employed material characterization procedure is depicted in the

flow chart in Fig. 4.1.

Figure 4.1: Flow chart of the employed material characterization procedure



4.2. DESCRIPTION OF THE CHOSEN DIELECTRIC MATERIAL MEASUREMENT METHOD - 51 -

The results of a very fast measurement method with coaxial probe are compared with the

results of measurements and simulation of planar resonator method. The coaxial probe

method is a very fast method and therefore all tyre samples are measured with its help.

Only in order to prove the accuracy for chosen samples the planar resonator method is

employed. It is proved whether the resulting values in both cases are in the same range.

The final proof for material measurements is the simulation on a complete tyre system

together with the WU (Chapter 6).

4.2 a Coaxial line method

Coaxial line method1, also called open coaxial waveguide method [100], [101], belongs to

non destructive measurement methods and therefore it was chosen for tyre characterization.

Fig. 4.2a presents the measurement setup. An open coaxial waveguide, called coaxial or

dielectric probe (Fig. 4.2b) is pressed against surface of Material Under Test (MUT) and

connected to the Vector Network Analyser (VNWA).

(a) Block diagram (b) Coaxial probe

Figure 4.2: Dielectric measurement setup with coaxial line method

The dielectric properties are determined upon measured reflected power [102]. In order to

calculate the dielectric parameters from the measured reflection coefficient, an equivalent

circuit on an open ended coaxial line is necessary. To determine component values for the

circuit an additional measurement, calibration process, with materials of well known pro-

perties is made.

For the measurements Dielectric Probe Kit from Agilent was in use with high temperature

dielectric probe, which allowed measurements over, from automotive demanded, tempera-

ture range. For measurement stability, all probes of the MUT were tested in a temperature

chamber (Weiss WK-111) - Fig.4.3.

1All results achieved with coaxial line method for tyre samples originate from cooperation activities between
Continental AG and Technical University of Karlsruhe, Institute for Highest Frequency Techniques. Reference
work: Report, Permittivity Measurement for Auto Tyres, J. Pontes, W. Wiesbeck, 2005



- 52 - CHAPTER 4. MATERIAL CHARACTERIZATION

(a) Measurement equipment (b) Coaxial probe (c) MUT

Figure 4.3: Measurement equipment for coaxial line method

When applying the coaxial probe method very important are following points: assurance of

cable stability, no air gaps between the probe and the coaxial probe, and adequate sample

thickness. Expected behavior schematics of the coaxial line method for tyre samples of

thread and inner liner is demonstrated in Fig. 4.4.

(a) Tread measurement (b) Inner liner measurement (c) Thin material probe

Figure 4.4: Schematic for coaxial line method measurement of tyre samples

For multilayer materials in the regions of higher dielectric constant (higher losses) the

electric field will be bound within only one region (one layer if it is thick enough) as

presented in Fig. 4.4a. For the layers with lower dielectric constant (lower losses) as it is in

the case of the inner liner there is a risk (dependent on the layer thickness) that the electric

field will emerge to the second layer. This phenomenon is demonstrated in Fig. 4.4b. For

too thin material probes the measurement is not accurate as generated electric field is not

bound within the material probe as in Fig. 4.4c.
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The main advantages of the coaxial line method are that it is very convenient and the effort

to prepare the right material samples is very low. Broad frequency range measurements are

possible. Moreover it is a non destructive measurement method and the samples may be

used once again. The only limitation is that the samples should have possibly flat surface

for accurate measurements. The measurement method does not provide accurate values for

liquids or semisolids but such materials are not under consideration in this thesis.

4.2 b Planar resonator method

To verify the measured dielectric properties of the MUT for few specific frequency points

a planar resonator method was applied. The measurement setup is depicted in Fig. 4.5.

Figure 4.5: Block diagram of dielectric measurement setup with planar loop resonator

The philosophy behind this method is the comparative approach: properties of stand alone

resonator are compared with the properties of the resonator when MUT lies directly on the

resonating structure. The loop resonator is connected to the Vector Network Analyzer in

order to measure the setup impedance.

The loop resonator was designed in order to check the correctness of the already conducted

measurements for TPMS operating frequency band between 300 MHz and 400 MHz. This

approach may be used however, for any desired frequency with appropriate resonator de-

sign.

Developed loop resonator, depicted in Fig. 4.6a is realized on FR4 material (εr = 4.4,

tanδ = 0.02) with the size of 6 cm x 6 cm. Material thickness is 1.5 mm.

(a) Loop resonator (b) Model of the loop resonator (c) Model of the loop resonator with
MUT

Figure 4.6: Resonator circuit
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Parallel to the impedance measurements, the resonator structure was simulated in FEKO

and HFSS. Adequate electromagnetic model of the stand alone loop resonator is presented

in Fig. 4.6b and with MUT in Fig. 4.6c.

Electromagnetic simulations of the stand alone resonator were conducted in order to gain

accurate model. The result of these simulations is visible in Fig. 4.7.

Figure 4.7: Measured and simulated input impedance of the stand alone planar loop res-

onator

Due to good correlation between measured and simulated values it may be stated that the

resonator model both in HFSS and in FEKO is very precise.

Further, the resonator will be measured together with tyre material probe. Dependent on

the material properties a certain impedance shift in the frequency range is expected as well

as amplitude damping. Simulations will be conducted so long as measured and simulated

values match (curves overlap) and in this way the material properties will be determined

from the simulation model. The herewith obtained value is compared to the measured

values with coaxial line method.

According with the above described reason, the method is considered as a comparative

one: firstly stand alone planar resonator is compared to the resonator with MUT presence

as well as comparison to the results of the measured values of the dielectric properties is

necessary.
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4.3 Preparation of the Tyre Material Samples

Exact tyre build-up is already presented in Chapter 3.2. Tyres feature a very complex struc-

ture with nine main layers (Fig. 3.3). Material properties of the layers that have influence

on the RF tyre performance (Chapter 3.6) have to be measured. Due to reduced complex-

ity and also in order to prove the measurement methodology, firstly chosen slick tyre was

under examination, conventional and self supporting runflat tyres followed.

4.3.1 Slick Tyre

Slick tyres, already presented in Fig. 3.1a, do not have any kind of metallic reinforcement

nor any tread profile. Therewith sample preparation is much easier than in case of conven-

tional tyres.

Slick tyre under test and its parts are presented in Fig. 4.8. Tyre tread and side wall region

was analyzed separately. Samples of tyre tread - marked as regions 1a, 1b and 2a, 2b are

prepared (Fig. 4.8c) for material characterization.

(a) Slick tyre (b) Side wall samples

(c) Tread samples (d) Cross section of the tread layer

Figure 4.8: Slick tyre - samples for measurement of electrical material properties
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Tyre tread consists of sections: upper tread part out of rubber and inner liner rubber re-

inforced with fibre - Fig. 4.8d. Such constellation eases the probe preparation and the

measurements. Slick tyre side wall may be divided into three different regions Fig. 4.8b.

The lowest part (marked as region 5) has got the most complicated structure. It consists of

the metallic bead core and apex is formed by nylon reinforcement with rubber around it. A

way to overcome sample preparation and separation of these regions is to assume that the

rubber surrounding the bead is the same as for the rest of the tyre wall and to omit the fibre

reinforcement. Finally comparison of the tyre and sensor measurement with the simulation

will confirm the rightness of this simplifying assumption. The reason for this assumption is

also the fact, that it is not expected that this tyre region will influence the radiation proper-

ties very much as this tyre part sits firmly in the rim groove (what was already confirmed

by investigation from Fig. 3.17 and Fig. 3.18). Therewith only dielectric properties of the

middle and upper segment (region 3 and 4 from Fig. 4.8b) are to be identified. Several dif-

ficulties are to overcome in this measurement: the tyre curvature and the layer thickness,

which changes along the side wall.

4.3.2 Conventional Tyre

Due to more complex structure conventional tyres call for more accurate analysis of

the tyre mechanical structure and very careful preparation of the measurement sam-

ples. The tyre that was chosen as representative for conventional tyres is Pirelli P Zero

Rosso (245/40 R18). Similarly as in the case of slick tyres, also tread and side wall struc-

ture was analysed separately. The tyre under test is depicted in Fig. 4.9.

Figure 4.9: Conventional tyre structure
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The differences that make this tyre more complicated to prepare samples are: the profiled

tread and the metallic reinforcement between the tread and the inner tyre layer. Two wire

layers may be recognized in the tread (Fig. 4.9, see cross section).

In order to gain more knowledge about the metallic reinforcements, the chosen tyre under-

went an X-ray. Two different metallic reinforcements may be recognized. One extends in

the tread (Fig. 4.10a), the second one is the bead core (Fig. 4.10c). Further the tyre is free

from any other kind of metallic elements. The bead core may be at the moment neglected,

whereas the tread reinforcement demands more attention.

(a) Tread of conventional tyre (b) Tread section

(c) Side wall of conventional tyre

Figure 4.10: Conventional tyre X - ray

It may be easily recognized that wire belts run very close to each other and cover the whole

tread surface. The distance between the wires was measured and with 6 wires per 5.98 mm

distance, results in gaps between the wires of less than 1 mm. The wires run in two planes,

diagonally to each other, crossing at 55.8 ◦ (Fig. 4.10b).

For the measurement purposes the tread was divided into 5 sections (Fig. 4.11a). From

each section samples of minimum 2 cm x 2 cm are obtained. Tyre rubber is treated so that

it was possible to obtain probes of pure tread and inner liner rubber (Fig. 4.11b).
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(a) Tread (b) Separated rubber samples

Figure 4.11: Conventional tyre - samples for measurement of electrical material properties

4.3.3 Self Supporting Runflat Tyre

Mechanical structure of Self Supporting Runflat tyres was already discussed in Chapter 3.1.

This tyre type features, in comparison to conventional tyres, an extra rubber layer in the

side wall (Fig. 3.2a). Dependent on the manufacturer, the additional supporting rubber

layer is positioned either between the inner liner and the side wall outer rubber or is added

from the tyre inside so that the inner liner turns to middle layer. Cross section of tyre under

test Continental (Sport Contact 3) is depicted in Fig. 4.12b.

(a) Tread (b) Cross section of tread and
side wall

(c) Indicated rubber parts for
sample preparation

Figure 4.12: Self Supporting Runflat tyre parts

Samples for the tread area are gained in similar manner as in the case of conventional tyres

- both tyre types feature here the same build-up. Due to strong tyre curvature only samples

out of three distinct thread segments are obtained (Fig. 4.12a).

For the side wall region three different layers are recognizable and therefore sample of inner

liner, side wall outer part and extra rubber, as indicated in Fig. 4.12c, are to be prepared

and analysed.
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4.3.4 Additional Measurement Remarks

To assure measurement repeatability, equal pressure (of 20 N/cm2) is applied with the help

of an analogue pressure gauge on each rubber probe during consequent measurements.

For each tyre region numerous samples are measured. An average of all conducted mea-

surements is build. All figures (from Fig. 4.13 to Fig. 4.22) feature obtained average values

(solid line) and variance of the measured results (vertical lines). This is valid for all subse-

quent material measurements with the dielectric probe of all tyres.

Firstly electric material properties of chosen representative tyres are characterized only

at the room temperature (25◦C). All measurements are conducted in the frequency range

between 300 MHz and 3 GHz.

4.4 Slick Tyre Material Characterization

All conducted measurements for slick tyre are gathered within the three following figures.

Respectively Fig. 4.13, Fig. 4.14, Fig. 4.15 for tyre tread, side wall and inner liner.

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.13: Measured electrical parameters of slick tyre tread

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.14: Measured electrical parameters of slick tyre side wall
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(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.15: Measured electrical parameters of slick tyre inner liner

For lower frequencies the values of relative permittivity and loss tangent show higher values

in the tread and side wall region. Relative permittivity of inner liner is more stable over the

whole frequency range.

The measurements confirm the expectations for the tread and side wall region, therewith

the outer tyre layers to feature higher measured values as the inner liner of the tyre. This is

due to relatively thin inner liner rubber layer and the influence of the fibre reinforcement.

Values of relative permittivity as well as loss tangent that are used for the tyre simulations

in further Chapter 6 are gathered in Table 4.3. The displayed average values for side wall

and inner layer were calculated with respect to the thickness of each of these rubber layers.

Variable Tread Side wall Inner liner Side wall and inner liner average

Relative permittivity 23 17.8 5.12 6.9

Loss tangent 0.65 0.41 0.09 0.24

Table 4.3: Measured material parameters of slick tyre at 433.92 MHz at room temperature

4.5 Conventional Tyre Material Characterization

As already mentioned (Chapter 4.3.2) conventional tyres feature much more complex struc-

ture. Detailed measurement results for numerous samples of the chosen tyre are to be found

in Appendix D. Following only average values of all measured samples are presented.

Respectively Fig. 4.16, Fig. 4.17, Fig. 4.18 for tyre tread, side wall and inner liner. Re-

sulting from the above measurement, values used in the simulation model for frequency of

433.92 MHz are listed in Table 4.4.

It may be observed that the values of relative permittivity for tread and side wall are much

lower for measured conventional tyre than for slick tyre. Inner liner values of conventional
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tyres with values of approximately 10 at the beginning of the considered frequency range

are higher than for slick tyre.

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.16: Measured electrical parameters of conventional tyre tread

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.17: Measured electrical parameters of conventional tyre side wall

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.18: Measured electrical parameters of runflat tyre inner liner
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Variable Tread Side wall Inner liner

Relative permittivity 5.1 5.1 10

Loss tangent 0.05 0.05 0.05

Table 4.4: Measured material parameters of conventional tyre at 433.92 MHz at room tem-

perature

4.6 Self Supporting Runflat Tyre Material Characterization

In case of SSR tyres characteristic values of electric parameters for tread, side wall, inner

liner and additionally extra rubber were measured. In Fig. 4.19, Fig. 4.20, Fig. 4.21 and

Fig. 4.22 the results are depicted for above listed tyre parts respectively. Resulting values

used in the simulation model for frequency of 433.92 MHz are listed in Table 4.5.

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.19: Measured electrical parameters of runflat tyre tread

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.20: Measured electrical parameters of runflat tyre side wall
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(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.21: Measured electrical parameters of runflat tyre inner liner

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure 4.22: Measured electrical parameters of runflat tyre extra rubber

Variable Tread Side wall Inner liner Extra rubber

Relative permittivity 4.5 8 - 9 7 7

Loss tangent 0.06 0.13 0.02 0.04

Table 4.5: Measured material parameters of SSR tyre at 433.92 MHz at room temperature

4.7 Verification of the Measured Values

Tyre electrical values measured with the coaxial line method were approved by the planar

resonator method. The comparison is shown only for the chosen tyre samples. This was

tread and inner liner of the conventional tyre.

The results for tread are depicted in Fig. 4.23 and for the inner liner in Fig. 4.24. In both

cases firstly measurement was done of the stand alone resonator and with MUT.

It may be observed that due to rubber influence the resonant frequency is shifted to the

lower band (Fig. 4.23a, Fig. 4.24a). Materials with higher relative permittivity cause larger

frequency shift.
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(a) Measurement with and without MUT

(b) Comparison of measurement and simulation with MUT

Figure 4.23: Measured and simulated input impedance of loop resonator with and without

MUT - tread of conventional tyre

Tyre tread sample was laid on the loop resonator structure twice - side 1 (tyre outer sur-

face - tread directly on the resonator structure) and side 2 (sample surface bordering with

tyre reinforcement). For both cases simulations were done with appropriate material para-

meters so that the simulated impedance matched with the measured values (Fig. 4.23b).

Values of electrical parameters for MUT were for side 1: εr = 4.3, tanδ = 0.05 and for

side 2: εr = 7.1, tanδ = 0.1 simulated with HFSS. Simulated with FEKO for side 1:

εr = 4.6, tanδ = 0.05 and for side 2: εr = 7.3 and tanδ = 0.11. Higher vales of rela-

tive permittivity in the case of side 2 may be explained with the influence of the inner

liner (measured εr = 10 for inner liner, Fig. 4.18) - at the region with metallic reinforce-

ment both rubber types from tread and inner liner are mixed.
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Inner liner sample was measured and simulated only once. Both measured and simulated

in FEKO and HFSS input impedance with MUT match very well - Fig. 4.24b.

(a) Measurement with and without MUT (b) Comparison of measurement and simulation with
MUT

Figure 4.24: Measured and simulated input impedance of loop resonator with and without

MUT - inner liner of conventional tyre

The used material values for the above material were in FEKO εr = 10.8, tanδ = 0.08 and

in HFSS εr = 10.2, tanδ = 0.06.

Both FEKO and HFSS models are in very good correlation. Analysing the material parame-

ters (which result out of the above comparative loop resonator method and values resulting

from measurements with coaxial probe) for conventional tyre (Table 4.4), it may be stated

that all values are a very good agreement. With this experiment already the certainty of the

measured tyre parameter values was achieved - further confirmation of these values is the

agreement between measured and simulated tyre radiation pattern.

4.8 Antenna Housing and Embedding Material
Characterization

Antenna housing and embedding material RF properties play a crucial role while designing

the antenna and determining its performance independent whether this is the WU antenna

or antenna for the receiver module. As presented further in Chapter 5.3.3 material utilized

for the WU housing and embedding material, were accordingly PA66-GF30 (glass fibre

reinforced polyamid) and polyurethane. The measurement of the electrical properties was

conducted with the coaxial transmission line method (Chapter 4.2).
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The materials are characterized over the frequency range from 300 MHz up to 500 MHz

and temperatures of 25 ◦C and 105 ◦C. It can be observed that both relative permittivity and

loss factor of both the materials increase at higher temperature. Fig. 4.25a and Fig. 4.25b

present the measurement results of the relative permittivity and loss tangent respectively.

The exact parameter values for the frequency of interest (433.92 MHz, TPMS) are given in

Table 4.6. These values provide a reference for all further investigations.

(a) Relative permittivity εr(f) (b) Loss factor tanδ(f)

Figure 4.25: Measured material parameters of the Wheel Unit housing and embedding ma-

terial

Further Polyurethane was compared with Silicon as an alternative for the embedding ma-

terial. The characteristic parameters over the considered frequency range and two tempe-

rature ranges are to be read from Fig. 4.26.

(a) Relative permittivity εr(f) (b) Loss factor tanδ(f)

Figure 4.26: Comparison of the measured material parameters of the Wheel Unit em-

bedding materials: Polyurethane and Silicon
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It may be recognized that Silicon features advantageous performance in therms of parame-

ter stability. Both relative permittivity and loss factor are not dependent from temperature

nor frequency of consideration. Moreover losses are negligible. Values for further consid-

eration at the frequency of 433.92 MHz are gathered in Table 4.7.

Material PA66-GF30 (housing material) Polyurethane (embedding material)

Temperature 25 ◦C 105 ◦C 25 ◦C 105 ◦C

Relative permittivity 3.55 4 3.36 3.8

Loss factor 0.007 0.055 0.025 0.082

Table 4.6: Measured material parameters of the Wheel Unit housing and embedding mate-

rial at 433.92 MHz

Material Polyurethane (embedding material) Silicone (embedding material)

Temperature 25 ◦C 105 ◦C 25 ◦C 105 ◦C

Relative permittivity 3.36 3.8 3.49 3.4

Loss factor 0.025 0.082 0 0

Table 4.7: Measured material parameters of the possible Wheel Unit embedding materials

at 433.92 MHz

4.9 Conclusions on Material Characterization

Material characterization tasks incorporated not only the measurements but also an ade-

quate sample preparation. Characteristic electrical parameters were defined for embedding

materials under consideration in this work as well as for chosen representative, different

tyre types. In order to assure result stability especially for tyre parts, the measurements

were repeated for numerous samples, compared and average values were calculated. All

measurements featured high stability. The minor and local jitter of the curves for tyre sam-

ples suggests occurring reflections form the metallic reinforcements. Chosen measured

values achieved in measurements with coaxial probe were confirmed and assured by a

complement investigation with loop resonator and computative numerical evaluation.

Additionally it is interesting to point out that measured figures reveal that all tyres feature

low graphite content in the rubber parts. Typical relative permittivity for tyres with high

graphite content lies between 1000 and 30 for the considered frequency range [103].





5 Antenna Development for Automotive Applications

Chapter 5 discusses antenna analysis for VAS and TPMS, advancement of already

existing solutions, new design, development steps and presents achieved results.

Apart from substantial physical requirements put on antennas, depending on the application

as desired operation frequency, bandwidth, appropriate radiation pattern, gain and effi-

ciency, further demands have to be fulfilled. In automotive applications robustness is of

very high importance. Antennas have to withstand mechanical shocks and environmen-

tal hazards. Also aesthetic, design, and streamline of the vehicle are of high importance.

Therefore, there is not much space left in the vehicle for a separate visible antenna. From

mechanical point of view, antennas have to be of small size, light weight and low profile.

Producibility, simple manufacturing process with sustainability of certain accuracy is also

an important but very often omitted point.

5.1 Small Antennas

There are numerous rules for considering an antenna to be electrically small. Independent

on the frequency whether the antenna is intended to save space in GHz-range or is small

compared to extremely long wavelengths [47], [48] [49].

Classifying an antenna into the group of small antennas is to be done always in relation to

the operating frequency f and corresponding wavelength λ - so called electrical and not

only physical size is to be determined.

A small antenna describes an electrically small radiating structure optimized and matched

within a certain, limited volume. The significant criterium is the limitation of this volume.

The most common definition is that the largest dimension of the small antenna is not more

than one-tenth of a wavelength [50], [49]. In comparison the size of a standard antenna

is quarter- or half-wavelength dependent on antenna type (monopole or dipole). Fig. 5.1

visualises the difference of size.

The radius of the sphere that comprises small antenna is five times smaller than for a stan-

dard (λ/2) antenna. The above definition constraints only the maximum antenna size and

makes no distinction among the various methods used to construct electrically small anten-

nas. There are many methods of reducing an antenna size [51], these may be divided into

miniaturization via shaping (slot loading, bending, folding, space-filling curves, meander

lines, fractal structures [52]) and miniaturization via material loading (dielectric, magnetic

loading) [53].
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Figure 5.1: Volume comparison comprising a half-wavelength and a small antenna

The miniaturization method as well as the geometry of a small antenna are selected upon a

specific application and required parameters. Apart from automotive applications the most

common small antennas are the antennas implemented in portable devices. Some examples

of small antennas are presented in Fig. 5.2.

(a) Wi-Fi Antenna (b) Mobile phone antenna:
GSM, UMTS

(c) Bluetooth antenna

Figure 5.2: Small antenna examples

Taking into account the antenna structure, small antennas are mostly introduced in form of

short dipoles or equivalent (loaded) monopoles with ground plane, loops and patches.

5.1.1 Small Antennas in Automotive Industry

Antenna implementation in automobiles began with a single antenna for radio broadcast-

ing. Meanwhile, due to service development, the necessity to integrate more antennas has

aroused. Apart from radio AM and FM band, further services like GSM, DVB-T, UMTS,
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LTE, SDARS, GPS, GLONASS, BEIDU, GALLILEO, Bluetooth, TMC, C2C, C2X, RKE,

PASE and TPMS have to be taken into account. Today about twelve different antennas have

to find place in one vehicle (Fig. 5.3). It is to expect that in the future this number will grow

and the integration will play a very important role [12], [13].

Figure 5.3: Chosen examples of automotive antennas

5.1.2 Trade Off between Antenna Small Size and the Performance

Automotive industry requires modules of small size. Should an antenna be integrated in a

such module, its size implies a small antenna type. Antenna miniaturization entails certain

compromises. There are many consequences that follow:

• The antenna on its own is not the only radiating element. The surrounding elements

may influence and contribute to the radiation [54].

• Small antennas exhibit low radiation resistance (impedance real part Re(Z) is

small) [16].

• High reactance (in general high absolute value of the impedance imaginary part

Im(Z)).

• Matching network is in most cases necessary.

• When tuned to resonance a narrow bandwidth of operation results.

• Low radiation efficiency.

• It is rather hard to achieve a directive radiation pattern. Most small modules have

more or less an omnidirectional, homogeneous radiation pattern. Directivity may be

achieved by reflectors.
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Regarding the above listed points, there are some challenges that have to be met whilst

designing a small antenna. First of all the antenna has to be adapted to the module ge-

ometry and the surrounding environment where the module is going to be implemented.

This constraints usually already the antenna geometry and type. It is favourable to achieve

self-resonant structure. In order to make the antenna independent from slight environ-

ment changes as for example cable position, it should have maximal possible bandwidth.

The matching network should not contrive high losses. It is to consider that for small

antennas there is usually a small difference in the radiated power for orthogonal polar-

izations. Special care has to be taken regarding the highest possible antenna gain G and

efficiency η. Dependent on the antenna size, there are physical limits for these parameters

(Chapter 5.1.3).

5.1.3 Maximum Reachable Gain Within a Certain Volume

Every automotive module has a certain, defined size and shape. If the antenna is to be hid-

den, the available volume within such a module determines the maximum reachable gain

for the integrated antenna. Therefore fixing the size of module is equivalent to fixing the

maximum theoretically reachable gain of the antenna assuming optimal usage of the avail-

able volume. Neglecting the possible negative effects, there is a possibility to exceed the

maximum theoretically reachable gain. This could be achieved for example by adequate

harness positioning as the harness supports antenna radiation and represents antenna aper-

ture extension.

The maximum reachable gain Gmax depends on the radius of smallest sphere embrac-

ing the module a and the wavelength λ. The maximum gain limit is given by Harrington

(Eq. 5.1) [55].

Gmax = (ka)2 + 2ka (5.1)

Where k is the free space wavenumber (Eq. 5.2) and λ is the free space wavelength, a is

the radius of an imaginary sphere circumscribing the maximum dimension of the antenna

as shown in Fig. 5.1.

k = 2π/λ (5.2)

It is important to emphasize that the Eq. 5.1 indicates an upper limit for the gain that a

small antenna can achieve while still having a reasonable bandwidth. This approximation

is accurate for standard antennas (λ/2), but this limit is more difficult to reach when the

antenna becomes very small. In this case losses may increase drastically.

Sphere embracing the receiver (Chapter 5.2.3) and the WU (Chapter 5.3.1) to be analyzed



5.2. DEVELOPMENT OF THE COMMON RECEIVER FOR RKE AND TPMS - 73 -

and developed was defined with a = 7.5 cm and a = 3.5 cm respectively. Maximum reach-

able gain Gmax for the given volumes is to be read from Table 5.1.

Receiver (a= 75 mm) Wheel Unit (a = 35 mm)

f=433.92MHz Gmax in dBi 3.67 3.02

f=868MHz Gmax in dBi 4.27 not relevant

Table 5.1: Maximum theoretical Gain Gmax for chosen volumes and frequencies

5.2 Development of the Common Receiver for RKE and TPMS

Modern automotive applications like RKE and TPMS (Chapter 2) increase the require-

ments for the overall performance of the in-vehicle and in-module integrated antennas.

New solutions are needed to substitute traditionally used printed and wire monopoles [56].

5.2.1 Requirements for the Common Receiver Module

The packaging of the antenna in the vehicle has an important role in terms of the antenna

interaction with the car body and the intended shape of the radiation pattern. The require-

ments include enhanced performance in terms of range of the RKE System and received

power from all wheel unit sensors for the TPMS system. These aspects are directly related

to the gain, bandwidth and radiation characteristics as well as robustness and size of the

antenna. The compact size is a constraint due to the available space in the car.

Summing up the mechanical and the functional requirements for a common receiver

supporting two systems are the following:

• Small antenna size.

• Operation optimized for two systems (RKE and TPMS).

• Multiband operation.

• Good reception range for RKE.

• Quasi isotropic radiation pattern.

• Electromagnetic illumination of the area within the distance d around the car.

• Reliability for the communication between Wheel Unit and receiver.

• Producibility at preferably low price with high accuracy and repeatability.

• Mechanical robustness against environmental influences as vibration, humidity, etc.
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5.2.2 Receiver Module Placement in the Vehicle

For TPMS systems there are generally three possible strategies for the receiver antenna

placement: either there could be one antenna module placed in proximity of each wheel,

the number of antenna modules could be divided by two - one module for the rear and one

for the front axis, alternatively for left and right vehicle side or one antenna module that

receives signals from all WU sensors Fig. 5.4. The last mentioned solution with one single

receiver is preferred due to cost and assembly reasons. In this case, it is a challenge to

satisfy the already listed requirements for both systems and therefore careful choice of the

optimal receiver antenna position is of high importance. An optimal position may be found

either following the already gathered experience or it may be examined with the help of the

computer supported simulative process (developed process description in Annex C).

Figure 5.4: Strategies for TPMS receiver antenna placement in a vehicle

After the analysis it appeared that there are two possible preferred areas to place the re-

ceiver: one in the region of the dashboard and another one in the rear area of the vehicle

under the roof. Due to the required omnidirectionality for RKE system, the receiver module

was positioned as in Fig. 5.5. In order not to have any optical influence in the vehicle de-

sign the receiver was placed between the vehicle metallic roof and the headliner.

For the correct estimation of the antenna performance during the development, the place-

ment of the module has been taken into account. Based on the position of the receiver

within the car, the capacitive influence of the roof [57] on the antenna has to be considered.
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Figure 5.5: Receiver module position between the metallic roof and the headliner in the

vehicle

5.2.3 Receiver Geometry and Design

As the antenna is integrated in the receiver module, its maximum size is determined by

the module size. In order to fulfill all the requirements (Chapter 5.2.1) low profile Planar

Inverted F-Antenna (PIFA) [58], [59] with the maximum possible dimensions was implied.

PIFA structure is an attractive choice for automotive systems due to low profile, adequate

radiation characteristics, and reachable wide bandwidth [60], [61], [62].

Moreover, following advantages played a key point in the decision process for a receiver

antenna:

• Mechanical stability and possibility to hide the antenna in the receiver housing.

• Reduced backward radiation, which enhances antenna performance in the desired

direction.

• Moderate to high gain in both vertical and horizontal polarization.

This feature is very important due to multiple reflections on the car body and an

unknown, variable position of the transmitters such as the WUs (TPMS) and the key

(RKE).

5.2.3 a PIFA - Fundamental Antenna Geometry

Deducting from the name, PIFA has got a planar radiating element - the horizontal plate.

This element is parallel to the ground plane. Other elements are the shortening vertical

wall and the feeding source. Basic PIFA structure is depicted in Fig. 5.6.

The size and position of these basic elements determines the antenna resonant frequency

fPIFA (Eq. 5.3). The PIFA resonant frequency is generally approximated with

Eq. 5.3 [63], [64].

fPIFA = c0/(4 (l1 + l2)) (5.3)
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Figure 5.6: PIFA base structure

The above equation is valid for infinitesimal small grounding w (w ≈ 0). For greater

shortening wall widths, the antenna electrical size is reduced by w. Usually antenna height

h is negligible as it is very small versus width and length l1 + l2, however if taken into

account, it extends antenna size. Following the above rules, a more precise equation for

PIFA resonant frequency is given with Eq. 5.4 [46].

fPIFA = c0/(4 (l1 + l2 − w + h)) (5.4)

The resonant frequency is inversely proportional to the sum of antenna lateral dimensions l1
and l2 as well as height h, with the broader ground strip width w resonant frequency grows.

The above structure was used as an origin to design a required dualband antenna. Firstly

the antenna geometry influence on the performance and radiation properties were inves-

tigated. This in order to understand the antenna behaviour and to state the exact design

rules. The theoretical investigations (as well as final simulations) were carried out with the

electromagnetic simulation tool FEKO (Chapter 6).

5.2.3 b Designed Receiver Antenna Dimensions

Taking into account the maximum available space in the receiver housing, the antenna

should not exceed l1 ≤ 120 mm, l1 ≤ 85 mm and h ≤ 12 mm.

Therewith, the basic PIFA structure had to be modified in order to achieve both resonant

frequencies of 433.92 MHz and 868 MHz. For this purpose according slots were intro-

duced in order to influence current flow on the antenna structure and therewith the resonant

frequency. In the literature it has been many times demonstrated that a PIFA can resonate
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at a second frequency with proper adaptation of slots [65], [66]. Final antenna structure is

depicted in Fig. 5.7.

Figure 5.7: Realized PIFA structure

5.2.3 c Designed Receiver Antenna Current Distribution and Matching Network at
the Required Resonant Frequency

With the application of the slot technique and influence on the current flow (simulated

current distribution of a dualband antenna is depicted in Fig. 5.8a at 433.92 MHz and in

Fig. 5.8b at 868 MHz) on the horizontal plate both resonant frequencies were achieved:

firstly mono-band antenna operating at 433.92 MHz (Fig. 5.14a) and sequentially a dual-

band antenna operating additionally at 868 MHz (Fig. 5.14b).

(a) 433.92 MHz (b) 868 MHz

Figure 5.8: Simulated current distribution for the designed receiver module antenna

The optimal impedance (Fig. 5.9) of the antenna was achieved by positioning adequate

shortening wall, the antenna feed and optimizing the space between the feed and the shorte-

ning wall. Some lumped components for the matching network were necessary (Fig. 5.10).
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(a) 433.92 MHz (b) 868 MHz

Figure 5.9: Simulated impedance for the designed receiver module antenna

Figure 5.10: Matching network for the designed receiver module antenna:

C1 = 4 pF , C2 = 2.4 pF , L1 = 14.6 nH , L2 = 33.5 nH

With the proposed antenna geometry and matching network components, the antenna

module was simulated and subsequently measured. Simulated reflection coefficient is de-

picted in Fig. 5.11.

(a) 433.92 MHz (b) 868 MHz

Figure 5.11: Simulated input reflection coefficient S11 of the designed receiver module

antenna for 50 Ω

The measurement was conducted for three probe antenna modules out of the production

line. This was done in order to assure the reproducibility of the results. Fig. 5.12 depicts
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that the antenna is well matched at both resonant frequencies of 433.92 MHz and 868 MHz.

Figure 5.12: Measured input reflection coefficient S11 of the designed receiver module an-

tenna (three samples: Module1, Module2 and Module3)

5.2.3 d Designed Receiver Antenna Radiation Pattern

The results for the above mentioned simulations as well as measurements were conducted

in the environment that resembles real antenna environment in the vehicle. As it was de-

cided that the most convenient place for the receiver module is underneath the roof area, for

the development purposes the scenario was simplified and antenna was placed on a metallic

surface as presented in Fig. 5.13a.

(a) Simulation model of the receiver
module on the conducting plane

(b) Simulation model of the antenna
within the receiver model

(c) Orientation of the receiver
module

Figure 5.13: Receiver module orientation for radiation pattern measurement without the

vehicle



- 80 - CHAPTER 5. ANTENNA DEVELOPMENT FOR AUTOMOTIVE APPLICATIONS

(a) Mono-band antenna for 433.92 MHz:
l11 = 60.65 mm, l12 = 77.85 mm, w11 = 1.74 mm,
w12 = 3.2 mm

(b) Dual-band antenna for 433.92 MHz and 868 MHz:
l11′ = 58.5 mm, l12′ = 75.3 mm, l21 = 52.5 mm, w11′ = 1 mm,
w12′ = 2.8 mm, w21 = 7.1 mm

Figure 5.14: Geometry of the designed receiver module antenna
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Fig. 5.15 and Fig. 5.16 present the radiation pattern in terms of gain for 433.92 MHz and

868 MHz, in xz and yz plane respectively - for antenna orientation see Fig 5.13c.

Figure 5.15: Measured and simulated radiation pattern of designed receiver module an-

tenna for 433.92 MHz

Figure 5.16: Measured and simulated radiation pattern of designed receiver module an-

tenna for 868 MHz
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For both resonant frequencies simulation and measurement results of the radiation pattern

stay in good agreement. At 433.92 MHz the difference between the average of both values

amounts maximal 4 dB, and at 868 MHz maximal 2 dB. Possible reasons for this discrep-

ancy are the following:

• The measurements consider the headliner whereas the simulations not.

• Simplification of the PCB for simulation purposes.

• Uncertainty of the material parameters (especially the loss factors).

• Influence of the components on the PCB.

• Measurement accuracy.

The developed PIFA antenna for the receiver module satisfies the requirements of both

systems: RKE and TPMS. Optimum geometry of the antenna and the module design to-

gether with the placement in the car was considered. The designed antenna was integrated

in the receiver module without enhancing its size.

5.3 Development of the Tyre Wheel Unit Antenna

Development approach of the Wheel Unit and therewith structure of Chapter 5.3 is depicted

in Fig. 5.17.

Figure 5.17: Development approach for the Wheel Unit - optimization process

The goal for the development of the Wheel Unit antenna is to analyze the existing WU, op-

timize the design of an internal antenna and propose new solutions for the antenna element

within the given WU housing (Fig. 5.18a, Fig. 5.19a). An analysis of this WU is the first
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step, it is followed by modification of the existing elements in order to improve the radia-

tion performance. After this step an exchange of the radiating element is possible, before,

for the future applications, a new WU is introduced.

Just to mention other possibilities that are not discussed within this thesis, it is also possible

to utilize valve as an external antenna. This solution has, however, some drawbacks as

for example poor performance stability that variates in dependency on the rim profile and

positioning accuracy. Looking into the future, a sensor-transponder could be integrated di-

rectly in the tyre rubber without a battery and would supply pressure and temperature data

as proposed by [67]. This requires system standardization due to the fact that the sensor-

transponders would have to be integrated already during the tyre manufacturing process

without the knowledge on which vehicle brand and type these are later on utilized. Due to

these facts most popular and flexible both for OEM and after - market TPMS solutions are

still Wheel Units with an internal radiating element attached to the valve.

The development of the tyre Wheel Unit antenna requires particular attention. This is

among due to the fact that a reliable communication between the in-the-vehicle positioned

receiver (Chapter 5.2) and the sensor has to be guaranteed and thereby the WU transmission

reliability has an important role. Additionally, volume available for the antenna structure

is very confined. Therefore, an adequate electronic circuit with an appropriate antenna has

to be integrated in the WU sensor. The WU sensor with the integrated antenna has to meet

the following requirements (alike receiver antenna - Chapter 5.2):

• Compact size.
• Appropriate antenna gain and efficiency, fulfilling the requirements.
• Low height.
• Mechanical stability.
• Low price, which is very important in large scale industrial applications.

Moreover due to the antenna placement on the rim, the following additional requirements

should be satisfied:

• Ultra low weight (due to influence on tyre rotation and wheel balance).
• Antenna parameter stability for wide range of rims and tyres.

Theoretically several different kinds of antennas could fulfill the requirements specified

above. It is possible however to divide them in three categories: electric and magnetic

antennas as well as combination of these two. Such antennas as a monopole, an Inverted F

Antenna (IFA), a loop or a patch would be applicable.

The development and achieved advancement in the RF performance progress is discussed

within the following Chapters: Monopole Antenna Analysis (Chapter 5.3.3), Inverted F

Antenna Development (Chapter 5.3.4), Loop Antenna Development (Chapter 5.3.6). The
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assembly of the WU and requirements on RF performance are presented in Chapter 5.3.1

and Chapter 5.3.2.

5.3.1 Assembly of the Wheel Unit

During the development also the nearest antenna surrounding has to be taken into account.

In a case of a WU this is primarily the rim. A fully assembled Wheel Unit together with

the valve is presented in Fig. 5.18a.

(a) Stand alone Wheel Unit (b) Wheel Unit on the rim (side view) (c) Wheel Unit on the rim (top
view):1 - Wheel Unit, 2 - Valve,
3 - Rim

Figure 5.18: Wheel Unit

The designed WU matches any conventional rim profile and is adapted to the rim

ditch (Fig. 5.18b). The exact positioning of the WU is explained in Fig. 5.18c. The WU

(Fig. 5.18c-1), fastened on the valve (Fig. 5.18c-2), sits firmly on the rim (Fig. 5.18c-3).

Further the internal assembly of the WU and the components (both dielectric and metal-

lic - Chapter 4.8) have a very important role for the antenna design as these influence the

radiation performance. The WU is assembled from the following major parts depicted in

Fig. 5.19: housing, Printed Circuit Board (PCB) and battery.

Additionally all above mentioned parts are moulded with an embedding material. This con-

tributes to mechanical stability and protection against humidity. The embedding material

influences however the antenna performance drastically.

Two WUs were already present in the company (Siemens VDO / Continental AG) portfolio.

Each WU was equipped with a stainless steel monopole antenna of the length of 104 mm

(further called short ILA) and 146 mm (further called long ILA) respectively (analyzed in

Chapter 5.3.3). Utilized embedding material was polyurethane and WU housing material

was PA66-GF30 (Glass Fibre reinforced Polyamid).
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(a) Housing (b) PCB (c) Battery

Figure 5.19: Wheel Unit major components

5.3.2 RF Performance Requirements

The summary of the required specifications for the WU is listed in Table 5.2. The re-

quired operating frequency is 433.92 MHz with minimum bandwidth of 2 MHz. Stable

performance within the temperature range according to standard automotive requirements

should be guaranteed from -40 ◦C to 105 ◦C with minimum radiated power of -12 dBm

and maximum loss of 3 dB over temperature range.

Parameter Requirement

Operating frequency 433.92 MHz

Bandwidth 2 MHz at -10 dB

Temperature Range -40 ◦C to 105 ◦C

Radiated power at 25 ◦C -12 dBm

Maximum acceptable loss over the temperature range 3 dB

Table 5.2: Requirements on the Wheel Unit performance

5.3.3 Monopole Antenna Analysis

Monopole antennas in the automotive industry are typical for the AM / FM frequency

ranges and have become over 50 years of deployment a traditional antenna type mounted

on the roof surface, often called also whip antennas (an example was already presented in

Fig. 5.3 - FM antenna).

5.3.3 a Fundamental Structure of the Monopole Antenna

The monopole antenna, shown in Fig. 5.20a, results from applying the image theory to

the dipole [68]. According to this theory, if a conducting plane is placed below a single

element of length L /2 (λ/4) carrying a current, then the combination of the element and its

image acts identically as a dipole of length L (λ/2).
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(a) Straight monopole (b) Bent monopole:
Inverted L Antenna (ILA)

Figure 5.20: Fundamental structures of the straight and bent monopole antenna

Therefore a quarter wavelength monopole (λ/4) approximates a half wavelength (λ/2)

dipole [69]. The radiation occurs only in the plane above the ground, therewith the direc-

tivity (Eq. 3.2) is doubled and the radiation resistance is halved when compared to a dipole.

The typical gain (Eq. 3.1) for the quarter wavelength monopole is between 2 and 6 dB and

it has a relative bandwidth of about 10 %. Its radiation resistance is 36.5 Ω and its directiv-

ity is 3.28 (5.16 dB) [70].

The desired antenna for the WU should operate at the frequency of 433.92 MHz. Con-

sidering this frequency, quarter wavelength monopole would be of an approximate length

of 17.25 cm, whereas a small antenna would be of approximate length of 6.9 cm (ade-

quately one tenth of the wavelength - Chapter 5.1). All cited and given values represent

however, only a theoretical value for an antenna in the free space or over an infinite ground

plane.

In practice, monopole antennas are used on finite-sized ground planes and it is so in

the case of the WU. This affects the antenna properties, particularly the impedance

and the radiation pattern [74]. Additionally taking given WU housing dimensions

of 25.5 mm × 64.5 mm × 12 mm into account, neither a quarter wavelength, nor a

small monopole antenna would fit inside. For this reason there is a necessity to bend the

monopole antenna and therewith to work with the Inverted L Antenna (ILA) - Fig. 5.20b.

5.3.3 b Analysis and Improvement of the WU Performance

The given configuration with both short and long ILA did not satisfy the requirements from

Chapter 5.3.2. These Wheel Units have either problems with the level of the radiated power

or with performance stability over the required temperature range. In such a case there was

a necessity of technical advancement of the present WUs.
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The analysis of the contemporary WUs and performance improvement followed the under-

neath listed stages:

• Measurement analysis of the present WUs.
• Simulation analysis of the present WUs - electromagnetic model.
• Employed embedding and housing material characterization - determination of elec-

tric material properties.
• Improvement and revision of the present WU RF performance.
• New WU proposal.

The already stated physical difference between both present WUs was the antenna length.

Both units utilize the same module with the same embedding material, the same housing

and PCB as well as battery architecture. Second difference was the matching network

concept. The WU with the long ILA features a two stage matching network (Fig. 5.21a).

(a) Two stage matching network of WU with long ILA

(b) Single stage matching network of WU with short ILA

Figure 5.21: Matching network architecture of the existing Wheel Units

In this case there is a separate matching network for antenna and a separate one for the

amplifier. Both amplifier and antenna are matched to 50 Ω. On the contrary WU with short

ILA features a one stage matching network (Fig. 5.21b): matching of the antenna directly

to the amplifier impedance.

The matching networks corresponding to the above described architectures are documented

with all lumped elements in Fig. 5.22. Fig. 5.22a for WU with long ILA, Fig. 5.22b for

WU with short ILA.
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(a) Matching network of the WU with long ILA

(b) Matching network of the WU with short ILA

Figure 5.22: Matching network of the existing Wheel Units

The two stage matching network comprises elements L1, C1 and C2 used to match the

antenna impedance to 50 Ω and elements L2, C3, L3 and C4 used to match the source

impedance to 50 Ω. Single stage matching network utilizes elements C1, L1 and C2 to

match the antenna directly to the amplifier impedance.

After documenting the physical design differences, the first examination to follow was to

measure the actual performance of both WUs (Table 5.3). Both radiated power and loss in

the radiated power over temperature range are measured.

Parameter Temperature Requirement WU with
long ILA

WU with
short ILA

Radiated power 25 ◦C - 12 dBm - 15.3 dBm - 17.2 dBm

Maximum acceptable loss over
the temperature range

25 ◦C - 105 ◦C < 3 dB - 8 dB - 2.3 dB

Table 5.3: Measured radiated power of the present Wheel Units

Interpreting the above results, WU with long ILA performs better than WU with short

ILA at room temperature (25 ◦C). Considering the loss in radiated power over temperature

range, WU with short ILA fulfils the requirements with loss less than 3 dB, whereas WU

with long ILA looses 8 dB, which exceeds the requirements.
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Further, the geometry analysis of the present Wheel Units was conducted in order to ver-

ify and find the reasons for different performance over the given temperature range of the

Wheel Unit equipped with short (104 mm) and long (146 mm) ILA. The electromagne-

tic simulation model of the WU was prepared. FEKO simulation models of the origi-

nal 104 mm (short ILA) and 146 mm (long ILA) antenna are depicted in Fig. 5.23. In the

presented model embedding material and housing are not visible.

(a) WU with long ILA antenna (146 mm) (b) WU with short ILA antenna (104 mm)

Figure 5.23: WU simulation models with monopole antenna (FEKO)

The above presented simulation models were used in order to examine the antenna per-

formance in respect to the antenna length. Also battery influence was taken into account:

battery - less and a model with battery presence was simulated. Results are gathered in

Fig. 5.24.

It was proved that for battery - less antenna model, the longer the antenna, the higher effi-

ciency and radiation resistance (Fig. 5.24a, Fig. 5.24c) and the lower the loss resistance are

(Fig. 5.24b). The situation is however different with the considered battery presence in the

model. With the longer antenna, efficiency and radiation resistance decreases whereas loss

resistance increases.

The battery influence may be also additionally demonstrated with the observation of the

electric field distribution within the WU module (Fig. 5.25). There is strong capacitive

coupling between the long antenna and the battery. The magnitude of the electric field (E)

between the battery (which is connected directly to the ground plane) and the antenna is

higher for the long ILA (Fig. 5.25a) compared to the short ILA (Fig. 5.25b).

From the above, it may be easily deducted that the length of 146 mm is not optimal for the

employed ILA antenna. From Fig. 5.24 it is to be read that for shorter lengths (< 120 mm),

the antenna efficiency, as well as the radiation resistance increases, whereas loss resistance

drops in the battery presence.
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(a) Efficiency versus antenna length

(b) Loss resistance versus antenna length

(c) Radiation resistance versus antenna length

Figure 5.24: Influence of the battery on the Wheel Unit monopole antenna performance

at 433.92 MHz
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Further, effect of the temperature change on the antenna gain for both WUs was considered.

This was analysed with the means of electromagnetic simulation and according to Fig. 4.25

the electric material properties (permittivity and loss factor) were adjusted to the values

typical for each temperature range.

(a) Wheel Unit with long ILA (b) Wheel Unit with short ILA

Figure 5.25: Simulated electric field distribution Et in V / m, cross section with the battery

The simulated average antenna gain is depicted in Fig. 5.26. The frequency of 433.92 MHz

is tagged and labelled with a vertical arrow. For both antennas, the gain loss for higher

temperatures amounts up to 4 dB.

(a) WU with long ILA (b) WU with short ILA

Figure 5.26: Temperature effect on the average ILA gain - simulation

This loss results primarily from the temperature dependent change in the housing and em-

bedding material. Material properties (loss factor increment) and therefore the effect is

identical for both antennas. Specified maximum acceptable loss over temperature range

should not exceed 3 dB. (Table 5.2)

Next step was the analysis of the already presented matching networks for both long and

short ILA (Fig. 5.22). In order to state whether the matching introduces any losses and to
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determine how high these losses could be, the transmission coefficient was simulated both

for 25 ◦C and 105 ◦C (Fig. 5.27). For the simulation purposes a high value of the quality

factor for the lumped components was considered and kept constant for both temperature

ranges.

(a) WU with long ILA (b) WU with short ILA

Figure 5.27: Matching network transmission coefficient - simulation

For the long ILA the matching network causes a loss of 2.3 dB at 25 ◦C and 2.8 dB

at 105 ◦C. This means increased temperature causes additional loss of 0.5 dB.

For the short ILA with direct matching network, the losses are lower: 1.12 dB at 25 ◦C and

0.93 dB at 105 ◦C. This means that in the case with increased temperature, the losses are

reduced by approximately 0.2 dB.

After having analyzed the antenna element influence and having the knowledge about

the matching network behaviour for both temperature ranges, it is evident to analyze the

RF transmitter output, which is influenced by an internal amplifier. The block diagram of

the PLL transmitter from ATMEL is shown in Fig. 5.28 [71].

The ATMEL transmitter ATA5756/ATA5757 has been developed especially for demands

of RF transmission systems like TPMS. The last output stage of the implemented trans-

mitter is the power amplifier. The output power depends on the impedance seen by the

amplifier. In order to simulate the output power a PSPICE model was prepared [72]. The

result of this simulation is in the 3D plot projected on the smith chart in Fig. 5.29.

According to the simulated values the maximum output power amounts up to 7 dBm. For

better visualization a 2D contour plot is depicted in Fig. 5.30. Each contour represents

change of 1 dB. The impedance where the transmitter delivers maximum power is marked

with a cross, this is for impedance value of (280 + j310) Ω.
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Figure 5.28: Block diagram of PLL transmitter IC ATA5756/ATA5757

Figure 5.29: Simulated output power of PLL transmitter IC ATA5756/ATA5757

Further the amplifier output power was plotted on the Smith Chart (Fig. 5.31). Impedance

was measured and simulated for the WUs with both long and short ILA. A very good

correlation between simulated and measured values may be observed. The frequency

range between 414 MHz and 454 MHz was taken into account, frequency of interest

of 432.92 MHz is marked in each case with arrows.

From Fig. 5.31a it can be read that at 25 ◦C the antenna is fed with 6 dBm and at 105 ◦C

with 4.5 dBm. For WU with short ILA (Fig. 5.31b) the antenna receives 0 dBm at 25 ◦C

and 4 dBm at 105 ◦C.

Summing up, the antenna in the WU with long ILA receives more output power from the

amplifier but with higher temperature 1.5 dB are lost. Whereas for the WU with short ILA,

with higher temperature, the amplifier output power rises.
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Figure 5.30: Simulated output power of PLL transmitter IC ATA5756/ATA5757 on Smith

Chart

(a) WU with long ILA (b) WU with short ILA

Figure 5.31: Simulated output power of the transmitter. Measured and simulated load

impedance

After identifying the values for the delivered power from the transmitter to the antenna

element together with the matching network for both WUs equipped with long and

short ILA, the last comparison is the calculation of the radiated power.
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The radiated power is calculated according to Eq. 5.5.

Prad = Average antenna gain (5.5)

− Matching network loss + Amplifier output power

The simulated results are gathered in Table 5.4 for WU with long ILA. Table 5.5 comprises

simulated results for WU with short ILA.

Parameter
Temperature Temperature Difference due to

25◦C 105◦C temperature change

Antenna gain -20.5 dBi -24.5 dBi 4 dB

Loss from matching -2.3 dB -2.8 dB 0.5 dB

Output power of amplifier 6 dBm 4.5 dBm 1.5 dB

Radiated power -16.8 dBm -22.8 dBm 6 dB

Table 5.4: Simulated RF parameters for WU with long ILA

Parameter
Temperature Temperature Difference due to

25◦C 105◦C temperature change

Antenna gain -18.5 dBi -22.5 dBi 4 dB

Loss from matching -1.12 dB -0.93 dB 0.19 dB

Output power of amplifier 0 dBm 4 dBm 4 dB

Radiated power -19.6 dBm -19.4 dBm 0.2 dB

Table 5.5: Simulated RF parameters for WU with short ILA

In further step the obtained simulation and calculation results are compared with measured

values. Radiated power for both WUs was measured with the GTEM cell. GTEM cells find

application for the measurement of the average radiated power of small antennas [73]. In

Table 5.6 simulated and measured RF parameter values are compared. Simulation accuracy

is very high, what confirms the precision of the prepared antenna models.

Parameter Temperature
WU with long ILA WU with short ILA

Meas. Sim. Meas. Sim.

Radiated power
25◦C -15.3 dBm -16.8 dBm -17.2 dBm -19.5 dBm

105◦C -23.3 dBm -22.8 dBm -19.5 dBm -19.5 dBm

Loss in 25◦C
-8 dB -6 dB -2.3 dB 0 dB

radiated power to 105◦C

Table 5.6: Comparison of simulated and measured RF parameters for WU with long and

short ILA
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For both temperature ranges the gain of the antenna in WU with short ILA is higher than

the gain of the antenna in the WU with long ILA. Shortening the antenna arm, showed

advantageous effect on RF antenna performance as in the case of short ILA the capacitive

interaction with the battery is reduced.

Performance of the WU with short ILA shows more stability in the whole temperature

range. In WU with short ILA, the output power of the transmitter amplifier for temperature

of 105 ◦C increases by 4 dB.

None of the WUs satisfies the requirement of the radiated power level of - 12 dBm at 25◦C

and minimum radiated power of -15 dBm at 105 ◦C (Table 5.2). Losses due to temperature

change are much lower for short ILA with 2.3 dB than for long ILA with 8 dB.

5.3.4 Inverted F Antenna Development

After the analysis of the present WUs, the further task was to advance the antenna perfor-

mance in terms of:

• Improvement of the radiated power by 5 dB - antenna topology and WU components.

Due to battery life time the consumption power is to be kept constant.
• Reduction of dependency of antenna performance on temperature change.

Summarizing following optimization steps were analysed and subsequent changes con-

cerning following WU elements were introduced:

• New antenna concept including change of antenna material.
• Change of the embedding material.
• Matching network influence analysis.

The structure and main advantages of the new antenna type, Inverted F Antenna (IFA), are

going to be shortly presented as this antenna type was implemented in the modified Wheel

Unit.

Inverted F Antenna gained on popularity in mobile communication systems [75] and au-

tomotive applications due to its properties. This antenna type is particularly known for

its capabilities to allow simple impedance match still within a low profile design. Second

characteristic is the ability to originate both vertically and horizontally polarized electric

fields [76].
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5.3.4 a Fundamental Structure of Inverted F Antenna

IFA is an enhancement of the already presented ILA. Similarly, as ILA resembles an in-

verted L letter, IFA resembles an inverted F letter and therefore the name of the antenna.

Figure 5.32: Structure of the Inverted F Antenna

IFA is effectively a quarter wavelength (λ/4) monopole in which (as in ILA) a portion of

the antenna length has been bend so it is parallel to the ground plane. IFA height is usu-

ally of approximately one tenth of a wavelength (λ/10). Therewith it is about 2.5 times

lower than the (perpendicular to the ground plane) quarter wavelength monopole [80]. Ad-

ditionally at IFA a short circuit (inductive) stab is introduced. It compensates the increased

capacitance that originates from the parallel antenna part to the ground [77]. Fundamental

IFA structure is depicted in Fig. 5.32

5.3.4 b Modification of the Present Wheel Unit

The implemented IFA structure (Fig. 5.33) differs from its fundamental form. In order to

omit the battery influence (Fig. 5.25) the antenna wire was folded.

(a) Top view

(b) Side view

Figure 5.33: Simulation model (FEKO) of realized IFA antenna
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Depicted FEKO simulation model comprises antenna element, ground plane and battery,

embedding material and housing are hidden.

The whole WU assembly is illustrated in Fig. 5.34. Here also embedding material as well

as housing are visible. The overall WU size is given in respect to the wavelength. The

simulation model was originated in HFSS.

Figure 5.34: Simulation model (HFSS) of the realized WU with IFA

Apart from the antenna structure modification, also the antenna material was changed.

Due to better conductivity stainless steel (ρ = 2.8 exp10 S/m) was exchanged by cop-

per (ρ = 5.7 exp10 S/m).

Further, a third optimization step was the replacement of the embedding material. The

originally used polyurethane is a lossy material with unstable behaviour when temperature

change occurs (tan δ = 0.03 for 25 ◦C and tan δ = 0.08 for 105 ◦C, Chapter 4.8, Fig 4.25).

Material of interest should preferably reveal stable characteristic for the demanded tempe-

rature range as well very low, negligible losses. Moreover the material should be permitted

for automotive use.

Due to above listed demands chosen material was silicon. Measured electrical material

properties of silicon in comparison to polyurethane are presented in Chapter 4.8, Fig. 4.26.

For both extreme temperatures out of required temperature range, silicon material losses

are negligible (tan δ = 0). the WU with polyurethane and silicon was photographed and are

presented in Fig. 5.35. The only optical difference is the colour of both materials.
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(a) WU with polyurethane (b) WU with silicon

Figure 5.35: Change in the embedding material from polyurethane to silicon

5.3.4 c Analysis and Improvement of the Modified WU Performance

As electromagnetic model of the WU with new IFA antenna was already presented, it is

now to present the achieved results and check whether this WU brings better RF perfor-

mance.

Simulated and measured input impedance of WU with IFA is documented in Fig. 5.37a.

In order to match the antenna, a two stage (Fig. 5.21a) matching network was designed -

schematics of the matching network is shown in Fig. 5.36.

Figure 5.36: Matching network of the WU with IFA

Components L1 and C1 were used to transform the output impedance of the amplifier

to 50 Ω and components C2 and C3 were used to match these 50 Ω to the antenna.

Achieved reflection coefficient was firstly simulated and then measured (Fig. 5.37b) with

very good result agreement.

It is very convenient to work with antenna and amplifier both matched to 50 Ω but it was

very important to state that the matching network does not introduce any additional loses.

WU efficiency was simulated for two cases: antenna element both with and without match-

ing network (Fig. 5.38).
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(a) Input Impedance (b) Reflection coefficient

Figure 5.37: Simulated and measured impedance and input reflection coefficient of the WU

with IFA

Figure 5.38: Simulated efficiency of the WU with IFA

According to the above results the effect of the two stage matching network seems to be

negligible. It was important also to check whether this is the case for both temperature

ranges. In Fig. 5.39, the simulated matching network transmission coefficient is depicted

for 25 ◦C and 105 ◦C. The foreseen matching network causes slight, negligible loss at

room temperature as well as at high temperature.

The next step was to check the amplifier output for both temperature ranges. As already

mentioned the output power of the amplifier varies depending on the load impedance con-

nected to it. Further the amplifier output power was plotted on the smith chart together

with the load impedance seen by it, what is illustrated in Fig. 5.40a.
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Figure 5.39: Simulated matching network transmission coefficient of the WU with IFA

(a) Simulated output power of the transmitter and simulated
load impedance for WU with IFA

(b) Simulated average gain of the WU with IFA

Figure 5.40: Simulated temperature dependance of the characteristic parameters of the WU

with IFA

It can be seen that the amplifier transfers appr. 5.5 dBm power to the antenna at 25 ◦C and

appr. 4 dBm at 105 ◦C. That means, over the temperature the amplifier contributes 1.5 dB

loss in the radiated power of the Wheel Unit.

Antenna average gain was compared also at room temperature with maximum temperature

of 105 ◦C. As in Fig. 5.40b it may be observed that the loss in gain is 1.5 dB which

expresses exactly the difference in the amplifier output power for different temperature

ranges. This confirms negligible losses from the matching network.
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Parameter Temperature 25◦C Temperature 105◦C
Difference due to

temperature change

Antenna gain -15.3 dBi -16.8 dBi 1.5 dB

Loss from matching 0.2 dB 0.1 dB 0.1 dB

Output power of amplifier 4.3 dBm 4 dBm 1.5 dB

Radiated power -9.6 dBm -12.6 dBm 3 dB

Table 5.7: Simulated and calculated RF parameters for WU with IFA

5.3.4 d Radiation Pattern of Wheel Unit with Inverted F Antenna

As final WU test the radiation pattern was measured in three planes and results are pre-

sented in Fig. 5.41.

Such a measurement not only delivers information on the radiation pattern but also ap-

proves the accuracy of the created simulation model. To fulfill the accuracy constraint, the

simulation and measurement results must be aligned.

Characteristic measured radiation pattern values for the Wheel Unit with Inverted F An-

tenna are listed in Annex B, Table B.7, which confirms accuracy of the simulation model

at level of 1 dB. Therewith and upon above presented results it may be stated that a very

good correlation between measured and simulated values was achieved.

5.3.5 RF Performance Comparison of WUs with Monopoles and
Inverted F Antenna

The performance of the WUs equipped with long ILA, short ILA and IFA were analyzed.

For final conclusions only the radiated power by the WUs is compared. The results together

with the requirements are listed in the underneath Table 5.8 It may be easily seen that the

Condition

Radiated power [dBm]

Specifications WU with WU with WU Radiated power

long ILA short ILA with IFA improvement in dB

25 ◦C >-12 -15.5 -17.2 -9.6 5.9

105 ◦C >-15 -23.5 -19.5 -12.6 10.9

Table 5.8: Performance comparison of Wheel Units under investigation (long ILA, short

ILA, IFA) at room and high temperature

WU with the long ILA, which was already present did not satisfy the required radiated

power levels and also lost more than 3 dB due to temperature change. The new WU satisfies

the RF requirements and therefore it may be further implemented in TPMS system.



5.3. DEVELOPMENT OF THE TYRE WHEEL UNIT ANTENNA - 103 -

Figure 5.41: Measured and simulated radiation pattern of WU with IFA

in free space
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5.3.6 Loop Antenna Development

Chapter 5.3.6 presents a new WU design. The overall WU concept, was kept as valve

mounted module. The newly designed WU features smaller size and a new radiating

element form. The RF analysys follows.

The basic representation of the loop antenna is depicted in Fig. 5.42. Generally loop may

be of any shape: circular, rectangular, triangular, rhombic or square. It is a radiating coil

on a ferrite or air core consisting of one (Fig. 5.42a) or more turns (Fig. 5.42b).

(a) Single loop (b) Multiturn loop

Figure 5.42: Fundamental structure of the loop antenna

Classified on the size basis, there are two types of loop antennas: in the first type the phys-

ical dimensions of the loop are comparable with one wavelength and in the second type the

dimensions of the loop are very small compared to the wavelength [79]. For this work only

small loop antennas are of interest.

For loops of small size, the radiation characteristic is independent on the loop inherent

shape. Under such condition the radiation pattern of the loop is similar to that of an ele-

mentary dipole. Fundamental difference is the interchange of electric and magnetic field

vectors. Therefore small loop antennas are often called magnetic dipole.

5.3.6 a Assembly of the WU with Loop Antenna

For the future systems a new alternative to the already existing Wheel Units was under

research. The goal was to reduce the WU size and to improve the RF performance, par-

ticularly when interacting with rim and tyre. Having already analysed very carefully the

basic antenna types such as the implementation of a monopole antenna and an IFA, a new

antenna type was applied. The new WU works with a loop antenna.

The new WU is presented in Fig. 5.43a and belonging new antenna element in Fig. 5.43b.

The fundamental WU assembly, with the same major component functionalities, is very

similar to the previously discussed WUs (ILA, IFA).
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(a) WU with valve (b) Antenna element

Figure 5.43: New Wheel Unit major components

Merely component mechanical- and RF design was slightly changed:

• There is a new WU housing, which was reduced to the size of

48 mm x 27 mm x 12 mm. Therewith the overall WU dimensions are re-

duced by 16 mm in the length and 2 mm in the width. The WU height, with

12 mm, is the same as in previous design of WU with the monopole or IFA

antennas. In relation to the frequency of operation, the WU dimensions represent

now respectively 0.07 x 0.04 x 0.02 of the wavelength.

The main advantage, from an industrialization point of view, associated with the

volume reduction is the resulting component weight decrease. Chosen housing

material was PA66. At room temperature the electric permittivity of this material at

433.92 MHz is εr = 3.4 and loss factor is tan δ = 0.0076 (Fig. 4.25).

• New PCB was designed with slightly smaller dimensions determined by smaller

housing size. New PCB size is 20 mm x 24.2 mm. Carrier material is standard

multilayer FR4 material with four electrical layers (Fig. 5.45).

• The battery is the same as in previous WUs (Fig. 5.19c).

• The antenna element (Fig. 5.43b) has got a form of a loop, realized with irregular

pentagon. The loop biggest dimension is along the PCB - 21.6 mm. The height is

limited by the WU housing - it is 7.35 mm. The loop circumference amounts λ / 20,

therewith it fulfills the criterion and belongs to small antennas (Chapter 5.1).

Mechanical benefit for this antenna solution, apart from stability, is easier producibil-

ity due to the fact that more accurate antenna positioning in respect to the PCB and

housing is possible in the production process.
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5.3.6 b Simulation Model of the WU with Loop Antenna

After introducing all the basic antenna elements, considerations have to be made how to

model the WU, how to simplify the detailed design and to which extent. Two WU models

were prepared:

• Very accurate model, where all PCB layers were taken into account (Fig. 5.44a).
• Simplified model with one metallic sheet representing the PCB (Fig. 5.44b).

Both models are depicted without housing and embedding material.

(a) Detailed FEKO model (b) Simplified FEKO model (c) Simplified HFSS model

Figure 5.44: Simulation model of the realized WU with loop antenna

Detailed and simplified FEKO models show only the radiating element and the PCB. The

first of these models features a complete PCB structure with four layers (the complexity

of this model reveals Fig. 5.45 which presents the layer structure). In order to present the

whole structure of the WU with housing and embedding material, all elements are visible

in HFSS simulation model in Fig. 5.44c.

It is generally known that the more detail, the more elements one model features, the longer

the resulting simulation time. If possible it is naturally advantageous to work with very

simplified models. It has to guaranteed however that these deliver correct results. This is

the point for beneath considerations.

5.3.6 c Model Accuracy of the WU with Loop Antenna

For further examinations of the WU with loop antenna on the rim, with tyre and whole

vehicle it would be advantageous or even necessary to use the simplified model. The task

is to check whether this is possible.

The simulation time for detailed and simplified FEKO model was compared. It appeared,

that the difference in the simulation time for both models is very meaningful. Compared

are simulation times on a cluster PC with 10 parallel CPUs for each simulation. Prior to

this comparison an analysis of the stability (convergence) of each of the models was carried
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out [37] - this is necessary and very important for models of very small size and featuring

small elements (much smaller than λ / 10). The basis for the simulation time prediction

and finally simulation execution is the overall number of the basis elements dielectric and

metallic triangles. Simplified model was simulated within 5 minutes whereas an accurate

model needed over one hour. Comparison of the data for both models is listed within the

Table 5.9.

WU with loop antenna - model type Simplified Accurate

Number of metallic triangles 1850 12740

Number of dielectric triangles 3316 5940

Triangle total number 5174 18680

Number of basis functions for MoM 13800 39305

Simulation time 5 min 1h 25 min

Number of CPUs 10 10

Table 5.9: Comparison of the simulation time for WU with loop antenna for the simplified

and the accurate model

It is clear, that further considerations of the full TPMS system would be feasible only with

the simplified model that requires much less simulation time. Further step is to compare and

check the accuracy of the characteristic output parameters of both models versus measured

values.

5.3.6 d Radiation Pattern of Wheel Unit with Loop Antenna

Radiation pattern was measured and accordingly simulated in three planes. The orienta-

tion of the model may be read from Fig. 5.44c and is also indicated in Fig. 5.49 with the

achieved results.

Comparison of the simulation results revealed very similar model performance in regard to

3D radiation pattern with the difference in the amplitude of the radiated power. In order

to be able to use the simplified model, is has to be analyzed where the discrepancy in the

radiated power comes from. For this purpose a detailed analysis of the matching network

will follow.

5.3.6 e Simulation Model of the Wheel Unit with Loop Antenna

The discrepancy in the simulation results between simplified and detailed model is structure

based (simplification of the model and matching network). The matching network of the

loop antenna will be thoroughly analyzed. A stable matching network with very small

losses is very important for the optimum performance of the small loop antenna and it is

important to examine how it contributes to the radiated power.
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In order to analyze the mutual influence of the input impedance measurement uncertainty

and quality of the matching network with certain quality of its components, an additional

network simulation model was prepared with the help of Ansoft Designer.

The investigation is divided into four following steps: introduction of matching network

model (step 1), considerations on the measured and simulated real part of the impedance

(step 2), circuit simulation model of the matching network (step 3), analysis of the achieved

results (step 4). Explanation of the steps follows, where it is explained which values were

used and how the analysis was done.

Firstly PCB and matching network model are introduced. All PCB layers with indiction on

the matching network area are depicted in Fig. 5.45.

(a) Top layer (b) Bottom layer

(c) Inner layer 1 (d) Inner layer 2

Figure 5.45: PCB layers of the WU with loop antenna

Matching network elements as well as block diagram are presented in Fig. 5.46. The an-

tenna feeding point is indicated by Port 2. Antenna input impedance is transformed to 50 Ω

at Port 1. Matching network element values are to read from Fig. 5.46b.

As the second step the real part of the input impedance of the designed antenna has to

be considered. It is very small and therefore very difficult for precise measurement. An

analysis of the matching network behavior was done in respect to theoretical and measured
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antenna input impedance. In this way performance of the antenna and its matching network

could be investigated.

(a) PCB layout (b) Circuit diagramme

Figure 5.46: Loop antenna matching network

All values for the analysis are gathered in Table 5.10 and Table 5.11.

Antenna impedance Theoretical / Simulated Measured

Real part in Ω 0.5 1.1 to 1.4

Imaginary part in Ω 75 50

Table 5.10: comparison of the simulated and measured input impedance of the loop antenna

Simulation analysis Assumed value Assumed meas. uncertainty

Impedance real part in Ω 0.2 to 0.8 0.2 to 1

Element quality According specification 300 Ideal 1000

Table 5.11: Listed values for consideration of the antenna and matching network interaction

Measured real part of the antenna impedance varied between 1 Ω to 1.4 Ω, whereas theo-

retical, simulated value in FEKO reached 0.5 Ω. Dependent on what could be a true real

value of the input impedance, the interaction of the antenna with the designed matching

network could vary and therewith contribute to either higher or lower loss. This interaction

is a subject of the examination.
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Table 5.11 gathers the theoretical possible supposed values. According to the above pre-

sented simulated and measured results, the value of the input impedance real part that was

assumed for the analysis purposes was set from 0.2 Ω to 0.8 Ω and the according possible

simulation and measurement error value 0.2 Ω to 1 Ω. Further also the quality of the

matching network components is very important. According to the element specification,

the quality factor value is 300 and theoretical, ideal value, if such elements would exist,

would be 1000.

Third step is to introduce the circuit simulation model designed in Ansoft Designer where

all previously discussed parameters may be controlled. The model is depicted in Fig. 5.47.

Figure 5.47: Matching network simulation model of the loop antenna

The introduced model has to be explained. Matching network was realized with the help

of an eleven port element. This element represents the electric behavior of the PCB tracks

connecting all the involved lumped elements of the matching network. Simulation model

layout (Fig. 5.47) corresponds to the previously introduced loop antenna matching network

from Fig. 5.46. Parameter Q ($qual) stands for the element quality values and is variated in

the simulation process. Assumed antenna impedance values from Table 5.11 will be used.

The according measurement uncertainty is introduced by parameter $res. The sum of the

assumed antenna impedance and measurement error. Both parameters together are meant

to represent the real antenna impedance in port 2.

The simulation was conducted with the above described parameters, were transmission and

reflection factor was noted in frequency range from 300 MHz to 500 MHz. The results are

presented in Fig. 5.48.

Last, fourth step is the interpretation of the above results and the implementation of the

correction factor as well as decision about its value. Further 3D EM simulation processes

are carried out in order to save simulation resources (time). Deviations from simple WU

model simulation results can be corrected by the introduction of the correction factor. Si-
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mulated reflection factor varies between - 3 dB and - 14 dB and the transmission factor

between - 3 dB and - 9.5 dB. Upon these values, the correction factor will be set at the level

of 7.5 dB. Considering this factor, the simulation results, for the simplified model, of the

radiated power would correlate with the measured values. Therewith the simplified WU

loop model may be used for further investigations.

(a) ReZ = 0.2 Ω, ImZ = + j 50 Ω (b) ReZ = 0.3 Ω, ImZ = + j 50 Ω

(c) ReZ = 0.5 Ω, ImZ = + j 50 Ω (d) ReZ = 0.8 Ω, ImZ = + j 50 Ω

Figure 5.48: Reflection and transmission factor of the matching network of the WU with

loop antenna
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Figure 5.49: Measured and simulated radiation pattern of the WU with loop in

free space
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5.3.6 f Summary and Outline for the Wheel Unit with Loop Antenna

Stand alone WU with loop antenna features worse performance as the priorly analyzed

stand alone WU with IFA. Nevertheless the WU will be further taken into account and

inspection of the performance on the rim and with tyre will be conducted. Few properties

differ the loop antenna from other WU antennas under investigation:

• Small loop antenna means relatively low efficiency in free space.
• All developed radiating elements for the presented WUs are electric antennas and

the loop is the only magnetic antenna type.
• The loop features very low impedance.

Following consequences out of the upon points make the loop antenna interesting for

application in TPMS:

• Dielectric surrounding should have much less influence on the loop antenna than on
electric antenna types.

• The antenna performance should be more stable.

Further results are presented in Chapter 6.8.2 and Chapter 6.8.3 with the rim and tyre

influence.

5.3.7 Conclusions of Wheel Unit Antenna Development

Firstly the already existing Wheel Units were analyzed. Secondly as these WUs did not

satisfy the requirements, new solutions were under investigation. Fig. 5.50 outlines very

well the considerations on the WU.

Figure 5.50: Development approach for the Wheel Unit - optimization process
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Summing up, neither short nor long monopole antenna featured the expected performance.

Two new possible solutions were introduced: WU equipped with an Inverted F Antenna

and WU equipped with a loop antenna.

Both of the presented solutions will be further investigated with the rim and different tyre

types in Chapter 6.



6 Automotive Electromagnetic Simulation

Chapter 6 deals with automotive electromagnetic simulation. The basis for the complex

considerations of full automotive simulations incorporating vehicle body were laid in all

previous chapters. Tyre classification (Chapter 3) took place, material parameters were

analyzed (Chapter 4) and adequate antenna modules were presented and analyzed (Chap-

ter 5). Further final work incorporates all up to this point gathered results. Automotive

systems already presented in Chapter 2 will be here throughly examined with the means of

different electromagnetic simulation tools. The aim is to find out to which extent an engi-

neer may relay on results of numerical simulations in order to shorten or save time spent

on practical measurements.

Firstly the most appropriate simulation tools are described. Vehicle body and tyre models

are presented, followed by PASE, RKE, tyre and TPMS simulation results.

For most modern antennas, their radiation patterns are very complex so that closed-form

mathematical expressions are not available. Even in cases where expressions are available

their form is so complex that integration to find the radiated power required to compute the

maximum directivity cannot be performed [39].

The tasks to be solved get even more complex as such structures as not only antenna ge-

ometry but also vehicle body (Chapter 6.2) with metallic as well as dielectric components

have to be considered.

In consequence the problem complexity raises the necessity of multiple measurements.

Performing solely the measurements there is high probability that an optimal solution will

never be found. The concept is to apply numerical methods supported by high speed com-

puter systems. Meanwhile computer simulation of electromagnetic behaviour is a vital and

inseparable part of the design of electronic devices [115].

Electromagnetic simulation is the process of modelling the interaction of electromagnetic

fields with physical objects and the environment. Simulation has got on purpose the reduc-

tion of effort committed to the experimental tasks. Hypothetical situations are modelled

in order to study how a real system would work without the necessity of setting the real

system up. By changing either simulation components (e.g. different antenna types, car

bodies or tyre size) or parameter (e.g. antenna size) the behaviour of the system may be

predicted. The knowledge gained in this way determines which measurements should be

conducted. There is, however, one important condition: simulation reliability and convic-

tion that the simulations reflect the reality.
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Simulation accuracy highly depends on the hypotheses made for a given problem. In radio

frequency techniques very important are:

• The level of system simplification.

With respect to the wavelength of the frequency of interest it is important to simplify

the detailed geometry.

• The geometric complexity scale.

In special case of automotive electromagnetic simulation from simple and small (in

respect to the wavelength) metallic radiators through antenna modules with dielectric

materials up to vehicle body and complicated 3D structures such as tyres.

• Material parameters discussed in Chapter 4.

Material parameter values have significant influence on the achievable results.

This diversity of geometric scales and sizes corresponds to different physical be-

haviours with consequently call for different modelling approaches (e.g. Method of Mo-

ments (MoM), Finite Element Method (FEM)) and different simulation environments (e.g.

FEKO, Ansoft HFSS, Micowave Studio).

6.1 Numerical Methods

Numerical methods applied in CEM (Computational Electromagnetics) involve efficient

approximations to Maxwell’s equations (here in differential form):

∇× �E = −δ �B

δt
∇× �H = �J +

δ �D

δt
(6.1)

∇ · �D = ρ ∇ · �B = 0 (6.2)

As the solution of the above equations is very complex, for realistic problems numerical

methods are required [129]. There are many CEM techniques and corresponding software

tools for solving electromagnetic problems. The core hereto are the electromagentic the-

ory and the numerical methods. Three main numerical techniques in CEM are: the Finite

Difference Time Domain (FDTD) method, the Method of Moments (MoM) and the Finite

Element Method (FEM). The discussion about the application of these methods in this the-

sis is focused solely on applications in RF engineering.

From the end user point of view, the basic operation blocks and philosophy behind each

method are very similar. The problem to be solved has to be modelled with the means of

specific software user interface or geometrical data has to be imported. Due to increased

simulation time for complex structures it is of favour to simplify the model of interest.

Independent of applied method, the submitted geometrical model is divided into a certain
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number of elements. This process is called discretization or meshing. The number of dis-

crete elements is dependent on the operation frequency and simulated object size. The

higher the frequency, the more elements are required and the denser the resulting mesh.

The calculations, mathematical operations are conducted for each mesh element separately.

The unknown for each mesh element (in MoM the current, for FEM and FDTD the electri-

cal field) is described by space functional dependence. The here applied equations are so

called basis expansion functions.

Simulation accuracy is related to the mesh quality (element size and mesh form) - the gen-

eral validity, that the finer the mesh, the better accuracy, is not applicable and not true.

There is always a trade-off to be met between simulation accuracy, simulation time, com-

putational resources and mesh size. Thumb rule says that the maximum element edge

length should be about one tenth of the wavelength. There is also a lower limit, boundary

for the mesh size, which if violated causes long simulation times and inaccurate to wrong

results.

It is important to mention that the thumb rule may not always be applied due to size of the

object to be simulated and its equivalent components. In this thesis, whole range of objects

with large size diversification are simulated. The mesh elements have to be much smaller

than one tenth of the wavelength for example for the WU. At the frequency of 434 MHz,

the wavelength is 69 cm - according to the general rules an edge of the meshed element

would have to be 6.9 cm long, whereas WU overall size does not exceed 6.5 cm.

Due to the above reasons, deep understanding, experience and sensibility is required in

order to set an accurate and efficient simulation model. Important is also to choose

appropriate simulation method. Every of the already mentioned methods has got it’s

strong and weak points. The key features for MoM, FEM and FDTD are listed in

Table 6.1 [117], [118], [119], [120].

Summing up, both MoM and FEM are well suited for single or few frequency points si-

mulation, whereas FDTD method is capable of calculating broadband system behaviour

in reasonable time. There is, however a restriction that FDTD method is effective for ob-

ject with orthogonal boundaries. FEM is accurate for all object kinds but as these objects

exceed certain dimensions in respect to the operation frequency then the simulations take

long time. MoM has got no problems with big structures but precise modelling of dielectric

bodies longs for deeper method understanding and experience.

None of the above methods provide good solution for all type of electromagnetic prob-

lems. Every modelling method has its merits and limitations. This is the reason why there

is necessity to use different simulation tools and methods behind. Resulting from the above

considerations, for the purpose of this thesis, two methods and equivalent simulation soft-
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ware was chosen: FEM implemented in Ansoft HFSS and MoM implemented in FEKO.

Method FEM MoM FDTD

Domain frequency frequency time

Meshing
requirement,
discretization

entire computational domain
(including boundary air box) is
to be meshed

only object of interest is meshed,
"source method"

the whole simulation domain is
discretized

Basic mesh
element

tetrahedron for conducting surfaces triangle,
for dielectric either triangle or
cuboid (dependent on the
solution method)

cube

Boundary
conditions

absorbing boundary conditions no need for spacial boundary
condition

absorbing boundary conditions

Core unknown electric / magnetic field current distribution electric / magnetic field

Solution method linear equations, sparse matrix linear equations, full matrix iterations

Numerical
effort
(N - number of
unknowns)

N2 N3 (direct solver), N2

(iterative solver), NxlogN
when matrix compression
techniques implemented

N

Broadband
simulation

every single frequency point
needs to be solved separately

every single frequency point
needs to be solved separately

capable, efficient

Complex,
arbitrary shaped
3D geometries

suitable suitable capable

Dielectric
materials

easy to model suitable (SEP, VEP, planar Green
function, thin dielectric sheet
and dielectric coating method)

easy to model

Large objects take long time suitable suitable when orthogonal bodies

Examples of
objects to be
simulated

mobile phone antenna with
covers, battery, screen, etc.

metallic antenna objects, big
structures, automotive antenna,
antenna with radome, patch
antennas

Ultra Wide Band (UWB)
antennas

Simulator tool
examples

Ansoft HFSS FEKO Empire, EM explorer,
Microwave Studio

Table 6.1: Comparison of three main numerical techniques in CEM

An overview of the collocation of the simulation method in respect to the simulated object

is depicted in Fig. 6.1. The dependence is presented upon object size and complexity.

Single objects under test as WU, receiver or even WU on the rim were simulated with

the help of HFSS. Large scale CEM problems face however memory and CPU limitations

and therewith very long simulation duration. The whole TPMS, RKE and PASE systems

incorporating vehicle body were simulated with MoM (FEKO). Therefore models of single

system base elements had to be modelled in FEKO as well.

The simulation models for the purpose of this thesis and future investigations are built and

set together in a modular way - it is very easy to exchange for example a WU antenna type

or tyre in TPMS system simulation or even the vehicle body in order to experience and

compare changes in the results. All geometrical models have been designed parametric.

WU model is presented in Chapter 5.3, receiver model in Chapter 5.2. Tyre model as well
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as simulations of the whole system with the vehicle body are presented and discussed in

the following chapters.

Figure 6.1: Recommendation of simulation method in dependency from object size and

complexity

6.2 Vehicle Body Simulation Model

Vehicle body model is an elemental component in the automotive CEM. For simulation

purposes solely metallic shell body was taken into account. The availability of the geome-

trical CAD (Computer Aided Design) model reduces the work load and preparation time

in the simulation process.

Mechanical CAD models are however not suitable for the electromagnetic simulations.

This is due to very detailed structure with many small elements like screw holes, hinges,

door locks and other small radius curvature element profiles. Even if a meshing of such

model would be possible then the above described body details would boost mesh element

number and therewith the simulation time.

Model simplification plays a crucial role and influences the simulation performance (time

as well as accuracy). All model preparation stages for the simulation purposes in this the-

sis are depicted in Fig. 6.2. Real vehicle is presented in Fig. 6.2a and corresponding CAD

model in Fig 6.2b. The CAD model was simplified, what is visible in Fig. 6.2c. Fig. 6.2d

depicts the already meshed model for electromagnetic simulation.
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(a) Volvo S80 (b) Mechanical CAD model

(c) Simplified CAD model (d) Meshed model for simulation purposes

Figure 6.2: Vehicle simulation model

6.3 Rim Simulation Model

Rim simulation model was built with the help of FEKO graphical interface. The model,

depicted in Fig. 6.3, is fully parametrized and therewith scalable. Meshed simulation mo-

del is visible in Fig.6.3c and Fig.6.3d.

Important for the accurate simulation results is the rim inner profile. The nearest surround-

ing of the WU should be modelled accurately as shown in Fig. 6.4. In order to reproduce

any rim profile and size (w - rim width, d - rim diameter), it was parametrized. Meshed

rim together with positioned WU is depicted in Fig. B.2b.

(a) CAD model
- side view

(b) CAD model
- lateral view

(c) Meshed model
- side view

(d) Meshed model
- lateral view

Figure 6.3: Rim simulation model
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Figure 6.4: CAD rim model - profile

6.4 Tyre Simulation Model

Tyre construction was already discussed in Chapter 3.2. Material properties of slick, con-

ventional and run flat tyre representatives were determined in Chapter 4.4, Chapter 4.5 and

Chapter 4.6 respectively. The challenge right now is to introduce as accurate electromag-

netic model of a layered, non infinite, curvature structure for three above mentioned tyre

types. The designed models should be scalable in order to reproduce different tyres on

request.

All tyres are modeled without adequate tyre tread profile - such model accuracy is not nec-

essary for precise simulation result. An example of the tyre model (outer view) without the

rim is presented in Fig. 6.5

(a) Side view (b) Lateral view

Figure 6.5: Tyre simulation model - outer view (example for 245 / 55 R 18 tyre)
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6.4.1 Slick Tyre

Slick tyre model due to tyre construction simplicity is the least complicated. The tyre fea-

tures only two material layers without any metallic reinforcement in between (Chapter 3.1).

The model of the tyre together with the rim is presented in Fig. 6.6a.

(a) Cross section (b) Indication of tyre parts

Figure 6.6: Slick tyre simulation model

For this specific tyre type it insufficient to define two rubber regions: one for the tread and

another one for the sidewalls (Fig.6.6b). For both of these regions the weighted average (in

respect to the material thickness) of the electrical material parameters was calculated. The

values of the electrical parameters for the simulation purposes are presented in Fig. 6.7.

Figure 6.7: Applied average of the measured material parameters of slick tyre at 433.92

MHz at room temperature
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With the CAD reproduced slick tyre geometry as well as above mentioned electrical pa-

rameters, the slick tyre model is ready to be simulated. The results may be seen in Chap-

ter 6.8.1.

6.4.2 Conventional Tyre

For conventional tyres similar extent of simplification as for slick tyres is not possible. As

presented in Chapter 3.2, tyre geometry is much more complex. All tyre layers that are

taken into account for the simulation model are indicated in Fig. 6.8.

Figure 6.8: Conventional tyre simulation model - cross section

Due to metallic wire reinforcement it is not possible for this tyre type to simplify the model

to only two rubber regions as for slick tyre. All rubber regions, metallic reinforcements

and adequate electrical parameters have to be taken into account. The tyre model (3D

representation) is depicted in Fig. 6.9.

(a) Tyre alone (b) Wheel - tyre with rim (c) Cross section of the tyre on the
rim with WU

Figure 6.9: Conventional tyre simulation model meshed for 433.92 MHz
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The here presented model in combination with defined electrical parameter (Chapter 4.5)

are the base for the wheel RF characterization together with the existing WUs. The results

are presented in Chapter 6.8.3 .

6.4.3 Self Supporting Runflat Tyre

The model of the SSR tyre features one significant difference in comparison to the conven-

tional tyre. This is the side wall reinforcement - so called extra rubber. Simulation model

of the relevant tyre parts is presented in Fig. 6.10. 3D representation would look the same

as for conventional tyre.

The here presented model in combination with defined electrical paremeter (Chapter 4.6)

are the base for the wheel RF characterization together with the existing WUs. The results

are presented in Chapter 6.8.4.

Figure 6.10: SSR tyre simulation model - cross section

6.5 Model Performance Evaluation

Performance of the prepared simulation models is evaluated upon consistency between

results achieved in numerical electromagnetic simulations and equivalent, corresponding

measurements.

It was already proved in Chapter 5 that the simulation models of the system base compo-

nents such as a receiver and a stand alone WU are accurate. For the overall performance

evaluation all vehicle relevant components are taken into account. Here the model sim-

plification grade plays a very important role. Both mechanical (structure, built up) and

electrical properties (Chapter 4) have to be considered.
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For the systems under investigation the model performance evaluation is done for:

• PASE: - field distribution, expansion around the vehicle

• RKE: - characteristic of the field level around the vehicle

- receiver radiation characteristic

• TPMS: - radiation pattern of the WU on the rim

- radiation pattern of the WU on the rim with tyre

- transmission parameter between the receiver

and the WU for each wheel

6.6 PASE System Simulation

The functionality of the PAssive Start and Entry System is already described in Chapter 2.2.

In order to design an efficient PASE system for any vehicle a reliable simulation system

is of favour. With such a theoretical simulation tool the system behaviour prediction is

possible for any wished antenna positioning and any vehicle body shape.

Antenna distribution within the vehicle body plays a crucial role for PASE system. The goal

is to reach an illumination area at the driver’s side along the vehicle body as well as at the

trunk region. Many considerations were made upon the type of the antennas that should

be used. The first idea was to employ the air coils; however, the laminar building area

necessary in the vehicle turned out to be problematic. Coil antennas on a ferrite rod with

quadratic cross section seem to be the most appropriate alternative. Among the benefits,

for the proposed antennas, is the simple integration in the car body and the fact that the

magnetic flux density ( �B(T )) outgoing from the coil decreases rapidly with the distance

(at the distance of one metre the magnetic field values are in range of nT).

6.6.1 Simulation Model

Three antennas are used to assure an appropriate field distribution on the driver’s side and

at the back of the car - depicted in Fig. 6.11.

Two of the antennas are built into the door handles at the driver’s side and one additional

antenna is placed in the rear bumper in order to cover the area around the trunk. The

antennas are placed respectively at the height of 90 cm and 50 cm from the ground.

The employed antenna is depicted in Fig. 6.12a. Presented coil antenna has got the overall

dimensions of 4 mm x 15 mm x 86 mm and the inductivity of L= 820 nH, εr = 60. The

number of turns equals n = 160. Simulation model (FEKO) was formed with metal wire

segments and dielectric cuboids and is depicted in Fig. 6.12b.
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Figure 6.11: Coil antenna positioning within the vehicle

(a) Antenna sample (b) FEKO simulation model

Figure 6.12: Coil antenna for PASE system

6.6.2 Simulated and Measured Field Distribution

Underneath different antenna positions will be simulated. It will be examined whether

the employed antennas assure communication with the access card. The sensitivity of the

typical access card in the production ranges between 3 nT and 4 nT and therefore the

boundaries of these field values were observed. The access card that was used during all

measurements had the sensitivity of 3.2 nT.

6.6.2 a One Antenna at the Vehicle Side

Primarily, the case of one antenna on the car side was examined. The task was to check

whether only one antenna would be enough to assure the appropriate key reception range

at the car side. Two different positions were tested: in the first case the antenna was built in

driver’s door handle and in the second case at the passenger’s door handle on the left side

of the vehicle. In both attempts for the simulation purposes the antenna was placed 90 cm

above the ground and very near to the vehicle body, at the distance of 30 mm. The antenna

was supplied with the current of 170 mA.
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For the antenna placed at the driver’s door, the view of the car cross section and the mag-

netic field is presented in Fig. 6.13a, for the antenna at the back door in Fig. 6.13b.

(a) FEKO simulation - Antenna at the driver’s door (b) FEKO simulation - Antenna at the back left door

(c) Measurement and simulation comparison - an-
tenna at the driver’s door

(d) Measurement and simulation comparison - an-
tenna at the back door

Figure 6.13: Simulated and measured magnetic field distribution for one antenna placed at

the driver’s and at the back door
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Different colour marking corresponds to the values of 4 nT and 3 nT respectively. The

black transient area represents the values greater than 3 nT and smaller 4 nT. It is signif-

icant that for the field lower than 3 nT there is no access card recognition possible (area

marked blue).

For verification of the above simulated, theoretical results, adequate measurements have

been performed - the hereto results are presented in Fig. 6.13c and Fig. 6.13d. The car

body has been depicted with black dashed line with indication of the orientation (front and

back). The red rectangle indicates the antenna, the green solid line and the brown dashed

line the magnetic filed values of 3 nT and 4 nT respectively. The measurements (x markers)

verified the range predicted with the simulations. In the perpendicular direction away from

the car the maximum range is 1.5 m and along the car 1.7 m in both directions away from

the antenna.

Concerning the maximum range of the antenna in perpendicular direction to the car body,

there’s no difference whether the antenna is placed at the front or the back door. However

from the above, it is clear that only one antenna at the car side cannot guarantee the recep-

tion of the access card in all places along the car side. This fact constraints the use of two

antennas at the car side.

6.6.2 b Two Antennas at the Vehicle Side

When using two antennas, considerations about the mutual influence had to be made. Most

important was the applied current flow direction. First of all two antennas free in space

were simulated, both with common and differential excitation, respectively Fig. 6.14a

and Fig. 6.14b.

(a) Common excitation (b) Differential excitation

Figure 6.14: Magnetic field distribution of two aligned ferrite rod antennas

In both cases the antennas were placed in the distance of 83 cm from each other, just as if

built into the door handles. Fig. 6.14a and Fig. 6.14b depict magnetic flux density. When

the antennas are fed in phase two minima occur, whereas the antennas with differential

excitation are not affricated with any strong field fluctuations. Therefore antennas with
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differential feeding were then assembled in the car handles.

Both antennas were fed with the same current amplitude (I1 = I2 = 170 mA). Antenna

arrangement is depicted in Fig. 6.15a. Simulated magnetic flux density is shown in

Fig. 6.15b. As depicted in Fig. 6.15c - the range of the magnetic field resulting from

two antennas is the superposition of the fields resulted by single antennas. The maximum

range in the perpendicular direction is over 1.6 m and in the longitude direction the access

card is recognized both in the area around the front and the back door. Therewith, the

requirement for the good limitation of the access card recognition is fulfilled. Only if the

owner is directly approaching the vehicle door the access card is recognized.

(a) Antenna orientation

(b) FEKO simulation (c) Comparison of measured and simula-
ted values

Figure 6.15: Simulated and measured magnetic field distribution for two antennas with dif-

ferential excitation placed at the vehicle side

One point is still open, namely where does the user have to put his access card. Will it be

recognized when carried in the pocket, in the bag on the shoulder or in a trolley somewhere

near the ground?

The field distribution in the vertical cut plane is shown in Fig. 6.16a. The distribution of

the magnetic field was read exactly in the middle of the vehicle between two positioned

antennas. As depicted in Fig. 6.16b and confirmed with the appropriate measurement the
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key is recognized at practically any height. At the distance of 1.5m the key is recognized up

to the height of 1.5 m and when approaching closer to the car even to the height of 2.3 m.

(a) FEKO simulation (b) Measurement and simulation compari-
son

Figure 6.16: Magnetic field distribution of two aligned ferrite rod antennas - vertical cross

section

6.6.2 c One Antenna Placed in the Rear Bumper

To assure the comfortable access to the trunk one antenna was positioned in the rear

bumper. The antenna as depicted in Fig. 6.11 was placed at the height of 50 cm from

the ground, the applied current was 270 mA. In Fig. 6.17a the magnetic field distribution is

depicted.

(a) FEKO Simulation (b) Measurement and simulation comparison

Figure 6.17: Magnetic field distribution of one ferrite rod antenna placed in the rear bumper
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6.6.2 d Conclusions

The executed simulations allow predicting the performance of the vehicle card access

system. The measurements show that the performed simulations are very accurate - the

small differences between the simulated and measured values are negligible, they do not

exceed 10 cm. The reason for slight differences may be the discrepancy between the electri-

cal properties of the real ground (asphalt) in comparison with the simulated perfect electric

conducting plane as well as simplification of the vehicle body.

6.7 RKE Simulation

Remote Keyless Entry system was already introduced in Chapter 2.1 and the basic system

architecture was described in Chapter 2.4. It is now time for a closer consideration on RKE

system evaluation, optimum achievable results and system simulation possibilities.

Crucial point is to guarantee good communication between the key fob and the in-vehicle

installed receiver module for a predefined distance d (Fig. 6.18).

Figure 6.18: Main components of RKE system

The maximum reception distance is not only dependent on the characteristics of the inte-

grated antennas in the key fob (Chapter 5.3) but as well as in the receiver module (Chap-

ter 5.2). Decisive role plays the body of the vehicle as well as the characteristic of the

surroundings: type of ground, free space area or in city array with buildings, trees and
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other vehicles and objects. Therefore, it is necessary to characterize the radio frequency

propagation channel and possible ideal propagation conditions.

6.7.1 Wave Propagation Schematics - Problem Simplification

Wave propagation model for a typical RKE system is depicted in Fig. 6.19. As the receiver

depicts both the directly propagating wave and the wave reflected from the ground, the re-

ceived power Pr at the antenna feeding point in the receiver depends on the vehicle and its

nearest environment. The ground is playing here a particularly important role in addition

to system and link parameters as the transmitter power Pt, the distance d between the key

and the receiver, the position (height ht) and orientation of the key and hr of the receiver.

Different positions of the receiver within the car body are possible - it was assumed that hr

may vary between 0.3 m and 1.8 m for most vehicles and typically the key fob held in the

hand would be placed at ht of 1 m. In order to simplify the problem, make it independent

Figure 6.19: Wave propagation schematic for RKE system

on the vehicle body, the above scenario from Fig. 6.19 was isolated. From now on no ve-

hicle body will be considered but only transmission between two stand alone horizontally

and vertically polarised antennas. This simplified model is depicted in Fig. 6.20.

Further not only the schematics geometry but also the frequency of operation has to be

considered. In the thesis discussed frequencies are 433.92 MHz and 868 MHz with wave-

lengths respectively of 69.1 cm and 34.5 cm.

The assumption of a flat surface is made. This assumption is not very far away from the car

real environment - case of a free parking slot or an empty street. The characteristic values

that could influence the wave propagation are the ground conductivity σ and the relative

electric permittivity εr . Typical values for asphalt and cement are listed in Table 6.2 [124].

With the given model and the above assumption, transmission coefficient simulation was
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Figure 6.20: Simplified simulation model - evaluation of the transmission coefficient

Material εr σ in mS/m

Asphalt 2 - 12 1-100

Cement 4 - 20 1-100

Table 6.2: Electrical properties of the ground - typical values

possible. Simulations were conducted for 433.92 MHz and 868 MHz. The results are

depicted in Fig. 6.21 and Fig. 6.22. For the RKE system, the distance of interest is limited

to 100 m.

Attenuation values for horizontal and vertical polarization for asphalt and PEC as well as

free space were under examination. The reason for such comparison lies in the inherent

mathematical property of electromagnetic simulation methods and therefore tools such as

FEKO. If the ground is non dielectric, the simulation duration is noteworthy decreased. The

here made considerations should clarify whether it is possible and under which assumptions

to carry all simulations on PEC ground in a reduced distance around the vehicle.

For the horizontal polarization, nearly no difference exists between a PEC ground and

asphalt as shown in Fig. 6.21a and Fig. 6.22a. Similarly, there are also no differences

between calculations based on material parameters (conductivity, relative permittivity) of

asphalt. In comparison to free space, serious differences occur particularly at big distances.

At a distance d = 100 m, the difference to free space amounts 15 dB at 433.92 MHz and

9 dB at 868 MHz. The frequency doesn’t play a role in the presence of PEC or asphalt for a

distance greater than 30 m. The impact of the frequency is noticeable in a distance smaller

than 30 m, particularly in the number and location of the reflection points.

For the vertical polarization as depicted in Fig. 6.21b and Fig. 6.22b.
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(a) Horizontal polarization (b) Vertikal polarization

Figure 6.21: Simulated transmission coefficient for 433.92 MHz

(a) Horizontal polarization (b) Vertikal polarization

Figure 6.22: Simulated transmission coefficient for 868 MHz

Denotative difference in attenuation values can be seen for PEC and asphalt. This differ-

ence amounts 21 dB and 16 dB at d = 100 m respectively at 433.92 MHz and 868 MHz.

Also in this case, the material parameters of the asphalt lead to negligible differences after

variation of the parameter values. Furthermore, differences to free space can be clearly

seen. A further evaluation of the figures for distance above 30 m shows that 10 dB are

needed for doubling the range.
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6.7.2 Analytical Formulation and Measurement

In order to revise the simulated values, some theoretical considerations were made. First,

the Free Space Transmission factor (FSL) for both frequencies was calculated according to

Eq. 6.3.

FSL = 20 log10

(
λ0

4 · π · d
)

(6.3)

FSL434MHz = 20 log10

(
0.69 m

4 · π · d
)

=

⎧⎪⎪⎨
⎪⎪⎩

− 45 dB for d = 10 m

− 59 dB for d = 50 m

− 64 dB for d = 90 m

(6.4)

FSL868MHz = 20 log10

(
0.345 m

4 · π · d
)

=

⎧⎪⎪⎨
⎪⎪⎩

− 51 dB for d = 10 m

− 65 dB for d = 50 m

− 70 dB for d = 90 m

(6.5)

Results for both frequencies in Eq. 6.4 and Eq. 6.5 match very well with the simulated

values (Chapter 6.7.1). Further conclusion is that doubling the frequency the attenuation in

free space increases by 6 dB.

The wave propagation schematics from Fig. 6.19 for real environment with the ground has

to be extended by an additional contribution of the reflected wave, which is schematically

depicted in Fig. 6.23. The received power Pr(V/H) can be expressed with Eq. 6.7 [125] ,

where the indices "V/H" indicate the vertical and horizontal polarization.

PrV/H
=

(
λ0

4 · π
)2

·Gr ·Gt · Pt ·A (6.6)

A =

∣∣∣∣∣∣∣∣∣
e−j·k0·dLOS

dLOS︸ ︷︷ ︸
LOS component

+RV/H · e
−j·k0·d

d︸ ︷︷ ︸
reflected component

∣∣∣∣∣∣∣∣∣

2

Where Gr is the receiver antenna gain, Gt is the transmitting antenna gain, Pt is the trans-

mitted power, RV/H is the reflection factor and d is the distance travelled by the reflected

wave d = d1 + d2.

d =
√

(xr − xt)2 + (hr + ht)2 (6.7)
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Figure 6.23: Wave propagation geometry

dLOS =
√

(xr − xt)2 + (hr − ht)2 (6.8)

With the assumption of Perfect Electric Conducting ground: Rv = 1 und Rh = -1, Path

Loss (PL) between the receiver and the transmitter can be expressed with Eq. 6.9 (unity

antenna gain is considered).

PLPEC =
Pr

Pt
=

{(
λ0

4·π·d
)2 · 4 for vertical polarization

hr·ht
d4

for horizontal polarization
(6.9)

For the case of the transmitter and receiver antenna positioned at the same height

ht = hr = 1 m, following calculations may be made:

PLPEC868MHz =

{
− 59 dB for d = 50 m , ver. pol.

− 67.95 dB for d = 50 m , hor. pol.
(6.10)

PLPEC434MHz =

{
− 53 dB for d = 50 m , ver. pol.

− 67.95 dB for d = 50 m , hor. pol.
(6.11)

Based on Fig. 6.21 and Fig. 6.22, the transmission factor can be calculated with Eq. 6.12

for asphalt and for a distance greater than 20 m. This equation is also given by [126] for

distances d»h.
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PLasphalt = −40 log10

(
h

d

)
(6.12)

PLasphalt =

{
− 70 dB for d = 50 m

− 83 dB for d = 100 m
(6.13)

The theoretical estimation of the Path Loss both for free space as well as for ground (PEC

and asphalt) matches very well the simulated values.

Additionally attenuation values were measured on asphalt for the frequency of 868 MHz.

The comparison of the measured and simulated values is displayed in Table 6.3.

It may be observed that the discrepancy between measured and simulated values is slight

and within measurement accuracy. The measurement accuracy is influenced by the non

ideal measurement test area. Large test areas free of any obstacles are very rare. Most test

sites are not completely free from such vegetation and construction obstacles which cause

for example additional reflections.

d in m Attenuation in dB - Measurement Attenuation in dB - Simulation

20 55 53

40 62 62

60 71 68

80 74 74

100 78 78

Table 6.3: Comparison of measured and calculated attenuation values on asphalt

6.7.3 RKE Link Budget

Budget in economic understanding provides a forecast of revenues and expenditures. This

simple explanation may be applied also when talking about link between antennas. Link

budget determines whether and at which distance communication (link) between the trans-

mitter (key fob) and receiver is possible. For the calculations antenna parameters as well

environmental factors are taken into account. Link Budget for RKE may be expressed with

following equation:

Sr ≥ Pt +Gkey +Gcar +A+ Fe + Fs (6.14)

Revenue in RKE Link Budget is the existence of the RF link between the receiver (vehicle)

and the key in RKE system.
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Therewith the receiver system sensitivity Sr has to be in a certain balance, at least equal or

in the optimal case greater than following listed factors:

• The transmitted power at the feeding point of the key antenna Pt. The limit for

transmitted power is regulated and defined for each country.

• The average gain of the key antenna Gkey .

• The average gain of the receiver together with the vehicle influence Gcar .

• The attenuation A of the transmitted signal (see Chapter 6.7.2).

• The environment factor Fe, which includes the influence of the terrain relief, con-

struction in low and high-density areas and vegetation. The assumed Fe value results

from measurement and simulation comparison of attenuation values and equals 3 dB

for the frequency of 868 MHz (see Table 6.3).

• The reliability system factor Fs, which comprises tolerance of all system compo-

nents and ensures confidence margin for the system functionality as well as human

influence.

It is important to stress that the human influence on the key antenna parameters for the range

measurements is usually not taken into account - it is especially omitted in the simulation

process. During the measurements a key is usually placed at a certain height from the

ground on a foamed polystyrene block as in Fig. 6.19. This is for the reason that experience

showed that the measurement results differ a lot dependent on who is holding the key and

how. Also in real situations when a driver approaches the vehicle, the key is held in different

ways or even sometimes is activated when being in a pocket. Placing a key in a controlled

environment assures measurement repeatability and ensures the possibility to check the

system for two key orientations that correspond to horizontal and vertical polarization.

Considering Eq. 6.14, the link between the key and the vehicle is so long guaranteed as

the limit expressed by system sensitivity is not compensated by the listed factors. The in

the key transmitted power Pt is known, the key gain Gkey hand the receiver-vehicle gain

Gcar is to be measured, reliability and environmental factors Fs, Fs are empirical values

based on the experience. With all given values the task is to see with the known attenuation

to check at which distance from the vehicle the connection is still guaranteed - the largest

possible distance.

For the general estimations an average values for the key as well as receiver-vehicle gain is

considered. Parameters describing the system under investigation at 868 MHz are gathered

in the underneath Table 6.4.
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Sr –115 dBm

Gcar 0 dBi (see Chapter 5, Fig. 5.16)

Gkey -3 dBi

Pt 14 dBm

Fe 3 dB

Fs 0 dB

A distance dependent

Table 6.4: List of parameters for RKE Link Budget calculation

With the above given values the RF Link Budget equation would be expressed:

− 115 dBm ≥
{
14 dBm − 3 dBi − 3 dB − 53 dB for d = 20 m

14 dBm − 3 dBi − 3 dB − 62 dB for d = 40 m
(6.15)

− 115 dBm ≥
{

− 45 dB for d = 20 m

− 54 dB for d = 40 m
(6.16)

With the given values link between the key and the vehicle is guaranteed for 20 m and 40 m.

It is very easy to estimate from which distance the connection would not be assured, with

the given values theoretically even at 100 m distance the connection should be possible.

The above calculation procedure allows to predict the RKE system functionality - at least

the optimum case and theoretical distance limit.

6.7.4 RKE Link Budget Dependency on Direction

In reality neither the key fob antenna nor the vehicle with the receiver feature an isotropic

radiation pattern. The key radiation pattern will not be a subject of the following discussion

as the vehicle determines the system much stronger.

Upon such simulated radiation pattern it is possible to predict exactly RKE system fun-

ctionality for each polarization. Moreover knowing the difference between the Attenuation

values for PEC and asphalt, it is sufficient to simulate the radiation pattern of the vehicle

in the nearest distance in far field region. Upon this measurement or simulation, system

functionality for further distances may be estimated.
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6.7.5 Conclusions

One of the most important benchmark for automobile access systems as RKE is the max-

imum range. The functionality of the system in terms of the distance is determined by a

link budget calculation. The behaviour of the attenuation is necessary for range predic-

tion. After comparison of the measured, simulated and analytically calculated values for

the attenuation in free space and over the ground, the following conclusions can be written:

• For PEC, the difference between the horizontal and vertical polarization is particu-

larly remarkable.

• For asphalt, there is no difference in the attenuation for both polarizations. So the

attenuation is here polarization independent.

• The material parameters for asphalt do not lead to important differences between the

attenuation values. This conclusion is very important for future RKE measurements.

No special area test site is necessary and the measurements may be done and

compared with each other independent on the asphalt type.

• The attenuation on asphalt is almost frequency independent from 30 m distance.

• In free space, 6 dB are needed to double the range. On asphalt 10 dB are necessary.

6.8 TPMS Component Simulation

In order to establish an accurate system simulation it is mandatory to assure that very simu-

lation element is modeled in the right manner and delivers stable as well as accurate results.

Complex system elements contribute to overall TPMS simulation process. The very basic

components as stand alone WU and receiver were under investigation in Chapter 5. Next

step is to estimate the rim and tyre influence on the WU performance. The functionality

of TPMS system and therewith also its components was determined within this thesis only

for frequency of 433.92 MHz.

Firstly a slick tyre with relatively uncomplicated structure was under investigation. After

assuring that the simple model delivers good performance in therms of resemblance

between simulated and measured characteristics, more complex tyres models (conven-

tional, SSR) were prepared. The performance was checked always for the WU on the

rim and afterwards in tyre cavity. Chapter 6.8.1 to Chapter 6.9.4 present the results of the

here described investigations.
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6.8.1 Slick Tyre

Measured and simulated results for radiation pattern of the chosen slick tyre are presented

in Fig. 6.25. Relevant measurement plains are explained in Fig. 6.24.

(a) Sim. model -
cross section

(b) xy meas. plane (c) xz meas. plane (d) yz meas. plane

Figure 6.24: Orientation of slick tyre during radiation pattern measurement

The slick tyre was measured with WU equipped with the Inverted F Antenna. The influence

of tyre and rim on the characteristics of the radiation pattern may be here easily observed.

The rim presence causes gain losses of approx. 4 dB (with small deviations in dependency

on the measurement plane and polarization). Very significant for slick tyre is the fact

that the radiation pattern is not much influenced by the tyre itself. Only small changes in

the amplitude and radiation pattern form are observable. This is due to the fact that the

distance to the tyre thread from the WU is significant and the tyre is not reinforced by

metallic wirings in the tread.

It may be easily recognized that the results for the WU on the rim as well as results in

tyre cavity match well taking into account simulated and measured characteristics of the

radiation pattern. Small discrepancies result from the positioning misalignment on the

rotation table in the anechoic chamber. Comparison of the measured and simulated values

confirms very good model accuracy.

After the above finding (accurate modeling of a relatively simple structured slick tyre) a

further step may be approached and tyres with more complicated structure and their models

may undergo an examination. Firstly the results for both sensors equipped with IFA and

loop antenna on a rim will be discussed. Further the discussion will lead to the examples

of the interaction between the conventional and SSR tyre models with both WUs.
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Figure 6.25: Measured and simulated radiation pattern of WU with Inverted F

Antenna in slick tyre cavity
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6.8.2 WU on the Rim

For the simulation purposes a fully assembled WU together with valve was positioned on

two rims of choice. The reason for both measurements was to assure model accuracy and

result repeatability.

For the investigations a rim with the diameter of 15" (rim equivalent for 195/65 R15 tyre,

further called small rim) and a rim with the diameter of 18" (rim equivalent for 245/40 R18

tyre, further called big rim) were selected. The most important dimensions of the rim as the

radius, width, number of spokes and their width, the inner and outer profile were measured

and modeled exactly to correspond well with the reality. Scalable rim model was presented

in Chapter 6.3.

WU on the rim for simulation and measurement purposes was oriented as in Fig. B.2. This

is the reference positioning for all following radiation pattern characterization. Influence

of the rim on radiation characteristics for both WUs (IFA and loop) was determined and is

depicted in Fig. 6.26 for the small rim and in Fig. 6.27 for the big rim.

Comparing the above figures, the following conclusions may be drawn:

• Both rims influence the radiation pattern characteristics.

• Both shape and amplitude of the radiation pattern changed for WU with IFA and

WU with loop (in comparison to the stand alone WUs).

• The radiation pattern shape for both WU with IFA and WU with loop does not

change much in dependency on the rim size.

• In case of both WUs the simulation results match very well with the measurement.

Apart from the good accuracy of the achieved results, one very interesting effect may be

observed. In comparison the the stand alone WUs:

• Interaction of the rim with WU antenna IFA results in slight Gain decrease.

• Interaction of the rim with WU antenna loop results in Gain increase.
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Figure 6.26: Comparison of simulated and measured gain for WU with Inver-

ted F Antenna and WU with loop on the rim (195/65 R15)
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Figure 6.27: Comparison of simulated and measured gain for WU with

Inverted F Antenna and WU with loop on the rim (245/40

R18)

The positioning of the loop antenna on the rim is not coincidental. In this case there

are two main possible directions to place the WU on the rim. Radiating element (loop)

along (Fig. 6.28a) and perpendicular (Fig. 6.28b) to the rim edge. Before the decision was

made to place the loop always perpendicular to the rim edge, specific behaviour of this

antenna was under investigation. The radiation characteristics improve when the loop is
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positioned perpendicular to the rim edge. The most significant points of the investigation

include following conclusions:

• The loop antenna performance is better on a rim than in free space (stand alone WU).

• Considering radiation characteristics of stand alone WU and on a rim, the antenna

Gain increased by 5 dB. This effect is noticeable both on small (R15) and big (R18)

rim.

• The loop antenna placed along the rim edge does not deliver as good performance as

loop antenna placed perpendicular to the rim edge.

(a) WU with loop along rim edge (b) WU with loop perpendicular to the rim
edge

Figure 6.28: Two possibilities to position loop antenna on a rim

There are few factors that contribute to the above described performance:

• When the WU is placed on a rim, the radiation characteristic becomes more

directive. Rim acts as a reflector (well observable in Fig. 6.29).

• Observable change of characteristic antenna parameters, listed in Table 6.5.

Parameter
WU loop

stand alone (case 1)
WU loop along

the rim edge
WU loop perpendicular
to the rim edge (case 2)

Gmax in dBi -21.1 -19 -12.1

η in dB -16.2 -17.3 -9.1

Rrad in mΩ 4.5 4.6 23.4

Table 6.5: Characteristic antenna parameters for WU with loop antenna (Gmax -

max. Gain, η - Efficiency, Rrad -Radiation Resistance)

The highest achieved gain was in the case of WU with loop antenna placed on a rim

in perpendicular orientation to the rim edge. Remarkable is the change in the values
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of Radiation Resistance. For stand alone WU with loop antenna (case 1) and the

same WU placed along the rim edge the Radiation Resistance values are very close

with less than 5 mΩ. Radiation Resistance raised to 23.4 mΩ when the WU was

placed in perpendicular position to the rim edge (case 2).

Generally the higher the Radiation Resistance, the higher the Radiated Power Pr .

There is a linear dependency between radiated power and radiation resistance.

Related to a certain antenna point, the Radiation Resistance Rrad is equal to the

Radiated Power Prad divided by the square of the RMS-value (Root Mean Square)

of the antenna current I in this point [88]:

Rrad =
Prad

I2
(6.17)

Because of the linear dependency the above mentioned equation can be used to for-

mulate a relationship between two cases: stand alone WU and WU placed perpen-

dicular to the rim edge.

I2 =
Pradcase1

Rradcase1

and I2 =
Pradcase2

Rradcase2

(6.18)

=⇒ Pradcase1

Pradcase2

=
Rradcase1

Rradcase2

(6.19)

Herewith follows the difference in the radiated power for both cases:

ΔPrad = 10log
Rradcase1

Rradcase2

= −7.16 dB (6.20)

Comparing the above theoretical calculated value with the difference in the simula-

ted efficiency value for both cases of 7 dB, the outcome of 7.16 dB is very accurate.

The value may not be compared directly with the maximum reached Gain for both

cases as the radiation characteristic became more directive upon rim influence. The

difference in the maximum reached Gain for both cases is higher and amounts

9.1 dB.

• Comparison of WU with loop antenna placed on a rim along the rim edges and

perpendicular to the rim edges and their performance is illustrated clearly upon the

comparison of the E field distribution in Fig. 6.29. All cases were depicted with the

same scale of the field intensity. It is very clear that the magnitude of the E field in

the perpendicular case is much higher.
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Figure 6.29: Comparison of the E field distribution of a WU with loop antenna on a rim Aa -

top view, loop along. Ba - cross section, loop along, Ca - side view, loop along,

Ap - top view, loop perpendicular. Bp - cross section, loop perpendicular, Cp -

side view, loop perpendicular

Based on the above discussion, it is recommended to place the WU with loop antenna

in position loop perpendicular to the rim edge. All further investigations assume such

positioning. Investigations of the tyre models and whole TPMS are done in following

Chapters with WU with IFA and loop.

6.8.3 WU on the Rim with Conventional Tyres

Good model quality of the entity rim with WUs was assured in the previous Chapter. Next

step is the simulation and approval of the prepared models for conventional tyres. In Chap-

ter 3 it was shown that in RF terms there is no difference between conventional summer and

winter tyres. Also the tyre brand does not influence the radiation characteristics. Therefore

it is required to simulate only one chosen tyre as a representative for all conventional tyres

of the chosen size.

Big tyres (245/40 R18) will be presented here as these are further required for full TPMS

simulation. As representative tyre Pirelli P Zero Rosso was chosen. Applied electrical pa-

rameter values are listed in Table 4.4.



6.8. TPMS COMPONENT SIMULATION - 149 -

Fig. 6.30 presents measurement as well as simulation results for the chosen tyre with WU

IFA in tyre cavity. Fig. 6.31 presents measurement as well as simulation results for the

chosen tyre with WU loop antenna in tyre cavity.

After the first analysis of the above presented figures, it may be stated that the conventional

tyre models are very accurate. Both the media as well as the skin effect model for the WU

with IFA and loop deliver accurate results when compared to the measured values. Model

accuracy is confirmed also when analyzing the maximum, minimum and average values

listed in Appendix B, Table B.13 for the WU with IFA, Table B.14 for the WU with loop.

When compared with stand alone sensors and sensors placed on the equivalent rim (R18),

the radiation pattern changed. Both for WU with IFA and loop conventional tyres introduce

about 2 to 3 dB losses when compared to the radiation characteristics of these sensors on

rim without any tyre.
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Figure 6.30: Comparison of simulated and measured gain for WU with

Inverted F Antenna with conventional representative tyre

(big summer tyre 245/40 R18 Pirelli P Zero Rosso)
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Figure 6.31: Comparison of simulated and measured gain for WU with

loop antenna with conventional representative tyre (big sum-

mer tyre 245/40 R18 Pirelli P Zero Rosso)
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6.8.4 WU on the Rim with Self Supporting Runflat Tyres

Self Supporting Tyre model was presented in Chapter 6.4.3. Simulation and measure-

ment results for representative SSR tyre are depicted in Fig. 6.32 for WU with IFA and in

Fig. 6.33 for WU with loop antenna.

Figure 6.32: Comparison of simulated and measured gain for WU with

Inverted F Antenna with SSR representative tyre (big sum-

mer tyre 245/40 R18 Bridgestone Potenza REO40)



6.8. TPMS COMPONENT SIMULATION - 153 -

Figure 6.33: Comparison of simulated and measured gain for WU with

loop antenna with SSR representative tyre (big summer

tyre 245/40 R18 Bridgestone Potenza REO40)

SSR tyre model accuracy in respect to the measurement is good. Maximum, minimum and

average values of the achieved Gain may be read from Appendix B, Table B.15 for WU

with IFA and Table B.16 for loop antenna. The characteristic for of the radiation pattern

changed in comparison to the conventional tyres. SSR tyres feature more attenuation effect
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than the conventional tyres, on average both in case of WU with IFA and with loop the

amplitude dropped by approx. 5dB.

6.9 TPMS System Characterization

Up to this point, all TPMS system components were simulated and the accuracy of the

models was approved for single components such as WU, WU on the rim with different

tyre types. also receiver performance was approved. The vehicle body and the interaction

of these components as well as transmission path was not examined yet.

This Chapter deals with the whole TPMS system performance test including measurement

repeatability, TPMS performance dependency on the tyre type, correlation between the

simulated and measured results.

6.9.1 Measurement Setup

TPMS measurements were conducted in a controlled environment on a dedicated test site.

For test repeatability the vehicle was pulled at a constant speed with the help of a winch.

Driver or passenger - generally human influence was not taken into account. Equipment

that composed the measurement setup is presented in Fig. 6.34.

Figure 6.34: TPMS measurement setup

The vehicle, WU and the receiver belong to the system under test. All measurements were

done with the same vehicle as well as the same receiver. Different tyres and WUs were in



6.9. TPMS SYSTEM CHARACTERIZATION - 155 -

use. The influence of different vehicle bodies is not a subject of this work.

In order to minimize the influence of the measurement equipment on the results it was posi-

tioned in the trunk. The phenomenon of Faraday cage [127] was used in order to minimize

the interference that could occur. Coaxial cable from the receiver was laid following the

metallic vehicle structure along the roof and C-pillar. Measured attenuation of the applied

coaxial cable of 1.2 dB was taken into account during system evaluation.

Measurement equipment includes the spectrum analyser connected via GPIB interface with

the PC (LabView virtual instrument which gathers the data from the spectrum analyzer and

the angle sensor) and power supply. The spectrum analyzer measured the varying received

power in dependency on the wheel position. In order to know the exact wheel position and

therewith the WU position an angle sensor was applied. The measurements were conducted

for each of the four wheels separately.

6.9.2 Measurement Repeatability

Every TPMS measurement was started with the same wheel position and the received

power was measured over three full wheel turns to check and assure result repeatability.

The measurements started with the WU positioned at zero degrees indicated in Fig. 6.35a.

(a) Wheel rotation direction and sen-
sor position indication

(b) Example measurement result - received power
from WU in conventional tyre cavity over three
wheel rotations

Figure 6.35: Wheel rotation

Example measurement of the received WU power in conventional tyre cavity (245/40 R18)

is presented in Fig. 6.35b. The three consequent wheel turns deliver slightly different re-

sults when the amplitude of the received power is considered. The difference between each
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wheel turn is in the range of 3 dB. For all further results an average over three consequent

wheel turns is calculated.

6.9.3 TPMS Characterization with Conventional Tyres

TPMS system was characterized with conventional tyre type for: the WU with IFA and loop

antenna. The measured profile of the radio frequency channel of propagation is presented

in Fig. 6.36 for WU with IFA and in Fig. 6.37 for WU with loop.

(a) Front left wheel (b) Front right wheel

(c) Rear left wheel (d) Rear right wheel

Figure 6.36: Measured received power over the angular sensor position for conventional

tyre 245/40 R18 with WU IFA in tyre cavity
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(a) Front left wheel (b) Front right wheel

(c) Rear left wheel (d) Rear right wheel

Figure 6.37: Measured received power over the angular sensor position for conventional

tyre 245/40 R18 with WU loop in tyre cavity

TPMS system was characterized for both WU sensors with IFA and loop with the help of

the same example tyres. Received power varies in dependency on the angular WU position.

Following conclusions and knowledge was obtained:

• All tyres of one construction type (here presented conventional tyres) deliver similar

characteristics of the RF TPMS channel.

• Each wheel features different channel characteristic. Received power level has to be

characterized for each wheel separately.
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• WU equipped with loop antenna delivers higher Received Power than the WU

equipped with IFA. Power drops for the WU with loop are not so deep as for WU

with IFA.

• In both WU cases generally the amplitude of the Received Power is higher for WU

positions between 90 and 270 deg. This means when the WU leaves the wheelhouse

and is closer to the ground.

6.9.4 TPMS Full System Simulation

TPMS full system simulation requires high computational resources. Therefore in scope

of this work full system simulation was conducted only for one wheel. Simulation result

for left front wheel with conventional tyre and WU with IFA is depicted in Fig. 6.38a.

Analytical model for TPMS full system simulation is depicted in Fig. 6.38b.

(a) Simulation and measurement results of the
received power between the WU with IFA in
left front conventional tyre cavity and the re-
ceiver

(b) Analytical model for TPMS computation

Figure 6.38: TPMS simulation

It may be observed that also full TPMS simulation confirms high accuracy of the prepared

parametric models. Simulated received power curve progression follows very well the
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measured RF channel characteristic. Amplitude offset of approx. 6 dB is caused by the fact

that the vehicle interior influence is not considered in the simulation process.

Essential is the existence of the RF link between the receiver (vehicle) and WU placed in

tyre cavity. With the above achieved results main factors that have impact on the TPMS

RF propagation are known. It is clear in which way do such elements as WU, rim, tyre and

vehicle body influence the system performance. It is possible to formulate the Link Budget

for TPMS with following formula:

Sr ≥ Pt +GWU +ARIM +ATY RE +AV EHICLE + Fs (6.21)

The receiver system sensitivity Sr has to be in a certain balance, at least equal or in the

optimal case greater than following listed factors.

• The transmitted power at the feeding point of the WU antenna Pt.

• The average gain of the WU antenna GWU .

• Rim influence ARIM .

• Tyre influence ATY RE .

• Vehicle body influence AV EHICLE .

• The reliability system factor Fs, which comprises tolerance of all system compo-

nents and ensures confidence margin for the system functionality as well as human

influence.

Additionally system performance is dependent on the vehicle environment and it should be

always assured by appropriate measurements in different conditions. This influence should

be taken into account when setting the level of system reliability factor Fs upon experience.

Based on the considerations of all factors analyzed in this thesis following example values

and limits presented in Table 6.6 may be considered.

The value of transmitted power Pt is system specific and very often regulated by national

law of each country. Therefore this value may not be treated as a generic one and will

be specific for each new designed system. In order to ease the comparison between the

analyzed WUs it was set to the same value of 5.5 dBm.

Achieved average Gain of a single stand alone WU is specific for the antenna design

and may be approved with simulation, measurement or theoretical calculation. The here

achieved average values of GWU are for IFA -16.6 dBi (fulfilled the requirements) and
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for loop -23.1 dBi (approved for further investigations due to antenna type (magnetic), see

Chapter 5.3). These values may also not be treated as generic ones but design specific.

Antenna Pt avg.GWU ARIM ATY RE AV EH.

IFA 5.5 dBm -16.6 dBi -6.1 dB

Conv.:

-7.7 dB
-10 dB

SSR:

-11 dB

LOOP 5.5 dBm -23.1 dBi 5.1 dB

Conv.:

-3.7 dB
-10 dB

SSR:

-8.5 dB

Table 6.6: Characteristic values of characterized TPMS system

Rim influence is described by ARIM . Within the underlying work two rim sizes were un-

der investigation. For electric antenna types (e.g. IFA) rim introduces losses, whereas for

magnetic antenna type (e.g. loop) introduces amplification. This phenomenon was observ-

able for both rim sizes. Analyzed WU with IFA antenna lost 6.1 dB in Gain on average and

WU with loop antenna gained 5.1 dB. The rim influence may be treated as general true for

the in the future designed systems.

Tyre influence is described with ATY RE . Three tyre types were analyzed: slick, conven-

tional and Self Supporting Runflat. Firstly slick tyre model was approved as the tyre with

the least complicated structure. This tyre type is however only used for special applications

as car racing. For this reason only one single tyre was analyzed and allowed investigation

of the accuracy for more complicated tyre models. Generally tyres influence much more

the electric antenna types as the magnetic ones. For WU with IFA conventional tyres intro-

duce approx. 8 dB and SSR tyres 11 dB loss. In case of WU with loop antenna these are

approx. 4 dB and 9 dB equivalent for conventional and SSR tyres.

Vehicle influence AV EHICLE in the specific analyzed case introduced the loss of 10 dB

due to vehicle interior parts.

The here described values for the Link Budget present a guideline and basis for future

system development and analysis.



7 Conclusions

The here presented work contributes to the advancement in RF automotive examination.

Application of low / high-end wired and wireless electronics emerges meanwhile almost

all in vehicle integrated functions. Within the scope of this work examined were such

systems as PASE, RKE and TPMS. All considerations were exemplified on one predefined

vehicle body.

Important to stress is that all system components and their influence on the overall system

performance were considered in the work. This includes vehicle specific parts as chassis,

rim and tyres, as well as system specific components as receiver module and WUs. Exam-

ination of the described systems functionality incorporated both practical measurements

and simulative tasks.

The main focus was put not only on the system performance improvement and quality

assurance, but mostly on the reduction of the time dedicated to the proceeding develop-

ment steps. These steps usually require many iterative measurements both in the precon-

ditioned laboratory environment as well as vehicle application tests. The main challenge

was to create a stable simulation environment for all systems incorporating library with all

vehicle and system parts. Standard, parametric simulation models were created that allow

meaningful reduction of preparation and simulation time. In order to achieve this, it was

essential to understand the influence of all system components and of the applied materials

(dielectric material characterization) on RF overall system performance.

Reflecting shortly to PASE, RKE and TPMS systems in detail, Fig. 7.1 presents briefly all

system components under consideration and the most important conclusions.

Figure 7.1: Result overview and analyzed system component presentation
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Upon the study following conclusions reveal:

• The radiated power from a Wheel Unit is dependent on the rim size and form.

• There is no difference in the radiated characteristic independent whether winter or

summer tyres are in use.

• Conventional and SSR tyres feature different radiation characteristic.

• Tyre attenuation is specific for each tyre brand.

• SSR tyres contribute to more attenuation than conventional tyres.

• Small tyres reveal more attenuation than bigger tyres.

• Vehicle body and the surrounding materials influence the performance of the receiver

module.

• An algorithm was presented how it is possible to search for a preferred, optimum

receiver position.

• Vehicle structure and vehicle surrounding influence system performance.

With the presented thesis RF simulations became an integral part in the system design

and the application process. Following advantages were achieved with the help of the

underlying work:

• Better overall system understanding.

• Prediction of system behaviour in all steps of product lifecycle: predevelopment,

development, application, SOP and maintenance.

• RF system parameter control (link budget, range, module (antenna) position, antenna

gain, attenuation (material influence)).

• Easy prediction of system performance if any changes occur (new vehicle body,

facelift, harness guidance, new tyre models, new rim models, packaging variations,

new applied materials etc.).

• Simplified and fast evaluation of automotive RF components thanks to pre-

configured simulation models.

• Avoidance of costly iterative processes and mistakes.

• Controlled system reliability.

• Reduction of development and application time.

The here presented work for the first time treats all three systems with their complexity

and confirms possibility to deliver parametric, reusable RF simulation models. The aim to

reduce effort significantly for the system design and application was achieved.

Here described simulation methodology may be applied to any other RF automotive system
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and the achieved specific results for PASE, RKE and TPMS are to be treated as a show-

case incorporating different frequency ranges and vehicle body elements (varying range

of the ratio element size and wavelength). All aspects of complex automotive simulation

processes (element classification, material influence and characterization, model simplifi-

cation, radiation characteristics, etc.) were taken into account and form a guide for auto-

motive engineering industry. The work presents the "how to" electromagnetic automotive

simulation and forms the basis, for the system design and optimization for vehicle manu-

facturers as well as system suppliers.

CHAPTER 7. CONCLUSIONS
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A Additional General Information on Tyre Classification

Annex A gathers all additional, accompanying information required for tyre classification

process. Firstly possible classification criteria are presented, followed by basic information

about tyre annotations and explanation of such therms as speed and load index. Based on

this information tabelarized overview for conventional and SSR tyres is presented. Finally

representative tyres for further analysis are chosen and listed.

Classification describes the possibility to arrange the subject of matter into certain groups

with predefined characteristics. Annex A summarizes all the effort that was needed from

statistics to mechanical, geometric and structural point of view in order to make tyre classi-

fication possible. Firstly upon analysis of all these themes a correct choice of representative

tyres for electromagnetic investigation was possible.

A.1 Standardized Tyre Classification Criteria

Tyres available on the market are very well labelled products, classified upon geometrical

construction, size, maximum rotation speed, load index, tread profile and usage (winter,

summer or all season tyres). Overall there are twelve major information blocks upon which

tyres are described and recognized. Fig. A.1 depicts a typical tyre. Explanation for all

information blocks is gathered summarized in Table A.1 and Table A.2.

Figure Code on the tyre Explanation

A.1 (1) Continental Manufacturer or brand name

A.1 (2) ContiPremiumContact 2 Product name

A.1 (3) 205 / 55 R 16 Tyre size and construction type

A.1 (4) Radial Tubeless Tyre construction type

A.1 (5) 91V Load and speed index (see Table A.3)

A.1 (12) SSR Tyre type: Self Supporting Runflat

Table A.1: Tyre description - physical description

First information to find on a tyre is the manufacturer with his brand name Fig. A.1 (1).

Further each tyre has got a specific product name Fig. A.1 (2) which normally is related to

tyre usage.



- 174 - APPENDIX A. ADDITIONAL GENERAL INFORMATION ON TYRE CLASSIFICATION

Figure Code on the tyre Explanation

A.1 (6) E4 Compliance with ECE regulations

A.1 (7) DOT Compliance with safety standards in USA

A.1 (8) 0227293-s Approval number of ECE regulation

A.1 (9) 2206 Production date

A.1 (10) TWI Tyre Wear Index

A.1 (11) Made in Germany Country of production

Table A.2: Tyre description - regulations and standards

Figure A.1: Tyre labels: (1) Brand, (2) Name, (3) Size, (4) Tube type, (5) Tyre load and

speed index, (6) Compliance with ECE regulations, (7) Department of Trans-

portation, (8) Approval number acc. to relevant ECE regulation, (9) Production

code, (10) Tread Wear Indicator, (11) Country of origin, (12) Special designa-

tion for SSR runflat tyres

Third important parameter is the tyre size Fig. A.1 (3). In presented example it is

205 / 55 R 16. This means that the tyre has width of 205 mm. Side wall height is ex-

pressed as percentage of the width, in this case height is equal 55 % of 205 mm which

results in 112.75 mm. Height - width ratio between 55 % and 65 % is standard for many

vehicles today, whereas modern tyres for high performance cars are having height - width

ratio as low as 25 % [135]. Rim diameter is expressed always in inch, in this case 16 inch

which corresponds to 406.4 mm (1 inch = 25.4 mm). Letter R corresponds to tyre con-
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struction type Fig. A.1 (4). Tyres may have either radial or diagonal construction. R stands

for radial construction. Presented tyre is a tubeless Fig. A.1 (4) tyre. Typical vehicle tyres

are tubeless nowadays with exception of some special, heavy duty machines and bicy-

cles. Tyre load (Fig. A.1 (5)) in example is 91 which corresponds to 615 kg. Speed index

(Fig. A.1 (5)) is to be read from the Table A.3. Letter V corresponds to max 240 km / h.

Last marking that reveals physical description is the information that the tyre belongs to

construction type namely Self Supporting Runflat (SSR) tyre Fig. A.1 (12).

All further markings correspond to international regulations and not any more to physi-

cal description. Inscription indicating compliance with ECE (Economic Commission for

Europe) regulations Fig. A.1 (6) indicates the country of homologation (E4 = the Nether-

lands).

The tyre safety standards for the competent US Department of Transportation is repre-

sented by Fig. A.1 (7). Fig. A.1 (8) is an approval number acc. to relevant ECE regulation.

Production code Fig. A.1 (9) reveals production date "2206" means 22nd week of year

2006.

Apart from the information how old the tyre is, is the Tread Wear Indicator (TWI)

Fig. A.1 (10). Further marking indicates where the tyre was produced Fig. A.1 (11).

A.2 Tyre Speed and Load Index

Tyre speed index defines the maximum speed that a properly inflated tyre may sustain with-

out a risk of uncontrolled puncture or increased wear off. The load index on a passenger

car tyre is a numerical code stipulating the maximum load (mass, or weight) each tyre can

carry. Index explanation is to be found in Table A.3. Compilation of all tyres available on

the market was done upon speed index and tyre size - see Chapter A.3 to Chapter A.6.

The analysis showed very clearly that the present tyres feature applicability for higher

speeds and low speed indexes are not popular. Most conventional summer and winter tyres

have got speed index T or H which reflects to the maximum speed of 190 km/h to 200 km/h.

SSR tyres permit diving at higher speeds over 200 km/h with W, ZR and Y speed index.
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Speed Max. Load kg Load kg Load kg Load kg

Index Speed Index Index Index Index

M 130 km/h 50 190 69 325 88 560 107 975

P 150 km/h 51 195 70 335 89 580 108 1000

Q 160 km/h 52 200 71 345 90 600 109 1030

R 170 km/h 53 206 72 355 91 615 110 1060

S 180 km/h 54 212 73 365 92 630 111 1090

T 190 km/h 55 218 74 375 93 650 112 1120

U 200 km/h 56 224 75 387 94 670 113 1150

H 210 km/h 57 230 76 400 95 690 114 1180

V 240 km/h 58 236 77 412 96 710 115 1215

W 270 km/h 59 243 78 425 97 730 116 1250

Y 300 km/h 60 250 79 437 98 750 117 1285

ZR > 240 km/h 61 257 80 450 99 775 118 1320

2 265 81 462 100 800 119 1360

63 272 82 475 101 825 120 1400

64 280 83 487 102 850 121 1450

65 290 84 500 103 875 122 1500

66 300 85 515 104 900 123 1550

67 307 86 530 105 925 124 1600

68 315 87 545 106 950

Table A.3: Tyre speed index with corresponding maximum speed and tyre load index with

corresponding weight
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A.3 Overview of Conventional Summer Tyres

Fig. A.2 comprises all conventional summer tyres available on the European market in

2007. Tyres from selected manufacturers, having biggest market shares, are taken into

consideration: Continental, Goodyear, Pirelli, Michelin, Dunlop and Bridgestone.

Figure A.2: Compilation of all conventional summer tyres available on the market in 2007 -

selected manufacturers
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A.4 Overview of Conventional Winter Tyres

Fig. A.3 comprises all conventional winter tyres available on the European market in year

2007. Tyres from selected manufacturers, having biggest market shares, are taken into

consideration: Continental, Goodyear, Pirelli, Michelin, Dunlop and Bridgestone.

Figure A.3: Compilation of all conventional winter tyres available on the market in 2007 -

selected manufacturers
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A.5 Overview of SSR Summer Tyres

Fig. A.4 comprises all SSR summer tyres available on the European market in year 2007.

Tyres from selected manufacturers, having biggest market shares, are taken into consider-

ation: Continental, Goodyear, Pirelli, Michelin, Dunlop and Bridgestone.

Figure A.4: Compilation of all SSR summer tyres available on the market in 2007 - selected

manufacturers
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A.6 Overview of SSR Winter Tyres

Fig. A.5 comprises all SSR winter tyres available on the European market in year 2007.

Tyres from selected manufacturers, having biggest market shares, are taken into consider-

ation: Continental, Goodyear, Pirelli, Michelin, Dunlop and Bridgestone.

Figure A.5: Compilation of all SSR winter tyres available on the market in 2007 - selected

manufacturers
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A.7 List of Conventional and SSR Tyres Chosen for Analysis

Tyres chosen for analysis are listed in Table A.4.

Summer Tyres Winter Tyres

Conventional 195/65 R15 Conventional 195/65 R15

Manufacturer Product Name Speed Index Product Name Speed Index

Continental EcoContact 3 T TS 810 T

GoodYear Vector 5+ T UltraGrip 7 T

Pirelli P6 T Snow Sport 190 T

Michelin Energy E3A T Alpin A3 T

Dunlop SP 30 T Winter Sport 3D T

Bridgestone B250 T Blizzak LM-25 T

Conventional 245/40 R18 Conventional 245/40 R18

Manufacturer Product Name Speed Index Product Name Speed Index

Continental Sport Contact 2 V Winter Contact TS810 V

GoodYear Eagle F1 Assymetric Y Ultra Grip V

Pirelli P Zero Rosso Y Sottozero V

Michelin Piolot Sport Y Pilot Alpin V

Dunlop Sport 01 Y Winter Sport M3 V

Bridgestone Potenza RE050 Y *

SSR 245/40 R18 SSR 245/40 R18

Manufacturer Product Name Speed Index Product Name Speed Index

Continental Sport Contact 3 W *

GoodYear Eagle NCT Y Eagle Ultra Grip V

Pirelli Euforia Y Sottozero W240 V

Michelin * *

Dunlop SP Sport 01 Y SP Winter Sport M3 V

Bridgestone Potenza RE 040 ZR *

Table A.4: Overview of conventional and SSR tyres chosen for further analysis

(*Tyres not available on market at the time of the investigation)





B Radiation Pattern Measurement

Annex B complements the thesis with information on radiation pattern measurement setup

as well as detailed numerous measurement results accompanying tyre characterization pro-

cess. Chapter 3 and Chapter 5 refer hereto.

Complementary to Chapter 3 characteristic measured radiation pattern of the chosen con-

ventional and SSR tyres as well as average Gain values are presented. Further, complemen-

tary to Chapter 5 and Chapter 6 detailed results are presented of the characteristic measured

and simulated values for:

• Gain of the stand alone Wheel Units.

• Gain of the Wheel Units on the rim.

• Gain of the Wheel Units on the rim with representative tyres.

The antenna radiation pattern is the information on the radiation properties of the antenna

as a function of a spherical coordinate system (Fig. B.1).

(a) Definition of rectangular coordinate
system (x,y,z) and spherical coordinate
system (r, Θ, Ψ).

(b) Isotropic radiation characteristic

Figure B.1: Definition of coordinate systems and isotropic radiation pattern

Radiation pattern describes spatial radiation behaviour. An isotropic radiator, which ex-

hibits the same radiation in any direction form the electromagnetic source, depicted in

Fig. B.1b, is not possible to be realized and is set as a comparison standard [39].

For radiation pattern characterization beneath, presented in Fig. B.2, orientation in the

coordinate system and principal planes definition was set. This is the reference for all

simulations and measurements of radiation pattern characteristics in the whole document.
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(a) Wheel Unit with IFA / loop (b) Wheel Unit on the rim (c) Wheel Unit on the rim with tyre

Figure B.2: Measurement and simulation coordinate system

B.1 Radiation Pattern Measurement Setup

The here described radiation pattern measurement setup for any Device / Material Under

Test (DUT / MUT) and the orientation (positioning) of the DUT is valid for all achieved re-

sults in the thesis. Radiation pattern characterization was conducted in an anechoic cham-

ber. The measurement setup consisted of receiver antenna, test receiver and a computer

controlled turn table with DUT. Turn table rotation was controlled over 360◦ with resolu-

tion of 2◦.

MUT may be any object, that radiates electromagnetic energy. In case of this thesis these

are such antenna modules as WU and receiver, bigger objects as WU on the rim or in tyre

cavity. Measurement setup with tyre as MUT is visible in Fig. B.3.

Figure B.3: Radiation pattern measurement setup
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The corresponding measurement block diagramm of the described measurement setup is

given in Fig. B.4.

Figure B.4: Block diagram of Two-Antenna-Method measurement setup

Both parts, system under investigation (DUT) and the measurement chamber infrastructure

(Test Setup), are linked by RF-Channel. In Two-Antenna-Method [14] all relevant mea-

surement and system parameters are well defined and used for the post-processing of the

acquired characterization data.

B.2 Radiation Pattern Influenced by Conventional Tyres -
Detailed Results

Annex B.2 gathers complementary results to Chapter 3 where radiation pattern influenced

by different conventional tyre brands was discussed.

Measured radiation patterns are depicted respectively:

• for small (195/65 R15) summer tyres in Fig. B.5

• for small (195/65 R15) winter tyres in Fig. B.6

• for big (245/40 R18) summer tyres in Fig. B.7

• for big (245/40 R18) winter tyres in Fig. B.8.

Already after the first evaluation comparison it may be stated that the radiation pattern

shape is the same for every measured tyre of the same size. What is readable from am-

plitude differences, is that tyre of every manufacturer reveals its specific damping. It is
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however important to note, that taking into account typical measurement accuracy in ane-

choic chamber of 3 dB, these differences are rather small.

The best (with the highest radiation amplitude) small, summer tyre is the Continental Eco

Contact, whereas the worst (with the lowest radiation amplitude) tyre seems to be Bridge-

stone B250. Maximum measured gain difference between the average values is 4.7 dB

(Table B.1). The best small, winter tyre is the Bridgestone Blizzak LM 25. The worst

small, winter tyre is Michelin Alpin A3. Maximum difference in radiation pattern between

these two tyres amounts 5 dB (Table B.2).

Analysing the results from tyres that were classified as big tyres, the best summer tyre is

the Pirelli P Zero Rosso and best winter tyre is the Pirelli Sottozero. The worst summer tyre

is the Michelin Piolot Sport and winter tyre is the Continental Winter Contact. Maximum

gain difference between summer tyres amounts 3.9 dB (Table B.3), and between winter

tyres 2 dB (Table B.4).

B.3 Radiation Pattern Values for SSR Tyres - Detailed Results

Annex B.3 gathers complementary results to Chapter 3 where radiation pattern influenced

by different SSR tyre brands was discussed.

Table B.6 features characteristic measured radiation pattern values for SSR, (245/40 R18)

summer tyres and Table B.5 features characteristic measured radiation pattern values for

SSR, (245/40 R18) winter tyres.
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Figure B.5: Measured radiation pattern of conventional small (195/65 R15) sum-

mer tyres
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Figure B.6: Measured radiation pattern of conventional small (195/65 R15) win-

ter tyres
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Figure B.7: Measured radiation pattern of conventional big (245/40 R18) summer

tyres
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Figure B.8: Measured radiation pattern of conventional big (245/40 R18) winter

tyres
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B.4 Characteristic Measured Radiation Pattern Values - TPMS
Components

Annex B.4 gathers characteristic measured radiation pattern values in terms of an-

tenna DUT gain. For simulation and measurement results minimum, maximum and average

values were gathered in beneath tables.

B.4.1 Wheel Unit

Measured and simulated radiation pattern values for WUs (with IFA and loop antenna) are

gathered in Table B.7 and Table B.8. Both WUs are described in detail: IFA in Chap-

ter 5.3.4 and loop in Chapter 5.3.6.

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -16.0 -22.6 -18.4 -24.5 -25.0 -24.8 -15.5 -20.6 -17.5

Meas. -15.6 -20.8 -17.4 -22.7 -26.5 -24.2 -14.9 -19.1 -16.6

yz
Sim. -22.5 -36.4 -25.4 -16.5 -42.2 -19.6 -16.3 -23.2 -18.6

Meas. -20.4 -29.3 -22.9 -16.2 -47.3 -19.4 -15.9 -20.5 -17.8

xz
Sim. -16.0 -17.4 -16.7 -24.5 -51.5 -27.6 -15.4 -17.3 -16.4

Meas. -15.3 -17.4 -16.1 -22.8 -40.4 -25.9 -14.9 -17.0 -15.7

Table B.7: Characteristic measured radiation pattern values for stand alone Wheel Unit

with Inverted F Antenna

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -28.4 -31.8 -29.8 -24.6 -37.7 -27.4 -23.1 -30.7 -25.4

Meas. -30.7 -34.8 -32.1 -22.9 -49.0 -25.9 -21.1 -31.1 -23.9

yz
Sim. -28.4 -31.1 -29.5 -24.5 -24.8 -24.6 -23.1 -23.8 -23.4

Meas. -30.4 -42.6 -34.1 -21.9 -22.2 -22.0 -21.4 -22.0 -21.7

xz
Sim. -23.9 -43.5 -26.9 -29.7 -69.5 -32.9 -23.4 -32.7 -25.9

Meas. -22.5 -43.3 -25.4 -35.9 -65.9 -39.0 -21.4 -36.5 -24.2

Table B.8: Characteristic measured radiation pattern values for stand alone Wheel Unit

with loop

B.4.2 Wheel Unit on the Rim

Wheel Unit was measured on small (15") and big (18") rim. This Appendix gathers com-

plementary results to Chapter 6.8.2. Measured and simulated radiation pattern values for

WUs with IFA and loop antenna with 15" rim are gathered in Table B.9 and Table B.10.

Measured and simulated radiation pattern values for WUs with IFA and loop antenna with

18" rim are gathered in Table B.11 and Table B.12.
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Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -29.5 -40.4 -32.9 -23.0 -28.6 -25.5 -22.9 -27.1 -24.8

Meas. -30.6 -54.9 -33.9 -24.8 -29.9 -26.2 -24.5 -27.7 -25.5

yz
Sim. -28.9 -43.2 -32.7 -20.7 -29.2 -24.4 -20.2 -28.9 -23.8

Meas. -27.7 -41.7 -30.3 -23.2 -31.3 -26.6 -22.1 -30.3 -25.0

xz
Sim. -24.5 -39.1 -27.9 -22.3 -45.7 -25.5 -21.2 -26.5 -23.5

Meas. -25.7 -40.4 -29.2 -24.0 -46.5 -26.7 -23.1 -27.9 -24.8

Table B.9: Characteristic measured radiation pattern values for Wheel Unit with

Inverted F Antenna on the 15" rim (small rim)

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -23.1 -56.2 -25.5 -12.9 -53.7 -17.8 -12.9 -24.6 -17.1

Meas. -23.9 -40.9 -26.1 -14.4 -56.6 -19.5 -14.3 -25.2 -18.7

yz
Sim. -37.1 -54.8 -41.6 -12.2 -19.4 -14.7 -12.2 -19.3 -14.7

Meas. -34.2 -60.5 -37.7 -12.9 -21.3 -15.9 -12.9 -21.2 -15.8

xz
Sim. -12.2 -24.9 -16.3 -29.1 -57.0 -34.6 -12.2 -24.5 -16.3

Meas. -12.7 -27.3 -17.4 -29.8 -48.0 -34.1 -12.7 -26.3 -17.3

Table B.10: Characteristic measured radiation pattern values for Wheel Unit with

loop antenna on the 15" rim (small rim)

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -26.8 -47.1 -31.4 -22.0 -28.3 -24.2 -21.4 -27.3 -23.4

Meas. -25.9 -41.7 -30.4 -22.2 -30.1 -24.1 -21.2 -28.2 -23.2

yz
Sim. -28.9 -43.1 -33.5 -19.8 -32.0 -23.4 -19.6 -28.7 -23.0

Meas. -31.3 -41.0 -34.5 -20.3 -30.3 -23.0 -20.2 -28.9 -22.7

xz
Sim. -23.7 -39.5 -26.7 -21.7 -46.3 -24.9 -20.5 -26.2 -22.7

Meas. -22.9 -39.9 -25.9 -21.1 -49.9 -24.6 -20.5 -25.8 -22.2

Table B.11: Characteristic measured radiation pattern values for Wheel Unit with

Inverted F antenna on the 18" rim (big rim)
Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy
Sim. -23.9 -48.1 -26.5 -15.1 -54.4 -19.6 -15.1 -26.1 -18.8

Meas. -22.6 -44.7 -26.6 -17.2 -40.8 -21.9 -17.2 -26.0 -20.6

yz
Sim. -38.6 -67.7 -43.2 -12.0 -21.7 -15.1 -12.0 -21.6 -15.0

Meas. -30.1 -46.5 -33.9 -13.2 -23.7 -16.7 -13.1 -23.4 -16.6

xz
Sim. -12.1 -30.2 -16.3 -29.9 -54.4 -35.7 -12.1 -29.2 -16.3

Meas. -13.1 -34.2 -17.7 -30.3 -54.1 -36.0 -13.1 -29.9 -17.6

Table B.12: Characteristic measured radiation pattern values for Wheel Unit with

loop antenna on the 18" rim (big rim)
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B.4.3 Wheel Unit on the Rim with Tyre

Measured and simulated characteristic values of the radiation pattern for IFA with conven-

tional summer big tyre are gathered in Table B.13.

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy

Sim (Skin-effect model) -25.6 -54.0 -30.3 -24.9 -39.5 -28.1 -23.5 -39.3 -26.1

Sim (Media model) -27.0 -63.4 -31.6 -26.0 -43.2 -29.6 -24.6 -40.0 -27.5

Measurement -26.1 -49.2 -30.6 -26.3 -36.6 -30.3 -24.6 -36.3 -27.4

yz

Sim (Skin-effect model) -18.1 -46.6 -24.4 -29.3 -62.1 -35.2 -17.8 -45.1 -24.1

Sim (Media model) -20.4 -42.7 -26.2 -28.4 -53.6 -34.7 -19.8 -41.1 -25.6

Measurement -18.5 -48.5 -25.5 -30.1 -50.6 -37.2 -18.2 -43.3 -25.2

xz

Sim (Skin-effect model) -26.5 -57.8 -31.2 -21.1 -39.7 -26.1 -21.0 -28.7 -25.0

Sim (Media model) -27.5 -60.1 -32.5 -22.8 -44.1 -27.9 -22.6 -31.4 -26.6

Measurement -25.6 -58.0 -31.9 -20.5 -43.2 -25.7 -20.5 -39.0 -24.8

Table B.13: Characteristic measured radiation pattern values for Wheel Unit with

Inverted F Antenna on rim with big conventional summer tyre (245/40 R18

Pirelli P Zero Rosso)

Measured and simulated characteristic values of the radiation pattern for loop with conven-

tional summer big tyre are gathered in Table B.14.

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy

Sim (Skin-effect model) -24.2 -53.4 -27.8 -29.4 -54.1 -33.9 -24.2 -37.3 -26.9

Sim (Media model) -23.7 -57.5 -27.6 -28.6 -54.3 -32.7 -23.3 -35.4 -26.4

Measurement -23.7 -51.3 -27.5 -26.4 -45.6 -30.8 -22.6 -31.8 -25.8

yz

Sim (Skin-effect model) -33.3 -63.1 -38.9 -18.0 -35.2 -21.9 -18.0 -35.2 -21.8

Sim (Media model) -37.9 -75.9 -44.6 -16.0 -34.3 -20.2 -16.0 -34.3 -20.1

Measurement -35.7 -69.0 -41.3 -17.3 -32.8 -20.6 -17.3 -32.5 -20.6

xz

Sim (Skin-effect model) -17.9 -36.9 -21.6 -43.3 -62.9 -47.0 -17.9 -36.7 -21.6

Sim (Media model) -16.1 -40.7 -19.7 -37.2 -57.1 -42.5 -16.1 -37.3 -19.7

Measurement -17.0 -39.0 -20.4 -33.6 -62.6 -40.0 -17.0 -33.1 -20.4

Table B.14: Characteristic measured radiation pattern values for Wheel Unit with

loop antenna on rim with big conventional summer tyre (245/40 R18 Pirelli P

Zero Rosso)

Measured and simulated characteristic values of the radiation pattern for IFA with SSR

summer big tyre are gathered in Table B.15. Measured and simulated characteristic values

of the radiation pattern for loop with SSR summer big tyre are gathered inTable B.16.
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Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy

Sim (Skin-effect model) -26.3 -64.5 -33.7 -25.0 -46.9 -31.4 -24.8 -42.7 -29.4

Sim (Media model) -29.4 -55.3 -37.4 -27.6 -62.9 -33.7 -27.4 -44.7 -32.1

Measurement -30.9 -49.3 -35.9 -27.3 -47.9 -32.1 -25.7 -39.7 -30.6

yz

Sim (Skin-effect model) -28.2 -56.0 -35.4 -20.2 -50.0 -26.9 -19.6 -47.6 -26.3

Sim (Media model) -31.5 -56.0 -39.2 -23.5 -58.3 -29.8 -22.9 -51.0 -29.3

Measurement -28.0 -47.5 -34.7 -26.9 -54.7 -30.2 -24.7 -46.3 -28.8

xz

Sim (Skin-effect model) -22.6 -45.1 -29.1 -25.9 -53.2 -32.4 -22.4 -41.5 -27.4

Sim (Media model) -25.3 -52.1 -31.9 -28.0 -74.2 -34.9 -25.2 -43.2 -30.2

Measurement -26.5 -36.3 -29.7 -27.0 -57.7 -32.9 -25.1 -33.0 -28.0

Table B.15: Characteristic measured radiation pattern values for Wheel Unit with Inverted

F Antenna on rim with big Self Supporting Runflat summer tyre (245/40 R18

Bridgestone Potenza REO40)

Gain horizontal in dBi Gain vertical in dBi Gain total in dBi

Meas. plane Result max min avg. max min avg. max min avg.

xy

Sim (Skin-effect model) -23.3 -55.3 -29.2 -30.8 -66.8 -35.5 -23.3 -36.1 -28.3

Sim (Media model) -26.8 -69.9 -32.6 -31.4 -61.3 -36.4 -26.7 -37.2 -31.1

Measurement -29.0 -55.9 -31.7 -28.7 -61.0 -33.3 -26.5 -35.7 -29.5

yz

Sim (Skin-effect model) -39.3 -58.4 -46.0 -17.5 -41.9 -24.1 -17.5 -40.8 -24.0

Sim (Media model) -38.7 -72.8 -46.4 -20.0 -43.0 -26.0 -20.0 -41.5 -25.9

Measurement -41.9 -64.0 -47.8 -21.3 -36.3 -26.5 -21.3 -36.2 -26.5

xz

Sim (Skin-effect model) -17.2 -48.7 -23.8 -41.7 -87.7 -46.2 -17.2 -42.4 -23.8

Sim (Media model) -19.6 -54.0 -26.3 -37.7 -63.7 -42.5 -19.6 -38.6 -26.2

Measurement -20.9 -31.8 -24.8 -34.4 -65.0 -40.8 -20.9 -31.6 -24.7

Table B.16: Characteristic measured radiation pattern values for Wheel Unit with loop

antenna on rim with big Self Supporting Runflat summer tyre (245/40 R18

Bridgestone Potenza REO40)



C Optimal Positioning of Antennas within Vehicle
Structure

Annex C describes the developed procedure for optimal positioning of receiver antenna

within the vehicle body based on the analysis of the radiated field strength from the trans-

mitter unit. Firstly it is explained which electromagnetic simulations were conducted. The

achieved results are evaluated and visualized.

Optimal position for an antenna within a vehicle structure may be derived upon practice

and experimental values. Due to necessity of conducting numerous measurements such

approach is very time consuming and is still burdened with arguable grade of uncertainty.

It is advantageous to support valuable experience with computational methods (Chapter 6)

in order to determine the optimum antenna position.

The optimal receiver position for RKE and TPMS means, the position in which the RF

receiver is receiving the possibly highest power and it’s functionality is assured for all

possible positions of the WU mounted on each wheel.

The underneath presented method is especially eligible if an antenna has to operate for and

satisfy more than one service (Chapter 5.2). For RKE performance, any place in the vehicle

is optimal, where nearly omni-directional radiation around the vehicle is achievable. This

applies to any vehicle independent on the vehicle body structure. For TPMS system, the

situation is far more complicated. It is difficult to answer the question about the optimal

position that would satisfy best receiving performance for all four WUs simultaneously

taking into account all wheel positions. The result is highly vehicle body dependent and

the position has to be a weighted trade-off in order to built a good RF link between all

antennas. Therefore, specific simulation approach was developed.

The first step is the electromagnetic simulation (conducted with simulation software

FEKO). Simulation approach is based not on the performance examination of the receiver

in various locations within the vehicle body. The strategy of the developed procedure is to

activate one by one all the transmitters (WUs in this specific case) and record the result-

ing Electrical Field Values E within the vehicle structure. The second step is the analytical

evaluation of the achieved results (conducted with numerical computation and visualization

software MATLAB).
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C.1 Electromagnetic Simulation Procedure

Simulation model of the vehicle under investigation without the ground is presented in

Chapter 6, Fig. 6.2. The model comprises the vehicle metallic body, wheels (rim and tyre)

as well as WUs. The ground during the simulations was represented by PEC plane.

The Electric Field Strength E (components Ex, Ey , Ez and Et) was calculated within

in Fig. C.2 depicted volume comprising the vehicle (Fig. C.2 FIRST STEP). Neighbour-

ing discrete points were distributed with five centimetres distance. Each wheel during the

simulation process was rotated over a full turn (with step of five degrees). Four such simu-

lations had to take place - one for each wheel.

The above described simulations resulted in 288 values (4 wheels, for each wheel 72

WU simulation positions over a full wheel turn) for each single discrete point (Fig. C.2

SECOND STEP). With such a high result number a good evaluation procedure and algo-

rithm was necessary.

C.2 Result Evaluation

In order to evaluate the calculated values an algorithm that would depict and compare all

field values for all wheels had to be developed.

The evaluation is done separately for all field components of the Electric Field
→
E. Obtained

values and geometrical vehicle interior representation (discrete points) form a 3D matrix.

The field values are sorted in descending order (Fig. C.2 THIRD STEP, obtained values

matrix). The corresponding coordinates of the discrete points are written in a stack.

Parallel another 3D matrix based on vehicle interior coordinates is formed. Initially all

values of this matrix are set to zero (Fig. C.3 FOURTH STEP, coordinate base matrix).

In the following step the obtained values matrix and coordinate base matrix are correlated

(Fig. C.3 FIFTH STEP). The rows of obtained values matrix are evaluated one by one start-

ing with the row including the highest electric field values. Every element of such a row

has got a belonging coordinate (stack). This coordinate is found in the coordinate base ma-

trix and in the according field the value is increased by one. There are so many correlation

steps as many obtained values matrix rows or as any of the fields in coordinate base matrix

reaches the value of 288. Fields with highest reached values represent the best positions

for placing the receiver.

There are many coordinate base matrix fields with high values that neighbour directly to the

fields with very low values. The evaluation was conducted for the densely distributed dis-

crete points every five centimetre. The receiver biggest diameter amounted twenty centime-
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tres. For this reason mean values for all neighbouring points within twenty centimetre dis-

tance were calculated (the vehicle interior was clustered in volumes). In this way achieved

highest values represent the most optimal possible positions for the receiver. Evaluated

candidate positions are depicted in Fig. C.1.

(a) Lateral vehicle view

(b) Top vehicle view

Figure C.1: Optimal areas suitable for receiver placement

C.3 Result Visualization

Additionally to the developed search algorithm, a visualization tool for field distribution

within the vehicle body was developed. It is possible to visualize the obtained and clus-

tered field values as in Fig. C.4

Such visualization helps to confirm the proper functioning of the developed algorithm.

Additional tool helps to view the electrical field distribution for each wheel and field com-

ponent separately with the developed visualization tool. There is possibility to visualize

the field distribution for each wheel position as well as an average over full wheel turn.

Fig. C.5 represents an example of the visualization tool for horizontal vehicle cross sec-

tion. The tool allows manual observation of the simulated field values.
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Figure C.2: Simulation and evaluation procedure for optimal antenna position within the

vehicle structure
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Figure C.3: Simulation and evaluation procedure for optimal antenna position within the

vehicle structure



- 206 - APPENDIX C. OPTIMAL POSITIONING OF ANTENNAS WITHIN VEHICLE STRUCTURE

Figure C.4: Visualization of the simulated total electric field values within the vehicle inte-

rior

Figure C.5: Visualization tool for field distribution within the vehicle structure



D Tyre Rubber Material Measurement

Appendix D comprehends material measurement results for tyre rubber. The be-

neath presented results are complement to Chapter 4. Results of detailed mate-

rial measurement for numerous conventional tyre samples from different tyre sec-

tions are presented. The analysis of these results allows afterwards conclusions.

D.1 Conventional Tyre Representative at Room Temperature

Conventional tyre (Pirelli P Zero Rosso) tread was measured in 5 regions (Fig. 4.11a).

Measurement results of the samples resulting from these regions are depicted in Fig D.1

to Fig D.9. For each region three consequent samples were measured. The graphics show

calculated average (solid line) as well as variance of the measured results (vertical solid

lines). Firstly tread tyre rubber was measured together with the metallic reinforcement,

second measurement for each probe was done with pure tread rubber layer (measurement

without metallic reinforcement). This was the first tyre under investigation and so many

measurements were made in order to assure repeatability.

Fig. D.1 and Fig. D.2 show the results for sample from region 1.

Fig. D.3 and Fig. D.4 show the results for sample from region 2.

Fig. D.5 and Fig. D.6 show the results for sample from region 3.

Fig. D.7 and Fig. D.8 show the results for sample from region 4.

Fig. D.9 and Fig. D.10 show the results for sample from region 5.



- 208 - APPENDIX D. TYRE RUBBER MATERIAL MEASUREMENT

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.1: Measured electrical parameters of conventional tyre, sample from region 1,

with metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.2: Measured electrical parameters of conventional tyre, sample from region 1,

without metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.3: Measured electrical parameters of conventional tyre, sample from region 2,

with metallic reinforcement, room temperature
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(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.4: Measured electrical parameters of conventional tyre, sample from region 2,

without metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.5: Measured electrical parameters of conventional tyre, sample from region 1,

with metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.6: Measured electrical parameters of conventional tyre, sample from region 3,

without metallic reinforcement, room temperature
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(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.7: Measured electrical parameters of conventional tyre, sample from region 4,

with metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.8: Measured electrical parameters of conventional tyre, sample from region 4,

without metallic reinforcement, room temperature

(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.9: Measured electrical parameters of conventional tyre, sample from region 1,

with metallic reinforcement, room temperature
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(a) Relative permittivity εr(f) (b) Loss tangent tanδ(f)

Figure D.10: Measured electrical parameters of conventional tyre, sample from region 5,

without metallic reinforcement, room temperature

Alaysing the results it may be stated that:

• All measurements feature values of the same range: for relative permittivity

between 3.8 and 5.3. for loss tangent in the range of 0.02 to 0.08 dependent on the

frequency range.

• For the samples where the probe was consisting of pure rubber the measured values

of relative permittivity are slightly smaller than for the samples with rubber and

metallic reinforcement.

• For the samples where the probe was consisting of pure rubber the measured values

of loss tangent are slightly higher than for the samples with rubber and metallic

reinforcement.

• Overall similar dielectric properties are observed for all tyre regions. Thus tyre tread

may be considered as homogeneous, independent from tread profile.

Average values of the above measurements are presented in Chapter 4.5.

With the above presented results the certainty of the chosen measurement method with

dielectric probe and measurement repeatability are confirmed.
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